Science.gov

Sample records for 192ir intravascular brachytherapy

  1. Water equivalent phantom materials for 192Ir brachytherapy

    NASA Astrophysics Data System (ADS)

    Schoenfeld, Andreas A.; Harder, Dietrich; Poppe, Björn; Chofor, Ndimofor

    2015-12-01

    Several solid phantom materials have been tested regarding their suitability as water substitutes for dosimetric measurements in brachytherapy with 192Ir as a typical high energy photon emitter. The radial variations of the spectral photon fluence, of the total, primary and scattered photon fluence and of the absorbed dose to water in the transversal plane of the tested cylindrical phantoms surrounding a centric and coaxially arranged Varian GammaMed afterloading 192Ir brachytherapy source were Monte-Carlo simulated in EGSnrc. The degree of water equivalence of a phantom material was evaluated by comparing the radial dose-to-water profile in the phantom material with that in water. The phantom size was varied over a large range since it influences the dose contribution by scattered photons with energies diminished by single and multiple Compton scattering. Phantom axis distances up to 10 cm were considered as clinically relevant. Scattered photons with energies reaching down into the 25 keV region dominate the photon fluence at source distances exceeding 3.5 cm. The tested phantom materials showed significant differences in the degree of water equivalence. In phantoms with radii up to 10 cm, RW1, RW3, Solid Water, HE Solid Water, Virtual Water, Plastic Water DT, and Plastic Water LR phantoms show excellent water equivalence with dose deviations from a water phantom not exceeding 0.8%, while Original Plastic Water (as of 2015), Plastic Water (1995), Blue Water, polyethylene, and polystyrene show deviations up to 2.6%. For larger phantom radii up to 30 cm, the deviations for RW1, RW3, Solid Water, HE Solid Water, Virtual Water, Plastic Water DT, and Plastic Water LR remain below 1.4%, while Original Plastic Water (as of 2015), Plastic Water (1995), Blue Water, polyethylene, and polystyrene produce deviations up to 8.1%. PMMA plays a separate role, with deviations up to 4.3% for radii not exceeding 10 cm, but below 1% for radii up to 30 cm. As suggested by

  2. Patient effective dose from endovascular brachytherapy with 192Ir sources.

    PubMed

    Perma, L; Bianchi, C; Nicolini, G; Novario, R; Tanzi, F; Conte, L

    2002-01-01

    The growing use of endovascular brachytherapy has been accompanied by the publication of a large number of studies in several fields, but few studies on patient dose have been found in the literature. Moreover, these studies were carried out on the basis of Monte Carlo simulation. The aim of the present study was to estimate the effective dose to the patient undergoing endovascular brachytherapy treatment with 112Ir sources, by means of experimental measurements. Two standard treatments were taken into account: an endovascular brachytherapy of the coronary artery corresponding to the activity x time product of 184 GBq.min and an endovascular brachytherapy of the renal artery (898 GBq.min). Experimental assessment was accomplished by thermoluminescence dosemeters positioned in more than 300 measurement points in a properly adapted Rqndo phantom. A method has been developed to estimate the mean organ doses for all tissues and organs concerned in order to calculate the effective dose associated with intravascular brachytherapy. The normalised organ doses resulting from cronary treatment were 2.4 x 10(-2) mSv.GBq(-1).min(-1) for lung, 0.9 x 10(-2) mSv.GBSq(-1).min(-1) for oesophagus and 0.48 x 10(-2) mS.GBq(-1).min(-1) for bone marrow. During brachytherapy of the renal artery, the corresponding normalised doses were 4.2 x 10(-2) mS.GBq(-1).min(-1) for colon, 7.8 x 10(-2) mSv.GBq(-1).min(-1) for stomach and 1.7 x 10(-2) mSv.GBq(-1).min(-1) for liver. Coronary treatment iJnvlled an efl'fective dose of (0.046 mSv.GBq(-1).min(-1), whereas the treatment of the renal artery resulted in an effective dose of 0.15 mSv.GBq(-1).min(-1); there were many similarities with data from former studies. Based on these results it can be concluded that the dose level of patients exposed during brachytherapy treatment is low.

  3. Source geometry factors for HDR 192Ir brachytherapy secondary standard well-type ionization chamber calibrations

    NASA Astrophysics Data System (ADS)

    Shipley, D. R.; Sander, T.; Nutbrown, R. F.

    2015-03-01

    Well-type ionization chambers are used for measuring the source strength of radioactive brachytherapy sources before clinical use. Initially, the well chambers are calibrated against a suitable national standard. For high dose rate (HDR) 192Ir, this calibration is usually a two-step process. Firstly, the calibration source is traceably calibrated against an air kerma primary standard in terms of either reference air kerma rate or air kerma strength. The calibrated 192Ir source is then used to calibrate the secondary standard well-type ionization chamber. Calibration laboratories are usually only equipped with one type of HDR 192Ir source. If the clinical source type is different from that used for the calibration of the well chamber at the standards laboratory, a source geometry factor, ksg, is required to correct the calibration coefficient for any change of the well chamber response due to geometric differences between the sources. In this work we present source geometry factors for six different HDR 192Ir brachytherapy sources which have been determined using Monte Carlo techniques for a specific ionization chamber, the Standard Imaging HDR 1000 Plus well chamber with a type 70010 HDR iridium source holder. The calculated correction factors were normalized to the old and new type of calibration source used at the National Physical Laboratory. With the old Nucletron microSelectron-v1 (classic) HDR 192Ir calibration source, ksg was found to be in the range 0.983 to 0.999 and with the new Isodose Control HDR 192Ir Flexisource ksg was found to be in the range 0.987 to 1.004 with a relative uncertainty of 0.4% (k = 2). Source geometry factors for different combinations of calibration sources, clinical sources, well chambers and associated source holders, can be calculated with the formalism discussed in this paper.

  4. Enhancement and validation of Geant4 Brachytherapy application on clinical HDR 192Ir source

    NASA Astrophysics Data System (ADS)

    Ababneh, Eshraq; Dababneh, Saed; Qatarneh, Sharif; Wadi-Ramahi, Shada

    2014-10-01

    The Geant4 Monte Carlo MC associated Brachytherapy example was adapted, enhanced and several analysis techniques have been developed. The simulation studies the isodose distribution of the total, primary and scattered doses around a Nucletron microSelectron 192Ir source. Different phantom materials were used (water, tissue and bone) and the calculation was conducted at various depths and planes. The work provides an early estimate of the required number of primary events to ultimately achieve a given uncertainty at a given distance, in the otherwise CPU and time consuming clinical MC calculation. The adaptation of the Geant4 toolkit and the enhancements introduced to the code are all validated including the comprehensive decay of the 192Ir source, the materials used to build the geometry, the geometry itself and the calculated scatter to primary dose ratio. The simulation quantitatively illustrates that the scattered dose in the bone medium is larger than its value in water and tissue. As the distance away from the source increases, scatter contribution to dose becomes more significant as the primary dose decreases. The developed code could be viewed as a platform that contains detailed dose calculation model for clinical application of HDR 192Ir in Brachytherapy.

  5. A standard graphite calorimeter for dosimetry in brachytherapy with high dose rate 192Ir sources

    NASA Astrophysics Data System (ADS)

    Guerra, A. S.; Loreti, S.; Pimpinella, M.; Quini, M.; D'Arienzo, M.; Astefanoaei, I.; Caporali, C.; Bolzan, C.; Pagliari, M.

    2012-10-01

    Within the framework of the JRP06 European project ‘Increasing Cancer Treatment Efficacy Using 3D Brachytherapy’, a prototype of a graphite standard calorimeter for the measurement of the absorbed dose rate to water, \\dot {D}_w , for 192Ir sources used in high dose rate (HDR) brachytherapy has been developed at the Italian National Institute of Ionizing Radiation Metrology (ENEA-INMRI). The calorimeter was tested at the Sant'Andrea Hospital in Rome, where \\dot {D}_w measurements were performed in the quasi-adiabatic mode of operation using an 192Ir MicroSelectron® HDR V2 source. The \\dot {D}_w measurements showed a reproducibility of about 1%, while the combined standard uncertainty on the \\dot {D}_w value at the distance of 1 cm from the source was estimated as 1.4%, lower than the uncertainty of \\dot {D}_w determined from the reference air-kerma rate.

  6. A comparison of the expected costs of high dose rate brachytherapy using 252Cf versus 192Ir.

    PubMed

    Rivard, Mark J; Kirk, Bernadette L; Stapleford, Liza J; Wazer, David E

    2004-12-01

    A cost analysis to compare high dose rate (HDR) brachytherapy using either californium-252 (252Cf) or 192Ir was performed to determine the prospects of widespread clinical implementation of HDR 252Cf. Interest in the neutron-emitting 252Cf radioisotope as a radiotherapy nuclide has undergone a resurgence given recent efforts to fabricate HDR remotely afterloaded sources, and other efforts to create a miniature source for improved accessibility to a variety of anatomic sites. Therefore, HDR 252Cf brachytherapy may prove to be a potential rival to the use of HDR 192Ir remotely afterloaded brachytherapy--the current standard-of-care treatment modality using HDR brachytherapy. Considering the possible improvements in clinical efficacy using HDR 252Cf brachytherapy and the enormous costs of other high-LET radiation sources, the cost differences between 252Cf and 192Ir may be well-justified.

  7. Comparison of the hypothetical 57Co brachytherapy source with the 192Ir source

    PubMed Central

    Toossi, Mohammad Taghi Bahreyni; Rostami, Atefeh; Khosroabadi, Mohsen; Khademi, Sara; Knaup, Courtney

    2016-01-01

    Aim of the study The 57Co radioisotope has recently been proposed as a hypothetical brachytherapy source due to its high specific activity, appropriate half-life (272 days) and medium energy photons (114.17 keV on average). In this study, Task Group No. 43 dosimetric parameters were calculated and reported for a hypothetical 57Co source. Material and methods A hypothetical 57Co source was simulated in MCNPX, consisting of an active cylinder with 3.5 mm length and 0.6 mm radius encapsulated in a stainless steel capsule. Three photon energies were utilized (136 keV [10.68%], 122 keV [85.60%], 14 keV [9.16%]) for the 57Co source. Air kerma strength, dose rate constant, radial dose function, anisotropy function, and isodose curves for the source were calculated and compared to the corresponding data for a 192Ir source. Results The results are presented as tables and figures. Air kerma strength per 1 mCi activity for the 57Co source was 0.46 cGyh–1 cm 2 mCi–1. The dose rate constant for the 57Co source was determined to be 1.215 cGyh–1U–1. The radial dose function for the 57Co source has an increasing trend due to multiple scattering of low energy photons. The anisotropy function for the 57Co source at various distances from the source is more isotropic than the 192Ir source. Conclusions The 57Co source has advantages over 192Ir due to its lower energy photons, longer half-life, higher dose rate constant and more isotropic anisotropic function. However, the 192Ir source has a higher initial air kerma strength and more uniform radial dose function. These properties make 57Co a suitable source for use in brachytherapy applications.

  8. Comparison of the hypothetical 57Co brachytherapy source with the 192Ir source

    PubMed Central

    Toossi, Mohammad Taghi Bahreyni; Rostami, Atefeh; Khosroabadi, Mohsen; Khademi, Sara; Knaup, Courtney

    2016-01-01

    Aim of the study The 57Co radioisotope has recently been proposed as a hypothetical brachytherapy source due to its high specific activity, appropriate half-life (272 days) and medium energy photons (114.17 keV on average). In this study, Task Group No. 43 dosimetric parameters were calculated and reported for a hypothetical 57Co source. Material and methods A hypothetical 57Co source was simulated in MCNPX, consisting of an active cylinder with 3.5 mm length and 0.6 mm radius encapsulated in a stainless steel capsule. Three photon energies were utilized (136 keV [10.68%], 122 keV [85.60%], 14 keV [9.16%]) for the 57Co source. Air kerma strength, dose rate constant, radial dose function, anisotropy function, and isodose curves for the source were calculated and compared to the corresponding data for a 192Ir source. Results The results are presented as tables and figures. Air kerma strength per 1 mCi activity for the 57Co source was 0.46 cGyh–1 cm 2 mCi–1. The dose rate constant for the 57Co source was determined to be 1.215 cGyh–1U–1. The radial dose function for the 57Co source has an increasing trend due to multiple scattering of low energy photons. The anisotropy function for the 57Co source at various distances from the source is more isotropic than the 192Ir source. Conclusions The 57Co source has advantages over 192Ir due to its lower energy photons, longer half-life, higher dose rate constant and more isotropic anisotropic function. However, the 192Ir source has a higher initial air kerma strength and more uniform radial dose function. These properties make 57Co a suitable source for use in brachytherapy applications. PMID:27688731

  9. The Application of Elliptic Cylindrical Phantom in Brachytherapy Dosimetric Study of HDR 192Ir Source

    NASA Astrophysics Data System (ADS)

    Ahn, Woo Sang; Park, Sung Ho; Jung, Sang Hoon; Choi, Wonsik; Do Ahn, Seung; Shin, Seong Soo

    2014-06-01

    The purpose of this study is to determine the radial dose function of HDR 192Ir source based on Monte Carlo simulation using elliptic cylindrical phantom, similar to realistic shape of pelvis, in brachytherapy dosimetric study. The elliptic phantom size and shape was determined by analysis of dimensions of pelvis on CT images of 20 patients treated with brachytherapy for cervical cancer. The radial dose function obtained using the elliptic cylindrical water phantom was compared with radial dose functions for different spherical phantom sizes, including the Williamsion's data loaded into conventional planning system. The differences in the radial dose function for the different spherical water phantoms increase with radial distance, r, and the largest differences in the radial dose function appear for the smallest phantom size. The radial dose function of the elliptic cylindrical phantom significantly decreased with radial distance in the vertical direction due to different scatter condition in comparison with the Williamson's data. Considering doses to ICRU rectum and bladder points, doses to reference points can be underestimated up to 1-2% at the distance from 3 to 6 cm. The radial dose function in this study could be used as realistic data for calculating the brachytherapy dosimetry for cervical cancer.

  10. Dose Distributions of an 192Ir Brachytherapy Source in Different Media

    PubMed Central

    Wu, C. H.; Liao, Y. J.; Liu, Y. W. Hsueh; Hung, S. K.; Lee, M. S.; Hsu, S. M.

    2014-01-01

    This study used MCNPX code to investigate the brachytherapy 192Ir dose distributions in water, bone, and lung tissue and performed radiophotoluminescent glass dosimeter measurements to verify the obtained MCNPX results. The results showed that the dose-rate constant, radial dose function, and anisotropy function in water were highly consistent with data in the literature. However, the lung dose near the source would be overestimated by up to 12%, if the lung tissue is assumed to be water, and, hence, if a tumor is located in the lung, the tumor dose will be overestimated, if the material density is not taken into consideration. In contrast, the lung dose far from the source would be underestimated by up to 30%. Radial dose functions were found to depend not only on the phantom size but also on the material density. The phantom size affects the radial dose function in bone more than those in the other tissues. On the other hand, the anisotropy function in lung tissue was not dependent on the radial distance. Our simulation results could represent valid clinical reference data and be used to improve the accuracy of the doses delivered during brachytherapy applied to patients with lung cancer. PMID:24804263

  11. Comparison of Axxent-Xoft, 192Ir and 60Co high-dose-rate brachytherapy sources for image-guided brachytherapy treatment planning for cervical cancer

    PubMed Central

    Packianathan, S; He, R; Yang, C C

    2015-01-01

    Objective: To evaluate the dosimetric differences and similarities between treatment plans generated with Axxent-Xoft electronic brachytherapy source (Xoft-EBS), 192Ir and 60Co for tandem and ovoids (T&O) applicators. Methods: In this retrospective study, we replanned 10 patients previously treated with 192Ir high-dose-rate brachytherapy. Prescription was 7 Gy × 4 fractions to Point A. For each original plan, we created two additional plans with Xoft-EBS and 60Co. The dose to each organ at risk (OAR) was evaluated in terms of V35% and V50%, the percentage volume receiving 35% and 50% of the prescription dose, respectively, and D2cc, highest dose to a 2 cm3 volume of an OAR. Results: There was no difference between plans generated by 192Ir and 60Co, but the plans generated using Xoft-EBS showed a reduction of up to 50% in V35%, V50% and D2cc. The volumes of the 200% and 150% isodose lines, however, were 74% and 34% greater than the comparable volumes generated with the 192Ir source. Point B dose was on average only 16% of the Point A dose for plans generated with Xoft-EBS compared with 30% for plans generated with 192Ir or 60Co. Conclusion: The Xoft-EBS can potentially replace either 192Ir or 60Co in T&O treatments. Xoft-EBS offers either better sparing of the OARs compared with 192Ir or 60Co or at least similar sparing. Xoft-EBS-generated plans had higher doses within the target volume than 192Ir- or 60Co-generated ones. Advances in knowledge: This work presents newer knowledge in dosimetric comparison between Xoft-EBS, 192Ir or 60Co sources for T&O implants. PMID:25996576

  12. High-Dose-Rate 192Ir Brachytherapy Dose Verification: A Phantom Study

    PubMed Central

    Nikoofar, Alireza; Hoseinpour, Zohreh; Rabi Mahdavi, Seied; Hasanzadeh, Hadi; Rezaei Tavirani, Mostafa

    2015-01-01

    Background: The high-dose-rate (HDR) brachytherapy might be an effective tool for palliation of dysphagia. Because of some concerns about adverse effects due to absorbed radiation dose, it is important to estimate absorbed dose in risky organs during this treatment. Objectives: This study aimed to measure the absorbed dose in the parotid, thyroid, and submandibular gland, eye, trachea, spinal cord, and manubrium of sternum in brachytherapy in an anthropomorphic phantom. Materials and Methods: To measure radiation dose, eye, parotid, thyroid, and submandibular gland, spine, and sternum, an anthropomorphic phantom was considered with applicators to set thermoluminescence dosimeters (TLDs). A specific target volume of about 23 cm3 in the upper thoracic esophagus was considered as target, and phantom planned computed tomography (CT) for HDR brachytherapy, then with a micro-Selectron HDR (192Ir) remote after-loading unit. Results: Absorbed doses were measured with calibrated TLDs and were expressed in centi-Gray (cGy). In regions far from target (≥ 16 cm) such as submandibular, parotid and thyroid glands, mean measured dose ranged from 1.65 to 5.5 cGy. In closer regions (≤ 16 cm), the absorbed dose might be as high as 113 cGy. Conclusions: Our study showed similar depth and surface doses; in closer regions, the surface and depth doses differed significantly due to the role of primary radiation that had imposed a high-dose gradient and difference between the plan and measurement, which was more severe because of simplifications in tissue inhomogeneity, considered in TPS relative to phantom. PMID:26413250

  13. Dosimetric study of a brachytherapy treatment of esophagus with Brazilian 192Ir sources using an anthropomorphic phantom

    NASA Astrophysics Data System (ADS)

    Neves, Lucio P.; Santos, William S.; Gorski, Ronan; Perini, Ana P.; Maia, Ana F.; Caldas, Linda V. E.; Orengo, Gilberto

    2014-11-01

    Several radioisotopes are produced at Instituto de Pesquisas Energéticas e Nucleares for the use in medical treatments, including the activation of 192Ir sources. These sources are suitable for brachytherapy treatments, due to their low or high activity, depending on the concentration of 192Ir, easiness to manufacture, small size, stable daughter products and the possibility of re-utilization. They may be used for the treatment of prostate, cervix, head and neck, skin, breast, gallbladder, uterus, vagina, lung, rectum, and eye cancer treatment. In this work, the use of some 192Ir sources was studied for the treatment of esophagus cancer, especially the dose determination of important structures, such as those on the mediastinum. This was carried out utilizing a FASH anthropomorphic phantom and the MCNP5 Monte Carlo code to transport the radiation through matter. It was possible to observe that the doses at lungs, breast, esophagus, thyroid and heart were the highest, which was expected due to their proximity to the source. Therefore, the data are useful to assess the representative dose specific to brachytherapy treatments on the esophagus for radiation protection purposes. The use of brachytherapy sources was studied for the treatment of esophagus cancer. FASH anthropomorphic phantom and MCNP5 Monte Carlo code were employed. The doses at lungs, breast, esophagus, thyroid and heart were the highest. The data is useful to assess the representative doses of treatments on the esophagus.

  14. Dosimetric characterization of an 192Ir brachytherapy source with the Monte Carlo code PENELOPE.

    PubMed

    Casado, Francisco Javier; García-Pareja, Salvador; Cenizo, Elena; Mateo, Beatriz; Bodineau, Coral; Galán, Pedro

    2010-01-01

    Monte Carlo calculations are highly spread and settled practice to calculate brachytherapy sources dosimetric parameters. In this study, recommendations of the AAPM TG-43U1 report have been followed to characterize the Varisource VS2000 (192)Ir high dose rate source, provided by Varian Oncology Systems. In order to obtain dosimetric parameters for this source, Monte Carlo calculations with PENELOPE code have been carried out. TG-43 formalism parameters have been presented, i.e., air kerma strength, dose rate constant, radial dose function and anisotropy function. Besides, a 2D Cartesian coordinates dose rate in water table has been calculated. These quantities are compared to this source reference data, finding results in good agreement with them. The data in the present study complement published data in the next aspects: (i) TG-43U1 recommendations are followed regarding to phantom ambient conditions and to uncertainty analysis, including statistical (type A) and systematic (type B) contributions; (ii) PENELOPE code is benchmarked for this source; (iii) Monte Carlo calculation methodology differs from that usually published in the way to estimate absorbed dose, leaving out the track-length estimator; (iv) the results of the present work comply with the most recent AAPM and ESTRO physics committee recommendations about Monte Carlo techniques, in regards to dose rate uncertainty values and established differences between our results and reference data. The results stated in this paper provide a complete parameter collection, which can be used for dosimetric calculations as well as a means of comparison with other datasets from this source.

  15. Development of a water calorimetry-based standard for absorbed dose to water in HDR {sup 192}Ir brachytherapy

    SciTech Connect

    Sarfehnia, Arman; Seuntjens, Jan

    2010-04-15

    Purpose: The aim of this article is to develop and evaluate a primary standard for HDR {sup 192}Ir brachytherapy based on 4 deg. C stagnant water calorimetry. Methods: The absolute absorbed dose to water was directly measured for several different Nucletron microSelectron {sup 192}Ir sources of air kerma strength ranging between 21 000 and 38 000 U and for source-to-detector separations ranging between 25 and 70 mm. The COMSOL MULTIPHYSICS software was used to accurately calculate the heat transport in a detailed model geometry. Through a coupling of the ''conduction and convection'' module with the ''Navier-Stokes incompressible fluid'' module in the software, both the conductive and convective effects were modeled. Results: A detailed uncertainty analysis resulted in an overall uncertainty in the absorbed dose of 1.90%(1{sigma}). However, this includes a 1.5% uncertainty associated with a nonlinear predrift correction which can be substantially reduced if sufficient time is provided for the system to come to a new equilibrium in between successive calorimetric runs, an opportunity not available to the authors in their clinical setting due to time constraints on the machine. An average normalized dose rate of 361{+-}7 {mu}Gy/(h U) at a source-to-detector separation of 55 mm was measured for the microSelectron {sup 192}Ir source based on water calorimetry. The measured absorbed dose per air kerma strength agreed to better than 0.8%(1{sigma}) with independent ionization chamber and EBT-1 Gafchromic film reference dosimetry as well as with the currently accepted AAPM TG-43 protocol measurements. Conclusions: This work paves the way toward a primary absorbed dose to water standard in {sup 192}Ir brachytherapy.

  16. Evaluation of Scatter Contribution and Distance Error by Iterative Methods for Strength Determination of HDR {sup 192}Ir Brachytherapy Source

    SciTech Connect

    Kumar, Sudhir; Srinivasan, Panchapakesan; Sharma, Sunil D.; Subbaiah, Kamatam V.; Mayya, Yelia S.

    2010-10-01

    High-dose rate (HDR) {sup 192}Ir brachytherapy sources are commonly used for management of malignancies by brachytherapy applications. Measurement of source strength at the hospital is an important dosimetry requirement. The use of 0.6-cm{sup 3} cylindrical ionization chamber is one of the methods of measuring the source strength at the hospitals because this chamber is readily available for beam calibration and dosimetry. While using the cylindrical chamber for this purpose, it is also required to determine the positioning error of the ionization chamber, with respect to the source, commonly called a distance error (c). The contribution of scatter radiation (M{sub s}) from floor, walls, ceiling, and other materials available in the treatment room also need to be determined accurately so that appropriate correction can be applied while calculating the source strength from the meter reading. Iterative methods of Newton-Raphson and least-squares were used in this work to determine scatter contribution in the experimentally observed meter reading (pC/s) of a cylindrical ionization chamber. Monte Carlo simulation was also used to cross verify the results of the least-squares method. The experimentally observed, least-squares calculated and Monte Carlo estimated values of meter readings from HDR {sup 192}Ir brachytherapy source were in good agreement. Considering procedural simplicity, the method of least-squares is recommended for use at the hospitals to estimate values of f (constant of proportionality), c, and M{sub s} required to determine the strength of HDR {sup 192}Ir brachytherapy sources.

  17. Estimation of distance error by fuzzy set theory required for strength determination of HDR (192)Ir brachytherapy sources.

    PubMed

    Kumar, Sudhir; Datta, D; Sharma, S D; Chourasiya, G; Babu, D A R; Sharma, D N

    2014-04-01

    Verification of the strength of high dose rate (HDR) (192)Ir brachytherapy sources on receipt from the vendor is an important component of institutional quality assurance program. Either reference air-kerma rate (RAKR) or air-kerma strength (AKS) is the recommended quantity to specify the strength of gamma-emitting brachytherapy sources. The use of Farmer-type cylindrical ionization chamber of sensitive volume 0.6 cm(3) is one of the recommended methods for measuring RAKR of HDR (192)Ir brachytherapy sources. While using the cylindrical chamber method, it is required to determine the positioning error of the ionization chamber with respect to the source which is called the distance error. An attempt has been made to apply the fuzzy set theory to estimate the subjective uncertainty associated with the distance error. A simplified approach of applying this fuzzy set theory has been proposed in the quantification of uncertainty associated with the distance error. In order to express the uncertainty in the framework of fuzzy sets, the uncertainty index was estimated and was found to be within 2.5%, which further indicates that the possibility of error in measuring such distance may be of this order. It is observed that the relative distance li estimated by analytical method and fuzzy set theoretic approach are consistent with each other. The crisp values of li estimated using analytical method lie within the bounds computed using fuzzy set theory. This indicates that li values estimated using analytical methods are within 2.5% uncertainty. This value of uncertainty in distance measurement should be incorporated in the uncertainty budget, while estimating the expanded uncertainty in HDR (192)Ir source strength measurement.

  18. Dosimetric characterization and output verification for conical brachytherapy surface applicators. Part II. High dose rate {sup 192}Ir sources

    SciTech Connect

    Fulkerson, Regina K. Micka, John A.; DeWerd, Larry A.

    2014-02-15

    Purpose: Historically, treatment of malignant surface lesions has been achieved with linear accelerator based electron beams or superficial x-ray beams. Recent developments in the field of brachytherapy now allow for the treatment of surface lesions with specialized conical applicators placed directly on the lesion. Applicators are available for use with high dose rate (HDR){sup 192}Ir sources, as well as electronic brachytherapy sources. Part I of this paper discussed the applicators used with electronic brachytherapy sources. Part II will discuss those used with HDR {sup 192}Ir sources. Although the use of these applicators has gained in popularity, the dosimetric characteristics have not been independently verified. Additionally, there is no recognized method of output verification for quality assurance procedures with applicators like these. Methods: This work aims to create a cohesive method of output verification that can be used to determine the dose at the treatment surface as part of a quality assurance/commissioning process for surface applicators used with HDR electronic brachytherapy sources (Part I) and{sup 192}Ir sources (Part II). Air-kerma rate measurements for the {sup 192}Ir sources were completed with several models of small-volume ionization chambers to obtain an air-kerma rate at the treatment surface for each applicator. Correction factors were calculated using MCNP5 and EGSnrc Monte Carlo codes in order to determine an applicator-specific absorbed dose to water at the treatment surface from the measured air-kerma rate. Additionally, relative dose measurements of the surface dose distributions and characteristic depth dose curves were completed in-phantom. Results: Theoretical dose distributions and depth dose curves were generated for each applicator and agreed well with the measured values. A method of output verification was created that allows users to determine the applicator-specific dose to water at the treatment surface based on a

  19. Determination of contributions of scatter and distance error to the source strength of 192Ir HDR brachytherapy source

    NASA Astrophysics Data System (ADS)

    Bondel, Shwetha; Ravikumar, Manickam

    2016-09-01

    High dose rate (HDR) brachytherapy commonly employs a 192Ir encapsulated source to deliver high dose to the malignant tissues. Calibrations of brachytherapy sources are performed by the manufacturer using a well-type chamber or by in-air measurement using a cylindrical ionization chamber. Calibration using the latter involves measurements to be carried out at several distances and room scatter can also be determined. The aim of the present study is to estimate the scatter contribution from the walls, floor and various materials in the room in order to determine the reference air kerma rate of an 192Ir HDR brachytherapy source by in-air measurements and also to evaluate the error in the setup distance between the source centre and chamber centre. Air kerma measurements were performed at multiple distances from 10 cm to 40 cm between the source and chamber. The room scatter correction factor was determined using the iterative technique. The distance error of -0.094 cm and -0.112 cm was observed for chamber with and without buildup cap respectively. The scatter component ranges from 0.3% to 5.4% for the chamber with buildup cap and 0.3% to 4.6% without buildup cap for distances between 10 to 40 cm respectively. Since the average of the results at multiple distances is considered to obtain the actual air kerma rate of the HDR source, the seven distance method and iterative technique are very effective in determining the scatter contribution and the error in the distance measurements.

  20. Evaluation of the buildup effect of an 192Ir high dose-rate brachytherapy source.

    PubMed

    Park, H C; Almond, P R

    1992-01-01

    The buildup effect of the 192Ir radioactive source employed as a gamma emitter of the Selectron high dose-rate (HDR) afterloader was evaluated by studying the ratio of exposure in water to exposure in air as a function of distance. In 1968, Meisberger et al. [Radiology 90, 953-957 (1968)] calculated a third-order polynomial fit to a selected average between measured and calculated values. The objective of this investigation, however, is to evaluate the factor for the 192Ir source configuration used in the HDR system, which was different from the source design used by Meisberger et al. This paper presents the measured ratio using an ionization chamber and the calculated ratio using a Monte Carlo simulation code. The experimental and theoretical results show only minor disagreement with the data of Meisberger et al. However, the results show significant disagreement when they are compared to the model developed by van Kleffens and Star [Int. J. Radiat. Oncol. Biol. Phys. 5 557-563 (1979)], which may indicate the need to reevaluate the algorithm presently employed in HDR treatment planning system. The comparison with other published data will be discussed.

  1. Absolute depth-dose-rate measurements for an {sup 192}Ir HDR brachytherapy source in water using MOSFET detectors

    SciTech Connect

    Zilio, Valery Olivier; Joneja, Om Parkash; Popowski, Youri; Rosenfeld, Anatoly; Chawla, Rakesh

    2006-06-15

    Reported MOSFET measurements concern mostly external radiotherapy and in vivo dosimetry. In this paper, we apply the technique for absolute dosimetry in the context of HDR brachytherapy using an {sup 192}Ir source. Measured radial dose rate distributions in water for different planes perpendicular to the source axis are presented and special attention is paid to the calibration of the R and K type detectors, and to the determination of appropriate correction factors for the sensitivity variation with the increase of the threshold voltage and the energy dependence. The experimental results are compared with Monte Carlo simulated dose rate distributions. The experimental results show a good agreement with the Monte Carlo simulations: the discrepancy between experimental and Monte Carlo results being within 5% for 82% of the points and within 10% for 95% of the points. Moreover, all points except two are found to lie within the experimental uncertainties, confirming thereby the quality of the results obtained.

  2. Evaluation of Wall Correction Factor of INER's Air-Kerma Primary Standard Chamber and Dose Variation by Source Displacement for HDR 192Ir Brachytherapy

    PubMed Central

    Lee, J. H.; Wang, J. N.; Huang, T. T.; Su, S. H.; Chang, B. J.; Su, C. H.; Hsu, S. M.

    2013-01-01

    The aim of the present study was to estimate the wall effect of the self-made spherical graphite-walled cavity chamber with the Monte Carlo method for establishing the air-kerma primary standard of high-dose-rate (HDR) 192Ir brachytherapy sources at the Institute of Nuclear Energy Research (INER, Taiwan). The Monte Carlo method established in this paper was also employed to respectively simulate wall correction factors of the 192Ir air-kerma standard chambers used at the National Institute of Standards and Technology (NIST, USA) and the National Physical Laboratory (NPL, UK) for comparisons and verification. The chamber wall correction calculation results will be incorporated into INER's HDR 192Ir primary standard in the future. For the brachytherapy treatment in the esophagus or in the bronchi, the position of the isotope may have displacement in the cavity. Thus the delivered dose would differ from the prescribed dose in the treatment plan. We also tried assessing dose distribution due to the position displacement of HDR 192Ir brachytherapy source in a phantom with a central cavity by the Monte Carlo method. The calculated results could offer a clinical reference for the brachytherapy within the human organs with cavity. PMID:24222907

  3. On source models for 192Ir HDR brachytherapy dosimetry using model based algorithms

    NASA Astrophysics Data System (ADS)

    Pantelis, Evaggelos; Zourari, Kyveli; Zoros, Emmanouil; Lahanas, Vasileios; Karaiskos, Pantelis; Papagiannis, Panagiotis

    2016-06-01

    A source model is a prerequisite of all model based dose calculation algorithms. Besides direct simulation, the use of pre-calculated phase space files (phsp source models) and parameterized phsp source models has been proposed for Monte Carlo (MC) to promote efficiency and ease of implementation in obtaining photon energy, position and direction. In this work, a phsp file for a generic 192Ir source design (Ballester et al 2015) is obtained from MC simulation. This is used to configure a parameterized phsp source model comprising appropriate probability density functions (PDFs) and a sampling procedure. According to phsp data analysis 15.6% of the generated photons are absorbed within the source, and 90.4% of the emergent photons are primary. The PDFs for sampling photon energy and direction relative to the source long axis, depend on the position of photon emergence. Photons emerge mainly from the cylindrical source surface with a constant probability over  ±0.1 cm from the center of the 0.35 cm long source core, and only 1.7% and 0.2% emerge from the source tip and drive wire, respectively. Based on these findings, an analytical parameterized source model is prepared for the calculation of the PDFs from data of source geometry and materials, without the need for a phsp file. The PDFs from the analytical parameterized source model are in close agreement with those employed in the parameterized phsp source model. This agreement prompted the proposal of a purely analytical source model based on isotropic emission of photons generated homogeneously within the source core with energy sampled from the 192Ir spectrum, and the assignment of a weight according to attenuation within the source. Comparison of single source dosimetry data obtained from detailed MC simulation and the proposed analytical source model show agreement better than 2% except for points lying close to the source longitudinal axis.

  4. In vivo dosimetry in the urethra using alanine/ESR during (192)Ir HDR brachytherapy of prostate cancer--a phantom study.

    PubMed

    Anton, Mathias; Wagner, Daniela; Selbach, Hans-Joachim; Hackel, Thomas; Hermann, Robert Michael; Hess, Clemens Friedrich; Vorwerk, Hilke

    2009-05-01

    A phantom study for dosimetry in the urethra using alanine/ESR during (192)Ir HDR brachytherapy of prostate cancer is presented. The measurement method of the secondary standard of the Physikalisch-Technische Bundesanstalt had to be slightly modified in order to be able to measure inside a Foley catheter. The absorbed dose to water response of the alanine dosimetry system to (192)Ir was determined with a reproducibility of 1.8% relative to (60)Co. The resulting uncertainty for measurements inside the urethra was estimated to be 3.6%, excluding the uncertainty of the dose rate constant Lambda. The applied dose calculated by a treatment planning system is compared to the measured dose for a small series of (192)Ir HDR irradiations in a gel phantom. The differences between the measured and applied dose are well within the limits of uncertainty. Therefore, the method is considered to be suitable for measurements in vivo.

  5. Verification of computerized treatment planning for HDR 192Ir brachytherapy for gynaecological cancer.

    PubMed

    Buzdar, Saeed Ahmad; Gadhi, Muhammad Asghar; Rao, Muhammad Afzal; Laghari, Naeem Ahmad; Anees, Mohammad

    2009-02-01

    Treatment planning in both teletherapy and brachytherapy is time consuming practice but accurate determination of planning parameters is more important. This paper aims to verify the dose delivery time for the treatment of vaginal cancer, which is a vital parameter of High Dose Rate (HDR) brachytherapy treatment planning. Treatment time has been calculated by the computerized treatment planning system (ABACUS 3.1), and then it has been compared with the manually calculated time. The results obtained are in good agreement. Independent verification of nominal time by two different protocols assures the quality of treatment. This should always be practiced to increase the accuracy of treatment.

  6. A dosimetric comparison of 169Yb and 192Ir for HDR brachytherapy of the breast, accounting for the effect of finite patient dimensions and tissue inhomogeneities.

    PubMed

    Lymperopoulou, G; Papagiannis, P; Angelopoulos, A; Karaiskos, P; Georgiou, E; Baltas, D

    2006-12-01

    Monte Carlo simulation dosimetry is used to compare 169Yb to 192Ir for breast high dose rate (HDR) brachytherapy applications using multiple catheter implants. Results for bare point sources show that while 169Yb delivers a greater dose rate per unit air kerma strength at the radial distance range of interest to brachytherapy in homogeneous water phantoms, it suffers a greater dose rate deficit in missing scatter conditions relative to 192Ir. As a result of these two opposing factors, in the scatter conditions defined by the presence of the lung and the finite patient dimensions in breast brachytherapy the dose distributions calculated in a patient equivalent mathematical phantom by Monte Carlo simulations for the same implant of either 169Yb or 1921r commercially available sources are found comparable. Dose volume histogram results support that 169Yb could be at least as effective as 192Ir delivering the same dose to the lung and slightly reduced dose to the breast skin. The current treatment planning systems' approach of employing dosimetry data precalculated in a homogeneous water phantom of given shape and dimensions, however, is shown to notably overestimate the delivered dose distribution for 169Yb. Especially at the skin and the lung, the treatment planning system dose overestimation is on the order of 15%-30%. These findings do not undermine the potential of 169Yb HDR sources for breast brachytherapy relative to the most commonly used 192Ir HDR sources. They imply, however, that there could be a need for the amendment of dose calculation algorithms employed in clinical treatment planning of particular brachytherapy applications, especially for intermediate photon energy sources such as 169Yb.

  7. Determination of air-kerma strength for the {sup 192}Ir GammaMedplus iX pulsed-dose-rate brachytherapy source

    SciTech Connect

    Riley, A. D.; Pike, T. L.; Micka, J. A.; Fulkerson, R. K.; DeWerd, L. A.

    2013-07-15

    Purpose: Pulsed-dose-rate (PDR) brachytherapy was originally proposed to combine the therapeutic advantages of high-dose-rate (HDR) and low-dose-rate brachytherapy. Though uncommon in the United States, several facilities employ pulsed-dose-rate brachytherapy in Europe and Canada. Currently, there is no air-kerma strength standard for PDR brachytherapy {sup 192}Ir sources traceable to the National Institute of Standards and Technology. Discrepancies in clinical measurements of the air-kerma strength of the PDR brachytherapy sources using HDR source-calibrated well chambers warrant further investigation.Methods: In this research, the air-kerma strength for an {sup 192}Ir PDR brachytherapy source was compared with the University of Wisconsin Accredited Dosimetry Calibration Laboratory transfer standard well chambers, the seven-distance technique [B. E. Rasmussen et al., 'The air-kerma strength standard for 192Ir HDR sources,' Med. Phys. 38, 6721-6729 (2011)], and the manufacturer's stated value. Radiochromic film and Monte Carlo techniques were also employed for comparison to the results of the measurements.Results: While the measurements using the seven-distance technique were within + 0.44% from the manufacturer's determination, there was a + 3.10% difference between the transfer standard well chamber measurements and the manufacturer's stated value. Results showed that the PDR brachytherapy source has geometric and thus radiological qualities that exhibit behaviors similar to a point source model in contrast to a conventional line source model.Conclusions: The resulting effect of the pointlike characteristics of the PDR brachytherapy source likely account for the differences observed between well chamber and in-air measurements.

  8. [Risk factors of late complications after interstitial 192Ir brachytherapy in cancers of the oral cavity].

    PubMed

    Peiffert, D

    1997-01-01

    Brachytherapy has confirmed its prevailing role in conservative treatment of oral cavity carcinomas. To describe late toxicity in long-term surviving patients, comparisons with other series are necessary. Study of series of patients implanted for floor of the mouth or mobile tongue shows the need for more detailed data. Dental prophylaxy and lead protection of the mandibule, good indications and techniques of brachytherapy are necessary to avoid late complications. Some treatment factors have proved to be of good prognosis for late complications through multivariate analysis of large series treated with lr 192 wires, using the Paris system, eg, dose rate lower than 0.5 or 0.7 Gy/h, intersource spacing smaller than 1.2 or 1.5 cm, treated surface less than 12 cm2, lineic activity less than 1.5 mCi/cm, less than 1 cm diameter hyperdose, and use of mandibular lead protections. Tumor volume and location to the floor of mouth lead to higher risk of complications. Knowledge of treatment-related factors is important, with the development of new afterloading projectors allowing to control the dose rate and correct small inhomogeneities. High-dose rate exclusive brachytherapy is not recommended. More precise and reproducible classification should be used to report complications in series leading to publications in the future, thus allowing to compare results, reduce complication rates and improve the quality of life.

  9. Monte Carlo simulations and radiation dosimetry measurements of peripherally applied HDR 192Ir breast brachytherapy D-shaped applicators.

    PubMed

    Yang, Yun; Rivard, Mark J

    2009-03-01

    Conformal dose coverage for accelerated partial breast irradiation or radiotherapy boost can be obtained with AccuBoost D-shaped brachytherapy applicators using a flattened surface positioned near the patient. Three D-shaped applicators (D45/D53/D60) were dosimetrically characterized using Monte Carlo methods (MCNP5), air ionization chambers (Farmer and Markus), and radiochromic film (GafChromic EBT) in polystyrene and ICRU 44 breast tissue. HDR 192Ir source dwell times were either constant or optimized to improve skin dose uniformity. Scatter dose decreased as depth decreased. 10 mm beyond the applicator aperture, dose reductions of 90% and 51% were observed at depths of 0 and 30 mm, respectively. Similarly, planar dose uniformity improved as depth decreased and was also due to scatter and applicator geometry. Dose uniformity inside the applicator aperture was approximately 11% and 15% for all three applicators at the skin and 30 mm deep, respectively. Depth dose measurements in polystyrene using ion chamber and radiochromic film agreed with Monte Carlo results within 2%. Discrepancies between film and Monte Carlo dose profiles at 30 mm depth were within 1%.

  10. On the use of a single-fiber multipoint plastic scintillation detector for 192Ir high-dose-rate brachytherapy

    PubMed Central

    Therriault-Proulx, François; Beddar, Sam; Beaulieu, Luc

    2013-01-01

    Purpose: The goal of this study was to prove the feasibility of using a single-fiber multipoint plastic scintillation detector (mPSD) as an in vivo verification tool during 192Ir high-dose-rate brachytherapy treatments. Methods: A three-point detector was built and inserted inside a catheter-positioning template placed in a water phantom. A hyperspectral approach was implemented to discriminate the different optical signals composing the light output at the exit of the single collection optical fiber. The mPSD was tested with different source-to-detector positions, ranging from 1 to 5 cm radially and over 10.5 cm along the longitudinal axis of the detector, and with various integration times. Several strategies for improving the accuracy of the detector were investigated. The device's accuracy in detecting source position was also tested. Results: Good agreement with the expected doses was obtained for all of the scintillating elements, with average relative differences from the expected values of 3.4 ± 2.1%, 3.0 ± 0.7%, and 4.5 ± 1.0% for scintillating elements from the distal to the proximal. A dose threshold of 3 cGy improved the general accuracy of the detector. An integration time of 3 s offered a good trade-off between precision and temporal resolution. Finally, the mPSD measured the radioactive source positioning uncertainty to be no more than 0.32 ± 0.06 mm. The accuracy and precision of the detector were improved by a dose-weighted function combining the three measurement points and known details about the geometry of the detector construction. Conclusions: The use of a mPSD for high-dose-rate brachytherapy dosimetry is feasible. This detector shows great promise for development of in vivo applications for real-time verification of treatment delivery. PMID:23718599

  11. Dose optimization of breast balloon brachytherapy using a stepping 192Ir HDR source.

    PubMed

    Choi, Chang Hyun; Ye, Sung-Joon; Parsai, E Ishmael; Shen, Sui; Meredith, Ruby; Brezovich, Ivan A; Ove, Roger

    2009-02-03

    There is a considerable underdosage (11%-13%) of PTV due to anisotropy of a stationary source in breast balloon brachytherapy. We improved the PTV coverage by varying multiple dwell positions and weights. We assumed that the diameter of spherical balloons varied from 4.0 cm to 5.0 cm, that the PTV was a 1-cm thick spherical shell over the balloon (reduced by the small portion occupied by the catheter path), and that the number of dwell positions varied from 2 to 13 with 0.25-cm steps, oriented symmetrically with respect to the balloon center. By assuming that the perfect PTV coverage can be achieved by spherical dose distributions from an isotropic source, we developed an optimization program to minimize two objective functions defined as: (1) the number of PTV-voxels having more than 10% difference between optimized doses and spherical doses, and (2) the difference between optimized doses and spherical doses per PTV-voxel. The optimal PTV coverage occurred when applying 8-11 dwell positions with weights determined by the optimization scheme. Since the optimization yields ellipsoidal isodose distributions along the catheter, there is relative skin sparing for cases with source movement approximately tangent to the skin. We also verified the optimization in CT-based treatment planning systems. Our volumetric dose optimization for PTV coverage showed close agreement to linear or multiple-points optimization results from the literature. The optimization scheme provides a simple and practical solution applicable to the clinic.

  12. Dosimetry of indigenously developed 192Ir high-dose rate brachytherapy source: An EGSnrc Monte Carlo study

    PubMed Central

    Sahoo, Sridhar; Selvam, T. Palani; Sharma, S. D.; Das, Trupti; Dey, A. C.; Patil, B. N.; Sastri, K.V.S.

    2016-01-01

    Clinical application using high-dose rate (HDR) 192Ir sources in remote afterloading technique is a well-established treatment method. In this direction, Board of Radiation and Isotope Technology (BRIT) and Bhabha Atomic Research Centre, India, jointly indigenously developed a remote afterloading machine and 192Ir HDR source. The two-dimensional (2D) dose distribution and dosimetric parameters of the BRIT 192Ir HDR source are generated using EGSnrc Monte Carlo code system in a 40 cm dia × 40 cm height cylindrical water phantom. The values of air-kerma strength and dose rate constant for BRIT 192Ir HDR source are 9.894 × 10−8 ± 0.06% UBq−1 and 1.112 ± 0.11% cGyh−1U−1, respectively. The values of radial dose function (gL(r)) of this source compare well with the corresponding values of BEBIG, Flexisource, and GammaMed 12i source models. This is because of identical active lengths of the sources (3.5 mm) and the comparable phantom dimensions. A comparison of gL(r) values of BRIT source with microSelectron-v1 show differences about 2% at r = 6 cm and up to 13% at r = 12 cm, which is due to differences in phantom dimensions involved in the calculations. The anisotropy function of BRIT 192Ir HDR source is comparable with the corresponding values of microSelectron-v1 (classic) HDR source. PMID:27217623

  13. Dosimetry of indigenously developed (192)Ir high-dose rate brachytherapy source: An EGSnrc Monte Carlo study.

    PubMed

    Sahoo, Sridhar; Selvam, T Palani; Sharma, S D; Das, Trupti; Dey, A C; Patil, B N; Sastri, K V S

    2016-01-01

    Clinical application using high-dose rate (HDR) (192)Ir sources in remote afterloading technique is a well-established treatment method. In this direction, Board of Radiation and Isotope Technology (BRIT) and Bhabha Atomic Research Centre, India, jointly indigenously developed a remote afterloading machine and (192)Ir HDR source. The two-dimensional (2D) dose distribution and dosimetric parameters of the BRIT (192)Ir HDR source are generated using EGSnrc Monte Carlo code system in a 40 cm dia × 40 cm height cylindrical water phantom. The values of air-kerma strength and dose rate constant for BRIT (192)Ir HDR source are 9.894 × 10(-8) ± 0.06% UBq(-1) and 1.112 ± 0.11% cGyh(-1)U(-1), respectively. The values of radial dose function (gL(r)) of this source compare well with the corresponding values of BEBIG, Flexisource, and GammaMed 12i source models. This is because of identical active lengths of the sources (3.5 mm) and the comparable phantom dimensions. A comparison of gL(r) values of BRIT source with microSelectron-v1 show differences about 2% at r = 6 cm and up to 13% at r = 12 cm, which is due to differences in phantom dimensions involved in the calculations. The anisotropy function of BRIT (192)Ir HDR source is comparable with the corresponding values of microSelectron-v1 (classic) HDR source. PMID:27217623

  14. Using LiF:Mg,Cu,P TLDs to estimate the absorbed dose to water in liquid water around an {sup 192}Ir brachytherapy source

    SciTech Connect

    Lucas, P. Avilés Aubineau-Lanièce, I.; Lourenço, V.; Vermesse, D.; Cutarella, D.

    2014-01-15

    Purpose: The absorbed dose to water is the fundamental reference quantity for brachytherapy treatment planning systems and thermoluminescence dosimeters (TLDs) have been recognized as the most validated detectors for measurement of such a dosimetric descriptor. The detector response in a wide energy spectrum as that of an{sup 192}Ir brachytherapy source as well as the specific measurement medium which surrounds the TLD need to be accounted for when estimating the absorbed dose. This paper develops a methodology based on highly sensitive LiF:Mg,Cu,P TLDs to directly estimate the absorbed dose to water in liquid water around a high dose rate {sup 192}Ir brachytherapy source. Methods: Different experimental designs in liquid water and air were constructed to study the response of LiF:Mg,Cu,P TLDs when irradiated in several standard photon beams of the LNE-LNHB (French national metrology laboratory for ionizing radiation). Measurement strategies and Monte Carlo techniques were developed to calibrate the LiF:Mg,Cu,P detectors in the energy interval characteristic of that found when TLDs are immersed in water around an{sup 192}Ir source. Finally, an experimental system was designed to irradiate TLDs at different angles between 1 and 11 cm away from an {sup 192}Ir source in liquid water. Monte Carlo simulations were performed to correct measured results to provide estimates of the absorbed dose to water in water around the {sup 192}Ir source. Results: The dose response dependence of LiF:Mg,Cu,P TLDs with the linear energy transfer of secondary electrons followed the same variations as those of published results. The calibration strategy which used TLDs in air exposed to a standard N-250 ISO x-ray beam and TLDs in water irradiated with a standard{sup 137}Cs beam provided an estimated mean uncertainty of 2.8% (k = 1) in the TLD calibration coefficient for irradiations by the {sup 192}Ir source in water. The 3D TLD measurements performed in liquid water were obtained with a

  15. A simplified analytical approach to estimate the parameters required for strength determination of HDR 192Ir brachytherapy sources using a Farmer-type ionization chamber.

    PubMed

    Kumar, Sudhir; Srinivasan, P; Sharma, S D; Mayya, Y S

    2012-01-01

    Measuring the strength of high dose rate (HDR) (192)Ir brachytherapy sources on receipt from the vendor is an important component of a quality assurance program. Owing to their ready availability in radiotherapy departments, the Farmer-type ionization chambers are also used to determine the strength of HDR (192)Ir brachytherapy sources. The use of a Farmer-type ionization chamber requires the estimation of the scatter correction factor along with positioning error (c) and the constant of proportionality (f) to determine the strength of HDR (192)Ir brachytherapy sources. A simplified approach based on a least squares method was developed for estimating the values of f and M(s). The seven distance method was followed to record the ionization chamber readings for parameterization of f and M(s). Analytically calculated values of M(s) were used to determine the room scatter correction factor (K(sc)). The Monte Carlo simulations were also carried out to calculate f and K(sc) to verify the magnitude of the parameters determined by the proposed analytical approach. The value of f determined using the simplified analytical approach was found to be in excellent agreement with the Monte Carlo simulated value (within 0.7%). Analytically derived values of K(sc) were also found to be in good agreement with the Monte Carlo calculated values (within 1.47%). Being far simpler than the presently available methods of evaluating f, the proposed analytical approach can be adopted for routine use by clinical medical physicists to estimate f by hand calculations.

  16. HDR and PDR 192Ir source activity control procedures, as the part of the quality assurance system at Brachytherapy Department of Greater Poland Cancer Centre

    PubMed Central

    Błasiak, Barbara; Stefaniak, Patrycja; Bielęda, Grzegorz

    2009-01-01

    Purpose One of the main causes of treatment failures in brachytherapy is incorrect source strength specification in planning system or treatment delivery console. Source strength control is the only scheme to avoid such mistakes. The main aim of this work was to present results of three years of HDR and PDR sources activity control. Material and methods Study was based on data from 14 192Ir HDR and PDR sources exchanges. Sources were checked three times: at the exchange day and after one and two months. Measurements were performed twice with thimble chamber (PMMA phantom), and well chamber. The source strength were measured as air – kerma and recalculated to activity. Results Source activities measured using well chamber and thimble chamber, as well as activities provided by planning system, were presented for PDR and HDR, respectively. Differences between results obtained using each chamber and activities from planning system were presented graphically. The calculated and measured activities differed less than 5%. Wilcoxon test was performed as well, no statistically significant differences were observed among HDR or PDR activities. Conclusions Checking of source parameters is one of the most important parts of quality control system in brachytherapy facilities. Well chamber and thimble chamber based dosimetry systems are fast and reliable tools for 192Ir source parameters checking in working brachytherapy department conditions.

  17. Improved dosimetry techniques for intravascular brachytherapy

    NASA Astrophysics Data System (ADS)

    Sehgal, Varun

    Coronary artery disease leads to the accumulation of atheromatous plaque leading to coronary stenosis. Coronary intervention techniques such as balloon angioplasty and atherectomy are used to address coronary stenosis and establish a stable lumen thus enhancing blood flow to the myocardium. Restenosis or re-blockage of the arteries is a major limitation of the above mentioned interventional techniques. Neointimal hyperplasia or proliferation of cells in response to the vascular injury as a result of coronary intervention is considered to be one of the major causes of restenosis. Recent studies indicated that irradiation of the coronary lesion site, with radiation doses ranging from 15 to 30 Gy, leads to diminishing neointimal hyperplasia with subsequent reduction in restenosis. The radiation dose is given by catheter-based radiation delivery systems using beta-emitters 90Sr/90Y, 32P and gamma-emitting 192Ir among others. However the dose schema used for dose prescription for these sources are relatively simplistic, and are based on calculations using uniform homogenous water or tissue media and simple cylinder geometry. Stenotic coronary vessels are invariably lined with atheromatous plaque of heterogeneous composition, the radiation dose distribution obtained from such dosimetry data can cause significant variations in the actual dose received by a given patient. Such discrepancies in dose calculation can introduce relatively large uncertainties in the limits of dose window for effective and safe application of intravascular brachytherapy, and consequently in the clinical evaluation of the efficacy of this modality. In this research study we investigated the effect of different geometrical and material heterogeneities, including residual plaque, catheter non-centering, lesion eccentricity and cardiac motion on the radiation dose delivered at the lesion site. Correction factors including dose perturbation factors and dose variation factors have been calculated

  18. SU-E-T-102: Determination of Dose Distributions and Water-Equivalence of MAGIC-F Polymer Gel for 60Co and 192Ir Brachytherapy Sources

    SciTech Connect

    Quevedo, A; Nicolucci, P

    2014-06-01

    Purpose: Analyse the water-equivalence of MAGIC-f polymer gel for {sup 60}Co and {sup 192}Ir clinical brachytherapy sources, through dose distributions simulated with PENELOPE Monte Carlo code. Methods: The real geometry of {sup 60} (BEBIG, modelo Co0.A86) and {sup 192}192Ir (Varian, model GammaMed Plus) clinical brachytherapy sources were modelled on PENELOPE Monte Carlo simulation code. The most probable emission lines of photons were used for both sources: 17 emission lines for {sup 192}Ir and 12 lines for {sup 60}. The dose distributions were obtained in a cubic water or gel homogeneous phantom (30 × 30 × 30 cm{sup 3}), with the source positioned in the middle of the phantom. In all cases the number of simulation showers remained constant at 10{sup 9} particles. A specific material for gel was constructed in PENELOPE using weight fraction components of MAGIC-f: wH = 0,1062, wC = 0,0751, wN = 0,0139, wO = 0,8021, wS = 2,58×10{sup −6} e wCu = 5,08 × 10{sup −6}. The voxel size in the dose distributions was 0.6 mm. Dose distribution maps on the longitudinal and radial direction through the centre of the source were used to analyse the water-equivalence of MAGIC-f. Results: For the {sup 60} source, the maximum diferences in relative doses obtained in the gel and water were 0,65% and 1,90%, for radial and longitudinal direction, respectively. For {sup 192}Ir, the maximum difereces in relative doses were 0,30% and 1,05%, for radial and longitudinal direction, respectively. The materials equivalence can also be verified through the effective atomic number and density of each material: Zef-MAGIC-f = 7,07 e .MAGIC-f = 1,060 g/cm{sup 3} and Zef-water = 7,22. Conclusion: The results showed that MAGIC-f is water equivalent, consequently being suitable to simulate soft tissue, for Cobalt and Iridium energies. Hence, gel can be used as a dosimeter in clinical applications. Further investigation to its use in a clinical protocol is needed.

  19. Cluster pattern analysis of energy deposition sites for the brachytherapy sources 103Pd, 125I, 192Ir, 137Cs, and 60Co.

    PubMed

    Villegas, Fernanda; Tilly, Nina; Bäckström, Gloria; Ahnesjö, Anders

    2014-09-21

    Analysing the pattern of energy depositions may help elucidate differences in the severity of radiation-induced DNA strand breakage for different radiation qualities. It is often claimed that energy deposition (ED) sites from photon radiation form a uniform random pattern, but there is indication of differences in RBE values among different photon sources used in brachytherapy. The aim of this work is to analyse the spatial patterns of EDs from 103Pd, 125I, 192Ir, 137Cs sources commonly used in brachytherapy and a 60Co source as a reference radiation. The results suggest that there is both a non-uniform and a uniform random component to the frequency distribution of distances to the nearest neighbour ED. The closest neighbouring EDs show high spatial correlation for all investigated radiation qualities, whilst the uniform random component dominates for neighbours with longer distances for the three higher mean photon energy sources (192Ir, 137Cs, and 60Co). The two lower energy photon emitters (103Pd and 125I) present a very small uniform random component. The ratio of frequencies of clusters with respect to 60Co differs up to 15% for the lower energy sources and less than 2% for the higher energy sources when the maximum distance between each pair of EDs is 2 nm. At distances relevant to DNA damage, cluster patterns can be differentiated between the lower and higher energy sources. This may be part of the explanation to the reported difference in RBE values with initial DSB yields as an endpoint for these brachytherapy sources.

  20. Cluster pattern analysis of energy deposition sites for the brachytherapy sources 103Pd, 125I, 192Ir, 137Cs, and 60Co

    NASA Astrophysics Data System (ADS)

    Villegas, Fernanda; Tilly, Nina; Bäckström, Gloria; Ahnesjö, Anders

    2014-09-01

    Analysing the pattern of energy depositions may help elucidate differences in the severity of radiation-induced DNA strand breakage for different radiation qualities. It is often claimed that energy deposition (ED) sites from photon radiation form a uniform random pattern, but there is indication of differences in RBE values among different photon sources used in brachytherapy. The aim of this work is to analyse the spatial patterns of EDs from 103Pd, 125I, 192Ir, 137Cs sources commonly used in brachytherapy and a 60Co source as a reference radiation. The results suggest that there is both a non-uniform and a uniform random component to the frequency distribution of distances to the nearest neighbour ED. The closest neighbouring EDs show high spatial correlation for all investigated radiation qualities, whilst the uniform random component dominates for neighbours with longer distances for the three higher mean photon energy sources (192Ir, 137Cs, and 60Co). The two lower energy photon emitters (103Pd and 125I) present a very small uniform random component. The ratio of frequencies of clusters with respect to 60Co differs up to 15% for the lower energy sources and less than 2% for the higher energy sources when the maximum distance between each pair of EDs is 2 nm. At distances relevant to DNA damage, cluster patterns can be differentiated between the lower and higher energy sources. This may be part of the explanation to the reported difference in RBE values with initial DSB yields as an endpoint for these brachytherapy sources.

  1. Sci—Fri AM: Mountain — 03: Current status of the NRC primary standard for {sup 192}Ir HDR brachytherapy sources

    SciTech Connect

    Mainegra-Hing, E; Downton, Brad

    2014-08-15

    The Canadian primary standard for {sup 192}Ir HDR brachytherapy sources has been recently revised in a more accurate manner allowing for more realistic uncertainty estimation. Air-kerma strength S{sub k} is derived from measurements of the source's output using a graphite-walled spherical ionization chamber (2S) at several distances. Traceability to NRC primary standards for the {sup 192}Ir calibration coefficient N{sub k} is insured by estimating it as the inverse arithmetic mean of the inverse of the calibration coefficients for a {sup 137}Cs beam and the medium energy x-ray beam quality N250, both of which are traceable to NRC primary standards. The multiple-distance method is combined with a non-linear least squares fit to determine St, while at the same time removing the effects of room scatter and position offset. The previously used shadow-cone method for directly measuring the room scatter is found to be inadequate due to the increased scatter contribution from the lead cone itself, especially at short source-detector distances. Rather than including the reported 1% difference in source strength for {sup 192}Ir HDR sources of different construction into the total uncertainty, users are cautioned that the calibration coefficient provided by NRC is only valid for a microSelectron V2 model. A comprehensive uncertainty budged shows that the total one sigma uncertainty of the standard is actually 0.6% rather than the previously assumed 1.2%. NRC measured S{sub k} agrees within 0.03% of the manufacturer's value.

  2. A phantom study of an in vivo dosimetry system using plastic scintillation detectors for real-time verification of 192Ir HDR brachytherapy

    PubMed Central

    Therriault-Proulx, Francois; Briere, Tina M.; Mourtada, Firas; Aubin, Sylviane; Beddar, Sam; Beaulieu, Luc

    2011-01-01

    Purpose: The goal of the present work was to evaluate the accuracy of a plastic scintillation detector (PSD) system to perform in-phantom dosimetry during 192Ir high dose rate (HDR) brachytherapy treatments. Methods: A PSD system capable of stem effect removal was built. A red–green–blue photodiode connected to a dual-channel electrometer was used to detect the scintillation light emitted from a green scintillation component and transmitted along a plastic optical fiber. A clinically relevant prostate treatment plan was built using the HDR brachytherapy treatment planning system. An in-house fabricated template was used for accurate positioning of the catheters, and treatment delivery was performed in a water phantom. Eleven catheters were inserted and used for dose delivery from 192Ir radioactive source, while two others were used to mimic dosimetry at the rectum wall and in the urethra using a PSD. The measured dose and dose rate data were compared to the expected values from the planning system. The importance of removing stem effects from in vivo dosimetry using a PSD during 192Ir HDR brachytherapy treatments was assessed. Applications for dwell position error detection and temporal verification of the treatment delivery were also investigated. Results: In-phantom dosimetry measurements of the treatment plan led to a ratio to the expected dose of 1.003 ± 0.004 with the PSD at different positions in the urethra and 1.043 ± 0.003 with the PSD inserted in the rectum. Verification for the urethra of dose delivered within each catheter and at specific dwell positions led to average measured to expected ratios of 1.015 ± 0.019 and 1.014 ± 0.020, respectively. These values at the rectum wall were 1.059 ± 0.045 within each catheter and 1.025 ± 0.028 for specific dwell positions. The ability to detect positioning errors of the source depended of the tolerance on the difference to the expected value. A 5-mm displacement of the source was

  3. Monte Carlo calculated microdosimetric spread for cell nucleus-sized targets exposed to brachytherapy 125I and 192Ir sources and 60Co cell irradiation.

    PubMed

    Villegas, Fernanda; Tilly, Nina; Ahnesjö, Anders

    2013-09-01

    The stochastic nature of ionizing radiation interactions causes a microdosimetric spread in energy depositions for cell or cell nucleus-sized volumes. The magnitude of the spread may be a confounding factor in dose response analysis. The aim of this work is to give values for the microdosimetric spread for a range of doses imparted by (125)I and (192)Ir brachytherapy radionuclides, and for a (60)Co source. An upgraded version of the Monte Carlo code PENELOPE was used to obtain frequency distributions of specific energy for each of these radiation qualities and for four different cell nucleus-sized volumes. The results demonstrate that the magnitude of the microdosimetric spread increases when the target size decreases or when the energy of the radiation quality is reduced. Frequency distributions calculated according to the formalism of Kellerer and Chmelevsky using full convolution of the Monte Carlo calculated single track frequency distributions confirm that at doses exceeding 0.08 Gy for (125)I, 0.1 Gy for (192)Ir, and 0.2 Gy for (60)Co, the resulting distribution can be accurately approximated with a normal distribution. A parameterization of the width of the distribution as a function of dose and target volume of interest is presented as a convenient form for the use in response modelling or similar contexts.

  4. Comparison of 3D dose distributions for HDR {sup 192}Ir brachytherapy sources with normoxic polymer gel dosimetry and treatment planning system

    SciTech Connect

    Senkesen, Oznur; Tezcanli, Evrim; Buyuksarac, Bora; Ozbay, Ismail

    2014-10-01

    Radiation fluence changes caused by the dosimeter itself and poor spatial resolution may lead to lack of 3-dimensional (3D) information depending on the features of the dosimeter and quality assurance of dose distributions for high–dose rate (HDR) iridium-192 ({sup 192}Ir) brachytherapy sources is challenging and experimental dosimetry methods used for brachytherapy sources are limited. In this study, we investigated 3D dose distributions of {sup 192}Ir brachytherapy sources for irradiation with single and multiple dwell positions using a normoxic gel dosimeter and compared them with treatment planning system (TPS) calculations. For dose calibration purposes, 100-mL gel-containing vials were irradiated at predefined doses and then scanned in an magnetic resonance (MR) imaging unit. Gel phantoms prepared in 2 spherical glasses were irradiated with {sup 192}Ir for the calculated dwell positions, and MR scans of the phantoms were obtained. The images were analyzed with MATLAB software. Dose distributions and profiles derived with 1-mm resolution were compared with TPS calculations. Linearity was observed between the delivered dose and the reciprocal of the T2 relaxation time constant of the gel. The x-, y-, and z-axes were defined as the sagittal, coronal, and axial planes, respectively, the sagittal and axial planes were defined parallel to the long axis of the source while the coronal plane was defined horizontally to the long axis of the source. The differences between measured and calculated profile widths of 3-cm source length and point source for 70%, 50%, and 30% isodose lines were evaluated at 3 dose levels using 18 profiles of comparison. The calculations for 3-cm source length revealed a difference of > 3 mm in 1 coordinate at 50% profile width on the sagittal plane and 3 coordinates at 70% profile width and 2 coordinates at 50% and 30% profile widths on the axial plane. Calculations on the coronal plane for 3-cm source length showed > 3-mm difference in 1

  5. A generic high-dose rate {sup 192}Ir brachytherapy source for evaluation of model-based dose calculations beyond the TG-43 formalism

    SciTech Connect

    Ballester, Facundo; Carlsson Tedgren, Åsa; Granero, Domingo; Haworth, Annette; Mourtada, Firas; Fonseca, Gabriel Paiva; Rivard, Mark J.; Siebert, Frank-André; Sloboda, Ron S.; and others

    2015-06-15

    Purpose: In order to facilitate a smooth transition for brachytherapy dose calculations from the American Association of Physicists in Medicine (AAPM) Task Group No. 43 (TG-43) formalism to model-based dose calculation algorithms (MBDCAs), treatment planning systems (TPSs) using a MBDCA require a set of well-defined test case plans characterized by Monte Carlo (MC) methods. This also permits direct dose comparison to TG-43 reference data. Such test case plans should be made available for use in the software commissioning process performed by clinical end users. To this end, a hypothetical, generic high-dose rate (HDR) {sup 192}Ir source and a virtual water phantom were designed, which can be imported into a TPS. Methods: A hypothetical, generic HDR {sup 192}Ir source was designed based on commercially available sources as well as a virtual, cubic water phantom that can be imported into any TPS in DICOM format. The dose distribution of the generic {sup 192}Ir source when placed at the center of the cubic phantom, and away from the center under altered scatter conditions, was evaluated using two commercial MBDCAs [Oncentra{sup ®} Brachy with advanced collapsed-cone engine (ACE) and BrachyVision ACUROS{sup TM}]. Dose comparisons were performed using state-of-the-art MC codes for radiation transport, including ALGEBRA, BrachyDose, GEANT4, MCNP5, MCNP6, and PENELOPE2008. The methodologies adhered to recommendations in the AAPM TG-229 report on high-energy brachytherapy source dosimetry. TG-43 dosimetry parameters, an along-away dose-rate table, and primary and scatter separated (PSS) data were obtained. The virtual water phantom of (201){sup 3} voxels (1 mm sides) was used to evaluate the calculated dose distributions. Two test case plans involving a single position of the generic HDR {sup 192}Ir source in this phantom were prepared: (i) source centered in the phantom and (ii) source displaced 7 cm laterally from the center. Datasets were independently produced by

  6. Direct measurement of absorbed dose to water in HDR {sup 192}Ir brachytherapy: Water calorimetry, ionization chamber, Gafchromic film, and TG-43

    SciTech Connect

    Sarfehnia, Arman; Kawrakow, Iwan; Seuntjens, Jan

    2010-04-15

    Purpose: Gafchromic film and ionometric calibration procedures for HDR {sup 192}Ir brachytherapy sources in terms of dose rate to water are presented and the experimental results are compared to the TG-43 protocol as well as with the absolute dose measurement results from a water calorimetry-based primary standard. Methods: EBT-1 Gafchromic films, an A1SL Exradin miniature Shonka thimble type chamber, and an SI HDR 1000 Plus well-type chamber (Standard Imaging, Inc., Middleton, WI) with an ADCL traceable S{sub k} calibration coefficient (following the AAPM TG-43 protocol) were used. The Farmer chamber and Gafchromic film measurements were performed directly in water. All results were compared to direct and absolute absorbed dose to water measurements from a 4 deg. C stagnant water calorimeter. Results: Based on water calorimetry, the authors measured the dose rate to water to be 361{+-}7 {mu}Gy/(h U) at a 55 mm source-to-detector separation. The dose rate normalized to air-kerma strength for all the techniques agree with the water calorimetry results to within 0.83%. The overall 1-sigma uncertainty on water calorimetry, ionization chamber, Gafchromic film, and TG-43 dose rate measurement amounts to 1.90%, 1.44%, 1.78%, and 2.50%, respectively. Conclusions: This work allows us to build a more realistic uncertainty estimate for absorbed dose to water determination using the TG-43 protocol. Furthermore, it provides the framework necessary for a shift from indirect HDR {sup 192}Ir brachytherapy dosimetry to a more accurate, direct, and absolute measurement of absorbed dose to water.

  7. Dose specification for 192Ir high dose rate brachytherapy in terms of dose-to-water-in-medium and dose-to-medium-in-medium

    NASA Astrophysics Data System (ADS)

    Paiva Fonseca, Gabriel; Carlsson Tedgren, Åsa; Reniers, Brigitte; Nilsson, Josef; Persson, Maria; Yoriyaz, Hélio; Verhaegen, Frank

    2015-06-01

    Dose calculation in high dose rate brachytherapy with 192Ir is usually based on the TG-43U1 protocol where all media are considered to be water. Several dose calculation algorithms have been developed that are capable of handling heterogeneities with two possibilities to report dose: dose-to-medium-in-medium (Dm,m) and dose-to-water-in-medium (Dw,m). The relation between Dm,m and Dw,m for 192Ir is the main goal of this study, in particular the dependence of Dw,m on the dose calculation approach using either large cavity theory (LCT) or small cavity theory (SCT). A head and neck case was selected due to the presence of media with a large range of atomic numbers relevant to tissues and mass densities such as air, soft tissues and bone interfaces. This case was simulated using a Monte Carlo (MC) code to score: Dm,m, Dw,m (LCT), mean photon energy and photon fluence. Dw,m (SCT) was derived from MC simulations using the ratio between the unrestricted collisional stopping power of the actual medium and water. Differences between Dm,m and Dw,m (SCT or LCT) can be negligible (<1%) for some tissues e.g. muscle and significant for other tissues with differences of up to 14% for bone. Using SCT or LCT approaches leads to differences between Dw,m (SCT) and Dw,m (LCT) up to 29% for bone and 36% for teeth. The mean photon energy distribution ranges from 222 keV up to 356 keV. However, results obtained using mean photon energies are not equivalent to the ones obtained using the full, local photon spectrum. This work concludes that it is essential that brachytherapy studies clearly report the dose quantity. It further shows that while differences between Dm,m and Dw,m (SCT) mainly depend on tissue type, differences between Dm,m and Dw,m (LCT) are, in addition, significantly dependent on the local photon energy fluence spectrum which varies with distance to implanted sources.

  8. Experimental determination of the dose rate constant for selected 125I- and 192Ir-brachytherapy sources

    NASA Astrophysics Data System (ADS)

    Selbach, Hans-Joachim; Bambynek, Markus; Aubineau-Lanièce, Isabelle; Gabris, Frantisek; Stefano Guerra, Antonio; Toni, Maria Pia; de Pooter, Jacco; Sander, Thorsten; Schneider, Thorsten

    2012-10-01

    In 2008, the European project ‘T2.J06, Increasing cancer treatment efficacy using 3D brachytherapy’ was launched. One of the main goals of the Joint Research Project was the experimental determination of the dose rate constant Λ to allow the linkage between the air kerma strength or reference air kerma rate currently used for the source characterization and the ‘new’ absorbed dose rate to water with an uncertainty of <3% (k = 1) for some selected brachytherapy sources. The results obtained by five National Metrology Institutes (NMI) for four different types of brachytherapy sources are presented and compared with consensus data published in the literature. A further goal of the project was to develop a calibration chain for the transfer of the new reference quantity to the end user, minimizing the uncertainty. A first direct calibration in terms of absorbed dose rate to water of a secondary standard and the dissemination to the hospitals is presented.

  9. Application of a pelvic phantom in brachytherapy dosimetry for high-dose-rate (HDR) 192Ir source based on Monte Carlo simulations

    NASA Astrophysics Data System (ADS)

    Ahn, Woo Sang; Choi, Wonsik; Shin, Seong Soo; Jung, Jinhong

    2014-08-01

    In this study, we evaluate how the radial dose function is influenced by the source position as well as the phantom size and shape. A pelvic water phantom similar to the pelvic shape of a human body was designed by averaging dimensions obtained from computed tomography (CT) images of patients treated with brachytherapy for cervical cancer. Furthermore, for the study of the effects of source position on the dose distribution, the position of the source in the water phantom was determined by using the center of mass of the gross target volume (GTV) in the CT images. To obtain the dosimetric parameter of a high-dose-rate (HDR) 192Ir source, we performed Monte Carlo simulations by using the Monte Carlo n-particle extended code (MCNPX). The radial dose functions obtained using the pelvic water phantom were compared with those of spherical phantom with different sizes, including the Monte Carlo (MC) results of Williamson and Li. Differences between the radial dose functions from this study and the data in the literature increased with the radial distances. The largest differences appeared for spherical phantom with the smallest size. In contrast to the published MC results, the radial dose function of the pelvic water phantom significantly decreased with radial distance in the vertical direction because full scattering was not possible. When the source was located in posterior position 2 cm from the center in the pelvic water phantom, the differences between the radial dose functions rapidly decreased with the radial distance in the lower vertical direction. If the International Commission on Radiation Units and Measurements bladder and rectum points are considered, doses to these reference points could be underestimated by up to 1%-2% at a distance of 3 to 6 cm. Our simulation results provide a valid clinical reference data and can used to improve the accuracy of the doses delivered during brachytherapy applied to patients with cervical cancer.

  10. Comparison of organ doses for patients undergoing balloon brachytherapy of the breast with HDR 192Ir or electronic sources using Monte Carlo simulations in a heterogeneous human phantom1

    PubMed Central

    Mille, Matthew M.; Xu, X. George; Rivard, Mark J.

    2010-01-01

    Purpose: Accelerated partial breast irradiation via interstitial balloon brachytherapy is a fast and effective treatment method for certain early stage breast cancers. The radiation can be delivered using a conventional high-dose rate (HDR) 192Ir gamma-emitting source or a novel electronic brachytherapy (eBx) source which uses lower energy x rays that do not penetrate as far within the patient. A previous study [A. Dickler, M. C. Kirk, N. Seif, K. Griem, K. Dowlatshahi, D. Francescatti, and R. A. Abrams, “A dosimetric comparison of MammoSite high-dose-rate brachytherapy and Xoft Axxent electronic brachytherapy,” Brachytherapy 6, 164–168 (2007)] showed that the target dose is similar for HDR 192Ir and eBx. This study compares these sources based on the dose received by healthy organs and tissues away from the treatment site. Methods: A virtual patient with left breast cancer was represented by a whole-body, tissue-heterogeneous female voxel phantom. Monte Carlo methods were used to calculate the dose to healthy organs in a virtual patient undergoing balloon brachytherapy of the left breast with HDR 192Ir or eBx sources. The dose-volume histograms for a few organs which received large doses were also calculated. Additional simulations were performed with all tissues in the phantom defined as water to study the effect of tissue inhomogeneities. Results: For both HDR 192Ir and eBx, the largest mean organ doses were received by the ribs, thymus gland, left lung, heart, and sternum which were close to the brachytherapy source in the left breast. eBx yielded mean healthy organ doses that were more than a factor of ∼1.4 smaller than for HDR 192Ir for all organs considered, except for the three closest ribs. Excluding these ribs, the average and median dose-reduction factors were ∼28 and ∼11, respectively. The volume distribution of doses in nearby soft tissue organs that were outside the PTV were also improved with eBx. However, the maximum dose to the closest

  11. Comparison of organ doses for patients undergoing balloon brachytherapy of the breast with HDR {sup 192}Ir or electronic sources using Monte Carlo simulations in a heterogeneous human phantom

    SciTech Connect

    Mille, Matthew M.; Xu, X. George; Rivard, Mark J.

    2010-02-15

    Purpose: Accelerated partial breast irradiation via interstitial balloon brachytherapy is a fast and effective treatment method for certain early stage breast cancers. The radiation can be delivered using a conventional high-dose rate (HDR) {sup 192}Ir gamma-emitting source or a novel electronic brachytherapy (eBx) source which uses lower energy x rays that do not penetrate as far within the patient. A previous study [A. Dickler, M. C. Kirk, N. Seif, K. Griem, K. Dowlatshahi, D. Francescatti, and R. A. Abrams, ''A dosimetric comparison of MammoSite high-dose-rate brachytherapy and Xoft Axxent electronic brachytherapy,'' Brachytherapy 6, 164-168 (2007)] showed that the target dose is similar for HDR {sup 192}Ir and eBx. This study compares these sources based on the dose received by healthy organs and tissues away from the treatment site. Methods: A virtual patient with left breast cancer was represented by a whole-body, tissue-heterogeneous female voxel phantom. Monte Carlo methods were used to calculate the dose to healthy organs in a virtual patient undergoing balloon brachytherapy of the left breast with HDR {sup 192}Ir or eBx sources. The dose-volume histograms for a few organs which received large doses were also calculated. Additional simulations were performed with all tissues in the phantom defined as water to study the effect of tissue inhomogeneities. Results: For both HDR {sup 192}Ir and eBx, the largest mean organ doses were received by the ribs, thymus gland, left lung, heart, and sternum which were close to the brachytherapy source in the left breast. eBx yielded mean healthy organ doses that were more than a factor of {approx}1.4 smaller than for HDR {sup 192}Ir for all organs considered, except for the three closest ribs. Excluding these ribs, the average and median dose-reduction factors were {approx}28 and {approx}11, respectively. The volume distribution of doses in nearby soft tissue organs that were outside the PTV were also improved with e

  12. Optimization of deterministic transport parameters for the calculation of the dose distribution around a high dose-rate {sup 192}Ir brachytherapy source

    SciTech Connect

    Gifford, Kent A.; Price, Michael J.; Horton, John L. Jr.; Wareing, Todd A.; Mourtada, Firas

    2008-06-15

    The goal of this work was to calculate the dose distribution around a high dose-rate {sup 192}Ir brachytherapy source using a multi-group discrete ordinates code and then to compare the results with a Monte Carlo calculated dose distribution. The unstructured tetrahedral mesh discrete ordinates code Attila version 6.1.1 was used to calculate the photon kerma rate distribution in water around the Nucletron microSelectron mHDRv2 source. MCNPX 2.5.c was used to compute the Monte Carlo water photon kerma rate distribution. Two hundred million histories were simulated, resulting in standard errors of the mean of less than 3% overall. The number of energy groups, S{sub n} (angular order), P{sub n} (scattering order), and mesh elements were varied in addition to the method of analytic ray tracing to assess their effects on the deterministic solution. Water photon kerma rate matrices were exported from both codes into an in-house data analysis software. This software quantified the percent dose difference distribution, the number of points within {+-}3% and {+-}5%, and the mean percent difference between the two codes. The data demonstrated that a 5 energy-group cross-section set calculated results to within 0.5% of a 15 group cross-section set. S{sub 12} was sufficient to resolve the solution in angle. P{sub 2} expansion of the scattering cross-section was necessary to compute accurate distributions. A computational mesh with 55 064 tetrahedral elements in a 30 cm diameter phantom resolved the solution spatially. An efficiency factor of 110 with the above parameters was realized in comparison to MC methods. The Attila code provided an accurate and efficient solution of the Boltzmann transport equation for the mHDRv2 source.

  13. SU-E-T-580: On the Significance of Model Based Dosimetry for Breast and Head and Neck 192Ir HDR Brachytherapy

    SciTech Connect

    Peppa, V; Pappas, E; Pantelis, E; Papagiannis, P; Major, T; Polgar, C

    2015-06-15

    Purpose: To assess the dosimetric and radiobiological differences between TG43-based and model-based dosimetry in the treatment planning of {sup 192}Ir HDR brachytherapy for breast and head and neck cancer. Methods: Two cohorts of 57 Accelerated Partial Breast Irradiation (APBI) and 22 head and neck (H&N) patients with oral cavity carcinoma were studied. Dosimetry for the treatment plans was performed using the TG43 algorithm of the Oncentra Brachy v4.4 treatment planning system (TPS). Corresponding Monte Carlo (MC) simulations were performed using MCNP6 with input files automatically prepared by the BrachyGuide software tool from DICOM RT plan data. TG43 and MC data were compared in terms of % dose differences, Dose Volume Histograms (DVHs) and related indices of clinical interest for the Planning Target Volume (PTV) and the Organs-At-Risk (OARs). A radiobiological analysis was also performed using the Equivalent Uniform Dose (EUD), mean survival fraction (S) and Tumor Control Probability (TCP) for the PTV, and the Normal Tissue Control Probability (N TCP) and the generalized EUD (gEUD) for the OARs. Significance testing of the observed differences performed using the Wilcoxon paired sample test. Results: Differences between TG43 and MC DVH indices, associated with the increased corresponding local % dose differences observed, were statistically significant. This is mainly attributed to their consistency however, since TG43 agrees closely with MC for the majority of DVH and radiobiological parameters in both patient cohorts. Differences varied considerably among patients only for the ipsilateral lung and ribs in the APBI cohort, with a strong correlation to target location. Conclusion: While the consistency and magnitude of differences in the majority of clinically relevant DVH indices imply that no change is needed in the treatment planning practice, individualized dosimetry improves accuracy and addresses instances of inter-patient variability observed. Research

  14. Radiation dose measurements with alanine/agarose gel and thin alanine films around a 192Ir brachytherapy source, using ESR spectroscopy.

    PubMed

    Olsson, S; Bergstrand, E S; Carlsson, A K; Hole, E O; Lund, E

    2002-04-21

    Alanine/agarose gel and alanine films in stacks have been used for measurements of absorbed dose around an HDR 192Ir source in a vaginal cylinder-applicator, with and without a 180 degrees tungsten shield. The gel and the films were analysed by means of ESR spectroscopy and calibrated against an ion chamber in a 4 MV photon beam to obtain absolute dose values. The gel serves as both dosimeter and phantom material, and the thin (130 microm) films are used to achieve an improved spatial resolution in the dose estimations. Experimental values were compared with Monte Carlo simulations using two different codes. Results from the measurements generally agree with the simulations to within 5%, for both the alanine/agarose gel and the alanine films.

  15. Characterization of a fiber-coupled Al{sub 2}O{sub 3}:C luminescence dosimetry system for online in vivo dose verification during {sup 192}Ir brachytherapy

    SciTech Connect

    Andersen, Claus E.; Nielsen, Soeren Kynde; Greilich, Steffen; Helt-Hansen, Jakob; Lindegaard, Jacob Christian; Tanderup, Kari

    2009-03-15

    A prototype of a new dose-verification system has been developed to facilitate prevention and identification of dose delivery errors in remotely afterloaded brachytherapy. The system allows for automatic online in vivo dosimetry directly in the tumor region using small passive detector probes that fit into applicators such as standard needles or catheters. The system measures the absorbed dose rate (0.1 s time resolution) and total absorbed dose on the basis of radioluminescence (RL) and optically stimulated luminescence (OSL) from aluminum oxide crystals attached to optical fiber cables (1 mm outer diameter). The system was tested in the range from 0 to 4 Gy using a solid-water phantom, a Varian GammaMed Plus {sup 192}Ir PDR afterloader, and dosimetry probes inserted into stainless-steel brachytherapy needles. The calibrated system was found to be linear in the tested dose range. The reproducibility (one standard deviation) for RL and OSL measurements was 1.3%. The measured depth-dose profiles agreed well with the theoretical expectations computed with the EGSNRC Monte Carlo code, suggesting that the energy dependence for the dosimeter probes (relative to water) is less than 6% for source-to-probe distances in the range of 2-50 mm. Under certain conditions, the RL signal could be greatly disturbed by the so-called stem signal (i.e., unwanted light generated in the fiber cable upon irradiation). The OSL signal is not subject to this source of error. The tested system appears to be adequate for in vivo brachytherapy dosimetry.

  16. Stem effect of a Ce3+ doped SiO2 optical dosimeter irradiated with a 192Ir HDR brachytherapy source

    NASA Astrophysics Data System (ADS)

    Carrara, Mauro; Tenconi, Chiara; Guilizzoni, Roberta; Borroni, Marta; Cavatorta, Claudia; Cerrotta, Annamaria; Fallai, Carlo; Gambarini, Grazia; Vedda, Anna; Pignoli, Emanuele

    2014-11-01

    Fiber-optic-coupled scintillation dosimeters are characterized by their small active volume if compared to other existing systems. However, they potentially show a greater stem effect, especially in external beam radiotherapy where the Cerenkov effect is not negligible. In brachytherapy, due to the lower energies and the shorter high dose range of the employed sources, the impact of the stem effect to the detector accuracy might be low. In this work, the stem effect of a Ce3+ doped SiO2 scintillation detector coupled to a SiO2 optical fiber was studied for high dose rate brachytherapy applications. Measurements were performed in a water phantom at changing source-detector mutual positions. The same irradiations were performed with a passive optical fiber, which doesn't have the dosimeter at its end. The relative contribution of the passive fiber with respect to the uncorrected readings of the detector in each one of the investigated source dwell positions was evaluated. Furthermore, the dosimeter was calibrated both neglecting and correcting its response for the passive fiber readings. The obtained absolute dose measurements were then compared to the dose calculations resulting from the treatment planning system. Dosimeter uncertainties with and without taking into account the passive fiber readings were generally below 2.8% and 4.3%, respectively. However, a particular exception results when the source is positioned near to the optical fiber, where the detector underestimates the dose (-8%) or at source-detector longitudinal distances higher than 3 cm. The obtained results show that the proposed dosimeter might be adopted in high dose rate prostate brachytherapy with satisfactory accuracy, without the need for any stem effect correction. However, accuracy further improves by subtraction of the noise signal produced by the passive optical fiber.

  17. Optimization of intravascular brachytherapy treatment planning in peripheral arteries.

    PubMed

    Zhou, Zhengdong; Haigron, Pascal; Shu, Huazhong; Yu, Wenxue; Moisan, Cécile; Manens, Jean-Pierre; Lucas, Antoine; Luo, Limin

    2007-09-01

    This work deals with the treatment planning optimization for intravascular brachytherapy (IVB) in peripheral arteries. The objective is both to quantitatively study the validity of different hypotheses required for a reliable application of the treatment with current techniques, and to contribute to the definition and the specification of a new optimized procedure taking into account the actual patient's vessel geometry. The detection of vascular luminal surface was performed by an image analysis process, i.e., virtual active navigation, applied to standard CT data. Dose distribution was calculated according to the formalism proposed and recommended by the AAPM in TG43 and TG60. A method combining simulated annealing and BFGS algorithms was applied to optimize the parameters associated with the dwell points such as their number, positions, and dwell times. Dose-surface histogram (DSH) was used to evaluate the dose distribution results. Four levels of accuracy in target surface description were tested. The application of this optimization method to four different CT data sets including patient data, phantom and animal models showed that the treatment plan can be improved when the actual vessel geometry has been taken into account.

  18. Gadolinium neutron capture brachytherapy (GdNCB), a new treatment method for intravascular brachytherapy

    SciTech Connect

    Enger, Shirin A.; Rezaei, Arash; Munck af Rosenschoeld, Per; Lundqvist, Hans

    2006-01-15

    Restenosis is a major problem after balloon angioplasty and stent implantation. The aim of this study is to introduce gadolinium neutron capture brachytherapy (GdNCB) as a suitable modality for treatment of stenosis. The utility of GdNCB in intravascular brachytherapy (IVBT) of stent stenosis is investigated by using the GEANT4 and MCNP4B Monte Carlo radiation transport codes. To study capture rate, Kerma, absorbed dose and absorbed dose rate around a Gd-containing stent activated with neutrons, a 30 mm long, 5 mm diameter gadolinium foil is chosen. The input data is a neutron spectrum used for clinical neutron capture therapy in Studsvik, Sweden. Thermal neutron capture in gadolinium yields a spectrum of high-energy gamma photons, which due to the build-up effect gives an almost flat dose delivery pattern to the first 4 mm around the stent. The absorbed dose rate is 1.33 Gy/min, 0.25 mm from the stent surface while the dose to normal tissue is in order of 0.22 Gy/min, i.e., a factor of 6 lower. To spare normal tissue further fractionation of the dose is also possible. The capture rate is relatively high at both ends of the foil. The dose distribution from gamma and charge particle radiation at the edges and inside the stent contributes to a nonuniform dose distribution. This will lead to higher doses to the surrounding tissue and may prevent stent edge and in-stent restenosis. The position of the stent can be verified and corrected by the treatment plan prior to activation. Activation of the stent by an external neutron field can be performed days after catherization when the target cells start to proliferate and can be expected to be more radiation sensitive. Another advantage of the nonradioactive gadolinium stent is the possibility to avoid radiation hazard to personnel.

  19. Qualification tests for 192Ir sealed sources

    NASA Astrophysics Data System (ADS)

    Iancso, Georgeta; Iliescu, Elena; Iancu, Rodica

    2013-12-01

    This paper describes the results of qualification tests for 192Ir sealed sources, available in Testing and Nuclear Expertise Laboratory of National Institute for Physics and Nuclear Engineering "Horia Hulubei" (I.F.I.N.-HH), Romania. These sources had to be produced in I.F.I.N.-HH and were tested in order to obtain the authorization from The National Commission for Nuclear Activities Control (CNCAN). The sources are used for gammagraphy procedures or in gammadefectoscopy equipments. Tests, measurement methods and equipments used, comply with CNCAN, AIEA and International Quality Standards and regulations. The qualification tests are: 1. Radiological tests and measurements: dose equivalent rate at 1 m; tightness; dose equivalent rate at the surface of the transport and storage container; external unfixed contamination of the container surface. 2. Mechanical and climatic tests: thermal shock; external pressure; mechanic shock; vibrations; boring; thermal conditions for storage and transportation. Passing all tests, it was obtained the Radiological Security Authorization for producing the 192Ir sealed sources. Now IFIN-HH can meet many demands for this sealed sources, as the only manufacturer in Romania.

  20. SU-E-T-46: Application of a Twin-Detector Method for the Determination of the Mean Photon Energy Em at Points of Measurement in a Water Phantom Surrounding a GammaMed HDR 192Ir Brachytherapy Source

    SciTech Connect

    Chofor, N; Poppe, B; Nebah, F; Harder, D

    2014-06-01

    Purpose: In a brachytherapy photon field in water the fluence-averaged mean photon energy Em at the point of measurement correlates with the radiation quality correction factor kQ of a non water-equivalent detector. To support the experimental assessment of Em, we show that the normalized signal ratio NSR of a pair of radiation detectors, an unshielded silicon diode and a diamond detector can serve to measure quantity Em in a water phantom at a Ir-192 unit. Methods: Photon fluence spectra were computed in EGSnrc based on a detailed model of the GammaMed source. Factor kQ was calculated as the ratio of the detector's spectrum-weighted responses under calibration conditions at a 60Co unit and under brachytherapy conditions at various radial distances from the source. The NSR was investigated for a pair of a p-type unshielded silicon diode 60012 and a synthetic single crystal diamond detector 60019 (both PTW Freiburg). Each detector was positioned according to its effective point of measurement, with its axis facing the source. Lateral signal profiles were scanned under complete scatter conditions, and the NSR was determined as the quotient of the signal ratio under application conditions x and that at position r-ref = 1 cm. Results: The radiation quality correction factor kQ shows a close correlation with the mean photon energy Em. The NSR of the diode/diamond pair changes by a factor of two from 0–18 cm from the source, while Em drops from 350 to 150 keV. Theoretical and measured NSR profiles agree by ± 2 % for points within 5 cm from the source. Conclusion: In the presence of the close correlation between radiation quality correction factor kQ and photon mean energy Em, the NSR provides a practical means of assessing Em under clinical conditions. Precise detector positioning is the major challenge.

  1. A Feasibility Study of Fricke Dosimetry as an Absorbed Dose to Water Standard for 192Ir HDR Sources

    PubMed Central

    deAlmeida, Carlos Eduardo; Ochoa, Ricardo; de Lima, Marilene Coelho; David, Mariano Gazineu; Pires, Evandro Jesus; Peixoto, José Guilherme; Salata, Camila; Bernal, Mario Antônio

    2014-01-01

    High dose rate brachytherapy (HDR) using 192Ir sources is well accepted as an important treatment option and thus requires an accurate dosimetry standard. However, a dosimetry standard for the direct measurement of the absolute dose to water for this particular source type is currently not available. An improved standard for the absorbed dose to water based on Fricke dosimetry of HDR 192Ir brachytherapy sources is presented in this study. The main goal of this paper is to demonstrate the potential usefulness of the Fricke dosimetry technique for the standardization of the quantity absorbed dose to water for 192Ir sources. A molded, double-walled, spherical vessel for water containing the Fricke solution was constructed based on the Fricke system. The authors measured the absorbed dose to water and compared it with the doses calculated using the AAPM TG-43 report. The overall combined uncertainty associated with the measurements using Fricke dosimetry was 1.4% for k = 1, which is better than the uncertainties reported in previous studies. These results are promising; hence, the use of Fricke dosimetry to measure the absorbed dose to water as a standard for HDR 192Ir may be possible in the future. PMID:25521914

  2. A feasibility study of Fricke dosimetry as an absorbed dose to water standard for 192Ir HDR sources.

    PubMed

    deAlmeida, Carlos Eduardo; Ochoa, Ricardo; Lima, Marilene Coelho de; David, Mariano Gazineu; Pires, Evandro Jesus; Peixoto, José Guilherme; Salata, Camila; Bernal, Mario Antônio

    2014-01-01

    High dose rate brachytherapy (HDR) using 192Ir sources is well accepted as an important treatment option and thus requires an accurate dosimetry standard. However, a dosimetry standard for the direct measurement of the absolute dose to water for this particular source type is currently not available. An improved standard for the absorbed dose to water based on Fricke dosimetry of HDR 192Ir brachytherapy sources is presented in this study. The main goal of this paper is to demonstrate the potential usefulness of the Fricke dosimetry technique for the standardization of the quantity absorbed dose to water for 192Ir sources. A molded, double-walled, spherical vessel for water containing the Fricke solution was constructed based on the Fricke system. The authors measured the absorbed dose to water and compared it with the doses calculated using the AAPM TG-43 report. The overall combined uncertainty associated with the measurements using Fricke dosimetry was 1.4% for k = 1, which is better than the uncertainties reported in previous studies. These results are promising; hence, the use of Fricke dosimetry to measure the absorbed dose to water as a standard for HDR 192Ir may be possible in the future. PMID:25521914

  3. Estimating the actual dose delivered by intravascular coronary brachytherapy using geometrically correct 3D modeling

    NASA Astrophysics Data System (ADS)

    Wahle, Andreas; Lopez, John J.; Pennington, Edward C.; Meeks, Sanford L.; Braddy, Kathleen C.; Fox, James M.; Brennan, Theresa M. H.; Buatti, John M.; Rossen, James D.; Sonka, Milan

    2003-05-01

    Intravascular brachytherapy has shown to reduce re-occurrence of in-stent restenosis in coronary arteries. For beta radiation, application time is determined from source activity and the angiographically estimated vessel diameter. Conventionally used dosing models assume a straight vessel with the catheter centered and a constant-diameter circular cross section. Aim of this study was to compare the actual dose delivered during in-vivo intravascular brachytherapy with the target range determined from the patient's prescribed dose. Furthermore, differences in dose distribution between a simplified tubular model (STM) and a geometrically correct 3-D model (GCM) obtained from fusion between biplane angiography and intravascular ultrasound were quantified. The tissue enclosed by the segmented lumen/plaque and media/adventitia borders was simulated using a structured finite-element mesh. The beta-radiation sources were modeled as 3-D objects in their angiographically determined locations. The accumulated dose was estimated using a fixed distance function based on the patient-specific radiation parameters. For visualization, the data was converted to VRML with the accumulated doses represented by color encoding. The statistical comparison between STM and GCM models in 8 patients showed that the STM significantly underestimates the dose delivered and its variability. The analysis revealed substantial deviations from the target dose range in curved vessels.

  4. Balloon-based adjuvant radiotherapy in breast cancer: comparison between 99mTc and HDR 192Ir*

    PubMed Central

    de Campos, Tarcísio Passos Ribeiro; de Lima, Carla Flavia; Cuperschmid, Ethel Mizrahy

    2016-01-01

    Objective To perform a comparative dosimetric analysis, based on computer simulations, of temporary balloon implants with 99mTc and balloon brachytherapy with high-dose-rate (HDR) 192Ir, as boosts to radiotherapy. We hypothesized that the two techniques would produce equivalent doses under pre-established conditions of activity and exposure time. Materials and Methods Simulations of implants with 99mTc-filled and HDR 192Ir-filled balloons were performed with the Siscodes/MCNP5, modeling in voxels a magnetic resonance imaging set related to a young female. Spatial dose rate distributions were determined. In the dosimetric analysis of the protocols, the exposure time and the level of activity required were specified. Results The 99mTc balloon presented a weighted dose rate in the tumor bed of 0.428 cGy.h-1.mCi-1 and 0.190 cGyh-1.mCi-1 at the balloon surface and at 8-10 mm from the surface, respectively, compared with 0.499 and 0.150 cGyh-1.mCi-1, respectively, for the HDR 192Ir balloon. An exposure time of 24 hours was required for the 99mTc balloon to produce a boost of 10.14 Gy with 1.0 Ci, whereas only 24 minutes with 10.0 Ci segments were required for the HDR 192Ir balloon to produce a boost of 5.14 Gy at the same reference point, or 10.28 Gy in two 24-minutes fractions. Conclusion Temporary 99mTc balloon implantation is an attractive option for adjuvant radiotherapy in breast cancer, because of its availability, economic viability, and similar dosimetry in comparison with the use of HDR 192Ir balloon implantation, which is the current standard in clinical practice. PMID:27141131

  5. Radiochromic film dosimetry of HDR {sup 192}Ir source radiation fields

    SciTech Connect

    Aldelaijan, Saad; Mohammed, Huriyyah; Tomic, Nada; Liang Liheng; DeBlois, Francois; Sarfehnia, Arman; Abdel-Rahman, Wamied; Seuntjens, Jan; Devic, Slobodan

    2011-11-15

    Purpose: A radiochromic film based dosimetry system for high dose rate (HDR) Iridium-192 brachytherapy source was described. A comparison between calibration curves established in water and Solid Water was provided. Methods: Pieces of EBT-2 model GAFCHROMIC film were irradiated in both water and Solid Water with HDR {sup 192}Ir brachytherapy source in a dose range from 0 to 50 Gy. Responses of EBT-2 GAFCHROMIC film were compared for irradiations in water and Solid Water by scaling the dose between media through Monte Carlo calculated conversion factor for both setups. To decrease uncertainty in dose delivery due to positioning of the film piece with respect to the radiation source, traceable calibration irradiations were performed in a parallel-opposed beam setup. Results: The EBT-2 GAFCHROMIC film based dosimetry system described in this work can provide an overall one-sigma dose uncertainty of 4.12% for doses above 1 Gy. The ratio of dose delivered to the sensitive layer of the film in water to the dose delivered to the sensitive layer of the film in Solid Water was calculated using Monte Carlo simulations to be 0.9941 {+-} 0.0007. Conclusions: A radiochromic film based dosimetry system using only the green color channel of a flatbed document scanner showed superior precision if used alone in a dose range that extends up to 50 Gy, which greatly decreases the complexity of work. In addition, Solid Water material was shown to be a viable alternative to water in performing radiochromic film based dosimetry with HDR {sup 192}Ir brachytherapy sources.

  6. Monte Carol-Based Dosimetry of Beta-Emitters for Intravascular Brachytherapy

    SciTech Connect

    Choi, C.K.

    2002-06-25

    Monte Carlo simulations for radiation dosimetry and the experimental verifications of the simulations have been developed for the treatment geometry of intravascular brachytherapy, a form of radionuclide therapy for occluded coronary disease (restenosis). Monte Carlo code, MCNP4C, has been used to calculate the radiation dose from the encapsulated array of B-emitting seeds (Sr/Y-source train). Solid water phantoms have been fabricated to measure the dose on the radiochromic films that were exposed to the beta source train for both linear and curved coronary vessel geometries. While the dose difference for the 5-degree curved vessel at the prescription point of f+2.0 mm is within the 10% guideline set by the AAPM, however, the difference increased dramatically to 16.85% for the 10-degree case which requires additional adjustment for the acceptable dosimetry planning. The experimental dose measurements agree well with the simulation results

  7. Use of water-equivalent plastic scintillator for intravascular brachytherapy dosimetry.

    PubMed

    Geso, M; Robinson, N; Schumer, W; Williams, K

    2004-03-01

    Beta irradiation has recently been investigated as a possible technique for the prevention of restenosis in intravascular brachytherapy after balloon dilatation or stent implantation. Present methods of beta radiation dosimetry are primarily conducted using radiochromic film. These film dosimeters exhibit limited sensitivity and their characteristics differ from those of tissue, therefore the dose measurement readings require correction factors to be applied. In this work a novel, mini-size (2 mm diameter by 5 mm long) dosimeter element fabricated from Organic Plastic Scintillator (OPS) material was employed. Scintillation photon detection is accomplished using a precision photodiode and innovative signal amplification and processing techniques, rather than traditional photomultiplier tube methods. A significant improvement in signal to noise ratio, dynamic range and stability is achieved using this set-up. In addition, use of the non-saturating organic plastic scintillator material as the detector enables the dosimeter to measure beta radiation at very close distances to the source. In this work the plastic scintillators have been used to measure beta radiation dose at distances of less than 1 mm from an Sr-90 cardiovascular brachytherapy source having an activity of about 2.1 GBq beta radiation levels for both depth-distance and longitudinal profile of the source pellet chain, both in air and in liquid water, are measured using this system. The data obtained is compared with results from Monte Carlo simulation technique (MCNP 4B). Plastic scintillator dosimeter elements, when used in conjunction with photodiode detectors may prove to be useful dosimeters for cardiovascular brachytherapy beta sources, or other applications where precise near-source field dosimetry is required. The system described is particularly useful where measurement of actual dose rate in real time, a high level of stability and repeatability, portability, and immediate access to results are

  8. Effectiveness Evaluation of Skin Covers against Intravascular Brachytherapy Sources Using VARSKIN3 Code

    PubMed Central

    Baghani, H R; Nazempour, A R; Aghamiri, S M R; Hosseini Daghigh, S M; Mowlavi, A A

    2013-01-01

    Background and Objective: The most common intravascular brachytherapy sources include 32P, 188Re, 106Rh and 90Sr/90Y. In this research, skin absorbed dose for different covering materials in dealing with these sources were evaluated and the best covering material for skin protection and reduction of absorbed dose by radiation staff was recognized and recommended. Method: Four materials including polyethylene, cotton and two different kinds of plastic were proposed as skin covers and skin absorbed dose at different depths for each kind of the materials was calculated separately using the VARSKIN3 code. Results: The results suggested that for all sources, skin absorbed dose was minimized when using polyethylene. Considering this material as skin cover, maximum and minimum doses at skin surface were related to 90Sr/90Y and 106Rh, respectively. Conclusion: polyethylene was found the most effective cover in reducing skin dose and protecting the skin. Furthermore, proper agreement between the results of VARSKIN3 and other experimental measurements indicated that VRASKIN3 is a powerful tool for skin dose calculations when working with beta emitter sources. Therefore, it can be utilized in dealing with the issue of radiation protection. PMID:25505758

  9. HDR {sup 192}Ir source speed measurements using a high speed video camera

    SciTech Connect

    Fonseca, Gabriel P.; Rubo, Rodrigo A.; Sales, Camila P. de; Verhaegen, Frank

    2015-01-15

    Purpose: The dose delivered with a HDR {sup 192}Ir afterloader can be separated into a dwell component, and a transit component resulting from the source movement. The transit component is directly dependent on the source speed profile and it is the goal of this study to measure accurate source speed profiles. Methods: A high speed video camera was used to record the movement of a {sup 192}Ir source (Nucletron, an Elekta company, Stockholm, Sweden) for interdwell distances of 0.25–5 cm with dwell times of 0.1, 1, and 2 s. Transit dose distributions were calculated using a Monte Carlo code simulating the source movement. Results: The source stops at each dwell position oscillating around the desired position for a duration up to (0.026 ± 0.005) s. The source speed profile shows variations between 0 and 81 cm/s with average speed of ∼33 cm/s for most of the interdwell distances. The source stops for up to (0.005 ± 0.001) s at nonprogrammed positions in between two programmed dwell positions. The dwell time correction applied by the manufacturer compensates the transit dose between the dwell positions leading to a maximum overdose of 41 mGy for the considered cases and assuming an air-kerma strength of 48 000 U. The transit dose component is not uniformly distributed leading to over and underdoses, which is within 1.4% for commonly prescribed doses (3–10 Gy). Conclusions: The source maintains its speed even for the short interdwell distances. Dose variations due to the transit dose component are much lower than the prescribed treatment doses for brachytherapy, although transit dose component should be evaluated individually for clinical cases.

  10. Measurement of absorbed dose-to-water for an HDR {sup 192}Ir source with ionization chambers in a sandwich setup

    SciTech Connect

    Araki, Fujio; Kouno, Tomohiro; Ohno, Takeshi; Kakei, Kiyotaka; Yoshiyama, Fumiaki; Kawamura, Shinji

    2013-09-15

    Purpose: In this study, a dedicated device for ion chamber measurements of absorbed dose-to-water for a Nucletron microSelectron-v2 HDR {sup 192}Ir brachytherapy source is presented. The device uses two ionization chambers in a so-called sandwich assembly. Using this setup and by taking the average reading of the two chambers, any dose error due to difficulties in absolute positioning (centering) of the source in between the chambers is cancelled to first order. The method's accuracy was examined by comparing measurements with absorbed dose-to-water determination based on the AAPM TG-43 protocol.Methods: The optimal source-to-chamber distance (SCD) for {sup 192}Ir dosimetry was determined from ion chamber measurements in a water phantom. The {sup 192}Ir source was sandwiched between two Exradin A1SL chambers (0.057 cm{sup 3}) at the optimal SCD separation. The measured ionization was converted to the absorbed dose-to-water using a {sup 60}Co calibration factor and a Monte Carlo-calculated beam quality conversion factor, k{sub Q}, for {sup 60}Co to {sup 192}Ir. An uncertainty estimate of the proposed method was determined based on reproducibility of measurements at different institutions for the same type of source.Results: The optimal distance for the A1SL chamber measurements was determined to be 5 cm from the {sup 192}Ir source center, considering the depth dependency of k{sub Q} for {sup 60}Co to {sup 192}Ir and the chamber positioning. The absorbed dose to water measured at (5 cm, 90°) on the transverse axis was 1.3% lower than TG-43 values and its reproducibility and overall uncertainty were 0.8% and 1.7%, respectively. The measurement doses at anisotropic points agreed within 1.5% with TG-43 values.Conclusions: The ion chamber measurement of absorbed dose-to-water with a sandwich method for the {sup 192}Ir source provides a more accurate, direct, and reference dose compared to the dose-to-water determination based on air-kerma strength in the TG-43 protocol

  11. The Monte Carlo-Based Dosimetry of Beta Emitters for Intravascular Brachytherapy

    SciTech Connect

    Choi, C.K.; Son, J.; Ye, S.J.

    2001-06-17

    Intravascular brachytherapy (IVBT) is a new radiotherapy modality to prevent restenosis (re-blockage of the coronary artery) following interventional coronary angioplasty. It is estimated that the restenosis rate may drop from {approx}35 to 40% to well below 10% if radiation is delivered to the obstruction site during or after angioplasty. In traditional brachytherapy, the dose is typically specified at 1 cm from the source, and the effects of low-energy photons and secondary electrons are essentially ignored. In IVBT, however, the entire lesion may be 1 to 3 mm in thickness. A better understanding of dosimetry in the millimetre range will help in the development of optimum clinical devices and their efficacious use in different institutions using different radionuclides and devices. The actual treatment geometry consists of an encapsulated train of seeds, a guide wire, and a stent in a curved vessel. The source is a cylindrical train of 12 source seeds, each having dimensions of 0.64 mm in diameter and 2.5 mm in length, and proximal/distal gold markers. Each seed contains {sup 90}Sr/Y mixed with fired ceramic encapsulated in a 0.04-mm stainless steel wall. The Monte Carlo simulations are carried out for the trained source geometries in the linear and curved vessels with and without a stent. The stent structure is approximately modeled as a set of tori with a rotational radius of 1.92 mm from the source axis and a circular radius of 0.08 mm in cross section. Five tori are equally spaced for each seed. The stent shadows 31% of the total area of the source surface. The total activity of 70 mCi (2.59 x 10{sup 9} Bq) was chosen from manufacturer data. The corresponding mass fraction of {sup 90}Sr/Y in the source ceramic is negligible and was not explicitly included in the MCNP simulations. All tallies were multiplied with 5.83 mCi/seed x 3.7 x 10{sup 7} s/mCi for one active seed, and then the tallies that made contributions to the dose in a voxel of interest were

  12. Qualification tests for {sup 192}Ir sealed sources

    SciTech Connect

    Iancso, Georgeta Iliescu, Elena Iancu, Rodica

    2013-12-16

    This paper describes the results of qualification tests for {sup 192}Ir sealed sources, available in Testing and Nuclear Expertise Laboratory of National Institute for Physics and Nuclear Engineering 'Horia Hulubei' (I.F.I.N.-HH), Romania. These sources had to be produced in I.F.I.N.-HH and were tested in order to obtain the authorization from The National Commission for Nuclear Activities Control (CNCAN). The sources are used for gammagraphy procedures or in gammadefectoscopy equipments. Tests, measurement methods and equipments used, comply with CNCAN, AIEA and International Quality Standards and regulations. The qualification tests are: 1. Radiological tests and measurements: dose equivalent rate at 1 m; tightness; dose equivalent rate at the surface of the transport and storage container; external unfixed contamination of the container surface. 2. Mechanical and climatic tests: thermal shock; external pressure; mechanic shock; vibrations; boring; thermal conditions for storage and transportation. Passing all tests, it was obtained the Radiological Security Authorization for producing the {sup 192}Ir sealed sources. Now IFIN-HH can meet many demands for this sealed sources, as the only manufacturer in Romania.

  13. Evaluating the effect of various intracavitary applicators on dosimetric parameters of (192)Ir, (137)Cs, and (60)Co sources.

    PubMed

    Ghorbani, Mahdi; Hashempour, Marjan; Azizi, Mona; Meigooni, Ali S

    2016-06-01

    The purpose of this research is to study the effect of various applicator compositions on dosimetric parameters and dose distribution of (192)Ir, (137)Cs, and (60)Co sources, using Monte Carlo simulation techniques. To study the effect of applicators on source dosimetry, the dose rate constant, and radial dose function and isodose curves for the above noted sources were calculated in the presence and absence of plastic, titanium, and a stainless steel applicators. The effects of the applicators on the dosimetric parameters and isodose curves of these sources were dependent of the source type and materials of the applicator. The (192)Ir source with the stainless steel applicator has the maximum difference of dose rate (4.2 %) relative to the without applicator case. The (60)Co source with plastic applicator has the minimum dose variation. Moreover, this effect is higher for lower energy sources. Ignoring the effect of applicator composition and geometry on dose distribution may cause discrepancies in treatment planning. Plastic applicators have the least radiation attenuation compared to the other applicators, therefore, they are recommended for use in brachytherapy. A table of correction factors has been introduced for different sources and applicators with different materials for the clinical applications.

  14. Dose calculation formalisms and consensus dosimetry parameters for intravascular brachytherapy dosimetry: Recommendations of the AAPM Therapy Physics Committee Task Group No. 149

    SciTech Connect

    Chiu-Tsao, Sou-Tung; Schaart, Dennis R.; Soares, Christopher G.; Nath, Ravinder

    2007-11-15

    Since the publication of AAPM Task Group 60 report in 1999, a considerable amount of dosimetry data for the three coronary brachytherapy systems in use in the United States has been reported. A subgroup, Task Group 149, of the AAPM working group on Special Brachytherapy Modalities (Bruce Thomadsen, Chair) was charged to develop recommendations for dose calculation formalisms and the related consensus dosimetry parameters. The recommendations of this group are presented here. For the Cordis {sup 192}Ir and Novoste {sup 90}Sr/{sup 90}Y systems, the original TG-43 formalism in spherical coordinates should be used along with the consensus values of the dose rate constant, geometry function, radial dose function, and anisotropy function for the single seeds. Contributions from the single seeds should be added linearly for the calculation of dose distributions from a source train. For the Guidant {sup 32}P wire system, the modified TG-43 formalism in cylindrical coordinates along with the recommended data for the 20 and 27 mm wires should be used. Data tables for the 6, 10, 14, 18, and 22 seed trains of the Cordis system, 30, 40, and 60 mm seed trains of the Novoste system, and the 20 and 27 mm wires of the Guidant system are presented along with our rationale and methodology for selecting the consensus data. Briefly, all available datasets were compared with each other and the consensus dataset was either an average of available data or the one obtained from the most densely populated study; in most cases this was a Monte Carlo calculation.

  15. Preparation and preliminary biological evaluation of a (166)Ho labeled polyazamacrocycle for possible use as an intravascular brachytherapy (IVBT) agent.

    PubMed

    Chakraborty, Sudipta; Das, Tapas; Banerjee, Sharmila; Sarma, H D; Venkatesh, Meera

    2006-04-01

    (166)Ho can be considered as a potential radionuclide for intravascular brachytherapy (IVBT) using liquid-filled balloons owing to its suitable nuclear decay characteristics. The possibility of producing (166)Ho with adequate specific activity using moderate flux reactors and natural holmium target makes it an attractive alternative of (188)Re for developing IVBT agents. Keeping in mind the high thermodynamic stability of lanthanide complexes with polyazamacrocycles, (166)Ho complex of 1,4,8,11-tetraazacyclotetradecane-1,4,8,11-tetraacetic acid (TETA) was prepared and studied for its suitability as a possible agent for IVBT. (166)Ho was produced with adequate specific activity and high radionuclidic purity by irradiating natural Ho(2)O(3) powder. TETA was synthesized by a single step procedure using cyclam as the starting material. (166)Ho-TETA complex was prepared with excellent radiochemical purity and the complex was found to retain its stability for 7 days at room temperature. Biodistribution studies carried out in Wistar rats showed major renal clearance of the injected activity with almost no retention in any of the vital organ/tissue.

  16. Evaluation of EGS4/PRESTA multiple-scattering algorithms for 90Sr/90Y intravascular brachytherapy dosimetry.

    PubMed

    Wang, R; Li, X A; Yu, C X

    2000-08-01

    The purpose of this work is to evaluate the EGS4/PRESTA electron multiple-scattering (MS) algorithms for dose calculation in intravascular brachytherapy (IVBT) using a 90Sr/90Y source. The small source size and the small volume of interest in IVBT require very fine spatial resolution, which may break down the constraints of Molière's MS theory as implemented in EGS4. The theory is accurate only when the electron step sizes are large enough to allow the number of collisions omega0 to be much greater than e = 2.7183. When step sizes are too small to allow at least 2.7183 collisions, as may be necessitated by the fine geometry, the algorithm may switch off MS, producing dosimetric artefacts. This study showed that switching off MS could produce a dose deviation of up to 6% when the half-thickness (d/2) of the dose scoring region is comparable with the Moliere minimum step size (t(min) = 2.7183). The effect of switching off MS is negligible if d/2 > t(min) For the case of omega0 > e, if the electron step sizes are chosen to allow five to 40 collisions, with increasing step size, the doses surrounding the source increase and the error decreases. On the other hand, when larger step sizes are chosen, the dose calculation voxel size must also be increased in order for the calculations to converge. A good compromise between accuracy and applicability for IVBT simulation can be made, if the thickness of the scoring region is 0.1 mm and the electron step sizes are in the range allowing 10 to 30 collisions.

  17. Brachytherapy

    MedlinePlus

    ... smaller area in less time than conventional external beam radiation therapy. Brachytherapy is used to treat cancers ... to kill cancer cells and shrink tumors. External beam radiation therapy (EBRT) involves high-energy x-ray ...

  18. SU-E-T-457: Design and Characterization of An Economical 192Ir Hemi-Brain Small Animal Irradiator

    SciTech Connect

    Grams, M; Wilson, Z; Sio, T; Beltran, C; Tryggestad, E; Gupta, S; Blackwell, C; McCollough, K; Sarkaria, J; Furutani, K

    2014-06-01

    Purpose: To describe the design and dosimetric characterization of a simple and economical small animal irradiator. Methods: A high dose rate 192Ir brachytherapy source from a commercially available afterloader was used with a 1.3 centimeter thick tungsten collimator to provide sharp beam penumbra suitable for hemi-brain irradiation of mice. The unit is equipped with continuous gas anesthesia to allow robust animal immobilization. Dosimetric characterization of the device was performed with Gafchromic film. The penumbra from the small animal irradiator was compared under similar collimating conditions to the penumbra from 6 MV photons, 6 MeV electrons, and 20 MeV electrons from a linear accelerator as well as 300 kVp photons from an orthovoltage unit and Monte Carlo simulated 90 MeV protons. Results: The tungsten collimator provides a sharp penumbra suitable for hemi-brain irradiation, and dose rates on the order of 200 cGy/minute were achieved. The sharpness of the penumbra attainable with this device compares favorably to those measured experimentally for 6 MV photons, and 6 and 20 MeV electron beams from a linear accelerator. Additionally, the penumbra was comparable to those measured for a 300 kVp orthovoltage beam and a Monte Carlo simulated 90 MeV proton beam. Conclusions: The small animal irradiator described here can be built for under $1,000 and used in conjunction with any commercial brachytherapy afterloader to provide a convenient and cost-effective option for small animal irradiation experiments. The unit offers high dose rate delivery and sharp penumbra, which is ideal for hemi-brain irradiation of mice. With slight modifications to the design, irradiation of sites other than the brain could be accomplished easily. Due to its simplicity and low cost, the apparatus described is an attractive alternative for small animal irradiation experiments requiring a sharp penumbra.

  19. Dose characterization in the near-source region for two high dose rate brachytherapy sources.

    PubMed

    Wang, Ruqing; Li, X Allen

    2002-08-01

    High dose rate (HDR) 192Ir sources are currently used in intravascular brachytherapy (IVB) for the peripheral arterial system. This poses a demand on evaluating accurate dose parameters in the near-source region for such sources. The purpose of this work is to calculate the dose parameters for the old VariSource HDR 192Ir source and the new microSelectron HDR 192Ir source, using Monte Carlo electron and photon transport simulation. The two-dimensional (2D) dose rate distributions and the air kerma strengths for the two HDR sources were calculated by EGSnrc and EGS4 Monte Carlo codes. Based on these data, the dose parameters proposed in the AAPM TG-60 protocol were derived. The dose rate constants obtained are 13.119+/-0.028 cGy h(-1) U(-1) for the old VariSource source, and 22.751+/-0.031 cGy h(-1) U(-1) for the new microSelectron source at the reference point (r0 = 2 mm, theta = pi/2). The 2D dose rate distributions, the radial dose functions, and the anisotropy functions presented for the two sources cover radial distances ranging from 0.5 to 10 mm. In the near-source region on the transverse plane, the dose effects of the charged particle nonequilibrium and the beta-particle dose contribution were studied. It is found that at radial distances ranging from 0.5 to 2 mm, these effects increase the calculated dose rates by up to 29% for the old VariSource source, and by up to 12% for the new microSelectron source, which, in turn, change values of the radial dose function and the anisotropy function. The present dose parameters, which account for the charged particle nonequilibrium and the beta particle contribution, may be used for accurate IVB dose calculation. PMID:12201413

  20. Dose perturbation of a novel cobalt chromium coronary stent on {sup 32}P intravascular brachytherapy: A Monte Carlo study

    SciTech Connect

    Mourtada, Firas; Horton, John L.

    2005-01-01

    Intravascular brachytherapy has been adopted for the indication of in-stent restenosis on the basis of results of clinical trials using mainly stainless steel stents. Recently, a new stent made of cobalt-chromium L-605 alloy (CoCr, {rho}=9.22 g/cm{sup 3}) (MULTI-LINK VISION{sup TM}) was introduced as an alternative to the 316L stainless steel stent design (SS, {rho}=7.87 g/cm{sup 3}) (MULTI-LINK PENTA{sup TM}). In this work, we used the Monte Carlo code MCNPX to compare the dose distribution for the {sup 32}P GALILEO{sup TM} source in CoCr and SS 8 mm stent models. The dose perturbation factor (DPF), defined as the ratio of the dose in water with the presence of a stent to the dose without a stent, was used to compare results. Both stent designs were virtually expanded to diameters of 2.0, 3.0, and 4.0 mm using finite element models. The complicated strut shapes of both the CoCr and SS stents were simplified using circular rings with an effective width to yield a metal-to-tissue ratio identical to that of the actual stents. The mean DPF at a 1 mm tissue depth, over the entire stented length of 8 mm, was 0.935 for the CoCr stent and 0.911 for the SS stent. The mean DPF at the intima (0.05 mm radial distance from the strut outer surface), over the entire stented length of 8 mm, was 0.950 for CoCr, and 0.926 for SS. The maximum DPFs directly behind the CoCr and SS struts were 0.689 and 0.644, respectively. All DPF estimates have a standard deviation of {+-}0.6%(k=2), approximating the 95% confidence interval. Although the CoCr stent has a higher effective atomic number and greater density than the SS stent, the DPFs for the two stents are similar, probably because the metal-to-tissue ratio and strut thickness of the CoCr stent are lower than those of the SS stent.

  1. Post-Dilatation Intravascular Brachytherapy Trials on Hypercholesterolemic Rabbits Using {sup 32}P-Phosphate Solutions in Angioplasty Balloons

    SciTech Connect

    Walichiewicz, Piotr Wilczek, Krzysztof; Petelenz, Barbara; Jachec, Wojciech; Jochem, Jerzy; Tomasik, Andrzej; Bilski, Pawel; Gaca, Pawel; Banaszczuk, Joanna; Ihnatowicz, Jerzy; Wodniecki, Jan

    2004-01-15

    Response of peripheral arteries to post-dilatation intravascular brachytherapy (IVBT) using {sup 32}P liquid sources was studied in a rabbit model. The applied sources were angioplasty balloons filled with aqueous solutions of Na{sub 2}H{sup 32}PO{sub 4}, NaCl and iodinated contrast. Dose distribution was calibrated by thermoluminescence dosimetry. The uncertainty of in vitro determinations of the activity-dose dependence was {+-} 15-30%. The animal experiments were performed on rabbits with induced hypercholesterolemia. The {sup 32}P sources were introduced into a randomly chosen (left or right) iliac artery, immediately after balloon injury. Due to the low specific activity of the applied sources, the estimated 7-49 Gy doses on the internal artery surface required 30-100 min irradiations. A symmetric, balloon-occluded but non-irradiated artery of the same animal served as control. Radiation effects were evaluated by comparing the thicknesses of various components of irradiated versus untreated artery walls of each animal. The treatment was well tolerated by the animals. The effects of various dose ranges could be distinguished although differences in individual biological reactions were large. Only the 49 Gy dose at 'zero' distance (16 Gy at 1.0 mm from the balloon surface) reduced hypertrophy in every active layer of the artery wall. The cross-sectional intimal thicknesses after 7, 12, 38 and 49 Gy doses were 0.277, 0.219, 0.357 and 0.196 mm{sup 2} respectively, versus 0.114, 0.155, 0.421 and 0.256 mm{sup 2} in controls (p < 0.05). The lowest radiation dose on the intima induced the opposite effect. Edge intimal hyperplasia was not avoided, which agrees with other reports. The edge restenosis and the variability of individual response to identical treatment conditions must be considered as limitations of the post-dilatation IVBT method. Only application of highest irradiation doses was effective. The irradiation dose should be planned and calculated for

  2. An overexposure in industrial radiography using an /sup 192/Ir radionuclide

    SciTech Connect

    Jalil, A.; Molla, M.A.

    1989-07-01

    An industrial radiographer was accidentally exposed to a high dose of ionizing radiation from an /sup 192/Ir source during radiography of weldjoints in gas pipelines. Some symptoms of high radiation exposure occurred immediately after the incident. The clinical effect of skin erythema developed within 7 d, leading to progressive tissue deterioration. The dose to the body was estimated to be about 2-3 Gy, and the dose to the fingertips was approximately 24 Gy.

  3. Determination of absorbed dose to water around a clinical HDR {sup 192}Ir source using LiF:Mg,Ti TLDs demonstrates an LET dependence of detector response

    SciTech Connect

    Carlsson Tedgren, Aasa; Elia, Rouba; Hedtjaern, Haakan; Olsson, Sara; Alm Carlsson, Gudrun

    2012-02-15

    Purpose: Experimental radiation dosimetry with thermoluminescent dosimeters (TLDs), calibrated in a {sup 60}Co or megavoltage (MV) photon beam, is recommended by AAPM TG-43U1for verification of Monte Carlo calculated absorbed doses around brachytherapy sources. However, it has been shown by Carlsson Tedgren et al.[Med. Phys. 38, 5539-5550 (2011)] that for TLDs of LiF:Mg,Ti, detector response was 4% higher in a {sup 137}Cs beam than in a {sup 60}Co one. The aim of this work was to investigate if similar over-response exists when measuring absorbed dose to water around {sup 192}Ir sources, using LiF:Mg,Ti dosimeters calibrated in a 6 MV photon beam. Methods: LiF dosimeters were calibrated to measure absorbed dose to water in a 6 MV photon beam and used to measure absorbed dose to water at distances of 3, 5, and 7 cm from a clinical high dose rate (HDR) {sup 192}Ir source in a polymethylmethacrylate (PMMA) phantom. Measured values were compared to values of absorbed dose to water calculated using a treatment planning system (TPS) including corrections for the difference in energy absorption properties between calibration quality and the quality in the users'{sup 192}Ir beam and for the use of a PMMA phantom instead of the water phantom underlying dose calculations in the TPS. Results: Measured absorbed doses to water around the {sup 192}Ir source were overestimated by 5% compared to those calculated by the TPS. Corresponding absorbed doses to water measured in a previous work with lithium formate electron paramagnetic resonance (EPR) dosimeters by Antonovic et al. [Med. Phys. 36, 2236-2247 (2009)], using the same irradiation setup and calibration procedure as in this work, were 2% lower than those calculated by the TPS. The results obtained in the measurements in this work and those obtained using the EPR lithium formate dosimeters were, within the expanded (k = 2) uncertainty, in agreement with the values derived by the TPS. The discrepancy between the results using

  4. SU-F-19A-10: Recalculation and Reporting Clinical HDR 192-Ir Head and Neck Dose Distributions Using Model Based Dose Calculation

    SciTech Connect

    Carlsson Tedgren, A; Persson, M; Nilsson, J

    2014-06-15

    Purpose: To retrospectively re-calculate dose distributions for selected head and neck cancer patients, earlier treated with HDR 192Ir brachytherapy, using Monte Carlo (MC) simulations and compare results to distributions from the planning system derived using TG43 formalism. To study differences between dose to medium (as obtained with the MC code) and dose to water in medium as obtained through (1) ratios of stopping powers and (2) ratios of mass energy absorption coefficients between water and medium. Methods: The MC code Algebra was used to calculate dose distributions according to earlier actual treatment plans using anonymized plan data and CT images in DICOM format. Ratios of stopping power and mass energy absorption coefficients for water with various media obtained from 192-Ir spectra were used in toggling between dose to water and dose to media. Results: Differences between initial planned TG43 dose distributions and the doses to media calculated by MC are insignificant in the target volume. Differences are moderate (within 4–5 % at distances of 3–4 cm) but increase with distance and are most notable in bone and at the patient surface. Differences between dose to water and dose to medium are within 1-2% when using mass energy absorption coefficients to toggle between the two quantities but increase to above 10% for bone using stopping power ratios. Conclusion: MC predicts target doses for head and neck cancer patients in close agreement with TG43. MC yields improved dose estimations outside the target where a larger fraction of dose is from scattered photons. It is important with awareness and a clear reporting of absorbed dose values in using model based algorithms. Differences in bone media can exceed 10% depending on how dose to water in medium is defined.

  5. Experimental determination of the energy response of alanine pellets in the high dose rate 192Ir spectrum

    NASA Astrophysics Data System (ADS)

    Schaeken, B.; Cuypers, R.; Goossens, J.; Van den Weyngaert, D.; Verellen, D.

    2011-10-01

    An experimental determination of the energy correction factor for alanine/paraffin pellets in the 192Ir spectrum at varying distances from the source is presented. Alanine dosimeters were irradiated in water under full scatter conditions with a high dose rate (HDR) 192Ir source (Flexisource), using a dedicated holder. Up to six line sources (catheters) fit in a regular pattern at fixed radial distances from the holder axis, the alanine detector being placed at the centre of the holder. The HDR source was stepping every 0.5 cm within a trocar needle within ± 3.0 cm around the medial plane through the detector in order to achieve dose homogeneity within the detector volume. The energy correction factor of alanine/paraffin pellets in 192Ir relative to 60Co was experimentally determined as the inverse ratio of the dose to water measured in water around the 192Ir source to the dose to water calculated in water using the TG-43 formalism. The pellets were read out with a Bruker EMXmicro spectrometer (X-band). The amplitude of the central line in the alanine absorption spectrum from pellets irradiated within the 192Ir spectrum was directly compared with the amplitude from 60Co-irradiated pellets. The energy correction factors of Harwell pellets irradiated in the 192Ir spectrum are 1.029 ± 0.02, 1.027 ± 0.02 and 1.045 ± 0.02 at a mean weighted source-detector distance of 2.0, 2.9 and 5.3 cm, respectively. The experimentally obtained values for the energy response are 1.3% lower compared to the theoretical values for radial distances smaller than 3 cm.

  6. Retreatment of recurrent carcinoma of the head and neck by afterloading interstitial 192Ir implant

    SciTech Connect

    Emami, B.; Marks, J.E.

    1983-10-01

    From January 1975 to December 1980, 25 patients with persistent or recurrent carcinomas of the head and neck were retreated for palliation at the Division of Radiation Oncology, Mallinckrodt Institute of Radiology. These patients had all undergone extensive previous treatment by surgery and/or radiation. All were retreated with 192Ir interstitial implant with or without external radiation and/or surgical excision. Of 25 patients, 13 had complete response (CR) and 6 had partial response for a follow-up period of 1 to 7 years. Of 13 patients with CR, 6 are alive with no evidence of disease (NED) and two died NED. Detailed results are presented and the new strategy for such patients is discussed.

  7. [High dose rate brachytherapy].

    PubMed

    Aisen, S; Carvalho, H A; Chavantes, M C; Esteves, S C; Haddad, C M; Permonian, A C; Taier, M do C; Marinheiro, R C; Feriancic, C V

    1992-01-01

    The high dose rate brachytherapy uses a single source os 192Ir with 10Ci of nominal activity in a remote afterloading machine. This technique allows an outpatient treatment, without the inconveniences of the conventional low dose rate brachytherapy such as use of general anesthesia, rhachianesthesia, prolonged immobilization, and personal exposition to radiation. The radiotherapy department is now studying 5 basic treatment schemes concerning carcinomas of the uterine cervix, endometrium, lung, esophagus and central nervous system tumors. With the Micro Selectron HDR, 257 treatment sessions were done in 90 patients. Mostly were treated with weekly fractions, receiving a total of three to four treatments each. No complications were observed neither during nor after the procedure. Doses, fraction and ideal associations still have to be studied, so that a higher therapeutic ratio can be reached.

  8. Post-stenting Intravascular Brachytherapy Trials on Hypercholesterolemic Rabbits Using 32P Liquid Sources: Implications for Prevention of In-Stent Restenosis

    SciTech Connect

    Wilczek, Krzysztof; Walichiewicz, Piotr; Petelenz, Barbara; Jachec, Wojciech; Jochem, Jerzy; Tomasik, Andrzej; Bilski, Pawel; Snietura, Miroslaw; Wodniecki, Jan

    2002-08-15

    Purpose: Liquid sources of radiation delivered in angioplasty balloons may be a convenient self-centering device used for prevention of in-stent restenosis. To test the effectiveness of this method an intravascular brachytherapy study was performed using 32P liquid sources in an animal model. Methods: The radial dose distribution around angioplasty balloons filled with solutions of Na2H32PO4 was calibrated by thermoluminescence dosimetry. The animal experiments were performed in rabbits with induced hypercholesterolemia. The balloons containing 32P were introduced into iliac arteries immediately after stent implantation. Estimated 7-49 Gy doses required 30-100 minirradiations. Radiation effects were evaluated by comparing the thickness of various components of the artery wall. Results:Doses of 7, 12, 16 or 49 Gy on the internal artery surface required 30-100 min of irradiation. The dose of 49 Gy at 'zero' distance corresponding to 16 Gy at 1.0 mm from the balloon surface reduced hypertrophy in every layer of the arterial wall: in the intima the cross-sectional areas were 0.13 versus 0.91 mm2, in the media were 0.5 versus 0.46 mm2 and in the adventitia were 0.04 versus 0.3 mm2 (p <0.05). A dose of 7 Gyat the balloon surface produced adverse irradiation effects: the intimal area of the artery was 2.087 versus 0.857 mm2, the medial area was 0.59 versus 0.282 mm2 and the adventitial area was 0.033 versus 0.209 mm2 in treated and control arteries, respectively.Conclusion: Application of a 49 Gy irradiation dose to the internal arterial surface effectively prevented in-stentrestenosis.

  9. Current state of the art brachytherapy treatment planning dosimetry algorithms

    PubMed Central

    Pantelis, E; Karaiskos, P

    2014-01-01

    Following literature contributions delineating the deficiencies introduced by the approximations of conventional brachytherapy dosimetry, different model-based dosimetry algorithms have been incorporated into commercial systems for 192Ir brachytherapy treatment planning. The calculation settings of these algorithms are pre-configured according to criteria established by their developers for optimizing computation speed vs accuracy. Their clinical use is hence straightforward. A basic understanding of these algorithms and their limitations is essential, however, for commissioning; detecting differences from conventional algorithms; explaining their origin; assessing their impact; and maintaining global uniformity of clinical practice. PMID:25027247

  10. In-phantom response of LiF TLD-100 for dosimetry of 192Ir HDR source.

    PubMed

    Pradhan, A S; Quast, U

    2000-05-01

    An experiment was carried out to reevaluate the response of LiF TLD-100 rods (1 mmx1 mmx6 mm) at different depths in a water substituting phantom to provide an answer to a prevailing controversy about the over-response of LiF to the softened photon spectra of 192Ir HDR source at depths in phantom due to its photon energy dependence. Claims of some authors that LiF TLDs over-responds by 8.5% at 10 cm depth in phantom, necessitating depth-dependent correction factors even for an 192Ir source and of some others for no over-response were evaluated. The over-response of LiF TLD-100 rods, against a calibrated ion chamber having a photon energy-independent response within 2%, was found to be not exceeding 2.5% at a depth of 10 cm in the phantom as compared to a depth at 1 cm, for a precision of the order of +/- 1% (1sigma) in the TLD measurements. By using ISO equivalent photon beams, photon energy dependence of the dosimeters was evaluated and for LiF TLD-100 rods it was found to be in close agreement (within 3%) with the ratios of mass energy absorption coefficients of LiF and water in the range of effective photon energy from 26 keV to 1.25 MeV. Parameters that could contribute to the discrepancy in the reported values of experimental results have been discussed.

  11. Determination of transit dose profile for a {sup 192}Ir HDR source

    SciTech Connect

    Fonseca, G. P.; Antunes, P. C. G.; Yoriyaz, H.

    2013-05-15

    Purpose: Several studies have reported methodologies to calculate and correct the transit dose component of the moving radiation source for high dose rate (HDR) brachytherapy planning systems. However, most of these works employ the average source speed, which varies significantly with the measurement technique used, and does not represent a realistic speed profile, therefore, providing an inaccurate dose determination. In this work, the authors quantified the transit dose component of a HDR unit based on the measurement of the instantaneous source speed to produce more accurate dose values. Methods: The Nucletron microSelectron-HDR Ir-192 source was characterized considering the Task Group 43 (TG-43U1) specifications. The transit dose component was considered through the calculation of the dose distribution using a Monte Carlo particle transport code, MCNP5, for each source position and correcting it by the source speed. The instantaneous source speed measurements were performed in a previous work using two optical fibers connected to a photomultiplier and an oscilloscope. Calculated doses were validated by comparing relative dose profiles with those obtained experimentally using radiochromic films. Results: TG-43U1 source parameters were calculated to validate the Monte Carlo simulations. These agreed with the literature, with differences below 1% for the majority of the points. Calculated dose profiles without transit dose were also validated by comparison with ONCENTRA{sup Registered-Sign} Brachy v. 3.3 dose values, yielding differences within 1.5%. Dose profiles obtained with MCNP5 corrected using the instantaneous source speed profile showed differences near dwell positions of up to 800% in comparison to values corrected using the average source speed, but they are in good agreement with the experimental data, showing a maximum discrepancy of approximately 3% of the maximum dose. Near a dwell position the transit dose is about 22% of the dwell dose delivered

  12. Source geometry factors for HDR ¹⁹²Ir brachytherapy secondary standard well-type ionization chamber calibrations.

    PubMed

    Shipley, D R; Sander, T; Nutbrown, R F

    2015-03-21

    Well-type ionization chambers are used for measuring the source strength of radioactive brachytherapy sources before clinical use. Initially, the well chambers are calibrated against a suitable national standard. For high dose rate (HDR) (192)Ir, this calibration is usually a two-step process. Firstly, the calibration source is traceably calibrated against an air kerma primary standard in terms of either reference air kerma rate or air kerma strength. The calibrated (192)Ir source is then used to calibrate the secondary standard well-type ionization chamber. Calibration laboratories are usually only equipped with one type of HDR (192)Ir source. If the clinical source type is different from that used for the calibration of the well chamber at the standards laboratory, a source geometry factor, k(sg), is required to correct the calibration coefficient for any change of the well chamber response due to geometric differences between the sources. In this work we present source geometry factors for six different HDR (192)Ir brachytherapy sources which have been determined using Monte Carlo techniques for a specific ionization chamber, the Standard Imaging HDR 1000 Plus well chamber with a type 70010 HDR iridium source holder. The calculated correction factors were normalized to the old and new type of calibration source used at the National Physical Laboratory. With the old Nucletron microSelectron-v1 (classic) HDR (192)Ir calibration source, ksg was found to be in the range 0.983 to 0.999 and with the new Isodose Control HDR (192)Ir Flexisource k(sg) was found to be in the range 0.987 to 1.004 with a relative uncertainty of 0.4% (k = 2). Source geometry factors for different combinations of calibration sources, clinical sources, well chambers and associated source holders, can be calculated with the formalism discussed in this paper.

  13. A Novel Device for Intravaginal Electronic Brachytherapy

    SciTech Connect

    Schneider, Frank Fuchs, Holger; Lorenz, Friedlieb; Steil, Volker; Ziglio, Francesco; Kraus-Tiefenbacher, Uta; Lohr, Frank; Wenz, Frederik

    2009-07-15

    Purpose: Postoperative intravaginal brachytherapy for endometrial carcinoma is usually performed with {sup 192}Ir high-dose rate (HDR) afterloading. A potential alternative is treatment with a broadband 50kV X-ray point source, the advantage being its low energy and the consequential steep dose gradient. The aim of this study was to create and evaluate a homogeneous cylindrical energy deposition around a newly designed vaginal applicator. Methods and Materials: To create constant isodose layers along the cylindrical plastic vaginal applicator, the source (INTRABEAM system) was moved in steps of 17-19.5 mm outward from the tip of the applicator. Irradiation for a predetermined time was performed at each position. The axial shift was established by a stepping mechanism that was mounted on a table support. The total dose/dose distribution was determined using film dosimetry (Gafchromic EBT) in a 'solid water' phantom. The films were evaluated with Mathematica 5.2 and OmniPro-I'mRT 1.6. The results (dose D0/D5/D10 in 0/5/10 mm tissue depth) were compared with an {sup 192}Ir HDR afterloading plan for multiple sampling points around the applicator. Results: Three different dose distributions with lengths of 3.9-7.3 cm were created. The irradiation time based on the delivery of 5/7 Gy to a 5 mm tissue depth was 19/26 min to 27/38 min. D0/D5/D10 was 150%/100%/67% for electronic brachytherapy and 140%/100%/74% for the afterloading technique. The deviation for repeated measurements in the phantom was <7%. Conclusions: It is possible to create a homogeneous cylindrical dose distribution, similar to {sup 192}Ir HDR afterloading, through the superimposition of multiple spherical dose distributions by stepping a kilovolt point source.

  14. The theoretical basis and clinical methodology for stereotactic interstitial brain tumor irradiation using iododeoxyuridine as a radiation sensitizer and samarium-145 as a brachytherapy source

    SciTech Connect

    Goodman, J.H.; Gahbauer, R.A.; Kanellitsas, C.; Clendenon, N.R. ); Laster, B.H.; Fairchild, R.G. )

    1989-01-01

    High grade astrocytomas have proven resistant to all conventional therapy. A technique to produce radiation enhancement during interstitial brain tumor irradiation by using a radiation sensitizer (IdUrd) and by stimulation of Auger electron cascades through absorption of low energy photons in iodine (Photon activation) is described. Clinical studies using IdUrd, {sup 192}Ir as a brachytherapy source, and external radiation have produced promising results. Substituting samarium-145 for {sup 192}Ir in this protocol is expected to produce enhanced results. 15 refs.

  15. Dynamic rotating-shield brachytherapy

    SciTech Connect

    Liu, Yunlong; Flynn, Ryan T.; Kim, Yusung; Yang, Wenjun; Wu, Xiaodong

    2013-12-15

    Purpose: To present dynamic rotating shield brachytherapy (D-RSBT), a novel form of high-dose-rate brachytherapy (HDR-BT) with electronic brachytherapy source, where the radiation shield is capable of changing emission angles during the radiation delivery process.Methods: A D-RSBT system uses two layers of independently rotating tungsten alloy shields, each with a 180° azimuthal emission angle. The D-RSBT planning is separated into two stages: anchor plan optimization and optimal sequencing. In the anchor plan optimization, anchor plans are generated by maximizing the D{sub 90} for the high-risk clinical-tumor-volume (HR-CTV) assuming a fixed azimuthal emission angle of 11.25°. In the optimal sequencing, treatment plans that most closely approximate the anchor plans under the delivery-time constraint will be efficiently computed. Treatment plans for five cervical cancer patients were generated for D-RSBT, single-shield RSBT (S-RSBT), and {sup 192}Ir-based intracavitary brachytherapy with supplementary interstitial brachytherapy (IS + ICBT) assuming five treatment fractions. External beam radiotherapy doses of 45 Gy in 25 fractions of 1.8 Gy each were accounted for. The high-risk clinical target volume (HR-CTV) doses were escalated such that the D{sub 2cc} of the rectum, sigmoid colon, or bladder reached its tolerance equivalent dose in 2 Gy fractions (EQD2 with α/β= 3 Gy) of 75 Gy, 75 Gy, or 90 Gy, respectively.Results: For the patients considered, IS + ICBT had an average total dwell time of 5.7 minutes/fraction (min/fx) assuming a 10 Ci{sup 192}Ir source, and the average HR-CTV D{sub 90} was 78.9 Gy. In order to match the HR-CTV D{sub 90} of IS + ICBT, D-RSBT required an average of 10.1 min/fx more delivery time, and S-RSBT required 6.7 min/fx more. If an additional 20 min/fx of delivery time is allowed beyond that of the IS + ICBT case, D-RSBT and S-RSBT increased the HR-CTV D{sub 90} above IS + ICBT by an average of 16.3 Gy and 9.1 Gy, respectively

  16. Dosimetric characterization and output verification for conical brachytherapy surface applicators. Part I. Electronic brachytherapy source

    SciTech Connect

    Fulkerson, Regina K. Micka, John A.; DeWerd, Larry A.

    2014-02-15

    Purpose: Historically, treatment of malignant surface lesions has been achieved with linear accelerator based electron beams or superficial x-ray beams. Recent developments in the field of brachytherapy now allow for the treatment of surface lesions with specialized conical applicators placed directly on the lesion. Applicators are available for use with high dose rate (HDR){sup 192}Ir sources, as well as electronic brachytherapy sources. Part I of this paper will discuss the applicators used with electronic brachytherapy sources; Part II will discuss those used with HDR {sup 192}Ir sources. Although the use of these applicators has gained in popularity, the dosimetric characteristics including depth dose and surface dose distributions have not been independently verified. Additionally, there is no recognized method of output verification for quality assurance procedures with applicators like these. Existing dosimetry protocols available from the AAPM bookend the cross-over characteristics of a traditional brachytherapy source (as described by Task Group 43) being implemented as a low-energy superficial x-ray beam (as described by Task Group 61) as observed with the surface applicators of interest. Methods: This work aims to create a cohesive method of output verification that can be used to determine the dose at the treatment surface as part of a quality assurance/commissioning process for surface applicators used with HDR electronic brachytherapy sources (Part I) and{sup 192}Ir sources (Part II). Air-kerma rate measurements for the electronic brachytherapy sources were completed with an Attix Free-Air Chamber, as well as several models of small-volume ionization chambers to obtain an air-kerma rate at the treatment surface for each applicator. Correction factors were calculated using MCNP5 and EGSnrc Monte Carlo codes in order to determine an applicator-specific absorbed dose to water at the treatment surface from the measured air-kerma rate. Additionally

  17. In vivo dosimeters for HDR brachytherapy: A comparison of a diamond detector, MOSFET, TLD, and scintillation detector

    SciTech Connect

    Lambert, Jamil; Nakano, Tatsuya; Law, Sue; Elsey, Justin; McKenzie, David R.; Suchowerska, Natalka

    2007-05-15

    The large dose gradients in brachytherapy necessitate a detector with a small active volume for accurate dosimetry. The dosimetric performance of a novel scintillation detector (BrachyFOD{sup TM}) is evaluated and compared to three commercially available detectors, a diamond detector, a MOSFET, and LiF TLDs. An {sup 192}Ir HDR brachytherapy source is used to measure the depth dependence, angular dependence, and temperature dependence of the detectors. Of the commercially available detectors, the diamond detector was found to be the most accurate, but has a large physical size. The TLDs cannot provide real time readings and have depth dependent sensitivity. The MOSFET used in this study was accurate to within 5% for distances of 20 to 50 mm from the {sup 192}Ir source in water but gave errors of 30%-40% for distances greater than 50 mm from the source. The BrachyFOD{sup TM} was found to be accurate to within 3% for distances of 10 to 100 mm from an HDR {sup 192}Ir brachytherapy source in water. It has an angular dependence of less than 2% and the background signal created by Cerenkov radiation and fluorescence of the plastic optical fiber is insignificant compared to the signal generated in the scintillator. Of the four detectors compared in this study the BrachyFOD{sup TM} has the most favorable combination of characteristics for dosimetry in HDR brachytherapy.

  18. In vivo dosimeters for HDR brachytherapy: a comparison of a diamond detector, MOSFET, TLD, and scintillation detector.

    PubMed

    Lambert, Jamil; Nakano, Tatsuya; Law, Sue; Elsey, Justin; McKenzie, David R; Suchowerska, Natalka

    2007-05-01

    The large dose gradients in brachytherapy necessitate a detector with a small active volume for accurate dosimetry. The dosimetric performance of a novel scintillation detector (BrachyFOD) is evaluated and compared to three commercially available detectors, a diamond detector, a MOSFET, and LiF TLDs. An 192Ir HDR brachytherapy source is used to measure the depth dependence, angular dependence, and temperature dependence of the detectors. Of the commercially available detectors, the diamond detector was found to be the most accurate, but has a large physical size. The TLDs cannot provide real time readings and have depth dependent sensitivity. The MOSFET used in this study was accurate to within 5% for distances of 20 to 50 mm from the 192Ir source in water but gave errors of 30%-40% for distances greater than 50 mm from the source. The BrachyFOD was found to be accurate to within 3% for distances of 10 to 100 mm from an HDR 192Ir brachytherapy source in water. It has an angular dependence of less than 2% and the background signal created by Cerenkov radiation and fluorescence of the plastic optical fiber is insignificant compared to the signal generated in the scintillator. Of the four detectors compared in this study the BrachyFOD has the most favorable combination of characteristics for dosimetry in HDR brachytherapy.

  19. Dosimetric modeling of the microselectron high-dose rate 192Ir source by the multigroup discrete ordinates method.

    PubMed

    Daskalov, G M; Baker, R S; Rogers, D W; Williamson, J F

    2000-10-01

    The DANTSYS multigroup discrete ordinates computer code is applied to quantitatively estimate the absorbed dose rate distributions in the vicinity of a microSelectron 192Ir high-dose-rate (HDR) source in two-dimensional cylindrical R-Z geometry. The source is modeled in a cylindrical water phantom of diameter 20 cm and height 20 cm. The results are also used for evaluation of the Task Group 43 (TG-43) dosimetric quantities. The DANTSYS accuracy is estimated by direct comparisons with corresponding Monte Carlo results. Our 210-group photon cross section library developed previously, together with angular quadratures consisting of 36 (S16) to 210 (S40) directions and associated weights per octant, are used in the DANTSYS simulations. Strong ray effects are observed but are significantly mitigated through the use of DANTSYS's stochastic ray-tracing first collision source algorithm. The DANTSYS simulations closely approximate Monte Carlo estimates of both direct dose calculations and TG-43 dosimetric quantities. The discrepancies with S20 angular quadrature (55 directions and weights per octant) or higher are shown to be less than +/- 5% (about 2.5 standard deviations of Monte Carlo calculations) everywhere except for limited regions along the Z axis of rotational symmetry, where technical limitations in the DANTSYS first collision source implementation makes adequate suppression of ray effects difficult to achieve. The efficiency of DANTSYS simulations is compared with that of the EGS4 Monte Carlo code. It is demonstrated that even with the 210-group cross section library, DANTSYS achieves two-fold efficiency gains using the the S20 quadrature set. The potential of discrete ordinates method for further efficiency improvements is also discussed. PMID:11099199

  20. Calibration coefficient of reference brachytherapy ionization chamber using analytical and Monte Carlo methods.

    PubMed

    Kumar, Sudhir; Srinivasan, P; Sharma, S D

    2010-06-01

    A cylindrical graphite ionization chamber of sensitive volume 1002.4 cm(3) was designed and fabricated at Bhabha Atomic Research Centre (BARC) for use as a reference dosimeter to measure the strength of high dose rate (HDR) (192)Ir brachytherapy sources. The air kerma calibration coefficient (N(K)) of this ionization chamber was estimated analytically using Burlin general cavity theory and by the Monte Carlo method. In the analytical method, calibration coefficients were calculated for each spectral line of an HDR (192)Ir source and the weighted mean was taken as N(K). In the Monte Carlo method, the geometry of the measurement setup and physics related input data of the HDR (192)Ir source and the surrounding material were simulated using the Monte Carlo N-particle code. The total photon energy fluence was used to arrive at the reference air kerma rate (RAKR) using mass energy absorption coefficients. The energy deposition rates were used to simulate the value of charge rate in the ionization chamber and N(K) was determined. The Monte Carlo calculated N(K) agreed within 1.77 % of that obtained using the analytical method. The experimentally determined RAKR of HDR (192)Ir sources, using this reference ionization chamber by applying the analytically estimated N(K), was found to be in agreement with the vendor quoted RAKR within 1.43%.

  1. Limitations of the TG-43 formalism for skin high-dose-rate brachytherapy dose calculations

    SciTech Connect

    Granero, Domingo; Perez-Calatayud, Jose; Vijande, Javier; Ballester, Facundo; Rivard, Mark J.

    2014-02-15

    Purpose: In skin high-dose-rate (HDR) brachytherapy, sources are located outside, in contact with, or implanted at some depth below the skin surface. Most treatment planning systems use the TG-43 formalism, which is based on single-source dose superposition within an infinite water medium without accounting for the true geometry in which conditions for scattered radiation are altered by the presence of air. The purpose of this study is to evaluate the dosimetric limitations of the TG-43 formalism in HDR skin brachytherapy and the potential clinical impact. Methods: Dose rate distributions of typical configurations used in skin brachytherapy were obtained: a 5 cm × 5 cm superficial mould; a source inside a catheter located at the skin surface with and without backscatter bolus; and a typical interstitial implant consisting of an HDR source in a catheter located at a depth of 0.5 cm. Commercially available HDR{sup 60}Co and {sup 192}Ir sources and a hypothetical {sup 169}Yb source were considered. The Geant4 Monte Carlo radiation transport code was used to estimate dose rate distributions for the configurations considered. These results were then compared to those obtained with the TG-43 dose calculation formalism. In particular, the influence of adding bolus material over the implant was studied. Results: For a 5 cm × 5 cm{sup 192}Ir superficial mould and 0.5 cm prescription depth, dose differences in comparison to the TG-43 method were about −3%. When the source was positioned at the skin surface, dose differences were smaller than −1% for {sup 60}Co and {sup 192}Ir, yet −3% for {sup 169}Yb. For the interstitial implant, dose differences at the skin surface were −7% for {sup 60}Co, −0.6% for {sup 192}Ir, and −2.5% for {sup 169}Yb. Conclusions: This study indicates the following: (i) for the superficial mould, no bolus is needed; (ii) when the source is in contact with the skin surface, no bolus is needed for either {sup 60}Co and {sup 192}Ir. For

  2. Intravascular ultrasound

    MedlinePlus

    IVUS; Ultrasound - coronary artery; Endovascular ultrasound; Intravascular echocardiography ... A tiny ultrasound wand is attached to the top of a thin tube. This tube is called a catheter. The catheter ...

  3. Intravascular OCT

    NASA Astrophysics Data System (ADS)

    Schmitt, Joseph M.; Adler, Desmond; Xu, Chenyang

    Since the first coronary angioplasty was performed in the late 1970s, imaging has played a central role in percutaneous coronary intervention (PCI). Today more than three million PCI procedures are performed worldwide to expand narrowed arteries and to clear blood clots that can cause debilitating symptoms of myocardial ischemia or fatal heart attacks. Although X-ray angiography is still the workhorse imaging modality in the field of interventional cardiology, intravascular imaging has become an indispensable tool for guiding complex PCI procedures. Intravascular ultrasound (IVUS) and optical coherence tomography (OCT) are the two most commonly used catheter-based imaging technologies in coronary procedures. Since the first commercial intravascular OCT systems were introduced in Japan and the European Union in 2004 and in the United States in 2009, the application of intravascular OCT has grown rapidly [3, 15, 16].

  4. Comment on 'Monte Carlo calculated microdosimetric spread for cell nucleus-sized targets exposed to brachytherapy (125)I and (192)Ir sources and (60)Co cell irradiation'.

    PubMed

    Lindborg, Lennart; Lillhök, Jan; Grindborg, Jan-Erik

    2015-11-01

    The relative standard deviation, σr,D, of calculated multi-event distributions of specific energy for (60)Co ϒ rays was reported by the authors F Villegas, N Tilly and A Ahnesjö (Phys. Med. Biol. 58 6149-62). The calculations were made with an upgraded version of the Monte Carlo code PENELOPE. When the results were compared to results derived from experiments with the variance method and simulated tissue equivalent volumes in the micrometre range a difference of about 50% was found. Villegas et al suggest wall-effects as the likely explanation for the difference. In this comment we review some publications on wall-effects and conclude that wall-effects are not a likely explanation.

  5. A statistical approach to infer the minimum setup distance of a well chamber to the wall or to the floor for {sup 192}Ir HDR calibration

    SciTech Connect

    Chang Liyun; Ho, S.-Y.; Chui, C.-S.; Lee, J.-H.; Du Yichun; Chen Tainsong

    2008-06-15

    We propose a new method based on statistical analysis technique to determine the minimum setup distance of a well chamber used in the calibration of {sup 192}Ir high dose rate (HDR). The chamber should be placed at least this distance away from any wall or from the floor in order to mitigate the effect of scatter. Three different chambers were included in this study, namely, Sun Nuclear Corporation, Nucletron, and Standard Imaging. The results from this study indicated that the minimum setup distance varies depending on the particular chamber and the room architecture in which the chamber was used. Our result differs from that of a previous study by Podgorsak et al. [Med. Phys. 19, 1311-1314 (1992)], in which 25 cm was suggested, and also differs from that of the International Atomic Energy Agency (IAEA)-TECDOC-1079 report, which suggested 30 cm. The new method proposed in this study may be considered as an alternative approach to determine the minimum setup distance of a well-type chamber used in the calibration of {sup 192}Ir HDR.

  6. Effect of High-Dose-Rate {sup 192}Ir Source Activity on Late Rectal Bleeding After Intracavitary Radiation Therapy for Uterine Cervix Cancer

    SciTech Connect

    Suzuki, Osamu Yoshioka, Yasuo; Isohashi, Fumiaki; Morimoto, Masahiro; Kotsuma, Tadayuki; Kawaguchi, Yoshifumi; Konishi, Koji; Nakamura, Satoaki; Shiomi, Hiroya; Inoue, Takehiro

    2008-08-01

    Purpose: This retrospective study analyzed the effect of the activity of high-dose-rate (HDR) {sup 192}Ir source on late rectal bleeding after HDR intracavitary radiotherapy (ICRT) in patients with uterine cervix cancer. Methods and Materials: One hundred thirty-two patients who underwent HDR-ICRT and external beam radiotherapy (EBRT) were analyzed. The rectal point dose in ICRT was calculated by inserting a lead wire into the rectal lumen and summed with the whole-pelvic EBRT dose. The rectal biologic effective dose (BED) was calculated. The relationship between averaged source activity or the BED and late rectal bleeding were analyzed. Results: Three-year actuarial rectal bleeding probabilities were 46% ({>=}100 Gy{sub 3}) and 18% ({<=} 100 Gy{sub 3}), respectively (p < 0.005). When patients were divided into four groups according to rectal BED ({>=} or {<=}100 Gy{sub 3}) and source activity ({>=} or {<=}2.4 cGy.m{sup 2}.h{sup -1}), the group with both a high BED and high activity showed significantly greater probability (58% at 3 years; p < 0.005). It was noted that the probability of the group with BED of 100 Gy{sub 3} or greater was high, but that was not the case with 2.4 cGy.m{sup 2}.h{sup -1} or less. Conclusion: This is the first clinical report concerning the source activity effect of HDR {sup 192}Ir on late rectal bleeding in patients undergoing HDR-ICRT. This suggests that when source activity is higher than 2.4 cGy.m{sup 2}.h{sup -1}, ICRT should be performed with more caution not to exceed 100 Gy{sub 3} in total.

  7. The collapsed cone algorithm for 192Ir dosimetry using phantom-size adaptive multiple-scatter point kernels

    NASA Astrophysics Data System (ADS)

    Carlsson Tedgren, Åsa; Plamondon, Mathieu; Beaulieu, Luc

    2015-07-01

    The aim of this work was to investigate how dose distributions calculated with the collapsed cone (CC) algorithm depend on the size of the water phantom used in deriving the point kernel for multiple scatter. A research version of the CC algorithm equipped with a set of selectable point kernels for multiple-scatter dose that had initially been derived in water phantoms of various dimensions was used. The new point kernels were generated using EGSnrc in spherical water phantoms of radii 5 cm, 7.5 cm, 10 cm, 15 cm, 20 cm, 30 cm and 50 cm. Dose distributions derived with CC in water phantoms of different dimensions and in a CT-based clinical breast geometry were compared to Monte Carlo (MC) simulations using the Geant4-based brachytherapy specific MC code Algebra. Agreement with MC within 1% was obtained when the dimensions of the phantom used to derive the multiple-scatter kernel were similar to those of the calculation phantom. Doses are overestimated at phantom edges when kernels are derived in larger phantoms and underestimated when derived in smaller phantoms (by around 2% to 7% depending on distance from source and phantom dimensions). CC agrees well with MC in the high dose region of a breast implant and is superior to TG43 in determining skin doses for all multiple-scatter point kernel sizes. Increased agreement between CC and MC is achieved when the point kernel is comparable to breast dimensions. The investigated approximation in multiple scatter dose depends on the choice of point kernel in relation to phantom size and yields a significant fraction of the total dose only at distances of several centimeters from a source/implant which correspond to volumes of low doses. The current implementation of the CC algorithm utilizes a point kernel derived in a comparatively large (radius 20 cm) water phantom. A fixed point kernel leads to predictable behaviour of the algorithm with the worst case being a source/implant located well within a patient

  8. Exclusive low-dose-rate brachytherapy in 279 patients with T2N0 mobile tongue carcinoma

    SciTech Connect

    Bourgier, Celine; Coche-Dequeant, Bernard; Fournier, Charles; Castelain, Bernard; Prevost, Bernard; Lefebvre, Jean-Louis; Lartigau, Eric . E-mail: e-lartigau@o-lambret.fr

    2005-10-01

    Purpose: To evaluate the therapeutic results obtained with {sup 192}Ir low-dose-rate interstitial brachytherapy in T2N0 mobile tongue carcinoma. Patients and Methods: Between December 1979 and January 1998, 279 patients with T2N0 mobile tongue carcinoma were treated by exclusive low-dose-rate brachytherapy, with or without neck dissection. {sup 192}Ir brachytherapy was performed according to the 'Paris system' with a median total dose of 60 Gy (median dose rate, 0.5 Gy/h). Results: Overall survival was 74.3% and 46.6% at 2 and 5 years. Local control was 79.1% at 2 years and regional control, respectively, 75.9% and 69.5% at 2 and 5 years (Kaplan-Meier method). Systematic dissection revealed 44.6% occult node metastases, and histologic lymph node involvement was identified as the main significant factor for survival. Complication rate was 16.5% (Grade 3, 2.9%). Half of the patients presented previous and/or successive malignant tumor (ear-nose-throat, esophagus, or bronchus). Conclusion: Exclusive low-dose-rate brachytherapy is an effective treatment for T2 tongue carcinoma. Regional control and survival are excellent in patients undergoing systematic neck dissection, which is mandatory in our experience because of a high rate of occult lymph node metastases.

  9. Verification of Oncentra brachytherapy planning using independent calculation

    NASA Astrophysics Data System (ADS)

    Safian, N. A. M.; Abdullah, N. H.; Abdullah, R.; Chiang, C. S.

    2016-03-01

    This study was done to investigate the verification technique of treatment plan quality assurance for brachytherapy. It is aimed to verify the point doses in 192Ir high dose rate (HDR) brachytherapy between Oncentra Masterplan brachytherapy treatment planning system and independent calculation software at a region of rectum, bladder and prescription points for both pair ovoids and full catheter set ups. The Oncentra TPS output text files were automatically loaded into the verification programme that has been developed based on spreadsheets. The output consists of source coordinates, desired calculation point coordinates and the dwell time of a patient plan. The source strength and reference dates were entered into the programme and then dose point calculations were independently performed. The programme shows its results in a comparison of its calculated point doses with the corresponding Oncentra TPS outcome. From the total of 40 clinical cases that consisted of two fractions for 20 patients, the results that were given in term of percentage difference, it shows an agreement between TPS and independent calculation are in the range of 2%. This programme only takes a few minutes to be used is preferably recommended to be implemented as the verification technique in clinical brachytherapy dosimetry.

  10. Butylated hydroxytoluene does not protect Chinese hamster ovary cells from chromosomal damage induced by high-dose rate 192Ir irradiation.

    PubMed

    Grillo, C A; Dulout, F N

    2006-11-01

    Previous reports showed the protective effect of the synthetic antioxidant butylated hydroxytoluene (BHT) against the chromosomal damage induced by bleomycin (BLM), cadmium chloride and potassium dichromate. To test the hypothesis that this effect was exerted by inhibition and/or scavenging of reactive oxygen species (ROS), the effect of BHT on the chromosomal damage induced by a high dose-rate gamma rays (HDR (192)Ir). Experiments were carried out by irradiating G(1) CHO cells with nominal doses of 1, 2 or 3 Gy. BHT (doses of 1.0, 2.5 or 5.0 microg/ml) was added to the culture immediately before or immediately after irradiation. Cells were then incubated in the presence of BHT for 13 h until harvesting and fixation. Results obtained showed that BHT did not decrease the chromosomal damage induced by radiation in any consistent fashion. On the contrary, in cells post-treated with 5.0 microg/ml of BHT the yield of chromosomal aberrations increased in several experimental points. These results with ionizing radiation suggest that the previous observed protective effects of BHT on the chromosomal damage induced by chemical genotoxicants may not be mediated solely through the scavenging or inactivating reactive oxidative species. The decrease of the yield of chromosomal damage induced by BLM could be due to the union of BHT with a metallic ion, in this case Fe (II), required for the activation of BLM. In the same way, the protective effect of BHT on the chromosomal damage induced by cadmium chloride and potassium dichromate could be due to the decrease of the effective dose of both salts in the cell through the chelation of the cations by BHT.

  11. Broad-beam transmission data for new brachytherapy sources, Tm-170 and Yb-169.

    PubMed

    Granero, Domingo; Pérez-Calatayud, José; Ballester, Facundo; Bos, Adrie J J; Venselaar, Jack

    2006-01-01

    The characteristics of the radionuclides (170)Tm and (169)Yb are highly interesting for their use as high dose-rate brachytherapy sources. The introduction of brachytherapy equipment containing these sources will lead to smaller required thicknesses of the materials used in radiation protection barriers compared with the use of conventional sources such as (192)Ir and (137)Cs. The purpose of this study is to determine the required thicknesses of protection material for the design of the protecting walls. Using the Monte Carlo method, transmission data were derived for broad-beam geometries through lead and concrete barriers, from which the first half value layer and tenth value layer are obtained. In addition, the dose reduction in a simulated patient was studied to determine whether transmission in the patient is a relevant factor in radiation protection calculations. PMID:16030058

  12. Calculated organ doses using Monte Carlo simulations in a reference male phantom undergoing HDR brachytherapy applied to localized prostate carcinoma

    SciTech Connect

    Candela-Juan, Cristian; Perez-Calatayud, Jose; Ballester, Facundo; Rivard, Mark J.

    2013-03-15

    Purpose: The aim of this study was to obtain equivalent doses in radiosensitive organs (aside from the bladder and rectum) when applying high-dose-rate (HDR) brachytherapy to a localized prostate carcinoma using {sup 60}Co or {sup 192}Ir sources. These data are compared with results in a water phantom and with expected values in an infinite water medium. A comparison with reported values from proton therapy and intensity-modulated radiation therapy (IMRT) is also provided. Methods: Monte Carlo simulations in Geant4 were performed using a voxelized phantom described in International Commission on Radiological Protection (ICRP) Publication 110, which reproduces masses and shapes from an adult reference man defined in ICRP Publication 89. Point sources of {sup 60}Co or {sup 192}Ir with photon energy spectra corresponding to those exiting their capsules were placed in the center of the prostate, and equivalent doses per clinical absorbed dose in this target organ were obtained in several radiosensitive organs. Values were corrected to account for clinical circumstances with the source located at various positions with differing dwell times throughout the prostate. This was repeated for a homogeneous water phantom. Results: For the nearest organs considered (bladder, rectum, testes, small intestine, and colon), equivalent doses given by {sup 60}Co source were smaller (8%-19%) than from {sup 192}Ir. However, as the distance increases, the more penetrating gamma rays produced by {sup 60}Co deliver higher organ equivalent doses. The overall result is that effective dose per clinical absorbed dose from a {sup 60}Co source (11.1 mSv/Gy) is lower than from a {sup 192}Ir source (13.2 mSv/Gy). On the other hand, equivalent doses were the same in the tissue and the homogeneous water phantom for those soft tissues closer to the prostate than about 30 cm. As the distance increased, the differences of photoelectric effect in water and soft tissue, and appearance of other materials

  13. Effect of tissue composition on dose distribution in brachytherapy with various photon emitting sources

    PubMed Central

    Ghorbani, Mahdi; Salahshour, Fateme; Haghparast, Abbas; Knaup, Courtney

    2014-01-01

    Purpose The aim of this study is to compare the dose in various soft tissues in brachytherapy with photon emitting sources. Material and methods 103Pd, 125I, 169Yb, 192Ir brachytherapy sources were simulated with MCNPX Monte Carlo code, and their dose rate constant and radial dose function were compared with the published data. A spherical phantom with 50 cm radius was simulated and the dose at various radial distances in adipose tissue, breast tissue, 4-component soft tissue, brain (grey/white matter), muscle (skeletal), lung tissue, blood (whole), 9-component soft tissue, and water were calculated. The absolute dose and relative dose difference with respect to 9-component soft tissue was obtained for various materials, sources, and distances. Results There was good agreement between the dosimetric parameters of the sources and the published data. Adipose tissue, breast tissue, 4-component soft tissue, and water showed the greatest difference in dose relative to the dose to the 9-component soft tissue. The other soft tissues showed lower dose differences. The dose difference was also higher for 103Pd source than for 125I, 169Yb, and 192Ir sources. Furthermore, greater distances from the source had higher relative dose differences and the effect can be justified due to the change in photon spectrum (softening or hardening) as photons traverse the phantom material. Conclusions The ignorance of soft tissue characteristics (density, composition, etc.) by treatment planning systems incorporates a significant error in dose delivery to the patient in brachytherapy with photon sources. The error depends on the type of soft tissue, brachytherapy source, as well as the distance from the source. PMID:24790623

  14. Verification of the plan dosimetry for high dose rate brachytherapy using metal-oxide-semiconductor field effect transistor detectors

    SciTech Connect

    Qi Zhenyu; Deng Xiaowu; Huang Shaomin; Lu Jie; Lerch, Michael; Cutajar, Dean; Rosenfeld, Anatoly

    2007-06-15

    The feasibility of a recently designed metal-oxide-semiconductor field effect transistor (MOSFET) dosimetry system for dose verification of high dose rate (HDR) brachytherapy treatment planning was investigated. MOSFET detectors were calibrated with a 0.6 cm{sup 3} NE-2571 Farmer-type ionization chamber in water. Key characteristics of the MOSFET detectors, such as the energy dependence, that will affect phantom measurements with HDR {sup 192}Ir sources were measured. The MOSFET detector was then applied to verify the dosimetric accuracy of HDR brachytherapy treatments in a custom-made water phantom. Three MOSFET detectors were calibrated independently, with the calibration factors ranging from 0.187 to 0.215 cGy/mV. A distance dependent energy response was observed, significant within 2 cm from the source. The new MOSFET detector has a good reproducibility (<3%), small angular effect (<2%), and good dose linearity (R{sup 2}=1). It was observed that the MOSFET detectors had a linear response to dose until the threshold voltage reached approximately 24 V for {sup 192}Ir source measurements. Further comparison of phantom measurements using MOSFET detectors with dose calculations by a commercial treatment planning system for computed tomography-based brachytherapy treatment plans showed that the mean relative deviation was 2.2{+-}0.2% for dose points 1 cm away from the source and 2.0{+-}0.1% for dose points located 2 cm away. The percentage deviations between the measured doses and the planned doses were below 5% for all the measurements. The MOSFET detector, with its advantages of small physical size and ease of use, is a reliable tool for quality assurance of HDR brachytherapy. The phantom verification method described here is universal and can be applied to other HDR brachytherapy treatments.

  15. Water calorimetry-based radiation dosimetry in iridium-192 brachytherapy and proton therapy

    NASA Astrophysics Data System (ADS)

    Sarfehnia, Arman

    The aim of this work is to develop and evaluate a primary standard for HDR 192Ir brachytherapy sources as well as for active spot scanning proton radiotherapy beams based on stagnant 4 °C water calorimetry. The measurements were performed using an in-house built water calorimeter and a parallel-plate calorimeter vessel. The dose measurement results of the McGill calorimeter were validated in high energy photon beams against Canada's national established primary standard at the NRC. The measurements in brachytherapy were performed with a spring-loaded catheter holder which allowed for the 192Ir source to come directly inside the water calorimeter. The COMSOL MULTIPHYSICS(TM) software was used to solve the heat transport equation numerically for a detailed geometrical model of our experimental setup. In brachytherapy, reference dosimetry protocols were also developed and used to measure the dose to water directly using thimble type ionization chambers and Gafchromic films with traceable 60Co (or higher energy photons) calibration factor. Based on water calorimetry standard, we measured an absolute dose rate to water of 361+/-7 microGy/(h·U) at 55 mm source-to-detector separation. The 1.9 % uncertainty on water calorimetry results is in contrast with the current recommended AAPM TG-43 protocol that achieves at best an uncertainty (k=1) of 2.5 % based on an indirect dose to water measurement technique. All measurement results from water calorimetry, ion chamber, film, and TG-43 agreed to within 0.83 %. We achieved an overall dose uncertainty of 0.4 % and 0.6 % for scattered and scanned proton radiation water calorimetry, respectively. The water calorimetry absorbed dose to water results agreed with those obtained through the currently recommended IAEA TRS-398 protocol (measurements made using an ionization chamber with a 60Co calibration factor) to better than 0.14 % and 0.32 % in scattered and scanned proton beams, respectively. In conclusion, this work forms the

  16. Calibration of multiple LDR brachytherapy sources

    SciTech Connect

    DeWerd, Larry A.; Micka, John A.; Holmes, Shannon M.; Bohm, Tim D.

    2006-10-15

    A trend is underway toward the use of prepackaged low dose rate brachytherapy sources, which come in the form of strands, coiled line sources, preloaded needles, and sterile cartridge packs. Since the medical physicist is responsible for verification of source strength prior to patient treatment, development of prepackaged source strength verification methods is needed. Existing guidelines are reviewed to establish the situation that medical physicists find with respect to prepackaged sources. This investigation presents an experimental evaluation of the effect of some of these multiseed geometries on source strength measurements. Multiseed strands and coils, whether {sup 125}I, {sup 103}Pd, or {sup 192}Ir can be measured in a chamber with a long, sensitive axial length with a uniform response. Sterile seed cartridge packs can also be measured but require a correction factor to be applied. Sources in needles, however, cannot be measured in the needle since there is too great a variation in needle composition and needle tolerance thickness. Removing these seeds from the needle into a sterile measurement insert, which maintains sterility is a practical source strength verification method, similar to those done for multiple seed configurations in a well chamber with adequate axial uniformity. Values are compared with individual air kerma strength calibrations, and correction factors, are presented where needed. In each case, care must be taken to maintain sterility as multiple seeds are measured in well chamber inserts.

  17. Dosimetric characteristics of a new unit for electronic skin brachytherapy

    PubMed Central

    Garcia-Martinez, Teresa; Chan, Jan-Pieter; Perez-Calatayud, Jose

    2014-01-01

    Purpose Brachytherapy with radioactive high dose rate (HDR) 192Ir source is applied to small skin cancer lesions, using surface applicators, i.e. Leipzig or Valencia type. New developments in the field of radiotherapy for skin cancer include electronic brachytherapy. This technique involves the placement of an HDR X-ray source close to the skin, therefore combining the benefits of brachytherapy with the reduced shielding requirements and targeted energy of low energy X-rays. Recently, the Esteya® Electronic Brachytherapy System (Esteya EBS, Elekta AB-Nucletron, Stockholm, Sweden) has been developed specifically for HDR brachytherapy treatment of surface lesions. The system provides radionuclide free HDR brachytherapy by means of a small 69.5 kV X-ray source. The purpose of this study is to obtain the dosimetric characterization required for clinical implementation, providing the detailed methodology to perform the commissioning. Material and methods Flatness, symmetry and penumbra, percentage of depth dose (PDD), kV stability, HVL, output, spectrum, linearity, and leakage have been evaluated for a set of applicators (from 10 mm to 30 mm in diameter). Results Flatness and symmetry resulted better than 5% with around 1 mm of penumbra. The depth dose gradient is about 7%/mm. A kV value of 68.4 ± 1.0 kV (k = 1) was obtained, in good agreement with manufacturer data (69.5 kV). HVL was 1.85 mm Al. Dose rate for a typical 6 Gy to 7 Gy prescription resulted about 3.3 Gy/min and the leakage value was < 100 µGy/min. Conclusions The new Esteya® Electronic Brachytherapy System presents excellent flatness and penumbra as with the Valencia applicator case, combined with an improved PDD, allowing treatment of lesions of up to a depth of 5 mm in combination with reduced treatment duration. The Esteya unit allows HDR brachytherapy superficial treatment within a minimally shielded environment due its low energy. PMID:24790622

  18. Intravascular ultrasound characterization of the "black hole" phenomenon after drug-eluting stent implantation.

    PubMed

    Costa, Marco A; Sabate, Manel; Angiolillo, Dominick J; Jimenez-Quevedo, Pilar; Teirstein, Paul; Carter, Andrew; Leon, Martin B; Moses, Jeffrey; Zenni, Martin; Yakubov, Steven; Guzman, Luis A; Gilmore, Paul; Macaya, Carlos; Bass, Theodore A

    2006-01-15

    An intraluminal echolucent tissue, dubbed "black hole," has been identified by intravascular ultrasonography after intracoronary brachytherapy. This study reports the characteristics and incidence of the black hole in patients treated with drug-eluting stent implantation using a sirolimus-eluting stent (SES). We included intravascular ultrasound data from the Compassionate Use of Sirolimus-Eluting Stent (SECURE, n = 61 lesions) registry, a study involving patients in whom previous brachytherapy had failed, and the DIABETES trial (n = 165 lesions), a multicenter, randomized study comparing SES versus bare metal stents in diabetic patients. Intravascular ultrasound follow-up was scheduled at 8 months (SECURE trial, post-brachytherapy population) and 9 months (DIABETES trial). In the SECURE population, a black hole was observed in 10 patients (19.6%). Seven black hole segments had significant intimal hyperplasia (> 10%). A black hole accounted for 27% of total intraluminal tissue. In the DIABETES trial, 2 patients (2.5%) in the SES group and none in the bare metal stent group showed echolucent intimal hyperplasia. In conclusion, a black hole occurred frequently after implantation of a SES in patients in whom intracoronary brachytherapy had previously failed. Black holes were also identified in a nonirradiated population, although the incidence was lower than in the post-brachytherapy patients. Bare metal stents were not associated with this phenomenon.

  19. Effect of photon energy spectrum on dosimetric parameters of brachytherapy sources

    PubMed Central

    Ghorbani, Mahdi; Davenport, David

    2016-01-01

    Abstract Aim The aim of this study is to quantify the influence of the photon energy spectrum of brachytherapy sources on task group No. 43 (TG-43) dosimetric parameters. Background Different photon spectra are used for a specific radionuclide in Monte Carlo simulations of brachytherapy sources. Materials and methods MCNPX code was used to simulate 125I, 103Pd, 169Yb, and 192Ir brachytherapy sources. Air kerma strength per activity, dose rate constant, radial dose function, and two dimensional (2D) anisotropy functions were calculated and isodose curves were plotted for three different photon energy spectra. The references for photon energy spectra were: published papers, Lawrence Berkeley National Laboratory (LBNL), and National Nuclear Data Center (NNDC). The data calculated by these photon energy spectra were compared. Results Dose rate constant values showed a maximum difference of 24.07% for 103Pd source with different photon energy spectra. Radial dose function values based on different spectra were relatively the same. 2D anisotropy function values showed minor differences in most of distances and angles. There was not any detectable difference between the isodose contours. Conclusions Dosimetric parameters obtained with different photon spectra were relatively the same, however it is suggested that more accurate and updated photon energy spectra be used in Monte Carlo simulations. This would allow for calculation of reliable dosimetric data for source modeling and calculation in brachytherapy treatment planning systems. PMID:27247558

  20. Disseminated intravascular coagulation (DIC)

    MedlinePlus

    Levi M. Disseminated intravascular coagulation. In: Hoffman R, Benz EJ Jr, Silberstein LE, et al, eds. Hematology: Basic Principles and Practice . 6th ed. Philadelphia, PA: Elsevier Saunders; 2013:chap ...

  1. Direct measurement of instantaneous source speed for a HDR brachytherapy unit using an optical fiber based detector

    SciTech Connect

    Minamisawa, R. A.; Rubo, R. A.; Seraide, R. M.; Rocha, J. R. O.; Almeida, A.

    2010-10-15

    Purpose: Several attempts to determine the transit time of a high dose rate (HDR) brachytherapy unit have been reported in the literature with controversial results. The determination of the source speed is necessary to accurately calculate the transient dose in brachytherapy treatments. In these studies, only the average speed of the source was measured as a parameter for transit dose calculation, which does not account for the realistic movement of the source, and is therefore inaccurate for numerical simulations. The purpose of this work is to report the implementation and technical design of an optical fiber based detector to directly measure the instantaneous speed profile of a {sup 192}Ir source in a Nucletron HDR brachytherapy unit. Methods: To accomplish this task, we have developed a setup that uses the Cerenkov light induced in optical fibers as a detection signal for the radiation source moving inside the HDR catheter. As the {sup 192}Ir source travels between two optical fibers with known distance, the threshold of the induced signals are used to extract the transit time and thus the velocity. The high resolution of the detector enables the measurement of the transit time at short separation distance of the fibers, providing the instantaneous speed. Results: Accurate and high resolution speed profiles of the {sup 192}Ir radiation source traveling from the safe to the end of the catheter and between dwell positions are presented. The maximum and minimum velocities of the source were found to be 52.0{+-}1.0 and 17.3{+-}1.2 cm/s. The authors demonstrate that the radiation source follows a uniformly accelerated linear motion with acceleration of |a|=113 cm/s{sup 2}. In addition, the authors compare the average speed measured using the optical fiber detector to those obtained in the literature, showing deviation up to 265%. Conclusions: To the best of the authors' knowledge, the authors directly measured for the first time the instantaneous speed profile of

  2. Development and implementation of a remote audit tool for high dose rate (HDR) Ir-192 brachytherapy using optically stimulated luminescence dosimetry

    PubMed Central

    Casey, Kevin E.; Alvarez, Paola; Kry, Stephen F.; Howell, Rebecca M.; Lawyer, Ann; Followill, David

    2013-01-01

    Purpose: The aim of this work was to create a mailable phantom with measurement accuracy suitable for Radiological Physics Center (RPC) audits of high dose-rate (HDR) brachytherapy sources at institutions participating in National Cancer Institute-funded cooperative clinical trials. Optically stimulated luminescence dosimeters (OSLDs) were chosen as the dosimeter to be used with the phantom. Methods: The authors designed and built an 8 × 8 × 10 cm3 prototype phantom that had two slots capable of holding Al2O3:C OSLDs (nanoDots; Landauer, Glenwood, IL) and a single channel capable of accepting all 192Ir HDR brachytherapy sources in current clinical use in the United States. The authors irradiated the phantom with Nucletron and Varian 192Ir HDR sources in order to determine correction factors for linearity with dose and the combined effects of irradiation energy and phantom characteristics. The phantom was then sent to eight institutions which volunteered to perform trial remote audits. Results: The linearity correction factor was kL = (−9.43 × 10−5 × dose) + 1.009, where dose is in cGy, which differed from that determined by the RPC for the same batch of dosimeters using 60Co irradiation. Separate block correction factors were determined for current versions of both Nucletron and Varian 192Ir HDR sources and these vendor-specific correction factors differed by almost 2.6%. For the Nucletron source, the correction factor was 1.026 [95% confidence interval (CI) = 1.023–1.028], and for the Varian source, it was 1.000 (95% CI = 0.995–1.005). Variations in lateral source positioning up to 0.8 mm and distal/proximal source positioning up to 10 mm had minimal effect on dose measurement accuracy. The overall dose measurement uncertainty of the system was estimated to be 2.4% and 2.5% for the Nucletron and Varian sources, respectively (95% CI). This uncertainty was sufficient to establish a ±5% acceptance criterion for source strength audits under a formal RPC

  3. Development and implementation of a remote audit tool for high dose rate (HDR) Ir-192 brachytherapy using optically stimulated luminescence dosimetry

    SciTech Connect

    Casey, Kevin E.; Kry, Stephen F.; Howell, Rebecca M.; Followill, David; Alvarez, Paola; Lawyer, Ann

    2013-11-15

    Purpose: The aim of this work was to create a mailable phantom with measurement accuracy suitable for Radiological Physics Center (RPC) audits of high dose-rate (HDR) brachytherapy sources at institutions participating in National Cancer Institute-funded cooperative clinical trials. Optically stimulated luminescence dosimeters (OSLDs) were chosen as the dosimeter to be used with the phantom.Methods: The authors designed and built an 8 × 8 × 10 cm{sup 3} prototype phantom that had two slots capable of holding Al{sub 2}O{sub 3}:C OSLDs (nanoDots; Landauer, Glenwood, IL) and a single channel capable of accepting all {sup 192}Ir HDR brachytherapy sources in current clinical use in the United States. The authors irradiated the phantom with Nucletron and Varian {sup 192}Ir HDR sources in order to determine correction factors for linearity with dose and the combined effects of irradiation energy and phantom characteristics. The phantom was then sent to eight institutions which volunteered to perform trial remote audits.Results: The linearity correction factor was k{sub L}= (−9.43 × 10{sup −5}× dose) + 1.009, where dose is in cGy, which differed from that determined by the RPC for the same batch of dosimeters using {sup 60}Co irradiation. Separate block correction factors were determined for current versions of both Nucletron and Varian {sup 192}Ir HDR sources and these vendor-specific correction factors differed by almost 2.6%. For the Nucletron source, the correction factor was 1.026 [95% confidence interval (CI) = 1.023–1.028], and for the Varian source, it was 1.000 (95% CI = 0.995–1.005). Variations in lateral source positioning up to 0.8 mm and distal/proximal source positioning up to 10 mm had minimal effect on dose measurement accuracy. The overall dose measurement uncertainty of the system was estimated to be 2.4% and 2.5% for the Nucletron and Varian sources, respectively (95% CI). This uncertainty was sufficient to establish a ±5% acceptance

  4. Iridium-192 brachytherapy in the treatment of cancer of the prostate

    SciTech Connect

    Donnelly, B.J.; Pedersen, J.E.; Porter, A.T.; McPhee, M.S. )

    1991-08-01

    Aggressive radiotherapy was used in 170 patients with advanced localized carcinoma of the prostate. After pelvic lymphadenectomy, 192Ir brachytherapy was used to deliver 3500 cGy to the prostate within 2 days. External-beam therapy (4500 cGy) was then given to a total of 8000 cGy. Random biopsies 18 months afterward were negative for residual cancer in 62 of 83 patients (75%), and 37 of 45 patients (82%) with pathologically proved localized disease remain without evidence of disease. Morbidity was significantly reduced in the most recent 70 patients by improvements in technique. The authors believe such therapy should be considered for patients with advanced stage B2 or C disease in particular.

  5. Source position verification and dosimetry in HDR brachytherapy using an EPID

    SciTech Connect

    Smith, R. L.; Taylor, M. L.; McDermott, L. N.; Franich, R. D.; Haworth, A.; Millar, J. L.

    2013-11-15

    Purpose: Accurate treatment delivery in high dose rate (HDR) brachytherapy requires correct source dwell positions and dwell times to be administered relative to each other and to the surrounding anatomy. Treatment delivery inaccuracies predominantly occur for two reasons: (i) anatomical movement or (ii) as a result of human errors that are usually related to incorrect implementation of the planned treatment. Electronic portal imaging devices (EPIDs) were originally developed for patient position verification in external beam radiotherapy and their application has been extended to provide dosimetric information. The authors have characterized the response of an EPID for use with an {sup 192}Ir brachytherapy source to demonstrate its use as a verification device, providing both source position and dosimetric information.Methods: Characterization of the EPID response using an {sup 192}Ir brachytherapy source included investigations of reproducibility, linearity with dose rate, photon energy dependence, and charge build-up effects associated with exposure time and image acquisition time. Source position resolution in three dimensions was determined. To illustrate treatment verification, a simple treatment plan was delivered to a phantom and the measured EPID dose distribution compared with the planned dose.Results: The mean absolute source position error in the plane parallel to the EPID, for dwells measured at 50, 100, and 150 mm source to detector distances (SDD), was determined to be 0.26 mm. The resolution of the z coordinate (perpendicular distance from detector plane) is SDD dependent with 95% confidence intervals of ±0.1, ±0.5, and ±2.0 mm at SDDs of 50, 100, and 150 mm, respectively. The response of the EPID is highly linear to dose rate. The EPID exhibits an over-response to low energy incident photons and this nonlinearity is incorporated into the dose calibration procedure. A distance (spectral) dependent dose rate calibration procedure has been

  6. Brachytherapy source characterization for improved dose calculations using primary and scatter dose separation

    SciTech Connect

    Russell, Kellie R.; Carlsson Tedgren, Aasa K.; Ahnesjoe, Anders

    2005-09-15

    In brachytherapy, tissue heterogeneities, source shielding, and finite patient/phantom extensions affect both the primary and scatter dose distributions. The primary dose is, due to the short range of secondary electrons, dependent only on the distribution of material located on the ray line between the source and dose deposition site. The scatter dose depends on both the direct irradiation pattern and the distribution of material in a large volume surrounding the point of interest, i.e., a much larger volume must be included in calculations to integrate many small dose contributions. It is therefore of interest to consider different methods for the primary and the scatter dose calculation to improve calculation accuracy with limited computer resources. The algorithms in present clinical use ignore these effects causing systematic dose errors in brachytherapy treatment planning. In this work we review a primary and scatter dose separation formalism (PSS) for brachytherapy source characterization to support separate calculation of the primary and scatter dose contributions. We show how the resulting source characterization data can be used to drive more accurate dose calculations using collapsed cone superposition for scatter dose calculations. Two types of source characterization data paths are used: a direct Monte Carlo simulation in water phantoms with subsequent parameterization of the results, and an alternative data path built on processing of AAPM TG43 formatted data to provide similar parameter sets. The latter path is motivated of the large amounts of data already existing in the TG43 format. We demonstrate the PSS methods using both data paths for a clinical {sup 192}Ir source. Results are shown for two geometries: a finite but homogeneous water phantom, and a half-slab consisting of water and air. The dose distributions are compared to results from full Monte Carlo simulations and we show significant improvement in scatter dose calculations when the

  7. Monte Carlo model for a prototype CT-compatible, anatomically adaptive, shielded intracavitary brachytherapy applicator for the treatment of cervical cancer

    SciTech Connect

    Price, Michael J.; Gifford, Kent A.; Horton, John L. Jr.; Eifel, Patricia J.; Gillin, Michael T.; Lawyer, Ann A.; Mourtada, Firas

    2009-09-15

    Purpose: Current, clinically applicable intracavitary brachytherapy applicators that utilize shielded ovoids contain a pair of tungsten-alloy shields which serve to reduce dose delivered to the rectum and bladder during source afterloading. After applicator insertion, these fixed shields are not necessarily positioned to provide optimal shielding of these critical structures due to variations in patient anatomies. The authors present a dosimetric evaluation of a novel prototype intracavitary brachytherapy ovoid [anatomically adaptive applicator (A{sup 3})], featuring a single shield whose position can be adjusted with two degrees of freedom: Rotation about and translation along the long axis of the ovoid. Methods: The dosimetry of the device for a HDR {sup 192}Ir was characterized using radiochromic film measurements for various shield orientations. A MCNPX Monte Carlo model was developed of the prototype ovoid and integrated with a previously validated model of a v2 mHDR {sup 192}Ir source (Nucletron Co.). The model was validated for three distinct shield orientations using film measurements. Results: For the most complex case, 91% of the absolute simulated and measured dose points agreed within 2% or 2 mm and 96% agreed within 10% or 2 mm. Conclusions: Validation of the Monte Carlo model facilitates future investigations into any dosimetric advantages the use of the A{sup 3} may have over the current state of art with respect to optimization and customization of dose delivery as a function of patient anatomical geometries.

  8. Reply to the comment on ‘Monte Carlo calculated microdosimetric spread for cell nucleus-sized targets exposed to brachytherapy 125I and 192Ir sources and 60Co cell irradiation’

    NASA Astrophysics Data System (ADS)

    Villegas, F.; Ahnesjö, A.

    2016-07-01

    A discrepancy between the Monte Carlo derived relative standard deviation σ z\\text{rel} (microdosimetric spread) and experimental data was reported by Villegas et al (2013 Phys. Med. Biol. 58 6149-62) suggesting wall effects as a plausible explanation. The comment by Lindborg et al (2015 Phys. Med. Biol. 60 8621-4) concludes that this is not a likely explanation. A thorough investigation of the Monte Carlo (MC) transport code used for track simulation revealed a critical bug. The corrected MC version yielded σ z\\text{rel} values that are now within experimental uncertainty. Other microdosimetric findings are hereby communicated.

  9. Comment on ‘Monte Carlo calculated microdosimetric spread for cell nucleus-sized targets exposed to brachytherapy 125I and 192Ir sources and 60Co cell irradiation’

    NASA Astrophysics Data System (ADS)

    Lindborg, Lennart; Lillhök, Jan; Grindborg, Jan-Erik

    2015-11-01

    The relative standard deviation, σr,D, of calculated multi-event distributions of specific energy for 60Co ϒ rays was reported by the authors F Villegas, N Tilly and A Ahnesjö (Phys. Med. Biol. 58 6149-62). The calculations were made with an upgraded version of the Monte Carlo code PENELOPE. When the results were compared to results derived from experiments with the variance method and simulated tissue equivalent volumes in the micrometre range a difference of about 50% was found. Villegas et al suggest wall-effects as the likely explanation for the difference. In this comment we review some publications on wall-effects and conclude that wall-effects are not a likely explanation.

  10. High-dose-rate (HDR) brachytherapy for the treatment of benign obstructive endobronchial granulation tissue

    SciTech Connect

    Madu, Chika N. . E-mail: chikam@xrt.upenn.edu; Machuzak, Michael S.; Sterman, Daniel H.; Musani, Ali; Ahya, Vivek; McDonough, James; Metz, James M.

    2006-12-01

    Background: Severe airway obstruction can occur in the setting of benign granulation tissue forming at bronchial anastomotic sites after lung transplantation in up to 20% of patients. Many of these benign lesions respond to stent placement, laser ablation, or balloon bronchoplasty. However, in certain cases, proliferation of granulation tissue may persist despite all therapeutic attempts. This study describes a series of refractory patients treated with high-dose-rate (HDR) brachytherapy for benign proliferation of granulation tissue, causing airway compromise. Methods and Materials: Between April 2002 and June 2005, 5 patients with significant airway compromise from recurrent granulation tissue were treated with HDR brachytherapy. All patients had previously failed to maintain a patent airway despite multiple bronchoscopic interventions. Treatment was delivered using an HDR brachytherapy afterloader with {sup 192}Ir. Dose prescription was to a depth of 1 cm. All patients were treated weekly, with total doses ranging from 10 Gy to 21 Gy in two to three fractions. Results: The median follow-up was 12 months. All patients experienced a reduction in therapeutic bronchoscopic procedures after HDR brachytherapy compared with the pretreatment period. With the exception of possible radiation-induced bronchitis in 1 patient, there were no other treatment related complications. At the time of this report, 2 patients have died and the other 3 are alive with marked symptomatic improvement and reduced bronchoscopic procedures. Conclusion: High-dose-rate brachytherapy is an effective treatment for benign proliferation of granulation tissue causing airway obstruction. The early response to therapy is encouraging and further follow-up is necessary to determine long-term durability and late effects.

  11. Chemoradiation and brachytherapy in biliary tract carcinoma: Long-term results

    SciTech Connect

    Deodato, Francesco . E-mail: fdeodato@rm.unicatt.it; Clemente, Gennaro; Mattiucci, Gian Carlo; Macchia, Gabriella; Costamagna, Guido; Giuliante, Felice; Smaniotto, Daniela; Luzi, Stefano; Valentini, Vincenzo; Mutignani, Massimiliano; Nuzzo, Gennaro; Cellini, Numa; Morganti, Alessio G.

    2006-02-01

    Purpose: To evaluate long-term effects of chemoradiation and intraluminal brachytherapy in terms of local control, disease-free survival, overall survival, and symptom relief in patients with unresectable or residual extrahepatic biliary carcinoma. Methods and Materials: Twenty-two patients with unresectable (17 patients) or residual (5 patients) nonmetastatic extrahepatic bile tumors received external beam radiation therapy (39.6-50.4 Gy) between 1991 and 1997. In 21 patients, 5-fluorouracil (96-h continuous infusion, Days 1-4, 1,000 mg/m{sup 2}/day) was administered. Twelve patients received a boost of intraluminal brachytherapy with {sup 192}Ir wires (30-50 Gy) 1 cm from the source axis. Results: During external beam radiotherapy, 10 patients (45.4%) developed Grade 1 to 2 gastrointestinal toxicity. In patients with unresectable tumor who could be evaluated, the clinical response was 28.6% (4 of 14). Two patients showed complete response. In all 22 patients, median durations of local control, disease-free survival, and overall survival were 44.5 months, 16.3 months, and 23.0 months, respectively. Two patients who received external beam radiation therapy and intraluminal brachytherapy developed late duodenal ulceration. In patients with unresectable tumors, median survival was 13.0 months and 22.0 months in those treated with and without brachytherapy, with 16.7% and no 5-year survival, respectively (p = 0.607). Overall 5-year survival was 18.0%: 40% and 11.7% in patients treated with partial resection and in those with unresectable tumor, respectively (p = 0.135). Conclusion: This study confirmed the role of concurrent chemoradiation in advanced biliary carcinoma; the role of intraluminal brachytherapy boost remains to be further analyzed in larger clinical trials.

  12. Infections and intravascular devices.

    PubMed

    Elliott, T S; Faroqui, M H

    Complications associated with intravascular devices include infections mainly caused by Staphylococcus epidermis and S. aureus. The reported incidence of these infections varies. Several factors influence the propensity for catheter infections. We recommend strategies for the prevention and treatment of catheter-related sepsis. PMID:1422561

  13. Intravascular Photoacoustic Imaging

    PubMed Central

    Wang, Bo; Su, Jimmy L.; Karpiouk, Andrei B.; Sokolov, Konstantin V.; Smalling, Richard W.; Emelianov, Stanislav Y.

    2011-01-01

    Intravascular photoacoustic (IVPA) imaging is a catheter-based, minimally invasive, imaging modality capable of providing high-resolution optical absorption map of the arterial wall. Integrated with intravascular ultrasound (IVUS) imaging, combined IVPA and IVUS imaging can be used to detect and characterize atherosclerotic plaques building up in the inner lining of an artery. In this paper, we present and discuss various representative applications of combined IVPA/IVUS imaging of atherosclerosis, including assessment of the composition of atherosclerotic plaques, imaging of macrophages within the plaques, and molecular imaging of biomarkers associated with formation and development of plaques. In addition, imaging of coronary artery stents using IVPA and IVUS imaging is demonstrated. Furthermore, the design of an integrated IVUS/IVPA imaging catheter needed for in vivo clinical applications is discussed. PMID:21359138

  14. Surface optimization technique for MammoSite breast brachytherapy applicator

    SciTech Connect

    Kirk, Michael . E-mail: Michael_C_Kirk@rush.edu; Hsi, W.C.; Dickler, Adam; Chu, James; Dowlatshahi, Kambiz; Francescatti, Darius; Nguyen, Cam

    2005-06-01

    Purpose: We present a technique to optimize the dwell times and positions of a high-dose-rate {sup 192}Ir source using the MammoSite breast brachytherapy applicator. The surface optimization method used multiple dwell positions and optimization points to conform the 100% isodose line to the surface of the planning target volume (PTV). Methods and materials: The study population consisted of 20 patients treated using the MammoSite device between October 2002 and February 2004. Treatment was delivered in 10 fractions of 3.4 Gy/fraction, twice daily, with a minimum of 6 h between fractions. The treatment of each patient was planned using three optimization techniques. The dosimetric characteristics of the single-point, six-point, and surface optimization techniques were compared. Results: The surface optimization technique increased the PTV coverage compared with the single- and six-point methods (mean percentage of PTV receiving 100% of the prescription dose was 94%, 85%, and 91%, respectively). The surface method, single-point, and six-point method had a mean dose homogeneity index of 0.62, 0.68, and 0.63 and a mean full width at half maximum value of 189, 190, and 192 cGy/fraction, respectively. Conclusion: The surface technique provided greater coverage of the PTV than did the single- and six-point methods. Using the FWHM method, the surface, single-, and six-point techniques resulted in equivalent dose homogeneity.

  15. Determination of the Sensibility Factors for TLD-100 Powder on the Energy of X-Ray of 50, 250 kVp; 192Ir, 137Cs and 60Co

    SciTech Connect

    Loaiza, Sandra P.; Alvarez, Jose T.

    2006-09-08

    TLD-100 powder is calibrated in terms of absorbed dose to water Dw, using the protocols AAPM TG61, AAPM TG43 and IAEA-TRS 398, for the energy of RX 50, 250 kVp, 137Cs and 60Co respectively. The calibration curves, TLD Response R versus Dw, are fitted by weighted least square by a quadratic polynomials; which are validated with the lack of fit and the Anderson-Darling normality test. The slope of these curves corresponds to the sensibility factor: Fs R/DW, [Fs] = nC Gy-1. The expanded uncertainties U's for these factors are obtained from the ANOVA tables. Later, the Fs' values are interpolated using the effective energy hvefec for the 192Ir. The SSDL sent a set of capsules with powder TLD-100 for two Hospitals. These irradiated them a nominal dose of Dw = 2 Gy. The results determined at SSDL are: for the Hospital A the Dw is overestimated in order to 4.8% and the Hospital B underestimates it in the range from -1.4% to -17.5%.

  16. How Is Disseminated Intravascular Coagulation Treated?

    MedlinePlus

    ... the NHLBI on Twitter. How Is Disseminated Intravascular Coagulation Treated? Treatment for disseminated intravascular coagulation (DIC) depends ... and treat the underlying cause. Acute Disseminated Intravascular Coagulation People who have acute DIC may have severe ...

  17. Intravascular brachytherapy with radioactive stents produced by ion implantation

    NASA Astrophysics Data System (ADS)

    Golombeck, M.-A.; Heise, S.; Schloesser, K.; Schuessler, B.; Schweickert, H.

    2003-05-01

    About 1 million patients are treated for stenosis of coronary arteries by percutaneous balloon angioplasty annually worldwide. In many cases a so called stent is inserted into the vessel to keep it mechanically open. Restenosis is observed in about 20-30% of these cases, which can be treated by irradiating the stented vessel segment. In our approach, we utilized the stent itself as radiation source by ion implanting 32P. Investigations of the surface properties were performed with special emphasis on activity retention. Clinical data of about 400 patients showed radioactive stents can suppress instent restenosis, but a so called edge effect appeared, which can be avoided by the new "drug eluting stents".

  18. SU-C-16A-03: Direction Modulated Brachytherapy for HDR Treatment of Cervical Cancer

    SciTech Connect

    Han, D; Webster, M; Scanderbeg, D; Yashar, C; Choi, D; Song, B; Song, W; Devic, S; Ravi, A

    2014-06-15

    Purpose: To investigate a new Directional Modulated Brachytherapy (DMBT) intra-uterine tandem using various 192-Ir after-loaders. Methods: Dose distributions from the 192-Ir sources were modulated using a 6.3mm diameter tungsten shield (18.0g/cm3). The source moved along 6 longitudinal grooves, each 1.3mm in diameter, evenly spaced along periphery of the shield, The tungsten rod was enclosqed by 0.5mm thick Delrin (1.41g/cc). Monte Carlo N particle (MCNPX) was used to calculate dose distributions. 51million particles were calculated on 504 cores of a supercomputer. Fifteen different patients originally treated with a traditional tandem-and-ovoid applicator, with 5 fractions each, (15 patients X 5 fxs = 75 plans) were re-planned with the DMBT applicator combined with traditional ovoids, on an in-house developed HDR brachytherapy planning platform, which used intensity modulated planning capabilities using a constrained gradient optimization algorithm. For all plans the prescription dose was 6 Gy and they were normalized to match the clinical treated V100. Results: Generally, the DMBT plan quality was a remarkable improvement from conventional T and O plans because of the anisotropic dose distribution of DMBT. The largest difference was to the bladder which had a 0.59±0.87 Gy (8.5±28.7%) reduction in dose. This was because of the the horseshoe shape (U-shape) of the bladder. The dose reduction to rectum and sigmoid were 0.48±0.55 Gy (21.1±27.2%) and 0.10±0.38 Gy (40.6±214.9%), respectively. The D90 to the HRCTV was 6.55±0.96 Gy (conventional T and O) and 6.59±1.06 Gy (DMBT). Conclusion: For image guided adaptive brachytherapy, greater flexibility of radiation intensity is essential and DMBT can be the solution.

  19. Does the Entire Uterus Need to be Treated in Cancer of the Cervix? Role of Adaptive Brachytherapy

    SciTech Connect

    Anker, Christopher J.; Cachoeira, Charles V.; Boucher, Kenneth M.; Rankin, Jim M.S.; Gaffney, David K.

    2010-03-01

    Purpose: To evaluate local control and toxicity by use of a method of adaptive cervical brachytherapy (ACB). Methods and Materials: From 1998 to 2008, we identified 65 cervical cancer patients with FIGO (International Federation of Gynecology and Obstetrics) Stage IB1-IVA disease who received definitive external beam radiation therapy and high-dose rate brachytherapy with tandem and ovoid applicators. As tumors regressed, 45 of 65 patients had the tandem source retracted from the uterine fundus at successive brachytherapy insertions, thus decreasing the number of {sup 192}Ir dwell positions. Tests of trend and Fisher's exact test were used to identify the effect of ACB on disease control and toxicity. Kaplan-Meier analyses were performed to evaluate disease control and late complications. Results: The median follow-up was 24.5 months. Of the patients, 92% received chemotherapy. The 3-year overall survival, 3-year disease-free survival, 3-year distant metastasis-free survival, and local control rates were 67%, 76%, 79%, and 97%, respectively. There was only 1 isolated local failure, and there were no local failures beyond 1 year. Distant failure was involved in 93% of recurrences. No significant trend was identified regarding the extent of retraction of the tandem source start position with either failure or toxicity. Acute and actuarial 3-year late Grade 3 toxicity or greater occurred in 24.6% and 17% of patients, respectively. Conclusions: ACB determined by clinical response yielded excellent local control rates. These data indicate that ACB may be useful in decreasing late toxicities from high-dose rate brachytherapy. With the advent of three-dimensional image-guided brachytherapy, additional methods to adapt treatment technique to changes in tumor volume warrant investigation.

  20. BrachyGuide: a brachytherapy-dedicated DICOM RT viewer and interface to Monte Carlo simulation software.

    PubMed

    Pantelis, Evaggelos; Peppa, Vassiliki; Lahanas, Vasileios; Pappas, Eleftherios; Papagiannis, Panagiotis

    2015-01-08

    This work presents BrachyGuide, a brachytherapy-dedicated software tool for the automatic preparation of input files for Monte Carlo simulation from treatment plans exported in DICOM RT format, and results of calculations performed for its benchmarking. Three plans were prepared using two computational models, the image series of a water sphere and a multicatheter breast brachytherapy patient, for each of two commercially available treatment planning systems: BrachyVision and Oncentra Brachy. One plan involved a single source dwell position of an 192Ir HDR source (VS2000 or mHDR-v2) at the center of the water sphere using the TG43 algorithm, and the other two corresponded to the TG43 and advanced dose calculation algorithm for the multicatheter breast brachytherapy patient. Monte Carlo input files were prepared using BrachyGuide and simulations were performed with MCNP v.6.1. For the TG43 patient plans, the Monte Carlo computational model was manually edited in the prepared input files to resemble TG43 dosimetry assumptions. Hence all DICOM RT dose exports were equivalent to corresponding simulation results and their comparison was used for benchmarking the use of BrachyGuide. Monte Carlo simulation results and corresponding DICOM RT dose exports agree within type A uncertainties in the majority of points in the computational models. Treatment planning system, algorithm, and source specific differences greater than type A uncertainties were also observed, but these were explained by treatment planning system-related issues and other sources of type B uncertainty. These differences have to be taken into account in commissioning procedures of brachytherapy dosimetry algorithms. BrachyGuide is accurate and effective for use in the preparation of commissioning tests for new brachytherapy dosimetry algorithms as a user-oriented commissioning tool and the expedition of retrospective patient cohort studies of dosimetry planning.

  1. Disseminated intravascular coagulation.

    PubMed

    Gando, Satoshi; Levi, Marcel; Toh, Cheng-Hock

    2016-01-01

    Disseminated intravascular coagulation (DIC) is an acquired syndrome characterized by widespread intravascular activation of coagulation that can be caused by infectious insults (such as sepsis) and non-infectious insults (such as trauma). The main pathophysiological mechanisms of DIC are inflammatory cytokine-initiated activation of tissue factor-dependent coagulation, insufficient control of anticoagulant pathways and plasminogen activator inhibitor 1-mediated suppression of fibrinolysis. Together, these changes give rise to endothelial dysfunction and microvascular thrombosis, which can cause organ dysfunction and seriously affect patient prognosis. Recent observations have pointed to an important role for extracellular DNA and DNA-binding proteins, such as histones, in the pathogenesis of DIC. The International Society on Thrombosis and Haemostasis (ISTH) established a DIC diagnostic scoring system consisting of global haemostatic test parameters. This scoring system has now been well validated in diverse clinical settings. The theoretical cornerstone of DIC management is the specific and vigorous treatment of the underlying conditions, and DIC should be simultaneously managed to improve patient outcomes. The ISTH guidance for the treatment of DIC recommends treatment strategies that are based on current evidence. In this Primer, we provide an updated overview of the pathophysiology, diagnosis and management of DIC and discuss the future directions of basic and clinical research in this field. PMID:27250996

  2. Dosimetric characterization of surface applicators for use with high dose rate Iridium-192 and electronic brachytherapy sources

    NASA Astrophysics Data System (ADS)

    Fulkerson, Regina Kennedy

    Historically, treatment of malignant surface lesions has been achieved with linear accelerator based electron beams or superficial x-ray beams. Recent developments in the field of brachytherapy now allow for the treatment of surface lesions with specialized conical applicators placed directly on the lesion. Applicators are available for use with high dose rate 192Ir sources, as well as electronic brachytherapy sources. Although use of these applicators has gained in popularity, the dosimetric characteristics including depth dose and surface dose distributions have not been independently verified. Additionally, there is no recognized method of output verification for quality assurance procedures with applicators like these. Existing dosimetry protocols available from the American Association of Physicists in Medicine (AAPM) bookend the cross-over characteristics of a traditional brachytherapy source (as described by Task Group 43) being implemented as a low-energy superficial x-ray beam (as described by Task Group 61) as observed with the surface applicators of interest. This thesis work aims to create a cohesive method of output verification that can be used to determine the dose at the treatment surface as part of a quality assurance/commissioning process for surface applicators used with high dose rate 192Ir and electronic brachytherapy sources. Air-kerma rate measurements were completed with an Attix Free-Air Chamber, as well as several models of small-volume ionization chambers to obtain an air-kerma rate at the treatment surface for each applicator. Correction factors were calculated using MCNP5 and EGSnrc Monte Carlo codes in order to determine an applicator-specific absorbed dose to water at the treatment surface from the measured air-kerma rate. Additionally, relative dose measurements of the surface dose distributions and characteristic depth dose curves were completed in-phantom and in-water. Theoretical dose distributions and depth dose curves were

  3. Comparison BIPM.RI(I)-K8 of high dose-rate Ir-192 brachytherapy standards for reference air kerma rate of the NRC and the BIPM

    NASA Astrophysics Data System (ADS)

    Kessler, C.; Downton, B.; Mainegra-Hing, E.

    2015-01-01

    An indirect comparison of the standards for reference air kerma rate for 192Ir high dose rate (HDR) brachytherapy sources of the National Research Council (NRC), Canada, and of the Bureau International des Poids et Mesures (BIPM) was carried out at the NRC in August 2014. The comparison result, based on the calibration coefficients for a transfer standard and expressed as a ratio of the NRC and the BIPM standards for reference air kerma rate, is 0.9966 with a combined standard uncertainty of 0.0050. Main text. To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by the CCRI, according to the provisions of the CIPM Mutual Recognition Arrangement (CIPM MRA).

  4. Comparison BIPM.RI(I)-K8 of high dose-rate Ir-192 brachytherapy standards for reference air kerma rate of the NMIJ and the BIPM

    NASA Astrophysics Data System (ADS)

    Kessler, C.; Kurosawa, T.; Mikamoto, T.

    2016-01-01

    An indirect comparison of the standards for reference air kerma rate for 192Ir high dose rate (HDR) brachytherapy sources of the National Metrology Institute of Japan (AIST-NMIJ), Japan, and of the Bureau International des Poids et Mesures (BIPM) was carried out at the Japan Radioisotope Association (JRIA) in April 2015. The comparison result, based on the calibration coefficients for a transfer standard and expressed as a ratio of the NMIJ and the BIPM standards for reference air kerma rate, is 1.0036 with a combined standard uncertainty of 0.0054. Main text To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by the CCRI, according to the provisions of the CIPM Mutual Recognition Arrangement (CIPM MRA).

  5. Comparison BIPM.RI(I)-K8 of high dose-rate Ir-192 brachytherapy standards for reference air kerma rate of the PTB and the BIPM

    NASA Astrophysics Data System (ADS)

    Kessler, C.; Allisy-Roberts, P. J.; Selbach, H. J.

    2015-01-01

    An indirect comparison of the standards for reference air kerma rate (RAKR) for 192Ir high dose rate (HDR) brachytherapy sources of the Physikalisch-Technische Bundesanstalt (PTB), Germany, and of the Bureau International des Poids et Mesures (BIPM) was carried out at the PTB in September 2011. The comparison result, based on the calibration coefficients for a transfer standard and expressed as a ratio of the PTB and the BIPM standards for reference air kerma rate, is 1.0003 with a combined standard uncertainty of 0.0099. Main text. To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by the CCRI, according to the provisions of the CIPM Mutual Recognition Arrangement (CIPM MRA).

  6. Surgical resection with adjuvant brachytherapy in soft tissue sarcoma of the extremity – a case report

    PubMed Central

    Łyczek, Jarosław; Kowalik, Łukasz

    2012-01-01

    Purpose Surgery is the major therapeutic method in soft tissue sarcomas of the extremity (E-STS). Treatment of large high-grade tumours, which resection cannot be performed with a wide safe margin, should include complementary radiation and/or chemo-therapy. Hopefully, the use of adjuvant brachytherapy will improve the prognosis of E-STS. Case description After a long process of diagnosing a tumour in the medial compartment of the thigh, a 65-year-old woman with diagnosed synovial sarcoma underwent a surgery. Compartment resection was performed and the tumour was removed with a 10 mm safety margin of healthy tissue. Adjuvant brachytherapy was delivered with 192Ir (MicroSelectron, Nucletron Electa Group, Stockholm, Sweden®) with 10 Ci of nominal activity to a dose of 55 Gy in 16 days because of large tumour size (99 × 78 × 73 mm) and its proximity to the neurovascular bundle. No complications were reported. The patient was discharged from the hospital on the 28th day after the surgery. The wound healed without any complications and the outpatient follow-up is being continued. Discussion Adjuvant brachytherapy is rarely used after surgical treatment due to its limited accessibility in hospitals with surgical and orthopaedic departments. There are numerous publications proving positive influence of brachytherapy on local control and decreased number of recurrences. The recurrence-free survival time also increased significantly, however no direct impact on the number of distant metastases was found. Treatment is well tolerated and short. The complication rate varies between centres from 5 to 30%. The most common adverse effects include: peripheral neuropathy, skin necrosis and osteonecrosis of the long bones. Conclusions Treatment of large soft tissue sarcomas of the extremity (E-STS) should include combination of surgical intervention and external beam radiotherapy or brachytherapy. Adjuvant brachytherapy improves local control rate up to 78%, is well tolerated and

  7. The use of tetrahedral mesh geometries in Monte Carlo simulation of applicator based brachytherapy dose distributions

    NASA Astrophysics Data System (ADS)

    Paiva Fonseca, Gabriel; Landry, Guillaume; White, Shane; D'Amours, Michel; Yoriyaz, Hélio; Beaulieu, Luc; Reniers, Brigitte; Verhaegen, Frank

    2014-10-01

    Accounting for brachytherapy applicator attenuation is part of the recommendations from the recent report of AAPM Task Group 186. To do so, model based dose calculation algorithms require accurate modelling of the applicator geometry. This can be non-trivial in the case of irregularly shaped applicators such as the Fletcher Williamson gynaecological applicator or balloon applicators with possibly irregular shapes employed in accelerated partial breast irradiation (APBI) performed using electronic brachytherapy sources (EBS). While many of these applicators can be modelled using constructive solid geometry (CSG), the latter may be difficult and time-consuming. Alternatively, these complex geometries can be modelled using tessellated geometries such as tetrahedral meshes (mesh geometries (MG)). Recent versions of Monte Carlo (MC) codes Geant4 and MCNP6 allow for the use of MG. The goal of this work was to model a series of applicators relevant to brachytherapy using MG. Applicators designed for 192Ir sources and 50 kV EBS were studied; a shielded vaginal applicator, a shielded Fletcher Williamson applicator and an APBI balloon applicator. All applicators were modelled in Geant4 and MCNP6 using MG and CSG for dose calculations. CSG derived dose distributions were considered as reference and used to validate MG models by comparing dose distribution ratios. In general agreement within 1% for the dose calculations was observed for all applicators between MG and CSG and between codes when considering volumes inside the 25% isodose surface. When compared to CSG, MG required longer computation times by a factor of at least 2 for MC simulations using the same code. MCNP6 calculation times were more than ten times shorter than Geant4 in some cases. In conclusion we presented methods allowing for high fidelity modelling with results equivalent to CSG. To the best of our knowledge MG offers the most accurate representation of an irregular APBI balloon applicator.

  8. Investigations into the Optimization of Multi-Source Strength Brachytherapy Treatment Procedures

    SciTech Connect

    D. L. Henderson; S. Yoo; B.R. Thomadsen

    2002-09-30

    The goal of this project is to investigate the use of multi-strength and multi-specie radioactive sources in permanent prostate implant brachytherapy. In order to fulfill the requirement for an optimal dose distribution, the prescribed dose should be delivered to the target in a nearly uniform dose distribution while simultaneously sparing sensitive structures. The treatment plan should use a small number of needles and sources while satisfying the treatment requirements. The hypothesis for the use of multi-strength and/or multi-specie sources is that a better treatment plan using fewer sources and needles could be obtained than by treatment plans using single-strength sources could reduce the overall number of sources used for treatment. We employ a recently developed greedy algorithm based on the adjoint concept as the optimization search engine. The algorithm utilizes and ''adjoint ratio'', which provides a means of ranking source positions, as the pseudo-objective function. It ha s been shown that the greedy algorithm can solve the optimization problem efficiently and arrives at a clinically acceptable solution in less than 10 seconds. Our study was inclusive, that is there was no combination of sources that clearly stood out from the others and could therefore be considered the preferred set of sources for treatment planning. Source strengths of 0.2 mCi (low), 0.4 mCi (medium), and 0.6 mCi (high) of {sup 125}I in four different combinations were used for the multi-strength source study. The combination of high- and medium-strength sources achieved a more uniform target dose distribution due to few source implants whereas the combination of low-and medium-strength sources achieved better sparing of sensitive tissues including that of the single-strength 0.4 mCi base case. {sup 125}I at 0.4 mCi and {sup 192}Ir at 0.12 mCi and 0.25 mCi source strengths were used for the multi-specie source study. This study also proved inconclusive , Treatment plans using a

  9. A dosimetry method in the transverse plane of HDR Ir-192 brachytherapy source using gafchromic EBT2 film.

    PubMed

    Uniyal, S C; Sharma, S D; Naithani, U C

    2012-04-01

    Radiochromic film dosimetry is increasingly used in brachytherapy applications for its higher resolution ability as compared to other experimental methods. The present study was aimed to assess the accuracy and suitability of use of the improved radiochromic film model, Gafchromic EBT2, to evaluate the dose distribution in the transverse plane of microselectron HDR (192)Ir source. A specially designed and locally fabricated Polymethyl methacrylate (PMMA) phantom was used in this work for the experimental measurement of dose distribution around the source in its transverse plane. The AAPM TG-43U1 recommended radial dose function, g (r), and dose rate constant, Λ, for the source were measured using Gafchromic EBT2 film and thermoluminescent dosimeters (TLD). The EBT2 film measured dosimetric quantities were validated against their values obtained from the TLD measurements and previously published values for the same source available in literature. The dose rate constant and radial dose function for microselectron HDR (192)Ir source obtained from Gafchromic EBT2 film measurements are in agreement with their TLD measured results within 3.9% and 2.8% respectively. They also agree within the accepted range of uncertainty with their experimental and Monte Carlo calculated results reported in literature. This work demonstrates the suitability of using Gafchromic EBT2 film dosimetry in characterization of dose distribution in the transverse plane of HDR Ir-192 source. This is a more efficient method than TLD dosimetry at discrete and distant positions. Relative to TLD dosimetry, it is found to be better reproducible, easy to use and a less expensive method of dosimetry.

  10. Intravascular adenomyomatosis: expanding the morphologic spectrum of intravascular leiomyomatosis.

    PubMed

    Hirschowitz, Lynn; Mayall, Frederick G; Ganesan, Raji; McCluggage, W Glenn

    2013-09-01

    Intravascular leiomyomatosis (IVL) is characterized by the presence of smooth muscle in venous and lymphatic spaces within the myometrium. Although the intravascular component usually consists solely of typical smooth muscle or variants of smooth muscle differentiation, we report 5 cases in which the intravascular component also included endometrioid glandular and stromal elements. We propose the term "intravenous adenomyomatosis" to describe this unusual variant of IVL. The mean age of the patients in this series was 50.2 years, slightly older than that of patients with conventional IVL. In addition to intravenous adenomyomatosis, both adenomyosis and leiomyomas were identified in all of our cases, supporting the hypothesis that the intravascular smooth muscle component in IVL is derived from associated myometrial pathology rather than from vessel walls. In our series, intravenous adenomyomatosis had a similar benign clinical behavior to most cases of IVL with no metastatic or recurrent disease identified at follow-up in 4 cases for which follow-up information was available. The main differential diagnoses are adenomyosis with vascular involvement, low-grade endometrial stromal sarcoma (ESS), including ESS with smooth muscle and glandular differentiation, and adenosarcoma with lymphovascular invasion. The possibility of intravenous adenomyomatosis should be borne in mind when considering these diagnoses, particularly ESS and adenosarcoma, which have different implications for patient management and prognosis.

  11. Dosimetric audit in brachytherapy

    PubMed Central

    Bradley, D A; Nisbet, A

    2014-01-01

    Dosimetric audit is required for the improvement of patient safety in radiotherapy and to aid optimization of treatment. The reassurance that treatment is being delivered in line with accepted standards, that delivered doses are as prescribed and that quality improvement is enabled is as essential for brachytherapy as it is for the more commonly audited external beam radiotherapy. Dose measurement in brachytherapy is challenging owing to steep dose gradients and small scales, especially in the context of an audit. Several different approaches have been taken for audit measurement to date: thimble and well-type ionization chambers, thermoluminescent detectors, optically stimulated luminescence detectors, radiochromic film and alanine. In this work, we review all of the dosimetric brachytherapy audits that have been conducted in recent years, look at current audits in progress and propose required directions for brachytherapy dosimetric audit in the future. The concern over accurate source strength measurement may be essentially resolved with modern equipment and calibration methods, but brachytherapy is a rapidly developing field and dosimetric audit must keep pace. PMID:24807068

  12. Radiation transmission data for radionuclides and materials relevant to brachytherapy facility shielding

    SciTech Connect

    Papagiannis, P.; Baltas, D.; Granero, D.; Perez-Calatayud, J.; Gimeno, J.; Ballester, F.; Venselaar, J. L. M.

    2008-11-15

    To address the limited availability of radiation shielding data for brachytherapy as well as some disparity in existing data, Monte Carlo simulation was used to generate radiation transmission data for {sup 60}Co, {sup 137}Cs, {sup 198}Au, {sup 192}Ir, {sup 169}Yb, {sup 170}Tm, {sup 131}Cs, {sup 125}I, and {sup 103}Pd photons through concrete, stainless steel, lead, as well as lead glass and baryte concrete. Results accounting for the oblique incidence of radiation to the barrier, spectral variation with barrier thickness, and broad beam conditions in a realistic geometry are compared to corresponding data in the literature in terms of the half value layer (HVL) and tenth value layer (TVL) indices. It is also shown that radiation shielding calculations using HVL or TVL values could overestimate or underestimate the barrier thickness required to achieve a certain reduction in radiation transmission. This questions the use of HVL or TVL indices instead of the actual transmission data. Therefore, a three-parameter model is fitted to results of this work to facilitate accurate and simple radiation shielding calculations.

  13. Comparison of dose calculation algorithms for colorectal cancer brachytherapy treatment with a shielded applicator

    SciTech Connect

    Yan Xiangsheng; Poon, Emily; Reniers, Brigitte; Vuong, Te; Verhaegen, Frank

    2008-11-15

    Colorectal cancer patients are treated at our hospital with {sup 192}Ir high dose rate (HDR) brachytherapy using an applicator that allows the introduction of a lead or tungsten shielding rod to reduce the dose to healthy tissue. The clinical dose planning calculations are, however, currently performed without taking the shielding into account. To study the dose distributions in shielded cases, three techniques were employed. The first technique was to adapt a shielding algorithm which is part of the Nucletron PLATO HDR treatment planning system. The isodose pattern exhibited unexpected features but was found to be a reasonable approximation. The second technique employed a ray tracing algorithm that assigns a constant dose ratio with/without shielding behind the shielding along a radial line originating from the source. The dose calculation results were similar to the results from the first technique but with improved accuracy. The third and most accurate technique used a dose-matrix-superposition algorithm, based on Monte Carlo calculations. The results from the latter technique showed quantitatively that the dose to healthy tissue is reduced significantly in the presence of shielding. However, it was also found that the dose to the tumor may be affected by the presence of shielding; for about a quarter of the patients treated the volume covered by the 100% isodose lines was reduced by more than 5%, leading to potential tumor cold spots. Use of any of the three shielding algorithms results in improved dose estimates to healthy tissue and the tumor.

  14. [Safety in brachytherapy].

    PubMed

    Marcié, S; Marinello, G; Peiffert, D; Lartigau, É

    2013-04-01

    No technique can now be used without previously considering the safety of patients, staff and public and risk management. This is the case for brachytherapy. The various aspects of brachytherapy are discussed for both the patient and the staff. For all, the risks must be minimized while achieving a treatment of quality. It is therefore necessary to establish a list as comprehensive as possible regardless of the type of brachytherapy (low, high, pulsed dose-rate). Then, their importance must be assessed with the help of their criticality. Radiation protection of personnel and public must take into account the many existing regulation texts. Four axes have been defined for the risk management for patients: organization, preparation, planning and implementation of treatment. For each axis, a review of risks is presented, as well as administrative, technical and medical dispositions for staff and the public. PMID:23465784

  15. Film based verification of calculation algorithms used for brachytherapy planning-getting ready for upcoming challenges of MBDCA

    PubMed Central

    Bielęda, Grzegorz; Skowronek, Janusz; Mazur, Magdalena

    2016-01-01

    Purpose Well-known defect of TG-43 based algorithms used in brachytherapy is a lack of information about interaction cross-sections, which are determined not only by electron density but also by atomic number. TG-186 recommendations with using of MBDCA (model-based dose calculation algorithm), accurate tissues segmentation, and the structure's elemental composition continue to create difficulties in brachytherapy dosimetry. For the clinical use of new algorithms, it is necessary to introduce reliable and repeatable methods of treatment planning systems (TPS) verification. The aim of this study is the verification of calculation algorithm used in TPS for shielded vaginal applicators as well as developing verification procedures for current and further use, based on the film dosimetry method. Material and methods Calibration data was collected by separately irradiating 14 sheets of Gafchromic® EBT films with the doses from 0.25 Gy to 8.0 Gy using HDR 192Ir source. Standard vaginal cylinders of three diameters were used in the water phantom. Measurements were performed without any shields and with three shields combination. Gamma analyses were performed using the VeriSoft® package. Results Calibration curve was determined as third-degree polynomial type. For all used diameters of unshielded cylinder and for all shields combinations, Gamma analysis were performed and showed that over 90% of analyzed points meets Gamma criteria (3%, 3 mm). Conclusions Gamma analysis showed good agreement between dose distributions calculated using TPS and measured by Gafchromic films, thus showing the viability of using film dosimetry in brachytherapy.

  16. Film based verification of calculation algorithms used for brachytherapy planning-getting ready for upcoming challenges of MBDCA

    PubMed Central

    Bielęda, Grzegorz; Skowronek, Janusz; Mazur, Magdalena

    2016-01-01

    Purpose Well-known defect of TG-43 based algorithms used in brachytherapy is a lack of information about interaction cross-sections, which are determined not only by electron density but also by atomic number. TG-186 recommendations with using of MBDCA (model-based dose calculation algorithm), accurate tissues segmentation, and the structure's elemental composition continue to create difficulties in brachytherapy dosimetry. For the clinical use of new algorithms, it is necessary to introduce reliable and repeatable methods of treatment planning systems (TPS) verification. The aim of this study is the verification of calculation algorithm used in TPS for shielded vaginal applicators as well as developing verification procedures for current and further use, based on the film dosimetry method. Material and methods Calibration data was collected by separately irradiating 14 sheets of Gafchromic® EBT films with the doses from 0.25 Gy to 8.0 Gy using HDR 192Ir source. Standard vaginal cylinders of three diameters were used in the water phantom. Measurements were performed without any shields and with three shields combination. Gamma analyses were performed using the VeriSoft® package. Results Calibration curve was determined as third-degree polynomial type. For all used diameters of unshielded cylinder and for all shields combinations, Gamma analysis were performed and showed that over 90% of analyzed points meets Gamma criteria (3%, 3 mm). Conclusions Gamma analysis showed good agreement between dose distributions calculated using TPS and measured by Gafchromic films, thus showing the viability of using film dosimetry in brachytherapy. PMID:27648087

  17. SU-FF-T-390: In-Vivo Prostate Brachytherapy Absorbed Dose Measurements

    SciTech Connect

    Gueye, Paul; Velasco, Carlos; Keppel, Cynthia; Murphy, B; Sinesi, C

    2009-06-01

    Purpose: In-vivo prostate brachytherapy absorbed dosimetrydetector using scintillating fibers. Method and Materials: Five pairs of 85.5 {+-} 0.05 cm long blue shifted scintillating fibers (model BCF-10) with 1 mm{sup 2} cross sectional area were placed in a mixture of gelatin (368.6 {+-} 0.5 grams) and water (3.78 {+-} 0.025 liters) to measured the absorbed dose delivered by a 12 Ci {sup 192}Ir HDR source. The fibers were held by a 7 x 7 cm{sup 2} template grid and optically connected to a 16-channel multianode photomultiplier tube (Hamamatsu, model H6568). Each pair consisted of one fiber 4 mm shorter than the other one to extract the dose by the subtraction method. A dose atlas was used for radiation delivered to the phantom. The plans followed delivered 5 and 7 Gy to a point located 2.0 centimeters away from the central dwelling positions. A total of 32 data points were acquired in a plan to assess the linearity and reproducibility of the measurements.Results: Reproducibility of the data was found to be within 5% and the overall accuracy of the system estimated to be {+-}5.5%. The linearity of the data for all 7 measureddose values (ranging from 0.6 to 7 Gy), gives a slope of 312 counts/Gy with a 1.4% relative deviation. Conclusion: This work indicates the possibility of measuring in real-time the dose effectively delivered to a biological system during prostate brachytherapy treatments. The availability of commercially thin (150 {micro}m) scintillating fibers opens the capability of using such system during clinical treatments (by embedding the fibers within the catheters) with the advantage of performing real-time adjustment of the dose delivery.

  18. SU-GG-T-49: Real Time Dose Verification for Novel Shielded Balloon Brachytherapy

    SciTech Connect

    Govindarajan, Nandakarthik; Nazaryan, Vahagn; Gueye, Paul; Keppel, Cynthia

    2010-06-01

    Purpose: The validation of a novel approach for reducing skindoses to an acceptable level during Accelerated Partial Breast Irradiation (APBI) when the balloon-to-skin distance is inadequate (less than 7 mm) is reported. The study uses a real time dose verification method for a metallic shielded balloon applicator using scintillation fiber technology. Method and Materials: Partial shielding of the radiationdose to the skin using iron or other ferrous powder could enable the extension of APBI to some patients. With small external and pre-determined magnetic fields (192}Ir of a GammaMed 12i afterloader unit, with a MOSFET,ion chamber and scintillating fiber array detectors. Results: Realistic Monte Carlo simulation studies for the amount and distribution of the required shielding material were compared to dedicated phantom data. A decrease of the skindose was measured to an acceptable level (~350-450 cGy) during standard breast Brachytherapy treatments with relatively weak magnetic fields. Additional measurements provided negligible corrections (< few %) on the saline water density from the suspended ironpowder.Conclusion: This project opens the possibility to increasing the survival expectancy and minimizing negative side effects during brachytherapy treatments, as well as improving cosmetic outcome for all APBI patients. The proposed method may also be used in other procedures for brain, heart, rectal, or vaginal cancers.

  19. [The first experience in interstitial brachytherapy for primary and metastatic tumors of the brain].

    PubMed

    Bentsion, D L; Gvozdev, P B; Sakovich, V P; Fialko, N V; Kolotvinov, V S; Baiankina, S N

    2006-01-01

    In 2001-2002, the authors performed a course of brachytherapy in 15 patients with inoperable primary, recurrent, and metastatic brain tumors. The histostructural distribution was as follows: low-grade astrocytoma (grade II according to the WHO classification) in 2 patients, anaplastic astrocytoma (AA) in 3, glioblastoma multiforme (GBM) in 5. Five patients had solid tumor deposits in the brain. Computer tomographic (CT) and magnetic resonance imaging (MRI) data were used to define a path for forthcoming biopsy and implantation at a "Stryker" navigation station, by taking into account the anatomy of the brain, vessels, and functionally significant areas. After having histological findings, plastic intrastats whose number had been determined by the volume of a target were implanted into a tumor by the predetermined path. Dosimetric planning was accomplished by using CT and MRI images on an "Abacus" system. The final stage involved irradiation on a "GammaMed plus" with a source of 192Ir. Irradiation was given, by hyperfractionating its dose (3-4 Gy twice daily at an interval of 4-5 hours) to the total focal dose (TFD) of 36-44 Gy. Patients with gliomas untreated with radiation also underwent external radiation in a TFD of 54-56 Gy and patients with brain metastases received total external irradiation of the brain in a TFD of 36-40 Gy. The tolerance of a course of irradiation was fair. In patients with AA and GBM, one-year survival was observed in 66 and 60%, respectively; in those having metastasis, it was in 20%. Six patients died from progressive disease. All patients with low-grade astrocytoma and one patient with anaplastic astrocytoma were alive at month 24 after treatment termination. The mean lifespan of patients with malignant gliomas and solid tumor metastasis was 11.5 and 5.8 months, respectively. Brachytherapy is a noninvasive and tolerable mode of radiotherapy that increases survival in some groups of patients with inoperable brain tumors.

  20. Radiation dose enhancement at tissue-tungsten interfaces in HDR brachytherapy

    NASA Astrophysics Data System (ADS)

    Han, Z.; Safavi-Naeini, M.; Alnaghy, S.; Cutajar, DL; Guatelli, S.; Petasecca, M.; Franklin, DR; Malaroda, A.; Carrara, M.; Bucci, J.; Zaider, M.; Lerch, MLF; Rosenfeld, AB

    2014-11-01

    HDR BrachyView is a novel in-body dosimetric imaging system for real-time monitoring and verification of the source position in high dose rate (HDR) prostate brachytherapy treatment. It is based on a high-resolution pixelated detector array with a semi-cylindrical multi-pinhole tungsten collimator and is designed to fit inside a compact rectal probe, and is able to resolve the 3D position of the source with a maximum error of 1.5 mm. This paper presents an evaluation of the additional dose that will be delivered to the patient as a result of backscatter radiation from the collimator. Monte Carlo simulations of planar and cylindrical collimators embedded in a tissue-equivalent phantom were performed using Geant4, with an 192Ir source placed at two different source-collimator distances. The planar configuration was replicated experimentally to validate the simulations, with a MOSkin dosimetry probe used to measure dose at three distances from the collimator. For the cylindrical collimator simulation, backscatter dose enhancement was calculated as a function of axial and azimuthal displacement, and dose distribution maps were generated at three distances from the collimator surface. Although significant backscatter dose enhancement was observed for both geometries immediately adjacent to the collimator, simulations and experiments indicate that backscatter dose is negligible at distances beyond 1 mm from the collimator. Since HDR BrachyView is enclosed within a 1 mm thick tissue-equivalent plastic shell, all backscatter radiation resulting from its use will therefore be absorbed before reaching the rectal wall or other tissues. dosimetry, brachytherapy, HDR

  1. Radiation dose enhancement at tissue-tungsten interfaces in HDR brachytherapy.

    PubMed

    Han, Z; Safavi-Naeini, M; Alnaghy, S; Cutajar, D L; Guatelli, S; Petasecca, M; Franklin, D R; Malaroda, A; Carrara, M; Bucci, J; Zaider, M; Lerch, M L F; Rosenfeld, A B

    2014-11-01

    HDR BrachyView is a novel in-body dosimetric imaging system for real-time monitoring and verification of the source position in high dose rate (HDR) prostate brachytherapy treatment. It is based on a high-resolution pixelated detector array with a semi-cylindrical multi-pinhole tungsten collimator and is designed to fit inside a compact rectal probe, and is able to resolve the 3D position of the source with a maximum error of 1.5 mm. This paper presents an evaluation of the additional dose that will be delivered to the patient as a result of backscatter radiation from the collimator. Monte Carlo simulations of planar and cylindrical collimators embedded in a tissue-equivalent phantom were performed using Geant4, with an (192)Ir source placed at two different source-collimator distances. The planar configuration was replicated experimentally to validate the simulations, with a MOSkin dosimetry probe used to measure dose at three distances from the collimator. For the cylindrical collimator simulation, backscatter dose enhancement was calculated as a function of axial and azimuthal displacement, and dose distribution maps were generated at three distances from the collimator surface. Although significant backscatter dose enhancement was observed for both geometries immediately adjacent to the collimator, simulations and experiments indicate that backscatter dose is negligible at distances beyond 1 mm from the collimator. Since HDR BrachyView is enclosed within a 1 mm thick tissue-equivalent plastic shell, all backscatter radiation resulting from its use will therefore be absorbed before reaching the rectal wall or other tissues. dosimetry, brachytherapy, HDR.

  2. Retrospective Analysis of Local Control and Cosmetic Outcome of 147 Periorificial Carcinomas of the Face Treated With Low-Dose Rate Interstitial Brachytherapy

    SciTech Connect

    Ducassou, Anne; David, Isabelle; Filleron, Thomas; Rives, Michel; Bonnet, Jacques; Delannes, Martine

    2011-11-01

    Purpose: Skin cancer is the most common malignancy in white populations. We evaluated the local cure rate and cosmetic outcome of patients with basal cell carcinoma (BCC) or squamous cell carcinoma (SCC) of the face treated with low-dose rate brachytherapy. Methods and Materials: Between February 1990 and May 2000, 147 facial carcinomas in 132 patients were treated by {sup 192}Ir wire implantation. Side effects of brachytherapy were noted. Follow-up was 2 years or more. Locoregional recurrence-free survival (LRFS) and overall survival were recorded. Group A included patients treated by primary brachytherapy, and Group B included those treated after recurrence. Results: A total of 121 carcinomas were BCCs (82.3%) and 26 were SCCs (17.7%); the median tumor size was 10 mm. Of the tumors, 86 (58.5%) were in men and 61 (41.5%) were in women; the median age was 71 years. Group A comprised 116 lesions (78.9%), and Group B, 31 (21.1%). There were 17 relapses (11.6%) after a median follow-up of 72 months: 12 local, 4 nodal, and 1 local and nodal. Locoregional-free survival was 96.6% at 2 years and 87.3% at 5 years. Five-year LRFS was 82.6% in men and 93.3% in women (p = 0.027). After adjustment for gender, LRFS was better after primary treatment than after recurrence (hasard ratio HR, 2.91; 95% confidence interval, 1.06-8.03; p = 0.039). Five-year LRFS was 90.4% for BCC and 70.8% for SCC (p = 0.03). There were no Grade 3 complications. Conclusions: Low-dose rate brachytherapy offers good local control and cosmetic outcome in patients with periorificial skin carcinomas, with no Grade 3 complications. Brchytherapy is more efficient when used as primary treatment.

  3. Endosulfan poisoning with intravascular hemolysis.

    PubMed

    Ramaswamy, Shankar; Puri, Goverdhan Dutt; Rajeev, Subramanyam

    2008-04-01

    We describe a 26-year-old female patient, who had attempted suicide with Endosulfan, and who presented to the Emergency Department with status epilepticus. She subsequently developed hypotension refractory to inotropes, intravascular hemolysis, disseminated intravascular coagulation (DIC), metabolic acidosis and, finally, cardiac arrest and death. Endosulfan is a chlorinated insecticide that causes central nervous system hyperstimulation. It is absorbed from the gastrointestinal tract, skin, and respiratory tract, and leads to nausea, vomiting, paraesthesia, giddiness, convulsion, coma, respiratory failure, and congestive cardiac failure. Hepatic, renal and myocardial toxicity, agranulocytosis, aplastic anemia, cerebral edema, DIC, thrombocytopenia, and skin reaction also have been reported. Management includes decontamination of skin and gastrointestinal tract, supportive care including treatment of status epilepticus, dysrhythmias, and mechanical ventilation. Mortality and morbidity rates are very high and there is no specific antidote. Atropine and catecholamines should be avoided.

  4. Image Processing in Intravascular OCT

    NASA Astrophysics Data System (ADS)

    Wang, Zhao; Wilson, David L.; Bezerra, Hiram G.; Rollins, Andrew M.

    Coronary artery disease is the leading cause of death in the world. Intravascular optical coherence tomography (IVOCT) is rapidly becoming a promising imaging modality for characterization of atherosclerotic plaques and evaluation of coronary stenting. OCT has several unique advantages over alternative technologies, such as intravascular ultrasound (IVUS), due to its better resolution and contrast. For example, OCT is currently the only imaging modality that can measure the thickness of the fibrous cap of an atherosclerotic plaque in vivo. OCT also has the ability to accurately assess the coverage of individual stent struts by neointimal tissue over time. However, it is extremely time-consuming to analyze IVOCT images manually to derive quantitative diagnostic metrics. In this chapter, we introduce some computer-aided methods to automate the common IVOCT image analysis tasks.

  5. The feasibility study and characterization of a two-dimensional diode array in “magic phantom” for high dose rate brachytherapy quality assurance

    SciTech Connect

    Espinoza, A.; Beeksma, B.; Petasecca, M.; Fuduli, I.; Porumb, C.; Cutajar, D.; Lerch, M. L. F.; Rosenfeld, A. B.; Corde, S.; Jackson, M.

    2013-11-15

    Purpose: High dose rate (HDR) brachytherapy is a radiation treatment technique capable of delivering large dose rates to the tumor. Radiation is delivered using remote afterloaders to drive highly active sources (commonly {sup 192}Ir with an air KERMA strength range between 20 000 and 40 000 U, where 1 U = 1 μGy m{sup 2}/h in air) through applicators directly into the patient's prescribed region of treatment. Due to the obvious ramifications of incorrect treatment while using such an active source, it is essential that there are methods for quality assurance (QA) that can directly and accurately verify the treatment plan and the functionality of the remote afterloader. This paper describes the feasibility study of a QA system for HDR brachytherapy using a phantom based two-dimensional 11 × 11 epitaxial diode array, named “magic phantom.”Methods: The HDR brachytherapy treatment plan is translated to the phantom with two rows of 10 (20 in total) HDR source flexible catheters, arranged above and below the diode array “magic plate” (MP). Four-dimensional source tracking in each catheter is based upon a developed fast iterative algorithm, utilizing the response of the diodes in close proximity to the {sup 192}Ir source, sampled at 100 ms intervals by a fast data acquisition (DAQ) system. Using a {sup 192}Ir source in a solid water phantom, the angular response of the developed epitaxial diodes utilized in the MP and also the variation of the MP response as a function of the source-to-detector distance (SDD) were investigated. These response data are then used by an iterative algorithm for source dwelling position determination. A measurement of the average transit speed between dwell positions was performed using the diodes and a fast DAQ.Results: The angular response of the epitaxial diode showed a variation of 15% within 360°, with two flat regions above and below the detector face with less than 5% variation. For SDD distances of between 5 and 30 mm the

  6. Dose calculation for photon-emitting brachytherapy sources with average energy higher than 50 keV: Report of the AAPM and ESTRO

    SciTech Connect

    Perez-Calatayud, Jose; Ballester, Facundo; Das, Rupak K.; DeWerd, Larry A.; Ibbott, Geoffrey S.; Meigooni, Ali S.; Ouhib, Zoubir; Rivard, Mark J.; Sloboda, Ron S.; Williamson, Jeffrey F.

    2012-05-15

    Purpose: Recommendations of the American Association of Physicists in Medicine (AAPM) and the European Society for Radiotherapy and Oncology (ESTRO) on dose calculations for high-energy (average energy higher than 50 keV) photon-emitting brachytherapy sources are presented, including the physical characteristics of specific {sup 192}Ir, {sup 137}Cs, and {sup 60}Co source models. Methods: This report has been prepared by the High Energy Brachytherapy Source Dosimetry (HEBD) Working Group. This report includes considerations in the application of the TG-43U1 formalism to high-energy photon-emitting sources with particular attention to phantom size effects, interpolation accuracy dependence on dose calculation grid size, and dosimetry parameter dependence on source active length. Results: Consensus datasets for commercially available high-energy photon sources are provided, along with recommended methods for evaluating these datasets. Recommendations on dosimetry characterization methods, mainly using experimental procedures and Monte Carlo, are established and discussed. Also included are methodological recommendations on detector choice, detector energy response characterization and phantom materials, and measurement specification methodology. Uncertainty analyses are discussed and recommendations for high-energy sources without consensus datasets are given. Conclusions: Recommended consensus datasets for high-energy sources have been derived for sources that were commercially available as of January 2010. Data are presented according to the AAPM TG-43U1 formalism, with modified interpolation and extrapolation techniques of the AAPM TG-43U1S1 report for the 2D anisotropy function and radial dose function.

  7. Error Analysis of non-TLD HDR Brachytherapy Dosimetric Techniques

    NASA Astrophysics Data System (ADS)

    Amoush, Ahmad

    , and 4cm, 5cm, 6cm, and 7cm, respectively. The Nucletron Freiburg flap applicator is used with the Nucletron remote afterloader HDR machine to deliver dose to surface cancers. Dosimetric data for the Nucletron 192Ir source were generated using Monte Carlo simulation and compared with the published data. Two dimensional dosimetric data were calculated at two source positions; at the center of the sphere of the applicator and between two adjacent spheres. Unlike the TPS dose algorithm, The Monte Carlo code developed for this research accounts for the applicator material, secondary electrons and delta particles, and the air gap between the skin and the applicator. *Standard Imaging, Inc., Middleton, Wisconsin USA † OneDose MOSFET, Sicel Technologies, Morrisville NC ‡ Los Alamos National Laboratory, NM USA

  8. Fibrinolysis in disseminated intravascular coagulation.

    PubMed

    Hack, C E

    2001-12-01

    Studies in experimental models for sepsis, the most common cause of disseminated intravascular coagulation (DIC), have put forward the concept of a procoagulant state that is characterized by thrombin generation exceeding that of plasmin. Convincing evidence indicates that this imbalance between coagulation and fibrinolysis is due to increased levels of plasminogen activator inhibitor type 1 (PAI-1). Levels of this fibrinolysis inhibitor indeed correlate with outcome and severity of multiple organ failure in patients with sepsis, as well as in patients with DIC from other causes. Hence we suggest that PAI-1 constitutes an important target for therapy in patients with DIC.

  9. An investigation of a PRESAGE® in vivo dosimeter for brachytherapy

    NASA Astrophysics Data System (ADS)

    Vidovic, A. K.; Juang, T.; Meltsner, S.; Adamovics, J.; Chino, J.; Steffey, B.; Craciunescu, O.; Oldham, M.

    2014-07-01

    Determining accurate in vivo dosimetry in brachytherapy treatment with high dose gradients is challenging. Here we introduce, investigate, and characterize a novel in vivo dosimeter and readout technique with the potential to address this problem. A cylindrical (4 mm × 20 mm) tissue equivalent radiochromic dosimeter PRESAGE® in vivo (PRESAGE®-IV) is investigated. Two readout methods of the radiation induced change in optical density (OD) were investigated: (i) volume-averaged readout by spectrophotometer, and (ii) a line profile readout by 2D projection imaging utilizing a high-resolution (50 micron) telecentric optical system. Method (i) is considered the gold standard when applied to PRESAGE® in optical cuvettes. The feasibility of both methods was evaluated by comparison to standard measurements on PRESAGE® in optical cuvettes via spectrophotometer. An end-to-end feasibility study was performed by a side-by-side comparison with TLDs in an 192Ir HDR delivery. 7 and 8 Gy was delivered to PRESAGE®-IV and TLDs attached to the surface of a vaginal cylinder. Known geometry enabled direct comparison of measured dose with a commissioned treatment planning system. A high-resolution readout study under a steep dose gradient region showed 98.9% (5%/1 mm) agreement between PRESAGE®-IV and Gafchromic® EBT2 Film. Spectrometer measurements exhibited a linear dose response between 0-15 Gy with sensitivity of 0.0133 ± 0.0007 ΔOD/(Gy ṡ cm) at the 95% confidence interval. Method (ii) yielded a linear response with sensitivity of 0.0132 ± 0.0006 (ΔOD/Gy), within 2% of method (i). Method (i) has poor spatial resolution due to volume averaging. Method (ii) has higher resolution (˜1 mm) without loss of sensitivity or increased noise. Both readout methods are shown to be feasible. The end-to-end comparison revealed a 2.5% agreement between PRESAGE®-IV and treatment plan in regions of uniform high dose. PRESAGE®-IV shows promise for in vivo dose verification

  10. Salvage Brachytherapy for Biochemically Recurrent Prostate Cancer following Primary Brachytherapy

    PubMed Central

    Lacy, John M.; Wilson, William A.; Bole, Raevti; Chen, Li; Meigooni, Ali S.; Rowland, Randall G.; Clair, William H. St.

    2016-01-01

    Purpose. In this study, we evaluated our experience with salvage brachytherapy after discovery of biochemical recurrence after a prior brachytherapy procedure. Methods and Materials. From 2001 through 2012 twenty-one patients treated by brachytherapy within University of Kentucky or from outside centers developed biochemical failure and had no evidence of metastases. Computed tomography (CT) scans were evaluated; patients who had an underseeded portion of their prostate were considered for reimplantation. Results. The majority of the patients in this study (61.9%) were low risk and median presalvage PSA was 3.49 (range 17.41–1.68). Mean follow-up was 61 months. At last follow-up after reseeding, 11/21 (52.4%) were free of biochemical recurrence. There was a trend towards decreased freedom from biochemical recurrence in low risk patients (p = 0.12). International Prostate Symptom Scores (IPSS) increased at 3-month follow-up visits but decreased and were equivalent to baseline scores at 18 months. Conclusions. Salvage brachytherapy after primary brachytherapy is possible; however, in our experience the side-effect profile after the second brachytherapy procedure was higher than after the first brachytherapy procedure. In this cohort of patients we demonstrate that approximately 50% oncologic control, low risk patients appear to have better outcomes than others. PMID:27092279

  11. Dosimetric comparison of Acuros™ BV with AAPM TG43 dose calculation formalism in breast interstitial high-dose-rate brachytherapy with the use of metal catheters

    PubMed Central

    Nagarajan, Vivekanandan; Reddy K, Sathyanarayana; Karunanidhi, Gunaseelan; Singhavajala, Vivekanandam

    2015-01-01

    Purpose Radiotherapy for breast cancer includes different techniques and methods. The purpose of this study is to compare dosimetric calculations using TG-43 dose formalism and Varian Acuros™ BV (GBBS) dose calculation algorithm for interstitial implant of breast using metal catheters in high-dose-rate (HDR) brachytherapy, using 192Ir. Material and methods Twenty patients who were considered for breast conservative surgery (BCS), underwent lumpectomy and axillary dissection. These patients received perioperative interstitial HDR brachytherapy as upfront boost using rigid metal implants. Whole breast irradiation was delivered TG-43 after a gap of two weeks. Standard brachytherapy dose calculation was done by dosimetry. This does not take into account tissue heterogeneity, attenuation and scatter in the metal applicator, and effects of patient boundary. Acuros™ BV is a Grid Based Boltzmann Solver code (GBBS), which takes into consideration all the above, was used to compute dosimetry and the two systems were compared. Results Comparison of GBBS and TG-43 formalism on interstitial metal catheters shows difference in dose prescribed to CTV and other OARs. While the estimated dose to CTV was only marginally different with the two systems, there is a significant difference in estimated doses of starting from 4 to 53% in the mean value of all parameters analyzed. Conclusions TG-43 algorithm seems to significantly overestimate the dose to various volumes of interest; GBBS based dose calculation algorithm has impact on CTV, heart, ipsilateral lung, heart, contralateral breast, skin, and ribs of the ipsilateral breast side; the prescription changes occurred due to effect of metal catheters, inhomogeneities, and scatter conditions. PMID:26622230

  12. A Multi-Institutional Study of Feasibility, Implementation, and Early Clinical Results With Noninvasive Breast Brachytherapy for Tumor Bed Boost

    SciTech Connect

    Hamid, Subarna; Rocchio, Kathy; Arthur, Douglas; Vera, Robyn; Sha, Sandra; Jolly, Michele; Cavanaugh, Sean; Wooten, Eric; Benda, Rashmi; Greenfield, Brad; Prestidge, Bradley; Ackerman, Scot; Kuske, Robert; Quiet, Coral; Snyder, Margaret; Wazer, David E.

    2012-08-01

    Purpose: To evaluate the feasibility, implementation, and early results of noninvasive breast brachytherapy (NIBB) for tumor bed boost with whole breast radiation therapy (WBRT). Methods and Materials: NIBB is a commercially available (AccuBoost, Billerica, MA) mammography-based, brachytherapy system in which the treatment applicators are centered on the planning target volume (PTV) to direct {sup 192}Ir emissions along orthogonal axes. A privacy-encrypted online data registry collected information from 8 independent academic and community-based institutions. Data were from 146 consecutive women with early-stage breast cancer after lumpectomy and WBRT receiving boost with NIBB between July 2007 and March 2010. Toxicity and cosmesis were graded according to the Common Toxicity Criteria (v. 3.0) and the Harvard scale. Median follow-up was 6 months (1-39 months). Results: Grade 1-2 skin toxicity was observed in 64%, 48%, and 21% during the acute (1-3 weeks), intermediate (4-26 weeks), and late-intermediate (>26 weeks) periods. There was no Grade 4 toxicity. At 6 months, for the entire cohort, cosmesis was excellent/good in 62%/38%. The subset receiving NIBB before WBRT had cosmetic scores of 32% and 63%, whereas during WBRT, 58% and 37% were rated as excellent and good, respectively. Breast compression was scored as 'uncomfortable' in 12%, 29%, and 59% when NIBB was delivered before, during, or after WBRT. For each patient, the fraction-to-fraction variability in PTV was low. Skin flash was associated with a higher proportion of excellent cosmesis (58% vs. 42%) relative to having the applicator all within breast tissue. Conclusions: These data indicate that NIBB is feasible and can be consistently implemented in a broad array of practice settings. Preliminary evaluation suggests that NIBB is associated with acceptably mild normal tissue toxicity and favorable early cosmesis. The application of NIBB before WBRT may be associated with better patient tolerance at the

  13. Comparison of TG-43 dosimetric parameters of brachytherapy sources obtained by three different versions of MCNP codes.

    PubMed

    Zaker, Neda; Zehtabian, Mehdi; Sina, Sedigheh; Koontz, Craig; Meigooni, Ali S

    2016-01-01

    Monte Carlo simulations are widely used for calculation of the dosimetric parameters of brachytherapy sources. MCNP4C2, MCNP5, MCNPX, EGS4, EGSnrc, PTRAN, and GEANT4 are among the most commonly used codes in this field. Each of these codes utilizes a cross-sectional library for the purpose of simulating different elements and materials with complex chemical compositions. The accuracies of the final outcomes of these simulations are very sensitive to the accuracies of the cross-sectional libraries. Several investigators have shown that inaccuracies of some of the cross section files have led to errors in 125I and 103Pd parameters. The purpose of this study is to compare the dosimetric parameters of sample brachytherapy sources, calculated with three different versions of the MCNP code - MCNP4C, MCNP5, and MCNPX. In these simulations for each source type, the source and phantom geometries, as well as the number of the photons, were kept identical, thus eliminating the possible uncertainties. The results of these investigations indicate that for low-energy sources such as 125I and 103Pd there are discrepancies in gL(r) values. Discrepancies up to 21.7% and 28% are observed between MCNP4C and other codes at a distance of 6 cm for 103Pd and 10 cm for 125I from the source, respectively. However, for higher energy sources, the discrepancies in gL(r) values are less than 1.1% for 192Ir and less than 1.2% for 137Cs between the three codes. PMID:27074460

  14. Acute Disseminated Intravascular Coagulation in Neuroendocrine Carcinoma

    PubMed Central

    Teh, Ru-Wen; Tsoi, Daphne T.

    2012-01-01

    Malignancy is a common cause of disseminated intravascular coagulation and usually presents as a chronic disorder in solid organ tumours. We present a rare case of recurrent acute disseminated intravascular coagulation in neuroendocrine carcinoma after manipulation, firstly, by core biopsy and, later, by cytotoxic therapy causing a release of procoagulants and cytokines from lysed tumour cells. This is reminiscent of tumour lysis syndrome where massive quantities of intracellular electrolytes and nucleic acid are released, causing acute metabolic imbalance and renal failure. This case highlights the potential complication of acute disseminated intravascular coagulation after trauma to malignant cells. PMID:23139666

  15. Disseminated intravascular coagulation in sepsis.

    PubMed

    Zeerleder, Sacha; Hack, C Erik; Wuillemin, Walter A

    2005-10-01

    Disseminated intravascular coagulation is a frequent complication of sepsis. Coagulation activation, inhibition of fibrinolysis, and consumption of coagulation inhibitors lead to a procoagulant state resulting in inadequate fibrin removal and fibrin deposition in the microvasculature. As a consequence, microvascular thrombosis contributes to promotion of organ dysfunction. Recently, three randomized, double-blind, placebo-controlled trials investigated the efficacy of antithrombin, activated protein C (APC), and tissue factor pathway inhibitor, respectively, in sepsis patients. A significant reduction in mortality was demonstrated in the APC trial. In this article, we first discuss the physiology of coagulation and fibrinolysis activation. Then, the pathophysiology of coagulation activation, consumption of coagulation inhibitors, and the inhibition of fibrinolysis leading to a procoagulant state are described in more detail. Moreover, therapeutic concepts as well as the three randomized, double-blind, placebo-controlled studies are discussed.

  16. Obstetrical disseminated intravascular coagulation score.

    PubMed

    Kobayashi, Takao

    2014-06-01

    Obstetrical disseminated intravascular coagulation (DIC) is usually a very acute, serious complication of pregnancy. The obstetrical DIC score helps with making a prompt diagnosis and starting treatment early. This DIC score, in which higher scores are given for clinical parameters rather than for laboratory parameters, has three components: (i) the underlying diseases; (ii) the clinical symptoms; and (iii) the laboratory findings (coagulation tests). It is justifiably appropriate to initiate therapy for DIC when the obstetrical DIC score reaches 8 points or more before obtaining the results of coagulation tests. Improvement of blood coagulation tests and clinical symptoms are essential to the efficacy evaluation for treatment after a diagnosis of obstetrical DIC. Therefore, the efficacy evaluation criteria for obstetrical DIC are also defined to enable follow-up of the clinical efficacy of DIC therapy.

  17. Treatment of Disseminated Intravascular Coagulation.

    PubMed

    Makruasi, Nisa

    2015-11-01

    Disseminated intravascular coagulation (DIC) is a syndrome characterized by systemic activation of blood coagulation, generation of thrombin, and leading to disturbance of the microvasculature. In this article, definition and diagnostic criteria of DIC depend on the International Society of Thrombosis and Haemostasis (ISTH). There is no gold standard for diagnosis of DIC, only low quality evidence is used in general practice. Many diagnostic tests and repeated measurement are required. For the treatment of DIC, there is no good quality evidence. The most important treatment for DIC is the specific treatment of the conditions associated DIC. Platelets and/or plasma transfusion may be also necessary if indicated. Nevertheless, there is no gold standard for diagnosis and treatment of DIC, we use only low quality evidence in general practice.

  18. Time-resolved in vivo luminescence dosimetry for online error detection in pulsed dose-rate brachytherapy

    SciTech Connect

    Andersen, Claus E.; Nielsen, Soeren Kynde; Lindegaard, Jacob Christian; Tanderup, Kari

    2009-11-15

    Purpose: The purpose of this study is to present and evaluate a dose-verification protocol for pulsed dose-rate (PDR) brachytherapy based on in vivo time-resolved (1 s time resolution) fiber-coupled luminescence dosimetry. Methods: Five cervix cancer patients undergoing PDR brachytherapy (Varian GammaMed Plus with {sup 192}Ir) were monitored. The treatments comprised from 10 to 50 pulses (1 pulse/h) delivered by intracavitary/interstitial applicators (tandem-ring systems and/or needles). For each patient, one or two dosimetry probes were placed directly in or close to the tumor region using stainless steel or titanium needles. Each dosimeter probe consisted of a small aluminum oxide crystal attached to an optical fiber cable (1 mm outer diameter) that could guide radioluminescence (RL) and optically stimulated luminescence (OSL) from the crystal to special readout instrumentation. Positioning uncertainty and hypothetical dose-delivery errors (interchanged guide tubes or applicator movements from {+-}5 to {+-}15 mm) were simulated in software in order to assess the ability of the system to detect errors. Results: For three of the patients, the authors found no significant differences (P>0.01) for comparisons between in vivo measurements and calculated reference values at the level of dose per dwell position, dose per applicator, or total dose per pulse. The standard deviations of the dose per pulse were less than 3%, indicating a stable dose delivery and a highly stable geometry of applicators and dosimeter probes during the treatments. For the two other patients, the authors noted significant deviations for three individual pulses and for one dosimeter probe. These deviations could have been due to applicator movement during the treatment and one incorrectly positioned dosimeter probe, respectively. Computer simulations showed that the likelihood of detecting a pair of interchanged guide tubes increased by a factor of 10 or more for the considered patients when

  19. BrachyView, A novel inbody imaging system for HDR prostate brachytherapy: Design and Monte Carlo feasibility study

    SciTech Connect

    Safavi-Naeini, M.; Han, Z.; Cutajar, D.; Guatelli, S.; Petasecca, M.; Lerch, M. L. F.; Franklin, D. R.; Jakubek, J.; Pospisil, S.; Bucci, J.; Zaider, M.; Rosenfeld, A. B.

    2013-07-15

    Purpose: High dose rate (HDR) brachytherapy is a form of radiation therapy for treating prostate cancer whereby a high activity radiation source is moved between predefined positions inside applicators inserted within the treatment volume. Accurate positioning of the source is essential in delivering the desired dose to the target area while avoiding radiation injury to the surrounding tissue. In this paper, HDR BrachyView, a novel inbody dosimetric imaging system for real time monitoring and verification of the radioactive seed position in HDR prostate brachytherapy treatment is introduced. The current prototype consists of a 15 Multiplication-Sign 60 mm{sup 2} silicon pixel detector with a multipinhole tungsten collimator placed 6.5 mm above the detector. Seven identical pinholes allow full imaging coverage of the entire treatment volume. The combined pinhole and pixel sensor arrangement is geometrically designed to be able to resolve the three-dimensional location of the source. The probe may be rotated to keep the whole prostate within the transverse plane. The purpose of this paper is to demonstrate the efficacy of the design through computer simulation, and to estimate the accuracy in resolving the source position (in detector plane and in 3D space) as part of the feasibility study for the BrachyView project.Methods: Monte Carlo simulations were performed using the GEANT4 radiation transport model, with a {sup 192}Ir source placed in different locations within a prostate phantom. A geometrically accurate model of the detector and collimator were constructed. Simulations were conducted with a single pinhole to evaluate the pinhole design and the signal to background ratio obtained. Second, a pair of adjacent pinholes were simulated to evaluate the error in calculated source location.Results: Simulation results show that accurate determination of the true source position is easily obtainable within the typical one second source dwell time. The maximum error in

  20. Pulmonary intravascular lipid in neonatal necropsy specimens.

    PubMed

    Puntis, J W; Rushton, D I

    1991-01-01

    The lungs of 482 liveborn infants were examined at necropsy for the presence of intravascular lipid. Forty one patients had received parenteral feeding (including lipid emulsion in 30), and 441 had died before starting feeds or had received enteral feeds alone. Tissue was processed into wax and then stained with Sudan black; intravascular lipid was found in 15 of 30 infants who had received intravenous fat (Intralipid), but in no others. Those patients with positive lipid staining had received significantly more fat during parenteral nutrition than those in whom intravascular lipid was not found but the two groups were otherwise clinically indistinguishable. Using this staining technique intravascular lipid can be shown relatively often, although only in patients who have received intravenous lipid emulsion. The location of fat, predominantly in small pulmonary capillaries, and the absence of lipid emboli in other organs, suggests that lipid coalescence takes place before death and is not a postmortem artefact. The clinical relevance remains uncertain. PMID:1899990

  1. Pulmonary intravascular lipid in neonatal necropsy specimens.

    PubMed

    Puntis, J W; Rushton, D I

    1991-01-01

    The lungs of 482 liveborn infants were examined at necropsy for the presence of intravascular lipid. Forty one patients had received parenteral feeding (including lipid emulsion in 30), and 441 had died before starting feeds or had received enteral feeds alone. Tissue was processed into wax and then stained with Sudan black; intravascular lipid was found in 15 of 30 infants who had received intravenous fat (Intralipid), but in no others. Those patients with positive lipid staining had received significantly more fat during parenteral nutrition than those in whom intravascular lipid was not found but the two groups were otherwise clinically indistinguishable. Using this staining technique intravascular lipid can be shown relatively often, although only in patients who have received intravenous lipid emulsion. The location of fat, predominantly in small pulmonary capillaries, and the absence of lipid emboli in other organs, suggests that lipid coalescence takes place before death and is not a postmortem artefact. The clinical relevance remains uncertain.

  2. Feasibility of radiochromic gels for 3D dosimetry of brachytherapy sources

    NASA Astrophysics Data System (ADS)

    Šolc, Jaroslav; Sochor, Vladimír

    2012-10-01

    Two radiochromic gel dosimeters, Fricke-xylenol orange (FXO) gel and Turnbull Blue (TB) gel, were studied in the scope of the iMERA+ project ‘Increasing cancer treatment efficacy using 3D brachytherapy’ for their feasibility for the determination of relative 3D dose distribution of brachytherapy (BT) sources. Initially, the dose, dose rate and energy dependence of the gels were investigated. Subsequently, the gels were irradiated by a point low-dose-rate source IsoSeed I25.S16 (125I) and a high-dose-rate source GammaMed+ (192Ir) and scanned using optical computed tomography. Optical transmission images of irradiated gels were processed to obtain detailed 3D optical density maps inside the gels with voxel dimensions of 0.25 × 0.25 × 0.25 mm3. The radial dose function between 1.5 mm and 35 mm from the source and the anisotropy function at 10 mm radius were determined and compared with Monte Carlo calculations and TG-43 data, showing agreement mostly within the measurement uncertainty. Results revealed that the TB gel is feasible for measurements of the relative 3D dose distributions very close to the point BT source because it conserves sharp dose gradients as this gel does not suffer diffusion of dye created upon irradiation. On the other hand, FXO gel underestimates doses closer than 5 mm from the source due to diffusion effects, but it has a significantly higher sensitivity which enables convenient measurement of relative doses up to 35 mm from the source. Further development, especially on gel composition and corrections to optical CT images, is desirable.

  3. SU-E-J-270: Study of PET Response to HDR Brachytherapy of Rectal Cancer

    SciTech Connect

    Hobbs, R; Le, Y; Armour, E; Efron, J; Azad, N; Wahl, R; Gearhart, S; Herman, J

    2014-06-01

    Purpose: Dose-response studies in radiation therapy are typically using single response values for tumors across ensembles of tumors. Using the high dose rate (HDR) treatment plan dose grid and pre- and post-therapy FDG-PET images, we look for correlations between voxelized dose and FDG uptake response in individual tumors. Methods: Fifteen patients were treated for localized rectal cancer using 192Ir HDR brachytherapy in conjunction with surgery. FDG-PET images were acquired before HDR therapy and 6–8 weeks after treatment (prior to surgery). Treatment planning was done on a commercial workstation and the dose grid was calculated. The two PETs and the treatment dose grid were registered to each other using non-rigid registration. The difference in PET SUV values before and after HDR was plotted versus absorbed radiation dose for each voxel. The voxels were then separated into bins for every 400 cGy of absorbed dose and the bin average values plotted similarly. Results: Individual voxel doses did not correlate with PET response; however, when group into tumor subregions corresponding to dose bins, eighty percent of the patients showed a significant positive correlation (R2 > 0) between PET uptake difference in the targeted region and the absorbed dose. Conclusion: By considering larger ensembles of voxels, such as organ average absorbed dose or the dose bins considered here, valuable information may be obtained. The dose-response correlations as measured by FDG-PET difference potentially underlines the importance of FDG-PET as a measure of response, as well as the value of voxelized information.

  4. Recurrent abscess after MammoSite brachytherapy.

    PubMed

    Lopchinsky, Richard A; Giles, Kristina A

    2004-01-01

    Recently a new catheter was introduced to facilitate brachytherapy in a lumpectomy cavity. Data are limited on the side effects of high-dose brachytherapy to the lumpectomy cavity with the MammoSite catheter. We present a case of recurrent abscesses over a 7-month period in the lumpectomy cavity after MammoSite brachytherapy.

  5. Required treatment margin for coronary endovascular brachytherapy with iridium-192 seed ribbon

    SciTech Connect

    Giap Huan

    2002-03-01

    Purpose: Preliminary clinical trials (SCRIPPS I, WRIST and Gamma 1) employing catheter-based endovascular brachytherapy (EVBT) with iridium-192 (Ir-192) seeds show promising results in reducing restenosis after coronary intervention. Failure analysis of these studies showed a significant number of restenosis at the treatment margin called ''edge effect.'' The objective of this study is to investigate the factors that contribute to the adequacy of treatment margin. Methods and materials: The factors contributing to the margins are penumbra effect at the end of the seed train, uncertainty in target localization, longitudinal seed movement during cardiac cycle and barotrauma due to stent deployment. The magnitudes of the penumbra effect, which refers to the tapering off the prescribed isodose line near the ends of the source train, were calculated for various source lengths of Ir-192 seed ribbon using AAPM TG-43 algorithm. Uncertainty in target localization refers to the fact that the visual estimation of proximal and distal extent of the injury is not accurate, and this can be obtained by comparing the 'estimate' from the interventional cardiologist with careful review of the cine-angiogram. Longitudinal seed movements relative to the coronary vessel during the cardiac cycle were determined by frame-by-frame reviewing cine-angiograms of 30 patients. The proximal and distal source points were measured in reference to branching vessels during the contrast phase of the cine-angiogram. The maximum proximal and distal longitudinal movement was captured and source displacement was measured from the closest proximal and distal branching vessel. Barotrauma, additional injury to the vessel arising from the stent deployment balloon, was obtained by reviewing specifications from commercially available stent delivery systems. Results: The penumbra effect ranges from 3.9 to 4.5 mm for 6-22 Ir-192 seed ribbons. The uncertainty in target localization is within 3 mm for our

  6. Direction-Modulated Brachytherapy for High-Dose-Rate Treatment of Cervical Cancer. I: Theoretical Design

    SciTech Connect

    Han, Dae Yup; Webster, Matthew J.; Scanderbeg, Daniel J.; Yashar, Catheryn; Choi, Dongju; Song, Bongyong; Devic, Slobodan; Ravi, Ananth; Song, William Y.

    2014-07-01

    Purpose: To demonstrate that utilization of the direction-modulated brachytherapy (DMBT) concept can significantly improve treatment plan quality in the setting of high-dose-rate (HDR) brachytherapy for cervical cancer. Methods and Materials: The new, MRI-compatible, tandem design has 6 peripheral holes of 1.3-mm diameter, grooved along a nonmagnetic tungsten-alloy rod (ρ = 18.0 g/cm{sup 3}), enclosed in Delrin tubing (polyoxymethylene, ρ = 1.41 g/cm{sup 3}), with a total thickness of 6.4 mm. The Monte Carlo N-Particle code was used to calculate the anisotropic {sup 192}Ir dose distributions. An in-house-developed inverse planning platform, geared with simulated annealing and constrained-gradient optimization algorithms, was used to replan 15 patient cases (total 75 plans) treated with a conventional tandem and ovoids (T and O) applicator. Prescription dose was 6 Gy. For replanning, we replaced the conventional tandem with that of the new DMBT tandem for optimization but left the ovoids in place and kept the dwell positions as originally planned. All DMBT plans were normalized to match the high-risk clinical target volume V100 coverage of the T and O plans. Results: In general there were marked improvements in plan quality for the DMBT plans. On average, D2cc for the bladder, rectum, and sigmoid were reduced by 0.59 ± 0.87 Gy (8.5% ± 28.7%), 0.48 ± 0.55 Gy (21.1% ± 27.2%), and 0.10 ± 0.38 Gy (40.6% ± 214.9%) among the 75 plans, with best single-plan reductions of 3.20 Gy (40.8%), 2.38 Gy (40.07%), and 1.26 Gy (27.5%), respectively. The high-risk clinical target volume D90 was similar, with 6.55 ± 0.96 Gy and 6.59 ± 1.06 Gy for T and O and DMBT, respectively. Conclusions: Application of the DMBT concept to cervical cancer allowed for improved organ at risk sparing while achieving similar target coverage on a sizeable patient population, as intended, by maximally utilizing the anatomic information contained in 3-dimensional

  7. Performance assessment of the BEBIG MultiSource high dose rate brachytherapy treatment unit.

    PubMed

    Palmer, Antony; Mzenda, Bongile

    2009-12-21

    A comprehensive system characterisation was performed of the Eckert & Ziegler BEBIG GmbH MultiSource High Dose Rate (HDR) brachytherapy treatment unit with an (192)Ir source. The unit is relatively new to the UK market, with the first installation in the country having been made in the summer of 2009. A detailed commissioning programme was devised and is reported including checks of the fundamental parameters of source positioning, dwell timing, transit doses and absolute dosimetry of the source. Well chamber measurements, autoradiography and video camera analysis techniques were all employed. The absolute dosimetry was verified by the National Physical Laboratory, UK, and compared to a measurement based on a calibration from PTB, Germany, and the supplied source certificate, as well as an independent assessment by a visiting UK centre. The use of the 'Krieger' dosimetry phantom has also been evaluated. Users of the BEBIG HDR system should take care to avoid any significant bend in the transfer tube, as this will lead to positioning errors of the source, of up to 1.0 mm for slight bends, 2.0 mm for moderate bends and 5.0 mm for extreme curvature (depending on applicators and transfer tube used) for the situations reported in this study. The reason for these errors and the potential clinical impact are discussed. Users should also note the methodology employed by the system for correction of transit doses, and that no correction is made for the initial and final transit doses. The results of this investigation found that the uncorrected transit doses lead to small errors in the delivered dose at the first dwell position, of up to 2.5 cGy at 2 cm (5.6 cGy at 1 cm) from a 10 Ci source, but the transit dose correction for other dwells was accurate within 0.2 cGy. The unit has been mechanically reliable, and source positioning accuracy and dwell timing have been reproducible, with overall performance similar to other existing HDR equipment. The unit is capable of high

  8. HDRMC, an accelerated Monte Carlo dose calculator for high dose rate brachytherapy with CT-compatible applicators

    SciTech Connect

    Chibani, Omar C-M Ma, Charlie

    2014-05-15

    Purpose: To present a new accelerated Monte Carlo code for CT-based dose calculations in high dose rate (HDR) brachytherapy. The new code (HDRMC) accounts for both tissue and nontissue heterogeneities (applicator and contrast medium). Methods: HDRMC uses a fast ray-tracing technique and detailed physics algorithms to transport photons through a 3D mesh of voxels representing the patient anatomy with applicator and contrast medium included. A precalculated phase space file for the{sup 192}Ir source is used as source term. HDRM is calibrated to calculated absolute dose for real plans. A postprocessing technique is used to include the exact density and composition of nontissue heterogeneities in the 3D phantom. Dwell positions and angular orientations of the source are reconstructed using data from the treatment planning system (TPS). Structure contours are also imported from the TPS to recalculate dose-volume histograms. Results: HDRMC was first benchmarked against the MCNP5 code for a single source in homogenous water and for a loaded gynecologic applicator in water. The accuracy of the voxel-based applicator model used in HDRMC was also verified by comparing 3D dose distributions and dose-volume parameters obtained using 1-mm{sup 3} versus 2-mm{sup 3} phantom resolutions. HDRMC can calculate the 3D dose distribution for a typical HDR cervix case with 2-mm resolution in 5 min on a single CPU. Examples of heterogeneity effects for two clinical cases (cervix and esophagus) were demonstrated using HDRMC. The neglect of tissue heterogeneity for the esophageal case leads to the overestimate of CTV D90, CTV D100, and spinal cord maximum dose by 3.2%, 3.9%, and 3.6%, respectively. Conclusions: A fast Monte Carlo code for CT-based dose calculations which does not require a prebuilt applicator model is developed for those HDR brachytherapy treatments that use CT-compatible applicators. Tissue and nontissue heterogeneities should be taken into account in modern HDR

  9. [A method for studying intravascular platelet aggregation in vitro].

    PubMed

    Ikonnikova, E I; Chernousova, L A; Moshkina, I R

    1999-06-01

    A simple available method for evaluating intravascular platelet aggregation is proposed. It consists in graphic recording of disaggregation of platelet-rich citrate plasma, which indicates the degree of intravascular aggregation. Intravascular aggregation is notably increased in coronary patients and negligible in normal subjects. The method may be used for the diagnosis of diseases with a high thrombogenic risk.

  10. High-dose-rate brachytherapy and hypofractionated external beam radiotherapy combined with long-term hormonal therapy for high-risk and very high-risk prostate cancer: outcomes after 5-year follow-up

    PubMed Central

    Ishiyama, Hiromichi; Satoh, Takefumi; Kitano, Masashi; Tabata, Ken-ichi; Komori, Shouko; Ikeda, Masaomi; Soda, Itaru; Kurosaka, Shinji; Sekiguchi, Akane; Kimura, Masaki; Kawakami, Shogo; Iwamura, Masatsugu; Hayakawa, Kazushige

    2014-01-01

    The purpose of this study was to report the outcomes of high-dose-rate (HDR) brachytherapy and hypofractionated external beam radiotherapy (EBRT) combined with long-term androgen deprivation therapy (ADT) for National Comprehensive Cancer Network (NCCN) criteria-defined high-risk (HR) and very high-risk (VHR) prostate cancer. Data from 178 HR (n = 96, 54%) and VHR (n = 82, 46%) prostate cancer patients who underwent 192Ir-HDR brachytherapy and hypofractionated EBRT with long-term ADT between 2003 and 2008 were retrospectively analyzed. The mean dose to 90% of the planning target volume was 6.3 Gy/fraction of HDR brachytherapy. After five fractions of HDR treatment, EBRT with 10 fractions of 3 Gy was administered. All patients initially underwent ≥6 months of neoadjuvant ADT, and adjuvant ADT was continued for 36 months after EBRT. The median follow-up was 61 months (range, 25–94 months) from the start of radiotherapy. The 5-year biochemical non-evidence of disease, freedom from clinical failure and overall survival rates were 90.6% (HR, 97.8%; VHR, 81.9%), 95.2% (HR, 97.7%; VHR, 92.1%), and 96.9% (HR, 100%; VHR, 93.3%), respectively. The highest Radiation Therapy Oncology Group-defined late genitourinary toxicities were Grade 2 in 7.3% of patients and Grade 3 in 9.6%. The highest late gastrointestinal toxicities were Grade 2 in 2.8% of patients and Grade 3 in 0%. Although the 5-year outcome of this tri-modality approach seems favorable, further follow-up is necessary to validate clinical and survival advantages of this intensive approach compared with the standard EBRT approach. PMID:24222312

  11. Brachytherapy in Gynecologic Cancers: Why Is It Underused?

    PubMed

    Han, Kathy; Viswanathan, Akila N

    2016-04-01

    Despite its established efficacy, brachytherapy is underused in the management of cervical and vaginal cancers in some parts of the world. Possible reasons for the underutilization of brachytherapy include the adoption of less invasive techniques, such as intensity-modulated radiotherapy; reimbursement policies favoring these techniques over brachytherapy; poor physician or patient access to brachytherapy; inadequate maintenance of brachytherapy skills among practicing radiation oncologists; transitioning to high-dose-rate (HDR) brachytherapy with increased time requirements; and insufficient training of radiation oncology residents.

  12. Multi-axis dose accumulation of noninvasive image-guided breast brachytherapy through biomechanical modeling of tissue deformation using the finite element method

    PubMed Central

    Ghadyani, Hamid R.; Bastien, Adam D.; Lutz, Nicholas N.; Hepel, Jaroslaw T.

    2015-01-01

    Purpose Noninvasive image-guided breast brachytherapy delivers conformal HDR 192Ir brachytherapy treatments with the breast compressed, and treated in the cranial-caudal and medial-lateral directions. This technique subjects breast tissue to extreme deformations not observed for other disease sites. Given that, commercially-available software for deformable image registration cannot accurately co-register image sets obtained in these two states, a finite element analysis based on a biomechanical model was developed to deform dose distributions for each compression circumstance for dose summation. Material and methods The model assumed the breast was under planar stress with values of 30 kPa for Young's modulus and 0.3 for Poisson's ratio. Dose distributions from round and skin-dose optimized applicators in cranial-caudal and medial-lateral compressions were deformed using 0.1 cm planar resolution. Dose distributions, skin doses, and dose-volume histograms were generated. Results were examined as a function of breast thickness, applicator size, target size, and offset distance from the center. Results Over the range of examined thicknesses, target size increased several millimeters as compression thickness decreased. This trend increased with increasing offset distances. Applicator size minimally affected target coverage, until applicator size was less than the compressed target size. In all cases, with an applicator larger or equal to the compressed target size, > 90% of the target covered by > 90% of the prescription dose. In all cases, dose coverage became less uniform as offset distance increased and average dose increased. This effect was more pronounced for smaller target–applicator combinations. Conclusions The model exhibited skin dose trends that matched MC-generated benchmarking results within 2% and clinical observations over a similar range of breast thicknesses and target sizes. The model provided quantitative insight on dosimetric treatment variables

  13. Measurement of absorbed dose to water around an electronic brachytherapy source. Comparison of two dosimetry systems: lithium formate EPR dosimeters and radiochromic EBT2 film

    NASA Astrophysics Data System (ADS)

    Adolfsson, Emelie; White, Shane; Landry, Guillaume; Lund, Eva; Gustafsson, Håkan; Verhaegen, Frank; Reniers, Brigitte; Carlsson Tedgren, Åsa; Alm Carlsson, Gudrun

    2015-05-01

    Interest in high dose rate (HDR) electronic brachytherapy operating at 50 kV is increasing. For quality assurance it is important to identify dosimetry systems that can measure the absorbed doses in absolute terms which is difficult in this energy region. In this work a comparison is made between two dosimetry systems, EPR lithium formate dosimeters and radiochromic EBT2 film. Both types of dosimeters were irradiated simultaneously in a PMMA phantom using the Axxent EBS. Absorbed dose to water was determined at distances of 10 mm, 30 mm and 50 mm from the EBS. Results were traceable to different primary standards as regards to absorbed dose to water (EPR) and air kerma (EBT2). Monte Carlo simulations were used in absolute terms as a third estimate of absorbed dose to water. Agreement within the estimated expanded (k = 2) uncertainties (5% (EPR), 7% (EBT2)) was found between the results at 30 mm and 50 mm from the x-ray source. The same result was obtained in 4 repetitions of irradiation, indicating high precision in the measurements with both systems. At all distances, agreement between EPR and Monte Carlo simulations was shown as was also the case for the film measurements at 30mm and 50mm. At 10mm the geometry for the film measurements caused too large uncertainty in measured values depending on the exact position (within sub-mm distances) of the EBS and the 10 mm film results were exculded from comparison. This work has demonstrated good performance of the lithium formate EPR dosimetry system in accordance with earlier experiments at higher photon energies (192Ir HDR brachytherapy). It was also highlighted that there might be issues regarding the energy dependence and intrinsic efficiency of the EBT2 film that need to be considered for measurements using low energy sources.

  14. Predictors of Cosmetic Outcome Following MammoSite Breast Brachytherapy: A Single-Institution Experience of 100 Patients With Two Years of Follow-Up

    SciTech Connect

    Dragun, Anthony E. . E-mail: dragun@radonc.musc.edu; Harper, Jennifer L.; Jenrette, Joseph M.; Sinha, Debajyoti; Cole, David J.

    2007-06-01

    Purpose: To identify the factors that predict for excellent cosmesis in patients who receive MammoSite breast brachytherapy (MBT). Methods and Materials: One hundred patients with Stage 0, I, or II adenocarcinoma of the breast underwent adjuvant therapy using MBT. A dose of 34 Gy, delivered in 10 fractions twice daily, was prescribed to 1-cm depth using {sup 192}Ir high-dose-rate brachytherapy. Patients were assessed for acute toxicity on the day of therapy completion, 4 weeks after therapy, and at least every 3 months by radiation, surgical, and/or medical oncologists. All available data were reviewed for documentation of cosmesis and rated using the Harvard Scale. All patients had a minimum follow-up of 6 months (median = 24 months). Results: Of 100 patients treated, 90 had adequate data and follow-up. Cosmesis was excellent in 62 (68.9%), good in 19 (21.1%), fair in 8 (8.9%), and poor in 1 (1.1%) patient. Using stepwise logistic regression, the factors that predicted for excellent cosmesis were as follows: the absence vs. presence of infection (p = 0.017), and the absence vs. presence of acute skin toxicity (p = 0.026). There was a statistically significant association between acute skin toxicity (present vs. absent) and balloon-to-skin distance (<8 vs. >8 mm, p = 0.001). Factors that did not predict for cosmesis were age, balloon placement technique, balloon volume, catheter days in situ, subcutaneous toxicity, and chemotherapy or hormonal therapy. Conclusions: The acute and late-term toxicity profiles of MBT have been acceptable. Cosmetic outcome is improved by proper patient selection and infection prevention.

  15. Utility of intravascular ultrasound in peripheral interventions.

    PubMed Central

    White, R A; Donayre, C E; Kopchok, G E; Walot, I; Mehringer, C M

    1997-01-01

    Endovascular imaging techniques encompass a variety of methods, including angiography, computed tomography, magnetic resonance imaging, angioscopy, and intravascular ultrasound. Each method provides unique information regarding the continuity of vascular structures and the morphology and distribution of lesions. Although arteriography has been the "gold standard" for imaging arterial anatomy, recent data have confirmed that even sophisticated arteriographic imaging substantially underestimates the degree of residual lesions, and that future observations and end-points for treatment will most likely be determined by data accumulated by computed tomography, magnetic resonance imaging, angioscopy, and intravascular ultrasound. Successful therapeutic applications of endovascular devices have developed because of improved patient selection using computed tomography, spiral computed tomography, magnetic resonance imaging, and computerized high-resolution angiography. Procedural success has been enhanced by improved mobile cinefluoroscopy, angioscopy, intraluminal ultrasound monitoring of angioplasty procedures, and the use of intravascular ultrasound for stent and stent-graft sizing and deployment. Newly developed methods and low-profile delivery systems enabling deployment and fixation of vascular prostheses by an endoluminal approach have heightened the interest of many interventionalists, particularly surgeons, in the use of endovascular surgical techniques. The evolution of this method promises to add a new dimension to the treatment of vascular lesions and relies heavily on the incorporation of miniaturized imaging systems, such as intravascular ultrasound, as a means to provide precise placement of devices. Images PMID:9068136

  16. [Possibilities for cardiac defibrillation using intravascular electrodes].

    PubMed

    Amosov, G G; Tolpekin, V E; Gasanov, E K; Fomichev, D I

    1987-05-01

    The efficiency of electric defibrillation of the heart was assessed in 17 experiments where the position of action electrodes varied. It is suggested that intravascular application of one electrode plus extravascular application of the other gives the optimum effect. The duration of unassisted reversible fibrillation averaged 3 minutes.

  17. Brachytherapy dosimeter with silicon photomultipliers

    NASA Astrophysics Data System (ADS)

    Moutinho, L. M.; Castro, I. F. C.; Peralta, L.; Abreu, M. C.; Veloso, J. F. C. A.

    2015-07-01

    In-vivo and in-situ measurement of the radiation dose administered during brachytherapy faces several technical challenges, requiring a very compact, tissue-equivalent, linear and highly sensitive dosimeter, particularly in low-dose rate brachytherapy procedures, which use radioactive seeds with low energy and low dose deposition rate. In this work we present a scintillating optical fiber dosimeter composed of a flexible sensitive probe and a dedicated electronic readout system based on silicon photomultiplier photodetection, capable of operating both in pulse and current modes. The performance of the scintillating fiber optic dosimeter was evaluated in low energy regimes, using an X-ray tube operating at voltages of 40-50 kV and currents below 1 mA, to assess minimum dose response of the scintillating fiber. The dosimeter shows a linear response with dose and is capable of detecting mGy dose variations like an ionization chamber. Besides fulfilling all the requirements for a dosimeter in brachytherapy, the high sensitivity of this device makes it a suitable candidate for application in low-dose rate brachytherapy. According to Peralta and Rego [1], the BCF-10 and BCF-60 scintillating optical fibers used in dosimetry exhibit high variations in their sensitivity for photon beams in the 25-100 kVp energy range. Energy linearity for energies below 50 keV needs to be further investigated, using monochromatic X-ray photons.

  18. Feasibility of functional imaging for brachytherapy

    PubMed Central

    2009-01-01

    This review summarizes the current understanding of the feasibility of functional imaging for brachytherapy. In following subsections the role of ultrasound, power doppler imaging, positron emission tomography, magnetic resonance imaging, dynamic dose calculation and targeted brachytherapy is analyzed. The combination of functional imaging with the new tools for intraoperative dose calculation and optimization opens new and exciting times in brachytherapy. New optimized protocols are needed and should be tested in controlled trials, to demonstrate an advantage of such a new paradigm.

  19. Image-based brachytherapy for cervical cancer.

    PubMed

    Vargo, John A; Beriwal, Sushil

    2014-12-10

    Cervical cancer is the third most common cancer in women worldwide; definitive radiation therapy and concurrent chemotherapy is the accepted standard of care for patients with node positive or locally advanced tumors > 4 cm. Brachytherapy is an important part of definitive radiotherapy shown to improve overall survival. While results for two-dimensional X-ray based brachytherapy have been good in terms of local control especially for early stage disease, unexplained toxicities and treatment failures remain. Improvements in brachytherapy planning have more recently paved the way for three-dimensional image-based brachytherapy with volumetric optimization which increases tumor control, reduces toxicity, and helps predict outcomes. Advantages of image-based brachytherapy include: improved tumor coverage (especially for large volume disease), decreased dose to critical organs (especially for small cervix), confirmation of applicator placement, and accounting for sigmoid colon dose. A number of modalities for image-based brachytherapy have emerged including: magnetic resonance imaging (MRI), computed tomography (CT), CT-MRI hybrid, and ultrasound with respective benefits and outcomes data. For practical application of image-based brachytherapy the Groupe Europeen de Curietherapie-European Society for Therapeutic Radiology and Oncology Working Group and American Brachytherapy Society working group guideline serve as invaluable tools, additionally here-in we outline our institutional clinical integration of these guidelines. While the body of literature supporting image-based brachytherapy continues to evolve a number of uncertainties and challenges remain including: applicator reconstruction, increasing resource/cost demands, mobile four-dimensional targets and organs-at-risk, and accurate contouring of "grey zones" to avoid marginal miss. Ongoing studies, including the prospective EMBRACE (an international study of MRI-guided brachytherapy in locally advanced cervical

  20. The Influence of Prostate Volume on Outcome After High-Dose-Rate Brachytherapy Alone for Localized Prostate Cancer

    SciTech Connect

    Le, Hien Rojas, Ana; Alonzi, Roberto; Hughes, Robert; Ostler, Peter; Lowe, Gerry; Bryant, Linda; Hoskin, Peter

    2013-10-01

    Objective: To determine whether late genitourinary toxicity, biochemical control of prostate cancer, and dosimetric parameters in patients with large prostate glands is different from those variables in men with smaller glands after treatment with high-dose-rate brachytherapy alone (HDR-BT). Methods: From November 2003 to July 2009, 164 patients with locally advanced prostate carcinoma were sequentially enrolled and treated with 34 or 36 Gy in 4 fractions and 31.5 Gy in 3 fractions of {sup 192}Ir HDR-BT alone. The median follow-up time was 71 months. Gland size was not considered in the selection criteria for this study. Estimates of freedom from biochemical relapse (FFbR) and late morbidity, stratified by median clinical target volume (CTV), were obtained, and differences were compared. Results: The median CTV volume was 60 cc (range, 15-208 cc). Dose–volume parameters D90 and V100 (ie, minimum dose to 90% of the prostate volume and volume receiving 100% of the prescribed isodose) achieved in patients with glands ≥60 cc were not significantly different from those with glands <60 cc (P≥.2). Nonetheless, biochemical control in patients with larger CTV was significantly higher (91% vs 78% at 6 years; P=.004). In univariate and multivariate analysis, CTV was a significant predictor for risk of biochemical relapse. This was not at the expense of an increase in either moderate (P=.6) or severe (P=.3) late genitourinary toxicity. The use of hormonal therapy was 17% lower in the large gland group (P=.01). Conclusions: Prostate gland size does not affect dosimetric parameters in HDR-BT assessed by D90 and V100. In patients with larger glands, a significantly higher biochemical control of disease was observed, with no difference in late toxicity. This improvement cannot be attributed to differences in dosimetry. Gland size should not be considered in the selection of patients for HDR-BT.

  1. Intravascular access in pediatric cardiac arrest.

    PubMed

    Brunette, D D; Fischer, R

    1988-11-01

    All cases of patients aged less than 48 months who presented in cardiac arrest to the Hennepin County Medical Center's emergency department (ED) during the years 1984 to 1986 were reviewed retrospectively. The ED record, initial and subsequent chest radiographs, hospital charts, and autopsy reports were analyzed. A total of 33 cases were reviewed. The average patient age was 5 months. The average time needed to establish intravascular access was 7.9 +/- 4.2 minutes. Success rates were 77% for central venous catheterization, 81% for surgical vein cutdown, 83% for intraosseous infusion, and 17% for percutaneous peripheral catheterization. Percutaneous peripheral catheterization, when successful, and bone marrow needle placement were the fastest methods of obtaining intravascular access. There were no major immediate complications, and delayed complications were minimal. Attempts at peripheral intravenous catheter placement should be brief, with rapid progression to intraosseous infusion if peripheral attempts are not successful. PMID:3178949

  2. [Intravascular lymphoma: Report of one case].

    PubMed

    Young, Pablo; Massa, María; Finn, Bárbara C; Fleire, Gonzalo; Stemmelin, Germán R; Ruades, Amanda; Sutovsky, Daniel; Casas, José G; Dezanzo, Pablo; Vigovich, Félix; Bruetman, Julio E

    2015-08-01

    Intravascular lymphoma is a rare subtype of extranodal diffuse large B-cell lymphoma characterized by clonal proliferation of lymphocytes inside of small and medium caliber vessels. Its incidence is estimated at one case per million. The clinical picture is very variable, but frequently has skin and central nervous system involvement. It is diagnosed by demonstrating pathological blood vessel infiltration by lymphoma cells. We report a 44 years old male presenting with fever, malaise and erythematous lesions in the abdominal wall. An abdominal wall biopsy showed dilated vascular vessels with atypical cells in their lumen, compatible with large B-cell intravascular lymphoma. He was treated with rituximab, cyclophosphamide, adriamycin, vincristine and prednisone and an autologous hematopoietic stem cell transplantation, achieving a complete remission that has lasted two years. PMID:26436939

  3. Techniques for Intravascular Foreign Body Retrieval

    SciTech Connect

    Woodhouse, Joe B.; Uberoi, Raman

    2013-08-01

    As endovascular therapies increase in frequency, the incidence of lost or embolized foreign bodies is increasing. The presence of an intravascular foreign body (IFB) is well recognized to have the potential to cause serious complications. IFB can embolize and impact critical sites such as the heart, with subsequent significant morbidity or mortality. Intravascular foreign bodies most commonly result from embolized central line fragments, but they can originate from many sources, both iatrogenic and noniatrogenic. The percutaneous approach in removing an IFB is widely perceived as the best way to retrieve endovascular foreign bodies. This minimally invasive approach has a high success rate with a low associated morbidity, and it avoids the complications related to open surgical approaches. We examined the characteristics, causes, and incidence of endovascular embolizations and reviewed the various described techniques that have been used to facilitate subsequent explantation of such materials.

  4. [Disseminated intravascular coagulation in solid tumours].

    PubMed

    Ferrand, François Régis; Garcia-Hejl, Carine; Moussaid, Yassine; Schernberg, Antoine; Bidard, François-Clément; Pavic, Michel; Khenifer, Safia; Stoclin, Annabelle

    2014-06-01

    Disseminated intravascular coagulation (DIC) is a complex abnormality of hemostasis with dramatic consequences and long described as associated with tumors. Yet the diagnosis and management of paraneoplastic DIC are poorly defined. The purpose of this paper is to review DIC associated with solid tumors, at the pathophysiological and therapeutic levels in particular. We also report data from a recent retrospective series of patients with DIC in the context of a solid tumor, to illustrate the epidemiological, clinical and prognostic.

  5. Percutaneous Retrieval of Chronic Intravascular Foreign Bodies

    SciTech Connect

    Savage, Clare; Ozkan, Orhan S.; Walser, Eric M.; Wang Dongfang; Zwischenberger, Joseph B.

    2003-09-15

    To evaluate the feasibility of intravascular retrieval of chronic foreign bodies, we retrospectively reviewed an 8 year experience (1993-2001) of percutaneous retrieval of chronically retained intravascular foreign bodies (n = 6). In 6 of 6 cases (4 catheter fragments, 2 guidewires), 5-90 days elapsed before retrieval via the femoral or internal jugular vein. Under fluoroscopy, we determined the foreign body's course, position and size. A guidewire was advanced through a multipurpose catheter to the foreign body. The multipurpose catheter was replaced with a gooseneck snare catheter and the snare advanced to grasp and remove the foreign body. Percutaneous retrieval was successful in all 6 cases. One patient experienced mild hemoptysis, which resolved within 24 hr of observation. No patient experienced long-term sequelae. Given the potential life-threatening complications from intravascular foreign bodies and the low complication rate from percutaneous retrieval, we recommend extraction of the foreign body even if it is asymptomatic in the chronic setting (> 24 hr)

  6. Diagnosis and treatment of disseminated intravascular coagulation.

    PubMed

    Levi, M

    2014-06-01

    Disseminated intravascular coagulation (DIC) is a condition in which systemic activation of coagulation without a specific localization occurs, resulting in extensive formation of intravascular fibrin, particularly in small and midsize vessels. Disseminated intravascular coagulation may lead to several altered coagulation parameters, including a low platelet count, abnormal global clotting assays, low levels of physiological anticoagulant proteases, or increased fibrin degradation products. Also, more complex assays for activation of coagulation factors or pathways may indicate involvement of these molecules in DIC. None of these tests alone, however, can accurately ascertain or rebuff a diagnosis of DIC. Nonetheless, a combination of readily available routine assays may be instrumental in establishing a diagnosis of DIC and can also be useful to point to a subset of patients with DIC that may need definite, often costly, interventions in the hemostatic system. Current insights on relevant etiological pathways that may contribute to the occurrence of DIC have led to innovative therapeutic and adjunctive approaches to patient with DIC. Management options directed at the amelioration of hemostatic activation may tentatively be indicated and were found to be advantageous in experimental and clinical investigations. These treatments encompass elimination of tissue factor-mediated thrombin generation or restitution of normal anticoagulant function.

  7. Afterloading: The Technique That Rescued Brachytherapy

    SciTech Connect

    Aronowitz, Jesse N.

    2015-07-01

    Although brachytherapy had been established as a highly effective modality for the treatment of cancer, its application was threatened by mid-20th century due to appreciation of the radiation hazard to health care workers. This review examines how the introduction of afterloading eliminated exposure and ushered in a brachytherapy renaissance.

  8. Impact of Heterogeneity-Based Dose Calculation Using a Deterministic Grid-Based Boltzmann Equation Solver for Intracavitary Brachytherapy

    SciTech Connect

    Mikell, Justin K.; Klopp, Ann H.; Gonzalez, Graciela M.N.; Kisling, Kelly D.; Price, Michael J.; Berner, Paula A.; Eifel, Patricia J.; Mourtada, Firas

    2012-07-01

    Purpose: To investigate the dosimetric impact of the heterogeneity dose calculation Acuros (Transpire Inc., Gig Harbor, WA), a grid-based Boltzmann equation solver (GBBS), for brachytherapy in a cohort of cervical cancer patients. Methods and Materials: The impact of heterogeneities was retrospectively assessed in treatment plans for 26 patients who had previously received {sup 192}Ir intracavitary brachytherapy for cervical cancer with computed tomography (CT)/magnetic resonance-compatible tandems and unshielded colpostats. The GBBS models sources, patient boundaries, applicators, and tissue heterogeneities. Multiple GBBS calculations were performed with and without solid model applicator, with and without overriding the patient contour to 1 g/cm{sup 3} muscle, and with and without overriding contrast materials to muscle or 2.25 g/cm{sup 3} bone. Impact of source and boundary modeling, applicator, tissue heterogeneities, and sensitivity of CT-to-material mapping of contrast were derived from the multiple calculations. American Association of Physicists in Medicine Task Group 43 (TG-43) guidelines and the GBBS were compared for the following clinical dosimetric parameters: Manchester points A and B, International Commission on Radiation Units and Measurements (ICRU) report 38 rectal and bladder points, three and nine o'clock, and {sub D2cm3} to the bladder, rectum, and sigmoid. Results: Points A and B, D{sub 2} cm{sup 3} bladder, ICRU bladder, and three and nine o'clock were within 5% of TG-43 for all GBBS calculations. The source and boundary and applicator account for most of the differences between the GBBS and TG-43 guidelines. The D{sub 2cm3} rectum (n = 3), D{sub 2cm3} sigmoid (n = 1), and ICRU rectum (n = 6) had differences of >5% from TG-43 for the worst case incorrect mapping of contrast to bone. Clinical dosimetric parameters were within 5% of TG-43 when rectal and balloon contrast were mapped to bone and radiopaque packing was not overridden. Conclusions

  9. Testicular shielding in penile brachytherapy

    PubMed Central

    Bindal, Arpita; Tambe, Chandrashekhar M.; Ghadi, Yogesh; Murthy, Vedang; Shrivastava, Shyam Kishore

    2015-01-01

    Purpose Penile cancer, although rare, is one of the common genitourinary cancers in India affecting mostly aged uncircumcised males. For patients presenting with small superficial lesions < 3 cm restricted to glans, surgery, radical external radiation or brachytherapy may be offered, the latter being preferred as it allows organ and function preservation. In patients receiving brachytherapy, testicular morbidity is not commonly addressed. With an aim to minimize and document the doses to testis after adequate shielding during radical interstitial brachytherapy for penile cancers, we undertook this study in 2 patients undergoing brachytherapy and forms the basis of this report. Material and methods Two patients with early stage penile cancer limited to the glans were treated with radical high-dose-rate (HDR) brachytherapy using interstitial implant. A total of 7-8 tubes were implanted in two planes, parallel to the penile shaft. A total dose of 44-48 Gy (55-60 Gy EQD2 doses with α/β = 10) was delivered in 11-12 fractions of 4 Gy each delivered twice daily. Lead sheets adding to 11 mm (4-5 half value layer) were interposed between the penile shaft and scrotum. The testicular dose was measured using thermoluminescent dosimeters. For each patient, dosimetry was done for 3 fractions and mean calculated. Results The cumulative testicular dose to left and right testis was 31.68 cGy and 42.79 cGy for patient A, and 21.96 cGy and 23.28 cGy for patient B. For the same patients, the mean cumulative dose measured at the posterior aspect of penile shaft was 722.15 cGy and 807.72 cGy, amounting to 16.4% and 16.8% of the prescribed dose. Hence, the application of lead shield 11 mm thick reduced testicular dose from 722-808 cGy to 21.96-42.57 cGy, an “absolute reduction” of 95.99 ± 1.5%. Conclusions With the use of a simple lead shield as described, we were able to effectively reduce testicular dose from “spermicidal” range to “oligospermic” range with possible

  10. High dose rate brachytherapy for oral cancer

    PubMed Central

    YamazakI, Hideya; Yoshida, Ken; Yoshioka, Yasuo; Shimizutani, Kimishige; Furukawa, Souhei; Koizumi, Masahiko; Ogawa, Kazuhiko

    2013-01-01

    Brachytherapy results in better dose distribution compared with other treatments because of steep dose reduction in the surrounding normal tissues. Excellent local control rates and acceptable side effects have been demonstrated with brachytherapy as a sole treatment modality, a postoperative method, and a method of reirradiation. Low-dose-rate (LDR) brachytherapy has been employed worldwide for its superior outcome. With the advent of technology, high-dose-rate (HDR) brachytherapy has enabled health care providers to avoid radiation exposure. This therapy has been used for treating many types of cancer such as gynecological cancer, breast cancer, and prostate cancer. However, LDR and pulsed-dose-rate interstitial brachytherapies have been mainstays for head and neck cancer. HDR brachytherapy has not become widely used in the radiotherapy community for treating head and neck cancer because of lack of experience and biological concerns. On the other hand, because HDR brachytherapy is less time-consuming, treatment can occasionally be administered on an outpatient basis. For the convenience and safety of patients and medical staff, HDR brachytherapy should be explored. To enhance the role of this therapy in treatment of head and neck lesions, we have reviewed its outcomes with oral cancer, including Phase I/II to Phase III studies, evaluating this technique in terms of safety and efficacy. In particular, our studies have shown that superficial tumors can be treated using a non-invasive mold technique on an outpatient basis without adverse reactions. The next generation of image-guided brachytherapy using HDR has been discussed. In conclusion, although concrete evidence is yet to be produced with a sophisticated study in a reproducible manner, HDR brachytherapy remains an important option for treatment of oral cancer. PMID:23179377

  11. An investigation of a PRESAGE® in-vivo dosimeter for brachytherapy

    PubMed Central

    Vidovic, A K; Juang, T; Meltsner, S; Adamovics, J; Chino, J; Steffey, B; Craciunescu, O; Oldham, M

    2014-01-01

    Determining accurate in-vivo dosimetry in brachytherapy treatment with high dose gradients is challenging. Here we introduce, investigate, and characterize a novel in-vivo dosimeter and readout technique with the potential to address this problem. A cylindrical (4 mm x 20 mm) tissue equivalent radiochromic dosimeter PRESAGE® In-Vivo (PRESAGE®-IV) is investigated. Two readout methods of the radiation induced change in optical density (OD) were investigated: (i) volume-averaged readout by spectrophotometer, and (ii) a line profile readout by 2D projection imaging utilizing a high-resolution (50 micron) telecentric optical system. Method (i) is considered the gold standard when applied to PRESAGE® in optical cuvettes. The feasibility of both methods was evaluated by comparison to standard measurements on PRESAGE® in optical cuvettes via spectrophotometer. An end-to-end feasibility study was performed by a side-by-side comparison with TLDs in an 192Ir HDR delivery. 7 and 8 Gy was delivered to PRESAGE®-IV and TLDs attached to the surface of a vaginal cylinder. Known geometry enabled direct comparison of measured dose with commissioned treatment planning system. A high-resolution readout study under a steep dose gradient region showed 98.9% (5%/1 mm) agreement between PRESAGE®-IV and Gafchromic® EBT2 Film. Spectrometer measurements exhibited a linear dose response between 0–15 Gy with sensitivity of 0.0133 ± 0.0007 ΔOD/(Gy·cm) at the 95% confidence interval. Method (ii) yielded a linear response with sensitivity of 0.0132 ± 0.0006 (ΔOD/Gy), within 2% of method (i). Method (i) has poor spatial resolution due to volume averaging. Method (ii) has higher resolution (~1mm) without loss of sensitivity or increased noise. Both readout methods are shown to be feasible. The end-to-end comparison revealed a 2.5% agreement between PRESAGE®-IV and treatment plan in regions of uniform high dose. PRESAGE®-IV shows promise for in-vivo dose verification, although

  12. Extended (5-year) Outcomes of Accelerated Partial Breast Irradiation Using MammoSite Balloon Brachytherapy: Patterns of Failure, Patient Selection, and Dosimetric Correlates for Late Toxicity

    SciTech Connect

    Vargo, John A.; Verma, Vivek; Kim, Hayeon; Kalash, Ronny; Heron, Dwight E.; Johnson, Ronald; Beriwal, Sushil

    2014-02-01

    Purpose: Accelerated partial breast irradiation (APBI) with balloon and catheter-based brachytherapy has gained increasing popularity in recent years and is the subject of ongoing phase III trials. Initial data suggest promising local control and cosmetic results in appropriately selected patients. Long-term data continue to evolve but are limited outside of the context of the American Society of Breast Surgeons Registry Trial. Methods and Materials: A retrospective review of 157 patients completing APBI after breast-conserving surgery and axillary staging via high-dose-rate {sup 192}Ir brachytherapy from June 2002 to December 2007 was made. APBI was delivered with a single-lumen MammoSite balloon-based applicator to a median dose of 34 Gy in 10 fractions over a 5-day period. Tumor coverage and critical organ dosimetry were retrospectively collected on the basis of computed tomography completed for conformance and symmetry. Results: At a median follow-up time of 5.5 years (range, 0-10.0 years), the 5-year and 7-year actuarial incidences of ipsilateral breast control were 98%/98%, of nodal control 99%/98%, and of distant control 99%/99%, respectively. The crude rate of ipsilateral breast recurrence was 2.5% (n=4); of nodal failure, 1.9% (n=3); and of distant failure, 0.6% (n=1). The 5-year and 7-year actuarial overall survival rates were 89%/86%, with breast cancer–specific survival of 100%/99%, respectively. Good to excellent cosmetic outcomes were achieved in 93.4% of patients. Telangiectasia developed in 27% of patients, with 1-year, 3-year, and 5-year actuarial incidence of 7%/24%/33%; skin dose >100% significantly predicted for the development of telangiectasia (50% vs 14%, P<.0001). Conclusions: Long-term single-institution outcomes suggest excellent tumor control, breast cosmesis, and minimal late toxicity. Skin toxicity is a function of skin dose, which may be ameliorated with dosimetric optimization afforded by newer multicatheter brachytherapy

  13. Hypothesis: Disseminated Intravascular Inflammation as the Inflammatory Counterpart to Disseminated Intravascular Coagulation

    NASA Astrophysics Data System (ADS)

    Bull, Brian S.; Bull, Maureen H.

    1994-08-01

    We have identified a leukocyte activation syndrome that is occasionally associated with the transfusion of intraoperatively recovered erythrocytes. This syndrome appears to result from intravascular damage caused by leukocytes activated during the erythrocyte salvage process. We hypothesize that this syndrome is part of a larger disease grouping: disseminated intravascular inflammation (DII). DII is the analog of the coagulation disorder disseminated intravascular coagulation. In disseminated intravascular coagulation, the organ damage results from uncontrolled activation of the clotting pathway; in DII the damage is caused by leukocytes that have become activated by direct contact with bacteria or in rare instances-such as erythrocyte salvage-in the absence of bacteria and bacterial products. Recent studies of the hazards associated with intraoperative blood salvage indicate that activation of leukocytes can be achieved by exposure to activated platelets alone. If such activated leukocytes are reinfused along with the washed erythrocytes, widespread organ damage may result. The lung is the organ most severely affected by activated leukocytes. Adult respiratory distress syndrome is one outcome. It is likely that DII is a presently unrecognized pathophysiological process that complicates a variety of primary disease states and increases their lethality.

  14. Multi-Frequency Intravascular Ultrasound (IVUS) Imaging

    PubMed Central

    Ma, Teng; Yu, Mingyue; Chen, Zeyu; Fei, Chunlong; Shung, K. Kirk; Zhou, Qifa

    2015-01-01

    Acute coronary syndrome (ACS) is frequently associated with the sudden rupture of a vulnerable atherosclerotic plaque within the coronary artery. Several unique physiological features, including a thin fibrous cap accompanied by a necrotic lipid core, are the targeted indicators for identifying the vulnerable plaques. Intravascular ultrasound (IVUS), a catheter-based imaging technology, has been routinely performed in clinics for more than 20 years to describe the morphology of the coronary artery and guide percutaneous coronary interventions. However, conventional IVUS cannot facilitate the risk assessment of ACS because of its intrinsic limitations, such as insufficient resolution. Renovation of the IVUS technology is essentially needed to overcome the limitations and enhance the coronary artery characterization. In this paper, a multi-frequency intravascular ultrasound (IVUS) imaging system was developed by incorporating a higher frequency IVUS transducer (80 to 150 MHz) with the conventional IVUS (30–50 MHz) system. The newly developed system maintains the advantage of deeply penetrating imaging with the conventional IVUS, while offering an improved higher resolution image with IVUS at a higher frequency. The prototyped multi-frequency catheter has a clinically compatible size of 0.95 mm and a favorable capability of automated image co-registration. In vitro human coronary artery imaging has demonstrated the feasibility and superiority of the multi-frequency IVUS imaging system to deliver a more comprehensive visualization of the coronary artery. This ultrasonic-only intravascular imaging technique, based on a moderate refinement of the conventional IVUS system, is not only cost-effective from the perspective of manufacturing and clinical practice, but also holds the promise of future translation into clinical benefits. PMID:25585394

  15. Disseminated intravascular coagulation in meningococcal sepsis. Case 7.

    PubMed

    Zeerleder, S; Zürcher Zenklusen, R; Hack, C E; Wuillemin, W A

    2003-08-01

    We report on a man (age: 49 years), who died from severe meningococcal sepsis with disseminated intravascular coagulation (DIC), multiple organ dysfunction syndrome and extended skin necrosis. We discuss in detail the pathophysiology of the activation of coagulation and fibrinolysis during sepsis. The article discusses new therapeutic concepts in the treatment of disseminated intravascular coagulation in meningococcal sepsis, too.

  16. Intravascular imaging with a storage phosphor detector

    NASA Astrophysics Data System (ADS)

    Shikhaliev, Polad M.; Petrek, Peter; Matthews, Kenneth L., II; Fritz, Shannon G.; Bujenovic, L. Steven; Xu, Tong

    2010-05-01

    The aim of this study is to develop and test an intravascular positron imaging system based on a storage phosphor detector for imaging and detecting vulnerable plaques of human coronary arteries. The radiotracer F18-FDG accumulates in vulnerable plaques with inflammation of the overlying cap. The vulnerable plaques can, therefore, be imaged by recording positrons emitted from F18-FDG with a detector inserted into the artery. A prototype intravascular detector was constructed based on storage phosphor. The detector uses a flexible storage phosphor tube with 55 mm length, 2 mm diameter and 0.28 mm wall thickness. The intravascular detector is guided into the vessel using x-ray fluoroscopy and the accumulated x-ray signal must be erased prior to positron imaging. For this purpose, a light diffuser, 0.9 mm in diameter and 55 mm in length, was inserted into the detector tube. The light diffuser was connected to a laser source through a 2 m long optical fiber. The diffuser redirected the 0.38 W laser light to the inner surface of the phosphor detector to erase it. A heart phantom with 300 cm3 volume and three coronary arteries with 3.2 mm diameter and with several plaques was constructed. FDG solution with 0.5 µCi cm-3 activity concentration was filled in the heart and coronary arteries. The detector was inserted in a coronary artery and the signal from the plaques and surrounding background activity was recorded for 2 min. Then the phosphor detector was extracted and read out using a storage phosphor reader. The light diffuser erased the signal resulting from fluoroscopic exposure to level below that encountered during positron imaging. Vulnerable plaques with area activities higher than 1.2 nCi mm-2 were visualized by the detector. This activity is a factor of 10-20 lower than that expected in human vulnerable plaques. The detector was able to image the internal surface of the coronary vessels with 50 mm length and 360° circumference. Spatial resolution was 0

  17. Positron autoradiography for intravascular imaging: feasibility evaluation

    NASA Astrophysics Data System (ADS)

    Shikhaliev, Polad M.; Xu, Tong; Ducote, Justin L.; Easwaramoorthy, Balasubramaniam; Mukherjee, Jogeshwar; Molloi, Sabee

    2006-02-01

    Approximately 70% of acute coronary artery disease is caused by unstable (vulnerable) plaques with an inflammation of the overlying cap and high lipid content. A rupturing of the inflamed cap of the plaque results in propagation of the thrombus into the lumen, blockage of the artery and acute ischaemic syndrome or sudden death. Morphological imaging such as angiography or intravascular ultrasound cannot determine inflammation status of the plaque. A radiotracer such as 18F-FDG is accumulated in vulnerable plaques due to higher metabolic activity of the inflamed cap and could be used to detect a vulnerable plaque. However, positron emission tomography (PET) cannot detect the FDG-labelled plaques because of respiratory and heart motions, small size and low activity of the plaques. Plaques can be detected using a miniature particle (positron) detector inserted into the artery. In this work, a new detector concept is investigated for intravascular imaging of the plaques. The detector consists of a storage phosphor tip bound to the end of an intravascular catheter. It can be inserted into an artery, absorb the 18F-FDG positrons from the plaques, withdrawn from the artery and read out. Length and diameter of the storage phosphor tip can be matched to the length and the diameter of the artery. Monte Carlo simulations and experimental evaluations of coronary plaque imaging with the proposed detector were performed. It was shown that the sensitivity of the storage phosphor detector to the positrons of 18F-FDG is sufficient to detect coronary plaques with 1 mm and 2 mm sizes and 590 Bq and 1180 Bq activities in the arteries with 2 mm and 3 mm diameters, respectively. An experimental study was performed using plastic tubes with 2 mm diameter filled with an FDG solution, which simulates blood. FDG spots simulating plaques were placed over the surface of the tube. A phosphor tip was inserted into the tube and imaged the plaques. Exposure time was 1 min in all simulations and

  18. International Standardization of the Clinical Dosimetry of Beta Radiation Brachytherapy Sources: Progress of an ISO Standard

    NASA Astrophysics Data System (ADS)

    Soares, Christopher

    2006-03-01

    In 2004 a new work item proposal (NWIP) was accepted by the International Organization for Standardization (ISO) Technical Committee 85 (TC85 -- Nuclear Energy), Subcommittee 2 (Radiation Protection) for the development of a standard for the clinical dosimetry of beta radiation sources used for brachytherapy. To develop this standard, a new Working Group (WG 22 - Ionizing Radiation Dosimetry and Protocols in Medical Applications) was formed. The standard is based on the work of an ad-hoc working group initiated by the Dosimetry task group of the Deutsches Insitiut für Normung (DIN). Initially the work was geared mainly towards the needs of intravascular brachytherapy, but with the decline of this application, more focus has been placed on the challenges of accurate dosimetry for the concave eye plaques used to treat ocular melanoma. Guidance is given for dosimetry formalisms, reference data to be used, calibrations, measurement methods, modeling, uncertainty determinations, treatment planning and reporting, and clinical quality control. The document is currently undergoing review by the ISO member bodies for acceptance as a Committee Draft (CD) with publication of the final standard expected by 2007. There are opportunities for other ISO standards for medical dosimetry within the framework of WG22.

  19. New intravascular flow sensor using fiber optics

    NASA Astrophysics Data System (ADS)

    Stenow, Erik N. D.

    1994-12-01

    A new sensor using fiber optics is suggested for blood flow measurements in small vessels. The sensor principle and a first evaluation on a flow model are presented. The new sensor uses small CO2 gas bubbles as flow markers for optical detection. When the bubbles pass an optical window, light emitted from one fiber is reflected and scattered into another fiber. The sensor has been proven to work in a 3 mm flow model using two 110 micrometers optical fibers and a 100 micrometers steel capillary inserted into a 1 mm guide wire. The evaluation of a sensor archetype shows that the new sensor provides a promising method for intravascular blood flow measurement in small vessels. The linearity for steady state flow is studied in the flow interval 30 - 130 ml/min. comparison with ultrasound Doppler flowmetry was performed for pulsatile flow in the interval 25 - 125 ml/min. with a pulse length between 0.5 and 2 s. The use of intravascular administered CO2 in small volumes is harmless because the gas is rapidly dissolved in whole blood.

  20. Pulsed liquid microjet for intravascular injection

    NASA Astrophysics Data System (ADS)

    Palanker, Daniel V.; Fletcher, Daniel A.; Miller, Jason; Huie, Philip; Marmor, Michael; Blumenkranz, Mark S.

    2002-06-01

    Occlusions of the retinal veins and arteries are associated with common diseases such as hypertension and arteriosclerosis and usually cause severe and irreversible loss of vision. Treatments for these vascular diseases have been unsatisfactory to date in part because of the difficulty of delivering thrombolytic drugs locally within the eye. In this article we describe a pulsed liquid microjet for minimally invasive intra-vascular drug delivery. The microjet is driven by a vapor bubble following an explosive evaporation of saline, produced by a microsecond-long electric discharge in front of the 25 micrometers electrode inside the micronozzle. Expansion of the transient vapor bubble produces a water jet with a diameter equal to the diameter of the nozzle, and with a velocity and duration that are controlled by the pulse energy. We found that fluid could be injected through the wall of a 60-micrometers -diameter artery in choriallantoic membrane using a 15-micrometers diameter liquid jet traveling at more than 60 m/s. Histological analysis of these arteries showed that the width of the perforation is limited to the diameter of the micronozzle, and the penetration depth of the jet is controlled by the discharge energy. The pulsed liquid microjet offers a promising technique for precise and needle-free intravascular delivery of thrombolytic drugs for localized treatment of retinal vascular occlusions.

  1. Fast integrated intravascular photoacoustic/ultrasound catheter

    NASA Astrophysics Data System (ADS)

    Choi, Changhoon; Cho, Seunghee; Kim, Taehoon; Park, Sungjo; Park, Hyoeun; Kim, Jinmoo; Lee, Seunghoon; Kang, Yeonsu; Jang, Kiyuk; Kim, Chulhong

    2016-03-01

    In cardiology, a vulnerable plaque is considered to be a key subject because it is strongly related to atherosclerosis and acute myocardial infarction. Because conventional intravascular imaging devices exhibit several limitations with regard to vulnerable plaque detection, the need for an effective lipid imaging modality has been continuously suggested. Photoacoustic (PA) imaging is a medical imaging technique with a high level of ultrasound (US) resolution and strong optical contrast. In this study, we successfully developed an integrated intravascular photoacoustic/ultrasound (IV-PAUS) imaging system with a catheter diameter of 1.2 mm for lipid-rich atherosclerosis imaging. An Nd:YAG pulsed laser with an excitation wavelength of 1064 nm was utilized. IV-PAUS offers 5-mm depth penetration and axial and lateral PA imaging resolutions of 94 μm and 203 μm, respectively, as determined by imaging a 6-μm carbon fiber. We initially obtained 3-dimensional (3D) co-registered PA/US images of metal stents. Subsequently, we successfully obtained 3D coregistered PA/US ex vivo images using an iliac artery from a rabbit atherosclerosis model. Accordingly, lipid-rich plaques were sufficiently differentiated from normal tissue in the ex vivo experiment. We validated these findings histologically to confirm the lipid content.

  2. Intravascular behavior of a perfluorochemical emulsion.

    PubMed

    Tsuda, Y; Yamanouchi, K; Okamoto, H; Yokoyama, K; Heldebrant, C

    1990-03-01

    The purpose of this study was to clarify the reason why two similar perfluorochemical (PFC) emulsions, namely a mixed PFC (perfluorodecalin: FDC and perfluorotripropylamine: FTPA) and an FDC emulsion, resulted in a very different survival time for the exchange-transfused rats. Supposing that some difference in the intravascular behavior of both emulsions would account for such a difference in efficacy, experiments on behavior of PFC emulsions were carried out focusing on the particle size. It was reconfirmed that larger PFC particles were eliminated from the blood stream much more rapidly than smaller particles with three FMIQ (perfluoro-N-methyldecahydroisoquinoline) emulsions. After the FDC + FTPA emulsion or the FDC emulsion were injected into rabbits, PFC particles in the blood tended to decrease in size. When each of the collected blood samples was incubated at 37 degrees C for 24 h, the FDC emulsion enlarged in size markedly, but the FDC + FTPA emulsion showed no change. The retention of PFC particles appeared to depend on the emulsion stability rather than simply on the emulsifying agent alone. These data showed that some differences were observed in intravascular persistence of the FDC + FTPA emulsion and the FDC emulsion, and suggested that the efficacy of PFC emulsions would reflect their behavior in the circulation. PMID:2374085

  3. Hypofractionated Boost With High-Dose-Rate Brachytherapy and Open Magnetic Resonance Imaging-Guided Implants for Locally Aggressive Prostate Cancer: A Sequential Dose-Escalation Pilot Study

    SciTech Connect

    Ares, Carmen; Popowski, Youri; Pampallona, Sandro; Nouet, Philippe; Dipasquale, Giovanna; Bieri, Sabine; Ozsoy, Orhan; Rouzaud, Michel; Khan, Haleem; Miralbell, Raymond

    2009-11-01

    Purpose: To evaluate the feasibility, tolerance, and preliminary outcome of an open MRI-guided prostate partial-volume high-dose-rate brachytherapy (HDR-BT) schedule in a group of selected patients with nonmetastatic, locally aggressive prostatic tumors. Methods and Materials: After conventional fractionated three-dimensional conformal external radiotherapy to 64-64.4 Gy, 77 patients with nonmetastatic, locally aggressive (e.g., perineural invasion and/or Gleason score 8-10) prostate cancer were treated from June 2000 to August 2004, with HDR-BT using temporary open MRI-guided {sup 192}Ir implants, to escalate the dose in the boost region. Nineteen, 21, and 37 patients were sequentially treated with 2 fractions of 6 Gy, 7 Gy, and 8 Gy each, respectively. Neoadjuvant androgen deprivation was given to 62 patients for 6-24 months. Acute and late toxicity were scored according to the Radiation Therapy Oncology Group/European Organization for Research and Treatment of Cancer scoring system. Results: All 77 patients completed treatment as planned. Only 2 patients presented with Grade >=3 acute urinary toxicity. The 3-year probability of Grade >=2 late urinary and low gastrointestinal toxicity-free survival was 91.4% +- 3.4% and 94.4% +- 2.7%, respectively. Rates of 3-year biochemical disease-free survival (bDFS) and disease-specific survival were 87.1% +- 4.1% and 100%, respectively. Conclusions: Boosting a partial volume of the prostate with hypofractionated HDR-BT for aggressive prostate cancer was feasible and showed limited long-term toxicity, which compared favorably with other dose-escalation methods in the literature. Preliminary bDFS was encouraging if one considers the negatively selected population of high-risk patients in this study.

  4. SU-F-19A-04: Dosimetric Evaluation of a Novel CT/MR Compatible Fletcher Applicator for Intracavitary Brachytherapy of the Cervix Uteri

    SciTech Connect

    Gifford, K; Han, T; Mourtada, F; Eifel, P

    2014-06-15

    Purpose: To validate a Monte Carlo model and evaluate the dosimetric capabilities of a novel commercial CT/MR compatible Fletcher applicator for cervical cancer brachytherapy. Methods: MCNPX 2.7.0 was used to model the Fletcher CT/MR shielded applicator (FA) and 192Ir HDR source. Energy deposition was calculated with a track length estimator modified by an energy-dependent heating function. A high density polystyrene phantom was constructed with three film pockets for validation of the MCNPX model. Three planes of data were calculated with the MCNPX model corresponding to the three film planes in phantom. The planes were located 1 cm from the most anterior, posterior, and medial extents of the FA right ovoid. Unshielded distributions were calculated by modeling the shielded cells as air instead of the tungsten alloy. A third order polynomial fit to the OD to dose curve was used to convert OD of the three film planes to dose. Each film and MCNPX plane dose distribution was normalized to a point 2 cm from the center of the film plane and in a region of low dose gradient. MCNPX and film were overlaid and compared with a distance-to-agreement criterion of (±2%/±2mm). Shielded and unshielded distributions were overlaid and a percent shielded plot was created. Results: 85.2%, 97.1%, and 96.6% of the MCNPX points passed the (±2%/±2mm) criterion respectively for the anterior, lateral, and posterior film comparison planes. A majority of the points in the anterior plane that exceeded the DTA criterion were either along edges of where the film was cut or near the terminal edges of the film. The percent shielded matrices indicated that the maximum % shielding was 50%. Conclusion: These data confirm the validity of the FA Monte Carlo model. The FA ovoid can shield up to 50% of the dose in the anteroposterior direction.

  5. A Prospective Cohort Study to Compare Treatment Results Between 2 Fractionation Schedules of High-Dose-Rate Intracavitary Brachytherapy (HDR-ICBT) in Patients With Cervical Cancer

    SciTech Connect

    Huang, Eng-Yen; Sun, Li-Min; Lin, Hao; Lan, Jen-Hong; Chanchien, Chan-Chao; Huang, Yu-Jie; Wang, Chang-Yu; Wang, Chong-Jong

    2013-01-01

    Purpose: To compare the treatment results of 2 fractionation schedules for high-dose-rate intracavitary brachytherapy (HDR-ICBT) in patients with cervical cancer. Methods and Materials: From June 2001 through January 2008, 267 patients with stage IB-IVA cervical cancer were enrolled in the study. All patients underwent 4-field pelvic irradiation and HDR-ICBT. The median central and parametrial doses were 39.6 Gy and 45 Gy, respectively. Patient underwent either 6 Gy Multiplication-Sign 4 (HDR-4) (n=144) or 4.5 Gy Multiplication-Sign 6 (HDR-6) (n=123) to point A of ICBT using {sup 192}Ir isotope twice weekly. The rates of overall survival, locoregional failure, distant metastasis, proctitis, cystitis, and enterocolitis were compared between HDR-4 and HDR-6. Results: There were no significant differences in the demographic data between HDR-4 and HDR-6 except for total treatment time. The 5-year proctitis rates were 23.0% and 21.5% in HDR-4 and HDR-6 (P=.399), respectively. The corresponding rates of grade 2-4 proctitis were 18.7% and 9.6% (P=.060). The corresponding rates of grades 3-4 proctitis were 5.2% and 1.3% (P=.231). Subgroup analysis revealed that HDR-4 significantly increased grade 2-4 proctitis in patients aged {>=}62 years old (P=.012) but not in patients aged <62 years (P=.976). The rates of overall survival, locoregional failure, distant metastasis, cystitis, and enterocolitis were not significantly different between HDR-4 and HDR-6 schedules. Conclusion: The small fraction size of HDR-ICBT is associated with grade 2 proctitis without compromise of prognosis in elderly patients. This schedule is suggested for patients who tolerate an additional 2 applications of HDR-ICBT.

  6. Clinical implementation of a new electronic brachytherapy system for skin brachytherapy.

    PubMed

    Pons-Llanas, Olga; Ballester-Sánchez, Rosa; Celada-Álvarez, Francisco Javier; Candela-Juan, Cristian; García-Martínez, Teresa; Llavador-Ros, Margarita; Botella-Estrada, Rafael; Barker, Christopher A; Ballesta, Antonio; Tormo-Micó, Alejandro; Rodríguez, Silvia; Perez-Calatayud, Jose

    2015-01-01

    Although surgery is usually the first-line treatment for nonmelanoma skin cancers, radiotherapy (RT) may be indicated in selected cases. Radiation therapy as primary therapy can result in excellent control rates, cosmetics, and quality of life. Brachytherapy is a radiation treatment modality that offers the most conformal option to patients. A new modality for skin brachytherapy is electronic brachytherapy. This involves the placement of a high dose rate X-ray source directly in a skin applicator close to the skin surface, and therefore combines the benefits of brachytherapy with those of low energy X-ray radiotherapy. The Esteya electronic brachytherapy system is specifically designed for skin surface brachytherapy procedures. The purpose of this manuscript is to describe the clinical implementation of the new Esteya electronic brachytherapy system, which may provide guidance for users of this system. The information covered includes patient selection, treatment planning (depth evaluation and margin determination), patient marking, and setup. The justification for the hypofractionated regimen is described and compared with others protocols in the literature. Quality assurance (QA) aspects including daily testing are also included. We emphasize that these are guidelines, and clinical judgment and experience must always prevail in the care of patients, as with any medical treatment. We conclude that clinical implementation of the Esteya brachytherapy system is simple for patients and providers, and should allow for precise and safe treatment of nonmelanoma skin cancers. PMID:25834587

  7. A BrachyPhantom for verification of dose calculation of HDR brachytherapy planning system

    SciTech Connect

    Austerlitz, C.; Campos, C. A. T.

    2013-11-15

    Purpose: To develop a calibration phantom for {sup 192}Ir high dose rate (HDR) brachytherapy units that renders possible the direct measurement of absorbed dose to water and verification of treatment planning system.Methods: A phantom, herein designated BrachyPhantom, consists of a Solid Water™ 8-cm high cylinder with a diameter of 14 cm cavity in its axis that allows the positioning of an A1SL ionization chamber with its reference measuring point at the midheight of the cylinder's axis. Inside the BrachyPhantom, at a 3-cm radial distance from the chamber's reference measuring point, there is a circular channel connected to a cylindrical-guide cavity that allows the insertion of a 6-French flexible plastic catheter from the BrachyPhantom surface. The PENELOPE Monte Carlo code was used to calculate a factor, P{sub sw}{sup lw}, to correct the reading of the ionization chamber to a full scatter condition in liquid water. The verification of dose calculation of a HDR brachytherapy treatment planning system was performed by inserting a catheter with a dummy source in the phantom channel and scanning it with a CT. The CT scan was then transferred to the HDR computer program in which a multiple treatment plan was programmed to deliver a total dose of 150 cGy to the ionization chamber. The instrument reading was then converted to absorbed dose to water using the N{sub gas} formalism and the P{sub sw}{sup lw} factor. Likewise, the absorbed dose to water was calculated using the source strength, S{sub k}, values provided by 15 institutions visited in this work.Results: A value of 1.020 (0.09%, k= 2) was found for P{sub sw}{sup lw}. The expanded uncertainty in the absorbed dose assessed with the BrachyPhantom was found to be 2.12% (k= 1). To an associated S{sub k} of 27.8 cGy m{sup 2} h{sup −1}, the total irradiation time to deliver 150 cGy to the ionization chamber point of reference was 161.0 s. The deviation between the absorbed doses to water assessed with the Brachy

  8. Intravascular spill of hyperosmolar urea during induced midtrimester abortion.

    PubMed

    Kovasznay, B M; Burkman, R T; Atienza, M F; King, T M

    1979-01-01

    Intravascular spill of hypertonic sodium chloride and the resultant serious and occasionally fatal consquences have been reported in association with induced midtrimester abortion. This report details 3 cases of intravascular spill of hyperosmolar urea. Although urea may pose less concern, because of its ability to readily cross cell membranes and its action as an osmotic diuretic, inadvertent intravascular spill can produce symptoms that include nausea, headache, sensations of warmth, and intense uterine cramping. In addition, abnormal blood pigments may occasionally be noted in the urine. Treatment includes intravenous hydration, careful monitoring of fluid/electrolyte balance and renal function, and avoiding the use of oxytocic agents.

  9. Quinine-Induced Disseminated Intravascular Coagulation.

    PubMed

    Abed, Firas; Baniya, Ramkaji; Bachuwa, Ghassan

    2016-01-01

    Every drug comes with some side effect. It is the benefit/risk ratio that determines the medical use of the drug. Quinine, a known antimalarial drug, has been used for nocturnal leg cramps since the 1930s; it is associated with severe life-threatening hematological and cardiovascular side effects. Disseminated intravascular coagulation (DIC), albeit rare, is a known coagulopathy associated with Quinine. It is imperative to inquire about the Quinine intake in medication history in patients with coagulopathy, as most patients still consider it a harmless home remedy for nocturnal leg cramps. In this report, we present a case of coagulopathy in a middle-aged woman, who gave a history of taking Quinine for nocturnal leg cramps, as her home remedy. Early identification of the offending agent led to the diagnosis, prompt discontinuation of the medication, and complete recovery and prevented the future possibility of recurrence. PMID:27293443

  10. [Disseminated intravascular coagulation: clinical and biological diagnosis].

    PubMed

    Touaoussa, Aziz; El Youssi, Hind; El Hassani, Imane; Hanouf, Daham; El Bergui, Imane; Zoulati, Ghizlane; Amrani Hassani, Moncef

    2015-01-01

    Disseminated intravascular coagulation (DIC) is a syndrome characterized by the systemic activation of blood coagulation. Its pathophysiological mechanisms are complex and dependent on the underlying pathology, making the clinical and biological expression of quite variable DIC. Among the various biological parameters disrupted, most are not specific, and none of them allows in itself to make the diagnosis. All this does not facilitate the task of the practitioner for diagnosis of overt DIC, much less that of the non-overt DIC, early stage whose treatment would improve the prognosis. These considerations have led to develop scores, combining several parameters depending on their availability in daily practice, as well as their diagnostic relevance. Of all the scores, the ISTH (International society of thrombosis and hemostasis) remains the most used.

  11. Disseminated intravascular coagulation in burn injury.

    PubMed

    Lippi, Giuseppe; Ippolito, Luigi; Cervellin, Gianfranco

    2010-06-01

    Disseminated intravascular coagulation (DIC) is a complex and multifaceted disorder characterized by the activation of coagulation and fibrinolytic pathways, consumption of coagulation factors, and depletion of coagulation regulatory proteins. The introduction into the circulation of cellular debris characterized by strong thromboplastic activity due to tissue factor exposition or release (in or from burned tissues), which can thereby activate extrinsic pathway of coagulation system and trigger massive thrombin generation when present in sufficient concentration, represents the most plausible biological explanation to support the development of intravascular coagulation in patients with burn injury. Severe burns left untreated might also lead to an immunological and inflammatory response (activation of the complement cascade), which can amplify fibrinolysis and blood clotting. Overall, the real prevalence of DIC in patients with burns is as yet unclear. Postmortem, retrospective, and even longitudinal investigations are in fact biased by several factors, such as the objective difficulty to establish whether DIC might have occurred as a primary complication of burns or rather as a consequence of other superimposed pathologies (e.g., sepsis, multiple organ failure), the different diagnostic criteria for assessing DIC, and the heterogeneity of the patient samples studied. Nevertheless, the current scientific evidence is consistent with the hypothesis that biochemical changes suggestive for DIC (hypercoagulability, hypo- and hyperfibrinolysis) are commonplace in patients with burn trauma, and their severity increases exponentially with the severity of injury. Overt DIC seems to occur especially in critically ill burn patients or in those with severe burns (up to third degree) and large involvement of body surface area, in whom an appropriate therapy might be effective to prevent the otherwise fulminant course. Although early prophylaxis with antithrombin concentrates

  12. Dosimetric Characteristics for Brachytherapy Sources

    SciTech Connect

    DeWerd, Larry A.; Davis, Stephen D.

    2011-05-05

    Brachytherapy sources are characterized by the dosimetric parameters in a protocol such as the American Association of Physicists in Medicine Task Group 43. The air-kerma strength is measured and traceable to a primary standard. Then the parameters such as dose-rate constant, radial dose function, and anisotropy function are measured and related back to the primary standard. This is normally accomplished with thermoluminescent dosimeters (TLDs). Since radial dose function and anisotropy function are relative parameters, some of the dosimetric corrections are negligible. For the dose-rate constant, parameters such as the energy dependence compared with a calibration beam such as {sup 60}Co need to be accounted for. A description of the primary standard measurements and TLD measurements will be discussed.

  13. In vivo dosimetry in brachytherapy

    SciTech Connect

    Tanderup, Kari; Beddar, Sam; Andersen, Claus E.; Kertzscher, Gustavo; Cygler, Joanna E.

    2013-07-15

    In vivo dosimetry (IVD) has been used in brachytherapy (BT) for decades with a number of different detectors and measurement technologies. However, IVD in BT has been subject to certain difficulties and complexities, in particular due to challenges of the high-gradient BT dose distribution and the large range of dose and dose rate. Due to these challenges, the sensitivity and specificity toward error detection has been limited, and IVD has mainly been restricted to detection of gross errors. Given these factors, routine use of IVD is currently limited in many departments. Although the impact of potential errors may be detrimental since treatments are typically administered in large fractions and with high-gradient-dose-distributions, BT is usually delivered without independent verification of the treatment delivery. This Vision 20/20 paper encourages improvements within BT safety by developments of IVD into an effective method of independent treatment verification.

  14. Brachytherapy next generation: robotic systems

    PubMed Central

    Popescu, Tiberiu; Kacsó, Alex Cristian; Pisla, Doina

    2015-01-01

    In a field dominated by external beam radiation therapy (EBRT), both the therapeutic and technical possibilities of brachytherapy (BT) are underrated, shadowed by protons and intensity modulated radiotherapy. Decreasing expertise and indications, as well as increasing lack of specific BT training for radiation therapy (RT) residents led to the real need of shortening its learning curve and making it more popular. Developing robotic BT devices can be a way to mitigate the above issues. There are many teams working at custom-made robotic BT platforms to perfect and overcome the limitations of the existing systems. This paper provides a picture of the current state-of-the-art in robotic assisted BT, as it also conveys the author's solution to the problem, a parallel robot that uses CT-guidance. PMID:26816510

  15. 21 CFR 892.5730 - Radionuclide brachytherapy source.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Radionuclide brachytherapy source. 892.5730... (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Therapeutic Devices § 892.5730 Radionuclide brachytherapy source. (a) Identification. A radionuclide brachytherapy source is a device that consists of...

  16. 10 CFR 35.432 - Calibration measurements of brachytherapy sources.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 1 2013-01-01 2013-01-01 false Calibration measurements of brachytherapy sources. 35.432 Section 35.432 Energy NUCLEAR REGULATORY COMMISSION MEDICAL USE OF BYPRODUCT MATERIAL Manual Brachytherapy § 35.432 Calibration measurements of brachytherapy sources. (a) Before the first medical use of...

  17. 21 CFR 892.5730 - Radionuclide brachytherapy source.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Radionuclide brachytherapy source. 892.5730... (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Therapeutic Devices § 892.5730 Radionuclide brachytherapy source. (a) Identification. A radionuclide brachytherapy source is a device that consists of...

  18. 10 CFR 35.432 - Calibration measurements of brachytherapy sources.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 1 2011-01-01 2011-01-01 false Calibration measurements of brachytherapy sources. 35.432 Section 35.432 Energy NUCLEAR REGULATORY COMMISSION MEDICAL USE OF BYPRODUCT MATERIAL Manual Brachytherapy § 35.432 Calibration measurements of brachytherapy sources. (a) Before the first medical use of...

  19. 10 CFR 35.406 - Brachytherapy sources accountability.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Brachytherapy sources accountability. 35.406 Section 35.406 Energy NUCLEAR REGULATORY COMMISSION MEDICAL USE OF BYPRODUCT MATERIAL Manual Brachytherapy § 35.406 Brachytherapy sources accountability. (a) A licensee shall maintain accountability at all...

  20. 10 CFR 35.406 - Brachytherapy sources accountability.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 1 2013-01-01 2013-01-01 false Brachytherapy sources accountability. 35.406 Section 35.406 Energy NUCLEAR REGULATORY COMMISSION MEDICAL USE OF BYPRODUCT MATERIAL Manual Brachytherapy § 35.406 Brachytherapy sources accountability. (a) A licensee shall maintain accountability at all...

  1. 10 CFR 35.432 - Calibration measurements of brachytherapy sources.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 1 2012-01-01 2012-01-01 false Calibration measurements of brachytherapy sources. 35.432 Section 35.432 Energy NUCLEAR REGULATORY COMMISSION MEDICAL USE OF BYPRODUCT MATERIAL Manual Brachytherapy § 35.432 Calibration measurements of brachytherapy sources. (a) Before the first medical use of...

  2. 10 CFR 35.432 - Calibration measurements of brachytherapy sources.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 1 2014-01-01 2014-01-01 false Calibration measurements of brachytherapy sources. 35.432 Section 35.432 Energy NUCLEAR REGULATORY COMMISSION MEDICAL USE OF BYPRODUCT MATERIAL Manual Brachytherapy § 35.432 Calibration measurements of brachytherapy sources. (a) Before the first medical use of...

  3. 10 CFR 35.432 - Calibration measurements of brachytherapy sources.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Calibration measurements of brachytherapy sources. 35.432 Section 35.432 Energy NUCLEAR REGULATORY COMMISSION MEDICAL USE OF BYPRODUCT MATERIAL Manual Brachytherapy § 35.432 Calibration measurements of brachytherapy sources. (a) Before the first medical use of...

  4. 10 CFR 35.406 - Brachytherapy sources accountability.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 1 2011-01-01 2011-01-01 false Brachytherapy sources accountability. 35.406 Section 35.406 Energy NUCLEAR REGULATORY COMMISSION MEDICAL USE OF BYPRODUCT MATERIAL Manual Brachytherapy § 35.406 Brachytherapy sources accountability. (a) A licensee shall maintain accountability at all...

  5. 10 CFR 35.406 - Brachytherapy sources accountability.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 1 2014-01-01 2014-01-01 false Brachytherapy sources accountability. 35.406 Section 35.406 Energy NUCLEAR REGULATORY COMMISSION MEDICAL USE OF BYPRODUCT MATERIAL Manual Brachytherapy § 35.406 Brachytherapy sources accountability. (a) A licensee shall maintain accountability at all...

  6. 21 CFR 892.5730 - Radionuclide brachytherapy source.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Radionuclide brachytherapy source. 892.5730... (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Therapeutic Devices § 892.5730 Radionuclide brachytherapy source. (a) Identification. A radionuclide brachytherapy source is a device that consists of...

  7. 10 CFR 35.406 - Brachytherapy sources accountability.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 1 2012-01-01 2012-01-01 false Brachytherapy sources accountability. 35.406 Section 35.406 Energy NUCLEAR REGULATORY COMMISSION MEDICAL USE OF BYPRODUCT MATERIAL Manual Brachytherapy § 35.406 Brachytherapy sources accountability. (a) A licensee shall maintain accountability at all...

  8. {sup 106}Ruthenium Brachytherapy for Retinoblastoma

    SciTech Connect

    Abouzeid, Hana; Moeckli, Raphael; Gaillard, Marie-Claire; Beck-Popovic, Maja; Pica, Alessia; Zografos, Leonidas; Balmer, Aubin; Pampallona, Sandro; Munier, Francis L.

    2008-07-01

    Purpose: To evaluate the efficacy of {sup 106}Ru plaque brachytherapy for the treatment of retinoblastoma. Methods and Materials: We reviewed a retrospective, noncomparative case series of 39 children with retinoblastoma treated with {sup 106}Ru plaques at the Jules-Gonin Eye Hospital between October 1992 and July 2006, with 12 months of follow-up. Results: A total of 63 tumors were treated with {sup 106}Ru brachytherapy in 41 eyes. The median patient age was 27 months. {sup 106}Ru brachytherapy was the first-line treatment for 3 tumors (4.8%), second-line treatment for 13 (20.6%), and salvage treatment for 47 tumors (74.6%) resistant to other treatment modalities. Overall tumor control was achieved in 73% at 1 year. Tumor recurrence at 12 months was observed in 2 (12.5%) of 16 tumors for which {sup 106}Ru brachytherapy was used as the first- or second-line treatment and in 15 (31.9%) of 47 tumors for which {sup 106}Ru brachytherapy was used as salvage treatment. Eye retention was achieved in 76% of cases (31 of 41 eyes). Univariate and multivariate analyses revealed no statistically significant risk factors for tumor recurrence. Radiation complications included retinal detachment in 7 (17.1%), proliferative retinopathy in 1 (2.4%), and subcapsular cataract in 4 (9.7%) of 41 eyes. Conclusion: {sup 106}Ru brachytherapy is an effective treatment for retinoblastoma, with few secondary complications. Local vitreous seeding can be successfully treated with {sup 106}Ru brachytherapy.

  9. 21 CFR 882.5150 - Intravascular occluding catheter.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    .... Class III (premarket approval). (c) Date PMA or notice of completion of a PDP is required. A PMA or a... intravascular occluding catheter shall have an approved PMA or a declared completed PDP in effect before...

  10. 21 CFR 882.5150 - Intravascular occluding catheter.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    .... Class III (premarket approval). (c) Date PMA or notice of completion of a PDP is required. A PMA or a... intravascular occluding catheter shall have an approved PMA or a declared completed PDP in effect before...

  11. Intravascular laser therapy in different forms of lung diseases

    NASA Astrophysics Data System (ADS)

    Kirillov, M. N.; Reshetnikov, V. A.; Kazhekin, O. A.; Shepelenko, A. F.

    1993-06-01

    The potentions of laser intravascular therapy in elimination of pyogenic and inflammatory intoxication in cases of acute pneumonia, pyo-destructive diseases (including posttraumatic diseases) of the lungs are studied clinically.

  12. Image guided Brachytherapy: The paradigm of Gynecologic and Partial Breast HDR Brachytherapy

    NASA Astrophysics Data System (ADS)

    Diamantopoulos, S.; Kantemiris, I.; Konidari, A.; Zaverdinos, P.

    2015-09-01

    High dose rate (HDR) brachytherapy uses high strength radioactive sources and temporary interstitial implants to conform the dose to target and minimize the treatment time. The advances of imaging technology enable accurate reconstruction of the implant and exact delineation of high-risk CTV and the surrounding critical structures. Furthermore, with sophisticated treatment planning systems, applicator devices and stepping source afterloaders, brachytherapy evolved to a more precise, safe and individualized treatment. At the Radiation Oncology Department of Metropolitan Hospital Athens, MRI guided HDR gynecologic (GYN) brachytherapy and accelerated partial breast irradiation (APBI) with brachytherapy are performed routinely. Contouring and treatment planning are based on the recommendations of the GEC - ESTRO Working group. The task of this presentation is to reveal the advantages of 3D image guided brachytherapy over 2D brachytherapy. Thus, two patients treated at our department (one GYN and one APBI) will be presented. The advantage of having adequate dose coverage of the high risk CTV and simultaneous low doses to the OARs when using 3D image- based brachytherapy will be presented. The treatment techniques, equipment issues, as well as implantation, imaging and treatment planning procedures will be described. Quality assurance checks will be treated separately.

  13. Intravascular probe for detection of vulnerable plaque

    NASA Astrophysics Data System (ADS)

    Patt, Bradley E.; Iwanczyk, Jan S.; MacDonald, Lawrence R.; Yamaguchi, Yuko; Tull, Carolyn R.; Janecek, Martin; Hoffman, Edward J.; Strauss, H. William; Tsugita, Ross; Ghazarossian, Vartan

    2001-12-01

    Coronary angiography is unable to define the status of the atheroma, and only measures the luminal dimensions of the blood vessel, without providing information about plaque content. Up to 70% of heart attacks are caused by minimally obstructive vulnerable plaques, which are too small to be detected adequately by angiography. We have developed an intravascular imaging detector to identify vulnerable coronary artery plaques. The detector works by sensing beta or conversion electron radiotracer emissions from plaque-binding radiotracers. The device overcomes the technical constraints of size, sensitivity and conformance to the intravascular environment. The detector at the distal end of the catheter uses six 7mm long by 0.5mm diameter scintillation fibers coupled to 1.5m long plastic fibers. The fibers are offset from each other longitudinally by 6mm and arranged spirally around a guide wire in the catheter. At the proximal end of the catheter the optical fibers are coupled to an interface box with a snap on connector. The interface box contains a position sensitive photomultiplier tube (PSPMT) to decode the individual fibers. The whole detector assembly fits into an 8-French (2.7 mm in diameter) catheter. The PSPMT image is further decoded with software to give a linear image, the total instantaneous count rate and an audio output whose tone corresponds to the count rate. The device was tested with F-18 and Tl-204 sources. Spectrometric response, spatial resolution, sensitivity and beta to background ratio were measured. System resolution is 6 mm and the sensitivity is >500 cps / micrometers Ci when the source is 1 mm from the detector. The beta to background ratio was 11.2 for F-18 measured on a single fiber. The current device will lead to a system allowing imaging of labeled vulnerable plaque in coronary arteries. This type of signature is expected to enable targeted and cost effective therapies to prevent acute coronary artery diseases such as: unstable angina

  14. Development of a phantom to validate high-dose-rate brachytherapy treatment planning systems with heterogeneous algorithms

    SciTech Connect

    Moura, Eduardo S.; Rostelato, Maria Elisa C. M.; Zeituni, Carlos A.

    2015-04-15

    Purpose: This work presents the development of a phantom to verify the treatment planning system (TPS) algorithms used for high-dose-rate (HDR) brachytherapy. It is designed to measure the relative dose in a heterogeneous media. The experimental details used, simulation methods, and comparisons with a commercial TPS are also provided. Methods: To simulate heterogeneous conditions, four materials were used: Virtual Water™ (VM), BR50/50™, cork, and aluminum. The materials were arranged in 11 heterogeneity configurations. Three dosimeters were used to measure the relative response from a HDR {sup 192}Ir source: TLD-100™, Gafchromic{sup ®} EBT3 film, and an Exradin™ A1SL ionization chamber. To compare the results from the experimental measurements, the various configurations were modeled in the PENELOPE/penEasy Monte Carlo code. Images of each setup geometry were acquired from a CT scanner and imported into BrachyVision™ TPS software, which includes a grid-based Boltzmann solver Acuros™. The results of the measurements performed in the heterogeneous setups were normalized to the dose values measured in the homogeneous Virtual Water™ setup and the respective differences due to the heterogeneities were considered. Additionally, dose values calculated based on the American Association of Physicists in Medicine-Task Group 43 formalism were compared to dose values calculated with the Acuros™ algorithm in the phantom. Calculated doses were compared at the same points, where measurements have been performed. Results: Differences in the relative response as high as 11.5% were found from the homogeneous setup when the heterogeneous materials were inserted into the experimental phantom. The aluminum and cork materials produced larger differences than the plastic materials, with the BR50/50™ material producing results similar to the Virtual Water™ results. Our experimental methods agree with the PENELOPE/penEasy simulations for most setups and dosimeters. The

  15. Cardiac phase detection in intravascular ultrasound images

    NASA Astrophysics Data System (ADS)

    Matsumoto, Monica M. S.; Lemos, Pedro Alves; Yoneyama, Takashi; Furuie, Sergio Shiguemi

    2008-03-01

    Image gating is related to image modalities that involve quasi-periodic moving organs. Therefore, during intravascular ultrasound (IVUS) examination, there is cardiac movement interference. In this paper, we aim to obtain IVUS gated images based on the images themselves. This would allow the reconstruction of 3D coronaries with temporal accuracy for any cardiac phase, which is an advantage over the ECG-gated acquisition that shows a single one. It is also important for retrospective studies, as in existing IVUS databases there are no additional reference signals (ECG). From the images, we calculated signals based on average intensity (AI), and, from consecutive frames, average intensity difference (AID), cross-correlation coefficient (CC) and mutual information (MI). The process includes a wavelet-based filter step and ascendant zero-cross detection in order to obtain the phase information. Firstly, we tested 90 simulated sequences with 1025 frames each. Our method was able to achieve more than 95.0% of true positives and less than 2.3% of false positives ratio, for all signals. Afterwards, we tested in a real examination, with 897 frames and ECG as gold-standard. We achieved 97.4% of true positives (CC and MI), and 2.5% of false positives. For future works, methodology should be tested in wider range of IVUS examinations.

  16. Immunological characterization of pulmonary intravascular macrophages

    NASA Technical Reports Server (NTRS)

    Chitko-McKown, C. G.; Reddy, D. N.; Chapes, S. K.; McKown, R. D.; Blecha, F.; Spooner, B. S. (Principal Investigator)

    1992-01-01

    Pulmonary intravascular macrophages (PIMs) are lung macrophages found apposed to the endothelium of pulmonary capillaries. In many species, they are responsible for the clearance of blood-borne particulates and pathogens; however, little else is known about their roles as immunologic effector cells. We compared PIMs with pulmonary alveolar macrophages (PAMs) to determine the relative immunological activities of these two cell populations. Our results suggested that both populations possess similar phagocytic and bactericidal activities. In assays measuring cytotoxicity, PIMs were more cytotoxic than PAMs against virally infected target cells; however, differences between these macrophage populations were not as marked when noninfected targets were used. LPS-stimulated PIMs produced more T-cell proliferative cytokines than PAMs, and both populations of nonstimulated macrophages produced similar amounts of the cytokines. In contrast, PAMs produced more TNF alpha and NO2- than PIMs when both populations were stimulated with LPS; however, nonstimulated PAMs and PIMs produced similar amounts of TNF alpha and NO2. These data suggest that bovine PIMs are immunologically active. Differences between the degrees of activity of PIMs and PAMs indicate that these macrophage populations may have different roles in lung surveillance.

  17. [Infection prevention and control in intravascular devices].

    PubMed

    Colombo, D; Russolillo, C

    2003-04-01

    Intravascular devices (IVD) are indispensable in the care of the critical patient; even so, their use can be complicated by infection, which is generally associated with longer hospital stay and ensuing higher hospital costs. It is therefore imperative that guidelines are applied that constitute a basis of information upon which the individual facility can develop its own strategy. The strategy can be outlined under the following points: a) staff training, b) surveillance of IVD-associated infections, c) hand washing, d) barrier measures during catheter introduction and management, e) insertion site management and medication systems for the insertion site, f) choice and replacement of the IVD, g) replacement of intravenous administration devices and liquids, h) antimicrobial prophylaxis. In the management of central venous catheters (CVC), recommendations call for: 1) the use of a single lumen CVC, unless multiple accesses are needed; 2) the peripheral placement of CVCs, both in the use of tunneled catheters and/or implantable vascular devices in patients over 4 years of age in which long-term vascular access (> 30 days) is planned; 3) the use of completely implantable devices in pediatric patients less than 4 years of age requiring long-term vascular access; 4) the use of the subclavian artery as the site of CVC insertion unless clinically contraindicated (e.g. coagulopathy, anatomic alterations); 5) the application of barrier precautions during CVC introduction and in the management of the catheter and the insertion site. PMID:12766724

  18. Laboratory testing in disseminated intravascular coagulation.

    PubMed

    Favaloro, Emmanuel J

    2010-06-01

    The diagnosis of disseminated intravascular coagulation (DIC) relies on clinical signs and symptoms, identification of the underlying disease, the results of laboratory testing, and differentiation from other pathologies. The clinical features mainly depend on the underlying cause of the DIC. The laboratory diagnosis of DIC uses a combination of tests because no single test result alone can firmly establish or rule out the diagnosis. Global tests of hemostasis may initially provide evidence of coagulation activation and later in the process provide evidence of consumption of coagulation factors, but their individual diagnostic efficiency is limited. Fibrinolytic markers, in particular D-dimer, are reflective of activation of both coagulation and fibrinolysis, so that a normal finding can be useful for ruling-out DIC. Decreased levels of the natural anticoagulants (in particular, antithrombin and protein C) are frequently observed in patients with DIC, but their measurement is not normally incorporated into standard diagnostic algorithms. New tests are being explored for utility in DIC, and some additional tests may be useful on a case-by-case basis, depending on the proposed cause of the DIC or their local availability. For example, clot waveform analysis is useful but currently limited to a single instrument. Also, procalcitonin is an inflammatory biomarker that may be useful within the context of septic DIC, and activated factor X clotting time is an emerging test of procoagulant phospholipids that also seems to hold promise in DIC.

  19. Intravascular Neural Interface with Nanowire Electrode

    PubMed Central

    Watanabe, Hirobumi; Takahashi, Hirokazu; Nakao, Masayuki; Walton, Kerry; Llinás, Rodolfo R.

    2010-01-01

    Summary A minimally invasive electrical recording and stimulating technique capable of simultaneously monitoring the activity of a significant number (e.g., 103 to 104) of neurons is an absolute prerequisite in developing an effective brain–machine interface. Although there are many excellent methodologies for recording single or multiple neurons, there has been no methodology for accessing large numbers of cells in a behaving experimental animal or human individual. Brain vascular parenchyma is a promising candidate for addressing this problem. It has been proposed [1, 2] that a multitude of nanowire electrodes introduced into the central nervous system through the vascular system to address any brain area may be a possible solution. In this study we implement a design for such microcatheter for ex vivo experiments. Using Wollaston platinum wire, we design a submicron-scale electrode and develop a fabrication method. We then evaluate the mechanical properties of the electrode in a flow when passing through the intricacies of the capillary bed in ex vivo Xenopus laevis experiments. Furthermore, we demonstrate the feasibility of intravascular recording in the spinal cord of Xenopus laevis. PMID:21572940

  20. Endotoxin Induced Disseminated Intravascular Coagulation in Cattle

    PubMed Central

    Thomson, G. W.; McSherry, B. J.; Valli, V. E. O.

    1974-01-01

    Endotoxin administered intravenously to a group of four calves resulted in disseminated intravascular coagulation. A sublethal dose of piromen, a commercially available Pseudomonas spp endotoxin, was used. Serial measurements of total plasma fibrinogen, soluble fibrin levels, ethanol gelation tests, protamine sulfate tests, fibrinogen-fibrin-related antigen (FR-antigen) and prothrombin and thrombin times were done. Initial depression of plasma fibrinogen with a nadir of about 40% of pre-endotoxin levels at eight to 11 hours post-endotoxin (+8 to +11 hours) followed by an overcompensation to 180% at +60 to +108 hours was shown. Soluble fibrin was demonstrated in plasma from +2 to +22 hours with a peak of 100-114 mg/100 ml at +4 to +9 hours. Positive plasma ethanol gelation and protamine sulfate tests, as well as the presence of serum FR-antigen, occurred consistently following endotoxin administration. Significant increases in prothrombin times (PT) from +4 to +40 hours and in thrombin times (TT) from +4 to +16 hours were demonstrated. The peak increase of PT at +8 to +10 hours was 180%. The peak increase of TT at +6 to +9 hours was 260-290%. ImagesFig. 1.Fig. 2.Fig. 3.Fig. 4. PMID:4279765

  1. The basics of intravascular optical coherence tomography.

    PubMed

    Roleder, Tomasz; Jąkała, Jacek; Kałuża, Grzegorz L; Partyka, Łukasz; Proniewska, Klaudia; Pociask, Elżbieta; Zasada, Wojciech; Wojakowski, Wojciech; Gąsior, Zbigniew; Dudek, Dariusz

    2015-01-01

    Optical coherence tomography (OCT) has opened new horizons for intravascular coronary imaging. It utilizes near-infrared light to provide a microscopic insight into the pathology of coronary arteries in vivo. Optical coherence tomography is also capable of identifying the chemical composition of atherosclerotic plaques and detecting traits of their vulnerability. At present it is the only tool to measure the thickness of the fibrous cap covering the lipid core of the atheroma, and thus it is an exceptional modality to detect plaques that are prone to rupture (thin fibrous cap atheromas). Moreover, it facilitates distinguishing between plaque rupture and plaque erosion as a cause of acute intracoronary thrombosis. Optical coherence tomography is applied to guide angioplasties of coronary lesions and to assess outcomes of percutaneous coronary interventions broadly. It identifies stent malapposition, dissections, and thrombosis with unprecedented precision. Furthermore, OCT helps to monitor vessel healing after stenting. It evaluates the coverage of stent struts by the neointima and detects in-stent neoatherosclerosis. With so much potential, new studies are warranted to determine OCT's clinical impact. The following review presents the technical background, basics of OCT image interpretation, and practical tips for adequate OCT imaging, and outlines its established and potential clinical application.

  2. Rotational multispectral fluorescence lifetime imaging and intravascular ultrasound: bimodal system for intravascular applications

    PubMed Central

    Ma, Dinglong; Bec, Julien; Yankelevich, Diego R.; Gorpas, Dimitris; Fatakdawala, Hussain; Marcu, Laura

    2014-01-01

    Abstract. We report the development and validation of a hybrid intravascular diagnostic system combining multispectral fluorescence lifetime imaging (FLIm) and intravascular ultrasound (IVUS) for cardiovascular imaging applications. A prototype FLIm system based on fluorescence pulse sampling technique providing information on artery biochemical composition was integrated with a commercial IVUS system providing information on artery morphology. A customized 3-Fr bimodal catheter combining a rotational side-view fiberoptic and a 40-MHz IVUS transducer was constructed for sequential helical scanning (rotation and pullback) of tubular structures. Validation of this bimodal approach was conducted in pig heart coronary arteries. Spatial resolution, fluorescence detection efficiency, pulse broadening effect, and lifetime measurement variability of the FLIm system were systematically evaluated. Current results show that this system is capable of temporarily resolving the fluorescence emission simultaneously in multiple spectral channels in a single pullback sequence. Accurate measurements of fluorescence decay characteristics from arterial segments can be obtained rapidly (e.g., 20 mm in 5 s), and accurate co-registration of fluorescence and ultrasound features can be achieved. The current finding demonstrates the compatibility of FLIm instrumentation with in vivo clinical investigations and its potential to complement conventional IVUS during catheterization procedures. PMID:24898604

  3. Quantitative blood speed imaging with intravascular ultrasound.

    PubMed

    Crowe, J R; O'Donnell, M

    2001-03-01

    Previously, we presented a method of real-time arterial color flow imaging using an intravascular ultrasound (IVUS) imaging system, where real-time RF A-scans were processed with an FIR (finite-impulse response) filter bank to estimate relative blood speed. Although qualitative flow measurements are clinically valuable, realizing the full potential of blood flow imaging requires quantitative flow speed and volume measurements in real time. Unfortunately, the rate of RF echo-to-echo decorrelation is not directly related to scatterer speed in a side-looking IVUS system because the elevational extent of the imaging slice varies with range. Consequently, flow imaging methods using any type of decorrelation processing to estimate blood speed without accounting for spatial variation of the radiation pattern will have estimation errors that prohibit accurate comparison of speed estimates from different depths. The FIR filter bank approach measures the rate of change of the ultrasound signal by estimating the slow-time spectrum of RF echoes. A filter bank of M bandpass filters is applied in parallel to estimate M components of the slow-time DFT (discrete Fourier transform). The relationship between the slow-time spectrum, aperture diffraction pattern, and scatterer speed is derived for a simplified target. Because the ultimate goal of this work is to make quantitative speed measurements, we present a method to map slow time spectral characteristics to a quantitative estimate. Results of the speed estimator are shown for a simulated circumferential catheter array insonifying blood moving uniformly past the array (i.e., plug flow) and blood moving with a parabolic profile (i.e., laminar flow). PMID:11370361

  4. An Open System for Intravascular Ultrasound Imaging

    PubMed Central

    Qiu, Weibao; Chen, Yan; Li, Xiang; Yu, Yanyan; Cheng, Wang Fai; Tsang, Fu Keung; Zhou, Qifa; Shung, K. Kirk; Dai, Jiyan; Sun, Lei

    2013-01-01

    Visualization of the blood vessels can provide valuable morphological information for diagnosis and therapy strategies for cardiovascular disease. Intravascular ultrasound (IVUS) is able to delineate internal structures of vessel wall with fine spatial resolution. However, the developed IVUS is insufficient to identify the fibrous cap thickness and tissue composition of atherosclerotic lesions. Novel imaging strategies have been proposed, such as increasing the center frequency of ultrasound or using a modulated excitation technique to improve the accuracy of diagnosis. Dual-mode tomography combining IVUS with optical tomography has also been developed to determine tissue morphology and characteristics. The implementation of these new imaging methods requires an open system that allows users to customize the system for various studies. This paper presents the development of an IVUS system that has open structures to support various imaging strategies. The system design is based on electronic components and printed circuit board, and provides reconfigurable hardware implementation, programmable image processing algorithms, flexible imaging control, and raw RF data acquisition. In addition, the proposed IVUS system utilized a miniaturized ultrasound transducer constructed using PMN-PT single crystal for better piezoelectric constant and electromechanical coupling coefficient than traditional lead zirconate titanate (PZT) ceramics. Testing results showed that the IVUS system could offer a minimum detectable signal of 25 μV, allowing a 51 dB dynamic range at 47 dB gain, with a frequency range from 20 to 80 MHz. Finally, phantom imaging, in vitro IVUS vessel imaging, and multimodality imaging with photoacoustics were conducted to demonstrate the performance of the open system. PMID:23143570

  5. Early voiding dysfunction associated with prostate brachytherapy.

    PubMed

    Wagner; Nag; Young; Bahnson

    2000-12-15

    Introduction: Transperineal prostate brachytherapy is gaining popularity as a treatment for clinically localized carcinoma of the prostate. Very little prospective data exists addressing the issue of complications associated with this procedure. We present an analysis of the early voiding dysfunction associated with prostate brachytherapy. Materials and Methods: Forty-six consecutive patients who underwent Palladium-103 (Pd-103) seed placement for clinically localized prostate carcinoma were evaluated prospectively for any morbidity associated with the procedure. Twenty-three patients completed an International Prostate Symptom Score (IPSS) questionnaire preoperatively, at their first postoperative visit, and at their second postoperative visit. The total IPSS, each of the seven individual components, and the "bother" score were evaluated separately for each visit, and statistical significance was determined. Results: Urinary retention occurred in 7/46 patients (15%). Of these, 5 were able to void spontaneously after catheter removal. One patient is maintained with a suprapubic tube, and one patient is currently on continuous intermittent catheterization. Baseline IPSS was 7.1 and this went to 20.0 at the first postoperative visit (p<0.001). By the second postoperative visit, the IPSS was 8.0. Conclusions: In our experience, prostate brachytherapy for localized carcinoma of the prostate is associated with a 15% catheterization rate and a significant increase in the IPSS (7.1 to 20.0). This increase in the IPSS seems to be self-limited. Patients need to be educated on these issues prior to prostate brachytherapy. PMID:11113369

  6. The American Brachytherapy Society Treatment Recommendations for Locally Advanced Carcinoma of the Cervix Part II: High Dose-Rate Brachytherapy

    PubMed Central

    Viswanathan, Akila N.; Beriwal, Sushil; De Los Santos, Jennifer; Demanes, D. Jeffrey; Gaffney, David; Hansen, Jorgen; Jones, Ellen; Kirisits, Christian; Thomadsen, Bruce; Erickson, Beth

    2012-01-01

    Purpose This report presents the 2011 update to the American Brachytherapy Society (ABS) high-dose-rate (HDR) brachytherapy guidelines for locally advanced cervical cancer. Methods Members of the American Brachytherapy Society (ABS) with expertise in cervical cancer brachytherapy formulated updated guidelines for HDR brachytherapy using tandem and ring, ovoids, cylinder or interstitial applicators for locally advanced cervical cancer were revised based on medical evidence in the literature and input of clinical experts in gynecologic brachytherapy. Results The Cervical Cancer Committee for Guideline Development affirms the essential curative role of tandem-based brachytherapy in the management of locally advanced cervical cancer. Proper applicator selection, insertion, and imaging are fundamental aspects of the procedure. Three-dimensional imaging with magnetic resonance or computed tomography or radiographic imaging may be used for treatment planning. Dosimetry must be performed after each insertion prior to treatment delivery. Applicator placement, dose specification and dose fractionation must be documented, quality assurance measures must be performed, and follow-up information must be obtained. A variety of dose/fractionation schedules and methods for integrating brachytherapy with external-beam radiation exist. The recommended tumor dose in 2 Gray (Gy) per fraction radiobiologic equivalence (EQD2) is 80–90 Gy, depending on tumor size at the time of brachytherapy. Dose limits for normal tissues are discussed. Conclusion These guidelines update those of 2000 and provide a comprehensive description of HDR cervical cancer brachytherapy in 2011. PMID:22265437

  7. A Review of Intravascular Ultrasound–Based Multimodal Intravascular Imaging: The Synergistic Approach to Characterizing Vulnerable Plaques

    PubMed Central

    Ma, Teng; Zhou, Bill; Hsiai, Tzung K.; Shung, K. Kirk

    2015-01-01

    Catheter-based intravascular imaging modalities are being developed to visualize pathologies in coronary arteries, such as high-risk vulnerable atherosclerotic plaques known as thin-cap fibroatheroma, to guide therapeutic strategy at preventing heart attacks. Mounting evidences have shown three distinctive histopathological features—the presence of a thin fibrous cap, a lipid-rich necrotic core, and numerous infiltrating macrophages—are key markers of increased vulnerability in atherosclerotic plaques. To visualize these changes, the majority of catheter-based imaging modalities used intravascular ultrasound (IVUS) as the technical foundation and integrated emerging intravascular imaging techniques to enhance the characterization of vulnerable plaques. However, no current imaging technology is the unequivocal “gold standard” for the diagnosis of vulnerable atherosclerotic plaques. Each intravascular imaging technology possesses its own unique features that yield valuable information although encumbered by inherent limitations not seen in other modalities. In this context, the aim of this review is to discuss current scientific innovations, technical challenges, and prospective strategies in the development of IVUS-based multi-modality intravascular imaging systems aimed at assessing atherosclerotic plaque vulnerability. PMID:26400676

  8. Management of cancer-associated disseminated intravascular coagulation.

    PubMed

    Levi, Marcel

    2016-04-01

    Cancer may be complicated by the occurrence of disseminated intravascular coagulation (DIC). DIC is characterized by a widespread and intravascular activation of coagulation (leading to intravascular fibrin deposition) and simultaneous consumption of coagulation factors and platelets (potentially resulting in bleeding). Clinically, DIC in cancer has in general a less fulminant presentation than the types of DIC complicating sepsis and trauma. A more gradual, but also more chronic, systemic activation of coagulation can proceed subclinically. Eventually this process may lead to exhaustion of platelets and coagulation factors and bleeding (for example at the site of the tumor) may be the first clinical symptom indicating the presence of DIC. In some cases, the clinical presentation of DIC in cancer may be reminiscent of thrombotic microangiopathies, which is understandable in view of the role of endothelium in both conditions. The therapeutic cornerstone of DIC is treatment of the underlying disorder but supportive treatment, specifically aimed at the hemostatic system may be required. PMID:27067981

  9. 21 CFR 880.5970 - Percutaneous, implanted, long-term intravascular catheter.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Percutaneous, implanted, long-term intravascular... and Personal Use Therapeutic Devices § 880.5970 Percutaneous, implanted, long-term intravascular catheter. (a) Identification. A percutaneous, implanted, long-term intravascular catheter is a device...

  10. Automated intraoperative calibration for prostate cancer brachytherapy

    SciTech Connect

    Kuiran Chen, Thomas; Heffter, Tamas; Lasso, Andras; Pinter, Csaba; Abolmaesumi, Purang; Burdette, E. Clif; Fichtinger, Gabor

    2011-11-15

    Purpose: Prostate cancer brachytherapy relies on an accurate spatial registration between the implant needles and the TRUS image, called ''calibration''. The authors propose a new device and a fast, automatic method to calibrate the brachytherapy system in the operating room, with instant error feedback. Methods: A device was CAD-designed and precision-engineered, which mechanically couples a calibration phantom with an exact replica of the standard brachytherapy template. From real-time TRUS images acquired from the calibration device and processed by the calibration system, the coordinate transformation between the brachytherapy template and the TRUS images was computed automatically. The system instantly generated a report of the target reconstruction accuracy based on the current calibration outcome. Results: Four types of validation tests were conducted. First, 50 independent, real-time calibration trials yielded an average of 0.57 {+-} 0.13 mm line reconstruction error (LRE) relative to ground truth. Second, the averaged LRE was 0.37 {+-} 0.25 mm relative to ground truth in tests with six different commercial TRUS scanners operating at similar imaging settings. Furthermore, testing with five different commercial stepper systems yielded an average of 0.29 {+-} 0.16 mm LRE relative to ground truth. Finally, the system achieved an average of 0.56 {+-} 0.27 mm target registration error (TRE) relative to ground truth in needle insertion tests through the template in a water tank. Conclusions: The proposed automatic, intraoperative calibration system for prostate cancer brachytherapy has achieved high accuracy, precision, and robustness.

  11. Brachytherapy in pelvic malignancies: a review for radiologists.

    PubMed

    Vicens, Rafael A; Rodriguez, Joshua; Sheplan, Lawrence; Mayo, Cody; Mayo, Lauren; Jensen, Corey

    2015-10-01

    Brachytherapy, also known as sealed source or internal radiation therapy, involves placement of a radioactive source immediately adjacent to or within tumor, thus enabling delivery of a localized high dose of radiation. Compared with external beam radiation which must first pass through non-target tissues, brachytherapy results in less radiation dose to normal tissues. In the past decade, brachytherapy use has markedly increased, thus radiologists are encountering brachytherapy devices and their associated post-treatment changes to increasing degree. This review will present a variety of brachytherapy devices that radiologists may encounter during diagnostic pelvic imaging with a focus on prostate and gynecologic malignancies. The reader will become familiar with the function, correct position, and potential complications of brachytherapy devices in an effort to improve diagnostic reporting and communication with clinicians.

  12. Incidental Intravascular Lipoleiomyomatosis in A Hysterectomy Specimen: How To Manage?

    PubMed Central

    Aslanova, Rakhshanda; Can, Nuray; Okten, Sabri Berkem; Aslan, Mehmet Musa

    2015-01-01

    Leiomyomas are common benign tumors in female gynaecologic surgery. They are originated from smooth muscle cells of the uterus and/or sometimes of the uterine vessels. Intravascular lipoleiomyomatosis is a very rare form of leiomyomas which grow within veins and can extend up to vena cava inferior and right heart chamber with cardiac symptoms and is diagnosed by cardiovascular surgeons. We report a case of incidental intravascular lipoleiomyomatosis which was confined to the uterus being diagnosed after a total abdominal hysterectomy by pathology and its management strategy. PMID:25738043

  13. Current concepts in the management of disseminated intravascular coagulation.

    PubMed

    Thachil, Jecko; Toh, Cheng Hock

    2012-04-01

    Disseminated Intravascular Coagulation is a clinicopathological syndrome where widespread intravascular coagulation occurs in response to an inciting process. The pathophysiology for this disorder is complex with an important role for thrombin, the central regulator of the coagulation process. Since the clinical spectrum of DIC is variable due to its dynamic nature, the laboratory diagnosis should ideally be not based on a single marker or an isolated set of results. The treatment should primary focus on the management of the underlying triggering condition with blood products used as resuscitative measures. Newer therapeutic modalities have been recently tried with success although the management of DIC still remains a major challenge.

  14. Development of prototype shielded cervical intracavitary brachytherapy applicators compatible with CT and MR imaging

    SciTech Connect

    Price, Michael J.; Jackson, Edward F.; Gifford, Kent A.; Eifel, Patricia J.; Mourtada, Firas

    2009-12-15

    were performed to match the attenuation due to the thickness of this new shield type with current, clinically utilized ovoid shields and a {sup 192}Ir HDR/PDR source. Results: Artifact-free CT images could be acquired of both generation applicators in a clinically applicable geometry using the S and S method. MR images were acquired of the phantom applicator containing shields, which contained minimal, clinically relevant artifacts. The thickness required to match the dosimetry of the MR-compatible and sFW rectal shields was determined using Monte Carlo simulations. Conclusions: Utilizing a S and S imaging method in conjunction with prototype applicators that feature movable interovoid shields, they were able to acquire artifact-free CT image sets in a clinically applicable geometry. MR images were acquired of a phantom applicator that contained shields composed of a novel tungsten alloy. Artifacts were largely limited to regions within the ovoid cap and are of no clinical interest. The second generation A{sup 3} utilizes this material for interovoid shielding.

  15. Incidence of intravascular penetration in transforaminal cervical epidural steroid injections.

    PubMed

    Furman, Michael B; Giovanniello, Michael T; O'Brien, Erin M

    2003-01-01

    STUDY DESIGN A prospective, observational, human, study was conducted. OBJECTIVES To evaluate the incidence of vascular penetration during fluoroscopically guided, contrast-enhanced transforaminal cervical epidural steroid injections, and to determine whether the observation of blood in the needle hub can be used to predict a vascular injection. SUMMARY OF BACKGROUND DATA Incorrectly placed intravascular cervical spinal injections result in medication flow systemically and not to the desired target. A recently published study demonstrates a high incidence of intravascular injections in transforaminal lumbosacral epidural injections. No studies so far have evaluated the incidence of vascular injections in transforaminal cervical epidural steroid injections, nor have they calculated the ability of observed blood in the needle hub to predict a vascular injection in the cervical spine.METHODS The incidence of fluoroscopically confirmed intravascular uptake of contrast was prospectively observed in 337 patients treated with cervical transforaminal epidural steroid injections. The ability of observed blood in the needle hub to predict intravascular injection was also investigated. For each subject, the injection level was chosen on the basis of the clinical scenario including history, physical examination, and review of imaging studies. Some patients had multilevel injections. Using fluoroscopic guidance, the authors placed a 25-gauge needle into the epidural space using a transforaminal approach according to accepted standard technique. Needle tip location was confirmed with biplanar imaging. The presence or absence of blood in the needle hub spontaneously ("flash") and after attempted aspiration by pulling back on the syringe's plunger was documented. Contrast then was injected under real-time fluoroscopy to determine whether the location of the needle tip was intravascular. The results were recorded in a prospective manner indicating the presence or absence of blood

  16. A Prognostic Dilemma of Basal Cell Carcinoma with Intravascular Invasion

    PubMed Central

    Niumsawatt, Vachara; Castley, Andrew

    2016-01-01

    Summary: Basal cell carcinoma is the most common malignancy; however, it very rarely metastasizes. Despite the low mortality caused by this cancer, once it spreads, it has dim prognosis. We report a case of basal cell carcinoma with rare intravascular invasion and review the literature for risk factors and management of metastasis.

  17. 21 CFR 870.3375 - Cardiovascular intravascular filter.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Cardiovascular intravascular filter. 870.3375 Section 870.3375 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... side of the heart and the pulmonary circulation. (b) Classification. Class II. The special controls...

  18. 21 CFR 870.3375 - Cardiovascular intravascular filter.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Cardiovascular intravascular filter. 870.3375 Section 870.3375 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... side of the heart and the pulmonary circulation. (b) Classification. Class II. The special controls...

  19. 21 CFR 870.3375 - Cardiovascular intravascular filter.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Cardiovascular intravascular filter. 870.3375 Section 870.3375 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Prosthetic Devices §...

  20. 21 CFR 870.3375 - Cardiovascular intravascular filter.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Cardiovascular intravascular filter. 870.3375 Section 870.3375 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Prosthetic Devices §...

  1. Intravascular Ultrasound and Virtual Histology of Basilar Artery Atherosclerotic Lesion

    PubMed Central

    López-Rueda, A.; González García, A.; Aguilar Pérez, M.; Gutiérrez Jarrín, R.K.; Mayol Deyá, A.

    2011-01-01

    Summary To our knowledge, this paper presents the first intravascular ultrasound and virtual histology (IVUS-VH) study in the basilar artery. IVUS-VH serves to characterize and determine the extension of the plaque and we also to check stent placement. PMID:22192552

  2. Modern head and neck brachytherapy: from radium towards intensity modulated interventional brachytherapy

    PubMed Central

    2014-01-01

    Intensity modulated brachytherapy (IMBT) is a modern development of classical interventional radiation therapy (brachytherapy), which allows the application of a high radiation dose sparing severe adverse events, thereby further improving the treatment outcome. Classical indications in head and neck (H&N) cancers are the face, the oral cavity, the naso- and oropharynx, the paranasal sinuses including base of skull, incomplete resections on important structures, and palliation. The application type can be curative, adjuvant or perioperative, as a boost to external beam radiation as well as without external beam radiation and with palliative intention. Due to the frequently used perioperative application method (intraoperative implantation of inactive applicators and postoperative performance of radiation), close interdisciplinary cooperation between surgical specialists (ENT-, dento-maxillary-facial-, neuro- and orbital surgeons), as well interventional radiotherapy (brachytherapy) experts are obligatory. Published results encourage the integration of IMBT into H&N therapy, thereby improving the prognosis and quality of life of patients. PMID:25834586

  3. 10 CFR 35.67 - Requirements for possession of sealed sources and brachytherapy sources.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... brachytherapy sources. 35.67 Section 35.67 Energy NUCLEAR REGULATORY COMMISSION MEDICAL USE OF BYPRODUCT... brachytherapy sources. (a) A licensee in possession of any sealed source or brachytherapy source shall follow... brachytherapy sources, except for gamma stereotactic radiosurgery sources, shall conduct a semi-annual...

  4. 10 CFR 35.400 - Use of sources for manual brachytherapy.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 1 2014-01-01 2014-01-01 false Use of sources for manual brachytherapy. 35.400 Section 35.400 Energy NUCLEAR REGULATORY COMMISSION MEDICAL USE OF BYPRODUCT MATERIAL Manual Brachytherapy § 35.400 Use of sources for manual brachytherapy. A licensee shall use only brachytherapy sources...

  5. 10 CFR 35.400 - Use of sources for manual brachytherapy.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 1 2012-01-01 2012-01-01 false Use of sources for manual brachytherapy. 35.400 Section 35.400 Energy NUCLEAR REGULATORY COMMISSION MEDICAL USE OF BYPRODUCT MATERIAL Manual Brachytherapy § 35.400 Use of sources for manual brachytherapy. A licensee shall use only brachytherapy sources...

  6. 10 CFR 35.67 - Requirements for possession of sealed sources and brachytherapy sources.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... brachytherapy sources. 35.67 Section 35.67 Energy NUCLEAR REGULATORY COMMISSION MEDICAL USE OF BYPRODUCT... brachytherapy sources. (a) A licensee in possession of any sealed source or brachytherapy source shall follow... brachytherapy sources, except for gamma stereotactic radiosurgery sources, shall conduct a semi-annual...

  7. 10 CFR 35.400 - Use of sources for manual brachytherapy.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 1 2013-01-01 2013-01-01 false Use of sources for manual brachytherapy. 35.400 Section 35.400 Energy NUCLEAR REGULATORY COMMISSION MEDICAL USE OF BYPRODUCT MATERIAL Manual Brachytherapy § 35.400 Use of sources for manual brachytherapy. A licensee shall use only brachytherapy sources...

  8. 10 CFR 35.67 - Requirements for possession of sealed sources and brachytherapy sources.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... brachytherapy sources. 35.67 Section 35.67 Energy NUCLEAR REGULATORY COMMISSION MEDICAL USE OF BYPRODUCT... brachytherapy sources. (a) A licensee in possession of any sealed source or brachytherapy source shall follow... brachytherapy sources, except for gamma stereotactic radiosurgery sources, shall conduct a semi-annual...

  9. 10 CFR 35.400 - Use of sources for manual brachytherapy.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Use of sources for manual brachytherapy. 35.400 Section 35.400 Energy NUCLEAR REGULATORY COMMISSION MEDICAL USE OF BYPRODUCT MATERIAL Manual Brachytherapy § 35.400 Use of sources for manual brachytherapy. A licensee shall use only brachytherapy sources...

  10. 10 CFR 35.67 - Requirements for possession of sealed sources and brachytherapy sources.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... brachytherapy sources. 35.67 Section 35.67 Energy NUCLEAR REGULATORY COMMISSION MEDICAL USE OF BYPRODUCT... brachytherapy sources. (a) A licensee in possession of any sealed source or brachytherapy source shall follow... brachytherapy sources, except for gamma stereotactic radiosurgery sources, shall conduct a semi-annual...

  11. 10 CFR 35.67 - Requirements for possession of sealed sources and brachytherapy sources.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... brachytherapy sources. 35.67 Section 35.67 Energy NUCLEAR REGULATORY COMMISSION MEDICAL USE OF BYPRODUCT... brachytherapy sources. (a) A licensee in possession of any sealed source or brachytherapy source shall follow... brachytherapy sources, except for gamma stereotactic radiosurgery sources, shall conduct a semi-annual...

  12. 10 CFR 35.400 - Use of sources for manual brachytherapy.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 1 2011-01-01 2011-01-01 false Use of sources for manual brachytherapy. 35.400 Section 35.400 Energy NUCLEAR REGULATORY COMMISSION MEDICAL USE OF BYPRODUCT MATERIAL Manual Brachytherapy § 35.400 Use of sources for manual brachytherapy. A licensee shall use only brachytherapy sources...

  13. The evolution of brachytherapy treatment planning.

    PubMed

    Rivard, Mark J; Venselaar, Jack L M; Beaulieu, Luc

    2009-06-01

    Brachytherapy is a mature treatment modality that has benefited from technological advances. Treatment planning has advanced from simple lookup tables to complex, computer-based dose-calculation algorithms. The current approach is based on the AAPM TG-43 formalism with recent advances in acquiring single-source dose distributions. However, this formalism has clinically relevant limitations for calculating patient dose. Dose-calculation algorithms are being developed based on Monte Carlo methods, collapsed cone, and solving the linear Boltzmann transport equation. In addition to improved dose-calculation tools, planning systems and brachytherapy treatment planning will account for material heterogeneities, scatter conditions, radiobiology, and image guidance. The AAPM, ESTRO, and other professional societies are working to coordinate clinical integration of these advancements. This Vision 20/20 article provides insight into these endeavors.

  14. Rotating-shield brachytherapy for cervical cancer

    NASA Astrophysics Data System (ADS)

    Yang, Wenjun; Kim, Yusung; Wu, Xiaodong; Song, Qi; Liu, Yunlong; Bhatia, Sudershan K.; Sun, Wenqing; Flynn, Ryan T.

    2013-06-01

    In this treatment planning study, the potential benefits of a rotating shield brachytherapy (RSBT) technique based on a partially-shielded electronic brachytherapy source were assessed for treating cervical cancer. Conventional intracavitary brachytherapy (ICBT), intracavitary plus supplementary interstitial (IS+ICBT), and RSBT treatment plans for azimuthal emission angles of 180° (RSBT-180) and 45° (RSBT-45) were generated for five patients. For each patient, high-risk clinical target volume (HR-CTV) equivalent dose in 2 Gy fractions (EQD2) (α/β = 10 Gy) was escalated until bladder, rectum, or sigmoid colon tolerance EQD2 values were reached. External beam radiotherapy dose (1.8 Gy × 25) was accounted for, and brachytherapy was assumed to have been delivered in 5 fractions. IS+ICBT provided a greater HR-CTV D90 (minimum EQD2 to the hottest 90%) than ICBT. D90 was greater for RSBT-45 than IS+ICBT for all five patients, and greater for RSBT-180 than IS+ICBT for two patients. When the RSBT-45/180 plan with the lowest HR-CTV D90 that was greater than the D90 the ICBT or IS+ICBT plan was selected, the average (range) of D90 increases for RSBT over ICBT and IS+ICBT were 16.2 (6.3-27.2)and 8.5 (0.03-20.16) Gy, respectively. The average (range) treatment time increase per fraction of RSBT was 34.56 (3.68-70.41) min over ICBT and 34.59 (3.57-70.13) min over IS+ICBT. RSBT can increase D90 over ICBT and IS+ICBT without compromising organ-at-risk sparing. The D90 and treatment time improvements from RSBT depend on the patient and shield emission angle.

  15. Erectile Function Durability Following Permanent Prostate Brachytherapy

    SciTech Connect

    Taira, Al V.; Merrick, Gregory S.; Galbreath, Robert W.; Butler, Wayne M.; Wallner, Kent E.; Kurko, Brian S.; Anderson, Richard; Lief, Jonathan H.

    2009-11-01

    Purpose: To evaluate long-term changes in erectile function following prostate brachytherapy. Methods and Materials: This study included 226 patients with prostate cancer and preimplant erectile function assessed by the International Index of Erectile Function-6 (IIEF-6) who underwent brachytherapy in two prospective randomized trials between February 2001 and January 2003. Median follow-up was 6.4 years. Pre- and postbrachytherapy potency was defined as IIEF-6 >= 13 without pharmacologic or mechanical support. The relationship among clinical, treatment, and dosimetric parameters and erectile function was examined. Results: The 7-year actuarial rate of potency preservation was 55.6% with median postimplant IIEF of 22 in potent patients. Potent patients were statistically younger (p = 0.014), had a higher preimplant IIEF (p < 0.001), were less likely to be diabetic (p = 0.002), and were more likely to report nocturnal erections (p = 0.008). Potency preservation in men with baseline IIEF scores of 29-30, 24-28, 18-23, and 13-17 were 75.5% vs. 73.6%, 51.7% vs. 44.8%, 48.0% vs. 40.0%, and 23.5% vs. 23.5% in 2004 vs. 2008. In multivariate Cox regression analysis, preimplant IIEF, hypertension, diabetes, prostate size, and brachytherapy dose to proximal penis strongly predicted for potency preservation. Impact of proximal penile dose was most pronounced for men with IIEF of 18-23 and aged 60-69. A significant minority of men who developed postimplant impotence ultimately regained erectile function. Conclusion: Potency preservation and median IIEF scores following brachytherapy are durable. Thoughtful dose sparing of proximal penile structures and early penile rehabilitation may further improve these results.

  16. Design and optimization of a brachytherapy robot

    NASA Astrophysics Data System (ADS)

    Meltsner, Michael A.

    Trans-rectal ultrasound guided (TRUS) low dose rate (LDR) interstitial brachytherapy has become a popular procedure for the treatment of prostate cancer, the most common type of non-skin cancer among men. The current TRUS technique of LDR implantation may result in less than ideal coverage of the tumor with increased risk of negative response such as rectal toxicity and urinary retention. This technique is limited by the skill of the physician performing the implant, the accuracy of needle localization, and the inherent weaknesses of the procedure itself. The treatment may require 100 or more sources and 25 needles, compounding the inaccuracy of the needle localization procedure. A robot designed for prostate brachytherapy may increase the accuracy of needle placement while minimizing the effect of physician technique in the TRUS procedure. Furthermore, a robot may improve associated toxicities by utilizing angled insertions and freeing implantations from constraints applied by the 0.5 cm-spaced template used in the TRUS method. Within our group, Lin et al. have designed a new type of LDR source. The "directional" source is a seed designed to be partially shielded. Thus, a directional, or anisotropic, source does not emit radiation in all directions. The source can be oriented to irradiate cancerous tissues while sparing normal ones. This type of source necessitates a new, highly accurate method for localization in 6 degrees of freedom. A robot is the best way to accomplish this task accurately. The following presentation of work describes the invention and optimization of a new prostate brachytherapy robot that fulfills these goals. Furthermore, some research has been dedicated to the use of the robot to perform needle insertion tasks (brachytherapy, biopsy, RF ablation, etc.) in nearly any other soft tissue in the body. This can be accomplished with the robot combined with automatic, magnetic tracking.

  17. Brachytherapy needle deflection evaluation and correction

    SciTech Connect

    Wan Gang; Wei Zhouping; Gardi, Lori; Downey, Donal B.; Fenster, Aaron

    2005-04-01

    In prostate brachytherapy, an 18-gauge needle is used to implant radioactive seeds. This thin needle can be deflected from the preplanned trajectory in the prostate, potentially resulting in a suboptimum dose pattern and at times requiring repeated needle insertion to achieve optimal dosimetry. In this paper, we report on the evaluation of brachytherapy needle deflection and bending in test phantoms and two approaches to overcome the problem. First we tested the relationship between needle deflection and insertion depth as well as whether needle bending occurred. Targeting accuracy was tested by inserting a brachytherapy needle to target 16 points in chicken tissue phantoms. By implanting dummy seeds into chicken tissue phantoms under 3D ultrasound guidance, the overall accuracy of seed implantation was determined. We evaluated methods to overcome brachytherapy needle deflection with three different insertion methods: constant orientation, constant rotation, and orientation reversal at half of the insertion depth. Our results showed that needle deflection is linear with needle insertion depth, and that no noticeable bending occurs with needle insertion into the tissue and agar phantoms. A 3D principal component analysis was performed to obtain the population distribution of needle tip and seed position relative to the target positions. Our results showed that with the constant orientation insertion method, the mean needle targeting error was 2.8 mm and the mean seed implantation error was 2.9 mm. Using the constant rotation and orientation reversal at half insertion depth methods, the deflection error was reduced. The mean needle targeting errors were 0.8 and 1.2 mm for the constant rotation and orientation reversal methods, respectively, and the seed implantation errors were 0.9 and 1.5 mm for constant rotation insertion and orientation reversal methods, respectively.

  18. Boost in radiotherapy: external beam sunset, brachytherapy sunrise

    PubMed Central

    2009-01-01

    Radiobiological limitations for dose escalation in external radiotherapy are presented. Biological and clinical concept of brachytherapy boost to increase treatment efficacy is discussed, and different methods are compared. Oncentra Prostate 3D conformal real-time ultrasound-guided brachytherapy is presented as a solution for boost or sole therapy.

  19. 10 CFR 35.2406 - Records of brachytherapy source accountability.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 1 2011-01-01 2011-01-01 false Records of brachytherapy source accountability. 35.2406 Section 35.2406 Energy NUCLEAR REGULATORY COMMISSION MEDICAL USE OF BYPRODUCT MATERIAL Records § 35.2406 Records of brachytherapy source accountability. (a) A licensee shall maintain a record of...

  20. 10 CFR 35.2406 - Records of brachytherapy source accountability.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 1 2014-01-01 2014-01-01 false Records of brachytherapy source accountability. 35.2406 Section 35.2406 Energy NUCLEAR REGULATORY COMMISSION MEDICAL USE OF BYPRODUCT MATERIAL Records § 35.2406 Records of brachytherapy source accountability. (a) A licensee shall maintain a record of...

  1. 10 CFR 35.2406 - Records of brachytherapy source accountability.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Records of brachytherapy source accountability. 35.2406 Section 35.2406 Energy NUCLEAR REGULATORY COMMISSION MEDICAL USE OF BYPRODUCT MATERIAL Records § 35.2406 Records of brachytherapy source accountability. (a) A licensee shall maintain a record of...

  2. 10 CFR 35.2406 - Records of brachytherapy source accountability.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 1 2013-01-01 2013-01-01 false Records of brachytherapy source accountability. 35.2406 Section 35.2406 Energy NUCLEAR REGULATORY COMMISSION MEDICAL USE OF BYPRODUCT MATERIAL Records § 35.2406 Records of brachytherapy source accountability. (a) A licensee shall maintain a record of...

  3. 10 CFR 35.2406 - Records of brachytherapy source accountability.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 1 2012-01-01 2012-01-01 false Records of brachytherapy source accountability. 35.2406 Section 35.2406 Energy NUCLEAR REGULATORY COMMISSION MEDICAL USE OF BYPRODUCT MATERIAL Records § 35.2406 Records of brachytherapy source accountability. (a) A licensee shall maintain a record of...

  4. Ultrasound use in gynecologic brachytherapy: Time to focus the beam.

    PubMed

    van Dyk, Sylvia; Schneider, Michal; Kondalsamy-Chennakesavan, Srinivas; Bernshaw, David; Narayan, Kailash

    2015-01-01

    There is wide disparity in the practice of brachytherapy for cervical cancer around the world. Although select well-resourced centers advocate use of MRI for all insertions, planar X-ray imaging remains the most commonly used imaging modality to assess intracavitary implants, particularly where the burden of cervical cancer is high. Incorporating soft tissue imaging into brachytherapy programs has been shown to improve the technical accuracy of implants, which in turn has led to improved local control and decreased toxicity. These improvements have a positive effect on the quality of life of patients undergoing brachytherapy for cervical cancer. Finding an accessible soft tissue imaging modality is essential to enable these improvements to be available to all patients. A modality that has good soft tissue imaging capabilities, is widely available, portable, and economical, is needed. Ultrasound fulfils these requirements and offers the potential of soft tissue image guidance to a much wider brachytherapy community. Although use of ultrasound is the standard of care in brachytherapy for prostate cancer, it only seems to have limited uptake in gynecologic brachytherapy. This article reviews the role of ultrasound in gynecologic brachytherapy and highlights the potential applications for use in brachytherapy for cervical cancer.

  5. SU-E-T-223: Investigation of the Accuracy of Two-Dimensional Dose Distributions Measurement From High-Dose-Rate Brachytherapy Ir-192 Source Using Multiple-Diode-Array Detector (MapCheck2)

    SciTech Connect

    Taguenang, J; De La Fuente, T Herman; Ahmad, S; Ali, I

    2014-06-01

    Purpose: To investigate the dosimetric accuracy of multiple-diode-array detector (Mapcheck2) for high-dose-rate brachytherapy Ir-192 source. The two-dimensional (2D) dose distributions measured with MapCheck2 were validated with EBT2 Gafchromic film measurement and AAPM task-group- 43 (TG-43) modeling. Methods: 2D-dose distributions from Ir-192 source were measured with MapCheck2 and EBT2-films. MapCheck2 response was corrected for effects: directional dependence, diode and phantom heterogeneity. Optical density growth of the film was controlled by synchronized scanning of the film exposed to Ir-192 and calibration films exposed to 6 MV linac beams. Similarly, MapCheck2 response was calibrated to dose using 6 MV beams. An empirical model was developed for the dose distributions measured with Mapcheck2 that considered directional, diode and phantom heterogeneity corrections. The dose deposited in solid-state-detectors was modeled using a cavity theory model for the diode. This model was then validated with measurements using EBT2-films and calculations with TG-43. Results: The response of MapCheck2 has been corrected for different effects including: (a) directional dependence of 0–20% over angular range 0o–90o, (b) phantom heterogeneity (3%) and (c) diode heterogeneity (9%). The corrected dose distributions measured with MapCheck2 agreed well with the measured dose distributions from EBT2-film and with calculations using TG-43 within 5% over a wide range of dose levels and rates. The advantages of MapCheck2 include less noisy, linear and stable response compared with film. The response of MapCheck2 exposed to 192Ir-source showed no energy dependence similar to its response to MV energy beam. Detection spatial-resolution of individual diodes was 0.8×0.8 mm2, however, 2DMapCheck2 resolution is limited by distance between diodes (7.07 mm). Conclusion: The dose distribution measured with MapCheck2 agreed well within 5% with that measured using EBT2-films; and

  6. Dosimetric Considerations to Determine the Optimal Technique for Localized Prostate Cancer Among External Photon, Proton, or Carbon-Ion Therapy and High-Dose-Rate or Low-Dose-Rate Brachytherapy

    SciTech Connect

    Georg, Dietmar

    2014-03-01

    Purpose: To assess the dosimetric differences among volumetric modulated arc therapy (VMAT), scanned proton therapy (intensity-modulated proton therapy, IMPT), scanned carbon-ion therapy (intensity-modulated carbon-ion therapy, IMIT), and low-dose-rate (LDR) and high-dose-rate (HDR) brachytherapy (BT) treatment of localized prostate cancer. Methods and Materials: Ten patients were considered for this planning study. For external beam radiation therapy (EBRT), planning target volume was created by adding a margin of 5 mm (lateral/anterior–posterior) and 8 mm (superior–inferior) to the clinical target volume. Bladder wall (BW), rectal wall (RW), femoral heads, urethra, and pelvic tissue were considered as organs at risk. For VMAT and IMPT, 78 Gy(relative biological effectiveness, RBE)/2 Gy were prescribed. The IMIT was based on 66 Gy(RBE)/20 fractions. The clinical target volume planning aims for HDR-BT ({sup 192}Ir) and LDR-BT ({sup 125}I) were D{sub 90%} ≥34 Gy in 8.5 Gy per fraction and D{sub 90%} ≥145 Gy. Both physical and RBE-weighted dose distributions for protons and carbon-ions were converted to dose distributions based on 2-Gy(IsoE) fractions. From these dose distributions various dose and dose–volume parameters were extracted. Results: Rectal wall exposure 30-70 Gy(IsoE) was reduced for IMIT, LDR-BT, and HDR-BT when compared with VMAT and IMPT. The high-dose region of the BW dose–volume histogram above 50 Gy(IsoE) of IMPT resembled the VMAT shape, whereas all other techniques showed a significantly lower high-dose region. For all 3 EBRT techniques similar urethra D{sub mean} around 74 Gy(IsoE) were obtained. The LDR-BT results were approximately 30 Gy(IsoE) higher, HDR-BT 10 Gy(IsoE) lower. Normal tissue and femoral head sparing was best with BT. Conclusion: Despite the different EBRT prescription and fractionation schemes, the high-dose regions of BW and RW expressed in Gy(IsoE) were on the same order of magnitude. Brachytherapy techniques

  7. Penile brachytherapy: Results for 49 patients

    SciTech Connect

    Crook, Juanita M. . E-mail: juanita.crook@rmp.uhn.on.ca; Jezioranski, John; Grimard, Laval; Esche, Bernd; Pond, G.

    2005-06-01

    Purpose: To report results for 49 men with squamous cell carcinoma (SCC) of the penis treated with primary penile interstitial brachytherapy at one of two institutions: the Ottawa Regional Cancer Center, Ottawa, and the Princess Margaret Hospital, Toronto, Ontario, Canada. Methods and Materials: From September 1989 to September 2003, 49 men (mean age, 58 years; range, 22-93 years) had brachytherapy for penile SCC. Fifty-one percent of tumors were T1, 33% T2, and 8% T3; 4% were in situ and 4% Tx. Grade was well differentiated in 31%, moderate in 45%, and poor in 2%; grade was unspecified for 20%. One tumor was verrucous. All tumors in Toronto had pulsed dose rate (PDR) brachytherapy (n = 23), whereas those in Ottawa had either Iridium wire (n 22) or seeds (n = 4). Four patients had a single plane implant with a plastic tube technique, and all others had a volume implant with predrilled acrylic templates and two or three parallel planes of needles (median, six needles). Mean needle spacing was 13.5 mm (range, 10-18 mm), mean dose rate was 65 cGy/h (range, 33-160 cGy/h), and mean duration was 98.8 h (range, 36-188 h). Dose rates for PDR brachytherapy were 50-61.2 cGy/h, with no correction in total dose, which was 60 Gy in all cases. Results: Median follow-up was 33.4 months (range, 4-140 months). At 5 years, actuarial overall survival was 78.3% and cause-specific survival 90.0%. Four men died of penile cancer, and 6 died of other causes with no evidence of recurrence. The cumulative incidence rate for never having experienced any type of failure at 5 years was 64.4% and for local failure was 85.3%. All 5 patients with local failure were successfully salvaged by surgery; 2 other men required penectomy for necrosis. The soft tissue necrosis rate was 16% and the urethral stenosis rate 12%. Of 8 men with regional failure, 5 were salvaged by lymph node dissection with or without external radiation. All 4 men with distant failure died of disease. Of 49 men, 42 had an intact

  8. Brachytherapy treatment planning commissioning: effect of the election of proper bibliography and finite size of TG-43 input data on standard treatments.

    PubMed

    Valdés, Christian N; Píriz, Gustavo H; Lozano, Enrrique

    2015-07-08

    The aim of this work is to evaluate the performance of a commercial brachytherapy treatment planning system (TPS) with TG-43 Vendors Input Data (VID), analyze possible discrepancies with respect to a proper reference source and its implications for standard treatments, and judge the effectiveness of certain widespread recommended quality controls to find potential errors related with the interpolations of TG-43 VID tables. The TPS evaluated was a BrachyVision 8.6 loaded with TG-43 VID for a VariSource high-dose-rate 192Ir source (Vs2000). The reference data chosen were the TG-43 data published in the literature. In the first step, we compared TG-43 VID with respect to the chosen reference data. Next, we used percent dose-rate differences in a point array matrix to compare the outcomes of the TPS on standard treatment setup with respect to an in-house developed program (MATLAB R2009a-based) loaded with the chosen full TG-43 reference data. The cases with major discrepancies were evaluated using the gamma-index analysis. The comparison with the reference data indicated a lack of sample in the angles between near to the tip (between 165 < θ < 180) and cable (0 < θ < 15) of the F(r,θ)(VID), which causes a dose underestimation of approximately 17% in the investigated points due to inaccurate interpolations. The differences over 2% encompassed approximately 17% of the surrounding source volume. These results have special relevance in treatment using one applicator with a few dwell steps or in Fletcher treatments where 10% dose underestimates were identified within the tumor or in organs at risk, respectively. Our results suggest that the differences found in the TPS under study are created by a lack of information on the angles in high-gradient zones in the F(r,θ)(VID), which generates important differences in dosimetric results. In contrast, the gamma analysis shows very good results (between 90% and 100% of passed points) in the analyzed treatments (one dwell and

  9. Characterization of coronary atherosclerosis by intravascular imaging modalities.

    PubMed

    Honda, Satoshi; Kataoka, Yu; Kanaya, Tomoaki; Noguchi, Teruo; Ogawa, Hisao; Yasuda, Satoshi

    2016-08-01

    Coronary artery disease (CAD) is highly prevalent in Western countries and is associated with morbidity, mortality, and a significant economic burden. Despite the development of anti-atherosclerotic medical therapies, many patients still continue to suffer from coronary events. This residual risk indicates the need for better risk stratification and additional therapies to achieve more reductions in cardiovascular risk. Recent advances in imaging modalities have contributed to visualizing atherosclerotic plaques and defining lesion characteristics in vivo. This innovation has been applied to refining revascularization procedure, assessment of anti-atherosclerotic drug efficacy and the detection of high-risk plaques. As such, intravascular imaging plays an important role in further improvement of cardiovascular outcomes in patients with CAD. The current article reviews available intravascular imaging modalities with regard to its method, advantage and disadvantage. PMID:27500094

  10. Disseminated intravascular coagulation in term and preterm neonates.

    PubMed

    Veldman, Alex; Fischer, Doris; Nold, Marcel F; Wong, Flora Y

    2010-06-01

    Among critically ill patients, the risk of developing disseminated intravascular coagulation (DIC) is probably highest in neonates. Low plasma reserves in pro- and anticoagulant coagulation factors, intravascular volume contraction after birth, and a high incidence of hypoxia and sepsis in critically ill newborns rapidly lead to a decompensation of the coagulation system in this population. Global coagulation tests and single-factor plasma levels have to be interpreted in the context of age-corrected normal ranges. Platelet consumption and reduced protein C plasma levels have diagnostic value; the latter also has prognostic potential in neonates with DIC and sepsis. Therapeutic success relies heavily on reversal of the underlying condition. Some coagulation-specific therapies have been explored in small studies and case series with varying success and sometimes conflicting results. Therefore, larger controlled trials in this common and serious condition are urgently needed.

  11. Intravascular photoacoustic tomography for characterization of atherosclerotic lipid and inflammation

    NASA Astrophysics Data System (ADS)

    Zhang, Jian; Qin, Huan; Shi, Yujiao; Yang, Sihua; Xing, Da

    2014-09-01

    Photoacoustic imaging is a fast growing imaging technology depending on its high optical resolution of optics while taking the advantage of the high penetration depth of ultrasound. In this paper, we demonstrate the new progress in the photoacoustic imaging. Atherosclerosis is characterized by a progressive build-up of lipid in the arterial wall, which is known as plaque. Histological studies demonstrate that the primary cause of acute cardiovascular events is the rupture of atherosclerotic plaques. Lipid and inflammation within the plaque are related to influence the propensity of plaques to disrupt. Photoacoustic intravascular tomography (IVPAT) holds a great advantage in providing comprehensive morphological and functional information of plaques. Lipid relative concentration maps of atherosclerotic aorta were obtained and compared with histology. Furthermore, by selectively targeting the intravascular inflammatory cytokines, IVPAT is also capable of mapping the inflamed area and determining the degree of inflammation.

  12. Integrated intravascular optical coherence tomography ultrasound imaging system

    NASA Astrophysics Data System (ADS)

    Yin, Jiechen; Yang, Hao-Chung; Li, Xiang; Zhang, Jun; Zhou, Qifa; Hu, Changhong; Shung, K. Kirk; Chen, Zhongping

    2010-01-01

    We report on a dual-modality optical coherence tomography (OCT) ultrasound (US) system for intravascular imaging. To the best of our knowledge, we have developed the first integrated OCT-US probe that combines OCT optical components with an US transducer. The OCT optical components mainly consist of a single-mode fiber, a gradient index lens for light-beam focusing, and a right-angled prism for reflecting light into biological tissue. A 40-MHz piezoelectric transducer (PZT-5H) side-viewing US transducer was fabricated to obtain the US image. These components were integrated into a single probe, enabling both OCT and US imaging at the same time. In vitro OCT and ultrasound images of a rabbit aorta were obtained using this dual-modality imaging system. This study demonstrates the feasibility of an OCT-US system for intravascular imaging, which is expected to have a prominent impact on early detection and characterization of atherosclerosis.

  13. Characterization of coronary atherosclerosis by intravascular imaging modalities

    PubMed Central

    Honda, Satoshi; Kanaya, Tomoaki; Noguchi, Teruo; Ogawa, Hisao; Yasuda, Satoshi

    2016-01-01

    Coronary artery disease (CAD) is highly prevalent in Western countries and is associated with morbidity, mortality, and a significant economic burden. Despite the development of anti-atherosclerotic medical therapies, many patients still continue to suffer from coronary events. This residual risk indicates the need for better risk stratification and additional therapies to achieve more reductions in cardiovascular risk. Recent advances in imaging modalities have contributed to visualizing atherosclerotic plaques and defining lesion characteristics in vivo. This innovation has been applied to refining revascularization procedure, assessment of anti-atherosclerotic drug efficacy and the detection of high-risk plaques. As such, intravascular imaging plays an important role in further improvement of cardiovascular outcomes in patients with CAD. The current article reviews available intravascular imaging modalities with regard to its method, advantage and disadvantage. PMID:27500094

  14. Three-Dimensional Imaging in Gynecologic Brachytherapy: A Survey of the American Brachytherapy Society

    SciTech Connect

    Viswanathan, Akila N.; Erickson, Beth A.

    2010-01-15

    Purpose: To determine current practice patterns with regard to three-dimensional (3D) imaging for gynecologic brachytherapy among American Brachytherapy Society (ABS) members. Methods and Materials: Registered physician members of the ABS received a 19-item survey by e-mail in August 2007. This report excludes physicians not performing brachytherapy for cervical cancer. Results: Of the 256 surveys sent, we report results for 133 respondents who perform one or more implantations per year for locally advanced cervical cancer. Ultrasound aids 56% of physicians with applicator insertion. After insertion, 70% of physicians routinely obtain a computed tomography (CT) scan. The majority (55%) use CT rather than X-ray films (43%) or magnetic resonance imaging (MRI; 2%) for dose specification to the cervix. However, 76% prescribe to Point A alone instead of using a 3D-derived tumor volume (14%), both Point A and tumor volume (7%), or mg/h (3%). Those using 3D imaging routinely contour the bladder and rectum (94%), sigmoid (45%), small bowel (38%), and/or urethra (8%) and calculate normal tissue dose-volume histogram (DVH) analysis parameters including the D2cc (49%), D1cc (36%), D0.1cc (19%), and/or D5cc (19%). Respondents most commonly modify the treatment plan based on International Commission on Radiation Units bladder and/or rectal point dose values (53%) compared with DVH values (45%) or both (2%). Conclusions: More ABS physician members use CT postimplantation imaging than plain films for visualizing the gynecologic brachytherapy apparatus. However, the majority prescribe to Point A rather than using 3D image based dosimetry. Use of 3D image-based treatment planning for gynecologic brachytherapy has the potential for significant growth in the United States.

  15. Central Venous Catheter Intravascular Malpositioning: Causes, Prevention, Diagnosis, and Correction

    PubMed Central

    Roldan, Carlos J.; Paniagua, Linda

    2015-01-01

    Despite the level of skill of the operator and the use of ultrasound guidance, central venous catheter (CVC) placement can result in CVC malpositioning, an unintended placement of the catheter tip in an inadequate vessel. CVC malpositioning is not a complication of central line insertion; however, undiagnosed CVC malpositioning can be associated with significant morbidity and mortality. The objectives of this review were to describe factors associated with intravascular malpositioning of CVCs inserted via the neck and chest and to offer ways of preventing, identifying, and correcting such malpositioning. A literature search of PubMed, Cochrane Library, and MD Consult was performed in June 2014. By searching for “Central line malposition” and then for “Central venous catheters intravascular malposition,” we found 178 articles written in English. Of those, we found that 39 were relevant to our objectives and included them in our review. According to those articles, intravascular CVC malpositioning is associated with the presence of congenital and acquired anatomical variants, catheter insertion in left thoracic venous system, inappropriate bevel orientation upon needle insertion, and patient’s body habitus variants. Although plain chest radiography is the standard imaging modality for confirming catheter tip location, signs and symptoms of CVC malpositioning even in presence of normal or inconclusive conventional radiography findings should prompt the use of additional diagnostic methods to confirm or rule out CVC malpositioning. With very few exceptions, the recommendation in cases of intravascular CVC malpositioning is to remove and relocate the catheter. Knowing the mechanisms of CVC malpositioning and how to prevent, identify, and correct CVC malpositioning could decrease harm to patients with this condition. PMID:26587087

  16. Transponder system for non-invasive measurement of intravascular pressure.

    PubMed

    Schnakenberg, U; Krüger, C; Pfeffer, J G; Mokwa, W; von Bögel, G; Günther, R; Schmitz-Rode, Th

    2002-01-01

    Monitoring of blood pressure and pulse rate offers diagnostical and therapeutical opportunities in hypertension disease and arrhythmia, respectively. This paper presents an intravascular pressure monitoring system consisting of an implantable silicone capsule, which can be placed in an arterial system via a catheter. The capsule contains a pressure sensor and signal conditioning circuits for wireless data and energy transfer using 6.78 MHz transponder technology.

  17. Disseminated intravascular coagulation and hepatocellular necrosis due to clove oil.

    PubMed

    Brown, S A; Biggerstaff, J; Savidge, G F

    1992-10-01

    We describe the case of a 2-year-old child who suffered from disseminated intravascular coagulation (DIC) and hepatocellular necrosis, following ingestion of clove oil. The patient was treated with heparin and fresh frozen plasma, and, following specific haemostasis assays, with appropriate coagulation factor and inhibitor concentrates. The case demonstrates how this approach can be successfully used in the management of DIC with coexisting liver failure. PMID:1450336

  18. Silent intravascular lymphoma initially manifesting as a unilateral adrenal incidentaloma.

    PubMed

    Takahashi, Yoshiko; Iida, Keiji; Hino, Yasuhisa; Ohara, Takeshi; Kurahashi, Toshifumi; Tashiro, Takashi; Chihara, Kazuo

    2012-01-01

    Intravascular large B-cell lymphoma (IVLBCL) is a rare subtype of malignant lymphoma. Although the involvement of adrenal glands in IVLBCL is often observed, primary adrenal IVLBCL is rare. Most reported cases of adrenal IVLBCL showed bilateral lesions resulting in rapidly progressive adrenal failure and poor prognosis. Here, we report a case of slowly progressive primary adrenal IVLBCL manifesting initially with unilateral adrenal incidentaloma. This case is a silent IVLBCL and shows that the enlargement of both adrenal glands can be followed.

  19. Optical device for intravascular low-power laser illumination

    NASA Astrophysics Data System (ADS)

    Grobelny, Andrzej; Palasz, Zbigniew; Beres-Pawlik, Elzbieta M.; Abramski, Krzysztof M.; Derkacz, Arkadiusz; Bialy, Dariusz; Protasiewicz, Marcin

    2003-04-01

    The treatment method presented in this paper is an adjunct to coronary angioplasty. It consists in irradiating a previously dilated artery with laser light which stimulates endothelium proliferation and reduces local inflammation. The influence of 808 nm laser light on the endothelium was studied in vitro. Because of the location of atherosclerotic plaques, illumination of the endothelium poses a problem. To overcome it, we have designed and built a laser set-up for homogeneous intravascular illumination in vivo.

  20. Central Venous Catheter Intravascular Malpositioning: Causes, Prevention, Diagnosis, and Correction.

    PubMed

    Roldan, Carlos J; Paniagua, Linda

    2015-09-01

    Despite the level of skill of the operator and the use of ultrasound guidance, central venous catheter (CVC) placement can result in CVC malpositioning, an unintended placement of the catheter tip in an inadequate vessel. CVC malpositioning is not a complication of central line insertion; however, undiagnosed CVC malpositioning can be associated with significant morbidity and mortality. The objectives of this review were to describe factors associated with intravascular malpositioning of CVCs inserted via the neck and chest and to offer ways of preventing, identifying, and correcting such malpositioning. A literature search of PubMed, Cochrane Library, and MD Consult was performed in June 2014. By searching for "Central line malposition" and then for "Central venous catheters intravascular malposition," we found 178 articles written in English. Of those, we found that 39 were relevant to our objectives and included them in our review. According to those articles, intravascular CVC malpositioning is associated with the presence of congenital and acquired anatomical variants, catheter insertion in left thoracic venous system, inappropriate bevel orientation upon needle insertion, and patient's body habitus variants. Although plain chest radiography is the standard imaging modality for confirming catheter tip location, signs and symptoms of CVC malpositioning even in presence of normal or inconclusive conventional radiography findings should prompt the use of additional diagnostic methods to confirm or rule out CVC malpositioning. With very few exceptions, the recommendation in cases of intravascular CVC malpositioning is to remove and relocate the catheter. Knowing the mechanisms of CVC malpositioning and how to prevent, identify, and correct CVC malpositioning could decrease harm to patients with this condition.

  1. Vascular wall stress during intravascular optical coherence tomography imaging

    NASA Astrophysics Data System (ADS)

    Sun, Cuiru; Yang, Victor

    2015-03-01

    Biomechanical properties of arterial wall is crucial for understanding the changes in the cardiovascular system. Catheters are used during intravascular optical coherence tomography (IVOCT) imaging. The presence of a catheter alters the flow field, pressure distribution and frictional resistance to flow in an artery. In this paper, we first study the transmural stress distribution of the catheterized vessel. COMSOL (COMSOL 4.4) was used to simulate the blood flow induced deformation in a catheterized vessel. Blood is modeled as an incompressible Newtonian fluid. Stress distribution from an three-layer vascular model with an eccentric catheter are simulated, which provides a general idea about the distribution of the displacement and the stress. Optical coherence elastography techniques were then applied to porcine carotid artery samples to look at the deformation status of the vascular wall during saline or water injection. Preliminary simulation results show nonuniform stress distribution in the circumferential direction of the eccentrically catheterized vascular model. Three strain rate methods were tested for intravascular OCE application. The tissue Doppler method has the potential to be further developed to image the vascular wall biomechnical properties in vivo. Although results in this study are not validated quantitatively, the experiments and methods may be valuable for intravascular OCE studies, which may provide important information for cardiovascular disease prevention, diagnosis and treatment.

  2. Integrated intravascular optical coherence tomography (OCT) - ultrasound (US) imaging system

    NASA Astrophysics Data System (ADS)

    Yin, Jiechen; Yang, Hao-Chung; Li, Xiang; Zhou, Qifa; Hu, Changhong; Zhang, Jun; Shung, K. Kirk; Chen, Zhongping

    2010-02-01

    Optical coherence tomography (OCT) and intravascular ultrasound (IVUS) are considered two complementary imaging techniques in the detection and diagnosis of atherosclerosis. OCT permits visualization of micron-scale features of atherosclerosis plaque, and IVUS offers full imaging depth of vessel wall. Under the guidance of IVUS, minimal amount of flushing agent will be needed to obtain OCT imaging of the interested area. We report on a dual-modality optical coherence tomography (OCT) - ultrasound (US) system for intravascular imaging. To the best of our knowledge, we have developed the first integrated OCT-US probe that combines OCT optical components with an ultrasound transducer. The OCT optical components mainly consist of a single mode fiber, a gradient index (GRIN) lens for light beam focusing, and a right-angled prism for reflecting light into biological tissue. A 40MHz PZT-5H side-viewing ultrasound transducer was fabricated to obtain the ultrasound image. These components were integrated into a single probe, enabling both OCT and ultrasound imaging at the same time. In vitro OCT and ultrasound images of a rabbit aorta were obtained using this dual-modality imaging system. This study demonstrates the feasibility of an OCT-US system for intravascular imaging which is expected to have a prominent impact on early detection and characterization of atherosclerosis.

  3. [Current status of intravascular ultrasound in interventional cardiology].

    PubMed

    Kovárník, Tomáš

    2014-12-01

    Although intravascular ultrasound has been used for decades, its common application in catheterization centres during coronary interventions is very rare and merely reaches few percents. The reason is the lack of randomized trials of its use and often few experiences in evaluation of ultrasound findings. Data based on meta-analysis of observational studies clearly demonstrated the positive effect on the most important parameters for the treatment of patients with ischemic heart disease, such as mortality and incidence of myocardial infarction after coronary interventions. Therefore, according to the latest guidelines for myocardial revascularization of the European Society of Cardiology is level of recommendation in category IIa for the use of intravascular ultrasound. IVUS continues to be an important part of new investigation methods which try to better describe coronary atherosclerosis. Particularly, it is the method NIRS (near-infrared spectroscopy) and other new methods of evaluating the composition and mechanical properties of plaque. These facts suggest that IVUS maintains its contribution in time of optical coherence tomography (OCT) and the emphasis put on the functional assessment of coronary stenoses.Key words: coronary atherosclerosis - intravascular ultrasound - percutaneous coronary intervention. PMID:25692833

  4. Renal denervation by intravascular ultrasound: Preliminary in vivo study

    NASA Astrophysics Data System (ADS)

    Sinelnikov, Yegor; McClain, Steve; Zou, Yong; Smith, David; Warnking, Reinhard

    2012-10-01

    Ultrasound denervation has recently become a subject of intense research in connection with the treatment of complex medical conditions including neurological conditions, development of pain management, reproduction of skin sensation, neuropathic pain and spasticity. The objective of this study is to investigate the use of intravascular ultrasound to produce nerve damage in renal sympathetic nerves without significant injury to the renal artery. This technique may potentially be used to treat various medical conditions, such as hypertension. The study was approved by the Institutional Animal Care and Use Committee. Ultrasound was applied to renal nerves of the swine model for histopathological evaluation. Therapeutic ultrasound energy was delivered circumferentially by an intravascular catheter maneuvered into the renal arteries. Fluoroscopic imaging was conducted pre-and post-ultrasound treatment. Animals were recovered and euthanized up to 30 hours post procedure, followed by necropsy and tissue sample collection. Histopathological examination showed evidence of extensive damage to renal nerves, characterized by nuclear pyknosis, hyalinization of stroma and multifocal hemorrhages, with little or no damage to renal arteries. This study demonstrates the feasibility of intravascular ultrasound as a minimally invasive renal denervation technique. Further studies are necessary to evaluate the long-term safety and efficacy of this technique and its related clinical significance.

  5. Caudal epidural anesthesia during intracavitary brachytherapy for cervical cancer.

    PubMed

    Isoyama-Shirakawa, Yuko; Nakamura, Katsumasa; Abe, Madoka; Kunitake, Naonobu; Matsumoto, Keiji; Ohga, Saiji; Sasaki, Tomonari; Uehara, Satoru; Okushima, Kazuhiro; Shioyama, Yoshiyuki; Honda, Hiroshi

    2015-05-01

    It has been suggested that pain control during intracavitary brachytherapy for cervical cancer is insufficient in most hospitals in Japan. Our hospital began using caudal epidural anesthesia during high-dose-rate (HDR) intracavitary brachytherapy in 2011. The purpose of the present study was to retrospectively investigate the effects of caudal epidural anesthesia during HDR intracavitary brachytherapy for cervical cancer patients. Caudal epidural anesthesia for 34 cervical cancer patients was performed during HDR intracavitary brachytherapy between October 2011 and August 2013. We used the patients' self-reported Numeric Rating Scale (NRS) score at the first session of HDR intracavitary brachytherapy as a subjective evaluation of pain. We compared NRS scores of the patients with anesthesia with those of 30 patients who underwent HDR intracavitary brachytherapy without sacral epidural anesthesia at our hospital between May 2010 and August 2011. Caudal epidural anesthesia succeeded in 33 patients (97%), and the NRS score was recorded in 30 patients. The mean NRS score of the anesthesia group was 5.17 ± 2.97, significantly lower than that of the control group's 6.80 ± 2.59 (P = 0.035). The caudal epidural block resulted in no side-effects. Caudal epidural anesthesia is an effective and safe anesthesia option during HDR intracavitary brachytherapy for cervical cancer.

  6. Recent developments and best practice in brachytherapy treatment planning

    PubMed Central

    2014-01-01

    Brachytherapy has evolved over many decades, but more recently, there have been significant changes in the way that brachytherapy is used for different treatment sites. This has been due to the development of new, technologically advanced computer planning systems and treatment delivery techniques. Modern, three-dimensional (3D) imaging modalities have been incorporated into treatment planning methods, allowing full 3D dose distributions to be computed. Treatment techniques involving online planning have emerged, allowing dose distributions to be calculated and updated in real time based on the actual clinical situation. In the case of early stage breast cancer treatment, for example, electronic brachytherapy treatment techniques are being used in which the radiation dose is delivered during the same procedure as the surgery. There have also been significant advances in treatment applicator design, which allow the use of modern 3D imaging techniques for planning, and manufacturers have begun to implement new dose calculation algorithms that will correct for applicator shielding and tissue inhomogeneities. This article aims to review the recent developments and best practice in brachytherapy techniques and treatments. It will look at how imaging developments have been incorporated into current brachytherapy treatment and how these developments have played an integral role in the modern brachytherapy era. The planning requirements for different treatments sites are reviewed as well as the future developments of brachytherapy in radiobiology and treatment planning dose calculation. PMID:24734939

  7. The dosimetry of brachytherapy-induced erectile dysfunction

    SciTech Connect

    Merrick, Gregory S.; Butler, Wayne M

    2003-12-31

    There is emerging evidence that brachytherapy-induced erectile dysfunction (ED) is technique-related and may be minimized by careful attention to source placement. Herein, we review the relationship between radiation doses to the prostate gland/surrounding structures and the development of brachytherapy-induced ED. The permanent prostate brachytherapy literature was reviewed using MEDLINE searches to ensure completeness. Although the site-specific structure associated with brachytherapy-induced ED remains unknown, there is an increasing body of data implicating the proximal penis. With day 0 CT-based dosimetry, the dose to 50% (D{sub 50}) and 25% (D{sub 25}) of the bulb of the penis should be maintained below 40% and 60% mPD, respectively, while the crura D{sub 50} should be maintained below 28% mPD to maximize post-brachytherapy potency. To date, there is no data to suggest that either radiation doses to the neurovascular bundles or choice of isotope is associated with brachytherapy-induced ED, while conflicting data has been reported regarding radiation dose to the prostate and the use of supplemental external beam radiation therapy. Although the etiology of brachytherapy-induced ED is likely multifactorial, the available data supports the proximal penis as an important site-specific structure. Refinements in implant technique, including preplanning and intraoperative seed placement, will result in lower radiation doses to the proximal penis with potential improvement in potency preservation.

  8. Disseminated intravascular large-cell lymphoma with initial presentation mimicking Guillain-Barré syndrome.

    PubMed

    Jiang, Qin Li; Pytel, Peter; Rowin, Julie

    2010-07-01

    We report a patient with intravascular large B-cell lymphoma who initially presented with acute ascending weakness and sensory changes. Electrodiagnostic testing and cerebral spinal fluid (CSF) studies were initially suggestive of a demyelinating polyneuropathy. Further clinical evaluation and testing were consistent with mononeuropathy multiplex. Autopsy revealed disseminated intravascular large-cell lymphoma. Intravascular large-cell lymphoma should be considered in the differential diagnosis of a rapidly evolving neuropathy associated with other organ involvement.

  9. Multihelix rotating shield brachytherapy for cervical cancer

    SciTech Connect

    Dadkhah, Hossein; Kim, Yusung; Flynn, Ryan T.; Wu, Xiaodong

    2015-11-15

    Purpose: To present a novel brachytherapy technique, called multihelix rotating shield brachytherapy (H-RSBT), for the precise angular and linear positioning of a partial shield in a curved applicator. H-RSBT mechanically enables the dose delivery using only linear translational motion of the radiation source/shield combination. The previously proposed approach of serial rotating shield brachytherapy (S-RSBT), in which the partial shield is rotated to several angular positions at each source dwell position [W. Yang et al., “Rotating-shield brachytherapy for cervical cancer,” Phys. Med. Biol. 58, 3931–3941 (2013)], is mechanically challenging to implement in a curved applicator, and H-RSBT is proposed as a feasible solution. Methods: A Henschke-type applicator, designed for an electronic brachytherapy source (Xoft Axxent™) and a 0.5 mm thick tungsten partial shield with 180° or 45° azimuthal emission angles and 116° asymmetric zenith angle, is proposed. The interior wall of the applicator contains six evenly spaced helical keyways that rigidly define the emission direction of the partial radiation shield as a function of depth in the applicator. The shield contains three uniformly distributed protruding keys on its exterior wall and is attached to the source such that it rotates freely, thus longitudinal translational motion of the source is transferred to rotational motion of the shield. S-RSBT and H-RSBT treatment plans with 180° and 45° azimuthal emission angles were generated for five cervical cancer patients with a diverse range of high-risk target volume (HR-CTV) shapes and applicator positions. For each patient, the total number of emission angles was held nearly constant for S-RSBT and H-RSBT by using dwell positions separated by 5 and 1.7 mm, respectively, and emission directions separated by 22.5° and 60°, respectively. Treatment delivery time and tumor coverage (D{sub 90} of HR-CTV) were the two metrics used as the basis for evaluation and

  10. Design, construction, and validation of a rotary multifunctional intravascular diagnostic catheter combining multispectral fluorescence lifetime imaging and intravascular ultrasound.

    PubMed

    Bec, Julien; Xie, Hongtao; Yankelevich, Diego R; Zhou, Feifei; Sun, Yang; Ghata, Narugopal; Aldredge, Ralph; Marcu, Laura

    2012-10-01

    We report the development and validation of an intravascular rotary catheter for bimodal interrogation of arterial pathologies. This is based on a point-spectroscopy scanning time-resolved fluorescence spectroscopy technique enabling reconstruction of fluorescence lifetime images (FLIm) and providing information on arterial intima composition and intravascular ultrasound (IVUS) providing information on arterial wall morphology. The catheter design allows for independent rotation of the ultrasonic and optical channels within an 8 Fr outer diameter catheter sheath and integrates a low volume flushing channel for blood removal in the optical pathways. In the current configuration, the two channels consist of (a) a standard 3 Fr IVUS catheter with single element transducer (40 MHz) and (b) a side-viewing fiber optic (400 μm core). Experiments conducted in tissue phantoms showed the ability of the catheter to operate in an intraluminal setting and to generate coregistered FLIm and IVUS in one pull-back scan. Current results demonstrate the feasibility of the catheter for simultaneous bimodal interrogation of arterial lumen and for generation of robust fluorescence lifetime data under IVUS guidance. These results facilitate further development of a FLIm-IVUS technique for intravascular diagnosis of atherosclerotic cardiovascular diseases including vulnerable plaques.

  11. Design, construction, and validation of a rotary multifunctional intravascular diagnostic catheter combining multispectral fluorescence lifetime imaging and intravascular ultrasound

    NASA Astrophysics Data System (ADS)

    Bec, Julien; Xie, Hongtao; Yankelevich, Diego R.; Zhou, Feifei; Sun, Yang; Ghata, Narugopal; Aldredge, Ralph; Marcu, Laura

    2012-10-01

    We report the development and validation of an intravascular rotary catheter for bimodal interrogation of arterial pathologies. This is based on a point-spectroscopy scanning time-resolved fluorescence spectroscopy technique enabling reconstruction of fluorescence lifetime images (FLIm) and providing information on arterial intima composition and intravascular ultrasound (IVUS) providing information on arterial wall morphology. The catheter design allows for independent rotation of the ultrasonic and optical channels within an 8 Fr outer diameter catheter sheath and integrates a low volume flushing channel for blood removal in the optical pathways. In the current configuration, the two channels consist of (a) a standard 3 Fr IVUS catheter with single element transducer (40 MHz) and (b) a side-viewing fiber optic (400 μm core). Experiments conducted in tissue phantoms showed the ability of the catheter to operate in an intraluminal setting and to generate coregistered FLIm and IVUS in one pull-back scan. Current results demonstrate the feasibility of the catheter for simultaneous bimodal interrogation of arterial lumen and for generation of robust fluorescence lifetime data under IVUS guidance. These results facilitate further development of a FLIm-IVUS technique for intravascular diagnosis of atherosclerotic cardiovascular diseases including vulnerable plaques.

  12. Brachytherapy in the treatment of cervical cancer: a review

    PubMed Central

    Banerjee, Robyn; Kamrava, Mitchell

    2014-01-01

    Dramatic advances have been made in brachytherapy for cervical cancer. Radiation treatment planning has evolved from two-dimensional to three-dimensional, incorporating magnetic resonance imaging and/or computed tomography into the treatment paradigm. This allows for better delineation and coverage of the tumor, as well as improved avoidance of surrounding organs. Consequently, advanced brachytherapy can achieve very high rates of local control with a reduction in morbidity, compared with historic approaches. This review provides an overview of state-of-the-art gynecologic brachytherapy, with a focus on recent advances and their implications for women with cervical cancer. PMID:24920937

  13. Improving photoacoustic imaging contrast of brachytherapy seeds

    NASA Astrophysics Data System (ADS)

    Pan, Leo; Baghani, Ali; Rohling, Robert; Abolmaesumi, Purang; Salcudean, Septimiu; Tang, Shuo

    2013-03-01

    Prostate brachytherapy is a form of radiotherapy for treating prostate cancer where the radiation sources are seeds inserted into the prostate. Accurate localization of seeds during prostate brachytherapy is essential to the success of intraoperative treatment planning. The current standard modality used in intraoperative seeds localization is transrectal ultrasound. Transrectal ultrasound, however, suffers in image quality due to several factors such speckle, shadowing, and off-axis seed orientation. Photoacoustic imaging, based on the photoacoustic phenomenon, is an emerging imaging modality. The contrast generating mechanism in photoacoustic imaging is optical absorption that is fundamentally different from conventional B-mode ultrasound which depicts changes in acoustic impedance. A photoacoustic imaging system is developed using a commercial ultrasound system. To improve imaging contrast and depth penetration, absorption enhancing coating is applied to the seeds. In comparison to bare seeds, approximately 18.5 dB increase in signal-to-noise ratio as well as a doubling of imaging depth are achieved. Our results demonstrate that the coating of the seeds can further improve the discernibility of the seeds.

  14. Coregistered photoacoustic-ultrasound imaging applied to brachytherapy

    NASA Astrophysics Data System (ADS)

    Harrison, Tyler; Zemp, Roger J.

    2011-08-01

    Brachytherapy is a form of radiation therapy commonly used in the treatment of prostate cancer wherein sustained radiation doses can be precisely targeted to the tumor area by the implantation of small radioactive seeds around the treatment area. Ultrasound is a popular imaging mode for seed implantation, but the seeds are difficult to distinguish from the tissue structure. In this work, we demonstrate the feasibility of photoacoustic imaging for identifying brachytherapy seeds in a tissue phantom, comparing the received intensity to endogenous contrast. We have found that photoacoustic imaging at 1064 nm can identify brachytherapy seeds uniquely at laser penetration depths of 5 cm in biological tissue at the ANSI limit for human exposure with a contrast-to-noise ratio of 26.5 dB. Our realtime combined photoacoustic-ultrasound imaging approach may be suitable for brachytherapy seed placement and post-placement verification, potentially allowing for realtime dosimetry assessment during implantation.

  15. Patient release criteria for low dose rate brachytherapy implants.

    PubMed

    Boyce, Dale E; Sheetz, Michael A

    2013-04-01

    A lack of consensus regarding a model governing the release of patients following sealed source brachytherapy has led to a set of patient release policies that vary from institution to institution. The U.S. Nuclear Regulatory Commission has issued regulatory guidance on patient release in NUREG 1556, Volume 9, Rev. 2, Appendix U, which allows calculation of release limits following implant brachytherapy. While the formalism presented in NUREG is meaningful for the calculation of release limits in the context of relatively high energy gamma emitters, it does not estimate accurately the effective dose equivalent for the common low dose rate brachytherapy sources Cs, I, and Pd. NUREG 1556 states that patient release may be based on patient-specific calculations as long as the calculation is documented. This work is intended to provide a format for patient-specific calculations to be used for the consideration of patients' release following the implantation of certain low dose rate brachytherapy isotopes. PMID:23439145

  16. Image-Based Brachytherapy for the Treatment of Cervical Cancer

    SciTech Connect

    Harkenrider, Matthew M. Alite, Fiori; Silva, Scott R.; Small, William

    2015-07-15

    Cervical cancer is a disease that requires considerable multidisciplinary coordination of care and labor in order to maximize tumor control and survival while minimizing treatment-related toxicity. As with external beam radiation therapy, the use of advanced imaging and 3-dimensional treatment planning has generated a paradigm shift in the delivery of brachytherapy for the treatment of cervical cancer. The use of image-based brachytherapy, most commonly with magnetic resonance imaging (MRI), requires additional attention and effort by the treating physician to prescribe dose to the proper volume and account for adjacent organs at risk. This represents a dramatic change from the classic Manchester approach of orthogonal radiographic images and prescribing dose to point A. We reviewed the history and currently evolving data and recommendations for the clinical use of image-based brachytherapy with an emphasis on MRI-based brachytherapy.

  17. Bothrops jararaca envenomation: Pathogenesis of hemostatic disturbances and intravascular hemolysis

    PubMed Central

    Senise, Luana V; Yamashita, Karine M

    2015-01-01

    To attain fully functional biological activity, vitamin-K dependent coagulation factors (VKDCF) are γ-carboxylated prior to secretion from liver. Warfarin impairs the γ-carboxylation, and consequently their physiological function. Bothrops jararaca snake venom (BjV) contains several activators of blood coagulation, especially procoagulant enzymes (prothrombin and factor X activators) and thrombin-like enzymes. In order to clarify the relative contribution of prothrombin and factor X activators to the hemostatic disturbances occurring during experimental B. jararaca envenomation, warfarin was used to deplete VKDCF, prior to BjV administration. Male Wistar rats were pretreated with saline (Sal) or warfarin (War) and inoculated subsequently with BjV or saline, thus forming four groups: Sal + Sal (negative control), Sal + BjV (positive control), War + Sal (warfarinization control), and War + BjV. Three hours after inoculation, prothrombin and factor X levels fell 40% and 50%, respectively; levels of both factors decreased more than 97% in the War + Sal and War + BjV groups. Platelet counts dropped 93% and 76% in Sal + BjV and War + BjV, respectively, and plasma fibrinogen levels decreased 86% exclusively in Sal + BjV. After 6 and 24 h, platelet counts and fibrinogen levels increased progressively. A dramatic augmentation in plasma hemoglobin levels and the presence of schizocytes and microcytes in the Sal + BjV group indicated the development of intravascular hemolysis, which was prevented by warfarin pretreatment. Our findings show that intravascular thrombin generation has the foremost role in the pathogenesis of coagulopathy and intravascular hemolysis, but not in the development of thrombocytopenia, in B. jararaca envenomation in rats; in addition, fibrinogenases (metalloproteinases) may contribute to coagulopathy more than thrombin-like enzymes. PMID:26080462

  18. The evolution of computerized treatment planning for brachytherapy: American contributions

    PubMed Central

    Rivard, Mark J.

    2014-01-01

    Purpose To outline the evolution of computerized brachytherapy treatment planning in the United States through a review of technological developments and clinical practice refinements. Material and methods A literature review was performed and interviews were conducted with six participants in the development of computerized treatment planning for brachytherapy. Results Computerized brachytherapy treatment planning software was initially developed in the Physics Departments of New York's Memorial Hospital (by Nelson, Meurk and Balter), and Houston's M. D. Anderson Hospital (by Stovall and Shalek). These public-domain programs could be used by institutions with adequate computational resources; other clinics had access to them via Memorial's and Anderson's teletype-based computational services. Commercial brachytherapy treatment planning programs designed to run on smaller computers (Prowess, ROCS, MMS), were developed in the late 1980s and early 1990s. These systems brought interactive dosimetry into the clinic and surgical theatre. Conclusions Brachytherapy treatment planning has evolved from systems of rigid implant rules to individualized pre- and intra-operative treatment plans, and post-operative dosimetric assessments. Brachytherapy dose distributions were initially calculated on public domain programs on large regionally located computers. With the progression of computer miniaturization and increase in processor speeds, proprietary software was commercially developed for microcomputers that offered increased functionality and integration with clinical practice. PMID:25097560

  19. 21 CFR 880.5970 - Percutaneous, implanted, long-term intravascular catheter.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ...: “Guidance on Premarket Notification Submission for Short-Term and Long-Term Intravascular Catheters.” ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Percutaneous, implanted, long-term intravascular... and Personal Use Therapeutic Devices § 880.5970 Percutaneous, implanted, long-term...

  20. 21 CFR 880.5970 - Percutaneous, implanted, long-term intravascular catheter.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ...: “Guidance on Premarket Notification Submission for Short-Term and Long-Term Intravascular Catheters.” ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Percutaneous, implanted, long-term intravascular... and Personal Use Therapeutic Devices § 880.5970 Percutaneous, implanted, long-term...

  1. 21 CFR 880.5970 - Percutaneous, implanted, long-term intravascular catheter.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ...: “Guidance on Premarket Notification Submission for Short-Term and Long-Term Intravascular Catheters.” ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Percutaneous, implanted, long-term intravascular... and Personal Use Therapeutic Devices § 880.5970 Percutaneous, implanted, long-term...

  2. [Incidence of biological intravascular coagulation in legal induced abortions].

    PubMed

    Boudaoud, S; Eurin, B; Drouet, L; Alhomme, P; Dreyfus, R; Serfaty, D

    1986-01-01

    A prospective study was designed to evaluate coagulation abnormalities induced by early abortion (before ten weeks of pregnancy). Fifty-two women underwent suction abortion, under diazepam-fentanyl anaesthesia with spontaneous ventilation; they were screened for coagulation parameters before and after surgery. Eight tests were carried out: prothrombin time, activated partial thromboplastin time (APTT), thrombin time platelet count, fibrinogen levels, fibrin split products, fibrin soluble complexes and euglobulin lysis time. Results were consistent with activation. Consequences were limited and one general test (APTT) was not significantly modified. Suction abortion, even performed in early pregnancy, exposed to biological disseminated intravascular coagulation with a general risk of venous thrombosis.

  3. Disseminated Intravascular Coagulation after Surgery for Facial Injury

    PubMed Central

    Tachibana, Hirohiko; Ishikawa, Shigeo; Yusa, Kazuyuki; Kitabatake, Kenichirou; Iino, Mitsuyoshi

    2016-01-01

    A case of disseminated intravascular coagulation (DIC) presenting after surgery for facial trauma associated with multiple facial bone fractures is described. With regard to the oral and maxillofacial region, DIC has been described in the literature following head trauma, infection, and metastatic disease. Until now, only 5 reports have described DIC after surgery for facial injury. DIC secondary to facial injury is thus rare. The patient in this case was young and had no medical history. Preoperative hemorrhage or postoperative septicemia may thus induce DIC. PMID:27313913

  4. Application of tissue characterization in intravascular ultrasound imaging

    NASA Astrophysics Data System (ADS)

    Mullen, William L.; Fitzgerald, Peter J.; Yock, Paul G.

    1994-05-01

    Current intravascular ultrasound imaging technology is able to determine the extent and distribution of pathologic processes within the vessel wall, but is not highly sensitive in discriminating between certain types of tissue. `Tissue characterization' refers to a set of computer-based techniques that utilize features of the ultrasound signal beyond basic amplitude to help define the composition of the tissue of interest. This technique involves quantitative analysis of the ultrasound signals reflected from tissue before these signals pass through the processing steps in the ultrasound instrument.

  5. Venous gas embolism - Time course of residual pulmonary intravascular bubbles

    NASA Technical Reports Server (NTRS)

    Butler, B. D.; Luehr, S.; Katz, J.

    1989-01-01

    A study was carried out to determine the time course of residual pulmonary intravascular bubbles after embolization with known amounts of venous air, using an N2O challenge technique. Attention was also given to the length of time that the venous gas emboli remained as discrete bubbles in the lungs with 100 percent oxygen ventilation. The data indicate that venous gas emboli can remain in the pulmonary vasculature as discrete bubbles for periods lasting up to 43 + or - 10.8 min in dogs ventilated with oxygen and nitrogen. With 100 percent oxygen ventilation, these values are reduced significantly to 19 + or - 2.5 min.

  6. Intravascular filarial parasites elaborate cyclooxygenase-derived eicosanoids

    PubMed Central

    1990-01-01

    The nematode parasites that cause human lymphatic filariasis survive for long periods in their vascular habitats despite continual exposure to host cells. Since prostanoids formed from arachidonic acid can modulate interactions among platelets, leukocytes, and endothelial cells, we examined whether intravascular nematode parasites can elaborate prostanoids. Microfilariae of Brugia malayi utilize exogenous and endogenous arachidonic acid to generate and release two predominant prostanoids, prostacyclin and prostaglandin E2. Filarial metabolism of host fatty acids to form these vasodilatory, antiaggregatory, and immunomodulatory eicosanoids provides a means by which these helminthic parasites may influence host immune and other cellular responses. PMID:2117642

  7. Removal of Chronic Intravascular Blood Clots using Liquid Plasma

    NASA Astrophysics Data System (ADS)

    Jung, Jae-Chul; Choi, Myeong; Koo, Il; Yu, Zengqi; Collins, George

    2011-10-01

    An electrical embolectomy device for removing chronic intravascular blood clots using liquid plasma under saline environment was demonstrated. We employed a proxy experimental blood clot model of deep vein thrombosis (DVT) and actual equine blood clot. Thermal damage to contiguous tissue and the collagen denaturing via the plasma irradiation were investigated by histological analysis using birefringence of the tissue and verified by FT-IR spectroscopic study, respectively, which showed the high removal rate up to 2 mm per minute at room temperature and small thermal damage less than 200 μm.

  8. Predictors of Metastatic Disease After Prostate Brachytherapy

    SciTech Connect

    Forsythe, Kevin; Burri, Ryan; Stone, Nelson; Stock, Richard G.

    2012-06-01

    Purpose: To identify predictors of metastatic disease after brachytherapy treatment for prostate cancer. Methods and Materials: All patients who received either brachytherapy alone (implant) or brachytherapy in combination with external beam radiation therapy for treatment of localized prostate cancer at The Mount Sinai Hospital between June 1990 and March 2007 with a minimum follow-up of 2 years were included. Univariate and multivariable analyses were performed on the following variables: risk group, Gleason score (GS), clinical T stage, pretreatment prostate-specific antigen level, post-treatment prostate-specific antigen doubling time (PSA-DT), treatment type (implant vs. implant plus external beam radiation therapy), treatment era, total biological effective dose, use of androgen deprivation therapy, age at diagnosis, and race. PSA-DT was analyzed in the following ordinate groups: 0 to 90 days, 91 to 180 days, 180 to 360 days, and greater than 360 days. Results: We included 1,887 patients in this study. Metastases developed in 47 of these patients. The 10-year freedom from distant metastasis (FFDM) rate for the entire population was 95.1%. Median follow-up was 6 years (range, 2-15 years). The only two significant predictors of metastatic disease by multivariable analyses were GS and PSA-DT (p < 0.001 for both variables). Estimated 10-year FFDM rates for GS of 6 or less, GS of 7, and GS of 8 or greater were 97.9%, 94.3%, and 76.1%, respectively (p < 0.001). Estimated FFDM rates for PSA-DT of 0 to 90 days, 91 to 180 days, 181 to 360 days, and greater than 360 days were 17.5%, 67.9%, 74%, and 94.8%, respectively (p < 0.001). Estimated 10-year FFDM rates for the low-, intermediate-, and high-risk groups were 98.6%, 96.2%, and 86.7%, respectively. A demographic shift to patients presenting with higher-grade disease in more recent years was observed. Conclusions: GS and post-treatment PSA-DT are both statistically significant independent predictors of metastatic

  9. A dynamic dosimetry system for prostate brachytherapy

    NASA Astrophysics Data System (ADS)

    Kuo, Nathanael; Dehghan, Ehsan; Deguet, Anton; Song, Danny Y.; Prince, Jerry L.; Lee, Junghoon

    2013-03-01

    The lack of dynamic dosimetry tools for permanent prostate brachytherapy causes otherwise avoidable problems in prostate cancer patient care. The goal of this work is to satisfy this need in a readily adoptable manner. Using the ubiquitous ultrasound scanner and mobile non-isocentric C-arm, we show that dynamic dosimetry is now possible with only the addition of an arbitrarily configured marker-based fiducial. Not only is the system easily configured from accessible hardware, but it is also simple and convenient, requiring little training from technicians. Furthermore, the proposed system is built upon robust algorithms of seed segmentation, fiducial detection, seed reconstruction, and image registration. All individual steps of the pipeline have been thoroughly tested, and the system as a whole has been validated on a study of 25 patients. The system has shown excellent results of accurately computing dose, and does so with minimal manual intervention, therefore showing promise for widespread adoption of dynamic dosimetry.

  10. Paddle-based rotating-shield brachytherapy

    SciTech Connect

    Liu, Yunlong; Xu, Weiyu; Flynn, Ryan T.; Kim, Yusung; Bhatia, Sudershan K.; Buatti, John M.; Dadkhah, Hossein; Wu, Xiaodong

    2015-10-15

    Purpose: The authors present a novel paddle-based rotating-shield brachytherapy (P-RSBT) method, whose radiation-attenuating shields are formed with a multileaf collimator (MLC), consisting of retractable paddles, to achieve intensity modulation in high-dose-rate brachytherapy. Methods: Five cervical cancer patients using an intrauterine tandem applicator were considered to assess the potential benefit of the P-RSBT method. The P-RSBT source used was a 50 kV electronic brachytherapy source (Xoft Axxent™). The paddles can be retracted independently to form multiple emission windows around the source for radiation delivery. The MLC was assumed to be rotatable. P-RSBT treatment plans were generated using the asymmetric dose–volume optimization with smoothness control method [Liu et al., Med. Phys. 41(11), 111709 (11pp.) (2014)] with a delivery time constraint, different paddle sizes, and different rotation strides. The number of treatment fractions (fx) was assumed to be five. As brachytherapy is delivered as a boost for cervical cancer, the dose distribution for each case includes the dose from external beam radiotherapy as well, which is 45 Gy in 25 fx. The high-risk clinical target volume (HR-CTV) doses were escalated until the minimum dose to the hottest 2 cm{sup 3} (D{sub 2cm{sup 3}}) of either the rectum, sigmoid colon, or bladder reached their tolerance doses of 75, 75, and 90 Gy{sub 3}, respectively, expressed as equivalent doses in 2 Gy fractions (EQD2 with α/β = 3 Gy). Results: P-RSBT outperformed the two other RSBT delivery techniques, single-shield RSBT (S-RSBT) and dynamic-shield RSBT (D-RSBT), with a properly selected paddle size. If the paddle size was angled at 60°, the average D{sub 90} increases for the delivery plans by P-RSBT on the five cases, compared to S-RSBT, were 2.2, 8.3, 12.6, 11.9, and 9.1 Gy{sub 10}, respectively, with delivery times of 10, 15, 20, 25, and 30 min/fx. The increases in HR-CTV D{sub 90}, compared to D-RSBT, were 16

  11. Automatic Brachytherapy Seed Placement Under MRI Guidance

    PubMed Central

    Patriciu, Alexandru; Petrisor, Doru; Muntener, Michael; Mazilu, Dumitru; Schär, Michael; Stoianovici, Dan

    2011-01-01

    The paper presents a robotic method of performing low dose rate prostate brachytherapy under magnetic resonance imaging (MRI) guidance. The design and operation of a fully automated MR compatible seed injector is presented. This is used with the MrBot robot for transperineal percutaneous prostate access. A new image-registration marker and algorithms are also presented. The system is integrated and tested with a 3T MRI scanner. Tests compare three different registration methods, assess the precision of performing automated seed deployment, and use the seeds to assess the accuracy of needle targeting under image guidance. Under the ideal conditions of the in vitro experiments, results show outstanding image-guided needle and seed placement accuracy. PMID:17694871

  12. An overview of interstitial brachytherapy and hyperthermia

    SciTech Connect

    Brandt, B.B.; Harney, J.

    1989-11-01

    Interstitial thermoradiotherapy, an experimental cancer treatment that combines interstitial radiation implants (brachytherapy) and interstitial hyperthermia, is in the early stages of investigation. In accordance with the procedure used in a current national trial protocol, a 60-minute hyperthermia treatment is administered after catheters are placed into the tumor area while the patient is under general anesthesia. This is immediately followed by loading of radioactive Iridium-192 seeds into the catheters for a defined period of time. Once the prescribed radiation dose is delivered, the radioactive sources are removed and a second, 60-minute hyperthermia treatment is administered. Clinical trials with hyperthermia in combination with radiation have increased in recent years. Nurses caring for these patients need to become more knowledgeable about this investigational therapy. This paper provides an overview of the biologic rationale for this therapy, as well as a description of the delivery method and clinical application. Specific related nursing interventions are defined in a nursing protocol.23 references.

  13. 10 CFR 35.2432 - Records of calibration measurements of brachytherapy sources.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 1 2011-01-01 2011-01-01 false Records of calibration measurements of brachytherapy... Records § 35.2432 Records of calibration measurements of brachytherapy sources. (a) A licensee shall maintain a record of the calibrations of brachytherapy sources required by § 35.432 for 3 years after...

  14. 10 CFR 35.2432 - Records of calibration measurements of brachytherapy sources.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 1 2014-01-01 2014-01-01 false Records of calibration measurements of brachytherapy... Records § 35.2432 Records of calibration measurements of brachytherapy sources. (a) A licensee shall maintain a record of the calibrations of brachytherapy sources required by § 35.432 for 3 years after...

  15. 10 CFR 35.2432 - Records of calibration measurements of brachytherapy sources.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 1 2013-01-01 2013-01-01 false Records of calibration measurements of brachytherapy... Records § 35.2432 Records of calibration measurements of brachytherapy sources. (a) A licensee shall maintain a record of the calibrations of brachytherapy sources required by § 35.432 for 3 years after...

  16. 10 CFR 35.2432 - Records of calibration measurements of brachytherapy sources.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 1 2012-01-01 2012-01-01 false Records of calibration measurements of brachytherapy... Records § 35.2432 Records of calibration measurements of brachytherapy sources. (a) A licensee shall maintain a record of the calibrations of brachytherapy sources required by § 35.432 for 3 years after...

  17. 10 CFR 35.2432 - Records of calibration measurements of brachytherapy sources.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Records of calibration measurements of brachytherapy... Records § 35.2432 Records of calibration measurements of brachytherapy sources. (a) A licensee shall maintain a record of the calibrations of brachytherapy sources required by § 35.432 for 3 years after...

  18. Intravascular photoacoustic imaging at 35 and 80 MHz

    PubMed Central

    Li, Xiang; Wei, Wei; Shung, K. Kirk

    2012-01-01

    Abstract. The catheter-based intravascular photoacoustic (IVPA) imaging for diagnosing atherosclerosis, which can provide optical absorption contrast of the arterial wall besides acoustic scattering contrast from the conventional intravascular ultrasound (IVUS) imaging, has been intensively researched recently. The resolution of IVPA is determined by the frequency bandwidth of an ultrasonic transducer. Higher resolution can be achieved by increasing the transducer’s working frequency and bandwidth. We introduce IVPA imaging at 35 and 80 MHz by using newly designed integrated IVUS/IVPA probes. This is the first time IVPA has been achieved as high as 80 MHz. Six-micrometer tungsten wires were imaged to evaluate the probes’ spatial resolutions and beam patterns. Healthy rabbit aorta was imaged in vitro. Imaging results show that IVPA has superior contrast over IVUS in identifying the arterial wall, and IVPA at 80 MHz demonstrates extraordinary resolution (35 μm) compared to 35 MHz. PMID:23224004

  19. Thyroid Storm Complicated by Bicytopenia and Disseminated Intravascular Coagulation

    PubMed Central

    Tokushima, Yoshinori; Sakanishi, Yuta; Nagae, Kou; Tokushima, Midori; Tago, Masaki; Tomonaga, Motosuke; Yoshioka, Tsuneaki; Hyakutake, Masaki; Sugioka, Takashi; Yamashita, Shu-ichi

    2014-01-01

    Patient: Male, 23 Final Diagnosis: Thyroid storm Symptoms: Delirium • diarrhea • fever • hypertension • hyperventilation • tachycardia • weight loss Medication: — Clinical Procedure: — Specialty: Endocrinology and Metabolic Objective: Unusual clinical course Background: The clinical presentation of thyroid storm includes fever, tachycardia, hypertension, and neurological abnormalities. It is a serious condition with a high mortality rate. Furthermore, some other complications affect the clinical course of thyroid storm. Although it is reported that prognosis is poor when thyroid storm is complicated by disseminated intravascular coagulation syndrome (DIC) and leukopenia, reports of such cases are rare. Case Report: A 23-year-old man presented with delirium, high pyrexia, diarrhea, and weight loss of 18 kg over 2 months. According to the criteria of Burch and Wartofsky, he was diagnosed with thyroid storm on the basis of his symptom-complex and laboratory data that confirmed the presence of hyperthyroidism. Investigations also found leukopenia, thrombocytopenia, and disseminated intravascular coagulation, all of which are very rare complications of thyroid storm. We successfully treated him with combined therapy including anti-thyroid medication, despite leukopenia. Conclusions: Early diagnosis and treatment are essential in ensuring a good outcome for patients with this rare combination of medical problems. PMID:25072662

  20. [Disseminated intravascular coagulation. Case series and literature review].

    PubMed

    Del Carpio-Orantes, Luis; García-Ortiz, Jorge José

    2014-01-01

    INTRODUCCIÓN: la coagulación intravascular diseminada es una entidad caracteriza por activación de la cascada de la coagulación y fibrinólisis endógena, que puede provocar la muerte. Nuestros objetivos fueron identificar la incidencia de coagulación intravascular diseminada, sus agentes etiológicos y la correlación entre la puntuación de la escala Apache II y la propuesta por la Sociedad Internacional de Trombosis y Hemostasia para el diagnóstico de esta entidad. MÉTODOS: estudio retrospectivo, observacional y descriptivo de pacientes atendidos en una unidad de cuidados intensivos en un periodo de 17 meses. Se analizó etiología, edad, sexo, conteo de plaquetas, coagulograma, niveles de fibrinógeno sérico y cuantificación del dímero D. Se calculó la puntuación de la escala propuesta por la Sociedad Internacional de Trombosis y Hemostasia y de la escala APACHE II.

  1. A short contemporary history of disseminated intravascular coagulation.

    PubMed

    Levi, Marcel; van der Poll, Tom

    2014-11-01

    Disseminated intravascular coagulation (DIC) is a syndrome characterized by systemic intravascular activation of coagulation, leading to a widespread deposition of fibrin in the circulation. There is ample experimental and pathological evidence that the fibrin deposition contributes to multiple organ failure. The massive and ongoing activation of coagulation may result in depletion of platelets and coagulation factors, which may cause bleeding (consumption coagulopathy). The syndrome of DIC is well known in the medical literature for centuries, although a more precise description of the underlying mechanisms had to await the 20th century. Initial ideas on a role of the contact activation system as the primary trigger for the systemic activation of coagulation as well as a presumed hyperfibrinolytic response in DIC have been found to be misconceptions. Experimental and clinical evidence now indicate that the initiation of coagulation in DIC is caused by tissue factor expression, which in combination with downregulated physiological anticoagulant pathways and impaired fibrinolysis leads to widespread fibrin deposition. In addition, an extensive bidirectional interaction between coagulation and inflammation may further contribute to the pathogenesis of DIC.

  2. Fatal Cryocrystalglobulinemia With Intravascular and Renal Tubular Crystalline Deposits.

    PubMed

    DeLyria, Paul A; Avedschmidt, Sarah E; Yamada, Chisa; Farkash, Evan A

    2016-05-01

    Cryocrystalglobulinemia is a rare variant of cryoglobulinemia in which monoclonal immunoglobulins self-assemble into crystalline arrays. We report a case of a 53-year-old man who presented with systemic thrombotic microangiopathy causing multiorgan failure, including decreased kidney, lung, and gastrointestinal function; skin necrosis; and mental status changes. Skin and kidney biopsy specimens showed intravascular thrombi, along with intravascular, intratubular, and periglomerular crystalline deposits. Typical morphologic features of cryoglobulinemia, such as a leukocytoclastic vasculitis and pseudothrombi, were absent. Spindled crystals precipitated in the cryoglobulin assay, and immunofixation showed them to be composed of monoclonal immunoglobulin G κ light chains. Ultrastructural analysis demonstrated deposits to have an array-like substructure. The patient was successfully treated with a combination of plasmapheresis, steroids, and bortezomib, but experienced a relapse and died 12 months after his initial diagnosis. Cryocrystalglobulinemia causes significant morbidity and mortality and should be classified as a monoclonal gammopathy of renal significance when it occurs in patients not meeting diagnostic criteria for multiple myeloma. PMID:26775022

  3. Development of catheters for combined intravascular ultrasound and photoacoustic imaging

    NASA Astrophysics Data System (ADS)

    Karpiouk, Andrei B.; Wang, Bo; Emelianov, Stanislav Y.

    2009-02-01

    Coronary atherosclerosis is a complex disease accompanied by the development of plaques in the arterial wall. Since the vulnerability of the plaques depends on their composition, the appropriate treatment of the arteriosclerosis requires a reliable characterization of the plaques' geometry and content. The intravascular ultrasound (IVUS) imaging is capable of providing structural details of the plaques as well as some functional information. In turn, more functional information about the same plaques can be obtained from intravascular photoacoustic (IVPA) images since the optical properties of the plaque's components differ from that of their environment. The combined IVUS/IVPA imaging is capable of simultaneously detecting and differentiating the plaques, thus determining their vulnerability. The potential of combined IVUS/IVPA imaging has already been demonstrated in phantoms and ex-vivo experiments. However, for in-vivo or clinical imaging, an integrated IVUS/IVPA catheter is required. In this paper, we introduce two prototypes of integrated IVUS/IVPA catheters for in-vivo imaging based on a commercially available single-element IVUS imaging catheter. The light delivery systems are developed using multimode optical fibers with custom-designed distal tips. Both prototypes were tested and compared using an arterial mimicking phantom. The advantages and limitations of both designs are discussed. Overall, the results of our studies suggest that both designs of integrated IVUS/IVPA catheter have a potential for in-vivo IVPA/IVUS imaging of atherosclerotic plaques.

  4. High speed intravascular photoacoustic imaging of atherosclerotic arteries (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Piao, Zhonglie; Ma, Teng; Qu, Yueqiao; Li, Jiawen; Yu, Mingyue; He, Youmin; Shung, K. Kirk; Zhou, Qifa; Kim, Chang-Seok; Chen, Zhongping

    2016-02-01

    Cardiovascular disease is the leading cause of death in the industrialized nations. Accurate quantification of both the morphology and composition of lipid-rich vulnerable atherosclerotic plaque are essential for early detection and optimal treatment in clinics. In previous works, intravascular photoacoustic (IVPA) imaging for detection of lipid-rich plaque within coronary artery walls has been demonstrated in ex vivo, but the imaging speed is still limited. In order to increase the imaging speed, a high repetition rate laser is needed. In this work, we present a high speed integrated IVPA/US imaging system with a 500 Hz optical parametric oscillator laser at 1725 nm. A miniature catheter with 1.0 mm outer diameter was designed with a 200 μm multimode fiber and an ultrasound transducer with 45 MHz center frequency. The fiber was polished at 38 degree and enclosed in a glass capillary for total internal reflection. An optical/electrical rotary junction and pull-back mechanism was applied for rotating and linearly scanning the catheter to obtain three-dimensional imaging. Atherosclerotic rabbit abdominal aorta was imaged as two frame/second at 1725 nm. Furthermore, by wide tuning range of the laser wavelength from 1680 nm to 1770 nm, spectroscopic photoacoustic analysis of lipid-mimicking phantom and an human atherosclerotic artery was performed ex vivo. The results demonstrated that the developed IVPA/US imaging system is capable for high speed intravascular imaging for plaque detection.

  5. Dominant neurologic symptomatology in intravascular large B-cell lymphoma.

    PubMed

    Kubisova, K; Martanovic, P; Sisovsky, V; Tomleinova, Z; Steno, A; Janega, P; Rychly, B; Babal, P

    2016-01-01

    Intravascular large B-cell lymphoma (IVLBCL) is a rare variant of extranodal large B-cell lymphoma and it is characterized by selective intravascular proliferation of malignant cells. Typical features of the disease include aggressive behavior, rapid and frequently fatal course. Clinical picture is non-specific and heterogeneous, depending on the affected organ. It is not uncommon that this unique type of lymphoma is diagnosed post mortem. Herein, we report two cases of IVLBCL with neurologic symptomatology. In our clinical study patient 1 was an 80-year-old male with mixed paraparesis of lower extremities and difficulties with sphincter control. Patient 2 (56-year-old male) had vision malfunction, mental status changes and defect in phatic and motor functions. In both cases definite diagnosis was established by histological examination of necroptic material. We propose to include IVLBCL in differential diagnostic considerations in patients presenting with gradually impairing neurological status and spinal cord damage of unknown etiology (Fig. 2, Ref. 9). PMID:27546361

  6. Dual-element needle transducer for intravascular ultrasound imaging

    PubMed Central

    Yoon, Sangpil; Kim, Min Gon; Williams, Jay A.; Yoon, Changhan; Kang, Bong Jin; Cabrera-Munoz, Nestor; Shung, K. Kirk; Kim, Hyung Ham

    2015-01-01

    Abstract. A dual-element needle transducer for intravascular ultrasound imaging has been developed. A low-frequency element and a high-frequency element were integrated into one device to obtain images which conveyed both low- and high-frequency information from a single scan. The low-frequency element with a center frequency of 48 MHz was fabricated from the single crystal form of lead magnesium niobate-lead titanate solid solution with two matching layers (MLs) and the high frequency element with a center frequency of 152 MHz was fabricated from lithium niobate with one ML. The measured axial and lateral resolutions were 27 and 122  μm, respectively, for the low-frequency element, and 14 and 40  μm, respectively, for the high-frequency element. The performance of the dual-element needle transducer was validated by imaging a tissue-mimicking phantom with lesion-mimicking area, and ex vivo rabbit aortas in water and rabbit whole blood. The results suggest that a low-frequency element effectively provides depth resolved images of the whole vessel and its adjacent tissue, and a high-frequency element visualizes detailed structure near the surface of the lumen wall in the presence of blood within the lumen. The advantages of a dual-element approach for intravascular imaging are also discussed. PMID:26158118

  7. Focused intravascular ultrasonic probe using dimpled transducer elements.

    PubMed

    Chen, Y; Qiu, W B; Lam, K H; Liu, B Q; Jiang, X P; Zheng, H R; Luo, H S; Chan, H L W; Dai, J Y

    2015-02-01

    High-frequency focused intravascular ultrasonic probes were fabricated in this study using dimple technique based on PMN-PT single crystal and lead-free KNN-KBT-Mn ceramic. The center frequency, bandwidth, and insertion loss of the PMN-PT transducer were 34 MHz, 75%, and 22.9 dB, respectively. For the lead-free probe, the center frequency, bandwidth, and insertion loss were found to be 40 MHz, 72%, and 28.8 dB, respectively. The ultrasonic images of wire phantom and vessels with good resolution were obtained to evaluate the transducer performance. The -6 dB axial and lateral resolutions of the PMN-PT probe were determined to be 58 μm and 131 μm, respectively. For the lead-free probe, the axial and lateral resolutions were found to be 44 μm and 125 μm, respectively. These results suggest that the mechanical dimpling technique has good potential in preparing focused transducers for intravascular ultrasound applications. PMID:25108608

  8. The syndrome of pneumococcemia, disseminated intravascular coagulation and asplenia.

    PubMed Central

    Kingston, M E; MacKenzie, C R

    1979-01-01

    A 58-year-old man who survived an episode of fulminant pneumococcal septicemia with disseminated intravascular coagulation had undergone splenectomy 23 years previously. In the literature there are 25 reported cases of fulminant septicemia and disseminated intravascular coagulation associated with asplenia in adults (excluding cases in which corticosteroid or immunosuppressive therapy was given). The pneumococcus was responsible for all of these cases as well. The mortality in this series was more than 90%, and death occurred within 24 hours of presentation at hospital in almost 70% of the fatal cases and was associated with high-density bacteremia and adrenal hemorrhage. Gram-staining of the buffy coat of the peripheral blood or the exudate from purpuric skin lesions was carried out in only 6 of the 26 cases but yielded positive results in all but 1. It is concluded that a diagnosis of septicemia in asplenic adults can be established within a short time of presentation on the basis of statistical probability and the results of Gram-staining of the peripheral blood and exudate from the skin lesions. Prevention appears to be the cornerstone of management because of the variable interval from splenectomy to the onset of the syndrome and the high mortality. Images FIG. 1 PMID:38002

  9. Incorporating seed orientation in brachytherapy implant reconstruction

    NASA Astrophysics Data System (ADS)

    Zhou, Yu; Jain, Ameet K.; Chirikjian, Gregory S.; Fichtinger, Gabor

    2006-03-01

    Intra-operative quality assurance and dosimetry optimization in prostate brachytherapy critically depends on the ability of discerning the locations of implanted seeds. Various methods exist for seed matching and reconstruction from multiple segmented C-arm images. Unfortunately, using three or more images makes the problem NP-hard, i.e. no polynomial-time algorithm can provably compute the complete matching. Typically, a statistical analysis of performance is considered sufficient. Hence it is of utmost importance to exploit all the available information in order to minimize the matching and reconstruction errors. Current algorithms use only the information about seed centers, disregarding the information about the orientations and length of seeds. While the latter has little dosimetric impact, it can positively contribute to improving seed matching rate and 3D implant reconstruction accuracy. It can also become critical information when hidden and spuriously segmented seeds need to be matched, where reliable and generic methods are not yet available. Expecting orientation information to be useful in reconstructing large and dense implants, we have developed a method which incorporates seed orientation information into our previously proposed reconstruction algorithm (MARSHAL). Simulation study shows that under normal segmentation errors, when considering seed orientations, implants of 80 to 140 seeds with the density of 2.0- 3.0 seeds/cc give an average matching rate >97% using three-image matching. It is higher than the matching rate of about 96% when considering only seed positions. This means that the information of seed orientations appears to be a valuable additive to fluoroscopy-based brachytherapy implant reconstruction.

  10. Intravascular ultrasound imaging of peripheral arteries as an adjunct to balloon angioplasty and atherectomy.

    PubMed

    Korogi, Y; Hirai, T; Takahashi, M

    1996-01-01

    This article reviews many of the applications of intravascular ultrasound (US) imaging for peripheral arterial diseases. In vitro studies demonstrate an excellent correlation between ultrasound measurements of lumen and plaque cross-sectional area compared with histologic sections. In vivo clinical studies reveal the enhanced diagnostic capabilities of this technology compared with angiography. Intravascular US imaging can provide valuable information on the degree, eccentricity, and histologic type of stenosis before intervention, and on the morphological changes in the arterial wall and the extent of excision after intervention. Intravascular US may also serve as a superior index for gauging the diameter of balloon, stent, laser probe, and/or atherectomy catheter appropriate for a proposed intervention. Significant new insights into the mechanisms of balloon angioplasty and atherectomy have been established by intravascular US findings. Intravascular US imaging has been shown to be a more accurate method than angiography for determining the cross-sectional area of the arterial lumen, and for assessing severity of stenosis. Quantitative assessment of the luminal cross-sectional area after the balloon dilatation should be more accurate than angiography as intimal tears or dissections produced by the dilatation may not be accurately evaluated with angiography. At the present time, intravascular US is still a controversial imaging technique. Outcome studies are currently being organized to assess the clinical value and cost effectiveness of intravascular ultrasound in the context of these interventional procedures. PMID:8653738

  11. Utilization and Outcomes of Breast Brachytherapy in Younger Women

    PubMed Central

    Smith, Grace L; Huo, Jinhai; Giordano, Sharon H.; Hunt, Kelly K.; Buchholz, Thomas A; Smith, Benjamin D

    2015-01-01

    Background Breast brachytherapy after lumpectomy is controversial in younger patients, as effectiveness is unclear and selection criteria are debated. Methods Using MarketScan® healthcare claims data, we identified 45,884 invasive breast cancer patients (ages 18–64), treated from 2003–2010 with lumpectomy, followed by brachytherapy (n=3,134) or whole breast irradiation (WBI) (n=42,750). We stratified patients into risk groups, based on age (Age<50 vs. Age≥50) and endocrine therapy status (Endocrine− vs. Endocrine+). “Endocrine+” patients filled an endocrine therapy prescription within 1 year after lumpectomy. Pathologic hormone receptor status was not available in this dataset. In brachytherapy vs. WBI patients, utilization trends and 5-year subsequent mastectomy risks were compared. Stratified, adjusted subsequent mastectomy risks were calculated using proportional hazards regression. Results Brachytherapy utilization increased from 2003 to 2010: In patients Age<50, from 0.6% to 4.9%; patients Age≥50 from 2.2% to 11.3%; Endocrine− patients, 1.3% to 9.4%; Endocrine+ patients, 1.9% to 9.7%. Age influenced treatment selection more than endocrine status: 17% of brachytherapy patients were Age<50 vs. 32% of WBI patients (P<0.001); while 41% of brachytherapy patients were Endocrine- vs. 44% of WBI patients (P=0.003). Highest absolute 5-year subsequent mastectomy risks occurred in Endocrine−/Age<50 patients (24.4% after brachytherapy vs. 9.0% after WBI (Hazard ratio[HR]=2.18, 1.37–3.47); intermediate risks in Endocrine−/Age≥50 patients (8.6% vs. 4.9%; HR=1.76, 1.26–2.46); and lowest risks in Endocrine+ patients of any age: Endocrine+/Age<50 (5.5% vs. 4.5%; HR=1.18, 0.61–2.31); Endocrine+/Age≥50 (4.2% vs. 2.4%; HR=1.71, 1.16–2.51). Conclusion In this younger cohort, endocrine status was a valuable discriminatory factor predicting subsequent mastectomy risk after brachytherapy vs. WBI and therefore may be useful for selecting appropriate

  12. Utilization and Outcomes of Breast Brachytherapy in Younger Women

    SciTech Connect

    Smith, Grace L.; Huo, Jinhai; Giordano, Sharon H.; Hunt, Kelly K.; Buchholz, Thomas A.; Smith, Benjamin D.

    2015-09-01

    Purpose: To directly compare (1) radiation treatment utilization patterns; (2) risks of subsequent mastectomy; and (3) costs of radiation treatment in patients treated with brachytherapy versus whole-breast irradiation (WBI), in a national, contemporary cohort of women with incident breast cancer, aged 64 years and younger. Methods and Materials: Using MarketScan health care claims data, we identified 45,884 invasive breast cancer patients (aged 18-64 years), treated from 2003 to 2010 with lumpectomy, followed by brachytherapy (n=3134) or whole-breast irradiation (n=42,750). We stratified patients into risk groups according to age (Age<50 vs Age≥50) and endocrine therapy status (Endocrine− vs Endocrine+). “Endocrine+” patients filled an endocrine therapy prescription within 1 year after lumpectomy. Pathologic hormone receptor status was not available in this dataset. In brachytherapy versus WBI patients, utilization trends and 5-year subsequent mastectomy risks were compared. Stratified, adjusted subsequent mastectomy risks were calculated using proportional hazards regression. Results: Brachytherapy utilization increased from 2003 to 2010: in patients Age<50, from 0.6% to 4.9%; patients Age≥50 from 2.2% to 11.3%; Endocrine− patients, 1.3% to 9.4%; Endocrine+ patients, 1.9% to 9.7%. Age influenced treatment selection more than endocrine status: 17% of brachytherapy patients were Age<50 versus 32% of WBI patients (P<.001); whereas 41% of brachytherapy patients were Endocrine–versus 44% of WBI patients (P=.003). Highest absolute 5-year subsequent mastectomy risks occurred in Endocrine−/Age<50 patients (24.4% after brachytherapy vs 9.0% after WBI (hazard ratio [HR] 2.18, 95% confidence interval [CI] 1.37-3.47); intermediate risks in Endocrine−/Age≥50 patients (8.6% vs 4.9%; HR 1.76, 95% CI 1.26-2.46); and lowest risks in Endocrine+ patients of any age: Endocrine+/Age<50 (5.5% vs 4.5%; HR 1.18, 95% CI 0.61-2.31); Endocrine+/Age≥50 (4.2% vs 2

  13. Prostate brachytherapy in patients with median lobe hyperplasia.

    PubMed

    Wallner, K; Smathers, S; Sutlief, S; Corman, J; Ellis, W

    2000-06-20

    Our aim was to document the technical and clinical course of prostate brachytherapy patients with radiographic evidence of median lobe hyperplasia (MLH). Eight patients with MLH were identified during our routine brachytherapy practice, representing 9% of the 87 brachytherapy patients treated during a 6-month period. No effort was made to avoid brachytherapy in patients noted to have MLH on diagnostic work-up. Cystoscopic evaluation was not routinely performed. Postimplant axial computed tomographic (CT) images of the prostate were obtained at 0.5 cm intervals. Preimplant urinary obstructive symptoms were quantified by the criteria of the American Urologic Association (AUA). Each patient was contacted during the writing of this report to update postimplant morbidity information. There was no apparent association between the degree of MLH and preimplant prostate volume or AUA score. Intraoperatively, we were able to visualize MLH by transrectal ultrasound and did not notice any particular difficulty placing sources in the MLH tissue or migration of sources out of the tissue. The prescription isodose covered from 81% to 99% of the postimplant CT-defined target volume, achieving adequate dose to the median lobe tissue in all patients. Two of the eight patients developed acute, postimplant urinary retention. The first patient required intermittent self-catheterization for 3 months and then resumed spontaneous urination. MLH does not appear to be a strong contraindication to prostate brachytherapy, and prophylactic resection of hypertrophic tissue in such patients is probably not warranted. Int. J. Cancer (Radiat. Oncol. Invest.) 90, 152-156 (2000). PMID:10900427

  14. Intravascular ultrasound and optical coherence tomography imaging of coronary atherosclerosis.

    PubMed

    Costopoulos, Charis; Brown, Adam J; Teng, Zhongzhao; Hoole, Stephen P; West, Nick E J; Samady, Habib; Bennett, Martin R

    2016-01-01

    Invasive imaging modalities, in particular intravascular ultrasound (IVUS) and optical coherence tomography (OCT), have become established tools for the in vivo study of coronary atherosclerosis. Their use in clinical studies has confirmed histopathological observations that certain important plaque features, such as thin fibrous caps and large lipid cores, are associated with plaque rupture, the precipitating event for the majority of myocardial infarctions. Serial imaging studies have also successfully been used for the evaluation of potential disease modifying pharmacological agents. Recent prospective IVUS studies have confirmed specific baseline imaging features associated with subsequent adverse clinical outcomes, although absolute event rates were too low for clinical utility. Development of hybrid IVUS-OCT imaging or integration of novel techniques, including near-infrared spectroscopy, plaque structural and endothelial shear stress, have great potential to improve our current ability to identify and stratify atheromatous plaques at risk of rupture.

  15. Acute renal failure and intravascular hemolysis following henna ingestion.

    PubMed

    Qurashi, Hala E A; Qumqumji, Abbas A A; Zacharia, Yasir

    2013-05-01

    The powder of henna plant (Lawsonia inermis Linn.) is extensively used as a decorative skin paint for nail coloring and as a hair dye. Most reports of henna toxicity have been attributed to adding a synthetic dye para-phenylenediamine (PPD). PPD is marketed as black henna added to natural henna to accentuate the dark color and shorten the application time. PPD toxicity is well known and extensively reported in medical literature. We report a case of a young Saudi male who presented with characteristic features of acute renal failure and intravascular hemolysis following ingestion of henna mixture. Management of PPD poisoning is only supportive and helpful only if instituted early. Diagnosis requires a high degree of clinical suspicion, as the clinical features are quite distinctive. PMID:23640630

  16. Mathematical Modeling of Intravascular Blood Coagulation under Wall Shear Stress.

    PubMed

    Rukhlenko, Oleksii S; Dudchenko, Olga A; Zlobina, Ksenia E; Guria, Georgy Th

    2015-01-01

    Increased shear stress such as observed at local stenosis may cause drastic changes in the permeability of the vessel wall to procoagulants and thus initiate intravascular blood coagulation. In this paper we suggest a mathematical model to investigate how shear stress-induced permeability influences the thrombogenic potential of atherosclerotic plaques. Numerical analysis of the model reveals the existence of two hydrodynamic thresholds for activation of blood coagulation in the system and unveils typical scenarios of thrombus formation. The dependence of blood coagulation development on the intensity of blood flow, as well as on geometrical parameters of atherosclerotic plaque is described. Relevant parametric diagrams are drawn. The results suggest a previously unrecognized role of relatively small plaques (resulting in less than 50% of the lumen area reduction) in atherothrombosis and have important implications for the existing stenting guidelines.

  17. Basic studies on intravascular low-intensity laser therapy

    NASA Astrophysics Data System (ADS)

    Liu, Timon Cheng-Yi; Duan, Rui; Wang, Shuang-Xi; Liu, Jiang; Cui, Li-Ping; Jin, Hua; Liu, Song-Hao

    2006-09-01

    Intravascular low intensity laser therapy (ILILT) was originally put forward in USA in 1982, but popularized in Russia in 1980s and in China in 1990s, respectively. A randomized placebo-controlled study has shown ILILT clinical efficacy in patients suffering from rheumatoid arthritis. As Chinese therapeutic applications of ILILT were the most widely in the world, its basic research, such as intracellular signal transduction research, blood research in vitro, animal blood research in vivo, human blood research in vivo and traditional Chinese medicine research, was also very progressive in China. Its basic studies will be reviewed in terms of the biological information model of photobiomodulation in this paper. ILILT might work in view of its basic studies, but the further randomized placebo-controlled trial and the further safety research should be done.

  18. [Traumatic abruption of the placenta with disseminated intravascular coagulation].

    PubMed

    Benz, R; Malär, A-U; Benz-Wörner, J; Scherer, M; Hodel, M; Gähler, A; Haberthür, C; Konrad, C

    2012-10-01

    Trauma in pregnancy is infrequent and a systematic primary strategy constitutes a real challenge for the interdisciplinary team. With a high fetal mortality rate and a substantial maternal mortality rate traumatic placental abruption is a severe emergency which every anesthetist should be aware of. After hemodynamic stabilization of the mother and control of the viability of the fetus the therapy of traumatic placental abruption consists mostly of an immediate caesarean section. Coagulopathy by depletion of coagulation factors as well as disseminated intravascular coagulation (DIC) have to be expected and consequently a massive blood loss must be anticipated. Thrombelastography provides assistance for fast differential diagnosis and goal-directed treatment of the disturbed sections of the coagulation cascade.

  19. Thrombocytopenia and thrombosis in disseminated intravascular coagulation (DIC).

    PubMed

    Kitchens, Craig S

    2009-01-01

    Disseminated intravascular coagulation (DIC) is the physiologic result of pathologic overstimulation of the coagulation system. Despite multiple triggers, a myriad of laboratory abnormalities, and a clinical presentation ranging from gross hemostatic failure to life-threatening thrombosis, or even both simultaneously, a simplified clinical approach augmented by a few readily available tests allows prompt identification of the process and elucidation of treatment opportunities. Platelet counts in DIC may be low, especially in acute sepsis-associated DIC, yet increased in malignancy-associated chronic DIC. Thrombotic risk is not a function of the platelet count, and thrombocytopenia does not protect the patient from thrombosis. The stratification of both thrombotic risk and hemorrhagic risk will be addressed.

  20. Disseminated intravascular coagulation in obstetric and gynecologic disorders.

    PubMed

    Montagnana, Martina; Franchi, Massimo; Danese, Elisa; Gotsch, Francesca; Guidi, Gian Cesare

    2010-06-01

    Disseminated intravascular coagulation (DIC) is a syndrome characterized by a massive, widespread, and ongoing activation of the coagulation system, secondary to a variety of clinical conditions. Many obstetric complications, such as abruptio placentae, amniotic fluid embolism, endotoxin sepsis, retained dead fetus, post-hemorrhagic shock, hydatidiform mole, and gynecologic malignancies, might trigger DIC. In these gynecologic and obstetric settings, DIC is usually associated with high mortality and morbidity rates. No single laboratory test is sensitive or specific enough to diagnose DIC definitively, but it can be diagnosed by using a combination of multiple clinical and laboratory tests that reflect the pathophysiology of the syndrome. At present, the therapeutical approach to pregnancy- and gynecologic-related DIC comprises the specific and aggressive treatment of the underlying disease, eventually followed by a supportive blood product replacement therapy and restoration of physiological anticoagulant pathways. This article reviews the etiopathogenesis, clinical manifestations, laboratory diagnosis, and therapy of pregnancy- and gynecologic-related DIC.

  1. Potential diagnostic markers for disseminated intravascular coagulation of sepsis.

    PubMed

    Iba, Toshiaki; Ito, Takashi; Maruyama, Ikuro; Jilma, Bernd; Brenner, Thorsten; Müller, Marcella C A; Juffermans, Nicole P; Thachil, Jecko

    2016-03-01

    Disseminated intravascular coagulation (DIC) is an acquired thrombo-haemorrhagic disorder which arises in clinical scenarios like sepsis, trauma and malignancies. The clinic-laboratory diagnosis of DIC is made in a patient who develops the combination of laboratory abnormalities in the appropriate clinical scenario. The most common laboratory parameters in this setting have been the clotting profile, platelet count, serum fibrinogen and fibrin degradation markers. These tests had the advantage that they could be performed easily and in most laboratories. However, with the better understanding of the pathophysiology of DIC, in recent years, more specific tests have been suggested to be useful in this setting. The newer tests can also prove to be useful in prognostication in DIC. In addition, they may provide assistance in the selection and monitoring of patients diagnosed with DIC.

  2. Adaptive Estimation of Intravascular Shear Rate Based on Parameter Optimization

    NASA Astrophysics Data System (ADS)

    Nitta, Naotaka; Takeda, Naoto

    2008-05-01

    The relationships between the intravascular wall shear stress, controlled by flow dynamics, and the progress of arteriosclerosis plaque have been clarified by various studies. Since the shear stress is determined by the viscosity coefficient and shear rate, both factors must be estimated accurately. In this paper, an adaptive method for improving the accuracy of quantitative shear rate estimation was investigated. First, the parameter dependence of the estimated shear rate was investigated in terms of the differential window width and the number of averaged velocity profiles based on simulation and experimental data, and then the shear rate calculation was optimized. The optimized result revealed that the proposed adaptive method of shear rate estimation was effective for improving the accuracy of shear rate calculation.

  3. Advanced Congestive Heart Failure Associated With Disseminated Intravascular Coagulopathy.

    PubMed

    Sarcon, Annahita; Liu, Xiaoli; Ton, David; Haywood, James; Hitchcock, Todd

    2015-01-01

    Background. Disseminated intravascular coagulopathy (DIC) is a complication of an underlying disease and not a primary illness. It is most commonly associated with sepsis, trauma, obstetrical complications, and malignancies. There are very few cases in the literature illustrating the association between DIC and congestive heart failure. Findings. In this report, we present a case of severe congestive heart failure, leading to biventricular thrombi and subsequently DIC. Conclusion. We suggest that the association between congestive heart failure and DIC is an underrecognized one. Congestive heart failure continues to remain a major cause of morbidity and mortality despite advances in medical therapies. Thus far, the precise role of coagulation factors in congestive heart failure is unknown. Further investigations are needed to elucidate the pathophysiology of congestive heart failure and coagulation factors.

  4. Analysis of gas composition of intravascular bubbles produced by decompression.

    PubMed

    Ishiyama, A

    1983-06-01

    The gas composition of intravascular bubbles produced by decompression was investigated in rabbits using gas chromatography. The animals were exposed to 8 ATA for 30 min. All samples of bubbles were taken from the animals under 0.2 ATA pressure gradient so that no air could enter the sampling system from the outside. The percentage of carbon dioxide in the bubbles tended to decrease at first and then increased with post-decompression time. On the other hand, the percentage of oxygen tended to change in the opposite manner. Actual analysis of bubbles in the living decompressed animals indicates that carbon dioxide may be an outstanding factor in the initiation and early growth of bubbles. In view of this, Haldane's classical maximum supersaturation limit for avoiding decompression sickness should be examined and possibly modified for gases other than nitrogen.

  5. Intravascular Myopericytoma in the Heel: Case Report and Literature Review

    PubMed Central

    Valero, José; Salcini, José L.; Gordillo, Luis; Gallart, José; González, David; Deus, Javier; Lahoz, Manuel

    2015-01-01

    Abstract Intravascular myopericytoma (IVMP), regarded as a variant of myopericytoma, is a rare tumor. Very few cases have been described, none in the foot. The first case of IVMP located in the heel of the foot is described in this article. A literature review is reported of all cases of IVMP published in the English literature. A 48-year-old man possessed an IVMP on the heel of the right foot. The physical examination and histopathological and ultrasound studies are described. The literature review yielded 5 cases of IVMP, 2 of which were in the thigh and 1 each in the oral mucosa, the periorbital region, and the leg. The possibility that these lesions may be malignant suggests that the histopathological study of vascular tumors should include immunohistochemical tests. PMID:25789958

  6. Mathematical Modeling of Intravascular Blood Coagulation under Wall Shear Stress

    PubMed Central

    Rukhlenko, Oleksii S.; Dudchenko, Olga A.; Zlobina, Ksenia E.; Guria, Georgy Th.

    2015-01-01

    Increased shear stress such as observed at local stenosis may cause drastic changes in the permeability of the vessel wall to procoagulants and thus initiate intravascular blood coagulation. In this paper we suggest a mathematical model to investigate how shear stress-induced permeability influences the thrombogenic potential of atherosclerotic plaques. Numerical analysis of the model reveals the existence of two hydrodynamic thresholds for activation of blood coagulation in the system and unveils typical scenarios of thrombus formation. The dependence of blood coagulation development on the intensity of blood flow, as well as on geometrical parameters of atherosclerotic plaque is described. Relevant parametric diagrams are drawn. The results suggest a previously unrecognized role of relatively small plaques (resulting in less than 50% of the lumen area reduction) in atherothrombosis and have important implications for the existing stenting guidelines. PMID:26222505

  7. Impact of Intravascular Hemolysis in Malaria on Liver Dysfunction

    PubMed Central

    Dey, Sumanta; Bindu, Samik; Goyal, Manish; Pal, Chinmay; Alam, Athar; Iqbal, Mohd. Shameel; Kumar, Rahul; Sarkar, Souvik; Bandyopadhyay, Uday

    2012-01-01

    We have investigated the impact of persistent intravascular hemolysis on liver dysfunction using the mouse malaria model. Intravascular hemolysis showed a positive correlation with liver damage along with the increased accumulation of free heme and reactive oxidants in liver. Hepatocytes overinduced heme oxygenase-1 (HO-1) to catabolize free heme in building up defense against this pro-oxidant milieu. However, in a condition of persistent free heme overload in malaria, the overactivity of HO-1 resulted in continuous transient generation of free iron to favor production of reactive oxidants as evident from 2′,7′-dichlorofluorescein fluorescence studies. Electrophoretic mobility shift assay documented the activation of NF-κB, which in turn up-regulated intercellular adhesion molecule 1 as evident from chromatin immunoprecipitation studies. NF-κB activation also induced vascular cell adhesion molecule 1, keratinocyte chemoattractant, and macrophage inflammatory protein 2, which favored neutrophil extravasation and adhesion in liver. The infiltration of neutrophils correlated positively with the severity of hemolysis, and neutrophil depletion significantly prevented liver damage. The data further documented the elevation of serum TNFα in infected mice, and the treatment of anti-TNFα antibodies also significantly prevented neutrophil infiltration and liver injury. Deferoxamine, which chelates iron, interacts with free heme and bears antioxidant properties that prevented oxidative stress, NF-κB activation, neutrophil infiltration, hepatocyte apoptosis, and liver damage. Furthermore, the administration of N-acetylcysteine also prevented NF-κB activation, neutrophil infiltration, hepatocyte apoptosis, and liver damage. Thus, hepatic free heme accumulation, TNFα release, oxidative stress, and NF-κB activation established a link to favor neutrophil infiltration in inducing liver damage during hemolytic conditions in malaria. PMID:22696214

  8. Interstitial rotating shield brachytherapy for prostate cancer

    SciTech Connect

    Adams, Quentin E. Xu, Jinghzu; Breitbach, Elizabeth K.; Li, Xing; Rockey, William R.; Kim, Yusung; Wu, Xiaodong; Flynn, Ryan T.; Enger, Shirin A.

    2014-05-15

    Purpose: To present a novel needle, catheter, and radiation source system for interstitial rotating shield brachytherapy (I-RSBT) of the prostate. I-RSBT is a promising technique for reducing urethra, rectum, and bladder dose relative to conventional interstitial high-dose-rate brachytherapy (HDR-BT). Methods: A wire-mounted 62 GBq{sup 153}Gd source is proposed with an encapsulated diameter of 0.59 mm, active diameter of 0.44 mm, and active length of 10 mm. A concept model I-RSBT needle/catheter pair was constructed using concentric 50 and 75 μm thick nickel-titanium alloy (nitinol) tubes. The needle is 16-gauge (1.651 mm) in outer diameter and the catheter contains a 535 μm thick platinum shield. I-RSBT and conventional HDR-BT treatment plans for a prostate cancer patient were generated based on Monte Carlo dose calculations. In order to minimize urethral dose, urethral dose gradient volumes within 0–5 mm of the urethra surface were allowed to receive doses less than the prescribed dose of 100%. Results: The platinum shield reduced the dose rate on the shielded side of the source at 1 cm off-axis to 6.4% of the dose rate on the unshielded side. For the case considered, for the same minimum dose to the hottest 98% of the clinical target volume (D{sub 98%}), I-RSBT reduced urethral D{sub 0.1cc} below that of conventional HDR-BT by 29%, 33%, 38%, and 44% for urethral dose gradient volumes within 0, 1, 3, and 5 mm of the urethra surface, respectively. Percentages are expressed relative to the prescription dose of 100%. For the case considered, for the same urethral dose gradient volumes, rectum D{sub 1cc} was reduced by 7%, 6%, 6%, and 6%, respectively, and bladder D{sub 1cc} was reduced by 4%, 5%, 5%, and 6%, respectively. Treatment time to deliver 20 Gy with I-RSBT was 154 min with ten 62 GBq {sup 153}Gd sources. Conclusions: For the case considered, the proposed{sup 153}Gd-based I-RSBT system has the potential to lower the urethral dose relative to HDR-BT by 29

  9. Urethral toxicity after LDR brachytherapy: experience in Japan.

    PubMed

    Tanaka, Nobumichi; Asakawa, Isao; Hasegawa, Masatoshi; Fujimoto, Kiyohide

    2015-01-01

    Urinary toxicity is common after low-dose-rate (LDR) brachytherapy, and the resolution of urinary toxicity is a concern. In particular, urinary frequency is the most common adverse event among the urinary toxicities. We have previously reported that approximately 70% of patients experience urinary frequency during the first 6 months after seed implantation. Most urinary adverse events were classified as Grade 1, and Grade 2 or higher adverse events were rare. The incidence of urinary retention was approximately 2-4%. A high International Prostate Symptom Score before seed implantation was an independent predictor of acute urinary toxicity of Grade 2 or higher. Several previous reports from the United States also supported this trend. In Japan, LDR brachytherapy was legally approved in 2003. A nationwide prospective cohort study entitled Japanese Prostate Cancer Outcome Study of Permanent Iodine-125 Seed Implantation was initiated in July 2005. It is an important issue to limit urinary toxicities in patients who undergo LDR brachytherapy.

  10. Brachytherapy in the treatment of skin cancer: an overview.

    PubMed

    Skowronek, Janusz

    2015-10-01

    The incidence of skin cancer worldwide is constantly growing and it is the most frequently diagnosed tumor. Brachytherapy (BT) in particular localizations is a valuable tool of the exact radiation depot inside the tumor mass. In localizations such as the face, skull skin and inoperable tumors, relapses after surgery, radiotherapy are usually not suitable for primary or secondary invasive treatment. Brachytherapy is a safe procedure for organs at risk according to rapid fall of a dose outside the axis of the applicator with satisfactory dose localization inside the target. The complications rate is acceptable and treatment costs are low. In some tumors (great skin lesions in the scalp, near eyes or on the nose) BT allows for a great dose reduction in surrounding healthy tissues. Brachytherapy provides minimal dose delivery to surrounding healthy tissue, thus enabling good functional and cosmetic results. Treatment is possible almost in all cases on an outpatient basis. PMID:26759545

  11. Validation of GPUMCD for low-energy brachytherapy seed dosimetry

    SciTech Connect

    Hissoiny, Sami; Ozell, Benoit; Despres, Philippe; Carrier, Jean-Francois

    2011-07-15

    Purpose: To validate GPUMCD, a new package for fast Monte Carlo dose calculations based on the GPU (graphics processing unit), as a tool for low-energy single seed brachytherapy dosimetry for specific seed models. As the currently accepted method of dose calculation in low-energy brachytherapy computations relies on severe approximations, a Monte Carlo based approach would result in more accurate dose calculations, taking in to consideration the patient anatomy as well as interseed attenuation. The first step is to evaluate the capability of GPUMCD to reproduce low-energy, single source, brachytherapy calculations which could ultimately result in fast and accurate, Monte Carlo based, brachytherapy dose calculations for routine planning. Methods: A mixed geometry engine was integrated to GPUMCD capable of handling parametric as well as voxelized geometries. In order to evaluate GPUMCD for brachytherapy calculations, several dosimetry parameters were computed and compared to values found in the literature. These parameters, defined by the AAPM Task-Group No. 43, are the radial dose function, the 2D anisotropy function, and the dose rate constant. These three parameters were computed for two different brachytherapy sources: the Amersham OncoSeed 6711 and the Imagyn IsoStar IS-12501. Results: GPUMCD was shown to yield dosimetric parameters similar to those found in the literature. It reproduces radial dose functions to within 1.25% for both sources in the 0.5< r <10 cm range. The 2D anisotropy function was found to be within 3% at r = 5 cm and within 4% at r = 1 cm. The dose rate constants obtained were within the range of other values reported in the literature.Conclusion: GPUMCD was shown to be able to reproduce various TG-43 parameters for two different low-energy brachytherapy sources found in the literature. The next step is to test GPUMCD as a fast clinical Monte Carlo brachytherapy dose calculations with multiple seeds and patient geometry, potentially providing

  12. Imaging method for monitoring delivery of high dose rate brachytherapy

    DOEpatents

    Weisenberger, Andrew G; Majewski, Stanislaw

    2012-10-23

    A method for in-situ monitoring both the balloon/cavity and the radioactive source in brachytherapy treatment utilizing using at least one pair of miniature gamma cameras to acquire separate images of: 1) the radioactive source as it is moved in the tumor volume during brachytherapy; and 2) a relatively low intensity radiation source produced by either an injected radiopharmaceutical rendering cancerous tissue visible or from a radioactive solution filling a balloon surgically implanted into the cavity formed by the surgical resection of a tumor.

  13. Intravascular large B-cell lymphoma with hemophagocytic syndrome (Asian variant) in a Caucasian patient.

    PubMed

    Fung, Kar-Ming; Chakrabarty, Jennifer H; Kern, William F; Magharyous, Hany; Gehrs, Bradley C; Li, Shibo

    2012-01-01

    Intravascular lymphoma is an aggressive and extremely rare extranodal lymphoma with neoplastic lymphoid cells confined exclusively within intravascular spaces. The histopathologic findings are subtle due to the rarity of the neoplastic cells in blood vessels. Clinical presentations are non-specific and focal space-occupying lesions or lymphoadenopathy are always lacking. It is a diagnostic challenge. Secondary hemophagocytic syndrome is uncommon and is typically associated with infection, malignancy, and suppressed immune states. Intravascular lymphoma has a strong association with hemophagocytic syndrome in Asian patients, the so-called "Asian variant", but not in Western patients. We report a case of intravascular B-cell lymphoma in a Caucasian patient associated with secondary hemophagocytic syndrome. The patient was diagnosed by core liver biopsy and successfully treated. This case demonstrates the importance of high index of suspicion and astute histopathologic examination in recognition of this unusual clinical and pathologic combination.

  14. [The usefulness of intravascular echography during the percutaneous dilatation of aortic coarctation].

    PubMed

    Goicolea, F J; Macaya, C; Iñíguez, A; Alfonso, F; Hernández Antolín, R; Vila i Costa, I; Zamorano, J; Egocheaga, I; Zarco, P

    1992-01-01

    An intravascular ultrasound study was performed in a patient, to assess the anatomy of aortic coarctation and the results obtained after percutaneous dilation with a balloon catheter. Intravascular ultrasound imaging provides important additional information, not obtainable with other diagnostic procedures, regarding aortic wall structure and thickness. After balloon dilation, aortic disruption was clearly observed, accounting, together with the stretching of the outer layers of the aortic wall, for the increase in aortic luminal area. Intravascular ultrasound permitted also the accurate assessment of the improvement obtained. Intravascular imaging was clearly superior not only to conventional angiography, but also to transesophageal echocardiography in detecting the mechanism of dilation. We conclude that ultravascular ultrasound, with the additional information that it provides, may help in the selection of patients for percutaneous dilation of the coarctation as well as contributing to the identification of the mechanism of dilation.

  15. Radiotherapy and brachytherapy for recurrent colorectal cancer

    SciTech Connect

    Nag, S. )

    1991-05-01

    Radical surgical excision of locoregional recurrence of colorectal carcinoma usually produces the best survival and should be attempted whenever possible. However, recurrences are often unresectable; hence palliative local therapy may be indicated. There are several options for the radiation therapy of local, unresectable, recurrent, or metastatic colorectal cancer. Whole pelvis irradiation of 4,000-5,000 cGy followed by a coned-down boost of 1,000-1,500 cGy generally provides good symptomatic palliation in 80-90% of patients, but long-term control or cure is rarely achieved. External beam irradiation of 2,000-3,000 cGy to the whole liver with or without concurrent chemotherapy may be used for palliation of metastatic disease to the liver. A combination of intraoperative radiation therapy applied directly to the tumor bed and external beam irradiation may improve local control and survival rates. Multiple options are available for the intraoperative use of brachytherapy which can deliver high radiation doses to the residual tumor, or tumor bed, sparing normal tissue.

  16. New trick for removal of intravascular retained foreign body: a case report and review of literature.

    PubMed

    Mousa, Albeir Y; Gill, Gurpreet; Aburahma, Ali F

    2014-01-01

    A 54-year-old male presented to the vascular service for an urgent inpatient consultation. During an infusaport removal, the catheter was accidentally disconnected and lost intravascularly within the left subclavian vein, with the tip still in the right ventricle. We report on a novel technique for removing such intravascular foreign bodies (FBs), which will add a valuable technical option to our existing armamentarium regarding intracorporeal FB removal.

  17. Intravascular Large B-Cell Lymphoma: A Difficult Diagnostic Challenge.

    PubMed

    Khan, Maria S; McCubbin, Mark; Nand, Sucha

    2014-01-01

    Case Presentation. A 69-year-old Hispanic male, with a past history of diabetes and coronary disease, was admitted for fever, diarrhea, and confusion of 4 weeks duration. Physical examination showed a disoriented patient with multiple ecchymoses, possible ascites, and bilateral scrotal swelling. Hemoglobin was 6.7, prothrombin time (PT) 21.4 seconds with international normalized ratio 2.1, partial thromboplastin time (PTT) 55.6 seconds, fibrin split 10 µg/L, and lactate dehydrogenase (LDH) 1231 IU/L. Except for a positive DNA test for Epstein-Barr virus (EBV) infection, extensive diagnostic workup for infections, malignancy, or a neurological cause was negative. Mixing studies revealed a nonspecific inhibitor of PT and PTT but Factor VIII levels were normal. The patient was empirically treated with antibiotics but developed hypotension and died on day 27 of admission. At autopsy, patient was found to have intravascular diffuse large B-cell lymphoma involving skin, testes, lung, and muscles. The malignant cells were positive for CD20, CD791, Mum-1, and Pax-5 and negative for CD3, CD5, CD10, CD30, and Bcl-6. The malignant cells were 100% positive for Ki-67. Discussion. Intravascular large cell B-cell lymphoma (IVLBCL) is rare form of diffuse large B-cell lymphoma and tends to proliferate within small blood vessels, particularly capillaries and postcapillary venules. The cause of its affinity for vascular bed remains unknown. In many reports, IVLBCL was associated with HIV, HHV8, and EBV infections. The fact that our case showed evidence of EBV infection lends support to the association of this diagnosis to viral illness. The available literature on this subject is scant, and in many cases, the diagnosis was made only at autopsy. The typical presentation of this disorder is with B symptoms, progressive neurologic deficits, and skin findings. Bone marrow, spleen, and liver are involved in a minority of patients. Nearly all patients have elevated LDH, and about 65% are

  18. Intravascular papillary endothelial hyperplasia: histomorphological and immunohistochemical features

    PubMed Central

    2013-01-01

    Background Intravascular papillary endothelial hyperplasia (IPEH) is a benign intravascular process with features mimicking other benign and malignant vascular proliferations. IPEH lesions predominate in the head-neck region and the extremities. The characteristic histomorphological feature of IPEH is a papillary structure covered with hyperplastic endothelial cells within the vascular lumen. It is critical that this clinically benign lesion should not be mistaken for well-differentiated vascular tumors. In addition to the characteristic histological features, other useful diagnostic features included the intra-luminal location of the lesion, an intimate association with the organizing thrombus, the absence of necrosis, cellular pleomorphism, and mitotic activity. In addition, immunohistochemistry may indicate the vascular origin and proliferative index. In this study, we evaluated histomorphological and immunohistochemical findings (CD31, CD34, FVIII, type IV collagen, SMA, MSA, CD105, and Ki-67 staining) of ten IPEH cases. Methods Ten IPEH cases were re-examined for a panel of histomorphological and immunohistochemical features. CD31, CD34, FVIII, Type IV collagen, SMA and MSA antibodies utilized for immunohistochemical analysis. The histomorphological and immunohistochemical findings were evaluated by two independent pathologists using light microscopy. Results All ten cases involved intraluminal lesions with characteristic features of IPEH. All ten cases (100%) were stained positive for CD31 and CD34. The degree of staining with FVIII, type IV collagen, SMA, and MSA was variable. Conclusion In this series of specimens, CD31 and CD34 were the most sensitive markers indicating the vascular origin of the lesion. Staining for the other vascular markers (FVIII, type IV collagen, SMA and MSA) was variable. Different maturation degrees of lesions may account for the variation in immunohistochemical staining. Few previous investigations evaluated a wide range of

  19. Initial application of digital tomosynthesis to improve brachytherapy treatment planning

    NASA Astrophysics Data System (ADS)

    Baydush, Alan H.; Mirzaei McKee, Mahta; King, June; Godfrey, Devon J.

    2007-03-01

    We present preliminary investigations that examine the feasibility of incorporating volumetric images generated using digital tomosynthesis into brachytherapy treatment planning. The Integrated Brachytherapy Unit (IBU) at our facility consists of an L-arm, C-arm isocentric motion system with an x-ray tube and fluoroscopic imager attached. Clinically, this unit is used to generate oblique, anterior-posterior, and lateral images for simple treatment planning and dose prescriptions. Oncologists would strongly prefer to have volumetric data to better determine three dimensional dose distributions (dose-volume histograms) to the target area and organs at risk. Moving the patient back and forth to CT causes undo stress on the patient, allows extensive motion of organs and treatment applicators, and adds additional time to patient treatment. We propose to use the IBU imaging system with digital tomosynthesis to generate volumetric patient data, which can be used for improving treatment planning and overall reducing treatment time. Initial image data sets will be acquired over a limited arc of a human-like phantom composed of real bones and tissue equivalent material. A brachytherapy applicator will be incorporated into one of the phantoms for visualization purposes. Digital tomosynthesis will be used to generate a volumetric image of this phantom setup. This volumetric image set will be visually inspected to determine the feasibility of future incorporation of these types of images into brachytherapy treatment planning. We conclude that initial images using the tomosynthesis reconstruction technique show much promise and bode well for future work.

  20. Introduction of Transperineal Image-Guided Prostate Brachytherapy

    SciTech Connect

    Aronowitz, Jesse N.

    2014-07-15

    The modern prostate brachytherapy procedure is characterized by ultrasound guidance, template assistance, and a return to a “closed” transperineal approach. This review traces the introduction and evolution of these elements and charts the development of the procedure from the ashes of previous, failed efforts.

  1. Photoacoustic imaging of prostate brachytherapy seeds with transurethral light delivery

    NASA Astrophysics Data System (ADS)

    Lediju Bell, Muyinatu A.; Guo, Xiaoyu; Song, Danny Y.; Boctor, Emad M.

    2014-03-01

    We present a novel approach to photoacoustic imaging of prostate brachytherapy seeds utilizing an existing urinary catheter for transurethral light delivery. Two canine prostates were surgically implanted with brachyther- apy seeds under transrectal ultrasound guidance. One prostate was excised shortly after euthanasia and fixed in gelatin. The second prostate was imaged in the native tissue environment shortly after euthanasia. A urinary catheter was inserted in the urethra of each prostate. A 1-mm core diameter optical fiber coupled to a 1064 nm Nd:YAG laser was inserted into the urinary catheter. Light from the fiber was either directed mostly parallel to the fiber axis (i.e. end-fire fire) or mostly 90° to the fiber axis (i.e. side-fire fiber). An Ultrasonix SonixTouch scanner, transrectal ultrasound probe with curvilinear (BPC8-4) and linear (BPL9-5) arrays, and DAQ unit were utilized for synchronized laser light emission and photoacoustic signal acquisition. The implanted brachytherapy seeds were visualized at radial distances of 6-16 mm from the catheter. Multiple brachytherapy seeds were si- multaneously visualized with each array of the transrectal probe using both delay-and-sum (DAS) and short-lag spatial coherence (SLSC) beamforming. This work is the first to demonstrate the feasibility of photoacoustic imaging of prostate brachytherapy seeds using a transurethral light delivery method.

  2. 21 CFR 892.5730 - Radionuclide brachytherapy source.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Radionuclide brachytherapy source. 892.5730 Section 892.5730 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... a source of nuclear radiation for therapy. (b) Classification. Class II....

  3. 21 CFR 892.5730 - Radionuclide brachytherapy source.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Radionuclide brachytherapy source. 892.5730 Section 892.5730 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... a source of nuclear radiation for therapy. (b) Classification. Class II....

  4. Photoacoustic imaging of prostate brachytherapy seeds in ex vivo prostate

    NASA Astrophysics Data System (ADS)

    Kuo, Nathanael; Kang, Hyun Jae; DeJournett, Travis; Spicer, James; Boctor, Emad

    2011-03-01

    The localization of brachytherapy seeds in relation to the prostate is a key step in intraoperative treatment planning (ITP) for improving outcomes in prostate cancer patients treated with low dose rate prostate brachytherapy. Transrectal ultrasound (TRUS) has traditionally been the modality of choice to guide the prostate brachytherapy procedure due to its relatively low cost and apparent ease of use. However, TRUS is unable to visualize seeds well, precluding ITP and producing suboptimal results. While other modalities such as X-ray and magnetic resonance imaging have been investigated to localize seeds in relation to the prostate, photoacoustic imaging has become an emerging and promising modality to solve this challenge. Moreover, photoacoustic imaging may be more practical in the clinical setting compared to other methods since it adds little additional equipment to the ultrasound system already adopted in procedure today, reducing cost and simplifying engineering steps. In this paper, we demonstrate the latest efforts of localizing prostate brachytherapy seeds using photoacoustic imaging, including visualization of multiple seeds in actual prostate tissue. Although there are still several challenges to be met before photoacoustic imaging can be used in the operating room, we are pleased to present the current progress in this effort.

  5. Human factors evaluation of remote afterloading brachytherapy - an overview

    SciTech Connect

    Schoenfeld, I.

    1994-12-31

    This report presents information from a research project aimed at understanding the causes of human errors in remote afterloading brachytherapy. The analysis determined functions, tasks, equipment, and personnel involoved, as well as cognitive, perceptual, and motor skills needed to perform the tasks.

  6. Monolithic CMUT on CMOS Integration for Intravascular Ultrasound Applications

    PubMed Central

    Zahorian, Jaime; Hochman, Michael; Xu, Toby; Satir, Sarp; Gurun, Gokce; Karaman, Mustafa; Degertekin, F. Levent

    2012-01-01

    One of the most important promises of capacitive micromachined ultrasonic transducer (CMUT) technology is integration with electronics. This approach is required to minimize the parasitic capacitances in the receive mode, especially in catheter based volumetric imaging arrays where the elements need to be small. Furthermore, optimization of the available silicon area and minimized number of connections occurs when the CMUTs are fabricated directly above the associated electronics. Here, we describe successful fabrication and performance evaluation of CMUT arrays for intravascular imaging on custom designed CMOS receiver electronics from a commercial IC foundry. The CMUT on CMOS process starts with surface isolation and mechanical planarization of the CMOS electronics to reduce topography. The rest of the CMUT fabrication is achieved by modifying a low temperature micromachining process through the addition of a single mask and developing a dry etching step to produce sloped sidewalls for simple and reliable CMUT to CMOS interconnection. This CMUT to CMOS interconnect method reduced the parasitic capacitance by a factor of 200 when compared with a standard wire bonding method. Characterization experiments indicate that the CMUT on CMOS elements are uniform in frequency response and are similar to CMUTs simultaneously fabricated on standard silicon wafers without electronics integration. Experiments on a 1.6 mm diameter dual-ring CMUT array with a 15 MHz center frequency show that both the CMUTs and the integrated CMOS electronics are fully functional. The SNR measurements indicate that the performance is adequate for imaging CTOs located 1 cm away from the CMUT array. PMID:23443701

  7. Role of Intravascular Ultrasound in Patients with Acute Myocardial Infarction

    PubMed Central

    Hong, Young Joon; Ahn, Youngkeun

    2015-01-01

    Rupture of a vulnerable plaque and subsequent thrombus formation are important mechanisms leading to the development of an acute myocardial infarction (AMI). Typical intravascular ultrasound (IVUS) features of AMI include plaque rupture, thrombus, positive remodeling, attenuated plaque, spotty calcification, and thin-cap fibroatheroma. No-reflow phenomenon was attributable to the embolization of thrombus and plaque debris that results from mechanical fragmentation of the vulnerable plaque by percutaneous coronary intervention (PCI). Several grayscale IVUS features including plaque rupture, thrombus, positive remodeling, greater plaque burden, decreased post-PCI plaque volume, and tissue prolapse, and virtual histology-IVUS features such as large necrotic corecontaining lesion and thin-cap fibroatheroma were the independent predictors of no-reflow phenomenon in AMI patients. Non-culprit lesions associated with recurrent events were more likely than those not associated with recurrent events to be characterized by a plaque burden of ≥70%, a minimal luminal area of ≤4.0 mm2, or to be classified as thin-cap fibroatheromas. PMID:26240578

  8. Quantitative recovery of pulmonary intravascular macrophages from sheep lungs.

    PubMed

    Rogers, R A; Tasat, D R; Warner, A E; Brain, J D

    1994-12-01

    Pulmonary intravascular macrophages (PIMs) adhere to the endothelium of lung capillaries and sequester circulating particles and pathogens from the blood. Iron oxide (gamma Fe2O3) 5 mg/kg, administered intravenously, specifically labeled PIMs in situ within the living sheep. Attempts to isolate gamma Fe2O3-labeled PIMs using vascular perfusion (VP) procedures yielded few cells. To improve recovery of PIMs, a proteolytic lung digestion (PLD) procedure was developed. Following PLD, gamma Fe2O3-containing PIMs were recovered by magnets and the amount of gamma Fe2O3 present measured by fluxgate magnetometry. Proteolytic lung digestion recovered 34% of the total gamma Fe2O3 in lung samples and yielded 2 x 10(5) PIMs/g lung with 95% viability. In contrast, VP recovered only 3% of the total gamma Fe2O3 in the lung; furthermore, less than 2% of the recovered gamma Fe2O3 was cell associated. Proteolytic lung digestion followed by magnetic separation is an effective way to recover viable sheep PIMs for in vitro study. PMID:7996045

  9. Microbial diversity on intravascular catheters from paediatric patients.

    PubMed

    Zhang, L; Marsh, N; Long, D; Wei, M; Morrison, M; Rickard, C M

    2015-12-01

    Microorganisms play important roles in intravascular catheter (IVC)-related infections, which are the most serious complications in children with IVCs, leading to increased hospitalisation, intensive care admissions, extensive antibiotic treatment and mortality. A greater understanding of bacterial communities is needed in order to improve the management of infections. We describe here the systematic culture-independent evaluation of IVC bacteriology in IVC biofilms. Twenty-four IVC samples (six peripherally inserted central catheters, eight central venous catheters and ten arterial catheters) were collected from 24 paediatric patients aged 0 to 14 years old. Barcoded amplicon libraries produced from genes coding 16S rRNA and roll-plate culture methods were used to determine the microbial composition of these samples. From a total of 1,043,406 high-quality sequence reads, eight microbial phyla and 136 diverse microbial genera were detected, separated into 12,224 operational taxonomic units (OTUs). Three phyla (Actinobacteria, Firmicutes and Proteobacteria) predominate the microorganism on the IVC surfaces, with Firmicutes representing nearly half of the OTUs found. Among the Firmicutes, Staphylococcus (15.0% of 16S rRNA reads), Streptococcus (9.6%) and Bacillus (6.1%) were the most common. Community composition did not appear to be affected by patients' age, gender, antibiotic treatment or IVC type. Differences in IVC microbiota were more likely associated with events arising from catheter dwell time, rather than the type of IVC used. PMID:26515578

  10. Impact of microbial attachment on intravascular catheter-related infections.

    PubMed

    Zhang, Li; Gowardman, John; Rickard, Claire M

    2011-07-01

    Intravascular catheters (IVCs) are the most frequently used medical devices in hospitals. However, they are associated with life-threatening IVC-related bloodstream infection (IVC-BSI), which is one of the main hospital-acquired infections, and continue to be associated with morbidity, mortality and additional medical cost. Most published studies focus on measuring the rate of IVC-BSIs and addressing their importance, but only a few studies have mentioned the possible routes for microbes entering the bloodstream, which would help in developing effective prevention methods, and large trial studies are lacking. Some studies on IVC-BSIs have reported the most frequently isolated microbes, but caution needs to be made since many fastidious microbes are not isolated under current laboratory conditions. Although it is known that microbes colonise IVC surfaces and develop biofilms, leading to IVC-BSI, the relationships of microbial biofilms with patients' symptoms or outcomes remain unclear. Here we discuss the knowledge gained from microbial research in other (non-IVC) medical and non-medical applications that may be helpful in understanding the IVC context. In addition, published theory and data regarding microbial colonisation and biofilm development specifically in IVCs are reviewed. More research is needed to explore mechanisms of IVC-BSI and to provide superior prevention strategies.

  11. Acoustic determination of early stages of intravascular blood coagulation.

    PubMed

    Uzlova, Svetlana G; Guria, Konstantin G; Guria, Georgy Th

    2008-10-13

    The blood coagulation system (BCS) is a complex biological system playing a principal role in the maintenance of haemostasis. Insufficient activity of the BCS may lead to bleeding and blood loss (e.g. in the case of haemophilia). On the other hand, excessive activity may cause intravascular blood coagulation, thromboses and embolization. Most of the methods currently used for BCS monitoring suffer from the major disadvantage of being invasive. The purpose of the present work is to demonstrate the feasibility of using ultrasonic methods for non-invasive registration of the early stages of blood coagulation processes in intensive flows. With this purpose, a special experimental set-up was designed, facilitating the simultaneous detection of optical and acoustic signals during the clotting process. It was shown that (i) as microemboli appear in the flow during the early stage of blood coagulation, the intensity of the Doppler signal increases twofold, and (ii) microemboli formation in the early stages of blood clotting always reveals itself through an acoustic contrast. Both of these effects are well defined, so we hope that they may be used for non-invasive BCS monitoring in clinical practice.

  12. Intravascular Ultrasound for Intracranial and Extracranial Carotid Artery Stent Placement

    PubMed Central

    Hussain, Ahmad S

    2016-01-01

    Intravascular ultrasound (IVUS) can provide valuable information regarding endoluminal morphology. We present the first description of IVUS-guided intracranial and extracranial carotid artery stent placement for arterial dissection. A 41-year-old female with a sudden-onset headache and blurred vision underwent a computed tomography (CT) angiogram imaging that revealed bilateral carotid artery dissections (BCAD) and a left vertebral artery dissection (VAD). Endovascular treatment (EVT) of a long segment right carotid artery dissection (CAD) was performed employing two Carotid WALLSTENT™ Monorails™ (8 x 36 mm, 10 x 31 mm) (Boston Scientific, Marlborough, MA). With the help of the IVUS, the distal stent was placed up to the petrous carotid artery, followed by the placement of the second stent in the immediate proximal location with some overlap that extended down to the carotid artery bulb. Intraoperative angiography and post-stenting IVUS revealed excellent stent placement with good resolution of the dissection and good luminal patency with pseudolumen obliteration. Stent use for intracranial circulation dissections will continue to be a favorable option given the decreased morbidity of endovascular therapy in this location. As endovascular surgeons become more facile with the use of IVUS, using it as a guide for stent placement and post-stenting confirmation will help them to ensure proper positioning and improved patency rates. PMID:27672529

  13. [Progress in diagnosis and treatment for disseminated intravascular coagulation].

    PubMed

    Wada, Hideo; Matsumoto, Takeshi; Aota, Takumi; Yamashita, Yoshiki

    2015-02-01

    As the development of a hypercoagulable state in the setting of disseminated intravascular coagulation (DIC) induces localized infection, therapy for DIC should be evaluated according to the findings of examinations for both severe sepsis and DIC. DIC is classified into the following types: "bleeding type," "organ failure type," "asymptomatic type," and "complication type." The "bleeding type" and "organ failure type" are considered to reflect the "plasmin inhibitor (PI) deficiency type" and "antithrombin (AT) deficiency type," respectively. In order to improve the diagnosis of DIC, in particular limitations in global coagulation tests, the Japanese Society of Thrombosis and Hemostasis recently proposed tentative diagnostic criteria for DIC using hemostatic molecular markers and AT. The recommendations for treatment of DIC, especially the use of AT concentrates, recombinant activated protein C and thrombomodulin, vary among several guidelines for the management of DIC. These agents inhibit the effects of key proteases in activating coagulation and consequently exert an anti-inflammatory effect on DIC. Hence, it is necessary to extensively evaluate these agents in well-conducted clinical trials.

  14. Back to the future: testing in disseminated intravascular coagulation.

    PubMed

    Toh, Cheng-Hock; Downey, Colin

    2005-11-01

    Following on from the first clinical observations on disseminated intravascular coagulation (DIC) in the nineteenth century, the dawn of laboratory testing for DIC began with the availability of assays that characterized the extrinsic and intrinsic pathways of coagulation. Markedly increased clotting times were the hallmark of DIC. As the understanding of the biochemistry of haemostasis and thrombosis improved, new tests were developed based on the molecular players that participate in the process. However, many are non-specific for DIC and/or are unwieldy in performance to keep apace with the demands of the acute clinical setting. The renewed emphasis in DIC for the modern laboratory of the twenty-first century has seen a return to the simple, rapid and practical global tests of coagulation within scoring systems that also capture the pathophysiological continuum by trend analysis. Additionally, new technologies based on these simple tests of coagulation hold promise in also indicating the in vivo interplay between coagulation and inflammation during DIC.

  15. Diagnostic criteria and laboratory tests for disseminated intravascular coagulation.

    PubMed

    Wada, Hideo; Matsumoto, Takeshi; Hatada, Tuyoshi

    2012-12-01

    Three diagnostic criteria for disseminated intravascular coagulation (DIC) have been established by the Japanese Ministry of Health, Labor and Welfare, the International Society on Thrombosis and Hemostasis (ISTH) and the Japanese Association for Acute Medicine. The diagnostic criteria involving global coagulation tests, such as the Japanese Ministry of Health, Labor and Welfare criteria and the ISTH overt diagnostic criteria, are first-generation DIC diagnostic criteria, those involving global coagulation tests and changes in these tests such as the Japanese Association for Acute Medicine criteria, are second-generation DIC diagnostic criteria, and those including non-overt DIC diagnostic criteria involving global coagulation tests, changes in these tests and hemostatic molecular markers will be the future (third-generation) DIC diagnostic criteria. There are no significant differences in the three diagnostic criteria with respect to predicting poor outcomes. Therefore, the third generation of diagnostic criteria including hemostatic molecular markers is expected to be established. Standardization and the determination of adequate cutoff values should be required for each laboratory test.

  16. Light intensity matching between different intravascular optical coherence tomography systems

    NASA Astrophysics Data System (ADS)

    Liu, Shengnan; Eggermont, Jeroen; Nakatani, Shimpei; Lelieveldt, Boudewijn P. F.; Dijkstra, Jouke

    2016-02-01

    Currently two commercial intravascular optical coherence tomography (IVOCT) systems are available: Illumien Optis from St. Jude Medical (SJM) and Lunawave from Terumo. Both systems store the light intensity data in a raw vendor specific polar format. However, whereas SJM uses 16-bits per pixel Terumo uses 8-bits meaning the intensity values are in different ranges. This complicates quantitative light intensity based analysis when comparing results based on data from both systems. Therefore, this work aims to find an intensity transformation function from Terumo's 8-bit OFDI data to SJM's 16-bit range. The data consists of 8 pullbacks, 4 acquired with each system in the same arteries of 2 different patents pre- and post-stenting implantation. A total of 133 matching sections without stent struts from the two sets of pullbacks were identified based on landmarks such as side-branches and calcified regions. Since the main region of interest in the image is the tissue region only the pixels within 2mm behind the lumen border are used. In order to match the SJM data range, the Terumo data was rescaled and cumulative distribution functions (CDF) were calculated based on the histogram distributions. Comparing these CDFs, the transformation function can be determined. Application of this transformation function not only improves the visual similarity of matching slices it can also be used for further quantitative analysis.

  17. Disseminated intravascular coagulopathy: manifestations after a routine dental extraction.

    PubMed

    Peters, Kelly A; Triolo, Peter T; Darden, Daryle L

    2005-04-01

    Clinical signs and symptoms of acute disseminated intravascular coagulopathy (DIC) include bleeding from body orifices, such as the nose, mouth, or ear, bleeding from an intravenous (IV) site, areas of ecchymosis, or blood in the urine or stool. The underlying disease triggering DIC usually determines the clinical presentation. However, patients with chronic DIC (compensated DIC) may possess subclinical signs and symptoms, and the bleeding disorder may only be identified through laboratory findings. In this compensated form, the triggering factor is exposed slowly and in small amounts (seen in malignancies and vasculitis), allowing replenishing of the augmented factors by the liver, adequate reticuloendothelial clearance of fibrin degradation products, and increased production of platelets, which prevent secondary fibrinolysis and the signs of bleeding. 1,4 We report a case of an 82-year-old male who presented to the emergency room 24 hours after a routine dental extraction with bleeding from the tooth socket, severe hypotension, and presence of ecchymosis on his chest. Clinical and radiographic exam revealed multiple thoracic and abdominal aortic aneurysms, as well as infrarenal and iliac aneurysms, continuous oral hemorrhage, and a unique presentation rarely documented in the literature: a bleeding tooth socket as the initial clinical sign and presentation of DIC.

  18. Low-artifact intravascular devices: MR imaging evaluation.

    PubMed

    Teitelbaum, G P; Ortega, H V; Vinitski, S; Stern, H; Tsuruda, J S; Mitchell, D G; Rifkin, M D; Bradley, W G

    1988-09-01

    Flow-phantom magnetic resonance (MR) imaging, with use of both spin-echo (SE) and gradient-echo (GRE) techniques at 1.5 T, was performed on the percutaneous Greenfield (beta-III titanium alloy [TMA wire]), Amplatz (MP32-N alloy), and Simon nitinol filters and TMA wire facsimiles of the bird's nest, Gunther, new retrievable, and Amplatz vena caval filters. SE imaging allowed detection of thrombi as small as 5 X 5 mm trapped within the percutaneous Greenfield, Simon nitinol, and TMA-wire facsimile filters; with the MP32-N Amplatz filter, a larger volume of thrombus (10 X 20-mm clots) was necessary for clot detection. GRE imaging allowed detection of intraluminal tilting of the percutaneous Greenfield and facsimile Amplatz (TMA-wire) filters. GRE imaging was useful for demonstrating postfilter turbulence due to clots, which was greatest for the Amplatz filter. Imaging of facsimile vascular devices made of tantalum or TMA wire did not cause the severe "black-hole" MR artifacts typical of the stainless-steel devices. SE and GRE imaging were very useful for determining caval patency in two patients with previously placed Mobin-Uddin filters. Noninvasive MR evaluation of blood vessels in the presence of a variety of low-artifact intravascular devices appears feasible. PMID:3406402

  19. Intravascular Ultrasound for Intracranial and Extracranial Carotid Artery Stent Placement

    PubMed Central

    Hussain, Ahmad S

    2016-01-01

    Intravascular ultrasound (IVUS) can provide valuable information regarding endoluminal morphology. We present the first description of IVUS-guided intracranial and extracranial carotid artery stent placement for arterial dissection. A 41-year-old female with a sudden-onset headache and blurred vision underwent a computed tomography (CT) angiogram imaging that revealed bilateral carotid artery dissections (BCAD) and a left vertebral artery dissection (VAD). Endovascular treatment (EVT) of a long segment right carotid artery dissection (CAD) was performed employing two Carotid WALLSTENT™ Monorails™ (8 x 36 mm, 10 x 31 mm) (Boston Scientific, Marlborough, MA). With the help of the IVUS, the distal stent was placed up to the petrous carotid artery, followed by the placement of the second stent in the immediate proximal location with some overlap that extended down to the carotid artery bulb. Intraoperative angiography and post-stenting IVUS revealed excellent stent placement with good resolution of the dissection and good luminal patency with pseudolumen obliteration. Stent use for intracranial circulation dissections will continue to be a favorable option given the decreased morbidity of endovascular therapy in this location. As endovascular surgeons become more facile with the use of IVUS, using it as a guide for stent placement and post-stenting confirmation will help them to ensure proper positioning and improved patency rates.

  20. Intravascular Ultrasound for Intracranial and Extracranial Carotid Artery Stent Placement.

    PubMed

    Hussain, Ahmad S; Hussain, Namath S

    2016-01-01

    Intravascular ultrasound (IVUS) can provide valuable information regarding endoluminal morphology. We present the first description of IVUS-guided intracranial and extracranial carotid artery stent placement for arterial dissection. A 41-year-old female with a sudden-onset headache and blurred vision underwent a computed tomography (CT) angiogram imaging that revealed bilateral carotid artery dissections (BCAD) and a left vertebral artery dissection (VAD). Endovascular treatment (EVT) of a long segment right carotid artery dissection (CAD) was performed employing two Carotid WALLSTENT™ Monorails™ (8 x 36 mm, 10 x 31 mm) (Boston Scientific, Marlborough, MA). With the help of the IVUS, the distal stent was placed up to the petrous carotid artery, followed by the placement of the second stent in the immediate proximal location with some overlap that extended down to the carotid artery bulb. Intraoperative angiography and post-stenting IVUS revealed excellent stent placement with good resolution of the dissection and good luminal patency with pseudolumen obliteration. Stent use for intracranial circulation dissections will continue to be a favorable option given the decreased morbidity of endovascular therapy in this location. As endovascular surgeons become more facile with the use of IVUS, using it as a guide for stent placement and post-stenting confirmation will help them to ensure proper positioning and improved patency rates. PMID:27672529

  1. Effect of intravascular cellular aggregate dissolution in postoperative patients.

    PubMed Central

    Dawidson, I; Barrett, J; Miller, E; Litwin, M S

    1975-01-01

    It was the purpose of this study to confirm whether the increase in packed cell (PC) viscosity that occurs in humans after elective surgery is accompanied by a decrease in total body O2 consumption as previously noted in animals, and further to define the effect of resolution of intravascular cellular aggregates (ICA) on these parameters. Thirty nine patients were studied. Total body O2 consumption was 76% of normal 6 hours postop, 81% of normal 24 hours postop and 87% of normal 48 hours postop. Twenty four hours after operation PC viscosity and increased markedly. Saline infusion had no significant effect on total body O2 consumption or PC viscosity, either pre- or postop, but WB viscosity decreased linearly in proportion in the drop in hematocrit. Resolution of ICA by dextran-40 infusion was associated with return of total body O2 consumption and PC viscosity to normal; a decrease in WB viscosity was disproportionately greater than would have been seen had the decrease been due solely to the drop in hematocrit. It is concluded that in humans surgical trauma causes an increase in PC viscosity and microcirculatory impairment as evidenced by a decrease in total body O2 consumption. Resolution of ICA by dextran-40 infusion reverses that detrimental changes. PMID:1190882

  2. Heartbeat OCT: in vivo intravascular megahertz-optical coherence tomography

    PubMed Central

    Wang, Tianshi; Pfeiffer, Tom; Regar, Evelyn; Wieser, Wolfgang; van Beusekom, Heleen; Lancee, Charles T.; Springeling, Geert; Krabbendam, Ilona; van der Steen, Antonius F.W.; Huber, Robert; van Soest, Gijs

    2015-01-01

    Cardiac motion artifacts, non-uniform rotational distortion and undersampling affect the image quality and the diagnostic impact of intravascular optical coherence tomography (IV-OCT). In this study we demonstrate how these limitations of IV-OCT can be addressed by using an imaging system that we called “Heartbeat OCT”, combining a fast Fourier Domain Mode Locked laser, fast pullback, and a micromotor actuated catheter, designed to examine a coronary vessel in less than one cardiac cycle. We acquired in vivo data sets of two coronary arteries in a porcine heart with both Heartbeat OCT, working at 2.88 MHz A-line rate, 4000 frames/s and 100 mm/s pullback speed, and with a commercial system. The in vivo results show that Heartbeat OCT provides faithfully rendered, motion-artifact free, fully sampled vessel wall architecture, unlike the conventional IV-OCT data. We present the Heartbeat OCT system in full technical detail and discuss the steps needed for clinical translation of the technology. PMID:26713214

  3. Calculated and measured brachytherapy dosimetry parameters in water for the Xoft Axxent X-Ray Source: An electronic brachytherapy source

    SciTech Connect

    Rivard, Mark J.; Davis, Stephen D.; DeWerd, Larry A.; Rusch, Thomas W.; Axelrod, Steve

    2006-11-15

    A new x-ray source, the model S700 Axxent trade mark sign X-Ray Source (Source), has been developed by Xoft Inc. for electronic brachytherapy. Unlike brachytherapy sources containing radionuclides, this Source may be turned on and off at will and may be operated at variable currents and voltages to change the dose rate and penetration properties. The in-water dosimetry parameters for this electronic brachytherapy source have been determined from measurements and calculations at 40, 45, and 50 kV settings. Monte Carlo simulations of radiation transport utilized the MCNP5 code and the EPDL97-based mcplib04 cross-section library. Inter-tube consistency was assessed for 20 different Sources, measured with a PTW 34013 ionization chamber. As the Source is intended to be used for a maximum of ten treatment fractions, tube stability was also assessed. Photon spectra were measured using a high-purity germanium (HPGe) detector, and calculated using MCNP. Parameters used in the two-dimensional (2D) brachytherapy dosimetry formalism were determined. While the Source was characterized as a point due to the small anode size, <1 mm, use of the one-dimensional (1D) brachytherapy dosimetry formalism is not recommended due to polar anisotropy. Consequently, 1D brachytherapy dosimetry parameters were not sought. Calculated point-source model radial dose functions at g{sub P}(5) were 0.20, 0.24, and 0.29 for the 40, 45, and 50 kV voltage settings, respectively. For 1

  4. HHV-8 and EBV-positive intravascular lymphoma: an unusual presentation of extracavitary primary effusion lymphoma

    PubMed Central

    Crane, Genevieve M.; Ambinder, Richard F.; Shirley, Courtney M.; Fishman, Elliot K.; Kasamon, Yvette L.; Taube, Janis M.; Borowitz, Michael J.; Duffield, Amy S.

    2014-01-01

    Intravascular lymphomas are rare and aggressive hematolymphoid tumors. Here we describe a human herpesvirus type-8/Kaposi sarcoma-associated herpesvirus (HHV-8/KSHV) and Epstein-Barr virus (EBV) positive intravascular lymphoma. The patient was a 59 year-old HIV-positive man who presented with diarrhea, abdominal pain, fevers, night sweats, and weight loss. Radiographic studies of the abdomen and pelvis revealed numerous subcentimeter nodules within the subcutaneous fat that lacked connection to the skin. An excisional biopsy demonstrated large atypical cells within vessels in the deep subcutaneous fat, and many of the vessels contained extensive organizing thrombi. The atypical cells lacked strong expression of most B-cell markers but were positive for MUM-1 and showed partial expression of several T-cell markers. An immunohistochemical stain for HHV-8 and an in situ hybridization for EBV were both positive in the neoplastic cells. The disease had a rapidly progressive and fatal course. This lymphoma appears to represent an entirely intravascular form of primary effusion lymphoma, and highlights the propensity for HHV-8 and EBV-positive lymphoid neoplasms to show aberrant expression of T-cell markers, illustrates the utility of skin biopsies for the diagnosis of intravascular lymphoma, and suggests that biopsies to evaluate for intravascular lymphoma should be relatively deep and include subcutaneous fat. PMID:24525514

  5. Percutaneous Retrieval of Misplaced Intravascular Foreign Objects with the Dormia Basket: An Effective Solution

    SciTech Connect

    Sheth, Rahul Someshwar, Vimal; Warawdekar, Gireesh

    2007-02-15

    Purpose. We report our experience of the retrieval of intravascular foreign body objects by the percutaneous use of the Gemini Dormia basket. Methods. Over a period of 2 years we attempted the percutaneous removal of intravascular foreign bodies in 26 patients. Twenty-six foreign bodies were removed: 8 intravascular stents, 4 embolization coils, 9 guidewires, 1 pacemaker lead, and 4 catheter fragments. The percutaneous retrieval was achieved with a combination of guide catheters and the Gemini Dormia basket. Results. Percutaneous retrieval was successful in 25 of 26 patients (96.2%). It was possible to remove all the intravascular foreign bodies with a combination of guide catheters and the Dormia basket. No complication occurred during the procedure, and no long-term complications were registered during the follow-up period, which ranged from 6 months to 32 months (mean 22.4 months overall). Conclusion. Percutaneous retrieval is an effective and safe technique that should be the first choice for removal of an intravascular foreign body.

  6. Imminent Cardiac Risk Assessment via Optical Intravascular Biochemical Analysis

    SciTech Connect

    Wetzel, D.; Wetzel, L; Wetzel, M; Lodder, R

    2009-01-01

    Heart disease is by far the biggest killer in the United States, and type II diabetes, which affects 8% of the U.S. population, is on the rise. In many cases, the acute coronary syndrome and/or sudden cardiac death occurs without warning. Atherosclerosis has known behavioral, genetic and dietary risk factors. However, our laboratory studies with animal models and human post-mortem tissue using FT-IR microspectroscopy reveal the chemical microstructure within arteries and in the arterial walls themselves. These include spectra obtained from the aortas of ApoE-/- knockout mice on sucrose and normal diets showing lipid deposition in the former case. Also pre-aneurysm chemical images of knockout mouse aorta walls, and spectra of plaque excised from a living human patient are shown for comparison. In keeping with the theme of the SPEC 2008 conference Spectroscopic Diagnosis of Disease this paper describes the background and potential value of a new catheter-based system to provide in vivo biochemical analysis of plaque in human coronary arteries. We report the following: (1) results of FT-IR microspectroscopy on animal models of vascular disease to illustrate the localized chemical distinctions between pathological and normal tissue, (2) current diagnostic techniques used for risk assessment of patients with potential unstable coronary syndromes, and (3) the advantages and limitations of each of these techniques illustrated with patent care histories, related in the first person, by the physician coauthors. Note that the physician comments clarify the contribution of each diagnostic technique to imminent cardiac risk assessment in a clinical setting, leading to the appreciation of what localized intravascular chemical analysis can contribute as an add-on diagnostic tool. The quality of medical imaging has improved dramatically since the turn of the century. Among clinical non-invasive diagnostic tools, laboratory tests of body fluids, EKG, and physical examination are

  7. [Relationship between the state of intravascular bubbles and microcirculation system].

    PubMed

    Yuan, J; Pan, L; Wang, Q; Ji, Z; Gao, J

    1996-08-01

    To confirm the hypothesis that air bubbles were unable to block the blood vessels and that the state of the intravascular bubbles was determined by the function of the circulatory system, 35 guinea pigs were pressurized then were decompressed to normal pressure. Microscopic observation was made of the bulbar conjunctival, dorsum auricular and subcutaneous vessels in 33 surviving animals. Air bubbles of different amounts, sizes and shapes were found in the dorsum auricular and subcutaneous vein of all the amimals and in the bulbar conjunctival oriridal artery of 16 animals, and in some cases the vessels were even filled with bubbles. The bubbles ran in the same direction and at the same speed as the blood flow. They could run in a backward, to-and-fro or sluggish flow. The bubbles looked shapeless and tended to break and divided into branch flows where the vessel branches. The bubbles were motionless at the proximal end of the artery occluded due to spasm or when the blood was stagnated. Under the action of the blood pressure the bubbles could expand the vessel and push forward. The bubbles showed a tendency of flowing with ease with the function of the vessel recovered. The results suggest that bubbles of any size in the vessel could easily change their shape under the action of the blood flow and pressure, and pass through vessels of any diameter and circulate with the blood. Only when a vessel was occluded due to spasm or the blood in a vessel was stagnated could the bubbles be motionless, but it was not that the bubbles blocked the vessel.

  8. Protection against high intravascular pressure in giraffe legs.

    PubMed

    Petersen, Karin K; Hørlyck, Arne; Ostergaard, Kristine H; Andresen, Joergen; Broegger, Torbjoern; Skovgaard, Nini; Telinius, Niklas; Laher, Ismael; Bertelsen, Mads F; Grøndahl, Carsten; Smerup, Morten; Secher, Niels H; Brøndum, Emil; Hasenkam, John M; Wang, Tobias; Baandrup, Ulrik; Aalkjaer, Christian

    2013-11-01

    The high blood pressure in giraffe leg arteries renders giraffes vulnerable to edema. We investigated in 11 giraffes whether large and small arteries in the legs and the tight fascia protect leg capillaries. Ultrasound imaging of foreleg arteries in anesthetized giraffes and ex vivo examination revealed abrupt thickening of the arterial wall and a reduction of its internal diameter just below the elbow. At and distal to this narrowing, the artery constricted spontaneously and in response to norepinephrine and intravascular pressure recordings revealed a dynamic, viscous pressure drop along the artery. Histology of the isolated median artery confirmed dense sympathetic innervation at the narrowing. Structure and contractility of small arteries from muscular beds in the leg and neck were compared. The arteries from the legs demonstrated an increased media thickness-to-lumen diameter ratio, increased media volume, and increased numbers of smooth muscle cells per segment length and furthermore, they contracted more strongly than arteries from the neck (500 ± 49 vs. 318 ± 43 mmHg; n = 6 legs and neck, respectively). Finally, the transient increase in interstitial fluid pressure following injection of saline was 5.5 ± 1.7 times larger (n = 8) in the leg than in the neck. We conclude that 1) tissue compliance in the legs is low; 2) large arteries of the legs function as resistance arteries; and 3) structural adaptation of small muscle arteries allows them to develop an extraordinary tension. All three findings can contribute to protection of the capillaries in giraffe legs from a high arterial pressure.

  9. Mechanotransductional basis of endothelial cell response to intravascular bubbles.

    PubMed

    Klinger, Alexandra L; Pichette, Benjamin; Sobolewski, Peter; Eckmann, David M

    2011-10-01

    Vascular air embolism resulting from too rapid decompression is a well-known risk in deep-sea diving, aviation and space travel. It is also a common complication during surgery or other medical procedures when air or other endogenously administered gas is entrained in the circulation. Preventive and post-event treatment options are extremely limited for this dangerous condition, and none of them address the poorly understood pathophysiology of endothelial response to intravascular bubble presence. Using a novel apparatus allowing precise manipulation of microbubbles in real time fluorescence microscopy studies, we directly measure human umbilical vein endothelial cell responses to bubble contact. Strong intracellular calcium transients requiring extracellular calcium are observed upon cell-bubble interaction. The transient is eliminated both by the presence of the stretch activated channel inhibitor, gadolinium, and the transient receptor potential vanilliod family inhibitor, ruthenium red. No bubble induced calcium upsurge occurs if the cells are pretreated with an inhibitor of actin polymerization, cytochalasin-D. This study explores the biomechanical mechanisms at play in bubble interfacial interactions with endothelial surface layer (ESL) macromolecules, reassessing cell response after selective digestion of glycocalyx glycosoaminoglycans, hyaluran (HA) and heparin sulfate (HS). HA digestion causes reduction of cell-bubble adherence and a more rapid induction of calcium influx after contact. HS depletion significantly decreases calcium transient amplitudes, as does pharmacologically induced sydencan ectodomain shedding. The surfactant perfluorocarbon Oxycyte abolishes any bubble induced calcium transient, presumably through direct competition with ESL macromolecules for interfacial occupancy, thus attenuating the interactions that trigger potentially deleterious biochemical pathways.

  10. Supportive management strategies for disseminated intravascular coagulation. An international consensus.

    PubMed

    Squizzato, Alessandro; Hunt, Beverley J; Kinasewitz, Gary T; Wada, Hideo; Ten Cate, Hugo; Thachil, Jecko; Levi, Marcel; Vicente, Vicente; D'Angelo, Armando; Di Nisio, Marcello

    2016-05-01

    The cornerstone of the management of disseminated intravascular coagulation (DIC) is the treatment of the underlying condition triggering the coagulopathy. However, a number of uncertainties remain over the optimal supportive treatment. The aim of this study was to provide evidence and expert-based recommendations on the optimal supportive haemostatic and antithrombotic treatment strategies for patients with DIC. A working group defined five relevant clinical scenarios. Published studies were systematically searched in the MEDLINE and EMBASE databases (up to May 2014). Seven internationally recognised experts were asked to independently provide clinical advice. A two-phase blinded data collection technique was used to reach consensus. Only three randomised controlled trials (RCTs) on the supportive management of DIC were identified. The RCTs (overall less than 100 patients) investigated the use of fresh frozen plasma and platelet transfusion and found no differences in survival between the intervention and control groups. The experts' approach was heterogeneous, although there was consensus that supportive management should vary according to the underlying cause, clinical manifestations and severity of blood test abnormalities. Platelet transfusion should be given to maintain platelet count > 50×10⁹/l in case of bleeding while a lower threshold of 20 to 30×10⁹/l may be used in DIC without bleeding. Thromboprophylaxis with low-molecular-weight heparin is advised until bleeding ensues or platelet count drops below 30×10⁹/l. In conclusion, in the absence of solid evidence from RCTs, an individualised supportive management of DIC is advisable based on the type of underlying disease, presence of bleeding or thrombotic complications and laboratory tests results.

  11. Thromboelastometry in patients with severe sepsis and disseminated intravascular coagulation.

    PubMed

    Sivula, Mirka; Pettilä, Ville; Niemi, Tomi T; Varpula, Marjut; Kuitunen, Anne H

    2009-09-01

    Severe sepsis induces coagulopathy, which may lead to disseminated intravascular coagulation (DIC). Thromboelastometry is a point-of-care whole blood coagulation monitor, which has been validated in human endotoxemia model. We assessed thromboelastometry in severe sepsis and overt DIC and investigated its applicability in differentiating sepsis-related coagulation disturbances. Thromboelastometry (EXTEM and FIBTEM tests) and traditional coagulation assays were analyzed in 28 patients with severe sepsis, 12 of who fulfilled the criteria of overt DIC on admission. Ten healthy persons served as controls. Coagulation parameters, clotting time, clot formation time (CFT), alpha angle, maximal clot firmness (MCF) and lysis index at 60 min, were registered. In patients with overt DIC, EXTEM MCF, CFT and alpha angle differed from that in both healthy controls and patients without DIC, indicating hypocoagulation (MCF 52, 63 and 68 mm; CFT 184, 88 and 73 s; and alpha angle 58, 72 and 76 degrees , respectively, P < 0.01 for all). In patients without DIC, the trend was toward hypercoagulation in EXTEM and FIBTEM MCF (68 vs. 63 mm, P = 0.042 and 23 vs. 15 mm, P = 0.034, respectively). Receiver operating characteristic curves showed that MCF, CFT and alpha angle discriminated patients with overt DIC moderately (area under curve 0.891, 0.815 and 0.828, respectively, P < 0.001 for all). Traditional coagulation assays showed progressively worsening coagulopathy from controls to septic patients without DIC and further to those with overt DIC. We conclude that thromboelastometry may be a valuable tool in assessing whole blood coagulation capacity in patients with severe sepsis with and without overt DIC.

  12. Protection against high intravascular pressure in giraffe legs.

    PubMed

    Petersen, Karin K; Hørlyck, Arne; Ostergaard, Kristine H; Andresen, Joergen; Broegger, Torbjoern; Skovgaard, Nini; Telinius, Niklas; Laher, Ismael; Bertelsen, Mads F; Grøndahl, Carsten; Smerup, Morten; Secher, Niels H; Brøndum, Emil; Hasenkam, John M; Wang, Tobias; Baandrup, Ulrik; Aalkjaer, Christian

    2013-11-01

    The high blood pressure in giraffe leg arteries renders giraffes vulnerable to edema. We investigated in 11 giraffes whether large and small arteries in the legs and the tight fascia protect leg capillaries. Ultrasound imaging of foreleg arteries in anesthetized giraffes and ex vivo examination revealed abrupt thickening of the arterial wall and a reduction of its internal diameter just below the elbow. At and distal to this narrowing, the artery constricted spontaneously and in response to norepinephrine and intravascular pressure recordings revealed a dynamic, viscous pressure drop along the artery. Histology of the isolated median artery confirmed dense sympathetic innervation at the narrowing. Structure and contractility of small arteries from muscular beds in the leg and neck were compared. The arteries from the legs demonstrated an increased media thickness-to-lumen diameter ratio, increased media volume, and increased numbers of smooth muscle cells per segment length and furthermore, they contracted more strongly than arteries from the neck (500 ± 49 vs. 318 ± 43 mmHg; n = 6 legs and neck, respectively). Finally, the transient increase in interstitial fluid pressure following injection of saline was 5.5 ± 1.7 times larger (n = 8) in the leg than in the neck. We conclude that 1) tissue compliance in the legs is low; 2) large arteries of the legs function as resistance arteries; and 3) structural adaptation of small muscle arteries allows them to develop an extraordinary tension. All three findings can contribute to protection of the capillaries in giraffe legs from a high arterial pressure. PMID:24005251

  13. Monte Carlo radiation dose simulations and dosimetric comparison of the model 6711 and 9011 {sup 125}I brachytherapy sources

    SciTech Connect

    Rivard, Mark J.

    2009-02-15

    Smaller diameter brachytherapy seeds for permanent interstitial implantation allow for use of smaller diameter implant needles. The use of smaller diameter needles may provide a lower incidence of healthy-tissue complications. This study determines the brachytherapy dosimetry parameters for the smaller diameter source (model 9011) and comments on the dosimetric comparison between this new source and the conventional brachytherapy seed (model 6711).

  14. Dosimetric analysis and comparison of IMRT and HDR brachytherapy in treatment of localized prostate cancer.

    PubMed

    Murali, V; Kurup, P G G; Mahadev, P; Mahalakshmi, S

    2010-04-01

    Radical radiotherapy is one of the options for the management of prostate cancer. In external beam therapy, 3D conformal radiotherapy (3DCRT) and intensity modulated radiotherapy (IMRT) are the options for delivery of increased radiation dose, as vital organs are very close to the prostate and a higher dose to these structures leads to an increased toxicity. In brachytherapy, low dose rate brachytherapy with permanent implant of radioactive seeds and high dose rate brachytherapy (HDR) with remote after loaders are available. A dosimetric analysis has been made on IMRT and HDR brachytherapy plans. Ten cases from each IMRT and HDR brachytherapy have been taken for the study. The analysis includes comparison of conformity and homogeneity indices, D100, D95, D90, D80, D50, D10 and D5 of the target. For the organs at risk (OAR), namely rectum and bladder, V100, V90 and V50 are compared. In HDR brachytherapy, the doses to 1 cc and 0.1 cc of urethra have also been studied. Since a very high dose surrounds the source, the 300% dose volumes in the target and within the catheters are also studied in two plans, to estimate the actual volume of target receiving dose over 300%. This study shows that the prescribed dose covers 93 and 92% of the target volume in IMRT and HDR brachytherapy respectively. HDR brachytherapy delivers a much lesser dose to OAR, compared to the IMRT. For rectum, the V50 in IMRT is 34.0cc whilst it is 7.5cc in HDR brachytherapy. With the graphic optimization tool in HDR brachytherapy planning, the dose to urethra could be kept within 120% of the target dose. Hence it is concluded that HDR brachytherapy may be the choice of treatment for cancer of prostate in the early stage.

  15. Trends in the Utilization of Brachytherapy in Cervical Cancer in the United States

    SciTech Connect

    Han, Kathy; Milosevic, Michael; Fyles, Anthony; Pintilie, Melania; Viswanathan, Akila N.

    2013-09-01

    Purpose: To determine the trends in brachytherapy use in cervical cancer in the United States and to identify factors and survival benefits associated with brachytherapy treatment. Methods and Materials: Using the Surveillance, Epidemiology, and End Results (SEER) database, we identified 7359 patients with stages IB2-IVA cervical cancer treated with external beam radiation therapy (EBRT) between 1988 and 2009. Propensity score matching was used to adjust for differences between patients who received brachytherapy and those who did not from 2000 onward (after the National Cancer Institute alert recommending concurrent chemotherapy). Results: Sixty-three percent of the 7359 women received brachytherapy in combination with EBRT, and 37% received EBRT alone. The brachytherapy utilization rate has decreased from 83% in 1988 to 58% in 2009 (P<.001), with a sharp decline of 23% in 2003 to 43%. Factors associated with higher odds of brachytherapy use include younger age, married (vs single) patients, earlier years of diagnosis, earlier stage and certain SEER regions. In the propensity score-matched cohort, brachytherapy treatment was associated with higher 4-year cause-specific survival (CSS; 64.3% vs 51.5%, P<.001) and overall survival (OS; 58.2% vs 46.2%, P<.001). Brachytherapy treatment was independently associated with better CSS (hazard ratio [HR], 0.64; 95% confidence interval [CI], 0.57-0.71), and OS (HR 0.66; 95% CI, 0.60 to 0.74). Conclusions: This population-based analysis reveals a concerning decline in brachytherapy utilization and significant geographic disparities in the delivery of brachytherapy in the United States. Brachytherapy use is independently associated with significantly higher CSS and OS and should be implemented in all feasible cases.

  16. Dosimetric analysis and comparison of IMRT and HDR brachytherapy in treatment of localized prostate cancer

    PubMed Central

    Murali, V.; Kurup, P. G. G.; Mahadev, P.; Mahalakshmi, S.

    2010-01-01

    Radical radiotherapy is one of the options for the management of prostate cancer. In external beam therapy, 3D conformal radiotherapy (3DCRT) and intensity modulated radiotherapy (IMRT) are the options for delivery of increased radiation dose, as vital organs are very close to the prostate and a higher dose to these structures leads to an increased toxicity. In brachytherapy, low dose rate brachytherapy with permanent implant of radioactive seeds and high dose rate brachytherapy (HDR) with remote after loaders are available. A dosimetric analysis has been made on IMRT and HDR brachytherapy plans. Ten cases from each IMRT and HDR brachytherapy have been taken for the study. The analysis includes comparison of conformity and homogeneity indices, D100, D95, D90, D80, D50, D10 and D5 of the target. For the organs at risk (OAR), namely rectum and bladder, V100, V90 and V50 are compared. In HDR brachytherapy, the doses to 1 cc and 0.1 cc of urethra have also been studied. Since a very high dose surrounds the source, the 300% dose volumes in the target and within the catheters are also studied in two plans, to estimate the actual volume of target receiving dose over 300%. This study shows that the prescribed dose covers 93 and 92% of the target volume in IMRT and HDR brachytherapy respectively. HDR brachytherapy delivers a much lesser dose to OAR, compared to the IMRT. For rectum, the V50 in IMRT is 34.0cc whilst it is 7.5cc in HDR brachytherapy. With the graphic optimization tool in HDR brachytherapy planning, the dose to urethra could be kept within 120% of the target dose. Hence it is concluded that HDR brachytherapy may be the choice of treatment for cancer of prostate in the early stage. PMID:20589121

  17. High-sensitivity intravascular photoacoustic imaging of lipid–laden plaque with a collinear catheter design

    PubMed Central

    Cao, Yingchun; Hui, Jie; Kole, Ayeeshik; Wang, Pu; Yu, Qianhuan; Chen, Weibiao; Sturek, Michael; Cheng, Ji-Xin

    2016-01-01

    A highly sensitive catheter probe is critical to catheter-based intravascular photoacoustic imaging. Here, we present a photoacoustic catheter probe design on the basis of collinear alignment of the incident optical wave and the photoacoustically generated sound wave within a miniature catheter housing for the first time. Such collinear catheter design with an outer diameter of 1.6 mm provided highly efficient overlap between optical and acoustic waves over an imaging depth of >6 mm in D2O medium. Intravascular photoacoustic imaging of lipid-laden atherosclerotic plaque and perivascular fat was demonstrated, where a lab-built 500 Hz optical parametric oscillator outputting nanosecond optical pulses at a wavelength of 1.7 μm was used for overtone excitation of C-H bonds. In addition to intravascular imaging, the presented catheter design will benefit other photoacoustic applications such as needle-based intramuscular imaging. PMID:27121894

  18. High-sensitivity intravascular photoacoustic imaging of lipid-laden plaque with a collinear catheter design.

    PubMed

    Cao, Yingchun; Hui, Jie; Kole, Ayeeshik; Wang, Pu; Yu, Qianhuan; Chen, Weibiao; Sturek, Michael; Cheng, Ji-Xin

    2016-01-01

    A highly sensitive catheter probe is critical to catheter-based intravascular photoacoustic imaging. Here, we present a photoacoustic catheter probe design on the basis of collinear alignment of the incident optical wave and the photoacoustically generated sound wave within a miniature catheter housing for the first time. Such collinear catheter design with an outer diameter of 1.6 mm provided highly efficient overlap between optical and acoustic waves over an imaging depth of >6 mm in D2O medium. Intravascular photoacoustic imaging of lipid-laden atherosclerotic plaque and perivascular fat was demonstrated, where a lab-built 500 Hz optical parametric oscillator outputting nanosecond optical pulses at a wavelength of 1.7 μm was used for overtone excitation of C-H bonds. In addition to intravascular imaging, the presented catheter design will benefit other photoacoustic applications such as needle-based intramuscular imaging. PMID:27121894

  19. Changes in morphology and permeability of perfused rabbit arteries during acute elevation of the intravascular pressure

    SciTech Connect

    Voino-Yasenetskaya, T.A.; Skuratovskaya, L.N.

    1986-12-01

    This paper presents a study on whether a short-term increase of intravascular pressure causes morphological injuries to the endothelium or accelerates the accumulation of /sup 125/I-labeled low-density lipoproteins (/sup 125/I-LDL) in the wall of perfused arteries of healthy rabbits, and how a raised hydrostatic pressure affects /sup 125/I-LDL transport in denuded areas of perfused arteries. The average number of cells per 1 mm/sup 2/ of luminal surface during perfusion under a pressure of 100-250 mm Hg is shown. Also, the morphology of endothelial lining of rabbit aorta under increased intravascular pressure is presented, as is the incorporation of /sup 125/I-LDL into wall of rabbit aorta under increased intravascular pressure.

  20. Chronic biliary obstruction induces pulmonary intravascular phagocytosis and endotoxin sensitivity in rats.

    PubMed Central

    Chang, S W; Ohara, N

    1994-01-01

    Endotoxin sensitivity varies among animal species and appears to correlate with the presence of pulmonary intravascular macrophage (PIM). In rats, which lack PIM, we investigated the hypothesis that chronic cholestatic liver injury leads to induction of PIM and endotoxin sensitivity. Rats were randomized to either common bile duct ligation (BDL) or sham-surgery and studied at 1 wk (acute cholestasis), 2 wk (cholestasis, early cirrhosis), and 4 wk (cholestasis, established cirrhosis) after surgery. Intravascularly injected fluorescent latex microspheres (1 micron diameter) were taken up by large phagocytic cells in lung parenchyma of BDL rats (at 2 and 4 wk), while no uptake was observed in lungs from control rats. Electronmicroscopy revealed accumulation of large, mononuclear, macrophage-like cells containing ingested latex particles within the pulmonary capillaries. Pulmonary intravascular phagocytosis, as reflected in lung uptake of 99mTc microaggregated albumin (Microlite, mean particle diameter = 1 micron), averaged 0.7 +/- 0.1% (mean +/- SEM) of total injected dose in 13 control rats and progressively increased with time after BDL (1 wk, 1.7 +/- 0.2%; 2 wk, 10.0 +/- 3.0%; 4 wk 35.1 +/- 5.9%). Rats with biliary cirrhosis were markedly sensitive to the lethal effects of low dose endotoxin and demonstrated marked lung edema at the time of death. Furthermore, the lung uptake of intravascular 125I-lipopolysaccharide was increased five-fold in cirrhotic rats. We conclude that chronic biliary obstruction leads to the induction of pulmonary intravascular phagocytes and enhances endotoxin sensitivity in rats. Pulmonary intravascular phagocytosis in patients with advanced cirrhosis may account for their increased susceptibility to sepsis-induced adult respiratory distress syndrome. Images PMID:7962547

  1. Review of advanced catheter technologies in radiation oncology brachytherapy procedures

    PubMed Central

    Zhou, Jun; Zamdborg, Leonid; Sebastian, Evelyn

    2015-01-01

    The development of new catheter and applicator technologies in recent years has significantly improved treatment accuracy, efficiency, and outcomes in brachytherapy. In this paper, we review these advances, focusing on the performance of catheter imaging and reconstruction techniques in brachytherapy procedures using magnetic resonance images and electromagnetic tracking. The accuracy of catheter reconstruction, imaging artifacts, and other notable properties of plastic and titanium applicators in gynecologic treatments are reviewed. The accuracy, noise performance, and limitations of electromagnetic tracking for catheter reconstruction are discussed. Several newly developed applicators for accelerated partial breast irradiation and gynecologic treatments are also reviewed. New hypofractionated high dose rate treatment schemes in prostate cancer and accelerated partial breast irradiation are presented. PMID:26203277

  2. Metal artefacts in MRI-guided brachytherapy of cervical cancer

    PubMed Central

    Owrangi, Amir; Ravi, Ananth; Song, William Y.

    2016-01-01

    The importance of assessing the metal-induced artefacts in magnetic resonance imaging (MRI)-guided brachytherapy is growing along with the increasing interest of integrating MRI into the treatment procedure of cervical cancer. Examples of metal objects in use include intracavitary cervical applicators and interstitial needles. The induced artefacts increase the uncertainties in the clinical workflow and can be a potential obstacle for the accurate delivery of the treatment. Overcoming this problem necessitates a good understanding of its originating sources. Several efforts are recorded in the literature to quantify the extent of such artefacts, in phantoms and in clinical practice. Here, we elaborate on the origin of metal-induced artefacts in the light of brachytherapy applications, while summarizing recent efforts that have been made to assess and overcome the induced distortions.

  3. Cataract extraction after brachytherapy for malignant melanoma of the choroid

    SciTech Connect

    Fish, G.E.; Jost, B.F.; Snyder, W.I.; Fuller, D.G.; Birch, D.G. )

    1991-05-01

    Thirteen eyes of 55 consecutive patients treated with brachytherapy for malignant melanoma of the choroid developed postirradiation cataracts. Cataract development was more common in older patients and in patients with larger and more anterior tumors. Eleven eyes had extracapsular cataract extraction and intraocular lens implantation. Initial visual improvement occurred in 91% of eyes, with an average improvement of 5.5 lines. Visual acuity was maintained at 20/60 or better in 55% of the eyes over an average period of follow-up of 24 months (range, 6 to 40 months). These data suggest that, visually, cataract extraction can be helpful in selected patients who develop a cataract after brachytherapy for malignant melanoma of the choroid.

  4. [Basic principles and results of brachytherapy in gynecological oncology].

    PubMed

    Kanaev, S V; Turkevich, V G; Baranov, S B; Savel'eva, V V

    2014-01-01

    The fundamental basics of contact radiation therapy (brachytherapy) for gynecological cancer are presented. During brachytherapy the principles of conformal radiotherapy should be implemented, the aim of which is to sum the maximum possible dose of radiation to the tumor and decrease the dose load in adjacent organs and tissues, which allows reducing the frequency of radiation damage at treatment of primary tumors. It is really feasible only on modern technological level, thanks to precision topometry preparation, optimal computer dosimetrical and radiobiological planning of each session and radiotherapy in general. Successful local and long-term results of the contact radiation therapy for cancer of cervix and endometrium are due to optimal anatomical and topometrical ratio of the tumor localization, radioactive sources, and also physical and radiobiological laws of distribution and effects of ionizing radiation, the dose load accounting rules.

  5. Distortions induced by radioactive seeds into interstitial brachytherapy dose distributions.

    PubMed

    Zhou, Chuanyu; Inanc, Feyzi; Modrick, Joseph M

    2004-12-01

    In a previous article, we presented development and verification of an integral transport equation-based deterministic algorithm for computing three-dimensional brachytherapy dose distributions. Recently, we have included fluorescence radiation physics and parallel computation to the standing algorithms so that we can compute dose distributions for a large set of seeds without resorting to the superposition methods. The introduction of parallel computing capability provided a means to compute the dose distribution for multiple seeds in a simultaneous manner. This provided a way to study strong heterogeneity and shadow effects induced by the presence of multiple seeds in an interstitial brachytherapy implant. This article presents the algorithm for computing fluorescence radiation, algorithm for parallel computing, and display results for an 81-seed implant that has a perfect and imperfect lattice. The dosimetry data for a single model 6711 seeds is presented for verification and heterogeneity factor computations using simultaneous and superposition techniques are presented.

  6. Metal artefacts in MRI-guided brachytherapy of cervical cancer.

    PubMed

    Soliman, Abraam S; Owrangi, Amir; Ravi, Ananth; Song, William Y

    2016-08-01

    The importance of assessing the metal-induced artefacts in magnetic resonance imaging (MRI)-guided brachytherapy is growing along with the increasing interest of integrating MRI into the treatment procedure of cervical cancer. Examples of metal objects in use include intracavitary cervical applicators and interstitial needles. The induced artefacts increase the uncertainties in the clinical workflow and can be a potential obstacle for the accurate delivery of the treatment. Overcoming this problem necessitates a good understanding of its originating sources. Several efforts are recorded in the literature to quantify the extent of such artefacts, in phantoms and in clinical practice. Here, we elaborate on the origin of metal-induced artefacts in the light of brachytherapy applications, while summarizing recent efforts that have been made to assess and overcome the induced distortions. PMID:27648092

  7. Intraoperative interstitial microwave-induced hyperthermia and brachytherapy.

    PubMed

    Coughlin, C T; Wong, T Z; Strohbehn, J W; Colacchio, T A; Sutton, J E; Belch, R Z; Douple, E B

    1985-09-01

    Intra-operative placement of 11-gauge nylon catheters into deep-seated unresectable tumors for interstitial brachytherapy permits localized heating of tumors (hyperthermia) using microwave (915 MHz) antennas which are inserted into these catheters. Four preliminary cases are described where epithelial tumors at various sites were implanted with an antenna array and heated for 1 hour, both before and after the iridium-192 brachytherapy. Temperatures were monitored in catheters required for the appropriate radiation dosimetry but not required for the interstitial microwave antenna array hyperthermia (IMAAH) system. Additional thermometry was obtained using nonperturbed fiberoptic thermometry probes inserted into the catheters' housing antennas. No significant complications, such as bleeding or infection, were observed. This approach to cancer therapy is shown to be feasible and it produces controlled, localized hyperthermia, with temperatures of 50 degrees C or more in tumors. This technique may offer a therapeutic option for pelvic, intra-abdominal and head and neck tumors.

  8. Metal artefacts in MRI-guided brachytherapy of cervical cancer

    PubMed Central

    Owrangi, Amir; Ravi, Ananth; Song, William Y.

    2016-01-01

    The importance of assessing the metal-induced artefacts in magnetic resonance imaging (MRI)-guided brachytherapy is growing along with the increasing interest of integrating MRI into the treatment procedure of cervical cancer. Examples of metal objects in use include intracavitary cervical applicators and interstitial needles. The induced artefacts increase the uncertainties in the clinical workflow and can be a potential obstacle for the accurate delivery of the treatment. Overcoming this problem necessitates a good understanding of its originating sources. Several efforts are recorded in the literature to quantify the extent of such artefacts, in phantoms and in clinical practice. Here, we elaborate on the origin of metal-induced artefacts in the light of brachytherapy applications, while summarizing recent efforts that have been made to assess and overcome the induced distortions. PMID:27648092

  9. Metal artefacts in MRI-guided brachytherapy of cervical cancer.

    PubMed

    Soliman, Abraam S; Owrangi, Amir; Ravi, Ananth; Song, William Y

    2016-08-01

    The importance of assessing the metal-induced artefacts in magnetic resonance imaging (MRI)-guided brachytherapy is growing along with the increasing interest of integrating MRI into the treatment procedure of cervical cancer. Examples of metal objects in use include intracavitary cervical applicators and interstitial needles. The induced artefacts increase the uncertainties in the clinical workflow and can be a potential obstacle for the accurate delivery of the treatment. Overcoming this problem necessitates a good understanding of its originating sources. Several efforts are recorded in the literature to quantify the extent of such artefacts, in phantoms and in clinical practice. Here, we elaborate on the origin of metal-induced artefacts in the light of brachytherapy applications, while summarizing recent efforts that have been made to assess and overcome the induced distortions.

  10. Compound dual radiation action theory for 252Cf brachytherapy.

    PubMed

    Wang, C K; Zhang, X

    2004-01-01

    The existing dosimetry protocol that uses the concept of RBE for 252Cf brachytherapy contains large uncertainties. A new formula has been developed to correlate the biological effect (i.e. cell survival fraction) resulting from a mixed n + gamma radiation field with two physical quantities and two biological quantities. The formula is based on a pathway model evolved from that of the compound-dual-radiation-action (CDRA) theory, previously proposed by Rossi and Zaider. The new model employs the recently published data on radiation-induced DNA lesions. The new formula is capable of predicting quantitatively the synergistic effect caused by the interactions between neutron events and gamma ray events, and it is intended to be included into a new dosimetry protocol for future 252Cf brachytherapy.

  11. High dose rate (HDR) brachytherapy quality assurance: a practical guide

    PubMed Central

    Wilkinson, DA

    2006-01-01

    The widespread adoption of high dose rate brachytherapy with its inherent dangers necessitates adoption of appropriate quality assurance measures to minimize risks to both patients and medical staff. This paper is aimed at assisting someone who is establishing a new program or revising one already in place into adhere to the recently issued Nuclear Regulatory Commission (USA) regulations and the guidelines from the American Association of Physicists in Medicine. PMID:21614233

  12. Brachytherapy in Lip Carcinoma: Long-Term Results

    SciTech Connect

    Guibert, Mireille; David, Isabelle; Vergez, Sebastien; Rives, Michel; Filleron, Thomas; Bonnet, Jacques; Delannes, Martine

    2011-12-01

    Purpose: The aim of this study was to evaluate the effectiveness of low-dose-rate brachytherapy for local control and relapse-free survival in squamous cell and basal cell carcinomas of the lips. We compared two groups: one with tumors on the skin and the other with tumors on the lip. Patients and methods: All patients had been treated at Claudius Regaud Cancer Centre from 1990 to 2008 for squamous cell or basal cell carcinoma. Low-dose-rate brachytherapy was performed with iridium 192 wires according to the Paris system rules. On average, the dose delivered was 65 Gy. Results: 172 consecutive patients were included in our study; 69 had skin carcinoma (squamous cell or basal cell), and 92 had squamous cell mucosal carcinoma. The average follow-up time was 5.4 years. In the skin cancer group, there were five local recurrences and one lymph node recurrence. In the mucosal cancer group, there were ten local recurrences and five lymph node recurrences. The 8-year relapse-free survival for the entire population was 80%. The 8-year relapse-free survival was 85% for skin carcinoma 75% for mucosal carcinoma, with no significant difference between groups. The functional results were satisfactory for 99% of patients, and the cosmetic results were satisfactory for 92%. Maximal toxicity observed was Grade 2. Conclusions: Low-dose-rate brachytherapy can be used to treat lip carcinomas at Stages T1 and T2 as the only treatment with excellent results for local control and relapse-free survival. The benefits of brachytherapy are also cosmetic and functional, with 91% of patients having no side effects.

  13. Californium-252 brachytherapy for anal and ano-rectal carcinoma

    SciTech Connect

    Cross, B.; Maruyama, Y.; Proudfoot, W.; Malcolm, A.

    1986-01-01

    Surgery has historically been the standard treatment for anal, ano-rectal and rectal carcinoma but is prone to local or regional failure. Over the past 15 years there has been increasing interest in and success with radiation therapy and combined chemoradiotherapy for treatment of anal and ano-rectal cancers. Cf-252 brachytherapy combined with external beam teletherapy has been investigated for anal and ano-rectal lesions at the Univ. of Kentucky with encouraging results.

  14. Serum Testosterone Kinetics After Brachytherapy for Clinically Localized Prostate Cancer

    SciTech Connect

    Taira, Al V.; Merrick, Gregory S.; Galbreath, Robert W.; Butler, Wayne M.; Lief, Jonathan H.; Allen, Zachariah A.; Wallner, Kent E.

    2012-01-01

    Purpose: To evaluate temporal changes in testosterone after prostate brachytherapy and investigate the potential impact of these changes on response to treatment. Methods and Materials: Between January 2008 and March 2009, 221 consecutive patients underwent Pd-103 brachytherapy without androgen deprivation for clinically localized prostate cancer. Prebrachytherapy prostate-specific antigen (PSA) and serum testosterone were obtained for each patient. Repeat levels were obtained 3 months after brachytherapy and at least every 6 months thereafter. Multiple clinical, treatment, and dosimetric parameters were evaluated to determine an association with temporal testosterone changes. In addition, analysis was conducted to determine if there was an association between testosterone changes and treatment outcomes or the occurrence of a PSA spike. Results: There was no significant difference in serum testosterone over time after implant (p = 0.57). 29% of men experienced an increase {>=}25%, 23% of men experienced a decrease {>=}25%, and the remaining 48% of men had no notable change in testosterone over time. There was no difference in testosterone trends between men who received external beam radiotherapy and those who did not (p = 0.12). On multivariate analysis, preimplant testosterone was the only variable that consistently predicted for changes in testosterone over time. Men with higher than average testosterone tended to experience drop in testosterone (p < 0.001), whereas men with average or below average baseline testosterone had no significant change. There was no association between men who experienced PSA spike and testosterone temporal trends (p = 0.50) nor between initial PSA response and testosterone trends (p = 0.21). Conclusion: Prostate brachytherapy does not appear to impact serum testosterone over time. Changes in serum testosterone do not appear to be associated with PSA spike phenomena nor with initial PSA response to treatment; therefore, PSA response

  15. Cable attachment for a radioactive brachytherapy source capsule

    DOEpatents

    Gross, Ian G; Pierce, Larry A

    2006-07-18

    In cancer brachytherapy treatment, a small californium-252 neutron source capsule is attached to a guide cable using a modified crimping technique. The guide cable has a solid cylindrical end, and the attachment employs circumferential grooves micromachined in the solid cable end. The attachment was designed and tested, and hardware fabricated for use inside a radioactive hot cell. A welding step typically required in other cable attachments is avoided.

  16. Leiomyosarcoma of the Uterus with Intravascular Tumor Extension and Pulmonary Tumor Embolism

    SciTech Connect

    McDonald, Douglas K.; Kalva, Sanjeeva P. Fan, C.-M.; Vasilyev, Aleksandr

    2007-02-15

    We report the case of a 48-year-old woman presenting with recurrent uterine leiomyosarcoma (LMS) associated with right iliac vein and inferior vena cava (IVC) invasion and left lower lobe pulmonary tumor embolus. Because the prognosis and treatment differ from that of thrombotic pulmonary emboli, the differentiating imaging characteristics of intravascular tumor embolism are reviewed. To our knowledge, only two other cases of intravenous uterine leiomyosarcomatosis have been described in the existing literature, and this is the first reported case of the entity with associated intravascular tumor embolism.

  17. Study of dose calculation on breast brachytherapy using prism TPS

    NASA Astrophysics Data System (ADS)

    Fendriani, Yoza; Haryanto, Freddy

    2015-09-01

    PRISM is one of non-commercial Treatment Planning System (TPS) and is developed at the University of Washington. In Indonesia, many cancer hospitals use expensive commercial TPS. This study aims to investigate Prism TPS which been applied to the dose distribution of brachytherapy by taking into account the effect of source position and inhomogeneities. The results will be applicable for clinical Treatment Planning System. Dose calculation has been implemented for water phantom and CT scan images of breast cancer using point source and line source. This study used point source and line source and divided into two cases. On the first case, Ir-192 seed source is located at the center of treatment volume. On the second case, the source position is gradually changed. The dose calculation of every case performed on a homogeneous and inhomogeneous phantom with dimension 20 × 20 × 20 cm3. The inhomogeneous phantom has inhomogeneities volume 2 × 2 × 2 cm3. The results of dose calculations using PRISM TPS were compared to literature data. From the calculation of PRISM TPS, dose rates show good agreement with Plato TPS and other study as published by Ramdhani. No deviations greater than ±4% for all case. Dose calculation in inhomogeneous and homogenous cases show similar result. This results indicate that Prism TPS is good in dose calculation of brachytherapy but not sensitive for inhomogeneities. Thus, the dose calculation parameters developed in this study were found to be applicable for clinical treatment planning of brachytherapy.

  18. Implicit active contours for automatic brachytherapy seed segmentation in fluoroscopy

    NASA Astrophysics Data System (ADS)

    Moult, Eric; Burdette, Clif; Song, Danny; Fichtinger, Gabor; Fallavollita, Pascal

    2012-02-01

    Motivation: In prostate brachytherapy, intra-operative dosimetry would be ideal to allow for rapid evaluation of the implant quality while the patient is still in the treatment position. Such a mechanism, however, requires 3-D visualization of the currently deposited seeds relative to the prostate. Thus, accurate, robust, and fully-automatic seed segmentation is of critical importance in achieving intra-operative dosimetry. Methodology: Implanted brachytherapy seeds are segmented by utilizing a region-based implicit active contour approach. Overlapping seed clusters are then resolved using a simple yet effective declustering technique. Results: Ground-truth seed coordinates were obtained via a published segmentation technique. A total of 248 clinical C-arm images from 16 patients were used to validate the proposed algorithm resulting in a 98.4% automatic detection rate with a corresponding 2.5% false-positive rate. The overall mean centroid error between the ground-truth and automatic segmentations was measured to be 0.42 pixels, while the mean centroid error for overlapping seed clusters alone was measured to be 0.67 pixels. Conclusion: Based on clinical data evaluation and validation, robust, accurate, and fully-automatic brachytherapy seed segmentation can be achieved through the implicit active contour framework and subsequent seed declustering method.

  19. Accelerated partial breast irradiation utilizing brachytherapy: patient selection and workflow.

    PubMed

    Shah, Chirag; Wobb, Jessica; Manyam, Bindu; Khan, Atif; Vicini, Frank

    2016-02-01

    Accelerated partial breast irradiation (APBI) represents an evolving technique that is a standard of care option in appropriately selected woman following breast conserving surgery. While multiple techniques now exist to deliver APBI, interstitial brachytherapy represents the technique used in several randomized trials (National Institute of Oncology, GEC-ESTRO). More recently, many centers have adopted applicator-based brachytherapy to deliver APBI due to the technical complexities of interstitial brachytherapy. The purpose of this article is to review methods to evaluate and select patients for APBI, as well as to define potential workflow mechanisms that allow for the safe and effective delivery of APBI. Multiple consensus statements have been developed to guide clinicians on determining appropriate candidates for APBI. However, recent studies have demonstrated that these guidelines fail to stratify patients according to the risk of local recurrence, and updated guidelines are expected in the years to come. Critical elements of workflow to ensure safe and effective delivery of APBI include a multidisciplinary approach and evaluation, optimization of target coverage and adherence to normal tissue guideline constraints, and proper quality assurance methods. PMID:26985202

  20. A compilation of current regulations, standards and guidelines in remote afterloading brachytherapy

    SciTech Connect

    Tortorelli, J.P.; Simion, G.P.; Kozlowski, S.D.

    1994-10-01

    Over a dozen government and professional organizations in the United States and Europe have issued regulations and guidance concerning quality management in the practice of remote afterloading brachytherapy. Information from the publications of these organizations was collected and collated for this report. This report provides the brachytherapy licensee access to a broad field of quality management information in a single, topically organized document.

  1. Report of a consensus meeting on focal low dose rate brachytherapy for prostate cancer.

    PubMed

    Langley, Stephen; Ahmed, Hashim U; Al-Qaisieh, Bashar; Bostwick, David; Dickinson, Louise; Veiga, Francisco Gomez; Grimm, Peter; Machtens, Stefan; Guedea, Ferran; Emberton, Mark

    2012-02-01

    What's known on the subject? and What does the study add? Whole gland brachytherapy has been used to successfully treat prostate cancer but the protocol for focal therapy has not previously been established. The consensus findings provide guidance on patient selection for focal brachytherapy as well as recommendations for conducting therapy and patient follow-up. Low dose rate prostate brachytherapy is an effective treatment for localized prostate cancer. Recently, it has been considered for use in a focused manner whereby treatment is targeted only to areas of prostate cancer. The objective of focal brachytherapy is to provide effective cancer control for low-risk disease but with reduced genitourinary and rectal side-effects in a cost-effective way. We report on the outputs of a consensus meeting of international experts in brachytherapy and focal therapy convened to consider the feasibility and potential development of focal brachytherapy. A number of factors were considered for focal brachytherapy including optimal patient selection, disease characterization and localization, treatment protocols and outcome measures. The consensus meeting also addressed the design of a clinical trial that would assess the oncological outcomes and side-effect profiles resulting from focal brachytherapy. PMID:22239224

  2. [Brachytherapy in France: current situation and economic outlook due to the unavailability of iridium wires].

    PubMed

    Le Vu, B; Boucher, S

    2014-10-01

    In 2013, about 6000 patients were treated with brachytherapy, the number diminishing by 2.6% per year since 2008. Prostate, breast and gynecological cancers are the most common types of cancers. Since 2008, the number of brachytherapy facilities has decreased by 18%. In medicoeconomic terms, brachytherapy faces many problems: the coding system is outdated; brachytherapy treatments cost as much as internal radiation; fees do not cover costs; since iridium wire has disappeared from the market, the technique will be transferred to more expensive high-speed or pulse dose rates. The French financing grid based on the national study of costs lags behind changes in such treatments and in the best of cases, hospitals resorting to alternatives such as in-hospital brachytherapy are funded at 46% of their additional costs. Brachytherapy is a reference technique. With intense pressure on hospital pricing, financing brachytherapy facilities will become even more problematic as a consequence of the disappearance of iridium 192 wires. The case of brachytherapy illustrates the limits of the French financing system and raises serious doubts as to its responsiveness. PMID:25195115

  3. IMPACT OF OBESITY ON ENDOTOXIN-INDUCED DISSEMINATED INTRAVASCULAR COAGULATION.

    PubMed

    Duburcq, Thibault; Tournoys, Antoine; Gnemmi, Viviane; Hubert, Thomas; Gmyr, Valery; Pattou, François; Jourdain, Mercé

    2015-10-01

    An early activation of coagulation and fibrinolysis occurs during sepsis, leading to the syndrome of disseminated intravascular coagulation (DIC). Obesity has been demonstrated to be a hypercoagulable and hypofibrinolytic state, but its impact on DIC has never been studied. In this study, we aimed to determine if obesity impairs DIC in an acute endotoxic shock model using minipigs. This was a prospective, comparative, and experimental ancillary study approved by the Animal Ethics Committee. Pigs were chosen as a clinically relevant species, resembling humans in coagulation reactions. Four groups of five "Yucatan" minipigs were studied: lean and obese control groups, a lean lipopolysaccharide (LPS) group receiving Escherichia coli endotoxin (LPS), and an obese LPS group receiving the same endotoxin dose. We measured standard coagulation parameters (prothrombin time [PT], platelet count, and fibrinogen levels), thrombin-antithrombin complexes, tissue-type plasminogen activator, and plasminogen activator inhibitor-1. All measurements were performed at baseline and 30, 60, 90, 150, and 300 min. Results were given as median with interquartile ranges. At baseline, platelet count (477 [428 - 532] G/L vs. 381 [307 - 442] G/L; P = 0.005) and fibrinogen levels (4.6 [3.8 - 5.2] g/L vs. 2 [1.8 - 2.9] g/L; P < 0.001) were significantly higher, whereas PT (80% [76% - 92%] vs. 96% [89% - 100%]; P = 0.01) was significantly lower in obese pigs compared with lean pigs. In the LPS groups, administration of endotoxin resulted in a typical hypokinetic shock with DIC. The decrease in coagulation parameters (PT, platelet count, and fibrinogen levels) and the increase in thrombin-antithrombin complexes (581 [382 - 1,057] μg/mL vs. 247 [125 - 369] μg/mL at 150 min; P = 0.03) were significantly more important in the obese LPS group compared with those in the lean LPS group. Concerning the fibrinolytic reaction, we found a slightly more elevated increase of plasminogen

  4. Meta-analysis on intravascular low energy laser therapy

    NASA Astrophysics Data System (ADS)

    Zhao, Shu-Dong; Liu, Timon Cheng-Yi; Wang, Yan-Fang; Liu, Song-Hao

    2008-12-01

    Intravascular low energy laser therapy (ILELT) was put forward for cardiocirculatory diseases in USA in 1982, was popular in Russia in 1980s, and then in China in 1990s. The therapeutic effects of ILELT and drugs in comparison with drugs only on Chinese patients and their blood parameters were analyzed with meta-analyses and reported as (OR, 95%CI) for patient improvement and (WMD, 95% CI) for blood parameter improvement, where 95%CI, OR and WMD denoted 95% confidence intervals, odds ratio and weighted mean difference, respectively. It was found that the patients of cerebral infarction (2.39, 2.09~2.74) and cerebrovascular diseases (2.97, 1.69~2.53) were cured, respectively, (P < 0.01), and the symptom improvement of patients of cerebral infarction, cerebrovascular diseases and diabetes were significant (3.13, 2.79~3.51), (4.92, 3.39~7.14) , and (3.80, 2.79~5.18), and mild (3.66, 3.15~4.24), (4.95, 2.77~8.84), and (7.11, 4.54~11.13), respectively, (P < 0.01). It was also found that the blood parameters such as cholesterol (-0.78, -1.32~-0.24), total cholesterol (-1.08, -1.80~-0.36), low density lipoprotein cholesterol (-0.6, -1.01~-0.19), triacylglycerol (0.63, -0.83~-0.42), high density lipoprotein (0.34, 0.10~0.59), erythrocyte aggregation index (-0.24, -0.27~-0.21), erythrocyte Sedimentation Rate (-4.57, -7.26~-1.89), fibrinogen (-0.76, -1.31~-0.21), whole blood contrast viscosity (-0.40, -0.69~-0.12), low cut blood viscosity (-1.2, -1.93~-0.48), high cut blood viscosity (-0.62, -0.92~-0.32), whole blood viscosity(-1.2, -1.85~-0.54) and plasma blood contrast viscosity(-0.07, -0.12~-0.03) were found improved (P < 0.05). It is concluded that the patients of cerebral infarction, cerebrovascular diseases and diabetes might be improved with ILELT, which might be mediated by blood parameter improvement.

  5. Novel treatment options for nonmelanoma skin cancer: focus on electronic brachytherapy.

    PubMed

    Kasper, Michael E; Chaudhary, Ahmed A

    2015-01-01

    Nonmelanoma skin cancer (NMSC) is an increasing health care issue in the United States, significantly affecting quality of life and impacting health care costs. Radiotherapy has a long history in the treatment of NMSC. Shortly after the discovery of X-rays and (226)Radium, physicians cured patients with NMSC using these new treatments. Both X-ray therapy and brachytherapy have evolved over the years, ultimately delivering higher cure rates and lower toxicity. Electronic brachytherapy for NMSC is based on the technical and clinical data obtained from radionuclide skin surface brachytherapy and the small skin surface applicators developed over the past 25 years. The purpose of this review is to introduce electronic brachytherapy in the context of the history, data, and utilization of traditional radiotherapy and brachytherapy.

  6. Air kerma and absorbed dose standards for reference dosimetry in brachytherapy

    PubMed Central

    2014-01-01

    This article reviews recent developments in primary standards for the calibration of brachytherapy sources, with an emphasis on the currently most common photon-emitting radionuclides. The introduction discusses the need for reference dosimetry in brachytherapy in general. The following section focuses on the three main quantities, i.e. reference air kerma rate, air kerma strength and absorbed dose rate to water, which are currently used for the specification of brachytherapy photon sources and which can be realized with primary standards from first principles. An overview of different air kerma and absorbed dose standards, which have been independently developed by various national metrology institutes over the past two decades, is given in the next two sections. Other dosimetry techniques for brachytherapy will also be discussed. The review closes with an outlook on a possible transition from air kerma to absorbed dose to water-based calibrations for brachytherapy sources in the future. PMID:24814696

  7. Novel treatment options for nonmelanoma skin cancer: focus on electronic brachytherapy.

    PubMed

    Kasper, Michael E; Chaudhary, Ahmed A

    2015-01-01

    Nonmelanoma skin cancer (NMSC) is an increasing health care issue in the United States, significantly affecting quality of life and impacting health care costs. Radiotherapy has a long history in the treatment of NMSC. Shortly after the discovery of X-rays and (226)Radium, physicians cured patients with NMSC using these new treatments. Both X-ray therapy and brachytherapy have evolved over the years, ultimately delivering higher cure rates and lower toxicity. Electronic brachytherapy for NMSC is based on the technical and clinical data obtained from radionuclide skin surface brachytherapy and the small skin surface applicators developed over the past 25 years. The purpose of this review is to introduce electronic brachytherapy in the context of the history, data, and utilization of traditional radiotherapy and brachytherapy. PMID:26648763

  8. Novel treatment options for nonmelanoma skin cancer: focus on electronic brachytherapy

    PubMed Central

    Kasper, Michael E; Chaudhary, Ahmed A

    2015-01-01

    Nonmelanoma skin cancer (NMSC) is an increasing health care issue in the United States, significantly affecting quality of life and impacting health care costs. Radiotherapy has a long history in the treatment of NMSC. Shortly after the discovery of X-rays and 226Radium, physicians cured patients with NMSC using these new treatments. Both X-ray therapy and brachytherapy have evolved over the years, ultimately delivering higher cure rates and lower toxicity. Electronic brachytherapy for NMSC is based on the technical and clinical data obtained from radionuclide skin surface brachytherapy and the small skin surface applicators developed over the past 25 years. The purpose of this review is to introduce electronic brachytherapy in the context of the history, data, and utilization of traditional radiotherapy and brachytherapy. PMID:26648763

  9. ALGEBRA: ALgorithm for the heterogeneous dosimetry based on GEANT4 for BRAchytherapy.

    PubMed

    Afsharpour, H; Landry, G; D'Amours, M; Enger, S; Reniers, B; Poon, E; Carrier, J-F; Verhaegen, F; Beaulieu, L

    2012-06-01

    Task group 43 (TG43)-based dosimetry algorithms are efficient for brachytherapy dose calculation in water. However, human tissues have chemical compositions and densities different than water. Moreover, the mutual shielding effect of seeds on each other (interseed attenuation) is neglected in the TG43-based dosimetry platforms. The scientific community has expressed the need for an accurate dosimetry platform in brachytherapy. The purpose of this paper is to present ALGEBRA, a Monte Carlo platform for dosimetry in brachytherapy which is sufficiently fast and accurate for clinical and research purposes. ALGEBRA is based on the GEANT4 Monte Carlo code and is capable of handling the DICOM RT standard to recreate a virtual model of the treated site. Here, the performance of ALGEBRA is presented for the special case of LDR brachytherapy in permanent prostate and breast seed implants. However, the algorithm is also capable of handling other treatments such as HDR brachytherapy.

  10. Dosimetry Modeling for Focal Low-Dose-Rate Prostate Brachytherapy

    SciTech Connect

    Al-Qaisieh, Bashar; Mason, Josh; Bownes, Peter; Henry, Ann; Dickinson, Louise; Ahmed, Hashim U.; Emberton, Mark; Langley, Stephen

    2015-07-15

    Purpose: Focal brachytherapy targeted to an individual lesion(s) within the prostate may reduce side effects experienced with whole-gland brachytherapy. The outcomes of a consensus meeting on focal prostate brachytherapy were used to investigate optimal dosimetry of focal low-dose-rate (LDR) prostate brachytherapy targeted using multiparametric magnetic resonance imaging (mp-MRI) and transperineal template prostate mapping (TPM) biopsy, including the effects of random and systematic seed displacements and interseed attenuation (ISA). Methods and Materials: Nine patients were selected according to clinical characteristics and concordance of TPM and mp-MRI. Retrospectively, 3 treatment plans were analyzed for each case: whole-gland (WG), hemi-gland (hemi), and ultra-focal (UF) plans, with 145-Gy prescription dose and identical dose constraints for each plan. Plan robustness to seed displacement and ISA were assessed using Monte Carlo simulations. Results: WG plans used a mean 28 needles and 81 seeds, hemi plans used 17 needles and 56 seeds, and UF plans used 12 needles and 25 seeds. Mean D90 (minimum dose received by 90% of the target) and V100 (percentage of the target that receives 100% dose) values were 181.3 Gy and 99.8% for the prostate in WG plans, 195.7 Gy and 97.8% for the hemi-prostate in hemi plans, and 218.3 Gy and 99.8% for the focal target in UF plans. Mean urethra D10 was 205.9 Gy, 191.4 Gy, and 92.4 Gy in WG, hemi, and UF plans, respectively. Mean rectum D2 cm{sup 3} was 107.5 Gy, 77.0 Gy, and 42.7 Gy in WG, hemi, and UF plans, respectively. Focal plans were more sensitive to seed displacement errors: random shifts with a standard deviation of 4 mm reduced mean target D90 by 14.0%, 20.5%, and 32.0% for WG, hemi, and UF plans, respectively. ISA has a similar impact on dose-volume histogram parameters for all plan types. Conclusions: Treatment planning for focal LDR brachytherapy is feasible. Dose constraints are easily met with a notable

  11. Third-party brachytherapy source calibrations and physicist responsibilities: Report of the AAPM Low Energy Brachytherapy Source Calibration Working Group

    SciTech Connect

    Butler, Wayne M.; Bice, William S. Jr.; DeWerd, Larry A.; Hevezi, James M.; Huq, M. Saiful; Ibbott, Geoffrey S.; Palta, Jatinder R.; Rivard, Mark J.; Seuntjens, Jan P.; Thomadsen, Bruce R.

    2008-09-15

    The AAPM Low Energy Brachytherapy Source Calibration Working Group was formed to investigate and recommend quality control and quality assurance procedures for brachytherapy sources prior to clinical use. Compiling and clarifying recommendations established by previous AAPM Task Groups 40, 56, and 64 were among the working group's charges, which also included the role of third-party handlers to perform loading and assay of sources. This document presents the findings of the working group on the responsibilities of the institutional medical physicist and a clarification of the existing AAPM recommendations in the assay of brachytherapy sources. Responsibility for the performance and attestation of source assays rests with the institutional medical physicist, who must use calibration equipment appropriate for each source type used at the institution. Such equipment and calibration procedures shall ensure secondary traceability to a national standard. For each multi-source implant, 10% of the sources or ten sources, whichever is greater, are to be assayed. Procedures for presterilized source packaging are outlined. The mean source strength of the assayed sources must agree with the manufacturer's stated strength to within 3%, or action must be taken to resolve the difference. Third party assays do not absolve the institutional physicist from the responsibility to perform the institutional measurement and attest to the strength of the implanted sources. The AAPM leaves it to the discretion of the institutional medical physicist whether the manufacturer's or institutional physicist's measured value should be used in performing dosimetry calculations.

  12. Third-party brachytherapy source calibrations and physicist responsibilities: report of the AAPM Low Energy Brachytherapy Source Calibration Working Group.

    PubMed

    Butler, Wayne M; Bice, William S; DeWerd, Larry A; Hevezi, James M; Huq, M Saiful; Ibbott, Geoffrey S; Palta, Jatinder R; Rivard, Mark J; Seuntjens, Jan P; Thomadsen, Bruce R

    2008-09-01

    The AAPM Low Energy Brachytherapy Source Calibration Working Group was formed to investigate and recommend quality control and quality assurance procedures for brachytherapy sources prior to clinical use. Compiling and clarifying recommendations established by previous AAPM Task Groups 40, 56, and 64 were among the working group's charges, which also included the role of third-party handlers to perform loading and assay of sources. This document presents the findings of the working group on the responsibilities of the institutional medical physicist and a clarification of the existing AAPM recommendations in the assay of brachytherapy sources. Responsibility for the performance and attestation of source assays rests with the institutional medical physicist, who must use calibration equipment appropriate for each source type used at the institution. Such equipment and calibration procedures shall ensure secondary traceability to a national standard. For each multi-source implant, 10% of the sources or ten sources, whichever is greater, are to be assayed. Procedures for presterilized source packaging are outlined. The mean source strength of the assayed sources must agree with the manufacturer's stated strength to within 3%, or action must be taken to resolve the difference. Third party assays do not absolve the institutional physicist from the responsibility to perform the institutional measurement and attest to the strength of the implanted sources. The AAPM leaves it to the discretion of the institutional medical physicist whether the manufacturer's or institutional physicist's measured value should be used in performing dosimetry calculations. PMID:18841836

  13. WE-F-BRD-01: HDR Brachytherapy II: Integrating Imaging with HDR

    SciTech Connect

    Craciunescu, O; Todor, D; Leeuw, A de

    2014-06-15

    In recent years, with the advent of high/pulsed dose rate afterloading technology, advanced treatment planning systems, CT/MRI compatible applicators, and advanced imaging platforms, image-guided adaptive brachytherapy treatments (IGABT) have started to play an ever increasing role in modern radiation therapy. The most accurate way to approach IGABT treatment is to provide the infrastructure that combines in a single setting an appropriate imaging device, a treatment planning system, and a treatment unit. The Brachytherapy Suite is not a new concept, yet the modern suites are incorporating state-of-the-art imaging (MRI, CBCT equipped simulators, CT, and /or US) that require correct integration with each other and with the treatment planning and delivery systems. Arguably, an MRI-equipped Brachytherapy Suite is the ideal setup for real-time adaptive brachytherapy treatments. The main impediment to MRI-IGABT adoption is access to MRI scanners. Very few radiation oncology departments currently house MRI scanners, and even fewer in a dedicated Brachytherapy Suite. CBCT equipped simulators are increasingly offered by manufacturers as part of a Brachytherapy Suite installation. If optimized, images acquired can be used for treatment planning, or can be registered with other imaging modalities. This infrastructure is relevant for all forms of brachytherapy, especially those utilizing multi-fractionated courses of treatment such as prostate and cervix. Moreover, for prostate brachytherapy, US imaging systems can be part of the suite to allow for real-time HDR/LDR treatments. Learning Objectives: Understand the adaptive workflow of MR-based IGBT for cervical cancer. Familiarize with commissioning aspects of a CBCT equipped simulator with emphasis on brachytherapy applications Learn about the current status and future developments in US-based prostate brachytherapy.

  14. Ocular Response of Choroidal Melanoma With Monosomy 3 Versus Disomy 3 After Iodine-125 Brachytherapy

    SciTech Connect

    Marathe, Omkar S.; Wu, Jeffrey; Lee, Steve P.; Yu Fei; Burgess, Barry L.; Leu Min; Straatsma, Bradley R.; McCannel, Tara A.

    2011-11-15

    Purpose: To report the ocular response of choroidal melanoma with monosomy 3 vs. disomy 3 after {sup 125}I brachytherapy. Methods and Materials: We evaluated patients with ciliochoroidal melanoma managed with fine needle aspiration biopsy immediately before plaque application for {sup 125}I brachytherapy between January 1, 2005 and December 31, 2008. Patients with (1) cytopathologic diagnosis of melanoma, (2) melanoma chromosome 3 status identified by fluorescence in situ hybridization, and (3) 6 or more months of follow-up after brachytherapy were sorted by monosomy 3 vs. disomy 3 and compared by Kruskal-Wallis test. Results: Among 40 ciliochoroidal melanomas (40 patients), 15 had monosomy 3 and 25 had disomy 3. Monosomy 3 melanomas had a median greatest basal diameter of 12.00 mm and a median tumor thickness of 6.69 mm before brachytherapy; at a median of 1.75 years after brachytherapy, median thickness was 3.10 mm. Median percentage decrease in tumor thickness was 48.3%. Disomy 3 melanomas had a median greatest basal diameter of 10.00 mm and median tumor thickness of 3.19 mm before brachytherapy; at a median of 2.00 years after brachytherapy, median tumor thickness was 2.37 mm. The median percentage decrease in tumor thickness was 22.7%. Monosomy 3 melanomas were statistically greater in size than disomy 3 melanomas (p < 0.001) and showed a greater decrease in tumor thickness after brachytherapy (p = 0.006). Conclusion: In this study, ciliochoroidal melanomas with monosomy 3 were significantly greater in size than disomy 3 melanoma and showed a significantly greater decrease in thickness at a median of 1.75 years after brachytherapy. The greater decrease in monosomy 3 melanoma thickness after brachytherapy is consistent with other malignancies in which more aggressive pathology has been shown to be associated with a greater initial response to radiotherapy.

  15. 21 CFR 880.5965 - Subcutaneous, implanted, intravascular infusion port and catheter.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... port and catheter. 880.5965 Section 880.5965 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF... port and catheter. (a) Identification. A subcutaneous, implanted, intravascular infusion port and... catheter is either preattached to the port or attached to the port at the time of device placement....

  16. Microfluidics in the Undergraduate Laboratory: Device Fabrication and an Experiment to Mimic Intravascular Gas Embolism

    ERIC Educational Resources Information Center

    Jablonski, Erin L.; Vogel, Brandon M.; Cavanagh, Daniel P.; Beers, Kathryn L.

    2010-01-01

    A method to fabricate microfluidic devices and an experimental protocol to model intravascular gas embolism for undergraduate laboratories are presented. The fabrication process details how to produce masters on glass slides; these masters serve as molds to pattern channels in an elastomeric polymer that can be adhered to a substrate, resulting in…

  17. Treatment of acute intravascular thrombi with diagnostic ultrasound and intravenous microbubbles.

    PubMed

    Xie, Feng; Lof, John; Everbach, Carr; He, Anming; Bennett, Richard M; Matsunaga, Terry; Johanning, Jason; Porter, Thomas R

    2009-04-01

    The purpose of this study was to determine whether high mechanical index (MI) impulses from diagnostic ultrasound (DUS) could dissolve intravascular thrombi using intravenous microbubbles. Using a canine model, DUS was applied during a continuous intravenous infusion of microbubbles. Completely thrombosed grafts were assigned to 2 treatment regimens: low-MI (<0.5-MI) ultrasound alone; or intermittent high-MI impulses (1.9-MI) guided by low-MI ultrasound (contrast pulse sequencing). A 20-MHz cavitation detector was placed confocal to the ultrasound transducer to make intravascular cavitation measurements in 1 dog. Intravascular cavitational activity was detected when an MI of >0.5 was applied. In grafts treated with intermittent high-MI ultrasound, angiographic success was 71% at 30 min and 79% at 45 min, compared with 20% and 30% at these times in the low-MI ultrasound alone group (p < 0.05). We conclude that a commercially available DUS transducer can successfully recanalize acute intravascular thrombi during a continuous microbubble infusion. PMID:19580735

  18. Research of epidermal cellular vegetal cycle of intravascular low level laser irradiation in treatment of psoriasis

    NASA Astrophysics Data System (ADS)

    Zhu, Jing; Bao, Xiaoqing; Zhang, Mei-Jue

    2005-07-01

    Objective: To research epidermal cellular vegetal cycle and the difference of DNA content between pre and post Intravascular Low Level Laser Irradiation treatment of psoriasis. Method: 15 patients suffered from psoriasis were treated by intravascular low level laser irradiation (output power: 4-5mw, 1 hour per day, a course of treatment is 10 days). We checked the different DNA content of epidermal cell between pre and post treatment of psoriasis and 8 natural human. Then the percentage of each phase among the whole cellular cycle was calculated and the statistical analysis was made. Results: The mean value of G1/S phase is obviously down while G2+M phase increased obviously. T test P<0.05.The related statistical analysis showed significant difference between pre and post treatments. Conclusions: The Intravascular Low Level Laser Irradiation (ILLLI) in treatment of psoriasis is effective according to the research of epidermal cellular vegetal cycle and the difference DNA content of Intravascular Low Level Laser Irradiation between pre and post treatment of psoriasis

  19. [Rhabdomyolysis, disseminated intravascular coagulation and multiple organ failure in a patient with cocaine and heroine poisoning].

    PubMed

    Vreugdenhil, G; Ligthart, J; de Leeuw, P W

    1992-06-20

    A 19-year-old female patient with cocaine and heroin intoxication is described in whom several life threatening complications such as hypovolemic shock, cardiopulmonary insufficiency, rhabdomyolysis, diffuse intravascular coagulation and multiple organ failure occurred. The patient survived the intoxication after quick intensive treatment.

  20. Intravascular Optical-Resolution Photoacoustic Tomography with a 1.1 mm Diameter Catheter

    PubMed Central

    Bai, Xiaosong; Gong, Xiaojing; Hau, William; Lin, Riqiang; Zheng, Jiaxiang; Liu, Chengbo; Zeng, Chengzhi; Zou, Xin; Zheng, Hairong; Song, Liang

    2014-01-01

    Photoacoustic imaging is an emerging technology that can provide anatomic, functional, and molecular information about biological tissue. Intravascular spectroscopic and molecular photoacoustic imaging can potentially improve the identification of atherosclerotic plaque composition, the detection of inflammation, and ultimately the risk stratification of atherosclerosis. In this study, a first-of-its-kind intravascular optical-resolution photoacoustic tomography (OR-PAT) system with a 1.1 mm diameter catheter is developed, offering optical-diffraction limited transverse resolution as fine as 19.6 μm, ∼10-fold finer than that of conventional intravascular photoacoustic and ultrasonic imaging. To offer complementary imaging information and depth, the system also acquires co-registered intravascular ultrasound images in parallel. Imaging of an iliac stent and a lipid phantom shows that the high resolution and contrast of OR-PAT can enable improved stent implantation guidance and lipid identification. In the future, these capabilities may ultimately improve the diagnosis and interventional treatment of vulnerable atherosclerotic plaques, which are prone to cause thrombotic complications such as myocardial infarction and stroke. PMID:24651256

  1. Radiological imaging of florid intravascular papillary endothelial hyperplasia in the mandibule: case report and literature review.

    PubMed

    Xu, Sheng-Sheng; Li, Dan

    2014-01-01

    Intravascular papillary endothelial hyperplasia was a rare benign vascular proliferative process as a result of papillary proliferation of the endothelial cells within the vessels. To our knowledge, we reported the second case occurring in the madibule, and the first reported in 1984 in the literature. We discussed manifestations of multislice computed tomography and panoramic radiography about the lesion and relevant literature was reviewed.

  2. Dynamic modulated brachytherapy (DMBT) and intensity modulated brachytherapy (IMBT) for the treatment of rectal and breast carcinomas

    NASA Astrophysics Data System (ADS)

    Webster, Matthew Julian

    The ultimate goal of any treatment of cancer is to maximize the likelihood of killing the tumor while minimizing the chance of damaging healthy tissues. One of the most effective ways to accomplish this is through radiation therapy, which must be able to target the tumor volume with a high accuracy while minimizing the dose delivered to healthy tissues. A successful method of accomplishing this is brachytherapy which works by placing the radiation source in very close proximity to the tumor. However, most current applications of brachytherapy rely mostly on the geometric manipulation of isotropic sources, which limits the ability to specifically target the tumor. The purpose of this work is to introduce several types of shielded brachytherapy applicators which are capable of targeting tumors with much greater accuracy than existing technologies. These applicators rely on the modulation of the dose profile through a high-density tungsten alloy shields to create anisotropic dose distributions. Two classes of applicators have been developed in this work. The first relies on the active motion of the shield, to aim a highly directional radiation profile. This allows for very precise control of the dose distribution for treatment, achieving unparalleled dose coverage to the tumor while sparing healthy tissues. This technique has been given the moniker of Dynamic Modulated Brachytherapy (DMBT). The second class of applicators, designed to reduce treatment complexity uses static applicators. These applicators retain the use of the tungsten shield, but the shield is motionless during treatment. By intelligently designing the shield, significant improvements over current methods have been demonstrated. Although these static applicators fail to match the dosimetric quality of DMBT applicators the simplified setup and treatment procedure gives them significant appeal. The focus of this work has been to optimize these shield designs, specifically for the treatment of rectal and

  3. Evaluation of Intravascular Hemolysis With Erythrocyte Creatine in Patients With Aortic Stenosis.

    PubMed

    Sugiura, Tetsuro; Okumiya, Toshika; Kubo, Toru; Takeuchi, Hiroaki; Matsumura, Yoshihisa

    2016-07-27

    Chronic intravascular hemolysis has been identified in patients with cardiac valve prostheses, but only a few case reports have evaluated intravascular hemolysis in patients with native valvular heart disease. To detect intravascular hemolysis in patients with aortic stenosis, erythrocyte creatine was evaluated with hemodynamic indices obtained by echocardiography.Erythrocyte creatine, a marker of erythrocyte age, was assayed in 30 patients with aortic stenosis and 10 aged matched healthy volunteers. Peak flow velocity of the aortic valve was determined by continuous-wave Doppler echocardiography. Twenty of 30 patients with aortic stenosis had high erythrocyte creatine levels (> 1.8 µmol/g Hb) and erythrocyte creatine was significantly higher as compared with control subjects (1.98 ± 0.49 versus 1.52 ± 0.19 µmol/g Hb, P = 0.007). Peak transvalvular pressure gradient ranged from 46 to 142 mmHg and peak flow velocity ranged from 3.40 to 5.95 m/second. Patients with aortic stenosis had a significantly lower erythrocyte count (387 ± 40 versus 436 ± 42 × 10(4) µL, P = 0.002) and hemoglobin (119 ± 11 versus 135 ± 11 g/L, P < 0.001) as compared with control subjects. Erythrocyte creatine had a fair correlation with peak flow velocity (r = 0.55, P = 0.002).In conclusion, intravascular hemolysis due to destruction of erythrocytes was detected in patients with moderate to severe aortic stenosis and the severity of intravascular hemolysis was related to valvular flow velocity of the aortic valve.

  4. Asphyxia by Drowning Induces Massive Bleeding Due To Hyperfibrinolytic Disseminated Intravascular Coagulation

    PubMed Central

    Schwameis, Michael; Schober, Andreas; Schörgenhofer, Christian; Sperr, Wolfgang Reinhard; Schöchl, Herbert; Janata-Schwatczek, Karin; Kürkciyan, Erol Istepan; Sterz, Fritz

    2015-01-01

    Objective: To date, no study has systematically investigated the impact of drowning-induced asphyxia on hemostasis. Our objective was to test the hypothesis that asphyxia induces bleeding by hyperfibrinolytic disseminated intravascular coagulation. Design: Observational study. Setting: A 2,100-bed tertiary care facility in Vienna, Austria, Europe. Patients: All cases of drowning-induced asphyxia (n = 49) were compared with other patients with cardiopulmonary resuscitation (n = 116) and to patients with acute promyelocytic leukemia (n = 83). Six drowning victims were investigated prospectively. To study the mechanism, a forearm-ischemia model was used in 20 volunteers to investigate whether hypoxia releases tissue plasminogen activator. Interventions: None. Measurements and Main Results: Eighty percent of patients with drowning-induced asphyxia developed overt disseminated intravascular coagulation within 24 hours. When compared with nondrowning cardiac arrest patients, drowning patients had a 13 times higher prevalence of overt disseminated intravascular coagulation at admission (55% vs 4%; p < 0.001). Despite comparable disseminated intravascular coagulation scores, acute promyelocytic leukemia patients had higher fibrinogen but lower d-dimer levels and platelet counts than drowning patients (p < 0.001). Drowning victims had a three-fold longer activated partial thromboplastin time (124 s; p < 0.001) than both nondrowning cardiac arrest and acute promyelocytic leukemia patients. Hyperfibrinolysis was reflected by up to 1,000-fold increased d-dimer levels, greater than 5-fold elevated plasmin antiplasmin levels, and a complete absence of thrombelastometric clotting patterns, which was reversed by antifibrinolytics and heparinase. Thirty minutes of forearm-ischemia increased tissue plasminogen activator 31-fold (p < 0.001). Conclusions: The vast majority of drowning patients develops overt hyperfibrinolytic disseminated intravascular coagulation, partly caused by

  5. Intravascular pressure augments cerebral arterial constriction by inducing voltage-insensitive Ca2+ waves.

    PubMed

    Mufti, Rania E; Brett, Suzanne E; Tran, Cam Ha T; Abd El-Rahman, Rasha; Anfinogenova, Yana; El-Yazbi, Ahmed; Cole, William C; Jones, Peter P; Chen, S R Wayne; Welsh, Donald G

    2010-10-15

    This study examined whether elevated intravascular pressure stimulates asynchronous Ca(2+) waves in cerebral arterial smooth muscle cells and if their generation contributes to myogenic tone development. The endothelium was removed from rat cerebral arteries, which were then mounted in an arteriograph, pressurized (20-100 mmHg) and examined under a variety of experimental conditions. Diameter and membrane potential (V(M)) were monitored using conventional techniques; Ca(2+) wave generation and myosin light chain (MLC(20))/MYPT1 (myosin phosphatase targeting subunit) phosphorylation were assessed by confocal microscopy and Western blot analysis, respectively. Elevating intravascular pressure increased the proportion of smooth muscle cells firing asynchronous Ca(2+) waves as well as event frequency. Ca(2+) wave augmentation occurred primarily at lower intravascular pressures (<60 mmHg) and ryanodine, a plant alkaloid that depletes the sarcoplasmic reticulum (SR) of Ca(2+), eliminated these events. Ca(2+) wave generation was voltage insensitive as Ca(2+) channel blockade and perturbations in extracellular [K(+)] had little effect on measured parameters. Ryanodine-induced inhibition of Ca(2+) waves attenuated myogenic tone and MLC(20) phosphorylation without altering arterial V(M). Thapsigargin, an SR Ca(2+)-ATPase inhibitor also attenuated Ca(2+) waves, pressure-induced constriction and MLC(20) phosphorylation. The SR-driven component of the myogenic response was proportionally greater at lower intravascular pressures and subsequent MYPT1 phosphorylation measures revealed that SR Ca(2+) waves facilitated pressure-induced MLC(20) phosphorylation through mechanisms that include myosin light chain phosphatase inhibition. Cumulatively, our findings show that mechanical stimuli augment Ca(2+) wave generation in arterial smooth muscle and that these transient events facilitate tone development particularly at lower intravascular pressures by providing a proportion of the Ca

  6. Conformal Brachytherapy Planning for Cervical Cancer Using Transabdominal Ultrasound

    SciTech Connect

    Van Dyk, Sylvia Narayan, Kailash; Fisher, Richard; Bernshaw, David

    2009-09-01

    Purpose: To determine if transabdominal ultrasound (US) can be used for conformal brachytherapy in cervical cancer patients. Materials and Methods: Seventy-one patients with locoregionally advanced cervix cancer treated with chemoradiation and brachytherapy were included in this study. The protocol consisted of US-assisted tandem insertion and conformal US-based planning. Orthogonal films for applicator reconstruction were also taken. A standard plan was modified to suit the US-based volume and treatment was delivered. The patient then underwent a magnetic resonance imaging (MRI) scan with the applicators in situ. Retrospectively, individual standard (STD), US, and MRI plans were extrapolated for five fractions and superimposed onto the two-dimensional sagittal MRI images for comparison. Doses to Point A, target volume, International Commission on Radiation Units and Measurements (ICRU) 38 bladder and rectal points, and individualized bowel points were calculated on original implant geometry on Plato for each planning method. Results: STD (high-dose-rate) plans reported higher doses to Point A, target volume, ICRU 38 bladder and rectal points, and individualized bowel point compared with US and MRI plans. There was a statistically significant difference between standard plans and image-based plans-STD vs. US, STD vs. MRI, and STD vs. Final-having consistent (p {<=} 0.001) respectively for target volume, Point A, ICRU 38 bladder, and bowel point. US plan assessed on two-dimensional MRI image was comparable for target volume (p = 0.11), rectal point (p = 0.8), and vaginal mucosa (p = 0.19). Local control was 90%. Late bowel morbidity (G3, G4) was <2%. Conclusions: Transabdominal ultrasound offers an accurate, quick, accessible, and cost-effective method of conformal brachytherapy planning.

  7. Prostate Brachytherapy in Men {>=}75 Years of Age

    SciTech Connect

    Merrick, Gregory S. Wallner, Kent E.; Galbreath, Robert W.; Butler, Wayne M.; Brammer, Sarah G.; Allen, Zachariah A.; Adamovich, Edward

    2008-10-01

    Purpose: To evaluate cause-specific survival (CSS), biochemical progression-free survival (bPFS), and overall survival (OS) in prostate cancer patients aged {>=}75 years undergoing brachytherapy with or without supplemental therapies. Methods and Materials: Between April 1995 and August 2004, 145 consecutive patients aged {>=}75 years underwent permanent prostate brachytherapy. Median follow-up was 5.8 years. Biochemical progression-free survival was defined by a prostate-specific antigen level {<=}0.40 ng/mL after nadir. Patients with metastatic prostate cancer or hormone-refractory disease without obvious metastases who died of any cause were classified as dead of prostate cancer. All other deaths were attributed to the immediate cause of death. Multiple clinical, treatment, and dosimetric parameters were evaluated for impact on survival. Results: Nine-year CSS, bPFS, and OS rates for the entire cohort were 99.3%, 97.1%, and 64.5%, respectively. None of the evaluated parameters predicted for CSS, whereas bPFS was most closely predicted by percentage positive biopsies. Overall survival and non-cancer deaths were best predicted by tobacco status. Thirty-seven patients have died, with 83.8% of the deaths due to cardiovascular disease (22 patients) or second malignancies (9 patients). To date, only 1 patient (0.7%) has died of metastatic prostate cancer. Conclusions: After brachytherapy, high rates of CSS and bPFS are noted in elderly prostate cancer patients. Overall, approximately 65% of patients are alive at 9 years, with survival most closely related to tobacco status. We believe our results support an aggressive locoregional approach in appropriately selected elderly patients.

  8. Study of dose calculation on breast brachytherapy using prism TPS

    SciTech Connect

    Fendriani, Yoza; Haryanto, Freddy

    2015-09-30

    PRISM is one of non-commercial Treatment Planning System (TPS) and is developed at the University of Washington. In Indonesia, many cancer hospitals use expensive commercial TPS. This study aims to investigate Prism TPS which been applied to the dose distribution of brachytherapy by taking into account the effect of source position and inhomogeneities. The results will be applicable for clinical Treatment Planning System. Dose calculation has been implemented for water phantom and CT scan images of breast cancer using point source and line source. This study used point source and line source and divided into two cases. On the first case, Ir-192 seed source is located at the center of treatment volume. On the second case, the source position is gradually changed. The dose calculation of every case performed on a homogeneous and inhomogeneous phantom with dimension 20 × 20 × 20 cm{sup 3}. The inhomogeneous phantom has inhomogeneities volume 2 × 2 × 2 cm{sup 3}. The results of dose calculations using PRISM TPS were compared to literature data. From the calculation of PRISM TPS, dose rates show good agreement with Plato TPS and other study as published by Ramdhani. No deviations greater than ±4% for all case. Dose calculation in inhomogeneous and homogenous cases show similar result. This results indicate that Prism TPS is good in dose calculation of brachytherapy but not sensitive for inhomogeneities. Thus, the dose calculation parameters developed in this study were found to be applicable for clinical treatment planning of brachytherapy.

  9. Use of radiochromic dosimetry film for HDR brachytherapy quality assurance.

    PubMed

    Steidley, K D

    1998-01-01

    An important quality assurance (QA) procedure in high dose rate (HDR) remote afterloading brachytherapy is the verification of the system's control of the source by a direct test with dosimetry medium prior to the patient's first treatment. In this test radiochromic film is placed in direct contact with the applicator and the patient's proposed treatment is then run with their EPROM card. Examination of the film allows a quick appraisal of step size, number of steps, and offset. Advantages of this film include self-development so the image may be viewed immediately, insensitivity to normal room light, and archivability. The cost is about U.S. $2 per clinical case.

  10. Radiological response of ceramic and polymeric devices for breast brachytherapy.

    PubMed

    Nogueira, Luciana Batista; de Campos, Tarcisio Passos Ribeiro

    2012-04-01

    In the present study, the radiological visibility of ceramic and polymeric devices implanted in breast phantom was investigated for future applications in brachytherapy. The main goal was to determine the radiological viability of ceramic and polymeric devices in vitro by performing simple radiological diagnostic methods such as conventional X-ray analysis and mammography due to its easy access to the population. The radiological response of ceramic and polymeric devices implanted in breast phantom was determined using conventional X-ray, mammography and CT analysis.

  11. [Endobronchial brachytherapy: state of the art in 2013].

    PubMed

    Derhem, N; Sabila, H; Mornex, F

    2013-04-01

    Endobronchial brachytherapy is an invasive technique, which allows localizing radioactive sources at the tumour contact. Therefore, high doses are administered to tumour while healthy tissues can be spared. Initially dedicated to a palliative setting, improvements helped reaching 60 to 88% symptoms alleviation and 30 to 100% of endoscopic macroscopic response. New diagnostic techniques and early diagnosis extended the indications to a curative intent: endoluminal primitive tumour, post radiation endobronchial recurrence, inoperable patients. CT-based dosimetry is a keypoint to optimize treatment quality and to minimize potential side effects, making this treatment a safe and efficient technique for specific indications. PMID:23465785

  12. [The successful prolongation of a twin preterm pregnancy complicated by a dead fetus and disseminated intravascular coagulation].

    PubMed

    Hasbún, J; Muñoz, H; von Mühlenbrock, R; Pommer, R; Fardella, P; Yuri, C

    1992-01-01

    A clinical case of twin pregnancy with one in utero death fetus, at 24 weeks of gestation is presented, accompanied by disseminated intravascular coagulation. The successful treatment with heparin its described.

  13. Optimizing methods for the study of intravascular lipid metabolism in zebrafish.

    PubMed

    Chen, Kan; Wang, Chang-Qian; Fan, Yu-Qi; Xie, Yu-Shui; Yin, Zhao-Fang; Xu, Zuo-Jun; Zhang, Hui-Li; Cao, Jia-Tian; Han, Zhi-Hua; Wang, Yue; Song, Dong-Qiang

    2015-03-01

    The zebrafish (Danio rerio) is a useful vertebrate model for use in cardiovascular drug discovery. The present study aimed to construct optimized methods for the study of intravascular lipid metabolism of zebrafish. The lipophilic dye, Oil Red O, was used to stain fasting zebrafish one to eight days post-fertilization (dpf) and to stain 7-dpf zebrafish incubated in a breeding system containing 0.1% egg yolk as a high-fat diet (HFD) for 48 h. Three-dpf zebrafish were kept in CholEsteryl boron-dipyrromethene (BODIPY) 542/563 C11 water for 24 h which indicated the efficiency of CholEsteryl BODIPY 542/563 C11 intravascular cholesterol staining. Subsequently, 7-dpf zebrafish were incubated in water containing the fluorescent probe CholEsteryl BODIPY 542/563 C11 and fed a high-cholesterol diet (HCD) for 10 d. Two groups of 7-dpf zebrafish were incubated in regular breeding water and fed with a regular or HCD containing CholEsteryl BODIPY 542/563 C11 for 10 d. Finally, blood lipids of adult zebrafish fed with regular or HFD for seven weeks were measured. Oil Red O was not detected in the blood vessels of 7-8-dpf zebrafish. Increased intravascular lipid levels were detected in 7-dpf zebrafish incubated in 0.1% egg yolk, indicated by Oil Red O staining. Intravascular cholesterol was efficiently stained in 3-dpf zebrafish incubated in breeding water containing CholEsteryl BODIPY 542/563 C11; however, this method was inappropriate for the calculation of intravascular fluorescence intensity in zebrafish >7‑dpf. In spite of this, intra-aortic fluorescence intensity of zebrafish fed a HCD containing CholEsteryl BODIPY 542/563 C11 was significantly higher (P<0.05) than that of those fed a regular diet containing CholEsteryl BODIPY 542/563 C11. The serum total cholesterol and triglyceride levels of adult zebrafish fed a HFD were markedly increased compared to those of the control group (P<0.05). In conclusion, the use of Oil Red O staining and CholEsteryl BODIPY 542/563 C11 may

  14. Dosimetric Study of a Low-Dose-Rate Brachytherapy Source

    NASA Astrophysics Data System (ADS)

    Rodríguez-Villafuerte, M.; Arzamendi, S.; Díaz-Perches, R.

    Carcinoma of the cervix is the most common malignancy - in terms of both incidence and mortality - in Mexican women. Low dose rate (LDR) intracavitary brachytherapy is normally prescribed for the treatment of this disease to the vast majority of patients attending public hospitals in our country. However, most treatment planning systems being used in these hospitals still rely on Sievert integral dose calculations. Moreover, experimental verification of dose distributions are hardly ever done. In this work we present a dosimetric characterisation of the Amersham CDCS-J 137Cs source, an LDR brachytherapy source commonly used in Mexican hospitals. To this end a Monte Carlo simulation was developed, that includes a realistic description of the internal structure of the source embedded in a scattering medium. The Monte Carlo results were compared to experimental measurements of dose distributions. A lucite phantom with the same geometric characteristics as the one used in the simulation was built. Dose measurements were performed using thermoluminescent dosimeters together with commercial RadioChromic dye film. A comparison between our Monte Carlo simulation, the experimental data, and results reported in the literature is presented.

  15. 2D/3D registration algorithm for lung brachytherapy

    SciTech Connect

    Zvonarev, P. S.; Farrell, T. J.; Hunter, R.; Wierzbicki, M.; Hayward, J. E.; Sur, R. K.

    2013-02-15

    Purpose: A 2D/3D registration algorithm is proposed for registering orthogonal x-ray images with a diagnostic CT volume for high dose rate (HDR) lung brachytherapy. Methods: The algorithm utilizes a rigid registration model based on a pixel/voxel intensity matching approach. To achieve accurate registration, a robust similarity measure combining normalized mutual information, image gradient, and intensity difference was developed. The algorithm was validated using a simple body and anthropomorphic phantoms. Transfer catheters were placed inside the phantoms to simulate the unique image features observed during treatment. The algorithm sensitivity to various degrees of initial misregistration and to the presence of foreign objects, such as ECG leads, was evaluated. Results: The mean registration error was 2.2 and 1.9 mm for the simple body and anthropomorphic phantoms, respectively. The error was comparable to the interoperator catheter digitization error of 1.6 mm. Preliminary analysis of data acquired from four patients indicated a mean registration error of 4.2 mm. Conclusions: Results obtained using the proposed algorithm are clinically acceptable especially considering the complications normally encountered when imaging during lung HDR brachytherapy.

  16. Observations on rotating needle insertions using a brachytherapy robot

    NASA Astrophysics Data System (ADS)

    Meltsner, M. A.; Ferrier, N. J.; Thomadsen, B. R.

    2007-09-01

    A robot designed for prostate brachytherapy implantations has the potential to greatly improve treatment success. Much of the research in robotic surgery focuses on measuring accuracy. However, there exist many factors that must be optimized before an analysis of needle placement accuracy can be determined. Some of these parameters include choice of the needle type, insertion velocity, usefulness of the rotating needle and rotation speed. These parameters may affect the force at which the needle interacts with the tissue. A reduction in force has been shown to decrease the compression of the prostate and potentially increase the accuracy of seed position. Rotating the needle as it is inserted may reduce frictional forces while increasing accuracy. However, needle rotations are considered to increase tissue damage due to the drilling nature of the insertion. We explore many of the factors involved in optimizing a brachytherapy robot, and the potential effects each parameter may have on the procedure. We also investigate the interaction of rotating needles in gel and suggest the rotate-cannula-only method of conical needle insertion to minimize any tissue damage while still maintaining the benefits of reduced force and increased accuracy.

  17. In vivo visualization of prostate brachytherapy seeds with photoacoustic imaging

    NASA Astrophysics Data System (ADS)

    Lediju Bell, Muyinatu A.; Kuo, Nathanael P.; Song, Danny Y.; Kang, Jin U.; Boctor, Emad M.

    2014-12-01

    We conducted a canine study to investigate the in vivo feasibility of photoacoustic imaging for intraoperative updates to brachytherapy treatment plans. A fiber coupled to a 1064-nm Nd:YAG laser was inserted into high-dose-rate brachytherapy needles, which diffused light spherically. These needles were inserted through the perineum into the prostate for interstitial light delivery and the resulting acoustic waves were detected with a transrectal ultrasound probe. Postoperative computed tomography images and ex vivo photoacoustic images confirmed seed locations. Limitations with insufficient light delivery were mitigated with short-lag spatial coherence (SLSC) beamforming, providing a 10-20 dB contrast improvement over delay-and-sum (DAS) beamforming for pulse energies ranging from 6.8 to 10.5 mJ with a fiber-seed distance as large as 9.5 mm. For the same distance and the same range of energy densities, signal-to-noise ratios (SNRs) were similar while the contrast-to-noise ratio (CNR) was higher in SLSC compared to DAS images. Challenges included visualization of signals associated with the interstitial fiber tip and acoustic reverberations between seeds separated by ≤2 mm. Results provide insights into the potential for clinical translation to humans.

  18. A Brachytherapy Plan Evaluation Tool for Interstitial Applications

    PubMed Central

    Nambiraj, N. Arunai; Dayalan, Sridhar; Ganesh, Kalaivany; Anchineyan, Pichandi; Bilimagga, Ramesh S.

    2014-01-01

    Radiobiological metrics such as tumor control probability (TCP) and normal tissue complication probability (NTCP) help in assessing the quality of brachytherapy plans. Application of such metrics in clinics as well as research is still inadequate. This study presents the implementation of two indigenously designed plan evaluation modules: Brachy_TCP and Brachy_NTCP. Evaluation tools were constructed to compute TCP and NTCP from dose volume histograms (DVHs) of any interstitial brachytherapy treatment plan. The computation module was employed to estimate probabilities of tumor control and normal tissue complications in ten cervical cancer patients based on biologically effective equivalent uniform dose (BEEUD). The tumor control and normal tissue morbidity were assessed with clinical followup and were scored. The acute toxicity was graded using common terminology criteria for adverse events (CTCAE) version 4.0. Outcome score was found to be correlated with the TCP/NTCP estimates. Thus, the predictive ability of the estimates was quantified with the clinical outcomes. Biologically effective equivalent uniform dose-based formalism was found to be effective in predicting the complexities and disease control. PMID:24665263

  19. Thermoluminescence dosimetry measurements of brachytherapy sources in liquid water

    SciTech Connect

    Tailor, Ramesh; Tolani, Naresh; Ibbott, Geoffrey S.

    2008-09-15

    Radiation therapy dose measurements are customarily performed in liquid water. The characterization of brachytherapy sources is, however, generally based on measurements made with thermoluminescence dosimeters (TLDs), for which contact with water may lead to erroneous readings. Consequently, most dosimetry parameters reported in the literature have been based on measurements in water-equivalent plastics, such as Solid Water. These previous reports employed a correction factor to transfer the dose measurements from a plastic phantom to liquid water. The correction factor most often was based on Monte Carlo calculations. The process of measuring in a water-equivalent plastic phantom whose exact composition may be different from published specifications, then correcting the results to a water medium leads to increased uncertainty in the results. A system has been designed to enable measurements with TLDs in liquid water. This system, which includes jigs to support water-tight capsules of lithium fluoride in configurations suitable for measuring several dosimetric parameters, was used to determine the correction factor from water-equivalent plastic to water. Measurements of several {sup 125}I and {sup 131}Cs prostate brachytherapy sources in liquid water and in a Solid Water phantom demonstrated a correction factor of 1.039{+-}0.005 at 1 cm distance. These measurements are in good agreement with a published value of this correction factor for an {sup 125}I source.

  20. Remote afterloading for intracavitary and interstitial brachytherapy with californium-252

    NASA Astrophysics Data System (ADS)

    Tačev, Tačo; Grigorov, Grigor; Papírek, Tomáš; Kolařík, Vladimír.

    2004-01-01

    The authors present their design concept of remote afterloading for 252Cf brachytherapy with respect to characteristic peculiarities of 252Cf and the current worldwide development of remote afterloading devices. The afterloading device has been designed as a stationary radiator comprising three mutually interconnected units: (1) a control and drive unit, consisting of a control computer and a motor-driven Bowden system carrying the 252Cf source; (2) a source housed in a watertight, concrete vessel, which is stored in a strong room situated well beneath the patient's bed and (3) an afterloading application module installed in the irradiation room. As 252Cf is a nuclide with low specific activity, it was necessary to produce two independent devices for high dose rate intracavitary treatment and for low dose rate intestinal treatment. The sources may be moved arbitrarily during the treatment with a position accuracy of 0.5-1.0 mm within a distance of 520 cm from the source storage position in the strong room to the application position. The technical concept of the present automatic afterloading device for neutron brachytherapy represents one possible option of a range of conceivable design variants, which, while minimizing the technical and economic requirements, provides operating personnel with optimum protection and work safety, thus extending the applicability of high-LET radiation-based treatment methods in clinical practice.