Science.gov

Sample records for 192ir intravascular brachytherapy

  1. Water equivalent phantom materials for (192)Ir brachytherapy.

    PubMed

    Schoenfeld, Andreas A; Harder, Dietrich; Poppe, Björn; Chofor, Ndimofor

    2015-12-21

    Several solid phantom materials have been tested regarding their suitability as water substitutes for dosimetric measurements in brachytherapy with (192)Ir as a typical high energy photon emitter. The radial variations of the spectral photon fluence, of the total, primary and scattered photon fluence and of the absorbed dose to water in the transversal plane of the tested cylindrical phantoms surrounding a centric and coaxially arranged Varian GammaMed afterloading (192)Ir brachytherapy source were Monte-Carlo simulated in EGSnrc. The degree of water equivalence of a phantom material was evaluated by comparing the radial dose-to-water profile in the phantom material with that in water. The phantom size was varied over a large range since it influences the dose contribution by scattered photons with energies diminished by single and multiple Compton scattering. Phantom axis distances up to 10 cm were considered as clinically relevant. Scattered photons with energies reaching down into the 25 keV region dominate the photon fluence at source distances exceeding 3.5 cm.The tested phantom materials showed significant differences in the degree of water equivalence. In phantoms with radii up to 10 cm, RW1, RW3, Solid Water, HE Solid Water, Virtual Water, Plastic Water DT, and Plastic Water LR phantoms show excellent water equivalence with dose deviations from a water phantom not exceeding 0.8%, while Original Plastic Water (as of 2015), Plastic Water (1995), Blue Water, polyethylene, and polystyrene show deviations up to 2.6%. For larger phantom radii up to 30 cm, the deviations for RW1, RW3, Solid Water, HE Solid Water, Virtual Water, Plastic Water DT, and Plastic Water LR remain below 1.4%, while Original Plastic Water (as of 2015), Plastic Water (1995), Blue Water, polyethylene, and polystyrene produce deviations up to 8.1%. PMMA plays a separate role, with deviations up to 4.3% for radii not exceeding 10 cm, but below 1% for radii up to 30 cm.As suggested

  2. Water equivalent phantom materials for 192Ir brachytherapy

    NASA Astrophysics Data System (ADS)

    Schoenfeld, Andreas A.; Harder, Dietrich; Poppe, Björn; Chofor, Ndimofor

    2015-12-01

    Several solid phantom materials have been tested regarding their suitability as water substitutes for dosimetric measurements in brachytherapy with 192Ir as a typical high energy photon emitter. The radial variations of the spectral photon fluence, of the total, primary and scattered photon fluence and of the absorbed dose to water in the transversal plane of the tested cylindrical phantoms surrounding a centric and coaxially arranged Varian GammaMed afterloading 192Ir brachytherapy source were Monte-Carlo simulated in EGSnrc. The degree of water equivalence of a phantom material was evaluated by comparing the radial dose-to-water profile in the phantom material with that in water. The phantom size was varied over a large range since it influences the dose contribution by scattered photons with energies diminished by single and multiple Compton scattering. Phantom axis distances up to 10 cm were considered as clinically relevant. Scattered photons with energies reaching down into the 25 keV region dominate the photon fluence at source distances exceeding 3.5 cm. The tested phantom materials showed significant differences in the degree of water equivalence. In phantoms with radii up to 10 cm, RW1, RW3, Solid Water, HE Solid Water, Virtual Water, Plastic Water DT, and Plastic Water LR phantoms show excellent water equivalence with dose deviations from a water phantom not exceeding 0.8%, while Original Plastic Water (as of 2015), Plastic Water (1995), Blue Water, polyethylene, and polystyrene show deviations up to 2.6%. For larger phantom radii up to 30 cm, the deviations for RW1, RW3, Solid Water, HE Solid Water, Virtual Water, Plastic Water DT, and Plastic Water LR remain below 1.4%, while Original Plastic Water (as of 2015), Plastic Water (1995), Blue Water, polyethylene, and polystyrene produce deviations up to 8.1%. PMMA plays a separate role, with deviations up to 4.3% for radii not exceeding 10 cm, but below 1% for radii up to 30 cm. As suggested by

  3. Comparison of 60Co and 192Ir sources in HDR brachytherapy

    PubMed Central

    Zwierzchowski, Grzegorz

    2011-01-01

    This paper compares the isotopes 60Co and 192Ir as radiation sources for high-dose-rate (HDR) afterloading brachytherapy. The smaller size of 192Ir sources made it the preferred radionuclide for temporary brachytherapy treatments. Recently also 60Co sources have been made available with identical geometrical dimensions. This paper compares the characteristics of both nuclides in different fields of brachytherapy based on scientific literature. In an additional part of this paper reports from medical physicists of several radiation therapy institutes are discussed. The purpose of this work is to investigate the advantages or disadvantages of both radionuclides for HDR brachytherapy due to their physical differences. The motivation is to provide useful information to support decision-making procedures in the selection of equipment for brachytherapy treatment rooms. The results of this work show that no advantages or disadvantages exist for 60Co sources compared to 192Ir sources with regard to clinical aspects. Nevertheless, there are potential logistical advantages of 60Co sources due to its longer half-life (5.3 years vs. 74 days), making it an interesting alternative especially in developing countries. PMID:23346129

  4. Source geometry factors for HDR 192Ir brachytherapy secondary standard well-type ionization chamber calibrations

    NASA Astrophysics Data System (ADS)

    Shipley, D. R.; Sander, T.; Nutbrown, R. F.

    2015-03-01

    Well-type ionization chambers are used for measuring the source strength of radioactive brachytherapy sources before clinical use. Initially, the well chambers are calibrated against a suitable national standard. For high dose rate (HDR) 192Ir, this calibration is usually a two-step process. Firstly, the calibration source is traceably calibrated against an air kerma primary standard in terms of either reference air kerma rate or air kerma strength. The calibrated 192Ir source is then used to calibrate the secondary standard well-type ionization chamber. Calibration laboratories are usually only equipped with one type of HDR 192Ir source. If the clinical source type is different from that used for the calibration of the well chamber at the standards laboratory, a source geometry factor, ksg, is required to correct the calibration coefficient for any change of the well chamber response due to geometric differences between the sources. In this work we present source geometry factors for six different HDR 192Ir brachytherapy sources which have been determined using Monte Carlo techniques for a specific ionization chamber, the Standard Imaging HDR 1000 Plus well chamber with a type 70010 HDR iridium source holder. The calculated correction factors were normalized to the old and new type of calibration source used at the National Physical Laboratory. With the old Nucletron microSelectron-v1 (classic) HDR 192Ir calibration source, ksg was found to be in the range 0.983 to 0.999 and with the new Isodose Control HDR 192Ir Flexisource ksg was found to be in the range 0.987 to 1.004 with a relative uncertainty of 0.4% (k = 2). Source geometry factors for different combinations of calibration sources, clinical sources, well chambers and associated source holders, can be calculated with the formalism discussed in this paper.

  5. Enhancement and validation of Geant4 Brachytherapy application on clinical HDR 192Ir source

    NASA Astrophysics Data System (ADS)

    Ababneh, Eshraq; Dababneh, Saed; Qatarneh, Sharif; Wadi-Ramahi, Shada

    2014-10-01

    The Geant4 Monte Carlo MC associated Brachytherapy example was adapted, enhanced and several analysis techniques have been developed. The simulation studies the isodose distribution of the total, primary and scattered doses around a Nucletron microSelectron 192Ir source. Different phantom materials were used (water, tissue and bone) and the calculation was conducted at various depths and planes. The work provides an early estimate of the required number of primary events to ultimately achieve a given uncertainty at a given distance, in the otherwise CPU and time consuming clinical MC calculation. The adaptation of the Geant4 toolkit and the enhancements introduced to the code are all validated including the comprehensive decay of the 192Ir source, the materials used to build the geometry, the geometry itself and the calculated scatter to primary dose ratio. The simulation quantitatively illustrates that the scattered dose in the bone medium is larger than its value in water and tissue. As the distance away from the source increases, scatter contribution to dose becomes more significant as the primary dose decreases. The developed code could be viewed as a platform that contains detailed dose calculation model for clinical application of HDR 192Ir in Brachytherapy.

  6. A Monte Carlo study on dose distribution evaluation of Flexisource 192Ir brachytherapy source

    PubMed Central

    Alizadeh, Majid; Ghorbani, Mahdi; Haghparast, Abbas; Zare, Naser; Ahmadi Moghaddas, Toktam

    2015-01-01

    Aim The aim of this study is to evaluate the dose distribution of the Flexisource 192Ir source. Background Dosimetric evaluation of brachytherapy sources is recommended by task group number 43 (TG. 43) of American Association of Physicists in Medicine (AAPM). Materials and methods MCNPX code was used to simulate Flexisource 192Ir source. Dose rate constant and radial dose function were obtained for water and soft tissue phantoms and compared with previous data on this source. Furthermore, dose rate along the transverse axis was obtained by simulation of the Flexisource and a point source and the obtained data were compared with those from Flexiplan treatment planning system (TPS). Results The values of dose rate constant obtained for water and soft tissue phantoms were equal to 1.108 and 1.106, respectively. The values of the radial dose function are listed in the form of tabulated data. The values of dose rate (cGy/s) obtained are shown in the form of tabulated data and figures. The maximum difference between TPS and Monte Carlo (MC) dose rate values was 11% in a water phantom at 6.0 cm from the source. Conclusion Based on dosimetric parameter comparisons with values previously published, the accuracy of our simulation of Flexisource 192Ir was verified. The results of dose rate constant and radial dose function in water and soft tissue phantoms were the same for Flexisource and point sources. For Flexisource 192Ir source, the results of TPS calculations in a water phantom were in agreement with the simulations within the calculation uncertainties. Furthermore, the results from the TPS calculation for Flexisource and MC calculation for a point source were practically equal within the calculation uncertainties. PMID:25949224

  7. The Application of Elliptic Cylindrical Phantom in Brachytherapy Dosimetric Study of HDR 192Ir Source

    NASA Astrophysics Data System (ADS)

    Ahn, Woo Sang; Park, Sung Ho; Jung, Sang Hoon; Choi, Wonsik; Do Ahn, Seung; Shin, Seong Soo

    2014-06-01

    The purpose of this study is to determine the radial dose function of HDR 192Ir source based on Monte Carlo simulation using elliptic cylindrical phantom, similar to realistic shape of pelvis, in brachytherapy dosimetric study. The elliptic phantom size and shape was determined by analysis of dimensions of pelvis on CT images of 20 patients treated with brachytherapy for cervical cancer. The radial dose function obtained using the elliptic cylindrical water phantom was compared with radial dose functions for different spherical phantom sizes, including the Williamsion's data loaded into conventional planning system. The differences in the radial dose function for the different spherical water phantoms increase with radial distance, r, and the largest differences in the radial dose function appear for the smallest phantom size. The radial dose function of the elliptic cylindrical phantom significantly decreased with radial distance in the vertical direction due to different scatter condition in comparison with the Williamson's data. Considering doses to ICRU rectum and bladder points, doses to reference points can be underestimated up to 1-2% at the distance from 3 to 6 cm. The radial dose function in this study could be used as realistic data for calculating the brachytherapy dosimetry for cervical cancer.

  8. Dosimetry revisited for the HDR {sup 192}Ir brachytherapy source model mHDR-v2

    SciTech Connect

    Granero, Domingo; Vijande, Javier; Ballester, Facundo; Rivard, Mark J.

    2011-01-15

    Purpose: Recently, the manufacturer of the HDR {sup 192}Ir mHDR-v2 brachytherapy source reported small design changes (referred to herein as mHDR-v2r) that are within the manufacturing tolerances but may alter the existing dosimetric data for this source. This study aimed to (1) check whether these changes affect the existing dosimetric data published for this source; (2) obtain new dosimetric data in close proximity to the source, including the contributions from {sup 192}Ir electrons and considering the absence of electronic equilibrium; and (3) obtain scatter dose components for collapsed cone treatment planning system implementation. Methods: Three different Monte Carlo (MC) radiation transport codes were used: MCNP5, PENELOPE2008, and GEANT4. The source was centrally positioned in a 40 cm radius water phantom. Absorbed dose and collision kerma were obtained using 0.1 mm (0.5 mm) thick voxels to provide high-resolution dosimetry near (far from) the source. Dose-rate distributions obtained with the three MC codes were compared. Results: Simulations of mHDR-v2 and mHDR-v2r designs performed with three radiation transport codes showed agreement typically within 0.2% for r{>=}0.25 cm. Dosimetric contributions from source electrons were significant for r<0.25 cm. The dose-rate constant and radial dose function were similar to those from previous MC studies of the mHDR-v2 design. The 2D anisotropy function also coincided with that of the mHDR-v2 design for r{>=}0.25 cm. Detailed results of dose distributions and scatter components are presented for the modified source design. Conclusions: Comparison of these results to prior MC studies showed agreement typically within 0.5% for r{>=}0.25 cm. If dosimetric data for r<0.25 cm are not needed, dosimetric results from the prior MC studies will be adequate.

  9. Evaluation of PC-ISO for customized, 3D Printed, gynecologic 192-Ir HDR brachytherapy applicators.

    PubMed

    Cunha, J Adam M; Mellis, Katherine; Sethi, Rajni; Siauw, Timmy; Sudhyadhom, Atchar; Garg, Animesh; Goldberg, Ken; Hsu, I-Chow; Pouliot, Jean

    2015-01-01

    The purpose of this study was to evaluate the radiation attenuation properties of PC-ISO, a commercially available, biocompatible, sterilizable 3D printing material, and its suitability for customized, single-use gynecologic (GYN) brachytherapy applicators that have the potential for accurate guiding of seeds through linear and curved internal channels. A custom radiochromic film dosimetry apparatus was 3D-printed in PC-ISO with a single catheter channel and a slit to hold a film segment. The apparatus was designed specifically to test geometry pertinent for use of this material in a clinical setting. A brachytherapy dose plan was computed to deliver a cylindrical dose distribution to the film. The dose plan used an 192Ir source and was normalized to 1500 cGy at 1 cm from the channel. The material was evaluated by comparing the film exposure to an identical test done in water. The Hounsfield unit (HU) distributions were computed from a CT scan of the apparatus and compared to the HU distribution of water and the HU distribution of a commercial GYN cylinder applicator. The dose depth curve of PC-ISO as measured by the radiochromic film was within 1% of water between 1 cm and 6 cm from the channel. The mean HU was -10 for PC-ISO and -1 for water. As expected, the honeycombed structure of the PC-ISO 3D printing process created a moderate spread of HU values, but the mean was comparable to water. PC-ISO is sufficiently water-equivalent to be compatible with our HDR brachytherapy planning system and clinical workflow and, therefore, it is suitable for creating custom GYN brachytherapy applicators. Our current clinical practice includes the use of custom GYN applicators made of commercially available PC-ISO when doing so can improve the patient's treatment.  PMID:25679174

  10. Comparison of Axxent-Xoft, 192Ir and 60Co high-dose-rate brachytherapy sources for image-guided brachytherapy treatment planning for cervical cancer

    PubMed Central

    Packianathan, S; He, R; Yang, C C

    2015-01-01

    Objective: To evaluate the dosimetric differences and similarities between treatment plans generated with Axxent-Xoft electronic brachytherapy source (Xoft-EBS), 192Ir and 60Co for tandem and ovoids (T&O) applicators. Methods: In this retrospective study, we replanned 10 patients previously treated with 192Ir high-dose-rate brachytherapy. Prescription was 7 Gy × 4 fractions to Point A. For each original plan, we created two additional plans with Xoft-EBS and 60Co. The dose to each organ at risk (OAR) was evaluated in terms of V35% and V50%, the percentage volume receiving 35% and 50% of the prescription dose, respectively, and D2cc, highest dose to a 2 cm3 volume of an OAR. Results: There was no difference between plans generated by 192Ir and 60Co, but the plans generated using Xoft-EBS showed a reduction of up to 50% in V35%, V50% and D2cc. The volumes of the 200% and 150% isodose lines, however, were 74% and 34% greater than the comparable volumes generated with the 192Ir source. Point B dose was on average only 16% of the Point A dose for plans generated with Xoft-EBS compared with 30% for plans generated with 192Ir or 60Co. Conclusion: The Xoft-EBS can potentially replace either 192Ir or 60Co in T&O treatments. Xoft-EBS offers either better sparing of the OARs compared with 192Ir or 60Co or at least similar sparing. Xoft-EBS-generated plans had higher doses within the target volume than 192Ir- or 60Co-generated ones. Advances in knowledge: This work presents newer knowledge in dosimetric comparison between Xoft-EBS, 192Ir or 60Co sources for T&O implants. PMID:25996576

  11. High-Dose-Rate 192Ir Brachytherapy Dose Verification: A Phantom Study

    PubMed Central

    Nikoofar, Alireza; Hoseinpour, Zohreh; Rabi Mahdavi, Seied; Hasanzadeh, Hadi; Rezaei Tavirani, Mostafa

    2015-01-01

    Background: The high-dose-rate (HDR) brachytherapy might be an effective tool for palliation of dysphagia. Because of some concerns about adverse effects due to absorbed radiation dose, it is important to estimate absorbed dose in risky organs during this treatment. Objectives: This study aimed to measure the absorbed dose in the parotid, thyroid, and submandibular gland, eye, trachea, spinal cord, and manubrium of sternum in brachytherapy in an anthropomorphic phantom. Materials and Methods: To measure radiation dose, eye, parotid, thyroid, and submandibular gland, spine, and sternum, an anthropomorphic phantom was considered with applicators to set thermoluminescence dosimeters (TLDs). A specific target volume of about 23 cm3 in the upper thoracic esophagus was considered as target, and phantom planned computed tomography (CT) for HDR brachytherapy, then with a micro-Selectron HDR (192Ir) remote after-loading unit. Results: Absorbed doses were measured with calibrated TLDs and were expressed in centi-Gray (cGy). In regions far from target (≥ 16 cm) such as submandibular, parotid and thyroid glands, mean measured dose ranged from 1.65 to 5.5 cGy. In closer regions (≤ 16 cm), the absorbed dose might be as high as 113 cGy. Conclusions: Our study showed similar depth and surface doses; in closer regions, the surface and depth doses differed significantly due to the role of primary radiation that had imposed a high-dose gradient and difference between the plan and measurement, which was more severe because of simplifications in tissue inhomogeneity, considered in TPS relative to phantom. PMID:26413250

  12. Monte Carlo estimation of dose difference in lung from 192Ir brachytherapy due to tissue inhomogeneity.

    PubMed

    Gialousis, G; Dimitriadis, A; Yakoumakis, E

    2011-09-01

    Lung brachytherapy using high-dose rate (192)Ir technique is a well-established technique of radiation therapy. However, many commercial treatment planning systems do not have the ability to consider the inhomogeneity of lung in relation to normal tissue. Under such circumstances dose calculations for tissues and organs at risk close to the target are inaccurate. The purpose of the current study was to estimate the dose difference due to tissue inhomogeneity using the Monte Carlo simulation code MCNP-5. Results showed that there was a relative sub dosage by treatment planning systems calculations in neighbouring tissues around the radioactive source due to inhomogeneity ignorance. The presence of lung instead of normal tissue resulted in an increase in relative dose, which approached 8 % at 4-cm distance from the source. Additionally, the relative increase was small for the lung (2.1 %) and larger for organs at risk such as the heart (6.8 %) and bone marrow (7.6 %). PMID:21831865

  13. The contribution from transit dose for 192Ir HDR brachytherapy treatments

    NASA Astrophysics Data System (ADS)

    Fonseca, G. P.; Landry, G.; Reniers, B.; Hoffmann, A.; Rubo, R. A.; Antunes, P. C. G.; Yoriyaz, H.; Verhaegen, F.

    2014-04-01

    Brachytherapy treatment planning systems that use model-based dose calculation algorithms employ a more accurate approach that replaces the TG43-U1 water dose formalism and adopt the TG-186 recommendations regarding composition and geometry of patients and other relevant effects. However, no recommendations were provided on the transit dose due to the source traveling inside the patient. This study describes a methodology to calculate the transit dose using information from the treatment planning system (TPS) and considering the source's instantaneous and average speed for two prostate and two gynecological cases. The trajectory of the 192Ir HDR source was defined by importing applicator contour points and dwell positions from the TPS. The transit dose distribution was calculated using the maximum speed, the average speed and uniform accelerations obtained from the literature to obtain an approximate continuous source distribution simulated with a Monte Carlo code. The transit component can be negligible or significant depending on the speed profile adopted, which is not clearly reported in the literature. The significance of the transit dose can also be due to the treatment modality; in our study interstitial treatments exhibited the largest effects. Considering the worst case scenario the transit dose can reach 3% of the prescribed dose in a gynecological case with four catheters and up to 11.1% when comparing the average prostate dose for a case with 16 catheters. The transit dose component increases by increasing the number of catheters used for HDR brachytherapy, reducing the total dwell time per catheter or increasing the number of dwell positions with low dwell times. This contribution may become significant (>5%) if it is not corrected appropriately. The transit dose cannot be completely compensated using simple dwell time corrections since it may have a non-uniform distribution. An accurate measurement of the source acceleration and maximum speed should be

  14. Dosimetric study of a brachytherapy treatment of esophagus with Brazilian 192Ir sources using an anthropomorphic phantom

    NASA Astrophysics Data System (ADS)

    Neves, Lucio P.; Santos, William S.; Gorski, Ronan; Perini, Ana P.; Maia, Ana F.; Caldas, Linda V. E.; Orengo, Gilberto

    2014-11-01

    Several radioisotopes are produced at Instituto de Pesquisas Energéticas e Nucleares for the use in medical treatments, including the activation of 192Ir sources. These sources are suitable for brachytherapy treatments, due to their low or high activity, depending on the concentration of 192Ir, easiness to manufacture, small size, stable daughter products and the possibility of re-utilization. They may be used for the treatment of prostate, cervix, head and neck, skin, breast, gallbladder, uterus, vagina, lung, rectum, and eye cancer treatment. In this work, the use of some 192Ir sources was studied for the treatment of esophagus cancer, especially the dose determination of important structures, such as those on the mediastinum. This was carried out utilizing a FASH anthropomorphic phantom and the MCNP5 Monte Carlo code to transport the radiation through matter. It was possible to observe that the doses at lungs, breast, esophagus, thyroid and heart were the highest, which was expected due to their proximity to the source. Therefore, the data are useful to assess the representative dose specific to brachytherapy treatments on the esophagus for radiation protection purposes. The use of brachytherapy sources was studied for the treatment of esophagus cancer. FASH anthropomorphic phantom and MCNP5 Monte Carlo code were employed. The doses at lungs, breast, esophagus, thyroid and heart were the highest. The data is useful to assess the representative doses of treatments on the esophagus.

  15. Development of a water calorimetry-based standard for absorbed dose to water in HDR {sup 192}Ir brachytherapy

    SciTech Connect

    Sarfehnia, Arman; Seuntjens, Jan

    2010-04-15

    Purpose: The aim of this article is to develop and evaluate a primary standard for HDR {sup 192}Ir brachytherapy based on 4 deg. C stagnant water calorimetry. Methods: The absolute absorbed dose to water was directly measured for several different Nucletron microSelectron {sup 192}Ir sources of air kerma strength ranging between 21 000 and 38 000 U and for source-to-detector separations ranging between 25 and 70 mm. The COMSOL MULTIPHYSICS software was used to accurately calculate the heat transport in a detailed model geometry. Through a coupling of the ''conduction and convection'' module with the ''Navier-Stokes incompressible fluid'' module in the software, both the conductive and convective effects were modeled. Results: A detailed uncertainty analysis resulted in an overall uncertainty in the absorbed dose of 1.90%(1{sigma}). However, this includes a 1.5% uncertainty associated with a nonlinear predrift correction which can be substantially reduced if sufficient time is provided for the system to come to a new equilibrium in between successive calorimetric runs, an opportunity not available to the authors in their clinical setting due to time constraints on the machine. An average normalized dose rate of 361{+-}7 {mu}Gy/(h U) at a source-to-detector separation of 55 mm was measured for the microSelectron {sup 192}Ir source based on water calorimetry. The measured absorbed dose per air kerma strength agreed to better than 0.8%(1{sigma}) with independent ionization chamber and EBT-1 Gafchromic film reference dosimetry as well as with the currently accepted AAPM TG-43 protocol measurements. Conclusions: This work paves the way toward a primary absorbed dose to water standard in {sup 192}Ir brachytherapy.

  16. Estimation of distance error by fuzzy set theory required for strength determination of HDR 192Ir brachytherapy sources

    PubMed Central

    Kumar, Sudhir; Datta, D.; Sharma, S. D.; Chourasiya, G.; Babu, D. A. R.; Sharma, D. N.

    2014-01-01

    Verification of the strength of high dose rate (HDR) 192Ir brachytherapy sources on receipt from the vendor is an important component of institutional quality assurance program. Either reference air-kerma rate (RAKR) or air-kerma strength (AKS) is the recommended quantity to specify the strength of gamma-emitting brachytherapy sources. The use of Farmer-type cylindrical ionization chamber of sensitive volume 0.6 cm3 is one of the recommended methods for measuring RAKR of HDR 192Ir brachytherapy sources. While using the cylindrical chamber method, it is required to determine the positioning error of the ionization chamber with respect to the source which is called the distance error. An attempt has been made to apply the fuzzy set theory to estimate the subjective uncertainty associated with the distance error. A simplified approach of applying this fuzzy set theory has been proposed in the quantification of uncertainty associated with the distance error. In order to express the uncertainty in the framework of fuzzy sets, the uncertainty index was estimated and was found to be within 2.5%, which further indicates that the possibility of error in measuring such distance may be of this order. It is observed that the relative distance li estimated by analytical method and fuzzy set theoretic approach are consistent with each other. The crisp values of li estimated using analytical method lie within the bounds computed using fuzzy set theory. This indicates that li values estimated using analytical methods are within 2.5% uncertainty. This value of uncertainty in distance measurement should be incorporated in the uncertainty budget, while estimating the expanded uncertainty in HDR 192Ir source strength measurement. PMID:24872605

  17. Dosimetric characterization and output verification for conical brachytherapy surface applicators. Part II. High dose rate {sup 192}Ir sources

    SciTech Connect

    Fulkerson, Regina K. Micka, John A.; DeWerd, Larry A.

    2014-02-15

    Purpose: Historically, treatment of malignant surface lesions has been achieved with linear accelerator based electron beams or superficial x-ray beams. Recent developments in the field of brachytherapy now allow for the treatment of surface lesions with specialized conical applicators placed directly on the lesion. Applicators are available for use with high dose rate (HDR){sup 192}Ir sources, as well as electronic brachytherapy sources. Part I of this paper discussed the applicators used with electronic brachytherapy sources. Part II will discuss those used with HDR {sup 192}Ir sources. Although the use of these applicators has gained in popularity, the dosimetric characteristics have not been independently verified. Additionally, there is no recognized method of output verification for quality assurance procedures with applicators like these. Methods: This work aims to create a cohesive method of output verification that can be used to determine the dose at the treatment surface as part of a quality assurance/commissioning process for surface applicators used with HDR electronic brachytherapy sources (Part I) and{sup 192}Ir sources (Part II). Air-kerma rate measurements for the {sup 192}Ir sources were completed with several models of small-volume ionization chambers to obtain an air-kerma rate at the treatment surface for each applicator. Correction factors were calculated using MCNP5 and EGSnrc Monte Carlo codes in order to determine an applicator-specific absorbed dose to water at the treatment surface from the measured air-kerma rate. Additionally, relative dose measurements of the surface dose distributions and characteristic depth dose curves were completed in-phantom. Results: Theoretical dose distributions and depth dose curves were generated for each applicator and agreed well with the measured values. A method of output verification was created that allows users to determine the applicator-specific dose to water at the treatment surface based on a

  18. Influence of brachytherapy ( sup 192 Ir afterloading) on cell-mediated immune reactions in patients with stage I endometrial cancer

    SciTech Connect

    Gerstner, G.J.; Kucera, H.; Kudlacek, S.; Micksche, M. )

    1989-11-01

    The influence of radiation therapy on cell-mediated immune reactions in cancer patients seems to depend on source, dose, and area of irradiation, as well as on the variables reflected by the patient population investigated. In the present study we demonstrated that brachytherapy ({sup 192}Ir afterloading), applied to patients with inoperable stage I endometrial cancer, has no immediate or sustained effect on lymphocyte function. Both lymphocyte mitogen response and natural killer cell (NK) activity are not significantly changed in terms of baseline values compared with test results during and after therapy. Brachytherapy, as used in this study, has no influence on cell-mediated immunity in patients with endometrial cancer stage I.

  19. Absolute depth-dose-rate measurements for an {sup 192}Ir HDR brachytherapy source in water using MOSFET detectors

    SciTech Connect

    Zilio, Valery Olivier; Joneja, Om Parkash; Popowski, Youri; Rosenfeld, Anatoly; Chawla, Rakesh

    2006-06-15

    Reported MOSFET measurements concern mostly external radiotherapy and in vivo dosimetry. In this paper, we apply the technique for absolute dosimetry in the context of HDR brachytherapy using an {sup 192}Ir source. Measured radial dose rate distributions in water for different planes perpendicular to the source axis are presented and special attention is paid to the calibration of the R and K type detectors, and to the determination of appropriate correction factors for the sensitivity variation with the increase of the threshold voltage and the energy dependence. The experimental results are compared with Monte Carlo simulated dose rate distributions. The experimental results show a good agreement with the Monte Carlo simulations: the discrepancy between experimental and Monte Carlo results being within 5% for 82% of the points and within 10% for 95% of the points. Moreover, all points except two are found to lie within the experimental uncertainties, confirming thereby the quality of the results obtained.

  20. Evaluation of Wall Correction Factor of INER's Air-Kerma Primary Standard Chamber and Dose Variation by Source Displacement for HDR 192Ir Brachytherapy

    PubMed Central

    Lee, J. H.; Wang, J. N.; Huang, T. T.; Su, S. H.; Chang, B. J.; Su, C. H.; Hsu, S. M.

    2013-01-01

    The aim of the present study was to estimate the wall effect of the self-made spherical graphite-walled cavity chamber with the Monte Carlo method for establishing the air-kerma primary standard of high-dose-rate (HDR) 192Ir brachytherapy sources at the Institute of Nuclear Energy Research (INER, Taiwan). The Monte Carlo method established in this paper was also employed to respectively simulate wall correction factors of the 192Ir air-kerma standard chambers used at the National Institute of Standards and Technology (NIST, USA) and the National Physical Laboratory (NPL, UK) for comparisons and verification. The chamber wall correction calculation results will be incorporated into INER's HDR 192Ir primary standard in the future. For the brachytherapy treatment in the esophagus or in the bronchi, the position of the isotope may have displacement in the cavity. Thus the delivered dose would differ from the prescribed dose in the treatment plan. We also tried assessing dose distribution due to the position displacement of HDR 192Ir brachytherapy source in a phantom with a central cavity by the Monte Carlo method. The calculated results could offer a clinical reference for the brachytherapy within the human organs with cavity. PMID:24222907

  1. On source models for (192)Ir HDR brachytherapy dosimetry using model based algorithms.

    PubMed

    Pantelis, Evaggelos; Zourari, Kyveli; Zoros, Emmanouil; Lahanas, Vasileios; Karaiskos, Pantelis; Papagiannis, Panagiotis

    2016-06-01

    A source model is a prerequisite of all model based dose calculation algorithms. Besides direct simulation, the use of pre-calculated phase space files (phsp source models) and parameterized phsp source models has been proposed for Monte Carlo (MC) to promote efficiency and ease of implementation in obtaining photon energy, position and direction. In this work, a phsp file for a generic (192)Ir source design (Ballester et al 2015) is obtained from MC simulation. This is used to configure a parameterized phsp source model comprising appropriate probability density functions (PDFs) and a sampling procedure. According to phsp data analysis 15.6% of the generated photons are absorbed within the source, and 90.4% of the emergent photons are primary. The PDFs for sampling photon energy and direction relative to the source long axis, depend on the position of photon emergence. Photons emerge mainly from the cylindrical source surface with a constant probability over  ±0.1 cm from the center of the 0.35 cm long source core, and only 1.7% and 0.2% emerge from the source tip and drive wire, respectively. Based on these findings, an analytical parameterized source model is prepared for the calculation of the PDFs from data of source geometry and materials, without the need for a phsp file. The PDFs from the analytical parameterized source model are in close agreement with those employed in the parameterized phsp source model. This agreement prompted the proposal of a purely analytical source model based on isotropic emission of photons generated homogeneously within the source core with energy sampled from the (192)Ir spectrum, and the assignment of a weight according to attenuation within the source. Comparison of single source dosimetry data obtained from detailed MC simulation and the proposed analytical source model show agreement better than 2% except for points lying close to the source longitudinal axis. PMID:27191179

  2. On source models for 192Ir HDR brachytherapy dosimetry using model based algorithms

    NASA Astrophysics Data System (ADS)

    Pantelis, Evaggelos; Zourari, Kyveli; Zoros, Emmanouil; Lahanas, Vasileios; Karaiskos, Pantelis; Papagiannis, Panagiotis

    2016-06-01

    A source model is a prerequisite of all model based dose calculation algorithms. Besides direct simulation, the use of pre-calculated phase space files (phsp source models) and parameterized phsp source models has been proposed for Monte Carlo (MC) to promote efficiency and ease of implementation in obtaining photon energy, position and direction. In this work, a phsp file for a generic 192Ir source design (Ballester et al 2015) is obtained from MC simulation. This is used to configure a parameterized phsp source model comprising appropriate probability density functions (PDFs) and a sampling procedure. According to phsp data analysis 15.6% of the generated photons are absorbed within the source, and 90.4% of the emergent photons are primary. The PDFs for sampling photon energy and direction relative to the source long axis, depend on the position of photon emergence. Photons emerge mainly from the cylindrical source surface with a constant probability over  ±0.1 cm from the center of the 0.35 cm long source core, and only 1.7% and 0.2% emerge from the source tip and drive wire, respectively. Based on these findings, an analytical parameterized source model is prepared for the calculation of the PDFs from data of source geometry and materials, without the need for a phsp file. The PDFs from the analytical parameterized source model are in close agreement with those employed in the parameterized phsp source model. This agreement prompted the proposal of a purely analytical source model based on isotropic emission of photons generated homogeneously within the source core with energy sampled from the 192Ir spectrum, and the assignment of a weight according to attenuation within the source. Comparison of single source dosimetry data obtained from detailed MC simulation and the proposed analytical source model show agreement better than 2% except for points lying close to the source longitudinal axis.

  3. Determination of air-kerma strength for the {sup 192}Ir GammaMedplus iX pulsed-dose-rate brachytherapy source

    SciTech Connect

    Riley, A. D.; Pike, T. L.; Micka, J. A.; Fulkerson, R. K.; DeWerd, L. A.

    2013-07-15

    Purpose: Pulsed-dose-rate (PDR) brachytherapy was originally proposed to combine the therapeutic advantages of high-dose-rate (HDR) and low-dose-rate brachytherapy. Though uncommon in the United States, several facilities employ pulsed-dose-rate brachytherapy in Europe and Canada. Currently, there is no air-kerma strength standard for PDR brachytherapy {sup 192}Ir sources traceable to the National Institute of Standards and Technology. Discrepancies in clinical measurements of the air-kerma strength of the PDR brachytherapy sources using HDR source-calibrated well chambers warrant further investigation.Methods: In this research, the air-kerma strength for an {sup 192}Ir PDR brachytherapy source was compared with the University of Wisconsin Accredited Dosimetry Calibration Laboratory transfer standard well chambers, the seven-distance technique [B. E. Rasmussen et al., 'The air-kerma strength standard for 192Ir HDR sources,' Med. Phys. 38, 6721-6729 (2011)], and the manufacturer's stated value. Radiochromic film and Monte Carlo techniques were also employed for comparison to the results of the measurements.Results: While the measurements using the seven-distance technique were within + 0.44% from the manufacturer's determination, there was a + 3.10% difference between the transfer standard well chamber measurements and the manufacturer's stated value. Results showed that the PDR brachytherapy source has geometric and thus radiological qualities that exhibit behaviors similar to a point source model in contrast to a conventional line source model.Conclusions: The resulting effect of the pointlike characteristics of the PDR brachytherapy source likely account for the differences observed between well chamber and in-air measurements.

  4. Calibration of 192Ir high dose rate brachytherapy source using different calibration procedures

    PubMed Central

    Bondel, Shwetha; Ravikumar, Manickham; Supe, Sanjay Sudhakar; Reddy, Buchuppudi Rekha

    2013-01-01

    Aim To calibrate Ir-192 high dose rate (HDR) brachytherapy source using different calibration methods and to determine the accuracy and suitability of each method for routine calibrations. Background The source calibration is an essential part of the quality assurance programme for dosimetry of brachytherapy sources. The clinical use of brachytherapy source requires an independent measurement of the air kerma strength according to the recommendations of medical physics societies. Materials and methods The Ir-192 HDR brachytherapy source from Gammamed plus machine (Varian Medical Systems, Palo Alto, CA) was calibrated using three different procedures, one using the well-type ionization chamber, second by the in-air calibration method and third using solid water phantoms. The reference air kerma rate (RAKR) of the source was determined using Deutsche Gesellschaft fur Medizinische Physik (DGMP) recommendations. Results The RAKR determined using different calibration methods are in good agreement with the manufacturer stated value. The mean percentage variations of 0.21, −0.94, −0.62 and 0.58 in RAKR values with respect to the manufacturer quoted values were observed with the well-type chamber, in-air calibration, cylindrical phantom and slab phantom measurements, respectively. Conclusion Measurements with a well-type chamber are relatively simple to perform. For in-air measurements, the indigenously designed calibration jig provides an accurate positioning of the source and chamber with minimum scatter contribution. The slab phantom system has an advantage that no additional phantom and chamber are required other than those used for external beam therapy dosimetry. All the methods of calibration discussed in this study are effective to be used for routine calibration purposes. PMID:24944818

  5. On the use of a single-fiber multipoint plastic scintillation detector for 192Ir high-dose-rate brachytherapy

    PubMed Central

    Therriault-Proulx, François; Beddar, Sam; Beaulieu, Luc

    2013-01-01

    Purpose: The goal of this study was to prove the feasibility of using a single-fiber multipoint plastic scintillation detector (mPSD) as an in vivo verification tool during 192Ir high-dose-rate brachytherapy treatments. Methods: A three-point detector was built and inserted inside a catheter-positioning template placed in a water phantom. A hyperspectral approach was implemented to discriminate the different optical signals composing the light output at the exit of the single collection optical fiber. The mPSD was tested with different source-to-detector positions, ranging from 1 to 5 cm radially and over 10.5 cm along the longitudinal axis of the detector, and with various integration times. Several strategies for improving the accuracy of the detector were investigated. The device's accuracy in detecting source position was also tested. Results: Good agreement with the expected doses was obtained for all of the scintillating elements, with average relative differences from the expected values of 3.4 ± 2.1%, 3.0 ± 0.7%, and 4.5 ± 1.0% for scintillating elements from the distal to the proximal. A dose threshold of 3 cGy improved the general accuracy of the detector. An integration time of 3 s offered a good trade-off between precision and temporal resolution. Finally, the mPSD measured the radioactive source positioning uncertainty to be no more than 0.32 ± 0.06 mm. The accuracy and precision of the detector were improved by a dose-weighted function combining the three measurement points and known details about the geometry of the detector construction. Conclusions: The use of a mPSD for high-dose-rate brachytherapy dosimetry is feasible. This detector shows great promise for development of in vivo applications for real-time verification of treatment delivery. PMID:23718599

  6. Improved dosimetry techniques for intravascular brachytherapy

    NASA Astrophysics Data System (ADS)

    Sehgal, Varun

    Coronary artery disease leads to the accumulation of atheromatous plaque leading to coronary stenosis. Coronary intervention techniques such as balloon angioplasty and atherectomy are used to address coronary stenosis and establish a stable lumen thus enhancing blood flow to the myocardium. Restenosis or re-blockage of the arteries is a major limitation of the above mentioned interventional techniques. Neointimal hyperplasia or proliferation of cells in response to the vascular injury as a result of coronary intervention is considered to be one of the major causes of restenosis. Recent studies indicated that irradiation of the coronary lesion site, with radiation doses ranging from 15 to 30 Gy, leads to diminishing neointimal hyperplasia with subsequent reduction in restenosis. The radiation dose is given by catheter-based radiation delivery systems using beta-emitters 90Sr/90Y, 32P and gamma-emitting 192Ir among others. However the dose schema used for dose prescription for these sources are relatively simplistic, and are based on calculations using uniform homogenous water or tissue media and simple cylinder geometry. Stenotic coronary vessels are invariably lined with atheromatous plaque of heterogeneous composition, the radiation dose distribution obtained from such dosimetry data can cause significant variations in the actual dose received by a given patient. Such discrepancies in dose calculation can introduce relatively large uncertainties in the limits of dose window for effective and safe application of intravascular brachytherapy, and consequently in the clinical evaluation of the efficacy of this modality. In this research study we investigated the effect of different geometrical and material heterogeneities, including residual plaque, catheter non-centering, lesion eccentricity and cardiac motion on the radiation dose delivered at the lesion site. Correction factors including dose perturbation factors and dose variation factors have been calculated

  7. Dosimetry of indigenously developed (192)Ir high-dose rate brachytherapy source: An EGSnrc Monte Carlo study.

    PubMed

    Sahoo, Sridhar; Selvam, T Palani; Sharma, S D; Das, Trupti; Dey, A C; Patil, B N; Sastri, K V S

    2016-01-01

    Clinical application using high-dose rate (HDR) (192)Ir sources in remote afterloading technique is a well-established treatment method. In this direction, Board of Radiation and Isotope Technology (BRIT) and Bhabha Atomic Research Centre, India, jointly indigenously developed a remote afterloading machine and (192)Ir HDR source. The two-dimensional (2D) dose distribution and dosimetric parameters of the BRIT (192)Ir HDR source are generated using EGSnrc Monte Carlo code system in a 40 cm dia × 40 cm height cylindrical water phantom. The values of air-kerma strength and dose rate constant for BRIT (192)Ir HDR source are 9.894 × 10(-8) ± 0.06% UBq(-1) and 1.112 ± 0.11% cGyh(-1)U(-1), respectively. The values of radial dose function (gL(r)) of this source compare well with the corresponding values of BEBIG, Flexisource, and GammaMed 12i source models. This is because of identical active lengths of the sources (3.5 mm) and the comparable phantom dimensions. A comparison of gL(r) values of BRIT source with microSelectron-v1 show differences about 2% at r = 6 cm and up to 13% at r = 12 cm, which is due to differences in phantom dimensions involved in the calculations. The anisotropy function of BRIT (192)Ir HDR source is comparable with the corresponding values of microSelectron-v1 (classic) HDR source. PMID:27217623

  8. Dosimetry of indigenously developed 192Ir high-dose rate brachytherapy source: An EGSnrc Monte Carlo study

    PubMed Central

    Sahoo, Sridhar; Selvam, T. Palani; Sharma, S. D.; Das, Trupti; Dey, A. C.; Patil, B. N.; Sastri, K.V.S.

    2016-01-01

    Clinical application using high-dose rate (HDR) 192Ir sources in remote afterloading technique is a well-established treatment method. In this direction, Board of Radiation and Isotope Technology (BRIT) and Bhabha Atomic Research Centre, India, jointly indigenously developed a remote afterloading machine and 192Ir HDR source. The two-dimensional (2D) dose distribution and dosimetric parameters of the BRIT 192Ir HDR source are generated using EGSnrc Monte Carlo code system in a 40 cm dia × 40 cm height cylindrical water phantom. The values of air-kerma strength and dose rate constant for BRIT 192Ir HDR source are 9.894 × 10−8 ± 0.06% UBq−1 and 1.112 ± 0.11% cGyh−1U−1, respectively. The values of radial dose function (gL(r)) of this source compare well with the corresponding values of BEBIG, Flexisource, and GammaMed 12i source models. This is because of identical active lengths of the sources (3.5 mm) and the comparable phantom dimensions. A comparison of gL(r) values of BRIT source with microSelectron-v1 show differences about 2% at r = 6 cm and up to 13% at r = 12 cm, which is due to differences in phantom dimensions involved in the calculations. The anisotropy function of BRIT 192Ir HDR source is comparable with the corresponding values of microSelectron-v1 (classic) HDR source. PMID:27217623

  9. Using LiF:Mg,Cu,P TLDs to estimate the absorbed dose to water in liquid water around an {sup 192}Ir brachytherapy source

    SciTech Connect

    Lucas, P. Avilés Aubineau-Lanièce, I.; Lourenço, V.; Vermesse, D.; Cutarella, D.

    2014-01-15

    Purpose: The absorbed dose to water is the fundamental reference quantity for brachytherapy treatment planning systems and thermoluminescence dosimeters (TLDs) have been recognized as the most validated detectors for measurement of such a dosimetric descriptor. The detector response in a wide energy spectrum as that of an{sup 192}Ir brachytherapy source as well as the specific measurement medium which surrounds the TLD need to be accounted for when estimating the absorbed dose. This paper develops a methodology based on highly sensitive LiF:Mg,Cu,P TLDs to directly estimate the absorbed dose to water in liquid water around a high dose rate {sup 192}Ir brachytherapy source. Methods: Different experimental designs in liquid water and air were constructed to study the response of LiF:Mg,Cu,P TLDs when irradiated in several standard photon beams of the LNE-LNHB (French national metrology laboratory for ionizing radiation). Measurement strategies and Monte Carlo techniques were developed to calibrate the LiF:Mg,Cu,P detectors in the energy interval characteristic of that found when TLDs are immersed in water around an{sup 192}Ir source. Finally, an experimental system was designed to irradiate TLDs at different angles between 1 and 11 cm away from an {sup 192}Ir source in liquid water. Monte Carlo simulations were performed to correct measured results to provide estimates of the absorbed dose to water in water around the {sup 192}Ir source. Results: The dose response dependence of LiF:Mg,Cu,P TLDs with the linear energy transfer of secondary electrons followed the same variations as those of published results. The calibration strategy which used TLDs in air exposed to a standard N-250 ISO x-ray beam and TLDs in water irradiated with a standard{sup 137}Cs beam provided an estimated mean uncertainty of 2.8% (k = 1) in the TLD calibration coefficient for irradiations by the {sup 192}Ir source in water. The 3D TLD measurements performed in liquid water were obtained with a

  10. A Monte Carlo dosimetry study of vaginal {sup 192}Ir brachytherapy applications with a shielded cylindrical applicator set

    SciTech Connect

    Lymperopoulou, G.; Pantelis, E.; Papagiannis, P.; Rozaki-Mavrouli, H.; Sakelliou, L.; Baltas, D.; Karaiskos, P.

    2004-11-01

    A durable recommendation for brachytherapy treatment planning systems to account for the effect of tissue, applicator and shielding material heterogeneities exists. As different proposed approaches have not been integrated in clinical treatment planning routine yet, currently utilized systems disregard or, most commonly, do not fully account for the aforementioned effects. Therefore, it is of interest to evaluate the efficacy of current treatment planning in clinical applications susceptible to errors due to heterogeneities. In this work the effect of the internal structure as well as the shielding used with a commercially available cylindrical shielded applicator set (Nucletron part no. 084.320) for vaginal and rectum treatments is studied using three-dimensional Monte Carlo simulation for a clinical treatment plan involving seven source dwell positions of the classic microSelectron HDR {sup 192}Ir source. Results are compared to calculations of a treatment planning system (Plato BPS v.14.2.7), which assumes homogeneous water medium and applies a constant, multiplicative transmission factor only at points lying in the shadow of the shield. It is found that the internal structure of the applicator (which includes stainless steel, air and plastic materials) with no shield loaded does not affect the dose distribution relative to homogeneous water. In the unshielded side of the applicator with a 90 deg., 180 deg., or 270 deg. tungsten alloy shield loaded, an overestimation of treatment planning system calculations relative to Monte Carlo results was observed which is both shield and position dependent. While significant (up to 15%) at increased distances, which are not of major clinical importance, this overestimation does not affect dose prescription distances by more than 3%. The inverse effect of approx. 3% dose increase at dose prescription distances is observed for stainless steel shields. Regarding the shielded side of the applicator, it is shown that the

  11. An absorbed dose to water standard for HDR 192Ir brachytherapy sources based on water calorimetry: numerical and experimental proof-of-principle.

    PubMed

    Sarfehnia, Arman; Stewart, Kristin; Seuntjens, Jan

    2007-12-01

    Water calorimetry is an established technique for absorbed dose to water measurements in external beams. In this paper, the feasibility of direct absorbed dose measurements for high dose rate (HDR) iridium-192 (192Ir) sources using water calorimetry is established. Feasibility is determined primarily by a balance between the need to obtain sufficient signal to perform a reproducible measurement, the effect of heat loss on the measured signal, and the positioning uncertainty affecting the source-detector distance. The heat conduction pattern generated in water by the Nucletron microSelectron-HDR 192Ir brachytherapy source was simulated using COMSOL MULTIPHYSICS software. Source heating due to radiation self-absorption was calculated using EGSnrcMP. A heat-loss correction k(c) was calculated as the ratio of the temperature rise under ideal conditions to temperature rise under realistic conditions. The calorimeter setup used a parallel-plate calorimeter vessel of 79 mm diameter and 1.12 mm thick front and rear glass windows located 24 mm apart. Absorbed dose was measured with two sources with nominal air kerma strengths of 38 000 and 21 000 U, at source-detector separations ranging from 24.7 to 27.6 mm and irradiation times of 36.0 to 80.0 s. The preliminary measured dose rate per unit air kerma strength of (0.502 +/- 0.007) microGy/(s U) compares well with the TG-43 derived 0.505 microGy/(s U). This work shows that combined dose uncertainties of significantly less than 5% can be achieved with only modest modifications of current water calorimetry techniques and instruments. This work forms the basis of a potential future absolute dose to water standard for HDR 192Ir brachytherapy. PMID:18196821

  12. An absorbed dose to water standard for HDR {sup 192}Ir brachytherapy sources based on water calorimetry: Numerical and experimental proof-of-principle

    SciTech Connect

    Sarfehnia, Arman; Stewart, Kristin; Seuntjens, Jan

    2007-12-15

    Water calorimetry is an established technique for absorbed dose to water measurements in external beams. In this paper, the feasibility of direct absorbed dose measurements for high dose rate (HDR) iridium-192 ({sup 192}Ir) sources using water calorimetry is established. Feasibility is determined primarily by a balance between the need to obtain sufficient signal to perform a reproducible measurement, the effect of heat loss on the measured signal, and the positioning uncertainty affecting the source-detector distance. The heat conduction pattern generated in water by the Nucletron microSelectron-HDR {sup 192}Ir brachytherapy source was simulated using COMSOL MULTIPHYSICSTM software. Source heating due to radiation self-absorption was calculated using EGSnrcMP. A heat-loss correction k{sub c} was calculated as the ratio of the temperature rise under ideal conditions to temperature rise under realistic conditions. The calorimeter setup used a parallel-plate calorimeter vessel of 79 mm diameter and 1.12 mm thick front and rear glass windows located 24 mm apart. Absorbed dose was measured with two sources with nominal air kerma strengths of 38 000 and 21 000 U, at source-detector separations ranging from 24.7 to 27.6 mm and irradiation times of 36.0 to 80.0 s. The preliminary measured dose rate per unit air kerma strength of (0.502{+-}0.007) {mu}Gy/(s U) compares well with the TG-43 derived 0.505 {mu}Gy/(s U). This work shows that combined dose uncertainties of significantly less than 5% can be achieved with only modest modifications of current water calorimetry techniques and instruments. This work forms the basis of a potential future absolute dose to water standard for HDR {sup 192}Ir brachytherapy.

  13. SU-E-T-102: Determination of Dose Distributions and Water-Equivalence of MAGIC-F Polymer Gel for 60Co and 192Ir Brachytherapy Sources

    SciTech Connect

    Quevedo, A; Nicolucci, P

    2014-06-01

    Purpose: Analyse the water-equivalence of MAGIC-f polymer gel for {sup 60}Co and {sup 192}Ir clinical brachytherapy sources, through dose distributions simulated with PENELOPE Monte Carlo code. Methods: The real geometry of {sup 60} (BEBIG, modelo Co0.A86) and {sup 192}192Ir (Varian, model GammaMed Plus) clinical brachytherapy sources were modelled on PENELOPE Monte Carlo simulation code. The most probable emission lines of photons were used for both sources: 17 emission lines for {sup 192}Ir and 12 lines for {sup 60}. The dose distributions were obtained in a cubic water or gel homogeneous phantom (30 × 30 × 30 cm{sup 3}), with the source positioned in the middle of the phantom. In all cases the number of simulation showers remained constant at 10{sup 9} particles. A specific material for gel was constructed in PENELOPE using weight fraction components of MAGIC-f: wH = 0,1062, wC = 0,0751, wN = 0,0139, wO = 0,8021, wS = 2,58×10{sup −6} e wCu = 5,08 × 10{sup −6}. The voxel size in the dose distributions was 0.6 mm. Dose distribution maps on the longitudinal and radial direction through the centre of the source were used to analyse the water-equivalence of MAGIC-f. Results: For the {sup 60} source, the maximum diferences in relative doses obtained in the gel and water were 0,65% and 1,90%, for radial and longitudinal direction, respectively. For {sup 192}Ir, the maximum difereces in relative doses were 0,30% and 1,05%, for radial and longitudinal direction, respectively. The materials equivalence can also be verified through the effective atomic number and density of each material: Zef-MAGIC-f = 7,07 e .MAGIC-f = 1,060 g/cm{sup 3} and Zef-water = 7,22. Conclusion: The results showed that MAGIC-f is water equivalent, consequently being suitable to simulate soft tissue, for Cobalt and Iridium energies. Hence, gel can be used as a dosimeter in clinical applications. Further investigation to its use in a clinical protocol is needed.

  14. Sci—Fri AM: Mountain — 03: Current status of the NRC primary standard for {sup 192}Ir HDR brachytherapy sources

    SciTech Connect

    Mainegra-Hing, E; Downton, Brad

    2014-08-15

    The Canadian primary standard for {sup 192}Ir HDR brachytherapy sources has been recently revised in a more accurate manner allowing for more realistic uncertainty estimation. Air-kerma strength S{sub k} is derived from measurements of the source's output using a graphite-walled spherical ionization chamber (2S) at several distances. Traceability to NRC primary standards for the {sup 192}Ir calibration coefficient N{sub k} is insured by estimating it as the inverse arithmetic mean of the inverse of the calibration coefficients for a {sup 137}Cs beam and the medium energy x-ray beam quality N250, both of which are traceable to NRC primary standards. The multiple-distance method is combined with a non-linear least squares fit to determine St, while at the same time removing the effects of room scatter and position offset. The previously used shadow-cone method for directly measuring the room scatter is found to be inadequate due to the increased scatter contribution from the lead cone itself, especially at short source-detector distances. Rather than including the reported 1% difference in source strength for {sup 192}Ir HDR sources of different construction into the total uncertainty, users are cautioned that the calibration coefficient provided by NRC is only valid for a microSelectron V2 model. A comprehensive uncertainty budged shows that the total one sigma uncertainty of the standard is actually 0.6% rather than the previously assumed 1.2%. NRC measured S{sub k} agrees within 0.03% of the manufacturer's value.

  15. Cluster pattern analysis of energy deposition sites for the brachytherapy sources 103Pd, 125I, 192Ir, 137Cs, and 60Co

    NASA Astrophysics Data System (ADS)

    Villegas, Fernanda; Tilly, Nina; Bäckström, Gloria; Ahnesjö, Anders

    2014-09-01

    Analysing the pattern of energy depositions may help elucidate differences in the severity of radiation-induced DNA strand breakage for different radiation qualities. It is often claimed that energy deposition (ED) sites from photon radiation form a uniform random pattern, but there is indication of differences in RBE values among different photon sources used in brachytherapy. The aim of this work is to analyse the spatial patterns of EDs from 103Pd, 125I, 192Ir, 137Cs sources commonly used in brachytherapy and a 60Co source as a reference radiation. The results suggest that there is both a non-uniform and a uniform random component to the frequency distribution of distances to the nearest neighbour ED. The closest neighbouring EDs show high spatial correlation for all investigated radiation qualities, whilst the uniform random component dominates for neighbours with longer distances for the three higher mean photon energy sources (192Ir, 137Cs, and 60Co). The two lower energy photon emitters (103Pd and 125I) present a very small uniform random component. The ratio of frequencies of clusters with respect to 60Co differs up to 15% for the lower energy sources and less than 2% for the higher energy sources when the maximum distance between each pair of EDs is 2 nm. At distances relevant to DNA damage, cluster patterns can be differentiated between the lower and higher energy sources. This may be part of the explanation to the reported difference in RBE values with initial DSB yields as an endpoint for these brachytherapy sources.

  16. Approaches to calculating AAPM TG-43 brachytherapy dosimetry parameters for 137Cs, 125I, 192Ir, 103Pd, and 169Yb sources.

    PubMed

    Melhus, Christopher S; Rivard, Mark J

    2006-06-01

    Underlying characteristics in brachytherapy dosimetry parameters for medical radionuclides 137Cs, 125I, 192Ir, 103Pd, and 169Yb were examined using Monte Carlo methods. Sources were modeled as unencapsulated point or line sources in liquid water to negate variations due to materials and construction. Importance of phantom size, mode of radiation transport physics--i.e., photon transport only or coupled photon:electron transport, phantom material, volume averaging, and Monte Carlo tally type were studied. For noninfinite media, g(r) was found to degrade as r approached R, the phantom radius. MCNP5 results were in agreement with those published using GEANT4. Brachytherapy dosimetry parameters calculated using coupled photon:electron radiation transport simulations did not differ significantly from those using photon transport only. Dose distributions from low-energy photon-emitting radionuclides 125I and 103Pd were sensitive to phantom material by upto a factor of 1.4 and 2.0, respectively, between tissue-equivalent materials and water at r =9 cm. In comparison, high-energy photons from 137Cs, 192Ir, and 169Yb demonstrated +/- 5% differences in dose distributions between water and tissue substitutes at r=20 cm. Similarly, volume-averaging effects were found to be more significant for low-energy radionuclides. When modeling line sources with L < or = 0.5 cm, the two-dimensional anisotropy function was largely within +/- 0.5% of unity for 137Cs, 125I, and 192Ir. However, an energy and geometry effect was noted for 103Pd and 169Yb, with Pd-103F(0.5,0 degrees)=l.05 and yb-169F(0.5,0 degrees)=0.98 for L=0.5 cm. Simulations of monoenergetic photons for L=0.5 cm produced energy-dependent variations in F(r, theta) having a maximum value at 10 keV, minimum at 50 keV, and approximately 1.0 for higher-energy photons up to 750 keV. Both the F6 cell heating and *F4 track-length estimators were employed to determine brachytherapy dosimetry parameters. F6 was found to be necessary

  17. Approaches to calculating AAPM TG-43 brachytherapy dosimetry parameters for {sup 137}Cs, {sup 125}I, {sup 192}Ir, {sup 103}Pd, and {sup 169}Yb sources

    SciTech Connect

    Melhus, Christopher S.; Rivard, Mark J.

    2006-06-15

    Underlying characteristics in brachytherapy dosimetry parameters for medical radionuclides {sup 137}Cs, {sup 125}I, {sup 192}Ir, {sup 103}Pd, and {sup 169}Yb were examined using Monte Carlo methods. Sources were modeled as unencapsulated point or line sources in liquid water to negate variations due to materials and construction. Importance of phantom size, mode of radiation transport physics--i.e., photon transport only or coupled photon:electron transport, phantom material, volume averaging, and Monte Carlo tally type were studied. For noninfinite media, g(r) was found to degrade as r approached R, the phantom radius. MCNP5 results were in agreement with those published using GEANT4. Brachytherapy dosimetry parameters calculated using coupled photon:electron radiation transport simulations did not differ significantly from those using photon transport only. Dose distributions from low-energy photon-emitting radionuclides {sup 125}I and {sup 103}Pd were sensitive to phantom material by upto a factor of 1.4 and 2.0, respectively, between tissue-equivalent materials and water at r=9 cm. In comparison, high-energy photons from {sup 137}Cs, {sup 192}Ir, and {sup 169}Yb demonstrated {+-}5% differences in dose distributions between water and tissue substitutes at r=20 cm. Similarly, volume-averaging effects were found to be more significant for low-energy radionuclides. When modeling line sources with L{<=}0.5 cm, the two-dimensional anisotropy function was largely within {+-}0.5% of unity for {sup 137}Cs, {sup 125}I, and {sup 192}Ir. However, an energy and geometry effect was noted for {sup 103}Pd and {sup 169}Yb, with {sub Pd-103}F(0.5,0 deg.)=1.05 and {sub Yb-169}F(0.5,0 deg.)=0.98 for L=0.5 cm. Simulations of monoenergetic photons for L=0.5 cm produced energy-dependent variations in F(r,{theta}) having a maximum value at 10 keV, minimum at 50 keV, and {approx}1.0 for higher-energy photons up to 750 keV. Both the F6 cell heating and track-length estimators were

  18. Dosimetric characterization of a novel intracavitary mold applicator for 192Ir high dose rate endorectal brachytherapy treatment.

    PubMed

    Poon, Emily; Reniers, Brigitte; Devic, Slobodan; Vuong, Té; Verhaegen, Frank

    2006-12-01

    The dosimetric properties of a novel intracavitary mold applicator for 192Ir high dose rate (HDR) endorectal cancer treatment have been investigated using Monte Carlo (MC) simulations and experimental methods. The 28 cm long applicator has a flexible structure made of silicone rubber for easy passage into cavities with deep-seated tumors. It consists of eight source catheters arranged around a central cavity for shielding insertion, and is compatible for use with an endocavitary balloon. A phase space model of the HDR source has been validated for dose calculations using the GEANT4 MC code. GAFCHROMIC EBT model film was used to measure dose distributions in water around shielded and unshielded applicators with two loading configurations, and to quantify the shielding effect of a balloon injected with an iodine solution (300 mg I/mL). The film calibration procedure was performed in water using an 192Ir HDR source. Ionization chamber measurements in a Lucite phantom show that placing a tungsten rod in the applicator attenuates the dose in the shielded region by up to 85%. Inserting the shielded applicator into a water-filled balloon pushes the neighboring tissues away from the radiation source, and the resulting geometric displacement reduces the dose by up to 53%; another 8% dose reduction can be achieved when the balloon is injected with an iodine solution. All experimental results agree with the GEANT4 calculations within measurement uncertainties. PMID:17278803

  19. Dosimetric characterization of a novel intracavitary mold applicator for {sup 192}Ir high dose rate endorectal brachytherapy treatment

    SciTech Connect

    Poon, Emily; Reniers, Brigitte; Devic, Slobodan; Vuong, Te; Verhaegen, Frank

    2006-12-15

    The dosimetric properties of a novel intracavitary mold applicator for {sup 192}Ir high dose rate (HDR) endorectal cancer treatment have been investigated using Monte Carlo (MC) simulations and experimental methods. The 28 cm long applicator has a flexible structure made of silicone rubber for easy passage into cavities with deep-seated tumors. It consists of eight source catheters arranged around a central cavity for shielding insertion, and is compatible for use with an endocavitary balloon. A phase space model of the HDR source has been validated for dose calculations using the GEANT4 MC code. GAFCHROMIC trade mark sign EBT model film was used to measure dose distributions in water around shielded and unshielded applicators with two loading configurations, and to quantify the shielding effect of a balloon injected with an iodine solution (300 mg I/mL). The film calibration procedure was performed in water using an {sup 192}Ir HDR source. Ionization chamber measurements in a Lucite phantom show that placing a tungsten rod in the applicator attenuates the dose in the shielded region by up to 85%. Inserting the shielded applicator into a water-filled balloon pushes the neighboring tissues away from the radiation source, and the resulting geometric displacement reduces the dose by up to 53%; another 8% dose reduction can be achieved when the balloon is injected with an iodine solution. All experimental results agree with the GEANT4 calculations within measurement uncertainties.

  20. Comparison of 3D dose distributions for HDR 192Ir brachytherapy sources with normoxic polymer gel dosimetry and treatment planning system.

    PubMed

    Senkesen, Oznur; Tezcanli, Evrim; Buyuksarac, Bora; Ozbay, Ismail

    2014-01-01

    Radiation fluence changes caused by the dosimeter itself and poor spatial resolution may lead to lack of 3-dimensional (3D) information depending on the features of the dosimeter and quality assurance of dose distributions for high-dose rate (HDR) iridium-192 ((192)Ir) brachytherapy sources is challenging and experimental dosimetry methods used for brachytherapy sources are limited. In this study, we investigated 3D dose distributions of (192)Ir brachytherapy sources for irradiation with single and multiple dwell positions using a normoxic gel dosimeter and compared them with treatment planning system (TPS) calculations. For dose calibration purposes, 100-mL gel-containing vials were irradiated at predefined doses and then scanned in an magnetic resonance (MR) imaging unit. Gel phantoms prepared in 2 spherical glasses were irradiated with (192)Ir for the calculated dwell positions, and MR scans of the phantoms were obtained. The images were analyzed with MATLAB software. Dose distributions and profiles derived with 1-mm resolution were compared with TPS calculations. Linearity was observed between the delivered dose and the reciprocal of the T2 relaxation time constant of the gel. The x-, y-, and z-axes were defined as the sagittal, coronal, and axial planes, respectively, the sagittal and axial planes were defined parallel to the long axis of the source while the coronal plane was defined horizontally to the long axis of the source. The differences between measured and calculated profile widths of 3-cm source length and point source for 70%, 50%, and 30% isodose lines were evaluated at 3 dose levels using 18 profiles of comparison. The calculations for 3-cm source length revealed a difference of > 3mm in 1 coordinate at 50% profile width on the sagittal plane and 3 coordinates at 70% profile width and 2 coordinates at 50% and 30% profile widths on the axial plane. Calculations on the coronal plane for 3-cm source length showed > 3-mm difference in 1 coordinate at

  1. Comparison of 3D dose distributions for HDR {sup 192}Ir brachytherapy sources with normoxic polymer gel dosimetry and treatment planning system

    SciTech Connect

    Senkesen, Oznur; Tezcanli, Evrim; Buyuksarac, Bora; Ozbay, Ismail

    2014-10-01

    Radiation fluence changes caused by the dosimeter itself and poor spatial resolution may lead to lack of 3-dimensional (3D) information depending on the features of the dosimeter and quality assurance of dose distributions for high–dose rate (HDR) iridium-192 ({sup 192}Ir) brachytherapy sources is challenging and experimental dosimetry methods used for brachytherapy sources are limited. In this study, we investigated 3D dose distributions of {sup 192}Ir brachytherapy sources for irradiation with single and multiple dwell positions using a normoxic gel dosimeter and compared them with treatment planning system (TPS) calculations. For dose calibration purposes, 100-mL gel-containing vials were irradiated at predefined doses and then scanned in an magnetic resonance (MR) imaging unit. Gel phantoms prepared in 2 spherical glasses were irradiated with {sup 192}Ir for the calculated dwell positions, and MR scans of the phantoms were obtained. The images were analyzed with MATLAB software. Dose distributions and profiles derived with 1-mm resolution were compared with TPS calculations. Linearity was observed between the delivered dose and the reciprocal of the T2 relaxation time constant of the gel. The x-, y-, and z-axes were defined as the sagittal, coronal, and axial planes, respectively, the sagittal and axial planes were defined parallel to the long axis of the source while the coronal plane was defined horizontally to the long axis of the source. The differences between measured and calculated profile widths of 3-cm source length and point source for 70%, 50%, and 30% isodose lines were evaluated at 3 dose levels using 18 profiles of comparison. The calculations for 3-cm source length revealed a difference of > 3 mm in 1 coordinate at 50% profile width on the sagittal plane and 3 coordinates at 70% profile width and 2 coordinates at 50% and 30% profile widths on the axial plane. Calculations on the coronal plane for 3-cm source length showed > 3-mm difference in 1

  2. A generic high-dose rate {sup 192}Ir brachytherapy source for evaluation of model-based dose calculations beyond the TG-43 formalism

    SciTech Connect

    Ballester, Facundo; Carlsson Tedgren, Åsa; Granero, Domingo; Haworth, Annette; Mourtada, Firas; Fonseca, Gabriel Paiva; Rivard, Mark J.; Siebert, Frank-André; Sloboda, Ron S.; and others

    2015-06-15

    Purpose: In order to facilitate a smooth transition for brachytherapy dose calculations from the American Association of Physicists in Medicine (AAPM) Task Group No. 43 (TG-43) formalism to model-based dose calculation algorithms (MBDCAs), treatment planning systems (TPSs) using a MBDCA require a set of well-defined test case plans characterized by Monte Carlo (MC) methods. This also permits direct dose comparison to TG-43 reference data. Such test case plans should be made available for use in the software commissioning process performed by clinical end users. To this end, a hypothetical, generic high-dose rate (HDR) {sup 192}Ir source and a virtual water phantom were designed, which can be imported into a TPS. Methods: A hypothetical, generic HDR {sup 192}Ir source was designed based on commercially available sources as well as a virtual, cubic water phantom that can be imported into any TPS in DICOM format. The dose distribution of the generic {sup 192}Ir source when placed at the center of the cubic phantom, and away from the center under altered scatter conditions, was evaluated using two commercial MBDCAs [Oncentra{sup ®} Brachy with advanced collapsed-cone engine (ACE) and BrachyVision ACUROS{sup TM}]. Dose comparisons were performed using state-of-the-art MC codes for radiation transport, including ALGEBRA, BrachyDose, GEANT4, MCNP5, MCNP6, and PENELOPE2008. The methodologies adhered to recommendations in the AAPM TG-229 report on high-energy brachytherapy source dosimetry. TG-43 dosimetry parameters, an along-away dose-rate table, and primary and scatter separated (PSS) data were obtained. The virtual water phantom of (201){sup 3} voxels (1 mm sides) was used to evaluate the calculated dose distributions. Two test case plans involving a single position of the generic HDR {sup 192}Ir source in this phantom were prepared: (i) source centered in the phantom and (ii) source displaced 7 cm laterally from the center. Datasets were independently produced by

  3. Direct measurement of absorbed dose to water in HDR {sup 192}Ir brachytherapy: Water calorimetry, ionization chamber, Gafchromic film, and TG-43

    SciTech Connect

    Sarfehnia, Arman; Kawrakow, Iwan; Seuntjens, Jan

    2010-04-15

    Purpose: Gafchromic film and ionometric calibration procedures for HDR {sup 192}Ir brachytherapy sources in terms of dose rate to water are presented and the experimental results are compared to the TG-43 protocol as well as with the absolute dose measurement results from a water calorimetry-based primary standard. Methods: EBT-1 Gafchromic films, an A1SL Exradin miniature Shonka thimble type chamber, and an SI HDR 1000 Plus well-type chamber (Standard Imaging, Inc., Middleton, WI) with an ADCL traceable S{sub k} calibration coefficient (following the AAPM TG-43 protocol) were used. The Farmer chamber and Gafchromic film measurements were performed directly in water. All results were compared to direct and absolute absorbed dose to water measurements from a 4 deg. C stagnant water calorimeter. Results: Based on water calorimetry, the authors measured the dose rate to water to be 361{+-}7 {mu}Gy/(h U) at a 55 mm source-to-detector separation. The dose rate normalized to air-kerma strength for all the techniques agree with the water calorimetry results to within 0.83%. The overall 1-sigma uncertainty on water calorimetry, ionization chamber, Gafchromic film, and TG-43 dose rate measurement amounts to 1.90%, 1.44%, 1.78%, and 2.50%, respectively. Conclusions: This work allows us to build a more realistic uncertainty estimate for absorbed dose to water determination using the TG-43 protocol. Furthermore, it provides the framework necessary for a shift from indirect HDR {sup 192}Ir brachytherapy dosimetry to a more accurate, direct, and absolute measurement of absorbed dose to water.

  4. Evaluation of a lithium formate EPR dosimetry system for dose measurements around {sup 192}Ir brachytherapy sources

    SciTech Connect

    Antonovic, Laura; Gustafsson, Haakan; Alm Carlsson, Gudrun; Carlsson Tedgren, Aasa

    2009-06-15

    A dosimetry system using lithium formate monohydrate (HCO{sub 2}Li{center_dot}H{sub 2}O) as detector material and electron paramagnetic resonance (EPR) spectroscopy for readout has been used to measure absorbed dose distributions around clinical {sup 192}Ir sources. Cylindrical tablets with diameter of 4.5 mm, height of 4.8 mm, and density of 1.26 g/cm{sup 3} were manufactured. Homogeneity test and calibration of the dosimeters were performed in a 6 MV photon beam. {sup 192}Ir irradiations were performed in a PMMA phantom using two different source models, the GammaMed Plus HDR and the microSelectron PDR-v1 model. Measured absorbed doses to water in the PMMA phantom were converted to the corresponding absorbed doses to water in water phantoms of dimensions used by the treatment planning systems (TPSs) using correction factors explicitly derived for this experiment. Experimentally determined absorbed doses agreed with the absorbed doses to water calculated by the TPS to within {+-}2.9%. Relative standard uncertainties in the experimentally determined absorbed doses were estimated to be within the range of 1.7%-1.3% depending on the radial distance from the source, the type of source (HDR or PDR), and the particular absorbed doses used. This work shows that a lithium formate dosimetry system is well suited for measurements of absorbed dose to water around clinical HDR and PDR {sup 192}Ir sources. Being less energy dependent than the commonly used thermoluminescent lithium fluoride (LiF) dosimeters, lithium formate monohydrate dosimeters are well suited to measure absorbed doses in situations where the energy dependence cannot easily be accounted for such as in multiple-source irradiations to verify treatment plans. Their wide dynamic range and linear dose response over the dose interval of 0.2-1000 Gy make them suitable for measurements on sources of the strengths used in clinical applications. The dosimeter size needs, however, to be reduced for application to

  5. Dose specification for 192Ir high dose rate brachytherapy in terms of dose-to-water-in-medium and dose-to-medium-in-medium

    NASA Astrophysics Data System (ADS)

    Paiva Fonseca, Gabriel; Carlsson Tedgren, Åsa; Reniers, Brigitte; Nilsson, Josef; Persson, Maria; Yoriyaz, Hélio; Verhaegen, Frank

    2015-06-01

    Dose calculation in high dose rate brachytherapy with 192Ir is usually based on the TG-43U1 protocol where all media are considered to be water. Several dose calculation algorithms have been developed that are capable of handling heterogeneities with two possibilities to report dose: dose-to-medium-in-medium (Dm,m) and dose-to-water-in-medium (Dw,m). The relation between Dm,m and Dw,m for 192Ir is the main goal of this study, in particular the dependence of Dw,m on the dose calculation approach using either large cavity theory (LCT) or small cavity theory (SCT). A head and neck case was selected due to the presence of media with a large range of atomic numbers relevant to tissues and mass densities such as air, soft tissues and bone interfaces. This case was simulated using a Monte Carlo (MC) code to score: Dm,m, Dw,m (LCT), mean photon energy and photon fluence. Dw,m (SCT) was derived from MC simulations using the ratio between the unrestricted collisional stopping power of the actual medium and water. Differences between Dm,m and Dw,m (SCT or LCT) can be negligible (<1%) for some tissues e.g. muscle and significant for other tissues with differences of up to 14% for bone. Using SCT or LCT approaches leads to differences between Dw,m (SCT) and Dw,m (LCT) up to 29% for bone and 36% for teeth. The mean photon energy distribution ranges from 222 keV up to 356 keV. However, results obtained using mean photon energies are not equivalent to the ones obtained using the full, local photon spectrum. This work concludes that it is essential that brachytherapy studies clearly report the dose quantity. It further shows that while differences between Dm,m and Dw,m (SCT) mainly depend on tissue type, differences between Dm,m and Dw,m (LCT) are, in addition, significantly dependent on the local photon energy fluence spectrum which varies with distance to implanted sources.

  6. The mean photon energy ĒF at the point of measurement determines the detector-specific radiation quality correction factor kQ,M in (192)Ir brachytherapy dosimetry.

    PubMed

    Chofor, Ndimofor; Harder, Dietrich; Selbach, Hans-Joachim; Poppe, Björn

    2016-09-01

    The application of various radiation detectors for brachytherapy dosimetry has motivated this study of the energy dependence of radiation quality correction factor kQ,M, the quotient of the detector responses under calibration conditions at a (60)Co unit and under the given non-reference conditions at the point of measurement, M, occurring in photon brachytherapy. The investigated detectors comprise TLD, radiochromic film, ESR, Si diode, plastic scintillator and diamond crystal detectors as well as ionization chambers of various sizes, whose measured response-energy relationships, taken from the literature, served as input data. Brachytherapy photon fields were Monte-Carlo simulated for an ideal isotropic (192)Ir point source, a model spherical (192)Ir source with steel encapsulation and a commercial HDR GammaMed Plus source. The radial source distance was varied within cylindrical water phantoms with outer radii ranging from 10 to 30cm and heights from 20 to 60cm. By application of this semiempirical method - originally developed for teletherapy dosimetry - it has been shown that factor kQ,M is closely correlated with a single variable, the fluence-weighted mean photon energy ĒF at the point of measurement. The radial profiles of ĒF obtained with either the commercial (192)Ir source or the two simplified source variants show little variation. The observed correlations between parameters kQ,M and ĒF are represented by fitting formulae for all investigated detectors, and further variation of the detector type is foreseen. The herewith established close correlation of radiation quality correction factor kQ,M with local mean photon energy ĒF can be regarded as a simple regularity, facilitating the practical application of correction factor kQ,M for in-phantom dosimetry around (192)Ir brachytherapy sources. ĒF values can be assessed by Monte Carlo simulation or measurement. A technique describing the local measurement of ĒF will be published separately. PMID

  7. Application of a pelvic phantom in brachytherapy dosimetry for high-dose-rate (HDR) 192Ir source based on Monte Carlo simulations

    NASA Astrophysics Data System (ADS)

    Ahn, Woo Sang; Choi, Wonsik; Shin, Seong Soo; Jung, Jinhong

    2014-08-01

    In this study, we evaluate how the radial dose function is influenced by the source position as well as the phantom size and shape. A pelvic water phantom similar to the pelvic shape of a human body was designed by averaging dimensions obtained from computed tomography (CT) images of patients treated with brachytherapy for cervical cancer. Furthermore, for the study of the effects of source position on the dose distribution, the position of the source in the water phantom was determined by using the center of mass of the gross target volume (GTV) in the CT images. To obtain the dosimetric parameter of a high-dose-rate (HDR) 192Ir source, we performed Monte Carlo simulations by using the Monte Carlo n-particle extended code (MCNPX). The radial dose functions obtained using the pelvic water phantom were compared with those of spherical phantom with different sizes, including the Monte Carlo (MC) results of Williamson and Li. Differences between the radial dose functions from this study and the data in the literature increased with the radial distances. The largest differences appeared for spherical phantom with the smallest size. In contrast to the published MC results, the radial dose function of the pelvic water phantom significantly decreased with radial distance in the vertical direction because full scattering was not possible. When the source was located in posterior position 2 cm from the center in the pelvic water phantom, the differences between the radial dose functions rapidly decreased with the radial distance in the lower vertical direction. If the International Commission on Radiation Units and Measurements bladder and rectum points are considered, doses to these reference points could be underestimated by up to 1%-2% at a distance of 3 to 6 cm. Our simulation results provide a valid clinical reference data and can used to improve the accuracy of the doses delivered during brachytherapy applied to patients with cervical cancer.

  8. On the use of a single-fiber multipoint plastic scintillation detector for {sup 192}Ir high-dose-rate brachytherapy

    SciTech Connect

    Therriault-Proulx, Francois; Beddar, Sam; Beaulieu, Luc

    2013-06-15

    Purpose: The goal of this study was to prove the feasibility of using a single-fiber multipoint plastic scintillation detector (mPSD) as an in vivo verification tool during {sup 192}Ir high-dose-rate brachytherapy treatments.Methods: A three-point detector was built and inserted inside a catheter-positioning template placed in a water phantom. A hyperspectral approach was implemented to discriminate the different optical signals composing the light output at the exit of the single collection optical fiber. The mPSD was tested with different source-to-detector positions, ranging from 1 to 5 cm radially and over 10.5 cm along the longitudinal axis of the detector, and with various integration times. Several strategies for improving the accuracy of the detector were investigated. The device's accuracy in detecting source position was also tested.Results: Good agreement with the expected doses was obtained for all of the scintillating elements, with average relative differences from the expected values of 3.4 {+-} 2.1%, 3.0 {+-} 0.7%, and 4.5 {+-} 1.0% for scintillating elements from the distal to the proximal. A dose threshold of 3 cGy improved the general accuracy of the detector. An integration time of 3 s offered a good trade-off between precision and temporal resolution. Finally, the mPSD measured the radioactive source positioning uncertainty to be no more than 0.32 {+-} 0.06 mm. The accuracy and precision of the detector were improved by a dose-weighted function combining the three measurement points and known details about the geometry of the detector construction.Conclusions: The use of a mPSD for high-dose-rate brachytherapy dosimetry is feasible. This detector shows great promise for development of in vivo applications for real-time verification of treatment delivery.

  9. Dosimetric effects of source-offset in intravascular brachytherapy.

    PubMed

    Chibani, Omar; Li, X Allen

    2002-04-01

    In intravascular brachytherapy (IVBT), radioactive sources can be displaced (offset) laterally from the center of the lumen and/or longitudinally from the desired location due to the cardiac motion and/or the absence of a source-centering device. The purpose of this work is to study the dosimetric impact of such a source offset. Dose effects of both lateral and longitudinal source offsets with or without the presence of a calcified plaque or a metallic stent are calculated for the three most commonly used sources (32P, 90Sr/90Y, and 192Ir). The MCNP Monte Carlo code is used in the calculation. Static and random source offsets are considered. The major results include that (a) dose can be changed significantly (by a factor of up to 4) due to a static lateral source offset; (b) this dose variation is reduced if the lateral source offset is considered as random moving within the vessel (the dose at the 2 mm reference radial distance is increased by 5-15% for the three sources in the case of the 2D random offset studied); (c) the presence of a calcified plaque and/or a metallic stent worsens the dosimetric effects; (d) the longitudinal random source offset results in a reduction (15-18%) in the effective treatment length; (e) the dose effects of source offsets for the beta source are higher than those for the gamma source. The data presented in this paper may be used for IVBT treatment planning or for dosimetric analysis of treatment outcome. The dose change due to the source offset should be considered in dose prescription. The reduction of effective treatment length should be taken into account in selection of a proper source length to ensure an adequate coverage of the treatment target. PMID:11991124

  10. Comparison of organ doses for patients undergoing balloon brachytherapy of the breast with HDR 192Ir or electronic sources using Monte Carlo simulations in a heterogeneous human phantom1

    PubMed Central

    Mille, Matthew M.; Xu, X. George; Rivard, Mark J.

    2010-01-01

    Purpose: Accelerated partial breast irradiation via interstitial balloon brachytherapy is a fast and effective treatment method for certain early stage breast cancers. The radiation can be delivered using a conventional high-dose rate (HDR) 192Ir gamma-emitting source or a novel electronic brachytherapy (eBx) source which uses lower energy x rays that do not penetrate as far within the patient. A previous study [A. Dickler, M. C. Kirk, N. Seif, K. Griem, K. Dowlatshahi, D. Francescatti, and R. A. Abrams, “A dosimetric comparison of MammoSite high-dose-rate brachytherapy and Xoft Axxent electronic brachytherapy,” Brachytherapy 6, 164–168 (2007)] showed that the target dose is similar for HDR 192Ir and eBx. This study compares these sources based on the dose received by healthy organs and tissues away from the treatment site. Methods: A virtual patient with left breast cancer was represented by a whole-body, tissue-heterogeneous female voxel phantom. Monte Carlo methods were used to calculate the dose to healthy organs in a virtual patient undergoing balloon brachytherapy of the left breast with HDR 192Ir or eBx sources. The dose-volume histograms for a few organs which received large doses were also calculated. Additional simulations were performed with all tissues in the phantom defined as water to study the effect of tissue inhomogeneities. Results: For both HDR 192Ir and eBx, the largest mean organ doses were received by the ribs, thymus gland, left lung, heart, and sternum which were close to the brachytherapy source in the left breast. eBx yielded mean healthy organ doses that were more than a factor of ∼1.4 smaller than for HDR 192Ir for all organs considered, except for the three closest ribs. Excluding these ribs, the average and median dose-reduction factors were ∼28 and ∼11, respectively. The volume distribution of doses in nearby soft tissue organs that were outside the PTV were also improved with eBx. However, the maximum dose to the closest

  11. Comparison of organ doses for patients undergoing balloon brachytherapy of the breast with HDR {sup 192}Ir or electronic sources using Monte Carlo simulations in a heterogeneous human phantom

    SciTech Connect

    Mille, Matthew M.; Xu, X. George; Rivard, Mark J.

    2010-02-15

    Purpose: Accelerated partial breast irradiation via interstitial balloon brachytherapy is a fast and effective treatment method for certain early stage breast cancers. The radiation can be delivered using a conventional high-dose rate (HDR) {sup 192}Ir gamma-emitting source or a novel electronic brachytherapy (eBx) source which uses lower energy x rays that do not penetrate as far within the patient. A previous study [A. Dickler, M. C. Kirk, N. Seif, K. Griem, K. Dowlatshahi, D. Francescatti, and R. A. Abrams, ''A dosimetric comparison of MammoSite high-dose-rate brachytherapy and Xoft Axxent electronic brachytherapy,'' Brachytherapy 6, 164-168 (2007)] showed that the target dose is similar for HDR {sup 192}Ir and eBx. This study compares these sources based on the dose received by healthy organs and tissues away from the treatment site. Methods: A virtual patient with left breast cancer was represented by a whole-body, tissue-heterogeneous female voxel phantom. Monte Carlo methods were used to calculate the dose to healthy organs in a virtual patient undergoing balloon brachytherapy of the left breast with HDR {sup 192}Ir or eBx sources. The dose-volume histograms for a few organs which received large doses were also calculated. Additional simulations were performed with all tissues in the phantom defined as water to study the effect of tissue inhomogeneities. Results: For both HDR {sup 192}Ir and eBx, the largest mean organ doses were received by the ribs, thymus gland, left lung, heart, and sternum which were close to the brachytherapy source in the left breast. eBx yielded mean healthy organ doses that were more than a factor of {approx}1.4 smaller than for HDR {sup 192}Ir for all organs considered, except for the three closest ribs. Excluding these ribs, the average and median dose-reduction factors were {approx}28 and {approx}11, respectively. The volume distribution of doses in nearby soft tissue organs that were outside the PTV were also improved with e

  12. Optimization of deterministic transport parameters for the calculation of the dose distribution around a high dose-rate 192Ir brachytherapy source.

    PubMed

    Gifford, Kent A; Price, Michael J; Horton, John L; Wareing, Todd A; Mourtada, Firas

    2008-06-01

    The goal of this work was to calculate the dose distribution around a high dose-rate 192Ir brachytherapy source using a multi-group discrete ordinates code and then to compare the results with a Monte Carlo calculated dose distribution. The unstructured tetrahedral mesh discrete ordinates code Attila version 6.1.1 was used to calculate the photon kerma rate distribution in water around the Nucletron microSelectron mHDRv2 source. MCNPX 2.5.c was used to compute the Monte Carlo water photon kerma rate distribution. Two hundred million histories were simulated, resulting in standard errors of the mean of less than 3% overall. The number of energy groups, S(n) (angular order), P(n) (scattering order), and mesh elements were varied in addition to the method of analytic ray tracing to assess their effects on the deterministic solution. Water photon kerma rate matrices were exported from both codes into an in-house data analysis software. This software quantified the percent dose difference distribution, the number of points within +/- 3% and +/- 5%, and the mean percent difference between the two codes. The data demonstrated that a 5 energy-group cross-section set calculated results to within 0.5% of a 15 group cross-section set. S12 was sufficient to resolve the solution in angle. P2 expansion of the scattering cross-section was necessary to compute accurate distributions. A computational mesh with 55 064 tetrahedral elements in a 30 cm diameter phantom resolved the solution spatially. An efficiency factor of 110 with the above parameters was realized in comparison to MC methods. The Attila code provided an accurate and efficient solution of the Boltzmann transport equation for the mHDRv2 source. PMID:18649459

  13. Optimization of deterministic transport parameters for the calculation of the dose distribution around a high dose-rate {sup 192}Ir brachytherapy source

    SciTech Connect

    Gifford, Kent A.; Price, Michael J.; Horton, John L. Jr.; Wareing, Todd A.; Mourtada, Firas

    2008-06-15

    The goal of this work was to calculate the dose distribution around a high dose-rate {sup 192}Ir brachytherapy source using a multi-group discrete ordinates code and then to compare the results with a Monte Carlo calculated dose distribution. The unstructured tetrahedral mesh discrete ordinates code Attila version 6.1.1 was used to calculate the photon kerma rate distribution in water around the Nucletron microSelectron mHDRv2 source. MCNPX 2.5.c was used to compute the Monte Carlo water photon kerma rate distribution. Two hundred million histories were simulated, resulting in standard errors of the mean of less than 3% overall. The number of energy groups, S{sub n} (angular order), P{sub n} (scattering order), and mesh elements were varied in addition to the method of analytic ray tracing to assess their effects on the deterministic solution. Water photon kerma rate matrices were exported from both codes into an in-house data analysis software. This software quantified the percent dose difference distribution, the number of points within {+-}3% and {+-}5%, and the mean percent difference between the two codes. The data demonstrated that a 5 energy-group cross-section set calculated results to within 0.5% of a 15 group cross-section set. S{sub 12} was sufficient to resolve the solution in angle. P{sub 2} expansion of the scattering cross-section was necessary to compute accurate distributions. A computational mesh with 55 064 tetrahedral elements in a 30 cm diameter phantom resolved the solution spatially. An efficiency factor of 110 with the above parameters was realized in comparison to MC methods. The Attila code provided an accurate and efficient solution of the Boltzmann transport equation for the mHDRv2 source.

  14. SU-E-T-580: On the Significance of Model Based Dosimetry for Breast and Head and Neck 192Ir HDR Brachytherapy

    SciTech Connect

    Peppa, V; Pappas, E; Pantelis, E; Papagiannis, P; Major, T; Polgar, C

    2015-06-15

    Purpose: To assess the dosimetric and radiobiological differences between TG43-based and model-based dosimetry in the treatment planning of {sup 192}Ir HDR brachytherapy for breast and head and neck cancer. Methods: Two cohorts of 57 Accelerated Partial Breast Irradiation (APBI) and 22 head and neck (H&N) patients with oral cavity carcinoma were studied. Dosimetry for the treatment plans was performed using the TG43 algorithm of the Oncentra Brachy v4.4 treatment planning system (TPS). Corresponding Monte Carlo (MC) simulations were performed using MCNP6 with input files automatically prepared by the BrachyGuide software tool from DICOM RT plan data. TG43 and MC data were compared in terms of % dose differences, Dose Volume Histograms (DVHs) and related indices of clinical interest for the Planning Target Volume (PTV) and the Organs-At-Risk (OARs). A radiobiological analysis was also performed using the Equivalent Uniform Dose (EUD), mean survival fraction (S) and Tumor Control Probability (TCP) for the PTV, and the Normal Tissue Control Probability (N TCP) and the generalized EUD (gEUD) for the OARs. Significance testing of the observed differences performed using the Wilcoxon paired sample test. Results: Differences between TG43 and MC DVH indices, associated with the increased corresponding local % dose differences observed, were statistically significant. This is mainly attributed to their consistency however, since TG43 agrees closely with MC for the majority of DVH and radiobiological parameters in both patient cohorts. Differences varied considerably among patients only for the ipsilateral lung and ribs in the APBI cohort, with a strong correlation to target location. Conclusion: While the consistency and magnitude of differences in the majority of clinically relevant DVH indices imply that no change is needed in the treatment planning practice, individualized dosimetry improves accuracy and addresses instances of inter-patient variability observed. Research

  15. Dosimetric comparison between the microSelectron HDR 192Ir v2 source and the BEBIG 60Co source for HDR brachytherapy using the EGSnrc Monte Carlo transport code

    PubMed Central

    Islam, M. Anwarul; Akramuzzaman, M. M.; Zakaria, G. A.

    2012-01-01

    Manufacturing of miniaturized high activity 192Ir sources have been made a market preference in modern brachytherapy. The smaller dimensions of the sources are flexible for smaller diameter of the applicators and it is also suitable for interstitial implants. Presently, miniaturized 60Co HDR sources have been made available with identical dimensions to those of 192Ir sources. 60Co sources have an advantage of longer half life while comparing with 192Ir source. High dose rate brachytherapy sources with longer half life are logically pragmatic solution for developing country in economic point of view. This study is aimed to compare the TG-43U1 dosimetric parameters for new BEBIG 60Co HDR and new microSelectron 192Ir HDR sources. Dosimetric parameters are calculated using EGSnrc-based Monte Carlo simulation code accordance with the AAPM TG-43 formalism for microSlectron HDR 192Ir v2 and new BEBIG 60Co HDR sources. Air-kerma strength per unit source activity, calculated in dry air are 9.698×10-8 ± 0.55% U Bq-1 and 3.039×10-7 ± 0.41% U Bq-1 for the above mentioned two sources, respectively. The calculated dose rate constants per unit air-kerma strength in water medium are 1.116±0.12% cGy h-1U-1 and 1.097±0.12% cGy h-1U-1, respectively, for the two sources. The values of radial dose function for distances up to 1 cm and more than 22 cm for BEBIG 60Co HDR source are higher than that of other source. The anisotropic values are sharply increased to the longitudinal sides of the BEBIG 60Co source and the rise is comparatively sharper than that of the other source. Tissue dependence of the absorbed dose has been investigated with vacuum phantom for breast, compact bone, blood, lung, thyroid, soft tissue, testis, and muscle. No significant variation is noted at 5 cm of radial distance in this regard while comparing the two sources except for lung tissues. The true dose rates are calculated with considering photon as well as electron transport using appropriate cut

  16. A quality management program in intravascular brachytherapy.

    PubMed

    Chakri, Abderrahim; Thomadsen, Bruce

    2002-12-01

    While simple, intravascular brachytherapy (IVB) presents a considerable potential for harm to the patient. The medical physicist maintains the responsibility to minimize the likelihood of operational problems or dosimetric errors. The principals for safe operation remain the same as with any radiotherapy treatment: to deliver the correct dose, to the correct location, safety. To develop an effective and comprehensive quality management (QM) program for IVB, a physicist should utilize proven risk assessment techniques rather than simply thinking of things to check, and follow guidances such as ISO9001:2000. The proposed QM program includes the following: Procedures designed to assure the safety of the patient. Identification of the patient; tests of the integrity and patency for the delivery catheter, operation of the source train, and patency of the catheter in the treatment position; a check for recovery preparations; and verification of source recovery. Procedures to assure positional accuracy of the treatment: Verification of the positioning the catheter in the artery and of the sources in the catheter. Procedures to assure dosimetry accuracy: Acceptance testing of the device, including verification of the source strength and uniformity, and of the treatment duration tables; verification of the treatment prescription and duration for each patient; and control measures that minimize the likelihood of errors removing the source at the correct time. PMID:12512720

  17. Determination of absorbed dose in water at the reference point D(r{sub 0},{theta}{sub 0}) for an {sup 192}Ir HDR brachytherapy source using a Fricke system

    SciTech Connect

    Austerlitz, C.; Mota, H. C.; Sempau, J.; Benhabib, S. M.; Campos, D.; Allison, R.; Almeida, C. E. de; Zhu, D.; Sibata, C. H.

    2008-12-15

    A ring-shaped Fricke device was developed to measure the absolute dose on the transverse bisector of a {sup 192}Ir high dose rate (HDR) source at 1 cm from its center in water, D(r{sub 0},{theta}{sub 0}). It consists of a polymethylmethacrylate (PMMA) rod (axial axis) with a cylindrical cavity at its center to insert the {sup 192}Ir radioactive source. A ring cavity around the source with 1.5 mm thickness and 5 mm height is centered at 1 cm from the central axis of the source. This ring cavity is etched in a disk shaped base with 2.65 cm diameter and 0.90 cm thickness. The cavity has a wall around it 0.25 cm thick. This ring is filled with Fricke solution, sealed, and the whole assembly is immersed in water during irradiations. The device takes advantage of the cylindrical geometry to measure D(r{sub 0},{theta}{sub 0}). Irradiations were performed with a Nucletron microselectron HDR unit loaded with an {sup 192}Ir Alpha Omega radioactive source. A Spectronic 1001 spectrophotometer was used to measure the optical absorbance using a 1 mL quartz cuvette with 1.00 cm light pathlength. The PENELOPE Monte Carlo code (MC) was utilized to simulate the Fricke device and the {sup 192}Ir Alpha Omega source in detail to calculate the perturbation introduced by the PMMA material. A NIST traceable calibrated well type ionization chamber was used to determine the air-kerma strength, and a published dose-rate constant was used to determine the dose rate at the reference point. The time to deliver 30.00 Gy to the reference point was calculated. This absorbed dose was then compared to the absorbed dose measured by the Fricke solution. Based on MC simulation, the PMMA of the Fricke device increases the D(r{sub 0},{theta}{sub 0}) by 2.0%. Applying the corresponding correction factor, the D(r{sub 0},{theta}{sub 0}) value assessed with the Fricke device agrees within 2.0% with the expected value with a total combined uncertainty of 3.43%(k=1). The Fricke device provides a promising

  18. Dosimetric accuracy of a deterministic radiation transport based {sup 192}Ir brachytherapy treatment planning system. Part II: Monte Carlo and experimental verification of a multiple source dwell position plan employing a shielded applicator

    SciTech Connect

    Petrokokkinos, L.; Zourari, K.; Pantelis, E.; Moutsatsos, A.; Karaiskos, P.; Sakelliou, L.; Seimenis, I.; Georgiou, E.; Papagiannis, P.

    2011-04-15

    Purpose: The aim of this work is the dosimetric validation of a deterministic radiation transport based treatment planning system (BRACHYVISION v. 8.8, referred to as TPS in the following) for multiple {sup 192}Ir source dwell position brachytherapy applications employing a shielded applicator in homogeneous water geometries. Methods: TPS calculations for an irradiation plan employing seven VS2000 {sup 192}Ir high dose rate (HDR) source dwell positions and a partially shielded applicator (GM11004380) were compared to corresponding Monte Carlo (MC) simulation results, as well as experimental results obtained using the VIP polymer gel-magnetic resonance imaging three-dimensional dosimetry method with a custom made phantom. Results: TPS and MC dose distributions were found in agreement which is mainly within {+-}2%. Considerable differences between TPS and MC results (greater than 2%) were observed at points in the penumbra of the shields (i.e., close to the edges of the ''shielded'' segment of the geometries). These differences were experimentally verified and therefore attributed to the TPS. Apart from these regions, experimental and TPS dose distributions were found in agreement within 2 mm distance to agreement and 5% dose difference criteria. As shown in this work, these results mark a significant improvement relative to dosimetry algorithms that disregard the presence of the shielded applicator since the use of the latter leads to dosimetry errors on the order of 20%-30% at the edge of the ''unshielded'' segment of the geometry and even 2%-6% at points corresponding to the potential location of the target volume in clinical applications using the applicator (points in the unshielded segment at short distances from the applicator). Conclusions: Results of this work attest the capability of the TPS to accurately account for the scatter conditions and the increased attenuation involved in HDR brachytherapy applications employing multiple source dwell positions and

  19. Dosimetric impact of an {sup 192}Ir brachytherapy source cable length modeled using a grid-based Boltzmann transport equation solver

    SciTech Connect

    Mikell, Justin K.; Mourtada, Firas

    2010-09-15

    Purpose: To evaluate the dose distributions of an {sup 192}Ir source (model VS2000) in homogeneous water geometry calculated using a deterministic grid-based Boltzmann transport equation solver (GBBS) in the commercial treatment planning system (TPS) (BRACHYVISION-ACUROS v8.8). Methods: Using percent dose differences (%{Delta}D), the GBBS (BV-ACUROS) was compared to the (1) published TG-43 data, (2) MCNPX Monte Carlo (MC) simulations of the {sup 192}Ir source centered in a 15 cm radius water sphere, and (3) TG-43 output from the TPS using vendor supplied (BV-TG43-vendor) and user extended (BV-TG43-extended) 2D anisotropy functions F(r,{theta}). BV-ACUROS assumes 1 mm of NiTi cable, while the TPS TG-43 algorithm uses data based on a 15 cm cable. MC models of various cable lengths were simulated. Results: The MC simulations resulted in >20% dose deviations along the cable for 1, 2, and 3 mm cable lengths relative to 15 cm. BV-ACUROS comparisons with BV-TG43-vendor and BV-TG43-extended yielded magnitude of differences, consistent with those seen in MC simulations. However, differences >20% extended further ({theta}{<=}10 deg.) when using the vendor supplied anisotropy function F{sub ven}(r,{theta}). These differences were also seen in comparisons of F(r,{theta}) derived from the TPS output. Conclusions: The results suggest that %{Delta}D near the cable region is larger than previously estimated. The spatial distribution of the dose deviation is highly dependent on the reference TG-43 data used to compare to GBBS. The differences observed, while important to realize, should not have an impact on clinical dosimetry in homogeneous water.

  20. Comparison of TLD calibration methods for 192Ir dosimetry.

    PubMed

    Haworth, Annette; Butler, Duncan J; Wilfert, Lisa; Ebert, Martin A; Todd, Stephen P; Hayton, Anna J M; Kron, Tomas

    2013-01-01

    For the purpose of dose measurement using a high-dose rate (192)Ir source, four methods of thermoluminescent dosimeter (TLD) calibration were investigated. Three of the four calibration methods used the (192)Ir source. Dwell times were calculated to deliver 1 Gy to the TLDs irradiated either in air or water. Dwell time calculations were confirmed by direct measurement using an ionization chamber. The fourth method of calibration used 6 MV photons from a medical linear accelerator, and an energy correction factor was applied to account for the difference in sensitivity of the TLDs in (192)Ir and 6 MV. The results of the four TLD calibration methods are presented in terms of the results of a brachytherapy audit where seven Australian centers irradiated three sets of TLDs in a water phantom. The results were in agreement within estimated uncertainties when the TLDs were calibrated with the (192)Ir source. Calibrating TLDs in a phantom similar to that used for the audit proved to be the most practical method and provided the greatest confidence in measured dose. When calibrated using 6 MV photons, the TLD results were consistently higher than the (192)Ir-calibrated TLDs, suggesting this method does not fully correct for the response of the TLDs when irradiated in the audit phantom. PMID:23318392

  1. Characterization of a fiber-coupled Al{sub 2}O{sub 3}:C luminescence dosimetry system for online in vivo dose verification during {sup 192}Ir brachytherapy

    SciTech Connect

    Andersen, Claus E.; Nielsen, Soeren Kynde; Greilich, Steffen; Helt-Hansen, Jakob; Lindegaard, Jacob Christian; Tanderup, Kari

    2009-03-15

    A prototype of a new dose-verification system has been developed to facilitate prevention and identification of dose delivery errors in remotely afterloaded brachytherapy. The system allows for automatic online in vivo dosimetry directly in the tumor region using small passive detector probes that fit into applicators such as standard needles or catheters. The system measures the absorbed dose rate (0.1 s time resolution) and total absorbed dose on the basis of radioluminescence (RL) and optically stimulated luminescence (OSL) from aluminum oxide crystals attached to optical fiber cables (1 mm outer diameter). The system was tested in the range from 0 to 4 Gy using a solid-water phantom, a Varian GammaMed Plus {sup 192}Ir PDR afterloader, and dosimetry probes inserted into stainless-steel brachytherapy needles. The calibrated system was found to be linear in the tested dose range. The reproducibility (one standard deviation) for RL and OSL measurements was 1.3%. The measured depth-dose profiles agreed well with the theoretical expectations computed with the EGSNRC Monte Carlo code, suggesting that the energy dependence for the dosimeter probes (relative to water) is less than 6% for source-to-probe distances in the range of 2-50 mm. Under certain conditions, the RL signal could be greatly disturbed by the so-called stem signal (i.e., unwanted light generated in the fiber cable upon irradiation). The OSL signal is not subject to this source of error. The tested system appears to be adequate for in vivo brachytherapy dosimetry.

  2. Stem effect of a Ce3+ doped SiO2 optical dosimeter irradiated with a 192Ir HDR brachytherapy source

    NASA Astrophysics Data System (ADS)

    Carrara, Mauro; Tenconi, Chiara; Guilizzoni, Roberta; Borroni, Marta; Cavatorta, Claudia; Cerrotta, Annamaria; Fallai, Carlo; Gambarini, Grazia; Vedda, Anna; Pignoli, Emanuele

    2014-11-01

    Fiber-optic-coupled scintillation dosimeters are characterized by their small active volume if compared to other existing systems. However, they potentially show a greater stem effect, especially in external beam radiotherapy where the Cerenkov effect is not negligible. In brachytherapy, due to the lower energies and the shorter high dose range of the employed sources, the impact of the stem effect to the detector accuracy might be low. In this work, the stem effect of a Ce3+ doped SiO2 scintillation detector coupled to a SiO2 optical fiber was studied for high dose rate brachytherapy applications. Measurements were performed in a water phantom at changing source-detector mutual positions. The same irradiations were performed with a passive optical fiber, which doesn't have the dosimeter at its end. The relative contribution of the passive fiber with respect to the uncorrected readings of the detector in each one of the investigated source dwell positions was evaluated. Furthermore, the dosimeter was calibrated both neglecting and correcting its response for the passive fiber readings. The obtained absolute dose measurements were then compared to the dose calculations resulting from the treatment planning system. Dosimeter uncertainties with and without taking into account the passive fiber readings were generally below 2.8% and 4.3%, respectively. However, a particular exception results when the source is positioned near to the optical fiber, where the detector underestimates the dose (-8%) or at source-detector longitudinal distances higher than 3 cm. The obtained results show that the proposed dosimeter might be adopted in high dose rate prostate brachytherapy with satisfactory accuracy, without the need for any stem effect correction. However, accuracy further improves by subtraction of the noise signal produced by the passive optical fiber.

  3. Dosimetric accuracy of a deterministic radiation transport based {sup 192}Ir brachytherapy treatment planning system. Part III. Comparison to Monte Carlo simulation in voxelized anatomical computational models

    SciTech Connect

    Zourari, K.; Pantelis, E.; Moutsatsos, A.; Sakelliou, L.; Georgiou, E.; Karaiskos, P.; Papagiannis, P.

    2013-01-15

    Purpose: To compare TG43-based and Acuros deterministic radiation transport-based calculations of the BrachyVision treatment planning system (TPS) with corresponding Monte Carlo (MC) simulation results in heterogeneous patient geometries, in order to validate Acuros and quantify the accuracy improvement it marks relative to TG43. Methods: Dosimetric comparisons in the form of isodose lines, percentage dose difference maps, and dose volume histogram results were performed for two voxelized mathematical models resembling an esophageal and a breast brachytherapy patient, as well as an actual breast brachytherapy patient model. The mathematical models were converted to digital imaging and communications in medicine (DICOM) image series for input to the TPS. The MCNP5 v.1.40 general-purpose simulation code input files for each model were prepared using information derived from the corresponding DICOM RT exports from the TPS. Results: Comparisons of MC and TG43 results in all models showed significant differences, as reported previously in the literature and expected from the inability of the TG43 based algorithm to account for heterogeneities and model specific scatter conditions. A close agreement was observed between MC and Acuros results in all models except for a limited number of points that lay in the penumbra of perfectly shaped structures in the esophageal model, or at distances very close to the catheters in all models. Conclusions: Acuros marks a significant dosimetry improvement relative to TG43. The assessment of the clinical significance of this accuracy improvement requires further work. Mathematical patient equivalent models and models prepared from actual patient CT series are useful complementary tools in the methodology outlined in this series of works for the benchmarking of any advanced dose calculation algorithm beyond TG43.

  4. Gadolinium neutron capture brachytherapy (GdNCB), a new treatment method for intravascular brachytherapy.

    PubMed

    Enger, Shirin A; Rezaei, Arash; Munck af Rosenschöld, Per; Lundqvist, Hans

    2006-01-01

    Restenosis is a major problem after balloon angioplasty and stent implantation. The aim of this study is to introduce gadolinium neutron capture brachytherapy (GdNCB) as a suitable modality for treatment of stenosis. The utility of GdNCB in intravascular brachytherapy (IVBT) of stent stenosis is investigated by using the GEANT4 and MCNP4B Monte Carlo radiation transport codes. To study capture rate, Kerma, absorbed dose and absorbed dose rate around a Gd-containing stent activated with neutrons, a 30 mm long, 5 mm diameter gadolinium foil is chosen. The input data is a neutron spectrum used for clinical neutron capture therapy in Studsvik, Sweden. Thermal neutron capture in gadolinium yields a spectrum of high-energy gamma photons, which due to the build-up effect gives an almost flat dose delivery pattern to the first 4 mm around the stent. The absorbed dose rate is 1.33 Gy/min, 0.25 mm from the stent surface while the dose to normal tissue is in order of 0.22 Gy/min, i.e., a factor of 6 lower. To spare normal tissue further fractionation of the dose is also possible. The capture rate is relatively high at both ends of the foil. The dose distribution from gamma and charge particle radiation at the edges and inside the stent contributes to a nonuniform dose distribution. This will lead to higher doses to the surrounding tissue and may prevent stent edge and in-stent restenosis. The position of the stent can be verified and corrected by the treatment plan prior to activation. Activation of the stent by an external neutron field can be performed days after catherization when the target cells start to proliferate and can be expected to be more radiation sensitive. Another advantage of the nonradioactive gadolinium stent is the possibility to avoid radiation hazard to personnel. PMID:16485408

  5. Gadolinium neutron capture brachytherapy (GdNCB), a new treatment method for intravascular brachytherapy

    SciTech Connect

    Enger, Shirin A.; Rezaei, Arash; Munck af Rosenschoeld, Per; Lundqvist, Hans

    2006-01-15

    Restenosis is a major problem after balloon angioplasty and stent implantation. The aim of this study is to introduce gadolinium neutron capture brachytherapy (GdNCB) as a suitable modality for treatment of stenosis. The utility of GdNCB in intravascular brachytherapy (IVBT) of stent stenosis is investigated by using the GEANT4 and MCNP4B Monte Carlo radiation transport codes. To study capture rate, Kerma, absorbed dose and absorbed dose rate around a Gd-containing stent activated with neutrons, a 30 mm long, 5 mm diameter gadolinium foil is chosen. The input data is a neutron spectrum used for clinical neutron capture therapy in Studsvik, Sweden. Thermal neutron capture in gadolinium yields a spectrum of high-energy gamma photons, which due to the build-up effect gives an almost flat dose delivery pattern to the first 4 mm around the stent. The absorbed dose rate is 1.33 Gy/min, 0.25 mm from the stent surface while the dose to normal tissue is in order of 0.22 Gy/min, i.e., a factor of 6 lower. To spare normal tissue further fractionation of the dose is also possible. The capture rate is relatively high at both ends of the foil. The dose distribution from gamma and charge particle radiation at the edges and inside the stent contributes to a nonuniform dose distribution. This will lead to higher doses to the surrounding tissue and may prevent stent edge and in-stent restenosis. The position of the stent can be verified and corrected by the treatment plan prior to activation. Activation of the stent by an external neutron field can be performed days after catherization when the target cells start to proliferate and can be expected to be more radiation sensitive. Another advantage of the nonradioactive gadolinium stent is the possibility to avoid radiation hazard to personnel.

  6. Qualification tests for 192Ir sealed sources

    NASA Astrophysics Data System (ADS)

    Iancso, Georgeta; Iliescu, Elena; Iancu, Rodica

    2013-12-01

    This paper describes the results of qualification tests for 192Ir sealed sources, available in Testing and Nuclear Expertise Laboratory of National Institute for Physics and Nuclear Engineering "Horia Hulubei" (I.F.I.N.-HH), Romania. These sources had to be produced in I.F.I.N.-HH and were tested in order to obtain the authorization from The National Commission for Nuclear Activities Control (CNCAN). The sources are used for gammagraphy procedures or in gammadefectoscopy equipments. Tests, measurement methods and equipments used, comply with CNCAN, AIEA and International Quality Standards and regulations. The qualification tests are: 1. Radiological tests and measurements: dose equivalent rate at 1 m; tightness; dose equivalent rate at the surface of the transport and storage container; external unfixed contamination of the container surface. 2. Mechanical and climatic tests: thermal shock; external pressure; mechanic shock; vibrations; boring; thermal conditions for storage and transportation. Passing all tests, it was obtained the Radiological Security Authorization for producing the 192Ir sealed sources. Now IFIN-HH can meet many demands for this sealed sources, as the only manufacturer in Romania.

  7. Response of an implantable MOSFET dosimeter to 192Ir HDR radiation.

    PubMed

    Fagerstrom, Jessica M; Micka, John A; DeWerd, Larry A

    2008-12-01

    New in vivo dosimetry methods would be useful for clinical HDR brachytherapy. An implantable MOSFET Dose Verification System designed by Sicel Technologies, Inc. was examined for use with 192Ir HDR applications. This investigation demonstrated that varying the dose rate from 22 to 84 cGy/min did not change detector response. The detectors exhibited a higher sensitivity to 192Ir energies than 60Co energies. A nonlinear accumulated dose effect was characterized by three third-order polynomials fit to data from detectors placed at three different distances from the source. The detectors were found to have minimal rotational angular dependence. A strong longitudinal angular dependence was found when the detector's copper coil and electronics assembly were aligned between the MOSFETs and incident radiation. This orientation showed a 16% decrease in response relative to other orientations tested. PMID:19175130

  8. SU-E-T-46: Application of a Twin-Detector Method for the Determination of the Mean Photon Energy Em at Points of Measurement in a Water Phantom Surrounding a GammaMed HDR 192Ir Brachytherapy Source

    SciTech Connect

    Chofor, N; Poppe, B; Nebah, F; Harder, D

    2014-06-01

    Purpose: In a brachytherapy photon field in water the fluence-averaged mean photon energy Em at the point of measurement correlates with the radiation quality correction factor kQ of a non water-equivalent detector. To support the experimental assessment of Em, we show that the normalized signal ratio NSR of a pair of radiation detectors, an unshielded silicon diode and a diamond detector can serve to measure quantity Em in a water phantom at a Ir-192 unit. Methods: Photon fluence spectra were computed in EGSnrc based on a detailed model of the GammaMed source. Factor kQ was calculated as the ratio of the detector's spectrum-weighted responses under calibration conditions at a 60Co unit and under brachytherapy conditions at various radial distances from the source. The NSR was investigated for a pair of a p-type unshielded silicon diode 60012 and a synthetic single crystal diamond detector 60019 (both PTW Freiburg). Each detector was positioned according to its effective point of measurement, with its axis facing the source. Lateral signal profiles were scanned under complete scatter conditions, and the NSR was determined as the quotient of the signal ratio under application conditions x and that at position r-ref = 1 cm. Results: The radiation quality correction factor kQ shows a close correlation with the mean photon energy Em. The NSR of the diode/diamond pair changes by a factor of two from 0–18 cm from the source, while Em drops from 350 to 150 keV. Theoretical and measured NSR profiles agree by ± 2 % for points within 5 cm from the source. Conclusion: In the presence of the close correlation between radiation quality correction factor kQ and photon mean energy Em, the NSR provides a practical means of assessing Em under clinical conditions. Precise detector positioning is the major challenge.

  9. A Feasibility Study of Fricke Dosimetry as an Absorbed Dose to Water Standard for 192Ir HDR Sources

    PubMed Central

    deAlmeida, Carlos Eduardo; Ochoa, Ricardo; de Lima, Marilene Coelho; David, Mariano Gazineu; Pires, Evandro Jesus; Peixoto, José Guilherme; Salata, Camila; Bernal, Mario Antônio

    2014-01-01

    High dose rate brachytherapy (HDR) using 192Ir sources is well accepted as an important treatment option and thus requires an accurate dosimetry standard. However, a dosimetry standard for the direct measurement of the absolute dose to water for this particular source type is currently not available. An improved standard for the absorbed dose to water based on Fricke dosimetry of HDR 192Ir brachytherapy sources is presented in this study. The main goal of this paper is to demonstrate the potential usefulness of the Fricke dosimetry technique for the standardization of the quantity absorbed dose to water for 192Ir sources. A molded, double-walled, spherical vessel for water containing the Fricke solution was constructed based on the Fricke system. The authors measured the absorbed dose to water and compared it with the doses calculated using the AAPM TG-43 report. The overall combined uncertainty associated with the measurements using Fricke dosimetry was 1.4% for k = 1, which is better than the uncertainties reported in previous studies. These results are promising; hence, the use of Fricke dosimetry to measure the absorbed dose to water as a standard for HDR 192Ir may be possible in the future. PMID:25521914

  10. Multi-species prostate implant treatment plans incorporating {sup 192}Ir and {sup 125}I using a Greedy Heuristic based 3D optimization algorithm

    SciTech Connect

    Chaswal, V.; Yoo, S.; Thomadsen, B. R.; Henderson, D. L.

    2007-02-15

    The goals of interstitial implant brachytherapy include delivery of the target dose in a uniform manner while sparing sensitive structures, and minimizing the number of needles and sources. We investigated the use of a multi-species source arrangement ({sup 192}Ir with {sup 125}I) for treatment in interstitial prostate brachytherapy. The algorithm utilizes an 'adjoint ratio', which provides a means of ranking source positions and is the criterion for the Greedy Heuristic optimization. Three cases were compared, each using 0.4 mCi {sup 125}I seeds: case I is the base case using {sup 125}I alone, case II uses 0.12 mCi {sup 192}Ir seeds mixed with {sup 125}I, and case III uses 0.25 mCi {sup 192}Ir mixed with {sup 125}I. Both multi-species cases result in lower exposure of the urethra and central prostate region. Compared with the base case, the exposure to the rectum and normal tissue increases by a significant amount for case III as compared with the increase in case II, signifying the effect of slower dose falloff rate of higher energy gammas of {sup 192}Ir in the tissue. The number of seeds and needles decreases in both multi-species cases, with case III requiring fewer seeds and needles than case II. Further, the effect of {sup 192}Ir on uniformity was investigated using the 0.12 mCi {sup 192}Ir seeds in multi-species implants. An increase in uniformity was observed with an increase in the number of 0.12 mCi {sup 192}Ir seeds implanted. The effects of prostate size on the evaluation parameters for multi-species implants were investigated using 0.12 mCi {sup 192}Ir and 0.4 mCi {sup 125}I, and an acceptable treatment plan with increased uniformity was obtained.

  11. Monte Carol-Based Dosimetry of Beta-Emitters for Intravascular Brachytherapy

    SciTech Connect

    Choi, C.K.

    2002-06-25

    Monte Carlo simulations for radiation dosimetry and the experimental verifications of the simulations have been developed for the treatment geometry of intravascular brachytherapy, a form of radionuclide therapy for occluded coronary disease (restenosis). Monte Carlo code, MCNP4C, has been used to calculate the radiation dose from the encapsulated array of B-emitting seeds (Sr/Y-source train). Solid water phantoms have been fabricated to measure the dose on the radiochromic films that were exposed to the beta source train for both linear and curved coronary vessel geometries. While the dose difference for the 5-degree curved vessel at the prescription point of f+2.0 mm is within the 10% guideline set by the AAPM, however, the difference increased dramatically to 16.85% for the 10-degree case which requires additional adjustment for the acceptable dosimetry planning. The experimental dose measurements agree well with the simulation results

  12. Balloon-based adjuvant radiotherapy in breast cancer: comparison between 99mTc and HDR 192Ir*

    PubMed Central

    de Campos, Tarcísio Passos Ribeiro; de Lima, Carla Flavia; Cuperschmid, Ethel Mizrahy

    2016-01-01

    Objective To perform a comparative dosimetric analysis, based on computer simulations, of temporary balloon implants with 99mTc and balloon brachytherapy with high-dose-rate (HDR) 192Ir, as boosts to radiotherapy. We hypothesized that the two techniques would produce equivalent doses under pre-established conditions of activity and exposure time. Materials and Methods Simulations of implants with 99mTc-filled and HDR 192Ir-filled balloons were performed with the Siscodes/MCNP5, modeling in voxels a magnetic resonance imaging set related to a young female. Spatial dose rate distributions were determined. In the dosimetric analysis of the protocols, the exposure time and the level of activity required were specified. Results The 99mTc balloon presented a weighted dose rate in the tumor bed of 0.428 cGy.h-1.mCi-1 and 0.190 cGyh-1.mCi-1 at the balloon surface and at 8-10 mm from the surface, respectively, compared with 0.499 and 0.150 cGyh-1.mCi-1, respectively, for the HDR 192Ir balloon. An exposure time of 24 hours was required for the 99mTc balloon to produce a boost of 10.14 Gy with 1.0 Ci, whereas only 24 minutes with 10.0 Ci segments were required for the HDR 192Ir balloon to produce a boost of 5.14 Gy at the same reference point, or 10.28 Gy in two 24-minutes fractions. Conclusion Temporary 99mTc balloon implantation is an attractive option for adjuvant radiotherapy in breast cancer, because of its availability, economic viability, and similar dosimetry in comparison with the use of HDR 192Ir balloon implantation, which is the current standard in clinical practice. PMID:27141131

  13. Use of water-equivalent plastic scintillator for intravascular brachytherapy dosimetry.

    PubMed

    Geso, M; Robinson, N; Schumer, W; Williams, K

    2004-03-01

    Beta irradiation has recently been investigated as a possible technique for the prevention of restenosis in intravascular brachytherapy after balloon dilatation or stent implantation. Present methods of beta radiation dosimetry are primarily conducted using radiochromic film. These film dosimeters exhibit limited sensitivity and their characteristics differ from those of tissue, therefore the dose measurement readings require correction factors to be applied. In this work a novel, mini-size (2 mm diameter by 5 mm long) dosimeter element fabricated from Organic Plastic Scintillator (OPS) material was employed. Scintillation photon detection is accomplished using a precision photodiode and innovative signal amplification and processing techniques, rather than traditional photomultiplier tube methods. A significant improvement in signal to noise ratio, dynamic range and stability is achieved using this set-up. In addition, use of the non-saturating organic plastic scintillator material as the detector enables the dosimeter to measure beta radiation at very close distances to the source. In this work the plastic scintillators have been used to measure beta radiation dose at distances of less than 1 mm from an Sr-90 cardiovascular brachytherapy source having an activity of about 2.1 GBq beta radiation levels for both depth-distance and longitudinal profile of the source pellet chain, both in air and in liquid water, are measured using this system. The data obtained is compared with results from Monte Carlo simulation technique (MCNP 4B). Plastic scintillator dosimeter elements, when used in conjunction with photodiode detectors may prove to be useful dosimeters for cardiovascular brachytherapy beta sources, or other applications where precise near-source field dosimetry is required. The system described is particularly useful where measurement of actual dose rate in real time, a high level of stability and repeatability, portability, and immediate access to results are

  14. Influence of phantom material and dimensions on experimental {sup 192}Ir dosimetry

    SciTech Connect

    Tedgren, Aasa Carlsson; Carlsson, Gudrun Alm

    2009-06-15

    In treatment planning of brachytherapy, absorbed dose is calculated by superposing predetermined distributions of absorbed dose to water in water for the single source according to the irradiation pattern [i.e., placement of the source(s) or dwelling position(s)]. Single-source reference water data are derived from Monte Carlo (MC) simulations and/or experiments. For reasons of positional accuracy, experimental brachytherapy dosimetry is most often performed in plastic phantoms. This work investigates the water equivalence of phantoms made from polystyrene, PMMA, and solid water for {sup 192}Ir dosimetry. The EGSnrc MC code is used to simulate radial absorbed dose distributions in cylindrical phantoms of dimensions ranging in size from diameter and height of 20 cm to diameter and height of 40 cm. Water equivalence prevails if the absorbed dose to water in the plastic phantom is the same as the absorbed dose to water in a water phantom at equal distances from the source. It is shown that water equivalence at a specified distance from the source depends not only on the size of the plastic phantom but also on the size of the water phantom used for comparison. Compared to equally sized water phantoms, phantoms of polystyrene are less water equivalent than phantoms of PMMA and solid water but compared to larger water phantoms they are the most water equivalent. Although phantom dimension is the most important single factor influencing the dose distributions around {sup 192}Ir sources, the effect of material properties is non-negligible and becomes increasingly important as phantom dimensions increase. The importance of knowing the size of the water phantom whose data underlies treatment planning systems, when using such data as a reference in, e.g., detector evaluation studies, is discussed. To achieve the highest possible accuracy in experimental dosimetry, phantom-specific correction factors should be used.

  15. Usefulness of direct-conversion flat-panel detector system as a quality assurance tool for high-dose-rate 192Ir source.

    PubMed

    Miyahara, Yoshinori; Kitagaki, Hajime; Nishimura, Tomonori; Itakura, Kanae; Takahashi, Shinobu; Yokokawa, Masaki; Uchida, Nobue; Inomata, Taisuke

    2015-01-01

    The routine quality assurance (QA) procedure for a high-dose-rate (HDR) 192Ir radioactive source is an important task to provide appropriate brachytherapy. Traditionally, it has been difficult to obtain good quality images using the 192Ir source due to irradiation from the high-energy gamma rays. However, a direct-conversion flat-panel detector (d-FPD) has made it possible to confirm the localization and configuration of the 192Ir source. The purpose of the present study was to evaluate positional and temporal accuracy of the 192Ir source using a d-FPD system, and the usefulness of d-FPD as a QA tool. As a weekly verification of source positional accuracy test, we obtained 192Ir core imaging by single-shot radiography for three different positions (1300/1400/1500 mm) of a check ruler. To acquire images for measurement of the 192Ir source movement distance with varying interval steps (2.5/5.0/10.0 mm) and temporal accuracy, we used the high-speed image acquisition technique and digital subtraction. For accuracy of the 192Ir source dwell time, sequential images were obtained using various dwell times ranging from 0.5 to 30.0 sec, and the acquired number of image frames was assessed. Analysis of the data was performed using the measurement analysis function of the d-FPD system. Although there were slight weekly variations in source positional accuracy, the measured positional errors were less than 1.0 mm. For source temporal accuracy, the temporal errors were less than 1.0%, and the correlation between acquired frames and programmed time showed excellent linearity (R2 = 1). All 192Ir core images were acquired clearly without image halation, and the data were obtained quantitatively. All data were successfully stored in the picture archiving and communication system (PACS) for time-series analysis. The d-FPD is considered useful as the QA tool for the 192Ir source. PMID:25679163

  16. Effectiveness Evaluation of Skin Covers against Intravascular Brachytherapy Sources Using VARSKIN3 Code

    PubMed Central

    Baghani, H R; Nazempour, A R; Aghamiri, S M R; Hosseini Daghigh, S M; Mowlavi, A A

    2013-01-01

    Background and Objective: The most common intravascular brachytherapy sources include 32P, 188Re, 106Rh and 90Sr/90Y. In this research, skin absorbed dose for different covering materials in dealing with these sources were evaluated and the best covering material for skin protection and reduction of absorbed dose by radiation staff was recognized and recommended. Method: Four materials including polyethylene, cotton and two different kinds of plastic were proposed as skin covers and skin absorbed dose at different depths for each kind of the materials was calculated separately using the VARSKIN3 code. Results: The results suggested that for all sources, skin absorbed dose was minimized when using polyethylene. Considering this material as skin cover, maximum and minimum doses at skin surface were related to 90Sr/90Y and 106Rh, respectively. Conclusion: polyethylene was found the most effective cover in reducing skin dose and protecting the skin. Furthermore, proper agreement between the results of VARSKIN3 and other experimental measurements indicated that VRASKIN3 is a powerful tool for skin dose calculations when working with beta emitter sources. Therefore, it can be utilized in dealing with the issue of radiation protection. PMID:25505758

  17. The air-kerma rate constant of 192Ir.

    PubMed

    Ninković, M M; Raiĉevìć, J J

    1993-01-01

    The air-kerma rate constant gamma delta (and its precursors), as one of the basic radiation characteristics of 192Ir, was determined by many authors. Analysis of accessible data on this quantity led us to the conclusion that published data strongly disagree. That is the reason we calculated this quantity on the basis of our and many other authors' gamma-ray spectral data and the latest data for mass energy-transfer coefficients for air. In this way, a value was obtained for gamma delta of 30.0 +/- 0.9 a Gy m2 s-1 Bq-1 for an unshielded 192Ir source and 27.8 +/- 0.9 a Gy m2s -1Bq-1 for a standard packaged radioactive source taking into account attenuation of gamma rays in the platinum source wall. PMID:8416220

  18. An overexposure in industrial radiography using an 192Ir radionuclide.

    PubMed

    Jalil, A; Molla, M A

    1989-07-01

    An industrial radiographer was accidentally exposed to a high dose of ionizing radiation from an 192Ir source during radiography of weldjoints in gas pipelines. Some symptoms of high radiation exposure occurred immediately after the incident. The clinical effect of skin erythema developed within 7 d, leading to progressive tissue deterioration. The dose to the body was estimated to be about 2-3 Gy, and the dose to the fingertips was approximately 24 Gy. PMID:2526106

  19. The Monte Carlo-Based Dosimetry of Beta Emitters for Intravascular Brachytherapy

    SciTech Connect

    Choi, C.K.; Son, J.; Ye, S.J.

    2001-06-17

    Intravascular brachytherapy (IVBT) is a new radiotherapy modality to prevent restenosis (re-blockage of the coronary artery) following interventional coronary angioplasty. It is estimated that the restenosis rate may drop from {approx}35 to 40% to well below 10% if radiation is delivered to the obstruction site during or after angioplasty. In traditional brachytherapy, the dose is typically specified at 1 cm from the source, and the effects of low-energy photons and secondary electrons are essentially ignored. In IVBT, however, the entire lesion may be 1 to 3 mm in thickness. A better understanding of dosimetry in the millimetre range will help in the development of optimum clinical devices and their efficacious use in different institutions using different radionuclides and devices. The actual treatment geometry consists of an encapsulated train of seeds, a guide wire, and a stent in a curved vessel. The source is a cylindrical train of 12 source seeds, each having dimensions of 0.64 mm in diameter and 2.5 mm in length, and proximal/distal gold markers. Each seed contains {sup 90}Sr/Y mixed with fired ceramic encapsulated in a 0.04-mm stainless steel wall. The Monte Carlo simulations are carried out for the trained source geometries in the linear and curved vessels with and without a stent. The stent structure is approximately modeled as a set of tori with a rotational radius of 1.92 mm from the source axis and a circular radius of 0.08 mm in cross section. Five tori are equally spaced for each seed. The stent shadows 31% of the total area of the source surface. The total activity of 70 mCi (2.59 x 10{sup 9} Bq) was chosen from manufacturer data. The corresponding mass fraction of {sup 90}Sr/Y in the source ceramic is negligible and was not explicitly included in the MCNP simulations. All tallies were multiplied with 5.83 mCi/seed x 3.7 x 10{sup 7} s/mCi for one active seed, and then the tallies that made contributions to the dose in a voxel of interest were

  20. Comparison of air-kerma strength determinations for HDR {sup 192}Ir sources

    SciTech Connect

    Rasmussen, Brian E.; Davis, Stephen D.; Schmidt, Cal R.; Micka, John A.; DeWerd, Larry A.

    2011-12-15

    Purpose: To perform a comparison of the interim air-kerma strength standard for high dose rate (HDR) {sup 192}Ir brachytherapy sources maintained by University of Wisconsin Accredited Dosimetry Calibration Laboratory (UWADCL) with measurements of the various source models using modified techniques from the literature. The current interim standard was established by Goetsch et al. in 1991 and has remained unchanged to date. Methods: The improved, laser-aligned seven-distance apparatus of University of Wisconsin Medical Radiation Research Center (UWMRRC) was used to perform air-kerma strength measurements of five different HDR {sup 192}Ir source models. The results of these measurements were compared with those from well chambers traceable to the original standard. Alternative methodologies for interpolating the {sup 192}Ir air-kerma calibration coefficient from the NIST air-kerma standards at {sup 137}Cs and 250 kVp x rays (M250) were investigated and intercompared. As part of the interpolation method comparison, the Monte Carlo code EGSnrc was used to calculate updated values of A{sub wall} for the Exradin A3 chamber used for air-kerma strength measurements. The effects of air attenuation and scatter, room scatter, as well as the solution method were investigated in detail. Results: The average measurements when using the inverse N{sub K} interpolation method for the Classic Nucletron, Nucletron microSelectron, VariSource VS2000, GammaMed Plus, and Flexisource were found to be 0.47%, -0.10%, -1.13%, -0.20%, and 0.89% different than the existing standard, respectively. A further investigation of the differences observed between the sources was performed using MCNP5 Monte Carlo simulations of each source model inside a full model of an HDR 1000 Plus well chamber. Conclusions: Although the differences between the source models were found to be statistically significant, the equally weighted average difference between the seven-distance measurements and the well

  1. HDR {sup 192}Ir source speed measurements using a high speed video camera

    SciTech Connect

    Fonseca, Gabriel P.; Rubo, Rodrigo A.; Sales, Camila P. de; Verhaegen, Frank

    2015-01-15

    Purpose: The dose delivered with a HDR {sup 192}Ir afterloader can be separated into a dwell component, and a transit component resulting from the source movement. The transit component is directly dependent on the source speed profile and it is the goal of this study to measure accurate source speed profiles. Methods: A high speed video camera was used to record the movement of a {sup 192}Ir source (Nucletron, an Elekta company, Stockholm, Sweden) for interdwell distances of 0.25–5 cm with dwell times of 0.1, 1, and 2 s. Transit dose distributions were calculated using a Monte Carlo code simulating the source movement. Results: The source stops at each dwell position oscillating around the desired position for a duration up to (0.026 ± 0.005) s. The source speed profile shows variations between 0 and 81 cm/s with average speed of ∼33 cm/s for most of the interdwell distances. The source stops for up to (0.005 ± 0.001) s at nonprogrammed positions in between two programmed dwell positions. The dwell time correction applied by the manufacturer compensates the transit dose between the dwell positions leading to a maximum overdose of 41 mGy for the considered cases and assuming an air-kerma strength of 48 000 U. The transit dose component is not uniformly distributed leading to over and underdoses, which is within 1.4% for commonly prescribed doses (3–10 Gy). Conclusions: The source maintains its speed even for the short interdwell distances. Dose variations due to the transit dose component are much lower than the prescribed treatment doses for brachytherapy, although transit dose component should be evaluated individually for clinical cases.

  2. Measurement of absorbed dose-to-water for an HDR {sup 192}Ir source with ionization chambers in a sandwich setup

    SciTech Connect

    Araki, Fujio; Kouno, Tomohiro; Ohno, Takeshi; Kakei, Kiyotaka; Yoshiyama, Fumiaki; Kawamura, Shinji

    2013-09-15

    Purpose: In this study, a dedicated device for ion chamber measurements of absorbed dose-to-water for a Nucletron microSelectron-v2 HDR {sup 192}Ir brachytherapy source is presented. The device uses two ionization chambers in a so-called sandwich assembly. Using this setup and by taking the average reading of the two chambers, any dose error due to difficulties in absolute positioning (centering) of the source in between the chambers is cancelled to first order. The method's accuracy was examined by comparing measurements with absorbed dose-to-water determination based on the AAPM TG-43 protocol.Methods: The optimal source-to-chamber distance (SCD) for {sup 192}Ir dosimetry was determined from ion chamber measurements in a water phantom. The {sup 192}Ir source was sandwiched between two Exradin A1SL chambers (0.057 cm{sup 3}) at the optimal SCD separation. The measured ionization was converted to the absorbed dose-to-water using a {sup 60}Co calibration factor and a Monte Carlo-calculated beam quality conversion factor, k{sub Q}, for {sup 60}Co to {sup 192}Ir. An uncertainty estimate of the proposed method was determined based on reproducibility of measurements at different institutions for the same type of source.Results: The optimal distance for the A1SL chamber measurements was determined to be 5 cm from the {sup 192}Ir source center, considering the depth dependency of k{sub Q} for {sup 60}Co to {sup 192}Ir and the chamber positioning. The absorbed dose to water measured at (5 cm, 90°) on the transverse axis was 1.3% lower than TG-43 values and its reproducibility and overall uncertainty were 0.8% and 1.7%, respectively. The measurement doses at anisotropic points agreed within 1.5% with TG-43 values.Conclusions: The ion chamber measurement of absorbed dose-to-water with a sandwich method for the {sup 192}Ir source provides a more accurate, direct, and reference dose compared to the dose-to-water determination based on air-kerma strength in the TG-43 protocol

  3. Qualification tests for {sup 192}Ir sealed sources

    SciTech Connect

    Iancso, Georgeta Iliescu, Elena Iancu, Rodica

    2013-12-16

    This paper describes the results of qualification tests for {sup 192}Ir sealed sources, available in Testing and Nuclear Expertise Laboratory of National Institute for Physics and Nuclear Engineering 'Horia Hulubei' (I.F.I.N.-HH), Romania. These sources had to be produced in I.F.I.N.-HH and were tested in order to obtain the authorization from The National Commission for Nuclear Activities Control (CNCAN). The sources are used for gammagraphy procedures or in gammadefectoscopy equipments. Tests, measurement methods and equipments used, comply with CNCAN, AIEA and International Quality Standards and regulations. The qualification tests are: 1. Radiological tests and measurements: dose equivalent rate at 1 m; tightness; dose equivalent rate at the surface of the transport and storage container; external unfixed contamination of the container surface. 2. Mechanical and climatic tests: thermal shock; external pressure; mechanic shock; vibrations; boring; thermal conditions for storage and transportation. Passing all tests, it was obtained the Radiological Security Authorization for producing the {sup 192}Ir sealed sources. Now IFIN-HH can meet many demands for this sealed sources, as the only manufacturer in Romania.

  4. Design and characterization of an economical 192Ir hemi-brain small animal irradiator

    PubMed Central

    Sio, Terence T.; Beltran, Chris J.; Tryggestad, Erik J.; Gupta, Shiv K.; Blackwell, Charles R.; McCollough, Kevin P.; Sarkaria, Jann N.; Furutani, Keith M.

    2015-01-01

    Purpose To describe the design and dosimetric characterization of a simple and economical small animal irradiator. Materials and methods A high dose rate (HDR) 192Ir brachytherapy source from a commercially available afterloader was used with a 1.3 cm thick tungsten collimator to provide sharp beam penumbra suitable for hemi-brain irradiation of mice. The unit was equipped with continuous gas anesthesia to allow robust animal immobilization. Dosimetric characterization of the device was performed with Gafchromic film measurements. Results The tungsten collimator provided a sharp penumbra suitable for hemi-brain irradiation, and dose rates on the order of 200 cGy/minute were achieved. The sharpness of the penumbra attainable with this device compares favorably to those measured experimentally for 6 MV photons, and 6 and 20 MeV electron beams from a linear accelerator, and was comparable to those measured for a 300 kVp orthovoltage beam and a Monte Carlo simulated 90 MeV proton beam. Conclusions Due to its simplicity and low cost, the apparatus described is an attractive alternative for small animal irradiation experiments requiring steep dose gradients. PMID:24844370

  5. Comparison of 192Ir air kerma calibration coefficients derived at ARPANSA using the interpolation method and at the National Physical Laboratory using a direct measurement.

    PubMed

    Butler, D; Haworth, A; Sander, T; Todd, S

    2008-12-01

    The reference air kerma rate from 192Ir High Dose Rate (HDR) brachytherapy sources can be measured using a suitably calibrated Farmer chamber and an appropriate in-air calibration jig. When a primary standard for 192Ir gamma rays is available, a calibration coefficient for the chamber and jig combination can be determined directly. In Australia, due to the absence of such a standard, the chamber must be calibrated by interpolation of the response in 60Co and in a kilovoltage x-ray beam. Corrections for the effect of the jig, scatter and beam non-uniformity must then be measured or calculated before the reference air kerma rate can be determined. We compare the air-kerma calibration coefficient of a PTW 30010 PMMA/A1 Farmer chamber (referred to as Farmer chamber throughout this report) obtained from the 192Ir primary standard at the National Physical Laboratory in the UK with the corresponding coefficient obtained by interpolating Australian calibrations using 60Co and 250 kV x-rays and determining suitable correction factors. The resulting chamber/jig calibration coefficients differ by 0.2% which is well within the combined standard uncertainties of 1.2% and 0.6% reported by ARPANSA and NPL respectively. PMID:19239060

  6. Levels of two-particle and gamma bands in 192Ir

    NASA Astrophysics Data System (ADS)

    Balodis, M.; Krasta, T.

    2015-01-01

    Level scheme of the transitional doubly odd nucleus 192Ir is analysed in detail up to about 530 keV energy using earlier published experimental data of neutron capture and particle transfer reactions. A number of new levels are proposed. Obtained 192Ir level scheme is interpreted in terms of particle-plus-rotor coupling model. It is shown that the long-lived 241 year isomer of 192Ir has spin-parity 11-, just like the analogous states in neighbouring 190,194Ir.

  7. A study of 192Ir production conditions at an electron accelerator

    NASA Astrophysics Data System (ADS)

    Dovbnya, A. N.; Rogov, Yu. V.; Shevchenko, V. A.; Shramenko, B. I.; Tenishev, A. Eh.; Torgovkin, A. V.; Uvarov, V. L.

    2014-09-01

    This communication deals with the conditions of 192Ir isotope production under a nonreactor technology via the 193Ir(γ, n)192Ir reaction. It can be carried out by irradiation of a target from natural iridium with the high-energy X-ray of an electron accelerator. The possibility of increasing the photonuclear yield of the target isotope by addition of the 191Ir( n, γ)192Ir reaction induced by moderated photoneutrons has been shown. For this, an X-ray converter and a target were placed inside a neutron moderator. Data on the 192Ir and admixture yields for the techniques using the moderator and without it have been obtained by computer simulation and experimentally.

  8. Dose calculation formalisms and consensus dosimetry parameters for intravascular brachytherapy dosimetry: Recommendations of the AAPM Therapy Physics Committee Task Group No. 149

    SciTech Connect

    Chiu-Tsao, Sou-Tung; Schaart, Dennis R.; Soares, Christopher G.; Nath, Ravinder

    2007-11-15

    Since the publication of AAPM Task Group 60 report in 1999, a considerable amount of dosimetry data for the three coronary brachytherapy systems in use in the United States has been reported. A subgroup, Task Group 149, of the AAPM working group on Special Brachytherapy Modalities (Bruce Thomadsen, Chair) was charged to develop recommendations for dose calculation formalisms and the related consensus dosimetry parameters. The recommendations of this group are presented here. For the Cordis {sup 192}Ir and Novoste {sup 90}Sr/{sup 90}Y systems, the original TG-43 formalism in spherical coordinates should be used along with the consensus values of the dose rate constant, geometry function, radial dose function, and anisotropy function for the single seeds. Contributions from the single seeds should be added linearly for the calculation of dose distributions from a source train. For the Guidant {sup 32}P wire system, the modified TG-43 formalism in cylindrical coordinates along with the recommended data for the 20 and 27 mm wires should be used. Data tables for the 6, 10, 14, 18, and 22 seed trains of the Cordis system, 30, 40, and 60 mm seed trains of the Novoste system, and the 20 and 27 mm wires of the Guidant system are presented along with our rationale and methodology for selecting the consensus data. Briefly, all available datasets were compared with each other and the consensus dataset was either an average of available data or the one obtained from the most densely populated study; in most cases this was a Monte Carlo calculation.

  9. Determination of the tissue attenuation factor along two major axes of a high dose rate (HDR) 192Ir source.

    PubMed

    Cho, S H; Muller-Runkel, R; Hanson, W F

    1999-08-01

    Quantitative information on photon scattering around brachytherapy sources is needed to develop dose calculation formalisms capable of predicting dosimetric parameters with minimal empiricism. Photon absorption and scatter around brachytherapy sources can be characterized using the tissue attenuation factor, defined as the ratio of dose in water to water kerma in free space. In this study, the tissue attenuation factor along two major axes of a high dose rate (HDR) 192Ir source was determined by TLD measurements and MCNP Monte Carlo calculations. A calculational method is also suggested to derive the tissue attenuation factor along the longitudinal source axis from the factor along the transverse axis, using published anisotropy data as input. TLD and Monte Carlo results agreed with each other for both source axes within the statistical uncertainty (approximately +/- 5%) of Monte Carlo calculations. Comparison with published data, available only for the transverse source axis, also showed good agreement within +/- 5%. The shape and magnitude of the tissue attenuation factor are found to be remarkably different between the two axes. The tissue attenuation factor reaches a maximum value of about 1.4 at 8 cm from the source along the longitudinal source axis, while a maximum value of about 1.04 occurs at 3-4 cm from the source along the transverse axis. The calculated tissue attenuation factor along the longitudinal source axis generally reproduced the TLD and Monte Carlo results within +/- 5% at most radial distances. PMID:10501048

  10. Post-Dilatation Intravascular Brachytherapy Trials on Hypercholesterolemic Rabbits Using {sup 32}P-Phosphate Solutions in Angioplasty Balloons

    SciTech Connect

    Walichiewicz, Piotr Wilczek, Krzysztof; Petelenz, Barbara; Jachec, Wojciech; Jochem, Jerzy; Tomasik, Andrzej; Bilski, Pawel; Gaca, Pawel; Banaszczuk, Joanna; Ihnatowicz, Jerzy; Wodniecki, Jan

    2004-01-15

    Response of peripheral arteries to post-dilatation intravascular brachytherapy (IVBT) using {sup 32}P liquid sources was studied in a rabbit model. The applied sources were angioplasty balloons filled with aqueous solutions of Na{sub 2}H{sup 32}PO{sub 4}, NaCl and iodinated contrast. Dose distribution was calibrated by thermoluminescence dosimetry. The uncertainty of in vitro determinations of the activity-dose dependence was {+-} 15-30%. The animal experiments were performed on rabbits with induced hypercholesterolemia. The {sup 32}P sources were introduced into a randomly chosen (left or right) iliac artery, immediately after balloon injury. Due to the low specific activity of the applied sources, the estimated 7-49 Gy doses on the internal artery surface required 30-100 min irradiations. A symmetric, balloon-occluded but non-irradiated artery of the same animal served as control. Radiation effects were evaluated by comparing the thicknesses of various components of irradiated versus untreated artery walls of each animal. The treatment was well tolerated by the animals. The effects of various dose ranges could be distinguished although differences in individual biological reactions were large. Only the 49 Gy dose at 'zero' distance (16 Gy at 1.0 mm from the balloon surface) reduced hypertrophy in every active layer of the artery wall. The cross-sectional intimal thicknesses after 7, 12, 38 and 49 Gy doses were 0.277, 0.219, 0.357 and 0.196 mm{sup 2} respectively, versus 0.114, 0.155, 0.421 and 0.256 mm{sup 2} in controls (p < 0.05). The lowest radiation dose on the intima induced the opposite effect. Edge intimal hyperplasia was not avoided, which agrees with other reports. The edge restenosis and the variability of individual response to identical treatment conditions must be considered as limitations of the post-dilatation IVBT method. Only application of highest irradiation doses was effective. The irradiation dose should be planned and calculated for

  11. Dose perturbation of a novel cobalt chromium coronary stent on {sup 32}P intravascular brachytherapy: A Monte Carlo study

    SciTech Connect

    Mourtada, Firas; Horton, John L.

    2005-01-01

    Intravascular brachytherapy has been adopted for the indication of in-stent restenosis on the basis of results of clinical trials using mainly stainless steel stents. Recently, a new stent made of cobalt-chromium L-605 alloy (CoCr, {rho}=9.22 g/cm{sup 3}) (MULTI-LINK VISION{sup TM}) was introduced as an alternative to the 316L stainless steel stent design (SS, {rho}=7.87 g/cm{sup 3}) (MULTI-LINK PENTA{sup TM}). In this work, we used the Monte Carlo code MCNPX to compare the dose distribution for the {sup 32}P GALILEO{sup TM} source in CoCr and SS 8 mm stent models. The dose perturbation factor (DPF), defined as the ratio of the dose in water with the presence of a stent to the dose without a stent, was used to compare results. Both stent designs were virtually expanded to diameters of 2.0, 3.0, and 4.0 mm using finite element models. The complicated strut shapes of both the CoCr and SS stents were simplified using circular rings with an effective width to yield a metal-to-tissue ratio identical to that of the actual stents. The mean DPF at a 1 mm tissue depth, over the entire stented length of 8 mm, was 0.935 for the CoCr stent and 0.911 for the SS stent. The mean DPF at the intima (0.05 mm radial distance from the strut outer surface), over the entire stented length of 8 mm, was 0.950 for CoCr, and 0.926 for SS. The maximum DPFs directly behind the CoCr and SS struts were 0.689 and 0.644, respectively. All DPF estimates have a standard deviation of {+-}0.6%(k=2), approximating the 95% confidence interval. Although the CoCr stent has a higher effective atomic number and greater density than the SS stent, the DPFs for the two stents are similar, probably because the metal-to-tissue ratio and strut thickness of the CoCr stent are lower than those of the SS stent.

  12. Dose characterization in the near-source region for two high dose rate brachytherapy sources.

    PubMed

    Wang, Ruqing; Li, X Allen

    2002-08-01

    High dose rate (HDR) 192Ir sources are currently used in intravascular brachytherapy (IVB) for the peripheral arterial system. This poses a demand on evaluating accurate dose parameters in the near-source region for such sources. The purpose of this work is to calculate the dose parameters for the old VariSource HDR 192Ir source and the new microSelectron HDR 192Ir source, using Monte Carlo electron and photon transport simulation. The two-dimensional (2D) dose rate distributions and the air kerma strengths for the two HDR sources were calculated by EGSnrc and EGS4 Monte Carlo codes. Based on these data, the dose parameters proposed in the AAPM TG-60 protocol were derived. The dose rate constants obtained are 13.119+/-0.028 cGy h(-1) U(-1) for the old VariSource source, and 22.751+/-0.031 cGy h(-1) U(-1) for the new microSelectron source at the reference point (r0 = 2 mm, theta = pi/2). The 2D dose rate distributions, the radial dose functions, and the anisotropy functions presented for the two sources cover radial distances ranging from 0.5 to 10 mm. In the near-source region on the transverse plane, the dose effects of the charged particle nonequilibrium and the beta-particle dose contribution were studied. It is found that at radial distances ranging from 0.5 to 2 mm, these effects increase the calculated dose rates by up to 29% for the old VariSource source, and by up to 12% for the new microSelectron source, which, in turn, change values of the radial dose function and the anisotropy function. The present dose parameters, which account for the charged particle nonequilibrium and the beta particle contribution, may be used for accurate IVB dose calculation. PMID:12201413

  13. SU-E-T-457: Design and Characterization of An Economical 192Ir Hemi-Brain Small Animal Irradiator

    SciTech Connect

    Grams, M; Wilson, Z; Sio, T; Beltran, C; Tryggestad, E; Gupta, S; Blackwell, C; McCollough, K; Sarkaria, J; Furutani, K

    2014-06-01

    Purpose: To describe the design and dosimetric characterization of a simple and economical small animal irradiator. Methods: A high dose rate 192Ir brachytherapy source from a commercially available afterloader was used with a 1.3 centimeter thick tungsten collimator to provide sharp beam penumbra suitable for hemi-brain irradiation of mice. The unit is equipped with continuous gas anesthesia to allow robust animal immobilization. Dosimetric characterization of the device was performed with Gafchromic film. The penumbra from the small animal irradiator was compared under similar collimating conditions to the penumbra from 6 MV photons, 6 MeV electrons, and 20 MeV electrons from a linear accelerator as well as 300 kVp photons from an orthovoltage unit and Monte Carlo simulated 90 MeV protons. Results: The tungsten collimator provides a sharp penumbra suitable for hemi-brain irradiation, and dose rates on the order of 200 cGy/minute were achieved. The sharpness of the penumbra attainable with this device compares favorably to those measured experimentally for 6 MV photons, and 6 and 20 MeV electron beams from a linear accelerator. Additionally, the penumbra was comparable to those measured for a 300 kVp orthovoltage beam and a Monte Carlo simulated 90 MeV proton beam. Conclusions: The small animal irradiator described here can be built for under $1,000 and used in conjunction with any commercial brachytherapy afterloader to provide a convenient and cost-effective option for small animal irradiation experiments. The unit offers high dose rate delivery and sharp penumbra, which is ideal for hemi-brain irradiation of mice. With slight modifications to the design, irradiation of sites other than the brain could be accomplished easily. Due to its simplicity and low cost, the apparatus described is an attractive alternative for small animal irradiation experiments requiring a sharp penumbra.

  14. Dose error from deviation of dwell time and source position for high dose-rate 192Ir in remote afterloading system

    PubMed Central

    Okamoto, Hiroyuki; Aikawa, Ako; Wakita, Akihisa; Yoshio, Kotaro; Murakami, Naoya; Nakamura, Satoshi; Hamada, Minoru; Abe, Yoshihisa; Itami, Jun

    2014-01-01

    The influence of deviations in dwell times and source positions for 192Ir HDR-RALS was investigated. The potential dose errors for various kinds of brachytherapy procedures were evaluated. The deviations of dwell time ΔT of a 192Ir HDR source for the various dwell times were measured with a well-type ionization chamber. The deviations of source position ΔP were measured with two methods. One is to measure actual source position using a check ruler device. The other is to analyze peak distances from radiographic film irradiated with 20 mm gap between the dwell positions. The composite dose errors were calculated using Gaussian distribution with ΔT and ΔP as 1σ of the measurements. Dose errors depend on dwell time and distance from the point of interest to the dwell position. To evaluate the dose error in clinical practice, dwell times and point of interest distances were obtained from actual treatment plans involving cylinder, tandem-ovoid, tandem-ovoid with interstitial needles, multiple interstitial needles, and surface-mold applicators. The ΔT and ΔP were 32 ms (maximum for various dwell times) and 0.12 mm (ruler), 0.11 mm (radiographic film). The multiple interstitial needles represent the highest dose error of 2%, while the others represent less than approximately 1%. Potential dose error due to dwell time and source position deviation can depend on kinds of brachytherapy techniques. In all cases, the multiple interstitial needles is most susceptible. PMID:24566719

  15. [Brachytherapy].

    PubMed

    Itami, Jun

    2014-12-01

    Brachytherapy do require a minimal expansion of CTV to obtain PTV and it is called as ultimate high precision radiation therapy. In high-dose rate brachytherapy, applicators will be placed around or into the tumor and CT or MRI will be performed with the applicators in situ. With such image-guided brachytherapy (IGBT) 3-dimensional treatment planning becomes possible and DVH of the tumor and organs at risk can be obtained. It is now even possible to make forward planning satisfying dose constraints. Traditional subjective evaluation of brachytherapy can be improved to the objective one by IGBT. Brachytherapy of the prostate cancer, cervical cancer, and breast cancer with IGBT technique was described. PMID:25596048

  16. An overexposure in industrial radiography using an /sup 192/Ir radionuclide

    SciTech Connect

    Jalil, A.; Molla, M.A.

    1989-07-01

    An industrial radiographer was accidentally exposed to a high dose of ionizing radiation from an /sup 192/Ir source during radiography of weldjoints in gas pipelines. Some symptoms of high radiation exposure occurred immediately after the incident. The clinical effect of skin erythema developed within 7 d, leading to progressive tissue deterioration. The dose to the body was estimated to be about 2-3 Gy, and the dose to the fingertips was approximately 24 Gy.

  17. Brachytherapy

    MedlinePlus

    ... smaller area in less time than conventional external beam radiation therapy. Brachytherapy is used to treat cancers ... to kill cancer cells and shrink tumors. External beam radiation therapy (EBRT) involves high-energy x-ray ...

  18. Determination of absorbed dose to water around a clinical HDR {sup 192}Ir source using LiF:Mg,Ti TLDs demonstrates an LET dependence of detector response

    SciTech Connect

    Carlsson Tedgren, Aasa; Elia, Rouba; Hedtjaern, Haakan; Olsson, Sara; Alm Carlsson, Gudrun

    2012-02-15

    Purpose: Experimental radiation dosimetry with thermoluminescent dosimeters (TLDs), calibrated in a {sup 60}Co or megavoltage (MV) photon beam, is recommended by AAPM TG-43U1for verification of Monte Carlo calculated absorbed doses around brachytherapy sources. However, it has been shown by Carlsson Tedgren et al.[Med. Phys. 38, 5539-5550 (2011)] that for TLDs of LiF:Mg,Ti, detector response was 4% higher in a {sup 137}Cs beam than in a {sup 60}Co one. The aim of this work was to investigate if similar over-response exists when measuring absorbed dose to water around {sup 192}Ir sources, using LiF:Mg,Ti dosimeters calibrated in a 6 MV photon beam. Methods: LiF dosimeters were calibrated to measure absorbed dose to water in a 6 MV photon beam and used to measure absorbed dose to water at distances of 3, 5, and 7 cm from a clinical high dose rate (HDR) {sup 192}Ir source in a polymethylmethacrylate (PMMA) phantom. Measured values were compared to values of absorbed dose to water calculated using a treatment planning system (TPS) including corrections for the difference in energy absorption properties between calibration quality and the quality in the users'{sup 192}Ir beam and for the use of a PMMA phantom instead of the water phantom underlying dose calculations in the TPS. Results: Measured absorbed doses to water around the {sup 192}Ir source were overestimated by 5% compared to those calculated by the TPS. Corresponding absorbed doses to water measured in a previous work with lithium formate electron paramagnetic resonance (EPR) dosimeters by Antonovic et al. [Med. Phys. 36, 2236-2247 (2009)], using the same irradiation setup and calibration procedure as in this work, were 2% lower than those calculated by the TPS. The results obtained in the measurements in this work and those obtained using the EPR lithium formate dosimeters were, within the expanded (k = 2) uncertainty, in agreement with the values derived by the TPS. The discrepancy between the results using

  19. Experimental determination of the radial dose distribution in high gradient regions around {sup 192}Ir wires: Comparison of electron paramagnetic resonance imaging, films, and Monte Carlo simulations

    SciTech Connect

    Kolbun, N.; Leveque, Ph.; Abboud, F.; Bol, A.; Vynckier, S.; Gallez, B.

    2010-10-15

    Purpose: The experimental determination of doses at proximal distances from radioactive sources is difficult because of the steepness of the dose gradient. The goal of this study was to determine the relative radial dose distribution for a low dose rate {sup 192}Ir wire source using electron paramagnetic resonance imaging (EPRI) and to compare the results to those obtained using Gafchromic EBT film dosimetry and Monte Carlo (MC) simulations. Methods: Lithium formate and ammonium formate were chosen as the EPR dosimetric materials and were used to form cylindrical phantoms. The dose distribution of the stable radiation-induced free radicals in the lithium formate and ammonium formate phantoms was assessed by EPRI. EBT films were also inserted inside in ammonium formate phantoms for comparison. MC simulation was performed using the MCNP4C2 software code. Results: The radical signal in irradiated ammonium formate is contained in a single narrow EPR line, with an EPR peak-to-peak linewidth narrower than that of lithium formate ({approx}0.64 and 1.4 mT, respectively). The spatial resolution of EPR images was enhanced by a factor of 2.3 using ammonium formate compared to lithium formate because its linewidth is about 0.75 mT narrower than that of lithium formate. The EPRI results were consistent to within 1% with those of Gafchromic EBT films and MC simulations at distances from 1.0 to 2.9 mm. The radial dose values obtained by EPRI were about 4% lower at distances from 2.9 to 4.0 mm than those determined by MC simulation and EBT film dosimetry. Conclusions: Ammonium formate is a suitable material under certain conditions for use in brachytherapy dosimetry using EPRI. In this study, the authors demonstrated that the EPRI technique allows the estimation of the relative radial dose distribution at short distances for a {sup 192}Ir wire source.

  20. SU-F-19A-10: Recalculation and Reporting Clinical HDR 192-Ir Head and Neck Dose Distributions Using Model Based Dose Calculation

    SciTech Connect

    Carlsson Tedgren, A; Persson, M; Nilsson, J

    2014-06-15

    Purpose: To retrospectively re-calculate dose distributions for selected head and neck cancer patients, earlier treated with HDR 192Ir brachytherapy, using Monte Carlo (MC) simulations and compare results to distributions from the planning system derived using TG43 formalism. To study differences between dose to medium (as obtained with the MC code) and dose to water in medium as obtained through (1) ratios of stopping powers and (2) ratios of mass energy absorption coefficients between water and medium. Methods: The MC code Algebra was used to calculate dose distributions according to earlier actual treatment plans using anonymized plan data and CT images in DICOM format. Ratios of stopping power and mass energy absorption coefficients for water with various media obtained from 192-Ir spectra were used in toggling between dose to water and dose to media. Results: Differences between initial planned TG43 dose distributions and the doses to media calculated by MC are insignificant in the target volume. Differences are moderate (within 4–5 % at distances of 3–4 cm) but increase with distance and are most notable in bone and at the patient surface. Differences between dose to water and dose to medium are within 1-2% when using mass energy absorption coefficients to toggle between the two quantities but increase to above 10% for bone using stopping power ratios. Conclusion: MC predicts target doses for head and neck cancer patients in close agreement with TG43. MC yields improved dose estimations outside the target where a larger fraction of dose is from scattered photons. It is important with awareness and a clear reporting of absorbed dose values in using model based algorithms. Differences in bone media can exceed 10% depending on how dose to water in medium is defined.

  1. Retreatment of recurrent carcinoma of the head and neck by afterloading interstitial 192Ir implant

    SciTech Connect

    Emami, B.; Marks, J.E.

    1983-10-01

    From January 1975 to December 1980, 25 patients with persistent or recurrent carcinomas of the head and neck were retreated for palliation at the Division of Radiation Oncology, Mallinckrodt Institute of Radiology. These patients had all undergone extensive previous treatment by surgery and/or radiation. All were retreated with 192Ir interstitial implant with or without external radiation and/or surgical excision. Of 25 patients, 13 had complete response (CR) and 6 had partial response for a follow-up period of 1 to 7 years. Of 13 patients with CR, 6 are alive with no evidence of disease (NED) and two died NED. Detailed results are presented and the new strategy for such patients is discussed.

  2. Post-stenting Intravascular Brachytherapy Trials on Hypercholesterolemic Rabbits Using 32P Liquid Sources: Implications for Prevention of In-Stent Restenosis

    SciTech Connect

    Wilczek, Krzysztof; Walichiewicz, Piotr; Petelenz, Barbara; Jachec, Wojciech; Jochem, Jerzy; Tomasik, Andrzej; Bilski, Pawel; Snietura, Miroslaw; Wodniecki, Jan

    2002-08-15

    Purpose: Liquid sources of radiation delivered in angioplasty balloons may be a convenient self-centering device used for prevention of in-stent restenosis. To test the effectiveness of this method an intravascular brachytherapy study was performed using 32P liquid sources in an animal model. Methods: The radial dose distribution around angioplasty balloons filled with solutions of Na2H32PO4 was calibrated by thermoluminescence dosimetry. The animal experiments were performed in rabbits with induced hypercholesterolemia. The balloons containing 32P were introduced into iliac arteries immediately after stent implantation. Estimated 7-49 Gy doses required 30-100 minirradiations. Radiation effects were evaluated by comparing the thickness of various components of the artery wall. Results:Doses of 7, 12, 16 or 49 Gy on the internal artery surface required 30-100 min of irradiation. The dose of 49 Gy at 'zero' distance corresponding to 16 Gy at 1.0 mm from the balloon surface reduced hypertrophy in every layer of the arterial wall: in the intima the cross-sectional areas were 0.13 versus 0.91 mm2, in the media were 0.5 versus 0.46 mm2 and in the adventitia were 0.04 versus 0.3 mm2 (p <0.05). A dose of 7 Gyat the balloon surface produced adverse irradiation effects: the intimal area of the artery was 2.087 versus 0.857 mm2, the medial area was 0.59 versus 0.282 mm2 and the adventitial area was 0.033 versus 0.209 mm2 in treated and control arteries, respectively.Conclusion: Application of a 49 Gy irradiation dose to the internal arterial surface effectively prevented in-stentrestenosis.

  3. A Case Report: Cytogenetic Dosimetry after Accidental Radiation Exposure during (192)Ir Industrial Radiography Testing.

    PubMed

    Beinke, C; Ben-Shlomo, A; Abend, M; Port, M

    2015-07-01

    The accidental gamma radiation exposure of an industrial radiography worker and the cytogenetic examination of the worker's blood lymphocytes are described here. The exposure of the worker was due to a malfunction at the entrance into the depleted uranium-shielding device of a (192)Ir source during operation. Because the source was sealed no additional beta radiation exposure was assumed. The worker's thermoluminescent dosimeter indicated an absorbed dose of 0.078 Sv, which presumably took place in December 2013. No clinical symptoms were reported in the case history after the potential exposure to radiation. Four months after the incident it was decided that biological dosimetry using dicentric chromosome and micronucleus analysis would be performed to follow radiation protection aspects and to clarify the radiation dose uncertainties for the exposed worker. Micronucleus frequency was not increased above the laboratory's control value of micronucleus background frequency of unexposed individuals. However, the observed dicentric frequency (0.003 dicentric/cell) differs significantly from the laboratory's background level of dicentric chromosomes in unexposed individuals (0.0007 dicentric/cell). Dicentric analysis in 2,048 metaphase cells resulted in an estimated dose of no more than 0.181 Gy (95% upper confidence level), not less than 0.014 Gy (95% lower confidence level) and a mean dose of 0.066 Gy (photon-equivalent whole-body exposure) based on interpolation from the laboratory's calibration curve for (60)Co gamma radiation. Since overdispersion of dicentric chromosomes (u = 9.78) indicated a heterogeneous (partial-body) exposure, we applied the Dolphin method and estimated an exposure of 2.1 Sv affecting 21% of the body volume. Because the overdispersion of dicentric chromosomes was caused by only one heavily damaged cell containing two dicentrics, it is possible that this was an incidental finding. In summary, a radiation overexposure of the radiography worker

  4. Exploring {sup 57}Co as a new isotope for brachytherapy applications

    SciTech Connect

    Enger, Shirin A.; Lundqvist, Hans; D'Amours, Michel; Beaulieu, Luc

    2012-05-15

    Purpose: The characteristics of the radionuclide {sup 57}Co make it interesting for use as a brachytherapy source. {sup 57}Co combines a possible high specific activity with the emission of relatively low-energy photons and a half-life (272 days) suitable for regular source exchanges in an afterloader. {sup 57}Co decays by electron capture to the stable {sup 57}Fe with emission of 136 and 122 keV photons. Methods: A hypothetical {sup 57}Co source based on the Flexisource brachytherapy encapsulation with the active core set as a pure cobalt cylinder (length 3.5 mm and diameter 0.6 mm) covered with a cylindrical stainless-steel capsule (length 5 mm and thickness 0.125 mm) was simulated using Geant4 Monte Carlo (MC) code version 9.4. The radial dose function, g(r), and anisotropy function F(r,{theta}), for the line source approximation were calculated following the TG-43U1 formalism. The results were compared to well-known {sup 192}Ir and {sup 125}I radionuclides, representing the higher and the lower energy end of brachytherapy, respectively. Results: The mean energy of photons in water, after passing through the core and the encapsulation material was 123 keV. This hypothetical {sup 57}Co source has an increasing g(r) due to multiple scatter of low-energy photons, which results in a more uniform dose distribution than {sup 192}Ir. Conclusions: {sup 57}Co has many advantages compared to {sup 192}Ir due to its low-energy gamma emissions without any electron contamination. {sup 57}Co has an increasing g(r) that results in a more uniform dose distribution than {sup 192}Ir due to its multiple scattered photons. The anisotropy of the {sup 57}Co source is comparable to that of {sup 192}Ir. Furthermore, {sup 57}Co has lower shielding requirements than {sup 192}Ir.

  5. Current state of the art brachytherapy treatment planning dosimetry algorithms

    PubMed Central

    Pantelis, E; Karaiskos, P

    2014-01-01

    Following literature contributions delineating the deficiencies introduced by the approximations of conventional brachytherapy dosimetry, different model-based dosimetry algorithms have been incorporated into commercial systems for 192Ir brachytherapy treatment planning. The calculation settings of these algorithms are pre-configured according to criteria established by their developers for optimizing computation speed vs accuracy. Their clinical use is hence straightforward. A basic understanding of these algorithms and their limitations is essential, however, for commissioning; detecting differences from conventional algorithms; explaining their origin; assessing their impact; and maintaining global uniformity of clinical practice. PMID:25027247

  6. Phantom size in brachytherapy source dosimetric studies.

    PubMed

    Pérez-Calatayud, J; Granero, D; Ballester, F

    2004-07-01

    An important point to consider in a brachytherapy dosimetry study is the phantom size involved in calculations or experimental measurements. As pointed out by Williamson [Med. Phys. 18, 776-786 (1991)] this topic has a relevant influence on final dosimetric results. Presently, one-dimensional (1-D) algorithms and newly-developed 3-D correction algorithms are based on physics data that are obtained under full scatter conditions, i.e., assumed infinite phantom size. One can then assume that reference dose distributions in source dosimetry for photon brachytherapy should use an unbounded phantom size rather than phantom-like dimensions. Our aim in this paper is to study the effect of phantom size on brachytherapy for radionuclide 137Cs, 192Ir, 125I and 103Pd, mainly used for clinical purposes. Using the GEANT4 Monte Carlo code, we can ascertain effects on derived dosimetry parameters and functions to establish a distance dependent difference due to the absence of full scatter conditions. We have found that for 137Cs and 192Ir, a spherical phantom with a 40 cm radius is the equivalent of an unbounded phantom up to a distance of 20 cm from the source, as this size ensures full scatter conditions at this distance. For 125I and 103Pd, the required radius for the spherical phantom in order to ensure full scatter conditions at 10 cm from the source is R = 15 cm. A simple expression based on fits of the dose distributions for various phantom sizes has been developed for 137Cs and 192Ir in order to compare the dose rate distributions published for different phantom sizes. Using these relations it is possible to obtain radial dose functions for unbounded medium from bounded phantom ones. PMID:15305460

  7. Intravascular ultrasound

    MedlinePlus

    IVUS; Ultrasound - coronary artery; Endovascular ultrasound; Intravascular echocardiography ... A tiny ultrasound wand is attached to the top of a thin tube called a catheter. This ultrasound catheter is inserted ...

  8. Intravascular OCT

    NASA Astrophysics Data System (ADS)

    Schmitt, Joseph M.; Adler, Desmond; Xu, Chenyang

    Since the first coronary angioplasty was performed in the late 1970s, imaging has played a central role in percutaneous coronary intervention (PCI). Today more than three million PCI procedures are performed worldwide to expand narrowed arteries and to clear blood clots that can cause debilitating symptoms of myocardial ischemia or fatal heart attacks. Although X-ray angiography is still the workhorse imaging modality in the field of interventional cardiology, intravascular imaging has become an indispensable tool for guiding complex PCI procedures. Intravascular ultrasound (IVUS) and optical coherence tomography (OCT) are the two most commonly used catheter-based imaging technologies in coronary procedures. Since the first commercial intravascular OCT systems were introduced in Japan and the European Union in 2004 and in the United States in 2009, the application of intravascular OCT has grown rapidly [3, 15, 16].

  9. Determination of transit dose profile for a {sup 192}Ir HDR source

    SciTech Connect

    Fonseca, G. P.; Antunes, P. C. G.; Yoriyaz, H.

    2013-05-15

    Purpose: Several studies have reported methodologies to calculate and correct the transit dose component of the moving radiation source for high dose rate (HDR) brachytherapy planning systems. However, most of these works employ the average source speed, which varies significantly with the measurement technique used, and does not represent a realistic speed profile, therefore, providing an inaccurate dose determination. In this work, the authors quantified the transit dose component of a HDR unit based on the measurement of the instantaneous source speed to produce more accurate dose values. Methods: The Nucletron microSelectron-HDR Ir-192 source was characterized considering the Task Group 43 (TG-43U1) specifications. The transit dose component was considered through the calculation of the dose distribution using a Monte Carlo particle transport code, MCNP5, for each source position and correcting it by the source speed. The instantaneous source speed measurements were performed in a previous work using two optical fibers connected to a photomultiplier and an oscilloscope. Calculated doses were validated by comparing relative dose profiles with those obtained experimentally using radiochromic films. Results: TG-43U1 source parameters were calculated to validate the Monte Carlo simulations. These agreed with the literature, with differences below 1% for the majority of the points. Calculated dose profiles without transit dose were also validated by comparison with ONCENTRA{sup Registered-Sign} Brachy v. 3.3 dose values, yielding differences within 1.5%. Dose profiles obtained with MCNP5 corrected using the instantaneous source speed profile showed differences near dwell positions of up to 800% in comparison to values corrected using the average source speed, but they are in good agreement with the experimental data, showing a maximum discrepancy of approximately 3% of the maximum dose. Near a dwell position the transit dose is about 22% of the dwell dose delivered

  10. The theoretical basis and clinical methodology for stereotactic interstitial brain tumor irradiation using iododeoxyuridine as a radiation sensitizer and samarium-145 as a brachytherapy source

    SciTech Connect

    Goodman, J.H.; Gahbauer, R.A.; Kanellitsas, C.; Clendenon, N.R. ); Laster, B.H.; Fairchild, R.G. )

    1989-01-01

    High grade astrocytomas have proven resistant to all conventional therapy. A technique to produce radiation enhancement during interstitial brain tumor irradiation by using a radiation sensitizer (IdUrd) and by stimulation of Auger electron cascades through absorption of low energy photons in iodine (Photon activation) is described. Clinical studies using IdUrd, {sup 192}Ir as a brachytherapy source, and external radiation have produced promising results. Substituting samarium-145 for {sup 192}Ir in this protocol is expected to produce enhanced results. 15 refs.

  11. Improved 192,194,195,196Pt(n,γ) and 192Ir(n,γ) astrophysical reaction rates

    NASA Astrophysics Data System (ADS)

    Koehler, P. E.; Guber, K. H.

    2013-09-01

    192Pt is produced solely by the slow neutron capture (s) nucleosynthesis process and hence an accurate (n,γ) reaction rate for this nuclide would allow its use as an important calibration point near the termination of the s-process nucleosynthesis flow. For this reason, we have measured neutron capture and total cross sections for 192,194,195,196,natPt in the energy range from 10 eV to several hundred keV at the Oak Ridge Electron Linear Accelerator. Measurements on the other Pt isotopes were, in part, necessitated by the fact that only a relatively small 192Pt sample of modest enrichment was available. Astrophysical 192,194,195,196Pt(n,γ) reaction rates, accurate to approximately 3%-5%, were calculated from these data. No accurate reaction rates have been published previously for any of these isotopes. At s-process temperatures, previously recommended rates are larger (by as much as 35%) and have significantly different shapes as functions of temperature than our new rates. We used our new Pt results, together with 191,193Ir(n,γ) data, to calibrate nuclear statistical model calculations and hence obtain an improved rate for the unmeasured s-process branching-point isotope 192Ir.

  12. A Novel Device for Intravaginal Electronic Brachytherapy

    SciTech Connect

    Schneider, Frank Fuchs, Holger; Lorenz, Friedlieb; Steil, Volker; Ziglio, Francesco; Kraus-Tiefenbacher, Uta; Lohr, Frank; Wenz, Frederik

    2009-07-15

    Purpose: Postoperative intravaginal brachytherapy for endometrial carcinoma is usually performed with {sup 192}Ir high-dose rate (HDR) afterloading. A potential alternative is treatment with a broadband 50kV X-ray point source, the advantage being its low energy and the consequential steep dose gradient. The aim of this study was to create and evaluate a homogeneous cylindrical energy deposition around a newly designed vaginal applicator. Methods and Materials: To create constant isodose layers along the cylindrical plastic vaginal applicator, the source (INTRABEAM system) was moved in steps of 17-19.5 mm outward from the tip of the applicator. Irradiation for a predetermined time was performed at each position. The axial shift was established by a stepping mechanism that was mounted on a table support. The total dose/dose distribution was determined using film dosimetry (Gafchromic EBT) in a 'solid water' phantom. The films were evaluated with Mathematica 5.2 and OmniPro-I'mRT 1.6. The results (dose D0/D5/D10 in 0/5/10 mm tissue depth) were compared with an {sup 192}Ir HDR afterloading plan for multiple sampling points around the applicator. Results: Three different dose distributions with lengths of 3.9-7.3 cm were created. The irradiation time based on the delivery of 5/7 Gy to a 5 mm tissue depth was 19/26 min to 27/38 min. D0/D5/D10 was 150%/100%/67% for electronic brachytherapy and 140%/100%/74% for the afterloading technique. The deviation for repeated measurements in the phantom was <7%. Conclusions: It is possible to create a homogeneous cylindrical dose distribution, similar to {sup 192}Ir HDR afterloading, through the superimposition of multiple spherical dose distributions by stepping a kilovolt point source.

  13. Establishment of in vitro 192Ir γ-ray dose-response relationship for dose assessment by the lymphocyte dicentric assay

    NASA Astrophysics Data System (ADS)

    Kowalska, Maria; Meronka, Katarzyna; Szewczak, Kamil

    2012-03-01

    In vitro dose-response relationships are used to describe the relation between dicentric chromosomes and radiation dose for human peripheral blood lymphocytes. The dicentric yield depends on both the dose and the radiation quality. Thus, for reliable dose estimation in vitro dose responses must be determined for different radiation qualities. This paper reports the work for setting up the relationship for the dicentric production in the lymphocytes exposed in vitro to 192Ir g-rays at Central Laboratory for Radiological Protection (CLOR). In a case of a radiation accident in industrial radiography using 192Ir sealed sources, this will be the basis for the indirect evaluation of the g-ray dose to which an accidental victim was exposed.

  14. Dynamic rotating-shield brachytherapy

    SciTech Connect

    Liu, Yunlong; Flynn, Ryan T.; Kim, Yusung; Yang, Wenjun; Wu, Xiaodong

    2013-12-15

    Purpose: To present dynamic rotating shield brachytherapy (D-RSBT), a novel form of high-dose-rate brachytherapy (HDR-BT) with electronic brachytherapy source, where the radiation shield is capable of changing emission angles during the radiation delivery process.Methods: A D-RSBT system uses two layers of independently rotating tungsten alloy shields, each with a 180° azimuthal emission angle. The D-RSBT planning is separated into two stages: anchor plan optimization and optimal sequencing. In the anchor plan optimization, anchor plans are generated by maximizing the D{sub 90} for the high-risk clinical-tumor-volume (HR-CTV) assuming a fixed azimuthal emission angle of 11.25°. In the optimal sequencing, treatment plans that most closely approximate the anchor plans under the delivery-time constraint will be efficiently computed. Treatment plans for five cervical cancer patients were generated for D-RSBT, single-shield RSBT (S-RSBT), and {sup 192}Ir-based intracavitary brachytherapy with supplementary interstitial brachytherapy (IS + ICBT) assuming five treatment fractions. External beam radiotherapy doses of 45 Gy in 25 fractions of 1.8 Gy each were accounted for. The high-risk clinical target volume (HR-CTV) doses were escalated such that the D{sub 2cc} of the rectum, sigmoid colon, or bladder reached its tolerance equivalent dose in 2 Gy fractions (EQD2 with α/β= 3 Gy) of 75 Gy, 75 Gy, or 90 Gy, respectively.Results: For the patients considered, IS + ICBT had an average total dwell time of 5.7 minutes/fraction (min/fx) assuming a 10 Ci{sup 192}Ir source, and the average HR-CTV D{sub 90} was 78.9 Gy. In order to match the HR-CTV D{sub 90} of IS + ICBT, D-RSBT required an average of 10.1 min/fx more delivery time, and S-RSBT required 6.7 min/fx more. If an additional 20 min/fx of delivery time is allowed beyond that of the IS + ICBT case, D-RSBT and S-RSBT increased the HR-CTV D{sub 90} above IS + ICBT by an average of 16.3 Gy and 9.1 Gy, respectively

  15. Dosimetric characterization and output verification for conical brachytherapy surface applicators. Part I. Electronic brachytherapy source

    PubMed Central

    Fulkerson, Regina K.; Micka, John A.; DeWerd, Larry A.

    2014-01-01

    Purpose: Historically, treatment of malignant surface lesions has been achieved with linear accelerator based electron beams or superficial x-ray beams. Recent developments in the field of brachytherapy now allow for the treatment of surface lesions with specialized conical applicators placed directly on the lesion. Applicators are available for use with high dose rate (HDR) 192Ir sources, as well as electronic brachytherapy sources. Part I of this paper will discuss the applicators used with electronic brachytherapy sources; Part II will discuss those used with HDR 192Ir sources. Although the use of these applicators has gained in popularity, the dosimetric characteristics including depth dose and surface dose distributions have not been independently verified. Additionally, there is no recognized method of output verification for quality assurance procedures with applicators like these. Existing dosimetry protocols available from the AAPM bookend the cross-over characteristics of a traditional brachytherapy source (as described by Task Group 43) being implemented as a low-energy superficial x-ray beam (as described by Task Group 61) as observed with the surface applicators of interest. Methods: This work aims to create a cohesive method of output verification that can be used to determine the dose at the treatment surface as part of a quality assurance/commissioning process for surface applicators used with HDR electronic brachytherapy sources (Part I) and 192Ir sources (Part II). Air-kerma rate measurements for the electronic brachytherapy sources were completed with an Attix Free-Air Chamber, as well as several models of small-volume ionization chambers to obtain an air-kerma rate at the treatment surface for each applicator. Correction factors were calculated using MCNP5 and EGSnrc Monte Carlo codes in order to determine an applicator-specific absorbed dose to water at the treatment surface from the measured air-kerma rate. Additionally, relative dose

  16. Dosimetric characterization and output verification for conical brachytherapy surface applicators. Part I. Electronic brachytherapy source

    SciTech Connect

    Fulkerson, Regina K. Micka, John A.; DeWerd, Larry A.

    2014-02-15

    Purpose: Historically, treatment of malignant surface lesions has been achieved with linear accelerator based electron beams or superficial x-ray beams. Recent developments in the field of brachytherapy now allow for the treatment of surface lesions with specialized conical applicators placed directly on the lesion. Applicators are available for use with high dose rate (HDR){sup 192}Ir sources, as well as electronic brachytherapy sources. Part I of this paper will discuss the applicators used with electronic brachytherapy sources; Part II will discuss those used with HDR {sup 192}Ir sources. Although the use of these applicators has gained in popularity, the dosimetric characteristics including depth dose and surface dose distributions have not been independently verified. Additionally, there is no recognized method of output verification for quality assurance procedures with applicators like these. Existing dosimetry protocols available from the AAPM bookend the cross-over characteristics of a traditional brachytherapy source (as described by Task Group 43) being implemented as a low-energy superficial x-ray beam (as described by Task Group 61) as observed with the surface applicators of interest. Methods: This work aims to create a cohesive method of output verification that can be used to determine the dose at the treatment surface as part of a quality assurance/commissioning process for surface applicators used with HDR electronic brachytherapy sources (Part I) and{sup 192}Ir sources (Part II). Air-kerma rate measurements for the electronic brachytherapy sources were completed with an Attix Free-Air Chamber, as well as several models of small-volume ionization chambers to obtain an air-kerma rate at the treatment surface for each applicator. Correction factors were calculated using MCNP5 and EGSnrc Monte Carlo codes in order to determine an applicator-specific absorbed dose to water at the treatment surface from the measured air-kerma rate. Additionally

  17. Dosimetric modeling of the microselectron high-dose rate 192Ir source by the multigroup discrete ordinates method.

    PubMed

    Daskalov, G M; Baker, R S; Rogers, D W; Williamson, J F

    2000-10-01

    The DANTSYS multigroup discrete ordinates computer code is applied to quantitatively estimate the absorbed dose rate distributions in the vicinity of a microSelectron 192Ir high-dose-rate (HDR) source in two-dimensional cylindrical R-Z geometry. The source is modeled in a cylindrical water phantom of diameter 20 cm and height 20 cm. The results are also used for evaluation of the Task Group 43 (TG-43) dosimetric quantities. The DANTSYS accuracy is estimated by direct comparisons with corresponding Monte Carlo results. Our 210-group photon cross section library developed previously, together with angular quadratures consisting of 36 (S16) to 210 (S40) directions and associated weights per octant, are used in the DANTSYS simulations. Strong ray effects are observed but are significantly mitigated through the use of DANTSYS's stochastic ray-tracing first collision source algorithm. The DANTSYS simulations closely approximate Monte Carlo estimates of both direct dose calculations and TG-43 dosimetric quantities. The discrepancies with S20 angular quadrature (55 directions and weights per octant) or higher are shown to be less than +/- 5% (about 2.5 standard deviations of Monte Carlo calculations) everywhere except for limited regions along the Z axis of rotational symmetry, where technical limitations in the DANTSYS first collision source implementation makes adequate suppression of ray effects difficult to achieve. The efficiency of DANTSYS simulations is compared with that of the EGS4 Monte Carlo code. It is demonstrated that even with the 210-group cross section library, DANTSYS achieves two-fold efficiency gains using the the S20 quadrature set. The potential of discrete ordinates method for further efficiency improvements is also discussed. PMID:11099199

  18. Study of encapsulated {sup 170}Tm sources for their potential use in brachytherapy

    SciTech Connect

    Ballester, Facundo; Granero, Domingo; Perez-Calatayud, Jose; Venselaar, Jack L. M.; Rivard, Mark J.

    2010-04-15

    Purpose: High dose-rate (HDR) brachytherapy is currently performed with {sup 192}Ir sources, and {sup 60}Co has returned recently into clinical use as a source for this kind of cancer treatment. Both radionuclides have mean photon energies high enough to require specific shielded treatment rooms. In recent years, {sup 169}Yb has been explored as an alternative for HDR-brachytherapy implants. Although it has mean photon energy lower than {sup 192}Ir, it still requires extensive shielding to deliver treatment. An alternative radionuclide for brachytherapy is {sup 170}Tm (Z=69) because it has three physical properties adequate for clinical practice: (a) 128.6 day half-life, (b) high specific activity, and (c) mean photon energy of 66.39 keV. The main drawback of this radionuclide is the low photon yield (six photons per 100 electrons emitted). The purpose of this work is to study the dosimetric characteristics of this radionuclide for potential use in HDR-brachytherapy. Methods: The authors have assumed a theoretical {sup 170}Tm cylindrical source encapsulated with stainless steel and typical dimensions taken from the currently available HDR {sup 192}Ir brachytherapy sources. The dose-rate distribution was calculated for this source using the GEANT4 Monte Carlo (MC) code considering both photon and electron {sup 170}Tm spectra. The AAPM TG-43 U1 brachytherapy dosimetry parameters were derived. To study general properties of {sup 170}Tm encapsulated sources, spherical sources encapsulated with stainless steel and platinum were also studied. Moreover, the influence of small variations in the active core and capsule dimensions on the dosimetric characteristics was assessed. Treatment times required for a {sup 170}Tm source were compared to those for {sup 192}Ir and {sup 169}Yb for the same contained activity. Results: Due to the energetic beta spectrum and the large electron yield, the bremsstrahlung contribution to the dose was of the same order of magnitude as from the

  19. Evaluation of BEBIG HDR 60Co system for non-invasive image-guided breast brachytherapy

    PubMed Central

    Zehtabian, Mehdi; Sina, Sedigheh; Rivard, Mark J.

    2015-01-01

    Purpose HDR 60Co system has recently been developed and utilized for brachytherapy in many countries outside of the U.S. as an alternative to 192Ir. In addition, the AccuBoost® technique has been demonstrated to be a successful non-invasive image-guided breast brachytherapy treatment option. The goal of this project is to evaluate the possibility of utilizing the BEBIG HDR 60Co system for AccuBoost treatment. These evaluations are performed with Monte Carlo (MC) simulation technique. Material and methods In this project, the MC calculated dose distributions from HDR 60Co for various breast sizes have been compared with the simulated data using an HDR 192Ir source. These calculations were performed using the MCNP5 code. The initial calculations were made with the same applicator dimensions as the ones used with the HDR 192Ir system (referred here after as standard applicator). The activity of the 60Co source was selected such that the dose at the center of the breast would be the same as the values from the 192Ir source. Then, the applicator wall-thickness for the HDR 60Co system was increased to diminish skin dose to levels received when using the HDR 192Ir system. With this geometry, dose values to the chest wall and the skin were evaluated. Finally, the impact of a conical attenuator with the modified applicator for the HDR 60Co system was analyzed. Results These investigations demonstrated that loading the 60Co sources inside the thick-walled applicators created similar dose distributions to those of the 192Ir source in the standard applicators. However, dose to the chest wall and breast skin with 60Co source was reduced using the thick-walled applicators relative to the standard applicators. The applicators with conical attenuator reduced the skin dose for both source types. Conclusions The AccuBoost treatment can be performed with the 60Co source and thick-wall applicators instead of 192Ir with standard applicators. PMID:26816504

  20. 192Ir pharyngoepiglottic fold interstitial implants. The key to successful treatment of base tongue carcinoma by radiation therapy.

    PubMed

    Goffinet, D R; Fee, W E; Wells, J; Austin-Seymour, M; Clarke, D; Mariscal, J M; Goode, R L

    1985-03-01

    Twenty-eight patients with squamous carcinomas of the base tongue were seen and evaluated in a conjoint Head and Neck Tumor Board at Stanford between 1976 and 1982. Fourteen patients were treated by combined external beam and interstitial irradiation, 11 of whom had Stage III and IV carcinomas (American Joint Committee). An initial dose of 5000 to 5500 rad was first delivered by external beam irradiation in 5 to 5.5 weeks, followed approximately 3 weeks later by an iridium 192 (192Ir) interstitial implant boost by the trocar and loop technique. The key to successful treatment of these neoplasms was found to be the use of a lateral percutaneous cervical technique, which placed horizontal loops through the oropharyngeal wall above and below the hyoid bone; the superior loop included the pharyngoepiglottic fold and the tonsilloglossal groove. Standard multiple loop implants (submentally inserted) of the base tongue from the vallecula anteriorly to the circumvallate papillae were also used routinely. This approach has been successful, since 10 of the 14 patients (71%) remain without evidence of disease (mean follow-up, 32 months). There have been only two local recurrences, both on the pharyngoepiglottic fold in patients who did not receive the now standard pharyngoepiglottic fold/lateral pharyngeal wall implants. No patients have relapsed after 18 months. The other 14 patients were treated prospectively during the same period by combining initial resection, radical neck dissection, and postoperative irradiation. In this group, there were more locoregional failures compared to the group treated with radiation therapy alone (5 tongue recurrences and 7 neck relapses); in addition, more severe complications were noted in these 14 patients who received surgery and postoperative irradiation. The authors believe that combined external beam and interstitial irradiation is effective treatment for base tongue carcinomas, especially when the high-dose distribution includes the

  1. Limitations of the TG-43 formalism for skin high-dose-rate brachytherapy dose calculations

    SciTech Connect

    Granero, Domingo; Perez-Calatayud, Jose; Vijande, Javier; Ballester, Facundo; Rivard, Mark J.

    2014-02-15

    Purpose: In skin high-dose-rate (HDR) brachytherapy, sources are located outside, in contact with, or implanted at some depth below the skin surface. Most treatment planning systems use the TG-43 formalism, which is based on single-source dose superposition within an infinite water medium without accounting for the true geometry in which conditions for scattered radiation are altered by the presence of air. The purpose of this study is to evaluate the dosimetric limitations of the TG-43 formalism in HDR skin brachytherapy and the potential clinical impact. Methods: Dose rate distributions of typical configurations used in skin brachytherapy were obtained: a 5 cm × 5 cm superficial mould; a source inside a catheter located at the skin surface with and without backscatter bolus; and a typical interstitial implant consisting of an HDR source in a catheter located at a depth of 0.5 cm. Commercially available HDR{sup 60}Co and {sup 192}Ir sources and a hypothetical {sup 169}Yb source were considered. The Geant4 Monte Carlo radiation transport code was used to estimate dose rate distributions for the configurations considered. These results were then compared to those obtained with the TG-43 dose calculation formalism. In particular, the influence of adding bolus material over the implant was studied. Results: For a 5 cm × 5 cm{sup 192}Ir superficial mould and 0.5 cm prescription depth, dose differences in comparison to the TG-43 method were about −3%. When the source was positioned at the skin surface, dose differences were smaller than −1% for {sup 60}Co and {sup 192}Ir, yet −3% for {sup 169}Yb. For the interstitial implant, dose differences at the skin surface were −7% for {sup 60}Co, −0.6% for {sup 192}Ir, and −2.5% for {sup 169}Yb. Conclusions: This study indicates the following: (i) for the superficial mould, no bolus is needed; (ii) when the source is in contact with the skin surface, no bolus is needed for either {sup 60}Co and {sup 192}Ir. For

  2. Evaluation of 101Rh as a brachytherapy source

    PubMed Central

    Ghorbani, Mahdi; Meigooni, Ali Soleimani

    2015-01-01

    Purpose Recently a number of hypothetical sources have been proposed and evaluated for use in brachytherapy. In the present study, a hypothetical 101Rh source with mean photon energy of 121.5 keV and half-life of 3.3 years, has been evaluated as an alternative to the existing high-dose-rate (HDR) sources. Dosimetric characteristics of this source model have been determined following the recommendation of the Task Group 43 (TG-43) of the American Association of the Physicist in Medicine (AAPM), and the results are compared with the published data for 57Co source and Flexisource 192Ir sources with similar geometries. Material and methods MCNPX Monte Carlo code was used for simulation of the 101Rh hypothetical HDR source design. Geometric design of this hypothetical source was considered to be similar to that of Flexisource 192Ir source. Task group No. 43 dosimetric parameters, including air kerma strength per mCi, dose rate constant, radial dose function, and two dimensional (2D) anisotropy functions were calculated for the 101Rh source through simulations. Results Air kerma strength per activity and dose rate constant for the hypothetical 101Rh source were 1.09 ± 0.01 U/mCi and 1.18 ± 0.08 cGy/(h.U), respectively. At distances beyond 1.0 cm in phantom, radial dose function for the hypothetical 101Rh source is higher than that of 192Ir. It has also similar 2D anisotropy functions to the Flexisource 192Ir source. Conclusions 101Rh is proposed as an alternative to the existing HDR sources for use in brachytherapy. This source provides medium energy photons, relatively long half-life, higher dose rate constant and radial dose function, and similar 2D anisotropy function to the Flexisource 192Ir HDR source design. The longer half-life of the source reduces the frequency of the source exchange for the clinical environment. PMID:26034499

  3. An investigation into the accuracy of Acuros(TM) BV in heterogeneous phantoms for a (192)Ir HDR source using LiF TLDs.

    PubMed

    Manning, Siobhan; Nyathi, Thulani

    2014-09-01

    The aim of this study was to evaluate the accuracy of the new Acuros(TM) BV algorithm using well characterized LiF:Mg,Ti TLD 100 in heterogeneous phantoms. TLDs were calibrated using an (192)Ir source and the AAPM TG-43 calculated dose. The Tölli and Johansson Large Cavity principle and Modified Bragg Gray principle methods confirm the dose calculated by TG-43 at a distance of 5 cm from the source to within 4 %. These calibrated TLDs were used to measure the dose in heterogeneous phantoms containing air, stainless steel, bone and titanium. The TLD results were compared with the AAPM TG-43 calculated dose and the Acuros calculated dose. Previous studies by other authors have shown a change in TLD response with depth when irradiated with an (192)Ir source. This TLD depth dependence was assessed by performing measurements at different depths in a water phantom with an (192)Ir source. The variation in the TLD response with depth in a water phantom was not found to be statistically significant for the distances investigated. The TLDs agreed with Acuros(TM) BV within 1.4 % in the air phantom, 3.2 % in the stainless steel phantom, 3 % in the bone phantom and 5.1 % in the titanium phantom. The TLDs showed a larger discrepancy when compared to TG-43 with a maximum deviation of 9.3 % in the air phantom, -11.1 % in the stainless steel phantom, -14.6 % in the bone phantom and -24.6 % in the titanium phantom. The results have shown that Acuros accounts for the heterogeneities investigated with a maximum deviation of -5.1 %. The uncertainty associated with the TLDs calibrated in the PMMA phantom is ±8.2 % (2SD). PMID:24866931

  4. Gadolinium-153 as a brachytherapy isotope

    NASA Astrophysics Data System (ADS)

    Enger, Shirin A.; Fisher, Darrell R.; Flynn, Ryan T.

    2013-02-01

    The purpose of this work was to present the fundamental dosimetric characteristics of a hypothetical 153Gd brachytherapy source using the AAPM TG-43U1 dose-calculation formalism. Gadolinium-153 is an intermediate-energy isotope that emits 40-100 keV photons with a half-life of 242 days. The rationale for considering 153Gd as a brachytherapy source is for its potential of patient specific shielding and to enable reduced personnel shielding requirements relative to 192Ir, and as an isotope for interstitial rotating shield brachytherapy (I-RSBT). A hypothetical 153Gd brachytherapy source with an active core of 0.84 mm diameter, 10 mm length and specific activity of 5.55 TBq of 153Gd per gram of Gd was simulated with Geant4. The encapsulation material was stainless steel with a thickness of 0.08 mm. The radial dose function, anisotropy function and photon spectrum in water were calculated for the 153Gd source. The simulated 153Gd source had an activity of 242 GBq and a dose rate in water 1 cm off axis of 13.12 Gy h-1, indicating that it would be suitable as a low-dose-rate or pulsed-dose-rate brachytherapy source. The beta particles emitted have low enough energies to be absorbed in the source encapsulation. Gadolinium-153 has an increasing radial dose function due to multiple scatter of low-energy photons. Scattered photon dose takes over with distance from the source and contributes to the majority of the absorbed dose. The anisotropy function of the 153Gd source decreases at low polar angles, as a result of the long active core. The source is less anisotropic at polar angles away from the longitudinal axes. The anisotropy function increases with increasing distance. The 153Gd source considered would be suitable as an intermediate-energy low-dose-rate or pulsed-dose-rate brachytherapy source. The source could provide a means for I-RSBT delivery and enable brachytherapy treatments with patient specific shielding and reduced personnel shielding requirements relative to

  5. Gadolinium-153 as a brachytherapy isotope.

    PubMed

    Enger, Shirin A; Fisher, Darrell R; Flynn, Ryan T

    2013-02-21

    The purpose of this work was to present the fundamental dosimetric characteristics of a hypothetical (153)Gd brachytherapy source using the AAPM TG-43U1 dose-calculation formalism. Gadolinium-153 is an intermediate-energy isotope that emits 40-100 keV photons with a half-life of 242 days. The rationale for considering (153)Gd as a brachytherapy source is for its potential of patient specific shielding and to enable reduced personnel shielding requirements relative to (192)Ir, and as an isotope for interstitial rotating shield brachytherapy (I-RSBT). A hypothetical (153)Gd brachytherapy source with an active core of 0.84 mm diameter, 10 mm length and specific activity of 5.55 TBq of (153)Gd per gram of Gd was simulated with Geant4. The encapsulation material was stainless steel with a thickness of 0.08 mm. The radial dose function, anisotropy function and photon spectrum in water were calculated for the (153)Gd source. The simulated (153)Gd source had an activity of 242 GBq and a dose rate in water 1 cm off axis of 13.12 Gy h(-1), indicating that it would be suitable as a low-dose-rate or pulsed-dose-rate brachytherapy source. The beta particles emitted have low enough energies to be absorbed in the source encapsulation. Gadolinium-153 has an increasing radial dose function due to multiple scatter of low-energy photons. Scattered photon dose takes over with distance from the source and contributes to the majority of the absorbed dose. The anisotropy function of the (153)Gd source decreases at low polar angles, as a result of the long active core. The source is less anisotropic at polar angles away from the longitudinal axes. The anisotropy function increases with increasing distance. The (153)Gd source considered would be suitable as an intermediate-energy low-dose-rate or pulsed-dose-rate brachytherapy source. The source could provide a means for I-RSBT delivery and enable brachytherapy treatments with patient specific shielding and reduced personnel

  6. Retrospective dosimetric comparison of low-dose-rate and pulsed-dose-rate intracavitary brachytherapy using a tandem and mini-ovoids.

    PubMed

    Mourtada, Firas; Gifford, Kent A; Berner, Paula A; Horton, John L; Price, Michael J; Lawyer, Ann A; Eifel, Patricia J

    2007-01-01

    The purpose of this study was to compare the dose distribution of Iridium-192 ((192)Ir) pulsed-dose-rate (PDR) brachytherapy to that of Cesium-137 ((137)Cs) low-dose-rate (LDR) brachytherapy around mini-ovoids and an intrauterine tandem. Ten patient treatment plans were selected from our clinical database, all of which used mini-ovoids and an intrauterine tandem. A commercial treatment planning system using AAPM TG43 formalism was used to calculate the dose in water for both the (137)Cs and (192)Ir sources. For equivalent system loadings, we compared the dose distributions in relevant clinical planes, points A and B, and to the ICRU bladder and rectal reference points. The mean PDR doses to points A and B were 3% +/- 1% and 6% +/- 1% higher than the LDR doses, respectively. For the rectum point, the PDR dose was 4% +/- 3% lower than the LDR dose, mainly because of the (192)Ir PDR source anisotropy. For the bladder point, the PDR dose was 1% +/- 4% higher than the LDR dose. We conclude that the PDR and LDR dose distributions are equivalent for intracavitary brachytherapy with a tandem and mini-ovoids. These findings will aid in the transfer from the current practice of LDR intracavitary brachytherapy to PDR for the treatment of gynecologic cancers. PMID:17707197

  7. Retrospective Dosimetric Comparison of Low-Dose-Rate and Pulsed-Dose-Rate Intracavitary Brachytherapy Using a Tandem and Mini-Ovoids

    SciTech Connect

    Mourtada, Firas Gifford, Kent A.; Berner, Paula A.; Horton, John L.; Price, Michael J.; Lawyer, Ann A.; Eifel, Patricia J.

    2007-10-01

    The purpose of this study was to compare the dose distribution of Iridium-192 ({sup 192}Ir) pulsed-dose-rate (PDR) brachytherapy to that of Cesium-137 ({sup 137}Cs) low-dose-rate (LDR) brachytherapy around mini-ovoids and an intrauterine tandem. Ten patient treatment plans were selected from our clinical database, all of which used mini-ovoids and an intrauterine tandem. A commercial treatment planning system using AAPM TG43 formalism was used to calculate the dose in water for both the {sup 137}Cs and {sup 192}Ir sources. For equivalent system loadings, we compared the dose distributions in relevant clinical planes, points A and B, and to the ICRU bladder and rectal reference points. The mean PDR doses to points A and B were 3% {+-} 1% and 6% {+-} 1% higher than the LDR doses, respectively. For the rectum point, the PDR dose was 4% {+-} 3% lower than the LDR dose, mainly because of the {sup 192}Ir PDR source anisotropy. For the bladder point, the PDR dose was 1% {+-} 4% higher than the LDR dose. We conclude that the PDR and LDR dose distributions are equivalent for intracavitary brachytherapy with a tandem and mini-ovoids. These findings will aid in the transfer from the current practice of LDR intracavitary brachytherapy to PDR for the treatment of gynecologic cancers.

  8. Evaluation of high-energy brachytherapy source electronic disequilibrium and dose from emitted electrons

    SciTech Connect

    Ballester, Facundo; Granero, Domingo; Perez-Calatayud, Jose; Melhus, Christopher S.; Rivard, Mark J.

    2009-09-15

    Purpose: The region of electronic disequilibrium near photon-emitting brachytherapy sources of high-energy radionuclides ({sup 60}Co, {sup 137}Cs, {sup 192}Ir, and {sup 169}Yb) and contributions to total dose from emitted electrons were studied using the GEANT4 and PENELOPE Monte Carlo codes. Methods: Hypothetical sources with active and capsule materials mimicking those of actual sources but with spherical shape were examined. Dose contributions due to source photons, x rays, and bremsstrahlung; source {beta}{sup -}, Auger electrons, and internal conversion electrons; and water collisional kerma were scored. To determine if conclusions obtained for electronic equilibrium conditions and electron dose contribution to total dose for the representative spherical sources could be applied to actual sources, the {sup 192}Ir mHDR-v2 source model (Nucletron B.V., Veenendaal, The Netherlands) was simulated for comparison to spherical source results and to published data. Results: Electronic equilibrium within 1% is reached for {sup 60}Co, {sup 137}Cs, {sup 192}Ir, and {sup 169}Yb at distances greater than 7, 3.5, 2, and 1 mm from the source center, respectively, in agreement with other published studies. At 1 mm from the source center, the electron contributions to total dose are 1.9% and 9.4% for {sup 60}Co and {sup 192}Ir, respectively. Electron emissions become important (i.e., >0.5%) within 3.3 mm of {sup 60}Co and 1.7 mm of {sup 192}Ir sources, yet are negligible over all distances for {sup 137}Cs and {sup 169}Yb. Electronic equilibrium conditions along the transversal source axis for the mHDR-v2 source are comparable to those of the spherical sources while electron dose to total dose contribution are quite different. Conclusions: Electronic equilibrium conditions obtained for spherical sources could be generalized to actual sources while electron contribution to total dose depends strongly on source dimensions, material composition, and electron spectra.

  9. A statistical approach to infer the minimum setup distance of a well chamber to the wall or to the floor for {sup 192}Ir HDR calibration

    SciTech Connect

    Chang Liyun; Ho, S.-Y.; Chui, C.-S.; Lee, J.-H.; Du Yichun; Chen Tainsong

    2008-06-15

    We propose a new method based on statistical analysis technique to determine the minimum setup distance of a well chamber used in the calibration of {sup 192}Ir high dose rate (HDR). The chamber should be placed at least this distance away from any wall or from the floor in order to mitigate the effect of scatter. Three different chambers were included in this study, namely, Sun Nuclear Corporation, Nucletron, and Standard Imaging. The results from this study indicated that the minimum setup distance varies depending on the particular chamber and the room architecture in which the chamber was used. Our result differs from that of a previous study by Podgorsak et al. [Med. Phys. 19, 1311-1314 (1992)], in which 25 cm was suggested, and also differs from that of the International Atomic Energy Agency (IAEA)-TECDOC-1079 report, which suggested 30 cm. The new method proposed in this study may be considered as an alternative approach to determine the minimum setup distance of a well-type chamber used in the calibration of {sup 192}Ir HDR.

  10. Effect of air cavities on the dose delivered to the lung during high-dose brachytherapy.

    PubMed

    Ambrosi, R M; Watterson, J I; Nam, T; Keddy, R J

    1999-01-01

    In the treatment of lung cancer using the radiotherapy technique of intracavitary brachytherapy with an 192Ir source, the lung is normally assumed to be entirely composed of a homogeneous mass of soft tissue. The aim of this study is to investigate whether there is the possibility that the air cavities in the lung influence the dose delivered to the lung at a prescribed distance from the source. The Monte Carlo code MCNP-4A was used to model the dose delivered by both 192Ir and 198Au as a function of treatment medium, density and composition, photon energy, and distance from the source. The suitability of MCNP-4A for this study was tested by producing depth-dose profiles for photons in water and comparing these to calculated profiles produced using well-documented methods. PMID:10676526

  11. Using matrix summation method for three dimensional dose calculation in brachytherapy

    PubMed Central

    Zibandeh-Gorji, Mahmoud; Mowlavi, Ali Asghar; Mohammadi, Saeed

    2012-01-01

    Aim The purpose of this study is to calculate radiation dose around a brachytherapy source in a water phantom for different seed locations or rotation the sources by the matrix summation method. Background Monte Carlo based codes like MCNP are widely used for performing radiation transport calculations and dose evaluation in brachytherapy. But for complicated situations, like using more than one source, moving or rotating the source, the routine Monte Carlo method for dose calculation needs a long time running. Materials and methods The MCNPX code has been used to calculate radiation dose around a 192Ir brachytherapy source and saved in a 3D matrix. Then, we used this matrix to evaluate the absorbed dose in any point due to some sources or a source which shifted or rotated in some places by the matrix summation method. Results Three dimensional (3D) dose results and isodose curves were presented for 192Ir source in a water cube phantom shifted for 10 steps and rotated for 45 and 90° based on the matrix summation method. Also, we applied this method for some arrays of sources. Conclusion The matrix summation method can be used for 3D dose calculations for any brachytherapy source which has moved or rotated. This simple method is very fast compared to routine Monte Carlo based methods. In addition, it can be applied for dose optimization study. PMID:24377009

  12. Disseminated intravascular coagulation (DIC)

    MedlinePlus

    ... medlineplus.gov/ency/article/000573.htm Disseminated intravascular coagulation (DIC) To use the sharing features on this page, please enable JavaScript. Disseminated intravascular coagulation is a serious disorder in which the proteins ...

  13. Computation of relative dose distribution and effective transmission around a shielded vaginal cylinder with {sup 192}Ir HDR source using MCNP4B

    SciTech Connect

    Sureka, Chandra Sekaran; Aruna, Prakasarao; Ganesan, Singaravelu; Sunny, Chirayath Sunil; Subbaiah, Kamatam Venkata

    2006-06-15

    The present work is primarily focused on the estimation of relative dose distribution and effective transmission around a shielded vaginal cylinder with an {sup 192}Ir source using the Monte Carlo technique. The MCNP4B code was used to evaluate the dose distribution around a tungsten shielded vaginal cylinder as a function of thickness and angular shielding. The dose distribution and effective transmission of {sup 192}Ir by 0.8 cm thickness tungsten were also compared with that for gold and lead. Dose distributions were evaluated for different distances starting from 1.35 cm to 10.15 cm from the center of the cylinder. Dose distributions were also evaluated sequentially from 0 deg.to 180 deg.for every 5 deg.interval. Studies show that all the shielding material at 0.8 cm thickness contribute tolerable doses to normal tissues and also protect the critical organs such as the rectum and bladder. However, the computed dose values are in good agreement with the reported experimental values. It was also inferred that the higher the shielding angles, the more the protection of the surrounding tissues. Among the three shielding materials, gold has been observed to have the highest attenuation and hence contribute lowest transmission in the shielded region. Depending upon the shielding angle and thickness, it is possible to predict the dose distribution using the MCNP4B code. In order to deliver the higher dose to the unshielded region, lead may be considered as the shielding material and further it is highly economic over other materials.

  14. The collapsed cone algorithm for 192Ir dosimetry using phantom-size adaptive multiple-scatter point kernels

    NASA Astrophysics Data System (ADS)

    Carlsson Tedgren, Åsa; Plamondon, Mathieu; Beaulieu, Luc

    2015-07-01

    The aim of this work was to investigate how dose distributions calculated with the collapsed cone (CC) algorithm depend on the size of the water phantom used in deriving the point kernel for multiple scatter. A research version of the CC algorithm equipped with a set of selectable point kernels for multiple-scatter dose that had initially been derived in water phantoms of various dimensions was used. The new point kernels were generated using EGSnrc in spherical water phantoms of radii 5 cm, 7.5 cm, 10 cm, 15 cm, 20 cm, 30 cm and 50 cm. Dose distributions derived with CC in water phantoms of different dimensions and in a CT-based clinical breast geometry were compared to Monte Carlo (MC) simulations using the Geant4-based brachytherapy specific MC code Algebra. Agreement with MC within 1% was obtained when the dimensions of the phantom used to derive the multiple-scatter kernel were similar to those of the calculation phantom. Doses are overestimated at phantom edges when kernels are derived in larger phantoms and underestimated when derived in smaller phantoms (by around 2% to 7% depending on distance from source and phantom dimensions). CC agrees well with MC in the high dose region of a breast implant and is superior to TG43 in determining skin doses for all multiple-scatter point kernel sizes. Increased agreement between CC and MC is achieved when the point kernel is comparable to breast dimensions. The investigated approximation in multiple scatter dose depends on the choice of point kernel in relation to phantom size and yields a significant fraction of the total dose only at distances of several centimeters from a source/implant which correspond to volumes of low doses. The current implementation of the CC algorithm utilizes a point kernel derived in a comparatively large (radius 20 cm) water phantom. A fixed point kernel leads to predictable behaviour of the algorithm with the worst case being a source/implant located well within a patient

  15. The collapsed cone algorithm for (192)Ir dosimetry using phantom-size adaptive multiple-scatter point kernels.

    PubMed

    Tedgren, Åsa Carlsson; Plamondon, Mathieu; Beaulieu, Luc

    2015-07-01

    The aim of this work was to investigate how dose distributions calculated with the collapsed cone (CC) algorithm depend on the size of the water phantom used in deriving the point kernel for multiple scatter. A research version of the CC algorithm equipped with a set of selectable point kernels for multiple-scatter dose that had initially been derived in water phantoms of various dimensions was used. The new point kernels were generated using EGSnrc in spherical water phantoms of radii 5 cm, 7.5 cm, 10 cm, 15 cm, 20 cm, 30 cm and 50 cm. Dose distributions derived with CC in water phantoms of different dimensions and in a CT-based clinical breast geometry were compared to Monte Carlo (MC) simulations using the Geant4-based brachytherapy specific MC code Algebra. Agreement with MC within 1% was obtained when the dimensions of the phantom used to derive the multiple-scatter kernel were similar to those of the calculation phantom. Doses are overestimated at phantom edges when kernels are derived in larger phantoms and underestimated when derived in smaller phantoms (by around 2% to 7% depending on distance from source and phantom dimensions). CC agrees well with MC in the high dose region of a breast implant and is superior to TG43 in determining skin doses for all multiple-scatter point kernel sizes. Increased agreement between CC and MC is achieved when the point kernel is comparable to breast dimensions. The investigated approximation in multiple scatter dose depends on the choice of point kernel in relation to phantom size and yields a significant fraction of the total dose only at distances of several centimeters from a source/implant which correspond to volumes of low doses. The current implementation of the CC algorithm utilizes a point kernel derived in a comparatively large (radius 20 cm) water phantom. A fixed point kernel leads to predictable behaviour of the algorithm with the worst case being a source/implant located well within a patient

  16. Influence of photon energy spectra from brachytherapy sources on Monte Carlo simulations of kerma and dose rates in water and air

    SciTech Connect

    Rivard, Mark J.; Granero, Domingo; Perez-Calatayud, Jose; Ballester, Facundo

    2010-02-15

    Purpose: For a given radionuclide, there are several photon spectrum choices available to dosimetry investigators for simulating the radiation emissions from brachytherapy sources. This study examines the dosimetric influence of selecting the spectra for {sup 192}Ir, {sup 125}I, and {sup 103}Pd on the final estimations of kerma and dose. Methods: For {sup 192}Ir, {sup 125}I, and {sup 103}Pd, the authors considered from two to five published spectra. Spherical sources approximating common brachytherapy sources were assessed. Kerma and dose results from GEANT4, MCNP5, and PENELOPE-2008 were compared for water and air. The dosimetric influence of {sup 192}Ir, {sup 125}I, and {sup 103}Pd spectral choice was determined. Results: For the spectra considered, there were no statistically significant differences between kerma or dose results based on Monte Carlo code choice when using the same spectrum. Water-kerma differences of about 2%, 2%, and 0.7% were observed due to spectrum choice for {sup 192}Ir, {sup 125}I, and {sup 103}Pd, respectively (independent of radial distance), when accounting for photon yield per Bq. Similar differences were observed for air-kerma rate. However, their ratio (as used in the dose-rate constant) did not significantly change when the various photon spectra were selected because the differences compensated each other when dividing dose rate by air-kerma strength. Conclusions: Given the standardization of radionuclide data available from the National Nuclear Data Center (NNDC) and the rigorous infrastructure for performing and maintaining the data set evaluations, NNDC spectra are suggested for brachytherapy simulations in medical physics applications.

  17. Air-kerma evaluation at the maze entrance of HDR brachytherapy facilities.

    PubMed

    Pujades, M C; Granero, D; Vijande, J; Ballester, F; Perez-Calatayud, J; Papagiannis, P; Siebert, F A

    2014-12-01

    In the absence of procedures for evaluating the design of brachytherapy (BT) facilities for radiation protection purposes, the methodology used for external beam radiotherapy facilities is often adapted. The purpose of this study is to adapt the NCRP 151 methodology for estimating the air-kerma rate at the door in BT facilities. Such methodology was checked against Monte Carlo (MC) techniques using the code Geant4. Five different facility designs were studied for (192)Ir and (60)Co HDR applications to account for several different bunker layouts.For the estimation of the lead thickness needed at the door, the use of transmission data for the real spectra at the door instead of the ones emitted by (192)Ir and (60)Co will reduce the lead thickness by a factor of five for (192)Ir and ten for (60)Co. This will significantly lighten the door and hence simplify construction and operating requirements for all bunkers.The adaptation proposed in this study to estimate the air-kerma rate at the door depends on the complexity of the maze: it provides good results for bunkers with a maze (i.e. similar to those used for linacs for which the NCRP 151 methodology was developed) but fails for less conventional designs. For those facilities, a specific Monte Carlo study is in order for reasons of safety and cost-effectiveness. PMID:25222942

  18. Dosimetric characterizations of GZP6 60Co high dose rate brachytherapy sources: application of superimposition method

    PubMed Central

    Bahreyni Toossi, Mohammad Taghi; Ghorbani, Mahdi; Mowlavi, Ali Asghar; Meigooni, Ali Soleimani

    2012-01-01

    Background Dosimetric characteristics of a high dose rate (HDR) GZP6 Co-60 brachytherapy source have been evaluated following American Association of Physicists in MedicineTask Group 43U1 (AAPM TG-43U1) recommendations for their clinical applications. Materials and methods MCNP-4C and MCNPX Monte Carlo codes were utilized to calculate dose rate constant, two dimensional (2D) dose distribution, radial dose function and 2D anisotropy function of the source. These parameters of this source are compared with the available data for Ralstron 60Co and microSelectron192Ir sources. Besides, a superimposition method was developed to extend the obtained results for the GZP6 source No. 3 to other GZP6 sources. Results The simulated value for dose rate constant for GZP6 source was 1.104±0.03 cGyh-1U-1. The graphical and tabulated radial dose function and 2D anisotropy function of this source are presented here. The results of these investigations show that the dosimetric parameters of GZP6 source are comparable to those for the Ralstron source. While dose rate constant for the two 60Co sources are similar to that for the microSelectron192Ir source, there are differences between radial dose function and anisotropy functions. Radial dose function of the 192Ir source is less steep than both 60Co source models. In addition, the 60Co sources are showing more isotropic dose distribution than the 192Ir source. Conclusions The superimposition method is applicable to produce dose distributions for other source arrangements from the dose distribution of a single source. The calculated dosimetric quantities of this new source can be introduced as input data to the GZP6 treatment planning system (TPS) and to validate the performance of the TPS. PMID:23077455

  19. Verification of Oncentra brachytherapy planning using independent calculation

    NASA Astrophysics Data System (ADS)

    Safian, N. A. M.; Abdullah, N. H.; Abdullah, R.; Chiang, C. S.

    2016-03-01

    This study was done to investigate the verification technique of treatment plan quality assurance for brachytherapy. It is aimed to verify the point doses in 192Ir high dose rate (HDR) brachytherapy between Oncentra Masterplan brachytherapy treatment planning system and independent calculation software at a region of rectum, bladder and prescription points for both pair ovoids and full catheter set ups. The Oncentra TPS output text files were automatically loaded into the verification programme that has been developed based on spreadsheets. The output consists of source coordinates, desired calculation point coordinates and the dwell time of a patient plan. The source strength and reference dates were entered into the programme and then dose point calculations were independently performed. The programme shows its results in a comparison of its calculated point doses with the corresponding Oncentra TPS outcome. From the total of 40 clinical cases that consisted of two fractions for 20 patients, the results that were given in term of percentage difference, it shows an agreement between TPS and independent calculation are in the range of 2%. This programme only takes a few minutes to be used is preferably recommended to be implemented as the verification technique in clinical brachytherapy dosimetry.

  20. Dosimetric perturbations of a lead shield for surface and interstitial high-dose-rate brachytherapy.

    PubMed

    Candela-Juan, Cristian; Granero, Domingo; Vijande, Javier; Ballester, Facundo; Perez-Calatayud, Jose; Rivard, Mark J

    2014-06-01

    In surface and interstitial high-dose-rate brachytherapy with either (60)Co, (192)Ir, or (169)Yb sources, some radiosensitive organs near the surface may be exposed to high absorbed doses. This may be reduced by covering the implants with a lead shield on the body surface, which results in dosimetric perturbations. Monte Carlo simulations in Geant4 were performed for the three radionuclides placed at a single dwell position. Four different shield thicknesses (0, 3, 6, and 10 mm) and three different source depths (0, 5, and 10 mm) in water were considered, with the lead shield placed at the phantom surface. Backscatter dose enhancement and transmission data were obtained for the lead shields. Results were corrected to account for a realistic clinical case with multiple dwell positions. The range of the high backscatter dose enhancement in water is 3 mm for (60)Co and 1 mm for both (192)Ir and (169)Yb. Transmission data for (60)Co and (192)Ir are smaller than those reported by Papagiannis et al (2008 Med. Phys. 35 4898-4906) for brachytherapy facility shielding; for (169)Yb, the difference is negligible. In conclusion, the backscatter overdose produced by the lead shield can be avoided by just adding a few millimetres of bolus. Transmission data provided in this work as a function of lead thickness can be used to estimate healthy organ equivalent dose saving. Use of a lead shield is justified. PMID:24705066

  1. Disseminated intravascular coagulation (DIC)

    MedlinePlus

    ... Jr, Silberstein LE, et al, eds. Hematology: Basic Principles and Practice . 6th ed. Philadelphia, PA: Elsevier Saunders; 2013:chap 141. Thachil J, Toh CH. Current concepts in the management of disseminated intravascular coagulation. Thromb Res . 2012;129 ...

  2. Calculated organ doses using Monte Carlo simulations in a reference male phantom undergoing HDR brachytherapy applied to localized prostate carcinoma

    SciTech Connect

    Candela-Juan, Cristian; Perez-Calatayud, Jose; Ballester, Facundo; Rivard, Mark J.

    2013-03-15

    Purpose: The aim of this study was to obtain equivalent doses in radiosensitive organs (aside from the bladder and rectum) when applying high-dose-rate (HDR) brachytherapy to a localized prostate carcinoma using {sup 60}Co or {sup 192}Ir sources. These data are compared with results in a water phantom and with expected values in an infinite water medium. A comparison with reported values from proton therapy and intensity-modulated radiation therapy (IMRT) is also provided. Methods: Monte Carlo simulations in Geant4 were performed using a voxelized phantom described in International Commission on Radiological Protection (ICRP) Publication 110, which reproduces masses and shapes from an adult reference man defined in ICRP Publication 89. Point sources of {sup 60}Co or {sup 192}Ir with photon energy spectra corresponding to those exiting their capsules were placed in the center of the prostate, and equivalent doses per clinical absorbed dose in this target organ were obtained in several radiosensitive organs. Values were corrected to account for clinical circumstances with the source located at various positions with differing dwell times throughout the prostate. This was repeated for a homogeneous water phantom. Results: For the nearest organs considered (bladder, rectum, testes, small intestine, and colon), equivalent doses given by {sup 60}Co source were smaller (8%-19%) than from {sup 192}Ir. However, as the distance increases, the more penetrating gamma rays produced by {sup 60}Co deliver higher organ equivalent doses. The overall result is that effective dose per clinical absorbed dose from a {sup 60}Co source (11.1 mSv/Gy) is lower than from a {sup 192}Ir source (13.2 mSv/Gy). On the other hand, equivalent doses were the same in the tissue and the homogeneous water phantom for those soft tissues closer to the prostate than about 30 cm. As the distance increased, the differences of photoelectric effect in water and soft tissue, and appearance of other materials

  3. Broad-beam transmission data for new brachytherapy sources, Tm-170 and Yb-169.

    PubMed

    Granero, Domingo; Pérez-Calatayud, José; Ballester, Facundo; Bos, Adrie J J; Venselaar, Jack

    2006-01-01

    The characteristics of the radionuclides (170)Tm and (169)Yb are highly interesting for their use as high dose-rate brachytherapy sources. The introduction of brachytherapy equipment containing these sources will lead to smaller required thicknesses of the materials used in radiation protection barriers compared with the use of conventional sources such as (192)Ir and (137)Cs. The purpose of this study is to determine the required thicknesses of protection material for the design of the protecting walls. Using the Monte Carlo method, transmission data were derived for broad-beam geometries through lead and concrete barriers, from which the first half value layer and tenth value layer are obtained. In addition, the dose reduction in a simulated patient was studied to determine whether transmission in the patient is a relevant factor in radiation protection calculations. PMID:16030058

  4. Effect of tissue composition on dose distribution in brachytherapy with various photon emitting sources

    PubMed Central

    Ghorbani, Mahdi; Salahshour, Fateme; Haghparast, Abbas; Knaup, Courtney

    2014-01-01

    Purpose The aim of this study is to compare the dose in various soft tissues in brachytherapy with photon emitting sources. Material and methods 103Pd, 125I, 169Yb, 192Ir brachytherapy sources were simulated with MCNPX Monte Carlo code, and their dose rate constant and radial dose function were compared with the published data. A spherical phantom with 50 cm radius was simulated and the dose at various radial distances in adipose tissue, breast tissue, 4-component soft tissue, brain (grey/white matter), muscle (skeletal), lung tissue, blood (whole), 9-component soft tissue, and water were calculated. The absolute dose and relative dose difference with respect to 9-component soft tissue was obtained for various materials, sources, and distances. Results There was good agreement between the dosimetric parameters of the sources and the published data. Adipose tissue, breast tissue, 4-component soft tissue, and water showed the greatest difference in dose relative to the dose to the 9-component soft tissue. The other soft tissues showed lower dose differences. The dose difference was also higher for 103Pd source than for 125I, 169Yb, and 192Ir sources. Furthermore, greater distances from the source had higher relative dose differences and the effect can be justified due to the change in photon spectrum (softening or hardening) as photons traverse the phantom material. Conclusions The ignorance of soft tissue characteristics (density, composition, etc.) by treatment planning systems incorporates a significant error in dose delivery to the patient in brachytherapy with photon sources. The error depends on the type of soft tissue, brachytherapy source, as well as the distance from the source. PMID:24790623

  5. Verification of the plan dosimetry for high dose rate brachytherapy using metal-oxide-semiconductor field effect transistor detectors

    SciTech Connect

    Qi Zhenyu; Deng Xiaowu; Huang Shaomin; Lu Jie; Lerch, Michael; Cutajar, Dean; Rosenfeld, Anatoly

    2007-06-15

    The feasibility of a recently designed metal-oxide-semiconductor field effect transistor (MOSFET) dosimetry system for dose verification of high dose rate (HDR) brachytherapy treatment planning was investigated. MOSFET detectors were calibrated with a 0.6 cm{sup 3} NE-2571 Farmer-type ionization chamber in water. Key characteristics of the MOSFET detectors, such as the energy dependence, that will affect phantom measurements with HDR {sup 192}Ir sources were measured. The MOSFET detector was then applied to verify the dosimetric accuracy of HDR brachytherapy treatments in a custom-made water phantom. Three MOSFET detectors were calibrated independently, with the calibration factors ranging from 0.187 to 0.215 cGy/mV. A distance dependent energy response was observed, significant within 2 cm from the source. The new MOSFET detector has a good reproducibility (<3%), small angular effect (<2%), and good dose linearity (R{sup 2}=1). It was observed that the MOSFET detectors had a linear response to dose until the threshold voltage reached approximately 24 V for {sup 192}Ir source measurements. Further comparison of phantom measurements using MOSFET detectors with dose calculations by a commercial treatment planning system for computed tomography-based brachytherapy treatment plans showed that the mean relative deviation was 2.2{+-}0.2% for dose points 1 cm away from the source and 2.0{+-}0.1% for dose points located 2 cm away. The percentage deviations between the measured doses and the planned doses were below 5% for all the measurements. The MOSFET detector, with its advantages of small physical size and ease of use, is a reliable tool for quality assurance of HDR brachytherapy. The phantom verification method described here is universal and can be applied to other HDR brachytherapy treatments.

  6. Water calorimetry-based radiation dosimetry in iridium-192 brachytherapy and proton therapy

    NASA Astrophysics Data System (ADS)

    Sarfehnia, Arman

    The aim of this work is to develop and evaluate a primary standard for HDR 192Ir brachytherapy sources as well as for active spot scanning proton radiotherapy beams based on stagnant 4 °C water calorimetry. The measurements were performed using an in-house built water calorimeter and a parallel-plate calorimeter vessel. The dose measurement results of the McGill calorimeter were validated in high energy photon beams against Canada's national established primary standard at the NRC. The measurements in brachytherapy were performed with a spring-loaded catheter holder which allowed for the 192Ir source to come directly inside the water calorimeter. The COMSOL MULTIPHYSICS(TM) software was used to solve the heat transport equation numerically for a detailed geometrical model of our experimental setup. In brachytherapy, reference dosimetry protocols were also developed and used to measure the dose to water directly using thimble type ionization chambers and Gafchromic films with traceable 60Co (or higher energy photons) calibration factor. Based on water calorimetry standard, we measured an absolute dose rate to water of 361+/-7 microGy/(h·U) at 55 mm source-to-detector separation. The 1.9 % uncertainty on water calorimetry results is in contrast with the current recommended AAPM TG-43 protocol that achieves at best an uncertainty (k=1) of 2.5 % based on an indirect dose to water measurement technique. All measurement results from water calorimetry, ion chamber, film, and TG-43 agreed to within 0.83 %. We achieved an overall dose uncertainty of 0.4 % and 0.6 % for scattered and scanned proton radiation water calorimetry, respectively. The water calorimetry absorbed dose to water results agreed with those obtained through the currently recommended IAEA TRS-398 protocol (measurements made using an ionization chamber with a 60Co calibration factor) to better than 0.14 % and 0.32 % in scattered and scanned proton beams, respectively. In conclusion, this work forms the

  7. Three-dimensional ultrasound system for guided breast brachytherapy

    SciTech Connect

    De Jean, Paul; Beaulieu, Luc; Fenster, Aaron

    2009-11-15

    Breast-conserving surgery combined with subsequent radiation therapy is a standard procedure in breast cancer treatment. The disadvantage of whole-breast beam irradiation is that it requires 20-25 treatment days, which is inconvenient for patients with limited mobility or who reside far from the treatment center. However, interstitial high-dose-rate (HDR) brachytherapy is an irradiation method requiring only 5 treatment days and that delivers a lower radiation dose to the surrounding healthy tissue. It involves delivering radiation through {sup 192}Ir seeds placed inside the catheters, which are inserted into the breast. The catheters are attached to a HDR afterloader, which controls the seed placement within the catheters and irradiation times to deliver the proper radiation dose. One disadvantage of using HDR brachytherapy is that it requires performing at least one CT scan during treatment planning. The procedure at our institution involves the use of two CT scans. Performing CT scans requires moving the patient from the brachytherapy suite with catheters inserted in their breasts. One alternative is using three-dimensional ultrasound (3DUS) to image the patient. In this study, the authors developed a 3DUS translation scanning system for use in breast brachytherapy. The new system was validated using CT, the current clinical standard, to image catheters in a breast phantom. Once the CT and 3DUS images were registered, the catheter trajectories were then compared. The results showed that the average angular separation between catheter trajectories was 2.4 deg., the average maximum trajectory separation was 1.0 mm, and the average mean trajectory separation was found to be 0.7 mm. In this article, the authors present the 3DUS translation scanning system's capabilities as well as its potential to be used as the primary treatment planning imaging modality in breast brachytherapy.

  8. Angiocentric and intravascular lymphomas.

    PubMed

    Tomasini, D; Berti, E

    2015-02-01

    Under the generic diagnosis of angiocentric and intravascular lymphomas are included several subtypes of lymphomas histopathologically characterized either by the predominantly endovascular-endoluminal presence of neoplastic lymphocytes of B-T or NK/T cell origin, or by a pathologic process centered around a blood vessels secondarily infiltrated and invaded by the spreading infiltrate. This group of lymphoproliferative disorders is heterogeneous regarding phenotype, but they share common features that are multiorgan involvement, worse prognosis, and, frequently Ebstein-Barr virus (EBV) genomic integration. At onset, some of these rare lymphomas, e.g. intravascular large cell lymphoma or lymphomatoid granulomatosis (Liebow dieases), are misdiagnosed as inflammatory diseases. The actual treatments of these disorders are based upon chemotherapy and/or chemotherapy plus bone marrow transplantation with variable results. Therapeutic approaches for EBV related angiocentric and intravascular lymphomas, similarly to those employed for other viral induced lymphoproliferative disease would comprise the employment of chemotherapy together with drugs able to interfere with viral infection. Such an approach has been used in rare cases of EBV-positive diffuse large B-cell lymphoma of the elderly, a lymphoproliferative disorders which development is linked to immunosuppression due to senescence. The present review will focus on intravascular and angiocentric lymphomas providing histopathologic, immunophenotypical and molecular data useful to overcome to a specific diagnosis and to differentiate them from other lymphoproliferative disorders showing a secondary vascular engulfment and infiltration and some vasculitides showing overlapping histopathologic features. PMID:25531150

  9. Perturbation of TG-43 parameters of the brachytherapy sources under insufficient scattering materials.

    PubMed

    Zehtabian, Mehdi; Sina, Sedigheh; Faghihi, Reza; Meigooni, Ali

    2013-01-01

    In the recommendations of Task Group #43 from American Association of Physicists in Medicine (AAPM TG43), methods of brachytherapy source dosimetry are recommended, under full scattering conditions. However, in actual brachytherapy procedures, sources may not be surrounded by full scattering tissue in all directions. Clinical examples include high-dose-rate (HDR) brachytherapy of the breast or low-dose-rate (LDR) brachytherapy of ocular melanoma using eye plaque treatment with 125I and 103Pd. In this work, the impact of the missing tissue on the TG-43-recommended dosimetric parameters of different brachytherapy sources was investigated. The impact of missing tissue on the TG-43-recommended dosimetric parameters of 137Cs, 192Ir, and 103Pd brachytherapy sources was investigated using the MCNP5 Monte Carlo code. These evaluations were performed by placing the sources at different locations inside a 30 × 30 × 30 cm3 cubical water phantom and comparing the results with the values of the source located at the center of the phantom, which is in a full scattering condition. The differences between the thickness of the overlying tissues for different source positions and the thickness of the overlying tissue in full scattering condition is referred to as missing tissue. The results of these investigations indicate that values of the radial dose function and 2D anisotropy function vary as a function of the thickness of missing tissue, only in the direction of the missing tissue. These changes for radial dose function were up to 5%, 11%, and 8% for 137Cs, 192Ir, and 103Pd, respectively. No significant changes are observed for the values of the dose rate constants. In this project, we have demonstrated that the TG-43 dosimetric parameters may only change in the directions of the missing tissue. These results are more practical than the published data by different investigators in which a symmetric effect of the missing tissue on the dosimetric parameters of brachytherapy

  10. Computed organ doses to an Indian reference adult during brachytherapy treatment of esophagus, breast, and neck cancers

    PubMed Central

    Keshavkumar, Biju

    2012-01-01

    This study aims to generate the normalized mean organ dose factors (mGy min-1 GBq-1) to healthy organs during brachytherapy treatment of esophagus, breast, and neck cancers specific to the patient population in India. This study is in continuation to the earlier published studies on the estimation of organ doses during uterus brachytherapy treatments. The results are obtained by Monte Carlo simulation of radiation transport through MIRD type anthropomorphic mathematical phantom representing reference Indian adult with 192Ir and 60Co high dose rate sources in the esophagus, breast, and neck of the phantom. The result of this study is compared with a published computational study using voxel-based phantom model. The variation in the organ dose of this study to the published values is within 50%. PMID:22973082

  11. MCNP modelling of vaginal and uterine applicators used in intracavitary brachytherapy and comparison with radiochromic film measurements

    NASA Astrophysics Data System (ADS)

    Ceccolini, E.; Gerardy, I.; Ródenas, J.; van Dycke, M.; Gallardo, S.; Mostacci, D.

    Brachytherapy is an advanced cancer treatment that is minimally invasive, minimising radiation exposure to the surrounding healthy tissues. Microselectron© Nucletron devices with 192Ir source can be used for gynaecological brachytherapy, in patients with vaginal or uterine cancer. Measurements of isodose curves have been performed in a PMMA phantom and compared with Monte Carlo calculations and TPS (Plato software of Nucletron BPS 14.2) evaluation. The isodose measurements have been performed with radiochromic films (Gafchromic EBT©). The dose matrix has been obtained after digitalisation and use of a dose calibration curve obtained with a 6 MV photon beam provided by a medical linear accelerator. A comparison between the calculated and the measured matrix has been performed. The calculated dose matrix is obtained with a simulation using the MCNP5 Monte Carlo code (F4MESH tally).

  12. Dosimetric characteristics of a new unit for electronic skin brachytherapy

    PubMed Central

    Garcia-Martinez, Teresa; Chan, Jan-Pieter; Perez-Calatayud, Jose

    2014-01-01

    Purpose Brachytherapy with radioactive high dose rate (HDR) 192Ir source is applied to small skin cancer lesions, using surface applicators, i.e. Leipzig or Valencia type. New developments in the field of radiotherapy for skin cancer include electronic brachytherapy. This technique involves the placement of an HDR X-ray source close to the skin, therefore combining the benefits of brachytherapy with the reduced shielding requirements and targeted energy of low energy X-rays. Recently, the Esteya® Electronic Brachytherapy System (Esteya EBS, Elekta AB-Nucletron, Stockholm, Sweden) has been developed specifically for HDR brachytherapy treatment of surface lesions. The system provides radionuclide free HDR brachytherapy by means of a small 69.5 kV X-ray source. The purpose of this study is to obtain the dosimetric characterization required for clinical implementation, providing the detailed methodology to perform the commissioning. Material and methods Flatness, symmetry and penumbra, percentage of depth dose (PDD), kV stability, HVL, output, spectrum, linearity, and leakage have been evaluated for a set of applicators (from 10 mm to 30 mm in diameter). Results Flatness and symmetry resulted better than 5% with around 1 mm of penumbra. The depth dose gradient is about 7%/mm. A kV value of 68.4 ± 1.0 kV (k = 1) was obtained, in good agreement with manufacturer data (69.5 kV). HVL was 1.85 mm Al. Dose rate for a typical 6 Gy to 7 Gy prescription resulted about 3.3 Gy/min and the leakage value was < 100 µGy/min. Conclusions The new Esteya® Electronic Brachytherapy System presents excellent flatness and penumbra as with the Valencia applicator case, combined with an improved PDD, allowing treatment of lesions of up to a depth of 5 mm in combination with reduced treatment duration. The Esteya unit allows HDR brachytherapy superficial treatment within a minimally shielded environment due its low energy. PMID:24790622

  13. Patient-specific dose calculation methods for high-dose-rate iridium-192 brachytherapy

    NASA Astrophysics Data System (ADS)

    Poon, Emily S.

    In high-dose-rate 192Ir brachytherapy, the radiation dose received by the patient is calculated according to the AAPM Task Group 43 (TG-43) formalism. This table-based dose superposition method uses dosimetry parameters derived with the radioactive 192Ir source centered in a water phantom. It neglects the dose perturbations caused by inhomogeneities, such as the patient anatomy, applicators, shielding, and radiographic contrast solution. In this work, we evaluated the dosimetric characteristics of a shielded rectal applicator with an endocavitary balloon injected with contrast solution. The dose distributions around this applicator were calculated by the GEANT4 Monte Carlo (MC) code and measured by ionization chamber and GAFCHROMIC EBT film. A patient-specific dose calculation study was then carried out for 40 rectal treatment plans. The PTRAN_CT MC code was used to calculate the dose based on computed tomography (CT) images. This study involved the development of BrachyGUI, an integrated treatment planning tool that can process DICOM-RT data and create PTRAN_CT input initialization files. BrachyGUI also comes with dose calculation and evaluation capabilities. We proposed a novel scatter correction method to account for the reduction in backscatter radiation near tissue-air interfaces. The first step requires calculating the doses contributed by primary and scattered photons separately, assuming a full scatter environment. The scatter dose in the patient is subsequently adjusted using a factor derived by MC calculations, which depends on the distances between the point of interest, the 192Ir source, and the body contour. The method was validated for multicatheter breast brachytherapy, in which the target and skin doses for 18 patient plans agreed with PTRAN_CT calculations better than 1%. Finally, we developed a CT-based analytical dose calculation method. It corrects for the photon attenuation and scatter based upon the radiological paths determined by ray tracing

  14. Treatment parameters for beta and gamma devices in peripheral endovascular brachytherapy

    SciTech Connect

    Kirisits, Christian . E-mail: Christian.Kirisits@meduniwien.ac.at; Pokrajac, Boris; Berger, Daniel; Minar, Erich; Poetter, Richard; Georg, Dietmar

    2004-12-01

    Purpose: To determine dosimetric parameters, such as radial and longitudinal dose profiles, for {beta} and {gamma} devices in peripheral endovascular brachytherapy. Methods and materials: An {sup 192}Ir high-dose rate stepping source, a {sup 90}Sr source train, and a {sup 32}P-coated radiation balloon were investigated. The treatment-planning software PLATO, Monte Carlo code EGSnrc, and GafChromic film dosimetry were used to analyze the dose distribution of these devices. Results: For a 5-mm-diameter vessel, the ratio between the dose at 2 mm depth and the dose at the lumen surface was 1.8, 3.4, and 16.2 for the {sup 192}Ir, {sup 90}Sr, and {sup 32}P devices, respectively. The dose variation at the reference depth of 2 mm into the vessel wall was 7-18 Gy, for different analyzed dose prescriptions. The reference lumen dose was different by a factor >8. For all three devices, the reference isodose length was not <5 mm on the proximal and distal edge of the active source length. Conclusions: A complete set of dose parameters for {beta} and {gamma} sources has to be considered for appropriate treatment planning and performance, including reporting of reference depth dose, reference lumen dose, and reference isodose length.

  15. HDR Brachytherapy Dose Distribution is Influenced by the Metal Material of the Applicator

    PubMed Central

    Wu, Chin-Hui; Liao, Yi-Jen; Shiau, An-Cheng; Lin, Hsin-Yu; Hsueh Liu, Yen-Wan; Hsu, Shih-Ming

    2015-01-01

    Applicators containing metal have been widely used in recent years when applying brachytherapy to patients with cervical cancer. However, the high dose rate (HDR) treatment-planning system (TPS) that is currently used in brachytherapy still assumes that the treatment environment constitutes a homogeneous water medium and does not include a dose correction for the metal material of the applicator. The primary purpose of this study was to evaluate the HDR 192Ir dose distribution in cervical cancer patients when performing brachytherapy using a metal-containing applicator. Thermoluminescent dosimeter (TLD) measurements and Monte Carlo N-Particle eXtended (MCNPX) code were used to explore the doses to the rectum and bladder when using a Henschke applicator containing metal during brachytherapy. When the applicator was assumed to be present, the absolute dose difference between the TLD measurement and MCNPX simulation values was within approximately 5%. A comparison of the MCNPX simulation and TPS calculation values revealed that the TPS overestimated the International Commission of Radiation Units and Measurement (ICRU) rectum and bladder reference doses by 57.78% and 49.59%, respectively. We therefore suggest that the TPS should be modified to account for the shielding effects of the applicator to ensure the accuracy of the delivered doses. PMID:26658746

  16. HDR Brachytherapy Dose Distribution is Influenced by the Metal Material of the Applicator.

    PubMed

    Wu, Chin-Hui; Liao, Yi-Jen; Shiau, An-Cheng; Lin, Hsin-Yu; Hsueh Liu, Yen-Wan; Hsu, Shih-Ming

    2015-01-01

    Applicators containing metal have been widely used in recent years when applying brachytherapy to patients with cervical cancer. However, the high dose rate (HDR) treatment-planning system (TPS) that is currently used in brachytherapy still assumes that the treatment environment constitutes a homogeneous water medium and does not include a dose correction for the metal material of the applicator. The primary purpose of this study was to evaluate the HDR (192)Ir dose distribution in cervical cancer patients when performing brachytherapy using a metal-containing applicator. Thermoluminescent dosimeter (TLD) measurements and Monte Carlo N-Particle eXtended (MCNPX) code were used to explore the doses to the rectum and bladder when using a Henschke applicator containing metal during brachytherapy. When the applicator was assumed to be present, the absolute dose difference between the TLD measurement and MCNPX simulation values was within approximately 5%. A comparison of the MCNPX simulation and TPS calculation values revealed that the TPS overestimated the International Commission of Radiation Units and Measurement (ICRU) rectum and bladder reference doses by 57.78% and 49.59%, respectively. We therefore suggest that the TPS should be modified to account for the shielding effects of the applicator to ensure the accuracy of the delivered doses. PMID:26658746

  17. Determination of the tissue inhomogeneity correction in high dose rate Brachytherapy for Iridium-192 source

    PubMed Central

    Ravikumar, Barlanka; Lakshminarayana, S.

    2012-01-01

    In Brachytherapy treatment planning, the effects of tissue heterogeneities are commonly neglected due to lack of accurate, general and fast three-dimensional (3D) dose-computational algorithms. In performing dose calculations, it is assumed that the tumor and surrounding tissues constitute a uniform, homogeneous medium equivalent to water. In the recent past, three-dimensional computed tomography (3D-CT) based treatment planning for Brachytherapy applications has been popularly adopted. However, most of the current commercially available planning systems do not provide the heterogeneity corrections for Brachytherapy dosimetry. In the present study, we have measured and quantified the impact of inhomogeneity caused by different tissues with a 0.015 cc ion chamber. Measurements were carried out in wax phantom which was employed to measure the heterogeneity. Iridium-192 (192Ir) source from high dose rate (HDR) Brachytherapy machine was used as the radiation source. The reduction of dose due to tissue inhomogeneity was measured as the ratio of dose measured with different types of inhomogeneity (bone, spleen, liver, muscle and lung) to dose measured with homogeneous medium for different distances. It was observed that different tissues attenuate differently, with bone tissue showing maximum attenuation value and lung tissue resulting minimum value and rest of the tissues giving values lying in between those of bone and lung. It was also found that inhomogeneity at short distance is considerably more than that at larger distances. PMID:22363109

  18. A Monte Carlo dosimetry study using Henschke applicator for cervical brachytherapy

    NASA Astrophysics Data System (ADS)

    Yu, Pei-Chieh; Chao, Tsi-Chian; Lee, Chung-Chi; Wu, Ching-Jung; Tung, Chuan-Jong

    2010-07-01

    In recent years the Henschke applicator has been widely used for gynecologic patients treated by brachytherapy in Taiwan. However, the commercial brachytherapy planning system did not properly evaluate the dose perturbation caused by the Henschke applicator. Since the European Society for Therapeutic Radiology and Oncology advised that the effect of source shielding should be incorporated into the brachytherapy planning system, it required calculation and comparison of the dose distribution around the applicator. This study used the Monte Carlo MCNP code to simulate the dose distribution in a water phantom that contained the Henschke applicator with one tandem and two ovoids. Three dwell positions of a high dose rate 192Ir source were simulated by including and excluding the applicator. The mesh tally option of the MCNP was applied to facilitate the calculation of a large number of tallies in the phantom. The voxel size effect and the charge particle equilibrium were studied by comparing the results calculated with different tally options. The calculated results showed that the brachytherapy planning system overestimated the rectal dose and that the shielding material in the applicator contributed more than 40% to the rectal dose.

  19. Effect of photon energy spectrum on dosimetric parameters of brachytherapy sources

    PubMed Central

    Ghorbani, Mahdi; Davenport, David

    2016-01-01

    Abstract Aim The aim of this study is to quantify the influence of the photon energy spectrum of brachytherapy sources on task group No. 43 (TG-43) dosimetric parameters. Background Different photon spectra are used for a specific radionuclide in Monte Carlo simulations of brachytherapy sources. Materials and methods MCNPX code was used to simulate 125I, 103Pd, 169Yb, and 192Ir brachytherapy sources. Air kerma strength per activity, dose rate constant, radial dose function, and two dimensional (2D) anisotropy functions were calculated and isodose curves were plotted for three different photon energy spectra. The references for photon energy spectra were: published papers, Lawrence Berkeley National Laboratory (LBNL), and National Nuclear Data Center (NNDC). The data calculated by these photon energy spectra were compared. Results Dose rate constant values showed a maximum difference of 24.07% for 103Pd source with different photon energy spectra. Radial dose function values based on different spectra were relatively the same. 2D anisotropy function values showed minor differences in most of distances and angles. There was not any detectable difference between the isodose contours. Conclusions Dosimetric parameters obtained with different photon spectra were relatively the same, however it is suggested that more accurate and updated photon energy spectra be used in Monte Carlo simulations. This would allow for calculation of reliable dosimetric data for source modeling and calculation in brachytherapy treatment planning systems. PMID:27247558

  20. Development and implementation of a remote audit tool for high dose rate (HDR) Ir-192 brachytherapy using optically stimulated luminescence dosimetry

    PubMed Central

    Casey, Kevin E.; Alvarez, Paola; Kry, Stephen F.; Howell, Rebecca M.; Lawyer, Ann; Followill, David

    2013-01-01

    Purpose: The aim of this work was to create a mailable phantom with measurement accuracy suitable for Radiological Physics Center (RPC) audits of high dose-rate (HDR) brachytherapy sources at institutions participating in National Cancer Institute-funded cooperative clinical trials. Optically stimulated luminescence dosimeters (OSLDs) were chosen as the dosimeter to be used with the phantom. Methods: The authors designed and built an 8 × 8 × 10 cm3 prototype phantom that had two slots capable of holding Al2O3:C OSLDs (nanoDots; Landauer, Glenwood, IL) and a single channel capable of accepting all 192Ir HDR brachytherapy sources in current clinical use in the United States. The authors irradiated the phantom with Nucletron and Varian 192Ir HDR sources in order to determine correction factors for linearity with dose and the combined effects of irradiation energy and phantom characteristics. The phantom was then sent to eight institutions which volunteered to perform trial remote audits. Results: The linearity correction factor was kL = (−9.43 × 10−5 × dose) + 1.009, where dose is in cGy, which differed from that determined by the RPC for the same batch of dosimeters using 60Co irradiation. Separate block correction factors were determined for current versions of both Nucletron and Varian 192Ir HDR sources and these vendor-specific correction factors differed by almost 2.6%. For the Nucletron source, the correction factor was 1.026 [95% confidence interval (CI) = 1.023–1.028], and for the Varian source, it was 1.000 (95% CI = 0.995–1.005). Variations in lateral source positioning up to 0.8 mm and distal/proximal source positioning up to 10 mm had minimal effect on dose measurement accuracy. The overall dose measurement uncertainty of the system was estimated to be 2.4% and 2.5% for the Nucletron and Varian sources, respectively (95% CI). This uncertainty was sufficient to establish a ±5% acceptance criterion for source strength audits under a formal RPC

  1. Development and implementation of a remote audit tool for high dose rate (HDR) Ir-192 brachytherapy using optically stimulated luminescence dosimetry

    SciTech Connect

    Casey, Kevin E.; Kry, Stephen F.; Howell, Rebecca M.; Followill, David; Alvarez, Paola; Lawyer, Ann

    2013-11-15

    Purpose: The aim of this work was to create a mailable phantom with measurement accuracy suitable for Radiological Physics Center (RPC) audits of high dose-rate (HDR) brachytherapy sources at institutions participating in National Cancer Institute-funded cooperative clinical trials. Optically stimulated luminescence dosimeters (OSLDs) were chosen as the dosimeter to be used with the phantom.Methods: The authors designed and built an 8 × 8 × 10 cm{sup 3} prototype phantom that had two slots capable of holding Al{sub 2}O{sub 3}:C OSLDs (nanoDots; Landauer, Glenwood, IL) and a single channel capable of accepting all {sup 192}Ir HDR brachytherapy sources in current clinical use in the United States. The authors irradiated the phantom with Nucletron and Varian {sup 192}Ir HDR sources in order to determine correction factors for linearity with dose and the combined effects of irradiation energy and phantom characteristics. The phantom was then sent to eight institutions which volunteered to perform trial remote audits.Results: The linearity correction factor was k{sub L}= (−9.43 × 10{sup −5}× dose) + 1.009, where dose is in cGy, which differed from that determined by the RPC for the same batch of dosimeters using {sup 60}Co irradiation. Separate block correction factors were determined for current versions of both Nucletron and Varian {sup 192}Ir HDR sources and these vendor-specific correction factors differed by almost 2.6%. For the Nucletron source, the correction factor was 1.026 [95% confidence interval (CI) = 1.023–1.028], and for the Varian source, it was 1.000 (95% CI = 0.995–1.005). Variations in lateral source positioning up to 0.8 mm and distal/proximal source positioning up to 10 mm had minimal effect on dose measurement accuracy. The overall dose measurement uncertainty of the system was estimated to be 2.4% and 2.5% for the Nucletron and Varian sources, respectively (95% CI). This uncertainty was sufficient to establish a ±5% acceptance

  2. How Is Disseminated Intravascular Coagulation Treated?

    MedlinePlus

    ... the NHLBI on Twitter. How Is Disseminated Intravascular Coagulation Treated? Treatment for disseminated intravascular coagulation (DIC) depends ... and treat the underlying cause. Acute Disseminated Intravascular Coagulation People who have acute DIC may have severe ...

  3. Monte Carlo model for a prototype CT-compatible, anatomically adaptive, shielded intracavitary brachytherapy applicator for the treatment of cervical cancer

    SciTech Connect

    Price, Michael J.; Gifford, Kent A.; Horton, John L. Jr.; Eifel, Patricia J.; Gillin, Michael T.; Lawyer, Ann A.; Mourtada, Firas

    2009-09-15

    Purpose: Current, clinically applicable intracavitary brachytherapy applicators that utilize shielded ovoids contain a pair of tungsten-alloy shields which serve to reduce dose delivered to the rectum and bladder during source afterloading. After applicator insertion, these fixed shields are not necessarily positioned to provide optimal shielding of these critical structures due to variations in patient anatomies. The authors present a dosimetric evaluation of a novel prototype intracavitary brachytherapy ovoid [anatomically adaptive applicator (A{sup 3})], featuring a single shield whose position can be adjusted with two degrees of freedom: Rotation about and translation along the long axis of the ovoid. Methods: The dosimetry of the device for a HDR {sup 192}Ir was characterized using radiochromic film measurements for various shield orientations. A MCNPX Monte Carlo model was developed of the prototype ovoid and integrated with a previously validated model of a v2 mHDR {sup 192}Ir source (Nucletron Co.). The model was validated for three distinct shield orientations using film measurements. Results: For the most complex case, 91% of the absolute simulated and measured dose points agreed within 2% or 2 mm and 96% agreed within 10% or 2 mm. Conclusions: Validation of the Monte Carlo model facilitates future investigations into any dosimetric advantages the use of the A{sup 3} may have over the current state of art with respect to optimization and customization of dose delivery as a function of patient anatomical geometries.

  4. Dose specification and quality assurance of RTOG protocol 95-17; a cooperative group study of 192Ir breast implants as sole therapy

    PubMed Central

    Ibbott, Geoffrey S.; Hanson, W.F.; Martin, Elizabeth; Kuske, Robert R.; Arthur, Douglas; Rabinovitch, Rachel; White, Julia; Wilenzick, Raymond M.; Harris, Irene; Tailor, Ramesh C.

    2007-01-01

    Purpose RTOG protocol 95-17 was a phase I/II trial to evaluate multi-catheter brachytherapy as the sole method of adjuvant breast radiotherapy for stage I/II breast carcinoma following breast conserving surgery. Low or high dose rate sources were allowed. Dose prescription and treatment evaluation were based on recommendations in ICRU Report 58, and included the parameters mean central dose (MCD), average peripheral dose, dose homogeneity index (DHI), and the dimensions of the low and high dose regions. Methods and Materials Three levels of quality assurance were implemented: (1) Credentialing of institutions was required prior to entering patients onto the study. (2) Rapid review of each treatment plan was conducted prior to treatment, and (3) Retrospective review was performed by the Radiological Physics Center in conjunction with the study chairman and RTOG dosimetry staff. Results Credentialing focused on the accuracy of dose calculation algorithm and compliance with protocol guidelines. Rapid review was designed to identify and correct deviations from the protocol prior to treatment. The retrospective review involved recalculation of dosimetry parameters and review of dose distributions to evaluate the treatment. Specifying both central and peripheral doses resulted in uniform dose distributions, with a mean dose homogeneity index of 0.83 ±0.06. Conclusions Vigorous quality assurance resulted in a high-quality study with few deviations; only 4 of 100 patients were judged as minor variations from protocol and no patient was judged a major deviation. This study should be considered a model for quality assurance of future trials. PMID:18035213

  5. Disseminated intravascular coagulation.

    PubMed

    Gando, Satoshi; Levi, Marcel; Toh, Cheng-Hock

    2016-01-01

    Disseminated intravascular coagulation (DIC) is an acquired syndrome characterized by widespread intravascular activation of coagulation that can be caused by infectious insults (such as sepsis) and non-infectious insults (such as trauma). The main pathophysiological mechanisms of DIC are inflammatory cytokine-initiated activation of tissue factor-dependent coagulation, insufficient control of anticoagulant pathways and plasminogen activator inhibitor 1-mediated suppression of fibrinolysis. Together, these changes give rise to endothelial dysfunction and microvascular thrombosis, which can cause organ dysfunction and seriously affect patient prognosis. Recent observations have pointed to an important role for extracellular DNA and DNA-binding proteins, such as histones, in the pathogenesis of DIC. The International Society on Thrombosis and Haemostasis (ISTH) established a DIC diagnostic scoring system consisting of global haemostatic test parameters. This scoring system has now been well validated in diverse clinical settings. The theoretical cornerstone of DIC management is the specific and vigorous treatment of the underlying conditions, and DIC should be simultaneously managed to improve patient outcomes. The ISTH guidance for the treatment of DIC recommends treatment strategies that are based on current evidence. In this Primer, we provide an updated overview of the pathophysiology, diagnosis and management of DIC and discuss the future directions of basic and clinical research in this field. PMID:27250996

  6. Source position verification and dosimetry in HDR brachytherapy using an EPID

    SciTech Connect

    Smith, R. L.; Taylor, M. L.; McDermott, L. N.; Franich, R. D.; Haworth, A.; Millar, J. L.

    2013-11-15

    Purpose: Accurate treatment delivery in high dose rate (HDR) brachytherapy requires correct source dwell positions and dwell times to be administered relative to each other and to the surrounding anatomy. Treatment delivery inaccuracies predominantly occur for two reasons: (i) anatomical movement or (ii) as a result of human errors that are usually related to incorrect implementation of the planned treatment. Electronic portal imaging devices (EPIDs) were originally developed for patient position verification in external beam radiotherapy and their application has been extended to provide dosimetric information. The authors have characterized the response of an EPID for use with an {sup 192}Ir brachytherapy source to demonstrate its use as a verification device, providing both source position and dosimetric information.Methods: Characterization of the EPID response using an {sup 192}Ir brachytherapy source included investigations of reproducibility, linearity with dose rate, photon energy dependence, and charge build-up effects associated with exposure time and image acquisition time. Source position resolution in three dimensions was determined. To illustrate treatment verification, a simple treatment plan was delivered to a phantom and the measured EPID dose distribution compared with the planned dose.Results: The mean absolute source position error in the plane parallel to the EPID, for dwells measured at 50, 100, and 150 mm source to detector distances (SDD), was determined to be 0.26 mm. The resolution of the z coordinate (perpendicular distance from detector plane) is SDD dependent with 95% confidence intervals of ±0.1, ±0.5, and ±2.0 mm at SDDs of 50, 100, and 150 mm, respectively. The response of the EPID is highly linear to dose rate. The EPID exhibits an over-response to low energy incident photons and this nonlinearity is incorporated into the dose calibration procedure. A distance (spectral) dependent dose rate calibration procedure has been

  7. Reply to the comment on ‘Monte Carlo calculated microdosimetric spread for cell nucleus-sized targets exposed to brachytherapy 125I and 192Ir sources and 60Co cell irradiation’

    NASA Astrophysics Data System (ADS)

    Villegas, F.; Ahnesjö, A.

    2016-07-01

    A discrepancy between the Monte Carlo derived relative standard deviation σ z\\text{rel} (microdosimetric spread) and experimental data was reported by Villegas et al (2013 Phys. Med. Biol. 58 6149–62) suggesting wall effects as a plausible explanation. The comment by Lindborg et al (2015 Phys. Med. Biol. 60 8621–4) concludes that this is not a likely explanation. A thorough investigation of the Monte Carlo (MC) transport code used for track simulation revealed a critical bug. The corrected MC version yielded σ z\\text{rel} values that are now within experimental uncertainty. Other microdosimetric findings are hereby communicated.

  8. Comment on ‘Monte Carlo calculated microdosimetric spread for cell nucleus-sized targets exposed to brachytherapy 125I and 192Ir sources and 60Co cell irradiation’

    NASA Astrophysics Data System (ADS)

    Lindborg, Lennart; Lillhök, Jan; Grindborg, Jan-Erik

    2015-11-01

    The relative standard deviation, σr,D, of calculated multi-event distributions of specific energy for 60Co ϒ rays was reported by the authors F Villegas, N Tilly and A Ahnesjö (Phys. Med. Biol. 58 6149-62). The calculations were made with an upgraded version of the Monte Carlo code PENELOPE. When the results were compared to results derived from experiments with the variance method and simulated tissue equivalent volumes in the micrometre range a difference of about 50% was found. Villegas et al suggest wall-effects as the likely explanation for the difference. In this comment we review some publications on wall-effects and conclude that wall-effects are not a likely explanation.

  9. Dosimetric characteristics and a standard for the (198)gold seed used in interstitial brachytherapy

    NASA Astrophysics Data System (ADS)

    Dauffy, Lucile S.

    Cancer of the prostate can be treated in different ways. One of them, brachytherapy, is an internal irradiation method consisting of the placement of radioactive sources, called seeds, into the tumor. This work deals with the dosimetry of the 198Au interstitial brachytherapy source. In order to facilitate its clinical use and to obtain the data to be employed in the latest treatment planning systems, new quantities and a potential calibration standard are studied. These quantities, based on dose rates, were recommended in 1995 by the American Association of Physicists in Medicine Task Group 43, AAPM TG-43, and have not previously been obtained for 198Au. They are measured in a solid water phantom using thermoluminescent detectors, and calculated using the Monte Carlo N-Particle code, MCNP, and simple analytic models. In the last part of this work, the "198Au equivalent" activity of 137Cs and 192Ir surrogate seeds is calculated since the National Institute of Standards and Technology, NIST, does not provide a standard for the short half-life 198Au source that would allow checking the activity of the seeds before use on patients. This calculation is done by simulating the response of the Sun Nuclear ionization chamber, model 1008, with MCNP 4C. The air kerma strength, Sk, per unit apparent activity is found equal to 2.0627 (MCNP) and 2.0889 U mCi-1 (measured). Sk per unit activity is 1.8050 U mCi-1 (MCNP). The dose rate constant per unit apparent activity, Λ/Aapp, is equal to 2.3099 (MCNP) and 2.2878 cGy h-1 mCi -1 (measured). This same quantity per unit air kerma strength is 1.1198 (MCNP) and 1.0952 cGy h-1 U-1 (measured). The values of the radial dose function, g(r), the anisotropy function, F(r,θ), the anisotropy factor, φan(r), and the anisotropy constant are also given. Finally, the "198Au equivalent" activity for the 192Ir surrogate seed is equal to 1.9549 times the real activity of the 192Ir seed, and that for the 137Cs surrogate seed is 1.4895 times its

  10. Dose rate constant and energy spectrum of interstitial brachytherapy sources.

    PubMed

    Chen, Z; Nath, R

    2001-01-01

    In the past two years, several new manufacturers have begun to market low-energy interstitial brachytherapy seeds containing 125I and 103Pd. Parallel to this development, the National Institute of Standards and Technology (NIST) has implemented a modification to the air-kerma strength (S(K)) standard for 125I seeds and has also established an S(K) standard for 103Pd seeds. These events have generated a considerable number of investigations on the determination of the dose rate constants (inverted V) of interstitial brachytherapy seeds. The aim of this work is to study the general properties underlying the determination of dose rate constant and to develop a simple method for a quick and accurate estimation of dose rate constant. As the dose rate constant of clinical seeds is defined at a fixed reference point, we postulated that dose rate constant may be calculated by treating the seed as an effective point source when the seed's source strength is specified in S(K) and its source characteristics are specified by the photon energy spectrum measured in air at the reference point. Using a semi-analytic approach, an analytic expression for dose rate constant was derived for point sources with known photon energy spectra. This approach enabled a systematic study of dose rate constant as a function of energy. Using the measured energy spectra, the calculated dose rate constant for 125I model 6711 and 6702 seeds and for 192Ir seed agreed with the AAPM recommended values within +/-1%. For the 103Pd model 200 seed, the agreement was 5% with a recently measured value (within the +/-7% experimental uncertainty) and was within 1% with the Monte Carlo simulations. The analytic expression for dose rate constant proposed here can be evaluated using a programmable calculator or a simple spreadsheet and it provides an efficient method for checking the measured dose rate constant for any interstitial brachytherapy seed once the energy spectrum of the seed is known. PMID:11213926

  11. High-dose-rate (HDR) brachytherapy for the treatment of benign obstructive endobronchial granulation tissue

    SciTech Connect

    Madu, Chika N. . E-mail: chikam@xrt.upenn.edu; Machuzak, Michael S.; Sterman, Daniel H.; Musani, Ali; Ahya, Vivek; McDonough, James; Metz, James M.

    2006-12-01

    Background: Severe airway obstruction can occur in the setting of benign granulation tissue forming at bronchial anastomotic sites after lung transplantation in up to 20% of patients. Many of these benign lesions respond to stent placement, laser ablation, or balloon bronchoplasty. However, in certain cases, proliferation of granulation tissue may persist despite all therapeutic attempts. This study describes a series of refractory patients treated with high-dose-rate (HDR) brachytherapy for benign proliferation of granulation tissue, causing airway compromise. Methods and Materials: Between April 2002 and June 2005, 5 patients with significant airway compromise from recurrent granulation tissue were treated with HDR brachytherapy. All patients had previously failed to maintain a patent airway despite multiple bronchoscopic interventions. Treatment was delivered using an HDR brachytherapy afterloader with {sup 192}Ir. Dose prescription was to a depth of 1 cm. All patients were treated weekly, with total doses ranging from 10 Gy to 21 Gy in two to three fractions. Results: The median follow-up was 12 months. All patients experienced a reduction in therapeutic bronchoscopic procedures after HDR brachytherapy compared with the pretreatment period. With the exception of possible radiation-induced bronchitis in 1 patient, there were no other treatment related complications. At the time of this report, 2 patients have died and the other 3 are alive with marked symptomatic improvement and reduced bronchoscopic procedures. Conclusion: High-dose-rate brachytherapy is an effective treatment for benign proliferation of granulation tissue causing airway obstruction. The early response to therapy is encouraging and further follow-up is necessary to determine long-term durability and late effects.

  12. HDR brachytherapy of rectal cancer using a novel grooved-shielding applicator design

    SciTech Connect

    Webster, Matthew J.; Devic, Slobodan; Vuong, Te; Han, Dae Yup; Scanderbeg, Dan; Choi, Dongju; Song, Bongyong; Song, William Y.

    2013-09-15

    Purpose: The aim of this work was to design a novel high-dose rate (HDR) ({sup 192}Ir) brachytherapy applicator for treatment of rectal carcinomas that uses tungsten shielding for possibly improved dosimetric results over commercial brachytherapy applicator(s).Methods: A set of 15 single-depth applicators and one dual-depth applicator were designed and simulated using Monte Carlo (MCNPX). All applicators simulated were high-density tungsten alloy cylinders, 16-mm in diameter, and 60-mm long, with longitudinal grooves within which an {sup 192}Ir source can be placed. The single-depth designs varied regarding the number and depth of these grooves, ranging from 8 to 16 and 1-mm to 3-mm, respectively. The dual-depth design had ten channels, each of which had two depths at which the source could be placed. Optimized treatment plans were generated for each design on data from 13 treated patients (36 fractions) with asymmetrical clinical target volumes (CTVs). All results were compared against the clinically treated plans which used intracavitary mold applicator (ICMA), as well as a recently designed, highly automated, and collimated intensity modulation device named dynamic modulated brachytherapy (DMBT) device.Results: All applicator designs outperformed the ICMA in every calculated dosimetric criteria, except the total dwell times (∼30% increase). There were clear, but relative, tradeoffs regarding both the number of channels and the depth of each channel. Overall, the 12-channel, 1-mm depth, and 14-channel 2-mm depth designs had the best results of the simpler designs, sparing the healthy rectal tissues the most while achieving comparable CTV coverage with the dose heterogeneity index and lateral spill doses improving by over 10% and the contralateral healthy rectum dose dropping over 30% compared to ICMA. The ten-channel dual-depth design outperformed each single-depth design, yielding the best coverage and sparing.Conclusions: New grooved tungsten HDR-brachytherapy

  13. Determination of the Sensibility Factors for TLD-100 Powder on the Energy of X-Ray of 50, 250 kVp; 192Ir, 137Cs and 60Co

    SciTech Connect

    Loaiza, Sandra P.; Alvarez, Jose T.

    2006-09-08

    TLD-100 powder is calibrated in terms of absorbed dose to water Dw, using the protocols AAPM TG61, AAPM TG43 and IAEA-TRS 398, for the energy of RX 50, 250 kVp, 137Cs and 60Co respectively. The calibration curves, TLD Response R versus Dw, are fitted by weighted least square by a quadratic polynomials; which are validated with the lack of fit and the Anderson-Darling normality test. The slope of these curves corresponds to the sensibility factor: Fs R/DW, [Fs] = nC Gy-1. The expanded uncertainties U's for these factors are obtained from the ANOVA tables. Later, the Fs' values are interpolated using the effective energy hvefec for the 192Ir. The SSDL sent a set of capsules with powder TLD-100 for two Hospitals. These irradiated them a nominal dose of Dw = 2 Gy. The results determined at SSDL are: for the Hospital A the Dw is overestimated in order to 4.8% and the Hospital B underestimates it in the range from -1.4% to -17.5%.

  14. Harmony search optimization for HDR prostate brachytherapy

    NASA Astrophysics Data System (ADS)

    Panchal, Aditya

    In high dose-rate (HDR) prostate brachytherapy, multiple catheters are inserted interstitially into the target volume. The process of treating the prostate involves calculating and determining the best dose distribution to the target and organs-at-risk by means of optimizing the time that the radioactive source dwells at specified positions within the catheters. It is the goal of this work to investigate the use of a new optimization algorithm, known as Harmony Search, in order to optimize dwell times for HDR prostate brachytherapy. The new algorithm was tested on 9 different patients and also compared with the genetic algorithm. Simulations were performed to determine the optimal value of the Harmony Search parameters. Finally, multithreading of the simulation was examined to determine potential benefits. First, a simulation environment was created using the Python programming language and the wxPython graphical interface toolkit, which was necessary to run repeated optimizations. DICOM RT data from Varian BrachyVision was parsed and used to obtain patient anatomy and HDR catheter information. Once the structures were indexed, the volume of each structure was determined and compared to the original volume calculated in BrachyVision for validation. Dose was calculated using the AAPM TG-43 point source model of the GammaMed 192Ir HDR source and was validated against Varian BrachyVision. A DVH-based objective function was created and used for the optimization simulation. Harmony Search and the genetic algorithm were implemented as optimization algorithms for the simulation and were compared against each other. The optimal values for Harmony Search parameters (Harmony Memory Size [HMS], Harmony Memory Considering Rate [HMCR], and Pitch Adjusting Rate [PAR]) were also determined. Lastly, the simulation was modified to use multiple threads of execution in order to achieve faster computational times. Experimental results show that the volume calculation that was

  15. [In-phantom dosimetric measurements as quality control for brachytherapy: System check and constancy check].

    PubMed

    Kollefrath, Michael; Bruggmoser, Gregor; Nanko, Norbert; Gainey, Mark

    2015-06-01

    In brachytherapy dosimetric measurements are difficult due to the inherent dose-inhomogenieties. Typically in routine clincal practice only the nominal dose rate is determined for computer controlled afterloading systems. The region of interest lies close to the source when measuring the spatial dose distribution. In this region small errors in the postioning of the detector, and its finite size, lead to large measurement uncertainties that exacerbate the routine dosimetric control of the system in the clinic. The size of the measurement chamber, its energy dependence, and the directional dependence of the measurement apparatus are the factors which have a significant influence on dosimetry. Although ionisation chambers are relatively large, they are employed since similar chambers are commonly found on clincal brachytherapy units. The dose is determined using DIN 6800 [11] since DIN 6809-2 [12], which deals with dosimetry in brachytherapy, is antiquated and is currently in the process of revision. Further information regarding dosimetry for brachytherapy can be found in textbooks [1] and [2]. The measurements for this work were performed with a HDR (High-Dose-Rate) (192)Ir source, type mHDR V2, and a Microselectron Afterloader V2 both from Nucletron/Elekta. In this work two dosimetric procedures are presented which, despite the aforemention difficulties, should assist in performing checks of the proper operation of the system. The first is a system check that measures the dose distribution along a line and is to be performed when first bringing the afterloader into operation, or after significant changes to the system. The other is a dosimetric constancy check, which with little effort can be performed monhtly or weekly. It simultaneously verifies the positioning of the source at two positions, the functionality of the system clock and the automatic re-calculation of the source activity. PMID:25791738

  16. SU-C-16A-03: Direction Modulated Brachytherapy for HDR Treatment of Cervical Cancer

    SciTech Connect

    Han, D; Webster, M; Scanderbeg, D; Yashar, C; Choi, D; Song, B; Song, W; Devic, S; Ravi, A

    2014-06-15

    Purpose: To investigate a new Directional Modulated Brachytherapy (DMBT) intra-uterine tandem using various 192-Ir after-loaders. Methods: Dose distributions from the 192-Ir sources were modulated using a 6.3mm diameter tungsten shield (18.0g/cm3). The source moved along 6 longitudinal grooves, each 1.3mm in diameter, evenly spaced along periphery of the shield, The tungsten rod was enclosqed by 0.5mm thick Delrin (1.41g/cc). Monte Carlo N particle (MCNPX) was used to calculate dose distributions. 51million particles were calculated on 504 cores of a supercomputer. Fifteen different patients originally treated with a traditional tandem-and-ovoid applicator, with 5 fractions each, (15 patients X 5 fxs = 75 plans) were re-planned with the DMBT applicator combined with traditional ovoids, on an in-house developed HDR brachytherapy planning platform, which used intensity modulated planning capabilities using a constrained gradient optimization algorithm. For all plans the prescription dose was 6 Gy and they were normalized to match the clinical treated V100. Results: Generally, the DMBT plan quality was a remarkable improvement from conventional T and O plans because of the anisotropic dose distribution of DMBT. The largest difference was to the bladder which had a 0.59±0.87 Gy (8.5±28.7%) reduction in dose. This was because of the the horseshoe shape (U-shape) of the bladder. The dose reduction to rectum and sigmoid were 0.48±0.55 Gy (21.1±27.2%) and 0.10±0.38 Gy (40.6±214.9%), respectively. The D90 to the HRCTV was 6.55±0.96 Gy (conventional T and O) and 6.59±1.06 Gy (DMBT). Conclusion: For image guided adaptive brachytherapy, greater flexibility of radiation intensity is essential and DMBT can be the solution.

  17. BrachyGuide: a brachytherapy-dedicated DICOM RT viewer and interface to Monte Carlo simulation software.

    PubMed

    Pantelis, Evaggelos; Peppa, Vassiliki; Lahanas, Vasileios; Pappas, Eleftherios; Papagiannis, Panagiotis

    2015-01-01

    This work presents BrachyGuide, a brachytherapy-dedicated software tool for the automatic preparation of input files for Monte Carlo simulation from treatment plans exported in DICOM RT format, and results of calculations performed for its benchmarking. Three plans were prepared using two computational models, the image series of a water sphere and a multicatheter breast brachytherapy patient, for each of two commercially available treatment planning systems: BrachyVision and Oncentra Brachy. One plan involved a single source dwell position of an 192Ir HDR source (VS2000 or mHDR-v2) at the center of the water sphere using the TG43 algorithm, and the other two corresponded to the TG43 and advanced dose calculation algorithm for the multicatheter breast brachytherapy patient. Monte Carlo input files were prepared using BrachyGuide and simulations were performed with MCNP v.6.1. For the TG43 patient plans, the Monte Carlo computational model was manually edited in the prepared input files to resemble TG43 dosimetry assumptions. Hence all DICOM RT dose exports were equivalent to corresponding simulation results and their comparison was used for benchmarking the use of BrachyGuide. Monte Carlo simulation results and corresponding DICOM RT dose exports agree within type A uncertainties in the majority of points in the computational models. Treatment planning system, algorithm, and source specific differences greater than type A uncertainties were also observed, but these were explained by treatment planning system-related issues and other sources of type B uncertainty. These differences have to be taken into account in commissioning procedures of brachytherapy dosimetry algorithms. BrachyGuide is accurate and effective for use in the preparation of commissioning tests for new brachytherapy dosimetry algorithms as a user-oriented commissioning tool and the expedition of retrospective patient cohort studies of dosimetry planning. PMID:25679171

  18. Does the Entire Uterus Need to be Treated in Cancer of the Cervix? Role of Adaptive Brachytherapy

    SciTech Connect

    Anker, Christopher J.; Cachoeira, Charles V.; Boucher, Kenneth M.; Rankin, Jim M.S.; Gaffney, David K.

    2010-03-01

    Purpose: To evaluate local control and toxicity by use of a method of adaptive cervical brachytherapy (ACB). Methods and Materials: From 1998 to 2008, we identified 65 cervical cancer patients with FIGO (International Federation of Gynecology and Obstetrics) Stage IB1-IVA disease who received definitive external beam radiation therapy and high-dose rate brachytherapy with tandem and ovoid applicators. As tumors regressed, 45 of 65 patients had the tandem source retracted from the uterine fundus at successive brachytherapy insertions, thus decreasing the number of {sup 192}Ir dwell positions. Tests of trend and Fisher's exact test were used to identify the effect of ACB on disease control and toxicity. Kaplan-Meier analyses were performed to evaluate disease control and late complications. Results: The median follow-up was 24.5 months. Of the patients, 92% received chemotherapy. The 3-year overall survival, 3-year disease-free survival, 3-year distant metastasis-free survival, and local control rates were 67%, 76%, 79%, and 97%, respectively. There was only 1 isolated local failure, and there were no local failures beyond 1 year. Distant failure was involved in 93% of recurrences. No significant trend was identified regarding the extent of retraction of the tandem source start position with either failure or toxicity. Acute and actuarial 3-year late Grade 3 toxicity or greater occurred in 24.6% and 17% of patients, respectively. Conclusions: ACB determined by clinical response yielded excellent local control rates. These data indicate that ACB may be useful in decreasing late toxicities from high-dose rate brachytherapy. With the advent of three-dimensional image-guided brachytherapy, additional methods to adapt treatment technique to changes in tumor volume warrant investigation.

  19. Dosimetric characterization of surface applicators for use with high dose rate Iridium-192 and electronic brachytherapy sources

    NASA Astrophysics Data System (ADS)

    Fulkerson, Regina Kennedy

    Historically, treatment of malignant surface lesions has been achieved with linear accelerator based electron beams or superficial x-ray beams. Recent developments in the field of brachytherapy now allow for the treatment of surface lesions with specialized conical applicators placed directly on the lesion. Applicators are available for use with high dose rate 192Ir sources, as well as electronic brachytherapy sources. Although use of these applicators has gained in popularity, the dosimetric characteristics including depth dose and surface dose distributions have not been independently verified. Additionally, there is no recognized method of output verification for quality assurance procedures with applicators like these. Existing dosimetry protocols available from the American Association of Physicists in Medicine (AAPM) bookend the cross-over characteristics of a traditional brachytherapy source (as described by Task Group 43) being implemented as a low-energy superficial x-ray beam (as described by Task Group 61) as observed with the surface applicators of interest. This thesis work aims to create a cohesive method of output verification that can be used to determine the dose at the treatment surface as part of a quality assurance/commissioning process for surface applicators used with high dose rate 192Ir and electronic brachytherapy sources. Air-kerma rate measurements were completed with an Attix Free-Air Chamber, as well as several models of small-volume ionization chambers to obtain an air-kerma rate at the treatment surface for each applicator. Correction factors were calculated using MCNP5 and EGSnrc Monte Carlo codes in order to determine an applicator-specific absorbed dose to water at the treatment surface from the measured air-kerma rate. Additionally, relative dose measurements of the surface dose distributions and characteristic depth dose curves were completed in-phantom and in-water. Theoretical dose distributions and depth dose curves were

  20. Image Processing in Intravascular OCT

    NASA Astrophysics Data System (ADS)

    Wang, Zhao; Wilson, David L.; Bezerra, Hiram G.; Rollins, Andrew M.

    Coronary artery disease is the leading cause of death in the world. Intravascular optical coherence tomography (IVOCT) is rapidly becoming a promising imaging modality for characterization of atherosclerotic plaques and evaluation of coronary stenting. OCT has several unique advantages over alternative technologies, such as intravascular ultrasound (IVUS), due to its better resolution and contrast. For example, OCT is currently the only imaging modality that can measure the thickness of the fibrous cap of an atherosclerotic plaque in vivo. OCT also has the ability to accurately assess the coverage of individual stent struts by neointimal tissue over time. However, it is extremely time-consuming to analyze IVOCT images manually to derive quantitative diagnostic metrics. In this chapter, we introduce some computer-aided methods to automate the common IVOCT image analysis tasks.

  1. Comparison BIPM.RI(I)-K8 of high dose-rate Ir-192 brachytherapy standards for reference air kerma rate of the PTB and the BIPM

    NASA Astrophysics Data System (ADS)

    Kessler, C.; Allisy-Roberts, P. J.; Selbach, H. J.

    2015-01-01

    An indirect comparison of the standards for reference air kerma rate (RAKR) for 192Ir high dose rate (HDR) brachytherapy sources of the Physikalisch-Technische Bundesanstalt (PTB), Germany, and of the Bureau International des Poids et Mesures (BIPM) was carried out at the PTB in September 2011. The comparison result, based on the calibration coefficients for a transfer standard and expressed as a ratio of the PTB and the BIPM standards for reference air kerma rate, is 1.0003 with a combined standard uncertainty of 0.0099. Main text. To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by the CCRI, according to the provisions of the CIPM Mutual Recognition Arrangement (CIPM MRA).

  2. Comparison BIPM.RI(I)-K8 of high dose-rate Ir-192 brachytherapy standards for reference air kerma rate of the NRC and the BIPM

    NASA Astrophysics Data System (ADS)

    Kessler, C.; Downton, B.; Mainegra-Hing, E.

    2015-01-01

    An indirect comparison of the standards for reference air kerma rate for 192Ir high dose rate (HDR) brachytherapy sources of the National Research Council (NRC), Canada, and of the Bureau International des Poids et Mesures (BIPM) was carried out at the NRC in August 2014. The comparison result, based on the calibration coefficients for a transfer standard and expressed as a ratio of the NRC and the BIPM standards for reference air kerma rate, is 0.9966 with a combined standard uncertainty of 0.0050. Main text. To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by the CCRI, according to the provisions of the CIPM Mutual Recognition Arrangement (CIPM MRA).

  3. Comparison BIPM.RI(I)-K8 of high dose-rate Ir-192 brachytherapy standards for reference air kerma rate of the NMIJ and the BIPM

    NASA Astrophysics Data System (ADS)

    Kessler, C.; Kurosawa, T.; Mikamoto, T.

    2016-01-01

    An indirect comparison of the standards for reference air kerma rate for 192Ir high dose rate (HDR) brachytherapy sources of the National Metrology Institute of Japan (AIST-NMIJ), Japan, and of the Bureau International des Poids et Mesures (BIPM) was carried out at the Japan Radioisotope Association (JRIA) in April 2015. The comparison result, based on the calibration coefficients for a transfer standard and expressed as a ratio of the NMIJ and the BIPM standards for reference air kerma rate, is 1.0036 with a combined standard uncertainty of 0.0054. Main text To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by the CCRI, according to the provisions of the CIPM Mutual Recognition Arrangement (CIPM MRA).

  4. Monte Carlo Dosimetry of the 60Co BEBIG High Dose Rate for Brachytherapy

    PubMed Central

    Campos, Luciana Tourinho; de Almeida, Carlos Eduardo Veloso

    2015-01-01

    Introduction The use of high-dose-rate brachytherapy is currently a widespread practice worldwide. The most common isotope source is 192Ir, but 60Co is also becoming available for HDR. One of main advantages of 60Co compared to 192Ir is the economic and practical benefit because of its longer half-live, which is 5.27 years. Recently, Eckert & Ziegler BEBIG, Germany, introduced a new afterloading brachytherapy machine (MultiSource®); it has the option to use either the 60Co or 192Ir HDR source. The source for the Monte Carlo calculations is the new 60Co source (model Co0.A86), which is referred to as the new BEBIG 60Co HDR source and is a modified version of the 60Co source (model GK60M21), which is also from BEBIG. Objective and Methods The purpose of this work is to obtain the dosimetry parameters in accordance with the AAPM TG-43U1 formalism with Monte Carlo calculations regarding the BEBIG 60Co high-dose-rate brachytherapy to investigate the required treatment-planning parameters. The geometric design and material details of the source was provided by the manufacturer and was used to define the Monte Carlo geometry. To validate the source geometry, a few dosimetry parameters had to be calculated according to the AAPM TG-43U1 formalism. The dosimetry studies included the calculation of the air kerma strength Sk, collision kerma in water along the transverse axis with an unbounded phantom, dose rate constant and radial dose function. The Monte Carlo code system that was used was EGSnrc with a new cavity code, which is a part of EGS++ that allows calculating the radial dose function around the source. The spectrum to simulate 60Co was composed of two photon energies, 1.17 and 1.33 MeV. Only the gamma part of the spectrum was used; the contribution of the electrons to the dose is negligible because of the full absorption by the stainless-steel wall around the metallic 60Co. The XCOM photon cross-section library was used in subsequent simulations, and the

  5. Investigations into the Optimization of Multi-Source Strength Brachytherapy Treatment Procedures

    SciTech Connect

    D. L. Henderson; S. Yoo; B.R. Thomadsen

    2002-09-30

    The goal of this project is to investigate the use of multi-strength and multi-specie radioactive sources in permanent prostate implant brachytherapy. In order to fulfill the requirement for an optimal dose distribution, the prescribed dose should be delivered to the target in a nearly uniform dose distribution while simultaneously sparing sensitive structures. The treatment plan should use a small number of needles and sources while satisfying the treatment requirements. The hypothesis for the use of multi-strength and/or multi-specie sources is that a better treatment plan using fewer sources and needles could be obtained than by treatment plans using single-strength sources could reduce the overall number of sources used for treatment. We employ a recently developed greedy algorithm based on the adjoint concept as the optimization search engine. The algorithm utilizes and ''adjoint ratio'', which provides a means of ranking source positions, as the pseudo-objective function. It ha s been shown that the greedy algorithm can solve the optimization problem efficiently and arrives at a clinically acceptable solution in less than 10 seconds. Our study was inclusive, that is there was no combination of sources that clearly stood out from the others and could therefore be considered the preferred set of sources for treatment planning. Source strengths of 0.2 mCi (low), 0.4 mCi (medium), and 0.6 mCi (high) of {sup 125}I in four different combinations were used for the multi-strength source study. The combination of high- and medium-strength sources achieved a more uniform target dose distribution due to few source implants whereas the combination of low-and medium-strength sources achieved better sparing of sensitive tissues including that of the single-strength 0.4 mCi base case. {sup 125}I at 0.4 mCi and {sup 192}Ir at 0.12 mCi and 0.25 mCi source strengths were used for the multi-specie source study. This study also proved inconclusive , Treatment plans using a

  6. Surgical resection with adjuvant brachytherapy in soft tissue sarcoma of the extremity – a case report

    PubMed Central

    Łyczek, Jarosław; Kowalik, Łukasz

    2012-01-01

    Purpose Surgery is the major therapeutic method in soft tissue sarcomas of the extremity (E-STS). Treatment of large high-grade tumours, which resection cannot be performed with a wide safe margin, should include complementary radiation and/or chemo-therapy. Hopefully, the use of adjuvant brachytherapy will improve the prognosis of E-STS. Case description After a long process of diagnosing a tumour in the medial compartment of the thigh, a 65-year-old woman with diagnosed synovial sarcoma underwent a surgery. Compartment resection was performed and the tumour was removed with a 10 mm safety margin of healthy tissue. Adjuvant brachytherapy was delivered with 192Ir (MicroSelectron, Nucletron Electa Group, Stockholm, Sweden®) with 10 Ci of nominal activity to a dose of 55 Gy in 16 days because of large tumour size (99 × 78 × 73 mm) and its proximity to the neurovascular bundle. No complications were reported. The patient was discharged from the hospital on the 28th day after the surgery. The wound healed without any complications and the outpatient follow-up is being continued. Discussion Adjuvant brachytherapy is rarely used after surgical treatment due to its limited accessibility in hospitals with surgical and orthopaedic departments. There are numerous publications proving positive influence of brachytherapy on local control and decreased number of recurrences. The recurrence-free survival time also increased significantly, however no direct impact on the number of distant metastases was found. Treatment is well tolerated and short. The complication rate varies between centres from 5 to 30%. The most common adverse effects include: peripheral neuropathy, skin necrosis and osteonecrosis of the long bones. Conclusions Treatment of large soft tissue sarcomas of the extremity (E-STS) should include combination of surgical intervention and external beam radiotherapy or brachytherapy. Adjuvant brachytherapy improves local control rate up to 78%, is well tolerated and

  7. The use of tetrahedral mesh geometries in Monte Carlo simulation of applicator based brachytherapy dose distributions.

    PubMed

    Fonseca, Gabriel Paiva; Landry, Guillaume; White, Shane; D'Amours, Michel; Yoriyaz, Hélio; Beaulieu, Luc; Reniers, Brigitte; Verhaegen, Frank

    2014-10-01

    Accounting for brachytherapy applicator attenuation is part of the recommendations from the recent report of AAPM Task Group 186. To do so, model based dose calculation algorithms require accurate modelling of the applicator geometry. This can be non-trivial in the case of irregularly shaped applicators such as the Fletcher Williamson gynaecological applicator or balloon applicators with possibly irregular shapes employed in accelerated partial breast irradiation (APBI) performed using electronic brachytherapy sources (EBS). While many of these applicators can be modelled using constructive solid geometry (CSG), the latter may be difficult and time-consuming. Alternatively, these complex geometries can be modelled using tessellated geometries such as tetrahedral meshes (mesh geometries (MG)). Recent versions of Monte Carlo (MC) codes Geant4 and MCNP6 allow for the use of MG. The goal of this work was to model a series of applicators relevant to brachytherapy using MG. Applicators designed for (192)Ir sources and 50 kV EBS were studied; a shielded vaginal applicator, a shielded Fletcher Williamson applicator and an APBI balloon applicator. All applicators were modelled in Geant4 and MCNP6 using MG and CSG for dose calculations. CSG derived dose distributions were considered as reference and used to validate MG models by comparing dose distribution ratios. In general agreement within 1% for the dose calculations was observed for all applicators between MG and CSG and between codes when considering volumes inside the 25% isodose surface. When compared to CSG, MG required longer computation times by a factor of at least 2 for MC simulations using the same code. MCNP6 calculation times were more than ten times shorter than Geant4 in some cases. In conclusion we presented methods allowing for high fidelity modelling with results equivalent to CSG. To the best of our knowledge MG offers the most accurate representation of an irregular APBI balloon applicator. PMID

  8. The use of tetrahedral mesh geometries in Monte Carlo simulation of applicator based brachytherapy dose distributions

    NASA Astrophysics Data System (ADS)

    Paiva Fonseca, Gabriel; Landry, Guillaume; White, Shane; D'Amours, Michel; Yoriyaz, Hélio; Beaulieu, Luc; Reniers, Brigitte; Verhaegen, Frank

    2014-10-01

    Accounting for brachytherapy applicator attenuation is part of the recommendations from the recent report of AAPM Task Group 186. To do so, model based dose calculation algorithms require accurate modelling of the applicator geometry. This can be non-trivial in the case of irregularly shaped applicators such as the Fletcher Williamson gynaecological applicator or balloon applicators with possibly irregular shapes employed in accelerated partial breast irradiation (APBI) performed using electronic brachytherapy sources (EBS). While many of these applicators can be modelled using constructive solid geometry (CSG), the latter may be difficult and time-consuming. Alternatively, these complex geometries can be modelled using tessellated geometries such as tetrahedral meshes (mesh geometries (MG)). Recent versions of Monte Carlo (MC) codes Geant4 and MCNP6 allow for the use of MG. The goal of this work was to model a series of applicators relevant to brachytherapy using MG. Applicators designed for 192Ir sources and 50 kV EBS were studied; a shielded vaginal applicator, a shielded Fletcher Williamson applicator and an APBI balloon applicator. All applicators were modelled in Geant4 and MCNP6 using MG and CSG for dose calculations. CSG derived dose distributions were considered as reference and used to validate MG models by comparing dose distribution ratios. In general agreement within 1% for the dose calculations was observed for all applicators between MG and CSG and between codes when considering volumes inside the 25% isodose surface. When compared to CSG, MG required longer computation times by a factor of at least 2 for MC simulations using the same code. MCNP6 calculation times were more than ten times shorter than Geant4 in some cases. In conclusion we presented methods allowing for high fidelity modelling with results equivalent to CSG. To the best of our knowledge MG offers the most accurate representation of an irregular APBI balloon applicator.

  9. Ultrasound-guided high dose rate conformal brachytherapy boost in prostate cancer: Treatment description and preliminary results of a phase I/II clinical trial

    SciTech Connect

    Stromberg, J.; Martinez, A.; Edmundson, G.

    1995-08-30

    To improve results for locally advanced prostate cancer, a prospective clinical trial of concurrent external beam irradiation and fractionated iridium-192 (IR-192) high dose rate (HDR) conformal boost brachytherapy was initiated. This technique of concurrent external pelvic irradiation and conformal HDR brachytherapy was well tolerated. No significant intraoperative or perioperative complications occurred. Three patients (9%) experienced Grade 3 acute toxicity (two dysuria and one diarrhea). All toxicities were otherwise Grades 1 or 2 and were primarily as expected from pelvic external irradiation. Persistent implant-related toxicities included Grades 1-2 perineal pain (12%) and hematospermia (15%). Median follow-up time was 13 months. Serum prostatic-specific antigen (PSA) levels normalized in 91% of patients (29 out of 32) within 1-14 months (median 2.8 months) after irradiation. PSA levels were progressively decreasing in the other three patients at last measurement. Prospectively planned prostatic rebiopsies done at 18 months in the first 10 patients were negative in 9 out of 10 (90%). Acute toxicity has been acceptable with this unique approach using conformal high dose rate IR-192 boost brachytherapy with concurrent external irradiation. The initial tumor response as assessed by serial PSA measurement and rebiopsy is extremely encouraging. Dose escalation will proceed in accordance with the protocol guidelines. Further patient accrual and longer follow-up will allow comparison to other techniques. 58 refs., 5 figs., 4 tabs.

  10. Murine neonatal intravascular injections: Modeling newborn disease

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The ability to perform murine neonatal intravascular injections likely will prove useful in studying many newborn-specific disease states that are modeled in mice. Unfortunately, effective intravascular injection in the neonatal mouse has been limited by developmental immaturity and small size. To e...

  11. 21 CFR 870.3375 - Cardiovascular intravascular filter.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Cardiovascular intravascular filter. 870.3375... Cardiovascular intravascular filter. (a) Identification. A cardiovascular intravascular filter is an implant that... and Revision of 2/12/90 (K90-1)” and (ii) “Guidance for Cardiovascular Intravascular Filter...

  12. 21 CFR 870.3375 - Cardiovascular intravascular filter.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Cardiovascular intravascular filter. 870.3375... Cardiovascular intravascular filter. (a) Identification. A cardiovascular intravascular filter is an implant that... and Revision of 2/12/90 (K90-1)” and (ii) “Guidance for Cardiovascular Intravascular Filter...

  13. 21 CFR 870.3375 - Cardiovascular intravascular filter.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Cardiovascular intravascular filter. 870.3375... Cardiovascular intravascular filter. (a) Identification. A cardiovascular intravascular filter is an implant that... and Revision of 2/12/90 (K90-1)” and (ii) “Guidance for Cardiovascular Intravascular Filter...

  14. 21 CFR 870.3375 - Cardiovascular intravascular filter.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Cardiovascular intravascular filter. 870.3375... Cardiovascular intravascular filter. (a) Identification. A cardiovascular intravascular filter is an implant that... and Revision of 2/12/90 (K90-1)” and (ii) “Guidance for Cardiovascular Intravascular Filter...

  15. 21 CFR 870.3375 - Cardiovascular intravascular filter.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Cardiovascular intravascular filter. 870.3375... Cardiovascular intravascular filter. (a) Identification. A cardiovascular intravascular filter is an implant that... and Revision of 2/12/90 (K90-1)” and (ii) “Guidance for Cardiovascular Intravascular Filter...

  16. [Brachytherapy for oesophageal cancer].

    PubMed

    Wong, S; Hennequin, C; Quero, L

    2013-04-01

    The main indication of oesophageal brachytherapy is palliative: it can improve dysphagia in patients with a tumor not suitable for surgery or chemoradiotherapy. A randomized clinical trial showed that survival without dysphagia and quality of life was improved by endoluminal brachytherapy in comparison to self-expansible metallic stents. It also increases the duration of palliation after laser deobstruction. Its role as a curative treatment of locally advanced tumors is still discussed: in combination with external beam radiotherapy, it seems that brachytherapy increased the rate of severe toxicity (haemorrhages, fistula, stenosis). In superficial lesions, brachytherapy with or without external beam radiotherapy seems logical but large prospective studies are missing in this setting. PMID:23603254

  17. Acute Disseminated Intravascular Coagulation in Neuroendocrine Carcinoma

    PubMed Central

    Teh, Ru-Wen; Tsoi, Daphne T.

    2012-01-01

    Malignancy is a common cause of disseminated intravascular coagulation and usually presents as a chronic disorder in solid organ tumours. We present a rare case of recurrent acute disseminated intravascular coagulation in neuroendocrine carcinoma after manipulation, firstly, by core biopsy and, later, by cytotoxic therapy causing a release of procoagulants and cytokines from lysed tumour cells. This is reminiscent of tumour lysis syndrome where massive quantities of intracellular electrolytes and nucleic acid are released, causing acute metabolic imbalance and renal failure. This case highlights the potential complication of acute disseminated intravascular coagulation after trauma to malignant cells. PMID:23139666

  18. Radiation transmission data for radionuclides and materials relevant to brachytherapy facility shielding

    SciTech Connect

    Papagiannis, P.; Baltas, D.; Granero, D.; Perez-Calatayud, J.; Gimeno, J.; Ballester, F.; Venselaar, J. L. M.

    2008-11-15

    To address the limited availability of radiation shielding data for brachytherapy as well as some disparity in existing data, Monte Carlo simulation was used to generate radiation transmission data for {sup 60}Co, {sup 137}Cs, {sup 198}Au, {sup 192}Ir, {sup 169}Yb, {sup 170}Tm, {sup 131}Cs, {sup 125}I, and {sup 103}Pd photons through concrete, stainless steel, lead, as well as lead glass and baryte concrete. Results accounting for the oblique incidence of radiation to the barrier, spectral variation with barrier thickness, and broad beam conditions in a realistic geometry are compared to corresponding data in the literature in terms of the half value layer (HVL) and tenth value layer (TVL) indices. It is also shown that radiation shielding calculations using HVL or TVL values could overestimate or underestimate the barrier thickness required to achieve a certain reduction in radiation transmission. This questions the use of HVL or TVL indices instead of the actual transmission data. Therefore, a three-parameter model is fitted to results of this work to facilitate accurate and simple radiation shielding calculations.

  19. Comparison of dose calculation algorithms for colorectal cancer brachytherapy treatment with a shielded applicator

    SciTech Connect

    Yan Xiangsheng; Poon, Emily; Reniers, Brigitte; Vuong, Te; Verhaegen, Frank

    2008-11-15

    Colorectal cancer patients are treated at our hospital with {sup 192}Ir high dose rate (HDR) brachytherapy using an applicator that allows the introduction of a lead or tungsten shielding rod to reduce the dose to healthy tissue. The clinical dose planning calculations are, however, currently performed without taking the shielding into account. To study the dose distributions in shielded cases, three techniques were employed. The first technique was to adapt a shielding algorithm which is part of the Nucletron PLATO HDR treatment planning system. The isodose pattern exhibited unexpected features but was found to be a reasonable approximation. The second technique employed a ray tracing algorithm that assigns a constant dose ratio with/without shielding behind the shielding along a radial line originating from the source. The dose calculation results were similar to the results from the first technique but with improved accuracy. The third and most accurate technique used a dose-matrix-superposition algorithm, based on Monte Carlo calculations. The results from the latter technique showed quantitatively that the dose to healthy tissue is reduced significantly in the presence of shielding. However, it was also found that the dose to the tumor may be affected by the presence of shielding; for about a quarter of the patients treated the volume covered by the 100% isodose lines was reduced by more than 5%, leading to potential tumor cold spots. Use of any of the three shielding algorithms results in improved dose estimates to healthy tissue and the tumor.

  20. Monte Carlo and experimental dosimetric study of the mHDR-v2 brachytherapy source.

    PubMed

    Chandola, Rakesh M; Tiwari, Samit; Kowar, Manoj K; Choudhary, Vivek

    2010-01-01

    The conventional treatment planning system (TPS) gives analytical calculations with ± 15 to 20% dose, which may lead to over exposure of critical organs or under dose of target. It is to obtain dose distribution parameters of nucletron high dose rate (HDR) microselectron v2 (mHDR-v2) 192 Ir brachytherapy source by experiment and by calculated study using Monte Carlo (MC) EGSnrc code, and to find the similarity between them, and with any past study. To validate data, another MC GEANT4 study done in this work on the same source is also presented. Different software of the computer e.g. paint, excel, etc are employed for preparation of figures and graphs. The measured study of the source was done using an in-air ionization chamber, water phantom, and measurement set-up, while the calculated study was done by modeling the set up of the measured study by using the MC EGSnrc and GEANT4. Mean and probability are used in calculation of average values, and calculation of the uncertainties in result and discussion. The measured and calculated values of dose rate constant, radial dose function, and 2D anisotropy function were found to be in agreement with each other as well as with published data. The results of this study can be used as input to TPS. PMID:21358074

  1. Disseminated intravascular coagulation after multiple honeybee stings.

    PubMed

    V, Dharma Rao; Bodepudi, Sravan Kumar; Krishna, Murali

    2014-01-01

    Honeybee venom contains apitoxin which can cause anaphylaxis, cardiovascular collapse and death. Disseminated intravascular coagulation is rare following honeybee stings. We describe the case of a farmer who developed this complication. PMID:25668084

  2. Intravascular ultrasound imaging following balloon angioplasty.

    PubMed

    Tobis, J M; Mahon, D J; Moriuchi, M; Honye, J; McRae, M

    1991-01-01

    Despite its long history and reliability, contrast angiography has several inherent limitations. Because it is a two-dimensional projection image of the lumen contour, the wall thickness cannot be measured and the plaque itself is not visualized. This results in an underestimation of the amount of atherosclerotic disease by angiography. An assessment of atherosclerosis could be improved by an imaging modality: (1) that has an inherent larger magnification than angiography and (2) that directly visualizes the plaque. Intravascular ultrasound fulfils these criteria. This presentation will provide evidence that intravascular ultrasound may prove complimentary or even superior to angiography as an imaging modality. Intravascular ultrasound demonstrates excellent representations of lumen and plaque morphology of in vitro specimens compared with histology. There is very close intraobserver and interobserver variability of measurements made from intravascular ultrasound images. Phantom studies of stenoses in a tube model demonstrate that angiography can misrepresent the severity of stenosis when the lumen contour is irregular and not a typical ellipse, whereas intravascular ultrasound reproduces the cross-sectional morphology more accurately since it images the artery from within. In vitro studies of the atherosclerotic plaque tissue characteristics compare closely with the echo representation of fibrosis, calcification, and lipid material. In addition, in vitro studies of balloon angioplasty demonstrate that intravascular ultrasound accurately represents the changes in the structure of artery segments following balloon dilatation. PMID:1833473

  3. [The first experience in interstitial brachytherapy for primary and metastatic tumors of the brain].

    PubMed

    Bentsion, D L; Gvozdev, P B; Sakovich, V P; Fialko, N V; Kolotvinov, V S; Baiankina, S N

    2006-01-01

    In 2001-2002, the authors performed a course of brachytherapy in 15 patients with inoperable primary, recurrent, and metastatic brain tumors. The histostructural distribution was as follows: low-grade astrocytoma (grade II according to the WHO classification) in 2 patients, anaplastic astrocytoma (AA) in 3, glioblastoma multiforme (GBM) in 5. Five patients had solid tumor deposits in the brain. Computer tomographic (CT) and magnetic resonance imaging (MRI) data were used to define a path for forthcoming biopsy and implantation at a "Stryker" navigation station, by taking into account the anatomy of the brain, vessels, and functionally significant areas. After having histological findings, plastic intrastats whose number had been determined by the volume of a target were implanted into a tumor by the predetermined path. Dosimetric planning was accomplished by using CT and MRI images on an "Abacus" system. The final stage involved irradiation on a "GammaMed plus" with a source of 192Ir. Irradiation was given, by hyperfractionating its dose (3-4 Gy twice daily at an interval of 4-5 hours) to the total focal dose (TFD) of 36-44 Gy. Patients with gliomas untreated with radiation also underwent external radiation in a TFD of 54-56 Gy and patients with brain metastases received total external irradiation of the brain in a TFD of 36-40 Gy. The tolerance of a course of irradiation was fair. In patients with AA and GBM, one-year survival was observed in 66 and 60%, respectively; in those having metastasis, it was in 20%. Six patients died from progressive disease. All patients with low-grade astrocytoma and one patient with anaplastic astrocytoma were alive at month 24 after treatment termination. The mean lifespan of patients with malignant gliomas and solid tumor metastasis was 11.5 and 5.8 months, respectively. Brachytherapy is a noninvasive and tolerable mode of radiotherapy that increases survival in some groups of patients with inoperable brain tumors. PMID:16739930

  4. SU-FF-T-390: In-Vivo Prostate Brachytherapy Absorbed Dose Measurements

    SciTech Connect

    Gueye, Paul; Velasco, Carlos; Keppel, Cynthia; Murphy, B; Sinesi, C

    2009-06-01

    Purpose: In-vivo prostate brachytherapy absorbed dosimetrydetector using scintillating fibers. Method and Materials: Five pairs of 85.5 {+-} 0.05 cm long blue shifted scintillating fibers (model BCF-10) with 1 mm{sup 2} cross sectional area were placed in a mixture of gelatin (368.6 {+-} 0.5 grams) and water (3.78 {+-} 0.025 liters) to measured the absorbed dose delivered by a 12 Ci {sup 192}Ir HDR source. The fibers were held by a 7 x 7 cm{sup 2} template grid and optically connected to a 16-channel multianode photomultiplier tube (Hamamatsu, model H6568). Each pair consisted of one fiber 4 mm shorter than the other one to extract the dose by the subtraction method. A dose atlas was used for radiation delivered to the phantom. The plans followed delivered 5 and 7 Gy to a point located 2.0 centimeters away from the central dwelling positions. A total of 32 data points were acquired in a plan to assess the linearity and reproducibility of the measurements.Results: Reproducibility of the data was found to be within 5% and the overall accuracy of the system estimated to be {+-}5.5%. The linearity of the data for all 7 measureddose values (ranging from 0.6 to 7 Gy), gives a slope of 312 counts/Gy with a 1.4% relative deviation. Conclusion: This work indicates the possibility of measuring in real-time the dose effectively delivered to a biological system during prostate brachytherapy treatments. The availability of commercially thin (150 {micro}m) scintillating fibers opens the capability of using such system during clinical treatments (by embedding the fibers within the catheters) with the advantage of performing real-time adjustment of the dose delivery.

  5. Radiation dose enhancement at tissue-tungsten interfaces in HDR brachytherapy

    NASA Astrophysics Data System (ADS)

    Han, Z.; Safavi-Naeini, M.; Alnaghy, S.; Cutajar, DL; Guatelli, S.; Petasecca, M.; Franklin, DR; Malaroda, A.; Carrara, M.; Bucci, J.; Zaider, M.; Lerch, MLF; Rosenfeld, AB

    2014-11-01

    HDR BrachyView is a novel in-body dosimetric imaging system for real-time monitoring and verification of the source position in high dose rate (HDR) prostate brachytherapy treatment. It is based on a high-resolution pixelated detector array with a semi-cylindrical multi-pinhole tungsten collimator and is designed to fit inside a compact rectal probe, and is able to resolve the 3D position of the source with a maximum error of 1.5 mm. This paper presents an evaluation of the additional dose that will be delivered to the patient as a result of backscatter radiation from the collimator. Monte Carlo simulations of planar and cylindrical collimators embedded in a tissue-equivalent phantom were performed using Geant4, with an 192Ir source placed at two different source-collimator distances. The planar configuration was replicated experimentally to validate the simulations, with a MOSkin dosimetry probe used to measure dose at three distances from the collimator. For the cylindrical collimator simulation, backscatter dose enhancement was calculated as a function of axial and azimuthal displacement, and dose distribution maps were generated at three distances from the collimator surface. Although significant backscatter dose enhancement was observed for both geometries immediately adjacent to the collimator, simulations and experiments indicate that backscatter dose is negligible at distances beyond 1 mm from the collimator. Since HDR BrachyView is enclosed within a 1 mm thick tissue-equivalent plastic shell, all backscatter radiation resulting from its use will therefore be absorbed before reaching the rectal wall or other tissues. dosimetry, brachytherapy, HDR

  6. Radiation dose enhancement at tissue-tungsten interfaces in HDR brachytherapy.

    PubMed

    Han, Z; Safavi-Naeini, M; Alnaghy, S; Cutajar, D L; Guatelli, S; Petasecca, M; Franklin, D R; Malaroda, A; Carrara, M; Bucci, J; Zaider, M; Lerch, M L F; Rosenfeld, A B

    2014-11-01

    HDR BrachyView is a novel in-body dosimetric imaging system for real-time monitoring and verification of the source position in high dose rate (HDR) prostate brachytherapy treatment. It is based on a high-resolution pixelated detector array with a semi-cylindrical multi-pinhole tungsten collimator and is designed to fit inside a compact rectal probe, and is able to resolve the 3D position of the source with a maximum error of 1.5 mm. This paper presents an evaluation of the additional dose that will be delivered to the patient as a result of backscatter radiation from the collimator. Monte Carlo simulations of planar and cylindrical collimators embedded in a tissue-equivalent phantom were performed using Geant4, with an (192)Ir source placed at two different source-collimator distances. The planar configuration was replicated experimentally to validate the simulations, with a MOSkin dosimetry probe used to measure dose at three distances from the collimator. For the cylindrical collimator simulation, backscatter dose enhancement was calculated as a function of axial and azimuthal displacement, and dose distribution maps were generated at three distances from the collimator surface. Although significant backscatter dose enhancement was observed for both geometries immediately adjacent to the collimator, simulations and experiments indicate that backscatter dose is negligible at distances beyond 1 mm from the collimator. Since HDR BrachyView is enclosed within a 1 mm thick tissue-equivalent plastic shell, all backscatter radiation resulting from its use will therefore be absorbed before reaching the rectal wall or other tissues. dosimetry, brachytherapy, HDR. PMID:25325249

  7. SU-GG-T-49: Real Time Dose Verification for Novel Shielded Balloon Brachytherapy

    SciTech Connect

    Govindarajan, Nandakarthik; Nazaryan, Vahagn; Gueye, Paul; Keppel, Cynthia

    2010-06-01

    Purpose: The validation of a novel approach for reducing skindoses to an acceptable level during Accelerated Partial Breast Irradiation (APBI) when the balloon-to-skin distance is inadequate (less than 7 mm) is reported. The study uses a real time dose verification method for a metallic shielded balloon applicator using scintillation fiber technology. Method and Materials: Partial shielding of the radiationdose to the skin using iron or other ferrous powder could enable the extension of APBI to some patients. With small external and pre-determined magnetic fields (192}Ir of a GammaMed 12i afterloader unit, with a MOSFET,ion chamber and scintillating fiber array detectors. Results: Realistic Monte Carlo simulation studies for the amount and distribution of the required shielding material were compared to dedicated phantom data. A decrease of the skindose was measured to an acceptable level (~350-450 cGy) during standard breast Brachytherapy treatments with relatively weak magnetic fields. Additional measurements provided negligible corrections (< few %) on the saline water density from the suspended ironpowder.Conclusion: This project opens the possibility to increasing the survival expectancy and minimizing negative side effects during brachytherapy treatments, as well as improving cosmetic outcome for all APBI patients. The proposed method may also be used in other procedures for brain, heart, rectal, or vaginal cancers.

  8. Dosimetric audit in brachytherapy

    PubMed Central

    Bradley, D A; Nisbet, A

    2014-01-01

    Dosimetric audit is required for the improvement of patient safety in radiotherapy and to aid optimization of treatment. The reassurance that treatment is being delivered in line with accepted standards, that delivered doses are as prescribed and that quality improvement is enabled is as essential for brachytherapy as it is for the more commonly audited external beam radiotherapy. Dose measurement in brachytherapy is challenging owing to steep dose gradients and small scales, especially in the context of an audit. Several different approaches have been taken for audit measurement to date: thimble and well-type ionization chambers, thermoluminescent detectors, optically stimulated luminescence detectors, radiochromic film and alanine. In this work, we review all of the dosimetric brachytherapy audits that have been conducted in recent years, look at current audits in progress and propose required directions for brachytherapy dosimetric audit in the future. The concern over accurate source strength measurement may be essentially resolved with modern equipment and calibration methods, but brachytherapy is a rapidly developing field and dosimetric audit must keep pace. PMID:24807068

  9. The feasibility study and characterization of a two-dimensional diode array in “magic phantom” for high dose rate brachytherapy quality assurance

    SciTech Connect

    Espinoza, A.; Beeksma, B.; Petasecca, M.; Fuduli, I.; Porumb, C.; Cutajar, D.; Lerch, M. L. F.; Rosenfeld, A. B.; Corde, S.; Jackson, M.

    2013-11-15

    Purpose: High dose rate (HDR) brachytherapy is a radiation treatment technique capable of delivering large dose rates to the tumor. Radiation is delivered using remote afterloaders to drive highly active sources (commonly {sup 192}Ir with an air KERMA strength range between 20 000 and 40 000 U, where 1 U = 1 μGy m{sup 2}/h in air) through applicators directly into the patient's prescribed region of treatment. Due to the obvious ramifications of incorrect treatment while using such an active source, it is essential that there are methods for quality assurance (QA) that can directly and accurately verify the treatment plan and the functionality of the remote afterloader. This paper describes the feasibility study of a QA system for HDR brachytherapy using a phantom based two-dimensional 11 × 11 epitaxial diode array, named “magic phantom.”Methods: The HDR brachytherapy treatment plan is translated to the phantom with two rows of 10 (20 in total) HDR source flexible catheters, arranged above and below the diode array “magic plate” (MP). Four-dimensional source tracking in each catheter is based upon a developed fast iterative algorithm, utilizing the response of the diodes in close proximity to the {sup 192}Ir source, sampled at 100 ms intervals by a fast data acquisition (DAQ) system. Using a {sup 192}Ir source in a solid water phantom, the angular response of the developed epitaxial diodes utilized in the MP and also the variation of the MP response as a function of the source-to-detector distance (SDD) were investigated. These response data are then used by an iterative algorithm for source dwelling position determination. A measurement of the average transit speed between dwell positions was performed using the diodes and a fast DAQ.Results: The angular response of the epitaxial diode showed a variation of 15% within 360°, with two flat regions above and below the detector face with less than 5% variation. For SDD distances of between 5 and 30 mm the

  10. Canadian prostate brachytherapy in 2012

    PubMed Central

    Keyes, Mira; Crook, Juanita; Morris, W. James; Morton, Gerard; Pickles, Tom; Usmani, Nawaid; Vigneault, Eric

    2013-01-01

    Prostate brachytherapy can be used as a monotherapy for low- and intermediate-risk patients or in combination with external beam radiation therapy (EBRT) as a form of dose escalation for selected intermediate- and high-risk patients. Prostate brachytherapy with either permanent implants (low dose rate [LDR]) or temporary implants (high dose rate [HDR]) is emerging as the most effective radiation treatment for prostate cancer. Several large Canadian brachytherapy programs were established in the mid- to late-1990s. Prostate brachytherapy is offered in British Columbia, Alberta, Manitoba, Ontario, Quebec and New Brunswick. We anticipate the need for brachytherapy services in Canada will significantly increase in the near future. In this review, we summarize brachytherapy programs across Canada, contemporary eligibility criteria for the procedure, toxicity and prostate-specific antigen recurrence free survival (PRFS), as published from Canadian institutions for both LDR and HDR brachytherapy. PMID:23671495

  11. Retrospective Analysis of Local Control and Cosmetic Outcome of 147 Periorificial Carcinomas of the Face Treated With Low-Dose Rate Interstitial Brachytherapy

    SciTech Connect

    Ducassou, Anne; David, Isabelle; Filleron, Thomas; Rives, Michel; Bonnet, Jacques; Delannes, Martine

    2011-11-01

    Purpose: Skin cancer is the most common malignancy in white populations. We evaluated the local cure rate and cosmetic outcome of patients with basal cell carcinoma (BCC) or squamous cell carcinoma (SCC) of the face treated with low-dose rate brachytherapy. Methods and Materials: Between February 1990 and May 2000, 147 facial carcinomas in 132 patients were treated by {sup 192}Ir wire implantation. Side effects of brachytherapy were noted. Follow-up was 2 years or more. Locoregional recurrence-free survival (LRFS) and overall survival were recorded. Group A included patients treated by primary brachytherapy, and Group B included those treated after recurrence. Results: A total of 121 carcinomas were BCCs (82.3%) and 26 were SCCs (17.7%); the median tumor size was 10 mm. Of the tumors, 86 (58.5%) were in men and 61 (41.5%) were in women; the median age was 71 years. Group A comprised 116 lesions (78.9%), and Group B, 31 (21.1%). There were 17 relapses (11.6%) after a median follow-up of 72 months: 12 local, 4 nodal, and 1 local and nodal. Locoregional-free survival was 96.6% at 2 years and 87.3% at 5 years. Five-year LRFS was 82.6% in men and 93.3% in women (p = 0.027). After adjustment for gender, LRFS was better after primary treatment than after recurrence (hasard ratio HR, 2.91; 95% confidence interval, 1.06-8.03; p = 0.039). Five-year LRFS was 90.4% for BCC and 70.8% for SCC (p = 0.03). There were no Grade 3 complications. Conclusions: Low-dose rate brachytherapy offers good local control and cosmetic outcome in patients with periorificial skin carcinomas, with no Grade 3 complications. Brchytherapy is more efficient when used as primary treatment.

  12. [Safety in brachytherapy].

    PubMed

    Marcié, S; Marinello, G; Peiffert, D; Lartigau, É

    2013-04-01

    No technique can now be used without previously considering the safety of patients, staff and public and risk management. This is the case for brachytherapy. The various aspects of brachytherapy are discussed for both the patient and the staff. For all, the risks must be minimized while achieving a treatment of quality. It is therefore necessary to establish a list as comprehensive as possible regardless of the type of brachytherapy (low, high, pulsed dose-rate). Then, their importance must be assessed with the help of their criticality. Radiation protection of personnel and public must take into account the many existing regulation texts. Four axes have been defined for the risk management for patients: organization, preparation, planning and implementation of treatment. For each axis, a review of risks is presented, as well as administrative, technical and medical dispositions for staff and the public. PMID:23465784

  13. Dose calculation for photon-emitting brachytherapy sources with average energy higher than 50 keV: Report of the AAPM and ESTRO

    SciTech Connect

    Perez-Calatayud, Jose; Ballester, Facundo; Das, Rupak K.; DeWerd, Larry A.; Ibbott, Geoffrey S.; Meigooni, Ali S.; Ouhib, Zoubir; Rivard, Mark J.; Sloboda, Ron S.; Williamson, Jeffrey F.

    2012-05-15

    Purpose: Recommendations of the American Association of Physicists in Medicine (AAPM) and the European Society for Radiotherapy and Oncology (ESTRO) on dose calculations for high-energy (average energy higher than 50 keV) photon-emitting brachytherapy sources are presented, including the physical characteristics of specific {sup 192}Ir, {sup 137}Cs, and {sup 60}Co source models. Methods: This report has been prepared by the High Energy Brachytherapy Source Dosimetry (HEBD) Working Group. This report includes considerations in the application of the TG-43U1 formalism to high-energy photon-emitting sources with particular attention to phantom size effects, interpolation accuracy dependence on dose calculation grid size, and dosimetry parameter dependence on source active length. Results: Consensus datasets for commercially available high-energy photon sources are provided, along with recommended methods for evaluating these datasets. Recommendations on dosimetry characterization methods, mainly using experimental procedures and Monte Carlo, are established and discussed. Also included are methodological recommendations on detector choice, detector energy response characterization and phantom materials, and measurement specification methodology. Uncertainty analyses are discussed and recommendations for high-energy sources without consensus datasets are given. Conclusions: Recommended consensus datasets for high-energy sources have been derived for sources that were commercially available as of January 2010. Data are presented according to the AAPM TG-43U1 formalism, with modified interpolation and extrapolation techniques of the AAPM TG-43U1S1 report for the 2D anisotropy function and radial dose function.

  14. Restenosis: Intracoronary Brachytherapy.

    PubMed

    Drachman, Douglas E.; Simon, Daniel I.

    2002-04-01

    Though interventional strategies have revolutionized the management of patients with symptomatic coronary artery disease, in-stent restenosis has emerged as the single most important limitation of long-term success following percutaneous coronary intervention. Once present, in-stent restenosis is extraordinarily difficult to treat, with conventional revascularization techniques failing in 50% to 80% of patients. Intracoronary radiation, or brachytherapy, targets cellular proliferation within the culprit neointima. Clinical trials have demonstrated that brachytherapy is a highly effective treatment for in-stent restenosis, reducing angiographic restenosis by 50% to 60% and the need for target vessel revascularization by 40% to 50%. The benefits of intracoronary brachytherapy may be particularly pronounced in certain patient subgroups (eg, those with diabetes, long lesions, or lesions in saphenous vein bypass grafts), but comes at the cost of an increased rate of late stent thrombosis and the need for extended antiplatelet therapy. The role of brachytherapy in the arsenal of the interventional cardiologist will continue to evolve, particularly in light of the unprecedented recent advances with the use of drug-eluting stents for restenosis prevention. PMID:11858773

  15. 21 CFR 880.5440 - Intravascular administration set.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Intravascular administration set. 880.5440 Section... Therapeutic Devices § 880.5440 Intravascular administration set. (a) Identification. An intravascular administration set is a device used to administer fluids from a container to a patient's vascular system...

  16. Error Analysis of non-TLD HDR Brachytherapy Dosimetric Techniques

    NASA Astrophysics Data System (ADS)

    Amoush, Ahmad

    , and 4cm, 5cm, 6cm, and 7cm, respectively. The Nucletron Freiburg flap applicator is used with the Nucletron remote afterloader HDR machine to deliver dose to surface cancers. Dosimetric data for the Nucletron 192Ir source were generated using Monte Carlo simulation and compared with the published data. Two dimensional dosimetric data were calculated at two source positions; at the center of the sphere of the applicator and between two adjacent spheres. Unlike the TPS dose algorithm, The Monte Carlo code developed for this research accounts for the applicator material, secondary electrons and delta particles, and the air gap between the skin and the applicator. *Standard Imaging, Inc., Middleton, Wisconsin USA † OneDose MOSFET, Sicel Technologies, Morrisville NC ‡ Los Alamos National Laboratory, NM USA

  17. An investigation of a PRESAGE® in vivo dosimeter for brachytherapy

    NASA Astrophysics Data System (ADS)

    Vidovic, A. K.; Juang, T.; Meltsner, S.; Adamovics, J.; Chino, J.; Steffey, B.; Craciunescu, O.; Oldham, M.

    2014-07-01

    Determining accurate in vivo dosimetry in brachytherapy treatment with high dose gradients is challenging. Here we introduce, investigate, and characterize a novel in vivo dosimeter and readout technique with the potential to address this problem. A cylindrical (4 mm × 20 mm) tissue equivalent radiochromic dosimeter PRESAGE® in vivo (PRESAGE®-IV) is investigated. Two readout methods of the radiation induced change in optical density (OD) were investigated: (i) volume-averaged readout by spectrophotometer, and (ii) a line profile readout by 2D projection imaging utilizing a high-resolution (50 micron) telecentric optical system. Method (i) is considered the gold standard when applied to PRESAGE® in optical cuvettes. The feasibility of both methods was evaluated by comparison to standard measurements on PRESAGE® in optical cuvettes via spectrophotometer. An end-to-end feasibility study was performed by a side-by-side comparison with TLDs in an 192Ir HDR delivery. 7 and 8 Gy was delivered to PRESAGE®-IV and TLDs attached to the surface of a vaginal cylinder. Known geometry enabled direct comparison of measured dose with a commissioned treatment planning system. A high-resolution readout study under a steep dose gradient region showed 98.9% (5%/1 mm) agreement between PRESAGE®-IV and Gafchromic® EBT2 Film. Spectrometer measurements exhibited a linear dose response between 0-15 Gy with sensitivity of 0.0133 ± 0.0007 ΔOD/(Gy ṡ cm) at the 95% confidence interval. Method (ii) yielded a linear response with sensitivity of 0.0132 ± 0.0006 (ΔOD/Gy), within 2% of method (i). Method (i) has poor spatial resolution due to volume averaging. Method (ii) has higher resolution (˜1 mm) without loss of sensitivity or increased noise. Both readout methods are shown to be feasible. The end-to-end comparison revealed a 2.5% agreement between PRESAGE®-IV and treatment plan in regions of uniform high dose. PRESAGE®-IV shows promise for in vivo dose verification

  18. Ruthenium-106 brachytherapy.

    PubMed

    Pe'er, Jacob

    2012-01-01

    Brachytherapy is the most common method for treating uveal melanoma, and currently the ruthenium-106 (Ru-106) and iodine-125 (I-125) applicators are the most frequently used. Ru-106 applicators were introduced by Prof. Peter Lommatzsch in the 1960s, and since then have been used widely by many ocular oncologists, mainly in Europe. The Ru-106 isotope is a beta ray (electron) emitter, and as such it has a limited depth of penetration. This is the reason why many experts use Ru-106 applicators for tumors with a maximal thickness of up to 7.0 mm, although others use it successfully for thicker tumors. The Ru-106 applicators are manufactured commercially and have a half-life of about 1 year. Ru-106 brachytherapy for uveal melanoma provides excellent local control rates and eye preservation with a relatively low recurrence rate. The main advantage of Ru-106 over other isotopes is the better preservation of vision in the treated eye, and less damage to the healthy parts of the eye due to its limited range of radiation. This can also be achieved by positioning the Ru-106 plaque eccentrically, away from the macula and optic nerve head. Ru-106 brachytherapy can be used in combination with other methods of treatment of uveal melanoma, such as local resection or transpupillary thermotherapy, and is sporadically combined with other isotopes, such as gamma-emitting cobalt-60 and I-125. PMID:22042011

  19. A Multi-Institutional Study of Feasibility, Implementation, and Early Clinical Results With Noninvasive Breast Brachytherapy for Tumor Bed Boost

    SciTech Connect

    Hamid, Subarna; Rocchio, Kathy; Arthur, Douglas; Vera, Robyn; Sha, Sandra; Jolly, Michele; Cavanaugh, Sean; Wooten, Eric; Benda, Rashmi; Greenfield, Brad; Prestidge, Bradley; Ackerman, Scot; Kuske, Robert; Quiet, Coral; Snyder, Margaret; Wazer, David E.

    2012-08-01

    Purpose: To evaluate the feasibility, implementation, and early results of noninvasive breast brachytherapy (NIBB) for tumor bed boost with whole breast radiation therapy (WBRT). Methods and Materials: NIBB is a commercially available (AccuBoost, Billerica, MA) mammography-based, brachytherapy system in which the treatment applicators are centered on the planning target volume (PTV) to direct {sup 192}Ir emissions along orthogonal axes. A privacy-encrypted online data registry collected information from 8 independent academic and community-based institutions. Data were from 146 consecutive women with early-stage breast cancer after lumpectomy and WBRT receiving boost with NIBB between July 2007 and March 2010. Toxicity and cosmesis were graded according to the Common Toxicity Criteria (v. 3.0) and the Harvard scale. Median follow-up was 6 months (1-39 months). Results: Grade 1-2 skin toxicity was observed in 64%, 48%, and 21% during the acute (1-3 weeks), intermediate (4-26 weeks), and late-intermediate (>26 weeks) periods. There was no Grade 4 toxicity. At 6 months, for the entire cohort, cosmesis was excellent/good in 62%/38%. The subset receiving NIBB before WBRT had cosmetic scores of 32% and 63%, whereas during WBRT, 58% and 37% were rated as excellent and good, respectively. Breast compression was scored as 'uncomfortable' in 12%, 29%, and 59% when NIBB was delivered before, during, or after WBRT. For each patient, the fraction-to-fraction variability in PTV was low. Skin flash was associated with a higher proportion of excellent cosmesis (58% vs. 42%) relative to having the applicator all within breast tissue. Conclusions: These data indicate that NIBB is feasible and can be consistently implemented in a broad array of practice settings. Preliminary evaluation suggests that NIBB is associated with acceptably mild normal tissue toxicity and favorable early cosmesis. The application of NIBB before WBRT may be associated with better patient tolerance at the

  20. Comparison of TG-43 dosimetric parameters of brachytherapy sources obtained by three different versions of MCNP codes.

    PubMed

    Zaker, Neda; Zehtabian, Mehdi; Sina, Sedigheh; Koontz, Craig; Meigooni, Ali S

    2016-01-01

    Monte Carlo simulations are widely used for calculation of the dosimetric parameters of brachytherapy sources. MCNP4C2, MCNP5, MCNPX, EGS4, EGSnrc, PTRAN, and GEANT4 are among the most commonly used codes in this field. Each of these codes utilizes a cross-sectional library for the purpose of simulating different elements and materials with complex chemical compositions. The accuracies of the final outcomes of these simulations are very sensitive to the accuracies of the cross-sectional libraries. Several investigators have shown that inaccuracies of some of the cross section files have led to errors in 125I and 103Pd parameters. The purpose of this study is to compare the dosimetric parameters of sample brachytherapy sources, calculated with three different versions of the MCNP code - MCNP4C, MCNP5, and MCNPX. In these simulations for each source type, the source and phantom geometries, as well as the number of the photons, were kept identical, thus eliminating the possible uncertainties. The results of these investigations indicate that for low-energy sources such as 125I and 103Pd there are discrepancies in gL(r) values. Discrepancies up to 21.7% and 28% are observed between MCNP4C and other codes at a distance of 6 cm for 103Pd and 10 cm for 125I from the source, respectively. However, for higher energy sources, the discrepancies in gL(r) values are less than 1.1% for 192Ir and less than 1.2% for 137Cs between the three codes. PMID:27074460

  1. Time-resolved in vivo luminescence dosimetry for online error detection in pulsed dose-rate brachytherapy

    SciTech Connect

    Andersen, Claus E.; Nielsen, Soeren Kynde; Lindegaard, Jacob Christian; Tanderup, Kari

    2009-11-15

    Purpose: The purpose of this study is to present and evaluate a dose-verification protocol for pulsed dose-rate (PDR) brachytherapy based on in vivo time-resolved (1 s time resolution) fiber-coupled luminescence dosimetry. Methods: Five cervix cancer patients undergoing PDR brachytherapy (Varian GammaMed Plus with {sup 192}Ir) were monitored. The treatments comprised from 10 to 50 pulses (1 pulse/h) delivered by intracavitary/interstitial applicators (tandem-ring systems and/or needles). For each patient, one or two dosimetry probes were placed directly in or close to the tumor region using stainless steel or titanium needles. Each dosimeter probe consisted of a small aluminum oxide crystal attached to an optical fiber cable (1 mm outer diameter) that could guide radioluminescence (RL) and optically stimulated luminescence (OSL) from the crystal to special readout instrumentation. Positioning uncertainty and hypothetical dose-delivery errors (interchanged guide tubes or applicator movements from {+-}5 to {+-}15 mm) were simulated in software in order to assess the ability of the system to detect errors. Results: For three of the patients, the authors found no significant differences (P>0.01) for comparisons between in vivo measurements and calculated reference values at the level of dose per dwell position, dose per applicator, or total dose per pulse. The standard deviations of the dose per pulse were less than 3%, indicating a stable dose delivery and a highly stable geometry of applicators and dosimeter probes during the treatments. For the two other patients, the authors noted significant deviations for three individual pulses and for one dosimeter probe. These deviations could have been due to applicator movement during the treatment and one incorrectly positioned dosimeter probe, respectively. Computer simulations showed that the likelihood of detecting a pair of interchanged guide tubes increased by a factor of 10 or more for the considered patients when

  2. BrachyView, A novel inbody imaging system for HDR prostate brachytherapy: Design and Monte Carlo feasibility study

    SciTech Connect

    Safavi-Naeini, M.; Han, Z.; Cutajar, D.; Guatelli, S.; Petasecca, M.; Lerch, M. L. F.; Franklin, D. R.; Jakubek, J.; Pospisil, S.; Bucci, J.; Zaider, M.; Rosenfeld, A. B.

    2013-07-15

    Purpose: High dose rate (HDR) brachytherapy is a form of radiation therapy for treating prostate cancer whereby a high activity radiation source is moved between predefined positions inside applicators inserted within the treatment volume. Accurate positioning of the source is essential in delivering the desired dose to the target area while avoiding radiation injury to the surrounding tissue. In this paper, HDR BrachyView, a novel inbody dosimetric imaging system for real time monitoring and verification of the radioactive seed position in HDR prostate brachytherapy treatment is introduced. The current prototype consists of a 15 Multiplication-Sign 60 mm{sup 2} silicon pixel detector with a multipinhole tungsten collimator placed 6.5 mm above the detector. Seven identical pinholes allow full imaging coverage of the entire treatment volume. The combined pinhole and pixel sensor arrangement is geometrically designed to be able to resolve the three-dimensional location of the source. The probe may be rotated to keep the whole prostate within the transverse plane. The purpose of this paper is to demonstrate the efficacy of the design through computer simulation, and to estimate the accuracy in resolving the source position (in detector plane and in 3D space) as part of the feasibility study for the BrachyView project.Methods: Monte Carlo simulations were performed using the GEANT4 radiation transport model, with a {sup 192}Ir source placed in different locations within a prostate phantom. A geometrically accurate model of the detector and collimator were constructed. Simulations were conducted with a single pinhole to evaluate the pinhole design and the signal to background ratio obtained. Second, a pair of adjacent pinholes were simulated to evaluate the error in calculated source location.Results: Simulation results show that accurate determination of the true source position is easily obtainable within the typical one second source dwell time. The maximum error in

  3. Mapping Intravascular Ultrasound Controversies in Interventional Cardiology Practice

    PubMed Central

    Maresca, David; Adams, Samantha; Maresca, Bruno; van der Steen, Antonius F. W.

    2014-01-01

    Intravascular ultrasound is a catheter-based imaging modality that was developed to investigate the condition of coronary arteries and assess the vulnerability of coronary atherosclerotic plaques in particular. Since its introduction in the clinic 20 years ago, use of intravascular ultrasound innovation has been relatively limited. Intravascular ultrasound remains a niche technology; its clinical practice did not vastly expand, except in Japan, where intravascular ultrasound is an appraised tool for guiding percutaneous coronary interventions. In this qualitative research study, we follow scholarship on the sociology of innovation in exploring both the current adoption practices and perspectives on the future of intravascular ultrasound. We conducted a survey of biomedical experts with experience in the technology, the practice, and the commercialization of intravascular ultrasound. The collected information enabled us to map intravascular ultrasound controversies as well as to outline the dynamics of the international network of experts that generates intravascular ultrasound innovations and uses intravascular ultrasound technologies. While the technology is praised for its capacity to measure coronary atherosclerotic plaque morphology and is steadily used in clinical research, the lack of demonstrated benefits of intravascular ultrasound guided coronary interventions emerges as the strongest factor that prevents its expansion. Furthermore, most of the controversies identified were external to intravascular ultrasound technology itself, meaning that decision making at the industrial, financial and regulatory levels are likely to determine the future of intravascular ultrasound. In light of opinions from the responding experts', a wider adoption of intravascular ultrasound as a stand-alone imaging modality seems rather uncertain, but the appeal for this technology may be renewed by improving image quality and through combination with complementary imaging

  4. Salvage Brachytherapy for Biochemically Recurrent Prostate Cancer following Primary Brachytherapy

    PubMed Central

    Lacy, John M.; Wilson, William A.; Bole, Raevti; Chen, Li; Meigooni, Ali S.; Rowland, Randall G.; Clair, William H. St.

    2016-01-01

    Purpose. In this study, we evaluated our experience with salvage brachytherapy after discovery of biochemical recurrence after a prior brachytherapy procedure. Methods and Materials. From 2001 through 2012 twenty-one patients treated by brachytherapy within University of Kentucky or from outside centers developed biochemical failure and had no evidence of metastases. Computed tomography (CT) scans were evaluated; patients who had an underseeded portion of their prostate were considered for reimplantation. Results. The majority of the patients in this study (61.9%) were low risk and median presalvage PSA was 3.49 (range 17.41–1.68). Mean follow-up was 61 months. At last follow-up after reseeding, 11/21 (52.4%) were free of biochemical recurrence. There was a trend towards decreased freedom from biochemical recurrence in low risk patients (p = 0.12). International Prostate Symptom Scores (IPSS) increased at 3-month follow-up visits but decreased and were equivalent to baseline scores at 18 months. Conclusions. Salvage brachytherapy after primary brachytherapy is possible; however, in our experience the side-effect profile after the second brachytherapy procedure was higher than after the first brachytherapy procedure. In this cohort of patients we demonstrate that approximately 50% oncologic control, low risk patients appear to have better outcomes than others. PMID:27092279

  5. Relief of vasospasm by intravascular ultraviolet irradiation

    NASA Astrophysics Data System (ADS)

    Nakai, Kanji; Morimoto, Yuji; Ito, Hirotaka; Kominami, Kimito; Matsuo, Hirotaka; Arai, Tsunenori; Kikuchi, Makoto

    1998-05-01

    We investigated the photovasorelaxation with intravascular transluminal irradiation using in vivo model. A 2.5 Fr. catheter was inserted in the femoral artery of a rabbit under anesthesia. A 400 micrometers diameter quartz fiber was inserted through the catheter. The catheter was withdrawn from the distal end to the proximal end of the exposed femoral artery without laser irradiation in order to observe the mechanical dilation by the procedure. The femoral artery lumen was irradiated by a Helium-Cadmium(He-Cd) laser (wavelength; 325 nm) with 8 mW through the fiber during 30 s. We carried out that the laser irradiation produced vasorelaxation (185% on the average) compared with mechanical vasodilation (150% on the average) with angiography. The results suggest that intravascular transluminal irradiation with low-power UV laser might be applicable to the relief of acute arterial vasospasm.

  6. Intravascular access in pediatric cardiac arrest.

    PubMed

    Brunette, D D; Fischer, R

    1988-11-01

    All cases of patients aged less than 48 months who presented in cardiac arrest to the Hennepin County Medical Center's emergency department (ED) during the years 1984 to 1986 were reviewed retrospectively. The ED record, initial and subsequent chest radiographs, hospital charts, and autopsy reports were analyzed. A total of 33 cases were reviewed. The average patient age was 5 months. The average time needed to establish intravascular access was 7.9 +/- 4.2 minutes. Success rates were 77% for central venous catheterization, 81% for surgical vein cutdown, 83% for intraosseous infusion, and 17% for percutaneous peripheral catheterization. Percutaneous peripheral catheterization, when successful, and bone marrow needle placement were the fastest methods of obtaining intravascular access. There were no major immediate complications, and delayed complications were minimal. Attempts at peripheral intravenous catheter placement should be brief, with rapid progression to intraosseous infusion if peripheral attempts are not successful. PMID:3178949

  7. Disseminated Intravascular Coagulation Induced with Leukocyte Procoagulant

    PubMed Central

    Kociba, Gary J.; Griesemer, Richard A.

    1972-01-01

    The procoagulant activity of rabbit peritoneal leukocytes significantly increased when the leukocytes were incubated in suspension cultures at 37 C for 24 hours. Intravenous infusions of Iysates of 232 × 106 rabbit leukocytes which had been incubated in cultures at 37 C for 24 hours produced disseminated intravascular coagulation and vasculitis involving the pulmonary arteries in normal rabbits. Intraaortic infusions of lysates of 230 × 106 similarly incubated leukocytes produced renal thrombosis and renal cortical necrosis in normal rabbits. These observations suggest that the procoagulant of granulocytic leukocytes could play a role in the generalized Shwartzman reaction and other syndromes of disseminated intravascular coagulation. ImagesFig 3Fig 4Fig 5Fig 6Fig 7Fig 1Fig 2 PMID:5086898

  8. Techniques for Intravascular Foreign Body Retrieval

    SciTech Connect

    Woodhouse, Joe B.; Uberoi, Raman

    2013-08-01

    As endovascular therapies increase in frequency, the incidence of lost or embolized foreign bodies is increasing. The presence of an intravascular foreign body (IFB) is well recognized to have the potential to cause serious complications. IFB can embolize and impact critical sites such as the heart, with subsequent significant morbidity or mortality. Intravascular foreign bodies most commonly result from embolized central line fragments, but they can originate from many sources, both iatrogenic and noniatrogenic. The percutaneous approach in removing an IFB is widely perceived as the best way to retrieve endovascular foreign bodies. This minimally invasive approach has a high success rate with a low associated morbidity, and it avoids the complications related to open surgical approaches. We examined the characteristics, causes, and incidence of endovascular embolizations and reviewed the various described techniques that have been used to facilitate subsequent explantation of such materials.

  9. Intravascular photoacoustic imaging of human coronary atherosclerosis

    NASA Astrophysics Data System (ADS)

    Jansen, Krista; van der Steen, Antonius F. W.; Springeling, Geert; van Beusekom, Heleen M. M.; Oosterhuis, J. Wolter; van Soest, Gijs

    2011-03-01

    We demonstrate intravascular photoacoustic imaging of human coronary atherosclerotic plaque. We specifically imaged lipid content, a key factor in vulnerable plaques that may lead to myocardial infarction. An integrated intravascular photoacoustics (IVPA) and ultrasound (IVUS) catheter with an outer diameter of 1.25 mm was developed. The catheter comprises an angle-polished optical fiber adjacent to a 30 MHz single-element transducer. The ultrasonic transducer was optically isolated to eliminate artifacts in the PA image. We performed measurements on a cylindrical vessel phantom and isolated point targets to demonstrate its imaging performance. Axial and lateral point spread function widths were 110 μm and 550 μm, respectively, for PA and 89 μm and 420 μm for US. We imaged two fresh human coronary arteries, showing different stages of disease, ex vivo. Specific photoacoustic imaging of lipid content, is achieved by spectroscopic imaging at different wavelengths between 1180 and 1230 nm.

  10. Intravascular iodinated contrast media and the anaesthetist.

    PubMed

    Dickinson, M C; Kam, P C A

    2008-06-01

    The use of intravascular iodinated contrast media (ICM) in radiological investigations is common. Increasingly, anaesthetists and intensivists are involved in the care of patients undergoing these investigations. Whilst the use of ICM is generally safe there are important adverse effects that need to be recognised and measures instigated to prevent or treat these effects. In patients at risk of developing adverse reactions it is important to consider alternative modes of imaging so that ICM can be avoided. Strategies for the prevention of ICM nephropathy should be considered in all patients receiving ICM. Currently intravascular volume expansion with 0.9% saline has the strongest evidence base. The use of isotonic sodium bicarbonate combined with N-acetylcysteine appears promising in providing further benefits. Although the use of N-acetylcysteine alone has not been shown to significantly reduce the incidence of ICM nephropathy it is cheap, has few adverse effects and it would seem reasonable to continue its use in conjunction with intravascular volume expansion. The routine use of corticosteroid and antihistamine premedication is not always effective in preventing general adverse reactions. PMID:18477275

  11. SU-E-J-270: Study of PET Response to HDR Brachytherapy of Rectal Cancer

    SciTech Connect

    Hobbs, R; Le, Y; Armour, E; Efron, J; Azad, N; Wahl, R; Gearhart, S; Herman, J

    2014-06-01

    Purpose: Dose-response studies in radiation therapy are typically using single response values for tumors across ensembles of tumors. Using the high dose rate (HDR) treatment plan dose grid and pre- and post-therapy FDG-PET images, we look for correlations between voxelized dose and FDG uptake response in individual tumors. Methods: Fifteen patients were treated for localized rectal cancer using 192Ir HDR brachytherapy in conjunction with surgery. FDG-PET images were acquired before HDR therapy and 6–8 weeks after treatment (prior to surgery). Treatment planning was done on a commercial workstation and the dose grid was calculated. The two PETs and the treatment dose grid were registered to each other using non-rigid registration. The difference in PET SUV values before and after HDR was plotted versus absorbed radiation dose for each voxel. The voxels were then separated into bins for every 400 cGy of absorbed dose and the bin average values plotted similarly. Results: Individual voxel doses did not correlate with PET response; however, when group into tumor subregions corresponding to dose bins, eighty percent of the patients showed a significant positive correlation (R2 > 0) between PET uptake difference in the targeted region and the absorbed dose. Conclusion: By considering larger ensembles of voxels, such as organ average absorbed dose or the dose bins considered here, valuable information may be obtained. The dose-response correlations as measured by FDG-PET difference potentially underlines the importance of FDG-PET as a measure of response, as well as the value of voxelized information.

  12. Hypothesis: Disseminated Intravascular Inflammation as the Inflammatory Counterpart to Disseminated Intravascular Coagulation

    NASA Astrophysics Data System (ADS)

    Bull, Brian S.; Bull, Maureen H.

    1994-08-01

    We have identified a leukocyte activation syndrome that is occasionally associated with the transfusion of intraoperatively recovered erythrocytes. This syndrome appears to result from intravascular damage caused by leukocytes activated during the erythrocyte salvage process. We hypothesize that this syndrome is part of a larger disease grouping: disseminated intravascular inflammation (DII). DII is the analog of the coagulation disorder disseminated intravascular coagulation. In disseminated intravascular coagulation, the organ damage results from uncontrolled activation of the clotting pathway; in DII the damage is caused by leukocytes that have become activated by direct contact with bacteria or in rare instances-such as erythrocyte salvage-in the absence of bacteria and bacterial products. Recent studies of the hazards associated with intraoperative blood salvage indicate that activation of leukocytes can be achieved by exposure to activated platelets alone. If such activated leukocytes are reinfused along with the washed erythrocytes, widespread organ damage may result. The lung is the organ most severely affected by activated leukocytes. Adult respiratory distress syndrome is one outcome. It is likely that DII is a presently unrecognized pathophysiological process that complicates a variety of primary disease states and increases their lethality.

  13. Hypothesis: disseminated intravascular inflammation as the inflammatory counterpart to disseminated intravascular coagulation.

    PubMed Central

    Bull, B S; Bull, M H

    1994-01-01

    We have identified a leukocyte activation syndrome that is occasionally associated with the transfusion of intraoperatively recovered erythrocytes. This syndrome appears to result from intravascular damage caused by leukocytes activated during the erythrocyte salvage process. We hypothesize that this syndrome is part of a larger disease grouping: disseminated intravascular inflammation (DII). DII is the analog of the coagulation disorder disseminated intravascular coagulation. In disseminated intravascular coagulation, the organ damage results from uncontrolled activation of the clotting pathway; in DII the damage is caused by leukocytes that have become activated by direct contact with bacteria or in rare instances--such as erythrocyte salvage--in the absence of bacteria and bacterial products. Recent studies of the hazards associated with intraoperative blood salvage indicate that activation of leukocytes can be achieved by exposure to activated platelets alone. If such activated leukocytes are reinfused along with the washed erythrocytes, widespread organ damage may result. The lung is the organ most severely affected by activated leukocytes. Adult respiratory distress syndrome is one outcome. It is likely that DII is a presently unrecognized pathophysiological process that complicates a variety of primary disease states and increases their lethality. Images PMID:8058778

  14. Multi-Frequency Intravascular Ultrasound (IVUS) Imaging

    PubMed Central

    Ma, Teng; Yu, Mingyue; Chen, Zeyu; Fei, Chunlong; Shung, K. Kirk; Zhou, Qifa

    2015-01-01

    Acute coronary syndrome (ACS) is frequently associated with the sudden rupture of a vulnerable atherosclerotic plaque within the coronary artery. Several unique physiological features, including a thin fibrous cap accompanied by a necrotic lipid core, are the targeted indicators for identifying the vulnerable plaques. Intravascular ultrasound (IVUS), a catheter-based imaging technology, has been routinely performed in clinics for more than 20 years to describe the morphology of the coronary artery and guide percutaneous coronary interventions. However, conventional IVUS cannot facilitate the risk assessment of ACS because of its intrinsic limitations, such as insufficient resolution. Renovation of the IVUS technology is essentially needed to overcome the limitations and enhance the coronary artery characterization. In this paper, a multi-frequency intravascular ultrasound (IVUS) imaging system was developed by incorporating a higher frequency IVUS transducer (80 to 150 MHz) with the conventional IVUS (30–50 MHz) system. The newly developed system maintains the advantage of deeply penetrating imaging with the conventional IVUS, while offering an improved higher resolution image with IVUS at a higher frequency. The prototyped multi-frequency catheter has a clinically compatible size of 0.95 mm and a favorable capability of automated image co-registration. In vitro human coronary artery imaging has demonstrated the feasibility and superiority of the multi-frequency IVUS imaging system to deliver a more comprehensive visualization of the coronary artery. This ultrasonic-only intravascular imaging technique, based on a moderate refinement of the conventional IVUS system, is not only cost-effective from the perspective of manufacturing and clinical practice, but also holds the promise of future translation into clinical benefits. PMID:25585394

  15. Direction-Modulated Brachytherapy for High-Dose-Rate Treatment of Cervical Cancer. I: Theoretical Design

    SciTech Connect

    Han, Dae Yup; Webster, Matthew J.; Scanderbeg, Daniel J.; Yashar, Catheryn; Choi, Dongju; Song, Bongyong; Devic, Slobodan; Ravi, Ananth; Song, William Y.

    2014-07-01

    Purpose: To demonstrate that utilization of the direction-modulated brachytherapy (DMBT) concept can significantly improve treatment plan quality in the setting of high-dose-rate (HDR) brachytherapy for cervical cancer. Methods and Materials: The new, MRI-compatible, tandem design has 6 peripheral holes of 1.3-mm diameter, grooved along a nonmagnetic tungsten-alloy rod (ρ = 18.0 g/cm{sup 3}), enclosed in Delrin tubing (polyoxymethylene, ρ = 1.41 g/cm{sup 3}), with a total thickness of 6.4 mm. The Monte Carlo N-Particle code was used to calculate the anisotropic {sup 192}Ir dose distributions. An in-house-developed inverse planning platform, geared with simulated annealing and constrained-gradient optimization algorithms, was used to replan 15 patient cases (total 75 plans) treated with a conventional tandem and ovoids (T and O) applicator. Prescription dose was 6 Gy. For replanning, we replaced the conventional tandem with that of the new DMBT tandem for optimization but left the ovoids in place and kept the dwell positions as originally planned. All DMBT plans were normalized to match the high-risk clinical target volume V100 coverage of the T and O plans. Results: In general there were marked improvements in plan quality for the DMBT plans. On average, D2cc for the bladder, rectum, and sigmoid were reduced by 0.59 ± 0.87 Gy (8.5% ± 28.7%), 0.48 ± 0.55 Gy (21.1% ± 27.2%), and 0.10 ± 0.38 Gy (40.6% ± 214.9%) among the 75 plans, with best single-plan reductions of 3.20 Gy (40.8%), 2.38 Gy (40.07%), and 1.26 Gy (27.5%), respectively. The high-risk clinical target volume D90 was similar, with 6.55 ± 0.96 Gy and 6.59 ± 1.06 Gy for T and O and DMBT, respectively. Conclusions: Application of the DMBT concept to cervical cancer allowed for improved organ at risk sparing while achieving similar target coverage on a sizeable patient population, as intended, by maximally utilizing the anatomic information contained in 3-dimensional

  16. Positron autoradiography for intravascular imaging: feasibility evaluation

    NASA Astrophysics Data System (ADS)

    Shikhaliev, Polad M.; Xu, Tong; Ducote, Justin L.; Easwaramoorthy, Balasubramaniam; Mukherjee, Jogeshwar; Molloi, Sabee

    2006-02-01

    Approximately 70% of acute coronary artery disease is caused by unstable (vulnerable) plaques with an inflammation of the overlying cap and high lipid content. A rupturing of the inflamed cap of the plaque results in propagation of the thrombus into the lumen, blockage of the artery and acute ischaemic syndrome or sudden death. Morphological imaging such as angiography or intravascular ultrasound cannot determine inflammation status of the plaque. A radiotracer such as 18F-FDG is accumulated in vulnerable plaques due to higher metabolic activity of the inflamed cap and could be used to detect a vulnerable plaque. However, positron emission tomography (PET) cannot detect the FDG-labelled plaques because of respiratory and heart motions, small size and low activity of the plaques. Plaques can be detected using a miniature particle (positron) detector inserted into the artery. In this work, a new detector concept is investigated for intravascular imaging of the plaques. The detector consists of a storage phosphor tip bound to the end of an intravascular catheter. It can be inserted into an artery, absorb the 18F-FDG positrons from the plaques, withdrawn from the artery and read out. Length and diameter of the storage phosphor tip can be matched to the length and the diameter of the artery. Monte Carlo simulations and experimental evaluations of coronary plaque imaging with the proposed detector were performed. It was shown that the sensitivity of the storage phosphor detector to the positrons of 18F-FDG is sufficient to detect coronary plaques with 1 mm and 2 mm sizes and 590 Bq and 1180 Bq activities in the arteries with 2 mm and 3 mm diameters, respectively. An experimental study was performed using plastic tubes with 2 mm diameter filled with an FDG solution, which simulates blood. FDG spots simulating plaques were placed over the surface of the tube. A phosphor tip was inserted into the tube and imaged the plaques. Exposure time was 1 min in all simulations and

  17. Intravascular imaging with a storage phosphor detector

    NASA Astrophysics Data System (ADS)

    Shikhaliev, Polad M.; Petrek, Peter; Matthews, Kenneth L., II; Fritz, Shannon G.; Bujenovic, L. Steven; Xu, Tong

    2010-05-01

    The aim of this study is to develop and test an intravascular positron imaging system based on a storage phosphor detector for imaging and detecting vulnerable plaques of human coronary arteries. The radiotracer F18-FDG accumulates in vulnerable plaques with inflammation of the overlying cap. The vulnerable plaques can, therefore, be imaged by recording positrons emitted from F18-FDG with a detector inserted into the artery. A prototype intravascular detector was constructed based on storage phosphor. The detector uses a flexible storage phosphor tube with 55 mm length, 2 mm diameter and 0.28 mm wall thickness. The intravascular detector is guided into the vessel using x-ray fluoroscopy and the accumulated x-ray signal must be erased prior to positron imaging. For this purpose, a light diffuser, 0.9 mm in diameter and 55 mm in length, was inserted into the detector tube. The light diffuser was connected to a laser source through a 2 m long optical fiber. The diffuser redirected the 0.38 W laser light to the inner surface of the phosphor detector to erase it. A heart phantom with 300 cm3 volume and three coronary arteries with 3.2 mm diameter and with several plaques was constructed. FDG solution with 0.5 µCi cm-3 activity concentration was filled in the heart and coronary arteries. The detector was inserted in a coronary artery and the signal from the plaques and surrounding background activity was recorded for 2 min. Then the phosphor detector was extracted and read out using a storage phosphor reader. The light diffuser erased the signal resulting from fluoroscopic exposure to level below that encountered during positron imaging. Vulnerable plaques with area activities higher than 1.2 nCi mm-2 were visualized by the detector. This activity is a factor of 10-20 lower than that expected in human vulnerable plaques. The detector was able to image the internal surface of the coronary vessels with 50 mm length and 360° circumference. Spatial resolution was 0

  18. HDRMC, an accelerated Monte Carlo dose calculator for high dose rate brachytherapy with CT-compatible applicators

    SciTech Connect

    Chibani, Omar C-M Ma, Charlie

    2014-05-15

    Purpose: To present a new accelerated Monte Carlo code for CT-based dose calculations in high dose rate (HDR) brachytherapy. The new code (HDRMC) accounts for both tissue and nontissue heterogeneities (applicator and contrast medium). Methods: HDRMC uses a fast ray-tracing technique and detailed physics algorithms to transport photons through a 3D mesh of voxels representing the patient anatomy with applicator and contrast medium included. A precalculated phase space file for the{sup 192}Ir source is used as source term. HDRM is calibrated to calculated absolute dose for real plans. A postprocessing technique is used to include the exact density and composition of nontissue heterogeneities in the 3D phantom. Dwell positions and angular orientations of the source are reconstructed using data from the treatment planning system (TPS). Structure contours are also imported from the TPS to recalculate dose-volume histograms. Results: HDRMC was first benchmarked against the MCNP5 code for a single source in homogenous water and for a loaded gynecologic applicator in water. The accuracy of the voxel-based applicator model used in HDRMC was also verified by comparing 3D dose distributions and dose-volume parameters obtained using 1-mm{sup 3} versus 2-mm{sup 3} phantom resolutions. HDRMC can calculate the 3D dose distribution for a typical HDR cervix case with 2-mm resolution in 5 min on a single CPU. Examples of heterogeneity effects for two clinical cases (cervix and esophagus) were demonstrated using HDRMC. The neglect of tissue heterogeneity for the esophageal case leads to the overestimate of CTV D90, CTV D100, and spinal cord maximum dose by 3.2%, 3.9%, and 3.6%, respectively. Conclusions: A fast Monte Carlo code for CT-based dose calculations which does not require a prebuilt applicator model is developed for those HDR brachytherapy treatments that use CT-compatible applicators. Tissue and nontissue heterogeneities should be taken into account in modern HDR

  19. Fast integrated intravascular photoacoustic/ultrasound catheter

    NASA Astrophysics Data System (ADS)

    Choi, Changhoon; Cho, Seunghee; Kim, Taehoon; Park, Sungjo; Park, Hyoeun; Kim, Jinmoo; Lee, Seunghoon; Kang, Yeonsu; Jang, Kiyuk; Kim, Chulhong

    2016-03-01

    In cardiology, a vulnerable plaque is considered to be a key subject because it is strongly related to atherosclerosis and acute myocardial infarction. Because conventional intravascular imaging devices exhibit several limitations with regard to vulnerable plaque detection, the need for an effective lipid imaging modality has been continuously suggested. Photoacoustic (PA) imaging is a medical imaging technique with a high level of ultrasound (US) resolution and strong optical contrast. In this study, we successfully developed an integrated intravascular photoacoustic/ultrasound (IV-PAUS) imaging system with a catheter diameter of 1.2 mm for lipid-rich atherosclerosis imaging. An Nd:YAG pulsed laser with an excitation wavelength of 1064 nm was utilized. IV-PAUS offers 5-mm depth penetration and axial and lateral PA imaging resolutions of 94 μm and 203 μm, respectively, as determined by imaging a 6-μm carbon fiber. We initially obtained 3-dimensional (3D) co-registered PA/US images of metal stents. Subsequently, we successfully obtained 3D coregistered PA/US ex vivo images using an iliac artery from a rabbit atherosclerosis model. Accordingly, lipid-rich plaques were sufficiently differentiated from normal tissue in the ex vivo experiment. We validated these findings histologically to confirm the lipid content.

  20. New intravascular flow sensor using fiber optics

    NASA Astrophysics Data System (ADS)

    Stenow, Erik N. D.

    1994-12-01

    A new sensor using fiber optics is suggested for blood flow measurements in small vessels. The sensor principle and a first evaluation on a flow model are presented. The new sensor uses small CO2 gas bubbles as flow markers for optical detection. When the bubbles pass an optical window, light emitted from one fiber is reflected and scattered into another fiber. The sensor has been proven to work in a 3 mm flow model using two 110 micrometers optical fibers and a 100 micrometers steel capillary inserted into a 1 mm guide wire. The evaluation of a sensor archetype shows that the new sensor provides a promising method for intravascular blood flow measurement in small vessels. The linearity for steady state flow is studied in the flow interval 30 - 130 ml/min. comparison with ultrasound Doppler flowmetry was performed for pulsatile flow in the interval 25 - 125 ml/min. with a pulse length between 0.5 and 2 s. The use of intravascular administered CO2 in small volumes is harmless because the gas is rapidly dissolved in whole blood.

  1. High-dose-rate brachytherapy and hypofractionated external beam radiotherapy combined with long-term hormonal therapy for high-risk and very high-risk prostate cancer: outcomes after 5-year follow-up

    PubMed Central

    Ishiyama, Hiromichi; Satoh, Takefumi; Kitano, Masashi; Tabata, Ken-ichi; Komori, Shouko; Ikeda, Masaomi; Soda, Itaru; Kurosaka, Shinji; Sekiguchi, Akane; Kimura, Masaki; Kawakami, Shogo; Iwamura, Masatsugu; Hayakawa, Kazushige

    2014-01-01

    The purpose of this study was to report the outcomes of high-dose-rate (HDR) brachytherapy and hypofractionated external beam radiotherapy (EBRT) combined with long-term androgen deprivation therapy (ADT) for National Comprehensive Cancer Network (NCCN) criteria-defined high-risk (HR) and very high-risk (VHR) prostate cancer. Data from 178 HR (n = 96, 54%) and VHR (n = 82, 46%) prostate cancer patients who underwent 192Ir-HDR brachytherapy and hypofractionated EBRT with long-term ADT between 2003 and 2008 were retrospectively analyzed. The mean dose to 90% of the planning target volume was 6.3 Gy/fraction of HDR brachytherapy. After five fractions of HDR treatment, EBRT with 10 fractions of 3 Gy was administered. All patients initially underwent ≥6 months of neoadjuvant ADT, and adjuvant ADT was continued for 36 months after EBRT. The median follow-up was 61 months (range, 25–94 months) from the start of radiotherapy. The 5-year biochemical non-evidence of disease, freedom from clinical failure and overall survival rates were 90.6% (HR, 97.8%; VHR, 81.9%), 95.2% (HR, 97.7%; VHR, 92.1%), and 96.9% (HR, 100%; VHR, 93.3%), respectively. The highest Radiation Therapy Oncology Group-defined late genitourinary toxicities were Grade 2 in 7.3% of patients and Grade 3 in 9.6%. The highest late gastrointestinal toxicities were Grade 2 in 2.8% of patients and Grade 3 in 0%. Although the 5-year outcome of this tri-modality approach seems favorable, further follow-up is necessary to validate clinical and survival advantages of this intensive approach compared with the standard EBRT approach. PMID:24222312

  2. Measurement of absorbed dose to water around an electronic brachytherapy source. Comparison of two dosimetry systems: lithium formate EPR dosimeters and radiochromic EBT2 film

    NASA Astrophysics Data System (ADS)

    Adolfsson, Emelie; White, Shane; Landry, Guillaume; Lund, Eva; Gustafsson, Håkan; Verhaegen, Frank; Reniers, Brigitte; Carlsson Tedgren, Åsa; Alm Carlsson, Gudrun

    2015-05-01

    Interest in high dose rate (HDR) electronic brachytherapy operating at 50 kV is increasing. For quality assurance it is important to identify dosimetry systems that can measure the absorbed doses in absolute terms which is difficult in this energy region. In this work a comparison is made between two dosimetry systems, EPR lithium formate dosimeters and radiochromic EBT2 film. Both types of dosimeters were irradiated simultaneously in a PMMA phantom using the Axxent EBS. Absorbed dose to water was determined at distances of 10 mm, 30 mm and 50 mm from the EBS. Results were traceable to different primary standards as regards to absorbed dose to water (EPR) and air kerma (EBT2). Monte Carlo simulations were used in absolute terms as a third estimate of absorbed dose to water. Agreement within the estimated expanded (k = 2) uncertainties (5% (EPR), 7% (EBT2)) was found between the results at 30 mm and 50 mm from the x-ray source. The same result was obtained in 4 repetitions of irradiation, indicating high precision in the measurements with both systems. At all distances, agreement between EPR and Monte Carlo simulations was shown as was also the case for the film measurements at 30mm and 50mm. At 10mm the geometry for the film measurements caused too large uncertainty in measured values depending on the exact position (within sub-mm distances) of the EBS and the 10 mm film results were exculded from comparison. This work has demonstrated good performance of the lithium formate EPR dosimetry system in accordance with earlier experiments at higher photon energies (192Ir HDR brachytherapy). It was also highlighted that there might be issues regarding the energy dependence and intrinsic efficiency of the EBT2 film that need to be considered for measurements using low energy sources.

  3. Multi-axis dose accumulation of noninvasive image-guided breast brachytherapy through biomechanical modeling of tissue deformation using the finite element method

    PubMed Central

    Ghadyani, Hamid R.; Bastien, Adam D.; Lutz, Nicholas N.; Hepel, Jaroslaw T.

    2015-01-01

    Purpose Noninvasive image-guided breast brachytherapy delivers conformal HDR 192Ir brachytherapy treatments with the breast compressed, and treated in the cranial-caudal and medial-lateral directions. This technique subjects breast tissue to extreme deformations not observed for other disease sites. Given that, commercially-available software for deformable image registration cannot accurately co-register image sets obtained in these two states, a finite element analysis based on a biomechanical model was developed to deform dose distributions for each compression circumstance for dose summation. Material and methods The model assumed the breast was under planar stress with values of 30 kPa for Young's modulus and 0.3 for Poisson's ratio. Dose distributions from round and skin-dose optimized applicators in cranial-caudal and medial-lateral compressions were deformed using 0.1 cm planar resolution. Dose distributions, skin doses, and dose-volume histograms were generated. Results were examined as a function of breast thickness, applicator size, target size, and offset distance from the center. Results Over the range of examined thicknesses, target size increased several millimeters as compression thickness decreased. This trend increased with increasing offset distances. Applicator size minimally affected target coverage, until applicator size was less than the compressed target size. In all cases, with an applicator larger or equal to the compressed target size, > 90% of the target covered by > 90% of the prescription dose. In all cases, dose coverage became less uniform as offset distance increased and average dose increased. This effect was more pronounced for smaller target–applicator combinations. Conclusions The model exhibited skin dose trends that matched MC-generated benchmarking results within 2% and clinical observations over a similar range of breast thicknesses and target sizes. The model provided quantitative insight on dosimetric treatment variables

  4. Predictors of Cosmetic Outcome Following MammoSite Breast Brachytherapy: A Single-Institution Experience of 100 Patients With Two Years of Follow-Up

    SciTech Connect

    Dragun, Anthony E. . E-mail: dragun@radonc.musc.edu; Harper, Jennifer L.; Jenrette, Joseph M.; Sinha, Debajyoti; Cole, David J.

    2007-06-01

    Purpose: To identify the factors that predict for excellent cosmesis in patients who receive MammoSite breast brachytherapy (MBT). Methods and Materials: One hundred patients with Stage 0, I, or II adenocarcinoma of the breast underwent adjuvant therapy using MBT. A dose of 34 Gy, delivered in 10 fractions twice daily, was prescribed to 1-cm depth using {sup 192}Ir high-dose-rate brachytherapy. Patients were assessed for acute toxicity on the day of therapy completion, 4 weeks after therapy, and at least every 3 months by radiation, surgical, and/or medical oncologists. All available data were reviewed for documentation of cosmesis and rated using the Harvard Scale. All patients had a minimum follow-up of 6 months (median = 24 months). Results: Of 100 patients treated, 90 had adequate data and follow-up. Cosmesis was excellent in 62 (68.9%), good in 19 (21.1%), fair in 8 (8.9%), and poor in 1 (1.1%) patient. Using stepwise logistic regression, the factors that predicted for excellent cosmesis were as follows: the absence vs. presence of infection (p = 0.017), and the absence vs. presence of acute skin toxicity (p = 0.026). There was a statistically significant association between acute skin toxicity (present vs. absent) and balloon-to-skin distance (<8 vs. >8 mm, p = 0.001). Factors that did not predict for cosmesis were age, balloon placement technique, balloon volume, catheter days in situ, subcutaneous toxicity, and chemotherapy or hormonal therapy. Conclusions: The acute and late-term toxicity profiles of MBT have been acceptable. Cosmetic outcome is improved by proper patient selection and infection prevention.

  5. Dose Modeling of Noninvasive Image-Guided Breast Brachytherapy in Comparison to Electron Beam Boost and Three-Dimensional Conformal Accelerated Partial Breast Irradiation

    SciTech Connect

    Sioshansi, Shirin; Rivard, Mark J.; Hiatt, Jessica R.; Hurley, Amanda A.; Lee, Yoojin; Wazer, David E.

    2011-06-01

    Purpose: To perform dose modeling of a noninvasive image-guided breast brachytherapy (NIIGBB) for comparison to electrons and 3DCRT. Methods and Materials: The novel technology used in this study is a mammography-based, noninvasive breast brachytherapy system whereby the treatment applicators are centered on the planning target volume (PTV) to direct {sup 192}Ir emissions along orthogonal axes. To date, three-dimensional dose modeling of NIIGBB has not been possible because of the limitations of conventional treatment planning systems (TPS) to model variable tissue deformation associated with breast compression. In this study, the TPS was adapted such that the NIIGBB dose distributions were modeled as a virtual point source. This dose calculation technique was applied to CT data from 8 patients imaged with the breast compressed between parallel plates in the cranial-caudal and medial-lateral axes. A dose-volume comparison was performed to simulated electron boost and 3DCRT APBI. Results: The NIIGBB PTV was significantly reduced as compared with both electrons and 3DCRT. Electron boost plans had a lower D{sub min} than the NIIGBB technique but higher V{sub 100}, D{sub 90}, and D{sub 50}. With regard to PTV coverage for APBI, the only significant differences were minimally higher D{sub 90}, D{sub 100}, V{sub 80}, and V{sub 90}, with 3DCRT and D{sub max} with NIIGBB. The NIIGBB technique, as compared with electrons and 3D-CRT, achieved a lower maximum dose to skin (60% and 10%, respectively) and chest wall/lung (70-90%). Conclusions: NIIGBB achieves a PTV that is smaller than electron beam and 3DCRT techniques. This results in significant normal tissue sparing while maintaining dosimetric benchmarks to the target tissue.

  6. Wilms’ tumor with intravascular extension: A review article

    PubMed Central

    McMahon, Suzanne; Carachi, Robert

    2014-01-01

    Intravascular extension of Wilms’ tumor is a well-recognized phenomenon. Intravascular extension into the vena cava occurs in only 4-8% of patients with Wilms’ tumors and intraatrial extension occurs in around 1-3% of patients. This review of the published literature in this cohort aims to summarize the findings of different case series to provide an optimum management plan. A literature search was performed and index papers were retrieved for review. The search included the following terms: Intracaval, intravascular, intraatrial and intracardiac extension of Wilms’ tumor or nephroblastoma. The management of patients with intravascular tumor thrombus in Wilms’ tumor is complex. A skilled multi-disciplinary team at a tertiary referral center with cardiothoracic surgery available should manage these patients. Multi-modal diagnostic and preoperative imaging are required to confirm and define the extent of the extension. Preoperative chemotherapy is advocated for all but exceptional circumstances and must be followed closely. Surgical resection should be planned according to the stage of intravascular extension with possible need for cardiopulmonary bypass and deep hypothermia with cardiac arrest if required. Surgical complications are more common in this group of patients, but outcome is comparable to those without intravascular extension, and is more closely correlated with the histological subtype then stage of intravascular extension. Operative imaging are required to confirm and define the extent of the extension. PMID:25336800

  7. In vivo dosimetry for gynaecological brachytherapy using a novel position sensitive radiation detector: Feasibility study

    SciTech Connect

    Reniers, B.; Landry, G.; Eichner, R.; Hallil, A.; Verhaegen, F.

    2012-04-15

    Purpose: In gynecological radiotherapy with high dose rate (HDR){sup 192}Ir brachytherapy, the treatment complexity has increased due to improved optimization techniques and dose constraints. As a consequence, it has become more important to verify the dose delivery to the target and also to the organs at risk (e.g., the bladder). In vivo dosimetry, where dosimeters are placed in or on the patient, is one way of verifying the dose but until recently this was hampered by motion of the radiation detectors with respect to the source. The authors present a novel dosimetry method using a position sensitive radiation detector. Methods: The prototype RADPOS system (Best Medical Canada) consists of a metal oxide field effect transistor (MOSFET) dosimeter coupled to a position-sensor, which deduces its 3D position in a magnetic field. To assess the feasibility of in vivo dosimetry based on the RADPOS system, different characteristics of the detector need to be investigated. Using a PMMA phantom, the positioning accuracy of the RADPOS system was quantified by comparing position readouts with the known position of the detector along the x and y-axes. RADPOS dose measurements were performed at various distances from a Nucletron{sup 192}Ir source in a PMMA phantom to evaluate the energy dependence of the MOSFET. A sensitivity analysis was performed by calculating the dose after varying (1) the position of the RADPOS detector to simulate organ motion and (2) the position of the first dwell position to simulate errors in delivery. The authors also performed an uncertainty analysis to determine the action level (AL) that should be used during in vivo dosimetry. Results: Positioning accuracy is found to be within 1 mm in the 1-10 cm range from the origin along the x-axis (away from the transmitter), meeting the requirements for in vivo dosimetry. Similar results are obtained for the other axes. The ALs are chosen to take into account the total uncertainty on the measurements. As a

  8. Quinine-Induced Disseminated Intravascular Coagulation

    PubMed Central

    2016-01-01

    Every drug comes with some side effect. It is the benefit/risk ratio that determines the medical use of the drug. Quinine, a known antimalarial drug, has been used for nocturnal leg cramps since the 1930s; it is associated with severe life-threatening hematological and cardiovascular side effects. Disseminated intravascular coagulation (DIC), albeit rare, is a known coagulopathy associated with Quinine. It is imperative to inquire about the Quinine intake in medication history in patients with coagulopathy, as most patients still consider it a harmless home remedy for nocturnal leg cramps. In this report, we present a case of coagulopathy in a middle-aged woman, who gave a history of taking Quinine for nocturnal leg cramps, as her home remedy. Early identification of the offending agent led to the diagnosis, prompt discontinuation of the medication, and complete recovery and prevented the future possibility of recurrence. PMID:27293443

  9. Quinine-Induced Disseminated Intravascular Coagulation.

    PubMed

    Abed, Firas; Baniya, Ramkaji; Bachuwa, Ghassan

    2016-01-01

    Every drug comes with some side effect. It is the benefit/risk ratio that determines the medical use of the drug. Quinine, a known antimalarial drug, has been used for nocturnal leg cramps since the 1930s; it is associated with severe life-threatening hematological and cardiovascular side effects. Disseminated intravascular coagulation (DIC), albeit rare, is a known coagulopathy associated with Quinine. It is imperative to inquire about the Quinine intake in medication history in patients with coagulopathy, as most patients still consider it a harmless home remedy for nocturnal leg cramps. In this report, we present a case of coagulopathy in a middle-aged woman, who gave a history of taking Quinine for nocturnal leg cramps, as her home remedy. Early identification of the offending agent led to the diagnosis, prompt discontinuation of the medication, and complete recovery and prevented the future possibility of recurrence. PMID:27293443

  10. Intravascular extra-digital glomus tumor of the forearm

    PubMed Central

    Muneer, Mohammed; Alkhafaji, Ali; El-Menyar, Ayman; Al-Hetmi, Talal; Al-Basti, Habib; Al-Thani, Hassan

    2016-01-01

    Intravascular glomus tumor in the forearm is very rare and usually presents with persistent pain and focal tenderness. The diagnosis of this condition can be easily missed or delayed. There is no successful treatment so far other than surgical excision in most of cases. We presented a 45-year-old female presented with intravascular glomus tumor in her left forearm. The swelling was excised and the post-operative course was uneventful. Intravascular glomus tumor of the forearm is extremely rare and the persistent pain and tenderness are very suspicious. Diagnostic imaging may not be indicated in every case. PMID:27421300

  11. Remote Temperature Estimation in Intravascular Photoacoustic Imaging

    PubMed Central

    Sethuraman, Shriram; Aglyamov, Salavat R.; Smalling, Richard W.; Emelianov, Stanislav Y.

    2008-01-01

    Intravascular photoacoustic (IVPA) imaging is based on the detection of laser-induced acoustic waves generated within the arterial tissue under pulsed laser irradiation. Generally, laser radiant energy levels are kept low (20 mJ/cm2) during photoacoustic imaging to conform to general standards for safe use of lasers on biological tissues. However, safety standards in intravascular photoacoustic imaging are not yet fully established. Consequently, monitoring spatio-temporal temperature changes associated with laser-tissue interaction is important to address thermal safety of IVPA imaging. In this study we utilize the IVUS based strain measurements to estimate the laser induced temperature increase. Temporal changes in temperature were estimated in a phantom modeling a vessel with an inclusion. A cross-correlation based time delay estimator was used to assess temperature induced strains produced by different laser radiant energies. The IVUS based remote measurements revealed temperature increases of 0.7±0.3°C, 2.9±0.2 °C and 5.0±0.2 °C, for the laser radiant energies of 30 mJ/cm2, 60 mJ/cm2 and 85 mJ/cm2 respectively. The technique was then used in imaging of ex vivo samples of a normal rabbit aorta. For arterial tissues, a temperature elevation of 1.1°C was observed for a laser fluence of 60 mJ/cm2 and lesser than 1°C for lower energy levels normally associated with IVPA imaging. Therefore, the developed ultrasound technique can be used to monitor temperature during IVPA imaging. Furthermore, the analysis based on the Arrhenius thermal damage model indicates no thermal injury in the arterial tissue; suggesting the safety of IVPA imaging PMID:17935861

  12. The Influence of Prostate Volume on Outcome After High-Dose-Rate Brachytherapy Alone for Localized Prostate Cancer

    SciTech Connect

    Le, Hien Rojas, Ana; Alonzi, Roberto; Hughes, Robert; Ostler, Peter; Lowe, Gerry; Bryant, Linda; Hoskin, Peter

    2013-10-01

    Objective: To determine whether late genitourinary toxicity, biochemical control of prostate cancer, and dosimetric parameters in patients with large prostate glands is different from those variables in men with smaller glands after treatment with high-dose-rate brachytherapy alone (HDR-BT). Methods: From November 2003 to July 2009, 164 patients with locally advanced prostate carcinoma were sequentially enrolled and treated with 34 or 36 Gy in 4 fractions and 31.5 Gy in 3 fractions of {sup 192}Ir HDR-BT alone. The median follow-up time was 71 months. Gland size was not considered in the selection criteria for this study. Estimates of freedom from biochemical relapse (FFbR) and late morbidity, stratified by median clinical target volume (CTV), were obtained, and differences were compared. Results: The median CTV volume was 60 cc (range, 15-208 cc). Dose–volume parameters D90 and V100 (ie, minimum dose to 90% of the prostate volume and volume receiving 100% of the prescribed isodose) achieved in patients with glands ≥60 cc were not significantly different from those with glands <60 cc (P≥.2). Nonetheless, biochemical control in patients with larger CTV was significantly higher (91% vs 78% at 6 years; P=.004). In univariate and multivariate analysis, CTV was a significant predictor for risk of biochemical relapse. This was not at the expense of an increase in either moderate (P=.6) or severe (P=.3) late genitourinary toxicity. The use of hormonal therapy was 17% lower in the large gland group (P=.01). Conclusions: Prostate gland size does not affect dosimetric parameters in HDR-BT assessed by D90 and V100. In patients with larger glands, a significantly higher biochemical control of disease was observed, with no difference in late toxicity. This improvement cannot be attributed to differences in dosimetry. Gland size should not be considered in the selection of patients for HDR-BT.

  13. Specification of absorbed dose to water using model-based dose calculation algorithms for treatment planning in brachytherapy

    NASA Astrophysics Data System (ADS)

    Carlsson Tedgren, Åsa; Alm Carlsson, Gudrun

    2013-04-01

    Model-based dose calculation algorithms (MBDCAs), recently introduced in treatment planning systems (TPS) for brachytherapy, calculate tissue absorbed doses. In the TPS framework, doses have hereto been reported as dose to water and water may still be preferred as a dose specification medium. Dose to tissue medium Dmed then needs to be converted into dose to water in tissue Dw,med. Methods to calculate absorbed dose to differently sized water compartments/cavities inside tissue, infinitesimal (used for definition of absorbed dose), small, large or intermediate, are reviewed. Burlin theory is applied to estimate photon energies at which cavity sizes in the range 1 nm-10 mm can be considered small or large. Photon and electron energy spectra are calculated at 1 cm distance from the central axis in cylindrical phantoms of bone, muscle and adipose tissue for 20, 50, 300 keV photons and photons from 125I, 169Yb and 192Ir sources; ratios of mass-collision-stopping powers and mass energy absorption coefficients are calculated as applicable to convert Dmed into Dw,med for small and large cavities. Results show that 1-10 nm sized cavities are small at all investigated photon energies; 100 µm cavities are large only at photon energies <20 keV. A choice of an appropriate conversion coefficient Dw, med/Dmed is discussed in terms of the cavity size in relation to the size of important cellular targets. Free radicals from DNA bound water of nanometre dimensions contribute to DNA damage and cell killing and may be the most important water compartment in cells implying use of ratios of mass-collision-stopping powers for converting Dmed into Dw,med.

  14. 21 CFR 882.5150 - Intravascular occluding catheter.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    .... Class III (premarket approval). (c) Date PMA or notice of completion of a PDP is required. A PMA or a... intravascular occluding catheter shall have an approved PMA or a declared completed PDP in effect before...

  15. 21 CFR 882.5150 - Intravascular occluding catheter.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    .... Class III (premarket approval). (c) Date PMA or notice of completion of a PDP is required. A PMA or a... intravascular occluding catheter shall have an approved PMA or a declared completed PDP in effect before...

  16. Intravascular laser therapy in different forms of lung diseases

    NASA Astrophysics Data System (ADS)

    Kirillov, M. N.; Reshetnikov, V. A.; Kazhekin, O. A.; Shepelenko, A. F.

    1993-06-01

    The potentions of laser intravascular therapy in elimination of pyogenic and inflammatory intoxication in cases of acute pneumonia, pyo-destructive diseases (including posttraumatic diseases) of the lungs are studied clinically.

  17. Brachytherapy dosimeter with silicon photomultipliers

    NASA Astrophysics Data System (ADS)

    Moutinho, L. M.; Castro, I. F. C.; Peralta, L.; Abreu, M. C.; Veloso, J. F. C. A.

    2015-07-01

    In-vivo and in-situ measurement of the radiation dose administered during brachytherapy faces several technical challenges, requiring a very compact, tissue-equivalent, linear and highly sensitive dosimeter, particularly in low-dose rate brachytherapy procedures, which use radioactive seeds with low energy and low dose deposition rate. In this work we present a scintillating optical fiber dosimeter composed of a flexible sensitive probe and a dedicated electronic readout system based on silicon photomultiplier photodetection, capable of operating both in pulse and current modes. The performance of the scintillating fiber optic dosimeter was evaluated in low energy regimes, using an X-ray tube operating at voltages of 40-50 kV and currents below 1 mA, to assess minimum dose response of the scintillating fiber. The dosimeter shows a linear response with dose and is capable of detecting mGy dose variations like an ionization chamber. Besides fulfilling all the requirements for a dosimeter in brachytherapy, the high sensitivity of this device makes it a suitable candidate for application in low-dose rate brachytherapy. According to Peralta and Rego [1], the BCF-10 and BCF-60 scintillating optical fibers used in dosimetry exhibit high variations in their sensitivity for photon beams in the 25-100 kVp energy range. Energy linearity for energies below 50 keV needs to be further investigated, using monochromatic X-ray photons.

  18. Intravascular probe for detection of vulnerable plaque

    NASA Astrophysics Data System (ADS)

    Patt, Bradley E.; Iwanczyk, Jan S.; MacDonald, Lawrence R.; Yamaguchi, Yuko; Tull, Carolyn R.; Janecek, Martin; Hoffman, Edward J.; Strauss, H. William; Tsugita, Ross; Ghazarossian, Vartan

    2001-12-01

    Coronary angiography is unable to define the status of the atheroma, and only measures the luminal dimensions of the blood vessel, without providing information about plaque content. Up to 70% of heart attacks are caused by minimally obstructive vulnerable plaques, which are too small to be detected adequately by angiography. We have developed an intravascular imaging detector to identify vulnerable coronary artery plaques. The detector works by sensing beta or conversion electron radiotracer emissions from plaque-binding radiotracers. The device overcomes the technical constraints of size, sensitivity and conformance to the intravascular environment. The detector at the distal end of the catheter uses six 7mm long by 0.5mm diameter scintillation fibers coupled to 1.5m long plastic fibers. The fibers are offset from each other longitudinally by 6mm and arranged spirally around a guide wire in the catheter. At the proximal end of the catheter the optical fibers are coupled to an interface box with a snap on connector. The interface box contains a position sensitive photomultiplier tube (PSPMT) to decode the individual fibers. The whole detector assembly fits into an 8-French (2.7 mm in diameter) catheter. The PSPMT image is further decoded with software to give a linear image, the total instantaneous count rate and an audio output whose tone corresponds to the count rate. The device was tested with F-18 and Tl-204 sources. Spectrometric response, spatial resolution, sensitivity and beta to background ratio were measured. System resolution is 6 mm and the sensitivity is >500 cps / micrometers Ci when the source is 1 mm from the detector. The beta to background ratio was 11.2 for F-18 measured on a single fiber. The current device will lead to a system allowing imaging of labeled vulnerable plaque in coronary arteries. This type of signature is expected to enable targeted and cost effective therapies to prevent acute coronary artery diseases such as: unstable angina

  19. Image-based brachytherapy for cervical cancer

    PubMed Central

    Vargo, John A; Beriwal, Sushil

    2014-01-01

    Cervical cancer is the third most common cancer in women worldwide; definitive radiation therapy and concurrent chemotherapy is the accepted standard of care for patients with node positive or locally advanced tumors > 4 cm. Brachytherapy is an important part of definitive radiotherapy shown to improve overall survival. While results for two-dimensional X-ray based brachytherapy have been good in terms of local control especially for early stage disease, unexplained toxicities and treatment failures remain. Improvements in brachytherapy planning have more recently paved the way for three-dimensional image-based brachytherapy with volumetric optimization which increases tumor control, reduces toxicity, and helps predict outcomes. Advantages of image-based brachytherapy include: improved tumor coverage (especially for large volume disease), decreased dose to critical organs (especially for small cervix), confirmation of applicator placement, and accounting for sigmoid colon dose. A number of modalities for image-based brachytherapy have emerged including: magnetic resonance imaging (MRI), computed tomography (CT), CT-MRI hybrid, and ultrasound with respective benefits and outcomes data. For practical application of image-based brachytherapy the Groupe Europeen de Curietherapie-European Society for Therapeutic Radiology and Oncology Working Group and American Brachytherapy Society working group guideline serve as invaluable tools, additionally here-in we outline our institutional clinical integration of these guidelines. While the body of literature supporting image-based brachytherapy continues to evolve a number of uncertainties and challenges remain including: applicator reconstruction, increasing resource/cost demands, mobile four-dimensional targets and organs-at-risk, and accurate contouring of “grey zones” to avoid marginal miss. Ongoing studies, including the prospective EMBRACE (an international study of MRI-guided brachytherapy in locally advanced

  20. Cardiac phase detection in intravascular ultrasound images

    NASA Astrophysics Data System (ADS)

    Matsumoto, Monica M. S.; Lemos, Pedro Alves; Yoneyama, Takashi; Furuie, Sergio Shiguemi

    2008-03-01

    Image gating is related to image modalities that involve quasi-periodic moving organs. Therefore, during intravascular ultrasound (IVUS) examination, there is cardiac movement interference. In this paper, we aim to obtain IVUS gated images based on the images themselves. This would allow the reconstruction of 3D coronaries with temporal accuracy for any cardiac phase, which is an advantage over the ECG-gated acquisition that shows a single one. It is also important for retrospective studies, as in existing IVUS databases there are no additional reference signals (ECG). From the images, we calculated signals based on average intensity (AI), and, from consecutive frames, average intensity difference (AID), cross-correlation coefficient (CC) and mutual information (MI). The process includes a wavelet-based filter step and ascendant zero-cross detection in order to obtain the phase information. Firstly, we tested 90 simulated sequences with 1025 frames each. Our method was able to achieve more than 95.0% of true positives and less than 2.3% of false positives ratio, for all signals. Afterwards, we tested in a real examination, with 897 frames and ECG as gold-standard. We achieved 97.4% of true positives (CC and MI), and 2.5% of false positives. For future works, methodology should be tested in wider range of IVUS examinations.

  1. Disseminated Intravascular Coagulation Syndromes in Obstetrics.

    PubMed

    Cunningham, F Gary; Nelson, David B

    2015-11-01

    Disseminated intravascular coagulation (DIC) is a syndrome that can be initiated by a myriad of medical, surgical, and obstetric disorders. Also known as consumptive coagulopathy, DIC is a common contributor to maternal morbidity and mortality and is associated with up to 25% of maternal deaths. The etiopathogenesis of DIC is complex and currently thought to be initiated by tissue factor or thromboplastin, which is released from trophoblastic or fetal tissue, or maternal decidua or endothelium. Tissue factor activates the coagulation sequence to cause fibrin clotting and its dissolution by the fibrinolysin system. The result of this process can range from mild, clinically insignificant laboratory derangements to marked coagulopathy with bleeding at sites of minimal trauma. Although clinical recognition varies by disease severity, several organizations have attempted to standardize the diagnosis through development of scoring systems. Several important--albeit not necessarily common--obstetric disorders associated with DIC include placental abruption, amniotic fluid embolism, sepsis syndrome, and acute fatty liver of pregnancy. More common disorders include severe preeclampsia, hemolysis, elevated liver enzymes, and low platelet count syndrome, and massive obstetric hemorrhage. Importantly, many of these disorders either cause or are associated with substantive obstetric hemorrhage. Treatment of DIC is centered on two principles. The first is identification and treatment of the underlying disorder. Because many women with consumptive coagulopathy also have massive hemorrhage, the second tenet of treatment is that obstetric complications such as uterine atony or lacerations must be controlled simultaneously with prompt blood and component replacement for a salutary outcome. PMID:26444122

  2. Immunological characterization of pulmonary intravascular macrophages

    NASA Technical Reports Server (NTRS)

    Chitko-McKown, C. G.; Reddy, D. N.; Chapes, S. K.; McKown, R. D.; Blecha, F.; Spooner, B. S. (Principal Investigator)

    1992-01-01

    Pulmonary intravascular macrophages (PIMs) are lung macrophages found apposed to the endothelium of pulmonary capillaries. In many species, they are responsible for the clearance of blood-borne particulates and pathogens; however, little else is known about their roles as immunologic effector cells. We compared PIMs with pulmonary alveolar macrophages (PAMs) to determine the relative immunological activities of these two cell populations. Our results suggested that both populations possess similar phagocytic and bactericidal activities. In assays measuring cytotoxicity, PIMs were more cytotoxic than PAMs against virally infected target cells; however, differences between these macrophage populations were not as marked when noninfected targets were used. LPS-stimulated PIMs produced more T-cell proliferative cytokines than PAMs, and both populations of nonstimulated macrophages produced similar amounts of the cytokines. In contrast, PAMs produced more TNF alpha and NO2- than PIMs when both populations were stimulated with LPS; however, nonstimulated PAMs and PIMs produced similar amounts of TNF alpha and NO2. These data suggest that bovine PIMs are immunologically active. Differences between the degrees of activity of PIMs and PAMs indicate that these macrophage populations may have different roles in lung surveillance.

  3. Disseminated intravascular coagulation following administration of sunitinib

    PubMed Central

    OLIVO, ANAËLLE; NOËL, NICOLAS; BESSE, BENJAMIN; TABURET, ANNE-MARIE; LAMBOTTE, OLIVIER

    2016-01-01

    Sunitinib is an increasingly used, orally administered targeted therapy, approved by the European Medicines Agency for the treatment of various types of cancer, including gastrointestinal stromal tumor unresectable or metastatic disease, following disease progression or intolerance to imatinib, and advanced or metastatic renal cell carcinoma, progressive well-differentiated pancreatic neuroendocrine tumors in patients with unresectable, locally advanced or metastatic disease. Sunitinib inhibits several tyrosine kinases, including the vascular endothelial growth factor receptor and the platelet-derived growth factor receptor. Tyrosine kinases inhibitor therapies are generally well-tolerated; nonetheless, they are not void of side effects. The majority of patients reported are grade 1 or 2, and include common and unspecific adverse events, including fatigue, gastrointestinal disorders, skin discoloration, altered taste, cough and dyspnea. Grade 3 or 4 adverse events, including bleeding and hemorrhage, are less frequent. The present study presented the first case of disseminated intravascular coagulation associated with the administration of sunitinib, shortly following the increase of sunitinib dosage. PMID:27330781

  4. Limitations of current dosimetry for intracavitary accelerated partial breast irradiation with high dose rate iridium-192 and electronic brachytherapy sources

    NASA Astrophysics Data System (ADS)

    Raffi, Julie A.

    Intracavitary accelerated partial breast irradiation (APBI) is a method of treating early stage breast cancer using a high dose rate (HDR) brachytherapy source positioned within the lumpectomy cavity. An expandable applicator stretches the surrounding tissue into a roughly spherical or elliptical shape and the dose is prescribed to 1 cm beyond the edge of the cavity. Currently, dosimetry for these treatments is most often performed using the American Association of Physicists in Medicine Task Group No. 43 (TG-43) formalism. The TG-43 dose-rate equation determines the dose delivered to a homogeneous water medium by scaling the measured source strength with standardized parameters that describe the radial and angular features of the dose distribution. Since TG-43 parameters for each source model are measured or calculated in a homogeneous water medium, the dosimetric effects of the patient's dimensions and composition are not accounted for. Therefore, the accuracy of TG-43 calculations for intracavitary APBI is limited by the presence of inhomogeneities in and around the target volume. Specifically, the breast is smaller than the phantoms used to determine TG-43 parameters and is surrounded by air, ribs, and lung tissue. Also, the composition of the breast tissue itself can affect the dose distribution. This dissertation is focused on investigating the limitations of TG-43 dosimetry for intracavitary APBI for two HDR brachytherapy sources: the VariSource TM VS2000 192Ir source and the AxxentRTM miniature x-ray source. The dose for various conditions was determined using thermoluminescent dosimeters (TLDs) and Monte Carlo (MC) calculations. Accurate measurements and calculations were achieved through the implementation of new measurement and simulation techniques and a novel breast phantom was developed to enable anthropomorphic phantom measurements. Measured and calculated doses for phantom and patient geometries were compared with TG-43 calculated doses to

  5. Impact of Heterogeneity-Based Dose Calculation Using a Deterministic Grid-Based Boltzmann Equation Solver for Intracavitary Brachytherapy

    SciTech Connect

    Mikell, Justin K.; Klopp, Ann H.; Gonzalez, Graciela M.N.; Kisling, Kelly D.; Price, Michael J.; Berner, Paula A.; Eifel, Patricia J.; Mourtada, Firas

    2012-07-01

    Purpose: To investigate the dosimetric impact of the heterogeneity dose calculation Acuros (Transpire Inc., Gig Harbor, WA), a grid-based Boltzmann equation solver (GBBS), for brachytherapy in a cohort of cervical cancer patients. Methods and Materials: The impact of heterogeneities was retrospectively assessed in treatment plans for 26 patients who had previously received {sup 192}Ir intracavitary brachytherapy for cervical cancer with computed tomography (CT)/magnetic resonance-compatible tandems and unshielded colpostats. The GBBS models sources, patient boundaries, applicators, and tissue heterogeneities. Multiple GBBS calculations were performed with and without solid model applicator, with and without overriding the patient contour to 1 g/cm{sup 3} muscle, and with and without overriding contrast materials to muscle or 2.25 g/cm{sup 3} bone. Impact of source and boundary modeling, applicator, tissue heterogeneities, and sensitivity of CT-to-material mapping of contrast were derived from the multiple calculations. American Association of Physicists in Medicine Task Group 43 (TG-43) guidelines and the GBBS were compared for the following clinical dosimetric parameters: Manchester points A and B, International Commission on Radiation Units and Measurements (ICRU) report 38 rectal and bladder points, three and nine o'clock, and {sub D2cm3} to the bladder, rectum, and sigmoid. Results: Points A and B, D{sub 2} cm{sup 3} bladder, ICRU bladder, and three and nine o'clock were within 5% of TG-43 for all GBBS calculations. The source and boundary and applicator account for most of the differences between the GBBS and TG-43 guidelines. The D{sub 2cm3} rectum (n = 3), D{sub 2cm3} sigmoid (n = 1), and ICRU rectum (n = 6) had differences of >5% from TG-43 for the worst case incorrect mapping of contrast to bone. Clinical dosimetric parameters were within 5% of TG-43 when rectal and balloon contrast were mapped to bone and radiopaque packing was not overridden. Conclusions

  6. Impact of heterogeneity-based dose calculation using a deterministic grid-based Boltzmann equation solver for intracavitary brachytherapy

    PubMed Central

    Mikell, Justin K.; Klopp, Ann H.; Gonzalez, Graciela M. N.; Kisling, Kelly D.; Price, Michael J.; Berner, Paula A.; Eifel, Patricia J.; Mourtada, and Firas

    2014-01-01

    Purpose To investigate the dosimetric impact of the heterogeneity dose calculation Acuros, a grid-based Boltzmann equation solver (GBBS), for brachytherapy in a cohort of cervical cancer patients. Methods and Materials The impact of heterogeneities was retrospectively assessed in treatment plans for 26 patients who had previously received 192Ir intracavitary brachytherapy for cervical cancer with computed tomography (CT)/magnetic resonance (MR)-compatible tandems and unshielded colpostats. The GBBS models sources, patient boundaries, applicators, and tissue heterogeneities. Multiple GBBS calculations were performed: with and without solid model applicator, with and without overriding the patient contour to 1g/cc muscle, and with and without overriding contrast materials to muscle or 2.25 g/cc bone. Impact of source and boundary modeling, applicator, tissue heterogeneities, and sensitivity of CT-to-material mapping of contrast were derived from the multiple calculations. TG-43 and the GBBS were compared for the following clinical dosimetric parameters: Manchester points A and B, ICRU report #38 rectal and bladder points, three and nine o'clock, and D2cc to the bladder, rectum, and sigmoid. Results Points A, B, D2cc bladder, ICRU bladder, and three and nine o'clock were within 5% of TG-43 for all GBBS calculations. The source and boundary and applicator account for most of the differences between the GBBS and TG-43. The D2cc rectum (n=3), D2cc sigmoid (n=1), and ICRU rectum (n=6) had differences > 5% from TG-43 for the worst case incorrect mapping of contrast to bone. Clinical dosimetric parameters were within 5% of TG-43 when rectal and balloon contrast mapped to bone and radiopaque packing was not overridden. Conclusions The GBBS has minimal impact on clinical parameters for this cohort of GYN patients with unshielded applicators. The incorrect mapping of rectal and balloon contrast does not have a significant impact on clinical parameters. Rectal parameters may be

  7. Rotational multispectral fluorescence lifetime imaging and intravascular ultrasound: bimodal system for intravascular applications

    PubMed Central

    Ma, Dinglong; Bec, Julien; Yankelevich, Diego R.; Gorpas, Dimitris; Fatakdawala, Hussain; Marcu, Laura

    2014-01-01

    Abstract. We report the development and validation of a hybrid intravascular diagnostic system combining multispectral fluorescence lifetime imaging (FLIm) and intravascular ultrasound (IVUS) for cardiovascular imaging applications. A prototype FLIm system based on fluorescence pulse sampling technique providing information on artery biochemical composition was integrated with a commercial IVUS system providing information on artery morphology. A customized 3-Fr bimodal catheter combining a rotational side-view fiberoptic and a 40-MHz IVUS transducer was constructed for sequential helical scanning (rotation and pullback) of tubular structures. Validation of this bimodal approach was conducted in pig heart coronary arteries. Spatial resolution, fluorescence detection efficiency, pulse broadening effect, and lifetime measurement variability of the FLIm system were systematically evaluated. Current results show that this system is capable of temporarily resolving the fluorescence emission simultaneously in multiple spectral channels in a single pullback sequence. Accurate measurements of fluorescence decay characteristics from arterial segments can be obtained rapidly (e.g., 20 mm in 5 s), and accurate co-registration of fluorescence and ultrasound features can be achieved. The current finding demonstrates the compatibility of FLIm instrumentation with in vivo clinical investigations and its potential to complement conventional IVUS during catheterization procedures. PMID:24898604

  8. An investigation of a PRESAGE® in-vivo dosimeter for brachytherapy

    PubMed Central

    Vidovic, A K; Juang, T; Meltsner, S; Adamovics, J; Chino, J; Steffey, B; Craciunescu, O; Oldham, M

    2014-01-01

    Determining accurate in-vivo dosimetry in brachytherapy treatment with high dose gradients is challenging. Here we introduce, investigate, and characterize a novel in-vivo dosimeter and readout technique with the potential to address this problem. A cylindrical (4 mm x 20 mm) tissue equivalent radiochromic dosimeter PRESAGE® In-Vivo (PRESAGE®-IV) is investigated. Two readout methods of the radiation induced change in optical density (OD) were investigated: (i) volume-averaged readout by spectrophotometer, and (ii) a line profile readout by 2D projection imaging utilizing a high-resolution (50 micron) telecentric optical system. Method (i) is considered the gold standard when applied to PRESAGE® in optical cuvettes. The feasibility of both methods was evaluated by comparison to standard measurements on PRESAGE® in optical cuvettes via spectrophotometer. An end-to-end feasibility study was performed by a side-by-side comparison with TLDs in an 192Ir HDR delivery. 7 and 8 Gy was delivered to PRESAGE®-IV and TLDs attached to the surface of a vaginal cylinder. Known geometry enabled direct comparison of measured dose with commissioned treatment planning system. A high-resolution readout study under a steep dose gradient region showed 98.9% (5%/1 mm) agreement between PRESAGE®-IV and Gafchromic® EBT2 Film. Spectrometer measurements exhibited a linear dose response between 0–15 Gy with sensitivity of 0.0133 ± 0.0007 ΔOD/(Gy·cm) at the 95% confidence interval. Method (ii) yielded a linear response with sensitivity of 0.0132 ± 0.0006 (ΔOD/Gy), within 2% of method (i). Method (i) has poor spatial resolution due to volume averaging. Method (ii) has higher resolution (~1mm) without loss of sensitivity or increased noise. Both readout methods are shown to be feasible. The end-to-end comparison revealed a 2.5% agreement between PRESAGE®-IV and treatment plan in regions of uniform high dose. PRESAGE®-IV shows promise for in-vivo dose verification, although

  9. Correction factors for source strength determination in HDR brachytherapy using the in-phantom method.

    PubMed

    Ubrich, Frank; Wulff, Jörg; Engenhart-Cabillic, Rita; Zink, Klemens

    2014-05-01

    For the purpose of clinical source strength determination for HDR brachytherapy sources, the German society for Medical Physics (DGMP) recommends in their report 13 the usage of a solid state phantom (Krieger-phantom) with a thimble ionization chamber. In this work, the calibration chain for the determination of the reference air-kerma rate Ka,100 and reference dose rate to waterDw,1 by ionization chamber measurement in the Krieger-phantom was modeled via Monte Carlo simulations. These calculations were used to determine global correction factors k(tot), which allows a user to directly convert the reading of an ionization chamber calibrated in terms of absorbed dose to water, into the desired quantity Ka,100 or Dw,1. The factor k(tot) was determined for four available (192)Ir sources and one (60)Co source with three different thimble ionization chambers. Finally, ionization chamber measurements on three μSelectron V2 HDR sources within the Krieger-phantom were performed and Ka,100 was determined according to three different methods: 1) using a calibration factor in terms of absorbed dose to water with the global correction factor [Formula: see text] according DGMP 13 2) using a global correction factor calculated via Monte Carlo 3) using a direct reference air-kerma rate calibration factor determined by the national metrology institute PTB. The comparison of Monte Carlo based [Formula: see text] with those from DGMP 13 showed that the DGMP data were systematically smaller by about 2-2.5%. The experimentally determined [Formula: see text] , based on the direct Ka,100 calibration were also systematically smaller by about 1.5%. Despite of these systematical deviations, the agreement of the different methods was in almost all cases within the 1σ level of confidence of the interval of their respective uncertainties in a Gaussian distribution. The application of Monte Carlo based [Formula: see text] for the determination of Ka,100 for three μSelectron V2 sources

  10. An investigation of a PRESAGE® in vivo dosimeter for brachytherapy.

    PubMed

    Vidovic, A K; Juang, T; Meltsner, S; Adamovics, J; Chino, J; Steffey, B; Craciunescu, O; Oldham, M

    2014-07-21

    Determining accurate in vivo dosimetry in brachytherapy treatment with high dose gradients is challenging. Here we introduce, investigate, and characterize a novel in vivo dosimeter and readout technique with the potential to address this problem. A cylindrical (4 mm × 20 mm) tissue equivalent radiochromic dosimeter PRESAGE® in vivo (PRESAGE®-IV) is investigated. Two readout methods of the radiation induced change in optical density (OD) were investigated: (i) volume-averaged readout by spectrophotometer, and (ii) a line profile readout by 2D projection imaging utilizing a high-resolution (50 micron) telecentric optical system. Method (i) is considered the gold standard when applied to PRESAGE® in optical cuvettes. The feasibility of both methods was evaluated by comparison to standard measurements on PRESAGE® in optical cuvettes via spectrophotometer. An end-to-end feasibility study was performed by a side-by-side comparison with TLDs in an (192)Ir HDR delivery. 7 and 8 Gy was delivered to PRESAGE®-IV and TLDs attached to the surface of a vaginal cylinder. Known geometry enabled direct comparison of measured dose with a commissioned treatment planning system. A high-resolution readout study under a steep dose gradient region showed 98.9% (5%/1 mm) agreement between PRESAGE®-IV and Gafchromic® EBT2 Film. Spectrometer measurements exhibited a linear dose response between 0-15 Gy with sensitivity of 0.0133 ± 0.0007 ΔOD/(Gy ⋅ cm) at the 95% confidence interval. Method (ii) yielded a linear response with sensitivity of 0.0132 ± 0.0006 (ΔOD/Gy), within 2% of method (i). Method (i) has poor spatial resolution due to volume averaging. Method (ii) has higher resolution (∼1 mm) without loss of sensitivity or increased noise. Both readout methods are shown to be feasible. The end-to-end comparison revealed a 2.5% agreement between PRESAGE®-IV and treatment plan in regions of uniform high dose. PRESAGE®-IV shows promise for in vivo dose

  11. Extended (5-year) Outcomes of Accelerated Partial Breast Irradiation Using MammoSite Balloon Brachytherapy: Patterns of Failure, Patient Selection, and Dosimetric Correlates for Late Toxicity

    SciTech Connect

    Vargo, John A.; Verma, Vivek; Kim, Hayeon; Kalash, Ronny; Heron, Dwight E.; Johnson, Ronald; Beriwal, Sushil

    2014-02-01

    Purpose: Accelerated partial breast irradiation (APBI) with balloon and catheter-based brachytherapy has gained increasing popularity in recent years and is the subject of ongoing phase III trials. Initial data suggest promising local control and cosmetic results in appropriately selected patients. Long-term data continue to evolve but are limited outside of the context of the American Society of Breast Surgeons Registry Trial. Methods and Materials: A retrospective review of 157 patients completing APBI after breast-conserving surgery and axillary staging via high-dose-rate {sup 192}Ir brachytherapy from June 2002 to December 2007 was made. APBI was delivered with a single-lumen MammoSite balloon-based applicator to a median dose of 34 Gy in 10 fractions over a 5-day period. Tumor coverage and critical organ dosimetry were retrospectively collected on the basis of computed tomography completed for conformance and symmetry. Results: At a median follow-up time of 5.5 years (range, 0-10.0 years), the 5-year and 7-year actuarial incidences of ipsilateral breast control were 98%/98%, of nodal control 99%/98%, and of distant control 99%/99%, respectively. The crude rate of ipsilateral breast recurrence was 2.5% (n=4); of nodal failure, 1.9% (n=3); and of distant failure, 0.6% (n=1). The 5-year and 7-year actuarial overall survival rates were 89%/86%, with breast cancer–specific survival of 100%/99%, respectively. Good to excellent cosmetic outcomes were achieved in 93.4% of patients. Telangiectasia developed in 27% of patients, with 1-year, 3-year, and 5-year actuarial incidence of 7%/24%/33%; skin dose >100% significantly predicted for the development of telangiectasia (50% vs 14%, P<.0001). Conclusions: Long-term single-institution outcomes suggest excellent tumor control, breast cosmesis, and minimal late toxicity. Skin toxicity is a function of skin dose, which may be ameliorated with dosimetric optimization afforded by newer multicatheter brachytherapy

  12. An Open System for Intravascular Ultrasound Imaging

    PubMed Central

    Qiu, Weibao; Chen, Yan; Li, Xiang; Yu, Yanyan; Cheng, Wang Fai; Tsang, Fu Keung; Zhou, Qifa; Shung, K. Kirk; Dai, Jiyan; Sun, Lei

    2013-01-01

    Visualization of the blood vessels can provide valuable morphological information for diagnosis and therapy strategies for cardiovascular disease. Intravascular ultrasound (IVUS) is able to delineate internal structures of vessel wall with fine spatial resolution. However, the developed IVUS is insufficient to identify the fibrous cap thickness and tissue composition of atherosclerotic lesions. Novel imaging strategies have been proposed, such as increasing the center frequency of ultrasound or using a modulated excitation technique to improve the accuracy of diagnosis. Dual-mode tomography combining IVUS with optical tomography has also been developed to determine tissue morphology and characteristics. The implementation of these new imaging methods requires an open system that allows users to customize the system for various studies. This paper presents the development of an IVUS system that has open structures to support various imaging strategies. The system design is based on electronic components and printed circuit board, and provides reconfigurable hardware implementation, programmable image processing algorithms, flexible imaging control, and raw RF data acquisition. In addition, the proposed IVUS system utilized a miniaturized ultrasound transducer constructed using PMN-PT single crystal for better piezoelectric constant and electromechanical coupling coefficient than traditional lead zirconate titanate (PZT) ceramics. Testing results showed that the IVUS system could offer a minimum detectable signal of 25 μV, allowing a 51 dB dynamic range at 47 dB gain, with a frequency range from 20 to 80 MHz. Finally, phantom imaging, in vitro IVUS vessel imaging, and multimodality imaging with photoacoustics were conducted to demonstrate the performance of the open system. PMID:23143570

  13. Afterloading: The Technique That Rescued Brachytherapy

    SciTech Connect

    Aronowitz, Jesse N.

    2015-07-01

    Although brachytherapy had been established as a highly effective modality for the treatment of cancer, its application was threatened by mid-20th century due to appreciation of the radiation hazard to health care workers. This review examines how the introduction of afterloading eliminated exposure and ushered in a brachytherapy renaissance.

  14. A Review of Intravascular Ultrasound–Based Multimodal Intravascular Imaging: The Synergistic Approach to Characterizing Vulnerable Plaques

    PubMed Central

    Ma, Teng; Zhou, Bill; Hsiai, Tzung K.; Shung, K. Kirk

    2015-01-01

    Catheter-based intravascular imaging modalities are being developed to visualize pathologies in coronary arteries, such as high-risk vulnerable atherosclerotic plaques known as thin-cap fibroatheroma, to guide therapeutic strategy at preventing heart attacks. Mounting evidences have shown three distinctive histopathological features—the presence of a thin fibrous cap, a lipid-rich necrotic core, and numerous infiltrating macrophages—are key markers of increased vulnerability in atherosclerotic plaques. To visualize these changes, the majority of catheter-based imaging modalities used intravascular ultrasound (IVUS) as the technical foundation and integrated emerging intravascular imaging techniques to enhance the characterization of vulnerable plaques. However, no current imaging technology is the unequivocal “gold standard” for the diagnosis of vulnerable atherosclerotic plaques. Each intravascular imaging technology possesses its own unique features that yield valuable information although encumbered by inherent limitations not seen in other modalities. In this context, the aim of this review is to discuss current scientific innovations, technical challenges, and prospective strategies in the development of IVUS-based multi-modality intravascular imaging systems aimed at assessing atherosclerotic plaque vulnerability. PMID:26400676

  15. A Review of Intravascular Ultrasound-based Multimodal Intravascular Imaging: The Synergistic Approach to Characterizing Vulnerable Plaques.

    PubMed

    Ma, Teng; Zhou, Bill; Hsiai, Tzung K; Shung, K Kirk

    2016-09-01

    Catheter-based intravascular imaging modalities are being developed to visualize pathologies in coronary arteries, such as high-risk vulnerable atherosclerotic plaques known as thin-cap fibroatheroma, to guide therapeutic strategy at preventing heart attacks. Mounting evidences have shown three distinctive histopathological features-the presence of a thin fibrous cap, a lipid-rich necrotic core, and numerous infiltrating macrophages-are key markers of increased vulnerability in atherosclerotic plaques. To visualize these changes, the majority of catheter-based imaging modalities used intravascular ultrasound (IVUS) as the technical foundation and integrated emerging intravascular imaging techniques to enhance the characterization of vulnerable plaques. However, no current imaging technology is the unequivocal "gold standard" for the diagnosis of vulnerable atherosclerotic plaques. Each intravascular imaging technology possesses its own unique features that yield valuable information although encumbered by inherent limitations not seen in other modalities. In this context, the aim of this review is to discuss current scientific innovations, technical challenges, and prospective strategies in the development of IVUS-based multi-modality intravascular imaging systems aimed at assessing atherosclerotic plaque vulnerability. PMID:26400676

  16. Testicular shielding in penile brachytherapy

    PubMed Central

    Bindal, Arpita; Tambe, Chandrashekhar M.; Ghadi, Yogesh; Murthy, Vedang; Shrivastava, Shyam Kishore

    2015-01-01

    Purpose Penile cancer, although rare, is one of the common genitourinary cancers in India affecting mostly aged uncircumcised males. For patients presenting with small superficial lesions < 3 cm restricted to glans, surgery, radical external radiation or brachytherapy may be offered, the latter being preferred as it allows organ and function preservation. In patients receiving brachytherapy, testicular morbidity is not commonly addressed. With an aim to minimize and document the doses to testis after adequate shielding during radical interstitial brachytherapy for penile cancers, we undertook this study in 2 patients undergoing brachytherapy and forms the basis of this report. Material and methods Two patients with early stage penile cancer limited to the glans were treated with radical high-dose-rate (HDR) brachytherapy using interstitial implant. A total of 7-8 tubes were implanted in two planes, parallel to the penile shaft. A total dose of 44-48 Gy (55-60 Gy EQD2 doses with α/β = 10) was delivered in 11-12 fractions of 4 Gy each delivered twice daily. Lead sheets adding to 11 mm (4-5 half value layer) were interposed between the penile shaft and scrotum. The testicular dose was measured using thermoluminescent dosimeters. For each patient, dosimetry was done for 3 fractions and mean calculated. Results The cumulative testicular dose to left and right testis was 31.68 cGy and 42.79 cGy for patient A, and 21.96 cGy and 23.28 cGy for patient B. For the same patients, the mean cumulative dose measured at the posterior aspect of penile shaft was 722.15 cGy and 807.72 cGy, amounting to 16.4% and 16.8% of the prescribed dose. Hence, the application of lead shield 11 mm thick reduced testicular dose from 722-808 cGy to 21.96-42.57 cGy, an “absolute reduction” of 95.99 ± 1.5%. Conclusions With the use of a simple lead shield as described, we were able to effectively reduce testicular dose from “spermicidal” range to “oligospermic” range with possible

  17. Intravascular MRI for Plaque Characterization: Are We Close to Reality?

    PubMed

    Cavalcante, João L; Larose, Eric

    2016-09-01

    Non-invasive external magnetic resonance imaging (MRI) of large vessel atherosclerosis is a robust and promising imaging modality that can be applied for the evaluation of the atherosclerotic process in large vessels. However, it requires expertise for setup and time for data acquisition and analysis. Intravascular MRI is a promising tool, but its use remains at the pre-clinical stage within selected research groups. In this review, the current status and future role of intravascular MRI for atherosclerotic plaque characterization are summarized, along with important challenges which will be necessary to overcome prior to the wide adoption of this technique. PMID:27448403

  18. 21 CFR 880.5970 - Percutaneous, implanted, long-term intravascular catheter.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Percutaneous, implanted, long-term intravascular... and Personal Use Therapeutic Devices § 880.5970 Percutaneous, implanted, long-term intravascular catheter. (a) Identification. A percutaneous, implanted, long-term intravascular catheter is a device...

  19. 21 CFR 880.5965 - Subcutaneous, implanted, intravascular infusion port and catheter.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Subcutaneous, implanted, intravascular infusion... Hospital and Personal Use Therapeutic Devices § 880.5965 Subcutaneous, implanted, intravascular infusion port and catheter. (a) Identification. A subcutaneous, implanted, intravascular infusion port...

  20. 21 CFR 880.5965 - Subcutaneous, implanted, intravascular infusion port and catheter.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Subcutaneous, implanted, intravascular infusion... Hospital and Personal Use Therapeutic Devices § 880.5965 Subcutaneous, implanted, intravascular infusion port and catheter. (a) Identification. A subcutaneous, implanted, intravascular infusion port...

  1. 21 CFR 880.5965 - Subcutaneous, implanted, intravascular infusion port and catheter.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Subcutaneous, implanted, intravascular infusion... Hospital and Personal Use Therapeutic Devices § 880.5965 Subcutaneous, implanted, intravascular infusion port and catheter. (a) Identification. A subcutaneous, implanted, intravascular infusion port...

  2. 21 CFR 880.5965 - Subcutaneous, implanted, intravascular infusion port and catheter.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Subcutaneous, implanted, intravascular infusion... Hospital and Personal Use Therapeutic Devices § 880.5965 Subcutaneous, implanted, intravascular infusion port and catheter. (a) Identification. A subcutaneous, implanted, intravascular infusion port...

  3. 21 CFR 880.5965 - Subcutaneous, implanted, intravascular infusion port and catheter.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Subcutaneous, implanted, intravascular infusion... Hospital and Personal Use Therapeutic Devices § 880.5965 Subcutaneous, implanted, intravascular infusion port and catheter. (a) Identification. A subcutaneous, implanted, intravascular infusion port...

  4. Incidence of intravascular penetration in transforaminal cervical epidural steroid injections.

    PubMed

    Furman, Michael B; Giovanniello, Michael T; O'Brien, Erin M

    2003-01-01

    STUDY DESIGN A prospective, observational, human, study was conducted. OBJECTIVES To evaluate the incidence of vascular penetration during fluoroscopically guided, contrast-enhanced transforaminal cervical epidural steroid injections, and to determine whether the observation of blood in the needle hub can be used to predict a vascular injection. SUMMARY OF BACKGROUND DATA Incorrectly placed intravascular cervical spinal injections result in medication flow systemically and not to the desired target. A recently published study demonstrates a high incidence of intravascular injections in transforaminal lumbosacral epidural injections. No studies so far have evaluated the incidence of vascular injections in transforaminal cervical epidural steroid injections, nor have they calculated the ability of observed blood in the needle hub to predict a vascular injection in the cervical spine.METHODS The incidence of fluoroscopically confirmed intravascular uptake of contrast was prospectively observed in 337 patients treated with cervical transforaminal epidural steroid injections. The ability of observed blood in the needle hub to predict intravascular injection was also investigated. For each subject, the injection level was chosen on the basis of the clinical scenario including history, physical examination, and review of imaging studies. Some patients had multilevel injections. Using fluoroscopic guidance, the authors placed a 25-gauge needle into the epidural space using a transforaminal approach according to accepted standard technique. Needle tip location was confirmed with biplanar imaging. The presence or absence of blood in the needle hub spontaneously ("flash") and after attempted aspiration by pulling back on the syringe's plunger was documented. Contrast then was injected under real-time fluoroscopy to determine whether the location of the needle tip was intravascular. The results were recorded in a prospective manner indicating the presence or absence of blood

  5. A Prospective Cohort Study to Compare Treatment Results Between 2 Fractionation Schedules of High-Dose-Rate Intracavitary Brachytherapy (HDR-ICBT) in Patients With Cervical Cancer

    SciTech Connect

    Huang, Eng-Yen; Sun, Li-Min; Lin, Hao; Lan, Jen-Hong; Chanchien, Chan-Chao; Huang, Yu-Jie; Wang, Chang-Yu; Wang, Chong-Jong

    2013-01-01

    Purpose: To compare the treatment results of 2 fractionation schedules for high-dose-rate intracavitary brachytherapy (HDR-ICBT) in patients with cervical cancer. Methods and Materials: From June 2001 through January 2008, 267 patients with stage IB-IVA cervical cancer were enrolled in the study. All patients underwent 4-field pelvic irradiation and HDR-ICBT. The median central and parametrial doses were 39.6 Gy and 45 Gy, respectively. Patient underwent either 6 Gy Multiplication-Sign 4 (HDR-4) (n=144) or 4.5 Gy Multiplication-Sign 6 (HDR-6) (n=123) to point A of ICBT using {sup 192}Ir isotope twice weekly. The rates of overall survival, locoregional failure, distant metastasis, proctitis, cystitis, and enterocolitis were compared between HDR-4 and HDR-6. Results: There were no significant differences in the demographic data between HDR-4 and HDR-6 except for total treatment time. The 5-year proctitis rates were 23.0% and 21.5% in HDR-4 and HDR-6 (P=.399), respectively. The corresponding rates of grade 2-4 proctitis were 18.7% and 9.6% (P=.060). The corresponding rates of grades 3-4 proctitis were 5.2% and 1.3% (P=.231). Subgroup analysis revealed that HDR-4 significantly increased grade 2-4 proctitis in patients aged {>=}62 years old (P=.012) but not in patients aged <62 years (P=.976). The rates of overall survival, locoregional failure, distant metastasis, cystitis, and enterocolitis were not significantly different between HDR-4 and HDR-6 schedules. Conclusion: The small fraction size of HDR-ICBT is associated with grade 2 proctitis without compromise of prognosis in elderly patients. This schedule is suggested for patients who tolerate an additional 2 applications of HDR-ICBT.

  6. SU-F-19A-04: Dosimetric Evaluation of a Novel CT/MR Compatible Fletcher Applicator for Intracavitary Brachytherapy of the Cervix Uteri

    SciTech Connect

    Gifford, K; Han, T; Mourtada, F; Eifel, P

    2014-06-15

    Purpose: To validate a Monte Carlo model and evaluate the dosimetric capabilities of a novel commercial CT/MR compatible Fletcher applicator for cervical cancer brachytherapy. Methods: MCNPX 2.7.0 was used to model the Fletcher CT/MR shielded applicator (FA) and 192Ir HDR source. Energy deposition was calculated with a track length estimator modified by an energy-dependent heating function. A high density polystyrene phantom was constructed with three film pockets for validation of the MCNPX model. Three planes of data were calculated with the MCNPX model corresponding to the three film planes in phantom. The planes were located 1 cm from the most anterior, posterior, and medial extents of the FA right ovoid. Unshielded distributions were calculated by modeling the shielded cells as air instead of the tungsten alloy. A third order polynomial fit to the OD to dose curve was used to convert OD of the three film planes to dose. Each film and MCNPX plane dose distribution was normalized to a point 2 cm from the center of the film plane and in a region of low dose gradient. MCNPX and film were overlaid and compared with a distance-to-agreement criterion of (±2%/±2mm). Shielded and unshielded distributions were overlaid and a percent shielded plot was created. Results: 85.2%, 97.1%, and 96.6% of the MCNPX points passed the (±2%/±2mm) criterion respectively for the anterior, lateral, and posterior film comparison planes. A majority of the points in the anterior plane that exceeded the DTA criterion were either along edges of where the film was cut or near the terminal edges of the film. The percent shielded matrices indicated that the maximum % shielding was 50%. Conclusion: These data confirm the validity of the FA Monte Carlo model. The FA ovoid can shield up to 50% of the dose in the anteroposterior direction.

  7. Acute disseminated intravascular coagulation following ICD lead extraction

    PubMed Central

    Shariff, Nasir; Singh, Madhurmeet; Shalaby, Alaa

    2014-01-01

    We present an unusual case of disseminated intravascular coagulopathy (DIC) complicating percutaneous laser-assisted lead extraction. DIC has not been previously reported in association with lead extraction. It is possible to have occurred following the denudement of venous endothelium and exposure of underlying fibrous tissue. Practitioners need to be aware of this rare but potentially fatal complication of transvenous lead extraction. PMID:24599427

  8. A BrachyPhantom for verification of dose calculation of HDR brachytherapy planning system

    SciTech Connect

    Austerlitz, C.; Campos, C. A. T.

    2013-11-15

    Purpose: To develop a calibration phantom for {sup 192}Ir high dose rate (HDR) brachytherapy units that renders possible the direct measurement of absorbed dose to water and verification of treatment planning system.Methods: A phantom, herein designated BrachyPhantom, consists of a Solid Water™ 8-cm high cylinder with a diameter of 14 cm cavity in its axis that allows the positioning of an A1SL ionization chamber with its reference measuring point at the midheight of the cylinder's axis. Inside the BrachyPhantom, at a 3-cm radial distance from the chamber's reference measuring point, there is a circular channel connected to a cylindrical-guide cavity that allows the insertion of a 6-French flexible plastic catheter from the BrachyPhantom surface. The PENELOPE Monte Carlo code was used to calculate a factor, P{sub sw}{sup lw}, to correct the reading of the ionization chamber to a full scatter condition in liquid water. The verification of dose calculation of a HDR brachytherapy treatment planning system was performed by inserting a catheter with a dummy source in the phantom channel and scanning it with a CT. The CT scan was then transferred to the HDR computer program in which a multiple treatment plan was programmed to deliver a total dose of 150 cGy to the ionization chamber. The instrument reading was then converted to absorbed dose to water using the N{sub gas} formalism and the P{sub sw}{sup lw} factor. Likewise, the absorbed dose to water was calculated using the source strength, S{sub k}, values provided by 15 institutions visited in this work.Results: A value of 1.020 (0.09%, k= 2) was found for P{sub sw}{sup lw}. The expanded uncertainty in the absorbed dose assessed with the BrachyPhantom was found to be 2.12% (k= 1). To an associated S{sub k} of 27.8 cGy m{sup 2} h{sup −1}, the total irradiation time to deliver 150 cGy to the ionization chamber point of reference was 161.0 s. The deviation between the absorbed doses to water assessed with the Brachy

  9. Permanent and removable implants for the brachytherapy of brain tumors

    SciTech Connect

    Gutin, P.H.; Phillips, T.L.; Hosobuchi, Y.

    1981-10-01

    Thirty-seven patients harboring primary or metastatic brain tumors were treated with 40 implantations of radioactive sources (/sup 192/Ir, /sup 198/Au, or /sup 125/I) using stereotactic neurosurgical techniques. Most tumors had recurred after surgery, whole brain irradiation, and treatment with all feasible chemotherapeutic agents. Sixteen of the 40 implants were pregnant; 24 were mounted in plastic catheters for removal after the desired dose had been delivered. One or more sources were placed in each tumor to deliver 3500-7350 rad to the tumor's periphery for /sup 198/Au, 4,000-12,000 rad for /sup 192/Ir, and 3,000-20,000 rad for /sup 125/I. Three of the six patients treated with /sup 192/Ir had objective responses for 2, 4, and 12 months, and two stabilized for 8 and 11 months. Seven of the 11 patients treated with /sup 198/Au were evaluable: three responded for 3, 5, and 37 + months, one deteriorating patient with a recurrent tumor stabilized for 6 months, and two deteriorated despite treatment. One patient received an interstitial ''boost'' dose with /sup 198/Au after whole brain irradiation and stabilized for 15 months before developing spinal metastases. Six patients received permanent implants with low activity /sup 125/I. Three of these patients had blioblastomas or anaplastic astrocytomas; all continued to deteriorate despite the interstitial irradiation, presumably because the dose rat was too low. One patient with a low-grade astrocytoma (optic chiasm) responded dramatically to permanent, low activity /sup 125/I implants (11 + months). Another (hypothalamic glioma) had a permanent /sup 125/I implant, responded, as was stable at 9 months when external irradiation was administered. One patient with a suprasellar ''teratoid'' tumor stabilized for 10 months.

  10. Clinical implementation of a new electronic brachytherapy system for skin brachytherapy

    PubMed Central

    Ballester-Sánchez, Rosa; Celada-Álvarez, Francisco Javier; Candela-Juan, Cristian; García-Martínez, Teresa; Llavador-Ros, Margarita; Botella-Estrada, Rafael; Barker, Christopher A.; Ballesta, Antonio; Tormo-Micó, Alejandro; Rodríguez, Silvia; Perez-Calatayud, Jose

    2014-01-01

    Although surgery is usually the first-line treatment for nonmelanoma skin cancers, radiotherapy (RT) may be indicated in selected cases. Radiation therapy as primary therapy can result in excellent control rates, cosmetics, and quality of life. Brachytherapy is a radiation treatment modality that offers the most conformal option to patients. A new modality for skin brachytherapy is electronic brachytherapy. This involves the placement of a high dose rate X-ray source directly in a skin applicator close to the skin surface, and therefore combines the benefits of brachytherapy with those of low energy X-ray radiotherapy. The Esteya electronic brachytherapy system is specifically designed for skin surface brachytherapy procedures. The purpose of this manuscript is to describe the clinical implementation of the new Esteya electronic brachytherapy system, which may provide guidance for users of this system. The information covered includes patient selection, treatment planning (depth evaluation and margin determination), patient marking, and setup. The justification for the hypofractionated regimen is described and compared with others protocols in the literature. Quality assurance (QA) aspects including daily testing are also included. We emphasize that these are guidelines, and clinical judgment and experience must always prevail in the care of patients, as with any medical treatment. We conclude that clinical implementation of the Esteya brachytherapy system is simple for patients and providers, and should allow for precise and safe treatment of nonmelanoma skin cancers. PMID:25834587

  11. The dosimetric feasibility of gold nanoparticle-aided radiation therapy (GNRT) via brachytherapy using low-energy gamma-/x-ray sources

    PubMed Central

    Cho, Sang Hyun; Jones, Bernard L; Krishnan, Sunil

    2011-01-01

    The preferential accumulation of gold nanoparticles within tumors and the increased photoelectric absorption due to the high atomic number of gold cooperatively account for the possibility of significant tumor dose enhancement during gold nanoparticle-aided radiation therapy (GNRT). Among the many conceivable ways to implement GNRT clinically, a brachytherapy approach using low-energy gamma-/x-ray sources (i.e. Eavg < 100 keV) appears to be highly feasible and promising, because it may easily fulfill some of the technical and clinical requirements for GNRT. Therefore, the current study investigated the dosimetric feasibility of implementing GNRT using the following sources: 125I, 50 kVp and 169Yb. Specifically, Monte Carlo (MC) calculations were performed to determine the macroscopic dose enhancement factors (MDEF), defined as the ratio of the average dose in the tumor region with and without the presence of gold nanoparticles during the irradiation of the tumor, and the photo/Auger electron spectra within a tumor loaded with gold nanoparticles. The current study suggests that a significant tumor dose enhancement (e.g. >40%) could be achievable using 125I, 50 kVp and 169Yb sources and gold nanoparticles. When calculated at 1.0 cm from the center of the source within a tumor loaded with 18 mg Au g−1, macroscopic dose enhancement was 116, 92 and 108% for 125I, 50 kVp and 169Yb, respectively. For a tumor loaded with 7 mg Au g−1, it was 68, 57 and 44% at 1 cm from the center of the source for 125I, 50 kVp and 169Yb, respectively. The estimated MDEF values for 169Yb were remarkably larger than those for 192Ir, on average by up to about 70 and 30%, for 18 mg Au and 7 mg Au cases, respectively. The current MC study also shows a remarkable change in the photoelectron fluence and spectrum (e.g. more than two orders of magnitude) and a significant production (e.g. comparable to the number of photoelectrons) of the Auger electrons within the tumor region due to the

  12. Effects of perioperative fasting on haemodynamics and intravascular volumes.

    PubMed

    Jacob, Matthias; Chappell, Daniel

    2012-12-01

    Maintaining cardiac preload throughout the perioperative period is a generally accepted target. As perioperative fasting is believed to cause intravascular hypovolaemia it traditionally triggers aggressive preemptive intravenous fluid infusion. Physiology suggests that extracellular losses via urinary output and evaporation decrease the extracellular compartment. Representing a relevant part of the latter, the intravascular space is also affected, even without blood loss. Measurements in humans, however, have revealed that even a prolonged fasting period does not decrease absolute blood volume. Beyond that, modern fasting guidelines recommend to refrain from clear liquids only two hours prior to surgery. Nevertheless, an intravenous colloid challenge can increase stroke volume after induction of anaesthesia in the majority of surgical patients. While perioperative stroke volume maximisation in high-risk surgery probably improves outcome, the implication of this observation for the routine patient remains unclear. It appears as though there are two important targets to preserve cardiac preload: normovolaemia and vasotension. PMID:23351229

  13. Characterization of coronary atherosclerosis by intravascular imaging modalities.

    PubMed

    Honda, Satoshi; Kataoka, Yu; Kanaya, Tomoaki; Noguchi, Teruo; Ogawa, Hisao; Yasuda, Satoshi

    2016-08-01

    Coronary artery disease (CAD) is highly prevalent in Western countries and is associated with morbidity, mortality, and a significant economic burden. Despite the development of anti-atherosclerotic medical therapies, many patients still continue to suffer from coronary events. This residual risk indicates the need for better risk stratification and additional therapies to achieve more reductions in cardiovascular risk. Recent advances in imaging modalities have contributed to visualizing atherosclerotic plaques and defining lesion characteristics in vivo. This innovation has been applied to refining revascularization procedure, assessment of anti-atherosclerotic drug efficacy and the detection of high-risk plaques. As such, intravascular imaging plays an important role in further improvement of cardiovascular outcomes in patients with CAD. The current article reviews available intravascular imaging modalities with regard to its method, advantage and disadvantage. PMID:27500094

  14. Intravascular multispectral optoacoustic tomography of atherosclerosis: prospects and challenges

    PubMed Central

    Rosenthal, Amir; Jaffer, Farouc A; Ntziachristos, Vasilis

    2012-01-01

    The progression of atherosclerosis involves complex changes in the structure, composition and biology of the artery wall. Currently, only anatomical plaque burden is routinely characterized in living patients, whereas compositional and biological changes are mostly inaccessible. However, anatomical imaging alone has proven to be insufficient for accurate diagnostics of the disease. Multispectral optoacoustic tomography offers complementary data to anatomical methods and is capable of imaging both tissue composition and, via the use of molecular markers, the biological activity therein. In this paper we review recent progress in multispectral optoacoustic tomography imaging of atherosclerosis with specific emphasis on intravascular applications. The potential capabilities of multispectral optoacoustic tomography are compared with those of established intravascular imaging techniques and current challenges on the road towards a clinically viable imaging modality are discussed. PMID:23144663

  15. Characterization of coronary atherosclerosis by intravascular imaging modalities

    PubMed Central

    Honda, Satoshi; Kanaya, Tomoaki; Noguchi, Teruo; Ogawa, Hisao; Yasuda, Satoshi

    2016-01-01

    Coronary artery disease (CAD) is highly prevalent in Western countries and is associated with morbidity, mortality, and a significant economic burden. Despite the development of anti-atherosclerotic medical therapies, many patients still continue to suffer from coronary events. This residual risk indicates the need for better risk stratification and additional therapies to achieve more reductions in cardiovascular risk. Recent advances in imaging modalities have contributed to visualizing atherosclerotic plaques and defining lesion characteristics in vivo. This innovation has been applied to refining revascularization procedure, assessment of anti-atherosclerotic drug efficacy and the detection of high-risk plaques. As such, intravascular imaging plays an important role in further improvement of cardiovascular outcomes in patients with CAD. The current article reviews available intravascular imaging modalities with regard to its method, advantage and disadvantage. PMID:27500094

  16. Intravascular photoacoustic tomography for characterization of atherosclerotic lipid and inflammation

    NASA Astrophysics Data System (ADS)

    Zhang, Jian; Qin, Huan; Shi, Yujiao; Yang, Sihua; Xing, Da

    2014-09-01

    Photoacoustic imaging is a fast growing imaging technology depending on its high optical resolution of optics while taking the advantage of the high penetration depth of ultrasound. In this paper, we demonstrate the new progress in the photoacoustic imaging. Atherosclerosis is characterized by a progressive build-up of lipid in the arterial wall, which is known as plaque. Histological studies demonstrate that the primary cause of acute cardiovascular events is the rupture of atherosclerotic plaques. Lipid and inflammation within the plaque are related to influence the propensity of plaques to disrupt. Photoacoustic intravascular tomography (IVPAT) holds a great advantage in providing comprehensive morphological and functional information of plaques. Lipid relative concentration maps of atherosclerotic aorta were obtained and compared with histology. Furthermore, by selectively targeting the intravascular inflammatory cytokines, IVPAT is also capable of mapping the inflamed area and determining the degree of inflammation.

  17. Look away: arterial and venous intravascular embolisation following shotgun injury.

    PubMed

    Vedelago, John; Dick, Elizabeth; Thomas, Robert; Jones, Brynmor; Kirmi, Olga; Becker, Jennifer; Alavi, Afshin; Gedroyc, Wladyslaw

    2014-01-01

    We describe two cases of intravascular embolization of shotgun pellets found distant to the entry site of penetrating firearm injury. The cases demonstrate antegrade embolization of a shotgun pellet from neck to right middle cerebral artery, and antegrade followed by retrograde venous embolization through the left lower limb to pelvis. Radiologists and Trauma Physicians should be aware that post shotgun injury, the likelihood of an embolised shot pellet is increased compared to other types of firearm missile injury, and should therefore search away from the site of injury to find such missiles. Shotgun pellets may travel in an antegrade or a retrograde intravascular direction - both were seen in these cases - and may not be clinically obvious. This underscores the importance of a meticuluous search through all images, including CT scout images, for evidence of their presence. PMID:25926869

  18. Treatment of Vertebro-Basilar Dissecting Aneurysms Using Intravascular Stents

    PubMed Central

    Yamasaki, S.; Hashimoto, K.; Kawano, Y.; Yoshimura, M.; Yamamoto, T.; Hara, M.

    2006-01-01

    Summary Endovascular surgery is an established primary therapeutic modality for dissecting aneurysms at vertebro-basilar arteries. Intravascular stents can be used to treat the dissecting aneurysms for which simple obliteration procedures cannot be used. In such cases, stent implantation alone or a combination of stents and coils need to be selected properly by taking into consideration the site and shape of dissections. In this report, three patterns of stent application are described and their method of selection is discussed. PMID:20569619

  19. Disseminated intravascular coagulation and hepatocellular necrosis due to clove oil.

    PubMed

    Brown, S A; Biggerstaff, J; Savidge, G F

    1992-10-01

    We describe the case of a 2-year-old child who suffered from disseminated intravascular coagulation (DIC) and hepatocellular necrosis, following ingestion of clove oil. The patient was treated with heparin and fresh frozen plasma, and, following specific haemostasis assays, with appropriate coagulation factor and inhibitor concentrates. The case demonstrates how this approach can be successfully used in the management of DIC with coexisting liver failure. PMID:1450336

  20. Central Venous Catheter Intravascular Malpositioning: Causes, Prevention, Diagnosis, and Correction

    PubMed Central

    Roldan, Carlos J.; Paniagua, Linda

    2015-01-01

    Despite the level of skill of the operator and the use of ultrasound guidance, central venous catheter (CVC) placement can result in CVC malpositioning, an unintended placement of the catheter tip in an inadequate vessel. CVC malpositioning is not a complication of central line insertion; however, undiagnosed CVC malpositioning can be associated with significant morbidity and mortality. The objectives of this review were to describe factors associated with intravascular malpositioning of CVCs inserted via the neck and chest and to offer ways of preventing, identifying, and correcting such malpositioning. A literature search of PubMed, Cochrane Library, and MD Consult was performed in June 2014. By searching for “Central line malposition” and then for “Central venous catheters intravascular malposition,” we found 178 articles written in English. Of those, we found that 39 were relevant to our objectives and included them in our review. According to those articles, intravascular CVC malpositioning is associated with the presence of congenital and acquired anatomical variants, catheter insertion in left thoracic venous system, inappropriate bevel orientation upon needle insertion, and patient’s body habitus variants. Although plain chest radiography is the standard imaging modality for confirming catheter tip location, signs and symptoms of CVC malpositioning even in presence of normal or inconclusive conventional radiography findings should prompt the use of additional diagnostic methods to confirm or rule out CVC malpositioning. With very few exceptions, the recommendation in cases of intravascular CVC malpositioning is to remove and relocate the catheter. Knowing the mechanisms of CVC malpositioning and how to prevent, identify, and correct CVC malpositioning could decrease harm to patients with this condition. PMID:26587087

  1. Options for intravascular access during resuscitation of adults.

    PubMed

    Cairney, Kevin; Ibrahim, Matthew

    2012-04-01

    For most emergency care teams, initial intravascular access is performed intravenously, despite the challenges posed by low cardiac output physiology. Intraosseous (IO) access has been included in recent Resuscitation Council UK (2010) adult advanced life support (ALS) guidelines for cases in which intravenous access is difficult or unavailable. This article discusses how the use of IO access devices can improve ALS therapy for patients who are in, or who are at risk of, cardiac arrest. PMID:22690475

  2. Dosimetric Characteristics for Brachytherapy Sources

    SciTech Connect

    DeWerd, Larry A.; Davis, Stephen D.

    2011-05-05

    Brachytherapy sources are characterized by the dosimetric parameters in a protocol such as the American Association of Physicists in Medicine Task Group 43. The air-kerma strength is measured and traceable to a primary standard. Then the parameters such as dose-rate constant, radial dose function, and anisotropy function are measured and related back to the primary standard. This is normally accomplished with thermoluminescent dosimeters (TLDs). Since radial dose function and anisotropy function are relative parameters, some of the dosimetric corrections are negligible. For the dose-rate constant, parameters such as the energy dependence compared with a calibration beam such as {sup 60}Co need to be accounted for. A description of the primary standard measurements and TLD measurements will be discussed.

  3. Dosimetric Characteristics for Brachytherapy Sources

    NASA Astrophysics Data System (ADS)

    DeWerd, Larry A.; Davis, Stephen D.

    2011-05-01

    Brachytherapy sources are characterized by the dosimetric parameters in a protocol such as the American Association of Physicists in Medicine Task Group 43. The air-kerma strength is measured and traceable to a primary standard. Then the parameters such as dose-rate constant, radial dose function, and anisotropy function are measured and related back to the primary standard. This is normally accomplished with thermoluminescent dosimeters (TLDs). Since radial dose function and anisotropy function are relative parameters, some of the dosimetric corrections are negligible. For the dose-rate constant, parameters such as the energy dependence compared with a calibration beam such as 60Co need to be accounted for. A description of the primary standard measurements and TLD measurements will be discussed.

  4. Brachytherapy next generation: robotic systems.

    PubMed

    Popescu, Tiberiu; Kacsó, Alex Cristian; Pisla, Doina; Kacsó, Gabriel

    2015-12-01

    In a field dominated by external beam radiation therapy (EBRT), both the therapeutic and technical possibilities of brachytherapy (BT) are underrated, shadowed by protons and intensity modulated radiotherapy. Decreasing expertise and indications, as well as increasing lack of specific BT training for radiation therapy (RT) residents led to the real need of shortening its learning curve and making it more popular. Developing robotic BT devices can be a way to mitigate the above issues. There are many teams working at custom-made robotic BT platforms to perfect and overcome the limitations of the existing systems. This paper provides a picture of the current state-of-the-art in robotic assisted BT, as it also conveys the author's solution to the problem, a parallel robot that uses CT-guidance. PMID:26816510

  5. Brachytherapy next generation: robotic systems

    PubMed Central

    Popescu, Tiberiu; Kacsó, Alex Cristian; Pisla, Doina

    2015-01-01

    In a field dominated by external beam radiation therapy (EBRT), both the therapeutic and technical possibilities of brachytherapy (BT) are underrated, shadowed by protons and intensity modulated radiotherapy. Decreasing expertise and indications, as well as increasing lack of specific BT training for radiation therapy (RT) residents led to the real need of shortening its learning curve and making it more popular. Developing robotic BT devices can be a way to mitigate the above issues. There are many teams working at custom-made robotic BT platforms to perfect and overcome the limitations of the existing systems. This paper provides a picture of the current state-of-the-art in robotic assisted BT, as it also conveys the author's solution to the problem, a parallel robot that uses CT-guidance. PMID:26816510

  6. Development of a phantom to validate high-dose-rate brachytherapy treatment planning systems with heterogeneous algorithms

    SciTech Connect

    Moura, Eduardo S.; Rostelato, Maria Elisa C. M.; Zeituni, Carlos A.

    2015-04-15

    Purpose: This work presents the development of a phantom to verify the treatment planning system (TPS) algorithms used for high-dose-rate (HDR) brachytherapy. It is designed to measure the relative dose in a heterogeneous media. The experimental details used, simulation methods, and comparisons with a commercial TPS are also provided. Methods: To simulate heterogeneous conditions, four materials were used: Virtual Water™ (VM), BR50/50™, cork, and aluminum. The materials were arranged in 11 heterogeneity configurations. Three dosimeters were used to measure the relative response from a HDR {sup 192}Ir source: TLD-100™, Gafchromic{sup ®} EBT3 film, and an Exradin™ A1SL ionization chamber. To compare the results from the experimental measurements, the various configurations were modeled in the PENELOPE/penEasy Monte Carlo code. Images of each setup geometry were acquired from a CT scanner and imported into BrachyVision™ TPS software, which includes a grid-based Boltzmann solver Acuros™. The results of the measurements performed in the heterogeneous setups were normalized to the dose values measured in the homogeneous Virtual Water™ setup and the respective differences due to the heterogeneities were considered. Additionally, dose values calculated based on the American Association of Physicists in Medicine-Task Group 43 formalism were compared to dose values calculated with the Acuros™ algorithm in the phantom. Calculated doses were compared at the same points, where measurements have been performed. Results: Differences in the relative response as high as 11.5% were found from the homogeneous setup when the heterogeneous materials were inserted into the experimental phantom. The aluminum and cork materials produced larger differences than the plastic materials, with the BR50/50™ material producing results similar to the Virtual Water™ results. Our experimental methods agree with the PENELOPE/penEasy simulations for most setups and dosimeters. The

  7. 10 CFR 35.406 - Brachytherapy sources accountability.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Brachytherapy sources accountability. 35.406 Section 35.406 Energy NUCLEAR REGULATORY COMMISSION MEDICAL USE OF BYPRODUCT MATERIAL Manual Brachytherapy § 35.406 Brachytherapy sources accountability. (a) A licensee shall maintain accountability at all...

  8. Cutaneous collagenous vasculopathy associated with intravascular occlusive fibrin thrombi.

    PubMed

    Salama, Samih; Chorneyko, Kathy; Belovic, Brian

    2014-04-01

    Cutaneous collagenous vasculopathy (CCV) is a rare cutaneous microangiopathy that clinically resembles generalized essential telangiectasia with only 12 cases reported to date. The perivascular fibrosis is thought to be due to production of abnormal collagen by veil cells in the outer vessel walls as a result of unknown factors. This report is of an 84-year-old male with progressive telangiectasia. Biopsies showed characteristic features of CCV. In addition, there were multiple intravascular fibrin thrombi, some organizing and associated with endothelial cell hyperplasia with recanalization reminiscent of glomeruloid bodies and simulating reactive angioendotheliomatosis (RAE). Histochemically and ultrastructurally fibrin was noted within the vessel walls integrating into the fibrous tissue around the vessels; however, the patient had no evidence of coagulation disorder, cryoglobulinemia or cold agglutinemia. Immunofluorescence showed fibrinogen within the vessel walls but no immunoglobulins or C3. As well, there were minimal inflammatory cells. This suggests pauci-inflammatory injury to the endothelial cells by unknown angiogenic factors causing local intravascular fibrin thrombi with fibrin leaking and incorporating into the vessel walls, eventually leading to reparative perivascular fibrosis. This case suggests that some cases of CCV are related to a primary local intravascular occlusive thrombotic microangiopathy. However, the primary triggering factor causing the endothelial cell damage has yet to be elucidated. PMID:24350781

  9. Renal denervation by intravascular ultrasound: Preliminary in vivo study

    NASA Astrophysics Data System (ADS)

    Sinelnikov, Yegor; McClain, Steve; Zou, Yong; Smith, David; Warnking, Reinhard

    2012-10-01

    Ultrasound denervation has recently become a subject of intense research in connection with the treatment of complex medical conditions including neurological conditions, development of pain management, reproduction of skin sensation, neuropathic pain and spasticity. The objective of this study is to investigate the use of intravascular ultrasound to produce nerve damage in renal sympathetic nerves without significant injury to the renal artery. This technique may potentially be used to treat various medical conditions, such as hypertension. The study was approved by the Institutional Animal Care and Use Committee. Ultrasound was applied to renal nerves of the swine model for histopathological evaluation. Therapeutic ultrasound energy was delivered circumferentially by an intravascular catheter maneuvered into the renal arteries. Fluoroscopic imaging was conducted pre-and post-ultrasound treatment. Animals were recovered and euthanized up to 30 hours post procedure, followed by necropsy and tissue sample collection. Histopathological examination showed evidence of extensive damage to renal nerves, characterized by nuclear pyknosis, hyalinization of stroma and multifocal hemorrhages, with little or no damage to renal arteries. This study demonstrates the feasibility of intravascular ultrasound as a minimally invasive renal denervation technique. Further studies are necessary to evaluate the long-term safety and efficacy of this technique and its related clinical significance.

  10. Vascular wall stress during intravascular optical coherence tomography imaging

    NASA Astrophysics Data System (ADS)

    Sun, Cuiru; Yang, Victor

    2015-03-01

    Biomechanical properties of arterial wall is crucial for understanding the changes in the cardiovascular system. Catheters are used during intravascular optical coherence tomography (IVOCT) imaging. The presence of a catheter alters the flow field, pressure distribution and frictional resistance to flow in an artery. In this paper, we first study the transmural stress distribution of the catheterized vessel. COMSOL (COMSOL 4.4) was used to simulate the blood flow induced deformation in a catheterized vessel. Blood is modeled as an incompressible Newtonian fluid. Stress distribution from an three-layer vascular model with an eccentric catheter are simulated, which provides a general idea about the distribution of the displacement and the stress. Optical coherence elastography techniques were then applied to porcine carotid artery samples to look at the deformation status of the vascular wall during saline or water injection. Preliminary simulation results show nonuniform stress distribution in the circumferential direction of the eccentrically catheterized vascular model. Three strain rate methods were tested for intravascular OCE application. The tissue Doppler method has the potential to be further developed to image the vascular wall biomechnical properties in vivo. Although results in this study are not validated quantitatively, the experiments and methods may be valuable for intravascular OCE studies, which may provide important information for cardiovascular disease prevention, diagnosis and treatment.

  11. {sup 106}Ruthenium Brachytherapy for Retinoblastoma

    SciTech Connect

    Abouzeid, Hana; Moeckli, Raphael; Gaillard, Marie-Claire; Beck-Popovic, Maja; Pica, Alessia; Zografos, Leonidas; Balmer, Aubin; Pampallona, Sandro; Munier, Francis L.

    2008-07-01

    Purpose: To evaluate the efficacy of {sup 106}Ru plaque brachytherapy for the treatment of retinoblastoma. Methods and Materials: We reviewed a retrospective, noncomparative case series of 39 children with retinoblastoma treated with {sup 106}Ru plaques at the Jules-Gonin Eye Hospital between October 1992 and July 2006, with 12 months of follow-up. Results: A total of 63 tumors were treated with {sup 106}Ru brachytherapy in 41 eyes. The median patient age was 27 months. {sup 106}Ru brachytherapy was the first-line treatment for 3 tumors (4.8%), second-line treatment for 13 (20.6%), and salvage treatment for 47 tumors (74.6%) resistant to other treatment modalities. Overall tumor control was achieved in 73% at 1 year. Tumor recurrence at 12 months was observed in 2 (12.5%) of 16 tumors for which {sup 106}Ru brachytherapy was used as the first- or second-line treatment and in 15 (31.9%) of 47 tumors for which {sup 106}Ru brachytherapy was used as salvage treatment. Eye retention was achieved in 76% of cases (31 of 41 eyes). Univariate and multivariate analyses revealed no statistically significant risk factors for tumor recurrence. Radiation complications included retinal detachment in 7 (17.1%), proliferative retinopathy in 1 (2.4%), and subcapsular cataract in 4 (9.7%) of 41 eyes. Conclusion: {sup 106}Ru brachytherapy is an effective treatment for retinoblastoma, with few secondary complications. Local vitreous seeding can be successfully treated with {sup 106}Ru brachytherapy.

  12. Brachytherapy in the Treatment of Cholangiocarcinoma

    SciTech Connect

    Shinohara, Eric T.; Guo Mengye; Mitra, Nandita; Metz, James M.

    2010-11-01

    Purpose: To examine the role of brachytherapy in the treatment of cholangiocarcinomas in a relatively large group of patients. Methods and Materials: Using the Surveillance, Epidemiology and End Results database, a total of 193 patients with cholangiocarcinoma treated with brachytherapy were identified for the period 1988-2003. The primary analysis compared patients treated with brachytherapy (with or without external-beam radiation) with those who did not receive radiation. To try to account for confounding variables, propensity score and sensitivity analyses were used. Results: There was a significant difference between patients who received radiation (n = 193) and those who did not (n = 6859) with regard to surgery (p < 0.0001), race (p < 0.0001), stage (p < 0.0001), and year of diagnosis (p <0.0001). Median survival for patients treated with brachytherapy was 11 months (95% confidence interval [CI] 9-13 months), compared with 4 months for patients who received no radiation (p < 0.0001). On multivariable analysis (hazard ratio [95% CI]) brachytherapy (0.79 [0.66-0.95]), surgery (0.50 [0.46-0.53]), year of diagnosis (1998-2003: 0.66 [0.60-0.73]; 1993-1997: (0.96 [0.89-1.03; NS], baseline 1988-1992), and extrahepatic disease (0.84 [0.79-0.89]) were associated with better overall survival. Conclusions: To the authors' knowledge, this is the largest dataset reported for the treatment of cholangiocarcinomas with brachytherapy. The results of this retrospective analysis suggest that brachytherapy may improve overall survival. However, because of the limitations of the Surveillance, Epidemiology and End Results database, these results should be interpreted cautiously, and future prospective studies are needed.

  13. Design, construction, and validation of a rotary multifunctional intravascular diagnostic catheter combining multispectral fluorescence lifetime imaging and intravascular ultrasound

    PubMed Central

    Bec, Julien; Xie, Hongtao; Yankelevich, Diego R.; Zhou, Feifei; Sun, Yang; Ghata, Narugopal; Aldredge, Ralph

    2012-01-01

    Abstract. We report the development and validation of an intravascular rotary catheter for bimodal interrogation of arterial pathologies. This is based on a point-spectroscopy scanning time-resolved fluorescence spectroscopy technique enabling reconstruction of fluorescence lifetime images (FLIm) and providing information on arterial intima composition and intravascular ultrasound (IVUS) providing information on arterial wall morphology. The catheter design allows for independent rotation of the ultrasonic and optical channels within an 8 Fr outer diameter catheter sheath and integrates a low volume flushing channel for blood removal in the optical pathways. In the current configuration, the two channels consist of (a) a standard 3 Fr IVUS catheter with single element transducer (40 MHz) and (b) a side-viewing fiber optic (400 μm core). Experiments conducted in tissue phantoms showed the ability of the catheter to operate in an intraluminal setting and to generate coregistered FLIm and IVUS in one pull-back scan. Current results demonstrate the feasibility of the catheter for simultaneous bimodal interrogation of arterial lumen and for generation of robust fluorescence lifetime data under IVUS guidance. These results facilitate further development of a FLIm-IVUS technique for intravascular diagnosis of atherosclerotic cardiovascular diseases including vulnerable plaques. PMID:23224011

  14. Design, construction, and validation of a rotary multifunctional intravascular diagnostic catheter combining multispectral fluorescence lifetime imaging and intravascular ultrasound

    NASA Astrophysics Data System (ADS)

    Bec, Julien; Xie, Hongtao; Yankelevich, Diego R.; Zhou, Feifei; Sun, Yang; Ghata, Narugopal; Aldredge, Ralph; Marcu, Laura

    2012-10-01

    We report the development and validation of an intravascular rotary catheter for bimodal interrogation of arterial pathologies. This is based on a point-spectroscopy scanning time-resolved fluorescence spectroscopy technique enabling reconstruction of fluorescence lifetime images (FLIm) and providing information on arterial intima composition and intravascular ultrasound (IVUS) providing information on arterial wall morphology. The catheter design allows for independent rotation of the ultrasonic and optical channels within an 8 Fr outer diameter catheter sheath and integrates a low volume flushing channel for blood removal in the optical pathways. In the current configuration, the two channels consist of (a) a standard 3 Fr IVUS catheter with single element transducer (40 MHz) and (b) a side-viewing fiber optic (400 μm core). Experiments conducted in tissue phantoms showed the ability of the catheter to operate in an intraluminal setting and to generate coregistered FLIm and IVUS in one pull-back scan. Current results demonstrate the feasibility of the catheter for simultaneous bimodal interrogation of arterial lumen and for generation of robust fluorescence lifetime data under IVUS guidance. These results facilitate further development of a FLIm-IVUS technique for intravascular diagnosis of atherosclerotic cardiovascular diseases including vulnerable plaques.

  15. Image guided Brachytherapy: The paradigm of Gynecologic and Partial Breast HDR Brachytherapy

    NASA Astrophysics Data System (ADS)

    Diamantopoulos, S.; Kantemiris, I.; Konidari, A.; Zaverdinos, P.

    2015-09-01

    High dose rate (HDR) brachytherapy uses high strength radioactive sources and temporary interstitial implants to conform the dose to target and minimize the treatment time. The advances of imaging technology enable accurate reconstruction of the implant and exact delineation of high-risk CTV and the surrounding critical structures. Furthermore, with sophisticated treatment planning systems, applicator devices and stepping source afterloaders, brachytherapy evolved to a more precise, safe and individualized treatment. At the Radiation Oncology Department of Metropolitan Hospital Athens, MRI guided HDR gynecologic (GYN) brachytherapy and accelerated partial breast irradiation (APBI) with brachytherapy are performed routinely. Contouring and treatment planning are based on the recommendations of the GEC - ESTRO Working group. The task of this presentation is to reveal the advantages of 3D image guided brachytherapy over 2D brachytherapy. Thus, two patients treated at our department (one GYN and one APBI) will be presented. The advantage of having adequate dose coverage of the high risk CTV and simultaneous low doses to the OARs when using 3D image- based brachytherapy will be presented. The treatment techniques, equipment issues, as well as implantation, imaging and treatment planning procedures will be described. Quality assurance checks will be treated separately.

  16. Contrast-induced acute kidney injury following iodine opacification other than by intravascular injection

    PubMed Central

    Perrin, Tilman; Hemett, Ould Maouloud; Menth, Markus; Descombes, Eric

    2012-01-01

    Contrast-induced acute kidney injury (CI-AKI) classically occurs following the intravascular administration of iodinated contrast medium (CM). However, some cases of iodine-induced nephrotoxicity have been reported in patients who did not receive intravascular CM, as a consequence of iodine absorption through mucosae, burned skin or interstitial tissues. Recently, we observed the first case of CI-AKI occurring after an enteroclysis without any direct intravascular injection of CM. Here, we report this case, and review other clinical situations in which renal toxicity has been reported following the non-intravascular use of iodinated compounds. PMID:24175084

  17. Dosimetry characterization of 32P intravascular brachytherapy source wires using Monte Carlo codes PENELOPE and GEANT4.

    PubMed

    Torres, Javier; Buades, Manuel J; Almansa, Julio F; Guerrero, Rafael; Lallena, Antonio M

    2004-02-01

    Monte Carlo calculations using the codes PENELOPE and GEANT4 have been performed to characterize the dosimetric parameters of the new 20 mm long catheter-based 32P beta source manufactured by the Guidant Corporation. The dose distribution along the transverse axis and the two-dimensional dose rate table have been calculated. Also, the dose rate at the reference point, the radial dose function, and the anisotropy function were evaluated according to the adapted TG-60 formalism for cylindrical sources. PENELOPE and GEANT4 codes were first verified against previous results corresponding to the old 27 mm Guidant 32P beta source. The dose rate at the reference point for the unsheathed 27 mm source in water was calculated to be 0.215 +/- 0.001 cGy s(-1) mCi(-1), for PENELOPE, and 0.2312 +/- 0.0008 cGy s(-1) mCi(-1), for GEANT4. For the unsheathed 20 mm source, these values were 0.2908 +/- 0.0009 cGy s(-1) mCi(-1) and 0.311 0.001 cGy s(-1) mCi(-1), respectively. Also, a comparison with the limited data available on this new source is shown. We found non-negligible differences between the results obtained with PENELOPE and GEANT4. PMID:15000615

  18. AB012. Brachytherapy for localized prostate cancer

    PubMed Central

    Xu, Yong; Yang, Yong

    2016-01-01

    Background To evaluate the security and effect of brachytherapy for localized prostate cancer. Methods Forty five patients with Tl–T2 prostate cancer were treated with real-time transperineal ultrasound-guide 125I seeds prostate implantation. Results The median operation time was 90 min, the median number of I seeds used was 56. The follow up time was 12–48 months, the cases of PSA <1 µg/L were 29, PSA 1–2 µg/L were 11 and PSA ≥2 µg/L were 5. Conclusions Brachytherapy for localized prostate cancer is safe and effective.

  19. Overaggressive stent expansion without intravascular imaging: impact on restenosis

    PubMed Central

    Chacko, Yohan; Chan, Richard; Haladyn, J Kimberly; Lim, Richard

    2014-01-01

    Objective Aggressive stent expansion is required for optimal strut apposition, but risk of stent deformation, fracture and subsequent restenosis is potentially greater when performed without intravascular imaging guidance. We investigated how frequently stents are ‘overexpanded’ and whether this correlates with restenosis. Design and setting Single-centre prospective database study at a high-volume tertiary university hospital. Patients 243 patients undergoing single-vessel stenting for de novo stenosis in 277 lesions. Exclusion criteria were bifurcational, graft or left main disease and intravascular imaging use. All had ischaemia-driven repeat coronary angiography up to 48 months later. Degree of stent overexpansion was the difference between nominal and final stent size. Results Stents were expanded above nominal in 99% of cases and above rated burst pressure in 52%. Stents were expanded >20% above nominal in 12% of cases. Stents overexpanded by >20% were smaller (2.87 vs 3.19 mm), longer (24 vs 19 mm) and more often drug-eluting (53% vs 27%). Angiographic restenosis was observed in 80 lesions (29%). There was no correlation between degree of overexpansion and per cent angiographic restenosis across the whole group (R2=−0.01; p=0.09), in those with stent overexpansion >20% (p=0.31) or small stents <3 mm (p=0.71). Indeed, in the group with stent overexpansion >25%, the greater the overexpansion, the less the per cent angiographic restenosis (p=0.02). Conclusions In this real-world population undergoing non-complex percutaneous coronary intervention without intravascular imaging, any tendency to overaggressive stent expansion did not predispose at all to restenosis.

  20. Overview: Five decades of brachytherapy

    SciTech Connect

    Ellis, F.

    1986-01-01

    Brachytherapy started in 1930. Ra-226 was the radioisotope for cancer therapy at that time and much has been learned about its properties since then. One of the major findings at that time was output. When the author started, there was no T factor. People did not know how many R units were produced by 1.0 mg of radium filtered by 0.5 mm of platinum at 1.0 cm. So one was in a bit of chaos from that point of view. Eventually, that was settled in the 1930's. It was very exciting to find out that, although the national laboratories of the U.S., England, France and Germany had had values of this T factor varying from about five to seven (when they're only supposed to have less than 1% error); the value was really 8.3 and it was quite a landmark. This led to an improved knowledge of dose and effects. Developments over the next five decades are discussed in detail.

  1. [Catheter-related thrombosis during intravascular temperature management].

    PubMed

    Kerz, T; Beyer, C; Oswald, S; Moringlane, R

    2016-07-01

    We report on a case of catheter-related thrombosis after 7‑day catheter placement during intravascular temperature management (IVTM), in spite of the use of prophylactic anticoagulants. There were no clinical sequelae. According to the literature, occult thrombosis during ITVM could be more frequent than previously reported and dedicated monitoring for potential thrombosis may be indicated. However, a study comparing IVTM with surface cooling found no differences in clinical outcome. Therefore, n either of the methods can be recommended over the other. Further studies should evaluate the rate of occult thrombosis during the use of both cooling methods. PMID:27316589

  2. Why Have So Many Intravascular Glucose Monitoring Devices Failed?

    PubMed Central

    Smith, John L.; Rice, Mark J.

    2015-01-01

    Secondary to the inherent limitations of both point-of-care and central laboratory glucose technologies, continuous glucose measurement has recently enjoyed a high level of investment. Because of the perceived advantages by some of measuring in the intravascular space compared to the subcutaneous tissue, a number of technologies have been developed. In this review, we evaluate nine systems that have shown promise, although only one of these has been cleared for sale in the United States. The detection methodology, regulatory status, technical issues, and company circumstance surrounding each technology are examined. PMID:26129733

  3. Autopsy-Proven Intravascular Lymphoma Presenting as Rapidly Recurrent Strokes

    PubMed Central

    Usuda, Daisuke; Arahata, Masahisa; Temaru, Rie; Iinuma, Yoshitsugu; Kanda, Tsugiyasu; Hayashi, Shinichi

    2016-01-01

    We present a 79-year-old Japanese woman diagnosed with cerebral infarction. In spite of enough antiplatelet and anticoagulant therapy, she presented rapidly recurrent strokes three times for 3 months. Magnetic resonance imaging showed progression of bilateral cerebral infarcts, and chest-abdominal computed tomography showed multiple bilateral nodular lesions in the lung and multiple tumor lesions in the liver. Autopsy revealed diagnosis of intravascular lymphoma (IVL). This case indicates that IVL is rare and usually goes undiagnosed until time of autopsy because of its protean neurological manifestations; hence, it should be considered as a possible etiology if multiple strokes occur in a short period of time. PMID:27065845

  4. Removal of Chronic Intravascular Blood Clots using Liquid Plasma

    NASA Astrophysics Data System (ADS)

    Jung, Jae-Chul; Choi, Myeong; Koo, Il; Yu, Zengqi; Collins, George

    2011-10-01

    An electrical embolectomy device for removing chronic intravascular blood clots using liquid plasma under saline environment was demonstrated. We employed a proxy experimental blood clot model of deep vein thrombosis (DVT) and actual equine blood clot. Thermal damage to contiguous tissue and the collagen denaturing via the plasma irradiation were investigated by histological analysis using birefringence of the tissue and verified by FT-IR spectroscopic study, respectively, which showed the high removal rate up to 2 mm per minute at room temperature and small thermal damage less than 200 μm.

  5. Artery phantoms for intravascular optical coherence tomography: healthy arteries.

    PubMed

    Bisaillon, Charles-Étienne; Dufour, Marc L; Lamouche, Guy

    2011-09-01

    We present a method to make phantoms of coronary arteries for intravascular optical coherence tomography (IV-OCT). The phantoms provide a calibrated OCT response similar to the layered structure of arteries. The optical properties of each layer are achieved with specific concentrations of alumina and carbon black in a silicone matrix. This composition insures high durability and also approximates the elastic properties of arteries. The phantoms are fabricated in a tubular shape by the successive deposition and curing of liquid silicone mixtures on a lathe setup. PMID:21991552

  6. Venous gas embolism - Time course of residual pulmonary intravascular bubbles

    NASA Technical Reports Server (NTRS)

    Butler, B. D.; Luehr, S.; Katz, J.

    1989-01-01

    A study was carried out to determine the time course of residual pulmonary intravascular bubbles after embolization with known amounts of venous air, using an N2O challenge technique. Attention was also given to the length of time that the venous gas emboli remained as discrete bubbles in the lungs with 100 percent oxygen ventilation. The data indicate that venous gas emboli can remain in the pulmonary vasculature as discrete bubbles for periods lasting up to 43 + or - 10.8 min in dogs ventilated with oxygen and nitrogen. With 100 percent oxygen ventilation, these values are reduced significantly to 19 + or - 2.5 min.

  7. Plasma fibronectin concentrations in dogs with disseminated intravascular coagulation.

    PubMed

    Feldman, B F; Thomson, D B; O'Neill, S

    1985-05-01

    Plasma fibronectin concentrations were significantly (P less than 0.001) below the reference range in dogs with disseminated intravascular coagulation (DIC) secondary to nonlymphomatous neoplasia, acute necrotizing pancreatitis, sepsis, chronic active hepatitis, and heat stroke. There was no statistical evidence of a group effect. Decrease in fibronectin concentration was associated with severe DIC, although no attempt was made to correlate fibronectin concentration with prognosis. These findings parallel those reported for severely ill human beings with diseases associated with DIC. They exemplify the potential of spontaneous diseases in animals as models for the study of human disease. PMID:4003893

  8. Disseminated Intravascular Coagulation after Surgery for Facial Injury

    PubMed Central

    Tachibana, Hirohiko; Ishikawa, Shigeo; Yusa, Kazuyuki; Kitabatake, Kenichirou; Iino, Mitsuyoshi

    2016-01-01

    A case of disseminated intravascular coagulation (DIC) presenting after surgery for facial trauma associated with multiple facial bone fractures is described. With regard to the oral and maxillofacial region, DIC has been described in the literature following head trauma, infection, and metastatic disease. Until now, only 5 reports have described DIC after surgery for facial injury. DIC secondary to facial injury is thus rare. The patient in this case was young and had no medical history. Preoperative hemorrhage or postoperative septicemia may thus induce DIC. PMID:27313913

  9. 21 CFR 880.5970 - Percutaneous, implanted, long-term intravascular catheter.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ...: “Guidance on Premarket Notification Submission for Short-Term and Long-Term Intravascular Catheters.” ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Percutaneous, implanted, long-term intravascular... and Personal Use Therapeutic Devices § 880.5970 Percutaneous, implanted, long-term...

  10. 21 CFR 880.5970 - Percutaneous, implanted, long-term intravascular catheter.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ...: “Guidance on Premarket Notification Submission for Short-Term and Long-Term Intravascular Catheters.” ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Percutaneous, implanted, long-term intravascular... and Personal Use Therapeutic Devices § 880.5970 Percutaneous, implanted, long-term...

  11. 21 CFR 880.5970 - Percutaneous, implanted, long-term intravascular catheter.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ...: “Guidance on Premarket Notification Submission for Short-Term and Long-Term Intravascular Catheters.” ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Percutaneous, implanted, long-term intravascular... and Personal Use Therapeutic Devices § 880.5970 Percutaneous, implanted, long-term...

  12. 21 CFR 880.5970 - Percutaneous, implanted, long-term intravascular catheter.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ...: “Guidance on Premarket Notification Submission for Short-Term and Long-Term Intravascular Catheters.” ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Percutaneous, implanted, long-term intravascular... and Personal Use Therapeutic Devices § 880.5970 Percutaneous, implanted, long-term...

  13. Development of prototype shielded cervical intracavitary brachytherapy applicators compatible with CT and MR imaging

    SciTech Connect

    Price, Michael J.; Jackson, Edward F.; Gifford, Kent A.; Eifel, Patricia J.; Mourtada, Firas

    2009-12-15

    were performed to match the attenuation due to the thickness of this new shield type with current, clinically utilized ovoid shields and a {sup 192}Ir HDR/PDR source. Results: Artifact-free CT images could be acquired of both generation applicators in a clinically applicable geometry using the S and S method. MR images were acquired of the phantom applicator containing shields, which contained minimal, clinically relevant artifacts. The thickness required to match the dosimetry of the MR-compatible and sFW rectal shields was determined using Monte Carlo simulations. Conclusions: Utilizing a S and S imaging method in conjunction with prototype applicators that feature movable interovoid shields, they were able to acquire artifact-free CT image sets in a clinically applicable geometry. MR images were acquired of a phantom applicator that contained shields composed of a novel tungsten alloy. Artifacts were largely limited to regions within the ovoid cap and are of no clinical interest. The second generation A{sup 3} utilizes this material for interovoid shielding.

  14. Adaptive windowing in contrast-enhanced intravascular ultrasound imaging.

    PubMed

    Lindsey, Brooks D; Martin, K Heath; Jiang, Xiaoning; Dayton, Paul A

    2016-08-01

    Intravascular ultrasound (IVUS) is one of the most commonly-used interventional imaging techniques and has seen recent innovations which attempt to characterize the risk posed by atherosclerotic plaques. One such development is the use of microbubble contrast agents to image vasa vasorum, fine vessels which supply oxygen and nutrients to the walls of coronary arteries and typically have diameters less than 200μm. The degree of vasa vasorum neovascularization within plaques is positively correlated with plaque vulnerability. Having recently presented a prototype dual-frequency transducer for contrast agent-specific intravascular imaging, here we describe signal processing approaches based on minimum variance (MV) beamforming and the phase coherence factor (PCF) for improving the spatial resolution and contrast-to-tissue ratio (CTR) in IVUS imaging. These approaches are examined through simulations, phantom studies, ex vivo studies in porcine arteries, and in vivo studies in chicken embryos. In phantom studies, PCF processing improved CTR by a mean of 4.2dB, while combined MV and PCF processing improved spatial resolution by 41.7%. Improvements of 2.2dB in CTR and 37.2% in resolution were observed in vivo. Applying these processing strategies can enhance image quality in conventional B-mode IVUS or in contrast-enhanced IVUS, where signal-to-noise ratio is relatively low and resolution is at a premium. PMID:27161022

  15. Dominant neurologic symptomatology in intravascular large B-cell lymphoma.

    PubMed

    Kubisova, K; Martanovic, P; Sisovsky, V; Tomleinova, Z; Steno, A; Janega, P; Rychly, B; Babal, P

    2016-01-01

    Intravascular large B-cell lymphoma (IVLBCL) is a rare variant of extranodal large B-cell lymphoma and it is characterized by selective intravascular proliferation of malignant cells. Typical features of the disease include aggressive behavior, rapid and frequently fatal course. Clinical picture is non-specific and heterogeneous, depending on the affected organ. It is not uncommon that this unique type of lymphoma is diagnosed post mortem. Herein, we report two cases of IVLBCL with neurologic symptomatology. In our clinical study patient 1 was an 80-year-old male with mixed paraparesis of lower extremities and difficulties with sphincter control. Patient 2 (56-year-old male) had vision malfunction, mental status changes and defect in phatic and motor functions. In both cases definite diagnosis was established by histological examination of necroptic material. We propose to include IVLBCL in differential diagnostic considerations in patients presenting with gradually impairing neurological status and spinal cord damage of unknown etiology (Fig. 2, Ref. 9). PMID:27546361

  16. Fatal Cryocrystalglobulinemia With Intravascular and Renal Tubular Crystalline Deposits.

    PubMed

    DeLyria, Paul A; Avedschmidt, Sarah E; Yamada, Chisa; Farkash, Evan A

    2016-05-01

    Cryocrystalglobulinemia is a rare variant of cryoglobulinemia in which monoclonal immunoglobulins self-assemble into crystalline arrays. We report a case of a 53-year-old man who presented with systemic thrombotic microangiopathy causing multiorgan failure, including decreased kidney, lung, and gastrointestinal function; skin necrosis; and mental status changes. Skin and kidney biopsy specimens showed intravascular thrombi, along with intravascular, intratubular, and periglomerular crystalline deposits. Typical morphologic features of cryoglobulinemia, such as a leukocytoclastic vasculitis and pseudothrombi, were absent. Spindled crystals precipitated in the cryoglobulin assay, and immunofixation showed them to be composed of monoclonal immunoglobulin G κ light chains. Ultrastructural analysis demonstrated deposits to have an array-like substructure. The patient was successfully treated with a combination of plasmapheresis, steroids, and bortezomib, but experienced a relapse and died 12 months after his initial diagnosis. Cryocrystalglobulinemia causes significant morbidity and mortality and should be classified as a monoclonal gammopathy of renal significance when it occurs in patients not meeting diagnostic criteria for multiple myeloma. PMID:26775022

  17. Virtual histology and color flow intravascular ultrasound in peripheral interventions.

    PubMed

    Diethrich, Edward B; Irshad, Khalid; Reid, Donald B

    2006-09-01

    The quality and interpretation of intravascular ultrasound (IVUS) imaging has been revolutionized in recent years by two new and major advances: virtual histology and color flow IVUS. Virtual histology intravascular ultrasound (VHIVUS) is a catheter-based technology where IVUS is generated from the transducer on the catheter tip and the reflected signals from the artery wall produce a color-coded map of the arterial disease. Different histological constituents of the plaque produce different reflected signals and these are assigned different colors (dark green, fibrous; yellow/green, fibrofatty; white, calcified; red, necrotic lipid core plaque). This color-coded map assists the interventionalist in understanding more fully how the lesion will behave at the moment of treatment, whether it will resist complete stent deployment or be liable to embolization. Originally introduced for coronary interventions, VHIVUS is now being applied to peripheral situations. Because it provides a detailed and close-proximity view of plaque, its potential to improve the safety and efficacy of carotid endoluminal repair is stimulating substantial interest. Similarly, color flow IVUS provides greater understanding for the operator of blood flow, and the interface between the vessel wall and the blood stream, lumen size, and success of treatment. Color flow IVUS does not use the Doppler effect, but creates real-time images that resemble color flow Doppler ultrasound. These two technological advances in IVUS have greatly improved the ability of the endovascular specialist to understand the arterial disease they are treating and to assess the completion of treatment. PMID:16996418

  18. Dual-element needle transducer for intravascular ultrasound imaging

    PubMed Central

    Yoon, Sangpil; Kim, Min Gon; Williams, Jay A.; Yoon, Changhan; Kang, Bong Jin; Cabrera-Munoz, Nestor; Shung, K. Kirk; Kim, Hyung Ham

    2015-01-01

    Abstract. A dual-element needle transducer for intravascular ultrasound imaging has been developed. A low-frequency element and a high-frequency element were integrated into one device to obtain images which conveyed both low- and high-frequency information from a single scan. The low-frequency element with a center frequency of 48 MHz was fabricated from the single crystal form of lead magnesium niobate-lead titanate solid solution with two matching layers (MLs) and the high frequency element with a center frequency of 152 MHz was fabricated from lithium niobate with one ML. The measured axial and lateral resolutions were 27 and 122  μm, respectively, for the low-frequency element, and 14 and 40  μm, respectively, for the high-frequency element. The performance of the dual-element needle transducer was validated by imaging a tissue-mimicking phantom with lesion-mimicking area, and ex vivo rabbit aortas in water and rabbit whole blood. The results suggest that a low-frequency element effectively provides depth resolved images of the whole vessel and its adjacent tissue, and a high-frequency element visualizes detailed structure near the surface of the lumen wall in the presence of blood within the lumen. The advantages of a dual-element approach for intravascular imaging are also discussed. PMID:26158118

  19. Focused intravascular ultrasonic probe using dimpled transducer elements.

    PubMed

    Chen, Y; Qiu, W B; Lam, K H; Liu, B Q; Jiang, X P; Zheng, H R; Luo, H S; Chan, H L W; Dai, J Y

    2015-02-01

    High-frequency focused intravascular ultrasonic probes were fabricated in this study using dimple technique based on PMN-PT single crystal and lead-free KNN-KBT-Mn ceramic. The center frequency, bandwidth, and insertion loss of the PMN-PT transducer were 34 MHz, 75%, and 22.9 dB, respectively. For the lead-free probe, the center frequency, bandwidth, and insertion loss were found to be 40 MHz, 72%, and 28.8 dB, respectively. The ultrasonic images of wire phantom and vessels with good resolution were obtained to evaluate the transducer performance. The -6 dB axial and lateral resolutions of the PMN-PT probe were determined to be 58 μm and 131 μm, respectively. For the lead-free probe, the axial and lateral resolutions were found to be 44 μm and 125 μm, respectively. These results suggest that the mechanical dimpling technique has good potential in preparing focused transducers for intravascular ultrasound applications. PMID:25108608

  20. Primary effusion lymphoma presenting as a cutaneous intravascular lymphoma

    PubMed Central

    Crane, Genevieve M.; Xian, Rena R.; Burns, Kathleen H.; Borowitz, Michael J.; Duffield, Amy S.; Taube, Janis M.

    2015-01-01

    Primary effusion lymphoma (PEL) is a rare and aggressive lymphoma that arises in the context of immunosuppression and is characterized by co-infection with Epstein–Barr virus (EBV) and human herpesvirus-8/Kaposi sarcoma-associated herpesvirus (HHV-8/KSHV). It was originally described as arising in body cavity effusions, but presentation as a mass lesion (extracavitary PEL) is now recognized. Here, we describe a case of PEL with an initial presentation as an intravascular lymphoma with associated skin lesions. The patient was a 53-year-old man with human immunodeficiency virus (HIV)/acquired immune deficiency syndrome (AIDS) who presented with fevers, weight loss and skin lesions concerning for Kaposi sarcoma (KS). A skin biopsy revealed no evidence of KS; however, dermal vessels contained large atypical cells that expressed CD31 and plasma cell markers but lacked most B- and T-cell antigens. The atypical cells expressed EBV and HHV-8. The patient subsequently developed a malignant pleural effusion containing the same neoplastic cell population. The findings in this case highlight the potential for unusual intravascular presentations of PEL in the skin as well as the importance of pursuing microscopic diagnosis of skin lesions in immunosuppressed patients. PMID:25355615

  1. Thyroid Storm Complicated by Bicytopenia and Disseminated Intravascular Coagulation

    PubMed Central

    Tokushima, Yoshinori; Sakanishi, Yuta; Nagae, Kou; Tokushima, Midori; Tago, Masaki; Tomonaga, Motosuke; Yoshioka, Tsuneaki; Hyakutake, Masaki; Sugioka, Takashi; Yamashita, Shu-ichi

    2014-01-01

    Patient: Male, 23 Final Diagnosis: Thyroid storm Symptoms: Delirium • diarrhea • fever • hypertension • hyperventilation • tachycardia • weight loss Medication: — Clinical Procedure: — Specialty: Endocrinology and Metabolic Objective: Unusual clinical course Background: The clinical presentation of thyroid storm includes fever, tachycardia, hypertension, and neurological abnormalities. It is a serious condition with a high mortality rate. Furthermore, some other complications affect the clinical course of thyroid storm. Although it is reported that prognosis is poor when thyroid storm is complicated by disseminated intravascular coagulation syndrome (DIC) and leukopenia, reports of such cases are rare. Case Report: A 23-year-old man presented with delirium, high pyrexia, diarrhea, and weight loss of 18 kg over 2 months. According to the criteria of Burch and Wartofsky, he was diagnosed with thyroid storm on the basis of his symptom-complex and laboratory data that confirmed the presence of hyperthyroidism. Investigations also found leukopenia, thrombocytopenia, and disseminated intravascular coagulation, all of which are very rare complications of thyroid storm. We successfully treated him with combined therapy including anti-thyroid medication, despite leukopenia. Conclusions: Early diagnosis and treatment are essential in ensuring a good outcome for patients with this rare combination of medical problems. PMID:25072662

  2. High speed intravascular photoacoustic imaging of atherosclerotic arteries (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Piao, Zhonglie; Ma, Teng; Qu, Yueqiao; Li, Jiawen; Yu, Mingyue; He, Youmin; Shung, K. Kirk; Zhou, Qifa; Kim, Chang-Seok; Chen, Zhongping

    2016-02-01

    Cardiovascular disease is the leading cause of death in the industrialized nations. Accurate quantification of both the morphology and composition of lipid-rich vulnerable atherosclerotic plaque are essential for early detection and optimal treatment in clinics. In previous works, intravascular photoacoustic (IVPA) imaging for detection of lipid-rich plaque within coronary artery walls has been demonstrated in ex vivo, but the imaging speed is still limited. In order to increase the imaging speed, a high repetition rate laser is needed. In this work, we present a high speed integrated IVPA/US imaging system with a 500 Hz optical parametric oscillator laser at 1725 nm. A miniature catheter with 1.0 mm outer diameter was designed with a 200 μm multimode fiber and an ultrasound transducer with 45 MHz center frequency. The fiber was polished at 38 degree and enclosed in a glass capillary for total internal reflection. An optical/electrical rotary junction and pull-back mechanism was applied for rotating and linearly scanning the catheter to obtain three-dimensional imaging. Atherosclerotic rabbit abdominal aorta was imaged as two frame/second at 1725 nm. Furthermore, by wide tuning range of the laser wavelength from 1680 nm to 1770 nm, spectroscopic photoacoustic analysis of lipid-mimicking phantom and an human atherosclerotic artery was performed ex vivo. The results demonstrated that the developed IVPA/US imaging system is capable for high speed intravascular imaging for plaque detection.

  3. Early voiding dysfunction associated with prostate brachytherapy.

    PubMed

    Wagner; Nag; Young; Bahnson

    2000-12-15

    Introduction: Transperineal prostate brachytherapy is gaining popularity as a treatment for clinically localized carcinoma of the prostate. Very little prospective data exists addressing the issue of complications associated with this procedure. We present an analysis of the early voiding dysfunction associated with prostate brachytherapy. Materials and Methods: Forty-six consecutive patients who underwent Palladium-103 (Pd-103) seed placement for clinically localized prostate carcinoma were evaluated prospectively for any morbidity associated with the procedure. Twenty-three patients completed an International Prostate Symptom Score (IPSS) questionnaire preoperatively, at their first postoperative visit, and at their second postoperative visit. The total IPSS, each of the seven individual components, and the "bother" score were evaluated separately for each visit, and statistical significance was determined. Results: Urinary retention occurred in 7/46 patients (15%). Of these, 5 were able to void spontaneously after catheter removal. One patient is maintained with a suprapubic tube, and one patient is currently on continuous intermittent catheterization. Baseline IPSS was 7.1 and this went to 20.0 at the first postoperative visit (p<0.001). By the second postoperative visit, the IPSS was 8.0. Conclusions: In our experience, prostate brachytherapy for localized carcinoma of the prostate is associated with a 15% catheterization rate and a significant increase in the IPSS (7.1 to 20.0). This increase in the IPSS seems to be self-limited. Patients need to be educated on these issues prior to prostate brachytherapy. PMID:11113369

  4. Brachytherapy in pelvic malignancies: a review for radiologists.

    PubMed

    Vicens, Rafael A; Rodriguez, Joshua; Sheplan, Lawrence; Mayo, Cody; Mayo, Lauren; Jensen, Corey

    2015-10-01

    Brachytherapy, also known as sealed source or internal radiation therapy, involves placement of a radioactive source immediately adjacent to or within tumor, thus enabling delivery of a localized high dose of radiation. Compared with external beam radiation which must first pass through non-target tissues, brachytherapy results in less radiation dose to normal tissues. In the past decade, brachytherapy use has markedly increased, thus radiologists are encountering brachytherapy devices and their associated post-treatment changes to increasing degree. This review will present a variety of brachytherapy devices that radiologists may encounter during diagnostic pelvic imaging with a focus on prostate and gynecologic malignancies. The reader will become familiar with the function, correct position, and potential complications of brachytherapy devices in an effort to improve diagnostic reporting and communication with clinicians. PMID:25820802

  5. Intravascular Ultrasound Imaging of Peripheral Arteries as an Adjunct to Balloon Angioplasty and Atherectomy

    SciTech Connect

    Korogi, Yukunori; Hirai, Toshinori; Takahashi, Mutsumasa

    1996-11-15

    This article reviews many of the applications of intravascular ultrasound (US) imaging for peripheral arterial diseases. In vitro studies demonstrate an excellent correlation between ultrasound measurements of lumen and plaque crossectional area compared with histologic sections. In vivo clinical studies reveal the enhanced diagnostic capabilities of this technology compared with angiography. Intravascular US imaging can provide valuable information on the degree, eccentricity, and histologic type of stenosis before intervention, and on the morphological changes in the arterial wall and the extent of excision after intervention. Intravascular US may also serve as a superior index for gauging the diameter of balloon, stent, laser probe, and/or atherectomy catheter appropriate for a proposed intervention. Significant new insights into the mechanisms of balloon angioplasty and atherectomy have been established by intravascular US findings. Intravascular US imaging has been shown to be a more accurate method than angiography for determining the cross-sectional area of the arterial lumen, and for assessing severity of stenosis. Quantitative assessment of the luminal cross-sectional area after the balloon dilatation should be more accurate than angiography as intimal tears or dissections produced by the dilatation may not be accurately evaluated with angiography. At the present time, intravascular US is still a controversial imaging technique. Outcome studies are currently being organized to assess the clinical value and cost effectiveness of intravascular ultrasound in the context of these interventional procedures.

  6. Intravascular ultrasound imaging of peripheral arteries as an adjunct to balloon angioplasty and atherectomy.

    PubMed

    Korogi, Y; Hirai, T; Takahashi, M

    1996-01-01

    This article reviews many of the applications of intravascular ultrasound (US) imaging for peripheral arterial diseases. In vitro studies demonstrate an excellent correlation between ultrasound measurements of lumen and plaque cross-sectional area compared with histologic sections. In vivo clinical studies reveal the enhanced diagnostic capabilities of this technology compared with angiography. Intravascular US imaging can provide valuable information on the degree, eccentricity, and histologic type of stenosis before intervention, and on the morphological changes in the arterial wall and the extent of excision after intervention. Intravascular US may also serve as a superior index for gauging the diameter of balloon, stent, laser probe, and/or atherectomy catheter appropriate for a proposed intervention. Significant new insights into the mechanisms of balloon angioplasty and atherectomy have been established by intravascular US findings. Intravascular US imaging has been shown to be a more accurate method than angiography for determining the cross-sectional area of the arterial lumen, and for assessing severity of stenosis. Quantitative assessment of the luminal cross-sectional area after the balloon dilatation should be more accurate than angiography as intimal tears or dissections produced by the dilatation may not be accurately evaluated with angiography. At the present time, intravascular US is still a controversial imaging technique. Outcome studies are currently being organized to assess the clinical value and cost effectiveness of intravascular ultrasound in the context of these interventional procedures. PMID:8653738

  7. SU-E-T-223: Investigation of the Accuracy of Two-Dimensional Dose Distributions Measurement From High-Dose-Rate Brachytherapy Ir-192 Source Using Multiple-Diode-Array Detector (MapCheck2)

    SciTech Connect

    Taguenang, J; De La Fuente, T Herman; Ahmad, S; Ali, I

    2014-06-01

    Purpose: To investigate the dosimetric accuracy of multiple-diode-array detector (Mapcheck2) for high-dose-rate brachytherapy Ir-192 source. The two-dimensional (2D) dose distributions measured with MapCheck2 were validated with EBT2 Gafchromic film measurement and AAPM task-group- 43 (TG-43) modeling. Methods: 2D-dose distributions from Ir-192 source were measured with MapCheck2 and EBT2-films. MapCheck2 response was corrected for effects: directional dependence, diode and phantom heterogeneity. Optical density growth of the film was controlled by synchronized scanning of the film exposed to Ir-192 and calibration films exposed to 6 MV linac beams. Similarly, MapCheck2 response was calibrated to dose using 6 MV beams. An empirical model was developed for the dose distributions measured with Mapcheck2 that considered directional, diode and phantom heterogeneity corrections. The dose deposited in solid-state-detectors was modeled using a cavity theory model for the diode. This model was then validated with measurements using EBT2-films and calculations with TG-43. Results: The response of MapCheck2 has been corrected for different effects including: (a) directional dependence of 0–20% over angular range 0o–90o, (b) phantom heterogeneity (3%) and (c) diode heterogeneity (9%). The corrected dose distributions measured with MapCheck2 agreed well with the measured dose distributions from EBT2-film and with calculations using TG-43 within 5% over a wide range of dose levels and rates. The advantages of MapCheck2 include less noisy, linear and stable response compared with film. The response of MapCheck2 exposed to 192Ir-source showed no energy dependence similar to its response to MV energy beam. Detection spatial-resolution of individual diodes was 0.8×0.8 mm2, however, 2DMapCheck2 resolution is limited by distance between diodes (7.07 mm). Conclusion: The dose distribution measured with MapCheck2 agreed well within 5% with that measured using EBT2-films; and

  8. Dosimetric Considerations to Determine the Optimal Technique for Localized Prostate Cancer Among External Photon, Proton, or Carbon-Ion Therapy and High-Dose-Rate or Low-Dose-Rate Brachytherapy

    SciTech Connect

    Georg, Dietmar

    2014-03-01

    Purpose: To assess the dosimetric differences among volumetric modulated arc therapy (VMAT), scanned proton therapy (intensity-modulated proton therapy, IMPT), scanned carbon-ion therapy (intensity-modulated carbon-ion therapy, IMIT), and low-dose-rate (LDR) and high-dose-rate (HDR) brachytherapy (BT) treatment of localized prostate cancer. Methods and Materials: Ten patients were considered for this planning study. For external beam radiation therapy (EBRT), planning target volume was created by adding a margin of 5 mm (lateral/anterior–posterior) and 8 mm (superior–inferior) to the clinical target volume. Bladder wall (BW), rectal wall (RW), femoral heads, urethra, and pelvic tissue were considered as organs at risk. For VMAT and IMPT, 78 Gy(relative biological effectiveness, RBE)/2 Gy were prescribed. The IMIT was based on 66 Gy(RBE)/20 fractions. The clinical target volume planning aims for HDR-BT ({sup 192}Ir) and LDR-BT ({sup 125}I) were D{sub 90%} ≥34 Gy in 8.5 Gy per fraction and D{sub 90%} ≥145 Gy. Both physical and RBE-weighted dose distributions for protons and carbon-ions were converted to dose distributions based on 2-Gy(IsoE) fractions. From these dose distributions various dose and dose–volume parameters were extracted. Results: Rectal wall exposure 30-70 Gy(IsoE) was reduced for IMIT, LDR-BT, and HDR-BT when compared with VMAT and IMPT. The high-dose region of the BW dose–volume histogram above 50 Gy(IsoE) of IMPT resembled the VMAT shape, whereas all other techniques showed a significantly lower high-dose region. For all 3 EBRT techniques similar urethra D{sub mean} around 74 Gy(IsoE) were obtained. The LDR-BT results were approximately 30 Gy(IsoE) higher, HDR-BT 10 Gy(IsoE) lower. Normal tissue and femoral head sparing was best with BT. Conclusion: Despite the different EBRT prescription and fractionation schemes, the high-dose regions of BW and RW expressed in Gy(IsoE) were on the same order of magnitude. Brachytherapy techniques

  9. Current status and extended applications of intravascular stents.

    PubMed

    Hallisey, M J; Parker, B C; van Breda, A

    1992-08-01

    The introduction of several novel techniques and mechanical devices to interventional radiology has expanded the range of therapies for a variety of medical disorders. Intravascular metallic stents have received widespread acclaim and may possess the most potential of all the newest devices available to the interventionist. The addition of metallic stents to the percutaneous therapeutic arsenal provides the interventionist with a device that can resist the elastic recoil of a stenotic vessel or support a newly created vascular tract. Peripheral artery metallic stent placement holds great promise for the treatment of selected patients; other applications of stents, including transjugular intrahepatic portosystemic stent shunts are likely to have a great impact in patient management. We review the techniques, appropriate indications, and recent clinical results of vascular stents for percutaneous intervention and therapy. PMID:1627454

  10. Basic studies on intravascular low-intensity laser therapy

    NASA Astrophysics Data System (ADS)

    Liu, Timon Cheng-Yi; Duan, Rui; Wang, Shuang-Xi; Liu, Jiang; Cui, Li-Ping; Jin, Hua; Liu, Song-Hao

    2006-09-01

    Intravascular low intensity laser therapy (ILILT) was originally put forward in USA in 1982, but popularized in Russia in 1980s and in China in 1990s, respectively. A randomized placebo-controlled study has shown ILILT clinical efficacy in patients suffering from rheumatoid arthritis. As Chinese therapeutic applications of ILILT were the most widely in the world, its basic research, such as intracellular signal transduction research, blood research in vitro, animal blood research in vivo, human blood research in vivo and traditional Chinese medicine research, was also very progressive in China. Its basic studies will be reviewed in terms of the biological information model of photobiomodulation in this paper. ILILT might work in view of its basic studies, but the further randomized placebo-controlled trial and the further safety research should be done.

  11. Acute renal failure and intravascular hemolysis following henna ingestion.

    PubMed

    Qurashi, Hala E A; Qumqumji, Abbas A A; Zacharia, Yasir

    2013-05-01

    The powder of henna plant (Lawsonia inermis Linn.) is extensively used as a decorative skin paint for nail coloring and as a hair dye. Most reports of henna toxicity have been attributed to adding a synthetic dye para-phenylenediamine (PPD). PPD is marketed as black henna added to natural henna to accentuate the dark color and shorten the application time. PPD toxicity is well known and extensively reported in medical literature. We report a case of a young Saudi male who presented with characteristic features of acute renal failure and intravascular hemolysis following ingestion of henna mixture. Management of PPD poisoning is only supportive and helpful only if instituted early. Diagnosis requires a high degree of clinical suspicion, as the clinical features are quite distinctive. PMID:23640630

  12. Mathematical Modeling of Intravascular Blood Coagulation under Wall Shear Stress

    PubMed Central

    Rukhlenko, Oleksii S.; Dudchenko, Olga A.; Zlobina, Ksenia E.; Guria, Georgy Th.

    2015-01-01

    Increased shear stress such as observed at local stenosis may cause drastic changes in the permeability of the vessel wall to procoagulants and thus initiate intravascular blood coagulation. In this paper we suggest a mathematical model to investigate how shear stress-induced permeability influences the thrombogenic potential of atherosclerotic plaques. Numerical analysis of the model reveals the existence of two hydrodynamic thresholds for activation of blood coagulation in the system and unveils typical scenarios of thrombus formation. The dependence of blood coagulation development on the intensity of blood flow, as well as on geometrical parameters of atherosclerotic plaque is described. Relevant parametric diagrams are drawn. The results suggest a previously unrecognized role of relatively small plaques (resulting in less than 50% of the lumen area reduction) in atherothrombosis and have important implications for the existing stenting guidelines. PMID:26222505

  13. Spectroscopic intravascular photoacoustic imaging of neovasculature: phantom studies

    NASA Astrophysics Data System (ADS)

    Su, Jimmy L.; Wang, Bo; Emelianov, Stanislav Y.

    2009-02-01

    An acceleration of angiogenesis in the adventitial vasa-vasorum is usually associated with vulnerable, thin-cap fibroatheroma in atherosclerotic plaques. Angiogenesis creates microvasculature too small to be detected and differentiated using conventional imaging techniques. However, by using spectroscopic photoacoustic imaging, we take advantage of the wavelength-dependent optical absorption properties of blood. We used a vessel-mimicking phantom with micro blood vessels. The phantom was imaged with intravascular photoacoustic imaging across a range of wavelengths. The image intensities were cross-correlated with the known absorption spectra of blood. The resulting cross-correlation image was able to reveal the location of the artificial blood vessels differentiated from non-blood vessel components.

  14. Pulmonary intravascular macrophages and lung health: what are we missing?

    PubMed

    Schneberger, David; Aharonson-Raz, Karin; Singh, Baljit

    2012-03-15

    Pulmonary intravascular macrophages (PIMs) are constitutively found in species such as cattle, horse, pig, sheep, goat, cats, and whales and can be induced in species such as rats, which normally lack them. It is believed that human lung lacks PIMs, but there are previous suggestions of their induction in patients suffering from liver dysfunction. Recent data show induction of PIMs in bile-duct ligated rats and humans suffering from hepato-pulmonary syndrome. Because constitutive and induced PIMs are pro-inflammatory in response to endotoxins and bacteria, there is a need to study their biology in inflammatory lung diseases such as sepsis, asthma, chronic obstructive pulmonary diseases, or hepato-pulmonary syndrome. We provide a review of PIM biology to make an argument for increased emphasis and better focus on the study of human PIMs to better understand their potential role in the pathophysiology and mechanisms of pulmonary diseases. PMID:22227203

  15. Magnetizable intravascular stents for sequestration of systemically circulating magnetic nano- and microspheres.

    SciTech Connect

    Chen, H.; Kaminski, M. D.; Ebner, A. D.; Ritter, J. A.; Rosengart, A. J.; Chemical Engineering; Univ. of Chicago; Univ. of South Carolina; Illinois Inst. of Tech.

    2005-01-01

    A 2-D theoretical model was established and used to evaluate the sequestration of blood borne magnetic nano- and microspheres by a magnetizable intravascular stent system. Furthermore, an in vitro flow model system examined the efficiency of a prototype magnetizable intravascular stent to sequestrate the nano- and microspheres from arterial and/or venous blood flow. Comparisons of experimental and corresponding modeling data verified theoretical predictions. The results suggest that the magnetizable intravascular stents can be developed as an effective magnetic drug-targeting tool with potential medical applications.

  16. Intravascular gas in the transplanted kidney: a sign of extensive graft necrosis.

    PubMed

    Ishigami, Kousei; Olsen, Kim M; Hammet, Bradley K; Katz, Daniel A; Wu, You Min

    2004-04-01

    We encountered a case of transplanted kidney necrosis, with computed tomography (CT) demonstrating multiple areas of intravascular gas within the allograft. The intravascular gas represented air emboli from gas liberated from fermentation by gas-forming organisms in a perinephric abscess. Arterial bleeding accelerated by the wound infection and the resultant large perinephric hematoma caused renal infarction. Gas-forming infection of transplanted organs is associated with a poor graft outcome, which can present as a fulminant clinical course. Intravascular gas should be distinguished from collecting system gas because the former could represent extensive necrosis of the transplanted kidney. PMID:15290479

  17. A Case of Disseminated Intravascular Coagulation after Thoracic Endovascular Aortic Repair

    PubMed Central

    2015-01-01

    I report a hemorrhagic complication due to disseminated intravascular coagulation after thoracic endovascular aortic repair for a dissecting aortic aneurysm. A 74-year-old man underwent thoracic endovascular aortic repair and carotid-carotid artery bypass to close the primary entry site of the dissecting aortic aneurysm. Postoperatively, he developed a gradually expanding cervical hematoma. Laboratory data showed disseminated intravascular coagulation. He could not extubated until postoperative day 6 because of the risk of airway obstruction. He was treated with transfusion to replenish the coagulation factor. Disseminated intravascular coagulation may occur secondary to thrombus formation in the false lumen after thoracic endovascular aortic repair. PMID:26730263

  18. The Development of a Continuous Intravascular Glucose Monitoring Sensor

    PubMed Central

    Crane, Barry C.; Barwell, Nicholas P.; Gopal, Palepu; Gopichand, Mannam; Higgs, Timothy; James, Tony D.; Jones, Christopher M.; Mackenzie, Alasdair; Mulavisala, Krishna Prasad; Paterson, William

    2015-01-01

    Background: Glycemic control in hospital intensive care units (ICU) has been the subject of numerous research publications and debate over the past 2 decades. There have been multiple studies showing the benefit of ICU glucose control in reducing both morbidity and mortality. GlySure Ltd has developed a glucose monitor based on a diboronic acid receptor that can continuously measure plasma glucose concentrations directly in a patient’s vascular system. The goal of this study was to validate the performance of the GlySure CIGM system in different patient populations. Methods: The GlySure Continuous Intravascular Glucose Monitoring (CIGM) System was evaluated in both the Cardiac ICU (33 patients) and MICU setting (14 patients). The sensor was placed through a custom CVC and measured the patients’ blood glucose concentration every 15 seconds. Comparison blood samples were taken at 2 hourly then 4 hourly intervals and measured on a YSI 2300 STAT Plus or an i-STAT. Results: Consensus error grid analysis of the data shows that the majority of the data (88.2% Cardiac, and 95.0% MICU) fell within zone A, which is considered to be clinically accurate and all data points fell within zones A and B. The MARD of the Cardiac trial was 9.90% and the MICU trial had a MARD of 7.95%. Data analysis showed no significant differences between data generated from Cardiac and MICU patients or by time or glucose concentration. Conclusions: The GlySure CIGM System has met the design challenges of measuring intravascular glucose concentrations in critically ill patients with acceptable safety and performance criteria and without disrupting current clinical practice. The accuracy of the data is not affected by the patients’ condition. PMID:26033921

  19. Brachytherapy treatment planning commissioning: effect of the election of proper bibliography and finite size of TG-43 input data on standard treatments.

    PubMed

    Valdés, Christian N; Píriz, Gustavo H; Lozano, Enrrique

    2015-01-01

    The aim of this work is to evaluate the performance of a commercial brachytherapy treatment planning system (TPS) with TG-43 Vendors Input Data (VID), analyze possible discrepancies with respect to a proper reference source and its implications for standard treatments, and judge the effectiveness of certain widespread recommended quality controls to find potential errors related with the interpolations of TG-43 VID tables. The TPS evaluated was a BrachyVision 8.6 loaded with TG-43 VID for a VariSource high-dose-rate 192Ir source (Vs2000). The reference data chosen were the TG-43 data published in the literature. In the first step, we compared TG-43 VID with respect to the chosen reference data. Next, we used percent dose-rate differences in a point array matrix to compare the outcomes of the TPS on standard treatment setup with respect to an in-house developed program (MATLAB R2009a-based) loaded with the chosen full TG-43 reference data. The cases with major discrepancies were evaluated using the gamma-index analysis. The comparison with the reference data indicated a lack of sample in the angles between near to the tip (between 165 < θ < 180) and cable (0 < θ < 15) of the F(r,θ)(VID), which causes a dose underestimation of approximately 17% in the investigated points due to inaccurate interpolations. The differences over 2% encompassed approximately 17% of the surrounding source volume. These results have special relevance in treatment using one applicator with a few dwell steps or in Fletcher treatments where 10% dose underestimates were identified within the tumor or in organs at risk, respectively. Our results suggest that the differences found in the TPS under study are created by a lack of information on the angles in high-gradient zones in the F(r,θ)(VID), which generates important differences in dosimetric results. In contrast, the gamma analysis shows very good results (between 90% and 100% of passed points) in the analyzed treatments (one dwell and

  20. Modern head and neck brachytherapy: from radium towards intensity modulated interventional brachytherapy

    PubMed Central

    2014-01-01

    Intensity modulated brachytherapy (IMBT) is a modern development of classical interventional radiation therapy (brachytherapy), which allows the application of a high radiation dose sparing severe adverse events, thereby further improving the treatment outcome. Classical indications in head and neck (H&N) cancers are the face, the oral cavity, the naso- and oropharynx, the paranasal sinuses including base of skull, incomplete resections on important structures, and palliation. The application type can be curative, adjuvant or perioperative, as a boost to external beam radiation as well as without external beam radiation and with palliative intention. Due to the frequently used perioperative application method (intraoperative implantation of inactive applicators and postoperative performance of radiation), close interdisciplinary cooperation between surgical specialists (ENT-, dento-maxillary-facial-, neuro- and orbital surgeons), as well interventional radiotherapy (brachytherapy) experts are obligatory. Published results encourage the integration of IMBT into H&N therapy, thereby improving the prognosis and quality of life of patients. PMID:25834586

  1. 10 CFR 35.400 - Use of sources for manual brachytherapy.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Use of sources for manual brachytherapy. 35.400 Section 35.400 Energy NUCLEAR REGULATORY COMMISSION MEDICAL USE OF BYPRODUCT MATERIAL Manual Brachytherapy § 35.400 Use of sources for manual brachytherapy. A licensee shall use only brachytherapy sources...

  2. The evolution of brachytherapy treatment planning

    SciTech Connect

    Rivard, Mark J.; Venselaar, Jack L. M.; Beaulieu, Luc

    2009-06-15

    Brachytherapy is a mature treatment modality that has benefited from technological advances. Treatment planning has advanced from simple lookup tables to complex, computer-based dose-calculation algorithms. The current approach is based on the AAPM TG-43 formalism with recent advances in acquiring single-source dose distributions. However, this formalism has clinically relevant limitations for calculating patient dose. Dose-calculation algorithms are being developed based on Monte Carlo methods, collapsed cone, and solving the linear Boltzmann transport equation. In addition to improved dose-calculation tools, planning systems and brachytherapy treatment planning will account for material heterogeneities, scatter conditions, radiobiology, and image guidance. The AAPM, ESTRO, and other professional societies are working to coordinate clinical integration of these advancements. This Vision 20/20 article provides insight into these endeavors.

  3. Radiochromic dye film studies for brachytherapy applications.

    PubMed

    Martínez-Dávalos, A; Rodríguez-Villafuerte, M; Díaz-Perches, R; Arzamendi-Pérez, S

    2002-01-01

    Commercial radiochromic dye films have been used in recent years to quantify absorbed dose in several medical applications. In this study we present the characterisation of the GafChromic MD-55-2 dye film, a double sensitive layer film suitable for photon irradiation in brachytherapy applications. Dose measurements were carried out with a low dose rate 137Cs brachytherapy source, which produces very steep dose gradients in its vicinity, and therefore requires the capability of producing high spatial resolution isodose curves. Quantification of the dose rate in water per unit air kerma strength was obtained using a high-resolution transmission commercial scanner (Agfa DuoScan T1200 with the capability of digitising up to 600 x 1200 pixels per inch using 36 bits per pixel, together with optical density measurements. The Monte Carlo calculations and experimental measurements compared well in the 0-50 Gy dose interval used in this study. PMID:12382798

  4. Erectile Function Durability Following Permanent Prostate Brachytherapy

    SciTech Connect

    Taira, Al V.; Merrick, Gregory S.; Galbreath, Robert W.; Butler, Wayne M.; Wallner, Kent E.; Kurko, Brian S.; Anderson, Richard; Lief, Jonathan H.

    2009-11-01

    Purpose: To evaluate long-term changes in erectile function following prostate brachytherapy. Methods and Materials: This study included 226 patients with prostate cancer and preimplant erectile function assessed by the International Index of Erectile Function-6 (IIEF-6) who underwent brachytherapy in two prospective randomized trials between February 2001 and January 2003. Median follow-up was 6.4 years. Pre- and postbrachytherapy potency was defined as IIEF-6 >= 13 without pharmacologic or mechanical support. The relationship among clinical, treatment, and dosimetric parameters and erectile function was examined. Results: The 7-year actuarial rate of potency preservation was 55.6% with median postimplant IIEF of 22 in potent patients. Potent patients were statistically younger (p = 0.014), had a higher preimplant IIEF (p < 0.001), were less likely to be diabetic (p = 0.002), and were more likely to report nocturnal erections (p = 0.008). Potency preservation in men with baseline IIEF scores of 29-30, 24-28, 18-23, and 13-17 were 75.5% vs. 73.6%, 51.7% vs. 44.8%, 48.0% vs. 40.0%, and 23.5% vs. 23.5% in 2004 vs. 2008. In multivariate Cox regression analysis, preimplant IIEF, hypertension, diabetes, prostate size, and brachytherapy dose to proximal penis strongly predicted for potency preservation. Impact of proximal penile dose was most pronounced for men with IIEF of 18-23 and aged 60-69. A significant minority of men who developed postimplant impotence ultimately regained erectile function. Conclusion: Potency preservation and median IIEF scores following brachytherapy are durable. Thoughtful dose sparing of proximal penile structures and early penile rehabilitation may further improve these results.

  5. Brachytherapy needle deflection evaluation and correction

    SciTech Connect

    Wan Gang; Wei Zhouping; Gardi, Lori; Downey, Donal B.; Fenster, Aaron

    2005-04-01

    In prostate brachytherapy, an 18-gauge needle is used to implant radioactive seeds. This thin needle can be deflected from the preplanned trajectory in the prostate, potentially resulting in a suboptimum dose pattern and at times requiring repeated needle insertion to achieve optimal dosimetry. In this paper, we report on the evaluation of brachytherapy needle deflection and bending in test phantoms and two approaches to overcome the problem. First we tested the relationship between needle deflection and insertion depth as well as whether needle bending occurred. Targeting accuracy was tested by inserting a brachytherapy needle to target 16 points in chicken tissue phantoms. By implanting dummy seeds into chicken tissue phantoms under 3D ultrasound guidance, the overall accuracy of seed implantation was determined. We evaluated methods to overcome brachytherapy needle deflection with three different insertion methods: constant orientation, constant rotation, and orientation reversal at half of the insertion depth. Our results showed that needle deflection is linear with needle insertion depth, and that no noticeable bending occurs with needle insertion into the tissue and agar phantoms. A 3D principal component analysis was performed to obtain the population distribution of needle tip and seed position relative to the target positions. Our results showed that with the constant orientation insertion method, the mean needle targeting error was 2.8 mm and the mean seed implantation error was 2.9 mm. Using the constant rotation and orientation reversal at half insertion depth methods, the deflection error was reduced. The mean needle targeting errors were 0.8 and 1.2 mm for the constant rotation and orientation reversal methods, respectively, and the seed implantation errors were 0.9 and 1.5 mm for constant rotation insertion and orientation reversal methods, respectively.

  6. Rotating-shield brachytherapy for cervical cancer

    NASA Astrophysics Data System (ADS)

    Yang, Wenjun; Kim, Yusung; Wu, Xiaodong; Song, Qi; Liu, Yunlong; Bhatia, Sudershan K.; Sun, Wenqing; Flynn, Ryan T.

    2013-06-01

    In this treatment planning study, the potential benefits of a rotating shield brachytherapy (RSBT) technique based on a partially-shielded electronic brachytherapy source were assessed for treating cervical cancer. Conventional intracavitary brachytherapy (ICBT), intracavitary plus supplementary interstitial (IS+ICBT), and RSBT treatment plans for azimuthal emission angles of 180° (RSBT-180) and 45° (RSBT-45) were generated for five patients. For each patient, high-risk clinical target volume (HR-CTV) equivalent dose in 2 Gy fractions (EQD2) (α/β = 10 Gy) was escalated until bladder, rectum, or sigmoid colon tolerance EQD2 values were reached. External beam radiotherapy dose (1.8 Gy × 25) was accounted for, and brachytherapy was assumed to have been delivered in 5 fractions. IS+ICBT provided a greater HR-CTV D90 (minimum EQD2 to the hottest 90%) than ICBT. D90 was greater for RSBT-45 than IS+ICBT for all five patients, and greater for RSBT-180 than IS+ICBT for two patients. When the RSBT-45/180 plan with the lowest HR-CTV D90 that was greater than the D90 the ICBT or IS+ICBT plan was selected, the average (range) of D90 increases for RSBT over ICBT and IS+ICBT were 16.2 (6.3-27.2)and 8.5 (0.03-20.16) Gy, respectively. The average (range) treatment time increase per fraction of RSBT was 34.56 (3.68-70.41) min over ICBT and 34.59 (3.57-70.13) min over IS+ICBT. RSBT can increase D90 over ICBT and IS+ICBT without compromising organ-at-risk sparing. The D90 and treatment time improvements from RSBT depend on the patient and shield emission angle.

  7. Magnetite nanoparticles for nonradionuclide brachytherapy1

    PubMed Central

    Safronov, Victor; Sozontov, Evgeny; Polikarpov, Mikhail

    2015-01-01

    Magnetite nanoparticles possess several properties that can make them useful for targeted delivery of radiation to tumors for the purpose of brachytherapy. Such particles are biodegradable and magnetic and can emit secondary radiation when irradiated by an external source. In this work, the dose distribution around a magnetite particle of 10 nm diameter being irradiated by monochromatic X-rays with energies in the range 4–60 keV is calculated. PMID:26089761

  8. Design and optimization of a brachytherapy robot

    NASA Astrophysics Data System (ADS)

    Meltsner, Michael A.

    Trans-rectal ultrasound guided (TRUS) low dose rate (LDR) interstitial brachytherapy has become a popular procedure for the treatment of prostate cancer, the most common type of non-skin cancer among men. The current TRUS technique of LDR implantation may result in less than ideal coverage of the tumor with increased risk of negative response such as rectal toxicity and urinary retention. This technique is limited by the skill of the physician performing the implant, the accuracy of needle localization, and the inherent weaknesses of the procedure itself. The treatment may require 100 or more sources and 25 needles, compounding the inaccuracy of the needle localization procedure. A robot designed for prostate brachytherapy may increase the accuracy of needle placement while minimizing the effect of physician technique in the TRUS procedure. Furthermore, a robot may improve associated toxicities by utilizing angled insertions and freeing implantations from constraints applied by the 0.5 cm-spaced template used in the TRUS method. Within our group, Lin et al. have designed a new type of LDR source. The "directional" source is a seed designed to be partially shielded. Thus, a directional, or anisotropic, source does not emit radiation in all directions. The source can be oriented to irradiate cancerous tissues while sparing normal ones. This type of source necessitates a new, highly accurate method for localization in 6 degrees of freedom. A robot is the best way to accomplish this task accurately. The following presentation of work describes the invention and optimization of a new prostate brachytherapy robot that fulfills these goals. Furthermore, some research has been dedicated to the use of the robot to perform needle insertion tasks (brachytherapy, biopsy, RF ablation, etc.) in nearly any other soft tissue in the body. This can be accomplished with the robot combined with automatic, magnetic tracking.

  9. Myths and fallacies in permanent prostate brachytherapy

    SciTech Connect

    Butler, Wayne M.; Merrick, Gregory S

    2003-09-30

    Because there are competing modalities to treat early-stage prostate cancer, the constraints or deficiencies of one modality may be erroneously applied to others. Some valid concerns arising from surgery and external beam therapy, which have been falsely transferred to brachytherapy, are constraints based on patient age, clinical and pathological parameters, patient weight, and size of prostate. Although the constraints have a valid basis in one modality, knowledge of the origin and mechanism of the constraint has provided a means to circumvent or overcome it in brachytherapy. Failures as measured by biochemical no-evidence of disease (bNED) survival may be attributed to extracapsular disease extension. Such extension often expresses itself in surrogate parameters such as a high percentage of positive biopsies, perineural invasion, or the dominant pattern in Gleason score histology. Failures due to such factors may be prevented by implanting with consistent extracapsular dosimetric margins. Some presumed limitations on prostate brachytherapy originated from data on patients implanted in the first few years the procedure was being developed. Most of the urinary morbidity and a significant part of the decrease in sexual function observed may be avoided by controlling the dosimetry along the prostatic and membranous urethra and at the penile bulb.

  10. 10 CFR 35.432 - Calibration measurements of brachytherapy sources.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Calibration measurements of brachytherapy sources. 35.432... § 35.432 Calibration measurements of brachytherapy sources. (a) Before the first medical use of a... licensee making its own measurements as required in paragraph (a) of this section, the licensee may...

  11. Ultrasound use in gynecologic brachytherapy: Time to focus the beam.

    PubMed

    van Dyk, Sylvia; Schneider, Michal; Kondalsamy-Chennakesavan, Srinivas; Bernshaw, David; Narayan, Kailash

    2015-01-01

    There is wide disparity in the practice of brachytherapy for cervical cancer around the world. Although select well-resourced centers advocate use of MRI for all insertions, planar X-ray imaging remains the most commonly used imaging modality to assess intracavitary implants, particularly where the burden of cervical cancer is high. Incorporating soft tissue imaging into brachytherapy programs has been shown to improve the technical accuracy of implants, which in turn has led to improved local control and decreased toxicity. These improvements have a positive effect on the quality of life of patients undergoing brachytherapy for cervical cancer. Finding an accessible soft tissue imaging modality is essential to enable these improvements to be available to all patients. A modality that has good soft tissue imaging capabilities, is widely available, portable, and economical, is needed. Ultrasound fulfils these requirements and offers the potential of soft tissue image guidance to a much wider brachytherapy community. Although use of ultrasound is the standard of care in brachytherapy for prostate cancer, it only seems to have limited uptake in gynecologic brachytherapy. This article reviews the role of ultrasound in gynecologic brachytherapy and highlights the potential applications for use in brachytherapy for cervical cancer. PMID:25620161

  12. 10 CFR 35.432 - Calibration measurements of brachytherapy sources.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 1 2011-01-01 2011-01-01 false Calibration measurements of brachytherapy sources. 35.432 Section 35.432 Energy NUCLEAR REGULATORY COMMISSION MEDICAL USE OF BYPRODUCT MATERIAL Manual Brachytherapy... Association of Physicists in Medicine that are made in accordance with paragraph (a) of this section. (c)...

  13. 10 CFR 35.432 - Calibration measurements of brachytherapy sources.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 1 2012-01-01 2012-01-01 false Calibration measurements of brachytherapy sources. 35.432 Section 35.432 Energy NUCLEAR REGULATORY COMMISSION MEDICAL USE OF BYPRODUCT MATERIAL Manual Brachytherapy... Association of Physicists in Medicine that are made in accordance with paragraph (a) of this section. (c)...

  14. 10 CFR 35.432 - Calibration measurements of brachytherapy sources.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 1 2013-01-01 2013-01-01 false Calibration measurements of brachytherapy sources. 35.432 Section 35.432 Energy NUCLEAR REGULATORY COMMISSION MEDICAL USE OF BYPRODUCT MATERIAL Manual Brachytherapy... Association of Physicists in Medicine that are made in accordance with paragraph (a) of this section. (c)...

  15. 10 CFR 35.432 - Calibration measurements of brachytherapy sources.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 1 2014-01-01 2014-01-01 false Calibration measurements of brachytherapy sources. 35.432 Section 35.432 Energy NUCLEAR REGULATORY COMMISSION MEDICAL USE OF BYPRODUCT MATERIAL Manual Brachytherapy... Association of Physicists in Medicine that are made in accordance with paragraph (a) of this section. (c)...

  16. Directional interstitial brachytherapy from simulation to application

    NASA Astrophysics Data System (ADS)

    Lin, Liyong

    Organs at risk (OAR) are sometimes adjacent to or embedded in or overlap with the clinical target volume (CTV) to be treated. The purpose of this PhD study is to develop directionally low energy gamma-emitting interstitial brachytherapy sources. These sources can be applied between OAR to selectively reduce hot spots in the OARs and normal tissues. The reduction of dose over undesired regions can expand patient eligibility or reduce toxicities for the treatment by conventional interstitial brachytherapy. This study covers the development of a directional source from design optimization to construction of the first prototype source. The Monte Carlo code MCNP was used to simulate the radiation transport for the designs of directional sources. We have made a special construction kit to assemble radioactive and gold-shield components precisely into D-shaped titanium containers of the first directional source. Directional sources have a similar dose distribution as conventional sources on the treated side but greatly reduced dose on the shielded side, with a sharp dose gradient between them. A three-dimensional dose deposition kernel for the 125I directional source has been calculated. Treatment plans can use both directional and conventional 125I sources at the same source strength for low-dose-rate (LDR) implants to optimize the dose distributions. For prostate tumors, directional 125I LDR brachytherapy can potentially reduce genitourinary and gastrointestinal toxicities and improve potency preservation for low risk patients. The combination of better dose distribution of directional implants and better therapeutic ratio between tumor response and late reactions enables a novel temporary LDR treatment, as opposed to permanent or high-dose-rate (HDR) brachytherapy for the intermediate risk T2b and high risk T2c tumors. Supplemental external-beam treatments can be shortened with a better brachytherapy boost for T3 tumors. In conclusion, we have successfully finished the

  17. Penile brachytherapy: Results for 49 patients

    SciTech Connect

    Crook, Juanita M. . E-mail: juanita.crook@rmp.uhn.on.ca; Jezioranski, John; Grimard, Laval; Esche, Bernd; Pond, G.

    2005-06-01

    Purpose: To report results for 49 men with squamous cell carcinoma (SCC) of the penis treated with primary penile interstitial brachytherapy at one of two institutions: the Ottawa Regional Cancer Center, Ottawa, and the Princess Margaret Hospital, Toronto, Ontario, Canada. Methods and Materials: From September 1989 to September 2003, 49 men (mean age, 58 years; range, 22-93 years) had brachytherapy for penile SCC. Fifty-one percent of tumors were T1, 33% T2, and 8% T3; 4% were in situ and 4% Tx. Grade was well differentiated in 31%, moderate in 45%, and poor in 2%; grade was unspecified for 20%. One tumor was verrucous. All tumors in Toronto had pulsed dose rate (PDR) brachytherapy (n = 23), whereas those in Ottawa had either Iridium wire (n 22) or seeds (n = 4). Four patients had a single plane implant with a plastic tube technique, and all others had a volume implant with predrilled acrylic templates and two or three parallel planes of needles (median, six needles). Mean needle spacing was 13.5 mm (range, 10-18 mm), mean dose rate was 65 cGy/h (range, 33-160 cGy/h), and mean duration was 98.8 h (range, 36-188 h). Dose rates for PDR brachytherapy were 50-61.2 cGy/h, with no correction in total dose, which was 60 Gy in all cases. Results: Median follow-up was 33.4 months (range, 4-140 months). At 5 years, actuarial overall survival was 78.3% and cause-specific survival 90.0%. Four men died of penile cancer, and 6 died of other causes with no evidence of recurrence. The cumulative incidence rate for never having experienced any type of failure at 5 years was 64.4% and for local failure was 85.3%. All 5 patients with local failure were successfully salvaged by surgery; 2 other men required penectomy for necrosis. The soft tissue necrosis rate was 16% and the urethral stenosis rate 12%. Of 8 men with regional failure, 5 were salvaged by lymph node dissection with or without external radiation. All 4 men with distant failure died of disease. Of 49 men, 42 had an intact

  18. Intravascular Large B-Cell Lymphoma: A Difficult Diagnostic Challenge.

    PubMed

    Khan, Maria S; McCubbin, Mark; Nand, Sucha

    2014-01-01

    Case Presentation. A 69-year-old Hispanic male, with a past history of diabetes and coronary disease, was admitted for fever, diarrhea, and confusion of 4 weeks duration. Physical examination showed a disoriented patient with multiple ecchymoses, possible ascites, and bilateral scrotal swelling. Hemoglobin was 6.7, prothrombin time (PT) 21.4 seconds with international normalized ratio 2.1, partial thromboplastin time (PTT) 55.6 seconds, fibrin split 10 µg/L, and lactate dehydrogenase (LDH) 1231 IU/L. Except for a positive DNA test for Epstein-Barr virus (EBV) infection, extensive diagnostic workup for infections, malignancy, or a neurological cause was negative. Mixing studies revealed a nonspecific inhibitor of PT and PTT but Factor VIII levels were normal. The patient was empirically treated with antibiotics but developed hypotension and died on day 27 of admission. At autopsy, patient was found to have intravascular diffuse large B-cell lymphoma involving skin, testes, lung, and muscles. The malignant cells were positive for CD20, CD791, Mum-1, and Pax-5 and negative for CD3, CD5, CD10, CD30, and Bcl-6. The malignant cells were 100% positive for Ki-67. Discussion. Intravascular large cell B-cell lymphoma (IVLBCL) is rare form of diffuse large B-cell lymphoma and tends to proliferate within small blood vessels, particularly capillaries and postcapillary venules. The cause of its affinity for vascular bed remains unknown. In many reports, IVLBCL was associated with HIV, HHV8, and EBV infections. The fact that our case showed evidence of EBV infection lends support to the association of this diagnosis to viral illness. The available literature on this subject is scant, and in many cases, the diagnosis was made only at autopsy. The typical presentation of this disorder is with B symptoms, progressive neurologic deficits, and skin findings. Bone marrow, spleen, and liver are involved in a minority of patients. Nearly all patients have elevated LDH, and about 65% are

  19. Three-Dimensional Imaging in Gynecologic Brachytherapy: A Survey of the American Brachytherapy Society

    SciTech Connect

    Viswanathan, Akila N.; Erickson, Beth A.

    2010-01-15

    Purpose: To determine current practice patterns with regard to three-dimensional (3D) imaging for gynecologic brachytherapy among American Brachytherapy Society (ABS) members. Methods and Materials: Registered physician members of the ABS received a 19-item survey by e-mail in August 2007. This report excludes physicians not performing brachytherapy for cervical cancer. Results: Of the 256 surveys sent, we report results for 133 respondents who perform one or more implantations per year for locally advanced cervical cancer. Ultrasound aids 56% of physicians with applicator insertion. After insertion, 70% of physicians routinely obtain a computed tomography (CT) scan. The majority (55%) use CT rather than X-ray films (43%) or magnetic resonance imaging (MRI; 2%) for dose specification to the cervix. However, 76% prescribe to Point A alone instead of using a 3D-derived tumor volume (14%), both Point A and tumor volume (7%), or mg/h (3%). Those using 3D imaging routinely contour the bladder and rectum (94%), sigmoid (45%), small bowel (38%), and/or urethra (8%) and calculate normal tissue dose-volume histogram (DVH) analysis parameters including the D2cc (49%), D1cc (36%), D0.1cc (19%), and/or D5cc (19%). Respondents most commonly modify the treatment plan based on International Commission on Radiation Units bladder and/or rectal point dose values (53%) compared with DVH values (45%) or both (2%). Conclusions: More ABS physician members use CT postimplantation imaging than plain films for visualizing the gynecologic brachytherapy apparatus. However, the majority prescribe to Point A rather than using 3D image based dosimetry. Use of 3D image-based treatment planning for gynecologic brachytherapy has the potential for significant growth in the United States.

  20. Disseminated intravascular coagulation involving the brain: a topographical study.

    PubMed

    Fan, K J; Scott-Cora, J W

    1982-05-01

    Histopathological study on 723 brains from routine necropsies was performed. Ten brains (1.38 percent) were found to have histological lesions of disseminated intravascular coagulation (DIC) with multiple fresh fibrin and/or platelet thrombi in the cerebral microcirculation. Among them, premortem diagnosis was made in only one case, and only two cases also showed evidence of visceral involvement. Microthrombi were found most frequently in the cerebral cortex and hypothalamic region and in the cerebral white matter, brain stem, and cerebellum, in descending order. Neurological symptoms and signs, including lethargy, coma and seizure, were detected in all cases. The abnormal body temperature and/or urinary output observed in most patients appeared to be related to the frequent hypothalamic involvement by DIC. The exclusive or predominant involvement of the brain by multiple microthrombi may be considered as a localized form of DIC. It is probably related to cerebral ischemia since severe acute neuronal ischemic changes also were noted in most brains. PMID:7120479

  1. Heartbeat OCT: in vivo intravascular megahertz-optical coherence tomography.

    PubMed

    Wang, Tianshi; Pfeiffer, Tom; Regar, Evelyn; Wieser, Wolfgang; van Beusekom, Heleen; Lancee, Charles T; Springeling, Geert; Krabbendam, Ilona; van der Steen, Antonius F W; Huber, Robert; van Soest, Gijs

    2015-12-01

    Cardiac motion artifacts, non-uniform rotational distortion and undersampling affect the image quality and the diagnostic impact of intravascular optical coherence tomography (IV-OCT). In this study we demonstrate how these limitations of IV-OCT can be addressed by using an imaging system that we called "Heartbeat OCT", combining a fast Fourier Domain Mode Locked laser, fast pullback, and a micromotor actuated catheter, designed to examine a coronary vessel in less than one cardiac cycle. We acquired in vivo data sets of two coronary arteries in a porcine heart with both Heartbeat OCT, working at 2.88 MHz A-line rate, 4000 frames/s and 100 mm/s pullback speed, and with a commercial system. The in vivo results show that Heartbeat OCT provides faithfully rendered, motion-artifact free, fully sampled vessel wall architecture, unlike the conventional IV-OCT data. We present the Heartbeat OCT system in full technical detail and discuss the steps needed for clinical translation of the technology. PMID:26713214

  2. Surfactant effects on the dynamics of an intravascular bubble

    NASA Astrophysics Data System (ADS)

    Zhang, Jie; Eckmann, David; Ayyaswamy, P. S.

    2004-11-01

    The effects of a surfactant on the dynamics of gas bubble behavior in the arteriolar vasculature are numerically investigated. The equations for momentum in the bulk fluid (blood) and the bubble, and the convection-diffusion equations for mass transport both in the bulk fluid and on the gas-liquid interface are numerically solved using a front tracking method. Both soluble and insoluble surfactants are considered. The adsorption/desorption dynamics of the soluble surfactant is accurately resolved. For a nearly occluded bubble, a faster rate of depletion of the surfactant from the region adjacent to the wall of the vessel is observed. In several cases studied here, the bulk medium is treated as non-Newtonian (power law, Casson), although the majority of cases treat blood as Newtonian. Results show that the adsorbed surfactant serves to prevent blood proteins and other macromolecules from occupying the interface. This prevents clotting or adhesion of the bubble to the vessel wall. The results obtained have significance in the study of intravascular gas embolism. Supported by NIH R01 HL67986

  3. Quantitative recovery of pulmonary intravascular macrophages from sheep lungs.

    PubMed

    Rogers, R A; Tasat, D R; Warner, A E; Brain, J D

    1994-12-01

    Pulmonary intravascular macrophages (PIMs) adhere to the endothelium of lung capillaries and sequester circulating particles and pathogens from the blood. Iron oxide (gamma Fe2O3) 5 mg/kg, administered intravenously, specifically labeled PIMs in situ within the living sheep. Attempts to isolate gamma Fe2O3-labeled PIMs using vascular perfusion (VP) procedures yielded few cells. To improve recovery of PIMs, a proteolytic lung digestion (PLD) procedure was developed. Following PLD, gamma Fe2O3-containing PIMs were recovered by magnets and the amount of gamma Fe2O3 present measured by fluxgate magnetometry. Proteolytic lung digestion recovered 34% of the total gamma Fe2O3 in lung samples and yielded 2 x 10(5) PIMs/g lung with 95% viability. In contrast, VP recovered only 3% of the total gamma Fe2O3 in the lung; furthermore, less than 2% of the recovered gamma Fe2O3 was cell associated. Proteolytic lung digestion followed by magnetic separation is an effective way to recover viable sheep PIMs for in vitro study. PMID:7996045

  4. [Massive intravascular hemolysis secondary to sepsis due to Clostridium perfringens].

    PubMed

    Pita Zapata, E; Sarmiento Penide, A; Bautista Guillén, A; González Cabano, M; Agulla Budiño, J A; Camba Rodríguez, M A

    2010-05-01

    Massive hemolysis secondary to sepsis caused by Clostridium perfringens is a rare entity but appears fairly often in the literature. In nearly all published reports, the clinical course is rapid and fatal. We describe the case of a 75-year-old woman with diabetes who was admitted with symptoms consistent with acute cholecystitis. Deteriorating hemodynamics and laboratory findings were consistent with intravascular hemolysis, coagulation disorder, and renal failure. Gram-positive bacilli of the Clostridium species were detected in blood along with worsening indicators of hemolysis. In spite of antibiotic and surgical treatment, hemodynamic support and infusion of blood products, the patient continued to decline and died in the postoperative recovery unit 14 hours after admission. Mortality ranges from 70% to 100% in sepsis due to Clostridium perfringens, and risk of death is greater if massive hemolysis is present, as in the case we report. Only a high degree of clinical suspicion leading to early diagnosis and treatment can improve the prognosis. This bacterium should therefore be considered whenever severe sepsis and hemolysis coincide. PMID:20527348

  5. Strain imaging with intravascular ultrasound: An in vivo study

    NASA Astrophysics Data System (ADS)

    Perrey, Christian; Ermert, Helmut; Bojara, Waldemar; Holt, Stephan; Lindstaedt, Michael

    2001-05-01

    The evaluation of mechanical properties of coronary plaques is of high interest for the assessment of coronary diseases. Intravascular ultrasound (IVUS) can be used to visualize strain in coronary tissue. In this study, strain imaging is performed using an IVUS system with a 40-MHz rotating single-element transducer. Radio frequency (rf) data are acquired during in vivo examinations and sampled at 100 MHz. Image frames are stored consecutively during 3 s at a frame rate of 30/s. Data are recorded at different levels of tissue compression. The required pressure difference is caused by natural pulsatile blood flow. The strain imaging algorithm estimates radial strain from rf data based on frame-to-frame correlation. Rotating transducers often show nonuniform rotational distortion (NURD), which leads to misaligned echo lines in consecutive frames. This results in lateral motion artifacts and causes decorrelation. This effect is reduced by lateral motion correction based on block-matching algorithms. Results show that strain imaging can successfully be performed in vivo with data acquired predominantly in diastole. Different coronary tissue regions can be identified by local strain variations. If NURD is present, strain image quality is degraded. In some cases NURD is reduced by repositioning the transducer.

  6. Sensor materials for an intravascular fiber optic nitric oxide sensor

    NASA Astrophysics Data System (ADS)

    Soller, Babs R.; Parikh, Bhairavi R.; Stahl, Russell F.

    1996-04-01

    Nitric oxide (NO) is an important regulatory molecule in physiological processes including neurotransmission and the control of blood pressure. It is produced in excess during septic shock, the profound hypotensive state which accompanies severe infections. In-vivo measurement of NO would enhance the understanding of its varied biological roles. Our goal is the development of an intravascular fiber-optic sensor for the continuous measurement of NO. This study evaluated nitric oxide sensitive compounds as potential sensing materials in the presence and absence of oxygen. Using absorption spectroscopy we studied both the Fe II and Fe III forms of three biologically active hemes known to rapidly react with NO: hemoglobin, myoglobin, and cytochrome-c. The Fe II forms of hemoglobin and myoglobin and the Fe III form of cytochrome-c were found to have the highest sensitivity to NO. Cytochrome c (Fe III) is selective for NO even at high oxygen levels, while myoglobin is selective only under normal oxygen levels. NO concentrations as low as 1 (mu) M can be detected with our fiber-optic spectrometer using cytochrome c, and as low as 300 nM using myoglobin. Either of these materials would be adequate to monitor the increase in nitric oxide production during the onset of septic shock.

  7. Heartbeat OCT: in vivo intravascular megahertz-optical coherence tomography

    PubMed Central

    Wang, Tianshi; Pfeiffer, Tom; Regar, Evelyn; Wieser, Wolfgang; van Beusekom, Heleen; Lancee, Charles T.; Springeling, Geert; Krabbendam, Ilona; van der Steen, Antonius F.W.; Huber, Robert; van Soest, Gijs

    2015-01-01

    Cardiac motion artifacts, non-uniform rotational distortion and undersampling affect the image quality and the diagnostic impact of intravascular optical coherence tomography (IV-OCT). In this study we demonstrate how these limitations of IV-OCT can be addressed by using an imaging system that we called “Heartbeat OCT”, combining a fast Fourier Domain Mode Locked laser, fast pullback, and a micromotor actuated catheter, designed to examine a coronary vessel in less than one cardiac cycle. We acquired in vivo data sets of two coronary arteries in a porcine heart with both Heartbeat OCT, working at 2.88 MHz A-line rate, 4000 frames/s and 100 mm/s pullback speed, and with a commercial system. The in vivo results show that Heartbeat OCT provides faithfully rendered, motion-artifact free, fully sampled vessel wall architecture, unlike the conventional IV-OCT data. We present the Heartbeat OCT system in full technical detail and discuss the steps needed for clinical translation of the technology. PMID:26713214

  8. Mechanical properties and imaging characteristics of remanufactured intravascular ultrasound catheters.

    PubMed

    Hoffmann, R; Haager, P; Mintz, G; Klues, H

    2000-02-01

    Intravascular ultrasound (IVUS) as a routine device in interventional cardiology is handicapped by its high price. 19 factory-made, 'remanufactured' IVUS catheters which consist of sterilized, used phased-array IVUS transducers inserted into a new catheter shaft were compared with 23 new IVUS catheters. 3 mechanical and 4 imaging characteristics were assessed on a 5 point scale (1 = unacceptable, 5 = excellent). Mechanical as well as imaging properties of 'remanufactured' IVUS catheter were comparable to new catheters with excellent ratings for each of the evaluated characteristics in 38 to 94% of 'remanufactured' catheters and 50 to 96% of new catheters. The initial failure rate for 'remanufactured' IVUS catheters was 31.6% vs. 4.3% for new catheters (P < 0.05). Overall failure rate was 47.3% for "remanufactured" catheters vs. 8.7% for new catheters (P < 0.05). The failure was due to an electronic connecting problem occurring during mechanical stress to the IVUS catheter. In conclusion, 'remanufactured' IVUS catheters offer mechanical and imaging characteristics which are comparable to new catheters. Improvements in the 'remanufacturing' process to resolve the high rate of electronic connecting problems may make this a promising approach to substantially lower the price of IVUS catheters. PMID:10832621

  9. Light intensity matching between different intravascular optical coherence tomography systems

    NASA Astrophysics Data System (ADS)

    Liu, Shengnan; Eggermont, Jeroen; Nakatani, Shimpei; Lelieveldt, Boudewijn P. F.; Dijkstra, Jouke

    2016-02-01

    Currently two commercial intravascular optical coherence tomography (IVOCT) systems are available: Illumien Optis from St. Jude Medical (SJM) and Lunawave from Terumo. Both systems store the light intensity data in a raw vendor specific polar format. However, whereas SJM uses 16-bits per pixel Terumo uses 8-bits meaning the intensity values are in different ranges. This complicates quantitative light intensity based analysis when comparing results based on data from both systems. Therefore, this work aims to find an intensity transformation function from Terumo's 8-bit OFDI data to SJM's 16-bit range. The data consists of 8 pullbacks, 4 acquired with each system in the same arteries of 2 different patents pre- and post-stenting implantation. A total of 133 matching sections without stent struts from the two sets of pullbacks were identified based on landmarks such as side-branches and calcified regions. Since the main region of interest in the image is the tissue region only the pixels within 2mm behind the lumen border are used. In order to match the SJM data range, the Terumo data was rescaled and cumulative distribution functions (CDF) were calculated based on the histogram distributions. Comparing these CDFs, the transformation function can be determined. Application of this transformation function not only improves the visual similarity of matching slices it can also be used for further quantitative analysis.

  10. Disseminated intravascular coagulation in cattle with abomasal displacement.

    PubMed

    Irmak, K; Turgut, K

    2005-01-01

    The purpose of the study was to evaluate haemostatic function in cattle with abomasal displacement (AD) and to reflect the occurrence of disseminated intravascular coagulation (DIC). Ten adult cattle with left displacement of abomasum (LDA) (group I), 10 adult cattle with right displacement of abomasum with volvulus (RDA) (group II) and 10 clinically healthy adult cattle (control group) were used as material. Numbers of platelets (PLT) and coagulation tests (activated partial thromboplastin time (APTT), prothrombin time (PT), thrombin time (TT), serum fibrin/fibrinogen degradation products (FDPs), fibrinogen) were measured before the surgical treatment of cattle with LDA and RDA. APTT was prolonged only in group II compared with the control and group I (p<0.05). However, when the individual values of coagulation profiles of each cow were evaluated, two cattle in group I and three cattle in group II had at least three abnormal coagulation profiles, which reflect the occurrence of DIC. These cattle died after surgical treatment. The two cattle with LDA had abnormal APTT, FDPs and PLT values; three cattle with RDA had abnormal APTT, PT, TT, FDPs and PLT values. APTT (5 cases), FDPs (5 cases) and thrombocytopenia (5 cases) were the three most common abnormal tests on coagulation profile in the cattle with LDA and RDA. The results of the study indicate that cattle with AD had a spectrum of haemostatic dysfunction and that DIC was a significant risk factor for mortality. PMID:15727292

  11. High-resolution gel dosimetry of a HDR brachytherapy source using normoxic polymer gel dosimeters: Preliminary study

    NASA Astrophysics Data System (ADS)

    Hurley, C.; McLucas, C.; Pedrazzini, G.; Baldock, C.

    2006-09-01

    Polymer gel dosimetry has been shown to be an effective tool in the analysis of radiotherapy treatments in cancer therapy, being used to map the dose distribution around an irradiation pattern of a polymer gel dosimeter. Combined with high-resolution magnetic resonance imaging (MRI), polymer gel dosimetry can be an effective dosimetry tool to map dose distributions with high spatial resolution (˜100 μm). Previously polyacrylamide polymer gel dosimetry required a strict hypoxic environment to protect the gel from oxygen infiltration as oxygen inhibits the polymerization reaction used to correlate to absorbed dose. However, with the advent of normoxic polymer gels, a strict hypoxic environment is not required. Normoxic polymer gel dosimeters can be manufactured under normal atmospheric conditions. This study assessed the use of a MAGIC normoxic polymer gel dosimeter to accurately map the dose distribution of a single-line irradiation and a point source irradiation from a brachytherapy radiation source administered through a nylon catheter inserted into the gel dosimeter. The phantoms were irradiated to a dose of 10 Gy at 2 mm from the source center and imaged using high-resolution MRI with an in-plane pixel size of 0.1055 mm/pixel. Good agreement was found between the dose points predicted by the computer treatment-planning system and the measured normalized dose profiles in the gel dosimeter. The use of normoxic polymer gel dosimeters with high-resolution MRI evaluation shows promise as an effective tool in applications requiring accurate dose distributions in high resolution, such as intravascular brachytherapy.

  12. Recent developments and best practice in brachytherapy treatment planning

    PubMed Central

    2014-01-01

    Brachytherapy has evolved over many decades, but more recently, there have been significant changes in the way that brachytherapy is used for different treatment sites. This has been due to the development of new, technologically advanced computer planning systems and treatment delivery techniques. Modern, three-dimensional (3D) imaging modalities have been incorporated into treatment planning methods, allowing full 3D dose distributions to be computed. Treatment techniques involving online planning have emerged, allowing dose distributions to be calculated and updated in real time based on the actual clinical situation. In the case of early stage breast cancer treatment, for example, electronic brachytherapy treatment techniques are being used in which the radiation dose is delivered during the same procedure as the surgery. There have also been significant advances in treatment applicator design, which allow the use of modern 3D imaging techniques for planning, and manufacturers have begun to implement new dose calculation algorithms that will correct for applicator shielding and tissue inhomogeneities. This article aims to review the recent developments and best practice in brachytherapy techniques and treatments. It will look at how imaging developments have been incorporated into current brachytherapy treatment and how these developments have played an integral role in the modern brachytherapy era. The planning requirements for different treatments sites are reviewed as well as the future developments of brachytherapy in radiobiology and treatment planning dose calculation. PMID:24734939

  13. The dosimetry of brachytherapy-induced erectile dysfunction

    SciTech Connect

    Merrick, Gregory S.; Butler, Wayne M

    2003-12-31

    There is emerging evidence that brachytherapy-induced erectile dysfunction (ED) is technique-related and may be minimized by careful attention to source placement. Herein, we review the relationship between radiation doses to the prostate gland/surrounding structures and the development of brachytherapy-induced ED. The permanent prostate brachytherapy literature was reviewed using MEDLINE searches to ensure completeness. Although the site-specific structure associated with brachytherapy-induced ED remains unknown, there is an increasing body of data implicating the proximal penis. With day 0 CT-based dosimetry, the dose to 50% (D{sub 50}) and 25% (D{sub 25}) of the bulb of the penis should be maintained below 40% and 60% mPD, respectively, while the crura D{sub 50} should be maintained below 28% mPD to maximize post-brachytherapy potency. To date, there is no data to suggest that either radiation doses to the neurovascular bundles or choice of isotope is associated with brachytherapy-induced ED, while conflicting data has been reported regarding radiation dose to the prostate and the use of supplemental external beam radiation therapy. Although the etiology of brachytherapy-induced ED is likely multifactorial, the available data supports the proximal penis as an important site-specific structure. Refinements in implant technique, including preplanning and intraoperative seed placement, will result in lower radiation doses to the proximal penis with potential improvement in potency preservation.

  14. Multihelix rotating shield brachytherapy for cervical cancer

    SciTech Connect

    Dadkhah, Hossein; Kim, Yusung; Flynn, Ryan T.; Wu, Xiaodong

    2015-11-15

    Purpose: To present a novel brachytherapy technique, called multihelix rotating shield brachytherapy (H-RSBT), for the precise angular and linear positioning of a partial shield in a curved applicator. H-RSBT mechanically enables the dose delivery using only linear translational motion of the radiation source/shield combination. The previously proposed approach of serial rotating shield brachytherapy (S-RSBT), in which the partial shield is rotated to several angular positions at each source dwell position [W. Yang et al., “Rotating-shield brachytherapy for cervical cancer,” Phys. Med. Biol. 58, 3931–3941 (2013)], is mechanically challenging to implement in a curved applicator, and H-RSBT is proposed as a feasible solution. Methods: A Henschke-type applicator, designed for an electronic brachytherapy source (Xoft Axxent™) and a 0.5 mm thick tungsten partial shield with 180° or 45° azimuthal emission angles and 116° asymmetric zenith angle, is proposed. The interior wall of the applicator contains six evenly spaced helical keyways that rigidly define the emission direction of the partial radiation shield as a function of depth in the applicator. The shield contains three uniformly distributed protruding keys on its exterior wall and is attached to the source such that it rotates freely, thus longitudinal translational motion of the source is transferred to rotational motion of the shield. S-RSBT and H-RSBT treatment plans with 180° and 45° azimuthal emission angles were generated for five cervical cancer patients with a diverse range of high-risk target volume (HR-CTV) shapes and applicator positions. For each patient, the total number of emission angles was held nearly constant for S-RSBT and H-RSBT by using dwell positions separated by 5 and 1.7 mm, respectively, and emission directions separated by 22.5° and 60°, respectively. Treatment delivery time and tumor coverage (D{sub 90} of HR-CTV) were the two metrics used as the basis for evaluation and

  15. A Novel MRI Marker for Prostate Brachytherapy

    SciTech Connect

    Frank, Steven J. Stafford, R. Jason; Bankson, James A.; Li Chun; Swanson, David A.; Kudchadker, Rajat J.; Martirosyan, Karen S.

    2008-05-01

    Purpose: Magnetic resonance imaging (MRI) is the optimal imaging modality for the prostate and surrounding critical organ structures. However, on MRI, the titanium radioactive seeds used for brachytherapy appear as black holes (negative contrast) and cannot be accurately localized. We sought to develop an encapsulated contrast agent marker (ECAM) with high-signal intensity on MRI to permit accurate localization of radioactive seeds with MRI during and after prostate brachytherapy. Methods and Materials: We investigated several agents with paramagnetic and superparamagnetic properties. The agents were injected into titanium, acrylic, and glass seeds, which were linked together in various combinations and imaged with MRI. The agent with the greatest T1-weighted signal was tested further in a canine prostate and agarose phantom. Studies were performed on a 1.5-T clinical MRI scanner. Results: The cobalt-chloride complex contrast (C4) agent with stoichiometry (CoCl{sub 2}){sub 0.8}(C{sub 2}H{sub 5}NO{sub 2}){sub 0.2} had the greatest T1-weighted signal (positive contrast) with a relaxivity ratio >1 (r{sub 2}/r{sub 1} = 1.21 {+-} 0.29). Acrylic-titanium and glass-titanium seed strands were clearly visualized with the encapsulated contrast agent marker. Conclusion: We have developed a novel ECAM that permits positive identification of the radioactive seeds used for prostate brachytherapy on MRI. Preclinical in vitro phantom studies and in vivo canine studies are needed to further optimize MRI sequencing techniques to facilitate MRI-based dosimetry.

  16. Brachytherapy in the treatment of cervical cancer: a review

    PubMed Central

    Banerjee, Robyn; Kamrava, Mitchell

    2014-01-01

    Dramatic advances have been made in brachytherapy for cervical cancer. Radiation treatment planning has evolved from two-dimensional to three-dimensional, incorporating magnetic resonance imaging and/or computed tomography into the treatment paradigm. This allows for better delineation and coverage of the tumor, as well as improved avoidance of surrounding organs. Consequently, advanced brachytherapy can achieve very high rates of local control with a reduction in morbidity, compared with historic approaches. This review provides an overview of state-of-the-art gynecologic brachytherapy, with a focus on recent advances and their implications for women with cervical cancer. PMID:24920937

  17. Image-guided high-dose-rate brachytherapy in inoperable endometrial cancer

    PubMed Central

    Petsuksiri, J; Chansilpa, Y; Hoskin, P J

    2014-01-01

    Inoperable endometrial cancer may be treated with curative aim using radical radiotherapy alone. The radiation techniques are external beam radiotherapy (EBRT) alone, EBRT plus brachytherapy and brachytherapy alone. Recently, high-dose-rate brachytherapy has been used instead of low-dose-rate brachytherapy. Image-guided brachytherapy enables sufficient coverage of tumour and reduction of dose to the organs at risk, thus increasing the therapeutic ratio of treatment. Local control rates with three-dimensional brachytherapy appear better than with conventional techniques (about 90–100% and 70–90%, respectively). PMID:24807067

  18. Imminent cardiac risk assessment via optical intravascular biochemical analysis.

    PubMed

    Wetzel, David L; Wetzel, Louis H; Wetzel, Mark D; Lodder, Robert A

    2009-06-01

    Heart disease is by far the biggest killer in the United States, and type II diabetes, which affects 8% of the U.S. population, is on the rise. In many cases, the acute coronary syndrome and/or sudden cardiac death occurs without warning. Atherosclerosis has known behavioral, genetic and dietary risk factors. However, our laboratory studies with animal models and human post-mortem tissue using FT-IR microspectroscopy reveal the chemical microstructure within arteries and in the arterial walls themselves. These include spectra obtained from the aortas of ApoE-/- knockout mice on sucrose and normal diets showing lipid deposition in the former case. Also pre-aneurysm chemical images of knockout mouse aorta walls, and spectra of plaque excised from a living human patient are shown for comparison. In keeping with the theme of the SPEC 2008 conference 'Spectroscopic Diagnosis of Disease...' this paper describes the background and potential value of a new catheter-based system to provide in vivo biochemical analysis of plaque in human coronary arteries. We report the following: (1) results of FT-IR microspectroscopy on animal models of vascular disease to illustrate the localized chemical distinctions between pathological and normal tissue, (2) current diagnostic techniques used for risk assessment of patients with potential unstable coronary syndromes, and (3) the advantages and limitations of each of these techniques illustrated with patent care histories, related in the first person, by the physician coauthors. Note that the physician comments clarify the contribution of each diagnostic technique to imminent cardiac risk assessment in a clinical setting, leading to the appreciation of what localized intravascular chemical analysis can contribute as an add-on diagnostic tool. The quality of medical imaging has improved dramatically since the turn of the century. Among clinical non-invasive diagnostic tools, laboratory tests of body fluids, EKG, and physical examination

  19. Imminent Cardiac Risk Assessment via Optical Intravascular Biochemical Analysis

    SciTech Connect

    Wetzel, D.; Wetzel, L; Wetzel, M; Lodder, R

    2009-01-01

    Heart disease is by far the biggest killer in the United States, and type II diabetes, which affects 8% of the U.S. population, is on the rise. In many cases, the acute coronary syndrome and/or sudden cardiac death occurs without warning. Atherosclerosis has known behavioral, genetic and dietary risk factors. However, our laboratory studies with animal models and human post-mortem tissue using FT-IR microspectroscopy reveal the chemical microstructure within arteries and in the arterial walls themselves. These include spectra obtained from the aortas of ApoE-/- knockout mice on sucrose and normal diets showing lipid deposition in the former case. Also pre-aneurysm chemical images of knockout mouse aorta walls, and spectra of plaque excised from a living human patient are shown for comparison. In keeping with the theme of the SPEC 2008 conference Spectroscopic Diagnosis of Disease this paper describes the background and potential value of a new catheter-based system to provide in vivo biochemical analysis of plaque in human coronary arteries. We report the following: (1) results of FT-IR microspectroscopy on animal models of vascular disease to illustrate the localized chemical distinctions between pathological and normal tissue, (2) current diagnostic techniques used for risk assessment of patients with potential unstable coronary syndromes, and (3) the advantages and limitations of each of these techniques illustrated with patent care histories, related in the first person, by the physician coauthors. Note that the physician comments clarify the contribution of each diagnostic technique to imminent cardiac risk assessment in a clinical setting, leading to the appreciation of what localized intravascular chemical analysis can contribute as an add-on diagnostic tool. The quality of medical imaging has improved dramatically since the turn of the century. Among clinical non-invasive diagnostic tools, laboratory tests of body fluids, EKG, and physical examination are

  20. HHV-8 and EBV-positive intravascular lymphoma: an unusual presentation of extracavitary primary effusion lymphoma

    PubMed Central

    Crane, Genevieve M.; Ambinder, Richard F.; Shirley, Courtney M.; Fishman, Elliot K.; Kasamon, Yvette L.; Taube, Janis M.; Borowitz, Michael J.; Duffield, Amy S.

    2014-01-01

    Intravascular lymphomas are rare and aggressive hematolymphoid tumors. Here we describe a human herpesvirus type-8/Kaposi sarcoma-associated herpesvirus (HHV-8/KSHV) and Epstein-Barr virus (EBV) positive intravascular lymphoma. The patient was a 59 year-old HIV-positive man who presented with diarrhea, abdominal pain, fevers, night sweats, and weight loss. Radiographic studies of the abdomen and pelvis revealed numerous subcentimeter nodules within the subcutaneous fat that lacked connection to the skin. An excisional biopsy demonstrated large atypical cells within vessels in the deep subcutaneous fat, and many of the vessels contained extensive organizing thrombi. The atypical cells lacked strong expression of most B-cell markers but were positive for MUM-1 and showed partial expression of several T-cell markers. An immunohistochemical stain for HHV-8 and an in situ hybridization for EBV were both positive in the neoplastic cells. The disease had a rapidly progressive and fatal course. This lymphoma appears to represent an entirely intravascular form of primary effusion lymphoma, and highlights the propensity for HHV-8 and EBV-positive lymphoid neoplasms to show aberrant expression of T-cell markers, illustrates the utility of skin biopsies for the diagnosis of intravascular lymphoma, and suggests that biopsies to evaluate for intravascular lymphoma should be relatively deep and include subcutaneous fat. PMID:24525514

  1. Percutaneous Retrieval of Misplaced Intravascular Foreign Objects with the Dormia Basket: An Effective Solution

    SciTech Connect

    Sheth, Rahul Someshwar, Vimal; Warawdekar, Gireesh

    2007-02-15

    Purpose. We report our experience of the retrieval of intravascular foreign body objects by the percutaneous use of the Gemini Dormia basket. Methods. Over a period of 2 years we attempted the percutaneous removal of intravascular foreign bodies in 26 patients. Twenty-six foreign bodies were removed: 8 intravascular stents, 4 embolization coils, 9 guidewires, 1 pacemaker lead, and 4 catheter fragments. The percutaneous retrieval was achieved with a combination of guide catheters and the Gemini Dormia basket. Results. Percutaneous retrieval was successful in 25 of 26 patients (96.2%). It was possible to remove all the intravascular foreign bodies with a combination of guide catheters and the Dormia basket. No complication occurred during the procedure, and no long-term complications were registered during the follow-up period, which ranged from 6 months to 32 months (mean 22.4 months overall). Conclusion. Percutaneous retrieval is an effective and safe technique that should be the first choice for removal of an intravascular foreign body.

  2. Protection against high intravascular pressure in giraffe legs.

    PubMed

    Petersen, Karin K; Hørlyck, Arne; Ostergaard, Kristine H; Andresen, Joergen; Broegger, Torbjoern; Skovgaard, Nini; Telinius, Niklas; Laher, Ismael; Bertelsen, Mads F; Grøndahl, Carsten; Smerup, Morten; Secher, Niels H; Brøndum, Emil; Hasenkam, John M; Wang, Tobias; Baandrup, Ulrik; Aalkjaer, Christian

    2013-11-01

    The high blood pressure in giraffe leg arteries renders giraffes vulnerable to edema. We investigated in 11 giraffes whether large and small arteries in the legs and the tight fascia protect leg capillaries. Ultrasound imaging of foreleg arteries in anesthetized giraffes and ex vivo examination revealed abrupt thickening of the arterial wall and a reduction of its internal diameter just below the elbow. At and distal to this narrowing, the artery constricted spontaneously and in response to norepinephrine and intravascular pressure recordings revealed a dynamic, viscous pressure drop along the artery. Histology of the isolated median artery confirmed dense sympathetic innervation at the narrowing. Structure and contractility of small arteries from muscular beds in the leg and neck were compared. The arteries from the legs demonstrated an increased media thickness-to-lumen diameter ratio, increased media volume, and increased numbers of smooth muscle cells per segment length and furthermore, they contracted more strongly than arteries from the neck (500 ± 49 vs. 318 ± 43 mmHg; n = 6 legs and neck, respectively). Finally, the transient increase in interstitial fluid pressure following injection of saline was 5.5 ± 1.7 times larger (n = 8) in the leg than in the neck. We conclude that 1) tissue compliance in the legs is low; 2) large arteries of the legs function as resistance arteries; and 3) structural adaptation of small muscle arteries allows them to develop an extraordinary tension. All three findings can contribute to protection of the capillaries in giraffe legs from a high arterial pressure. PMID:24005251

  3. Mechanotransductional Basis of Endothelial Cell Response to Intravascular Bubbles

    PubMed Central

    Klinger, Alexandra L.; Pichette, Benjamin; Sobolewski, Peter; Eckmann, David M.

    2011-01-01

    Vascular air embolism resulting from too rapid decompression is a well-known risk in deep-sea diving, aviation and space travel. It is also a common complication during surgery or other medical procedures when air or other endogenously administered gas is entrained in the circulation. Preventive and post-event treatment options are extremely limited for this dangerous condition, and none of them address the poorly understood pathophysiology of endothelial response to intravascular bubble presence. Using a novel apparatus allowing precise manipulation of microbubbles in real time fluorescence microscopy studies, we directly measure human umbilical vein endothelial cell responses to bubble contact. Strong intracellular calcium transients requiring extracellular calcium are observed upon cell-bubble interaction. The transient is eliminated both by the presence of the stretch activated channel inhibitor, gadolinium, and the transient receptor potential vanilliod family inhibitor, ruthenium red. No bubble induced calcium upsurge occurs if the cells are pretreated with an inhibitor of actin polymerization, cytochalasin-D. This study explores the biomechanical mechanisms at play in bubble interfacial interactions with endothelial surface layer (ESL) macromolecules, reassessing cell response after selective digestion of glycocalyx glycosoaminoglycans, hyaluran (HA) and heparin sulfate (HS). HA digestion causes reduction of cell-bubble adherence and a more rapid induction of calcium influx after contact. HS depletion significantly decreases calcium transient amplitudes, as does pharmacologically induced sydencan ectodomain shedding. The surfactant perfluorocarbon oxycyte abolishes any bubble induced calcium transient, presumably through direct competition with ESL macromolecules for interfacial occupancy, thus attenuating the interactions that trigger potentially deleterious biochemical pathways. PMID:21931900

  4. Improving photoacoustic imaging contrast of brachytherapy seeds

    NASA Astrophysics Data System (ADS)

    Pan, Leo; Baghani, Ali; Rohling, Robert; Abolmaesumi, Purang; Salcudean, Septimiu; Tang, Shuo

    2013-03-01

    Prostate brachytherapy is a form of radiotherapy for treating prostate cancer where the radiation sources are seeds inserted into the prostate. Accurate localization of seeds during prostate brachytherapy is essential to the success of intraoperative treatment planning. The current standard modality used in intraoperative seeds localization is transrectal ultrasound. Transrectal ultrasound, however, suffers in image quality due to several factors such speckle, shadowing, and off-axis seed orientation. Photoacoustic imaging, based on the photoacoustic phenomenon, is an emerging imaging modality. The contrast generating mechanism in photoacoustic imaging is optical absorption that is fundamentally different from conventional B-mode ultrasound which depicts changes in acoustic impedance. A photoacoustic imaging system is developed using a commercial ultrasound system. To improve imaging contrast and depth penetration, absorption enhancing coating is applied to the seeds. In comparison to bare seeds, approximately 18.5 dB increase in signal-to-noise ratio as well as a doubling of imaging depth are achieved. Our results demonstrate that the coating of the seeds can further improve the discernibility of the seeds.

  5. Adjuvant brachytherapy in the treatment of soft-tissue sarcomas.

    PubMed

    Crownover, R L; Marks, K E

    1999-06-01

    For many patients with STS, administering adjuvant radiation treatments in the form of interstitial brachytherapy provides an excellent alternative to a protracted course of EBRT. Ideal patients are those with intermediate- or high-grade tumors amenable to en bloc resection. Attractive features of this approach include an untainted pathologic specimen, expeditious completion of treatment, reduction in wound complications, and improved functional outcome. Brachytherapy can permit definitive reirradiation by tightly localizing the high dose radiation exposure. It is also useful in patients who are known to have or be at high risk of metastatic disease, for whom the rapid completion of local treatment allows systemic therapy to begin quickly. Introduction of HDR techniques has shifted the delivery of brachytherapy from inpatient solitary confinement to an outpatient setting. Early reports using HDR brachytherapy for treatment of adult and pediatric STS are quite encouraging. The clinical equivalence between hyperfractionated HDR schedules and traditional LDR techniques is gaining acceptance. PMID:10432432

  6. Patient release criteria for low dose rate brachytherapy implants.

    PubMed

    Boyce, Dale E; Sheetz, Michael A

    2013-04-01

    A lack of consensus regarding a model governing the release of patients following sealed source brachytherapy has led to a set of patient release policies that vary from institution to institution. The U.S. Nuclear Regulatory Commission has issued regulatory guidance on patient release in NUREG 1556, Volume 9, Rev. 2, Appendix U, which allows calculation of release limits following implant brachytherapy. While the formalism presented in NUREG is meaningful for the calculation of release limits in the context of relatively high energy gamma emitters, it does not estimate accurately the effective dose equivalent for the common low dose rate brachytherapy sources Cs, I, and Pd. NUREG 1556 states that patient release may be based on patient-specific calculations as long as the calculation is documented. This work is intended to provide a format for patient-specific calculations to be used for the consideration of patients' release following the implantation of certain low dose rate brachytherapy isotopes. PMID:23439145

  7. Brachytherapy in India – a long road ahead

    PubMed Central

    Mahantshetty, Umesh; Shrivastava, Shyamkishore

    2014-01-01

    Brachytherapy can play a very important role in the definitive cure by radiation therapy in India. However, except for in a handful of centres, the majority of hospitals use it only for intracavitary treatment. The most probable reasons for such are the lack of logistical resources in terms of trained personal and supporting staff, rather than lack of radiotherapy machines and equipment. In this article, the authors look into the various aspects of brachytherapy in India: from its beginning to present days. The authors point out the resources available, shortcomings, and some possible solutions to make use of brachytherapy more popular and effective. Apart from presenting a picture of the present scenario, the article pays attention to the positive signs of brachytherapy becoming more popular in the near future. PMID:25337139

  8. Image-Based Brachytherapy for the Treatment of Cervical Cancer

    SciTech Connect

    Harkenrider, Matthew M. Alite, Fiori; Silva, Scott R.; Small, William

    2015-07-15

    Cervical cancer is a disease that requires considerable multidisciplinary coordination of care and labor in order to maximize tumor control and survival while minimizing treatment-related toxicity. As with external beam radiation therapy, the use of advanced imaging and 3-dimensional treatment planning has generated a paradigm shift in the delivery of brachytherapy for the treatment of cervical cancer. The use of image-based brachytherapy, most commonly with magnetic resonance imaging (MRI), requires additional attention and effort by the treating physician to prescribe dose to the proper volume and account for adjacent organs at risk. This represents a dramatic change from the classic Manchester approach of orthogonal radiographic images and prescribing dose to point A. We reviewed the history and currently evolving data and recommendations for the clinical use of image-based brachytherapy with an emphasis on MRI-based brachytherapy.

  9. Intravascular pillars and pruning in the extraembryonic vessels of chick embryos.

    PubMed

    Lee, Grace S; Filipovic, Nenad; Lin, Miao; Gibney, Barry C; Simpson, Dinee C; Konerding, Moritz A; Tsuda, Akira; Mentzer, Steven J

    2011-06-01

    To investigate the local mechanical forces associated with intravascular pillars and vessel pruning, we studied the conducting vessels in the extraembryonic circulation of the chick embryo. During the development days 13-17, intravascular pillars and blood flow parameters were identified using fluorescent vascular tracers and digital time-series video reconstructions. The geometry of selected vessels was confirmed by corrosion casting and scanning electron microscopy. Computational simulations of pruning vessels suggested that serial pillars form along pre-existing velocity streamlines; blood pressure demonstrated no obvious spatial relationship with the intravascular pillars. Modeling a Reynolds number of 0.03 produced 4 pillars at approximately 20-μm intervals matching the observed periodicity. In contrast, a Reynolds number of 0.06 produced only 2 pillars at approximately 63-μm intervals. Our modeling data indicated that the combination of wall shear stress and gradient of shear predicted the location, direction, and periodicity of developing pillars. PMID:21448976

  10. High-sensitivity intravascular photoacoustic imaging of lipid–laden plaque with a collinear catheter design

    PubMed Central

    Cao, Yingchun; Hui, Jie; Kole, Ayeeshik; Wang, Pu; Yu, Qianhuan; Chen, Weibiao; Sturek, Michael; Cheng, Ji-Xin

    2016-01-01

    A highly sensitive catheter probe is critical to catheter-based intravascular photoacoustic imaging. Here, we present a photoacoustic catheter probe design on the basis of collinear alignment of the incident optical wave and the photoacoustically generated sound wave within a miniature catheter housing for the first time. Such collinear catheter design with an outer diameter of 1.6 mm provided highly efficient overlap between optical and acoustic waves over an imaging depth of >6 mm in D2O medium. Intravascular photoacoustic imaging of lipid-laden atherosclerotic plaque and perivascular fat was demonstrated, where a lab-built 500 Hz optical parametric oscillator outputting nanosecond optical pulses at a wavelength of 1.7 μm was used for overtone excitation of C-H bonds. In addition to intravascular imaging, the presented catheter design will benefit other photoacoustic applications such as needle-based intramuscular imaging. PMID:27121894

  11. High-sensitivity intravascular photoacoustic imaging of lipid-laden plaque with a collinear catheter design.

    PubMed

    Cao, Yingchun; Hui, Jie; Kole, Ayeeshik; Wang, Pu; Yu, Qianhuan; Chen, Weibiao; Sturek, Michael; Cheng, Ji-Xin

    2016-01-01

    A highly sensitive catheter probe is critical to catheter-based intravascular photoacoustic imaging. Here, we present a photoacoustic catheter probe design on the basis of collinear alignment of the incident optical wave and the photoacoustically generated sound wave within a miniature catheter housing for the first time. Such collinear catheter design with an outer diameter of 1.6 mm provided highly efficient overlap between optical and acoustic waves over an imaging depth of >6 mm in D2O medium. Intravascular photoacoustic imaging of lipid-laden atherosclerotic plaque and perivascular fat was demonstrated, where a lab-built 500 Hz optical parametric oscillator outputting nanosecond optical pulses at a wavelength of 1.7 μm was used for overtone excitation of C-H bonds. In addition to intravascular imaging, the presented catheter design will benefit other photoacoustic applications such as needle-based intramuscular imaging. PMID:27121894

  12. [Recent progress in intravascular neurosurgery for the treatment of cerebrovascular disease].

    PubMed

    Hyodo, A; Harakuni, T; Shingaki, T; Tsurushima, H; Saito, A; Yoshii, Y

    2000-12-01

    With the recent advances in the devices and techniques in intravascular neurosurgery such as microcatheters or a digital subtraction angiography, intravascular neurosurgery plays an important role for the treatment of cerebrovascular disease. We describe here, a recent progress in intravascular neurosurgery for the treatment of cerebrovascular disease. As a treatment of cerebrovascular disease, we discuss the treatment of cerebral aneurysm using Guglielmi detachable coils (GDC), and the treatment of ischemic cerebrovascular disease such as the thrombolytic therapy for the acute embolic occlusion of the cerebral artery, and a percutaneous transluminal angioplasty (PTA) or a stenting for the stenotic lesion of the cerebral arteries. Embolization of the cerebral aneurysm using GDC is less invasive method compare to the standard neurosurgical clipping of aneurysm. So, recently it becomes one of standard methods of the treatment of cerebral aneurysm. Thrombolytic therapy, PTA and stenting also become an important treatment for the ischemic cerebrovascular disease. PMID:11464467

  13. Median Arcuate Ligament Syndrome Confirmed with the Use of Intravascular Ultrasound

    PubMed Central

    de Lara, Fernando Vazquez; Higgins, Christopher

    2014-01-01

    Median arcuate ligament syndrome, a rarely reported condition, is characterized by postprandial abdominal pain, nausea, vomiting, and weight loss. Its cause is unclear. We present the case of a 45-year-old woman who had intermittent chronic positional abdominal pain without weight loss. Magnetic resonance angiograms and computed tomograms revealed stenosis of the celiac artery. Ostial compression was confirmed on catheter angiographic and intravascular ultrasonographic images. Intravascular ultrasound revealed far greater stenosis than did the initial imaging methods and confirmed a diagnosis of median arcuate ligament syndrome. In lieu of surgery, the patient underwent a celiac ganglion block procedure that substantially relieved her symptoms. To our knowledge, this is the first report of the use of intravascular ultrasound in the diagnosis of median arcuate ligament syndrome. We recommend using this imaging method preoperatively in other suspected cases of the syndrome, to better identify patients who might benefit from corrective surgery. PMID:24512402

  14. High versus Low-Dose Rate Brachytherapy for Cervical Cancer

    PubMed Central

    Patankar, Sonali S.; Tergas, Ana I.; Deutsch, Israel; Burke, William M.; Hou, June Y.; Ananth, Cande V.; Huang, Yongmei; Neugut, Alfred I.; Hershman, Dawn L.; Wright, Jason D.

    2015-01-01

    Objectives Brachytherapy plays an important role in the treatment of cervical cancer. While small trials have shown comparable survival outcomes between high (HDR) and low-dose rate (LDR) brachytherapy, little data is available in the US. We examined the utilization of HDR brachytherapy and analyzed the impact of type of brachytherapy on survival for cervical cancer. Methods Women with stage IB2–IVA cervical cancer treated with primary (external beam and brachytherapy) radiotherapy between 2003–2011 and recorded in the National Cancer Database (NCDB) were analyzed. Generalized linear mixed models and Cox proportional hazards regression were used to examine predictors of HDR brachytherapy use and the association between HDR use and survival. Results A total of 10,564 women including 2681 (25.4%) who received LDR and 7883 (74.6%) that received HDR were identified. Use of HDR increased from 50.2% in 2003 to 83.9% in 2011 (P<0.0001). In a multivariable model, year of diagnosis was the strongest predictor of use of HDR. While patients in the Northeast were more likely to receive HDR therapy, there were no other clinical or socioeconomic characteristics associated with receipt of HDR. In a multivariable Cox model, survival was similar between the HDR and LDR groups (HR=0.93; 95% 0.83–1.03). Similar findings were noted in analyses stratified by stage and histology. Kaplan-Meier analyses demonstrated no difference in survival based on type of brachytherapy for stage IIB (P=0.68), IIIB (P=0.17), or IVA (P=0.16) tumors. Conclusions The use of HDR therapy has increased rapidly. Overall survival is similar for LDR and HDR brachytherapy. PMID:25575481

  15. Parameterization of brachytherapy source phase space file for Monte Carlo-based clinical brachytherapy dose calculation

    NASA Astrophysics Data System (ADS)

    Zhang, M.; Zou, W.; Chen, T.; Kim, L.; Khan, A.; Haffty, B.; Yue, N. J.

    2014-01-01

    A common approach to implementing the Monte Carlo method for the calculation of brachytherapy radiation dose deposition is to use a phase space file containing information on particles emitted from a brachytherapy source. However, the loading of the phase space file during the dose calculation consumes a large amount of computer random access memory, imposing a higher requirement for computer hardware. In this study, we propose a method to parameterize the information (e.g., particle location, direction and energy) stored in the phase space file by using several probability distributions. This method was implemented for dose calculations of a commercial Ir-192 high dose rate source. Dose calculation accuracy of the parameterized source was compared to the results observed using the full phase space file in a simple water phantom and in a clinical breast cancer case. The results showed the parameterized source at a size of 200 kB was as accurate as the phase space file represented source of 1.1 GB. By using the parameterized source representation, a compact Monte Carlo job can be designed, which allows an easy setup for parallel computing in brachytherapy planning.

  16. Chronic biliary obstruction induces pulmonary intravascular phagocytosis and endotoxin sensitivity in rats.

    PubMed Central

    Chang, S W; Ohara, N

    1994-01-01

    Endotoxin sensitivity varies among animal species and appears to correlate with the presence of pulmonary intravascular macrophage (PIM). In rats, which lack PIM, we investigated the hypothesis that chronic cholestatic liver injury leads to induction of PIM and endotoxin sensitivity. Rats were randomized to either common bile duct ligation (BDL) or sham-surgery and studied at 1 wk (acute cholestasis), 2 wk (cholestasis, early cirrhosis), and 4 wk (cholestasis, established cirrhosis) after surgery. Intravascularly injected fluorescent latex microspheres (1 micron diameter) were taken up by large phagocytic cells in lung parenchyma of BDL rats (at 2 and 4 wk), while no uptake was observed in lungs from control rats. Electronmicroscopy revealed accumulation of large, mononuclear, macrophage-like cells containing ingested latex particles within the pulmonary capillaries. Pulmonary intravascular phagocytosis, as reflected in lung uptake of 99mTc microaggregated albumin (Microlite, mean particle diameter = 1 micron), averaged 0.7 +/- 0.1% (mean +/- SEM) of total injected dose in 13 control rats and progressively increased with time after BDL (1 wk, 1.7 +/- 0.2%; 2 wk, 10.0 +/- 3.0%; 4 wk 35.1 +/- 5.9%). Rats with biliary cirrhosis were markedly sensitive to the lethal effects of low dose endotoxin and demonstrated marked lung edema at the time of death. Furthermore, the lung uptake of intravascular 125I-lipopolysaccharide was increased five-fold in cirrhotic rats. We conclude that chronic biliary obstruction leads to the induction of pulmonary intravascular phagocytes and enhances endotoxin sensitivity in rats. Pulmonary intravascular phagocytosis in patients with advanced cirrhosis may account for their increased susceptibility to sepsis-induced adult respiratory distress syndrome. Images PMID:7962547

  17. The evolution of computerized treatment planning for brachytherapy: American contributions

    PubMed Central

    Rivard, Mark J.

    2014-01-01

    Purpose To outline the evolution of computerized brachytherapy treatment planning in the United States through a review of technological developments and clinical practice refinements. Material and methods A literature review was performed and interviews were conducted with six participants in the development of computerized treatment planning for brachytherapy. Results Computerized brachytherapy treatment planning software was initially developed in the Physics Departments of New York's Memorial Hospital (by Nelson, Meurk and Balter), and Houston's M. D. Anderson Hospital (by Stovall and Shalek). These public-domain programs could be used by institutions with adequate computational resources; other clinics had access to them via Memorial's and Anderson's teletype-based computational services. Commercial brachytherapy treatment planning programs designed to run on smaller computers (Prowess, ROCS, MMS), were developed in the late 1980s and early 1990s. These systems brought interactive dosimetry into the clinic and surgical theatre. Conclusions Brachytherapy treatment planning has evolved from systems of rigid implant rules to individualized pre- and intra-operative treatment plans, and post-operative dosimetric assessments. Brachytherapy dose distributions were initially calculated on public domain programs on large regionally located computers. With the progression of computer miniaturization and increase in processor speeds, proprietary software was commercially developed for microcomputers that offered increased functionality and integration with clinical practice. PMID:25097560

  18. Leiomyosarcoma of the Uterus with Intravascular Tumor Extension and Pulmonary Tumor Embolism

    SciTech Connect

    McDonald, Douglas K.; Kalva, Sanjeeva P. Fan, C.-M.; Vasilyev, Aleksandr

    2007-02-15

    We report the case of a 48-year-old woman presenting with recurrent uterine leiomyosarcoma (LMS) associated with right iliac vein and inferior vena cava (IVC) invasion and left lower lobe pulmonary tumor embolus. Because the prognosis and treatment differ from that of thrombotic pulmonary emboli, the differentiating imaging characteristics of intravascular tumor embolism are reviewed. To our knowledge, only two other cases of intravenous uterine leiomyosarcomatosis have been described in the existing literature, and this is the first reported case of the entity with associated intravascular tumor embolism.

  19. Perioperative Intravascular Fluid Assessment and Monitoring: A Narrative Review of Established and Emerging Techniques

    PubMed Central

    Singh, Sumit; Kuschner, Ware G.; Lighthall, Geoffrey

    2011-01-01

    Accurate assessments of intravascular fluid status are an essential part of perioperative care and necessary in the management of the hemodynamically unstable patient. Goal-directed fluid management can facilitate resuscitation of the hypovolemic patient, reduce the risk of fluid overload, reduce the risk of the injudicious use of vasopressors and inotropes, and improve clinical outcomes. In this paper, we discuss the strengths and limitations of a spectrum of noninvasive and invasive techniques for assessing and monitoring intravascular volume status and fluid responsiveness in the perioperative and critically ill patient. PMID:21785588

  20. Virtual Intravascular Endoscopy Visualization of Calcified Coronary Plaques

    PubMed Central

    Xu, Lei; Sun, Zhonghua

    2015-01-01

    Abstract This study was conducted to investigate the feasibility of using 3D virtual intravascular endoscopy (VIE) as a novel approach for characterization of calcified coronary plaques with the aim of differentiating superficial from deep calcified plaques, thus improving assessment of coronary stenosis. A total of 61 patients with suspected coronary artery disease were included in the study. Minimal lumen diameter (MLD) was measured and compared between coronary CT angiography (CCTA) (≥64-slice) and invasive coronary angiography (ICA) with regard to the measurement bias, whereas VIE findings were correlated with CCTA with respect to the diagnostic performance of coronary stenosis and the area under the curve (AUC) by receiver-operating characteristic curve analysis (ROC). In all 3 coronary arteries, the CCTA consistently underestimated the MLD relative to the ICA (P < 0.001). On a per-vessel assessment, the sensitivity, specificity, positive predictive value, and negative predictive value and 95% confidence interval (CI) were 94% (95% CI: 61%, 100%), 27% (95% CI: 18%, 38%), 33% (95% CI: 23%, 43%), and 92% (95% CI: 74%, 99%) for CCTA, and 100% (95% CI: 89%, 100%), 85% (95% CI: 75%, 92%), 71% (95% CI: 56%, 84%), and 100% (95% CI: 95%, 100%) for VIE, respectively. The AUC by ROC analysis for VIE demonstrated significant improvement in analysis of left anterior descending calcified plaques compared with CCTA (0.99 vs 0.60, P < 0.001), with better performance in the left circumflex and right coronary arteries (0.98 vs 0.84 and 0.77 vs 0.77, respectively; P = 0.07 and P = 0.96, respectively). There are no significant differences between 64-, 128-, and 640-slice CCTA and VIE in terms of sensitivity, specificity, positive and negative predictive value in the diagnosis of coronary stenosis. This study shows the feasibility of using VIE for characterizing morphological features of calcified plaques, therefore, significantly improving assessment of

  1. Meta-analysis on intravascular low energy laser therapy

    NASA Astrophysics Data System (ADS)

    Zhao, Shu-Dong; Liu, Timon Cheng-Yi; Wang, Yan-Fang; Liu, Song-Hao

    2008-12-01

    Intravascular low energy laser therapy (ILELT) was put forward for cardiocirculatory diseases in USA in 1982, was popular in Russia in 1980s, and then in China in 1990s. The therapeutic effects of ILELT and drugs in comparison with drugs only on Chinese patients and their blood parameters were analyzed with meta-analyses and reported as (OR, 95%CI) for patient improvement and (WMD, 95% CI) for blood parameter improvement, where 95%CI, OR and WMD denoted 95% confidence intervals, odds ratio and weighted mean difference, respectively. It was found that the patients of cerebral infarction (2.39, 2.09~2.74) and cerebrovascular diseases (2.97, 1.69~2.53) were cured, respectively, (P < 0.01), and the symptom improvement of patients of cerebral infarction, cerebrovascular diseases and diabetes were significant (3.13, 2.79~3.51), (4.92, 3.39~7.14) , and (3.80, 2.79~5.18), and mild (3.66, 3.15~4.24), (4.95, 2.77~8.84), and (7.11, 4.54~11.13), respectively, (P < 0.01). It was also found that the blood parameters such as cholesterol (-0.78, -1.32~-0.24), total cholesterol (-1.08, -1.80~-0.36), low density lipoprotein cholesterol (-0.6, -1.01~-0.19), triacylglycerol (0.63, -0.83~-0.42), high density lipoprotein (0.34, 0.10~0.59), erythrocyte aggregation index (-0.24, -0.27~-0.21), erythrocyte Sedimentation Rate (-4.57, -7.26~-1.89), fibrinogen (-0.76, -1.31~-0.21), whole blood contrast viscosity (-0.40, -0.69~-0.12), low cut blood viscosity (-1.2, -1.93~-0.48), high cut blood viscosity (-0.62, -0.92~-0.32), whole blood viscosity(-1.2, -1.85~-0.54) and plasma blood contrast viscosity(-0.07, -0.12~-0.03) were found improved (P < 0.05). It is concluded that the patients of cerebral infarction, cerebrovascular diseases and diabetes might be improved with ILELT, which might be mediated by blood parameter improvement.

  2. Predictors of Metastatic Disease After Prostate Brachytherapy

    SciTech Connect

    Forsythe, Kevin; Burri, Ryan; Stone, Nelson; Stock, Richard G.

    2012-06-01

    Purpose: To identify predictors of metastatic disease after brachytherapy treatment for prostate cancer. Methods and Materials: All patients who received either brachytherapy alone (implant) or brachytherapy in combination with external beam radiation therapy for treatment of localized prostate cancer at The Mount Sinai Hospital between June 1990 and March 2007 with a minimum follow-up of 2 years were included. Univariate and multivariable analyses were performed on the following variables: risk group, Gleason score (GS), clinical T stage, pretreatment prostate-specific antigen level, post-treatment prostate-specific antigen doubling time (PSA-DT), treatment type (implant vs. implant plus external beam radiation therapy), treatment era, total biological effective dose, use of androgen deprivation therapy, age at diagnosis, and race. PSA-DT was analyzed in the following ordinate groups: 0 to 90 days, 91 to 180 days, 180 to 360 days, and greater than 360 days. Results: We included 1,887 patients in this study. Metastases developed in 47 of these patients. The 10-year freedom from distant metastasis (FFDM) rate for the entire population was 95.1%. Median follow-up was 6 years (range, 2-15 years). The only two significant predictors of metastatic disease by multivariable analyses were GS and PSA-DT (p < 0.001 for both variables). Estimated 10-year FFDM rates for GS of 6 or less, GS of 7, and GS of 8 or greater were 97.9%, 94.3%, and 76.1%, respectively (p < 0.001). Estimated FFDM rates for PSA-DT of 0 to 90 days, 91 to 180 days, 181 to 360 days, and greater than 360 days were 17.5%, 67.9%, 74%, and 94.8%, respectively (p < 0.001). Estimated 10-year FFDM rates for the low-, intermediate-, and high-risk groups were 98.6%, 96.2%, and 86.7%, respectively. A demographic shift to patients presenting with higher-grade disease in more recent years was observed. Conclusions: GS and post-treatment PSA-DT are both statistically significant independent predictors of metastatic

  3. An overview of interstitial brachytherapy and hyperthermia

    SciTech Connect

    Brandt, B.B.; Harney, J.

    1989-11-01

    Interstitial thermoradiotherapy, an experimental cancer treatment that combines interstitial radiation implants (brachytherapy) and interstitial hyperthermia, is in the early stages of investigation. In accordance with the procedure used in a current national trial protocol, a 60-minute hyperthermia treatment is administered after catheters are placed into the tumor area while the patient is under general anesthesia. This is immediately followed by loading of radioactive Iridium-192 seeds into the catheters for a defined period of time. Once the prescribed radiation dose is delivered, the radioactive sources are removed and a second, 60-minute hyperthermia treatment is administered. Clinical trials with hyperthermia in combination with radiation have increased in recent years. Nurses caring for these patients need to become more knowledgeable about this investigational therapy. This paper provides an overview of the biologic rationale for this therapy, as well as a description of the delivery method and clinical application. Specific related nursing interventions are defined in a nursing protocol.23 references.

  4. Paddle-based rotating-shield brachytherapy

    SciTech Connect

    Liu, Yunlong; Xu, Weiyu; Flynn, Ryan T.; Kim, Yusung; Bhatia, Sudershan K.; Buatti, John M.; Dadkhah, Hossein; Wu, Xiaodong

    2015-10-15

    Purpose: The authors present a novel paddle-based rotating-shield brachytherapy (P-RSBT) method, whose radiation-attenuating shields are formed with a multileaf collimator (MLC), consisting of retractable paddles, to achieve intensity modulation in high-dose-rate brachytherapy. Methods: Five cervical cancer patients using an intrauterine tandem applicator were considered to assess the potential benefit of the P-RSBT method. The P-RSBT source used was a 50 kV electronic brachytherapy source (Xoft Axxent™). The paddles can be retracted independently to form multiple emission windows around the source for radiation delivery. The MLC was assumed to be rotatable. P-RSBT treatment plans were generated using the asymmetric dose–volume optimization with smoothness control method [Liu et al., Med. Phys. 41(11), 111709 (11pp.) (2014)] with a delivery time constraint, different paddle sizes, and different rotation strides. The number of treatment fractions (fx) was assumed to be five. As brachytherapy is delivered as a boost for cervical cancer, the dose distribution for each case includes the dose from external beam radiotherapy as well, which is 45 Gy in 25 fx. The high-risk clinical target volume (HR-CTV) doses were escalated until the minimum dose to the hottest 2 cm{sup 3} (D{sub 2cm{sup 3}}) of either the rectum, sigmoid colon, or bladder reached their tolerance doses of 75, 75, and 90 Gy{sub 3}, respectively, expressed as equivalent doses in 2 Gy fractions (EQD2 with α/β = 3 Gy). Results: P-RSBT outperformed the two other RSBT delivery techniques, single-shield RSBT (S-RSBT) and dynamic-shield RSBT (D-RSBT), with a properly selected paddle size. If the paddle size was angled at 60°, the average D{sub 90} increases for the delivery plans by P-RSBT on the five cases, compared to S-RSBT, were 2.2, 8.3, 12.6, 11.9, and 9.1 Gy{sub 10}, respectively, with delivery times of 10, 15, 20, 25, and 30 min/fx. The increases in HR-CTV D{sub 90}, compared to D-RSBT, were 16

  5. Automatic Brachytherapy Seed Placement Under MRI Guidance

    PubMed Central

    Patriciu, Alexandru; Petrisor, Doru; Muntener, Michael; Mazilu, Dumitru; Schär, Michael; Stoianovici, Dan

    2011-01-01

    The paper presents a robotic method of performing low dose rate prostate brachytherapy under magnetic resonance imaging (MRI) guidance. The design and operation of a fully automated MR compatible seed injector is presented. This is used with the MrBot robot for transperineal percutaneous prostate access. A new image-registration marker and algorithms are also presented. The system is integrated and tested with a 3T MRI scanner. Tests compare three different registration methods, assess the precision of performing automated seed deployment, and use the seeds to assess the accuracy of needle targeting under image guidance. Under the ideal conditions of the in vitro experiments, results show outstanding image-guided needle and seed placement accuracy. PMID:17694871

  6. 10 CFR 35.2432 - Records of calibration measurements of brachytherapy sources.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Records of calibration measurements of brachytherapy... Records § 35.2432 Records of calibration measurements of brachytherapy sources. (a) A licensee shall maintain a record of the calibrations of brachytherapy sources required by § 35.432 for 3 years after...

  7. 10 CFR 35.490 - Training for use of manual brachytherapy sources.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 1 2014-01-01 2014-01-01 false Training for use of manual brachytherapy sources. 35.490 Section 35.490 Energy NUCLEAR REGULATORY COMMISSION MEDICAL USE OF BYPRODUCT MATERIAL Manual Brachytherapy § 35.490 Training for use of manual brachytherapy sources. Except as provided in § 35.57, the licensee shall require an authorized user of...

  8. 10 CFR 35.490 - Training for use of manual brachytherapy sources.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Training for use of manual brachytherapy sources. 35.490 Section 35.490 Energy NUCLEAR REGULATORY COMMISSION MEDICAL USE OF BYPRODUCT MATERIAL Manual Brachytherapy § 35.490 Training for use of manual brachytherapy sources. Except as provided in § 35.57, the licensee shall require an authorized user of...

  9. 10 CFR 35.490 - Training for use of manual brachytherapy sources.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 1 2012-01-01 2012-01-01 false Training for use of manual brachytherapy sources. 35.490 Section 35.490 Energy NUCLEAR REGULATORY COMMISSION MEDICAL USE OF BYPRODUCT MATERIAL Manual Brachytherapy § 35.490 Training for use of manual brachytherapy sources. Except as provided in § 35.57, the licensee shall require an authorized user of...

  10. 10 CFR 35.490 - Training for use of manual brachytherapy sources.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 1 2013-01-01 2013-01-01 false Training for use of manual brachytherapy sources. 35.490 Section 35.490 Energy NUCLEAR REGULATORY COMMISSION MEDICAL USE OF BYPRODUCT MATERIAL Manual Brachytherapy § 35.490 Training for use of manual brachytherapy sources. Except as provided in § 35.57, the licensee shall require an authorized user of...

  11. 10 CFR 35.490 - Training for use of manual brachytherapy sources.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 1 2011-01-01 2011-01-01 false Training for use of manual brachytherapy sources. 35.490 Section 35.490 Energy NUCLEAR REGULATORY COMMISSION MEDICAL USE OF BYPRODUCT MATERIAL Manual Brachytherapy § 35.490 Training for use of manual brachytherapy sources. Except as provided in § 35.57, the licensee shall require an authorized user of...

  12. Photoacoustic imaging of prostate brachytherapy seeds

    PubMed Central

    Su, Jimmy L.; Bouchard, Richard R.; Karpiouk, Andrei B.; Hazle, John D.; Emelianov, Stanislav Y.

    2011-01-01

    Brachytherapy seed therapy is an increasingly common way to treat prostate cancer through localized radiation. The current standard of care relies on transrectal ultrasound (TRUS) for imaging guidance during the seed placement procedure. As visualization of individual metallic seeds tends to be difficult or inaccurate under TRUS guidance, guide needles are generally tracked to infer seed placement. In an effort to improve seed visualization and placement accuracy, the use of photoacoustic (PA) imaging, which is highly sensitive to metallic objects in soft tissue, was investigated for this clinical application. The PA imaging properties of bare (i.e., embedded in pure gelatin) and tissue-embedded (at depths of up to 13 mm) seeds were investigated with a multi-wavelength (750 to 1090 nm) PA imaging technique. Results indicate that, much like ultrasonic (US) imaging, an angular dependence (i.e., seed orientation relative to imaging transducer) of the PA signal exists. Despite this shortcoming, however, PA imaging offers improved contrast, over US imaging, of a seed in prostate tissue if sufficient local fluence is achieved. Additionally, although the PA signal of a bare seed is greatest for lower laser wavelengths (e.g., 750 nm), the scattering that results from tissue tends to favor the use of higher wavelengths (e.g., 1064 nm, which is the primary wavelength of Nd:YAG lasers) when the seed is located in tissue. A combined PA and US imaging approach (i.e., PAUS imaging) shows strong potential to visualize both the seed and the surrounding anatomical environment of the prostate during brachytherapy seed placement procedures. PMID:21833361

  13. [Salvage 125I brachytherapy of locally recurrent prostate cancer].

    PubMed

    Gesztesi, László; Ágoston, Péter; Major, Tibor; Gődény, Mária; Andi, Judit; Lengyel, Zsolt; Polgár, Csaba

    2014-09-01

    The purpose of the study is to report a case of salvage low dose rate (LDR) prostate brachytherapy in a patient with locally recurrent prostate cancer, four years after his first treatment with combined external beam radiation therapy (EBRT) and high dose rate (HDR) brachytherapy. A 61-year-old man was treated with 1x10 Gy HDR brachytherapy and a total of 60 Gy EBRT for an organ confined intermediate risk carcinoma of the prostate in 2009. The patient's tumor had been in regression with the lowest PSA level of 0.09 ng/ml, till the end of 2013. After slow but continuous elevation, his PSA level had reached 1.46 ng/ml by February 2014. Pelvis MRI and whole body acetate PET/CT showed recurrent tumor in the dorsal-right region of the prostate. Bone scan was negative. After discussing the possible salvage treatment options with the patient, he chose LDR brachytherapy. In 2014, in spinal anesthesia 21 125I "seeds" were implanted with transrectal ultrasound guidance into the prostate. The prescribed dose to the whole prostate was 100 Gy, to the volume of the recurrent tumor was 140 Gy. The patient tolerated the salvage brachytherapy well. The postimplant dosimetry was evaluated using magnetic resonance imaging-computed tomography (MR-CT) fusion and appeared satisfactory. PSA level decreased from the pre-salvage value of 1.46 ng/ml to 0.42 ng/ml by one month and 0.18 ng/ml by two months after the brachytherapy. No gastrointestinal side effects appeared, the patient's urination became slightly more frequent. In selected patients, salvage LDR brachytherapy can be a good choice for curative treatment of locally recurrent prostate cancer, after primary radiation therapy. Multiparametric MRI is fundamental, acetate PET/CT can play an important role when defining the localization of the recurrent tumor. PMID:25260087

  14. Intravascular contrast agent improves magnetic resonance angiography of carotid arteries in minipigs.

    PubMed

    Lin, W; Abendschein, D R; Celik, A; Dolan, R P; Lauffer, R B; Walovitch, R C; Haacke, E M

    1997-01-01

    This study was designed to optimize three-dimensional (3D) time-of-flight (TOF) magnetic resonance angiography (MRA) sequences and to determine whether contrast-enhanced MRA could improve the accuracy of lumen definition in stenosed carotid arteries of minipigs. 3D TOF MRA was acquired with use of either an intravascular (n = 13) and/or an extravascular contrast agent (n = 5) administrated at 2 to 4 weeks after balloon-induced injury to a carotid artery in 16 minipigs. Vascular contrast, defined as signal intensity differences between blood vessels and muscle normalized to the signal intensity of muscle, was compared before and after the injection of each contrast agent and between the two agents. Different vascular patencies were observed among the animals, including completely occluded vessels (n = 5), stenotic vessels (n = 3), and vessels with no visible stenosis (n = 8). Superior vascular contrast improvement was observed for small arteries and veins and for large veins with the intravascular contrast agent when compared with the extravascular contrast agent. In addition, preliminary studies in two of the animals showed a good correlation for the extent of luminal stenosis defined by digital subtraction angiography compared with MRA obtained after administration of the intravascular contrast agent (R2 = .71, with a slope of .96 +/- .04 by a linear regression analysis). We concluded that use of an intravascular contrast agent optimizes 3D TOF MRA and may improve its accuracy compared with digital subtraction angiography. PMID:9400838

  15. Gender differences in exercise--induced intravascular haemolysis during race training in thoroughbred horses.

    PubMed

    Cywinska, Anna; Szarska, Ewa; Kowalska, Agnieszka; Ostaszewski, Piotr; Schollenberger, Antoni

    2011-02-01

    Exercise-induced intravascular haemolysis and "sport anemia" are widely reported in human sports medicine. It has been recognized also in horses, however, the clinical importance and the onset of this condition seem different than in human. In this study we investigated the episodes of intravascular haemolysis, indicated by the increase in plasma haemoglobin and the decrease in serum haptoglobin levels, after routine training sessions in race horses. Heart rate and changes in haematological parameters confirmed, that the exertion was relatively high. Intravascular haemolysis did not appear in stallions but was detected in mares after two training sessions. It has been determined that serum haptoglobin levels were higher in mares than in stallions before and after all training sessions. It is postulated that intravascular haemolysis induced by training is of limited clinical importance because it occurred only in mares which are better adapted due to higher haptoglobin level at rest, and it had no cumulative effect. Therefore gender differences should be taken into consideration in experiments with athletic horses. PMID:20553886

  16. Microfluidics in the Undergraduate Laboratory: Device Fabrication and an Experiment to Mimic Intravascular Gas Embolism

    ERIC Educational Resources Information Center

    Jablonski, Erin L.; Vogel, Brandon M.; Cavanagh, Daniel P.; Beers, Kathryn L.

    2010-01-01

    A method to fabricate microfluidic devices and an experimental protocol to model intravascular gas embolism for undergraduate laboratories are presented. The fabrication process details how to produce masters on glass slides; these masters serve as molds to pattern channels in an elastomeric polymer that can be adhered to a substrate, resulting in…

  17. Low-level He-Ne laser in intravascular irradiation treatment of schizophrenia

    NASA Astrophysics Data System (ADS)

    Zhou, Yu-Xue; Fu, Zheng-Hua

    1998-11-01

    Intravascular low level He-Ne laser irradiation is a new therapy developed in recent years. In our hospital it was applied in the treatment and observation of 220 cases of schizophrenia, among which certain effect was achieved and about which the detail was collated and elaborated.

  18. Research of epidermal cellular vegetal cycle of intravascular low level laser irradiation in treatment of psoriasis

    NASA Astrophysics Data System (ADS)

    Zhu, Jing; Bao, Xiaoqing; Zhang, Mei-Jue

    2005-07-01

    Objective: To research epidermal cellular vegetal cycle and the difference of DNA content between pre and post Intravascular Low Level Laser Irradiation treatment of psoriasis. Method: 15 patients suffered from psoriasis were treated by intravascular low level laser irradiation (output power: 4-5mw, 1 hour per day, a course of treatment is 10 days). We checked the different DNA content of epidermal cell between pre and post treatment of psoriasis and 8 natural human. Then the percentage of each phase among the whole cellular cycle was calculated and the statistical analysis was made. Results: The mean value of G1/S phase is obviously down while G2+M phase increased obviously. T test P<0.05.The related statistical analysis showed significant difference between pre and post treatments. Conclusions: The Intravascular Low Level Laser Irradiation (ILLLI) in treatment of psoriasis is effective according to the research of epidermal cellular vegetal cycle and the difference DNA content of Intravascular Low Level Laser Irradiation between pre and post treatment of psoriasis

  19. Thermal response of intravascular and rectal tissue to temperature changes and chemical conditions in the rumen of sheep

    PubMed Central

    Mendel, V. E.; Raghavan, G. V.

    1966-01-01

    1. Experiments were conducted with two wether sheep which were fitted with rumen cannulae and chronically implanted intravascular thermocouples. An attempt was made to study the thermal response of intravascular and rectal tissue to temperature changes and chemical conditions in the rumen. 2. When ice or hot water were placed in the rumen there was an immediate fall or rise in the intravascular temperature accompanied by a similar change in rectal temperature. The intravascular temperatures returned to their precooling or preheating level of 40° C within 130 min, the rectal temperatures required 6-8 hr to return to their pretreatment values. 3. When 0·5 M acetic acid was infused into the rumen there was a marked rise in the intravascular temperature, over and above the diurnal rhythm but not in rectal temperatures. Infusion of mixtures of acetic plus propionic or acetic plus n-butyric acids caused an intravascular temperature rise on feeding within the range of the diurnal pattern. In fasted animals, infusions of volatile fatty acids resulted in no rise in intravascular temperature. PMID:5937414

  20. Asphyxia by Drowning Induces Massive Bleeding Due To Hyperfibrinolytic Disseminated Intravascular Coagulation

    PubMed Central

    Schwameis, Michael; Schober, Andreas; Schörgenhofer, Christian; Sperr, Wolfgang Reinhard; Schöchl, Herbert; Janata-Schwatczek, Karin; Kürkciyan, Erol Istepan; Sterz, Fritz

    2015-01-01

    Objective: To date, no study has systematically investigated the impact of drowning-induced asphyxia on hemostasis. Our objective was to test the hypothesis that asphyxia induces bleeding by hyperfibrinolytic disseminated intravascular coagulation. Design: Observational study. Setting: A 2,100-bed tertiary care facility in Vienna, Austria, Europe. Patients: All cases of drowning-induced asphyxia (n = 49) were compared with other patients with cardiopulmonary resuscitation (n = 116) and to patients with acute promyelocytic leukemia (n = 83). Six drowning victims were investigated prospectively. To study the mechanism, a forearm-ischemia model was used in 20 volunteers to investigate whether hypoxia releases tissue plasminogen activator. Interventions: None. Measurements and Main Results: Eighty percent of patients with drowning-induced asphyxia developed overt disseminated intravascular coagulation within 24 hours. When compared with nondrowning cardiac arrest patients, drowning patients had a 13 times higher prevalence of overt disseminated intravascular coagulation at admission (55% vs 4%; p < 0.001). Despite comparable disseminated intravascular coagulation scores, acute promyelocytic leukemia patients had higher fibrinogen but lower d-dimer levels and platelet counts than drowning patients (p < 0.001). Drowning victims had a three-fold longer activated partial thromboplastin time (124 s; p < 0.001) than both nondrowning cardiac arrest and acute promyelocytic leukemia patients. Hyperfibrinolysis was reflected by up to 1,000-fold increased d-dimer levels, greater than 5-fold elevated plasmin antiplasmin levels, and a complete absence of thrombelastometric clotting patterns, which was reversed by antifibrinolytics and heparinase. Thirty minutes of forearm-ischemia increased tissue plasminogen activator 31-fold (p < 0.001). Conclusions: The vast majority of drowning patients develops overt hyperfibrinolytic disseminated intravascular coagulation, partly caused by

  1. Utilization and Outcomes of Breast Brachytherapy in Younger Women

    SciTech Connect

    Smith, Grace L.; Huo, Jinhai; Giordano, Sharon H.; Hunt, Kelly K.; Buchholz, Thomas A.; Smith, Benjamin D.

    2015-09-01

    Purpose: To directly compare (1) radiation treatment utilization patterns; (2) risks of subsequent mastectomy; and (3) costs of radiation treatment in patients treated with brachytherapy versus whole-breast irradiation (WBI), in a national, contemporary cohort of women with incident breast cancer, aged 64 years and younger. Methods and Materials: Using MarketScan health care claims data, we identified 45,884 invasive breast cancer patients (aged 18-64 years), treated from 2003 to 2010 with lumpectomy, followed by brachytherapy (n=3134) or whole-breast irradiation (n=42,750). We stratified patients into risk groups according to age (Age<50 vs Age≥50) and endocrine therapy status (Endocrine− vs Endocrine+). “Endocrine+” patients filled an endocrine therapy prescription within 1 year after lumpectomy. Pathologic hormone receptor status was not available in this dataset. In brachytherapy versus WBI patients, utilization trends and 5-year subsequent mastectomy risks were compared. Stratified, adjusted subsequent mastectomy risks were calculated using proportional hazards regression. Results: Brachytherapy utilization increased from 2003 to 2010: in patients Age<50, from 0.6% to 4.9%; patients Age≥50 from 2.2% to 11.3%; Endocrine− patients, 1.3% to 9.4%; Endocrine+ patients, 1.9% to 9.7%. Age influenced treatment selection more than endocrine status: 17% of brachytherapy patients were Age<50 versus 32% of WBI patients (P<.001); whereas 41% of brachytherapy patients were Endocrine–versus 44% of WBI patients (P=.003). Highest absolute 5-year subsequent mastectomy risks occurred in Endocrine−/Age<50 patients (24.4% after brachytherapy vs 9.0% after WBI (hazard ratio [HR] 2.18, 95% confidence interval [CI] 1.37-3.47); intermediate risks in Endocrine−/Age≥50 patients (8.6% vs 4.9%; HR 1.76, 95% CI 1.26-2.46); and lowest risks in Endocrine+ patients of any age: Endocrine+/Age<50 (5.5% vs 4.5%; HR 1.18, 95% CI 0.61-2.31); Endocrine+/Age≥50 (4.2% vs 2

  2. Treatment planning of a skin-sparing conical breast brachytherapy applicator using conventional brachytherapy software

    SciTech Connect

    Yang Yun; Melhus, Christopher S.; Sioshansi, Shirin; Rivard, Mark J.

    2011-03-15

    Purpose: AccuBoost is a noninvasive image-guided technique for the delivery of partial breast irradiation to the tumor bed and currently serves as an alternate to conventional electron beam boost. To irradiate the target volume while providing dose sparing to the skin, the round applicator design was augmented through the addition of an internally truncated conical shield and the reduction of the source to skin distance. Methods: Brachytherapy dose distributions for two types of conical applicators were simulated and estimated using Monte Carlo (MC) methods for radiation transport and a conventional treatment planning system (TPS). MC-derived and TPS-generated dose volume histograms (DVHs) and dose distribution data were compared for both the conical and round applicators for benchmarking purposes. Results: Agreement using the gamma-index test was {>=}99.95% for distance to agreement and dose accuracy criteria of 2 mm and 2%, respectively. After observing good agreement, TPS DVHs and dose distributions for the conical and round applicators were obtained and compared. Brachytherapy dose distributions generated using Pinnacle{sup 3} for ten CT data sets showed that the parallel-opposed beams of the conical applicators provided similar PTV coverage to the round applicators and reduced the maximum dose to skin, chest wall, and lung by up to 27%, 42%, and 43%, respectively. Conclusions: Brachytherapy dose distributions for the conical applicators have been generated using MC methods and entered into the Pinnacle{sup 3} TPS via the Tufts technique. Treatment planning metrics for the conical AccuBoost applicators were significantly improved in comparison to those for conventional electron beam breast boost.

  3. Brachytherapy for malignancies of the vagina in the 3D era

    PubMed Central

    Glaser, Scott M.

    2015-01-01

    Vaginal cancer is an uncommon malignancy and can be either recurrent or primary. In both cases, brachytherapy places a central role in the overall treatment course. Recent technological advances have led to more advanced brachytherapy techniques, which in turn have translated to improved outcomes for patients with malignancies of the vagina. The aim of this manuscript is to outline the incorporation of modern brachytherapy into the treatment of patients with vaginal cancer including patient selection along with the role of brachytherapy in conjunction with other treatment modalities, various brachytherapy techniques, treatment planning, dose fractionation schedules, and normal tissue tolerance. PMID:26622234

  4. Prostate brachytherapy in patients with median lobe hyperplasia.

    PubMed

    Wallner, K; Smathers, S; Sutlief, S; Corman, J; Ellis, W

    2000-06-20

    Our aim was to document the technical and clinical course of prostate brachytherapy patients with radiographic evidence of median lobe hyperplasia (MLH). Eight patients with MLH were identified during our routine brachytherapy practice, representing 9% of the 87 brachytherapy patients treated during a 6-month period. No effort was made to avoid brachytherapy in patients noted to have MLH on diagnostic work-up. Cystoscopic evaluation was not routinely performed. Postimplant axial computed tomographic (CT) images of the prostate were obtained at 0.5 cm intervals. Preimplant urinary obstructive symptoms were quantified by the criteria of the American Urologic Association (AUA). Each patient was contacted during the writing of this report to update postimplant morbidity information. There was no apparent association between the degree of MLH and preimplant prostate volume or AUA score. Intraoperatively, we were able to visualize MLH by transrectal ultrasound and did not notice any particular difficulty placing sources in the MLH tissue or migration of sources out of the tissue. The prescription isodose covered from 81% to 99% of the postimplant CT-defined target volume, achieving adequate dose to the median lobe tissue in all patients. Two of the eight patients developed acute, postimplant urinary retention. The first patient required intermittent self-catheterization for 3 months and then resumed spontaneous urination. MLH does not appear to be a strong contraindication to prostate brachytherapy, and prophylactic resection of hypertrophic tissue in such patients is probably not warranted. Int. J. Cancer (Radiat. Oncol. Invest.) 90, 152-156 (2000). PMID:10900427

  5. Interstitial rotating shield brachytherapy for prostate cancer

    SciTech Connect

    Adams, Quentin E. Xu, Jinghzu; Breitbach, Elizabeth K.; Li, Xing; Rockey, William R.; Kim, Yusung; Wu, Xiaodong; Flynn, Ryan T.; Enger, Shirin A.

    2014-05-15

    Purpose: To present a novel needle, catheter, and radiation source system for interstitial rotating shield brachytherapy (I-RSBT) of the prostate. I-RSBT is a promising technique for reducing urethra, rectum, and bladder dose relative to conventional interstitial high-dose-rate brachytherapy (HDR-BT). Methods: A wire-mounted 62 GBq{sup 153}Gd source is proposed with an encapsulated diameter of 0.59 mm, active diameter of 0.44 mm, and active length of 10 mm. A concept model I-RSBT needle/catheter pair was constructed using concentric 50 and 75 μm thick nickel-titanium alloy (nitinol) tubes. The needle is 16-gauge (1.651 mm) in outer diameter and the catheter contains a 535 μm thick platinum shield. I-RSBT and conventional HDR-BT treatment plans for a prostate cancer patient were generated based on Monte Carlo dose calculations. In order to minimize urethral dose, urethral dose gradient volumes within 0–5 mm of the urethra surface were allowed to receive doses less than the prescribed dose of 100%. Results: The platinum shield reduced the dose rate on the shielded side of the source at 1 cm off-axis to 6.4% of the dose rate on the unshielded side. For the case considered, for the same minimum dose to the hottest 98% of the clinical target volume (D{sub 98%}), I-RSBT reduced urethral D{sub 0.1cc} below that of conventional HDR-BT by 29%, 33%, 38%, and 44% for urethral dose gradient volumes within 0, 1, 3, and 5 mm of the urethra surface, respectively. Percentages are expressed relative to the prescription dose of 100%. For the case considered, for the same urethral dose gradient volumes, rectum D{sub 1cc} was reduced by 7%, 6%, 6%, and 6%, respectively, and bladder D{sub 1cc} was reduced by 4%, 5%, 5%, and 6%, respectively. Treatment time to deliver 20 Gy with I-RSBT was 154 min with ten 62 GBq {sup 153}Gd sources. Conclusions: For the case considered, the proposed{sup 153}Gd-based I-RSBT system has the potential to lower the urethral dose relative to HDR-BT by 29

  6. Brachytherapy in the treatment of skin cancer: an overview.

    PubMed

    Skowronek, Janusz

    2015-10-01

    The incidence of skin cancer worldwide is constantly growing and it is the most frequently diagnosed tumor. Brachytherapy (BT) in particular localizations is a valuable tool of the exact radiation depot inside the tumor mass. In localizations such as the face, skull skin and inoperable tumors, relapses after surgery, radiotherapy are usually not suitable for primary or secondary invasive treatment. Brachytherapy is a safe procedure for organs at risk according to rapid fall of a dose outside the axis of the applicator with satisfactory dose localization inside the target. The complications rate is acceptable and treatment costs are low. In some tumors (great skin lesions in the scalp, near eyes or on the nose) BT allows for a great dose reduction in surrounding healthy tissues. Brachytherapy provides minimal dose delivery to surrounding healthy tissue, thus enabling good functional and cosmetic results. Treatment is possible almost in all cases on an outpatient basis. PMID:26759545

  7. Optimizing methods for the study of intravascular lipid metabolism in zebrafish.

    PubMed

    Chen, Kan; Wang, Chang-Qian; Fan, Yu-Qi; Xie, Yu-Shui; Yin, Zhao-Fang; Xu, Zuo-Jun; Zhang, Hui-Li; Cao, Jia-Tian; Han, Zhi-Hua; Wang, Yue; Song, Dong-Qiang

    2015-03-01

    The zebrafish (Danio rerio) is a useful vertebrate model for use in cardiovascular drug discovery. The present study aimed to construct optimized methods for the study of intravascular lipid metabolism of zebrafish. The lipophilic dye, Oil Red O, was used to stain fasting zebrafish one to eight days post-fertilization (dpf) and to stain 7-dpf zebrafish incubated in a breeding system containing 0.1% egg yolk as a high-fat diet (HFD) for 48 h. Three-dpf zebrafish were kept in CholEsteryl boron-dipyrromethene (BODIPY) 542/563 C11 water for 24 h which indicated the efficiency of CholEsteryl BODIPY 542/563 C11 intravascular cholesterol staining. Subsequently, 7-dpf zebrafish were incubated in water containing the fluorescent probe CholEsteryl BODIPY 542/563 C11 and fed a high-cholesterol diet (HCD) for 10 d. Two groups of 7-dpf zebrafish were incubated in regular breeding water and fed with a regular or HCD containing CholEsteryl BODIPY 542/563 C11 for 10 d. Finally, blood lipids of adult zebrafish fed with regular or HFD for seven weeks were measured. Oil Red O was not detected in the blood vessels of 7-8-dpf zebrafish. Increased intravascular lipid levels were detected in 7-dpf zebrafish incubated in 0.1% egg yolk, indicated by Oil Red O staining. Intravascular cholesterol was efficiently stained in 3-dpf zebrafish incubated in breeding water containing CholEsteryl BODIPY 542/563 C11; however, this method was inappropriate for the calculation of intravascular fluorescence intensity in zebrafish >7‑dpf. In spite of this, intra-aortic fluorescence intensity of zebrafish fed a HCD containing CholEsteryl BODIPY 542/563 C11 was significantly higher (P<0.05) than that of those fed a regular diet containing CholEsteryl BODIPY 542/563 C11. The serum total cholesterol and triglyceride levels of adult zebrafish fed a HFD were markedly increased compared to those of the control group (P<0.05). In conclusion, the use of Oil Red O staining and CholEsteryl BODIPY 542/563 C11 may

  8. Imaging method for monitoring delivery of high dose rate brachytherapy

    DOEpatents

    Weisenberger, Andrew G; Majewski, Stanislaw

    2012-10-23

    A method for in-situ monitoring both the balloon/cavity and the radioactive source in brachytherapy treatment utilizing using at least one pair of miniature gamma cameras to acquire separate images of: 1) the radioactive source as it is moved in the tumor volume during brachytherapy; and 2) a relatively low intensity radiation source produced by either an injected radiopharmaceutical rendering cancerous tissue visible or from a radioactive solution filling a balloon surgically implanted into the cavity formed by the surgical resection of a tumor.

  9. Radiotherapy and brachytherapy for recurrent colorectal cancer

    SciTech Connect

    Nag, S. )

    1991-05-01

    Radical surgical excision of locoregional recurrence of colorectal carcinoma usually produces the best survival and should be attempted whenever possible. However, recurrences are often unresectable; hence palliative local therapy may be indicated. There are several options for the radiation therapy of local, unresectable, recurrent, or metastatic colorectal cancer. Whole pelvis irradiation of 4,000-5,000 cGy followed by a coned-down boost of 1,000-1,500 cGy generally provides good symptomatic palliation in 80-90% of patients, but long-term control or cure is rarely achieved. External beam irradiation of 2,000-3,000 cGy to the whole liver with or without concurrent chemotherapy may be used for palliation of metastatic disease to the liver. A combination of intraoperative radiation therapy applied directly to the tumor bed and external beam irradiation may improve local control and survival rates. Multiple options are available for the intraoperative use of brachytherapy which can deliver high radiation doses to the residual tumor, or tumor bed, sparing normal tissue.

  10. Intervention on the left main coronary artery. Importance of periprocedural and follow-up intravascular ultrasonography guidance

    PubMed Central

    Chmielak, Zbigniew; Pręgowski, Jerzy; Rewicki, Marek; Karcz, Maciej

    2014-01-01

    Periprocedural intravascular ultrasonography guidance for left main coronary artery stenting is well established. However, the role of this tool is also important at follow-up interventions. We present a case of a patient with previous history of left main coronary artery angioplasty. During a recent attempt to treat tight stenosis in the left anterior descending coronary artery, it was not possible to advance the stent into the left main coronary artery. Intravascular ultrasonography explained the difficulties encountered. PMID:25061462

  11. [Intravascular biocompatibility of decellularized xenogenic vascular scaffolds/PHBHHx hybrid material for cardiovascular tissue engineering].

    PubMed

    Wu, Song; Liu, Yinglong; Cui, Bin; Tang, Yue; Wang, Qiang; Qu, Xianghua; Chen, Guoqiang

    2008-04-01

    Poly (3-hydroxybutyrate-co-3-hydroxyhexanoate, PHBHHx) has superior mechanical and biocompatibility that may enable it to meet cardiovascular tissue engineering applications. We developed hybrid materials based on decellularized xenogenic vascular scaffolds that were coated with PHBHHx to investigate the intravascular biocompatibility. The hybrid patches were implanted in the rabbit abdominal aorta (hybrid patch, n = 12). Only decellularized xenogenic vascular scaffolds were implanted without coating as control (uncoated patch, n = 12). The patches were explanted and examined histologically, and biochemically at 1, 4 and 12 weeks after the surgery. The hybrid patches maintained original shapes, covered by confluent layer of cells and had less calcification than uncoated control. The results indicated that PHBHHx coating reduced calcification, promoted the repopulation of hybrid patch with recipients cells. In conclusion, PHBHHx showed remarkable intravascular biocompatibility and would benefit endothelization which would be a useful candidate for lumen of cardiovascular tissue engineering. PMID:18616171

  12. [Intravascular lymphoma treated with anti CD20 monoclonal antibodies. Report of one case].

    PubMed

    Alfaro, Jorge; Espinoza, Arturo; Manŕiquez, María; Moyano, Leonor; González, Néstor; Larrondo, Milton; Figueroa, Gastón

    2004-11-01

    We report a 78 year old male with prostatism, that was subjected to a prostate biopsy. The pathological study showed a microvascular lymphocytic infiltration. Four months later, the patients presented with reduced alertness, cough, dyspnea, fever and elevation of lactic dehydrogenase and erythrocyte sedimentation rate. Chest and abdominal CAT scans, bone marrow aspirate, protein electrophoresis and prostate specific antigen were normal. A re-evaluation of prostate biopsy showed an intravascular lymphoid infiltration, positive for CD45 and CD20, compatible with the diagnosis of intravascular lymphoma. Chemotherapy was started, but it was not tolerated by the patient and the response was partial. Therefore, treatment with monoclonal antibodies anti CD20 (Rituximab) was started. The tumor had a complete and prolonged (24 months) remission after the treatment PMID:15693204

  13. Enhanced glucose tolerance by intravascularly administered piceatannol in freely moving healthy rats.

    PubMed

    Oritani, Yukihiro; Okitsu, Teru; Nishimura, Eisaku; Sai, Masahiko; Ito, Tatsuhiko; Takeuchi, Shoji

    2016-02-12

    Piceatannol is a phytochemical in the seeds of passion fruit that has a hypoglycemic effect when orally administered. To elucidate the contribution of intact and metabolites of piceatannol after gastro-intestinal absorption to hypoglycemic effect, we examined the influence of piceatannol and isorhapontigenin on blood glucose concentrations during fasting and glucose tolerance tests by administering them intravascularly to freely moving healthy rats. We found that intravascularly administered piceatannol reduced the blood glucose concentrations during both fasting and glucose tolerance tests, but isorhapontigenin did not during either of them. Furthermore, we found that piceatannol increased the insulinogenic index during glucose tolerance tests and that piceatannol had no influence on insulin sensitivity by performing hyperinsulinemic euglycemic clamping tests. These results suggest that piceatannol orally intaken may enhance glucose tolerance by the effect of intact piceatannol through enhanced early-phase secretion of insulin. Therefore, oral intake of piceatannol might contribute to proper control of postprandial glycemic excursions in healthy subjects. PMID:26773506

  14. Intravascular ultrasound-guided central vein angioplasty and stenting without the use of radiographic contrast agents.

    PubMed

    Matthews, Ray; Thomas, Joseph

    2008-05-01

    Patients with contraindications to iodinated radiographic contrast agents present a significant challenge during endovascular intervention. A 46-year-old man with end-stage renal disease and a normally functioning left upper extremity arteriovenous fistula presented with severe left arm edema. The patient's history included repeated severe anaphylactoid reactions with severe respiratory distress upon exposure to iodinated contrast. In an attempt to avoid the use of iodinated contrast, angioplasty and stent placement of a severe central venous stenosis were performed using only fluoroscopy and intravascular sonography. In patients unable to receive iodinated contrast secondary to anaphylactoid reactions, intravascular sonography can be used to guide angioplasty and stenting of central venous stenosis. PMID:18286503

  15. Intravascular fasciitis: report of two intraoral cases and review of the literature.

    PubMed

    Kuklani, Riya; Robbins, James L; Chalk, Evan C; Pringle, Gordon

    2016-01-01

    Two unusual cases of intravascular fasciitis arising in a 25-year-old female and a 26-year-old male are presented here. The lesions apparently presented as firm, raised, submucosal nodules on the tongue. Intravascular fasciitis (IVF) shares the microscopic features of nodular fasciitis (NF), but with intraluminal, intramural, and extramural involvement of small- to medium-sized veins and arteries with a multinodular or serpentine growth pattern along the course of affected blood vessels. NF is a benign lesion occurring on the trunk and upper extremities with a strong predilection for young adults 20 to 40 years of age. Intraoral NF is uncommon, and intraoral IVF is extremely rare, with only sporadic reports in the literature. In both of our cases, the patient's main concern was rapid growth of the lesion, which was nontender, on the tongue. The clinical, histologic, and immunohistochemical features and treatment are presented, along with a review of the literature. PMID:26163438

  16. Intravascular ATP and the regulation of blood flow and oxygen delivery in humans.

    PubMed

    Crecelius, Anne R; Kirby, Brett S; Dinenno, Frank A

    2015-01-01

    Regulation of vascular tone is a complex response that integrates multiple signals that allow for blood flow and oxygen supply to match oxygen demand appropriately. Here, we discuss the potential role of intravascular adenosine triphosphate (ATP) as a primary factor in these responses and put forth the hypothesis that deficient ATP release contributes to impairments in vascular control exhibited in aged and diseased populations. PMID:25390296

  17. Evaluation of intravascular microdialysis for continuous blood glucose monitoring in hypoglycemia: an animal model.

    PubMed

    Schierenbeck, Fanny; Wallin, Mats; Franco-Cereceda, Anders; Liska, Jan

    2014-07-01

    We have previously shown that intravascular microdialysis in a central vein is an accurate method for continuous glucose monitoring in patients undergoing cardiac surgery. However, no hypoglycemia occurred in our earlier studies, prompting further evaluation of the accuracy of intravascular microdialysis in the hypoglycemic range. Thus, this animal study was performed. A porcine model was developed; hypoglycemia was induced using insulin injections. The pigs were monitored with intravascular microdialysis integrated in a triple-lumen central venous catheter. As reference, venous blood gas samples were taken every 5 minutes and analyzed in a blood gas analyzer. Ethical permission for the animal experiments was obtained from the Stockholm Regional Ethical Committee, reference no N397/09. A total of 213 paired samples were obtained for analysis, and 126 (59.2%) of these were in the hypoglycemic range (<74 mg/dl). Using Clarke error grid analysis, 100% of the paired samples were in region AB and 99% in region A. The ISO standard (ISO15197) was met. Bland-Altman analysis showed bias (mean difference) ± limits of agreement was -0.18 ± 16.2 mg/dl. No influence from glucose infusions was seen. The microdialysis monitoring system was found to be very responsive in rapid changes in blood glucose concentration. This study shows that intravascular microdialysis in a central vein is an accurate method for continuous glucose monitoring in hypoglycemia in a porcine experimental model. Furthermore, the system was not influenced by glucose administration and was found to be responsive in rapid blood glucose fluctuations. PMID:24876424

  18. Double-cladding-fiber-based detection system for intravascular mapping of fluorescent molecular probes

    NASA Astrophysics Data System (ADS)

    Razansky, R. Nika; Rozental, Amir; Mueller, Mathias S.; Deliolanis, Nikolaos; Jaffer, Farouc A.; Koch, Alexander W.; Ntziachristos, Vasilis

    2011-03-01

    Early detection of high-risk coronary atherosclerosis remains an unmet clinical challenge. We have previously demonstrated a near-infrared fluorescence catheter system for two-dimensional intravascular detection of fluorescence molecular probes [1]. In this work we improve the system performance by introducing a novel high resolution sensor. The main challenge of the intravascular sensor is to provide a highly focused spot at an application relevant distance on one hand and a highly efficient collection of emitted light on the other. We suggest employing a double cladding optical fiber (DCF) in combination with focusing optics to provide a sensor with both highly focused excitation light and highly efficient fluorescent light collection. The excitation laser is coupled into the single mode core of DCF and guided through a focusing element and a right angle prism. The resulting side-fired beam exhibits a small spot diameter (50 μm) throughout a distance of up to 2 mm from the sensor. This is the distance of interest for intravascular coronary imaging application, determined by an average human coronary artery diameter. At the blood vessel wall, an activatable fluorescence molecular probe is excited in the diseased lesions. Next light of slightly shifted wavelength emits only in the places of the inflammations, associated with dangerous plaques [2]. The emitted light is collected by the cladding of the DCF, with a large collection angle (NA=0.4). The doublecladding acts as multimodal fiber and guides the collected light to the photo detection elements. The sensor automatically rotates and pulled-back, while each scanned point is mapped according to the amount of detected fluorescent emission. The resulting map of fluorescence activity helps to associate the atherosclerotic plaques with the inflammation process. The presented detection system is a valuable tool in the intravascular plaque detection and can help to differentiate the atherosclerotic plaques based on

  19. Laparoscopic Manipulation of a Probe-based Confocal Laser Endomicroscope Using a Steerable Intravascular Catheter

    PubMed Central

    Desjardins, Adrien E.; Gurusamy, Kurinchi; Hawkes, David J.; Davidson, Brian R.

    2015-01-01

    Probe-based confocal laser endomicroscopy is an emerging imaging modality that enables visualization of histologic details during endoscopy and surgery. A method of guiding the probe with millimeter accuracy is required to enable imaging in all regions of the abdomen accessed during laparoscopy. On the basis of a porcine model of laparoscopic liver resection, we report our experience of using a steerable intravascular catheter to guide a probe-based confocal laser endomicroscope. PMID:25807277

  20. Imaging findings for intravascular large B-cell lymphoma of the liver

    PubMed Central

    Bae, Jungmin; Park, Ha Young

    2015-01-01

    Intravascular large B-cell lymphoma (IVLBCL) is a rare subtype of extranodal diffuse large B-cell lymphoma that most commonly involves the central nervous system and skin. To our knowledge, no state-of-the art imaging findings have been reported for hepatic IVLBCL in the English literature. We report the first case of hepatic involvement of IVLBCL along with a literature review. PMID:26523272

  1. Comparison of intravascular (nondiffusible) and diffusible radiotracers in diagnosis of testicular-scrotal disorders

    SciTech Connect

    Skarzynski, J.J.; Rosenberg, R.J.; Sziklas, J.J.; Walzak, M.P.; Karimeddini, M.K.; Spencer, R.P.

    1985-05-01

    The radionuclide approach to testicular-scrotal lesions has been described in the literature in terms of dynamic and static images. However, there has been little consideration of which radiopharmaceutical to utilize. In essence, the desired procedure is to estimate relative blood flow to each testicular-scrotal area. An intravascular (nondiffusible) radiolabel may therefore be advantageous. We reviewed 18 consecutive radionuclide studies that were performed for suspected testicular-scrotal pathology. Three radiopharmaceuticals were utilized; 7 with Tc-99m-RBC or HSA, 7 with Tc-99m-pertechnetate, and 4 with Tc-99m-DTPA. Studies were read ''blind'' as to the agent employed and rated on a scale of 1+ (least satisfactory) to 4+. Criteria included ability to delineate the testes-scrotum, background activity, and clarity of the dynamic phase. Studies with the intravascular labels (6 with tagged RBC and 1 with labeled HSA) had a mean rating of 3.6 out of 4. Pertechnetate studies had a rating of 3.0. Those performed with DTPA received a rating of 2.0. The major problems with DTPA studies were rapid entry into soft tissue (likely extracellular fluid), which created a high background; in addition, bladder counts detracted from imaging the testicular-scrotal region. Intravascular labels appear to be a distinct improvement over Tc-99m-pertechnetate for testicular-scrotal imaging.

  2. Lead-Free Intravascular Ultrasound Transducer Using BZT-50BCT Ceramics

    PubMed Central

    Yan, Xingwei; Lam, Kwok Ho; Li, Xiang; Chen, Ruimin; Ren, Wei; Ren, Xiaobing; Zhou, Qifa; Shung, K. Kirk

    2013-01-01

    This paper reports the fabrication and evaluation of a high-frequency ultrasonic transducer based on a new lead-free piezoelectric material for intravascular imaging application. Lead-free 0.5Ba(Zr0.2Ti0.8)O3−0.5(Ba0.7Ca0.3)TiO3 (BZT-50BCT) ceramic with a high dielectric constant (~2800) was employed to develop a high-frequency (~30 MHz) needle-type ultrasonic transducer. With superior piezoelectric performance (piezoelectric coefficient d33 ~ 600 pC/N), the lead-free transducer was found to exhibit a −6-dB bandwidth of 53% with an insertion loss of 18.7 dB. In vitro intravascular ultrasound (IVUS) imaging of a human cadaver coronary artery was performed to demonstrate the potential of the lead-free transducer for biomedical imaging applications. This is the first time that a lead-free transducer has been used for IVUS imaging application. The experimental results suggest that the BZT-50BCT ceramic is a promising lead-free piezoelectric material for high-frequency intravascular imaging applications. PMID:25004492

  3. Intravascular near-infrared fluorescence catheter with ultrasound guidance and blood attenuation correction

    PubMed Central

    Hossack, John A.

    2013-01-01

    Abstract. Intravascular near-infrared fluorescence (NIRF) imaging offers a new approach for characterizing atherosclerotic plaque, but random catheter positioning within the vessel lumen results in variable light attenuation and can yield inaccurate measurements. We hypothesized that NIRF measurements could be corrected for variable light attenuation through blood by tracking the location of the NIRF catheter with intravascular ultrasound (IVUS). In this study, a combined NIRF-IVUS catheter was designed to acquire coregistered NIRF and IVUS data, an automated image processing algorithm was developed to measure catheter-to-vessel wall distances, and depth-dependent attenuation of the fluorescent signal was corrected by an analytical light propagation model. Performance of the catheter sensing distance correction method was evaluated in coronary artery phantoms and ex vivo arteries. The correction method produced NIRF estimates of fluorophore concentrations, in coronary artery phantoms, with an average root mean square error of 17.5%. In addition, the correction method resulted in a statistically significant improvement in correlation between spatially resolved NIRF measurements and known fluorophore spatial distributions in ex vivo arteries (from r=0.24 to 0.69, p<0.01, n=6). This work demonstrates that catheter-to-vessel wall distances, measured from IVUS images, can be employed to compensate for inaccuracies caused by variable intravascular NIRF sensing distances. PMID:23698320

  4. Selective Reduction Using Intravascular Potassium Chloride Injection after Laser Surgery for Twin-Twin Transfusion Syndrome.

    PubMed

    Chmait, Ramen H; Kontopoulos, Eftichia V; Jackson, Marc; Horenstein, Janet; Timor-Tritsch, Ilan; Quintero, Rubén A

    2016-01-01

    Selective reduction (SR) via intravascular potassium chloride (KCl) injection is contraindicated in monochorionic twins due to the presence of placental vascular communications, which may serve as a conduit for inter-twin passage of KCl or allow exsanguination of the living twin into the demised twin. After successful selective laser photocoagulation of communicating vessels (SLPCV) for twin-twin transfusion syndrome (TTTS), the twins' circulatory systems are rendered independent. Theoretically, intravascular KCl injection into one twin after successful SLPCV should not result in passage of the feticidal agent nor cause hemodynamic alterations in the co-twin. We describe 3 cases of 1,069 patients (0.3%) that underwent SLPCV for TTTS between 2003 and 2013 and subsequent SR. SLPCV was successfully completed at 180, 226, and 230 weeks' gestational age for Quintero stages III, IV, and III TTTS, respectively. SR via intravascular KCl injection was later performed at maternal request due to the risk of neurological compromise in one twin at 226, 254, and 236 weeks' gestational age. All co-twins survived after SR, and no neurological sequelae were suspected after birth. Further study is necessary before SR can be routinely considered after laser surgery for TTTS. PMID:26067899

  5. Intravascular haemolysis during prolonged running on asphalt and natural grass in long and middle distance runners.

    PubMed

    Janakiraman, Kamal; Shenoy, Shweta; Sandhu, Jaspal Singh

    2011-09-01

    Surface features such as uneven playing surfaces, low impact absorption capacity and inappropriate friction/traction characteristics are connected with injury prevalence whereas force impact during foot strike has been suggested to be an important mechanism of intravascular haemolysis during running. We aimed to evaluate intravascular haemolysis during running and compare the effect of running on two different types of surfaces on haemolysis. We selected two surfaces (asphalt and grass) on which these athletes usually run. Participants were randomly assigned to group A (asphalt) or group B (grass) with 10 athletes in each group. Each athlete completed one hour of running at the calculated target heart rate (60-70%). Venous blood samples were collected before and immediately after running. We measured unconjugated bilirubin (UBR) (mg · dl(-1)), lactate dehydrogenase (LDH) (μ · ml(-1)), haemoglobin (g · l(-1)) and serum ferritin (ng · ml(-1)) as indicators of haemolysis. Athletes who ran on grass demonstrated an increase in the haematological parameters (UBR: P < 0.01, LDH: P < 0.05) when compared to athletes who ran on asphalt (UBR: P < 0.05, LDH: P = 0.241). Our findings indicate that intravascular haemolysis occurs significantly after prolonged running. Furthermore, we conclude that uneven grass surface results in greater haemolysis compared to asphalt road. PMID:21751854

  6. A novel dual-frequency imaging method for intravascular ultrasound applications.

    PubMed

    Qiu, Weibao; Chen, Yan; Wong, Chi-Man; Liu, Baoqiang; Dai, Jiyan; Zheng, Hairong

    2015-03-01

    Intravascular ultrasound (IVUS), which is able to delineate internal structures of vessel wall with fine spatial resolution, has greatly enriched the knowledge of coronary atherosclerosis. A novel dual-frequency imaging method is proposed in this paper for intravascular imaging applications. A probe combined two ultrasonic transducer elements with different center frequencies (36 MHz and 78 MHz) is designed and fabricated with PMN-PT single crystal material. It has the ability to balance both imaging depth and resolution, which are important imaging parameters for clinical test. A dual-channel imaging platform is also proposed for real-time imaging, and this platform has been proven to support programmable processing algorithms, flexible imaging control, and raw RF data acquisition for IVUS applications. Testing results show that the -6 dB axial and lateral imaging resolutions of low-frequency ultrasound are 78 and 132 μm, respectively. In terms of high-frequency ultrasound, axial and lateral resolutions are determined to be as high as 34 and 106 μm. In vitro intravascular imaging on healthy swine aorta is conducted to demonstrate the performance of the dual-frequency imaging method for IVUS applications. PMID:25454093

  7. High frame-rate intravascular optical frequency-domain imaging in vivo

    PubMed Central

    Cho, Han Saem; Jang, Sun-Joo; Kim, Kyunghun; Dan-Chin-Yu, Alexey V.; Shishkov, Milen; Bouma, Brett E.; Oh, Wang-Yuhl

    2013-01-01

    Intravascular optical frequency-domain imaging (OFDI), a second-generation optical coherence tomography (OCT) technology, enables imaging of the three-dimensional (3D) microstructure of the vessel wall following a short and nonocclusive clear liquid flush. Although 3D vascular visualization provides a greater appreciation of the vessel wall and intraluminal structures, a longitudinal imaging pitch that is several times bigger than the optical imaging resolution of the system has limited true high-resolution 3D imaging, mainly due to the slow scanning speed of previous imaging catheters. Here, we demonstrate high frame-rate intravascular OFDI in vivo, acquiring images at a rate of 350 frames per second. A custom-built, high-speed, and high-precision fiber-optic rotary junction provided uniform and high-speed beam scanning through a custom-made imaging catheter with an outer diameter of 0.87 mm. A 47-mm-long rabbit aorta was imaged in 3.7 seconds after a short contrast agent flush. The longitudinal imaging pitch was 34 μm, comparable to the transverse imaging resolution of the system. Three-dimensional volume-rendering showed greatly enhanced visualization of tissue microstructure and stent struts relative to what is provided by conventional intravascular imaging speeds. PMID:24466489

  8. Cerebral aneurysms treated with flow-diverting stents: Computational models using intravascular blood flow measurements

    PubMed Central

    Levitt, Michael R; McGah, Patrick M; Aliseda, Alberto; Mourad, Pierre D; Nerva, John D; Vaidya, Sandeep S; Morton, Ryan P; Ghodke, Basavaraj V; Kim, Louis J

    2013-01-01

    Background and Purpose Computational fluid dynamics modeling is useful in the study of the hemodynamic environment of cerebral aneurysms, but patient-specific measurements of boundary conditions, such as blood flow velocity and pressure, have not been previously applied to the study of flow-diverting stents. We integrated patient-specific intravascular blood flow velocity and pressure measurements into computational models of aneurysms before and after treatment with flow-diverting stents to determine stent effects on aneurysm hemodynamics. Methods Blood flow velocity and pressure were measured in peri-aneurysmal locations using an intravascular dual-sensor pressure and Doppler velocity guidewire before and after flow-diverting stent treatment of four unruptured cerebral aneurysms. These measurements defined inflow and outflow boundary conditions for computational models. Intra-aneurysmal flow rates, wall shear stress and wall shear stress gradient were calculated. Results Measurements of inflow velocity and outflow pressure were successful in all four patients. Computational models incorporating these measurements demonstrated significant reductions in intra-aneurysmal wall shear stress and wall shear stress gradient, and a trend in reduced intra-aneurysmal blood flow. Conclusions Integration of intravascular dual-sensor guidewire measurements of blood flow velocity and blood pressure provided patient-specific computational models of cerebral aneurysms. Aneurysm treatment with flow-diverting stents reduces blood flow and hemodynamic shear stress in the aneurysm dome. PMID:23868162

  9. Automated Framework for Detecting Lumen and Media-Adventitia Borders in Intravascular Ultrasound Images.

    PubMed

    Gao, Zhifan; Hau, William Kongto; Lu, Minhua; Huang, Wenhua; Zhang, Heye; Wu, Wanqing; Liu, Xin; Zhang, Yuan-Ting

    2015-07-01

    An automated framework for detecting lumen and media-adventitia borders in intravascular ultrasound images was developed on the basis of an adaptive region-growing method and an unsupervised clustering method. To demonstrate the capability of the framework, linear regression, Bland-Altman analysis and distance analysis were used to quantitatively investigate the correlation, agreement and spatial distance, respectively, between our detected borders and manually traced borders in 337 intravascular ultrasound images in vivo acquired from six patients. The results of these investigations revealed good correlation (r = 0.99), good agreement (>96.82% of results within the 95% confidence interval) and small average distance errors (lumen border: 0.08 mm, media-adventitia border: 0.10 mm) between the borders generated by the automated framework and the manual tracing method. The proposed framework was found to be effective in detecting lumen and media-adventitia borders in intravascular ultrasound images, indicating its potential for use in routine studies of vascular disease. PMID:25922134

  10. Integrated intravascular ultrasound and optical-resolution photoacoustic microscopy with a 1-mm-diameter catheter

    NASA Astrophysics Data System (ADS)

    Bai, Xiaosong; Gong, Xiaojing; Lin, Riqiang; Hau, William; Song, Liang

    2014-03-01

    Intravascular ultrasound (IVUS) plays a vital role in assessing the severity of atherosclerosis and has greatly enriched our knowledge on atherosclerotic plaques. However, it mainly reveals the structural information of plaques. In contrast, spectroscopic and molecular photoacoustic imaging can potentially improve plaque composition identification, inflammation detection, and ultimately the stratification of plaque vulnerability and risk. In this work, we developed an integrated intravascular ultrasound and optical-resolution photoacoustic microscopy (IVUS-PAM) system with a single catheter as small as 1 mm in diameter, comparable to that of existing clinical IVUS catheters. In addition, by using a GRIN lens to focus the excitation laser pulse, the system provides an optical-diffraction limited photoacoustic lateral resolution as fine as 19.6 micrometers, ~10-fold finer than that of conventional intravascular photoacoustic imaging and existing IVUS technology. The system employs a custom-made miniaturized single-element ultrasonic transducer with a dimension of ~0.5 mm, a centre frequency of ~40 MHz, and a fractional bandwidth of ~60%. The IVUS-PAM can simultaneously acquire co-registered IVUS images with an axial resolution of ~40 micrometers and a lateral resolution of ~200 micrometers. In the future, IVUS-PAM may open up new opportunities for improved high-resolution vulnerable plaque imaging and image-guided stent deployment.

  11. Lead-free intravascular ultrasound transducer using BZT-50BCT ceramics.

    PubMed

    Yan, Xingwei; Lam, Kwok Ho; Li, Xiang; Chen, Ruimin; Ren, Wei; Ren, Xiaobing; Zhou, Qifa; Shung, K Kirk

    2013-06-01

    This paper reports the fabrication and evaluation of a high-frequency ultrasonic transducer based on a new lead-free piezoelectric material for intravascular imaging application. Lead-free 0.5Ba(Zr0.2Ti0.8)O3-0.5(Ba0.7Ca0.3)TiO4(BZT-50BCT) ceramic with a high dielectric constant (~2800) was employed to develop a high-frequency (~30 MHz) needle-type ultrasonic transducer. With superior piezoelectric performance (piezoelectric coefficient d33 ~ 600 pC/N), the lead-free transducer was found to exhibit a -6-dB bandwidth of 53% with an insertion loss of 18.7 dB. In vitro intravascular ultrasound (IVUS) imaging of a human cadaver coronary artery was performed to demonstrate the potential of the lead-free transducer for biomedical imaging applications. This is the first time that a lead-free transducer has been used for IVUS imaging application. The experimental results suggest that the BZT-50BCT ceramic is a promising lead-free piezoelectric material for high-frequency intravascular imaging applications. PMID:25004492

  12. The intravascular low level laser irradiation (ILLLI) in treatment of psoriasis clinically

    NASA Astrophysics Data System (ADS)

    Zhu, Jing; Nie, Fan; Shi, Hong-Min

    2005-07-01

    Objective: The title is research curative effect of intravascular low level laser irradiation (ILLLI) in treatment of psoriasis. Method: 478 patients with psoriasis from five groups to observe their efficacy. Group1 were treated by He-Ne laser combined with drug. Group 2 were treated by semi-conductor laser combined with drug. Group 3 were treated only by He-He laser. Group 4 were treated by semi-conductor laser. Group 5 were treated only by drug. The Ridit statistical analysis was applied to all of these data. The treatment of intravascular low level laser irradiation is as follow: laser power:4-5mw, 1 hour per day and 10 days as a period combined with vit C 2.0 g iv and inhalation of O2. Results: The clinical results: the near efficient rate was 100%, in group1-4, if combined with drugs it would be better. Ridit statistical analysis showed no significant difference between group1-4, p>0.05. The efficient rate 72.97% in group5.There were showed very significant difference with group1-4, p<0.01. 2.There were no significant differences between He-Ne laser (632.8nm) and semiconductor laser(650nm); 3.The efficacy of ILLLI in psoriasis was positive correlation to the ILLLI times. Conclusions: It can improve curative effect of intravascular low levellaser irradiation (ILLLI) in treatment of psoriasis.

  13. Introduction of Transperineal Image-Guided Prostate Brachytherapy

    SciTech Connect

    Aronowitz, Jesse N.

    2014-07-15

    The modern prostate brachytherapy procedure is characterized by ultrasound guidance, template assistance, and a return to a “closed” transperineal approach. This review traces the introduction and evolution of these elements and charts the development of the procedure from the ashes of previous, failed efforts.

  14. 21 CFR 892.5730 - Radionuclide brachytherapy source.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Radionuclide brachytherapy source. 892.5730 Section 892.5730 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Therapeutic Devices § 892.5730 Radionuclide...

  15. 21 CFR 892.5730 - Radionuclide brachytherapy source.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Radionuclide brachytherapy source. 892.5730 Section 892.5730 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Therapeutic Devices § 892.5730 Radionuclide...

  16. 21 CFR 892.5730 - Radionuclide brachytherapy source.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Radionuclide brachytherapy source. 892.5730 Section 892.5730 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Therapeutic Devices § 892.5730 Radionuclide...

  17. 21 CFR 892.5730 - Radionuclide brachytherapy source.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Radionuclide brachytherapy source. 892.5730 Section 892.5730 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Therapeutic Devices § 892.5730 Radionuclide...

  18. Photoacoustic imaging of prostate brachytherapy seeds with transurethral light delivery

    NASA Astrophysics Data System (ADS)

    Lediju Bell, Muyinatu A.; Guo, Xiaoyu; Song, Danny Y.; Boctor, Emad M.

    2014-03-01

    We present a novel approach to photoacoustic imaging of prostate brachytherapy seeds utilizing an existing urinary catheter for transurethral light delivery. Two canine prostates were surgically implanted with brachyther- apy seeds under transrectal ultrasound guidance. One prostate was excised shortly after euthanasia and fixed in gelatin. The second prostate was imaged in the native tissue environment shortly after euthanasia. A urinary catheter was inserted in the urethra of each prostate. A 1-mm core diameter optical fiber coupled to a 1064 nm Nd:YAG laser was inserted into the urinary catheter. Light from the fiber was either directed mostly parallel to the fiber axis (i.e. end-fire fire) or mostly 90° to the fiber axis (i.e. side-fire fiber). An Ultrasonix SonixTouch scanner, transrectal ultrasound probe with curvilinear (BPC8-4) and linear (BPL9-5) arrays, and DAQ unit were utilized for synchronized laser light emission and photoacoustic signal acquisition. The implanted brachytherapy seeds were visualized at radial distances of 6-16 mm from the catheter. Multiple brachytherapy seeds were si- multaneously visualized with each array of the transrectal probe using both delay-and-sum (DAS) and short-lag spatial coherence (SLSC) beamforming. This work is the first to demonstrate the feasibility of photoacoustic imaging of prostate brachytherapy seeds using a transurethral light delivery method.

  19. Attitude and practice of brachytherapy in India: a study based on the survey amongst attendees of Annual Meeting of Indian Brachytherapy Society

    PubMed Central

    Sharma, Daya Nand; Julka, Pramod Kumar; Rath, Goura Kishor

    2015-01-01

    Purpose We performed a survey amongst attendees of the 4th Annual Meeting of Indian Brachytherapy Society to study the patterns of brachytherapy practice and attitude towards brachytherapy use. Material and methods A 19-point questionnaire was designed and e-mailed to the attendees immediately after the conference. Descriptive analysis of the responses were done and satisfaction index was used as a tool for evaluation of the program effectiveness. Binomial test was used to assess the difference between distributions of responses and Mann-Whitney U test was used to assess the correlation between responses. P value (2-tailed) of < 0.05 was taken significant for all statistical analysis. Results Of a total of 202 attendees, 90 responded to the survey (response rate: 44.5%). Seventy-two percent belonged to an academic institute while 28% belonged to non-academic institutes. Eighty-six percent were radiation oncologists and 10% were medical physicists. Eighty-nine percent respondents used high-dose-rate, 14% – pulse-dose-rate, and 13% used low-dose-rate brachytherapy facility. Orthogonal X-rays, computed tomography, and magnetic resonance imaging was used for brachytherapy planning by 56%, 69%, and 14%, respectively. Ninety-three percent of them thought that lack of training is a hurdle in practicing brachytherapy and 92% opined that brachytherapy dedicated meetings can change their perception about brachytherapy. Seventy percent respondents admitted to make some changes in their practice patterns after attending this meeting. Ninety-seven percent of them would like to attend future meetings and 98% felt the need to include live workshops, hands on demonstrations, and video presentations in the scientific programme. Conclusions The survey highlights a positive attitude towards increasing brachytherapy use, and may serve as an important guiding tool in designing teaching and training programmes; thus overcoming the hurdles in successful and widespread use of a quality

  20. Quality Assurance Issues for Computed Tomography-, Ultrasound-, and Magnetic Resonance Imaging-Guided Brachytherapy

    SciTech Connect

    Cormack, Robert A.

    2008-05-01

    The requirements of quality assurance (QA) for both brachytherapy and imaging devices are well-defined, but image-guided brachytherapy has raised new issues. Image guidance in brachytherapy