Science.gov

Sample records for 193-nm excimer laser

  1. Advances in 193 nm excimer lasers for mass spectrometry applications

    NASA Astrophysics Data System (ADS)

    Delmdahl, Ralph; Esser, Hans-Gerd; Bonati, Guido

    2016-03-01

    Ongoing progress in mass analysis applications such as laser ablation inductively coupled mass spectrometry of solid samples and ultraviolet photoionization mediated sequencing of peptides and proteins is to a large extent driven by ultrashort wavelength excimer lasers at 193 nm. This paper will introduce the latest improvements achieved in the development of compact high repetition rate excimer lasers and elaborate on the impact on mass spectrometry instrumentation. Various performance and lifetime measurements obtained in a long-term endurance test over the course of 18 months will be shown and discussed in view of the laser source requirements of different mass spectrometry tasks. These sampling type applications are served by excimer lasers delivering pulsed 193 nm output of several mJ as well as fast repetition rates which are already approaching one Kilohertz. In order to open up the pathway from the laboratory to broader market industrial use, sufficient component lifetimes and long-term stable performance behavior have to be ensured. The obtained long-term results which will be presented are based on diverse 193 nm excimer laser tube improvements aiming at e.g. optimizing the gas flow dynamics and have extended the operational life the laser tube for the first time over several billion pulses even under high duty-cycle conditions.

  2. Solid sampling with 193-nm excimer laser ablation

    NASA Astrophysics Data System (ADS)

    Delmdahl, Ralph

    2007-02-01

    Reproducible and sensitive elemental analysis of solid samples is a crucial task in areas of geology (e.g. microanalysis of fluid inclusions), material sciences, industrial quality control as well as in environmental, forensic and biological studies. To date the most versatile detection method is mass-spectroscopic multi-element analysis. In order to obtain reproducible results, this requires transferring the solid sample into the gas-phase while preserving the sample's stoichiometric composition. Laser ablation in combination with Inductively Coupled Plasma-Mass Spectrometry (LA-ICP-MS) is a proven powerful technique to meet the requirements for reliable solid sample analysis. The sample is laser ablated in an air-tight cell and the aerosol is carried by an inert gas to a micro-wave induced plasma where its constituents are atomized and ionized prior to mass analysis. The 193 nm excimer laser ablation, in particular, provides athermal sample ablation with very precise lateral ablation and controlled depth profiling. The high photon energy and beam homogeneity of the 193 nm excimer laser system avoids elemental fractionation and permits clean ablation of even transmissive solid materials such as carbonates, fluorites and pure quartz.

  3. 193 nm excimer laser sclerostomy in pseudophakic patients with advanced open angle glaucoma.

    PubMed Central

    Allan, B D; van Saarloos, P P; Cooper, R L; Constable, I J

    1994-01-01

    A modified open mask system incorporating an en face air jet to dry the target area during ablation and a conjunctival plication mechanism, which allows ab externo delivery of the 193 nm excimer laser without prior conjunctival dissection, has been developed to form small bore sclerostomies accurately and atraumatically. Full thickness sclerostomies, and sclerostomies guarded by a smaller internal ostium can be created. A pilot therapeutic trial was conducted in pseudophakic patients with advanced open angle glaucoma. Six full thickness sclerostomies (200 microns and 400 microns diameter) and three guarded sclerostomies were created in nine patients by 193 nm excimer laser ablation (fluence per pulse 400 mJ/cm2, pulse rate 16 Hz, air jet pressure intraocular pressure +25 mm Hg). After 6 months' follow up, intraocular pressure was controlled (< or = 16 mm Hg) in eight of the nine patients (6/9 without medication). Early postoperative complications included hyphaema (trace--2.5 mm) (6/9), temporary fibrinous sclerostomy occlusion (4/9), profound early hypotony (all patients without fibrinous occlusion), and suprachoroidal haemorrhage in one case. Conjunctival laser wounds were self sealing. Small bore laser sclerostomy procedures are functionally equivalent to conventional full thickness procedures, producing early postoperative hypotony, with an increased risk of suprachoroidal haemorrhage in association with this. Further research is required to improve control over internal guarding in excimer laser sclerostomy before clinical trials of this technique can safely proceed. Images PMID:8148335

  4. Clinical use of the 193-nm excimer laser in the treatment of corneal scars.

    PubMed

    Sher, N A; Bowers, R A; Zabel, R W; Frantz, J M; Eiferman, R A; Brown, D C; Rowsey, J J; Parker, P; Chen, V; Lindstrom, R L

    1991-04-01

    Phototherapeutic keratectomy using a 193-nm excimer laser was performed at four centers on 33 sighted patients with corneal opacity and/or irregular astigmatism. Pathologic conditions included anterior stromal and superficial scarring from postinfectious and posttraumatic causes, including inactive herpes simplex virus, anterior corneal dystrophies, recurrent erosions, granular dystrophy, and band keratopathy. Most patients received peribulbar anesthesia and underwent removal of the epithelium prior to laser ablation. A majority of patients had a reduction in the amount of corneal scarring and approximately half had improved visual acuity. No intraocular reaction or changes in endothelial counts were seen, and some patients avoided the need for penetrating keratoplasty. Reepithelialization usually occurred within 4 or 5 days and we noted no significant scarring secondary to use of the laser. It was difficult to eliminate preexisting irregular astigmatism despite the use of surface modulators, such as methylcellulose. A hyperopic shift secondary to corneal flattening was encountered in approximately 50% of the patients. A combination of myopic ablation, followed immediately by a secondary hyperopic steepening, may minimize this refractive change. The 193-nm excimer laser is an effective new tool in the treatment of selected patients with superficial corneal opacity from a variety of conditions. PMID:2012547

  5. 193 nm Excimer laser processing of Si/Ge/Si(100) micropatterns

    NASA Astrophysics Data System (ADS)

    Gontad, F.; Conde, J. C.; Chiussi, S.; Serra, C.; González, P.

    2016-01-01

    193 nm Excimer laser assisted growth and crystallization of amorphous Si/Ge bilayer patterns with circular structures of 3 μm diameter and around 25 nm total thickness, is presented. Amorphous patterns were grown by Laser induced Chemical Vapor Deposition, using nanostencils as shadow masks and then irradiated with the same laser to induce structural and compositional modifications for producing crystalline SiGe alloys through fast melting/solidification cycles. Compositional and structural analyses demonstrated that pulses of 240 mJ/cm2 lead to graded SiGe alloys with Si rich discs of 2 μm diameter on top, a buried Ge layer, and Ge rich SiGe rings surrounding each feature, as predicted by previous numerical simulation.

  6. DNA damage and altered gene expression in cultured human skin fibroblasts exposed to 193-nm excimer laser radiation

    NASA Astrophysics Data System (ADS)

    Samid, Dvorit; Flessate, Denise M.; Miller, Alexandra C.; Rimoldi, Donata

    1990-06-01

    Tissue ablation using 193nm excimer lasers is being considered for a variety of surgical procedures, yet little is known regarding the potential mutagenic risk to human cells. The effects of sublethal doses of radiation on cellular DNA and gene expression have been examined in cultured human skin fibroblasts. Northern blot analysis of mRNA revealed an increase in the levels of the c-f. proto-oncogene, interstitial collagenase, and metallothionein transcripts after laser radiation at either 193nm or 248nm. Similar changes in gene expression have been previously observed in cells treated with different carcinogens, including classical UV light (254nm) and phorbol esters. In contrast to the conventional UV light or laser radiation at 248nm, the 193nm radiation did not cause significant pyrimidine dimer formation, as determined by measurements of unscheduled DNA synthesis. However, both 193nm and 248nm radiation induced micronuclei formation, indicative of chromosome breakage. These data indicate that exposure of actively replicating human skin cells to sublethal doses of 193nm laser radiation may result in molecular changes associated with carcinogenesis.

  7. Extremely long life and low-cost 193nm excimer laser chamber technology for 450mm wafer multipatterning lithography

    NASA Astrophysics Data System (ADS)

    Tsushima, Hiroaki; Katsuumi, Hisakazu; Ikeda, Hiroyuki; Asayama, Takeshi; Kumazaki, Takahito; Kurosu, Akihiko; Ohta, Takeshi; Kakizaki, Kouji; Matsunaga, Takashi; Mizoguchi, Hakaru

    2014-04-01

    193nm ArF excimer lasers are widely used as light sources for the lithography process of semiconductor production. 193nm ArF exicmer lasers are expected to continue to be the main solution in photolithography, since advanced lithography technologies such as multiple patterning and Self-Aligned Double Patterning (SADP) are being developed. In order to apply these technologies to high-volume semiconductor manufacturing, the key is to reduce the total operating cost. To reduce the total operating cost, life extension of consumable part and reduction of power consumption are an important factor. The chamber life time and power consumption are a main factor to decide the total operating cost. Therefore, we have developed the new technology for extension of the chamber life time and low electricity consumption. In this paper, we will report the new technology to extend the life time of the laser chamber and to reduce the electricity consumption.

  8. Surface morphology and subsurface damaged layer of various glasses machined by 193-nm ArF excimer laser

    NASA Astrophysics Data System (ADS)

    Liao, Yunn-shiuan; Chen, Ying-Tung; Chao, Choung-Lii; Liu, Yih-Ming

    2005-01-01

    Owing to the high bonding energy, most of the glasses are removed by photo-thermal rather than photo-chemical effect when they are ablated by the 193 or 248nm excimer lasers. Typically, the machined surface is covered by re-deposited debris and the sub-surface, sometimes surface as well, is scattered with micro-cracks introduced by thermal stress generated during the process. This study aimed to investigate the nature and extent of the surface morphology and sub-surface damaged (SSD) layer induced by the laser ablation. The effects of laser parameters such as fluence, shot number and repetition rate on the morphology and SSD were discussed. An ArF excimer laser (193 nm) was used in the present study to machine glasses such as soda-lime, Zerodur and BK-7. It is found that the melt ejection and debris deposition tend to pile up higher and become denser in structure under a higher energy density, repetition rate and shot number. There are thermal stress induced lateral cracks when the debris covered top layer is etched away. Higher fluence and repetition rate tend to generate more lateral and median cracks which propagate into the substrate. The changes of mechanical properties of the SSD layer were also investigated.

  9. The interaction of 193-nm excimer laser irradiation with single-crystal zinc oxide: Neutral atomic zinc and oxygen emission

    SciTech Connect

    Kahn, E. H.; Langford, S. C.; Dickinson, J. T.; Boatner, Lynn A

    2013-01-01

    We report mass-resolved time-of-flight measurements of neutral particles from the surface of single-crystal ZnO during pulsed 193-nm irradiation at laser fluences below the threshold for avalanche breakdown. The major species emitted are atomic Zn and O. We examine the emissions of atomic Zn as a function of laser fluence and laser exposure. Defects at the ZnO surface appear necessary for the detection of these emissions. Our results suggest that the production of defects is necessary to explain intense sustained emissions at higher fluence. Rapid, clean surface etching and high atomic zinc kinetic energies seen at higher laser fluences are also discussed.

  10. Development and numerical solution of a mechanistic model for corneal tissue ablation with the 193 nm argon fluoride excimer laser

    NASA Astrophysics Data System (ADS)

    Fisher, Brian T.; Hahn, David W.

    2007-02-01

    We detail the development and implementation of a global ablation model that incorporates a dynamically changing tissue absorption coefficient. Detailed spectroscopic measurements rule out plasma-shielding effects during the laser-tissue interaction and thereby support a photochemical mechanism. The model predicts ablation rate behavior that agrees well with a variety of experimental ablation rate data and that substantially deviates from a static Beer-Lambert model. The dynamic model predicts an enhancement in the tissue absorption coefficient of about 25%-50% as compared with the initial, static value. In addition, the model predicts an increase in the tissue ablation rate as corneal hydration increases, which may provide additional insight into variations in refractive surgery outcome.

  11. Diode laser probing of CO2 and CO vibrational excitation produced by collisions with high energy electrons from 193 nm excimer laser photolysis of iodine

    NASA Astrophysics Data System (ADS)

    Hewitt, Scott A.; Zhu, Lei; Flynn, George W.

    1992-11-01

    The vibrational, rotational, and translational excitation of CO2 and CO following excimer laser photolysis of iodine is evaluated by means of time-domain absorption spectroscopy. In spite of the lack of change in the rotational and translational molecular energy, pronounced vibrational excitation is noted. The excimer laser photolysis of the iodine is thought to generate hot electrons that collide with the CO2 leading to vibrationally excited molecules.

  12. The interaction of 193-nm excimer laser radiation with single-crystal zinc oxide: The generation of atomic Zn line emission at laser fluences below breakdown

    SciTech Connect

    Khan, Enamul H.; Langford, S. C.; Dickinson, J. T.; Boatner, L. A.

    2013-08-28

    The production of gas phase atomic and ionic line spectra accompanying the high laser fluence irradiation of solid surfaces is well known and is most often due to the production and interaction of high densities of atoms, ions, and electrons generated from laser-induced breakdown. The resulting plasma expands and moves rapidly away from the irradiated spot and is accompanied by intense emission of light. This type of “plume” is well studied and is frequently exploited in the technique of chemical analysis known as laser induced breakdown spectroscopy. Here, we describe a similar but weaker emission of light generated in vacuum by the laser irradiation of single crystal ZnO at fluences well below breakdown; this emission consists entirely of optical line emission from excited atomic Zn. We compare the properties of the resulting laser-generated gas-phase light emission (above and below breakdown) and describe a mechanism for the production of the low-fluence optical emission resulting from a fortuitous choice of material and laser wavelength.

  13. Rayleigh rejection filters for 193-nm ArF laser Raman spectroscopy

    NASA Technical Reports Server (NTRS)

    Mckenzie, Robert L.

    1993-01-01

    Selected organic absorbers and their solvents are evaluated as spectral filters for the rejection of 193-nm Rayleigh light associated with the use of an ArF excimer laser for Raman spectroscopy. A simply constructed filter cell filled with 0.5 percent acetone in water and an optical path of 7 mm is shown effectively to eliminate stray Rayleigh light underlying the Raman spectrum from air while transmitting 60 percent of the Raman light scattered by O2.

  14. Collateral damage-free debridement using 193nm ArF laser

    NASA Astrophysics Data System (ADS)

    Wynne, James J.; Felsenstein, Jerome M.; Trzcinski, Robert; Zupanski-Nielsen, Donna; Connors, Daniel P.

    2011-03-01

    Burn eschar and other necrotic areas of the skin and soft tissue are anhydrous compared to the underlying viable tissue. A 193 nm ArF excimer laser, emitting electromagnetic radiation at 6.4 eV at fluence exceeding the ablation threshold, will debride such necrotic areas. Because such radiation is strongly absorbed by aqueous chloride ions through the nonthermal process of electron photodetachment, debridement will cease when hydrated (with chloride ions) viable tissue is exposed, avoiding collateral damage to this tissue. Such tissue will be sterile and ready for further treatment, such as a wound dressing and/or a skin graft.

  15. Generation of intense 10-ps, 193-nm pulses using simple distributed feedback dye lasers and an ArF(*) amplifier.

    PubMed

    Hatten, D L; Cui, Y; Iii, W T; Mikes, T; Goldhar, J

    1992-11-20

    A pair of holographic distributed feedback dye lasers is used to generate 10-ps pulses at two selected wavelengths that are mixed in a BBO crystal to produce a pulse ~ 10 ps in duration at 193 nm. This seed pulse is subsequently amplified in an ArF(*) excimer laser to an energy of 10-15 mJ with <40 microJ in amplified spontaneous emission. The pulses are nearly transform limited and diffraction limited.

  16. Improving vacuum-UV (VUV) photolysis of organic compounds in water with a phosphor converted xenon excimer lamp emitting at 193 nm.

    PubMed

    Schulze-Hennings, U; Pötschke, L; Wietor, C; Bringmann, S; Braun, N; Hayashi, D; Linnemann, V; Pinnekamp, J

    2016-01-01

    A novel vacuum ultraviolet excimer lamp emitting light at 193 nm was used to investigate the degradation of organic micropollutants in ultrapure water and wastewater treatment plant (WWTP) effluent. Overall, light at 193 nm proved to be efficient to degrade the investigated micropollutants (diclofenac, diatrizoic acid, sulfamethoxazole). Experiments with WWTP effluent proved the ability of radiation at 193 nm to degrade micropollutants which are hardly removed with commonly used oxidation technologies like ozonation (diatrizoic acid, ethylenediaminetetraacetic acid, perfluorooctanoic acid, and perfluorooctanesulfonic acid). PMID:27533863

  17. Excimer lasers

    NASA Technical Reports Server (NTRS)

    Palmer, A. J.; Hess, L. D.; Stephens, R. R.

    1976-01-01

    A theoretical and experimental investigation into the possibility of achieving CW discharge pumped excimer laser oscillation is reported. Detailed theoretical modeling of capillary discharge pumping of the XeF and KXe and K2 excimer systems was carried out which predicted the required discharge parameters for reaching laser threshold on these systems. Capillary discharge pumping of the XeF excimer system was investigated experimentally. The experiments revealed a lower excimer level population density than predicted theoretically by about an order of magnitude. The experiments also revealed a fluorine consumption problem in the discharge in agreement with theory.

  18. 193-nm-laser-induced spectral shift in HR coated mirrors

    NASA Astrophysics Data System (ADS)

    Cho, Byungil; Rudisill, J. Earl; Danielewicz, Edward

    2012-12-01

    High-reflectance mirrors, fabricated by use of fluoride coating materials, were irradiated for extended periods by a 193-nm kilohertz repetitive laser source. This irradiation promoted a spectral shift in the reflectance band towards shorter wavelengths. In efforts to determine the mechanism for the observed spectral shifts, various models were investigated by employing such techniques as spectrophotometry, surface profile interferometry, coating design simulation, and x-ray diffraction. The result of the investigation indicates that layers near the top surface of the coating structure underwent densification, which resulted in the observed spectral shift.

  19. Excimer lasers

    NASA Technical Reports Server (NTRS)

    Palmer, A. J.; Hess, L. D.; Stephens, R. R.; Pepper, D. M.

    1977-01-01

    The results of a two-year investigation into the possibility of developing continuous wave excimer lasers are reported. The program included the evaluation and selection of candidate molecular systems and discharge pumping techniques. The K Ar/K2 excimer dimer molecules and the xenon fluoride excimer molecule were selected for study; each used a transverse and capillary discharges pumping technique. Experimental and theoretical studies of each of the two discharge techniques applied to each of the two molecular systems are reported. Discharge stability and fluorine consumption were found to be the principle impediments to extending the XeF excimer laser into the continuous wave regime. Potassium vapor handling problems were the principal difficulty in achieving laser action on the K Ar/K2 system. Of the four molecular systems and pumping techniques explored, the capillary discharge pumped K Ar/K2 system appears to be the most likely candidate for demonstrating continuous wave excimer laser action primarily because of its predicted lower pumping threshold and a demonstrated discharge stability advantage.

  20. Next-generation 193-nm laser for sub-100-nm lithography

    NASA Astrophysics Data System (ADS)

    Duffey, Thomas P.; Blumenstock, Gerry M.; Fleurov, Vladimir B.; Pan, Xiaojiang; Newman, Peter C.; Glatzel, Holger; Watson, Tom A.; Erxmeyer, J.; Kuschnereit, Ralf; Weigl, Bernhard

    2001-09-01

    The next generation 193 nm (ArF) laser has been designed and developed for high-volume production lithography. The NanoLithTM 7000, offering 20 Watts average output power at 4 kHz repetition rates is designed to support the highest exposure tool scan speeds for maximum productivity and wafer throughput. Fundamental design changes made to the laser core technologies are described. These advancements in core technology support the delivery of highly line-narrowed light with

  1. Dynamics of ions produced by laser ablation of several metals at 193 nm

    SciTech Connect

    Baraldi, G.; Perea, A.; Afonso, C. N.

    2011-02-15

    This work reports the study of ion dynamics produced by ablation of Al, Cu, Ag, Au, and Bi targets using nanosecond laser pulses at 193 nm as a function of the laser fluence from threshold up to 15 J cm{sup -2}. An electrical (Langmuir) probe has been used for determining the ion yield as well as kinetic energy distributions. The results clearly evidence that ablation of Al shows unique features when compared to other metals. The ion yield both at threshold (except for Al, which shows a two-threshold-like behavior) and for a fixed fluence above threshold scale approximately with melting temperature of the metal. Comparison of the magnitude of the yield reported in literature using other wavelengths allows us to conclude its dependence with wavelength is not significant. The evolution of the ion yield with fluence becomes slower for fluences above 4-5 J cm{sup -2} with no indication of saturation suggesting that ionization processes in the plasma are still active up to 15 J cm{sup -2} and production of multiple-charged ions are promoted. This dependence is mirrored in the proportion of ions with kinetic energies higher than 200 eV. This proportion is not significant around threshold fluence for all metals except for Al, which is already 20%. The unique features of Al are discussed in terms of the energy of laser photons (6.4 eV) that is enough to induce direct photoionization from the ground state only in the case of this metal.

  2. Trace element analysis of synthetic mono- and poly-crystalline CaF 2 by ultraviolet laser ablation inductively coupled plasma mass spectrometry at 266 and 193 nm

    NASA Astrophysics Data System (ADS)

    Koch, J.; Feldmann, I.; Hattendorf, B.; Günther, D.; Engel, U.; Jakubowski, N.; Bolshov, M.; Niemax, K.; Hergenröder, R.

    2002-06-01

    The analytical figures of merit for ultraviolet laser ablation-inductively coupled plasma mass spectrometry (UV-LA-ICP-MS) at 266 nm with respect to the trace element analysis of high-purity, UV-transmitting alkaline earth halides are investigated and discussed. Ablation threshold energy density values and ablation rates for mono- and poly-crystalline CaF 2 samples were determined. Furthermore, Pb-, Rb-, Sr-, Ba- and Yb-specific analysis was performed. For these purposes, a pulsed Nd:YAG laser operated at the fourth harmonic of the fundamental wavelength (λ=266 nm) and a double-focusing sector field ICP-MS detector were employed. Depending on the background noise and isotope-specific sensitivity, the detection limits typically varied from 0.7 ng/g for Sr to 7 ng/g in the case of Pb. The concentrations were determined using a glass standard reference material (SRM NIST612). In order to demonstrate the sensitivity of the arrangement described, comparative measurements by means of a commercial ablation system consisting of an ArF excimer laser (λ=193 nm) and a quadrupole-type ICP-MS (ICP-QMS) instrument were carried out. The accuracy of both analyses was in good agreement, whereas ablation at 266 nm and detection using sector-field ICP-MS led to a sensitivity that was one order of magnitude above that obtained at 193 nm with ICP-QMS.

  3. 300-mW narrow-linewidth deep-ultraviolet light generation at 193 nm by frequency mixing between Yb-hybrid and Er-fiber lasers.

    PubMed

    Xuan, Hongwen; Zhao, Zhigang; Igarashi, Hironori; Ito, Shinji; Kakizaki, Kouji; Kobayashi, Yohei

    2015-04-20

    A narrow-linewidth, high average power deep-ultraviolet (DUV) coherent laser emitting at 193 nm is demonstrated by frequency mixing a Yb-hybrid laser with an Er-fiber laser. The Yb-hybrid laser consists of Yb-fiber lasers and an Yb:YAG amplifier. The average output power of the 193 nm laser is 310 mW at 6 kHz, which corresponds to a pulse energy of 51 μJ. To the best of our knowledge, this is the highest average power and pulse energy ever reported for a narrow-linewidth 193 nm light generated by a combination of solid-state and fiber lasers with frequency mixing. We believe this laser will be beneficial for the application of interference lithography by seeding an injection-locking ArF eximer laser. PMID:25969096

  4. 300-mW narrow-linewidth deep-ultraviolet light generation at 193 nm by frequency mixing between Yb-hybrid and Er-fiber lasers.

    PubMed

    Xuan, Hongwen; Zhao, Zhigang; Igarashi, Hironori; Ito, Shinji; Kakizaki, Kouji; Kobayashi, Yohei

    2015-04-20

    A narrow-linewidth, high average power deep-ultraviolet (DUV) coherent laser emitting at 193 nm is demonstrated by frequency mixing a Yb-hybrid laser with an Er-fiber laser. The Yb-hybrid laser consists of Yb-fiber lasers and an Yb:YAG amplifier. The average output power of the 193 nm laser is 310 mW at 6 kHz, which corresponds to a pulse energy of 51 μJ. To the best of our knowledge, this is the highest average power and pulse energy ever reported for a narrow-linewidth 193 nm light generated by a combination of solid-state and fiber lasers with frequency mixing. We believe this laser will be beneficial for the application of interference lithography by seeding an injection-locking ArF eximer laser.

  5. Effect of excimer laser on microbiological organisms

    SciTech Connect

    Keates, R.H.; Drago, P.C.; Rothchild, E.J.

    1988-10-01

    The effect of radiation emitted from an excimer laser filled with argon fluoride gas at 193 nm on Serratia marcescens, Pseudomonas aeruginosa, Staphylococcus aureus, streptococcus faecalis, Hemophilus influenzae, Candida albicans, and Aspergillus niger (collectively labeled the microorganisms) was examined. Colonies were subjected to a variable number of radiation pulses from the excimer laser applied after a 36-hour period of incubation at 37 degrees C, at which time the colonies were fully grown and showed no viability. The lack of viability was confirmed with a subculture from each area that received radiation; all subcultures were negative. The characteristics of the radiation paralleled those used by Serdavic, Darrell, Krueger, et al in 1985. This radiation treatment is believed to be within a therapeutic range, which suggests that the excimer laser, pending further investigation, may be useful in the treatment of corneal infections.

  6. Electron stimulated desorption of the metallic substrate at monolayer coverage: Sensitive detection via 193 nm laser photoionization of neutral aluminum desorbed from CH3O/Al(111)

    NASA Astrophysics Data System (ADS)

    Young, C. E.; Whitten, J. E.; Pellin, M. J.; Gruen, D. M.; Jones, P. L.

    A fortuitous overlap between the gain profile of the 193 nm ArF excimer laser and the Al autoionizing transition (sup 2)S(sub 1/2) (512753/cm) yields to the left (sup 2)P(sup 0)J has been exploited in the direct observation of substrate metal atoms in an electron simulated desorption (ESD) process from the monolayer adsorbate system CH3O/Al(111). The identity of the mass 27 photoion was established as Al(+) by (1) isotopic substitution of C-13 in the methanol employed for methoxy formation, and (2) tunable laser scans utilizing the DJ-2 (J = 3/2, 5/2) intermediate levels at approximately 32436/cm and a 248 nm ionization step. An ESD yield of approximately x 10(exp -6) Al atoms/(electron at 1 keV) was established by comparison with a sputtering experiment in the same apparatus. Velocity distributions measured for the desorbed Al species showed some differences in comparison with methoxy velocity data: a slightly lower peak velocity and a significantly less prominent high-velocity component.

  7. Development and clinical application of excimer laser corneal shaping

    NASA Astrophysics Data System (ADS)

    Homolka, Peter; Biowski, R.; Husinsky, Wolfgang; Blaas, C.; Simader, Ch.; Baumgartner, I. Gosch; Kaminski, Stefan; Grabner, G.

    1998-06-01

    Excimer Laser Corneal Shaping using an 193 nm Excimer Laser (ArF) provides a possibility for the fabrication of corneal transplants of various forms for various clinical applications such as (epi-)keratoplasty. Another area of application envisioned is the production of 'living contact lenses' for epikeratophakia. A device for lathing and perforating corneal donor tissue with a scanning laser beam is presented. A new ablation algorithm (Optimized Scanning Laser Ablation) was recently developed and increased the quality of lenticules and donor buttons considerably.

  8. A comparative study of corneal incisions induced by diamond and steel knives and two ultraviolet radiations from an excimer laser.

    PubMed Central

    Marshall, J; Trokel, S; Rothery, S; Krueger, R R

    1986-01-01

    This paper reviews the potential role of excimer lasers in corneal surgery. The morphology of incisions induced by two wavelengths of excimer laser radiation, 193 nm and 248 nm, are compared with the morphology of incisions produced by diamond and steel knives. Analysis suggests that ablation induced by excimer laser results from highly localised photochemical reactions and that 193 nm is the optimal wavelength for surgery. The only significant complication of laser surgery is loss of endothelial cells when incisions are within 40 micron of Descemet's membrane. Images PMID:3013283

  9. Laser-written binary OMOG photomasks for high-volume non-critical 193-nm photolithographic layers

    NASA Astrophysics Data System (ADS)

    Rivière, Rémi; Gopalakrishnan, Selvi; Mazur, Martin; Öner, Nevzat; Mühle, Sven; Seltmann, Rolf

    2014-10-01

    Photomasks are key elements of photolithographic processes, implying that their degradation must be reliably monitored and strongly mitigated. Indeed, the photo-induced oxidation of Cr in Cr On Glass (COG) photomasks and the concomitant electrostatic-field migration present in high-volume production using 193-nm photolithographic scanners severely deteriorate the pattern transfer quality, therefore limiting the lifetime of these reticles. To moderate this effect, Opaque MoSi On Glass (OMOG) photomasks, significantly less prone to such degradation, are currently being massively used in leading-edge microfabrication flows. The type of mask fabrication process normally used involving ebeam writing is however not adapted for non-critical photolithographic layers that do not yet benefit from its inherent performances but still suffer from its high cost and its long processing time. It is therefore proposed in this work to combine the simplicity of laser writing and the resistance of MoSi to degradation by using laser-written binary OMOG photomasks for the non-critical layers (e.g. ion-implantation) of a 28-nm production flow. To evaluate one of this new reticle, its pattern transfer fidelity is compared to the one of a laser-written binary COG mask already qualified for production from a photolithographic quality perspective, both masks being treated using the same optical proximity correction (OPC) model. Dispersive and dissipative properties, critical dimension uniformity, pattern linearity and pattern proximity are directly measured on wafer level, subsequently revealing that both photomasks match in terms of OPC parameters. The utilized OPC model is moreover proven robust against the use of both types of masks, consequently making the conversion from COG to OMOG particularly simple. These experimental results therefore qualify the new mask fabrication type and pave the way for a major utilization in high-volume production.

  10. New 223-nm excimer laser surgical system for photorefractive keratectomy

    NASA Astrophysics Data System (ADS)

    Bagaev, Sergei N.; Razhev, Alexander M.; Zhupikov, Andrey A.

    1999-02-01

    The using of KrCl (223 nm) excimer laser in ophthalmic devices for Photorefractive Keratectomy (PRK) and phototherapeutic Keratectomy (PTK) is offered. The structure and functions of a new surgical UV ophthalmic laser systems Medilex using ArF (193 nm) or KrCl (223 nm) excimer laser for corneal surgery are presented. The systems Medilex with the new optical delivery system is used for photoablative reprofiling of the cornea to correct refraction errors (myopia, hyperopia and astigmatism) and to treat a corneal pathologies. The use of the 223 nanometer laser is proposed to have advantages over the 193 nanometer laser. The results of application of the ophthalmic excimer laser systems Medilex for treatment of myopia are presented.

  11. Excimer Lasers In Medicine

    NASA Astrophysics Data System (ADS)

    Tittel, Frank K.; Saidi, Iyad S.; Pettit, George H.; Wisoff, P. J.; Sauerbrey, Roland A.

    1989-06-01

    Excimer lasers emit light energy, short optical pulses at ultraviolet wavelengths, that results in a unique laser tissue interaction. This has led to an increasing number of studies into medical applications of these lasers in fields such as ophthalmology, urology, cardiology and neurology.

  12. Endoscopic excimer laser surgery

    NASA Astrophysics Data System (ADS)

    Salimbeni, Renzo; Pini, Roberto; Vannini, Matteo; Benaim, George; Mattioli, Stefano

    1994-02-01

    Long pulse excimer laser radiation can be efficiently coupled and transmitted through optical fibers allowing the achievement of both photoablative and photomechanical effects. In this work the investigation has been focussed on the urologic surgery field to demonstrate the effectiveness of an excimer laser system for very different therapeutic tasks: recanalization of urethral stenosis and lithotripsy. The choice of the suitable radiation dosimetry and the technical solutions employed provide to the surgeon a multipurpose laser system with a wide range of utility in comparison with other laser systems.

  13. Preliminary characterisation of new glass reference materials (GSA-1G, GSC-1G, GSD-1G and GSE-1G) by laser ablation-inductively coupled plasma-mass spectrometry using 193 nm, 213 nm and 266 nm wavelengths

    USGS Publications Warehouse

    Guillong, M.; Hametner, K.; Reusser, E.; Wilson, S.A.; Gunther, D.

    2005-01-01

    New glass reference materials GSA-1G, GSC-1G, GSD-1G and GSE-1G have been characterised using a prototype solid state laser ablation system capable of producing wavelengths of 193 nm, 213 nm and 266 nm. This system allowed comparison of the effects of different laser wavelengths under nearly identical ablation and ICP operating conditions. The wavelengths 213 nm and 266 nm were also used at higher energy densities to evaluate the influence of energy density on quantitative analysis. In addition, the glass reference materials were analysed using commercially available 266 nm Nd:YAG and 193 nm ArF excimer lasers. Laser ablation analysis was carried out using both single spot and scanning mode ablation. Using laser ablation ICP-MS, concentrations of fifty-eight elements were determined with external calibration to the NIST SRM 610 glass reference material. Instead of applying the more common internal standardisation procedure, the total concentration of all element oxide concentrations was normalised to 100%. Major element concentrations were compared with those determined by electron microprobe. In addition to NIST SRM 610 for external calibration, USGS BCR-2G was used as a more closely matrix-matched reference material in order to compare the effect of matrix-matched and non matrix-matched calibration on quantitative analysis. The results show that the various laser wavelengths and energy densities applied produced similar results, with the exception of scanning mode ablation at 266 nm without matrix-matched calibration where deviations up to 60% from the average were found. However, results acquired using a scanning mode with a matrix-matched calibration agreed with results obtained by spot analysis. The increased abundance of large particles produced when using a scanning ablation mode with NIST SRM 610, is responsible for elemental fractionation effects caused by incomplete vaporisation of large particles in the ICP.

  14. Excimer laser system Profile-500

    NASA Astrophysics Data System (ADS)

    Atejev, V. V.; Bukreyev, V. S.; Vartapetov, Serge K.; Semenov, A. D.; Sugrobov, V. A.; Turin, V. S.; Fedorov, Sergei N.

    1999-07-01

    The description of ophthalmological excimer laser system 'PROFILE-500' for photorefractive and physiotherapeutic keratectomy is presented. Excimer Laser Systems 'PROFILE- 500' are optical system that use ArF excimer lasers to perform photorefractive keratectomy or LASIK; surgical procedures used to correct myopia, hyperopia and astigmatism.

  15. Human excimer laser corneal surgery: preliminary report.

    PubMed Central

    L'Esperance, F A; Taylor, D M; Del Pero, R A; Roberts, A; Gigstad, J; Stokes, M T; Warner, J W; Telfair, W B; Martin, C A; Yoder, P R

    1988-01-01

    The first human trial utilizing the argon fluoride excimer laser at 193 nm to produce a superficial keratectomy in ten human eyes has been described with the histopathological evaluation of four eyes and the longer gross appearance of six eyes at intervals extending to 10 months post-excimer laser treatment. The process of laser superficial keratectomy has proved to be one of the promising areas of surgical intervention for reconstructive or refractive keratoplasty in the future. Intensive investigations need to be undertaken on the corneal wound healing process following laser ablation as well as the nature, and long-term stability of the corneal excisions or induced refractive corrections. It is essential that the optimal laser parameters be established for the various refractive corrections and other corneal surgical techniques, and that pathophysiologic and histopathologic changes that have been induced by the excimer laser-corneal tissue interaction in animals and humans be critically and extensively analyzed. Images FIGURE 1 FIGURE 19 A FIGURE 19 B FIGURE 20 A FIGURE 20 B FIGURE 21 A FIGURE 21 B FIGURE 22 A FIGURE 22 B FIGURE 23 FIGURE 24 FIGURE 25 FIGURE 26 FIGURE 27 FIGURE 28 FIGURE 29 A FIGURE 29 B FIGURE 29 C FIGURE 29 D FIGURE 30 A FIGURE 30 B FIGURE 31 A FIGURE 31 B FIGURE 32 FIGURE 33 FIGURE 34 FIGURE 35 FIGURE 36 FIGURE 37 A FIGURE 37 B FIGURE 37 C FIGURE 38 A FIGURE 38 B FIGURE 39 A FIGURE 39 B FIGURE 39 C FIGURE 40 A FIGURE 40 B PMID:2979049

  16. The Excimer Laser: Its Impact on Science and Industry

    NASA Astrophysics Data System (ADS)

    Basting, Dirk

    2010-03-01

    After the laser was demonstrated in 1960, 15 years were required to develop a practical method for extending laser emission into the UV: the Excimer laser. This historical review will describe the challenges with the new medium and provide an insight into the technological achievements. In the transition from Science to Industry it will be shown how start-ups successfully commercialized laboratory prototypes. The pioneers in this rapidly expanding field will be identified and the influence of government-funded research as well as the role of venture capital will be discussed. In scientific applications, the fields of photochemistry and material research were particularly stimulated by the advent of a reliable UV light source. Numerous industrial applications and worldwide research in novel applications were fueled In the early and mid 80's by progress in excimer laser performance and technology. The discovery of ablative photocomposition of polymer materials by Srinivasan at IBM opened the door to a multitude of important excimer applications. Micromachining with extreme precision with an excimer laser enabled the success of the inkjet printer business. Biological materials such as the human cornea can also be ``machined'' at 193nm, as proposed in 1983 by Trokel and Srinivasan. This provided the foundation of a new medical technology and an industry relying on the excimer laser to perform refractive surgery to correct vision Today, by far the largest use of the excimer laser is in photolithography to manufacture semiconductor chips, an application discovered by Jain at IBM in the early 80's. Moore's law of shrinking the size of the structure to multiply the number of transistors on a chip could not have held true for so long without the deep UV excimer laser as a light source. The presentation will conclude with comments on the most recent applications and latest market trends.

  17. Dynamics of N-OH bond dissociation in cyclopentanone and cyclohexanone oxime at 193 nm: laser-induced fluorescence detection of nascent OH (v'', J'').

    PubMed

    Kawade, Monali N; Saha, Ankur; Upadhyaya, Hari P; Kumar, Awadhesh; Naik, Prakash D

    2010-12-01

    Cyclohexanone oxime (CHO) and cyclopentanone oxime (CPO) in the vapor phase undergo N-OH bond scission upon excitation at 193 nm to produce OH, which was detected state selectively employing laser-induced fluorescence. The measured energy distribution between fragments for both oximes suggests that in CHO the OH produced is mostly vibrationally cold, with moderate rotational excitation, whereas in CPO the OH fragment is also formed in v'' = 1 (~2%). The rotational population of OH (v'' = 0, J'') from CHO is characterized by a rotational temperature of 1440 ± 80 K, whereas the rotational populations of OH (v'' = 0, J'') and OH (v'' = 1, J'') from CPO are characterized by temperatures of 1360 ± 90 K and 930 ± 170 K, respectively. A high fraction of the available energy is partitioned to the relative translation of the fragments with f(T) values of 0.25 and 0.22 for CHO and CPO, respectively. In the case of CHO, the Λ-doublet states of the nascent OH radical are populated almost equally in lower rotational quantum levels N'', with a preference for Π(+) (A') states for higher N''. However, there is no preference for either of the two spin orbit states Π(3/2) and Π(1/2) of OH. The nascent OH product in CPO is equally distributed in both Λ-doublet states of Π(+) (A') and Π(-) (A'') for all N'', but has a preference for the Π(3/2) spin orbit state. Experimental work in combination with theoretical calculations suggests that both CHO and CPO molecules at 193 nm are excited to the S(2) state, which undergoes nonradiative relaxation to the T(2) state. Subsequently, molecules undergo the N-OH bond dissociation from the T(2) state with an exit barrier to produce OH (v'', J'').

  18. 193-nm photoresist development at Union Chemical Labs., ITRI

    NASA Astrophysics Data System (ADS)

    Fang, Mao-Ching; Chang, Jui-Fa; Tai, Ming-Chia; Lin, Tzu-Yu; Liu, Ting-Chung; Liu, Chien-Hung

    2000-06-01

    Union Chemical Laboratories has designed and synthesized novel copolymers of norbornene-alt-derivatives, maleic anhydride and alicyclic acrylate for ArF excimer laser lithography. These polymers are prepared using a free-radical copolymerization process. Applying the resin for 193-nm single layer chemically amplified photoresist composed of cholate derivative with a PAG leads to a good resolution below 0.13 micrometer line/space patterns using an ArF stepper and 2.38 wt% tetramethylammonium hydroxide aqueous solution as a developer. Furthermore, alternating phase shift mask was used in combination with a feature size as small as 0.1 micrometer. To overcome post exposure delay (PED) effect caused by airborne contamination, three new base additives were used in the resist formulation. The etching-resist ability of resists by reaction ion etching (RIE) was showed better than conventional g-line and KrF excimer laser resists. Experimental results of CHF3/CF4 as etch gas, indicate that the etching rate selectivity with respect to SiO2 is about 0.5. The UCL photoresists also showed good shelf life stability.

  19. Production excimer laser equipment overview

    NASA Astrophysics Data System (ADS)

    Sercel, Jeffrey P.

    1993-04-01

    Excimer lasers were commercialized in the late 1970's. The laser community thought that by the early 1980's these UV lasers would enjoy a fruitful industrial market position. CO2 and solid state lasers required almost two decades to be fully accepted as industrial machine while the excimer laser was expected to be a fast learner benefiting from the learning curve of its big brothers. In retrospect, early excimer lasers had a bad reputation for being complicated, expensive and frequently out of commission. By the late 1980's a few excimer laser manufacturers had engineered the problems to acceptable levels for successful pilot lines and small scale manufacturing to begin. At this time, the real industrial learning curves began as engineers worked to refine many subsystems and support technologies. Today, excimer lasers are being used as true industrial lasers. They have a bright future with numerous and diverse market opportunities. This paper is an overview of the technologies proven to be successful in adapting modern excimer lasers to successful full production situations.

  20. Ablation de ZnO par laser UV (193 nm) : nano-agrégats en phase gazeuse

    NASA Astrophysics Data System (ADS)

    Ozerov, I.; Bulgakov, A.; Nelson, D.; Castell, R.; Sentis, M.; Marine, W.

    2003-06-01

    La condensation de nano-agrégats d'oxyde de zinc en phase gazeuse est mise en évidence lors de l'ablation de ZnO massif par laser ArF pulsé. Nous comparons l'évolution spatio-temporelle de la forme du panache d'ablation (plume) de ZnO sous vide et sous atmosphère de gaz de couverture (oxygène et/ou hélium) à partir des images CCD et des résultats issus d'analyses spectroscopiques. L'expansion du plasma et la croissance des nano-clusters sont influencées par l'effet du confinement de la plume dû aux collisions entre les particules ablatées et les molécules de gaz ambiant ainsi que par les réactions chimiques dans le cas de l'oxygène. Le spectre de rayonnement du plasma est constitué principalement par l'émission d'atomes excités de Zn neutre. Nous avons observé la photoluminescence des nano-agrégats en suspension dans le gaz ainsi que leur décomposition par laser ArF.

  1. Refractive index change during exposure for 193-nm chemically amplified resists

    NASA Astrophysics Data System (ADS)

    Oh, Hye-Keun; Sohn, Young-Soo; Sung, Moon-Gyu; Lee, Young-Mi; Lee, Eun-Mi; Byun, Sung Hwan; An, Ilsin; Lee, Kun-Sang; Park, In-Ho

    1999-06-01

    Some of the important areas to be improved for lithography simulation are getting correct exposure parameters and determining the change of refractive index. It is known that the real and imaginary refractive indices are changed during exposure. We obtained these refractive index changes during exposure for 193 nm chemically amplified resists. The variations of the transmittance as well as the resist thickness were measured during ArF excimer laser exposure. We found that the refractive index change is directly related to the concentration of the photo acid generator and de-protected resin. It is important to know the exact values of acid concentration from the exposure parameters since a small difference in acid concentration magnifies the variation in the amplified de-protection during post exposure bake. We developed and used a method to extract Dill ABC exposure parameters for 193 nm chemically amplified resist from the refractive index change upon exposure.

  2. Applications of the 308-nm excimer laser in dermatology

    NASA Astrophysics Data System (ADS)

    Farkas, A.; Kemeny, L.

    2006-05-01

    Excimer lasers contain a mixture of a noble inert gas and a halogen, which form excited dimers only in the activated state. High-energy current is used to produce these dimers, which have a very short lifetime, and after their fast dissociation they release the excitation energy through ultraviolet photons. The application of these lasers proved to be successful in medicine, including the field of ophthalmology, cardiology, angiology, dentistry, orthopaedics, and, in recent years, dermatology. For medical purposes, the 193-nm argon fluoride, the 248-nm krypton fluoride, the 351-nm xenon fluoride, and the 308-nm xenon chloride lasers are used. Recently, the 308-nm xenon chloride laser has gained much attention as a very effective treatment modality in dermatological disorders. It was successfully utilized in psoriasis; later, it proved to be useful in handling other lightsensitive skin disorders and even in the treatment of allergic rhinitis. This review summarizes the possible applications of this promising tool in dermatology.

  3. Progress of excimer laser technologies

    NASA Astrophysics Data System (ADS)

    Mizoguchi, Hakaru

    2000-10-01

    More than 1,000 units of KrF excimer laser steppers were already installed in semiconductor mass-production lines which require design rule of less than 0.15 m. Higher NA lens compatibility, productivity and CoO become critical issues of KrF excimer laser stepper. Advanced 2kHz KrF excimer laser G20K/G21K offers the solutions for these three issues. Next generation excimer laser ArF has already finished the stage of principle demonstration and has moved to a next level of practical demonstration and has moved to next level of practical inspection, such as stability, productivity, and economic efficiency. Gigaphoton 4kHz ArF, G40A, solved all of these issues. Furthermore sub 0.10m design rule region F2 laser has been examined at several organizations. In March, 2000, Komatsu successfully developed 2kHzF2 laser for catadioptric projection optics by the fund of NEDO. Gigaphoton is ready to fabricate G20F, 2kHz F2 laser, based upon the result of NEDO research. ASET started new F2 laser lithography development program at Hiratsuka Research Center with collaboration of Nikon, Canon, Gigaphoton, Komatsu, and Ushio from April 2000, ending March 2002.

  4. Corneal topography in the study of astigmatic excimer laser ablation

    NASA Astrophysics Data System (ADS)

    McDonnell, Peter J.

    1992-08-01

    Corneal astigmatism, both naturally occurring and iatrogenically induced, is a commonly encountered problem. Examination of corneal topography with instruments that digitize reflected ring images and calculate corneal geometry suggests that corneal astigmatism often deviates from spherocylindrical optics; the observed topography may be highly asymmetrical about the center of the pupil. Currently used incisional procedures are limited in terms of predictability of surgical outcome. The 193 nm excimer laser can be used to alter anterior corneal curvature and flatten the cornea to correct myopia. For correction of astigmatism, a slit-opening in the laser delivery system can be used to selectively flatten the steep meridian. Early results using this procedure for correction of iatrogenically induced high corneal astigmatism are promising. A nationwide multicenter clinical trial is now underway in the United States to evaluate this technique for the correction of naturally occurring astigmatism and compound myopic astigmatism.

  5. Characterization of polymers after a surface treatment at low excimer laser fluences

    NASA Astrophysics Data System (ADS)

    Laurens, Patricia; Ould Bouali, M.; Petit, S.; Sadras, Benedicte

    2000-02-01

    The modifications induced by an excimer laser irradiation at 193 nm or 248 nm on organic surfaces, below their ablation threshold, were investigated for different kinds of polymers such as: PEEK (Polyether Etherketone), PC (Polycarbonate), PET (Polyethylene terephtalate). Treatments were carried under argon or air at different laser fluences. Treated surfaces were characterized by XPS (X-rays Photoelectron Spectroscopy) and surface wettability measurements. For, all the studied polymers, the results shows that the surface modifications first depended on the laser wavelength. Surface oxidation occurred at 193 nm, leading to the formation of polar groups (carbonyls, carboxyls, hydroxyls) and inducing an increase of the surface energy. Treatments at 248 nm never induced any oxygen enrichment of the surface. This is due to the loss of oxygen by CO or CO2 desorption at this wavelength.

  6. The Development Of Industrial Excimer Lasers

    NASA Astrophysics Data System (ADS)

    Levatter, Jeffrey I.

    1986-11-01

    The first discharge pumped excimer lasers introduced in the 1970's were derivatives of N2 and C02 TEA lasers. They had spatially non-uniform outputs, relatively small output energies, low average powers, short operating lifetimes, and poor reliability. Today, more than a decade later, excimer lasers are just now maturing to the point where they are starting to enter the industrial workplace. This paper will review the transition from CO2/N2 to excimer technology, the engineering hurdles excimer lasers must overcome to make them viable industrial tools, and the current state of the "industrial excimer laser".

  7. Vacuum barrier for excimer lasers

    DOEpatents

    Shurter, R.P.

    1992-09-15

    A barrier for separating the vacuum area of a diode from the pressurized gas area of an excimer laser. The barrier is a composite material comprising layers of a metal such as copper, along with layers of polyimide, and a matrix of graphite fiber yarns impregnated with epoxy. The barrier is stronger than conventional foil barriers, and allows greater electron throughput. 3 figs.

  8. Vacuum barrier for excimer lasers

    DOEpatents

    Shurter, Roger P.

    1992-01-01

    A barrier for separating the vacuum area of a diode from the pressurized gas area of an excimer laser. The barrier is a composite material comprising layers of a metal such as copper, along with layers of polyimide, and a matrix of graphite fiber yarns impregnated with epoxy. The barrier is stronger than conventional foil barriers, and allows greater electron throughput.

  9. Behavior of 157 nm excimer-laser-induced refractive index changes in silica

    SciTech Connect

    Smith, Charlene M.; Borrelli, Nicholas F.

    2006-09-15

    This study describes the observation of large induced refractive index changes produced by 157 nm excimer laser exposure in high-purity synthetic silica glasses. With 157 nm exposure, large induced changes are observed within a few hundred thousand pulses of exposure. Similar to 193 nm exposures, exposure with polarized 157 nm light yields polarization-induced birefringence (PIB). However, the 157 nm exposure also exhibits a behavior not observed with 193 nm exposures; namely, the initial response of the glass is a decrease in refractive index, followed by an increase with continued exposure. An explanation of the behaviors for both wavelength results is proposed where the induced refractive index is considered to arise from two different concurrent phenomena. One produces a decreased refractive index and also accounts for the PIB. The other, which accounts for the increased refractive index, is associated with an isotropic laser-induced volume change.

  10. Determination of complex index of immersion liquids at 193 nm

    NASA Astrophysics Data System (ADS)

    Stehle, Jean-Louis; Piel, Jean-Philippe; Campillo-Carreto, Jose

    2006-03-01

    The next nodes in immersion lithography will require the scanners to use the 193 nm ArF* laser line with a very large numerical aperture and a liquid between the optics and the resist. (1) Immersion lithography at 193 nm requests very specific parameters for the fluid. The first generation is using the deionized Water (DIW) very pure and not recycled, but when a new optical material for the last lens will be available with a refractive index (RI) larger than 1.85, a higher refractive index fluid could be used, enabling second and maybe third generation of immersion lithography at 193 nm. So the 45 and maybe the 32 nm nodes could be covered with this high Index fluids (HIF).

  11. Semiconductor processing with excimer lasers

    SciTech Connect

    Young, R.T.; Narayan, J.; Christie, W.H.; van der Leeden, G.A.; Rothe, D.E.; Cheng, L.J.

    1983-01-01

    The advantages of pulsed excimer lasers for semiconductor processing are reviewed. Extensive comparisons of the quality of annealing of ion-implanted Si obtained with XeCl and ruby lasers have been made. The results indicate that irrespective of the large differences in the optical properties of Si at uv and visible wavelengths, the efficiency of usage of the incident energy for annealing is comparable for the two lasers. However, because of the excellent optical beam quality, the XeCl laser can provide superior control of the surface melting and the resulting junction depth. Furthermore, the concentrations of electrically active point defects in the XeCl laser annealed region are 2 to 3 orders of magnitude lower than that obtained from ruby or Nd:YAG lasers. All these results seem to suggest that XeCl lasers should be suitable for fabricating not only solar cells but also the more advanced device structures required for VLSI or VHSIC applications.

  12. Excimer laser in arthroscopic surgery

    NASA Astrophysics Data System (ADS)

    Koort, Hans J.

    1991-05-01

    The development of efficient high-power lasersystems for use in surgery, especially in arthroscopic fields, leads to a new push for all endoscopic techniques. Both techniques, laser and endoscope, complete each other in an ideal way and allow applications which could not be reached with conventional techniques. One of the newer laser types is the excimer laser, which will be a good choice for surface treatment because of its very considerate interaction with tissue. One example is the ablation or smoothing of articular cartilage and meniscal shaving in orthopaedics. On the other hand, the power of this laser system is high enough to cut tissue, for instance in the lateral release, and offers therefore an alternative to the mechanical and electrical instruments. All lasers can only work fine with effective delivery systems. Sometimes there is only a single fiber, which becomes very stiff at diameters of more than 800 micrometers . This fiber often allows only the tangential treatment of tissue, most of the laser power is lost in the background. New fiber systems with many, sometimes hundreds of very thin single fibers, could offer a solution. Special handpieces and fibersystems offer distinct advantages in small joint arthroscopy, especially those for use with excimer lasers will be discussed.

  13. Excimer laser chemical problems

    SciTech Connect

    Tennant, R.; Peterson, N.

    1982-01-01

    Techniques need to be developed to maintain XeF and XeCl laser performance over long periods of time without degradation resulting from chemical processes occurring within the laser. The dominant chemical issues include optical damage, corrosions of laser materials, gas contamination, and control of halogen concentration. Each of these issues are discussed and summarized. The methods of minimizing or controlling the chemical processes involved are presented.

  14. Excimer laser superficial keratectomy for proud nebulae in keratoconus.

    PubMed Central

    Moodaley, L; Liu, C; Woodward, E G; O'Brart, D; Muir, M K; Buckley, R

    1994-01-01

    Contact lens intolerance in keratoconus may be due to the formation of a proud nebula at or near the apex of the cone. Excimer laser superficial keratectomy was performed as an outpatients with proud nebulae as treatment patients with proud nebulae as treatment for their contact lens intolerance. The mean period of contact lens wear before the development of intolerance was 13.4 years (range 2 to 27 years). Following the development of intolerance, three patients abandoned contact lens wear in the affected eye while the remainder experienced a reduction in comfortable wearing time (mean = 3.75 hours; range: 0-14 hours). All patients had good potential Snellen visual acuity with a contact lens of 6/9 (nine eyes) and 6/12 (one eye). The proud nebulae were directly ablated with a 193 nm ArF excimer laser using a 1 mm diameter beam. Between 100-150 pulses were sufficient to ablate the raised area. Patients experienced no pain during the procedure and reported minimal discomfort postoperatively. In all cases flattening of the proud nebulae was achieved. Seven patients were able to resume regular contact lens wear (mean wearing time = 10.17 hours; range 8 to 16 hours). In three patients, resumption of contact lens wear was unsuccessful because of cone steepness. All patients achieved postoperative Snellen visual acuity of 6/12 or better with a contact lens. Four patients experienced a loss of one line in Snellen acuity. The mean follow up period was 8.3 months (range 2 to 17 months). Excimer laser superficial keratectomy is a useful technique for the treatment of contact lens intolerance caused by proud nebulae in patients with keratoconus. Penetrating keratoplasty is thus avoided. Images PMID:8060928

  15. Excimer laser superficial keratectomy for proud nebulae in keratoconus.

    PubMed

    Moodaley, L; Liu, C; Woodward, E G; O'Brart, D; Muir, M K; Buckley, R

    1994-06-01

    Contact lens intolerance in keratoconus may be due to the formation of a proud nebula at or near the apex of the cone. Excimer laser superficial keratectomy was performed as an outpatients with proud nebulae as treatment patients with proud nebulae as treatment for their contact lens intolerance. The mean period of contact lens wear before the development of intolerance was 13.4 years (range 2 to 27 years). Following the development of intolerance, three patients abandoned contact lens wear in the affected eye while the remainder experienced a reduction in comfortable wearing time (mean = 3.75 hours; range: 0-14 hours). All patients had good potential Snellen visual acuity with a contact lens of 6/9 (nine eyes) and 6/12 (one eye). The proud nebulae were directly ablated with a 193 nm ArF excimer laser using a 1 mm diameter beam. Between 100-150 pulses were sufficient to ablate the raised area. Patients experienced no pain during the procedure and reported minimal discomfort postoperatively. In all cases flattening of the proud nebulae was achieved. Seven patients were able to resume regular contact lens wear (mean wearing time = 10.17 hours; range 8 to 16 hours). In three patients, resumption of contact lens wear was unsuccessful because of cone steepness. All patients achieved postoperative Snellen visual acuity of 6/12 or better with a contact lens. Four patients experienced a loss of one line in Snellen acuity. The mean follow up period was 8.3 months (range 2 to 17 months). Excimer laser superficial keratectomy is a useful technique for the treatment of contact lens intolerance caused by proud nebulae in patients with keratoconus. Penetrating keratoplasty is thus avoided. PMID:8060928

  16. Quantitative solid sample analysis by ArF excimer laser ablation

    NASA Astrophysics Data System (ADS)

    Delmdahl, Ralph; von Oldershausen, Georg

    2005-06-01

    Reproducible and sensitive elemental analysis of solid samples is a crucial task in areas of geology (e.g. microanalysis of fluid inclusions), material sciences, industrial quality control as well as in environmental, forensic and biological studies. To date the most versatile detection method is mass-spectroscopic multi-element analysis. In order to obtain reproducible results, this requires transferring the solid sample into the gas-phase while preserving the sample's stoichiometric composition. Laser Ablation in combination with inductively coupled plasma-mass spectrometry (LA-ICP-MS) is a proven powerful technique to meet the requirements for reliable solid sample analysis. The sample is laser ablated in an air-tight cell and the aerosol is carried by an inert gas to a micro-wave induced plasma where its constituents are atomized and ionized prior to mass analysis. The 193 nm excimer laser ablation, in particular, provides athermal sample ablation with very precise lateral ablation and controlled depth profiling. The high photon energy and beam homogeneity of the 193 nm excimer laser system avoids elemental fractionation and permits clean ablation of even transmissive solid materials such as carbonates, fluorites and pure quartz.

  17. Alternatives to chemical amplification for 193nm lithography

    NASA Astrophysics Data System (ADS)

    Baylav, Burak; Zhao, Meng; Yin, Ran; Xie, Peng; Scholz, Chris; Smith, Bruce; Smith, Thomas; Zimmerman, Paul

    2010-04-01

    Research has been conducted to develop alternatives to chemically amplified 193 nm photoresist materials that will be able to achieve the requirements associated with sub-32 nm device technology. New as well as older photoresist design concepts for non-chemically amplified 193 nm photoresists that have the potential to enable improvements in line edge roughness while maintaining adequate sensitivity, base solubility, and dry etch resistance for high volume manufacturing are being explored. The particular platforms that have been explored in this work include dissolution inhibitor photoresist systems, chain scissioning polymers, and photoresist systems based on polymers incorporating formyloxyphenyl functional groups. In studies of two-component acidic polymer/dissolution inhibitor systems, it was found that compositions using ortho-nitrobenzyl cholate (NBC) as the dissolution inhibitor and poly norbornene hexafluoro alcohol (PNBHFA) as the base resin are capable of printing 90 nm dense line/space patterns upon exposure to a 193 nm laser. Studies of chain scission enhancement in methylmethacrylate copolymers showed that incorporating small amounts of absorptive a-cleavage monomers significantly enhanced sensitivity with an acceptable increase in absorbance at 193 nm. Specifically, it was found that adding 3 mol% of α-methyl styrene (α-MS) reduced the dose to clear of PMMA-based resist from 1400 mJ/cm2 to 420 mJ/cm2. Preliminary data are also presented on a direct photoreactive design concept based on the photo-Fries reaction of formyloxyphenyl functional groups in acrylic copolymers.

  18. Negative-tone 193-nm resists

    NASA Astrophysics Data System (ADS)

    Cho, Sungseo; Vander Heyden, Anthony; Byers, Jeff D.; Willson, C. Grant

    2000-06-01

    A great deal of progress has been made in the design of single layer positive tone resists for 193 nm lithography. Commercial samples of such materials are now available from many vendors. The patterning of certain levels of devices profits from the use of negative tone resists. There have been several reports of work directed toward the design of negative tones resists for 193 nm exposure but, none have performed as well as the positive tone systems. Polymers with alicyclic structures in the backbone have emerged as excellent platforms from which to design positive tone resists for 193 nm exposure. We now report the adaptation of this class of polymers to the design of high performance negative tone 193 nm resists. New systems have been prepared that are based on a polarity switch mechanism for modulation of the dissolution rate. The systems are based on a polar, alicyclic polymer backbone that includes a monomer bearing a glycol pendant group that undergoes the acid catalyzed pinacol rearrangement upon exposure and bake to produce the corresponding less polar ketone. This monomer was copolymerized with maleic anhydride and a norbornene bearing a bis-trifluoromethylcarbinol. The rearrangement of the copolymer was monitored by FT-IR as a function of temperature. The synthesis of the norbornene monomers will be presented together with characterization of copolymers of these monomers with maleic anhydride. The lithographic performance of the new resist system will also be presented.

  19. AlGaAs growth by OMCVD using an excimer laser

    NASA Technical Reports Server (NTRS)

    Warner, Joseph D.; Wilt, David M.; Pouch, John J.; Aron, Paul R.

    1986-01-01

    AlGaAs has been grown on GaAs by laser assisted OMCVD using an excimer laser, wavelength 193 nm, and a Cambridge OMCVD reactor. Films were grown at temperatures of 450 and 500 C with the laser beam parallel to the surface and impinging onto the surface at 15 deg from parallel. The samples were heated by RF coils while the laser beam was perpendicular to the gas flow. Typical gas flow parameters are 12 slm of H2, 15 sccm of Ga(CH3)3, 13 sccm of Al(CH3)3, and a pressure of 250 mbar. The initial energy density of the beam at the surface was 40 mJ/sq cm, the pulse rate was 20 pps, and the growth time was 7 min. The films were analyzed by Auger electron spectroscopy for the aluminum concentration and by TEM for the surface morphology.

  20. Colouring fabrics with excimer lasers to simulate encoded images: the case of the Shroud of Turin

    NASA Astrophysics Data System (ADS)

    Di Lazzaro, P.; Baldacchini, G.; Fanti, G.; Murra, D.; Santoni, A.

    2008-10-01

    The faint body image embedded into the Turin Shroud has not yet explained by traditional science. We present experimental results of excimer laser irradiation (wavelengths 308 nm and 193 nm) of a raw linen fabric and of a linen cloth, seeking for a possible mechanism of image formation. The permanent coloration of both linens is a threshold effect on the laser beam intensity and it can be achieved only in a surprisingly narrow range of irradiation parameters: the shorter the wavelength, the narrower the range. We also obtained the first direct evidence of latent images impressed on linen that appear in a relatively long period (one year) after a laser irradiation that at first did not generate a clear image. The results are compared to the characteristics of the Turin Shroud, commenting the possibility that a burst of directional ultraviolet radiation may have played a role in the formation of the Shroud image.

  1. [Corneal wound healing after perforating and non-perforating excimer laser keratectomy. An experimental study].

    PubMed

    Koch, J W; Lang, G K; Kolkmeier, J; Naumann, G O

    1990-01-01

    For clinical use of the excimer laser more detailed knowledge of corneal wound healing is necessary. With an ArF excimer laser (193 nm, 750 mJ/cm2, 20 Hz) and a special slit mask system perforating and non-perforating keratectomies were performed in a series of 55 rabbits with a follow-up from one hour to six months post-op. After enucleation the corneas were immediately processed for light microscopy, scanning and transmission electron microscopy and vital staining of the endothelium (trypan blue/alizarin red S). In perforating cuts the endothelial reaction consists of polymegathism, migration, formation of multi-nucleated giant cells, metaplasia-like proliferation and ultimately stable reformation of the cell pattern (1h to 42d). Epithelium fills the anterior wound gap within three days with subsequent regression of the plug. Fibroblastic activity in the adjacent stroma leads to cellular immigration, production of new collageneous lamellae and complete reorganization of the wound cleft (1d to 6m). Nonperforating excisions showed similar healing tendency of stroma and epithelium, but no severe endothelial damage could be detected. Compared with former studies using knife incisions our results do not reveal significant difference regarding epithelial and stromal wound healing events. The encouraging healing tendency of the endothelium--similar to regeneration after ultrasound and Nd:YAG-laser damage--also confirms the applicability of excimer lasers in corneal surgery.

  2. 308-nm excimer laser in endodontics

    NASA Astrophysics Data System (ADS)

    Liesenhoff, Tim

    1992-06-01

    Root canal preparation was performed on 20 extracted human teeth. After opening the coronal pulp, the root canals were prepared by 308 nm excimer laser only. All root canals were investigated under SEM after separation in the axial direction. By sagittal separation of the mandibles of freshly slaughtered cows, it was possible to get access to the tissues and irradiate under optical control. Under irradiation of excimer laser light, tissue starts to fluoresce. It was possible to demonstrate that each tissue (dentin, enamel, bone, pulpal, and connective tissue) has a characteristic spectral pattern. The SEM analyses showed that it is well possible to prepare root canals safely. All organic soft tissue has been removed by excimer laser irradiation. There was no case of via falsa. The simultaneous spectroscopic identification of the irradiated tissue provides a safe protection from overinstrumentation. First clinical trials on 20 patients suffering of chronical apical parodontitis have been carried out successfully.

  3. Application Of The Excimer Laser To Area Recontouring Of The Cornea

    NASA Astrophysics Data System (ADS)

    Yoder, Paul R.; Telfair, William B.; Warner, John W.; Martin, Clifford A.; L'Esperance, Francis A.

    1989-04-01

    Excimer lasers operating at 193 nm are being used experimentally in a special type of materials processing wherein the central portion of the anterior surface of the human cornea is selectively ablated so as to change its refractive power and, hopefully, improve impaired vision. Research to date has demonstrated recontouring as a potential means for reducing myopia and hyperopia of cadaver eyes while studies of ablations on the corneas of living monkeys and of blind human volunteers show promise of prompt and successful healing. The procedure has also shown merit in removing superficial scars from the corneal surface. In this paper, we describe the electro-optical system used to deliver the UV laser beam in these experiments and report some preliminary results of the ablation studies.

  4. Modulation of corneal wound healing after excimer laser keratomileusis using topical mitomycin C and steroids

    SciTech Connect

    Talamo, J.H.; Gollamudi, S.; Green, W.R.; De La Cruz, Z.; Filatov, V.; Stark, W.J. )

    1991-08-01

    A 193-nm excimer laser system was used to create deep stromal ablations in seven New Zealand white rabbits and shallow ablations in three. Eyes were randomized for treatment with topical mitomycin C, steroids, and erythromycin; topical steroids and erythromycin; or topical erythromycin only. All treatment regimens were instituted twice daily for 14 days. All eyes reepithelialized normally within 3 to 5 days. During 10 weeks of follow-up, all eyes developed moderate reticular subepithelial haze without significant differences among treatment groups. Results of light, fluorescence, and electron microscopic examination showed anterior stromal scarring and markedly reduced new subepithelial collagen formation in the group treated with mitomycin C, corticosteroids, and erythromycin. Focal abnormalities of Descemet's membrane and endothelial abnormalities were present in all treatment groups. Combination therapy with topical steroids, mitomycin C, and erythromycin to control the corneal wound healing response after refractive laser surgery appears promising and warrants further study.

  5. Measurements of barium photocathode quantum yields at four excimer laser wavelengths

    SciTech Connect

    Van Loy, M.D.; Young, A.T.; Leung, K.N.

    1992-06-01

    The electron quantum yields from barium cathodes excited by excimer laser radiation at 193, 248, 308, and 351 nm have been determined. Experiments with different cathode surface preparation techniques reveal that deposition of barium film a few microns thick on a clean copper surface under moderate vacuum conditions achieves relatively high quantum efficiencies. Quantum yields measured from surfaces prepared in this manner are 2.3 x 10{sup -3} at 193 nm, 7.6 x 10{sup - 4} at 248 nm, 6.1 x 10{sup -4} at 308 nm, and 4.0 x 10{sup -4} at 351 nm. Other preparation techniques, such as laser cleaning of a solid barium surface, produced quantum yields that were at least an order of magnitude lower than these values.

  6. Excimer laser texturing of natural composite polymer surfaces for studying cell-to-substrate specific response

    NASA Astrophysics Data System (ADS)

    Dinca, V.; Alloncle, P.; Delaporte, P.; Ion, V.; Rusen, L.; Filipescu, M.; Mustaciosu, C.; Luculescu, C.; Dinescu, M.

    2015-10-01

    Surface modifications of biocompatible materials are among the main factors used for enhancing and promoting specific cellular activities (e.g. spreading, adhesion, migration, and differentiation) for various types of medical applications such as implants, microfluidic devices, or tissue engineering scaffolds. In this work an excimer laser at 193 nm was used to fabricate chitosan-collagen roughness gradients. The roughness gradients were obtained in one step by applying single laser pulses and sample tilting. Fourier transform infrared spectroscopy measurements, atomic force microscopy (AFM), scanning electron microscopy (SEM), and spectro-ellipsometry (SE) were used for sample characterization. The goal is to determine the optimal morpho-chemical characteristics of these structures for in vitro tailoring of protein adsorption and cell behavior. The response induced by the roughness gradient onto various cell lines (i.e. L 929 fibroblasts, HEP G2 hepatocytes, OLN 93 oligodendrocytes, M63 osteoblasts) and bovine serum albumin (BSA) protein absorption was investigated.

  7. Absolute measurements of nonlinear absorption near LIDT at 193 nm

    NASA Astrophysics Data System (ADS)

    Blaschke, Holger; Ristau, Detlev; Welsch, Eberhard; Apel, Oliver

    2001-04-01

    Previous investigations indicate that oxide coatings exhibit non-linear absorption phenomena below 200 nm. Hereby, absorption data of Al2O3 thin film coatings has been determined absolutely by laser calorimetry (LCA) at 193 nm in the low fluence regime. As an alternative, on the basis of the pulsed surface thermal lens technique (STL), photothermal measurements allow to determine the absorption relatively at fluence levels both in the subdamage fluence range far from the damage onset and close to the LIDT. By combining the two measurement techniques, the absolute determination of linear as well as multiphoton absorption can be achieved also in the vicinity of the laser damage fluences. This is of crucial interest because the initiation of damage onset can be observed immediately. Absolute absorption data of Al2O3 coatings at different laser fluences stating of some mJoule/cm2 will be presented for the wavelength 193 nm. Thus, the correlation between the increase of absorption and the onset of breakdown can be illustrated impressively. The evaluation and discussion of the experimental results are focused on the degree of non-linearity of the investigated absorption behavior of oxide single layers initiating the optical breakdown of UV oxide coatings.

  8. Evaluation of an opacity lensometer for determining corneal clarity following excimer laser photoablation

    SciTech Connect

    Andrade, H.A.; McDonald, M.B.; Liu, J.C.; Abdelmegeed, M.; Varnell, R.; Sunderland, G. )

    1990-09-01

    The appearance of haze in the central cornea following photoablation with a 193 nm excimer laser is an important factor in the postoperative course of this procedure. Data from 37 human eyes treated with photorefractive keratectomy, 4 eyes treated with phototherapeutic keratectomy, and 5 untreated eyes were used to evaluate the ability of a commercially available opacity lensometer to provide an objective measure of corneal clarity. We found that the opacity lensometer was able to detect light scattered from the cornea but was not sufficiently sensitive to distinguish reliably among excimer-treated eyes with degrees of corneal haze evaluated as clear, trace, or 1+ by slit-lamp microscope examination. In untreated, clear corneas, the values obtained with the opacity lensometer in eyes measured with and without a clear contact lens were within one unit of each other for any given eye, but values from eye to eye varied over a range of six units. In a test simulating different amounts of corneal haze using contact lenses evenly coated with nail polish enamel, the log-transformed opacity lensometer values varied directly with percent light scattering as determined by spectrophotometry. These results suggest that the opacity lensometer measurements are reliable and reproducible, but that in the human cornea something is being measured by the opacity lensometer that is not taken into account in clinical slit-lamp microscope evaluation. Overall, it appears that, in its present form, this instrument is not useful to measure corneal clarity after excimer laser photoablation.

  9. Valacyclovir for the prevention of recurrent herpes simplex virus eye disease after excimer laser photokeratectomy.

    PubMed Central

    Asbell, P A

    2000-01-01

    PURPOSE: A variety of factors have been reported as inducing the reactivation of latent herpes simplex virus (HSV), among them stress, trauma, and UV radiation. Excimer laser photorefractive keratectomy (PRK) is a surgical procedure utilizing a 193 nm ultraviolet light to alter the curvature of the cornea and hence correct vision. Reactivation of ocular herpes simplex keratitis following such excimer laser PRK has been reported. All published cases of HSV reactivation following excimer laser treatment in humans are reviewed. The present study evaluates whether stress, trauma of the corneal de-epithelialization prior to the laser, or the excimer laser treatment itself to the stromal bed induces this ocular reactivation of the latent HSV, and whether a systemic antiviral agent, valacyclovir, would prevent such laser PRK-induced reactivation of the HSV. METHODS: Forty-three normal 1.5- to 2.5-kg New Zealand white rabbits were infected on the surface of the cornea with HSV-1, strain RE. The animals were monitored until resolution, and then all animals were divided into 5 treatment groups: (1) de-epithelialization only, intraperitoneal (i.p.) saline for 14 days; (2) de-epithelialization plus laser, i.p. saline for 14 days; (3) de-epithelialization plus laser, valacyclovir 50 mg/kg per day i.p. for 14 days; (4) de-epithelialization plus laser, valacyclovir 100 mg/kg per day i.p. for 14 days; (5) de-epithelialization plus laser, valacyclovir 150 mg/kg per day i.p. for 14 days. Animals were evaluated in a masked fashion by clinical examination biweekly and viral cultures biweekly through day 28. RESULTS: The reactivation rates were as follows: group 1, 0%; group 2, 67%; group 3, 50%; group 4, 17%; and group 5, 0%. Viral titers were negative in animals that had no reactivation but persistently positive in those that had reactivation (day 6 through day 28). CONCLUSIONS: Excimer laser (193 nm) treatment can trigger reactivation of ocular herpes disease (67%) and viral

  10. Percutaneous angioscopy after excimer laser angioplasty

    NASA Astrophysics Data System (ADS)

    Nakamura, Fumitaka; Kvasnicka, Jan; Geschwind, Herbert J.; Uchida, Yasumi

    1992-08-01

    Angioscopy has proved to provide more detailed information on lesion morphology before and after interventional procedures than angiography. Therefore, to evaluate the effects of laser angioplasty, angioscopy was performed in five patients with peripheral or coronary vascular disease who underwent excimer laser angioplasty. The excimer laser was operated at 308 nm, 135 nsec, 25 Hz, and 40 - 60 mJ/mm2 and was coupled into multifiber wire-guided catheters of 1.4 to 2.0 mm diameter for coronary lesions and 2.2 mm for peripheral lesions. There were three coronary (one left anterior descending, one circumflex, one right coronary artery) and two peripheral (one common iliac artery, one superficial femoral artery) lesions. Angioscopy was successfully performed before and after laser ablation without any complications in all five lesions. The characteristics of angioscopic findings after excimer laser angioplasty consisted of flaps, fractures of plaques, and abundant tissue remnants. There was no apparent thermal injury. Recanalized channels were small and irregular. These results indicate that (1) angioscopy is effective and safe for evaluation of lesion morphology after laser angioplasty, (2) laser ablation does not result in thermal injury, and (3) irregular channels after recanalization and abundant tissue remnants may explain the suboptimal results after laser angioplasty.

  11. Photodissociation of Methyl Iodide at 193 NM

    NASA Astrophysics Data System (ADS)

    Xu, Hong; Pratt, Stephen

    2014-05-01

    A new measurement of the photodissociation of CH3I at 193 nm is reported in which we use a combination of vacuum ultraviolet photoionization and velocity map ion imaging. The iodine photofragments are probed by single-photon ionization at photon energies above and below the photoionization threshold of I(2P3/2) . The relative I(2P3/2) and I*(2P1/2) photoionization cross sections are determined at these wavelengths by using the known branching fractions for the photodissociation at 266 nm. Velocity map ion images indicate that the branching fraction for I(2P3/2) atoms is non-zero, and yield a value of 0.07 +/- 0.01. Interestingly, the translational energy distribution extracted from the image shows that the translational energy of the I(2P3/2) fragments is significantly smaller than that of the I*(2P1/2) atoms. This observation indicates the internal rotational/vibrational energy of the CH3 co-fragment is very high in the I(2P3/2) channel. The results can be interpreted in a manner consistent with the previous measurements, and provide a more complete picture of the dissociation dynamics of this prototypical molecule. This work was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences under contract No. DE-AC02-06CH11357.

  12. Excimer laser as a manufacturing tool

    NASA Astrophysics Data System (ADS)

    O'Keeffe, Terence R.; Lizotte, Todd E.

    1994-02-01

    In general, laser material processing is carried out using CO2 and YAG systems. This work typically covers welding, cladding and cutting to produce such unlikely products as juice cans and razor blades. Excimer lasers are fast becoming the next most popular processing machine. They are especially suited for the removal of thermally sensitive materials with minimal heat damage and production of micron sized features. Beginning with what can be achieved in various materials this paper will step through the main requirements in developing a fully operational excimer laser process. This should reflect an efficient beam delivery design, high quality aperture masks and specialized part handling equipment. This paper will also address aspects of motion control, vibration isolation and specialized vision systems.

  13. New excimer laser technique for the correction of strabismus and diplopia

    NASA Astrophysics Data System (ADS)

    Azar, Dimitri T.

    1994-06-01

    We used the ArF excimer laser to determine the feasibility of performing prismatic photoablations in model eyes (plastic spheres simulating the eye), and in rabbit corneas. This would correct diplopia and small angles of deviation, and result in minimal refractive alterations. We modified excimer laser delivery system that achieved the desired corneal contour of prismatic ablations. 193-nm argon fluoride laser was used at fluence of 160 mJ/cm2 and ablation rate 5 Hz. 5.0-mm diameter, 40 um corneal epithelial ablation were followed by 5.0- mm diameter, prismatic photokeratectomy (PPK). We were able to achieve prismatic photoablation of PMMA blocks and lenses. No other refractive changes accompanied the prismatic photoablation of PMMA blocks and lenses. No other refractive changes accompanied the prismatic effect. In rabbits re-epithelialization of the 5-mm ablations was complete by day 3, and corneal haze was not observed by gross examination. Epithelial hyperplasia and subepithelial scarring were noted at the deep edges. PPK holds important therapeutic potential for fine-tuning results of conventional strabismus surgery, and for patients with stable diplopia following nerve palsy and ocular surgery.

  14. Low temperature oxidation of crystalline silicon using excimer laser irradiation

    NASA Astrophysics Data System (ADS)

    Nayar, Vishal; Boyd, Ian W.; Goodall, F. N.; Arthur, G.

    In this paper we present a study of ultra-violet laser oxidation of silicon at low temperature (< 650° C), using both 249 and 193 nm radiation. Calculation of the surface temperature rise during the laser pulses suggests that non-thermal oxidation mechanisms are present. In addition to the growth of planar thin oxides over macroscopic areas, a new technique for selectivity oxidising silicon by direct image projection, i.e., direct growth lithography (DGL) is also preliminarily presented.

  15. Perspectives of using the 223-nm wavelength of the KrCl excimer laser for refractive surgery and for the treatment of some eye diseases

    NASA Astrophysics Data System (ADS)

    Bagayev, Sergei N.; Chernikh, Valery V.; Razhev, Alexander M.; Zhupikov, Andrey A.

    2000-06-01

    The new surgical UV ophthalmic laser system Medilex based on the KrCl (223 nm) excimer laser for refractive surgery was created. The comparative analysis of using the UV ophthalmic laser systems Medilex based on the ArF (193 nm) and the KrCl (223 nm) excimer lasers for the correction of refractive errors was performed. The system with the radiation wavelength of 223 nanometer of the KrCl excimer laser for refractive surgery was shown to have several medical and technical advantages over the system with the traditionally used radiation wavelength of 193 nanometer of the ArF excimer laser. In addition the use of the wavelength of 223 nanometer extends functional features of the system, allowing to make not only standard for this type systems surgical and therapeutic procedures but also to treat such ocular diseases as the glaucoma and herpetic keratities. For the UV ophthalmic laser systems Medilex three variations of the beam delivery system including special rotating masks and different beam homogenize systems were developed. All created beam delivery systems are able to make the correction of myopia, hyperopia, astigmatism and myopic or hyperopic astigmatism and may be used for therapeutic procedures. The results of the initial treatments of refractive error corrections using the UV ophthalmic laser systems Medilex for both photorefractive keratectomy (PRK) and LASIK procedures are presented.

  16. Research of the quenched dye lasers pumped by excimer lasers

    SciTech Connect

    Xue Shaolin; Lou Qihong

    1996-12-31

    In this paper, the quenched dye lasers pumped by XeCl and KrF excimer lasers were investigated theoretically and experimentally. Dye laser pulses with duration of 0.8 ns for XeCl laser pumping and 2 ns for KrF laser pumping were obtained. The dye Rhodamine 6G dissolved in methyl was used as the active medium in the quenched dye laser. When the pump laser was KrF and the active medium was Coumarin 498 the quenched dye laser emitted pulse with duration of about 2 ns. The characteristics of the quenched dye laser was also investigated in detail.

  17. A new high-aperture 193 nm microscope for the traceable dimensional characterization of micro- and nanostructures

    NASA Astrophysics Data System (ADS)

    Ehret, G.; Pilarski, F.; Bergmann, D.; Bodermann, B.; Buhr, E.

    2009-08-01

    A new deep UV transmission microscope for traceable micro- and nanometrology is currently being set up at the Physikalisch-Technische Bundesanstalt (PTB), the National Metrology Institute of Germany. The new microscope is especially designed to enable linewidth measurements of micro- and nanostructures with an unsurpassed absolute measurement uncertainty of down to 10 nm (95% confidence interval). The optical resolution is about 100 nm. The main field of this tool will be critical dimension (CD) metrology of photomasks used in optical lithography. In particular, this system offers the possibility of 'at-wavelength' metrology for the currently applied 193 nm lithography technology. The high lateral resolution will be attained by means of 193 nm excimer laser radiation for illumination in conjunction with a high-aperture objective (NA = 0.9). The illumination and imaging system will provide various imaging modalities, ranging from ordinary brightfield to specially structured illumination schemes. Traceability to the SI unit 'meter' will be accomplished by means of laser interferometry. The mechanical set-up is characterized by an ultra-stable bridge construction on a granite base and has been designed with special emphasis on realizing a positioning stability in the nanometer range. The instrument is being set up in the Clean Room Centre of the PTB and will be ready for operation in mid 2009. Simulation calculations, based on a rigorous optical modeling of the expected microscope images, are presented. These simulations are made for the important application of measuring Cr structures on quartz photomasks. Based on these simulations and on available data of the uncertainties of various experimental parameters—including instrument and sample parameters—expected uncertainty budgets for the measurement of the width of Cr lines on quartz substrates are estimated.

  18. Photoinitiated decomposition of substituted ethylenes: The photodissociation of vinyl chloride and acrylonitrile at 193 nm

    SciTech Connect

    Blank, D.A.; Suits, A.G.; Lee, Y.T.

    1997-04-01

    Ethylene and its substituted analogues (H{sub 2}CCHX) are important molecules in hydrogen combustion. As the simplest {pi}-bonded hydrocarbons these molecules serve as prototypical systems for understanding the decomposition of this important class of compounds. The authors have used the technique of photofragment translational spectroscopy at beamline 9.0.2.1 to investigate the dissociation of vinyl chloride (X=Cl) and acrylonitrile (X=CN) following absorption at 193 nm. The technique uses a molecular beam of the reactant seeded in helium which is crossed at 90 degrees with the output of an excimer laser operating on the ArF transition, 193.3 nm. The neutral photoproducts which recoil out of the molecular beam travel 15.1 cm where they are photoionized by the VUV undulator radiation, mass selected, and counted as a function of time. The molecular beam source is rotatable about the axis of the dissociation laser. The authors have directly observed all four of the following dissociation channels for both systems: (1) H{sub 2}CCHX {r_arrow} H + C{sub 2}H{sub 2}X; (2) H{sub 2}CCHX {r_arrow} X + C{sub 2}H{sub 3}; (3) H{sub 2}CCHX {r_arrow} H{sub 2} + C{sub 2}HX; and (4) H{sub 2}CCHX {r_arrow} HX + C{sub 2}H{sub 2}. They measured translational energy distributions for all of the observed channels and measured the photoionization onset for many of the photoproducts which provided information about their chemical identity and internal energy content. In the case of acrylonitrile, selective product photoionization provided the ability to discriminate between channels 2 and 4 which result in the same product mass combination.

  19. Large excimer lasers for fusion

    SciTech Connect

    Jensen, R.J.

    1986-01-01

    Important goals in DOE and DOD programs require multimegajoule laser pulses. For inertial confinement fusion there is also a requirement to deliver the pulse in about 25 nsec with a very particular power vs time profile - all at high overall efficiency and low cost per joule. After exhaustive consideration of various alternatives, our studies have shown that the most cost effective approach to energy scaling is to increase the size of the final amplifiers up to the 200 to 300 kJ level. This conclusion derives largely from the fact that, at a given complexity, costs increase slowly with increasing part size while output energy should increase dramatically. Extrapolations to low cost by drastic cuts in the unit cost of smaller devices through mass production are considered highly risky. At a minimum the requirement to provide, space, optics and mounts for such systems will remain expensive. In recent years there have been dramatic advances in scaling. The Los Alamos LAM has produced over 10 kJ in a single 1/2 nsec pulse. In this paper we explore the issues involved in scaling to higher energy while still maintaining high efficiencies. In the remainder of this paper we will discuss KrF laser scaling for the fusion mission. We will omit most of the discussion of the laser system design, but address only KrF amplifiers.

  20. High Spatial Resolution Analysis of Carbonates by In Situ Excimer Laser Ablation MC-ICP-MS

    NASA Astrophysics Data System (ADS)

    Shuttleworth, S.; Lloyd, N.; Douthitt, C.

    2012-12-01

    Speleothems are important climate archives. The time resolution of the paleochlimate proxies depends on the growth rates and the precision limitation of the analytical instrumentation [1]. As a consequence, for speleothems, better analytical precision combined with better spatial resolution will always be the goal, driven by a need to probe the timing and duration of climate events [1]. The Thermo Scientific NEPTUNE Plus with Jet Interface option offers unparalleled MC-ICP-MS sensitivity for heavy elements. An ion yield of >3 % has previously been reported for uranium solutions introduced by desolvating nebulizer[2]. For laser ablation Hf, the Jet Interface with N2 addition significantly improved sensitivity, which allowed precise and accurate 176Hf/177Hf ratios to be calculated using a spot size of just 25 μm diameter [3]. A Thermo Scientific NEPTUNE Plus with Jet Interface option was coupled with a Photon Machines excimer laser ablation system. This system features a short pulse width (4ns) 193 nm excimer laser and the HELEX 2 volume sample cell. The 193nm wavelength has been shown to reduce the particle size distribution of the aerosol produced by the laser ablation process [4] and this in turn has been shown to help minimize the effects of fractionation by ensuring that particles are in a size range so as to avoid incomplete vaporization and ionization in the plasma [5]. In this work we investigate U-Th dating of carbonates. Accurate LA U-Th isotope measurements on carbonates with U concentrations smaller than 1 μg/g are difficult due to small ion beams [1]. Hoffman et. al. [1] noted individual LA U-Th ratio precisions of about 2% (2 sigma) on a 134 ka sample with 134 μg/g U concentration. In this work we apply a combination of the high sampling efficiency two volume cell plus mixed gas plasmas to further enhance the capability. [1] Hoffman, D.L., et al. (2009). Chemical Geology. 259 253-261 [2] Bouman, C., et al. (2009). Geochim. Cosmochim. Acta. 73

  1. Excimer laser annealing for low-voltage power MOSFET

    NASA Astrophysics Data System (ADS)

    Chen, Yi; Okada, Tatsuya; Noguchi, Takashi; Mazzamuto, Fulvio; Huet, Karim

    2016-08-01

    Excimer laser annealing of lumped beam was performed to form the P-base junction for high-performance low-voltage-power MOSFET. An equivalent shallow-junction structure for the P-base junction with a uniform impurity distribution is realized by adopting excimer laser annealing (ELA). The impurity distribution in the P-base junction can be controlled precisely by the irradiated pulse energy density and the number of shots of excimer laser. High impurity activation for the shallow junction has been confirmed in the melted phase. The application of the laser annealing technology in the fabrication process of a practical low-voltage trench gate MOSFET was also examined.

  2. Ignition by excimer laser photolysis of ozone

    SciTech Connect

    Lucas, D.; Dunn-Rankin, D.; Hom, K.; Brown, N.J.

    1987-08-01

    The authors have ignited mixtures of hydrogen, oxygen, and ozone in closed cells with 248 nm radiation from a KrF excimer laser. Ozone, the only significant absorber in this system, absorbs a single photon and produces oxygen atoms which initiate combustion. A discretized, time-dependent Beer's law model is used to demonstrate that the radical concentration immediately after photolysis is a function of laser power, ozone concentration, focal length, and separation between the lens and reactions cell. Spark schlieren photographs are used to visualize the ignition events and identify the ignition sites. The effects of equivalence ratio, pressure, and the initial gas temperature on the minimum ozone concentration needed to produce ignition are presented, and only the initial temperature has a significant effect.

  3. Eurolaser. High power excimer laser: Optical crystals

    NASA Astrophysics Data System (ADS)

    Gaenswein, Bernhard

    1987-09-01

    The crystals used in excimer lasers because of their excellent optical properties in the ultra violet spectrum are described. The crystals are fluorides of the alkaline earth metals magnesium, calcium and barium and the alkaline fluorides of lithium and sodium. It is possible to grow optical monocrystals of these compounds up to weights of 15 kg with a diameter of 180 mm. Some problems develop in growing crystals larger than this. To do so greater plants and improved automatic temperature monitoring and regulation are required. Special tools are needed for handling such large and heavy monocrystals. Understanding of the interaction between laser radiation and crystal must be improved upon in order to meet all the requirements to be placed on optical components in the future.

  4. The excimer laser: science fiction fantasy or practical tool?

    PubMed

    Biamino, Giancarlo

    2004-12-01

    Nearly 20 years ago, in vitro experiments left no doubt about the fact that laser light can ablate atherosclerotic plaque. The initial enthusiastic results with the technology, particularly in coronary arteries, were followed by reports showing unacceptably high restenosis and complication rates. These poor results were due to the premature application of an underdeveloped technology, a lack of understanding of laser/tissue interaction, and the use of incorrect lasing techniques. Consequently, and without discrimination, all lasers were banned from the catheterization laboratories for nearly a decade. Technological enhancements of the excimer laser, combined with refined catheter lasing techniques, resulted in greater debulking of atherosclerotic material in long superficial femoral artery occlusions. These results triggered the application of the excimer laser technique as an atherectomy tool in more complex lesions below the knee. The multicenter Laser Atherectomy for Critical Ischemia study clearly demonstrated that the excimer laser technology resulted in limb salvage rates >90% in patients with critical limb ischemia (CLI). Furthermore, new clinical results indicate that the excimer laser is very effective in dissolving thrombotic obstructions, redirecting this technology to the coronary field. The results of the excimer laser in CLI validate the role of the cool laser in treating complex peripheral vascular disease. The results suggest a larger indication for this technology and support a more aggressive use of these interventional techniques in the treatment of this large patient cohort. However, all lasers are not equally effective in debulking atherosclerotic material. Only the athermic process associated with the excimer laser produces a safe and effective endovascular ablation of obstructive atherosclerotic and/or thrombotic material. The appropriate and safe utilization of the equipment and lasing techniques, combined with correct indications and

  5. [Glycosaminoglycans in subepithelial opacity after excimer laser keratectomy].

    PubMed

    Nakayasu, K; Gotoh, T; Ishikawa, T; Kanai, A

    1996-05-01

    We evaluated histochemically the characteristics of glycosaminoglycans and proteoglycans in the corneal subepithelial opacity after excimer laser keratectomy on rabbit corneas. We also performed the same evaluations on the cornea after mechanical keratectomy. Twenty days after the operations, the area immediately subjacent to the epithelium showed strong staining with toluidine blue, alcian blue, and colloidal iron. However, after treatment with chondroitinase ABC or chondroitinase AC, alcian blue staining in this area decreased dramatically. Antilarge proteoglycan antibody also reacted strongly in this area. Histochemical and immunohistochemical examination of the cornea where mechanical keratectomy was done showed basically similar findings with the cornea of excimer laser keratectomy. These results suggest that large-molecula proteoglycans with chondroitine sulfate side chains become localized in the subepithelial area after two different kinds of keratectomies. We presume from histochemical and immunohistochemical observations that the subepithelial opacity observed after excimer laser keratectomy is not a special reaction to excimer laser but simply a corneal scar formed after stromal resection.

  6. Excimer laser surface modification: Process and properties

    SciTech Connect

    Jervis, T.R.; Nastasi, M.; Hirvonen, J.P.

    1992-12-01

    Surface modification can improve materials for structural, tribological, and corrosion applications. Excimer laser light has been shown to provide a rapid means of modifying surfaces through heat treating, surface zone refining, and mixing. Laser pulses at modest power levels can easily melt the surfaces of many materials. Mixing within the molten layer or with the gas ambient may occur, if thermodynamically allowed, followed by rapid solidification. The high temperatures allow the system to overcome kinetic barriers found in some ion mixing experiments. Alternatively, surface zone refinement may result from repeated melting-solidification cycles. Ultraviolet laser light couples energy efficiently to the surface of metallic and ceramic materials. The nature of the modification that follows depends on the properties of the surface and substrate materials. Alloying from both gas and predeposited layer sources has been observed in metals, semiconductors, and ceramics as has surface enrichment of Cr by zone refinement of stainless steel. Rapid solidification after melting often results in the formation of nonequilibrium phases, including amorphous materials. Improved surface properties, including tribology and corrosion resistance, are observed in these materials.

  7. Excimer laser: a module of the alopecia areata common protocol.

    PubMed

    McMichael, Amy J

    2013-12-01

    Alopecia areata (AA) is an autoimmune condition characterized by T cell-mediated attack of the hair follicle. The inciting antigenic stimulus is unknown. A dense perbulbar lymphocytic infiltrate and reproducible immunologic abnormalities are hallmark features of the condition. The cellular infiltrate primarily consists of activated T lymphocytes and antigen-presenting Langerhans cells. The xenon chloride excimer laser emits its total energy at the wavelength of 308 nm and therefore is regarded as a "super-narrowband" UVB light source. Excimer laser treatment is highly effective in psoriasis, another T cell-mediated disorder that shares many immunologic features with AA. The excimer laser is superior in inducing T cell apoptosis in vitro compared with narrowband UVB, with paralleled improved clinical efficacy. The excimer laser has been used successfully in patients with AA. In this context, evaluation of the potential benefit of 308-nm excimer laser therapy in the treatment of AA is clinically warranted. Herein, the use of a common treatment protocol with a specifically designed module to study the outcome of excimer laser treatment on moderate-to-severe scalp AA in adults is described.

  8. Ignition by excimer laser photolysis of ozone

    SciTech Connect

    Lucas, D.; Dunn-Rankin, D.; Hom, K.; Brown, N.J.

    1986-10-01

    We have ignited mixtures of hydrogen, oxygen, and ozone in closed cells with 248 nm radiation from a KrF excimer laser. Ozone, the only significant absorber in this system, absorbs a single photon and produces oxygen atoms which initiate combustion. A discretized, time-dependent Beer's law model is used to demonstrate that the radical concentration immediately after photolysis is a function of laser power, ozone concentration, focal length, and separation between the lens and reaction cell. Spark schileren photographs are used to visualize the ignition events and identify the ignition sites. The effects of equivalence ratio, pressure, and the initial gas temperature on the minimum ozone concentration needed to produce ignition are presented, and only the initial temperature has a significant effect. Modelling studies of the ignition process aid in the interpretation of the experimental results, and show that the ignition we observe is not due solely to thermal effects, but is strongly dependent on the number and type of radicals present initially after photolysis. Ignition using other hydocarbons as fuels was also demonstrated. 30 refs., 9 figs. 2 tabs.

  9. Ignition by excimer laser photolysis of ozone

    SciTech Connect

    Lucas, D.; Dunn-Rankin, D.; Hom, K.; Brown, N.J.

    1986-01-01

    The authors have ignited mixtures of hydrogen, oxygen, and ozone in closed cells with 248 nm radiation from a KrF excimer laser. Ozone, the only significant absorber in this system, absorbs a single photon and produces oxygen atoms which initiate combustion. A discretized, time-dependent Beer's law model is used to demonstrate that the radical concentration immediately after photolysis is a function of laser power, ozone concentration, focal length, and separation between the lens and reaction cell. Spark schlieren photographs are used to visualize the ignition events and identify the ignition sites. The effects of equivalence ratio, pressure, and the initial gas temperature on the minimum ozone concentration needed to produce ignition are presented, and only the initial temperature has a significant effect. Modelling studies of the igniton process aid in the interpretation of the experimental results, and show that the ignition is not due solely to thermal effects, but is strongly dependent on the number and type of radicals present initially after photolysis. Ignition using other hydrocarbons as fuels was also demonstrated.

  10. Rotational Spectrum of CBr by Kinetic Microwave Spectroscopy of 193-nm Photolysis Products of Bromoform.

    PubMed

    Hassouna; Walters; Demuynck; Bogey

    2000-03-01

    We have measured the first millimeter-wave spectrum of CBr. The radical was produced by pulsed UV-laser photolysis of bromoform at 193 nm and detected using kinetic spectroscopy. We have significantly improved the rotational and fine structure constants for the ground vibrational state. The hyperfine structure due to the bromine nucleus has been resolved and quadrupole and magnetic hyperfine parameters evaluated for the first time. Copyright 2000 Academic Press.

  11. Determination of flue gas alkali concentrations in fluidized-bed coal combustion by excimer-laser-induced fragmentation fluorescence

    SciTech Connect

    Hartinger, K.T.; Monkhouse, P.B.; Wolfrum, J.; Baumann, H.; Bonn, B.

    1994-12-31

    Gas-phase sodium concentrations were measured for the first time in situ in the flue gas of a fluidized-bed reactor by the excimer-laser-induced fragmentation fluorescence (ELIF) technique. This method involves using ArF-excimer laser light at 193 nm to simultaneously photodissociate the alkali compounds of interest and excite electronically the alkali atoms formed. The resulting fluorescence from Na (3{sup 2}P) atoms can he readily detected at 589 nm. Measured signals were converted to absolute concentrations using a calibration system that monitors alkali compounds under known conditions of temperature, pressure, and composition and rising the same optical setup as at the reactor. Several different coals were investigated under a specific set of reactor conditions at total pressures close to 1 bar. Sodium concentrations ranging from the sub-ppb region to 20 ppb were obtained, and a detection limit for sodium of 0.1 ppb under the present conditions was estimated. Over the course of the reactor program, contrasting concentration histories were observed for the two lignites and the hard coal investigated. In particular, significantly higher sodium concentrations were found for the hard coal, consistent with both the higher chlorine and sodium contents determined in the corresponding coal analysis.

  12. Excimer laser deposition of hydroxyapatite thin films.

    PubMed

    Singh, R K; Qian, F; Nagabushnam, V; Damodaran, R; Moudgil, B M

    1994-06-01

    We have demonstrated a new and simple in situ method to fabricate adherent and dense hydroxyapatite (HA) coatings at relatively low deposition temperatures (500-600 degrees C). Under optimum processing conditions, the HA coatings possess a nominal Ca:P ratio of 1.65 and exhibit a fully crystalline single-phase structure. This deposition technique is based on the application of a pulsed excimer laser (wavelength lambda = 248 nm, pulse duration tau = 25 x 10(-9) s) to ablate a dense stoichiometric HA target. The HA target was prepared by standard ceramic coprecipitation techniques followed by cold pressing and further sintering at 1200 degrees C in air. High substrate temperatures (> or = 600 degrees C) during film deposition led to phosphorus deficient coatings because of re-evaporation of phosphorus during the deposition process. The stabilization of various calcium and phosphorus phases in the film was controlled by a number of process parameters such as substrate temperature, chamber pressure and presence of water vapour in the chamber. This is particularly advantageous for production of HA coatings, since it is known that HA decomposes at high temperatures due to the uncertainty in the starting material stoichiometry. Rutherford backscattering spectrometry, energy dispersive X-ray analysis, transmission electron microscopy, scanning electron microscopy and X-ray diffraction techniques were employed to determine the structure-processing relationships. Qualitative scratch measurements were conducted to determine the adhesion strength of the films.

  13. Overview on the high power excimer laser technology

    NASA Astrophysics Data System (ADS)

    Liu, Jingru

    2013-05-01

    High power excimer laser has essential applications in the fields of high energy density physics, inertial fusion energy and industry owing to its advantages such as short wavelength, high gain, wide bandwidth, energy scalable and repetition operating ability. This overview is aimed at an introduction and evaluation of enormous endeavor of the international high power excimer laser community in the last 30 years. The main technologies of high power excimer laser are reviewed, which include the pumping source technology, angular multiplexing and pulse compressing, beam-smoothing and homogenous irradiation, high efficiency and repetitive operation et al. A high power XeCl laser system developed in NINT of China is described in detail.

  14. Excimer laser interaction with dentin of the human tooth

    NASA Technical Reports Server (NTRS)

    Hammond, Ernest C., Jr.; Gilliam, Ruth L.; Baker, George R.

    1989-01-01

    The use an excimer laser produced many unusual conical structures within the dentin of the inner part of the human tooth. By varying the frequency of the laser one can disperse the energy and cause more bleeding in laser surgery, but not destroy the cells associated with the incision. Therefore, the healing process will virtually be without scarring. Whereas, using the infrared laser the blood loss would be less, but the healing process would tend to be longer because cells are being destroyed due to the cauterization effect of the laser. The question is, are these structures produced as an interaction with the laser or are they an intrinsic part of the structure. The effects of the laser interaction upon dentin was studied, and in using electron microscopy the interaction of the excimer laser upon the tooth dentin and other various biological tissue is more clearly understood.

  15. Microlens fabrication using an excimer laser and the diaphragm method.

    PubMed

    Chen, Tao; Wang, Tong; Wang, Zhen; Zuo, Tiechuan; Wu, Jian; Liu, Shibing

    2009-06-01

    A new microlens fabrication method using an excimer laser is described in this paper. This method is based on the light vignetting effect. An excimer laser beam was propagated through two groups of fly's-eye lens arrays and separated by the groups, after which divergent beams were formed. When the beams were sectioned by a mask and passed through a circular diaphragm, a vignetting effect was produced relative to an excimer laser mask projection image lens. Then the irradiating intensity at the processing plane varied from the beam center to its margin. This intensity difference in the transverse distribution would result in microlens curvature forming. This diaphragm method has the extinct advantage of short production time, few steps and easy setup construction.

  16. Excimer laser processing of backside-illuminated CCDS

    NASA Technical Reports Server (NTRS)

    Russell, S. D.

    1993-01-01

    An excimer laser is used to activate previously implanted dopants on the backside of a backside-illuminated CCD. The controlled ion implantation of the backside and subsequent thin layer heating and recrystallization by the short wavelength pulsed excimer laser simultaneously activates the dopant and anneals out implant damage. This improves the dark current response, repairs defective pixels and improves spectral response. This process heats a very thin layer of the material to high temperatures on a nanosecond time scale while the bulk of the delicate CCD substrate remains at low temperature. Excimer laser processing backside-illuminated CCD's enables salvage and utilization of otherwise nonfunctional components by bringing their dark current response to within an acceptable range. This process is particularly useful for solid state imaging detectors used in commercial, scientific and government applications requiring a wide spectral response and low light level detection.

  17. Pulsed excimer laser processing for cost-effective solar cells

    NASA Technical Reports Server (NTRS)

    Wong, David C.

    1985-01-01

    The application of excimer laser in the fabrication of photovoltaic devices was investigated extensively. Processes included junction formation, laser assisted chemical vapor deposition metallization, and laser assisted chemical vapor deposition surface passivation. Results demonstrated that implementation of junction formation by laser annealing in production is feasible because of excellent control in junction depth and quality. Both metallization and surface passivation, however, were found impractical to be considered for manufacturing at this stage.

  18. Observation and stimulation of biological processes using excimer lasers

    NASA Astrophysics Data System (ADS)

    Greulich, Karl-Otto; Wolfrum, Juergen M.

    1990-06-01

    Examples are given for the application o f high power excimer lasers in spectroscopy and processing of biological material. An excimer-laser pumped dye laser serves as light source for a pulsed UV Raman spectrometer which allows resonant Raman studies on nucleic acids. Experiments on the pH induced double helix formation of poly adenylic acid are described. By combining the excimer laser with a distributed feedback dye laser and a streak camera, a picosecond UV fluorescence spectrometer is built up .Tyrosine fluorescence lifetimes of selected tryptophan free peptides with up to 9 amino acids can be explained in a surprisingly simple way: only the directly neighbouring amino acid on the C-terminal side and only a few amino acids on the N-terminal side have an influence on the fluorecscence lifetime of these peptides. Besides spectroscopic applications, the excimer laser serves as light source for processing of biological material. For medical applications , high power UV Laser light has to be transmitted through light guides. A tapered light guide transmitting more than GW/cm2 is described. Microprocessing of biological material with accuracies of a few hundred nanometers can be performed when an excimer pumped dye laser is coupled into a microscope .The resulting UV laser microbeam can be used to introduce foreign genetic material into plant cells, tissues and subcellular organelles such as mitochondria and chioroplasts. Selected pairs of different cells can be fused in the UV laser microbeam under total microscopic control. Finally, one can microdissect human chromosomes and isolate DNA probes for the analysis of human disease.

  19. An AC phase measuring interferometer for measuring dn/dT of fused silica and calcium fluoride at 193 nm

    SciTech Connect

    Shagam, R.N.

    1998-09-01

    A novel method for the measurement of the change in index of refraction vs. temperature (dn/dT) of fused silica and calcium fluoride at the 193 nm wavelength has been developed in support of thermal modeling efforts for the development of 193 nm-based photolithographic exposure tools. The method, based upon grating lateral shear interferometry, uses a transmissive linear grating to divide a 193 nm laser beam into several beam paths by diffraction which propagate through separate identical material samples. One diffracted order passing through one sample overlaps the undiffracted beam from a second sample and forms interference fringes dependent upon the optical path difference between the two samples. Optical phase delay due to an index change from heating one of the samples causes the interference fringes to change sinusoidally with phase. The interferometer also makes use of AC phase measurement techniques through lateral translation of the grating. Results for several samples of fused silica and calcium fluoride are demonstrated.

  20. Generation of strongly coupled plasmas by high power excimer laser

    NASA Astrophysics Data System (ADS)

    Zhu, Yongxiang; Liu, Jingru; Zhang, Yongsheng; Hu, Yun; Zhang, Jiyan; Zheng, Zhijian; Ye, Xisheng

    2013-05-01

    (ultraviolet). To generate strongly coupled plasmas (SCP) by high power excimer laser, an Au-CH-Al-CH target is used to make the Al sample reach the state of SCP, in which the Au layer transforms laser energy to X-ray that heating the sample by volume and the CH layers provides necessary constraints. With aid of the MULTI-1D code, we calculate the state of the Al sample and its relationship with peak intensity, width and wavelength of laser pulses. The calculated results suggest that an excimer laser with peak intensity of the magnitude of 1013W/cm2 and pulse width being 5ns - 10ns is suitable to generate SCP with the temperature being tens of eV and the density of electron being of the order of 1022/cm-3. Lasers with shorter wavelength, such as KrF laser, are preferable.

  1. Novel technique for high-quality microstructuring with excimer lasers

    NASA Astrophysics Data System (ADS)

    Roth, Stephan; Geiger, Manfred

    2000-06-01

    Laser micromachining has become increasingly established in many microsystem applications during the past years. These new fields occasion higher demands on the quality of micromachiend devices combined with high resolution and working velocity. Due to the disadvantages of conventional excimer laser processing, a novel technique is required to meet these demands. The main problems of conventional excimer laser machining are the redeposition of ablated material on the irradiated work piece and the formation of a strong melting phase especially for metals. These difficulties greatly reduce the applicability of excimer laser material processing for manufacturing microsystems technology components. By applying a thin water film to the substrate surface, the redeposition of ablated material can be completely avoided, which results in a better quality of the microstructures. Usage of a water film, however, has proved to lead to a marked reduction of the ablation rate for the examined materials - ceramics and stainless steel. Therefore, one of the objectives of future research will be to raise the ablation rate in order to render excimer laser processing more interesting economically. Adding alcoholic additives, among others, has improved the wetting of the liquid films on the surface. The effect of the modified chemical composition of the liquid on ablation rate and structure quality for various materials is presented here.

  2. Once upon a time: a hearty glance over the 30-year history of excimer lasers

    NASA Astrophysics Data System (ADS)

    Makarov, Maxime K.

    2005-03-01

    The genesis of excimer lasers is reviewed. Contrary to previous retrospectives, the present analysis is restricted only to physics and technics of discharge pumped Rare-Gas Halides (RGH) excimer lasers. Some side factors like politics or human personality, interfering the development of excimer technology, are also discussed.

  3. Analysis of glycosaminoglycans in rabbit cornea after excimer laser keratectomy

    PubMed Central

    Kato, T.; Nakayasu, K.; Ikegami, K.; Obara, T.; Kanayama, T.; Kanai, A.

    1999-01-01

    BACKGROUND/AIMS—The biochemical basis for the development of subepithelial opacity of the cornea after excimer laser keratectomy has yet to be fully defined. The aim of this study was to evaluate the alterations of glycosaminoglycans (GAGs) after excimer laser keratectomy.
METHODS—Rabbit corneas were harvested on days 5, 10, 20, and 30 after excimer laser photoablation. The amount of main disaccharide units was determined by high performance liquid chromatography (HPLC). In addition, immunohistochemical studies were performed on corneal sections 20 days after the ablation.
RESULTS—The concentrations of ΔDi-0S at 5 and 10 days were significantly lower than before the ablation. ΔDi-6S showed a significant increase 5 days after the ablation but ΔDi-4S did not show any significant change. There was a significant increase in ΔDi-HA at 20 and 30 days after ablation. In immunohistochemistry, the positive staining for ΔDi-6S and hyaluronic acid was observed in the subepithelial region. These immunohistochemical results were well correlated with the HPLC findings.
CONCLUSIONS—The increase in chondroitin-6 sulphate and hyaluronic acid may be related to corneal subepithelial opacity after excimer laser keratectomy.

 PMID:10216064

  4. Excimer laser fragmentation fluorescence spectroscopy for real-time monitoring of combustion generated pollutants

    NASA Astrophysics Data System (ADS)

    Damm, Christopher John

    Toxic pollutant emissions from combustion pose a hazard to public and environmental health. Better diagnostic techniques would benefit emissions monitoring programs and aid research aimed at understanding toxic pollutant formation and behavior. Excimer Laser Fragmentation Fluorescence Spectroscopy (ELFFS) provides sensitive, real-time, in situ measurements of several important combustion related pollutants. This thesis demonstrates the capabilities of ELFFS for detecting amines in combustion exhausts and carbonaceous particulate matter from engines. ELFFS photofragments target species using a 193 nm excimer laser to form fluorescent signature species. The NH (A--X) band at 336 nm is used to monitor ammonia, ammonium nitrate and ammonium sulfate. There are no major interferences in this spectral region. The sensitivity is approximately 100 ppb (1 second measurement) for ammonia in post flame gases and 100 ppb (mole fraction) for ammonium nitrate/sulfate in ambient air. Quenching of NH by the major combustion products does not limit the applicability of the detection method. Fluorescence from excited carbon atoms at 248 nm (1P 0 → 1S0) following photofragmentation measures particulate matter in a two-stroke gasoline engine and a four-stroke diesel engine. Fluorescence from CH (A2Delta → X 2pi, 431 nm) C2 (d3pig → a3piu, 468 nm) fragments is also observed. The atomic carbon fluorescence signal is proportional to the mass concentration of particles in the laser interrogation region. The 100-shot (1 second) detection limit for particles in the two-stroke gasoline engine exhaust is 0.5 ppb (volume fraction). The 100-shot detection limit for four-stroke diesel particulate matter is 0.2 ppb. Interferences from carbon monoxide and carbon dioxide are negligible. The ratios of atomic carbon, C2, and CH peaks provide information on the molecular forms of compounds condensed on or contained within the particles measured. The C/C2 signal ratio can be used to distinguish

  5. Excimer laser lead extraction catheter with increased laser parameters

    NASA Astrophysics Data System (ADS)

    Coe, M. Sean; Taylor, Kevin D.; Lippincott, Rebecca A.; Sorokoumov, Oleg; Papaioannou, Thanassis

    2001-05-01

    A fiber optic catheter connected to a pulsed excimer laser (308 nm) is currently used to extract chronically implanted pacemaker and defibrillator leads at Fluence of 60 mJ/mm2 and repetition rate of 40 Hz. The object of this study was to determine the effect of higher repetition rates (80 Hz) in the catheter's cutting performance. The penetration rate (micrometers /sec), and the associated mechanical and thermal effects were measured in soft (porcine myocardium) and hard tissue (bovine tendon) at 60 mJ/mm2-80 Hz, and were compared to the corresponding values at commercially available laser parameters (60 mJ/mm2-40 Hz). Ablation rates were measured with perforation experiments and the extent of thermal and mechanical damage was measured under polarized light microscopy. For hard (soft) tissue, the laser catheter demonstrated penetration speed of 106 +/- 32 (302 +/- 101) micrometers /sec at 40 Hz and 343 +/- 120 (830 +/- 364) micrometers /sec at 80 Hz. Maximum extent of thermal effects at 40 Hz and 80 Hz was 114 +/- 35 micrometers (72 +/- 18) and 233 +/- 63 micrometers (71 +/- 16) respectively. Maximum extent of mechanical effects at 40 Hz and 80 Hz was 188 +/- 63 micrometers (590 +/- 237) and 386 +/- 100 micrometers (767 +/- 160) respectively. In vitro testing of the laser catheter with 80 Hz laser parameters has demonstrated increased penetration speed in both soft and hard fibrous tissue, while maintaining associated thermal and mechanical effects within limited ranges.

  6. Excimer laser ophthalmic surgery: evaluation of a new technology.

    PubMed Central

    Infeld, D. A.; O'Shea, J. G.

    1998-01-01

    The aim of this article is to provide information and an overview of the potential risks and benefits of excimer laser surgery, a new and promising technique in ophthalmic surgery. Although this review concentrates on the use of the laser for refractive purposes, novel therapeutic techniques are also discussed. It is hoped that this will enable general practitioners, optometrists and physicians to provide appropriate advice and counselling for patients. Images Figure 1 Figure 2 Figure 3 Figure 4 PMID:10211324

  7. Internal state distribution of the CF fragment from the 193 nm photodissociation of CFCl and CFBr

    NASA Astrophysics Data System (ADS)

    Shin, Seung Keun; Dagdigian, Paul J.

    2007-04-01

    The dynamics of the 193nm photodissociation of the CFCl and CFBr molecules have been investigated in a molecular beam experiment. The CFCl and CFBr parent molecules were generated by pyrolysis of CHFCl2 and CFBr3, respectively, and the CFCl and the CF photofragment were detected by laser fluorescence excitation. The 193nm attenuation cross section of CFCl was determined from the reduction of the CF photofragment signal as a function of the photolysis laser fluence. The internal state distribution was derived from the analysis of laser fluorescence excitation spectra in the AΣ+2-XΠ2 band system. A very low degree of rotational excitation, with essentially equal A' and A″ Λ-doublet populations, and no vibrational excitation were found in the CF photofragment. The energy available to the photofragments is hence predominantly released as translational energy. The CF internal state distribution is consistent with the dissociation of a linear intermediate state. Considerations of CFCl electronic states suggest that a bent Rydberg state is initially excited.

  8. Automated control of industrial-scale excimer lasers

    NASA Astrophysics Data System (ADS)

    Boardman, Allan D.; Hodgson, Elizabeth M.; Richardson, M. B.; Spence, A. J.; Wilson, A. C.

    1994-08-01

    This paper describes the design, development, and construction of an automated control system for high average power excimer lasers working in an industrial environment. The control system is based on a distributed network of transputers, each dealing with its own area of responsibility. This modular approach was chosen to provide maximum flexibility, allowing the control system to be optimized for particular lasers or special requirements. The development of monitoring and actuating equipment suitable for the unusual demands of an excimer laser is also an essential part of the overall project. Some of the monitoring equipment used is standard, while some has been designed and built at Salford. In particular, a 100 MHz bandwidth optical fiber current sensor has been developed to measure the discharge current. Communications between the sensors and the transputer network are almost entirely optical, with special circuits designed at Salford to convert standard sensor outputs into optical signals. Several different systems are used, according to the response time required.

  9. Excimer laser system for atmospheric remote sensing of ozone

    NASA Technical Reports Server (NTRS)

    Tan, K. O.; Ogura, G. T.; Mckee, T. J.; Mcgee, T.

    1987-01-01

    A high-power narrow-linewidth XeCl excimer laser system developed for use by NASA in the remote sensing of atmospheric ozone is described. The laser system is designed for incorporation in a DIAL lidar utilizing stimulated Raman generation for the reference wavelength and sophisticated data averaging techniques. The laser output has a linewidth of 0.002 nm and a beam divergence of 0.15 mrad (FWHM). The laser was operated over a six-hour period with a constant average power of 18 W and a wavelength stable to within + or - 0.0006 nm.

  10. Triggering Excimer Lasers by Photoionization from Corona Discharges

    NASA Astrophysics Data System (ADS)

    Xiong, Zhongmin; Duffey, Thomas; Brown, Daniel; Kushner, Mark

    2009-10-01

    High repetition rate ArF (192 nm) excimer lasers are used for photolithography sources in microelectronics fabrication. In highly attaching gas mixtures, preionization is critical to obtaining stable, reproducible glow discharges. Photoionization from a separate corona discharge is one technique for preionization which triggers the subsequent electron avalanche between the main electrodes. Photoionization triggering of an ArF excimer laser sustained in multi-atmosphere Ne/Ar/F2/Xe gas mixtures has been investigated using a 2-dimensional plasma hydrodynamics model including radiation transport. Continuity equations for charged and neutral species, and Poisson's equation are solved coincident with the electron temperature with transport coefficients obtained from solutions of Boltzmann's equation. Photoionizing radiation is produced by a surface discharge which propagates along a corona-bar located adjacent to the discharge electrodes. The consequences of pulse power waveform, corona bar location, capacitance and gas mixture on uniformity, symmetry and gain of the avalanche discharge will be discussed.

  11. Nebulae at keratoconus--the result after excimer laser removal.

    PubMed

    Fagerholm, P; Fitzsimmons, T; Ohman, L; Orndahl, M

    1993-12-01

    Ten patients underwent excimer laser ablation due to nebula formation at keratoconus. The nebulae interfered significantly with contact lens fit or wearing time. The mean follow-up time in these patients was 16.5 months. Following surgery all patients could be successfully fitted with a contact lens and thereby obtain good visual acuity. Furthermore, contact lens wearing time was 8 hours or more in all cases. In 2 patients the nebulae recurred but were successfully retreated. PMID:8154261

  12. Development of over 300-watts average power excimer laser

    NASA Astrophysics Data System (ADS)

    Hirata, Kazuhiro; Kawamura, Joichi; Katou, Hiroyuki; Sajiki, Kazuaki; Okada, Makoto

    2004-05-01

    The high power excimer laser was developed. We have supplied the 240 watts (800 mJ, 300 Hz) average power excimer laser for industrial use, mainly for TFT LCD annealing. We are going to add the 300 watts (1 J, 300 Hz) average power laser for our line-up. This 300 watts new laser is based on the 240 watts laser, but improved some points. The electrodes size is longer and the electrical power circuit is reinforcement. Laser gas recipe is changed to be good for new system. In our test, we could oscillate over 300 watts average power operation. 310 watts servo operation is able to oscillate over 40 million pulses with less than 1.0 per cent for σ output stability. 330 watts servo operation is able to oscillate over 30 million pulses with almost less than 1.0 per cent for σ output stability. Experimental and theoretical studies of various parameters influencing the laser performance will be continued with further investigations and future improvements. We have confidence that it will be possible for this laser to produce higher power with long gas life.

  13. Automatic alignment of double optical paths in excimer laser amplifier

    NASA Astrophysics Data System (ADS)

    Wang, Dahui; Zhao, Xueqing; Hua, Hengqi; Zhang, Yongsheng; Hu, Yun; Yi, Aiping; Zhao, Jun

    2013-05-01

    A kind of beam automatic alignment method used for double paths amplification in the electron pumped excimer laser system is demonstrated. In this way, the beams from the amplifiers can be transferred along the designated direction and accordingly irradiate on the target with high stabilization and accuracy. However, owing to nonexistence of natural alignment references in excimer laser amplifiers, two cross-hairs structure is used to align the beams. Here, one crosshair put into the input beam is regarded as the near-field reference while the other put into output beam is regarded as the far-field reference. The two cross-hairs are transmitted onto Charge Coupled Devices (CCD) by image-relaying structures separately. The errors between intersection points of two cross-talk images and centroid coordinates of actual beam are recorded automatically and sent to closed loop feedback control mechanism. Negative feedback keeps running until preset accuracy is reached. On the basis of above-mentioned design, the alignment optical path is built and the software is compiled, whereafter the experiment of double paths automatic alignment in electron pumped excimer laser amplifier is carried through. Meanwhile, the related influencing factors and the alignment precision are analyzed. Experimental results indicate that the alignment system can achieve the aiming direction of automatic aligning beams in short time. The analysis shows that the accuracy of alignment system is 0.63μrad and the beam maximum restoration error is 13.75μm. Furthermore, the bigger distance between the two cross-hairs, the higher precision of the system is. Therefore, the automatic alignment system has been used in angular multiplexing excimer Main Oscillation Power Amplification (MOPA) system and can satisfy the requirement of beam alignment precision on the whole.

  14. EUV reticle inspection with a 193nm reticle inspector

    NASA Astrophysics Data System (ADS)

    Broadbent, William; Inderhees, Gregg; Yamamoto, Tetsuya; Lee, Isaac; Lim, Phillip

    2013-06-01

    The prevailing industry opinion is that EUV Lithography (EUVL) will enter High Volume Manufacturing (HVM) in the 2015 - 2017 timeframe at the 16nm HP node. Every year the industry assesses the key risk factors for introducing EUVL into HVM - blank and reticle defects are among the top items. To reduce EUV blank and reticle defect levels, high sensitivity inspection is needed. To address this EUV inspection need, KLA-Tencor first developed EUV blank inspection and EUV reticle inspection capability for their 193nm wavelength reticle inspection system - the Teron 610 Series (2010). This system has become the industry standard for 22nm / 3xhp optical reticle HVM along with 14nm / 2xhp optical pilot production; it is further widely used for EUV blank and reticle inspection in R and D. To prepare for the upcoming 10nm / 1xhp generation, KLA-Tencor has developed the Teron 630 Series reticle inspection system which includes many technical advances; these advances can be applied to both EUV and optical reticles. The advanced capabilities are described in this paper with application to EUV die-to-database and die-to-die inspection for currently available 14nm / 2xhp generation EUV reticles. As 10nm / 1xhp generation optical and EUV reticles become available later in 2013, the system will be tested to identify areas for further improvement with the goal to be ready for pilot lines in early 2015.

  15. Photorefractive keratectomy at 193 nm using an erodible mask

    NASA Astrophysics Data System (ADS)

    Gordon, Michael; Brint, Stephen F.; Durrie, Daniel S.; Seiler, Theo; Friedman, Marc D.; Johnsson, N. M. F.; King, Michael C.; Muller, David F.

    1992-08-01

    Clinical experience with more than ten thousand sighted eyes has demonstrated great promise for correcting myopia with photorefractive keratectomy (PRK). Previously reported techniques have incorporated computer-controlled irises, diaphragms, and apertures to regulate the desired distribution of 193 nm radiation onto the eye. This paper reports on an entirely new approach for performing PRK which utilizes an erodible mask to control the shape transfer process. Compared to the more traditional techniques, the erodible mask offers promise of correcting a broad range of refractive errors. In this paper the erodible mask and associated hardware are described in detail. We describe the shape transfer experiments used to predict the functional relationship between the desired refractive correction and the mask shape. We report on early clinical results from five patients with myopic astigmatism. We conclude that the early shape transfer experiments overestimated the spherical component of the correction by 1.25 diopters and underestimated the cylindrical component by approximately 0.85 diopters. The data suggest there may be biological effects which evoke different healing responses when myopic PRK corrections are performed with and without astigmatism. Clinical trials are proceeding with the mask shapes adjusted for these observations.

  16. Evaluation Of An Organosilicon Photoresist For Excimer Laser Lithography

    NASA Astrophysics Data System (ADS)

    McFarland, Janet C.; Orvek, Kevin J.; Ditmer, Gary A.

    1988-01-01

    An organosilicon resist was investigated for use in deep UV laser lithography. The resist was based on 0-trimethylsilyl poly(vinylphenol) resin. It was found to exhibit transparency at 248nm comparable to the transparency of g-line light in conventional novolak resists, making single-layer resist processing possible. The results of single-layer and bi-layer patterning on an excimer laser contact printer are presented. The bi-layer processing uses oxygen reactive ion etching (RIE) for transfer of a top layer pattern into a thick underlying novolak layer.

  17. Surface Structuring of CFRP by using Modern Excimer Laser Sources

    NASA Astrophysics Data System (ADS)

    Fischer, F.; Kreling, S.; Dilger, K.

    High demands for lightweight construction can be attained by the use of carbon fiber-reinforced plastics (CFRP) including one major challenge: the joining technology. Adhesive bonding may allow an increased utilization of the lightweight potential of CFRP. But this technology requires a surface pre-treatment because of residues of release agents. This paper describes surface pre-treatment of CFRP specimens by using modern excimer laser and the mechanical tests that compare the achieved strength to manually abraded ones. The laser process is suitable for achieving cohesive failure within the adhesive and bond strengths in the magnitude of the abraded specimen.

  18. Pixel diamond detectors for excimer laser beam diagnostics

    NASA Astrophysics Data System (ADS)

    Girolami, M.; Allegrini, P.; Conte, G.; Salvatori, S.

    2011-05-01

    Laser beam profiling technology in the UV spectrum of light is evolving with the increase of excimer lasers and lamps applications, that span from lithography for VLSI circuits to eye surgery. The development of a beam-profiler, able to capture the excimer laser single pulse and process the acquired pixel current signals in the time period between each pulse, is mandatory for such applications. 1D and 2D array detectors have been realized on polycrystalline CVD diamond specimens. The fast diamond photoresponse, in the ns time regime, suggests the suitability of such devices for fine tuning feedback of high-power pulsed-laser cavities, whereas solar-blindness guarantees high performance in UV beam diagnostics, also under high intensity background illumination. Offering unique properties in terms of thermal conductivity and visible-light transparency, diamond represents one of the most suitable candidate for the detection of high-power UV laser emission. The relatively high resistivity of diamond in the dark has allowed the fabrication of photoconductive vertical pixel-detectors. A semitransparent light-receiving back-side contact has been used for detector biasing. Each pixel signal has been conditioned by a multi-channel read-out electronics made up of a high-sensitive integrator and a Σ-Δ A/D converter. The 500 μs conversion time has allowed a data acquisition rate up to 2 kSPS (Sample Per Second).

  19. Inline detection of Chrome degradation on binary 193nm photomasks

    NASA Astrophysics Data System (ADS)

    Dufaye, Félix; Sippel, Astrid; Wylie, Mark; García-Berríos, Edgardo; Crawford, Charles; Hess, Carl; Sartelli, Luca; Pogliani, Carlo; Miyashita, Hiroyuki; Gough, Stuart; Sundermann, Frank; Brochard, Christophe

    2013-09-01

    193nm binary photomasks are still used in the semiconductor industry for the lithography of some critical layers for the nodes 90nm and 65nm, with high volumes and over long periods. However, these 193nm binary photomasks can be impacted by a phenomenon of chrome oxidation leading to critical dimensions uniformity (CDU) degradation with a pronounced radial signature. If not detected early enough, this CDU degradation may cause defectivity issues and lower yield on wafers. Fortunately, a standard cleaning and repellicle service at the mask shop has been demonstrated as efficient to remove the grown materials and get the photomask CD back on target.Some detection methods have been already described in literature, such as wafer CD intrafield monitoring (ACLV), giving reliable results but also consuming additional SEM time with less precision than direct photomask measurement. In this paper, we propose another approach, by monitoring the CDU directly on the photomask, concurrently with defect inspection for regular requalification to production for wafer fabs. For this study, we focused on a Metal layer in a 90nm technology node. Wafers have been exposed with production conditions and then measured by SEM-CD. Afterwards, this photomask has been measured with a SEM-CD in mask shop and also inspected on a KLA-Tencor X5.2 inspection system, with pixels 125 and 90nm, to evaluate the Intensity based Critical Dimension Uniformity (iCDU) option. iCDU was firstly developed to provide feed-forward CDU maps for scanner intrafield corrections, from arrayed dense structures on memory photomasks. Due to layout complexity and differing feature types, CDU monitoring on logic photomasks used to pose unique challenges.The selection of suitable feature types for CDU monitoring on logic photomasks is no longer an issue, since the transmitted intensity map gives all the needed information, as shown in this paper. In this study, the photomask was heavily degraded after more than 18,000 300

  20. Excimer laser with highly coherent radiation

    SciTech Connect

    Atezhev, Vladimir V; Vartapetov, Sergei K; Zhukov, A N; Kurzanov, M A; Obidin, Aleksei Z

    2003-08-31

    Experimental studies aimed at the optimisation of an unstable resonator of an ArF electric-discharge laser are performed. Several optical schemes of an unstable resonator of a single-module laser are proposed and investigated. It is shown that the laser developed on the basis of these schemes is characterised by a high coherence (the spatial coherence length is 1 - 10 mm and the temporal coherence length is 0.5 - 30 mm at a pulse energy of 40 - 290 mJ). (special issue devoted to the memory of academician a m prokhorov)

  1. Photoinduced absorption and refractive-index induction in phosphosilicate fibres by radiation at 193 nm

    SciTech Connect

    Rybaltovsky, A A; Sokolov, V O; Plotnichenko, V G; Lanin, Aleksei V; Semenov, S L; Dianov, Evgenii M; Gur'yanov, A N; Khopin, V F

    2007-04-30

    The photoinduced room-temperature-stable increase in the refractive index by {approx}5x10{sup -4} at a wavelength of 1.55 {mu}m was observed in phosphosilicate fibres without their preliminary loading with molecular hydrogen. It is shown that irradiation of preliminary hydrogen-loaded fibres by an ArF laser at 193 nm enhances the efficiency of refractive-index induction by an order of magnitude. The induced-absorption spectra of preforms with a phosphosilicate glass core and optical fibres fabricated from them are studied in a broad spectral range from 150 to 5000 nm. The intense induced-absorption band ({approx}800 cm{sup -1}) at 180 nm is found, which strongly affects the formation of the induced refractive index. The quantum-chemical model of a defect related to this band is proposed. (optical fibres)

  2. Three years of clinical experiences on excimer laser angioplasty

    NASA Astrophysics Data System (ADS)

    Viligiardi, Riccardo; Galiberti, Sandra; Pini, Roberto; Salimbeni, Renzo

    1992-03-01

    We report here the experience of our multidisciplinary group that has been working since 1986 on excimer laser angioplasty. After having selected the excimer laser between the available sources because of the negligible lesions left on the residual tissue, we had the purpose to develop a suitable laser and catheter system. Neglecting here all the preliminary studies, we outline only a typical phenomenon related to the energy delivery and useful for the comprehension of the recanalization process. The energy emitted by every single fiber determines, under a certain threshold, independent recanalized channels in the plaque with residual flaps. At a higher energy level the overposition of the lobes, due to the intrinsic divergence, up to the recanalization in a single large channel. In our opinion this condition is crucial in the design of the catheters to obtain an optical instead of a mechanical recanalization. The biological experimentation conducted during the preliminary tests on human hearts obtained from transplants or cadavers, convinced us that the correct goal to pursue was unique laser angioplasty without the need for further balloon dilation.

  3. The interaction of 193 nm excimer laser radiation with single-crystal zinc oxide: Generation of long lived highly excited particles with evidence of Zn Rydberg formation

    SciTech Connect

    Khan, Enamul H.; Langford, S. C.; Dickinson, J. T.; Boatner, L. A.

    2014-08-28

    In past studies, we have observed copious emissions of ionic and atomic Zn from single-crystal ZnO accompanying irradiation of single-crystal ZnO with 193-nm excimer laser irradiation at fluences below the onset of optical breakdown. The Zn{sup +} and ground state Zn° are studied using time-of-flight techniques and are mass selected using a quadrupole mass spectrometer. Simultaneously, we have observed emitted particles that are detectable with a Channeltron electron multiplier but cannot be mass selected. It is a reasonable hypothesis that these particles correspond to a neutral atom or molecule in highly excited long lived states. We provide strong evidence that they correspond to high lying Rydberg states of atomic Zn. We propose a production mechanism involving laser excitation via a two photon resonance excitation of Zn°.

  4. Blunt atrial transseptal puncture using excimer laser in swine

    PubMed Central

    Elagha, Abdalla A.; Kim, Ann H.; Kocaturk, Ozgur; Lederman, Robert J.

    2009-01-01

    Objectives We describe a new approach that may enhance safety of atrial transseptal puncture, using a commercially available laser catheter that is capable of perforation only when energized. We test this approach in swine. Background Despite wide application, conventional needle transseptal puncture continues to risk inadvertent non-target perforation and its consequences. Methods We used a commercial excimer laser catheter (0.9mm Clirpath, Spectranetics). Perforation force was compared in vitro with a conventional Brockenbrough needle. Eight swine underwent laser transseptal puncture under X-ray fluoroscopy steered using a variety of delivery catheters. Results The 0.9mm laser catheter traversed in vitro targets with reduced force compared with a Brockenbrough needle. In vitro, the laser catheter created holes that were 25–30% larger than the Brockenbrough needle. Laser puncture of the atrial septum was successful and accurate in all animals, evidenced by oximetry, pressure, angiography, and necropsy. The laser catheter was steered effectively using a modified Mullins introducer sheath and using two different deflectable guiding catheters. The mean procedure time was 15 ± 6 minutes, with an average 3.0 ± 0.8 seconds of laser activation. There were no adverse sequelae after prolonged observation. Necropsy revealed discrete 0.9mm holes in all septae. Conclusion Laser puncture of the interatrial septum is feasible and safe in swine, using a blunt laser catheter that perforates tissues in a controlled fashion. PMID:17896413

  5. Spectrocolorimetric control of ancient documents postablation with excimer lasers.

    PubMed

    Soares, O D; Miranda, R M; Costa, J L

    1999-10-20

    The application of excimer lasers in ablation, cleaning, and restoration for the recovery of paper and parchment manuscripts is a recently implemented technique. A report of the use of excimer lasers in a cleaning process by which mud was removed from Islamic papers and parchments is presented. It was found that, because of the close proximity of the binding energies of paper to paper and of paper to mud, it was difficult to maintain control of the ablation process. However, the substrate was not affected. Spectrocolorimetry was used as a technique to detect the effects of ablation on cleaned areas of the manuscripts in terms of change in color appearance and severity of aging postablation. The analysis was performed by comparison of treated and untreated areas. Mathematical modeling was developed to define a representative original color and a color-distribution parameter. Improvements in the measuring method were made to yield the required precision for evaluating differences in color produced by laser ablation and to follow the color evolution after ablation. Results show that the effects of restoration, aging, and the environmental conditions can be individually identified under certain conditions. The method has applications in other domains. PMID:18324157

  6. Spectrocolorimetric Control of Ancient Documents Postablation with Excimer Lasers

    NASA Astrophysics Data System (ADS)

    Soares, Olivério D. D.; Miranda, Rosa M.; Costa, José L. C.

    1999-10-01

    The application of excimer lasers in ablation, cleaning, and restoration for the recovery of paper and parchment manuscripts is a recently implemented technique. A report of the use of excimer lasers in a cleaning process by which mud was removed from Islamic papers and parchments is presented. It was found that, because of the close proximity of the binding energies of paper to paper and of paper to mud, it was difficult to maintain control of the ablation process. However, the substrate was not affected. Spectrocolorimetry was used as a technique to detect the effects of ablation on cleaned areas of the manuscripts in terms of change in color appearance and severity of aging postablation. The analysis was performed by comparison of treated and untreated areas. Mathematical modeling was developed to define a representative original color and a color-distribution parameter. Improvements in the measuring method were made to yield the required precision for evaluating differences in color produced by laser ablation and to follow the color evolution after ablation. Results show that the effects of restoration, aging, and the environmental conditions can be individually identified under certain conditions. The method has applications in other domains.

  7. Spectrocolorimetric control of ancient documents postablation with excimer lasers.

    PubMed

    Soares, O D; Miranda, R M; Costa, J L

    1999-10-20

    The application of excimer lasers in ablation, cleaning, and restoration for the recovery of paper and parchment manuscripts is a recently implemented technique. A report of the use of excimer lasers in a cleaning process by which mud was removed from Islamic papers and parchments is presented. It was found that, because of the close proximity of the binding energies of paper to paper and of paper to mud, it was difficult to maintain control of the ablation process. However, the substrate was not affected. Spectrocolorimetry was used as a technique to detect the effects of ablation on cleaned areas of the manuscripts in terms of change in color appearance and severity of aging postablation. The analysis was performed by comparison of treated and untreated areas. Mathematical modeling was developed to define a representative original color and a color-distribution parameter. Improvements in the measuring method were made to yield the required precision for evaluating differences in color produced by laser ablation and to follow the color evolution after ablation. Results show that the effects of restoration, aging, and the environmental conditions can be individually identified under certain conditions. The method has applications in other domains.

  8. Excimer laser modification of thin AlN films

    NASA Astrophysics Data System (ADS)

    Georgiev, D. G.; Rosenberger, L. W.; Danylyuk, Y. V.; Baird, R. J.; Newaz, G.; Shreve, G.; Auner, G.

    2005-08-01

    The potential of excimer laser micro-processing for surface modification of aluminum nitride (AlN) thin films was studied. Thin films of AlN were deposited by plasma-source molecular beam epitaxy (PSMBE) on silicon and sapphire substrates. These films were then exposed to different fluence levels of KrF ( λ = 248 nm) excimer laser radiation in an ambient air environment, and the changes in the film surface were studied by X-ray photoelectron spectroscopy, atomic force microscopy and optical spectrophotometry. The results show that there is a narrow range of laser fluences, just above 1.0 J/cm 2, within which mostly photochemical transformations of the film surface take place. These transformations consist of both oxidation and decomposition to metallic Al of the original film within a very thin sub-surface layer with thickness of several tens of nanometers. No changes were observed at fluences below 1.0 J/cm 2. Above a fluence of 1.0 J/cm 2, severe photomechanical damage consisting of film cracking and detachment was found to accompany the photochemical and photothermal changes in the film.

  9. Three-body dissociations: The photodissociation of dimethyl sulfoxide at 193 nm

    SciTech Connect

    Blank, D.A.; North, S.W.; Stranges, D.

    1997-04-01

    When a molecule with two equivalent chemical bonds is excited above the threshold for dissociation of both bonds, how the rupture of the two bonds is temporally coupled becomes a salient question. Following absorption at 193 nm dimethyl sulfoxide (CH{sub 3}SOCH{sub 3}) contains enough energy to rupture both C-S bonds. This can happen in a stepwise (reaction 1) or concerted (reaction 2) fashion where the authors use rotation of the SOCH{sub 3} intermediate prior to dissociation to define a stepwise dissociation: (1) CH{sub 3}SOCH{sub 3} {r_arrow} 2CH{sub 3} + SO; (2a) CH{sub 3}SOCH{sub 3} {r_arrow} CH{sub 3} + SOCH{sub 3}; and (2b) SOCH{sub 3} {r_arrow} SO + CH{sub 3}. Recently, the dissociation of dimethyl sulfoxide following absorption at 193 nm was suggested to involve simultaneous cleavage of both C-S bonds on an excited electronic surface. This conclusion was inferred from laser induced fluorescence (LIF) and resonant multiphoton ionization (2+1 REMPI) measurements of the internal energy content in the CH{sub 3} and SO photoproducts and a near unity quantum yield measured for SO. Since this type of concerted three body dissociation is very interesting and a rather rare event in photodissociation dynamics, the authors chose to investigate this system using the technique of photofragment translational spectroscopy at beamline 9.0.2.1. The soft photoionization provided by the VUV undulator radiation allowed the authors to probe the SOCH{sub 3} intermediate which had not been previously observed and provided good evidence that the dissociation of dimethyl sulfoxide primarily proceeds via a two step dissociation, reaction 2.

  10. Excimer laser ablation for spatially controlled protein patterns

    NASA Astrophysics Data System (ADS)

    Thissen, Helmut; Hayes, Jason P.; Kingshott, Peter; Johnson, Graham; Harvey, Erol C.; Griesser, Hans J.

    2001-11-01

    Two-dimensional control over the location of proteins on surfaces is desired for a number of applications including diagnostic tests and tissue engineered medical devices. Many of these applications require patterns of specific proteins that allow subsequent two-dimensionally controlled cell attachment. The ideal technique would allow the deposition of specific protein patterns in areas where cell attachment is required, with complete prevention of unspecific protein adsorption in areas where cells are not supposed to attach. In our study, collagen I was used as an example for an extracellular matrix protein known to support the attachment of bovine corneal epithelial cells. An allylamine plasma polymer was deposited on a silicon wafer substrate, followed by grafting of poly(ethylene oxide). Two-dimensional control over the surface chemistry was achieved using a 248 nm excimer laser. Results obtained by XPS and AFM show that the combination of extremely low-fouling surfaces with excimer laser ablation can be used effectively for the production of spatially controlled protein patterns with a resolution of less than 1 micrometers . Furthermore, it was shown that bovine corneal epithelial cell attachment followed exactly the created protein patterns. The presented method is an effective tool for a number of in vitro and in vivo applications.

  11. Excimer laser annealing to fabricate low cost solar cells

    NASA Technical Reports Server (NTRS)

    1984-01-01

    The objective is to show whether or not pulsed excimer laser annealing (PELA) of ion-implanted junctions is a cost effective replacement for diffused junctions in fabricating crystalline silicon solar cells. The preliminary economic analysis completed shows that the use of PELA to fabricate both the front junction and back surface field (BSF) would cost approximately 35 cents per peak watt (Wp), compared to a cost of 15 cents/Wp for diffusion, aluminum BSF and an extra cleaning step in the baseline process. The cost advantage of the PELA process depends on improving the average cell efficiency from 14% to 16%, which would lower the overall cost of the module by about 15 cents/Wp. An optimized PELA process compatible with commercial production is to be developed, and increased cell efficiency with sufficient product for adequate statistical analysis demonstrated. An excimer laser annealing station was set-up and made operational. The first experiment used 248 nm radiation to anneal phosphorus implants in polished and texture-etched silicon.

  12. Fluorine Penetration into Amorphous SiO2 Glass at SF6 Atmosphere Using Q-Switched Nd:YAG and Excimer Laser Irradiations

    NASA Astrophysics Data System (ADS)

    Hamid Reza Dehghanpour,; Parviz Parvin,

    2010-07-01

    At low pressures up to 0.1 mbar, the evidence of simultaneous SF6 gas decomposition and the morphology alteration on amorphous SiO2 glass have been investigated using various laser irradiations at typical wavelengths, i.e., ultraviolet (UV; 193 nm), visible (532 nm), and near infrared (NIR; 1064 nm). The instrumental micro-analysis of the surface were carried out by a number of instruments such as laser breakdown spectroscopy (LIBS), scanning electron microscopy (SEM), Rutherford back scattered spectroscopy (RBS), wavelength dispersive X-ray (WDX) mapping, energy dispersive X-ray (EDX) microanalysis and photo-spectrometry accordingly. It was shown that the excimer laser at shorter wavelengths induces microstructuring on glass mainly due to the surface UV photoablation and the subsequent collisional SF6 decomposition. Conversely, at the longer wavelengths such as the fundamental and second harmonic generation of a Q-switched Nd:YAG laser, the treatment of the target is done based on the micro-plasma induced ablation and the following electron-impact SF6 decomposition.

  13. Design features of excimer lasers for safe operation in industry and medicine

    NASA Astrophysics Data System (ADS)

    Alvi, Z. M.

    The built-in safety aspects of high-energy excimer lasers designed for use in the aerospace industry are discussed as well as those of low-energy excimer lasers applied in surgery and medicine. High-energy lasers require isolated enclosed facilities such as a properly shielded remote room having a variety of interlocks. Moreover, excimers require the use of dangerous gas mixtures, a preionization subsystem, and a Raman cell for frequency down-shifting. The use of a shielded cone or a collimator would reduce the ionizing radiation exposure within the nominal hazard zone region surrounding the laser head.

  14. Phosphorus diffusion in germanium following implantation and excimer laser annealing

    NASA Astrophysics Data System (ADS)

    Wang, Chen; Li, Cheng; Huang, Shihao; Lu, Weifang; Yan, Guangming; Zhang, Maotian; Wu, Huanda; Lin, Guangyang; Wei, Jiangbin; Huang, Wei; Lai, Hongkai; Chen, Songyan

    2014-05-01

    We focus our study on phosphorus diffusion in ion-implanted germanium after excimer laser annealing (ELA). An analytical model of laser annealing process is developed to predict the temperature profile and the melted depth in Ge. Based on the heat calculation of ELA, a phosphorus diffusion model has been proposed to predict the dopant profiles in Ge after ELA and fit SIMS profiles perfectly. A comparison between the current-voltage characteristics of Ge n+/p junctions formed by ELA at 250 mJ/cm2 and rapid thermal annealing at 650 °C for 15 s has been made, suggesting that ELA is promising for high performance Ge n+/p junctions.

  15. Qualification of diode foil materials for excimer lasers

    NASA Astrophysics Data System (ADS)

    Anderson, R. G.; Shurter, R. P.; Rose, E. A.

    The Aurora facility at Los Alamos National Laboratory uses KrF excimer lasers to produce 248 nm light for inertial confinement fusion applications. Diodes in each amplifier produce relativistic electron beams to pump a Kr-F-Ar gas mixture. A foil is necessary to separate the vacuum diode from the laser gas. High tensile strength, high electron transmission, low ultraviolet reflectivity, and chemical compatibility with fluorine have been identified as requisite foil properties. Several different materials were acquired and tested for use as diode foils. Transmission and fluorine compatibility tests were performed using the Electron Gun Test Facility (EGTF) at Los Alamos. Off-line tests of tensile strength and reflectivity were performed. Titanium foil, which is commonly used as a diode foil, was found to generate solid and gaseous fluoride compounds, some of which are highly reactive in contact with water vapor.

  16. Laser excited fluorescence in the cesium-xenon excimer and the cesium dimer

    NASA Technical Reports Server (NTRS)

    Exton, R. J.; Snow, W. L.; Hillard, M. E.

    1978-01-01

    Argon ion laser lines are used to excite fluorescence in a mixture of cesium and xenon. Excimer band fluorescence is observed at higher pressures (about 1 atm) while at lower pressures (several torr) a diffuse fluorescence due to the cesium dimer is observed whose character changes with exciting wavelength. The excimer fluorescence is shown to be directly related to the location of the exciting wavelength within previously measured Cs/Xe line shapes. This fact suggests that the excimer systems may be efficiently pumped through these line shapes. Qualitative energy-level schemes are proposed to explain the observations in both the excimer and dimer systems.

  17. Carbon dioxide gas purification and analytical measurement for leading edge 193nm lithography

    NASA Astrophysics Data System (ADS)

    Riddle Vogt, Sarah; Landoni, Cristian; Applegarth, Chuck; Browning, Matt; Succi, Marco; Pirola, Simona; Macchi, Giorgio

    2015-03-01

    The use of purified carbon dioxide (CO2) has become a reality for leading edge 193 nm immersion lithography scanners. Traditionally, both dry and immersion 193 nm lithographic processes have constantly purged the optics stack with ultrahigh purity compressed dry air (UHPCDA). CO2 has been utilized for a similar purpose as UHPCDA. Airborne molecular contamniation (AMC) purification technologies and analytical measurement methods have been extensively developed to support the Lithography Tool Manufacturers purity requirements. This paper covers the analytical tests and characterizations carried out to assess impurity removal from 3.0 N CO2 (beverage grade) for its final utilization in 193 nm and EUV scanners.

  18. Initial experience with excimer laser angioplasty for coronary ostial stenoses.

    PubMed Central

    Lawson, C S; Cooper, I C; Webb-Peploe, M M

    1993-01-01

    The excimer laser has several potential advantages over conventional balloon angioplasty in the management of stenoses of the native coronary arteries and of the ostia of saphenous vein grafts. Its use in nine patients, eight of whom were classed as high risk, is described. Four lesions involved the ostia of saphenous vein grafts, three of protected left main stems, and two of native right coronary arteries. Stand alone laser was used in seven cases and laser with additional balloon angioplasty was used in two vein graft stenoses. Acute laser success was achieved in all cases, with a mean reduction of stenosis from 82% to 34% after laser alone and to 28% when balloon angioplasty was used as well. One patient died during laser angioplasty to a non-ostial lesion (procedural success rate 89%) and a second died ten weeks after the procedure. In one patient recurrent angina developed (clinical recurrence rate 25%) and restenosis was confirmed on angiography. Follow up angiography was also performed on the other six surviving patients, all of whom were symptom free and none of whom showed evidence of significant restenosis (restenosis rate 14%). With a mean follow up of 19.7 months the overall success rate was 67%. Images PMID:8461226

  19. Nd:YAG laser cleaning of ablation debris from excimer-laser-ablated polyimide

    NASA Astrophysics Data System (ADS)

    Gu, Jianhui; Low, Jason; Lim, Puay K.; Lim, Pean

    2001-10-01

    In the processing of excimer laser ablation of nozzles on polyimide in air, both gases like CO2, CO and HCN and solid debris including C2 approximately C12 are produced in laser ablation area. In this paper, we reported for the first time a Nd:YAG laser cleaning of ablation debris generated in excimer laser ablation of polyimide. It demonstrated effective cleaning with the advantages of shortening cleaning cycle time and simplifying cleaning process. The laser used for the cleaning was a Q-switched and frequency doubled Nd:YAG laser with wavelength of 532 nm and repetition rate of 10 Hz. The laser cleaning effect was compared with conventional plasma ashing. AFM measurement showed that the Nd:YAG laser cleaning had no damage to the substrate. XPS results indicated that the polyimide surface cleaned with laser beam had a lower oxygen/carbon ratio than that of plasma ashing. The study shows that frequency doubled Nd:YAG laser cleaning is effective in ablation debris removal from excimer laser ablated polyimide.

  20. Enhancing the absorption of aluminum alloys by irradiation with an excimer laser

    NASA Astrophysics Data System (ADS)

    Scott, Graeme; Williams, Stewart W.; Morgan, P. C.; Dempster, M.

    1994-09-01

    Aluminum alloys typically have as received reflectivities of 85 - 95% at 10.6 micrometers making many laser processes difficult or impossible. These values have been reduced to as low as 1 - 2% by optimizing the processing parameters of an excimer laser used to modify the surface structure of 8090 and 2024 Al alloys and pure Al prior to their exposure to a CO2 laser. The most significant excimer processing parameters were found to be the scan pattern of the excimer beam, the number of pulses per scan pattern step (dwell time) and the laser fluence. Optimizing these parameters allows the production of a rough oxide rich surface and reflectivities at 10.6 micrometers routinely below 10%. Preliminary results are presented from the practical implementation of the technique to a dual wavelength (CO2/excimer) cutting system. Increases in cutting speeds of between 2 - 4 times are demonstrated with 8090 Al-Li alloy using dual wavelength laser processing.

  1. A Medical Excimer Laser System For Corneal Surgery And Laser Angioplasty

    NASA Astrophysics Data System (ADS)

    Caro, R. G.; Muller, D. F.

    1987-03-01

    The authors report the design criteria and performance of the ExciMeda UV200 medical excimer laser system. A beam delivery system for controlled photoablative machining of variable power optical lenses in organic material is described. Some of the potential applications of this delivery system in corneal surgery are presented. The uses of the UV200 laser system in other areas of medical research are discussed and, in particular, its application i the field of laser angioplasty is outlined. There has been considerable interest recently in the use of excimer lasers in a variety of fields in medicine. The ultraviolet, high peak power beam emitted by an excimer laser has been shown to be capable of producing very clean and precise cuts in organic material. In particular, cuts can be made in biological material with minimal disturbance of the material adjacent to the cut. For example, tissue can be cut in such a way as to produce negligible charring or vacuolization in adjacent areas of the tissue. This is in marked contrast to the results when organic material is cut by a continuous wave laser such as an Argon ion laser, or c.w. CO2 laser. The potential applications in clinical settings which are suggested by this feature of the interaction of tissue with excimer laser radiation have been largely unrealized outside the laboratory as yet. A primary reason for this is that, until recently, excimer lasers have been available only in a form that was suitable for the scientific laboratory. These lasers required large amounts of space, were not mobile once installed, and required con nection to external sources of water cooling, vacuum exhaust, a high current electrical supply, and a variety of gas bottles including the gases F2 and C12. These systems were not designed with clinical applications in mind, and thus provided unnecessary performance features at the cost of added complexity. They also posed potential electrical and gaseous safety hazards not suitable for a

  2. Photodissociation of CF 3Br at 193 nm: evidence for a distorted dissociation pathway

    NASA Astrophysics Data System (ADS)

    Thelen, M.-A.; Felder, P.

    1996-03-01

    The photodissociation of CF 3Br at 193 nm has been studied by photofragment translational spectroscopy. The primary dissociation step leads to the formation of CF 3 radicals and Br atoms in the electronic ground state and in the spin-orbit excited state, with relative quantum yields φ( Br) = 0.47 ± 0.05 and φ( Br∗) = 0.53 ∓ 0.05 , respectively. At higher laser fluences the slowest and internally hottest CF 3 radicals undergo photoinduced secondary dissociation to CF 2 + F. The anisotropy parameters derived from measurements with a polarized photolysis laser are β( Br) = 1.8 ± 0.2 and β( Br∗) = 0.7 ± 0.3 . The experimental results are discussed in terms of a model that involves the initial excitation of two repulsive electronic states 3Q 0 and 1Q 1 via transitions polarized parallel and perpendicular to the CBr bond, respectively. From the observed β parameters it is concluded that in roughly two thirds of the molecules dissociation proceeds via a distorted geometry in which the molecular symmetry C 3v is reduced to C s through the effect of e-type bending vibrations.

  3. Product channels in the 193-nm photodissociation of HCNO (fulminic acid)

    NASA Astrophysics Data System (ADS)

    Feng, Wenhui; Hershberger, John F.

    2016-06-01

    IR diode laser spectroscopy was used to detect the products of HCNO (fulminic acid) photolysis at 193 nm. Six product channels are energetically possible at this photolysis wavelength: O + HCN, H + NCO/CNO, CN + OH, CO + NH, NO + CH and HNCO. In some experiments, isotopically labeled 15N18O, C2D6 or C6H12 reagents were included into the photolysis mixture in order to suppress and/or redirect possible secondary reactions. HCN, OC18O, 15N15NO, CO, DCN and HNCO molecules were detected upon laser photolysis of HCNO/reagents/buffer gas mixtures. Analysis of the yields of product molecules leads to the following photolysis quantum yields: ϕ1a (O + HCN) = 0.38 ± 0.04, ϕ1b (H + (NCO)) = 0.07 ± 0.02, ϕ1c (CN + OH) = 0.24 ± 0.03, ϕ1d (CO + NH(a1Δ)) < 0.22 ± 0.1, ϕ1e (HNCO) = 0.02 ± 0.01 and ϕ1f (CH + NO) = 0.21 ± 0.1, respectively.

  4. Excimer laser crystallization of amorphous silicon on metallic substrate

    NASA Astrophysics Data System (ADS)

    Delachat, F.; Antoni, F.; Slaoui, A.; Cayron, C.; Ducros, C.; Lerat, J.-F.; Emeraud, T.; Negru, R.; Huet, K.; Reydet, P.-L.

    2013-06-01

    An attempt has been made to achieve the crystallization of silicon thin film on metallic foils by long pulse duration excimer laser processing. Amorphous silicon thin films (100 nm) were deposited by radiofrequency magnetron sputtering on a commercial metallic alloy (N42-FeNi made of 41 % of Ni) coated by a tantalum nitride (TaN) layer. The TaN coating acts as a barrier layer, preventing the diffusion of metallic impurities in the silicon thin film during the laser annealing. An energy density threshold of 0.3 J cm-2, necessary for surface melting and crystallization of the amorphous silicon, was predicted by a numerical simulation of laser-induced phase transitions and witnessed by Raman analysis. Beyond this fluence, the melt depth increases with the intensification of energy density. A complete crystallization of the layer is achieved for an energy density of 0.9 J cm-2. Scanning electron microscopy unveils the nanostructuring of the silicon after laser irradiation, while cross-sectional transmission electron microscopy reveals the crystallites' columnar growth.

  5. A Comparison of Photoresist Resolution Metrics using 193 nm and EUV Lithography

    SciTech Connect

    Jones, Juanita; Pathak, Piyush; Wallow, Thomas; LaFontaine, Bruno; Deng, Yunfei; Kim, Ryoung-han; Kye, Jongwook; Levinson, Harry; Naulleau, Patrick; Anderson, Chris

    2007-08-20

    Image blur due to chemical amplification represents a fundamental limit to photoresist performance and manifests itself in many aspects of lithographic performance. Substantial progress has been made in linking image blur with simple resolution metrics using EUV lithography. In this presentation, they examine performance of 193 nm resist and EUV resist systems using modulation transfer function, corner rounding, and other resolution metrics. In particular, they focus on cross-comparisons in which selected EUV and 193 nm resist are evaluated using both EUV and 193 nm lithography. Simulation methods linking 193 nm and EUV performance will be described as well. Results from simulation indicate that image blur in current generation 193 nm photoresists is comparable to that of many EUV resists, but that ultra-low diffusion materials designs used in very high resolution EUV resists can result in substantially lower blur. In addition to detailing correlations between EUV and 193 nm experimental methods, they discuss their utility in assessing performance needs of future generation photoresists.

  6. Studies in fiber guided excimer laser surgery for cutting and drilling bone and meniscus.

    PubMed

    Dressel, M; Jahn, R; Neu, W; Jungbluth, K H

    1991-01-01

    Our experiments on transmitting high-power excimer laser pulses through optical fibers and our investigations on excimer laser ablation of hard tissue show the feasibility of using the excimer laser as an additional instrument in general and accident surgery involving minimal invasive surgery. By combining XeCl-excimer lasers and tapered fused silica fibers we obtained output fluences up to 32 J/cm2 and ablation rates of 3 microns/pulse of hard tissue. This enables us to cut bone and cartilage in a period of time which is suitable for clinical operations. Various experiments were carried out on cadavers in order to optimize the parameters of the excimer laser and fibers: e.g., wavelength, pulse duration, energy, repetition rate, fiber core diameter. The surfaces of the cut tissue are comparable to cuts with conventional instruments. No carbonisation was observed. The temperature increase is below 40 degrees C in the tissue surrounding the laser spot. The healing rate of an excimer laser cut is not slower than mechanical treatments; the quality is comparable.

  7. UV laser micromachining of silicon, indium phosphide and lithium niobate for telecommunications applications

    NASA Astrophysics Data System (ADS)

    Greuters, Jako; Rizvi, Nadeem H.

    2003-03-01

    The laser micromachining characteristics of indium phosphide, lithium niobate and silicon have been characterised using a 355nm neodymium vanadate laser and 193nm and 248nm excimer lasers. Etch rates for these materials are presented at the different laser wavelengths. High quality cutting of the three materials is demonstrated with the 355nm laser and an excimer laser mask projection method is subsequently used to micromachine precision V-grooves as fibre placement structures. Silicon microbenches, used for the integration of multiple-function devices, are also produced using the 355nm laser.

  8. Experimental measurements of multiphoton enhanced air breakdown by a subthreshold intensity excimer laser

    SciTech Connect

    Way, Jesse; Hummelt, Jason; Scharer, John

    2009-10-15

    This work presents density, spectroscopic temperature, and shockwave measurements of laser induced breakdown plasma in atmospheric air by subthreshold intensity (5.5x10{sup 9} W/cm{sup 2}) 193 nm laser radiation. Using molecular spectroscopy and two-wavelength interferometry, it is shown that substantial ionization (>10{sup 16} cm{sup -3}) occurs that is not predicted by collisional cascade (CC) breakdown theory. While the focused laser irradiance is three orders of magnitude below the theoretical collisional breakdown threshold, the substantial photon energy at 193 nm (6.42 eV/photon) compared with the ionization potential of air (15.6 eV) significantly increases the probability of multiphoton ionization effects. By spectroscopically monitoring the intensity of the N{sub 2}{sup +} first negative system (B {sup 2}SIGMA{sub u}{sup +}-X {sup 2}SIGMA{sub g}{sup +}) vibrational bandhead (v{sup '}=0,v{sup ''}=0) at low pressure (20 Torr) where multiphoton effects are dominant, it is shown that two photon excitation, resonant enhanced multiphoton ionization is the primary mechanism for quantized ionization of N{sub 2} to the N{sub 2}{sup +}(B {sup 2}SIGMA{sub u}{sup +}) state. This multiphoton effect then serves to amplify the collisional breakdown process at higher pressures by electron seeding, thereby reducing the threshold intensity from that required via CC processes for breakdown and producing high density laser formed plasmas.

  9. Enhancement of adhesion on polyether etherketone (PEEK) by excimer laser treatments

    SciTech Connect

    Sadras, B.; Laurens, P.; Decobert, F.; Arefi, F.; Amouroux, J.

    1996-12-31

    Due to its important chemical stability, polyether-etherketone (PEEK) thermoplastic presents poor adhesive bonding properties. The possibilities of enhancing the PEEK adhesive properties by excimer laser pretreatments are investigated. Surface modifications are characterized, depending on the experimental working conditions, using SEM, profilometry, XPS, wettability and mechanical tests. Lap shear strength values show that excimer laser irradiation improve PEEK adhesion bonding properties for all treatment conditions (energy, atmosphere).

  10. Hydrogen atom formation from the photodissociation of water ice at 193 nm.

    PubMed

    Yabushita, Akihiro; Hashikawa, Yuichi; Ikeda, Atsushi; Kawasaki, Masahiro; Tachikawa, Hiroto

    2004-03-15

    The TOF spectra of photofragment hydrogen atoms from the 193 nm photodissociation of amorphous ice at 90-140 K have been measured. The spectra consist of both a fast and a slow components that are characterized by average translational energies of 2k(B)T(trans)=0.39+/-0.04 eV (2300+/-200 K) and 0.02 eV (120+/-20 K), respectively. The incident laser power dependency of the hydrogen atom production suggests one-photon process. The electronic excitation energy of a branched cluster, (H(2)O)(6+1), has been theoretically calculated, where (H(2)O)(6+1) is a (H(2)O)(6) cyclic cluster attached by a water molecule with the hydrogen bond. The photoabsorption of this branched cluster is expected to appear at around 200 nm. The source of the hydrogen atoms is attributed to the photodissociation of the ice surface that is attached by water molecules with the hydrogen bond. Atmospheric implications are estimated for the photodissociation of the ice particles (Noctilucent clouds) at 190-230 nm in the region between 80 and 85 km altitude.

  11. A survey of advanced excimer optical imaging and lithography

    NASA Astrophysics Data System (ADS)

    Matsumoto, Koichi; Suwa, Kyoichi

    1998-11-01

    The first item discussed in this paper is to estimate the future trend regarding minimum geometry and the optical parameters, such as NA and wavelength. Simulations based on aerial images are performed for the estimation. The resolution limit is defined as a minimum feature size which retains practical depth of focus (DOF). Pattern geometry is classified into two categories, which are dense lines and isolated lines. Available wavelengths are assumed to be KrF excimer laser (λ=248 nm), ArF excimer laser (λ=193 nm) and F2 excimer laser (λ=157 nm). Based upon the simulation results, the resolution limit is estimated for each geometry and each wavelength. The second item is to survey ArF optics. At present, the ArF excimer laser is regarded as one of the most promising candidates as a next-generation light source. Discussions are ranging over some critical issues. The lifetime of ArF optics supposedly limited by the radiation compaction of silica glass is estimated in comparison with KrF optics. Availability of calcium fluoride (CaF2) is also discussed. As a designing issue, a comparative study is made about the optical configuration, dioptric or catadioptric. In the end, our resist-based performance is shown.

  12. Advanced excimer laser technologies enable green semiconductor manufacturing

    NASA Astrophysics Data System (ADS)

    Fukuda, Hitomi; Yoo, Youngsun; Minegishi, Yuji; Hisanaga, Naoto; Enami, Tatsuo

    2014-03-01

    "Green" has fast become an important and pervasive topic throughout many industries worldwide. Many companies, especially in the manufacturing industries, have taken steps to integrate green initiatives into their high-level corporate strategies. Governments have also been active in implementing various initiatives designed to increase corporate responsibility and accountability towards environmental issues. In the semiconductor manufacturing industry, there are growing concerns over future environmental impact as enormous fabs expand and new generation of equipments become larger and more powerful. To address these concerns, Gigaphoton has implemented various green initiatives for many years under the EcoPhoton™ program. The objective of this program is to drive innovations in technology and services that enable manufacturers to significantly reduce both the financial and environmental "green cost" of laser operations in high-volume manufacturing environment (HVM) - primarily focusing on electricity, gas and heat management costs. One example of such innovation is Gigaphoton's Injection-Lock system, which reduces electricity and gas utilization costs of the laser by up to 50%. Furthermore, to support the industry's transition from 300mm to the next generation 450mm wafers, technologies are being developed to create lasers that offer double the output power from 60W to 120W, but reducing electricity and gas consumption by another 50%. This means that the efficiency of lasers can be improve by up to 4 times in 450mm wafer production environments. Other future innovations include the introduction of totally Heliumfree Excimer lasers that utilize Nitrogen gas as its replacement for optical module purging. This paper discusses these and other innovations by Gigaphoton to enable green manufacturing.

  13. Overview of recent advances in excimer laser technology at Los Alamos

    SciTech Connect

    Bigio, I.J.; Sze, R.C.; Taylor, A.J.; Gibson, R.B.

    1988-01-01

    From among the areas of excimer laser development at Los Alamos two are selected for further discussion: ultra-high brightness excimer laser systems and discharge-pumped XeF(C..-->..A) lasers operating in the blue-green portion of the spectrum. Two different high brightness systems are described. One is based on small-aperture KrF amplifiers, while the other is based on a large-aperture XeCl amplifier. The XeF(C..-->..A) laser is tunable from 435 to 525 nm, and may one day become a viable alternative to pulsed dye lasers for many applications. 14 refs., 4 figs.

  14. Excimer lasers. (Latest citations from the US Patent bibliographic file with exemplary claims). Published Search

    SciTech Connect

    1995-01-01

    The bibliography contains citations of selected patents concerning the design and development of excimer laser devices, apparatus, and systems for use in industrial and medical applications. Citations discuss ablation and lithography technology, compact excimer lasers, laser gas purification and recycling, microwave and discharge excited lasers, and rare gas halides. Applications are considered, including metallization and patterning, manufacturing of ophthalmic lenses, profiling of optical surfaces, treatment of engine parts, prosthetic surgery, and corneal ablation. (Contains a minimum of 106 citations and includes a subject term index and title list.)

  15. Excimer laser surgery for myopia and myopic astigmatism.

    PubMed

    Hadden, O B; Morris, A T; Ring, C P

    1995-08-01

    Photorefractive keratectomy using the Summit Excimer Laser has been carried out on 1333 eyes with myopia or myopic astigmatism which have been followed up for six months or longer. Of those, 607 have been followed up for one year. Of the eyes with myopia or myopic astigmatism of up to 3 dioptres spherical equivalent, at one year 85.6% had unaided vision of 6/6, 97.2% 6/9 or better, and 99.4% 6/12 or better. Of the eyes between -3.25 and -6.00 dioptres spherical equivalent at one year 72.1% achieved 6/6 vision unaided, 88.8% 6/9 or better, and 94.2% 6/12 or better. Of the eyes between -6.25 and -10.00 dioptres, at one year 49.6% achieved 6/6 vision unaided, 76.1% 6/9 or better and 88.0% 6/12 or better. To achieve these figures, 28% of the patients had astigmatic keratotomy, either two or three weeks before photorefractive keratectomy, or at the same time as photorefractive keratectomy. Photorefractive keratectomy is as predictable as radial keratotomy in eyes of under 6 dioptres myopia, but is more predictable than radial keratotomy in higher myopia. Photorefractive keratectomy has the advantages of leaving an eye which is structurally sound, and without diurnal variation of focusing. PMID:8534441

  16. Absorption coefficients for water vapor at 193 nm from 300 to 1073 K

    NASA Technical Reports Server (NTRS)

    Kessler, W. J.; Carleton, K. L.; Marinelli, W. J.

    1993-01-01

    Measurements of the water absorption coefficient at 193 nm from 300 to 1073 K are reported. The measurements were made using broadband VUV radiation and a monochromator-based detection system. The water vapor was generated by a saturator and metered into a flowing, 99 cm absorption cell via a water vapor mass flow meter. The 193 nm absorption coefficient measurements are compared to room temperature and high temperature shock tube measurements with good agreement. The absorption can be parameterized by a nu3 vibrational mode reaction coordinate and the thermal population of the nu3 mode.

  17. KrF excimer laser precision machining of hard and brittle ceramic biomaterials.

    PubMed

    Huang, Yao-Xiong; Lu, Jian-Yi; Huang, Jin-Xia

    2014-06-01

    KrF excimer laser precision machining of porous hard-brittle ceramic biomaterials was studied to find a suitable way of machining the materials into various desired shapes and sizes without distorting their intrinsic structure and porosity. Calcium phosphate glass ceramics (CPGs) and hydroxyapatite (HA) were chosen for the study. It was found that KrF excimer laser can cut both CPGs and HA with high efficiency and precision. The ablation rates of CPGs and HA are respectively 0.081 µm/(pulse J cm(-2)) and 0.048 µm/(pulse  J cm(-2)), while their threshold fluences are individually 0.72 and 1.5 J cm(-2). The cutting quality (smoothness of the cut surface) is a function of laser repetition rate and cutting speed. The higher the repetition rate and lower the cutting speed, the better the cutting quality. A comparison between the cross sections of CPGs and HA cut using the excimer laser and using a conventional diamond cutting blade indicates that those cut by the excimer laser could retain their intrinsic porosity and geometry without distortion. In contrast, those cut by conventional machining had distorted geometry and most of their surface porosities were lost. Therefore, when cutting hard-brittle ceramic biomaterials to prepare scaffold and implant or when sectioning them for porosity evaluation, it is better to choose KrF excimer laser machining.

  18. KrF excimer laser precision machining of hard and brittle ceramic biomaterials.

    PubMed

    Huang, Yao-Xiong; Lu, Jian-Yi; Huang, Jin-Xia

    2014-06-01

    KrF excimer laser precision machining of porous hard-brittle ceramic biomaterials was studied to find a suitable way of machining the materials into various desired shapes and sizes without distorting their intrinsic structure and porosity. Calcium phosphate glass ceramics (CPGs) and hydroxyapatite (HA) were chosen for the study. It was found that KrF excimer laser can cut both CPGs and HA with high efficiency and precision. The ablation rates of CPGs and HA are respectively 0.081 µm/(pulse J cm(-2)) and 0.048 µm/(pulse  J cm(-2)), while their threshold fluences are individually 0.72 and 1.5 J cm(-2). The cutting quality (smoothness of the cut surface) is a function of laser repetition rate and cutting speed. The higher the repetition rate and lower the cutting speed, the better the cutting quality. A comparison between the cross sections of CPGs and HA cut using the excimer laser and using a conventional diamond cutting blade indicates that those cut by the excimer laser could retain their intrinsic porosity and geometry without distortion. In contrast, those cut by conventional machining had distorted geometry and most of their surface porosities were lost. Therefore, when cutting hard-brittle ceramic biomaterials to prepare scaffold and implant or when sectioning them for porosity evaluation, it is better to choose KrF excimer laser machining. PMID:24784833

  19. Atomic force microscopy analysis of human cornea surface after UV (λ=266 nm) laser irradiation

    NASA Astrophysics Data System (ADS)

    Spyratou, E.; Makropoulou, M.; Moutsouris, K.; Bacharis, C.; Serafetinides, A. A.

    2009-07-01

    Efficient cornea reshaping by laser irradiation for correcting refractive errors is still a major issue of interest and study. Although the excimer laser wavelength of 193 nm is generally recognized as successful in ablating corneal tissue for myopia correction, complications in excimer refractive surgery leads to alternative laser sources and methods for efficient cornea treatment. In this work, ablation experiments of human donor cornea flaps were conducted with the 4th harmonic of an Nd:YAG laser, with different laser pulses. AFM analysis was performed for examination of the ablated cornea flap morphology and surface roughness.

  20. Excimer laser debridement of necrotic erosions of skin without collateral damage

    NASA Astrophysics Data System (ADS)

    Wynne, James J.; Felsenstein, Jerome M.; Trzcinski, Robert; Zupanski-Nielsen, Donna; Connors, Daniel P.

    2011-07-01

    Pulsed ArF excimer laser radiation at 6.4 eV, at fluence exceeding the ablation threshold, will debride burn eschar and other dry necrotic erosions of the skin. Debridement will cease when sufficiently moist viable tissue is exposed, due to absorption by aqueous chloride ions (Cl-) through the non-thermal process of electron photodetachment, thereby inhibiting collateral damage to the viable tissue. ArF excimer laser radiation debrides/ablates ~1 micron of tissue with each pulse. While this provides great precision in controlling the depth of debridement, the process is relatively time-consuming. In contrast, XeCl excimer laser radiation debrides ~8 microns of tissue with each pulse. However the 4.0 eV photon energy of the XeCl excimer laser is insufficient to photodetach an electron from a Cl- ion, so blood or saline will not inhibit debridement. Consequently, a practical laser debridement system should incorporate both lasers, used in sequence. First, the XeCl excimer laser would be used for accelerated debridement. When the necrotic tissue is thinned to a predetermined thickness, the ArF excimer laser would be used for very precise and well-controlled debridement, removing ultra-thin layers of material with each pulse. Clearly, the use of the ArF laser is very desirable when debriding very close to the interface between necrotic tissue and viable tissue, where the overall speed of debridement need not be so rapid and collateral damage to viable tissue is undesirable. Such tissue will be sterile and ready for further treatment, such as a wound dressing and/or a skin graft.

  1. KrF-excimer laser pretreatment and metallization of polymers

    NASA Astrophysics Data System (ADS)

    Weichenhain, R.; Wesner, D. A.; Pfleging, W.; Horn, H.; Kreutz, E. W.

    1997-02-01

    Metal film adhesion to polymers can be improved by pretreatment with UV-laser radiation before metal deposition. Chemical changes associated with irradiation are investigated for polyimide (PI) and polybutylene terephthalate (PBT) surfaces. Irradiated surfaces are coated with aluminum films ≤10 nm in thickness, enabling the effects of irradiation on the metal/polymer interface to be studied. Irradiation is done in air with KrF-excimer laser radiation (λ=248 nm) at fluences per pulse ≤600 mJ/cm2. The threshold fluence εt for material removal is determined by profilometry measurements of etched features, and the chemical properties of the polymer and the metal/polymer interface are studied with X-ray photoelectron spectroscopy (XPS). Aluminum films are thermally evaporated in situ in the XPS spectrometer. Irradiation of PI at fluences near εt (41 mJ/cm2) results in loss of oxygen and opening of the imide ring, resulting in doubly bonded nitrogen species. After evaporation of aluminum the carbonyl (CO) C1s XPS signal is reduced in intensity, and both Al0 and Al3+ are found, the latter being located at the interface. In comparison to unirradiated areas, irradiated areas have more aluminum in total and a higher proportion of interfacial Al3+ species, indicating an increase in the concentration of metal binding sites. Although for PBT the O to C ratio also decreases with irradiation at fluences near εt (38 mJ/cm2), changes in the amounts of Al0 or Al3+ for irradiated areas in comparison to unirradiated areas are much smaller than for PI and consist mainly of a slight enhancement of Al0 for films deposited on irradiated surfaces.

  2. Study of barrier coats for application in immersion 193-nm lithography

    NASA Astrophysics Data System (ADS)

    Houlihan, Francis; Kim, Wookyu; Sakamuri, Raj; Hamilton, Keino; Dimerli, Alla; Abdallah, David; Romano, Andrew; Dammel, Ralph R.; Pawlowski, Georg; Raub, Alex; Brueck, Steve

    2005-05-01

    We will describe our barrier coat approach for use in immersion 193 nm lithography. These barrier coats may act as either simple barriers providing protection against loss of resist components into water or in the case of one type of these formulations which have a refractive index at 193 nm which is the geometric mean between that of the resist and water provide, also top antireflective properties. Either type of barrier coat can be applied with a simple spinning process compatible with PGMEA based resin employing standard solvents such as alcohols and be removed during the usual resist development process with aqueous 0.26 N TMAH. We will discuss both imaging results with these materials on acrylate type 193 nm resists and also show some fundamental studies we have done to understand the function of the barrier coat and the role of differing spinning solvents and resins. We will show LS (55 nm) and Contact Hole (80 nm) resolved with a 193 nm resist exposed with the interferometric tool at the University of New Mexico (213 nm) with and without the use of a barrier coat.

  3. Excimer lasers in cardiovascular surgery: Ablation products and photoacoustic spectrum of the arterial wall

    NASA Astrophysics Data System (ADS)

    Singleton, D. L.; Paraskevopoulos, G.; Jolly, G. S.; Irwin, R. S.; McKenney, D. J.; Nip, W. S.; Farrell, E. M.; Higginson, L. A. J.

    1986-03-01

    Photoacoustic spectra of normal artery wall and of atherosclerotic plaque are reported. Threshold fluences for ablative formation of gaseous products for each excimer laser line were calculated from the photoacoustic spectrum and the measured threshold for the KrF laser.

  4. Mesoscale Laser Processing using Excimer and Short-Pulse Ti: Sapphire Lasers

    SciTech Connect

    Shirk, M D; Rubenchik, A M; Gilmer, G H; Stuart, B C; Armstrong, J P; Oberhelman, S K; Baker, S L; Nikitin, A J; Mariella, R P

    2003-07-28

    Targets to study high-energy density physics and inertial confinement fusion processes have very specific and precise tolerances that are pushing the state-of-the-art in mesoscale microsculpting technology. A significant effort is required in order to advance the capabilities to make these targets with very challenging geometries. Ultrashort pulsed (USP) Ti:Sapphire lasers and excimer lasers are proving to be very effective tools in the fabrication of the very small pieces that make up these targets. A brief description of the dimensional and structural requirements of these pieces will be presented, along with theoretical and experimental results that demonstrate to what extent these lasers are achieving the desired results, which include sub-{mu}m precision and RMS surface values well below 100 nm. This work indicates that excimer lasers are best at sculpting the polymer pieces and that the USP lasers work quite well on metal and aerogel surfaces, especially for those geometries that cannot be produced using diamond machining and where material removal amounts are too great to do with focused ion beam milling in a cost effective manner. In addition, the USP laser may be used as part of the procedure to fill target capsules with fusion fuel, a mixture of deuterium and tritium, without causing large perturbations on the surface of the target by keeping holes drilled through 125 {micro}m of beryllium below 5 {micro}m in diameter.

  5. Excimer laser annealing: A gold process for CZ silicon junction formation

    NASA Technical Reports Server (NTRS)

    Wong, David C.; Bottenberg, William R.; Byron, Stanley; Alexander, Paul

    1987-01-01

    A cold process using an excimer laser for junction formation in silicon has been evaluated as a way to avoid problems associated with thermal diffusion. Conventional thermal diffusion can cause bulk precipitation of SiOx and SiC or fail to completely activate the dopant, leaving a degenerate layer at the surface. Experiments were conducted to determine the feasibility of fabricating high quality p-n junctions using a pulsed excimer laser for junction formation at remelt temperature with ion-implanted surfaces. Solar-cell efficiency exceeding 16 percent was obtained using Czochralski single-crystal silicon without benefit of back surface field or surface passivation. Characterization shows that the formation of uniform, shallow junctions (approximately 0.25 micron) by excimer laser scanning preserves the minority carrier lifetime that leads to high current collection. However, the process is sensitive to initial surface conditions and handling parameters that drive the cost up.

  6. Early and late healing responses of normal canine artery to excimer laser irradiation.

    PubMed

    Prevosti, L G; Leon, M B; Smith, P D; Dodd, J T; Bonner, R F; Robinowitz, M; Clark, R E; Virmani, R

    1988-07-01

    Acute in vitro histologic studies have shown that the pulsed xenon chloride excimer laser causes precise microablation without the surrounding thermal tissue injury associated with frequently used continuous-wave lasers such as the argon, carbon dioxide, and neodymium:yttrium aluminum garnet lasers. However, the in vivo healing response of artery wall to excimer laser injury is not known. Accordingly, a xenon chloride excimer laser (308 nm, 40 nsec pulse width, 39 mJ/mm2/pulse) was transmitted via a 600 micron fused silica fiber to create 420 craters of varying depths (30 to 270 micron) in 21 normal canine femoral and carotid arteries. At 2 hours, 2 days, 10 days, and 42 days after excimer laser ablation, the artery segments were perfusion fixed in situ and analyzed by light, scanning, and transmission electron microscopy. At 2 hours, craters were covered by a carpet of platelets and entrapped red blood cells. Fibrin and exposed collagen fibers were seen at the crater base. There was a sharp demarcation of the crater-artery wall interface without lateral laser tissue injury. At 2 days, adherent platelets persisted with thrombus covering the base of the craters. Early healing responses were present, consisting of polymorphonucleated leukocytes and new endothelial cells, which extended over the crater rims. At 10 days, no thrombi were seen, and healing continued with almost complete reendothelialization. Macrophages, fibroblasts, fibrin, and entrapped red blood cells were present below the reendothelialized surface. At 42 days, healing was complete with obliteration of the craters by fibrointimal ingrowth. The surface was completely covered by a smooth monolayer of axially aligned endothelial cells. There were no aneurysms or surface hyperplastic responses. These favorable healing responses in normal canine arteries suggest that pulsed lasers with high tissue absorption coefficients, such as the xenon chloride excimer laser, may be suitable energy sources for

  7. A comparison of the characteristics of excimer and femtosecond laser ablation of acrylonitrile butadiene styrene (ABS)

    NASA Astrophysics Data System (ADS)

    See, Tian Long; Liu, Zhu; Li, Lin; Zhong, Xiang Li

    2016-02-01

    This paper presents an investigation on the ablation characteristics of excimer laser (λ = 248 nm, τ = 15 ns) and femtosecond laser (λ = 800 nm, τ = 100 fs) on ABS polymer sheets. The laser-material interaction parameters (ablation threshold, optical penetration depth and incubation factor) and the changes in material chemical properties were evaluated and compared between the two lasers. The work shows that the ablation threshold and effective optical penetration depth values are dependent on the wavelength of laser beam (photon energy) and the pulse width. The ablation threshold value is lower for the excimer laser ablation of ABS (Fth = 0.087 J/cm2) than that for the femtosecond laser ablation of ABS (Fth = 1.576 J/cm2), demonstrating a more dominating role of laser wavelength than the pulse width in influencing the ablation threshold. The ablation depth versus the logarithmic scale of laser fluence shows two linear regions for the fs laser ablation, not previously known for polymers. The effective optical penetration depth value is lower for excimer laser ablation (α-1 = 223 nm) than that for femtosecond laser ablation (α-1 = 2917 nm). The ablation threshold decreases with increasing number of pulses (NOP) due to the chain scission process that shortens the polymeric chains, resulting in a weaker polymeric configuration and the dependency is governed by the incubation factor. Excimer laser treatment of ABS eliminates the Cdbnd C bond completely through the chain scission process whereas Cdbnd C bond is partially eliminated through the femtosecond laser treatment due to the difference in photon energy of the two laser beams. A reduction in the Cdbnd C bond through the chain scission process creates free radical carbons which then form crosslinks with each other or react with oxygen, nitrogen and water in air producing oxygen-rich (Csbnd O and Cdbnd O bond) and nitrogen-rich (Csbnd N) functional groups.

  8. The mechanism of the surface morphology transformation for the carbon nanotube thin film irradiated via excimer laser

    SciTech Connect

    Chien, Yun-Shan; Lee, I-Che; Yang, Po-Yu; Wang, Chao-Lung; Tsai, Wan-Lin; Wang, Kuang-Yu; Chou, Chia-Hsin; Cheng, Huang-Chung

    2013-05-06

    In this paper, the surface morphology transformation of the sprayed carbon nanotube (CNT) thin film irradiated with the excimer laser has been systematically investigated. Under the excimer-laser irradiation, two phenomena, including the annealing and ablation effects, were found to be dependent on the incident laser energy and overlapping ratios. Moreover, the extremely high protrusions would be produced in the interface between the annealing and ablation regions. The mechanism of the CNT thin film under the excimer laser irradiation was, therefore, proposed to derive the surface morphology modifications and the further reinforced crystallinity with proper laser energy densities and overlapping ratios.

  9. Micro-mirror formed using excimer laser processing in a polymer waveguide

    NASA Astrophysics Data System (ADS)

    Shioda, Tsuyoshi

    2005-04-01

    A micro-mirror formed using excimer laser processing for a fluorinated polyimide waveguide film was demonstrated. The tilted excimer laser irradiation to the waveguide core formed a micro-mirror with an angle of 45 +/- 1-degree. The micro-mirror had convex profile and exhibited a lens effect as a concave mirror. The micro-mirror, as formed, exhibited a low reflection loss of approximately 0.6dB at a wavelength of 850nm. This technique applied to flexible optical and electrical circuit board.

  10. Excimer laser debulking for percutaneous coronary intervention in left main coronary artery disease.

    PubMed

    Topaz, On; Polkampally, Pritam R; Mohanty, Pramod K; Rizk, Maged; Bangs, Julie; Bernardo, Nelson L

    2009-11-01

    Excimer laser has been successfully applied to complex atherosclerotic plaques in acute coronary syndromes; however, its role in debulking in left main coronary artery disease has not been fully explored. Details of a series of 20 patients who underwent excimer laser revascularization of a spectrum of left main coronary artery lesions are presented. Twenty symptomatic patients who received excimer laser debulking were examined for procedural outcome and follow up results. The left main coronary artery was characterized as protected, semi-protected, poorly protected, or unprotected, depending on the presence or absence of patent bypass grafts to the left anterior descending (LAD) and circumflex (CX) arteries. A fully protected left main coronary artery (LMCA) was present in only 20% of the patients. The target lesions included 11(55%) distal LMCA stenoses, six (30%) ostial stenoses, and one (5%) mid-portion lesions. Two (10%) patients had in-stent re-stenosis of the entire length of the LMCA. Small (0.7 mm-1.4 mm) excimer laser catheters were mostly used. A relatively high number of laser energy pulses (1,334 +/- 643) were required to achieve adequate debulking. Successful LMCA intervention was performed in 19 (95%) patients, while in-hospital complications occurred in only one (5%) patient. Subacute/late stent thrombosis developed 3 months after the procedure in one patient, and two patients died from non-cardiac causes during follow-up. Lesions in LMCAs can be revascularized in selected patients by laser debulking and adjunct stenting. Inadequate protection by bypass grafts and decreased left ventricular function do not contradict utilization of excimer laser. Small laser catheters and high energy levels are required during laser debulking of stenoses of left main coronary arteries.

  11. Particle Generation by Pulsed Excimer Laser Ablation in Liquid: Hollow Structures and Laser-Induced Reactions

    NASA Astrophysics Data System (ADS)

    Yan, Zijie

    2011-12-01

    Pulsed laser ablation of solid targets in liquid media is a powerful method to fabricate micro-/nanoparticles, which has attracted much interest in the past decade. It represents a combinatorial library of constituents and interactions, and one can explore disparate regions of parameter space with outcomes that are impossible to envision a priori. In this work, a pulsed excimer laser (wavelength 248 nm, pulse width 30 ns) has been used to ablate targets in liquid media with varying laser fluences, frequencies, ablation times and surfactants. It is observed that hollow particles could be fabricated by excimer laser ablation of Al, Pt, Zn, Mg, Ag, Si, TiO2, and Nb2O5 in water or aqueous solutions. The hollow particles, with sizes from tens of nanometers to micrometers, may have smooth and continuous shells or have morphologies demonstrating that they were assembled from nanoparticles. A new mechanism has been proposed to explain the formation of these novel particle geometries. They were formed on laser-produced bubbles through bubble interface pinning by laser-produced solid species. Considering the bubble dynamics, thermodynamic and kinetic requirements have been discussed in the mechanism that can explain some phenomena associated with the formation of hollow particles, especially (1) larger particles are more likely to be hollow particles; (2) Mg and Al targets have stronger tendency to generate hollow particles; and (3) the 248 nm excimer laser is more beneficial to fabricate hollow particles in water than other lasers with longer wavelengths. The work has also demonstrated the possiblities to fabricate novel nanostructures through laser-induced reactions. Zn(OH)2/dodecyl sulfate flower-like nanostructures, AgCl cubes, and Ag2O cubes, pyramids, triangular plates, pentagonal rods and bars have been obtained via reactions between laser-produced species with water, electrolyes, or surfactant molecules. The underlying mechanisms of forming these structures have been

  12. Faster qualification of 193-nm resists for 100-nm development using photo cell monitoring

    NASA Astrophysics Data System (ADS)

    Jones, Chris M.; Kallingal, Chidam; Zawadzki, Mary T.; Jeewakhan, Nazneen N.; Kaviani, Nazila N.; Krishnan, Prakash; Klaum, Arthur D.; Van Ess, Joel

    2003-05-01

    The development of 100-nm design rule technologies is currently taking place in many R&D facilities across the world. For some critical alyers, the transition to 193-nm resist technology has been required to meet this leading edge design rule. As with previous technology node transitions, the materials and processes available are undergoing changes and improvements as vendors encounter and solve problems. The initial implementation of the 193-nm resits process did not meet the photolithography requirements of some IC manufacturers due to very high Post Exposure Bake temperature sensitivity and consequently high wafer to wafer CD variation. The photoresist vendors have been working to improve the performance of the 193-nm resists to meet their customer's requirements. Characterization of these new resists needs to be carried out prior to implementation in the R&D line. Initial results on the second-generation resists evaluated at Cypress Semicondcutor showed better CD control compared to the aelrier resist with comparable Depth of Focus (DOF), Exposure Latitute, Etch Resistance, etc. In addition to the standard lithography parameters, resist characterization needs to include defect density studies. It was found that the new resists process with the best CD control, resulted in the introduction of orders of magnitude higher yield limiting defects at Gate, Contact adn Local Interconnect. The defect data were shared with the resists vendor and within days of the discovery the resist vendor was able to pinpoint the source of the problem. The fix was confirmed and the new resists were successfully released to production. By including defect monitoring into the resist qualification process, Cypress Semiconductor was able to 1) drive correction actions earlier resulting in faster ramp and 2) eliminate potential yield loss. We will discuss in this paper how to apply the Micro Photo Cell Monitoring methodology for defect monitoring in the photolithogprhay module and the

  13. Front-end-of-line process development using 193-nm lithography

    NASA Astrophysics Data System (ADS)

    Pollentier, Ivan K.; Ercken, Monique; Eliat, Astrid; Delvaux, Christie; Jaenen, Patrick; Ronse, Kurt G.

    2001-04-01

    It is expected that 193nm lithography will be introduced in front-end-of-line processing for all critical layers at the 100nm node, and possibly also for some layers at the 130nm node, where critical layers are required to have the lowest mask cost. These processes are currently being investigated at IMEC for CMOS logic applications. While the lithographic performance of 193 nm resists has improved significantly in the last year, most materials still have important processing issues that need further improvement. On one hand, the resists material itself suffers from for example poor dry etch resistance and SEM CD shrinkage. On the other hand, interaction with other materials such as SiON inorganic ARCs becomes more challenging in terms of footing behavior, adhesion, and line edge roughness. In this paper, the 193nm processing experience gained at IMEC will be outlined, as well as solutions for manufacturability. Front- end-of-line integration results will also be shown, mainly for gate applications. It will be demonstrated that currently several commercial resist are capable of printing 130nm gates within the +/- 10 percent CD tolerance, even after gate etch. The impact of line edge roughness will also be discussed. Finally, the feasibility of printing 100nm logic patterns using only binary masks has been demonstrated, including gate etch.

  14. Excimer v. Nd:YAG: comparative analysis of initial ultrastructural alterations produced by two distinct lasers

    NASA Astrophysics Data System (ADS)

    Nevorotin, Alexey J.

    1990-09-01

    Fine structural alteratious produced iediate1y after irradiation with either XeC1 excimer or Nd:Y.AG laser have been studied in rat liver samples processed histochemically for glucose-6-phosphatase (GP) activity, a marker enzyme for the endoplasmic reticulum (ER) of hepatocytes. General vesiculation of ER along with moderate inactivation of GP was apparent following excimer lazing which contrasted with better structural but poorer enzymatic preservation of ER in the hepatocytes irradiated with Nd:YAG laser. c'i the basis of this and our recent study. (A. Nevorotin, M. Kul 1 . 1989. Arch. Pathol . v. 51, N 7, pp. 63'TO ) a conclus ion is drawn on a potential surgical advantage of excimer laser over its Nd:YAG counterpart due presumably to lesser extent of cellular and macromolecular damage implicative in the process of healing of laser-inflicted lesions. A mechanism of ER vesiculation is considered in the iignt of probable dynamic impact transferred to the ER membranes by excimer irradiation by analogy with other nign energy mechanical forces (e.g. nign gravitation or ultrasonication) known to interfere with membrane structural organization.

  15. Corneal aldehyde dehydrogenase and glutathione S-transferase activity after excimer laser keratectomy in guinea pigs

    PubMed Central

    Bilgihan, K.; Bilgihan, A.; Turkozkan, N.

    1998-01-01

    BACKGROUND—The free radical balance of the eye may be changed by excimer laser keratectomy. Previous studies have demonstrated that excimer laser keratectomy increases the corneal temperature, decreases the superoxide dismutase activity of the aqueous, and induces lipid peroxidation in the superficial corneal stroma. Aldehyde dehydrogenase (ALDH) and glutathione S-transferase (GST) are known to play an important role in corneal metabolism, particularly in detoxification of aldehydes, which are generated from free radical reactions.
METHODS—In three groups of guinea pigs mechanical corneal de-epithelialisation was performed in group I, superficial corneal photoablation in group II, and deep corneal photoablation in group III, and the corneal ALDH and GST activities measured after 48 hours.
RESULTS—The mean ALDH and GST activities of group I and II showed no differences compared with the controls (p>0.05). The corneal ALDH activities were found to be significantly decreased (p<0.05) and GST activities increased (p<0.05) in group III.
CONCLUSION—These results suggest that excimer laser treatment of high myopia may change the ALDH and GST activities, metabolism, and free radical balance of the cornea.

 Keywords: excimer laser keratectomy; aldehyde dehydrogenase; glutathione S-transferase PMID:9602629

  16. Extraluminal laser angioplasty (ELAN): laser tissue removal of arterial wall for restoration of wall flexibility and methods for therapy control

    NASA Astrophysics Data System (ADS)

    Will, Fabian G.; Singh, Ajoy I.; Sharabrin, Evgeny; Sapozhnikova, Veronika; Kuranov, Roman; Ertmer, Wolfgang; Lubatschowski, Holger

    2003-10-01

    ELAN is a new method for treating atherosclerotic vessels. Its purpose is to restore wall flexibility by removing arterial wall tissue from the outer arterial layer. This leads to expansion of the narrowed vessel resulting in increased blood flow. We present results of treatment of arteries in vitro. Tissue removal was done by excimer-laser ablation using ns-pulses of 193nm wavelength. We also discuss therapy control. OCT images and light diffusion measurements are presented.

  17. Mechanism of injurious effect of excimer (308 nm) laser on the cell

    NASA Astrophysics Data System (ADS)

    Nevorotin, Alexey J.; Kallikorm, A. P.; Zeltzer, Gregory L.; Kull, Mart M.; Mihkelsoo, Virgo T.

    1991-06-01

    A Lameta 22710 excimer laser operating at 70 mJ/mm2 per pulse, with pulse duration of 70 nsec, and pulse repetition rate of 10 Hz, equipped with a quartz filament as energy conductor was used to make incisions on rat liver. 2 to 5 sec after irradiation the specimens were fixed and further processed for electron microscopy and histochemical visualization of the endoplasmic reticulum (ER) marker enzyme glucose-6- phosphatase at the ultrastructural level. The additional series were: fixation before irradiation-(A); lasing with Nd:YAG laser (1064 nm, continuous wave mode, 40 J/mm2)-(B); incision with a white-hot steel needle-(C); and incision with an Esto-Rex ultrasound scalpel (66 kHz, 6 Wt, vibration amplitude of 15 micrometers )-(D). The results showed that unlike Series C and B, in which high temperature caused severe damage to all cellular organellae, the excimer action was much more specific. It caused vesiculation of ER without significant injuries to other cellular structures. The analogous effect was noted after US scalpel cutting, thereby allowing a conclusion that a kind of dynamic rather than thermal factor is responsible for the observed phenomenon of vesiculation. The time schedule of vesicle formation and molecular background of membrane transformation is considered in the light of the data of Series A and D, and also on the basis of available information of membrane behavior. Photoablative effect of pulsed excimer laser is thought to be based on chemical decomposition of organic molecules and their ejection from the tissue to the action of high energy photons. Pressure waves (either acoustic or shock) are presumably generated powerful enough to cause tissue and cell damage beyond the site of ablation. Some thermal and fluorescence events are also implicative in biological targets irradiated with excimer lasers. In our previous studies electron histochemistry was employed for the analysis of cellular alterations caused with a continuous wave mode

  18. Excimer Laser Angioplasty: Initial Clinical Results With A Percutaneous Transluminal Procedure In Total Peripheral Artery Occlusion

    NASA Astrophysics Data System (ADS)

    Wollenek, Gregor; Laufer, Guenter; Hohla, Kristian L.; Grabenwoeger, Florian; Klepetko, Walter

    1989-04-01

    Laser energy has the potential to recanalize obstructive atherosclerotic vessels as an alternative or an adjunct to either bypass surgery or balloon angioplasty. But conventional lasers cause thermal side effects which may lead to extensive damage to neighboring layers. In contrast, excimer laser irradiation in the far ultraviolet range has proved to minimize or avoid these injuries to vessel walls. To evaluate the clinical feasibility of excimer laser angioplasty (ELA), we have performed basic investigations including histologic examination by light microscopy, scanning and electron microscopy, and temperature measurements, and later on in vivo animal trials. Using 308 nm irradiation (XeCl) we have treated the first patient ever to undergo ELA, and the procedure was successful: after recanalization of a total occlusion of a superficial femoral artery, dilatation resulted in sufficient blood supply to the periphery.

  19. Spectrally narrowed lasing of a self-injection KrF excimer laser

    NASA Astrophysics Data System (ADS)

    Shimada, Yasuhiro; Wani, Koichi; Miki, Tadaaki; Kawahara, Hidehito; Mimasu, Mutsumi; Ogata, Yoshiro

    1990-08-01

    Spectrally nantwed lasing of a KrF excimer laser has teen ahieved by a self-injection technique using abeam splitter for power extraction aixi intravity etalons for spectral-narrowing. The laser cavity is divithi into an amplifying branch aix! a spectralnarrowing branch. The spectral bandwidth was narrowed to <3pm FWHM with air-sed etalons placed in the spectral-narrowing branch. A laser propagation model was intrOdUced for describing the laser intensity traveling in the laser cavity. The calculated intensityincident onthe intracavityetalons wassmaller thanthat in theconventional Fabry-Perotcavity withplane-parallel mirrors.

  20. Finite elements analysis of heteroepitaxial SiGe layers grown by excimer laser

    NASA Astrophysics Data System (ADS)

    Conde, J. C.; González, P.; Lusquiños, F.; Chiussi, S.; Serra, J.; León, B.

    2005-07-01

    In this work, the finite elements analysis using ANSYS ® (8.0) of the heteroepitaxial SiGe alloy formation induced by excimer lasers is presented. The numerical simulation of the temperature distribution induced by KrF excimer laser (energy densities 0.50 < Φ< 0.55 J/cm 2) on thin amorphous Ge films (10 nm thick) deposited on Si<1 0 0> substrates is obtained. An acceptable agreement between the numerical simulations and the experimental results is found. The melting depth is also evaluated and the laser energy density threshold for the partial melting of the Si substrate is estimated. It allows us to determine the optimum conditions to achieve high quality epitaxy. For both the cases, the temperature profile versus time on the top of the Ge film and at the Ge/Si interface are obtained.

  1. Time-resolved FTIR studies of the photodissociation of pyruvic acid at 193 nm

    NASA Astrophysics Data System (ADS)

    Hall, Gregory E.; Muckerman, James T.; Preses, Jack M.; Flynn, Ralph E. Weston George W., Jr.

    1992-05-01

    Infrared emission from carbon dioxide produced in the 193 nm photolysis of pyruvic acid vapor has been investigated using time-resolved Fourier transform infrared spectroscopy as a probe. A broad feature, strongly red-shifted from the antisymmetric stretching fundamental (ν 3) of CO 2, dominates the early spectrum. A statistical model using a linear surprisal is shown to provide good agreement with the observed spectral contour, but only if the energy available to the photofragments corresponds to the direct formation of acetaldehyde along with CO 2.

  2. Top surface imaging process and materials development for 193 nm and extreme ultraviolet lithography

    SciTech Connect

    Rao, V.; Hutchinson, J.; Holl, S.; Langston, J.; Henderson, C.; Wheeler, D.R.; Cardinale, G.; OConnell, D.; Goldsmith, J.; Bohland, J.; Taylor, G.; Sinta, R.

    1998-11-01

    The maturity and acceptance of top surface imaging (TSI) technology have been hampered by several factors including inadequate resist sensitivity and line edge roughness. We have found that the use of a chemically amplified resist can improve the sensitivity in these systems by 1.5{endash} 2{times} without compromising the line edge roughness. In addition, we have shown improved line edge roughness by increasing the molecular weight of the polymeric resin in the resist. Using these materials approaches, we have been able to show excellent resolution images with the TSI process for both 193 nm and extreme ultraviolet (13.4 nm) patterning. {copyright} {ital 1998 American Vacuum Society.}

  3. Chemical trimming overcoat: an enhancing composition and process for 193nm lithography

    NASA Astrophysics Data System (ADS)

    Liu, Cong; Rowell, Kevin; Joesten, Lori; Baranowski, Paul; Kaur, Irvinder; Huang, Wanyi; Leonard, JoAnne; Jeong, Hae-Mi; Im, Kwang-Hwyi; Estelle, Tom; Cutler, Charlotte; Pohlers, Gerd; Yin, Wenyan; Fallon, Patricia; Li, Mingqi; Jeon, Hyun; Xu, Cheng Bai; Trefonas, Pete

    2016-03-01

    As the critical dimension of devices is approaching the resolution limit of 193nm photo lithography, multiple patterning processes have been developed to print smaller CD and pitch. Multiple patterning and other advanced lithographic processes often require the formation of isolated features such as lines or posts by direct lithographic printing. The formation of isolated features with an acceptable process window, however, can pose a challenge as a result of poor aerial image contrast at defocus. Herein we report a novel Chemical Trimming Overcoat (CTO) as an extra step after lithography that allows us to achieve smaller feature size and better process window.

  4. The effect of excimer laser annealing on ZnO nanowires and their field effect transistors.

    PubMed

    Maeng, Jongsun; Heo, Sungho; Jo, Gunho; Choe, Minhyeok; Kim, Seonghyun; Hwang, Hyunsang; Lee, Takhee

    2009-03-01

    We have investigated the effect of excimer laser annealing on the chemical bonding, electrical, and optical properties of ZnO nanowires. We demonstrate that after laser annealing on the ZnO nanowire field effect transistors, the on-current increases and the threshold voltage shifts in the negative gate bias direction. These electrical results are attributed to the increase of oxygen vacancies as n-type dopants after laser annealing, consistent with the shifts towards higher binding energies of Zn 2p and O 1s in the x-ray photoelectron spectroscopy analysis of as-grown nanowires and laser-annealed ZnO nanowires.

  5. Raman-shifting an ArF excimer laser to generate new lines for obtaining optical diagnostic based information in flow fields

    NASA Astrophysics Data System (ADS)

    Koker, Edmond B.

    1994-12-01

    of the gas near the focal region. Furthermore, since the Raman shifting process is polarization sensitive, it is necessary to have all of the laser energy in a single polarization. These factors were taken into consideration in the execution of the project. The implementation of the Raman shift was accomplished by focusing the 193 nm output of an ArF excimer laser (Lamda-Physik LPX 150) into a 1-meter long high pressure recirculating Raman cell filled with H2 gas. The laser system was modified in order to improve the mode quality of the pump beam to enhance the Raman shifting. To accomplish this feat, a prism beam expander and grating on the oscillator discharge provided wavelength tuning over the excimer gain profile. Furthermore, a triple-pass configuration, as opposed to unstable resonator optics, was employed in the operation of the amplifier cavity so that when the oscillator output radiation, focused by a 51-cm focal length fused silica lens through a 50 micron pinhole (serving as a spatial filter) and recollimated with a 25-cm focal length lens, was fed into the amplifier, it was injection locked, thereby providing tunable radiation with relatively low divergence.

  6. Raman-shifting an ArF excimer laser to generate new lines for obtaining optical diagnostic based information in flow fields

    NASA Technical Reports Server (NTRS)

    Koker, Edmond B.

    1994-01-01

    of the gas near the focal region. Furthermore, since the Raman shifting process is polarization sensitive, it is necessary to have all of the laser energy in a single polarization. These factors were taken into consideration in the execution of the project. The implementation of the Raman shift was accomplished by focusing the 193 nm output of an ArF excimer laser (Lamda-Physik LPX 150) into a 1-meter long high pressure recirculating Raman cell filled with H2 gas. The laser system was modified in order to improve the mode quality of the pump beam to enhance the Raman shifting. To accomplish this feat, a prism beam expander and grating on the oscillator discharge provided wavelength tuning over the excimer gain profile. Furthermore, a triple-pass configuration, as opposed to unstable resonator optics, was employed in the operation of the amplifier cavity so that when the oscillator output radiation, focused by a 51-cm focal length fused silica lens through a 50 micron pinhole (serving as a spatial filter) and recollimated with a 25-cm focal length lens, was fed into the amplifier, it was injection locked, thereby providing tunable radiation with relatively low divergence. The forward scattered radiation emanating from the impingement of the modified pump beam on the Raman cell was detected using an energy meter after the latter had been separated from it using a dispersing prism.

  7. Application of optical tweezers and excimer laser to study protoplast fusion

    NASA Astrophysics Data System (ADS)

    Kantawang, Titirat; Samipak, Sompid; Limtrakul, Jumras; Chattham, Nattaporn

    2015-07-01

    Protoplast fusion is a physical phenomenon that two protoplasts come in contact and fuse together. Doing so, it is possible to combine specific genes from one protoplast to another during fusion such as drought resistance and disease resistance. There are a few possible methods to induce protoplast fusion, for example, electrofusion and chemical fusion. In this study, chemical fusion was performed with laser applied as an external force to enhance rate of fusion and observed under a microscope. Optical tweezers (1064 nm with 100X objective N.A. 1.3) and excimer laser (308 nm LMU-40X-UVB objective) were set with a Nikon Ti-U inverted microscope. Samples were prepared by soaking in hypertonic solution in order to induce cell plasmolysis. Elodea Canadensis and Allium cepa plasmolysed leaves were cut and observed under microscope. Concentration of solution was varied to induce difference turgor pressures on protoplasts pushing at cell wall. Free protoplasts in solution were trapped by optical tweezers to study the effect of Polyethylene glycol (PEG) solution. PEG was diluted by Ca+ solution during the process to induced protoplast cell contact and fusion. Possibility of protoplast fusion by excimer laser was investigated and found possible. Here we report a novel tool for plant cell fusion using excimer laser. Plant growth after cell fusion is currently conducted.

  8. Simulation of excimer laser micromachined 3D surface using a CAD solid modeling package

    NASA Astrophysics Data System (ADS)

    Hume, Richard G.; Iovenitti, Pio G.; Hayes, Jason P.; Harvey, Erol C.

    2002-11-01

    This paper describes the research on the development of a visualisation tool to generate 3D solid models of structures produced by micromachining using an excimer laser system. Currently, the development of part programs to achieve a desired microstructure is by a trial and error approach. This simulation tool assists designers and excimer machine programmers to produce microstructures using the excimer laser. Users can develop their microstructures and part programs with the assistance of digital prototypes rather than designing products using expensive laser micromachining equipment. The methods to simulate micromachining using the solid modelling package, SolidWorks, are described, and simulation and actual machined examples are reported. A basic knowledge of the solid modelling package is required to develop the simulations, and complex models take time to prepare, however, the development time can be minimised by working from previous simulations. The models developed can be parameterised so that families of designs can be investigated for little additional effort to optimise the design before committing to laser micromachining.

  9. Double-exposure materials for pitch division with 193nm lithography: requirements, results

    NASA Astrophysics Data System (ADS)

    Bristol, Robert; Shykind, David; Kim, Sungwon; Borodovsky, Yan; Schwartz, Evan; Turner, Courtney; Masson, Georgeta; Min, Ke; Esswein, Katherine; Blackwell, James M.; Suetin, Nikolay

    2009-03-01

    We present the results of both theoretical and experimental investigations of materials for application either as a reversible Contrast Enhancement Layer (rCEL) or a Two-Stage PAG. The purpose of these materials is to enable Litho- Litho-Etch (LLE) patterning for Pitch Division (PD) at the 16nm logic node (2013 Manufacturing). For the rCEL, we find from modeling using an E-M solver that such a material must posses a bleaching capability equivalent to a Dill A parameter of greater than 100. This is at least a factor of ten greater than that achieved so far at 193nm by any usable organic material we have tested. In the case of the Two-Stage PAG, analytical and lithographic modeling yields a usable material process window, in terms of reversibility and two-photon vs. one-photon acid production rates (branching ratio). One class of materials, based on the cycloadduct of a tethered pair of anthracenes, has shown promise under testing at 193nm in acetonitrile. Sufficient reversibility without acid production, enabled by near-UV exposure, has been achieved. Acid production as a function of dose shows a clear quadratic component, consistent with a branching ratio greater than 1. The experimental data also supports a acid contrast value of approximately 0.05 that could in principle be obtained with this molecule under a pitch division double-exposure scenario.

  10. Focused excimer laser initiated, radio frequency sustained high pressure air plasmas

    SciTech Connect

    Giar, Ryan; Scharer, John

    2011-11-15

    Measurements and analysis of air breakdown processes and plasma production by focusing 193 nm, 300 mJ, 15 MW high power laser radiation inside a 6 cm diameter helical radio frequency (RF) coil are presented. Quantum resonant multi-photon ionization (REMPI) and collisional cascade laser ionization processes are exploited that have been shown to produce high-density (n{sub e} {approx} 7 x 10{sup 16}/cm{sup 3}) cylindrical seed plasmas at 760 Torr. Air breakdown in lower pressures (from 7-22 Torr), where REMPI is the dominant laser ionization process, is investigated using an UV 18 cm focal length lens, resulting in a laser flux of 5.5 GW/cm{sup 2} at the focal spot. The focused laser power absorption and associated shock wave produce seed plasmas for sustainment by the RF (5 kW incident power, 1.5 s) pulse. Measurements of the helical RF antenna load impedance in the inductive and capacitive coupling regimes are obtained by measuring the loaded antenna reflection coefficient. A 105 GHz interferometer is used to measure the plasma electron density and collision frequency. Spectroscopic measurements of the plasma and comparison with the SPECAIR code are made to determine translational, rotational, and vibrational neutral temperatures and the associated neutral gas temperature. From this and the associated measurement of the gas pressure the electron temperature is obtained. Experiments show that the laser-formed seed plasma allows RF sustainment at higher initial air pressures (up to 22 Torr) than that obtained via RF-only initiation (<18 Torr) by means of a 0.3 J UV laser pulse.

  11. [Diagnosis of open-angle glaucoma after myopic excimer laser corneal refractive surgery].

    PubMed

    Wu, Ling-ling

    2013-11-01

    Patients with high myopia are at high risk of glaucoma and are difficult to be discovered at early stage in the case of existing glaucoma. Myopic excimer laser corneal refractive surgery changes the structure of the eye, which makes early glaucoma diagnosis more difficult. Furthermore, refractive surgery may aggravate existing condition of glaucoma. To prevent the exacerbation of glaucoma, it is great important to perform the preoperative glaucoma risk assessment. In this paper, we presented the key diagnostic points of glaucoma assessment before and after excimer laser refractive surgery and discussed the postoperative intraocular pressure measurements and its impact on the diagnosis and treatment of glaucoma including characterization of open angle glaucoma and long-term follow up in patients with high myopia.

  12. Improved model for the angular dependence of excimer laser ablation rates in polymer materials

    SciTech Connect

    Pedder, J. E. A.; Holmes, A. S.; Dyer, P. E.

    2009-10-26

    Measurements of the angle-dependent ablation rates of polymers that have applications in microdevice fabrication are reported. A simple model based on Beer's law, including plume absorption, is shown to give good agreement with the experimental findings for polycarbonate and SU8, ablated using the 193 and 248 nm excimer lasers, respectively. The modeling forms a useful tool for designing masks needed to fabricate complex surface relief by ablation.

  13. Narrow bandwidth tuning of rhodamine 6G dye pumped by a XeCl excimer laser

    SciTech Connect

    Shangguan Cheng; Ling Ying-yi; Wang Yi-man; Dou Ai-rong; Huang Dan-hong

    1986-03-01

    In this paper the experimental study for narrow bandwidth tuning of ethylene glycol solution of rhodamine 6G pumped by a XeCl excimer laser is reported. The tunable range from 572.7 nm to 612.9 nm with linewidth of 0.004 nm has been obtained. The conversion efficiency is 16.0%. The experimental results of seven other dyes are also presented.

  14. Emission from ionic cesium fluoride excimers excited by a laser-produced plasma

    NASA Astrophysics Data System (ADS)

    Kubodera, S.; Frey, L.; Wisoff, P. J.; Sauerbrey, R.

    1988-06-01

    Fluorescence was observed from the Cs(2+)F(-) state at 185 nm using a laser-produced plasma as the excitation source in a CsF heat pipe. The dependence of the ionic excimer emission on CsF vapor pressure and temporally resolved emission from the Cs(2+)F(-) is analyzed. It is found that the pressure dependence of the fluorescence is influenced by self-absorption in the CsF vapor.

  15. Phosphorus doping of 4H SiC by liquid immersion excimer laser irradiation

    SciTech Connect

    Ikeda, Akihiro; Nishi, Koji; Ikenoue, Hiroshi; Asano, Tanemasa

    2013-02-04

    Phosphorus doping of 4H SiC is performed by KrF excimer laser irradiation of 4H SiC immersed in phosphoric acid. Phosphorus is incorporated to a depth of a few tens of nanometers at a concentration of over 10{sup 20}/cm{sup 3} without generating significant crystal defects. Formation of a pn junction diode with an ideality factor of 1.06 is demonstrated.

  16. Expression of Epidermal c-Kit+ of Vitiligo Lesions Is Related to Responses to Excimer Laser

    PubMed Central

    Park, Oun Jae; Han, Ji Su; Lee, Sang Hyung; Park, Chan-Sik; Won, Chong Hyun; Lee, Mi Woo; Choi, Jee Ho

    2016-01-01

    Background The survival and growth of melanocytes are controlled by the binding of stem cell factor to its cell surface receptor c-kit+ (CD117). We have observed that c-kit+ melanocytes existed in some lesions of vitiligo, while Melan A+ cells were absent. Objective To verify possible relation between c-kit+ expression and treatment response in non-segmental vitiligo lesions Methods Skin biopsies were done from the center of the 47 lesions from the 47 patients with non-segmental vitiligo. Expression of c-kit+ and Melan A, and amounts of melanin in the epidermis were assessed in each lesion, and treatment responses to excimer laser were evaluated. Results Thirty-five of the 47 lesions (74.5%) had c-kit+ phenotypes. There was significant difference of c-kit staining value between good responders in 3 months of excimer laser treatment (average of 24 sessions) and the others. Conclusion c-Kit expression in vitiliginous epidermis may be related to better treatment responses to excimer laser. PMID:27489428

  17. Application of XeCl308 nm excimer laser radiation to mutagenesis of industrial microorganisms

    NASA Astrophysics Data System (ADS)

    Alifano, P.; Lorusso, A.; Nassisi, V.; Talà, A.; Tredici, S. M.

    (UV) lamps are widely used in mutagenesis-selection protocols. Nevertheless, since the eighties, due to the development of excimer lasers, new frontiers in the study of UV applications have been opened. It has been established that the presence of an intact SOS response system is required for the mutagenic effect of UV254 nm. The exposure to UV254 nm radiation is not mutagenic for Escherichia coli mutants lacking the RecA protein, the regulator of the SOS response. We have recently demonstrated that at variance with the UV254 nm mutagenesis, the UV308 nm mutagenesis by XeCl308 nm excimer laser is RecA-independent. This suggests that the UV308 nm might be mutagenic also in microorganisms naturally lacking the SOS response. In this study, we have developed an innovative mutagenesis protocol based on a homemade XeCl308 nm excimer laser and have demonstrated its efficiency on mutagenesis of Nonomuraea American type culture collection 39727, an industrial strain producing an antibiotic, which is relatively refractory to UV254 nm radiation-induced mutagenesis.

  18. A study of structure formation on PET, PBT, and PS surfaces by excimer laser ablation

    NASA Astrophysics Data System (ADS)

    Kim, Jongdae

    Usually polymer surface treatment is performed to modify surface layers by inserting some functional group and/or by inducing roughness on surfaces to improve their wettability, printability, and adhesion to other polymers or metals. In this work, different polymer surfaces were treated using an excimer laser (LPX 240i, Lambda Physik). Polystyrene, polyethylene terephtalate, and polybutylene terephtalate were chosen as model materials for this study. Films were made by cast film processing and stretched with biaxial stretching machine. With excimer laser treatment on polymer surfaces, it was found that we could produce 1--2 micron size structures depending on material properties and film processing conditions. Materials with lower UV absorption coefficient produced double digit micron size structures, while those with higher UV absorption coefficients produced single digit micron size structures. In all these cases the structures formed only on stretched films. In addition to those microstructure developments, the determination of ablation threshold fluence was of interest mainly for understanding fundamentals of ablation behavior and technical applications. In this study, ablation thresholds were measured by various methods including ablation depth, ablation weight, and ablation sound level measurements. Among these methods, we confirmed that the measurement by ablation sound level gives the most reliable results, because this method is based on single pulse ablation. To understand the ablation phenomenon, and how microstructures can be developed during ablation, different material processing and excimer laser conditions were chosen for experimentation. During our experiments, we observed incubation phenomenon during laser ablation and showed that this incubation was significant for materials with low UV absorption coefficients. Based on UV absorption value change after excimer laser irradiation, we proposed a mechanism to explain the ablation of PS films. From

  19. 193nm immersion lithography for high-performance silicon photonic circuits

    NASA Astrophysics Data System (ADS)

    Selvaraja, Shankar K.; Winroth, Gustaf; Locorotondo, Sabrina; Murdoch, Gayle; Milenin, Alexey; Delvaux, Christie; Ong, Patrick; Pathak, Shibnath; Xie, Weiqiang; Sterckx, Gunther; Lepage, Guy; Van Thourhout, Dries; Bogaerts, Wim; Van Campenhout, Joris; Absil, Philippe

    2014-04-01

    Large-scale photonics integration has been proposed for many years to support the ever increasing requirements for long and short distance communications as well as package-to-package interconnects. Amongst the various technology options, silicon photonics has imposed itself as a promising candidate, relying on CMOS fabrication processes. While silicon photonics can share the technology platform developed for advanced CMOS devices it has specific dimension control requirements. Though the device dimensions are in the order of the wavelength of light used, the tolerance allowed can be less than 1% for certain devices. Achieving this is a challenging task which requires advanced patterning techniques along with process control. Another challenge is identifying an overlapping process window for diverse pattern densities and orientations on a single layer. In this paper, we present key technology challenges faced when using optical lithography for silicon photonics and advantages of using the 193nm immersion lithography system. We report successful demonstration of a modified 28nm- STI-like patterning platform for silicon photonics in 300mm Silicon-On-Insulator wafer technology. By careful process design, within-wafer CD variation (1sigma) of <1% is achieved for both isolated (waveguides) and dense (grating) patterns in silicon. In addition to dimensional control, low sidewall roughness is a crucial to achieve low scattering loss in the waveguides. With this platform, optical propagation loss as low as ~0.7 dB/cm is achieved for high-confinement single mode waveguides (450x220nm). This is an improvement of >20 % from the best propagation loss reported for this cross-section fabricated using e-beam lithography. By using a single-mode low-confinement waveguide geometry the loss is further reduced to ~0.12 dB/cm. Secondly, we present improvement in within-device phase error in wavelength selective devices, a critical parameter which is a direct measure of line

  20. Precision drilling of fused silica with 157-nm excimer laser radiation

    NASA Astrophysics Data System (ADS)

    Temme, Thorsten; Ostendorf, Andreas; Kulik, Christian; Meyer, Klaus

    2003-07-01

    μFor drilling fused silica, mechanical techniques like with diamond drills, ultrasonic machining, sand blasting or water jet machining are used. Also chemical techniques like laser assisted wet etching or thermal drilling with CO2-lasers are established. As an extension of these technologies, the drilling of micro-holes in fused silica with VUV laser radiation is presented here. The high absorption of the 157 nm radiation emitted by the F2 excimer laser and the short pulse duration lead to a material ablation with minimised impact on the surrounding material. Contrary to CO2-laser drilling, a molten and solidified phase around the bore can thus be avoided. The high photon energy of 7.9 eV requires either high purity nitrogen flushing or operation in vacuum, which also effects the processing results. Depending on the required precision, the laser can be used for percussion drilling as well as for excimer laser trepanning, by applying rotating masks. Rotating masks are especially used for high aspect ratio drilling with well defined edges and minimised debris. The technology is suitable particularly for holes with a diameter below 200 μm down to some microns in substrates with less than 200 μm thickness, that can not be achieved with mechanical methods. Drilling times in 200 μm fused silica substrates are in the range of ten seconds, which is sufficient to compete with conventional methods while providing similar or even better accuracy.

  1. Inspection of advanced computational lithography logic reticles using a 193-nm inspection system

    NASA Astrophysics Data System (ADS)

    Yu, Ching-Fang; Lin, Mei-Chun; Lai, Mei-Tsu; Hsu, Luke T. H.; Chin, Angus; Lee, S. C.; Yen, Anthony; Wang, Jim; Chen, Ellison; Wu, David; Broadbent, William H.; Huang, William; Zhu, Zinggang

    2010-09-01

    We report inspection results of early 22-nm logic reticles designed with both conventional and computational lithography methods. Inspection is performed using a state-of-the-art 193-nm reticle inspection system in the reticleplane inspection mode (RPI) where both rule-based sensitivity control (RSC) and a newer modelbased sensitivity control (MSC) method are tested. The evaluation includes defect detection performance using several special test reticles designed with both conventional and computational lithography methods; the reticles contain a variety of programmed critical defects which are measured based on wafer print impact. Also included are inspection results from several full-field product reticles designed with both conventional and computational lithography methods to determine if low nuisance-defect counts can be achieved. These early reticles are largely single-die and all inspections are performed in the die-to-database inspection mode only.

  2. The development and progress of XeCl Excimer laser system

    NASA Astrophysics Data System (ADS)

    Zhang, Yongsheng; Ma, Lianying; Wang, Dahui; Zhao, Xueqing; Zhu, Yongxiang; Hu, Yun; Qian, Hang; Shao, Bibo; Yi, Aiping; Liu, Jingru

    2015-05-01

    A large angularly multiplexed XeCl Excimer laser system is under development at the Northwest Institute of Nuclear Technology (NINT). It is designed to explore the technical issues of uniform and controllable target illumination. Short wavelength, uniform and controllable target illumination is the fundamental requirement of high energy density physics research using large laser facility. With broadband, extended light source and multi-beam overlapping techniques, rare gas halide Excimer laser facility will provide uniform target illumination theoretically. Angular multiplexing and image relay techniques are briefly reviewed and some of the limitations are examined to put it more practical. The system consists of a commercial oscillator front end, three gas discharge amplifiers, two electron beam pumped amplifiers and the optics required to relay, encode and decode the laser beam. An 18 lens array targeting optics direct and focus the laser in the vacuum target chamber. The system is operational and currently undergoing tests. The total 18 beams output energy is more than 100J and the pulse width is 7ns (FWHM), the intensities on the target will exceed 1013W/cm2. The aberration of off-axis imaging optics at main amplifier should be minimized to improve the final image quality at the target. Automatic computer controlled alignment of the whole system is vital to efficiency and stability of the laser system, an array of automatic alignment model is under test and will be incorporated in the system soon.

  3. Corneal surgery by two-dimensional scanning of a low-energy excimer laser beam

    NASA Astrophysics Data System (ADS)

    Unkroth, Angela; Pachomis, Karin; Walther, Jens-Uwe; Zimare, D.

    1994-06-01

    We describe a new multipurpose maskless method of corneal surgery based on the point-by-point scanning of a focused laser beam which allows the application of a low-energy excimer laser. The crucial scanning parameters to achieve a smooth corneal surface have been investigated. A computer program for the simulation and optimization of the point-by-point scanning process has been developed and tested on contact lenses consisting of PMMA. In addition, a method of measuring the eye-movement by means of the computer-assisted interpretation of photographs was proved for its application in an eye-tracking-system.

  4. Excimer laser-induced ablation in corneal surgery by a two-dimensional scanning method

    NASA Astrophysics Data System (ADS)

    Unkroth, Angela; Pachomis, Karin; Welsch, Eberhard; Walther, Jens-Uwe; Zimare, D.; Krause, Ulf

    1994-02-01

    We describe a new multi-purpose maskless method of corneal surgery based on the point-by- point scanning of a focused laser beam which allows the application of a low-energy excimer laser. The crucial scanning parameters (beam diameter, step width, overlap...) to achieve a smooth corneal surface have been investigated. A computer program for the simulation and optimization of the point-by-point scanning process has been developed and tested on contact lenses consisting of PMMA. In addition, a method of measuring the eye-movement by means of the computer-assisted interpretation of photographs was proved for its application in an eye- tracking-system.

  5. ArF Excimer Emission from Microhollow Cathode Discharges

    NASA Astrophysics Data System (ADS)

    Shi, Wenhui; El-Habachi, Ahmed; Schoenbach, Karl H.

    1999-10-01

    Microhollow cathode discharges (MHCD) in Ar and Xe have been shown to emit excimer radiation at 128 nm and 172 nm, respectively, with an efficiency (in case of Xe) of approximately 8range towards longer wavelengths we have studied MHCD in argon fluoride mixtures (1to generate stable dc discharges in flowing gas at pressures ranging from 100 Torr to atmospheric pressure. The discharge voltage was approximately 500 V, the discharge current in these experiments was 10 mA. Whereas the spectrum at 300 Torr was dominated by atomic lines, at 700 Torr only excimer radiation peaking at 193 nm is observed in the spectral range from 120 nm to 300 nm. Absolute measurements of ArF excimer emission provided a value of approximately 3efficiency, or a total optical power of the excimer radiation of 150 mW. The peak power at 193 nm is 17 mW/nm. This is higher by a factor of 2 to 3, compared to xenon excimer emitters, due to the small FWHM of the 193nm ArF line (4 nm) compared to that of the Xe excimer line (24 nm). [1] Karl H. Schenbach, Ahmed El-Habachi, Wenhui Shi, and Marco Ciocca, Plasma Source Science and Technology 6, 468 (1997). [2] Ahmed El-Habachi and Karl H. Schoenbach, Appl.Phys.Lett. 73, 885 (1998). This work was funded by the DOE, Advanced Energy Division, and by the National Science Foundation.

  6. Experimental simulation of radioactive decontamination with Excimer laser

    NASA Astrophysics Data System (ADS)

    Gao, Zhixing; Tang, Xiuzhang; Ma, Meihua; Zhang, Zhentao

    2013-07-01

    Laser ablation is a powerful tool to clean the radioactively contaminated surface in nuclear industry. A prototype was set up to test the decontamination of the radioactively contaminated surface using simulated sample. A laser induced breakdown spectroscopy was used to monitor the progress of the contaminated surface layer removal. More than 80% of the contamination was removed after 100 shots KrF laser irradiation with the intensity of 1J/cm2.

  7. Excimer laser phototherapy for the dissolution of vascular obstruction

    DOEpatents

    Gruen, D.M.; Young, C.E.; Pellin, M.J.

    1984-01-09

    Removal of abnormal human tissue with reduced thermal damage is achieved by selecting a laser having a wavelength in the order of 290 to 400 nm, orienting a laser-transmitting glass member toward the abnormal tissue and directing the laser through the glass member at power densities, pulse rates, and times sufficient to cause multiphoton absorption and bond breaking by Coulomb repulsion rather than thermal destruction. 2 figures.

  8. Excimer laser phototherapy for the dissolution of abnormal growth

    DOEpatents

    Gruen, D.M.; Young, C.E.; Pellin, M.J.

    1985-02-19

    Removal of abnormal human tissue with reduced thermal damage is achieved by selecting a laser having a wavelength in the order of 290 to 400 nm, orienting a laser-transmitting glass member toward the abnormal tissue and directing the laser through the glass member at power densities, pulse rates, and times sufficient to cause multiphoton absorption and bond breaking by Coulomb repulsion rather than thermal destruction. The glass member may include a laser beam concentrator provided by a lens or cone at the tissue-treatment end to increase the beam energy per unit area and reduce the treatment area. 6 figs.

  9. Excimer laser phototherapy for the dissolution of abnormal growth

    DOEpatents

    Gruen, Dieter M.; Young, Charles E.; Pellin, Michael J.

    1987-01-01

    Removal of abnormal human tissue with reduced thermal damage is achieved by selecting a laser having a wavelength in the order of 290-400 nm, orienting a laser-transmitting glass member toward the abnormal tissue and directing the laser through the glass member at power densities, pulse rates, and times sufficient to cause multiphoton absorption and bond breaking by Coulomb repulsion rather than thermal destruction. The glass member may include a laser beam concentrator provided by a lens or cone at the tissue-treatment end to increase the beam energy per unit area and reduce the treatment area.

  10. Influencing adherence properties of polymers by excimer laser radiation

    NASA Astrophysics Data System (ADS)

    Breuer, J.; Metev, Simeon; Sepold, Gerd; Krueger, G.; Hennemann, O. D.

    1991-09-01

    The paper describes investigations concerning the enhancement of adhesive bonding strength between polypropylen (PP) and adhesive on a resinous basis by UV-laser-induced photochemical reactions. Possible mechanisms of the laser-activated processes are discussed. A preliminary result of the experimental examinations is the bonding strength enhancement of more than 5 X under certain conditions.

  11. Output coupler design of unstable cavities for excimer lasers.

    PubMed

    Giuri, C; Perrone, M R; Piccinno, V

    1997-02-20

    We tested the performance of a XeCl laser with unstable resonators using as an output coupler a phase unifying (PU) mirror, a super-Gaussian mirror, and a hard-edge mirror. The quantitative impact of the output coupler design on the energy extraction efficiency, near-field profile, far-field energy distribution, and spatial coherence time evolution has been investigated. Laser beams of larger brightness have been obtained with the PU unstable cavity. A faster growth of the laser beam spatial coherence has been observed with the PU cavity by time-resolved, far-field measurements. PMID:18250783

  12. Surgical removal of infected pacemaker leads without cardiopulmonary bypass after failed extraction using the Excimer Laser Sheath Extraction System.

    PubMed

    Tokunaga, Chiho; Enomoto, Yoshiharu; Sato, Fujio; Kanemoto, Shinya; Matsushita, Shonosuke; Hiramatsu, Yuji; Aonuma, Kazutaka; Sakakibara, Yuzuru

    2012-03-01

    With the growing number of cardiac pacemakers and internal cardioverter defibrillator implantations, problems with endocardial lead infection have been increasing. The newly developed Excimer Laser Sheath Lead Extraction System has been recognized as being highly useful for removing chronic infected leads. However, serious bleeding complications are a concern when this system is used. Here we report our experience with a 67-year-old man who was diagnosed with pacemaker endocarditis. Initially, lead removal was attempted using the Excimer Laser Sheath Extraction System, though this was abandoned because of severe adhesion of the leads and the junction of the supra vena cava (SVC) with the right atrium. Surgical removal of the leads was performed without using cardiopulmonary bypass and the leads were removed without any complications. During surgery, we found there was a silent perforation of the innominate vein brought about by the Excimer Laser Sheath System. Also, the junction of the SVC with the right atrium was thought to be an area potentially at high risk of perforation, because of a lack of surrounding tissue. It is our opinion that those who carry out procedures with the Excimer Laser Sheath System should understand the potential risk of perforation based on cardiac anatomy and should be prepared for lethal bleeding complications. Also, for emergent situations, we believe that close backup by a cardiovascular surgical team should be considered essential for performing the Excimer Laser Sheath Lead Extraction safely.

  13. Finite element simulation for ultraviolet excimer laser processing of patterned Si/SiGe/Si(100) heterostructures

    NASA Astrophysics Data System (ADS)

    Conde, J. C.; Martín, E.; Chiussi, S.; Gontad, F.; Serra, C.; González, P.

    2010-07-01

    Ultraviolet (UV) Excimer laser assisted processing is an alternative strategy for producing patterned silicon germanium heterostructures. We numerically analyzed the effects caused by pulsed 193 Excimer laser radiation impinging on patterned amorphous hydrogenated silicon (a-Si:H) and germanium (a-Ge:H) bilayers deposited on a crystalline silicon substrate [Si(100)]. The proposed two dimensional axisymmetric numerical model allowed us to estimate the temperature and concentration gradients caused by the laser induced rapid melting and solidification processes. Energy density dependence of maximum melting depth and melting time evolution as well as three dimensional temperature and element distribution have been simulated and compared with experimentally obtained results.

  14. Finite element simulation for ultraviolet excimer laser processing of patterned Si/SiGe/Si(100) heterostructures

    SciTech Connect

    Conde, J. C.; Chiussi, S.; Gontad, F.; Gonzalez, P.; Martin, E.; Serra, C.

    2010-07-05

    Ultraviolet (UV) Excimer laser assisted processing is an alternative strategy for producing patterned silicon germanium heterostructures. We numerically analyzed the effects caused by pulsed 193 Excimer laser radiation impinging on patterned amorphous hydrogenated silicon (a-Si:H) and germanium (a-Ge:H) bilayers deposited on a crystalline silicon substrate [Si(100)]. The proposed two dimensional axisymmetric numerical model allowed us to estimate the temperature and concentration gradients caused by the laser induced rapid melting and solidification processes. Energy density dependence of maximum melting depth and melting time evolution as well as three dimensional temperature and element distribution have been simulated and compared with experimentally obtained results.

  15. Oxygen free radical damage in the cornea after excimer laser therapy

    PubMed Central

    Hayashi, S.; Ishimoto, S.; Wu, G.; Wee, W.; Rao, N.; McDonnell, P.

    1997-01-01

    AIMS/BACKGROUND—To evaluate the extent of oxygen radical damage in the cornea after excimer laser ablation.
METHODS—The 193 nm argon fluoride excimer laser was programmed for an average fluence of 150 mJ/cm2, with a firing rate of 5 Hz and an ablation zone diameter of 6 mm. Phototherapeutic keratectomy was performed to remove 30 µm of epithelium and 50 µm of stroma from the corneas of New Zealand white rabbits. Oxidative tissue damage after laser was determined by measuring oxidised lipids (conjugated dienes and ketodienes) in corneal lipid extracts, and by fast blue B staining to localise the lipid peroxide in the tissue.
RESULTS—Conjugated diene levels were 3.73 (SD 0.56) nmol per hemicornea in ablated corneas and 1.99 (0.33) nmol per hemicornea in normal corneas (p = 0.0044). Ketodiene levels were 2.72 (0.38) nmol per hemicornea in treated corneas and 0.91 (0.12) nmol per hemicornea in normal corneas (p < 0.001). Fast blue B staining disclosed that the tissue damage occurred primarily on the surface of the ablated cornea.
CONCLUSION—The presence of lipid peroxidation in the superficial corneal stroma in excimer laser treated corneas was demonstrated. This lipid peroxidation could be from oxygen free radicals generated by the infiltrating polymorphonuclear cells at the site of tissue damage.

 PMID:9059249

  16. XeCl excimer laser with new prism resonator configurations and its performance characteristics.

    PubMed

    Benerji, N S; Singh, A; Varshnay, N; Singh, Bijendra

    2015-07-01

    New resonator cavity configurations, namely, the prism resonator and unstable prism resonator, are demonstrated for the first time in an excimer (XeCl) laser with interesting and novel results. High misalignment tolerance ∼50 mrad is achieved with considerably reduced beam divergence of less than ∼1 mrad without reduction in output power capabilities of the laser. The misalignment tolerance of ∼50 mrad is a dramatic improvement of ∼25 times compared to ∼2 mrad normally observed in standard excimer laser with plane-plane cavity. Increase in depth of focus from 3 mm to 5.5 mm was also achieved in case of prism resonator configuration with an improvement of about 60%. Unstable prism resonator configuration is demonstrated here in this paper with further reduction in beam divergence to about 0.5 mrad using plano-convex lens as output coupler. The misalignment tolerance in case of unstable prism resonator was retained at about 30 mrad which is a high value compared to standard unstable resonators. The output beam spot was completely filled with flat-top profile with prism resonator configurations, which is desired for various material processing applications. Focusing properties and beam divergence in case of prism resonator have been investigated using SEM (scanning electron microscope) images. SEM images of the focused spot size (∼20 μm holes) on metal sheet indicate beam divergence of about 0.05 mrad which is about 1.5 times diffraction limit. Energy contained in this angle is thus sufficient for micro-machining applications. Clean and sharp edges of the micro-holes show high pointing stability with multiple shot exposures. Such characteristics of the excimer laser system will be extremely useful in micro-machining and other field applications. PMID:26233361

  17. XeCl excimer laser with new prism resonator configurations and its performance characteristics

    SciTech Connect

    Benerji, N. S. E-mail: bsingh@rrcat.gov.in; Singh, A.; Varshnay, N.; Singh, Bijendra E-mail: bsingh@rrcat.gov.in

    2015-07-15

    New resonator cavity configurations, namely, the prism resonator and unstable prism resonator, are demonstrated for the first time in an excimer (XeCl) laser with interesting and novel results. High misalignment tolerance ∼50 mrad is achieved with considerably reduced beam divergence of less than ∼1 mrad without reduction in output power capabilities of the laser. The misalignment tolerance of ∼50 mrad is a dramatic improvement of ∼25 times compared to ∼2 mrad normally observed in standard excimer laser with plane-plane cavity. Increase in depth of focus from 3 mm to 5.5 mm was also achieved in case of prism resonator configuration with an improvement of about 60%. Unstable prism resonator configuration is demonstrated here in this paper with further reduction in beam divergence to about 0.5 mrad using plano-convex lens as output coupler. The misalignment tolerance in case of unstable prism resonator was retained at about 30 mrad which is a high value compared to standard unstable resonators. The output beam spot was completely filled with flat-top profile with prism resonator configurations, which is desired for various material processing applications. Focusing properties and beam divergence in case of prism resonator have been investigated using SEM (scanning electron microscope) images. SEM images of the focused spot size (∼20 μm holes) on metal sheet indicate beam divergence of about 0.05 mrad which is about 1.5 times diffraction limit. Energy contained in this angle is thus sufficient for micro-machining applications. Clean and sharp edges of the micro-holes show high pointing stability with multiple shot exposures. Such characteristics of the excimer laser system will be extremely useful in micro-machining and other field applications.

  18. Excimer laser assisted TiN and WC removal from tools as a novel decoating technology

    NASA Astrophysics Data System (ADS)

    Schubert, Emil; Schutte, K.; Emmel, A.; Bergmann, Hans W.

    1995-03-01

    Hard coatings, e.g. TiN or WC on high quality tools are regenerated several times, due to their high costs. Conventional decoating techniques are of chemical nature and problematically regarding the handling of the chemical residues. In addition to that the lifetime of recoated tools after chemical decoating of the damaged functional layers is drastically reduced compared to new tools. Excimer laser treatment using the so-called `Duplex-Technique' enables a damage-free removal of the hard coatings with much longer lifetime of recoated tools than those of chemically decoated. The handling of the waste material is extremely easy using a laser processing head with an integrated exhaust system, that was designed at ATZ- EVUS. The paper gives a detailed presentation of the developed Duplex-Technique, the influence of the laser parameters and the obtained surface properties. Results of internal stress measurements, roughness values, changes in chemical composition and the surface appearance are described. From the technological point of view the removal rates, the productivity and last not least the superior performance of excimer laser decoated and PVD recoated tools in a lifetime test are demonstrated, compared to newly coated and chemical decoated tools.

  19. Excimer laser angioplasty in acute myocardial infarction (the CARMEL multicenter trial).

    PubMed

    Topaz, On; Ebersole, Douglas; Das, Tony; Alderman, Edwin L; Madyoon, Hooman; Vora, Kishor; Baker, John D; Hilton, David; Dahm, Johannes B

    2004-03-15

    Patients with acute myocardial infarction (AMI) with thrombus-laden lesions constitute a revascularization challenge. Thrombus and atherosclerotic plaque absorb laser energy; thus, we studied the safety and efficacy of excimer laser in AMI. In a multicenter trial, 151 patients with AMI underwent excimer laser angioplasty. Baseline left ventricular ejection fraction was 44 +/- 13%, and 13% of patients were in cardiogenic shock. A saphenous vein graft was the target vessel in 21%. Quantitative coronary angiography and statistical analysis were performed by independent core laboratories. A 95% device success, 97% angiographic success, and 91% overall procedural success rate were recorded. Maximal laser gain was achieved in lesions with extensive thrombus burden (p <0.03 vs small burden). Thrombolysis In Myocardial Infarction (TIMI) trial flow increased significantly by laser: 1.2 +/- 1.1 to 2.8 +/- 0.5 (p <0.001), reaching a final 3.0 +/- 0.2 (p <0.001 vs baseline). Minimal luminal diameter increased by laser from 0.5 +/- 0.5 to 1.6 +/- 0.5 mm (mean +/- SD, p <0.001), followed by 2.7 +/- 0.6 mm after stenting (p <0.001 vs baseline and vs after laser). Laser decreased target stenosis from 83 +/- 17% to 52 +/- 15% (mean +/- SD, p <0.001 vs baseline), followed by 20 +/- 16% after stenting (p <0.001 vs baseline and vs after laser). Six patients (4%) died, each presented with cardiogenic shock. Complications included perforation (0.6%), dissection (5% major, 3% minor), acute closure (0.6%), distal embolization (2%), and bleeding (3%). In a multivariant regression model, absence of cardiogenic shock was a significant factor affecting procedural success. Thus, in the setting of AMI, gaining maximal thrombus dissolution in lesions with extensive thrombus burden, combined with a considerable increase in minimal luminal diameter and restoration of anterograde TIMI flow, support successful debulking by excimer laser. The presence of thrombus does not adversely affect procedural

  20. Coloring linens with excimer lasers to simulate the body image of the Turin Shroud

    NASA Astrophysics Data System (ADS)

    Baldacchini, Giuseppe; di Lazzaro, Paolo; Murra, Daniele; Fanti, Giulio

    2008-03-01

    The body image of the Turin Shroud has not yet been explained by traditional science; so a great interest in a possible mechanism of image formation still exists. We present preliminary results of excimer laser irradiation (wavelength of 308 nm) of a raw linen fabric and of a linen cloth. The permanent coloration of both linens is a threshold effect of the laser beam intensity, and it can be achieved only in a narrow range of irradiation parameters, which are strongly dependent on the pulse width and time sequence of laser shots. We also obtained the first direct evidence of latent images impressed on linen that appear in a relatively long period (one year) after laser irradiation that at first did not generate a clear image. The results are compared with the characteristics of the Turin Shroud, reflecting the possibility that a burst of directional ultraviolet radiation may have played a role in the formation of the Shroud image.

  1. Shock wave and material vapour plume propagation during excimer laser ablation of aluminium samples

    NASA Astrophysics Data System (ADS)

    Jeong, S. H.; Greif, R.; Russo, R. E.

    1999-10-01

    A probe beam deflection technique was utilized to measure the propagation of a shock wave and material vapour plume generated during excimer laser ablation of aluminium samples. The measured transit time of the laser-induced shock wave was compared with the prediction based on an ideal blast-wave model, using the Sedov-Taylor solution. The prediction of the incident laser energy converted into the laser-induced gasdynamic flow utilizing this blast-wave model overestimated the efficiency, even under conditions when the measured shock-wave velocity follows the correct model relation. The propagation of material vapour was measured from the deflection of the probe beam at later times. The propagation velocity of material vapour ranged from 20-40 m s-1 with a greater velocity near the target surface.

  2. Surface modification of dental tissues by KrF excimer laser radiation

    NASA Astrophysics Data System (ADS)

    Sivakumar, M.; Oliveira, V.; Vilar, R.

    2007-02-01

    Laser treatment is a promising technique for dental applications such as caries removal, dental hypersensitivity reduction and improvement of the bond strength between dentin and restoration materials. In this study the topographic and morphological changes induced in enamel and dentin surfaces by treating with KrF excimer laser radiation were studied as a function of the number of laser pulses and radiation fluence by scanning electron microscopy and optical profilometry. For enamel, independently of the fluence used, material removal occurs preferentially at the prisms sheaths, leading to the formation of surface pits of a few micrometers. For dentin, a cone-like topography develops when the tubules are approximately parallel to the laser beam direction and the radiation fluence is within the range 0.5 to 1.5 J/cm2. For higher fluences, the treated surfaces are flat and covered with a layer of re-solidified materials.

  3. Effects of xenon gas on generation and propagation of shock waves in the cavity of excimer laser

    NASA Astrophysics Data System (ADS)

    Kosugi, Shinichiroh; Maeno, Kazuo; Honma, Hiroki

    1993-05-01

    High repetition rate excimer lasers are expected for wide industrial application. The power of excimer laser, however, decreases rapidly in a higher repetition rate operation. Shock or acoustic waves, which are caused by the periodic pulse discharge, may limit the repetition rate of an excimer laser up to 2.5 kHz. Such waves cause inhomogeneity of gas density in the discharge region of the excimer laser. In high repetition rate operation this inhomogeneity remains at the next discharge. Arcing may be generated by this inhomogeneity and the homogeneous excitation of the laser gas is obstructed. Although these phenomena have been reported, the research for the effects of shock waves has remained insufficient. And the relation between these shock waves and discharge phenomena has not been clarified. To resolve this problem, we developed a scaling model chamber of a UV preionized excimer laser cavity with windows for flow visualization. We report the first result by using this model and Schlieren technique in a pure helium gas case. In our experiment three types of shock waves are found in the discharge cavity. Those shock waves are generated from the boundary of the main discharge area, from sparking pin gaps, and from the main electrode surfaces. In this study we focus on the effect of xenon gas on the generation and the propagation of shock waves. Components of the Xe-Cl excimer laser gas are helium, xenon, and hydrogen chloride. In those gases xenon has the largest molecular weight of 131.29. So we conclude xenon plays an important role in the shock wave propagation and in discharge phenomenon.

  4. Advances in hardware, software, and automation for 193nm aerial image measurement systems

    NASA Astrophysics Data System (ADS)

    Zibold, Axel M.; Schmid, R.; Seyfarth, A.; Waechter, M.; Harnisch, W.; Doornmalen, H. v.

    2005-05-01

    A new, second generation AIMS fab 193 system has been developed which is capable of emulating lithographic imaging of any type of reticles such as binary and phase shift masks (PSM) including resolution enhancement technologies (RET) such as optical proximity correction (OPC) or scatter bars. The system emulates the imaging process by adjustment of the lithography equivalent illumination and imaging conditions of 193nm wafer steppers including circular, annular, dipole and quadrupole type illumination modes. The AIMS fab 193 allows a rapid prediction of wafer printability of critical mask features, including dense patterns and contacts, defects or repairs by acquiring through-focus image stacks by means of a CCD camera followed by quantitative image analysis. Moreover the technology can be readily applied to directly determine the process window of a given mask under stepper imaging conditions. Since data acquisition is performed electronically, AIMS in many applications replaces the need for costly and time consuming wafer prints using a wafer stepper/ scanner followed by CD SEM resist or wafer analysis. The AIMS fab 193 second generation system is designed for 193nm lithography mask printing predictability down to the 65nm node. In addition to hardware improvements a new modular AIMS software is introduced allowing for a fully automated operation mode. Multiple pre-defined points can be visited and through-focus AIMS measurements can be executed automatically in a recipe based mode. To increase the effectiveness of the automated operation mode, the throughput of the system to locate the area of interest, and to acquire the through-focus images is increased by almost a factor of two in comparison with the first generation AIMS systems. In addition a new software plug-in concept is realised for the tools. One new feature has been successfully introduced as "Global CD Map", enabling automated investigation of global mask quality based on the local determination of

  5. Bright Photoelectron Beams Emitted From Excimer-Laser Illuminated LaB6

    NASA Astrophysics Data System (ADS)

    Oettinger, Peter E.

    1988-12-01

    Lanthanum hexaboride has traditionally been used as a high-temperature thermionic emitter of electrons. This material, whose work function for a sintered multicrystalline composition is nominally 2.6 eV, appears to be a reasonably good photoemitter when irradiated by UV light. A quantum efficiency of 10-3 was recorded for photoemission at a 193 nm (ArF) incident wavelength. At least 20 A/cm2 were observed at 193 nm, 248 nm (KrF) and 308 (XeC1). Beam brightness appears to be a minimum of 4 x 105 A/cm2-rad2 at 248 nm.

  6. Effect of 308-nm excimer laser light on peri-implantitis-associated bacteria: an in vitro investigation.

    PubMed

    Deppe, Herbert; Horch, Hans-Henning; Schrödl, Veit; Haczek, Cornelia; Miethke, Thomas

    2007-11-01

    Dental implants are becoming increasingly important in prosthodontic rehabilitation. Bacterial infections, however, can induce bone loss and jeopardize clinical success. Recent literature has demonstrated that infrared CO(2) laser light is suitable for the decontamination of exposed implant surfaces. The aim of the present study was to investigate the influence of 308-nm excimer laser irradiation on peri-implantitis-associated bacteria in vitro. In this study, a XeCl excimer laser (308 nm) was used (Summit Technology, Boston, USA). Both aerobe (Streptococcus mutans, S. sanguis, Actinomyces naeslundii) and anaerobe microorganisms (A. odontolyticus, Prevotella melaninogenica) were tested. According to previous studies, a constant energy of 0.8 J/cm(2) and a constant frequency of 20 Hz were used for all irradiations. Colony-forming units after laser irradiation were counted. Excimer laser irradiation showed significant influence on the growth of all microorganisms. As compared to S. mutans and S. sanguis, A. naeslundii demonstrated higher sensitivity to laser irradiation. Anaerobe microorganisms, in contrast, demonstrated that a total of 200 pulses were sufficient to reduce the replication of these germs for more than 99.9%. Excimer laser irradiation (lambda = 308 nm) can significantly reduce both aerobe and anaerobe microorganisms. Depending on the parameters chosen, 200 pulses are sufficient for sterilization. New studies are necessary to evaluate if this wavelength is more of value in the treatment of peri-implantitis than other wavelengths or conventional therapies.

  7. Sub-500-nm patterning of glass by nanosecond KrF excimer laser ablation

    NASA Astrophysics Data System (ADS)

    Bekesi, J.; Meinertz, J.; Simon, P.; Ihlemann, J.

    2013-01-01

    The surface of flint glass of type F2 is patterned by nanosecond KrF excimer laser ablation. Strong UV absorption provides a comparatively low ablation threshold and precise ablation contours. By using a two-grating interferometer, periodic surface patterns with 330 nm period and 100 nm modulation depth are obtained. This method enables the fabrication of 7 mm×13 mm wide grating areas with perfectly aligned grooves without the need of high-precision sample positioning. By double exposure, crossed gratings with adjustable depths in the two orthogonal directions can be generated.

  8. Pulsed Excimer Laser Processing for Cost-Effective Solar Cells

    NASA Technical Reports Server (NTRS)

    Wong, D.

    1985-01-01

    Residual lattice damage by 5 keV ion implantation and surface flaws induced by wafer cleaning are proven to affect the V sub oc more adversely for laser annealed cells than conventional thermal diffusion. However, an alternative, molecular implantation of molecular species holds potential. The first experimental results are encouraging. The lack of a commercially available mass analyzed implantation with low energy, high fluence ions is constraining.

  9. Tailoring immobilization of immunoglobulin by excimer laser for biosensor applications.

    PubMed

    Sima, Felix; Axente, Emanuel; Ristoscu, Carmen; Mihailescu, Ion N; Kononenko, Taras V; Nagovitsin, Ilya A; Chudinova, Galina; Konov, Vitaly I; Socol, Marcela; Enculescu, Ionut; Sima, Livia E; Petrescu, Stefana M

    2011-02-01

    The sheltered transfer and immobilization of rabbit anti-human antiserum immunoglobulin G (IgG) by matrix-assisted pulsed laser evaporation (MAPLE) are reported. The iced targets submitted to laser irradiation consisted of 0.2-2 mg/mL IgG blended or not with lipid (L-α-phosphatidylcholine dipalmitoyl) dissolved in distilled water-based saline buffer. Thin IgG coatings were obtained at room temperature onto glass, fused silica, or silicon substrates. Ten thousand subsequent laser pulses of 0.33, 0.5, or 0.67 J/cm(2) fluence were applied for the synthesis of each sample. Morphology and composition of the thin films were studied by optical, scanning, and atomic force microscopy and Fourier transformed infrared spectrometry. Optical labeling methods such as spectrofluorimetry and fluorescence microscopy were selected to verify the biosensor transduction principle because of their high sensitivity for detecting low amounts of antigen (IgG). Protein immobilization to the substrate surface was demonstrated for all obtained structures after immersion in the donkey anti-rabbit secondary antibody solution. The IgG transfer and immobilization onto substrates were improved by addition of lipid to MAPLE solutions.

  10. Towards excimer-laser-based stereolithography: a rapid process to fabricate rigid biodegradable photopolymer scaffolds.

    PubMed

    Beke, S; Anjum, F; Tsushima, H; Ceseracciu, L; Chieregatti, E; Diaspro, A; Athanassiou, A; Brandi, F

    2012-11-01

    We demonstrate high-resolution photocross-linking of biodegradable poly(propylene fumarate) (PPF) and diethyl fumarate (DEF) using UV excimer laser photocuring at 308 nm. The curing depth can be tuned in a micrometre range by adjusting the total energy dose (total fluence). Young's moduli of the scaffolds are found to be a few gigapascal, high enough to support bone formation. The results presented here demonstrate that the proposed technique is an excellent tool for the fabrication of stiff and biocompatible structures on a micrometre scale with defined patterns of high resolution in all three spatial dimensions. Using UV laser photocuring at 308 nm will significantly improve the speed of rapid prototyping of biocompatible and biodegradable polymer scaffolds and enables its production in a few seconds, providing high lateral and horizontal resolution. This short timescale is indeed a tremendous asset that will enable a more efficient translation of technology to clinical applications. Preliminary cell tests proved that PPF : DEF scaffolds produced by excimer laser photocuring are biocompatible and, therefore, are promising candidates to be applied in tissue engineering and regenerative medicine.

  11. Photo-triggering and secondary electron produced ionization in electric discharge ArF* excimer lasers

    NASA Astrophysics Data System (ADS)

    Xiong, Zhongmin; Kushner, Mark J.

    2011-10-01

    Electric discharge excimer lasers are sustained in multi-atmosphere attaching gas mixtures that are typically preionized to enable a reproducible, uniform glow, which maximizes optical quality and gain. This preionization is often accomplished using UV light produced by a corona discharge within the plasma cavity. To quantify the relationship between corona discharge properties and those of the laser discharge, the triggering of electron avalanche by preionizing UV light in an electric discharge-pumped ArF* excimer laser was numerically investigated using a two-dimensional model. The preionizing UV fluxes were generated by a corona-bar discharge driven by the same voltage pulse as the main discharge sustained in a multi-atmospheric Ne/Ar/Xe/F2 gas mixture. The resulting peak photo-electron density in the inter-electrode spacing is around 108 cm-3, and its distribution is biased toward the UV source. The preionization density increases with increasing dielectric constant and capacitance of the corona bar. The symmetry and uniformity of the discharge are, however, improved significantly once the main avalanche develops. In addition to bulk electron impact ionization, the ionization generated by sheath accelerated secondary electrons was found to be important in sustaining the discharge current at experimentally observed values. At peak current, the magnitude of the ionization by sheath accelerated electrons is comparable to that from bulk electron impact in the vicinity of the cathode.

  12. Minimizing wafer defectivity during high-temperature baking of organic films in 193nm lithography

    NASA Astrophysics Data System (ADS)

    Randall, Mai; Longstaff, Christopher; Ueda, Kenichi; Nicholson, Jim; Winter, Thomas

    2006-03-01

    Demands for continued defect reduction in 300mm IC manufacturing is driving process engineers to examine all aspects of the apply process for improvement. Process engineers, and their respective tool sets, are required to process films at temperatures above the boiling point of the casting solvents. This can potentially lead to the sublimation of the film chemical components. The current methods used to minimize wafer defectivity due to bake residues include frequent cleaning of bake plate modules and surrounding equipment, process optimization, and hardware improvements until more robust chemistries are available. IBM has evaluated the Tokyo Electron CLEAN TRACK TM ACT TM 12 high exhaust high temperature hotplate (HHP) lid to minimize wafer level contamination due to the outgasing of a bottom anti-reflective coating (BARC) films during the high temperature bake process. Goal was to minimize airborne contamination (particles in free space), reduce hotplate contamination build up, and ultimately reduce defects on the wafer. This evaluation was performed on a 193nm BARC material. Evaluation data included visual hardware inspections, airborne particle counting, relative thickness build up measurements on hotplate lids, wafer level defect measurements, and electrical open fail rate. Film coat thickness mean and uniformity were also checked to compare the high exhaust HHP with the standard HHP lid. Chemical analysis of the HHP module residue was performed to identify the source material. The work will quantify potential cost savings achieved by reducing added wafer defects during processing and extending PM frequency for equipment cleaning.

  13. Photodissociation of the Propargyl (C3D3) Radicals at 248 nm and 193 nm

    SciTech Connect

    Neumark., D.M.; Crider, P.E.; Castiglioni, L.; Kautzman, K.K.

    2009-01-21

    The photodissociation of perdeuterated propargyl (D{sub 2}CCCD) and propynyl (D{sub 3}CCC) radicals was investigated using fast beam photofragment translational spectroscopy. Radicals were produced from their respective anions by photodetachment at 540 nm and 450 nm (below and above the electron affinity of propynyl). The radicals were then photodissociated by 248 nm or 193 nm light. The recoiling photofragments were detected in coincidence with a time- and position-sensitive detector. Three channels were observed: D{sub 2} loss, CD + C{sub 2}D{sub 2}, and CD{sub 3} + C{sub 2}. Obervation of the D loss channel was incompatible with this experiment and was not attempted. Our translational energy distributions for D{sub 2} loss peaked at nonzero translational energy, consistent with ground state dissociation over small (< 1 eV) exit barriers with respect to separated products. Translational energy distributions for the two heavy channels peaked near zero kinetic energy, indicating dissociation on the ground state in the absence of exit barriers.

  14. Tuning and simulating a 193-nm resist for 2D applications

    NASA Astrophysics Data System (ADS)

    Howard, William B.; Wiaux, Vincent; Ercken, Monique; Bui, Bang; Byers, Jeff D.; Pochkowski, Mike

    2002-07-01

    For some applications, the usefulness of lithography simulation results depends strongly on the matching between experimental conditions and the simulation input parameters. If this matching is optimized and other sources of error are minimized, then the lithography model can be used to explain printed wafer experimental results. Further, simulation can be useful in predicting the results or in choosing the correct set of experiments. In this paper, PROLITH and ProDATA AutoTune were used to systematically vary simulation input parameters to match measured results on printed wafers used in a 193 nm process. The validity of the simulation parameters was then checked using 3D simulation compared to 2D top-down SEM images. The quality of matching was evaluated using the 1D metrics of average gate CD and Line End Shortening (LES). To ensure the most accurate simulation, a new approach was taken to create a compound mask from GDSII contextual information surrounding an accurate SEM image of the reticle region of interest. Corrections were made to account for all metrology offsets.

  15. A new look at the photodissociation of methyl iodide at 193 nm

    NASA Astrophysics Data System (ADS)

    Xu, Hong; Pratt, S. T.

    2013-12-01

    A new measurement of the photodissociation of CH3I at 193 nm is reported in which we use a combination of vacuum ultraviolet photoionization and velocity map ion imaging. The iodine photofragments are probed by single-photon ionization at photon energies above and below the photoionization threshold of I(2P3/2). The relative I(2P3/2) and I*(2P1/2) photoionization cross sections are determined at these wavelengths by using the known branching fractions for the photodissociation at 266 nm. Velocity map ion images indicate that the branching fraction for I(2P3/2) atoms is non-zero, and yield a value of 0.07 ± 0.01. Interestingly, the translational energy distribution extracted from the image shows that the translational energy of the I(2P3/2) fragments is significantly smaller than that of the I*(2P1/2) atoms. This observation indicates the internal rotational/vibrational energy of the CH3 co-fragment is very high in the I(2P3/2) channel. The results can be interpreted in a manner consistent with the previous measurements, and provide a more complete picture of the dissociation dynamics of this prototypical molecule.

  16. A new look at the photodissociation of methyl iodide at 193 nm

    SciTech Connect

    Xu, Hong; Pratt, S. T.

    2013-12-07

    A new measurement of the photodissociation of CH{sub 3}I at 193 nm is reported in which we use a combination of vacuum ultraviolet photoionization and velocity map ion imaging. The iodine photofragments are probed by single-photon ionization at photon energies above and below the photoionization threshold of I({sup 2}P{sub 3/2}). The relative I({sup 2}P{sub 3/2}) and I{sup *}({sup 2}P{sub 1/2}) photoionization cross sections are determined at these wavelengths by using the known branching fractions for the photodissociation at 266 nm. Velocity map ion images indicate that the branching fraction for I({sup 2}P{sub 3/2}) atoms is non-zero, and yield a value of 0.07 ± 0.01. Interestingly, the translational energy distribution extracted from the image shows that the translational energy of the I({sup 2}P{sub 3/2}) fragments is significantly smaller than that of the I{sup *}({sup 2}P{sub 1/2}) atoms. This observation indicates the internal rotational/vibrational energy of the CH{sub 3} co-fragment is very high in the I({sup 2}P{sub 3/2}) channel. The results can be interpreted in a manner consistent with the previous measurements, and provide a more complete picture of the dissociation dynamics of this prototypical molecule.

  17. 193 nm Ultraviolet Photodissociation Mass Spectrometry for Phosphopeptide Characterization in the Positive and Negative Ion Modes.

    PubMed

    Robinson, Michelle R; Taliaferro, Juliana M; Dalby, Kevin N; Brodbelt, Jennifer S

    2016-08-01

    Advances in liquid chromatography tandem mass spectrometry (LC-MS/MS) have permitted phosphoproteomic analysis on a grand scale, but ongoing challenges specifically associated with confident phosphate localization continue to motivate the development of new fragmentation techniques. In the present study, ultraviolet photodissociation (UVPD) at 193 nm is evaluated for the characterization of phosphopeptides in both positive and negative ion modes. Compared to the more standard higher energy collisional dissociation (HCD), UVPD provided more extensive fragmentation with improved phosphate retention on product ions. Negative mode UVPD showed particular merit for detecting and sequencing highly acidic phosphopeptides from alpha and beta casein, but was not as robust for larger scale analysis because of lower ionization efficiencies in the negative mode. HeLa and HCC70 cell lysates were analyzed by both UVPD and HCD. While HCD identified more phosphopeptides and proteins compared to UVPD, the unique matches from UVPD analysis could be combined with the HCD data set to improve the overall depth of coverage compared to either method alone. PMID:27425180

  18. Effects of XeCl excimer lasers and fluoride application on artificial caries-like lesions

    NASA Astrophysics Data System (ADS)

    Wilder-Smith, Petra B. B.; Phan, T.; Liaw, Lih-Huei L.; Berns, Michael W.

    1994-09-01

    In this study the affects of a pulsed excimer laser emitting at 308 nm (XeCl) on enamel susceptibility to artificial caries-like lesions were investigated. Additional effects of fluoride (F) application were also studied and SEC examinations performed. Sixty-four extracted human molar teeth were coated with acid resistant varnish leaving four windows, then sectioned, leaving one window on each tooth quarter. The windows were treated in one of the following ways: untreated (control), or lased, or exposed to 4 min. APF (1.23% F) before lasing, or exposed to 4 min. APF (1.23% F) after lasing. After lasing, microhardness profiles were obtained and SEM was performed. Caries resistance was generally increased at moderate fluences. F application combined with lasing enhanced caries resistance at some parameters. SEM showed effects ranging from minimal to localized effects to extended glazing. Pulsed excimer laser irradiation, especially combined with topical F application can inhibit development of artificial caries-like lesions.

  19. Treatment of band keratopathy by excimer laser phototherapeutic keratectomy: surgical techniques and long term follow up.

    PubMed Central

    O'Brart, D P; Gartry, D S; Lohmann, C P; Patmore, A L; Kerr Muir, M G; Marshall, J

    1993-01-01

    A series of 122 eyes with band keratopathy was treated by excimer laser phototherapeutic keratectomy (PTK), with a mean follow up of over 12.3 months (range 3 to 60 months). A single photoablation zone was used to remove the opacity over the visual axis in smooth surfaced band deposition. In eyes with reduced vision, an improvement was reported in 88% and in a series of 66 eyes mean Snellen visual acuity increased significantly (p < 0.05, t = 2.27). A reduction in glare was reported in 88% and in a series of 17 patients, visual contrast sensitivity (p < 0.01) and measurements of disability glare (p < 0.01) improved postoperatively. The mean hyperopic shift in 32 eyes at 6 months was 1.4 D (range 0-4.25 D). Multiple overlapping ablation zones, with mechanical debulking of large calcium plaques, were used to smooth the irregular corneal surface in eyes with rough bands. Ocular discomfort was improved in 95%. Band keratopathy recurred in nine eyes (8%) within 2 to 30 months (mean 12 months) of surgery, with silicone oil responsible in five eyes. Reablation was necessary in three eyes and performed successfully in all cases. Excimer laser PTK is a safe and effective outpatient treatment for band keratopathy. Images PMID:8280683

  20. Confocal microscope observations of the cornea after excimer laser refractive surgery

    NASA Astrophysics Data System (ADS)

    Gierek-Lapinska, Ariadna; Gierek-Ciaciura, Stanislawa; Mrukwa, Ewa; Rokita-Wala, Iwona; Sarzynski, Adam

    1998-10-01

    Purpose: The aim of this study was to observe human corneas after Photorefractive keratectomy, in vivo, using the Scanning Slit Confocal Microscope `Confoscan P4' (Tomey). Material and method: The material consists of 80 corneas of 45 patients where in vivo, non-invasive evaluation of the corneal structures was performed with a confocal microscope. The confocal microscopic examination was performed in cases after excimer laser refractive surgery and analyzed together with the type of the procedure (myopia, hyperopia and astigmatism correction), and with the patients' age and sex. The results obtained in the right and left eye of each patient after bilateral procedures were compared. The state of the cornea was analyzed in relation to follow-up time. Results: The observations consist of the structure of corneal epithelium, stromal keratocytes, topography of nerve fibers, appearance of Bowman's and Descemet's membranes and condition of endothelial cells. Conclusion: The confocal microscope allows non-invasive in vivo observations of the corneal structures and is capable of the evaluation of corneal healing after excimer laser refractive procedures.

  1. Endovascular treatment of in-stent restenosis using excimer laser angioplasty and drug eluting balloons.

    PubMed

    Van Den Berg, J C; Pedrotti, M; Canevascini, R; Chimchila Chevili, S; Giovannacci, L; Rosso, R

    2012-04-01

    In-stent restenosis after endovascular treatment of stenotic and occlusive disease of the infrainguinal arteries is still a clinical challenge. In this paper an overview of the current status of drug-eluting balloon technology and results of clinical trials with drug-eluting balloon angioplasty is given. Furthermore a case series of 10 patients with in-stent restenosis that were treated with excimer laser angioplasty and drug eluting balloons is described. In this case series the mean lesion length treated was 115 mm, and the mean time to occurrence of restenosis after initial treatment was 7.2 months. At a mean follow-up (of all patients) of 7.6 months no target vessel revascularization was seen. In 7 patients that had Duplex and/or angiographic control (mean follow-up 7 months) no signs of neointimal hyperplasia were demonstrated. These short-term data compare favorable to results obtained with standard balloon angioplasty and cutting-balloon angioplasty. Long-term follow-up is necessary to define the role of combined excimer laser and drug-eluting balloon angioplasty in the treatment of in-stent restenosis further.

  2. Photolysis of Pure Solid O3 and O2 Films at 193nm

    NASA Technical Reports Server (NTRS)

    Raut, U.; Loeffler, M. J.; Fama, M.; Baragiola, R. A.

    2011-01-01

    We studied quantitatively the photochemistry of solid O3 and O2 films at 193 nm and 22 K with infrared spectroscopy and microgravimetry. Photolysis of pure ozone destroyed O3, but a small amount of ozone remained in the film at high fluence. Photolysis of pure O2 produced O3 in an amount that increased with photon fluence to a stationary level. For both O2 and O3 films, the O3:O2 ratio at large fluences is ?0.07, about two orders of magnitude larger than those obtained in gas phase photolysis. This enhancement is attributed to the increased photodissociation of O2 due to photoabsorption by O2 dimers, a process significant at solid-state densities. We obtain initial quantum yield for ozone synthesis from solid oxygen, phi (O3) = 0.24 0.06, and quantum yields for destruction of O3 and O2 in their parent solids, phi(-O3) = 1.0 0.2 and phi(-O2) = 0.36 0.1. Combined with known photoabsorption cross sections, we estimate probabilities for geminate recombination of 0.5 0.1 for O3 fragments and 0.88 0.03 for oxygen atoms from O2 dissociation. Using a single parameter kinetic model, we deduce the ratio of reaction cross sections for an O atom with O2 vs. O3 to be 0.1 0.2. The general good agreement of the model with the data suggests the validity of the central assumption of efficient energy and spin relaxation of photofragments in the solid prior to their reactions with other species.

  3. Photodissociation of vinyl cyanide at 193 nm: Nascent product distributions of the molecular elimination channels

    SciTech Connect

    Wilhelm, Michael J.; Nikow, Matthew; Letendre, Laura; Dai Hailung

    2009-01-28

    The photodissociation dynamics of vinyl cyanide (H{sub 2}CCHCN, acrylonitrile) and deuterated vinyl cyanide (D{sub 2}CCDCN) at 193 nm are examined using time-resolved Fourier transform infrared emission spectroscopy. Prior photofragment translational spectroscopy studies [D. A. Blank et al., J. Chem. Phys. 108, 5784 (1998)] of the dissociation have observed the presence of four main dissociation channels; two molecular and two radical in nature. However, with the exception of a<0.01 quantum yield determined for the CN radical loss channel, the branching ratios of the remaining three elimination channels were not measured. The time-resolved emission spectra, including those from the deuterated samples, revealed the presence of acetylene, hydrogen cyanide (HCN), as well as the energetically less stable isomer hydrogen isocyanide (HNC). Acetylene is found in two distinct energetic distributions, suggesting that both three- and four-centered elimination reactions are occurring significantly in the dissociation. In contrast to prior ab initio studies that have suggested the dominant nature of the three-center elimination of molecular hydrogen (H{sub 2}) and cyanovinylidene (:C=CHCN), we find this reaction channel to be of little importance as there is no evidence to support any significant presence of rovibrationally excited cyanoacetylene. Spectral modeling of the product distributions allows for the first experimental determination of the relative occurrence of the three-centered (resulting in HCN+vinylidene) versus four-centered (HNC+acetylene) elimination channels as 3.34 to 1.00, in contrast to the previously calculated value of 126:1. Rice-Ramsperger-Kassel-Marcus analysis depicts that the transition state energy of the four-centered reaction should be about 10 kcal mole{sup -1} lower than the three-centered reaction.

  4. Laser Machining For Fabrication Of Hohlraums And Capsules

    SciTech Connect

    Shirk, M D; Kelly, B T; Haynes, S M; Stuart, B C; Sanchez, J J; Moody, J D; Cook, R C

    2005-06-24

    Laser machining technology has been used to demonstrate the ability to rapidly perform jobs on all aspects of ICF targets. Lasers are able to rapidly perform modifications and repairs to the gold metal parts on hohlraums, make cuts in the delicate polymer parts of the hohlraum, and drill holes in the capsules to enable them to be filled with fuel. Lasers investigated in this work include 193 nm ArF and 248 nm KrF excimers and 810 nm chirped-pulse amplification Ti:Sapphire lasers. The excimer lasers showed a definite advantage in drilling and machining of polymeric materials and the ultrashort infrared pulses of the Ti:Sapphire laser were far better for the gold structures.

  5. Excimer laser ablation lithography applied to the fabrication of reflective diffractive optics

    NASA Astrophysics Data System (ADS)

    Flury, M.; Benatmane, A.; Gérard, P.; Montgomery, P. C.; Fontaine, J.; Engel, T.; Schunck, J. P.; Fogarassy, E.

    2003-03-01

    We propose a low cost technique for the production of diffractive optical elements (DOE). These elements are devoted to high power lasers beam shaping in the mid-infrared wavelengths. This process called laser ablation lithography (LAL), may seem similar to laser beam writing (LBW) in the way the whole DOE's design is reproduced pixel by pixel on the substrate placed on a computer controlled XY translation stage. A first difference is that the photoresist is not exposed with UV light but is directly ablated with short excimer laser pulses. Furthermore, with LAL technique the size of the smallest pixel ( 5 μm×5 μm) is more than 10 times greater than those produced by LBW. We discuss in details the experimental set-up for LAL and demonstrate that it gives a resolution up to 10 times greater than photolithography with flexible masks. This makes LAL a promising solution for the production of DOE for use with Nd:YAG lasers. New applications of DOEs are finally introduced with high power lasers sources, such as laser marking or multi-point brazing.

  6. Excimer laser ablation of aluminum: influence of spot size on ablation rate

    NASA Astrophysics Data System (ADS)

    Shaheen, M. E.; Gagnon, J. E.; Fryer, B. J.

    2016-11-01

    The dependence of ablation rate of an Al alloy on laser beam spot size (10–150 µm) was investigated using an ArF excimer laser operating at a wavelength of 193 nm and pulse width less than 4 ns. Ablation was conducted in air at a fluence of 11 J cm‑2 and at a repetition rate of 20 Hz. Surface morphology and depth of craters produced by a variable number of laser pulses were characterized using optical and scanning electron microscopy. Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) was used as an additional diagnostic technique to estimate the amount of material ablated from craters produced by a laser beam of different diameters. Laser beam spot size and number of laser pulses applied to the same spot were found to influence crater morphology, ablation rate, shape and amount of particles deposited at or around the crater rim. Ablation rate was found to be less dependent on spot size for craters greater than 85 µm. A four-fold increase in ablation rate was observed with decreasing crater size from 150 µm to 10 µm.

  7. Automated generation of NC part programs for excimer laser ablation micromachining from known 3D surfaces

    NASA Astrophysics Data System (ADS)

    Mutapcic, Emir; Iovenitti, Pio G.; Hayes, Jason P.

    2002-11-01

    The purpose of this research project is to improve the capability of the laser micromachinning process, so that any desired 3D surface can be produced by taking the 3D information from a CAD system and automatically generating the NC part programs. In addition, surface quality should be able to be controlled by specifying optimised parameters. This paper presents the algorithms and a software system, which processes 3D geometry in an STL file format from a CAD system and produces the NC part program to mill the surface using the Excimer laser ablation process. Simple structures are used to demonstrate the prototype system's part programming capabilities, and an actual surface is machined.

  8. Photo-fragmentation of selenium powder by Excimer laser ablation in liquids

    NASA Astrophysics Data System (ADS)

    Van Overschelde, O.; Guisbiers, G.

    2015-10-01

    Laser ablation in liquids is especially adapted to produce nanoparticles free of any contamination as suited for biological and medical applications. A KrF Excimer laser delivering an UV light at 248 nm and operating at low fluence (F~0.5 J/cm2) was used to irradiate a micro-sized powder of selenium dispersed into a de-ionized water solution. To avoid any agglomeration of the selenium nanoparticles during the irradiation, surfactants (SDS and CTAB) were added to the solution and their efficiency was compared. The concentration of surfactants had to be chosen around the critical micellar concentration to produce small selenium nanoparticles (<60 nm). Moreover, SDS shows better mono-disperse size distribution compared to CTAB. Finally, photo-fragmentation is found to be more efficient than bulk thermal ablation to produce very small selenium nanoparticles (less than 10 nm).

  9. PMMA microstructure as KrF excimer-laser LIGA material

    NASA Astrophysics Data System (ADS)

    Yang, Chii-Rong; Chou, Bruce C. S.; Chou, Hsiao-Yu; Lin, Frank H. S.; Kuo, Wen-Kai; Luo, Roger G. S.; Chang, Jer-Wei; Wei, Z. J.

    1998-08-01

    PMMA (polymethyl methacrylate) has been widely used as x-ray LIGA material for its good features of electrical acid plating of all common metals to industrial applications. Unlike the tough characteristics of polyimide in almost all alkaline and acid solutions, PMMA is easily removed in chemical etchants after electroplating process. For this reason, ablation- etching characteristics of PMMA material for 3D microstructures fabrication using a 248 nm KrF excimer laser were investigated. Moreover, the uses of the laminated dry film were also studied in this work. Experimental results show that PMMA microstructures can produce the near-vertical side- wall profile as the laser fluence up to 2.5 J/cm2. PMMA templates with high aspect ratio of around 25 were demonstrated, and the sequential electroplating processes have realized the metallic microstructures. Moreover, the microstructures fabricated in dry film show the perfect side- wall quality, and no residues of debris were found.

  10. Evaluation of the Efficacy of Excimer Laser Ablation of Cross-Linked Porcine Cornea

    PubMed Central

    Chen, Shihao; Li, Yini; Stojanovic, Aleksander; Zhang, Jia; Wang, Yibo; Wang, Qinmei; Seiler, Theo

    2012-01-01

    Background Combination of riboflavin/UVA cross-linking (CXL) and excimer laser ablation is a promising therapy for treating corneal ectasia. The cornea is strengthened by cross-linking, while the irregular astigmatism is reduced by laser ablation. This study aims to compare the efficacy of excimer laser ablation on porcine corneas with and without cross-linking. Methods and Findings The porcine cornea was de-epithelialized and treated with 0.1% riboflavin solution for 30 minutes. A half of the cornea was exposed to UVA-radiation for another 30 minutes while the controlled half of the cornea was protected from the UVA using a metal shield. Photo therapeutic keratectomy (PTK) was then performed on the central cornea. Corneal thickness of 5 paired locations on the horizontal line, ±0.5, ±1.0, ±1.5, ±2.0, and ±2.5 mm from the central spot, were measured using optical coherence tomography prior to and after PTK. The ablation depth was then determined by the corneal thickness. There was a 9% difference (P<0.001) in the overall ablation depth between the CXL-half corneas (158±22 µm) and the control-half corneas (174±26 µm). The ablation depths of all 5 correspondent locations on the CXL-half were significantly smaller (P<0.001). Conclusion The efficacy of the laser ablation seems to be lower in cross-linked cornea. Current ablation algorithms may need to be modified for cross-linked corneas. PMID:23056269

  11. COMPONENTS OF LASER SYSTEMS: Pumping of the GARPUN wide-aperture excimer laser by counterpropagating electron beams

    NASA Astrophysics Data System (ADS)

    Arlantsev, S. V.; Grigor'yants, E. A.; Vadkovskii, A. D.; Zvorykin, V. D.; Metreveli, G. E.

    1994-03-01

    The transport of high-current electron beams from vacuum diodes to the laser chamber of the GARPUN wide-aperture excimer laser was investigated experimentally and theoretically. The processes involving the transport of fast electrons in argon and krypton in a longitudinal magnetic field were also studied. Pumping by counter-propagating electron beams resulted in the deposition of up to 2.1 kJ of energy into the active medium of the laser, which corresponded to a specific excitation power of ~0.8 MW cm-3 with an inhomogeneity of less than 20% over a 12 cm × 18 cm aperture. The efficiency of the energy deposition by electron beams was ~60% and the overall efficiency of the laser pumping system was ~16%.

  12. Pure, single crystal Ge nanodots formed using a sandwich structure via pulsed UV excimer laser annealing

    NASA Astrophysics Data System (ADS)

    Liao, Ting-Wei; Chen, Hung-Ming; Shen, Kuan-Yuan; Kuan, Chieh-Hsiung

    2015-04-01

    In this paper, a sandwich structure comprising a SiO2 capping layer, amorphous Germanium (a-Ge) nanodots (NDs), and a pit-patterned Silicon (Si) substrate is developed, which is then annealed by utilizing a pulsed ultraviolet excimer laser in order to fabricate an array of pure, single crystal Ge NDs at room temperature. A wide bandgap SiO2 capping layer is used as a transparent thermally isolated layer to prevent thermal loss and Si-Ge intermixing. The two-dimensional pit-patterned Si substrate is designed to confine the absorbed laser energy, reduce the melting point, and block the surface migration of the Ge. After optimizing the laser radiation parameters such that the laser energy density is 200 mJ cm-2, the laser annealing period is 10 s, and the number of laser shots is 10, pure, single crystal Ge NDs that have both a regular arrangement and a uniform size distribution are obtained in the pits of the Si substrates. The Raman spectrum shows a highly symmetric Ge transversal optical peak with a full width at half maximum of 4.2 cm-1 at 300.7 cm-1, which is close to that of the original Ge wafer. In addition, the high-resolution transmission electron microscopy image for the Ge NDs and the corresponding selected area electron diffraction pattern shows a clear single crystalline structure without any impurities.

  13. Non-reciprocal double-exposure materials for 193nm pitch division

    NASA Astrophysics Data System (ADS)

    Bristol, Robert; Roberts, Jeanette; Shykind, David; Blackwell, James M.

    2010-04-01

    We present an overview of lithography results achieved for materials to support "leave-on-chuck" double-exposure pitch-division patterning. These materials attempt to make use of a non-reciprocal photoresponse in which the same number of absorbed 193nm photons can produce different remaining levels of resist, depending upon whether the photons are received all at once or in two separate exposures. This, in principle, allows for the use of two exposures, using independent masks and without removing the wafer from the chuck, to produce non-regular patterning down to one half the pitch limit of the scanner. Such behavior could be produced, for example, by a reversible two-stage Photoacid Generator (PAG) or other non-reciprocal mechanisms. Several stages of lithography screening were done on a large number of candidate systems. Initially, thermal stability, casting behavior, and single-exposure (SE) contrast curves were investigated to determine whether the system behaved as a usable photoresist. The next stage of testing probed non-reciprocal response, in the form of double-exposure (DE) contrast curves, typically with an intervening whole-wafer flood exposure at a longer wavelength to enact the nonreciprocity. The key criterion for the material to pass this stage was to show a shifted contrast curve (difference in photospeed) for DE vs. SE. Such a shift would then imply that pitch-division imaging would be possible for this material. After identifying materials which exhibited this SE vs. DE contrast curve shift, the next step was actual DE patterning. Since the laboratory tool used for these exposures does not have the precise alignment needed to interleave the two exposures for pitch division, we employed a technique in which the second exposure is rotated slightly with respect to the first exposure. This results in a Moiré-type pattern in which the two aerial images transition between overlap and interleave across the wafer. One particular PAG + sensitizer did

  14. Effect of an antioxydant cream versus placebo in patients with vitiligo in association with excimer laser. A pilot randomized, investigator-blinded, and half-side comparison trial.

    PubMed

    Leone, G; Paro Vidolin, A

    2015-08-01

    The aim of this study was to evaluate the combined effect of excimer laser and a topical antioxidant in the treatment for vitiligo. The study was conducted in a single blinded design on 10 vitiligo patients with symmetrical vitiligo lesions treated with the active antioxidant or a placebo that were irradiated with an excimer laser. Results have shown that the lesions treated with the active cream achieved earlier regimentation compared to the placebo. The use of a cream containing antioxidants may improve the results of excimer laser treatment in patients with vitiligo.

  15. Visual outcomes of topography-guided excimer laser surgery for treatment of patients with irregular astigmatism.

    PubMed

    Ghoreishi, Mohammad; Naderi Beni, Afsaneh; Naderi Beni, Zahra

    2014-01-01

    The aim of this study was to evaluate the efficacy, safety, and predictability of topography-guided treatments to enhance refractive status following other corneal surgical procedures. In a prospective case series study, 28 consecutive eyes of 26 patients with irregular astigmatism after radial keratotomy, corneal transplant, small hyperopic and myopic excimer laser optical zones, and corneal scars were operated. Laser-assisted in situ keratomileusis (LASIK) (n = 8) and photorefractive keratectomy (PRK) (n = 20) were performed using the ALLEGRETTO WAVE excimer laser and topography-guided customized ablation treatment software. Preoperative and postoperative uncorrected visual acuity (UCVA), best corrected visual acuity (BCVA), manifest and cycloplegic refraction, and corneal topography with asphericity were analyzed in 12 months follow-up. Uncorrected visual acuity (UCVA) changed from 0.2 ± 0.2 or (20/100 ± 20/100) to 0.51 ± 0.31 or (20/40 ± 20/60) in the LASIK group (P = 0.01) and from 0.34 ± 0.16 or (20/60 ± 20/120) to 0.5 ± 0.23 or (20/40 ± 20/80) in the PRK group (P = 0.01). Refractive cylinder decreased from -3.2 ± 0.84 diopters (D) to -2.06 ± 0.42 D in the LASIK group (P = 0.07) and from -2.25 ± 0.39 D to -1.5 ± 0.23 D in the PRK group (P = 0.008). Best corrected visual acuity did not change significantly in either group. Topography-guided treatment is effective in correcting the irregular astigmatism after refractive surgery. Topography-guided PRK can significantly reduce irregular astigmatism and increase the UCVA and BCVA.

  16. Excimer laser patterning of PEDOT:PSS thin-films on flexible barrier foils: A surface analysis study

    NASA Astrophysics Data System (ADS)

    Naithani, Sanjeev; Schaubroeck, David; Vercammen, Yannick; Mandamparambil, Rajesh; Yakimets, Iryna; Van Vaeck, Luc; Van Steenberge, Geert

    2013-09-01

    Selective laser patterning of thin organic films is an important aspect in the roll-to-roll production of organic electronic devices such as organic light emitting diodes (OLEDs). An excimer laser is well suited for the patterning and structuring of polymer thin films as their UV absorption is significant. Selective removal of a transparent conducting polymer PEDOT:PSS (poly(3,4-ethylene dioxythiophene):polystyrene sulfonate) on a multilayered (inorganic-organic-inorganic) barrier and a flexible PEN (polyethylene napthalate) substrate has been studied using a KrF excimer laser. The ablation craters were characterized with electron microscopy and profilometry. For the first time, chemical surface analysis of the patterned area was performed with Time-Of-Flight Static Secondary Ion Mass Spectrometry (TOF-S-SIMS), providing a detailed insight of the surface composition after laser ablation and plasma post-treatments.

  17. Irradiation planning for automated treatment of psoriasis with a high-power excimer laser

    NASA Astrophysics Data System (ADS)

    Klämpfl, Florian; Schmidt, Michael; Hagenah, Hinnerk; Görtler, Andreas; Wolfsgruber, Frank; Lampalzer, Ralf; Kaudewitz, Peter

    2006-02-01

    American and European statistics have shown that 1-2 per cent of the human population is affected by the skin disease psoriasis. Recent research reports promising treatment results when irradiating skin areas affected by psoriasis with high powered excimer lasers with a wavelength of 308 nm. In order to apply the necessary high energy dose without hurting healthy parts of the skin new approaches regarding the system technology must be considered. The aim of the current research project is the development of a sensor-based, automated laser treatment system for psoriasis. In this paper we present the algorithms used to cope with the diffculties of irradiating irregularly shaped areas on curved surfaces with a predefined energy level using a pulsed laser. Patients prefer the treatment to take as little time as possible. This also helps to reduce costs. Thus the distribution of laser pulses on the surface to achieve the given energy level on every point of the surface has to be calculated within a limited time frame. The remainder of the paper will describe in detail an efficient method to plan and optimize the laser pulse distribution. Towards the end, some first results will be presented.

  18. Fluorescence imaging inside an internal combustion engine using tunable excimer lasers.

    PubMed

    Andresen, P; Meijer, G; Schlüter, H; Voges, H; Koch, A; Hentschel, W; Oppermann, W; Rothe, E

    1990-06-01

    Tunable excimer lasers are used to obtain 2-D images of molecular (and some state-specific) density distributions inside a cylinder of a modified four-cylinder in-line engine that has optical access. Natural fluorescence (i.e., without a laser) is used for some OH pictures, normal laser-induced fluorescence (LIF) for those of NO and of the isooctane fuel, and laser-induced predissociative fluorescence (LIPF) for other OH pictures and for those of O(2). Relevant spectroscopy is done to find the laser and fluorescence frequencies needed to measure isolated species. LIPF works well at high pressures, is state specific, and is ideally suited to follow turbulent processes. No similar measurements in engines have been previously reported. Pictures are taken in succeeding engine cycles. Their sequence is either at a particular point of the engine's cycle to show cyclic fluctuations, or at succeeding portions of the cycle to illustrate the progress of the gasdynamics or of the combustion.

  19. Studies of Preionization Processes of High Pressure Gases for Excimer Laser Discharges

    NASA Astrophysics Data System (ADS)

    Kataoka, N.; Uchino, K.; Muraoka, K.; Okada, T.; Maeda, M.; Sunaka, E.; Enami, T.; Mizoguchi, H.

    1998-10-01

    The aim of this research is to understand and control the preionization process in high pressure discharges used for excimer lasers. For this purpose, a test chamber with a spark light source was designed and fabricated, to achieve ultra high vacuum and to control the base pressure. Photocharge signals produced by the spark light source were collected by pairs of plate electrodes placed inside the test chamber. In order to study the effect of gaseous impurities on the preionization process, measurements were performed for different base pressure conditions. The results showed that the photocharge signal was linearly correlated with the base pressure. Also, the possibility of actively controlling the preionization by adding small amount of Xe gas to the gas mixture was examined. The maximum signal at the Xe partial pressure of 0.1 Torr was 10 times higher than the signal for the Ne and Kr mixture without Xe, suggesting that active control may be possible.

  20. Interaction of 308-nm excimer laser light with temporomandibular joint related structures

    NASA Astrophysics Data System (ADS)

    Liesenhoff, Tim; Funk, Armin

    1994-02-01

    Arthroscopy of TMJ has become a clinically important and more and more accepted method for diagnosis and treatment of TMJ alteration. This minimal invasive method is clearly limited by the anatomical dimensions of the TMJ. A 308 nm excimer laserlight has already found clinical applications in angioplasty, ophthalmology, and dentistry. The aim of the presented study was to find out if it is possible to ablate TMJ related structures under arthroscopic conditions. It also aims to evaluate the energy-threshold for ablation and the maximal possible rate of ablation. Contrary to other laser systems it offers a unique combination of minimal tissue alteration, precise tissue ablation guidability through optical fibers, and a good transmission through water.

  1. Gratings in indium oxide film overlayers on ion-exchanged waveguides by excimer laser micromachining

    NASA Astrophysics Data System (ADS)

    Pissadakis, S.; Reekie, L.; Zervas, M. N.; Wilkinson, J. S.; Kiriakidis, G.

    2001-02-01

    Relief Bragg gratings were imprinted by 248 nm interferometric excimer laser ablation on potassium ion-exchanged channel waveguides in BK-7 glass overlaid with a thin high-index InOx film. Using five pulses of energy density 60 mJ/cm2, a spectral transmittance notch of depth 66% and ΔλFWHM<0.1 nm was obtained at 1547 nm in the TE polarization for a waveguide having a nominal width of 8 μm and a 135-nm-thick InOx overlayer. In waveguides coated with 100 nm InOx, with widths increasing from 3 to 8 μm, the reflection wavelength shifted by 0.12 nm/μm and the reflectivity increased monotonically.

  2. Micromachining of polyurethane (PU) polymer using a KrF excimer laser (248 nm)

    NASA Astrophysics Data System (ADS)

    Singh, Sarabpreet; Sharma, Sunil

    2014-12-01

    Polyurethane (PU) polymer, due to its biocompatibility, weather resistance, and favorable physical properties, finds a number of applications in medical implants, protective coatings, and as a prototype material for structural components in MEMS devices. An excimer laser (wavelength = 248 nm, FWHM = 25 ns) is employed for micromachining of polyurethane (PU) polymer. For air environment, the ablation rate is 0.18 μm/pulse and for underwater environment, the ablation rate is 0.07 μm/pulse (with underwater ablation threshold as 0.10 J/cm2), which concluded low taper angles (∼32°) for in air as compared to high taper angles (∼65°) with underwater micromachining. The experimental results for air and under water micromachining demonstrate ablation process as a combination of photo-thermal and photo-chemical mechanism.

  3. Effects of Plasma Formation on the Cesium Diode (DPAL) and Excimer (XPAL) Pumped Alkali Laser

    NASA Astrophysics Data System (ADS)

    Markosyan, Aram H.; Kushner, Mark J.

    2015-09-01

    Diode pumped alkali lasers (DPALs) and excimer pumped alkali lasers (XPALs) are being investigated as a means to convert optical pumps having poor optical quality to laser radiation having high optical quality. DPALs sustained in Cs vapor are pumped on the D2(852.35 nm), Cs(62S1/2) --> Cs(62P3/2) , transition and lase on the D1(894.59 nm) transition, Cs(62P1/2) --> Cs(62S1/2) . Collisional mixing (spin orbit relaxation) of the Cs(62P3/2) and Cs(62P1/2) levels is a key part of this three-level (in fact, a quasi-two-level) laser scheme. In the five-level XPAL pumping scheme, the CsAr(B2Σ1/ 2 +) state is optically pumped by 836.7 nm pulses, which later dissociates and produces Cs(62P3/2) . As in DPAL, a collisional relaxant transfers the population of Cs(62P3/2) to Cs(62P1/2) , which enables lasing on D1 transition. A first principals global computer model has been developed for both systems to investigate the effects of plasma formation on the laser performance. Argon is used as a buffer gas and nitrogen or ethane are used as a collisional relaxant at total pressure of 600 Torr at temperatures of 350-450 K, which produces vapor pressures of Cs of <0.1 Torr. In both systems, a plasma formation in excess of 1014 - 1016cm-3 occurs, which potentially reduces laser output power by electron collisional mixing of upper and lower laser levels. Work supported by DoD High Energy Laser Multidisc, Res. Initiative.

  4. Deposition of high quality TiN films by excimer laser ablation in reactive gas

    NASA Astrophysics Data System (ADS)

    Mihailescu, I. N.; Chitica, N.; Nistor, L. C.; Popescu, M.; Teodorescu, V. S.; Ursu, I.; Andrei, A.; Barborica, A.; Luches, A.; De Giorgi, M. Luisa; Perrone, A.; Dubreuil, B.; Hermann, J.

    1993-11-01

    A new laser method is proposed for the deposition of high purity, hard fcc TiN layers of unlimited thickness. The film thickness can be very finely controlled mainly through the intermediary of the number of applied laser pulses as the deposition rate is of only 0.02-0.05 nm/pulse. The ablation is promoted from a Ti target by high intensity multipulse excimer laser irradiation in a low pressure N2 ambient gas while the forming compound is collected on a Si single-crystalline wafer. The best results have been obtained for an ambient pressure of p=10-30 mTorr and a distance between the target and support of d=10 mm. It is shown that the formation of a liquid phase within the irradiated zone, maintained even after the end of a laser pulse, is the most important requisite for TiN formation. TiN is then ablated as a stoichio- metric phase.

  5. Excimer versus Femtosecond Laser Assisted Penetrating Keratoplasty in Keratoconus and Fuchs Dystrophy: Intraoperative Pitfalls

    PubMed Central

    El-Husseiny, Moatasem; Seitz, Berthold; Langenbucher, Achim; Akhmedova, Elena; Szentmary, Nora; Hager, Tobias; Tsintarakis, Themistoklis; Janunts, Edgar

    2015-01-01

    Purpose. To assess the intraoperative results comparing two non-mechanical laser assisted penetrating keratoplasty approaches in keratoconus and Fuchs dystrophy. Patients and Methods. 68 patients (age 18 to 87 years) with keratoconus or Fuchs dystrophy were randomly distributed to 4 groups. 35 eyes with keratoconus and 33 eyes with Fuchs dystrophy were treated with either excimer laser ([Exc] groups I and II) or femtosecond laser-assisted ([FLAK] groups III and IV) penetrating keratoplasty. Main intraoperative outcome measures included intraoperative decentration, need for additional interrupted sutures, alignment of orientation markers, and intraocular positive pressure (vis a tergo). Results. Intraoperative recipient decentration occurred in 4 eyes of groups III/IV but in none of groups I/II. Additional interrupted sutures were not necessary in groups I/II but in 5 eyes of groups III/IV. Orientation markers were all aligned in groups I/II but were partly misaligned in 8 eyes of groups III/IV. Intraocular positive pressure grade was recognized in 12 eyes of groups I/II and in 19 eyes of groups III/IV. In particular, in group III, severe vis a tergo occurred in 8 eyes. Conclusions. Intraoperative decentration, misalignment of the donor in the recipient bed, and need for additional interrupted sutures as well as high percentage of severe intraocular positive pressure were predominantly present in the femtosecond laser in keratoconus eyes. PMID:26483974

  6. Report on the Study of Radiation Damage in Calcium Fluoride and Magnesium Fluoride Crystals for use in Excimer Laser Applications

    SciTech Connect

    None, None

    1999-10-04

    A study was performed to investigate the effects of radiation damage in calcium fluoride and magnesium fluoride crystals caused by gamma rays and UV photons from excimer lasers. The purpose was to study and correlate the damage caused by these two different mechanisms in various types of material used for fabricating optical elements in high power excimer lasers and lens systems of lithography tools. These optical systems are easily damaged by the laser itself, and it is necessary to use only the most radiation resistant materials for certain key elements. It was found that a clear correlation exists between the, radiation induced damage caused by high energy gamma rays and that produced by UV photons from the excimer laser. This correlation allows a simple procedure to be developed to select the most radiation resistant material at the ingot level, which would be later used to fabricate various components of the optical system. This avoids incurring the additional cost of fabricating actual optical elements with material that would later be damaged under prolonged use. The result of this screening procedure can result in a considerable savings in the overall cost of the lens and laser system.

  7. Enhanced efficiency of the dye-sensitized solar cells by excimer laser irradiated carbon nanotube network counter electrode

    SciTech Connect

    Chien, Yun-San Fu, Wei-En; Yang, Po-Yu; Lee, I-Che; Chu, Chih-Chieh; Chou, Chia-Hsin; Cheng, Huang-Chung

    2014-02-03

    The carbon nanotube network decorated with Pt nanoparticles (PtCNT) irradiated by excimer laser as counter electrode (CE) of dye-sensitized solar cells (DSSCs) has been systematically demonstrated. The conversion efficiency would be improved from 7.12% to 9.28% with respect to conventional Pt-film one. It was attributed to the enhanced catalytic surface from Pt nanoparticles and the improved conductivity due to the adjoining phenomenon of PtCNTs irradiated by laser. Moreover, the laser annealing could also promote the interface contact between CE and conductive glass. Therefore, such a simple laser-irradiated PtCNT network is promising for the future flexible DSSCs applications.

  8. Study of dopant activation in biaxially compressively strained SiGe layers using excimer laser annealing

    NASA Astrophysics Data System (ADS)

    Luong, G. V.; Wirths, S.; Stefanov, S.; Holländer, B.; Schubert, J.; Conde, J. C.; Stoica, T.; Breuer, U.; Chiussi, S.; Goryll, M.; Buca, D.; Mantl, S.

    2013-05-01

    Excimer Laser Annealing (ELA) with a wavelength of 248 nm is used to study doping of biaxialy compressively strained Si1-xGex/Si heterostructures. The challenge is to achieve a high activation of As in SiGe, while conserving the elastic strain and suppressing dopant diffusion. Doping of 20 nm Si0.64Ge0.36 layers by ion implantation of 1 × 1015 As+/cm2 and subsequent laser annealing using single 20 ns pulse with an energy density of 0.6 J/cm2 leads to an As activation of about 20% and a sheet resistance of 650 Ω/sq. At this laser energy density, the entire SiGe layer melts and the subsequent fast recrystallization on a nanosecond time scale allows high As incorporation into the lattice. Moreover, using these annealing parameters, the SiGe layer exhibits epitaxial regrowth with negligible strain relaxation. ELA at energy densities greater than 0.6 J/cm2 resembles Pulsed Lased Induced Epitaxy, leading to an intermixing of the SiGe layer with the Si substrate, thus to thicker single-crystalline strained SiGe layers with sheet resistance down to 62 Ω/sq. Effects of energy densities on composition, crystal quality, activation of As and co-doping with B are discussed and related to the spatial and temporal evolution of the temperature in the irradiated zone, as simulated by Finite Element Methods.

  9. The Role of Crystalline Water in the Interaction of Excimer Laser Light with Brushite

    NASA Astrophysics Data System (ADS)

    Dawes, M. L.; Langford, S. C.; Dickinson, J. T.

    1998-03-01

    A number of minerals of environmental interest contain waters of hydration, sometimes called crystalline water. Hydrated crystals often show dramatic changes in optical properties as well as mechanical properties, both influencing the response of the material to radiation. From an analytic point of view, very little is known about the influence of hydration regarding laser desorption and ablation phenomena. We explore the interaction of excimer laser light (KrF 248 nm) with single crystal brushite (CaHPO_4.2H_2O), a model biomineral phosphate containing H_2O. We first show that defects dominate the interactions as revealed by high sensitivity detection of Ca^+ at low fluences and that this ion emission predicts ablation thresholds. The most probable ion energy, which occurs at 11 eV, is much higher than the incident photon energy of 5 eV. The ion intensities also display a highly nonlinear fluence dependence, typically 6-8th order, entirely consistent with ion emission models we have recently presented. We show that laser coupling can be enhanced several orders of magnitude by generation of defects, i.e., by mechanical treatment, heating, or exposure to electron beams and that the consequences of crystalline H_2O and HPO_4^2- decomposition play major and related roles in this defect production.

  10. UV excimer laser and low temperature plasma treatments of polyamide materials

    NASA Astrophysics Data System (ADS)

    Yip, Yiu Wan Joanne

    Polyamides have found widespread application in various industrial sectors, for example, they are used in apparel, home furnishings and similar uses. However, the requirements for high quality performance products are continually increasing and these promote a variety of surface treatments for polymer modification. UV excimer laser and low temperature plasma treatments are ideally suited for polyamide modification because they can change the physical and chemical properties of the material without affecting its bulk features. This project aimed to study the modification of polyamides by UV excimer laser irradiation and low temperature plasma treatment. The morphological changes in the resulting samples were analysed by scanning electron microscopy (SEM) and tapping mode atomic force microscopy (TM-AFM). The chemical modifications were studied by x-ray photoelectron spectroscopy (XPS), time-of-flight secondary ion mass spectrometry (ToF-SIMS) and chemical force microscopy (CFM). Change in degree of crystallinity was examined by differential scanning calorimetry (DSC). After high-fluence laser irradiation, topographical results showed that ripples of micrometer size form on the fibre surface. By contrast, sub-micrometer size structures form on the polyamide surface when the applied laser energy is well below its ablation threshold. After high-fluence laser irradiation, chemical studies showed that the surface oxygen content of polyamide is reduced. A reverse result is obtained with low-fluence treatment. The DSC result showed no significant change in degree of crystallinity in either high-fluence or low-fluence treated samples. The same modifications in polyamide surfaces were studied after low temperature plasma treatment with oxygen, argon or tetrafluoromethane gas. The most significant result was that the surface oxygen content of polyamide increased after oxygen and argon plasma treatments. Both treatments induced many hydroxyl (-OH) and carboxylic acid (-COOH

  11. Extending photo-patternable low-κ concept to 193nm lithography and e-beam lithography

    NASA Astrophysics Data System (ADS)

    Lin, Qinghuang; Nelson, A.; Bozano, L.; Brock, P.; Cohen, S.; Davis, B.; Kwong, R.; Liniger, E.; Neumayer, D.; Rathore, J. S.; Shobha, H.; Sooriyakumaran, R.; Purushothaman, S.; Miller, R.; Allen, R.; Spooner, T.; Wisnieff, R.

    2011-04-01

    Increasing complexity and manufacturing costs, along with the fundamental limits of planar CMOS devices, threaten to slow down the historical pace of progress in the semiconductor industry. We have proposed and demonstrated proof-of-concept of a simple and low-cost way to fabricate dual-damascene copper (Cu) on-chip interconnect or Back-End-Of-the- Line (BEOL) structures using a novel multifunctional on-chip electrical insulator called a photo-patternable low dielectric constant (low-κ) dielectric (PPLK) material [Q. Lin, et al, Proc. SPIE, 2010]. This demonstration was accomplished with a silsesquioxane-based (SiCOH), κ=2.7 material which is compatible with 248 nm optical lithography. In this paper, we report on the extension of the photo-patternable low-κ concept to the ultra-low-κ (κ<2.5) regime and resolution down well below 100 nm with 193 nm lithography as well as e-beam lithography. We have accomplished this demonstration using the same silsesquioxane-based (SiCOH) material platform as that of the 248 nm photo-patternable low-κ materials. The 193 nm photo-patternable low-κ materials possess dielectric constants below 2.5 and are able to resolve 100 nm half-pith line/space features with dry 193 nm single exposure lithography. The resolution of photopatternable low-κ materials can be pushed down to 40 nm half-pith line and space features with a line-edge-roughness less than 3.0 nm with e-beam lithography.

  12. Statistical Examination of the a and a + 1 Fragment Ions from 193 nm Ultraviolet Photodissociation Reveals Local Hydrogen Bonding Interactions

    NASA Astrophysics Data System (ADS)

    Morrison, Lindsay J.; Rosenberg, Jake A.; Singleton, Jonathan P.; Brodbelt, Jennifer S.

    2016-09-01

    Dissociation of proteins and peptides by 193 nm ultraviolet photodissociation (UVPD) has gained momentum in proteomic studies because of the diversity of backbone fragments that are produced and subsequent unrivaled sequence coverage obtained by the approach. The pathways that form the basis for the production of particular ion types are not completely understood. In this study, a statistical approach is used to probe hydrogen atom elimination from a + 1 radical ions, and different extents of elimination are found to vary as a function of the identity of the C-terminal residue of the a product ions and the presence or absence of hydrogen bonds to the cleaved residue.

  13. N-type doping of Ge by As implantation and excimer laser annealing

    SciTech Connect

    Milazzo, R.; Napolitani, E. De Salvador, D.; Mastromatteo, M.; Carnera, A.; Impellizzeri, G.; Boninelli, S.; Priolo, F.; Privitera, V.; Fisicaro, G.; Italia, M.; La Magna, A.; Cuscunà, M.; Fortunato, G.

    2014-02-07

    The diffusion and activation of arsenic implanted into germanium at 40 keV with maximum concentrations below and above the solid solubility (8 × 10{sup 19} cm{sup −3}) have been studied, both experimentally and theoretically, after excimer laser annealing (λ = 308 nm) in the melting regime with different laser energy densities and single or multiple pulses. Arsenic is observed to diffuse similarly for different fluences with no out-diffusion and no formation of pile-up at the maximum melt depth. The diffusion profiles have been satisfactorily simulated by assuming two diffusivity states of As in the molten Ge and a non-equilibrium segregation at the maximum melt depth. The electrical activation is partial and decreases with increasing the chemical concentration with a saturation of the active concentration at 1 × 10{sup 20} cm{sup −3}, which represents a new record for the As-doped Ge system.

  14. CAD/CAM interface design of excimer laser micro-processing system

    NASA Astrophysics Data System (ADS)

    Jing, Liang; Chen, Tao; Zuo, Tiechuan

    2005-12-01

    Recently CAD/CAM technology has been gradually used in the field of laser processing. The excimer laser micro-processing system just identified G instruction before CAD/CAM interface was designed. However the course of designing a part with G instruction for users is too hard. The efficiency is low and probability of making errors is high. By secondary development technology of AutoCAD with Visual Basic, an application was developed to pick-up each entity's information in graph and convert them to each entity's processing parameters. Also an additional function was added into former controlling software to identify these processing parameters of each entity and realize continue processing of graphic. Based on the above CAD/CAM interface, Users can design a part in AutoCAD instead of using G instruction. The period of designing a part is sharply shortened. This new way of design greatly guarantees the processing parameters of the part is right and exclusive. The processing of complex novel bio-chip has been realized by this new function.

  15. The Effect of Excimer Laser Treatment on the Surface Roughness and Fracture Strength of Alumina Substrates

    SciTech Connect

    Smoot, J.E.

    1998-05-13

    The microelectronics industry requires alumina substrates with exceptionally smooth surfaces and few surface defects to allow successful deposition of metallic films for reliable electronic performance. Irradiation by a 248-nm wavelength excimer laser beam (KrF) at a fluence of 125 mJ/mm{sup 2} and at various angles of incidence is shown to significantly reduce the surface roughness of alumina substrates. However, irradiation also creates a fine particulate deposit of alumina that only partially adheres to the substrate and impedes deposition of metal films. Annealing in air between 1350 C and 1450 C was found to remove the particles by sintering. As-received material showed surface roughness average (R{sub a}) mean values of 457 nm, which was reduced to 60 nm (mean) following irradiation and 71 nm (mean) following irradiation and annealing at 1350 C. Irradiation also produced a decrease in the number and severity of surface defects. The flexural strength and Weibull modulus were both increased by laser irradiation and thermal treatment. Flexural strength went from an as-received value of 450 MPa to 560 MPa following irradiation/sintering, measured at 10% probability of failure. The Weibull modulus was increased from the as-received value of about 9, to about 13 following irradiation/sintering. It was concluded that irradiation at an angle of incidence of 60{degree} from perpendicular was most effective in producing a low surface roughness.

  16. Adhesion strength measurements of excimer-laser-treated PTFE surfaces using liquid photoreagents

    NASA Astrophysics Data System (ADS)

    Hopp, Bela; Smausz, Tomi; Kresz, Norbert; Ignacz, Ferenc

    2003-04-01

    The most known feature of polytetrafluoroethylene (PTFE) is its adhesion behavior: it is hydrophobic and oleophobic at the same time. This can cause serious problems and obstacles during the surface treatment and fixing of PTFE objects. During our experiments Teflon films were irradiated by an ArF excimer laser beam in presence of liquid photoreagents containing amine groups (aminoethanol, 1,2-diaminoethane, triethylene-tetramine). In consequence of the treatment the adhesion of the modified surfaces significantly increased, the samples could be glued and moistened. The adhesion strength of the glued surfaces was measured in the function of the applied laser fluence. The adhesion strength increased drastically between 0 - 1 mJ/cm2 and showed saturation above 1 mJ/cm2 at approximately 5 - 9 MPa values depending on the applied photoreagents. On the basis of our experiments it was found that the treatment with triethylene-tetramine was the most effective. The surface chemical modifications of the treated Teflon samples can be due to the incorporation of amine groups into the surface layer.

  17. Direct immobilization of biotin on the micro-patterned PEN foil treated by excimer laser.

    PubMed

    Štofik, Marcel; Semerádtová, Alena; Malý, Jan; Kolská, Zdeňka; Neděla, Oldřich; Wrobel, Dominika; Slepička, Petr

    2015-04-01

    Polymers with functionalized surfaces have attracted a lot of attention in the last few years. Due to the progress in the techniques of polymer micro-patterning, miniaturized bioanalytical assays and biocompatible devices can be developed. In the presented work, we performed surface modification of polyethylene naphthalate (PEN) foil by an excimer laser beam through a photolithographic contact mask. The aim was to fabricate micro-patterned areas with surface functional groups available for localized covalent immobilization of biotin. It was found out that depending on the properties of the laser scans, a polymer surface exhibits different degrees of modification and as a consequence, different degrees of surface biotinylation can be achieved. Several affinity tests with optical detection of fluorescently labeled streptavidin were successfully performed on biotinylated micro-patterns of a PEN foil. The polymer surface properties were also evaluated by electrokinetic analysis, Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM). The results have shown that PEN foils can be considered suitable substrates for construction of micro-patterned bioanalytical affinity assays.

  18. Microhollow Cathode Discharge Excimer Lamps

    NASA Astrophysics Data System (ADS)

    Schoenbach, K. H.

    1999-11-01

    character. Reducing the diameter of the cathode hole in a hollow cathode discharge geometry to values on the order of 100 μm has allowed us to extend the pressure range of stable, direct current hollow cathode gas discharges up to atmospheric pressure. The large concentration of high-energy electrons generated in the cathode fall, in combination with the high neutral gas density favors three-body processes such as excimer formation. Excimer emission in xenon discharges peaking at 172 nm, was observed with efficiencies between 6% and 9% at pressures of several hundred Torr. Typical forward voltages are 200 V at dc currents up to 8 mA. Pulsed operation allowed us to extend the current range to 80 mA with corresponding linear increase in optical power. Spatially resolved measurements showed that the source of the excimer radiation at atmospheric pressure and currents of less than 8 mA is confined to the cathode opening. The radiative emittance at 8 mA and atmospheric pressure is approximately 20 W/cm^2. With reduced pressure and increased current, respectively, the excimer source extends into the area outside the cathode hole. Besides in xenon, excimer emission in argon at a peak wavelength of 128 nm has been recorded. In addition to operating the discharge in rare gases, we have also explored its use as rare gas-halide excimer source. In a gas mixture containing 1% ArF we were able to generate stable dc discharges in flowing gas at pressures ranging from 100 Torr to atmospheric pressure. The spectra of the high-pressure ArF discharges are dominated by excimer radiation peaking at 193 nm. The excimer emission of a single ArF discharge at 700 Torr was measured as 150 mW at an efficiency of 3%. Parallel operation of these discharges by means of a resistive anode, which has recently been demonstrated for argon discharges, offers the possibility to use microhollow cathode discharge arrays as dc-excimer lamps, with estimated power densities exceeding 10 W/cm^2. abstract

  19. Effect of the excimer laser irradiation on sol-gel derived tungsten-titanium dioxide thin films

    NASA Astrophysics Data System (ADS)

    Joya, Yasir F.; Liu, Zhu

    2011-01-01

    A novel technique based on the excimer laser induced crystallization and modification of TiO2 thin films is being reported. W+6 ions loaded TiO2 (WTO) precursor films were prepared by a modified sol-gel method and spin-coated onto microscopic glass slides. Pulsed KrF (248 nm, 13 ns) excimer laser was used to irradiate the WTO amorphous films at various laser parameters. Mesoporous and nanostructured films consisting of anatase and rutile were obtained after laser irradiation at room temperature. The effect of varying W+6 ions concentrations on structural and optical properties the WTO films was analyzed by X-ray diffraction, field-emission scanning electron microscope, UV-Vis spectrophotometer and transmission electron microscope before and after laser treatment. Films irradiated for 10 pulses at 65-75 mJ/cm2 laser fluence, exhibited anatase whereas higher parameters promoted the formation of rutile. XPS results revealed WO3 along with minor proportion of WO2 compounds after laser irradiation. Photo-absorbance of the WTO films was increased with increase in W+6 ions concentration in the film. TEM results exhibited a crystallite size of 15 nm which was confirmed from SEM results as well.

  20. Photodissociation dynamics of the methyl perthiyl radical at 248 and 193 nm using fast-beam photofragment translational spectroscopy

    NASA Astrophysics Data System (ADS)

    Harrison, Aaron W.; Ryazanov, Mikhail; Sullivan, Erin N.; Neumark, Daniel M.

    2016-07-01

    The photodissociation dynamics of the methyl perthiyl radical (CH3SS) have been investigated using fast-beam coincidence translational spectroscopy. Methyl perthiyl radicals were produced by photodetachment of the CH3SS- anion followed by photodissociation at 248 nm (5.0 eV) and 193 nm (6.4 eV). Photofragment mass distributions and translational energy distributions were measured at each dissociation wavelength. Experimental results show S atom loss as the dominant (96%) dissociation channel at 248 nm with a near parallel, anisotropic angular distribution and translational energy peaking near the maximal energy available to ground state CH3S and S fragments, indicating that the dissociation occurs along a repulsive excited state. At 193 nm, S atom loss remains the major fragmentation channel, although S2 loss becomes more competitive and constitutes 32% of the fragmentation. The translational energy distributions for both channels are very broad at this wavelength, suggesting the formation of the S2 and S atom products in several excited electronic states.

  1. Photodissociation dynamics of the methyl perthiyl radical at 248 and 193 nm using fast-beam photofragment translational spectroscopy.

    PubMed

    Harrison, Aaron W; Ryazanov, Mikhail; Sullivan, Erin N; Neumark, Daniel M

    2016-07-14

    The photodissociation dynamics of the methyl perthiyl radical (CH3SS) have been investigated using fast-beam coincidence translational spectroscopy. Methyl perthiyl radicals were produced by photodetachment of the CH3SS(-) anion followed by photodissociation at 248 nm (5.0 eV) and 193 nm (6.4 eV). Photofragment mass distributions and translational energy distributions were measured at each dissociation wavelength. Experimental results show S atom loss as the dominant (96%) dissociation channel at 248 nm with a near parallel, anisotropic angular distribution and translational energy peaking near the maximal energy available to ground state CH3S and S fragments, indicating that the dissociation occurs along a repulsive excited state. At 193 nm, S atom loss remains the major fragmentation channel, although S2 loss becomes more competitive and constitutes 32% of the fragmentation. The translational energy distributions for both channels are very broad at this wavelength, suggesting the formation of the S2 and S atom products in several excited electronic states.

  2. Optical spectroscopy study of pulsed excimer laser generated plasma from CuO

    SciTech Connect

    Adhi, K.P.; Kale, S.; Padhye, Y.; Limaye, A.V.; Ogale, S.B.

    1995-12-15

    Optical emissions from pulsed excimer laser induced plasma emanating from CuO target are studied by an Optical Multichannel Analyzer system in the context of its implications for thin film growth by Pulsed Laser Deposition. The plasma is generated in four different ambients viz. hydrogen, helium, oxygen (pressure of 100 mTorr in each case) and vacuum (2 {times} 10{sup {minus}5} Torr) at different energy densities from 1 to 3.5 J/cm{sup 2}. The plasma constituents and their evolution in the growth space (i.e. at a distance of 1.5 cm from the target) has been studied. Various transitions corresponding to Cu(I), H(I), Cu(II) and O(II) are observed. The observation of strong transitions due to O(II) in the plasma formed in vacuum, hydrogen and helium suggests significant degree of ionization of atoms via molecular splitting and inverse Bremsstrahlung process during early plasma formation. The persistence of ionicity in the plasma can be attributed to long recombination lifetimes for the specific conditions used. In the case of ablation in oxygen ambient a very significant and remarkably selective enhancement of the copper vapor lasing transition at 510.5 nm is observed which brings out the role of oxygen molecules in sustaining the radiation trapping condition. The changes in the concentrations of neutrals and ions are a function of the laser energy density are also examined. It is argued that impingement of ions/atoms in an excited state on the growing surface can potentially lead to localized energy deposition via non-radiative deexcitation resulting into enhancement of film quality and density.

  3. Excimer Laser Phototherapeutic Keratectomy for the Treatment of Clinically Presumed Fungal Keratitis

    PubMed Central

    Li, Liang-Mao; Zhao, Li-Quan; Qu, Ling-Hui; Li, Peng

    2014-01-01

    This retrospective study was to evaluate treatment outcomes of excimer laser phototherapeutic keratectomy (PTK) for clinically presumed fungal keratitis. Forty-seven eyes of 47 consecutive patients underwent manual superficial debridement and PTK. All corneal lesions were located in the anterior stroma and were resistant to medication therapy for at least one week. Data were collected by a retrospective chart review with at least six months of follow-up data available. After PTK, infected corneal lesions were completely removed and the clinical symptoms resolved in 41 cases (87.2%). The mean ablation depth was 114.39 ± 45.51 μm and diameter of ablation was 4.06 ± 1.07 mm. The mean time for healing of the epithelial defect was 8.8 ± 5.6 days. Thirty-four eyes (82.9%) showed an improvement in best spectacle-corrected visual acuity of two or more lines. PTK complications included mild to moderate corneal haze, hyperopic shift, irregular astigmatism, and thinning cornea. Six eyes (12.8%) still showed progressed infection, and conjunctival flap covering, amniotic membrane transplantation, or penetrating keratoplasty were given. PTK is a valuable therapeutic alternative for superficial infectious keratitis. It can effectively eradicate lesions, hasten reepithelialization, and restore and preserve useful visual function. However, the selection of surgery candidates should be conducted carefully. PMID:24891945

  4. Ruthenium Grubbs' catalyst nanostructures grown by UV-excimer-laser ablation for self-healing applications

    NASA Astrophysics Data System (ADS)

    Aïssa, B.; Nechache, R.; Haddad, E.; Jamroz, W.; Merle, P. G.; Rosei, F.

    2012-10-01

    A self healing composite material consisting of 5-Ethylidene-2-Norbornene (5E2N) monomer reacted with Ruthenium Grubbs' Catalyst (RGC) was prepared. First, the kinetics of the 5E2N ring opening metathesis polymerization (ROMP) reaction RGC was studied as a function of temperature. We show that the polymerization reaction is still effective in a large temperature range (-15 to 45 °C), occurring at short time scales (less than 1 min at 40 °C). Second, the amount of RGC required for ROMP reaction significantly decreased through its nanostructuration by means of a UV-excimer laser ablation process. RGC nanostructures of few nanometers in size where successfully obtained directly on silicon substrates. The X-ray photoelectron spectroscopy data strongly suggest that the RGC still keep its original stoichiometry after nanostructuration. More importantly, the associated ROMP reaction was successfully achieved at an extreme low RGC concentration equivalent to (11.16 ± 1.28) × 10-4 Vol.%, occurring at very short time reaction. This approach opens new prospects for using healing agent nanocomposite materials for self-repair functionality, thereby obtaining a higher catalytic efficiency per unit mass.

  5. Post-growth annealing of germanium-tin alloys using pulsed excimer laser

    SciTech Connect

    Wang, Lanxiang; Wang, Wei; Zhou, Qian; Yeo, Yee-Chia; Pan, Jisheng; Zhang, Zheng; Tok, Eng Soon

    2015-07-14

    We investigate the impact of pulsed excimer laser anneal on fully strained germanium-tin alloys (Ge{sub 1−x}Sn{sub x}) epitaxially grown on Ge substrate by molecular beam epitaxy. Using atomic force microscopy, X-ray diffraction, transmission electron microscopy, and X-ray photoelectron spectroscopy, the morphological and compositional evolution of Ge{sub 1−x}Sn{sub x} with Sn content up to 17% after annealing using various conditions is studied. Ge{sub 0.83}Sn{sub 0.17} samples annealed at 80 mJ/cm{sup 2} or 150 mJ/cm{sup 2} have no observable changes with respect to the as-grown sample. However, Ge{sub 0.83}Sn{sub 0.17} samples annealed at 250 mJ/cm{sup 2} or 300 mJ/cm{sup 2} have Sn-rich islands on the surface, which is due to Sn segregation in the compressively strained epitaxial film. For Ge{sub 0.89}Sn{sub 0.11}, significant Sn redistribution occurs only when annealed at 300 mJ/cm{sup 2}, indicating that it has better thermal stability than Ge{sub 0.83}Sn{sub 0.17}. A mechanism is proposed to explain the formation of Sn-rich islands and Sn-depleted regions.

  6. Multilevel diffractive optical element manufacture by excimer laser ablation and halftone masks

    NASA Astrophysics Data System (ADS)

    Quentel, Francois; Fieret, Jim; Holmes, Andrew S.; Paineau, Sylvain

    2001-06-01

    A novel method is presented to manufacture multilevel diffractive optical elements (DOEs) in polymer by single- step KrF excimer laser ablation using a halftone mask. The DOEs have a typical pixel dimension of 5 micrometers and are up to 512 by 512 pixels in size. The DOEs presented are Fresnel lenses and Fourier computer generated holograms, calculated by means of a conventional iterative Fourier transform algorithm. The halftone mask is built up as an array of 5 micrometers -square pixels, each containing a rectangular or L- shaped window on an opaque background. The mask is imaged onto the polymer with a 5x, 0.13 NA reduction lens. The pixels are not resolved by the lens, so they behave simply as attenuators, allowing spatial variation of the ablation rate via the window size. The advantages of halftone mask technology over other methods, such as pixel-by-pixel ablation and multi-mask overlay, are that it is very fast regardless of DOE size, and that no high-precision motion stages and alignment are required. The challenges are that the halftone mask is specific to the etch curve of the polymer used, that precise calibration of each grey-level is required, and that the halftone mask must be calculated specifically for the imaging lens used. This paper describes the design procedures for multilevel DOEs and halftone masks, the calibration of the various levels, and some preliminary DOE test results.

  7. Tribology and mechanical properties of excimer laser-processed Ti--Si{sub 3}N{sub 4} surfaces

    SciTech Connect

    Jervis, T.R.; Hirvonen, J.; Nastasi, M.; Kung, H.

    1995-08-01

    Titanium films were mixed, using excimer laser radiation, into the surface of bulk Si{sub 3}N{sub 4} materials. The tribological and mechanical properties of these surfaces were then evaluated using pin-on-disk and nanoindenter techniques, respectively. Reduced friction and a change in the wear mechanism that resulted in a more benign failure mode were observed. These results are interpreted as resulting from the establishment of a transfer film, changes in the compliance of the surface which reduces instantaneous stresses in the surface, and toughening of the surface, all results of the laser process.

  8. Results of excimer laser photorefractive keratectomy for the correction of myopia at Cedars-Sinai Medical Center: 1993

    NASA Astrophysics Data System (ADS)

    Maguen, Ezra I.; Salz, James J.; Nesburn, Anthony B.; Warren, Cathy; Macy, Jonathan I.; Papaioannou, Thanassis; Hofbauer, John; Berlin, Michael S.

    1994-06-01

    This report summarizes the authors' 3-year experience with excimer laser photorefractive keratectomy (PRK) on 240 eyes of 161 patients. With constant laser emission parameters, nitrogen (N2) flow across the cornea was used on 79 eyes while 161 eyes had no N2 flow. 74 eyes were operated on without fixation with a suction ring. Postoperative pain management included patching and oral analgesics in 77 eyes and the use of topical Diclofenac or Ketorolac, and a therapeutic soft contact lens in 163 eyes. Follow up ranged from 1 month (206 eyes) to 36 months (10 eyes).

  9. Formation of amorphous Ti alloy layers by excimer laser mixing of Ti on AISI 304 stainless-steel surfaces

    NASA Astrophysics Data System (ADS)

    Jervis, T. R.; Nastasi, M.; Zocco, T. G.; Martin, J. A.

    1988-07-01

    We used excimer laser radiation at 308 nm to mix thin layers of Ti into AISI 304 stainless steel. Different numbers of shots at a fluence about twice the threshold for melting varied the amount of mixing. When mixing is sufficiently complete, an amorphous surface layer is formed with Ti substituting for Fe on a one-to-one basis in the alloy. The laser mixing process, unlike Ti ion implantation, does not result in high incorporation of C in the processed layer, although some C from surface and interface contamination is incorporated into the surface layer.

  10. Photolysis of solid NH3 and NH3-H2O mixtures at 193 nm

    NASA Astrophysics Data System (ADS)

    Loeffler, M. J.; Baragiola, R. A.

    2010-12-01

    We have studied UV photolysis of solid ammonia and ammonia-dihydrate samples at 40 K, using infrared spectroscopy, mass spectrometry, and microgravimetry. We have shown that in the pure NH3 sample, the main species ejected are NH3, H2, and N2, where the hydrogen and nitrogen increase with laser fluence. This increase in N2 ejection with laser fluence explains the increase in mass loss rate detected by a microbalance. In contrast, for the ammonia-water mixture, we see very weak signals of H2 and N2 in the mass spectrometer, consistent with the very small mass loss during the experiment and with a <5% decrease in the NH3 infrared absorption bands spectroscopy after a fluence of ˜3 × 1019 photons/cm2. The results imply that ammonia-ice mixtures in the outer solar system are relatively stable under solar irradiation.

  11. Microhollow Cathode Discharge Excimer Lamps

    NASA Astrophysics Data System (ADS)

    Schoenbach, Karl H.

    1999-10-01

    Reducing the diameter of the cathode hole in hollow cathode discharge geometry to values on the order of 100 μm has allowed us to extend the pressure range of stable, direct current hollow cathode discharges up to atmospheric pressure. The large concentration of high-energy electrons in the nonthermal discharge, in combination with the high neutral gas density favors three-body processes such as rare gas excimer formation. Excimer emission in argon and xenon discharges peaking at 130 nm and 172 nm, respectively, was observed with an efficiency for xenon excimer emission between 6% and 9% in a pressure range from 250 Torr and 450 Torr. Typical forward voltages are 200 V at dc currents of up to 8 mA. Pulsed operation allowed us to extend the current range in xenon discharges to 80 mA. At pressures in the hundreds of Torr range the source of the excimer radiation extends over an area of several times the cathode opening. With increasing pressure the source is reduced in size and eventually, at pressures exceeding atmospheric becomes confined to the cathode opening. For a specific pressure the radiative power increases linearly with current at constant radiant emittance. For atmospheric pressure discharges in xenon the radiative emittance is approximately 20 W/cm^2. In addition to operating the discharge in rare gases, we have also explored its use as rare gas-halide excimer source. In a gas mixture containing 1 % ArF we were able to generate stable dc discharges in flowing gas at pressures ranging from 100 Torr to atmospheric pressure. The spectra of the high-pressure ArF discharges are dominated by excimer radiation peaking at 193 nm. The excimer emission of an ArF discharge at 700 Torr was measured as 150 mW. With a discharge voltage of 500 V, and a current of 10 mA the efficiency is 3 %. Parallel operation of the micro-discharges by means of a resistive anode offers the possibility to use microhollow cathode discharge arrays as dc-excimer lamps, with estimated

  12. Computation of time-dependent transition probabilities in excimer molecules induced by femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Petsalakis, Ioannis D.; Mercouris, Theodoros; Nicolaides, Cleanthes A.

    1994-12-01

    We have computed the time-dependent probabilities of exciting and deexciting the bound states of the excimer molecules NeH, ArH and HeF, via the interaction of these systems with femtosecond laser pulses. The method involves the expansion of the time-dependent wavefunction in terms of stationary states with time-dependent coefficients and complex energies, whose imaginary parts represent the lifetimes of the collision complex on the initial repulsive ground state and of the excited states which are coupled by the field. The resulting system of differential equations is solved by a Taylor series expansion method. We have studied the efficiency of laser-induced molecular formation (LIMP) from the ground repulsive surfaces as a function of frequency and intensity, for trapezoidal pulses. Given the shortness of the pulse and the characteristics of the spectra of these molecules, for reasons of economy the bulk of the calculations was carried out in a 'frozen nuclei' approximation. Additional calculations for NeH, using a wavepacket representation of the initial state on the repulsive curve produced similar results as regards the possibility of LIMF. Additional information has been obtained regarding transitions among excited states. For example, starting the photoreaction in HeF from the first excited repulsive state 1 2Π with a pulse frequency of 4 eV allows an experimentally verifiable probability of obtaining bound-continuum emission at about 1320 Å (9.4 eV). For resonance conditions, the probabilities are appreciable during the pulse and go through maxima as a function of intensity of the order of 10 11 W/cm 2-10 14W/cm 2.

  13. Outcomes of excimer laser enhancements in pseudophakic patients with multifocal intraocular lens

    PubMed Central

    Schallhorn, Steven C; Venter, Jan A; Teenan, David; Schallhorn, Julie M; Hettinger, Keith A; Hannan, Stephen J; Pelouskova, Martina

    2016-01-01

    Purpose The aim of this study was to assess visual and refractive outcomes of laser vision correction (LVC) to correct residual refraction after multifocal intraocular lens (IOL) implantation. Patients and methods In this retrospective study, 782 eyes that underwent LVC to correct unintended ametropia after multifocal IOL implantation were evaluated. Of all multifocal lenses implanted during primary procedure, 98.7% were refractive and 1.3% had a diffractive design. All eyes were treated with VISX STAR S4 IR excimer laser using a convectional ablation profile. Refractive outcomes, visual acuities, patient satisfaction, and quality of life were evaluated at the last available visit. Results The mean time between enhancement and last visit was 6.3±4.4 months. Manifest spherical equivalent changed from −0.02±0.83 D (−3.38 D to +2.25 D) pre-enhancement to 0.00±0.34 D (−1.38 D to +1.25 D) post-enhancement. At the last follow-up, the percentage of eyes within 0.50 D and 1.00 D of emmetropia was 90.4% and 99.5%, respectively. Of all eyes, 74.9% achieved monocular uncorrected distance visual acuity 20/20 or better. The mean corrected distance visual acuity remained the same before (−0.04±0.06 logMAR [logarithm of the minimum angle of resolution]) and after LVC procedure (−0.04±0.07 logMAR; P=0.70). There was a slight improvement in visual phenomena (starburst, halo, glare, ghosting/double vision) following the enhancement. No sight-threatening complications related to LVC occurred in this study. Conclusion LVC in pseudophakic patients with multifocal IOL was safe, effective, and predictable in a large cohort of patients. PMID:27175059

  14. Interstitial trapping in Fe-implanted Al after excimer laser annealing

    NASA Astrophysics Data System (ADS)

    Swanson, M. L.; Howe, L. M.; Quenneville, A. F.; Nilson, J. A.

    1983-12-01

    Laser annealing was used to create a supersaturated solution of Fe atoms in Al, in order that channeling measurements of self-interstitial trapping could be made. A single crystal of Al was implanted with 40 keV 56Fe to a fluence of 1.6×10 15 ions cm -2. A 4 mm diameter region of the crystal was annealed in air with a XeCl excimer laser at an energy density of ˜ 6 J cm -2. This treatment produced a relatively perfect crystal; the normalized yield of 1 MeV He + ions from near-surface Al atoms for <110> alignment at 35 K was 0.04. The Fe atoms were ˜ 90% substitutional, corresponding to a solubility of ˜ 0.3 at%, as compared with only ˜ 0.02 at% obtained by a water quench from 873 K. The crystal was then irradiated with 1 MeV He + at 70 K to a fluence of ˜ 5 × 10 15 ions cm -2, in order to create mobile Al self-interstitial atoms which could be trapped by the Fe atoms. A channeling analysis of the resulting displacement of Fe atoms indicated that they trapped self-interstitials strongly, as observed for other small solute atoms in Al. As no flux peaking in the backscattering yield from Fe atoms was observed for a <110> angular scan, the results indicate that the trapping configuration may differ from that observed for Cr, Mn or Cu solute atoms in Al. The trapped interstitials were annihilated by vacancy migration near 200 K.

  15. Nickel-affected silicon crystallization and silicidation on polyimide by multipulse excimer laser annealing

    SciTech Connect

    Alberti, A.; La Magna, A.; Spinella, C.; Privitera, V.; Cuscuna, M.; Fortunato, G.

    2010-12-15

    Nickel enhanced amorphous Si crystallization and silicidation on polyimide were studied during multipulse excimer laser annealing (ELA) from submelting to melting conditions. A {approx}8 nm thick Ni film was deposited on a 100 nm thick {alpha}-Si layer at {approx}70 deg. C in order to promote partial nickel diffusion into silicon. In the submelting regime, Ni atoms distributed during deposition in {alpha}-Si and the thermal gradient due to the presence of the plastic substrate were crucial to induce low fluence ({>=}0.08 J/cm{sup 2}) Si crystallization to a depth which is strictly related to the starting Ni profile. {Alpha}morphous-Si crystallization is not expected on pure Si at those low fluences. Additional pulses at higher fluences do not modify the double poly-Si/{alpha}-Si structure until melting conditions are reached. At a threshold of {approx}0.2 J/cm{sup 2}, melting was induced simultaneously in the polycrystalline layer as well as in the residual {alpha}-Si due to a thermal gradient of {approx}200 deg. C. Further increasing the laser fluence causes the poly-Si layer to be progressively melted to a depth which is proportional to the energy density used. As a consequence of the complete Si melting, columnar poly-Si grains are formed above 0.3 J/cm{sup 2}. For all fluences, a continuous NiSi{sub 2} layer is formed at the surface which fills the large Si grain boundaries, with the beneficial effect of flattening the poly-Si surface. The results would open the perspective of integrating Ni-silicide layers as metallic contacts on Si during {alpha}-Si-crystallization by ELA on plastic substrate.

  16. The effect of microarc oxidation and excimer laser processing on the microstructure and corrosion resistance of Zr-1Nb alloy

    NASA Astrophysics Data System (ADS)

    Yang, Jiaoxi; Wang, Xin; Wen, Qiang; Wang, Xibing; Wang, Rongshan; Zhang, Yanwei; Xue, Wenbin

    2015-12-01

    The main purpose of this research was to investigate the effect of microarc oxidation (MAO) and excimer laser processing on the corrosion resistance of Zr-1Nb alloy in service environment. The pre-oxide film was fabricated on the surface of Zr-1Nb cladding tubes by MAO processing, and then subjected to KrF excimer laser irradiation. The surface morphology of the pre-oxide film was observed using a scanning electron microscope; phase compositions and quantities were determined using an X-ray diffraction; surface roughness was determined using a profilometer; and thermal expansion coefficient was measured using a dilatometer. Autoclave experiments were conducted for 94 days in an aqueous condition of 360 °C under 18.6 MPa in 0.01 mol/L LiOH solutions. The results showed that MAO + laser treatment resulted in a significant increase in the corrosion resistance of Zr-1Nb cladding tubes at high temperatures, because laser melting and etching could lead to a reduction in surface roughness and an increase in compactness of the pre-oxide film, and laser processing could promote the transformation of m-ZrO2 phase to t-ZrO2 phase. The best corrosion resistance was obtained when the pulse energy was 500 mJ, scanning speed was 0.13 mm/s, and pulse number was 2400.

  17. A repetitively pulsed xenon chloride excimer laser with all ferrite magnetic cores (AFMC) based all solid state exciter

    NASA Astrophysics Data System (ADS)

    Benerji, N. S.; Varshnay, N. K.; Ghodke, D. V.; Singh, A.

    2016-10-01

    Performance of repetitively pulsed xenon chloride excimer laser (λ~308 nm) with solid state pulser consisting of magnetic pulse compression circuit (MPC) using all ferrite magnetic cores (AFMC) is reported. Laser system suitable for 100 Hz operation with inbuilt pre-ionizer, compact gas circulation and cooling has been developed and presented. In this configuration, high voltage pulses of ~8 μs duration are compressed to ~100 ns by magnetic pulse compression circuit with overall compression factor of ~80. Pulse energy of ~18 J stored in the primary capacitor is transferred to the laser head with an efficiency of ~85% compared to ~70% that is normally achieved in such configurations using annealed met-glass core. This is a significant improvement of about 21%. Maximum output laser pulse energy of ~100 mJ was achieved at repetition rate of 100 Hz with a typical pulse to pulse energy stability of ±5% and laser pulse energy of 150 mJ was generated at low rep-rate of ~40 Hz. This exciter uses a low current and low voltage solid state switch (SCR) that replaces high voltage and high current switch i. e, thyratron completely. The use of solid state exciter in turn reduces electromagnetic interference (EMI) effects particularly in excimer lasers where high EMI is present due to high di/dt. The laser is focused on a thin copper sheet for generation of micro-hole and the SEM image of the generated micro hole shows the energy stability of the laser at high repetition rate operation. Nearly homogeneous, regular and well developed xenon chloride (XeCl) laser beam spot was achieved using the laser.

  18. 193 nm Ultraviolet Photodissociation Mass Spectrometry of Tetrameric Protein Complexes Provides Insight into Quaternary and Secondary Protein Topology.

    PubMed

    Morrison, Lindsay J; Brodbelt, Jennifer S

    2016-08-31

    Protein-protein interfaces and architecture are critical to the function of multiprotein complexes. Mass spectrometry-based techniques have emerged as powerful strategies for characterization of protein complexes, particularly for heterogeneous mixtures of structures. In the present study, activation and dissociation of three tetrameric protein complexes (streptavidin, transthyretin, and hemoglobin) in the gas phase was undertaken by 193 nm ultraviolet photodissociation (UVPD) for the characterization of higher order structure. High pulse energy UVPD resulted in the production of dimers and low charged monomers exhibiting symmetrical charge partitioning among the subunits (the so-called symmetrical dissociation pathways), consistent with the subunit organization of the complexes. In addition, UVPD promoted backbone cleavages of the monomeric subunits, the abundances of which corresponded to the more flexible loop regions of the proteins. PMID:27480400

  19. Collision-induced desorption in 193-nm photoinduced reactions in (O{sub 2}+CO) adlayers on Pt(112)

    SciTech Connect

    Han Song; Ma Yunsheng; Matsushima, Tatsuo

    2005-09-01

    The spatial distribution of desorbing O{sub 2} and CO{sub 2} was examined in 193-nm photoinduced reactions in O{sub 2}+CO adlayers on stepped Pt (112)=[(s)3(111)x(001)]. The O{sub 2} desorption collimated in inclined ways in the plane along the surface trough, confirming the hot-atom collision mechanism. In the presence of CO(a), the product CO{sub 2} desorption also collimated in an inclined way, whereas the inclined O{sub 2} desorption was suppressed. The inclined O{sub 2} and CO{sub 2} desorption is explained by a common collision-induced desorption model. At high O{sub 2} coverage, the CO{sub 2} desorption collimated closely along the (111) terrace normal.

  20. Photolytic decomposition of adsorbed tellurium and cadmium alkyl species at 295 K upon 193 nm photon irradiation

    NASA Astrophysics Data System (ADS)

    Stinespring, C. D.; Freedman, A.

    1988-06-01

    The photolytic decomposition of adspecies formed by the adsorption of tellurium and cadmium alkyls at 295 K under ultrahigh-vacuum conditions has been studied using x-ray photoelectron spectroscopy. Dimethyl tellurium adsorbed at submonolayer coverages on a polycrystalline gold substrate has been observed to undergo nearly quantitative photolytic decomposition at 193 nm to form metallic tellurium. The hydrocarbon photofragments produced in the decomposition lead to negligible carbon contamination on the gold surface. Dimethyl cadmium adsorbed on amorphous SiO2 both desorbs and decomposes to form the metal adspecies. In this case, most of the carbon remains as hydrocarbon and carbidic contaminants. Monomethyl adspecies of both metals formed on Si(100) and GaAs(100) surfaces are inactive with respect to decomposition at the low fluences (0.25 mJ cm-2) used in these experiments; however, substantial desorption is observed.

  1. Corneal haze induced by excimer laser photoablation in rabbits is reduced by preserved human amniotic membrane graft

    NASA Astrophysics Data System (ADS)

    Wang, Ming X.; Gray, Trevor; Prabhasawat, Pinnita; Ma, Xiong; Culbertson, William; Forster, Richard; Hanna, Khalil; Tseng, Scheffer C. G.

    1998-06-01

    We conducted a study to determine if preserved human amniotic membrane can reduce corneal haze induced by excimer laser photoablation. Excimer photoablation was performed bilaterally on 40 New Zealand white rabbits with a 6 mm ablation zone and 120 micrometer depth (PTK) using the VISX Star. One eye was randomly covered with a preserved human amniotic membrane and secured using four interrupted 10 - 0 nylon sutures; the other eye served as control. The amniotic membranes were removed at one week, and the corneal haze was graded with a slit-lamp biomicroscopy by three masked corneal specialists (WC, KH and RF) biweekly for the ensuing 12 weeks. Histology and in situ TUNEL staining (for fragmented DNA as an index for apoptosis) was performed at days 1, 3 and 7 and at 12 weeks. One week after excimer photoablation, the amniotic membrane-covered corneas showed more anterior stromal edema, which resolved at the second week. A consistent grading of organized reticular corneal haze was noted among the three masked observers. Such corneal haze peaked at the seventh week in both groups. The amniotic membrane-covered group showed statistically significant less corneal haze (0.50 plus or minus 0.15) than the control groups (1.25 plus or minus 0.35) (p less than 0.001). The amniotic membrane-covered corneas had less inflammatory response at days 1 and 3, showing nearly nil DNA fragmentation on keratocytes on the ablated anterior stromal and less stromal fibroblast activation. There is less altered epithelial cell morphology and less epithelial hyperplasia at 1 week in these amniotic membrane-treated eyes. We concluded from this study that amniotic membrane matrix is effective in reducing corneal haze induced by excimer photoablation in rabbits and may have clinical applications.

  2. Near surface chemistry and corrosion behavior of excimer laser surface-melted AISI type 304 stainless steel

    SciTech Connect

    Baer, D.R.; Frydrych, D.J.; Jervis, T.R.

    1988-05-01

    The effects of excimer laser surface melting on the near-surface chemistry, and corrosion behavior of AISI 304 stainless steel have been examined as a function of total energy deposited on the specimen. The surface chemistry resulting from the laser treatments has been examined using Auger electron spectroscopy. Electrochemical methods were used to monitor the corrosion behavior of the specimens in deaerated 0.1 M NaCl. Electron microscopy was used to characterize the extent of local corrosion of the specimens. Laser treatment was observed to increase the chromium concentration of the surface oxide and to reduce the number of pits. Two types of pits were observed on untreated material, but only one type of pit occurred after laser treatment. 7 refs., 5 figs.

  3. Time-resolved diagnostics of excimer laser-generated ablation plasmas used for pulsed laser deposition

    SciTech Connect

    Geohegan, D.B.

    1994-09-01

    Characteristics of laser plasmas used for pulsed laser deposition (PLD) of thin films are examined with four in situ diagnostic techniques: Optical emission spectroscopy, optical absorption spectroscopy, ion probe studies, and gated ICCD (intensified charge-coupled-device array) fast photography. These four techniques are complementary and permit simultaneous views of the transport of ions, excited states, ground state neutrals and ions, and hot particulates following KrF laser ablation of YBCO, BN, graphite and Si in vacuum and background gases. The implementation and advantages of the four techniques are first described in order to introduce the key features of laser plasmas for pulsed laser deposition. Aspects of the interaction of the ablation plume with background gases (i.e., thermalization, attenuation, shock formation) and the collision of the plasma plume with the substrate heater are then summarized. The techniques of fast ICCD photography and gated photon counting are then applied to investigate the temperature, velocity, and spatial distribution of hot particles generated during KrF ablation of YBCO, BN, Si and graphite. Finally, key features of fast imaging of the laser ablation of graphite into high pressure rare gases are presented in order to elucidate internal reflected shocks within the plume, redeposition of material on a surface, and formation of hot nanoparticles within the plume.

  4. Excimer laser annealing to fabricate low cost solar cells. Quarterly technical report No. 1, 26 March-30 June 1984

    SciTech Connect

    Not Available

    1984-07-01

    The objective of this research is to show whether or not pulsed excimer laser annealing (PELA) of ion-implanted junctions is a cost effective replacement for diffused junctions in fabricating crystalline silicon solar cells. The preliminary economic analysis completed during the first quarter of this program shows that the use of PELA to fabricate both the front junction and back surface field (BSF) would cost approximately 35 cents per peak watt (Wp), compared to a cost of 15 cents/Wp for diffusion, aluminum BSF and an extra cleaning step in the baseline process described by JPL. The cost advantage of the PELA process depends on improving the average cell efficiency from 14% to 16%, which would lower the overall cost of the module by about 15 cents/Wp. The technical goal of this research is to develop an optimized PELA process compatible with commercial production, and to demonstrate increased cell efficiency with sufficient product for adequate statistical analysis. During the first quarter of this program an excimer laser annealing station was set-up and made operational. The first experiment used 248 nm radiation to anneal phosphorus implants in polished and texture-etched silicon. Preliminary results showed that the PELA processed cells had overall efficiencies comparable to furnace annealed ion implanted controls, and that texture-etched material requires lower fluence for annealing than polished silicon. Process optimization will be carried out in the second quarter.

  5. A comparative study for mask defect tolerance on phase and transmission for dry and immersion 193-nm lithography

    NASA Astrophysics Data System (ADS)

    Ling, Moh Lung; Chua, Gek Soon; Tay, Cho Jui; Quan, Chenggen; Lin, Qunying

    2007-03-01

    193nm immersion lithography has successfully enabled numerical aperture (NA) greater than 1.0 which allows rooms for improvement in resolution as well as depth of focus. In this study, critical dimension (CD) and depth of focus (DOF) performance for the 45nm technology node for dry and immersion lithography is compared using commercial available simulation tool. The study is based on one dimensional line and space pattern with pitch vary from 150 to 500nm. The effects of mask transmission and phase angle change on CD through pitch performance and DOF are also presented in this paper. Increase in mask transmission will result in increase of CD through pitch and reduction of DOF. When phase angle for the phase shift mask is less than 180 degree, CD through pitch and DOF drop. Finally, mask defects caused by haze on several locations which include MoSi lines, line edges, and space between line ends are simulated. The influence of these defects on CD and the potential line end bridging problem is presented.

  6. Extension of 193 nm dry lithography to 45-nm half-pitch node: double exposure and double processing technique

    NASA Astrophysics Data System (ADS)

    Biswas, Abani M.; Li, Jianliang; Hiserote, Jay A.; Melvin, Lawrence S., III

    2006-10-01

    Immersion lithography and multiple exposure techniques are the most promising methods to extend lithography manufacturing to the 45nm node. Although immersion lithography has attracted much attention recently as a promising optical lithography extension, it will not solve all the problems at the 45-nm node. The 'dry' option, (i.e. double exposure/etch) which can be realized with standard processing practice, will extend 193-nm lithography to the end of the current industry roadmap. Double exposure/etch lithography is expensive in terms of cost, throughput time, and overlay registration accuracy. However, it is less challenging compared to other possible alternatives and has the ability to break through the κ I barrier (0.25). This process, in combination with attenuated PSM (att-PSM) mask, is a good imaging solution that can reach, and most likely go beyond, the 45-nm node. Mask making requirements in a double exposure scheme will be reduced significantly. This can be appreciated by the fact that the separation of tightly-pitched mask into two less demanding pitch patterns will reduce the stringent specifications for each mask. In this study, modeling of double exposure lithography (DEL) with att-PSM masks to target 45-nm node is described. In addition, mask separation and implementation issues of optical proximity corrections (OPC) to improve process window are studied. To understand the impact of OPC on the process window, Fourier analysis of the masks has been carried out as well.

  7. Revisiting the mechanisms involved in Line Width Roughness smoothing of 193 nm photoresist patterns during HBr plasma treatment

    SciTech Connect

    Brihoum, M.; Ramos, R.; Menguelti, K.; Cunge, G.; Pargon, E.; Joubert, O.

    2013-01-07

    HBr plasma treatments are widely used in nanoscale lithographic technologies to increase the plasma etch resistance of 193 nm photoresist masks as well as to decrease their Line Width Roughness (LWR). VUV irradiation of the photoresist is known to play a major role in this process by inducing polymer chains rearrangement and finally LWR reduction. However, in the plasma environment (i.e., with radical and ion bombardment), the interaction layer formed at the resist surface perturbs this mechanism and a lower LWR reduction is achieved compared to VUV only treatment. So far the nature of the interaction layer, its formation mechanism and its relation with the resist pattern LWR were all unclear. In this paper, we show that a graphite-like layer is formed on the resist patterns by the redeposition of carbon-based species originating from the plasma dissociation of outgassed photo-etched resist moieties. We show that the presence of this layer inhibits the LWR minimization and causes an increase in the LWR when it becomes thick enough (i.e., a few nanometers). We present evidences that the difference in the mechanical properties of the graphite-like top layer which coats the resist patterns and the bulk of the resist patterns is correlated to the LWR after plasma treatment. We can conclude that the optimization of an HBr cure process relies on the minimization of the carbon redeposition while keeping a significant VUV light flux and we show that this can be achieved by using pulsed plasma processes.

  8. A Comparison of Excimer Laser Microprobe (U-Th)/He and Conventional Laser-Heating (U-Th)/He Thermochronometry

    NASA Astrophysics Data System (ADS)

    Boyce, J. W.; Hodges, K. V.; Olszewski, W. J.; Jercinovic, M. J.; Carpenter, B.; Reiners, P. W.

    2005-12-01

    Recent advances in Excimer laser ablation (U-Th)/He thermochronology (ExLA-(U-Th)/He) of monazite have demonstrated the potential of the technique with regard to generating precise cooling age information while dealing with parent element zoning, inclusions and avoiding the alpha ejection correction and the uncertainty therein [1]. ExLA-(U-Th)/He age determinations consist of three independent measurements: 1) Moles of He, 2) Ablated volume, and 3) Parent element (U, Th, Sm) concentrations. After samples are polished, an Excimer laser is used to drill a 10-250 μm diameter hole in the surface, liberating radiogenic helium which is then quantified by isotope dilution. The volume of the hole is then measured by an ADE-Phase Shift MicroXAM vertical scanning interferometer, allowing us to calculate He concentration. U, Th, and Sm concentrations are obtained (in the case of monazite), by electron microprobe analysis (either before or after helium analysis). While the precision of the technique has been adequately demonstrated on monazites as young as ~700 ka [1,2], the question of accuracy has to this point been unanswered because of the lack of a suitable monazite (U-Th)/He standard amenable to conventional (U-Th)/He analysis for comparison. Typical natural monazites are very small and strongly zoned, resulting in large and poorly constrained alpha-recoil corrections, and therefore conventional (U-Th)/He ages with unacceptably large uncertainties. Eighteen ExLA-(U-Th)/He ages on a polished section of the centimeter-sized, gem-quality Brazilian monazite MOM1 yield an error-weighted mean of 447.4 ± 3.4 Ma (0.75% at two standard errors from the mean or 2SE). Ten additional 25 μm spot analyses on a small fragment of a second crystal (MOM3) result a similar weighted mean age, albeit with more scatter, of 454.6 ± 8.9 Ma (2.0% at 2SE). Taken together, the 28 ExLA-(U-Th)/He analyses on the two crystals can be used to calculate one age of 450.4 ± 3.9 Ma (0.86% at 2SE). The

  9. AFM study of excimer laser patterning of block-copolymer: Creation of ordered hierarchical, hybrid, or recessed structures

    NASA Astrophysics Data System (ADS)

    Švanda, Jan; Siegel, Jakub; Švorčík, Vaclav; Lyutakov, Oleksiy

    2016-05-01

    We report fabrication of the varied range of hierarchical structures by combining bottom-up self-assembly of block copolymer poly(styrene-block-vinylpyridine) (PS-b-P4VP) with top-down excimer laser patterning method. Different procedures were tested, where laser treatment was applied before phase separation and after phase separation or phase separation and surface reconstruction. Laser treatment was performed using either polarized laser light with the aim to create periodical pattern on polymer surface or non-polarized light for preferential removing of polystyrene (PS) part from PS-b-P4VP. Additionally, dye was introduced into one part of block copolymer (P4VP) with the aim to modify its response to laser light. Resulting structures were analyzed by XPS, UV-vis and AFM techniques. Application of polarized laser light leads to creation of structures with hierarchical, recessed or hybrid geometries. Non-polarized laser beam allows pronouncing the block copolymer phase separated structure. Tuning the order of steps or individual step conditions enables the efficient reorientation of block-copolymer domain at large scale, fabrication of hierarchical, hybrid or recessed structures. The obtained structures can find potential applications in nanotechnology, photonics, plasmonics, information storage, optical devices, sensors and smart surfaces.

  10. Improvement of electrical performance of InGaZnO/HfSiO TFTs with 248-nm excimer laser annealing

    NASA Astrophysics Data System (ADS)

    Huang, Hau-Yuan; Wang, Shui-Jinn; Wu, Chien-Hung; Lu, Chien-Yuan

    2014-09-01

    The influence of 248-nm KrF excimer laser annealing (ELA) with energy density between 0 and 400 mJ/cm2 on the electrical behavior of indium gallium zinc oxide (InGaZnO) thin-film transistors (TFTs) is investigated. The experimental results show that the saturation mobility and subthreshold swing are improved from 12.4 cm2/Vs and 100 mV/dec without ELA to 17.8 cm2/Vs and 75 mV/dec, respectively, by applying a 300 mJ/cm2 laser pulse after the source/drain deposition, while maintaining an almost unchanged turn-off voltage. Such improvements are attributed to the increase in the oxygen vacancies and reduction in the bulk traps in the InGaZnO channel.

  11. Determination of the melting threshold of TiO{sub 2} thin films processed by excimer laser irradiation

    SciTech Connect

    Van Overschelde, O.; Delsate, T.; Snyders, R.

    2012-06-15

    Processing surfaces by laser needs an understanding of the mechanisms generated by irradiation. In this work, to gain understanding of the mechanisms occurring during irradiation of TiO{sub 2} thin films by means of KrF excimer laser, we have performed infrared time resolved reflectivity measurements. This experimental investigation revealed modifications of the heating/cooling cycle as a function of the fluence (F). These modifications start appearing for a fluence value of about {approx}0.25 J/cm{sup 2} which is associated with the melting threshold of the film. Additionally, we have solved numerically the heat equation of the system with specific boundary conditions. From these calculations, we have established the thermal history of the film during the 25 ns irradiation pulse. The data reveal that a part of the medium liquefies around a fluence of 0.23 J/cm{sup 2} in good agreement with the experimental data.

  12. KrF- and ArF-excimer-laser-induced absorption in silica glasses produced by melting synthetic silica powder

    SciTech Connect

    Kuzuu, Nobu; Sasaki, Toshiya; Kojima, Tatsuya; Tanaka, Jun-ichiro; Nakamura, Takayuki; Horikoshi, Hideharu

    2013-07-07

    KrF- and ArF-excimer-laser-induced absorption of silica glasses produced by electric melting and flame fusion of synthetic silica powder were investigated. The growth of KrF-laser-induced absorption was more gradual than that of ArF-laser-induced absorption. Induced absorption spectra exhibited a peak at about 5.8 eV, of which the position and width differed slightly among samples and laser species. Widths of ArF-laser-induced absorption spectra were wider than those of KrF-laser-induced spectra. KrF-laser-induced absorption is reproducible by two Gaussian absorption bands peaking at 5.80 eV with full width at half maximum (FWHM) of 0.62 eV and at 6.50 eV with FWHM of 0.74 eV. For reproduction of ArF-laser-induced absorption, Gaussian bands at 5.41 eV with FWHM of 0.62 eV was necessary in addition to components used for reproducing KrF-laser-induced absorption. Based on the discussion of the change of defect structures evaluated from change of absorption components, we proposed that the precursor of the 5.8-eV band ascribed to E Prime center ({identical_to}Si{center_dot}) is {identical_to}Si-H HO-Si{identical_to} structures formed by the reaction between strained Si-O-Si bonds and interstitial H{sub 2} molecules during the irradiation.

  13. Cataract Surgery combined with excimer laser trabeculotomy to lower intraocular pressure: effectiveness dependent on preoperative IOP

    PubMed Central

    2013-01-01

    Background Cataract surgery combined with excimer laser trabeculotomy (phaco-ELT) can reduce intraocular pressure (IOP). The aim of this study was to evaluate the effect of phaco-ELT on IOP in patients as a function of preoperative IOP. Methods Patients with open-angle glacuoma or ocular hypertension who received phaco-ELT between 01/2008 and 10/2009 were included. Patients were assigned based on preoperative IOP either to the study group (≤21 mmHg) or control group (>21 mmHg) in this IRB-approved, prospective, consecutive case series. Visual Acuity, IOP, and number of anti-glaucoma drugs (AGD) were recorded at baseline and 12 months after phaco-ELT. Any postoperative complications were also recorded. Results 64 eyes of 64 patients (76.5 ± 9.4 years) were included. Baseline IOP was 19.8 ± 5.3 mmHg (AGD 2.4 ± 1.1) for all eyes, 16.5 ± 2.9 mmHg (AGD 2.5 ± 1.0) for the study group, and 25.8 ± 2.9 mmHg (AGD 2.2 ± 1.4) for the control group. Across the two groups, IOP was reduced by 4.5 ± 5.9 mmHg (-23.0%, p < 0.001) and AGD by 0.9 ± 1.5 (-38.9%, p < 0.001). For the study group IOP was reduced by 1.9 ± 4.4 mmHg (-11. 5 %, p = 0.012) and AGD by 1.1 ± 1.4 (-42.9%, p < 0.001), and for the control group by 9.5 ± 5.4 mmHg (-36.6%, p < 0.001) and AGD by 0.7 ± 1.6 (-29.5%, p = 0.085). There were no serious postoperative complications such as endophthalmitis, significant hyphema, or a severe fibrinous reaction of the anterior chamber. Conclusions IOP remained significantly reduced from baseline 12 months after phaco-ELT regardless of preoperative IOP levels, with no major complications. The IOP reduction remained constant over the entire follow-up. Hence, phaco-ELT can be considered in glaucoma and ocular hypertensive patients whenever cataract surgery is performed, in order to further reduce IOP or to reduce the requirement for IOP-reducing medications. PMID:23799932

  14. [Narrowband UV-B, monochromatic excimer laser, and photodynamic therapy in psoriasis: a consensus statement of the Spanish Psoriasis Group].

    PubMed

    Carrascosa, J M; López-Estebaranz, J L; Carretero, G; Daudén, E; Ferrándiz, C; Vidal, D; Belinchón, I; Sánchez-Regaña, M; Puig, L

    2011-04-01

    Novel treatment strategies and new information concerning the management of moderate to severe psoriasis justify a reassessment of the role of the classic therapies in this setting. This consensus statement evaluates narrowband UV-B therapy, which is currently considered the phototherapy option of choice in psoriasis because of its risk-to-benefit ratio. The role of excimer laser and photodynamic therapies are also discussed. These targeted therapies are still only available in a small number of centers in Spain and are used principally in the treatment of localized and recalcitrant forms of psoriasis. We discuss the efficacy and safety of phototherapy as well as treatment regimens, combination therapy, and clinical considerations relating to the characteristics of the patient or the disease.

  15. A novel approach to pseudopodia proteomics: excimer laser etching, two-dimensional difference gel electrophoresis, and confocal imaging

    PubMed Central

    Mimae, Takahiro; Ito, Akihiko; Hagiyama, Man; Nakanishi, Jun; Hosokawa, Yoichiroh; Okada, Morihito; Murakami, Yoshinori; Kondo, Tadashi

    2014-01-01

    Pseudopodia are actin-rich ventral cellular protrusions shown to facilitate the migration and metastasis of tumor cells. Here, we present a novel approach to perform pseudopodia proteomics. Tumor cells growing on porous membranes extend pseudopodia into the membrane pores. In our method, cell bodies are removed by horizontal ablation at the basal cell surface with the excimer laser while pseudopodia are left in the membrane pores. For protein expression profiling, whole cell and pseudopodia proteins are extracted with a lysis buffer, labeled with highly sensitive fluorescent dyes, and separated by two-dimensional gel electrophoresis. Proteins with unique expression patterns in pseudopodia are identified by mass spectrometry. The effects of the identified proteins on pseudopodia formation are evaluated by measuring the pseudopodia length in cancer cells with genetically modified expression of target proteins using confocal imaging. This protocol allows global identification of pseudopodia proteins and evaluation of their functional significance in pseudopodia formation within one month. PMID:25309719

  16. Ultra-shallow p{sup +}-junction formation in silicon by excimer laser doping -- A heat and mass transfer perspective

    SciTech Connect

    Zhang, X.; Ho, J.R.; Grigoropoulos, C.P.

    1995-12-31

    A new technique is developed to fabricate the ultra-shallow p{sup +}-junctions with the depth from 30 nm to 400 nm. The ultra-shallow p{sup +}-junction is successfully made by the excimer laser doping of crystalline silicon with a solid spin-on-glass (SOG) dopant. High boron concentration of 10{sup 20} atoms/cc and the box-like junction profile are achieved through the nanosecond pulsed laser heating, melting, and boron mass diffusion in the 100 nm thin silicon layer close to the surface. The key mechanism determining the box-like junction shape is found to be the melt-solid interface limited diffusion. The optimal laser fluence condition for SOG doping is found about 0.6--0.8 J/cm{sup 2} by studying the ultra-shallow p{sup +}-junction boron profiles measured by the secondary ion mass spectroscopy (SIMS) versus the laser fluence and the pulse number. Heat and mass transfer are studied at the nanosecond time scale and the nanometer length scale. The ID numerical analysis agrees reasonably with the experiment, within the available physical picture. Possible mechanisms such as boron diffusivity dependence on the dopant concentration in the molten silicon are proposed.

  17. Direct growth of patterned graphene on SiC(0001) surfaces by KrF excimer-laser irradiation

    NASA Astrophysics Data System (ADS)

    Hattori, Masakazu; Furukawa, Kazuaki; Takamura, Makoto; Hibino, Hiroki; Ikenoue, Hiroshi

    2015-03-01

    A novel method of direct growth of patterned graphene on SiC(0001) surfaces using KrF excimer-laser irradiation is proposed. It relies on the local sublimation of Si atoms within the irradiated area to induce graphene growth through a rearrangement of surplus carbon. A laser with a wavelength of 248 nm was pulsed with a duration of 55 ns and a repetition rate of 100 Hz that was used to graphene forming. Following laser irradiation of 1.2 J/cm2 (5000 shots) under an Ar atmosphere (500 Pa), characteristic graphene peaks were observed in the Raman spectra of the irradiated area, thereby confirming the formation of graphene. The ratio between the graphene bands in the Raman spectra was used to estimate the grain size at 61.3 nm. Through high-resolution transmission electron microscopy, it was confirmed that two layers of graphene were indeed formed in the laser irradiated region. Using this knowledge, we also demonstrate that line-and-space (LandS) graphene patterns with a pitch of 8 μm can be directly formed using our method.

  18. Surface studies on benzophenone doped PDMS microstructures fabricated using KrF excimer laser direct write lithography

    NASA Astrophysics Data System (ADS)

    Kant, Madhushree Bute; Shinde, Shashikant D.; Bodas, Dhananjay; Patil, K. R.; Sathe, V. G.; Adhi, K. P.; Gosavi, S. W.

    2014-09-01

    This paper discusses microfabrication process for benzophenone doped polydimethylsiloxane (PDMS) using laser lithography. KrF excimer laser of 248 nm with 20 ns pulse width at repetition rate of 1 Hz was used for microfabrication of undoped and benzophenone doped PDMS. The doped-PDMS shows sensitivity below 365 nm, permitting processing under ambient light. The analysis of etch depth revealed that doped PDMS shows self developable sensitivity at lower fluence of ∼250 mJ/cm2. The unexposed and exposed surface was studied using Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), Raman spectroscopy and Scanning electron microscopy (SEM). Spectrocopic analysis indicated increase in Csbnd O, Cdbnd O, Sisbnd O3 and Sisbnd O4 bonding at the expense of Sisbnd C and Sisbnd O2 bonds of PDMS. In case of laser exposed doped-PDMS, removal of benzophenone from probe depth of spectroscopy was observed. Whereas the surface morphology of exposed and unexposed doped-PDMS was observed to be same, indicating clean development of PDMS micropatterns. The present study indicates that addition of 3.0 wt.% benzophenone in PDMS enhance self development sensitivity of PDMS. The self developable results on doped-PDMS are quite encouraging for its potential use in point of care Lab-On-Chip applications, for fabricating micropatterns using direct write laser lithography technology.

  19. Keratin film ablation for the fabrication of brick and mortar skin structure using femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Haq, Bibi Safia; Khan, Hidayat Ullah; Dou, Yuehua; Alam, Khan; Attaullah, Shehnaz; Zari, Islam

    2015-09-01

    The patterning of thin keratin films has been explored to manufacture model skin surfaces based on the "bricks and mortar" view of the relationship between keratin and lipids. It has been demonstrated that laser light is capable of preparing keratin-based "bricks and mortar" wall structure as in epidermis, the outermost layer of the human skin. "Bricks and mortar" pattern in keratin films has been fabricated using an ArF excimer laser (193 nm wavelength) and femtosecond laser (800 and 400 nm wavelength). Due to the very low ablation threshold of keratin, femtosecond laser systems are practical for laser processing of proteins. These model skin structures are fabricated for the first time that will help to produce potentially effective moisturizing products for the protection of skin from dryness, diseases and wrinkles.

  20. Responsivity uniformity enhancements for Backside-Illuminated Charge-Coupled Devices (BICCDs) by excimer laser-assisted etching

    NASA Astrophysics Data System (ADS)

    Russell, Stephen D.; Sexton, Douglas A.

    1991-05-01

    BICCDs are solid-state electronic imaging devices which read out image charges from wells in an array of pixels. The substrate below the pixel array is typically thinned by chemically etching (100)-oriented silicon using a potassium hydroxide (KOH) etch. The potassium hydroxide anisotropically etches to the (111) crystallographic plane in silicon, leaving smooth sidewalls at an angle of 54.7 deg to the image plane. This smooth surface acts as a mirror to reflect extraneous light onto the image plane of the BICCD, causing spurious images and reducing the responsivity uniformity (RU) of the devices. We have developed a noncontact excimer laser-assisted process to promote a chemical reaction between a halocarbon ambient and the silicon. The laser-assisted chemical reaction results in a roughened (textured) surface which behaves as a light sink. The use of a nonreactive ambient allows us to texture the sidewalls of prepackaged and pretested devices. The sidewalls of fully functional BICCD die have been textured in a Freon-115 (chloropentafluoroethane) ambient by directing 5000 pulses with laser fluence of about 0.75 J/sq cm upon them. The RU of the devices as well as the background level (fat-zero) are dramatically improved.

  1. Rapid fabrication of rigid biodegradable scaffolds by excimer laser mask projection technique: a comparison between 248 and 308 nm

    NASA Astrophysics Data System (ADS)

    Beke, S.; Anjum, F.; Ceseracciu, L.; Romano, I.; Athanassiou, A.; Diaspro, A.; Brandi, F.

    2013-03-01

    High-resolution photocrosslinking of the biodegradable poly(propylene fumarate) (PPF) and diethyl fumarate (DEF), using pulsed laser light at 248 and 308 nm is presented. The curing depth can be modulated between a few hundreds of nm and a few μm when using 248 nm and ten to a hundred μm when using 308 nm. By adjusting the total fluence (pulse numbers×laser fluence) dose and the weight ratios of PPF, DEF, and the photoinitiator in the photocrosslinkable mixtures, the height of polymerized structures can be precisely tuned. The lateral resolution is evaluated by projecting a pattern of a grid with a specified line width and line spacing. Young’s modulus of the cured parts is measured and found to be several GPa for both wavelengths, high enough to support bone formation. Several 2D and 2.5D microstructures, as well as porous 3D scaffolds fabricated by a layer-by-layer method, are presented. The results demonstrate that excimer laser-based photocuring is suitable for the fabrication of stiff and biocompatible structures with defined patterns of micrometer resolution in all three spatial dimensions.

  2. Effect of KrF Pulsed Excimer Laser Treatment on Surface Microstructure of Al-Si Alloy

    NASA Astrophysics Data System (ADS)

    Mahanty, S.; Gouthama

    2016-09-01

    In the present research, the Al-Si alloy surface is treated by KrF excimer pulse laser for different number of laser pulses in ambient condition at energy 4.75 J/cm2. The surface microstructural characterization was done by the optical microscope, in situ video recording during laser pulsing, SEM and TEM. The fretting wear test was undertaken to assess the tribological behavior. In situ video recording showed changes in the surface reflectivity with the number of pulses which is related to progressive changes in the surface compositional homogeneity. After ten pulses, signs of rippled structure were observed. The 15 pulse samples showed star-like morphological feature at the central region. The TEM observations showed high density of stacking faults/twins in Si after first pulse treatment. After 15 pulses, nano-crystalline Si precipitates in the size range <5 nm are seen to be homogeneously distributed. A cellular structure with the cell size <100 nm formed in the matrix. These cell boundaries were decorated with the Si nanocrystals. A positive effect in wear resistance property is observed after the 15 pulses treatment.

  3. Formation of the surface structure of polyethylene-terephtalate (PET) due to ArF excimer laser ablation

    NASA Astrophysics Data System (ADS)

    Hopp, B.; Csete, M.; Révész, K.; Vinkó, J.; Bor, Zs.

    1996-04-01

    The development process of the surface structure on polyethylene-terephtalate (PET) has been investigated. It was found that the average dimension and shape of its unit cells depend on the excimer laser fluence, the incident angle of the ablating laser beam (the longitudinal dimension is proportional to cons × tan( α) + D formula, where D means the average dimension of the unit cell at α = 0°) and the number of shots (the average dimension and height proportional to the logarithm of the number of shots). A dye laser based arrangement was constructed to investigate the temporal dependence of the scattered probe light intensity from the ablated polymer surface. It was found that the formation of the surface structure takes place in the time range of 5-10 μs. We used a heat diffusion melting model to explain the development of the surface structure. A simple 1D simulation of the heat transfer shows that the lifetime of the liquid phase (˜ 1-7 μs) is comparable with the time scale mentioned above.

  4. Design concept and performance considerations for fast high power semiconductor switching for high repetition rate and high power excimer laser

    NASA Astrophysics Data System (ADS)

    Goto, Tatsumi; Kakizaki, Kouji; Takagi, Shigeyuki; Satoh, Saburoh; Shinohe, Takashi; Ohashi, Hiromichi; Endo, Fumihiko; Okamura, Katsuya; Ishii, Akira; Teranishi, Tsuneharu; Yasuoka, Koichi

    1997-07-01

    A semiconductor switching power supply has been developed, in which a novel structure semiconductor device, metal-oxide-semiconductor assisted gate-triggered thyristor (MAGT) was incorporated with a single stage magnetic pulse compression circuit (MPC). The MAGT was specially designed to directly replace thyratrons in a power supply for a high repetition rate laser. Compared with conventional high power semiconductor switching devices, it was designed to enable a fast switching, retaining a high blocking voltage and to extremely reduce the transient turn-on power losses, enduring a higher peak current. A maximum peak current density of 32 kA/cm2 and a current density risetime rate di/dt of 142 kA/(cm2×μs) were obtained at the chip area with an applied anode voltage of 1.5 kV. A MAGT switching unit connecting 32 MAGTs in series was capable of switching on more than 25 kV-300 A at a repetition rate of 5 kHz, which, coupled with the MPC, was equivalent to the capability of a high power thyratron. A high repetition rate and high power XeCl excimer laser was excited by the power supply. The results confirmed the stable laser operation of a repetition rate of up to 5 kHz, the world record to our knowledge. An average output power of 0.56 kW was obtained at 5 kHz where the shortage of the total discharge current was subjoined by a conventional power supply with seven parallel switching thyratrons, simultaneously working, for the MAGT power supply could not switch a greater current than that switched by one thyratron. It was confirmed by those excitations that the MAGT unit with the MPC could replace a high power commercial thyratron directly for excimer lasers. The switching stability was significantly superior to that of the thyratron in a high repetition rate region, judging from the discharge current wave forms. It should be possible for the MAGT unit, in the future, to directly switch the discharge current within a rise time of 0.1 μs with a magnetic assist.

  5. Development of a Silicon Based Electron Beam Transmission Window for Use in a KrF Excimer Laser System

    SciTech Connect

    C.A. Gentile; H.M. Fan; J.W. Hartfield; R.J. Hawryluk; F. Hegeler; P.J. Heitzenroeder; C.H. Jun; L.P. Ku; P.H. LaMarche; M.C. Myers; J.J. Parker; R.F. Parsells; M. Payen; S. Raftopoulos; J.D. Sethian

    2002-11-21

    The Princeton Plasma Physics Laboratory (PPPL), in collaboration with the Naval Research Laboratory (NRL), is currently investigating various novel materials (single crystal silicon, <100>, <110> and <111>) for use as electron-beam transmission windows in a KrF excimer laser system. The primary function of the window is to isolate the active medium (excimer gas) from the excitation mechanism (field-emission diodes). Chosen window geometry must accommodate electron energy transfer greater than 80% (750 keV), while maintaining structural integrity during mechanical load (1.3 to 2.0 atm base pressure differential, approximate 0.5 atm cyclic pressure amplitude, 5 Hz repetition rate) and thermal load across the entire hibachi area (approximate 0.9 W {center_dot} cm superscript ''-2''). In addition, the window must be chemically resistant to attack by fluorine free-radicals (hydrofluoric acid, secondary). In accordance with these structural, functional, and operational parameters, a 22.4 mm square silicon prototype window, coated with 500 nm thin-film silicon nitride (Si{sub 3}N{sub 4}), has been fabricated. The window consists of 81 square panes with a thickness of 0.019 mm {+-} 0.001 mm. Stiffened (orthogonal) sections are 0.065 mm in width and 0.500 mm thick (approximate). Appended drawing (Figure 1) depicts the window configuration. Assessment of silicon (and silicon nitride) material properties and CAD modeling and analysis of the window design suggest that silicon may be a viable solution to inherent parameters and constraints.

  6. Topography and raytracing analysis of patients with excellent visual acuity 3 months after excimer laser photorefractive keratectomy for myopia.

    PubMed

    Maguire, L J; Zabel, R W; Parker, P; Lindstrom, R L

    1991-01-01

    We performed topography and raytracing analysis 3 months after surgery on five consecutive eyes of five patients, which had excimer laser photorefractive keratectomy for myopia. Three of the five eyes had uncorrected postoperative visual acuity of 20/20 or better. Two eyes had an uncorrected vision of 20/40. In three of five eyes, the area of excimer ablation was centered within 1.0 mm of the optical axis. Three other eyes showed decentration that ranged from 1.1 to 1.5 mm. The range of surface power seen within 2 mm of the central keratoscope ring was as follows: patient CK = 37.50 to 39.50 diopters; patient CA = 40.50 D to 44.80 D; patient CW = 37.90 D to 42.20 D; patient AC = 35.50 D to 39.00 D; patient DT = 34.50 D to 41.40 D. Topography patterns differed from eye to eye. A raytracing program modeled refraction of 20/80 and 20/20 "E" of 100%, 50%, 25%, 12.5% and 6.25% contrast through all measured points on the central 10 keratoscope rings of the five postoperative corneas. The five computer-derived images were ranked subjectively according to the observed degree of image degradation by three observers. Two eyes showed discernible 20/20 E's even at the 12.5% contrast level. Little to no ghost image was seen. Two eyes showed degraded but discernible 20/20 letters at higher levels of contrast only. These eyes showed moderate ghost images that were most apparent in the high-contrast 20/80 letters. One eye showed poor resolution of the 100% contrast 20/20 letter and moderately severe ghost images.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:2043557

  7. Infrared diode laser kinetic spectroscopy of the CCO radical in the X-tilde 3Sigma - state generated by the excimer laser photolysis of carbon suboxide

    NASA Astrophysics Data System (ADS)

    Yamada, Chikashi; Kanamori, Hideto; Horiguchi, Hiroyuki; Tsuchiya, Soji; Hirota, Eizi

    1986-03-01

    The ν1 band of the CCO radical in the X˜ 3Σ- ground electronic state has been observed in the gas phase by diode laser kinetic spectroscopy. The CCO radical was generated by the 193 or 248 nm excimer laser photolysis of carbon suboxide. By fixing ground state parameters to the microwave values, the band origin and the vibrational changes of the rotational (αB=B0-B1) and spin-spin interaction (αλ=λ1-λ0) constants have been determined to be 1970.864 34(95), 0.003 075 4(85), and 0.008 3(12) in cm-1 with 2.5 standard errors in parentheses.

  8. Chaînes laser intenses à contraste élevé par amplification directe dans un milieu gazeux à excimères*

    NASA Astrophysics Data System (ADS)

    Uteza, O.; Tcheremiskine, V.; Clady, R.; Coustillier, G.; Gastaud, M.; Sentis, M.; Mikheev, L. D.; Chambaret, J. P.

    2006-12-01

    Cet article présente l'intérêt du concept de laser hybride (solide/gaz) et de l'amplification directe de puissance dans un milieu à excimères pour les chaînes laser de puissance ultrabrèves à contraste élevé. L'architecture d'une chaîne laser multiterawatt basée sur l'emploi du milieu amplificateur XeF(C-A) pompé par voie photolytique est ensuite détaillée, ainsi que les perspectives de dimensionnement de cette approche au niveau PWetEW.

  9. Applying low-energy multipulse excimer laser annealing to improve charge retention of Au nanocrystals embedded MOS capacitors

    NASA Astrophysics Data System (ADS)

    Shen, Kuan-Yuan; Chen, Hung-Ming; Liao, Ting-Wei; Kuan, Chieh-Hsiung

    2015-02-01

    The low-energy multipulse excimer laser annealing (LEM-ELA) is proposed to anneal the nanostructure of nanocrystal (NC) embedded in a SiO2 thin film without causing atomic diffusion and damaging the NCs, since the LEM-ELA combining the advantages of laser annealing and UV curing features rapid heating and increasing oxide network connectivity. A Fourier transform infrared spectroscopy (FTIR) characterization of SiO2 thin films annealed using LEM-ELA indicated that the quality was improved through the removal of water-related impurities and the reconstruction of the network Si-O-Si bonds. Then, LEM-ELA was applied to a SiO2 thin film embedded with Au NCs, which were fabricated as MOS capacitors. The charge retention was greatly improved and the percentage of retained charges was about 10% after 3  ×  108 s. To investigate and differentiate the effects of LEM-ELA on charges stored in both oxide traps and in the Au NCs, a double-mechanism charge relaxation analysis was performed. The results indicated that the oxide traps were removed and the confinement ability of Au NCs was enhanced. The separated memory windows contributed from the charges in Au NCs and those in oxide traps were obtained and further confirmed that the LEM-ELA removed oxide traps without damaging the Au NCs.

  10. Enhanced electrical and optical properties of room temperature deposited Aluminium doped Zinc Oxide (AZO) thin films by excimer laser annealing

    NASA Astrophysics Data System (ADS)

    El hamali, S. O.; Cranton, W. M.; Kalfagiannis, N.; Hou, X.; Ranson, R.; Koutsogeorgis, D. C.

    2016-05-01

    High quality transparent conductive oxides (TCOs) often require a high thermal budget fabrication process. In this study, Excimer Laser Annealing (ELA) at a wavelength of 248 nm has been explored as a processing mechanism to facilitate low thermal budget fabrication of high quality aluminium doped zinc oxide (AZO) thin films. 180 nm thick AZO films were prepared by radio frequency magnetron sputtering at room temperature on fused silica substrates. The effects of the applied RF power and the sputtering pressure on the outcome of ELA at different laser energy densities and number of pulses have been investigated. AZO films deposited with no intentional heating at 180 W, and at 2 mTorr of 0.2% oxygen in argon were selected as the optimum as-deposited films in this work, with a resistivity of 1×10-3 Ω.cm, and an average visible transmission of 85%. ELA was found to result in noticeably reduced resistivity of 5×10-4 Ω.cm, and enhancing the average visible transmission to 90% when AZO is processed with 5 pulses at 125 mJ/cm2. Therefore, the combination of RF magnetron sputtering and ELA, both low thermal budget and scalable techniques, can provide a viable fabrication route of high quality AZO films for use as transparent electrodes.

  11. Cost-effective SU-8 micro-structures by DUV excimer laser lithography for label-free biosensing

    NASA Astrophysics Data System (ADS)

    Sanza, F. J.; Laguna, M. F.; Casquel, R.; Holgado, M.; Barrios, C. A.; Ortega, F. J.; López-Romero, D.; García-Ballesteros, J. J.; Bañuls, M. J.; Maquieira, A.; Puchades, R.

    2011-04-01

    Cost-effective SU-8 micro-structures on a silicon substrate were developed using 248 nm excimer laser KrF projection, studying the influence of the different variables on the final pattern geometry, finding out that the most critical are exposure dose and post-bake condition. Also a novel and cost effective type of photomask based on commercial polyimide Kapton produced by 355 nm DPSS laser microprocessing was developed, studying the influence of the cutting conditions on the photomask. Finally, as a likely application the biosensing capability with a standard BSA/antiBSA immunoassay over a 10 × 10 micro-plates square lattice of around 10 μm in diameter, 15 μm of spacing and 400 nm in height was demonstrated, finding a limit of detection (LOD) of 33.4 ng/ml which is in the order of magnitude of bioapplications such as detection of cortisol hormone or insulin-like growth factor. Low cost fabrication and vertical interrogation characterization techniques lead to a promising future in the biosensing technology field.

  12. A novel microsurgery method for intact plant tissue at the single cell level using ArF excimer laser microprojection.

    PubMed

    Kajiyama, Shin'ichiro; Shoji, Takeshi; Okuda, Shinya; Izumi, Yoshihiro; Fukusaki, Ei-ichiro; Kobayashi, Akio

    2006-02-01

    A novel microsurgery technique for the partial removal of rigid cell-walls in intact plant tissue is established. Using a size-variable slit, an ArF excimer laser was microprojected on the surface of the targeted cell, and this method enabled the area- and depth-controllable processing of the cortical structure of plant cells including the cuticle and cell wall layer. In epidermal cells of all tested plants, viabilities of more than 90% were retained 24 h after irradiation. Scanning electron microscope (SEM) observation revealed that the cuticle layer of the irradiated region was completely ablated, and the cellulose microfibrils of the secondary cell wall were partially removed; furthermore, 4 days after laser treatment, the regeneration of cell wall fibrils was observed. As a model experiment, the transient expression of synthetic green fluorescent protein (sGFP) was performed by the microinjection of cauliflower mosaic virus (CMV) 35S promoter-derived sGFP gene through an "aperture" in the treated cell surface. Moreover, micron-sized fluorescent beads were successfully introduced by the same method into the onion cells indicating that this method can be used to introduce foreign materials as large as organelles. PMID:16193516

  13. X-Ray Radiation Measurements With Photodiodes In Plasmas Generated By 1017 W/Cm2 Intensity Krf Excimer Laser Pulses

    NASA Astrophysics Data System (ADS)

    Rácz, E.; Földes, I. B.; Ryć, L.

    2006-01-01

    Experiments were carried out using a prepulse-free hybrid KrF excimer-dye laser system (700fs pulse duration, 248nm wavelength, 15mJ pulse energy). The intensity of the p-polarized, focused laser beam was 1.5ṡ1017 W/cm2. Vacuum ultraviolet (VUV) and x-rays from solid state laser plasmas were generated in the laser-plasma interaction of subpicosecond laser pulses of nonrelativistic laser intensities. An x-ray sensitive FLM photodiode (ITE, Warsaw) was used to detect x-rays between 1-19 keV in front of the targets. The diode was filtered by a 4μm Al foil. The dependence of the x-ray flux on laser intensity and the angular distribution of x-rays for aluminum and copper targets in the half space of the front side of the targets were investigated.

  14. Thermodynamic measurements in a high pressure hydrogen-oxygen flame using Raman scattering from a broadband excimer laser

    NASA Technical Reports Server (NTRS)

    Hartfield, Roy, Jr.

    1996-01-01

    Raman scattering is an inelastic molecular scattering process in which incident radiation is reemitted at a fixed change in frequency. Raman spectroscopy can be used to measure the number density and temperature of the irradiated species. The strength of the Raman signal is inversely proportional to the wavelength raised to the fourth power. Consequently, high signal to noise ratios are obtained by using ultraviolet (UV) excitation sources. Using UV sources for Raman Spectroscopy in flames is complicated by the fact that some of the primary constituents in hydrogen-oxygen combustion absorb and reemit light in the UV and these fluorescence processes interfere with the Raman signals. This problem has been handled in atmospheric pressure flames in some instances by using a narrowband tunable excimer laser as a source. This allows for detuning from absorption transitions and the elimination of interfering fluorescence signals at the Raman wavelengths. This approach works well in the atmospheric pressure flame; however, it has two important disadvantages. First, injection-locked narrowband tunable excimer lasers are very expensive. More importantly, however, is the fact that at the high pressures characteristic of rocket engine combustion chambers, the absorption transitions are broadened making it difficult to tune to a spectral location at which substantial absorption would not occur. The approach taken in this work is to separate the Raman signal from the fluorescence background by taking advantage of the fact that Raman signal has nonisotropic polarization characteristics while the fluorescence signals are unpolarized. Specifically, for scattering at right angles to the excitation beam path, the Raman signal is completely polarized. The Raman signal is separated from the fluorescence background by collecting both horizontally and vertically polarized signals separately. One of the polarizations has both the Raman signal and the fluorescence background while the

  15. Microswelling-free negative resists for ArF excimer laser lithography utilizing acid-catalyzed intramolecular esterification

    NASA Astrophysics Data System (ADS)

    Hattori, Takashi; Tsuchiya, Yuko; Yokoyama, Yoshiyuki; Oizumi, Hiroaki; Morisawa, Taku; Yamaguchi, Atsuko; Shiraishi, Hiroshi

    1999-06-01

    We have examined alicyclic polymers with a (gamma) -hydroxy acid structure in order to investigate the properties of (gamma) -hydroxy acid and (gamma) -lactone as function groups of ArF negative resist materials. From the viewpoint of transparency and dry-etching resistance, (gamma) -hydroxy acid and (gamma) -lactone structure were found to be suitable for ArF negative resists materials. Surprisingly, the reactivity of the acid-catalyzed reaction of (gamma) -hydroxy acid is affected by the polymer structure. Using ArF excimer laser stepper, 0.20-micrometers line-and-space patterns without micro-swelling distortion were obtained from a negative resist consisting of alicyclic polymer with the (gamma) - hydroxy acid structure and a photoacid generator. Distortion was avoided because the number of carboxyl groups decreased drastically in the exposed area by the acid-catalyzed intramolecular esterification of (gamma) -hydroxy acid to (gamma) -lactone. As a result, (gamma) -hydroxy acid and (gamma) -lactone structure were found to be suitable function groups for ArF negative resist materials.

  16. Substrate effect on excimer laser assisted crystal growth in phosphor Ca 0.997Pr 0.002TiO 3 polycrystalline thin films

    NASA Astrophysics Data System (ADS)

    Nakajima, Tomohiko; Tsuchiya, Tetsuo; Kumagai, Toshiya

    2007-12-01

    Ca 0.997Pr 0.002TiO 3 thin films that show strong red luminescence were successfully prepared by means of an excimer laser assisted metal organic deposition process with a KrF laser at a fluence of 100 mJ/cm 2 at 100 °C. The CPTO films grew on the silica, borosilicate, and indium-tin-oxide coated glasses. The crystallinity of the Ca 0.997Pr 0.002TiO 3 films depended on the substrates; the borosilicate and indium-tin-oxide coated glasses with a large optical absorption of a KrF laser ( λ = 248 nm) were effective for the crystallization for the Ca 0.997Pr 0.002TiO 3. In addition, a high thermal conductivity of the indium-tin-oxide coated glass substrate could also improve the crystallinity due to an enhancement of thermal propagation to the film. Oxygen annealing at 500 °C for 6 h successfully eliminated the oxygen vacancy produced by the laser irradiation, and also remarkably improved the PL emission intensity. Thus, we have shown that substrate properties such as an optical absorbance and a thermal conductivity were quite important factors for the crystal growth and the PL emission for the Ca 0.997Pr 0.002TiO 3 in the excimer laser assisted metal organic deposition process.

  17. Processing of diamond by laser beam irradiation

    NASA Astrophysics Data System (ADS)

    Yoshikawa, Masanori; Hirata, Atsushi

    1998-10-01

    YAG and ArF excimer laser beams, of which wavelengths are 1.06 micrometers and 193 nm respectively, have been applied to processing of a variety of diamonds. Cutting and smoothing of natural, CVD and sintered diamonds have been performed. CVD diamond films were prepared by arc discharge plasma jet CVD and microwave plasma CVD, and sintered diamonds contain metallic or ceramic binder have been used. Fundamental removal processes of diamond with YAG and ArF excimer laser have been investigated using natural single crystal and CVD diamonds in various atmospheres changing laser irradiation conditions such as average power, energy density and pulse repetition rates. Cutting of natural and CVD diamonds with YAG laser proceeds at higher peal power that occurs at lower pulse repetition rates. Smooth surfaces are obtained by excimer laser irradiation at the incident angle of 80 percent. In the cases of the processing with YAG laser, the effect of local heating by laser beam irradiation mainly assists the diamond processing, and diamond appears to be removed after graphitization and oxidization following vaporization in the atmosphere contains oxygen. The temperature measurement was carried out at backside of irradiation surface, and increase of temperature when YAG laser beam was irradiated was larger than that when excimer laser was irradiated. On the contrary, the detection of C, C2, C+, O2 and CO from the emission at the irradiation area with ArF excimer laser beam suggest that processing partly proceeds by the separation of carbon atoms from the surface of diamond after braking bonds between carbon atoms caused by laser beam. Cutting of sintered diamond with metallic binder was difficult because metallic binder remains in the groove while ceramic binder was easily removed. Processing technique using laser beams has been applied to surface planing, chip preparation and edge formation of CVD diamond and curved surface formation on sintered diamond. Surface planing was

  18. Numerical modeling of short-pulse excimer lasers with negative branch unstable cavities.

    PubMed

    Fang, H; Perrone, M R

    1995-05-20

    A one-dimensional code for the numerical simulation of negative branch unstable resonators with an intracavity aperture that are applied to high-gain, short-pulse XeCl lasers is described. The model predicts near- and far-field performance of the output laser beams. The intracavity aperture size is shown as an important parameter for control of the output beam energy and divergence. A comparison with experimental measurements is presented. PMID:21052408

  19. Removal of dust particles from metal-mirror surfaces by excimer-laser radiation

    NASA Astrophysics Data System (ADS)

    Mann, Klaus R.; Wolff-Rottke, B.; Mueller, F.

    1995-07-01

    The effect of particle desorption from Al mirror surfaces by the influence of pulsed UV laser radiation has been studied. The investigations are closely related to the demands of astronomers, who are looking for a more effective way of cleaning the Al coatings of future very large telescope mirrors. A systematic parameter study has been performed in order to determine the irradiation conditions which yield the highest dust removal efficiency (i.e. reflectivity increase) on contaminated samples, taking particularly into account laser-induced damage and degradation effects of coating and substrate. The particle removal rate increases with increasing laser fluence, being limited however by the damage threshold of the coating. Therefore, parameters influencing the damage threshold of metal coatings like wavelength, pulse width, and number of pulses have been studied in detail. Data indicate that on Al coated BK7 and Zerodur samples KrF laser radiation yields the optimum result, with cleaning efficiencies comparable to polymer film stripping. The initial reflectivity of the clean coating can nearly be reinstalled, in particular when an additional solvent film on the sample surface is applied. Hence, laser desorption seems to be a viable method of cleaning large Al mirrors for telescopes.

  20. Schlieren measurements of the hydrodynamics of excimer laser ablation of polymers in atmospheric pressure gas

    NASA Astrophysics Data System (ADS)

    Ventzek, Peter L. G.; Gilgenbach, Ronald M.; Sell, Jeffrey A.; Heffelfinger, David M.

    1990-08-01

    Pulsed schlieren photography and fast helium-neon laser deflection are used to study the hydrodynamics of laser ablation of polyethyleneterephthalate and polymethylmethacrylate by pulsed KrF (248 nm) radiation in atmospheric air, Ar and N2. Schlieren measurements show the evolution of shock waves, sound waves, and reduced-density, hot gas plumes. A transition from sound to shock at the ablation threshold for both polymers is observed. The shock velocity of PET tends to approach agreement with blast wave theory at fluences higher than 1 J/cm2. Plumes in air are consistently larger than those produced in Ar and N2 (at fluences below 5 J/cm2) suggesting that combustion may occur. Laser deflection measurements for PET at 150 mJ/cm2 indicate a plume density of 0.6 kg/m3 (50% atmospheric density).

  1. Low Specific Contact Resistivity to n-Ge and Well-Behaved Ge n+/p Diode Achieved by Implantation and Excimer Laser Annealing

    NASA Astrophysics Data System (ADS)

    Wang, Chen; Li, Cheng; Huang, Shihao; Lu, Weifang; Yan, Guangming; Lin, Guangyang; Wei, Jiangbin; Huang, Wei; Lai, Hongkai; Chen, Songyan

    2013-10-01

    Excimer laser annealing of phosphorus-implanted p-type germanium substrate with various laser energy densities for n+/p junction were investigated. The effects of laser energy density on the redistribution of dopant, surface morphology, and recrystallization of the amorphous Ge induced by ion implantation were characterized. A low specific contact resistivity of 1.61×10-6 Ω·cm2 was achieved from Al/n-Ge ohmic contact, in which phosphorus-implanted Ge was annealed at a laser energy density of 250 mJ/cm2, tailoring a small phosphorus diffusion length, high activation level, and low dopant loss. A well-behaved Ge n+/p diode with a rectification ratio up to 1.99×105 was demonstrated.

  2. Excimer and Nd:YAG laser-induced SF6 decomposition at the vicinity of amorphous SiO2 glass

    NASA Astrophysics Data System (ADS)

    Dehghanpour, H. R.; Parvin, P.

    2010-11-01

    In this work, the evidence of SF6 gas decomposition at the vicinity of SiO2 glass has been investigated using various laser wavelengths: at 193, 248, 532 and 1064 nm. It was shown that SiF4 gas and S2F10 clusters were simultaneously created during ArF excimer laser irradiation, while no by-products were seen in the irradiation cell using Q-switched Nd:YAG laser. The gas content analysis was carried out using laser breakdown spectroscopy (LIBS) and Fourier transform IR spectroscopy (FTIR). Moreover, the fluorine penetration into the glass surface was studied by energy dispersive X-ray (EDX) microanalysis and wavelength dispersive X-ray (WDX) mapping to support the suggested mechanisms.

  3. ASE suppression of XeCl excimer laser MOPA system using UV electro-optical switch

    NASA Astrophysics Data System (ADS)

    Hu, Yun; Zhao, Xue-qing; Xue, Quan-xi; Wang, Da-hui; Zheng, Guo-xin; Hua, Heng-qi; Zhang, Yongsheng; Zhu, Yong-xiang; Xiao, Wei-wei; Wang, Li

    2013-05-01

    In high power eximer laser system, amplified spontaneous emission (ASE) decreases the signal contrast ratio severely, leads to waveform broadening and distortion, and impacts on accurate physical experiments. In this article, based on principle of short pulse generation by electro-optical (E-O) switch, a method for ASE suppression of laser amplifiers chain was established. A series of studies on UV electro-optical switches were carried out, and electro-optical (E-O) switches with high extinction ratio were developed. In the waveform clipping experiments of the first pre-amplifier, the extinction ratio of the single and cascaded dual E-O switch reaches 103 and 104 order of magnitude, the laser pulse signal contrast ratio was promoted to 105 and 106 level, respectively. In the experiments of single channel MOPA (Master Oscillator Power Amplifier system), the cascaded dual E-O switch was adopted to suppress ASE of the whole system, and a fine narrow pulse was obtained on the target surface, which gives out one effective solution to the problem of waveform amplification of the high power eximer laser system.

  4. Single photon excimer laser photodissociation of highly vibrationally excited polyatomic molecules

    SciTech Connect

    Tiee, J.J.; Wampler, F.B.; Rice, W.W.

    1980-01-01

    The ir + uv photodissociation of SF/sub 6/ has been performed using CO/sub 2/ and ArF lasers. The two-color photolysis significantly enhances the photodissociation process over ArF irradiation alone and is found to preserve the initial isotopic specificity of the ir excitation process.

  5. Photoablation characteristics of novel polyimides synthesized for high-aspect-ratio excimer laser LIGA process

    NASA Astrophysics Data System (ADS)

    Yang, Chii-Rong; Hsieh, Yu-Sheng; Hwang, Guang-Yeu; Lee, Yu-Der

    2004-04-01

    The photoablation properties of two soluble polyimides DMDB/6FDA and OT/6FDA with thicknesses of over 300 µm, synthesized by the polycondensation of a hexafluoropropyl group contained in a dianhydride with two kinds of diamines, are investigated using a 248 nm krypton fluoride (KrF) laser. The incorporation of the hexafluoropropyl group into the chemical structure gives these two polyimides higher etching rates than Kapton (a commercial polyimide film which is difficult to dissolve). The etching rates of synthesized polyimides are about 0.1-0.5 µm/pulse over a fluence range of 0.25-2.25 J cm-2. The photothermal mechanism for DMDB/6FDA contributes about 19% of etching depth at a laser fluence of 0.82 J cm-2. Moreover, the number of laser pulses seriously affects the taper angle of microstructures, especially at low fluence. Near-vertical side-wall structures can be built at high fluence (~2 J cm-2). Fresnel patterns with a thickness of 300 µm and a linewidth of 10 µm were fabricated, with an attainable aspect ratio of around 30. After photoablation, the complementary metallic microstructures were also fabricated by a sequential electroplating procedure. Then, those two new polyimides could be dissolved easily in most common solvents (such as THF, DMSO, NMP and DMF). These results indicate that these two soluble polyimides are highly suitable for use in the KrF laser LIGA process.

  6. Ablation d'un film d'or par laser à excimère

    NASA Astrophysics Data System (ADS)

    Sentis, M.; Hermann, J.; Pereira, A.; Delaporte, Ph.; Marine, W.; Perrière, J.; Bianchi, L.; Galli, R.

    2003-06-01

    Ces travaux de recherche ont été réalisés dans le cadre du projet de développement du Laser MégaJoule (LMJ). Parmi les expériences d'interaction laser - matière à très haut flux, certaines conduiront à un dépôt de particules d'or sur les éléments internes de la chambre d'interaction. Pour nettoyer ce dépôt de particules, la possibilité d'utiliser un procédé automatisé basé sur l'ablation laser a été étudiée. Un modèle numérique simplifié a été développé et une étude expérimentale réalisée sur des échantillons d'acier inoxydable ou de B4C recouverts d'un film d'or d'une épaisseur de ~20 nm déposés par PVD. Ces travaux montrent que plus de 95 % du film d'or peuvent être enlevés avec quelques tirs d'un laser XeCI dès que la densité d'énergie dépasse 3 J/cm^2.

  7. Challenges of 29nm half-pitch NAND Flash STI patterning with 193nm dry lithography and self-aligned double patterning

    NASA Astrophysics Data System (ADS)

    Chiu, M. C.; Lin, Benjamin Szu-Min; Tsai, M. F.; Chang, Y. S.; Yeh, M. H.; Ying, T. H.; Ngai, Chris; Jin, Jaklyn; Yuen, Stephen; Huang, Sem; Chen, Yongmei; Miao, Liyan; Tai, Kevin; Conley, Amiad; Liu, Ian

    2008-11-01

    High NA (1.35) Immersion litho runs into the fundamental limit of printing at 40-45nm half pitch (HP). The next generation EUVL tool is known to be ready not until year 2012. Double patterning (DP) technology has been identified as the extension of optical photolithography technologies to 3xnm and 2xnm half-pitch for the low k1 regime to fill in the gap between Immersion lithography and EUVL. Self Aligned Double Patterning (SADP) Technology utilized mature process technology to reduce risk and faster time to market to support the continuation of Moore's Law of Scaling to reduce the cost/function. SADP uses spacer to do the pitch splitting bypass the conventional double patterning (e.g. Litho-Freeze-Litho-Etch (LFLE), or Litho-Etch-Litho-Etch (LELE)) overlay problem. Having a tight overlay performance is extremely critical for NAND Flash manufacturers to achieve a fast yield ramp in production. This paper describes the challenges and accomplishment of a Line-By-Spacer (LBS) SADP scheme to pattern the 29nm half-pitch NAND Flash STI application. A 193nm Dry lithography was chosen to pattern on top of the amorphous carbon (a-C) film stack. The resist pattern will be transferred on the top a-C core layer follow by spacer deposition and etch to achieve the pitch splitting. Then the spacer will be used to transfer to the bottom a-C universal hardmask. This high selectivity a-C hardmask will be used to transfer the 29nm half-pitch pattern to the STI. Good within wafer CD uniformity (CDU) <2nm and line width roughness (LWR) <2nm for the 29nm half-pitch NAND FLASH STI were demonstrated as the benefits using double amorphous carbon hardmask layers. The relationships among the photoresist CDs, CD trimming , as-deposited spacer film thickness, spacer width and the final STI line/core space/gap space CDs will also be discussed in this paper since patterning is combining both lithography performance with CVD and Etch process performance. Film selection for amorphous carbon and

  8. Numerical simulation of the dynamics of phase transitions in CdTe induced by irradiation with nanosecond pulses of an excimer laser

    SciTech Connect

    Zhvavyi, S. P. Zykov, G. L.

    2006-06-15

    Simulation of the effect of KrF nanosecond pulse excimer laser radiation ({lambda} = 248 nm, {tau} = 20 ns) on phase transitions in cadmium telluride was performed taking into account the diffusion of the melt components and their evaporation from the surface. It is shown that the surface region of the melt is enriched with tellurium due to the evaporation and diffusion of the cadmium telluride components. The obtained value 0.05 J/cm{sup 2} of the threshold energy density for melting is in reasonable agreement with the experimental data.

  9. Pulsed laser deposition of bioactive glass films in ammonia and disilane atmospheres

    NASA Astrophysics Data System (ADS)

    Borrajo, J. P.; González, P.; Liste, S.; Serra, J.; Chiussi, S.; León, B.; Pérez-Amor, M.

    2005-07-01

    The effect of two reactive gases on the properties of bioactive glass thin films produced by pulsed laser deposition (PLD) was studied. The ablation of a bioactive silica-based glass was carried out by an ArF excimer laser ( λ = 193 nm, Φ = 4.2 J cm -2, τ = 25 ns, f = 10 Hz) at various pressures of Si 2H 6/Ar and NH 3/Ar reactive mixtures. The bonding configuration and chemical environment of the resulting coatings were followed by Fourier transform infrared spectroscopy (FT-IR). The composition and bond arrangement of bioactive glass films were tuned by varying the chamber atmosphere. The results show how to adjust film characteristics for osteointegration of implants.

  10. Analysis and differentiation of mineral dust by single particle laser mass spectrometry

    SciTech Connect

    Gallavardin, S. J.; Lohmann, U.; Cziczo, Daniel J.

    2008-05-09

    Abstract This study evaluates the potential of single particle laser desorption/ionization mass spectrometry for the analysis of atmospherically relevant mineral dusts. Samples of hematite, goethite, calcium carbonate, calcium sulfate, silica, quartz, montmorrillonite, kaolinite, illite, hectorite, wollastonite and nephelinsyenit were investigated in positive and negative ion mode with a monopolar time-of-flight mass spectrometer where the desorption/ionization step was performed with a 193 nm excimer laser (~109 W/cm2). Particle size ranged from 500 nm to 3 μm. Positive mass spectra mainly provide elemental composition whereas negative ion spectra provide information on element speciation and of a structural nature. The iron oxide, calcium-rich and aluminosilicate nature of particles is established in positive ion mode. The differentiation of calcium materials strongly relies on the calcium counter-ions in negative mass spectra. Aluminosilicates can be differentiated in both positive and negative ion mode using the relative abundance of various aluminum and silicon ions.

  11. Pulsed lasers in dentistry: sense or nonsense?

    NASA Astrophysics Data System (ADS)

    Koort, Hans J.; Frentzen, Matthias

    1991-05-01

    The great interest in the field of laser applications in dentistry provokes the question, if all these new techniques may really fulfill advantages, which are expected after initial in-vitro studies. Whereas laser surgery of soft oral tissues has been developed to a standard method, laser treatment of dental hard tissues and the bone are attended with many unsolved problems. Different laser types, especially pulsed lasers in a wide spectrum of wavelengths have been proofed for dental use. Today neither the excimer lasers, emitting in the far uv-range from 193 to 351 nm, nor the mid-infrared lasers like Nd:YAG (1,064 μm), Ho:YAG (2,1 μm) and Er:YAG (2,96 μm) or the C02-laser (10,6 μm) show mechanism of interaction more carefully and faster than a preparation of teeth with diamond drillers. The laser type with the most precise and considerate treatment effects in the moment is the short pulsed (15 ns) ArF-excimer laser with a wavelength of 193 nm. However this laser type has not yet the effectivity of mechanical instruments and it needs a mirror system to deliver the radiation. Histological results point out, that this laser shows no significant pathological alterations in the adjacent tissues. Another interesting excimer laser, filled with XeCI and emitting at a wavelength of 308 nm has the advantage to be good to deliver through quartz fibers. A little more thermal influence is to be seen according to the longer wavelength. Yet the energy density, necessary to cut dental hard tissues will not be reached with the laser systems available now. Both the pulsed Er:YAG- (2,94 μm, pulse duration 250 s) and the Ho:YAG -laser (2,1 μm, pulse duration 250 μs) have an effective coupling of the laser energy to hydrogeneous tissues, but they do not work sufficient on healthy enamel and dentine. The influence to adjacent healthy tissue is not tolerable, especially in regard of the thermal damage dentine and pulp tissues. Moreover, like the 193 nm ArF-excimer laser

  12. A thick CESL stressed ultra-small (Lg=40-nm) SiGe-channel MOSFET fabricated with 193-nm scanner lithography and TEOS hard mask etching

    NASA Astrophysics Data System (ADS)

    Liao, Wen-Shiang; Chen, Tung-Hung; Lin, Hsin-Hung; Chang, Wen-Tung; Shih, Tommy; Tsen, Huan-Chiu; Chung, Lee

    2007-03-01

    A 100Å-thick SiGe (22.5%) channel MOSFET with gate length down to 40nm has been successfully integrated with 14Å nitrided gate oxide as well as a 1200Å high-compressive PECVD ILD-SiNx stressing layer as the contact etching stop layer (CESL) that enhances the PMOS electron mobility with +33% current gain. To achieve a poly-Si gate length target of 400Å (40nm), a 193nm scanner lithography and an aggressive oxide hard mask etching techniques were used. First, a 500Å-thick TEOS hard mask layer was deposited upon the 1500Å-thick poly-Si gate electrode. Second, both 1050Å-thick bottom anti-reflective coating (BARC) and 2650Å-thick photoresist (P/R) were coated and a 193nm scanner lithography tool was used for the gate layout patterning with nominal logic 90nm exposure energy. Then, a deep sub-micron plasma etcher was used for an aggressive P/R and BARC trimming down processing and the TEOS hard mask was subsequently plasma etched in another etching chamber without breaking the plasma etcher's vacuum. Continuously, the P/R and BARC were removed with a plasma ashing and RCA cleaning. Moreover, the patterned Si-fin capping oxide can be further trimmed down with a diluted HF (aq) solution (DHF) while rendering the RCA cleaning process and the remained TEOS hard mask is still thick enough for the subsequent poly-Si gate main etching. Finally, an ultra narrow poly-Si gate length of 40nm with promising PMOS drive current enhancement can be formed through a second poly-Si etching, which is above the underneath SiGe (22.5%) conduction channel as well as its upper 14Å-thick nitrided gate oxide.

  13. Some optical and electron microscope comparative studies of excimer laser-assisted and nonassisted molecular-beam epitaxically grown thin GaAs films on Si

    NASA Technical Reports Server (NTRS)

    Lao, Pudong; Tang, Wade C.; Rajkumar, K. C.; Guha, S.; Madhukar, A.; Liu, J. K.; Grunthaner, F. J.

    1990-01-01

    The quality of GaAs thin films grown via MBE under pulsed excimer laser irradiation on Si substrates is examined in both laser-irradiated and nonirradiated areas using Raman scattering, Rayleigh scattering, and by photoluminescence (PL), as a function of temperature, and by TEM. The temperature dependence of the PL and Raman peak positions indicates the presence of compressive stress in the thin GaAs films in both laser-irradiated and nonirradiated areas. This indicates incomplete homogeneous strain relaxation by dislocations at the growth temperature. The residual compressive strain at the growth temperature is large enough such that even with the introduction of tensile strain arising from the difference in thermal expansion coefficients of GaAs and Si, a compressive strain is still present at room temperature for these thin GaAs/Si films.

  14. Novel 1.2kW UV laser system for micro fabrication and annealing

    NASA Astrophysics Data System (ADS)

    Herbst, Ludolf; Paetzel, Rainer; Schmidt, Kai

    2011-03-01

    The growing demand for laser micro fabrication drives further requirements on higher production speed per part and lower manufacturing costs. A newly developed 1.2 kW 308 nm excimer laser addresses both micro-manufacturing and high production throughput. Solid state UV laser sources usually cannot emit UV laser radiation directly. The inherently required frequency conversion limits the total output power to several 10 Watts below 350 nm. Furthermore these UV-conversion- modules limit the long term reliability of high power UV solid state lasers significantly because of the wear of the conversion crystals. Excimer lasers, however, overcome these issues by direct emission at 308, 248, or 193 nm. By now up to 540 Watts at 308 nm are established in production. With the new laser we have more than doubled the available output power to 1.2 kW. The combination of short wavelength and highest available UV laser power makes it ideal for processing of small features or to modify thin surfaces. Furthermore, pulsed UV laser radiation is very suitable for removing delicate electronic devices from manufacturing substrates. High-power UV laser systems are capable of processing large areas with resolution down to several microns in one single laser ablation step without using multiple lithography and wet chemical processes. For instance, laser Lift-Off and large area annealing have proven to be very efficient manufacturing techniques for volume production. In this paper, a novel 1.2 kW excimer laser will be presented and discussed.

  15. Excimer laser deinsulation of Parylene-C on iridium for use in an activated iridium oxide film-coated Utah electrode array

    PubMed Central

    Yoo, Je-Min; Negi, Sandeep; Tathireddy, Prashant; Solzbacher, Florian; Song, Jong-In; Rieth, Loren W.

    2013-01-01

    Implantable microelectrodes provide a measure to electrically stimulate neurons in the brain and spinal cord and record their electrophysiological activity. A material with a high charge capacity such as activated or sputter-deposited iridium oxide film (AIROF or SIROF) is used as an interface. The Utah electrode array (UEA) uses SIROF for its interface material with neural tissue and oxygen plasma etching (OPE) with an aluminium foil mask to expose the active area, where the interface between the electrode and neural tissue is formed. However, deinsulation of Parylene-C using OPE has limitations, including the lack of uniformity in the exposed area and reproducibility. While the deinsulation of Parylene-C using an excimer laser is proven to be an alternative for overcoming the limitations, the iridium oxide (IrOx) suffers from fracture when high laser fluence (>1000 mJ/cm2) is used. Iridium (Ir), which has a much higher fracture resistance than IrOx, can be deposited before excimer laser deinsulation and then the exposed Ir film area can be activated by electrochemical treatment to acquire the AIROF. Characterisation of the laser-ablated Ir film and AIROF by surface analysis (X-ray photoelectron spectroscopy, scanning electron microscope, and atomic force microscope) and electrochemical analysis (electrochemical impedance spectroscopy, and cyclic voltammetry) shows that the damage on the Ir film induced by laser irradiation is significantly less than that on SIROF, and the AIROF has a high charge storage capacity. The results show the potential of the laser deinsulation technique for use in high performance AIROF-coated UEA fabrication. PMID:23458659

  16. Synthesis of nano-scale silicon wires by excimer laser ablation at high temperature

    NASA Astrophysics Data System (ADS)

    Yu, D. P.; Lee, C. S.; Bello, I.; Sun, X. S.; Tang, Y. H.; Zhou, G. W.; Bai, Z. G.; Zhang, Z.; Feng, S. Q.

    1998-02-01

    We report below synthesis of nano-scale silicon wires by using laser ablation at high temperature. By this approach we have been able to produce silicon nano wires (SiNW's) with a very high yield, a uniform diameter distribution and a high purity. The structure, morphology and chemical composition of the SiNWs have been characterized by using high resolution X-ray diffraction (XRD), high resolution electron microscopy (HREM), as well as spectroscopy of energy dispersive X-ray fluorescence (EDAX). Our results should be of great interest to researchers working on mesoscopic physical phenomena, such as quantum confinement effects related to materials of reduced dimensions and should lead to the development of new applications for nano-scale devices, together with providing a powerful method for synthesis of similar one-dimensional conducting and semi-conducting wire.

  17. Excimer laser produced plasmas in copper wire targets and water droplets

    NASA Technical Reports Server (NTRS)

    Song, Kyo-Dong; Alexander, D. R.

    1994-01-01

    Elastically scattered incident radiation (ESIR) from a copper wire target illuminated by a KrF laser pulse at lambda = 248 nm shows a dinstinct two-peak structure which is dependent on the incident energy. The time required to reach the critical electron density (n(sub c) approximately = 1.8 x 10(exp 22) electrons/cu cm) is estimated at 11 ns based on experimental results. Detailed ESIR characteristics for water have been reported previously by the authors. Initiation of the broadband emission for copper plasma begins at 6.5 +/- 1.45 ns after the arrival of the laser pulse. However, the broadband emission occurs at 11 +/- 0.36 ns for water. For a diatomic substance such as water, the electron energy rapidly dissipates due to dissociation of water molecules, which is absent in a monatomic species such as copper. When the energy falls below the excitation energy of the lowest electron state for water, it becomes a subexcitation electron. Lifetimes of the subexcited electrons to the vibrational states are estimated to be of the order of 10(exp -9) s. In addition, the ionization potential of copper (440-530 nm) is approximately 6 eV, which is about two times smaller than the 13 eV ionization potential reported for water. The higher ionization potential contributes to the longer observed delay time for plasma formation in water. After initiation, a longer time is required for copper plasma to reach its peak value. This time delay in reaching the maximum intensity is attributed to the energy loss during the interband transition in copper.

  18. Fast iterative technique for the calculation of frequency dependent gain in excimer laser amplifiers

    SciTech Connect

    Sze, R.C.

    1991-01-01

    The motivation in initiating these calculations is to allow us to observe the frequency evolution of a laser pulse as it propagates through an amplifier and then through a sequence of amplifiers. The question we seek to answer is what pulse shape do we need to produce out of a front-end oscillator so that after it propagates through the whole Aurora KrF fusion amplifier chain will result in high energy, broad-band laser fields of a given bandwidth that can be focussed onto a fusion target. The propagation of a single frequency source through an amplifier with distributed loss was considered by Rigrod and was significantly expanded by Hunter and Hunter. The latter included amplified spontaneous emission (ASE) considerations both in the direction of and transverse to the coherent field. Analytic solutions that include forward and backward prapagating fields and ASE were derived which were transcendental in nature but allowed for fairly easy computer calculations. Transverse ASE were calculated using the unsaturated gain resulting from longitudinal fields and were used to compare this with the longitudinal field equations. Large computer programs are now available at LANL which include the influence of transverse ASE on the longitudinal fields. However, none of these considerations have worried about the changes in the frequency characteristics of the propagating field or of how each of the frequency field components contributes to the saturation of the gain. The inclusion of full frequency characteristics to the analytic solutions of Hunter and Hunter proved impossible at least for this author and a new calculational technique was developed and is the subject of this talk.

  19. Agreement between clinical history method, Orbscan IIz, and Pentacam in estimating corneal power after myopic excimer laser surgery.

    PubMed

    Lekhanont, Kaevalin; Nonpassopon, Manachai; Wannarosapark, Khemruetai; Chuckpaiwong, Varintorn

    2015-01-01

    The purpose of this study was to investigate the agreement between the clinical history method (CHM), Orbscan IIz, and Pentacam in estimating corneal power after myopic excimer laser surgery. Fifty five patients who had myopic LASIK/PRK were recruited into this study. One eye of each patient was randomly selected by a computer-generated process. At 6 months after surgery, postoperative corneal power was calculated from the CHM, Orbscan IIz total optical power at the 3.0 and 4.0 mm zones, and Pentacam equivalent keratometric readings (EKRs) at 3.0, 4.0, and 4.5 mm. Statistical analyses included multilevel models, Pearson's correlation test, and Bland-Altman plots. The Orbscan IIz 3.0-mm and 4.0 mm total optical power, and Pentacam 3.0-mm, 4.0-mm, and 4.5-mm EKR values had strong linear positive correlations with the CHM values (r = 0.90-0.94, P = <0.001, for all comparisons, Pearson's correlation). However, only Pentacam 3.0-mm EKR was not statistically different from CHM (P = 0.17, multilevel models). The mean 3.0- and 4.0-mm total optical powers of the Orbscan IIz were significantly flatter than the values derived from CHM, while the average EKRs of the Pentacam at 4.0 and 4.5 mm were significantly steeper. The mean Orbscan IIz 3.0-mm total optical power was the lowest keratometric reading compared to the other 5 values. Large 95% LoA was observed between each of these values, particularly EKRs, and those obtained with the CHM. The width of the 95% LoA was narrowest for Orbscan IIz 3.0-mm total optical power. In conclusion, the keratometric values extracted from these 3 methods were disparate, either because of a statistically significant difference in the mean values or moderate agreement between them. Therefore, they are not considered equivalent and cannot be used interchangeably.

  20. Laser-based techniques for living cell pattern formation

    NASA Astrophysics Data System (ADS)

    Hopp, Béla; Smausz, Tomi; Papdi, Bence; Bor, Zsolt; Szabó, András; Kolozsvári, Lajos; Fotakis, Costas; Nógrádi, Antal

    2008-10-01

    In the production of biosensors or artificial tissues a basic step is the immobilization of living cells along the required pattern. In this paper the ability of some promising laser-based methods to influence the interaction between cells and various surfaces is presented. In the first set of experiments laser-induced patterned photochemical modification of polymer foils was used to achieve guided adherence and growth of cells to the modified areas: (a) Polytetrafluoroethylene was irradiated with ArF excimer laser ( λ=193 nm, FWHM=20 ns, F=9 mJ/cm2) in presence of triethylene tetramine liquid photoreagent; (b) a thin carbon layer was produced by KrF excimer laser ( λ=248 nm, FWHM=30 ns, F=35 mJ/cm2) irradiation on polyimide surface to influence the cell adherence. It was found that the incorporation of amine groups in the PTFE polymer chain instead of the fluorine atoms can both promote and prevent the adherence of living cells (depending on the applied cell types) on the treated surfaces, while the laser generated carbon layer on polyimide surface did not effectively improve adherence. Our attempts to influence the cell adherence by morphological modifications created by ArF laser irradiation onto polyethylene terephtalate surface showed a surface roughness dependence. This method was effective only when the Ra roughness parameter of the developed structure did not exceed the 0.1 micrometer value. Pulsed laser deposition with femtosecond KrF excimer lasers ( F=2.2 J/cm2) was effectively used to deposit structured thin films from biomaterials (endothelial cell growth supplement and collagen embedded in starch matrix) to promote the adherence and growth of cells. These results present evidence that some surface can be successfully altered to induce guided cell growth.

  1. Utilization of the excimer laser and a moving piezoelectric mirror to accomplish the customized contact lens ablation to correct high-order aberrations

    NASA Astrophysics Data System (ADS)

    de Matos, Luciana; Yasuoka, Fátima M. M.; Schor, Paulo; de Oliveira, Enos; Bagnato, Vanderlei S.; Carvalho, Luis A. V.

    2014-02-01

    The use of the Hartman-Shack sensor in ophthalmology allowed the identification of higher-order aberrations, which make possible the search for methods to correct them. Customized refractive surgery is one of the most successful methods, although there are patients which cannot be submitted to this surgery due to a variety of abnormal limiting factors such as cornea thickness and quantity of higher-order aberrations. Being this an irreversible process, the alternative is to develop a non-surgical method. This work proposes a method to obtain personalized contact lenses to correct high-order aberrations via the development of a customized ablation system using an excimer laser and a moving piezoelectric mirror. The process to produce such lenses consists of four steps. 1) The map of total aberrations of the patient's eye is measured by using an aberrometer with a Hartman-Shack sensor. 2) The measured aberration map is used to determine the maps for correction and related distribution of laser pulses for the ablation process with the excimer laser. 3) The lens production is performed following the same principle as customized refractive surgery. 4) The quality control of the lens is evaluated by two tests. 4.1) The lens is measured by a non-commercial lensometer, which is assembled specially for this measurement, as the ones commercially available are not capable of measuring asymmetric and irregular surfaces. 4.2) The evaluation of the lens-eye system is made using the aberrometer of the first step in order to verify the residual aberrations. Here, the lenses are ablated with a customized refractive surgery system.

  2. A method of atmospheric density measurements during space shuttle entry using ultraviolet-laser Rayleigh scattering

    NASA Technical Reports Server (NTRS)

    Mckenzie, Robert L.

    1988-01-01

    An analytical study and its experimental verification are described which show the performance capabilities and the hardware requirements of a method for measuring atmospheric density along the Space Shuttle flightpath during entry. Using onboard instrumentation, the technique relies on Rayleigh scattering of light from a pulsed ArF excimer laser operating at a wavelength of 193 nm. The method is shown to be capable of providing density measurements with an uncertainty of less than 1 percent and with a spatial resolution along the flightpath of 1 km, over an altitude range from 50 to 90 km. Experimental verification of the signal linearity and the expected signal-to-noise ratios is demonstrated in a simulation facility at conditions that duplicate the signal levels of the flight environment.

  3. Fabrication of 250-nm-hole arrays in glass and fused silica by UV laser ablation

    NASA Astrophysics Data System (ADS)

    Karstens, R.; Gödecke, A.; Prießner, A.; Ihlemann, J.

    2016-09-01

    Parallel nanohole drilling in glass using an ArF excimer laser (193 nm) is demonstrated. For the first time, hole arrays with 500 nm pitch and individual holes with 250 nm diameter and more than 100 nm depth are fabricated by phase mask imaging using a Schwarzschild objective. Holes in soda lime glass are drilled by direct ablation; fused silica is processed by depositing a SiOx-film on SiO2, patterning the SiOx by ablation, and finally oxidizing the remaining SiOx to SiO2. Thermally induced ordered dewetting of noble metal films deposited on such templates may be used for the fabrication of plasmonic devices.

  4. Microhollow Cathode Discharge Excimer Sources

    NASA Astrophysics Data System (ADS)

    Moselhy, M.; El-Habachi, A.; Shi, W.; Stark, R. H.; Schoenbach, K. H.

    2000-10-01

    Microhollow cathode discharges (MHCDs) are direct current, high-pressure, non-equilibrium gas discharges. When operated in Ar, Xe, ArF and XeCl, these discharges were found to be intense sources of excimer radiation at 130, 172, 193, 308 nm, respectively. Internal conversion efficiencies (from input electrical power to output optical power) of 1% (Ar), 8% (Xe), 2% (ArF) and 3% (XeCl) were achieved [1,2,3]. The spatial distribution of the xenon excimer source was studied by means of an ICCD-MAX intensified CCD camera. The measurements showed that the source expands with current and becomes reduced in size with pressure. The maximum radiant emittance (radiant power per source area) was measured as 2 W/cm^2 at atmospheric pressure and a discharge current of 3 mA. The peak irradiance (radiant power per target area) for a single discharge was calculated to be 3 mW/cm^2 at a distance of 1 cm from the source. Operating multiple discharges in parallel allows us to generate flat panel excimer lamps with an irradiance approaching the value of the radiant emittance (2 W/cm^2). In order to increase the irradiance further MHCDs could be operated in series. First experiments with two discharges in series have shown that the radiant emittance increases linearly with the number of discharges [3]. Besides using systems of MHCDs as lamps, efforts to utilize “stacked discharges” as excimer laser medium are underway. This work is supported by NSF and DARPA. 1. Ahmed El-Habachi and Karl H. Schoenbach, Appl. Phys. Lett. 73, 885 (1998). 2. Wenhui Shi, Ahmed El-Habachi, and Karl H. Schoenbach, Bull. Am. Phys. Soc. 44, 25 (1999). 3. Ahmed El-Habachi et. al., “Series Operation of Direct Current Xenon Chloride Excimer Sources”, to appear in J. Appl. Phys.

  5. High-reflectivity Bragg gratings fabricated by 248-nm excimer laser holographic ablation in thin Ta2O5 films overlaid on glass waveguides

    NASA Astrophysics Data System (ADS)

    Pissadakis, S.; Zervas, M. N.; Reekie, L.; Wilkinson, J. S.

    We demonstrate strong Bragg grating reflection in Ta2O5 (tantalum pentoxide) thin films overlaid on potassium ion-exchanged channel waveguides in BK-7 glass, inscribed using 248-nm excimer laser holographic ablation. The experimental data presented are divided into two sections: the first section refers to the study of the grating ablation process of thin Ta2O5 films with respect to the exposure conditions, while the second focuses on the implementation of these relief gratings in functional waveguide devices. Firstly, experimental data on grating morphology versus exposure conditions, accomplished with scanning electron microscopy microscans, are presented. In the second section diffraction spectra for waveguide gratings are presented and analysed. Spectral notches in transmission of depth -18 dB for the TM polarisation were obtained from 16-mm-long gratings patterned in waveguides overlaid with a 105-nm-thick Ta2O5 film, using 50 pulses of 60-mJ/cm2 energy density.

  6. Improving Anti-Reflection MgF2 Thin Films by Laser Shock Peening and Investigation of its Laser Damage Threshold

    NASA Astrophysics Data System (ADS)

    Maleki, M. H.; Dizaji, H. R.; Ghorbani, A.

    2015-03-01

    This study is divided into two parts. In the first part, the influence of laser shock peening (LSP) on the surface properties of MgF2 thin films is studied. The MgF2 monolayer films with thickness of 100 nm were prepared on a BK7 glass substrate by physical vapor deposition (PVD). An ArF excimer laser with 110 mJ energy, 53 J/cm2 power density, 20 ns pulse duration and wavelength of 193 nm in TEM00 mode was used for the LSP experiments at different (20, 50, 90, and 120) number of the pulses. Transmittance of MgF2 thin films, before and after the LSP treatment, was evaluated by a spectrophotometer and the surface morphology of samples was examined by scanning electron microscope. In the second part, the effect of the LSP treatment on the laser induced damage threshold of a sample irradiated by 90 pulses of the ArF excimer laser was examined.

  7. Transformation of medical grade silicone rubber under Nd:YAG and excimer laser irradiation: First step towards a new miniaturized nerve electrode fabrication process

    NASA Astrophysics Data System (ADS)

    Dupas-Bruzek, C.; Robbe, O.; Addad, A.; Turrell, S.; Derozier, D.

    2009-08-01

    Medical grade silicone rubber, poly-dimethylsiloxane (PDMS) is a widely used biomaterial. Like for many polymers, its surface can be modified in order to change one or several of its properties which further allow this surface to be functionalized. Laser-induced surface modification of PDMS under ambient conditions is an easy and powerful method for the surface modification of PDMS without altering its bulk properties. In particular, we profit from both UV laser inducing surface modification and of UV laser micromachining to develop a first part of a new process aiming at increasing the number of contacts and tracks within the same electrode surface to improve the nerve selectivity of implantable self sizing spiral cuff electrodes. The second and last part of the process is to further immerse the engraved electrode in an autocatalytic Pt bath leading in a selective Pt metallization of the laser irradiated tracks and contacts and thus to a functionalized PDMS surface. In the present work, we describe the different physical and chemical transformations of a medical grade PDMS as a function of the UV laser and of the irradiation conditions used. We show that the ablation depths, chemical composition, structure and morphology vary with (i) the laser wavelength (using an excimer laser at 248 nm and a frequency-quadrupled Nd:YAG laser at 266 nm), (ii) the conditions of irradiation and (iii) the pulse duration. These different modified properties are expected to have a strong influence on the nucleation and growth rates of platinum which govern the adhesion and the thickness of the Pt layer on the electrodes and thus the DC resistance of tracks.

  8. Novel spin-coating technology for 248-nm/193-nm DUV lithography and low-k spin on dielectrics of 200-mm/300-mm wafers

    NASA Astrophysics Data System (ADS)

    Gurer, Emir; Zhong, Tom X.; Lewellen, John W.; Lee, Ed C.

    2000-06-01

    An alternative coating technology was developed for 248 nm/193 nm DUV lithography and low-k spin on dielectric (SOD) materials used in the interconnect area. This is a 300 mm enabling technology which overcomes turbulent flow limitations above 2000 rpm and it prevents 40 - 60% reduction on the process latitudes of evaporation-related variables, common to 300 mm conventional coaters. Our new coating technology is fully enclosed and it is capable of controlling the solvent concentration above the resist film dynamically in the gas phase. This feature allows a direct control of the evaporation mass transfer which determines the quality of the final resist profiles. Following process advantages are reported in this paper: (1) Demonstrated that final resist film thickness can be routinely varied by 4000 angstrom at a fixed drying spin speed, thus minimizing the impact of turbulence wall for 300 mm wafers. (2) Evaporation control allows wider range of useful thickness from a fixed viscosity material. (3) Latitudes of evaporation-related process variables is about 40% larger than that of a conventional coater. (4) Highly uniform films of 0.05% were obtained for 8800 angstrom target thickness with tighter wafer-wafer profile control because of the enclosed nature of the technology. (5) Dynamic evaporation control facilitates resist consumption minimization. Preliminary results indicate feasibility of a 0.4 cc process of record (POR) for a 200 mm substrate. (6) Lower COO due to demonstrated relative insensitivity to environmental variables, robust resist consumption minimization and superior process capabilities. (7) Improved planarization and gap fill properties for the new generation photoresist/low-k SOD materials deposited using this enclosed coating technology.

  9. Evaluation of some properties of dental ceramic as affected by different types of lasers and gamma radiations

    NASA Astrophysics Data System (ADS)

    Badr, Yehia; El'Khoudary, M. A.; Annan, Iman

    2004-05-01

    Dental ceramic:Duceram porcelain(Ducera,Dental-Gesellschaft mbH, FrankFurt, Germany) low fusing dental porcelain was subjected in this investigation to different types of laser radiations: a) Nd:YAG laser pulses o 8 ns, 200mJ/pulse for 5&10 minutes b) Tsonamy 70 fs laser pulses for 1 & 5 minutes c)193 nm Excimer laser pulses 6 &13 mJ/pulse for 5 & 10 minutes and finally d) 0.1, 0.3, 0.5 and 1 MRad of Gamma radiations using 10 samples for each type of radiation. Knoop hardness values of test samples were measured using a knoop hardness tester(KHN-Ernst Leitz Wetzlar Germany)showing increased hardness values for all test irradiated samples as compared with the control. Highest hardness value were recorded for Excimer laser 13 mJ/pulse-10 minutes(670kg/mm2 as compared with 410kg/mm2 for the control. On the other hand, the highest value for the transverse strength was obtained for Excimer laser 3.8mJ/pulse-10 minutes). To account for the structural changes occurring due to laser irradiations and leading to the detected here improvement in the mechanical properties we used several techniques which are known to be sensitive to any structural changes such as: x-ray diffraction, SE-Microscopy, FTIR & Raman spectroscopy. Our observations showed series of variations indicating good accordance in the introduced here results. A reasonable interpretation is given here for the effects and variations observed in our measurements and spectra as a result of both Gamma and Laser irradiation. Finally, the given here results indicated that Laser irradiation can be used as a powerful tool for improving the hardness and transverse strength of dental ceramic.

  10. Laser-assisted dry etching of III-nitride wide band gap semiconductor materials

    NASA Astrophysics Data System (ADS)

    Leonard, Robert Tyler

    Laser assisted dry etching is a materials processing technique capable of producing highly anisotropic etch features with precise etch depth control and little contamination. The technique is simple: laser radiation is combined with a gaseous chemical etchant to remove material in pattern selected regions. The advantages of laser etching include the removal of etch products with photonic energy instead of ion bombardment, potential of projected patterning to combine growth and etching in situ without exposure to air, production of distinct sidewall etch features for device structures, and precise control of etching with a highly directional pulsed laser energy source. The use of pulsed laser radiation allows for pulsed etch depth control, ultimately resulting in atomic layer control. Laser assisted dry HCl etching of GaN, AlGaN and InGaN optical device materials was first demonstrated in our laboratory at North Carolina State University in a modified UHV vacuum chamber and ArF (193nm) excimer laser. Effective masking materials of Al and SiOsb2 were determined to be resistant to laser heating and HCl environment for laser etching. The process variables of laser intensity and HCl pressure were found to be dominant with the necessary condition that no etching occurs without both the excimer laser and HCl present. Successful laser etching of GaN, AlGaN, and InGaN was demonstrated indicating that deep etch features with distinct sidewall features are possible with this technique. Laser etching of a III-Nitride quantum well double heterostructure resulted in no degradation of the photoluminescence response. Also, reduction of etch damage with laser etching may be possible in comparison to ion etching. Finally, a proposed model for the etching mechanism includes the photothermal release of nitrogen from the GaN surface resulting in a Ga-rich surface which is removed by the HCl etchant.

  11. Characterization of excimer laser annealed polycrystalline Si1-xGex alloy thin films by x-ray diffraction and spectroscopic ellipsometry

    NASA Astrophysics Data System (ADS)

    Yu, Guolin; Krishna, Kalaga Murali; Shao, Chunlin; Umeno, Masayoshi; Soga, Tetsuo; Watanabe, Junji; Jimbo, Takashi

    1998-01-01

    Thin films of Si1-xGex alloys of different compositions x have been deposited, on single-crystal Si (100) surface and glass substrates, by simple ion beam sputtering, at room temperature. Crystallization of these films has been done using excimer laser annealing. Structural and optical properties of as-deposited and annealed Si1-xGex alloy films are characterized by x-ray diffraction (XRD), uv-visible spectrophotometry, spectroscopic ellipsometry (SE), and Auger electron spectroscopy (AES). The as-deposited films, both on Si and glass, have been found to be amorphous by XRD. Polycrystalline nature of laser-annealed samples has been evidenced by both x-ray and SE measurements. The results of x-ray, uv-visible, AES, and SE are compared and discussed. The poly-Si1-xGex films were oriented predominantly to (111) and the grain sizes were determined from half-width of x-ray peaks. The compositions x of Si1-xGex films have been evaluated from the SE dielectric function ɛ(ω) data, using the second-derivative technique, and are found to be 0.23 and 0.36 for two different compositions. A detailed analysis of ɛ(ω) with the effective-medium theory has demonstrated the volume fraction of crystalline Si1-xGex increases with the increasing energy of laser irradiation.

  12. The thermodynamic response of soft biological tissues to pulsed ultraviolet laser irradiation.

    PubMed Central

    Venugopalan, V; Nishioka, N S; Mikić, B B

    1995-01-01

    The physical mechanisms that enable short pulses of high-intensity ultraviolet laser radiation to remove tissue, in a process known as laser ablation, remain obscure. The thermodynamic response of biological tissue to pulsed laser irradiation was investigated by measuring and subsequently analyzing the stress transients generated by pulsed argon fluorine (ArF, lambda = 193 nm) and krypton fluorine (KrF, lambda = 248 nm) excimer laser irradiation of porcine dermis using thin-film piezoelectric transducers. For radiant exposures that do not cause material removal, the stress transients are consistent with rapid thermal expansion of the tissue. At the threshold radiant exposure for ablation, the peak stress amplitude generated by 248 nm irradiation is more than an order of magnitude larger than that produced by 193 nm irradiation. For radiant exposures where material removal is achieved, the temporal structure of the stress transient indicates that the onset of material removal occurs during irradiation. In this regime, the variation of the peak compressive stress with radiant exposure is consistent with laser-induced rapid surface vaporization. For 193 nm irradiation, ionization of the ablated material occurs at even greater radiant exposures and is accompanied by a change in the variation of peak stress with radiant exposure consistent with a plasma-mediated ablation process. These results suggest that absorption of ultraviolet laser radiation by the extracellular matrix of tissue leads to decomposition of tissue on the time scale of the laser pulse. The difference in volumetric energy density at ablation threshold between the two wavelengths indicates that the larger stresses generated by 248 nm irradiation may facilitate the onset of material removal. However, once material removal is achieved, the stress measurements demonstrate that energy not directly responsible for target decomposition contributes to increasing the specific energy of the plume (and plasma

  13. Microhollow cathode discharge excimer light sources

    SciTech Connect

    El-Habachi, A.; Moselhy, M.; El-Dakroury, A.; Schoenbach, K.H.

    1999-07-01

    Microhollow Cathode discharges are non-equilibrium, high pressure, direct current discharges. By reducing the diameter of the cathode opening in a hollow cathode discharge geometry to values in the sub millimeter range the authors were able to operate discharges in argon and xenon in a direct current mode up to atmospheric pressure. They have shown that these discharges are intense source of xenon and argon excimer radiation peaking at wavelengths of 172 nm and 130 nm, respectively. Spatially resolved measurements of the excimer source in xenon have been performed. The source was found to be cylindrical along the axis of the electrodes. Its radius increases with current and decreases with pressure. Stacking the discharges, operating them in series, holds the promise for the generation of a laser medium with sufficient length to provide the required threshold gain for a dc excimer laser. Experimental studies of the gain of the plasma column in microhollow cathode discharges are underway. Excimer efficiencies, defined as the ratio of optical to electrical power, of 6% to 9% have been achieved. Further increase of the efficiency seems to be possible; according to the modeling results, efficiencies of 30% to 40% may be obtainable. The effect of various parameters such as electrode geometry, gas flow and pulsed versus cw operation on the excimer efficiency is being studied with the goal to optimize the discharge.

  14. Effect of excimer laser annealing on a-InGaZnO thin-film transistors passivated by solution-processed hybrid passivation layers

    NASA Astrophysics Data System (ADS)

    Bermundo, Juan Paolo; Ishikawa, Yasuaki; Fujii, Mami N.; Nonaka, Toshiaki; Ishihara, Ryoichi; Ikenoue, Hiroshi; Uraoka, Yukiharu

    2016-01-01

    We demonstrate the use of excimer laser annealing (ELA) as a low temperature annealing alternative to anneal amorphous InGaZnO (a-IGZO) thin-film transistors (TFTs) passivated by a solution-processed hybrid passivation layer. Usually, a-IGZO is annealed using thermal annealing at high temperatures of up to 400 °C. As an alternative to high temperature thermal annealing, two types of ELA, XeCl (308 nm) and KrF (248 nm) ELA, are introduced. Both ELA types enhanced the electrical characteristics of a-IGZO TFTs leading to a mobility improvement of ~13 cm2 V-1 s-1 and small threshold voltage which varied from ~0-3 V. Furthermore, two-dimensional heat simulation using COMSOL Multiphysics was used to identify possible degradation sites, analyse laser heat localization, and confirm that the substrate temperature is below 50 °C. The two-dimensional heat simulation showed that the substrate temperature remained at very low temperatures, less than 30 °C, during ELA. This implies that any flexible material can be used as the substrate. These results demonstrate the large potential of ELA as a low temperature annealing alternative for already-passivated a-IGZO TFTs.

  15. Raman Shifting a Tunable ArF Excimer Laser to Wavelengths of 190 to 240 nm With a Forced Convection Raman Cell

    NASA Technical Reports Server (NTRS)

    Balla, R. Jeffrey; Herring, G. C.

    2000-01-01

    Tunable radiation, at ultraviolet wavelengths, is produced by Raman shifting a modified 285-mJ ArF excimer laser. Multiple Stokes outputs are observed in H2, CH4, D2, N2, SF6, and CF4 (20, 22, 53, 21, 2.1, and 0.35 percent, respectively). Numbers in parentheses are the first Stokes energy conversion efficiencies. We can access 70 percent of the frequency range 42000-52000 cm (exp -1) (190-240 nm) with Stokes energies that vary from 0.2 microJoule to 58 mJ inside the Raman cell. By using 110 mJ of pump energy and D 2 , the tunable first Stokes energy varies over the 29-58 mJ range as the wavelength is tuned over the 204-206 nm range. Dependence on input energy, gas pressure, He mixture fraction, and circulation of the gas in the forced convection Raman cell is discussed; Stokes conversion is also discussed for laser repetition rates from 1 to 100 Hz. An empirical equation is given to determine whether forced convection can improve outputs for a given repetition rate.

  16. Surface 3D Micro Free Forms: Multifunctional Microstructured Mesoporous α-Alumina by in Situ Slip Casting Using Excimer Laser Ablated Polycarbonate Molds.

    PubMed

    Rowthu, Sriharitha; Böhlen, Karl; Bowen, Paul; Hoffmann, Patrik

    2015-11-11

    Ceramic surface microstructuring is a rapidly growing field with a variety of applications in tribology, wetting, biology, and so on. However, there are limitations to large-area microstructuring and fabrication of three-dimensional (3D) micro free forms. Here, we present a route to obtain intricate surface structures through in situ slip casting using polydimethylsiloxane (PDMS) negative molds which are replicated from excimer laser ablated polycarbonate (PC) master molds. PC sheets are ablated with a nanosecond KrF (λ = 248 nm) excimer laser mask projection system to obtain micron-scale 3D surface features over a large area of up to 3 m(2). Complex surface structures that include 3D free forms such as 3D topography of Switzerland, shallow structures such as diffractive optical elements (60 nm step) and conical micropillars have been obtained. The samples are defect-free produced with thicknesses of up to 10 mm and 120 mm diameter. The drying process of the slip cast alumina slurry takes place as a one-dimensional process, through surface evaporation and water permeation through the PDMS membrane. This allows homogeneous one-dimensional shrinkage during the drying process, independent of the sample's lateral dimensions. A linear mass diffusion model has been proposed to predict and explain the drying process of these ceramic colloidal suspensions. The calculated drying time is linearly proportional to the height of the slurry and the thickness of the negatively structured PDMS and is validated by the experimental results. An experimentally observed optimum Sylgard PDMS thickness range of ∼400 μm to 1 mm has achieved the best quality microstructured green compacts. Further, the model predicts that the drying time is independent of the microstructured areas and was validated using experimental observations carried out with microstructured areas of 300 mm(2), 1200 mm(2), and 120 cm(2). Therefore, in principle, the structures can be further replicated in areas up

  17. Excimer laser in myocardial infarction: a comparison between STEMI patients with established Q-wave versus patients with non-STEMI (non-Q).

    PubMed

    Topaz, On; Ebersole, Douglas; Dahm, Johannes B; Alderman, Edwin L; Madyoon, Hooman; Vora, Kishor; Baker, John D; Hilton, David; Das, Tony

    2008-01-01

    Patients sustaining acute myocardial infarction (AMI) often require urgent percutaneous revascularization within the first 24 h from onset of the infarction due to continuous ischemia and hemodynamic instability. Upon arrival to the cardiac catheterization, the electrocardiogram of AMI patients may exhibit acute ST-elevation (STEMI) with or without accompanying Q-wave or depression of the ST segment (non-STEMI or non-Q-wave infarction). Data comparing acute outcome of device application in patients presenting for urgent revascularization with established Q-wave myocardial infarction (QWMI) versus those with non-STEMI (NQMI) are sparse. Excimer laser is a revascularization modality applied for debulking of atherosclerotic plaque and vaporization of associated thrombus in the setting of AMI. One hundred fifty-one AMI patients with continuous chest pain and ischemia who enrolled into a multicenter study and underwent urgent revascularization were divided for the purpose of a retrospective analysis into two groups. One group presented with established electrocardiographic Q-wave, whereas the other had ST-depression (NQMI). In comparison with the NQMI group, the QWMI patients had a higher incidence of failed thrombolytic therapy (17% vs 3, p = 0.006), cardiogenic shock (20 vs 6%, p = 0.01), left anterior descending as a culprit infarct-related vessel (46 vs 14%, p < 0.0001), a higher incidence of TIMI 0 flow (48 vs 24%, p = 0.04), a heavier thrombus burden (grade 4 TIMI thrombus, 58 vs 23%; p = 0.0001), and higher CPK (1272 +/- 2180 vs 404 +/- 577, p = 0.001) and troponin levels (62 +/- 95 vs 14 +/- 48, p = 0.0003). Both groups underwent laser angioplasty and stenting for relief of continuous chest pain and ischemia within 24 h of infarction onset. Quantitative coronary arteriography in an independent core laboratory measured similar improvement in baseline minimal luminal diameter and percent diameter stenosis by application of laser energy in both groups. Among the

  18. Propagation of the shock wave generated from excimer laser heating of aluminum targets in comparison with ideal blast wave theory

    NASA Astrophysics Data System (ADS)

    Jeong, S. H.; Greif, R.; Russo, R. E.

    1998-05-01

    Propagation of the shock wave generated during pulsed laser heating of aluminum targets was measured utilizing a probe beam deflection technique. The transit time of the laser-generated shock wave was compared with that predicted from the Sedov-Taylor solution for an ideal spherical blast wave. It was found that the most important parameters for the laser-generated shock wave to be consistent with the theoretically predicted propagation are the ambient pressure and the laser beam spot size. The prediction for laser energy conversion into the laser-induced vapor flow using the Sedov-Taylor solution overestimated the energy coupling efficiency, indicating a difference between a laser-induced gas-dynamic flow and an ideal blast wave.

  19. Nano-crystallization in ZnO-doped In2O3 thin films via excimer laser annealing for thin-film transistors

    NASA Astrophysics Data System (ADS)

    Fujii, Mami N.; Ishikawa, Yasuaki; Ishihara, Ryoichi; van der Cingel, Johan; Mofrad, Mohammad R. T.; Bermundo, Juan Paolo Soria; Kawashima, Emi; Tomai, Shigekazu; Yano, Koki; Uraoka, Yukiharu

    2016-06-01

    In a previous work, we reported the high field effect mobility of ZnO-doped In2O3 (IZO) thin film transistors (TFTs) irradiated by excimer laser annealing (ELA) [M. Fujii et al., Appl. Phys. Lett. 102, 122107 (2013)]. However, a deeper understanding of the effect of ELA on the IZO film characteristics based on crystallinity, carrier concentrations, and optical properties is needed to control localized carrier concentrations for fabricating self-aligned structures in the same oxide film and to adequately explain the physical characteristics. In the case of as-deposited IZO film used as the channel, a high carrier concentration due to a high density of oxygen vacancies was observed; such a film does not show the required TFT characteristics but can act as a conductive film. We achieved a decrease in the carrier concentration of IZO films by crystallization using ELA. This means that ELA can form localized conductive or semi-conductive areas on the IZO film. We confirmed that the reason for the carrier concentration decrease was the decrease of oxygen-deficient regions and film crystallization. The annealed IZO films showed nano-crystalline phase, and the temperature at the substrate was substantially less than the temperature limit for flexible films such as plastic, which is 50°C. This paves the way for the formation of self-aligned structures and separately formed conductive and semi-conductive regions in the same oxide film.

  20. Intraocular microablation of choroidal tissue by a 308 nm AIDA excimer laser for RPE-transplantation in patients with age-related macular degeneration.

    PubMed

    Holz, F G; Bindewald, A; Schutt, F; Specht, H

    2003-04-01

    Age-related macular degeneration (AMD) is the leading cause of legal blindness in the western nations beyond 50 years of age. The most frequent cause for severe visual loss is the growth of neovascular membrances from the choroid into the subretinal space. This usually results in irreversible degeneration of the overlying retina. Surgical removal of the membrane is feasible, however, usually results in functional loss of apposing retinal photoreceptors since retinal pigment epithelial (RPE) cells are removed concurrently due to their tight adherence to the neovascular complex. Therefore, various attempts have been undertaken to fill the resulting RPE cell defect with either heterologous or autologous RPE cell transplants. So far cell survival, function and subsequent visual function has been disappointing. To minimize trauma and resulting dedifferentiation harvesting in the eye and transplantation in whole sheets and without temporary removal from the eyes would be desirable. This may be achieved by isolating grafts consisting of choroid, Bruch's membrance and RPE cells from the peripheral retina and transplantation of this graft under the neurosensory retina after removal of the choroidal neovascularization. However, the choroidal component of such a graft would be expected to interfere with diffusion of metabolites to and from the retina. Therefore, outcome would be expected to be better if the choroidal tissue would be removed before translocation. In preclinical experiments we used a 308 nm UV AIDA excimer laser to microablate choroidal tissue from such a graft in human donor eyes. PMID:12749285

  1. Preliminary results of tracked photorefractive keratectomy (T-PRK) for mild to moderate myopia with the autonomous technologies excimer laser at Cedars-Sinai Medical Center

    NASA Astrophysics Data System (ADS)

    Maguen, Ezra I.; Salz, James J.; Nesburn, Anthony B.

    1997-05-01

    Preliminary results of the correction of myopia up to -7.00 D by tracked photorefractive keratectomy (T-PRK) with a scanning and tracking excimer laser by Autonomous Technologies are discussed. 41 eyes participated (20 males). 28 eyes were evaluated one month postop. At epithelization day mean uncorrected vision was 20/45.3. At one month postop, 92.8 of eyes were 20/40 and 46.4% were 20/20. No eye was worse than 20/50. 75% of eyes were within +/- 0.5 D of emmetropia and 82% were within +/- 1.00 D of emmetropia. Eyes corrected for monovision were included. One eye lost 3 lines of best corrected vision, and had more than 1.00 D induced astigmatism due to a central corneal ulcer. Additional complications included symptomatic recurrent corneal erosions which were controlled with topical hypertonic saline. T-PRK appears to allow effective correction of low to moderate myopia. Further study will establish safety and efficacy of the procedure.

  2. RN12 and RN30 Epidote anlayses

    SciTech Connect

    Andrew Fowler

    2015-01-01

    Results for laser ablation measurement of reare earth elments and electron microprobe analysis of major elments in hydrothermal epidote. Laser ablation measurements were completed using an Agilent 7700 quadrupole ICP-MS coupled with 193nm Photon Instruments Excimer laser.

  3. New Applications of Lasers in Photobiology and Photochemistry

    NASA Astrophysics Data System (ADS)

    Badr, Y.; Kareim, M. A.

    2005-03-01

    Photonics spectra and optical medical diagnostic field for examination of biological tissues generally and human body specially cover many spectroscopic and laser technologies based on NIR spectroscopy, fluorescence and Raman spectroscopy, Optical coherent tomography (OCT), Confocal microscopy, Opto-acoustic tomography, photon correlation spectroscopy and imaging, and Speckle monitoring of biological flows. The recent achievements in light scattering and coherent light effects in tissues, and in the design of novel lasers and fiber optic techniques for examination of biological tissues are the real motive and the attracting factor for many labs to consider the mentioned above techniques. Our lab, as it contains most of these facilities, started to use these technologies since 1997 in several applications: 1. Applying a suitable setup for introducing exogenous DNA of pAB (with bar/ Gus gene) into cells of embryonic collie of Egyptian wheat based on 193 and 608 nm, 6 ns Excimer laser pulses introducing a modified procedure of Laser-Mediated gene transfer in Egyptian wheat Tridum Aestivum. 2. Applying laser technologies in early identification of abnormal tissues spectroscopically 3. We considered several types of tissues starting with breast cancer, which was subjected to intensive spectroscopic studies using NIR, MIR, FIR, Raman spectroscopy as well as photo-acoustic spectroscopy and imaging studies. Cell carcinoma was considered using Raman spectroscopy and a clear distinction between normal tissue before and after introduction of cell cancer as well as after treating of the tissues using PDT. 4. The application of 193 nm Excimer laser pulse to study photolysis of Acetone using time resolved spectroscopy. A locally designed setup was used to study the effect of delay time (1μs, 2μs, …., 10μs,….,50μs) on the CO and CH3 radicals resulting from the photolysis.

  4. Removal of Metal-Oxide Layers Formed on Stainless and Carbon Steel Surfaces by Excimer Laser Irradiation in Various Atmospheres

    SciTech Connect

    Kameo, Yutaka; Nakashima, Mikio; Hirabayashi, Takakuni

    2002-02-15

    To apply the laser ablation technique for decontamination of metal wastes contaminated with radioactive nuclides, the effect of irradiation atmospheres on removal of oxide layers on steel surfaces by laser ablation was studied. Based on the assumption that the absorption of laser light follows the Lambert-Beer law, ablation parameters, such as absorption length and threshold fluence for ablation, of sintered Fe{sub 2}O{sub 3} and stainless and carbon steels were measured in He, O{sub 2}, Kr, or SF{sub 6} atmospheres. The results indicated that SF{sub 6} was the most effective gas of all irradiation atmospheres studied for the exclusive removal of oxide layers formed on stainless and carbon steel samples in high-temperature pressurized water. Secondary ion mass spectroscopic measurement and scanning electron microscopic observation confirmed that no oxide layer existed on the steel samples after the exclusive removal with laser irradiation.

  5. Simultaneous fluorescence and breakdown spectroscopy of fresh and aging transformer oil immersed in paper using ArF excimer laser

    NASA Astrophysics Data System (ADS)

    Parvin, P.; Shoursheini, S. Z.; Khalilinejad, F.; Bavali, A.; Moshgel Gosha, M.; Mansouri, B.

    2012-11-01

    HV transformers are taken into account as the heart of the power distribution system. The on-line monitoring based on the oil analysis offers a rapid diagnostic technique to detect the probable faults. In fact, the transformer malfunctions can be detected using UV laser spectroscopic methods. Here, a novel technique is presented based on simultaneous laser induced fluorescence (LIF) and laser induced breakdown (LIB) spectroscopy for hyper sensitive identification of the oil degradation. Oil is mainly degraded due to the internal transformer faults such as overheating and partial discharge. The spectroscopic characteristics of oil in paper substrate were obtained due to ArF laser irradiation. It was shown that the amplitude of fluorescence signal increases when the oil suffers aging and degradation. A couple of additional characteristic carbon and Hα emissions appear in the corresponding breakdown spectra too.

  6. Excimer laser activation of ultra-shallow junctions in doped Si: Modeling, experiments and real time process monitoring

    NASA Astrophysics Data System (ADS)

    Semmar, Nadjib; Darif, Mohamed; Millon, Eric; Petit, Agnès; Etienne, Hasnaa; Delaporte, Philippe

    2012-07-01

    This work concerns the ALDIP (Laser Activation of Doping agents Implanted by Plasma immersion) project that was a successful collaboration with Ion Beam Services (IBS) corporation, the "Lasers, Plasmas and Photonic Processes" (LP3) laboratory and the GREMI laboratory. The aim of this work is to control the melted thickness (i.e. junction thickness in the range 10-100 nm) by the Real Time Reflectivity (TRR) monitoring during the Laser Thermal Processing (LTP). The LTP is achieved by using a KrF laser beam (248 nm, 27 ns) with a homogeneous 'Top-Hat' space distribution to induce a selective melting and the resolidification of the doped Si:B samples on few nanometers. This recrystallization is conducted here after the pre-amorphisation process resulting from the ionic implantation of Si (PIII IBS implanter). Thus, all the studied samples are partially amorphized and boron doped. TRR method allows the accurate evaluation of the melting threshold, the duration of the melting phase, and the maximum melted thickness. Obtained results versus laser fluence are shown in the new case of under vacuum treatment. In order to calibrate the TRR method (to determine the intensity and the profile of the TRR signal versus the melting depth), we have used the secondary ion mass spectrometry (TOF-SIMS) analysis. This technique gives the doping agents profile versus the depth before and after LTP and confirms also the melting kinetics from TRR results.

  7. Surface analysis of the selective excimer laser patterning of a thin PEDOT:PSS film on flexible polymer films

    NASA Astrophysics Data System (ADS)

    Schaubroeck, David; De Smet, Jelle; Willems, Wouter; Cools, Pieter; De Geyter, Nathalie; Morent, Rino; De Smet, Herbert; Van Steenbeerge, Geert

    2016-07-01

    Fast patterning of highly conductive polymers like PEDOT:PSS (poly (3,4-ethylene dioxythiophene): polystyrene sulfonate) with lasers can contribute to the development of industrial production of liquid crystal displays on polymer foils. In this article, the selective UV laser patterning of a PEDOT:PSS film on flexible polymer films is investigated. Based on their optical properties, three polymer films are investigated: polyethylene terephthalate (PET), polymethyl methacrylate (PMMA) and cellulose triacetate (TAC). Ablation parameters for a 110 nm PEDOT:PSS film on these polymer films are optimized. A detailed study of the crater depth, topography and surface composition are provided using optical profilometry, scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS), respectively. The electrical insulation of the lines is measured and correlated to the crater analyses for different laser settings. Finally, potential ablation parameters for each of the polymer films are derived.

  8. Formation of epitaxial metastable NiGe{sub 2} thin film on Ge(100) by pulsed excimer laser anneal

    SciTech Connect

    Lim, Phyllis S. Y.; Yeo, Yee-Chia; Chi, Dong Zhi; Lim, Poh Chong; Wang, Xin Cai; Chan, Taw Kuei; Osipowicz, Thomas

    2010-11-01

    Epitaxial nickel digermanide (NiGe{sub 2}), a metastable phase, was formed by laser annealing Ni on (100) germanium-on-silicon substrates. The NiGe{sub 2} formation was investigated using transmission electron microscopy, energy dispersive x-ray spectroscopy, x-ray diffraction, Rutherford backscattering spectroscopy, and first-principles calculations. The formation mechanism of NiGe{sub 2} is discussed and is attributed to both the reduced interfacial energy at the NiGe{sub 2}/Ge(100) interface and the kinetic aspects of the laser annealing reaction associated with phase transformation and film agglomeration.

  9. Preparation of periodic surface structures on doped poly(methyl metacrylate) films by irradiation with KrF excimer laser

    PubMed Central

    2014-01-01

    In this work, we describe laser modification of poly(methyl methacrylate) films doped with Fast Red ITR, followed by dopant exclusion from the bulk polymer. By this procedure, the polymer can be modified under extremely mild conditions. Creation of surface ordered structure was observed already after application of 15 pulses and 12 mJ cm−2 fluence. Formation of grating begins in the hottest places and tends to form concentric semi-circles around them. The mechanism of surface ordered structure formation is attributed to polymer ablation, which is more pronounced in the place of higher light intensity. The smoothness of the underlying substrate plays a key role in the quality of surface ordered structure. Most regular grating structures were obtained on polymer films deposited on atomically ‘flat’ Si substrates. After laser patterning, the dopant was removed from the polymer by soaking the film in methanol. PMID:25386106

  10. Hydrogen Migration and Vinylidene Pathway for Formation of Methane in the 193 nm Photodissociation of Propene: CH3CH=CH2 and CD3CD=CD2

    NASA Technical Reports Server (NTRS)

    Zhao, Yi-Lei; Laufer, Allan H.; Halpern, Joshua B.; Fahr, Askar

    2007-01-01

    Photodissociation channels and the final product yields from the 193 nm photolysis of propene-h6 (CH2=CHCH3) and propene-d6 (CD2=CDCD3) have been investigated, employing gas chromatography, mass spectroscopy, and flame ionization (GC/MS/FID) detection methods. The yields of methane as well as butadiene relative to ethane show considerable variations when propene-h6 or propene-d6 are photolyzed. This suggests significant variances in the relative importance of primary photolytic processes and/or secondary radical reactions, occurring subsequent to the photolysis. Theoretical calculations suggest the potential occurrence of an intramolecular dissociation through a mechanism involving vinylidene formation, accompanied by an ethylenic H-migration through the pi-orbitals. This process affects the final yields of methane-h4 versus methane-d4 with respect to other products. The product yields from previous studies of the 193 nm photolysis of methyl vinyl ketone-h6 and -d6 (CH2=CHCOCH3, CD2=CDCOCD3), alternative precursors for generating methyl and vinyl radicals, are compared with the current results for propene.

  11. Cold laser technique for cell surgery

    NASA Astrophysics Data System (ADS)

    Palanker, Daniel V.; Ohad, Shoshanit; Lewis, Aaron; Laufer, Neri

    1992-08-01

    A new cell surgery technique has been developed to produce well-defined alterations in cells and tissues without detectable heating and/or other structural damage in the surroundings. The technique involves the use of a 193 nm argon fluoride excimer laser which is guided through a glass pipette filled with a positive air pressure. To demonstrate the method holes were drilled in the zona pellucida of mouse oocytes. The diameter of the drilled hole was determined by the pipette tip size, and its depth by an energy emitted per pulse and number of pulses. Scanning electron microscopy of the drilled mouse oocytes showed uniform, round, well circumscribed holes with sharp edges. Oocytes that had their zona pellucida drilled with this new method fertilized in vitro and developed to the blastocyst stage in a rate similar to that of control group. These results demonstrate the non-perturbing nature of this cold laser microsurgical procedure. In addition to the extension of our results for clinical in vitro fertilization purposes, such as enhancement of fertilization and embryo biopsy, there are wide ranging possible uses of our method in fundamental and applied investigations that require sub-micron accuracy in cellular alteration.

  12. Photorefractive keratectomy for myopia and myopic astigmatism correction using the WaveLight Allegretto Wave Eye-Q excimer laser system.

    PubMed

    Costa, Esmeralda; Franqueira, Nuno; Rosa, Andreia M; Tavares, Cristina; Quadrado, Maria J; Lobo, Conceição; Murta, Joaquim N

    2014-06-01

    To analyze photorefractive keratectomy (PRK) outcomes in myopia and myopic astigmatism correction using the WaveLight Allegretto Wave Eye-Q(®) excimer laser system (WaveLight Laser Technologie AG, Erlangen, Germany). 222 eyes of 151 patients underwent PRK (mean age 33.5 ± 6.8 years). Pre-operative best spectacle-corrected visual acuity (BSCVA) ranged from 0.4 to -0.1 logMAR (mean -0.03 ± 0.06). Mean spherical equivalent (SE) was -3.29 ± 1.20 D. Efficacy, predictability and safety were evaluated. Minimum follow-up was 3 months. Accountability at 3 and 6 months was 100 and 54 %, respectively (median follow-up 5 months, mean 5.2 ± 2.6 months). At 3 months, mean uncorrected visual acuity (UCVA) was -0.02 ± 0.07 logMAR, BSCVA -0.03 ± 0.05 logMAR, efficacy index 0.98 and safety index 1.02. UCVA was ≥20/16 in 40.1 %, ≥20/20 in 86.5 % and ≥20/25 in 98.2 %. Mean SE was -0.02 ± 0.20 D. Residual refractive error was ± 0.13 D in 81.5 %, ± 0.25 D in 88.7 % and ± 0.50 D in 97.7 %. At 6 months, outcomes were similar: mean UCVA was -0.02 ± 0.07 logMAR, BSCVA -0.03 ± 0.06 logMAR, efficacy index 1.00 and safety index 1.03. UCVA was ≥20/16 in 43.7 %, ≥20/20 in 86.6 % and ≥20/25 in 96.6 %. Mean SE was -0.02 ± 0.17 D. Residual refractive error was ± 0.13 D in 86.6 %, ± 0.25 D in 93.3 % and ± 0.50 D in 98.3 %. Refractive stability was achieved at 3 months. No patient lost more than one line of BSCVA. There were no retreatments. The WaveLight Allegretto Wave Eye-Q is effective, predictable and safe in low-to-moderate myopia and myopic astigmatism PRK correction.

  13. a Comparison of the Measured and Modelled Effects of Brewster Angle Anisotropies upon Pulsed Xenon Chloride Excimer Laser Output

    NASA Astrophysics Data System (ADS)

    Hahn, John Frederick

    We have demonstrated the effectiveness of stacked, fused-silica, intra-cavity Brewster angle plates in generating highly polarized XeCl^{*} laser output. Output polarization in excess of 95%, with coincident energy degradation of less than 20%, have been observed, data which compare favorably with results obtained with more sophisticated, more expensive intra-cavity laser polarizers (DOB 81). The optimal arrangement of the polarizing plates is shown to be at the rear of the cavity, near the mirror. We have observed the temporal development of the component pulses and the degree of polarization. For the optimal rear polarizer arrangements, the polarization has been shown to be large throughout the entire observable pulse. We have observed the dependence of the polarization upon the gas mixture pressure when weaker anisotropies are in place. We have developed a model to simulate the experimental results. The model is an innovative use of established rate equation techniques and also makes use of the short coherence length of XeCl* emissions to permit decoupling of the p- and s-plane polarization components. We thus avoid the more complicated semi-classical model which makes explicit use of the vector properties of the polarization components. We account for the presence of Brewster angle plates in the cavity as changes in the effective mirror/outcoupler reflectivities in the respective planes of polarization. We successfully simulate the output energy, E, the peak-to -peak polarization, {cal P}_ {o} and the temporally averaged polarization, |{cal P}, for the tested polarizer configurations. We attain only moderate success with our simulations of the temporally resolved polarizations. We use the model also to predict what operating conditions are required to successfully implement the use of Brewster angle end windows in generating highly polarized output.

  14. Super-high-frequency shielding properties of excimer-laser-synthesized-single-wall-carbon-nanotubes/polyurethane nanocomposite films

    SciTech Connect

    Aiessa, B.; Habib, M. A.; Denidni, T. A.; El Khakani, M. A.; Laberge, L. L.; Therriault, D.

    2011-04-15

    Electromagnetic shielding attenuation (ESA) properties of carbon nanotubes/polymer nanocomposite films, in the super high frequency (SHF) X-band (7-12 GHz) domain are studied. The nanocomposite films consisted of thermoset polyurethane (PU) resin blended with single-walled carbon nanotubes (SWCNTs) mats, and deposited on fused quartz substrates. Two different approaches were used to achieve the nanocomposite films, namely (i) through the on-substrate ''all-laser'' growth approach of SWCNTs directly onto substrate, followed by their infiltration by the PU resin, and (ii) by appropriately dispersing the chemically-purified SWCNTs (in the soot form) into the PU matrix and their subsequent deposition onto quartz substrates by means of a solvent casting process. Characterizations of the ESA properties of the developed nanocomposite films show that they exhibit systematically a deep shielding band, centered at around 9.5 GHz, with an attenuation as high as |- 30| dB, recorded for SWCNT loads of 2.5 wt. % and above. A direct correlation is established between the electrical conductivity of the nanocomposite films and their electromagnetic shielding capacity. The SWCNTs/PU nanocomposites developed here are highly promising shielding materials as SHF notch filters, as their ESA capacity largely exceeds the target value of |- 20| dB generally requested for commercial applications.

  15. The SALUT Project: Study of Advanced Laser Techniques for the Uncovering of Polychromed Works of Art

    NASA Astrophysics Data System (ADS)

    van der Snickt, G.; De Boeck, A.; Keutgens, K.; Anthierens, D.

    In order to find out whether the existing laser systems can be employed to remove superimposed layers of paint on secco wall paintings in a selective way, laser tests were carried out on three types of prepared samples simulating three stratigraphies that are frequently encountered in practice. OM, EPMA, colorimetry, μRaman, and FT-IR were used to evaluate the results. It was found that Q-switched Nd:YAG lasers emitting at 1,064nm could be employed to remove unwanted layers of oil paint and limewash, but the treatment of large areas requires implementation of a computer-controlled X-Y-Z station in order to control the parameters. However, the applicability of this technique will remain limited as ablation at the established optimum parameters implied a discoloration of the pigments cinnabar, yellow ochre, and burnt sienna. Moreover, it was observed that no ablation took place when the limewash thickness exceeds 25 μm. Unwanted layers of acrylic could be removed in an efficient way with an excimer laser emitting at 193 nm.

  16. Spectroscopic analysis of electronically excited species in XeCl excimer laser-induced plasmas from the ablated high-temperature superconductor YBa/sub 2/Cu/sub 3/O/sub 7/

    SciTech Connect

    Auciello, O.; Athavale, S.; Hankins, O.E.; Sito, M.; Schreiner, A.F.; Biunno, N.

    1988-07-04

    Optical spectroscopic analyses have been performed to study luminescence from plasmas produced by ablation of YBa/sub 2/Cu/sub 3/O/sub 7/ single-phase high T/sub c/ bulk superconductors exposed to XeCl excimer laser (308 nm) pulses. Only excited atomic neutral and single ionized species (CuCu/sup +/, BaBa/sup +/, YY/sup +/) were observed within the experimental resolution of an optical multichannel analyzer detection system, when irradiating the targets in vacuum (approx.10/sup -5/--10/sup -4/ Torr). Conspicuously absent in the spectra (300--800 nm range) are molecular emission bands that would appear if large excited molecules or fragments were present. Implications of the present results are discussed which relate to an early hypothesis about the laser ablation mechanism and their influence on high T/sub c/ film characteristics.

  17. Feasibility of depth profiling of Zn-based coatings by laser ablation inductively coupled plasma optical emission and mass spectrometry using infrared Nd:YAG and ArF* lasers

    NASA Astrophysics Data System (ADS)

    Hrdlička, Aleš; Otruba, Vítĕzslav; Novotný, Karel; Günther, Detlef; Kanický, Viktor

    2005-03-01

    The feasibility of depth profiling of zinc-coated iron sheets by laser ablation (LA) was studied using an Nd:YAG laser (1064 nm) with inductively coupled plasma optical emission spectrometry (ICP-OES), and an excimer ArF* laser (193 nm) with a beam homogenizer. The latter was coupled to an ICP with mass spectrometry (ICP-MS). Fixed-spot ablation was applied. Both LA systems were capable of providing depth profiles that approach the profiles obtained by glow discharge optical emission spectroscopy (GD-OES) and electron probe X-ray microanalysis (EPXMA). For Nd:YAG laser an artefact consisting of zinc depth profile signal tailing appeared, enlarging thus erroneously diffusional coating-substrate interface profile. However, the ArF* system partially reduced but not suppressed that phenomenon. For both LA systems the Fe signal from the substrate increased with depth as expected and reached a plateau. The depth resolution (depth range corresponding to 84%-16% change in the full signal) achieved was several micrometers. Ablation rate was found to depend on ablation spot area at constant irradiance. Consequently, ablated volume per shot dependence on pulse energy exhibits deviation from linear course.

  18. Measuring the thickness of protective coatings on historic metal objects using nanosecond and femtosecond laser induced breakdown spectroscopy depth profiling

    NASA Astrophysics Data System (ADS)

    Pouli, P.; Melessanaki, K.; Giakoumaki, A.; Argyropoulos, V.; Anglos, D.

    2005-08-01

    Depth profile analysis by means of laser induced breakdown spectroscopy (LIBS) was investigated with respect to its potential to measure the thickness of different types of thin organic films used as protective coatings on historical and archaeological metal objects. For the materials examined, acrylic varnish and microcrystalline wax, the output from a nanosecond ArF excimer laser at 193 nm was found appropriate for performing a reliable profiling of the coating films leading to accurate determination of the coating thickness on the basis of the number of laser pulses required to penetrate the coating and on the ablation etch rate of the corresponding coating material under the same irradiation conditions. Nanosecond pulses at 248 nm proved inadequate to profile the coatings because of their weak absorption at the laser wavelength. In contrast, femtosecond irradiation at 248 nm yielded well-resolved profiles as a result of efficient ablation achieved through the increased non-linear absorption induced by the high power density of the ultrashort pulses.

  19. Excimer laser with fluoropolymer lining

    DOEpatents

    Sze, Robert C.

    1982-01-01

    A cavity formed of Teflon to provide extended static fill lifetimes for gases containing halogens. A double cavity configuration provides structural integrity to the inner Teflon cavity by maintaining an identical multi-atmospheric pressure within the outer structural cavity to minimize tension on the Teflon inner cavity. Use of a quantity of the lasing gas in the outer cavity or a constituent of that gas minimizes contamination of the lasing gas.

  20. A reliable higher power ArF laser with advanced functionality for immersion lithography

    NASA Astrophysics Data System (ADS)

    Kurosu, Akihiko; Nakano, Masaki; Yashiro, Masanori; Yoshino, Masaya; Tsushima, Hiroaki; Masuda, Hiroyuki; Kumazaki, Takahito; Matsumoto, Shinichi; Kakizaki, Kouji; Matsunaga, Takashi; Okazaki, Shinji; Fujimoto, Junichi; Mizoguchi, Hakaru

    2012-03-01

    193nm ArF eximer lasers are expected to continue to be the main solution in photolithography, since advanced lithography tecnologies such as Multiple patterning and Self-aligned double patterning (SADP) are being developed. In order to appliy these tecnologies to high-volume semiconductor manufactureing, the key is to contain chip manufactureing costs. Therefore, improvement on Reliability, Availability and Maintainability of ArF excimer lasers is important.[1] We works on improving productivity and reducing downtime of ArF exmer lasers, which leads to Reliability, Availability and Maintainability improvemnet. First in this paper, our focus drilling tecnique, which increases depth of focus (DoF) by spectral bandwidth tuning is introdueced. This focus drilling enables to increase DoF for isolated contact holes. and it not degrades the wafer stage speed.[2] Second, a technique which eables to reduce gas refill time to zero is introduced. This technique reduces downtime so Availavility is expected to improve. In this paper, we report these tecniques by using simulation resutls and partially experimental resutls provided by a semiconductor manufacturer.

  1. One-pot synthesis and transfer of PMMA/Ag photonic nanocomposites by pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Karoutsos, V.; Koutselas, I.; Orfanou, P.; Mpatzaka, Th.; Vasileiadis, M.; Vassilakopoulou, A.; Vainos, N. A.; Perrone, A.

    2015-08-01

    Nanocomposite films comprising metallic nanoparticles in polymer matrices find increasing use in emerging photonic, electronic and microsystem applications owing to their tailored advanced functionalities. The versatile development of such films based on poly-methyl-methacrylate (PMMA) matrix having embedded Ag nanoparticles is addressed here. Two low-cost one-pot chemical methods for the synthesis of bulk target nanocomposite materials are demonstrated. These nanocomposites are subsequently transferred via pulsed laser deposition using 193 nm ArF excimer laser radiation, producing films maintaining the structural and functional properties. Both target- and laser-deposited materials have been thoroughly characterized using microscopic, spectroscopic and thermal analysis methods. Infrared spectra demonstrated the close molecular PMMA chain similarity for both target and film materials, though structural alterations identified by thermal analysis proved the enhanced characteristics of films grown. High-resolution electron microscopy proved the transfer of Ag nanoparticles sized 10-50 nm. Visible absorption peaked in the spectral range of 430-440 nm and attributed to the Ag nanocomposite plasmonic response verifying the transfer of the functional performance from target to film.

  2. Radiation effects on poly(methyl methacrylate) induced by pulsed laser irradiations

    NASA Astrophysics Data System (ADS)

    Torrisi, L.; Italiano, A.; Amato, E.; Caridi, F.; Cutroneo, M.; Squeri, C. A.; Squeri, G.; Roszkowska, A. M.

    2012-09-01

    Poly(methyl methacrylate) (PMMA) was irradiated using a medical UV-ArF excimer laser operating at the fundamental wavelength of 193 nm. Characterized by a beam diameter of 1.8 mm and energy of 180 mJ with a Gaussian energy profile, it operates in a single mode or at 30 Hz repetition rate. Mechanical profilometry was carried out on ablation craters in order to study the rugosity and the ablation yield in the various operative conditions. Optical transmission and reflection measurements at six wavelengths were conducted in order to characterize the optical properties of the irradiated surfaces. Measured crater depths in PMMA were lower with respect to the forecasted ones in corneal tissue, while the lateral crater aperture was maintained. The rugosity produced at the crater bottom after irradiation was about 0.3 μm, and the ablation yield was about 1015 molecules/laser pulse, while etching depth and diameter show a roughly linear dependence on the number of laser shots. These experiments constitute a base for deeper clinical investigations.

  3. Laser direct writing of combinatorial libraries of idealized cellular constructs: Biomedical applications

    NASA Astrophysics Data System (ADS)

    Schiele, Nathan R.; Koppes, Ryan A.; Corr, David T.; Ellison, Karen S.; Thompson, Deanna M.; Ligon, Lee A.; Lippert, Thomas K. M.; Chrisey, Douglas B.

    2009-03-01

    The ability to control cell placement and to produce idealized cellular constructs is essential for understanding and controlling intercellular processes and ultimately for producing engineered tissue replacements. We have utilized a novel intra-cavity variable aperture excimer laser operated at 193 nm to reproducibly direct write mammalian cells with micrometer resolution to form a combinatorial array of idealized cellular constructs. We deposited patterns of human dermal fibroblasts, mouse myoblasts, rat neural stem cells, human breast cancer cells, and bovine pulmonary artery endothelial cells to study aspects of collagen network formation, breast cancer progression, and neural stem cell proliferation, respectively. Mammalian cells were deposited by matrix assisted pulsed laser evaporation direct write from ribbons comprised of a UV transparent quartz coated with either a thin layer of extracellular matrix or triazene as a dynamic release layer using CAD/CAM control. We demonstrate that through optical imaging and incorporation of a machine vision algorithm, specific cells on the ribbon can be laser deposited in spatial coherence with respect to geometrical arrays and existing cells on the receiving substrate. Having the ability to direct write cells into idealized cellular constructs can help to answer many biomedical questions and advance tissue engineering and cancer research.

  4. Importance of layer thermal conductivity on the sharpness of patterns produced by laser interference

    NASA Astrophysics Data System (ADS)

    Peláez, R. J.; Afonso, C. N.; Škereň, M.; Bulíř, J.

    2016-06-01

    In this work, we compare patterns produced in Ag layers having similar thickness in the range 8.3-10.8 nm but having different initial nanostructure, i.e. behaving either as discontinuous or continuous layers and thus having very different thermal conductivities. The patterns are produced by exposing a phase mask to an excimer laser operating at 193 nm and using a projection optics that leads to similar fringed patterns with periods in the range 6.3-6.7 μm. The layer breaks up into isolated NPs due to laser induced melting at the regions around the intensity maxima sites. The resulting fringes have sharp interfaces in the case of discontinuous layers while a variety of regions across the pattern with no sharp interfaces are produced in the case of continuous layers. The results show that while the temperature distribution across the pattern matches almost perfectly the laser beam intensity profile for the former case, it becomes smeared due to lateral heat flow for the latter case. These results provide evidences for significant heating at the intensity minima sites that lead to solid-state dewetting and will eventually limit the minimum period achievable in the case of continuous metal layers or thermally conducting layers.

  5. Online monitoring of nanoparticles formed during nanosecond laser ablation

    NASA Astrophysics Data System (ADS)

    Nováková, Hana; Holá, Markéta; Vojtíšek-Lom, Michal; Ondráček, Jakub; Kanický, Viktor

    2016-11-01

    The particle size distribution of dry aerosol originating from laser ablation of glass material was monitored simultaneously with Laser Ablation - Inductively Coupled Plasma Mass Spectrometry (LA-ICP-MS) analysis and two aerosol spectrometers - Fast Mobility Particle Sizer (FMPS) and Aerodynamic Particle Sizer (APS). The unique combination of LA-ICP-MS and FMPS offers the possibility of measuring the particle size distribution every 1 s of the ablation process in the size range of 5.6-560 nm. APS extends the information about particle concentration in the size range 0.54-17 μm. Online monitoring of the dry aerosol was performed for two ablation modes (spot and line with a duration of 80 s) with a 193 nm excimer laser system, using the glass reference material NIST 610 as a sample. Different sizes of laser spot for spot ablation and different scan speeds for line ablation were tested. It was found that the FMPS device is capable of detecting changes in particle size distribution at the first pulses of spot laser ablation and is suitable for laser ablation control simultaneously with LA-ICP-MS analysis. The studied parameters of laser ablation have an influence on the resulting particle size distribution. The line mode of laser ablation produces larger particles during the whole ablation process, while spot ablation produces larger particles only at the beginning, during the ablation of the intact layer of the ablated material. Moreover, spot ablation produces more primary nano-particles (in ultrafine mode size range < 100 nm) than line ablation. This effect is most probably caused by a reduced amount of large particles released from the spot ablation crater. The larger particles scavenge the ultrafine particles during the line ablation mode.

  6. The performance and the characterization of laser ablation aerosol particle time-of-flight mass spectrometry (LAAP-ToF-MS)

    NASA Astrophysics Data System (ADS)

    Gemayel, Rachel; Hellebust, Stig; Temime-Roussel, Brice; Hayeck, Nathalie; Van Elteren, Johannes T.; Wortham, Henri; Gligorovski, Sasho

    2016-05-01

    Hyphenated laser ablation-mass spectrometry instruments have been recognized as useful analytical tools for the detection and chemical characterization of aerosol particles. Here we describe the performances of a laser ablation aerosol particle time-of-flight mass spectrometer (LAAP-ToF-MS) which was designed for aerodynamic particle sizing using two 405 nm scattering lasers and characterization of the chemical composition of single aerosol particle via ablation/ionization by a 193 nm excimer laser and detection in a bipolar time-of-flight mass spectrometer with a mass resolving power of m/Δm > 600.

    We describe a laboratory based optimization strategy for the development of an analytical methodology for characterization of atmospheric particles using the LAAP-ToF-MS instrument in combination with a particle generator, a differential mobility analyzer and an optical particle counter. We investigated the influence of particle number concentration, particle size and particle composition on the detection efficiency. The detection efficiency is a product of the scattering efficiency of the laser diodes and the ionization efficiency or hit rate of the excimer laser. The scattering efficiency was found to vary between 0.6 and 1.9 % with an average of 1.1 %; the relative standard deviation (RSD) was 17.0 %. The hit rate exhibited good repeatability with an average value of 63 % and an RSD of 18 %. In addition to laboratory tests, the LAAP-ToF-MS was used to sample ambient air during a period of 6 days at the campus of Aix-Marseille University, situated in the city center of Marseille, France. The optimized LAAP-ToF-MS methodology enables high temporal resolution measurements of the chemical composition of ambient particles, provides new insights into environmental science, and a new investigative tool for atmospheric chemistry and physics, aerosol science and health impact studies.

  7. Preliminary results of tracked laser-assisted in-situ keratomileusis (T-LASIK) for myopia and hyperopia using the autonomous technologies excimer laser system

    NASA Astrophysics Data System (ADS)

    Maguen, Ezra I.; Nesburn, Anthony B.; Salz, James J.

    2000-06-01

    A study was undertaken to assess the safety and efficacy of LASIK with the LADARVision laser by Autonomous Technologies, (Orlando, FL). The study included four subsets: Spherical myopia -- up to -11.00D, spherical hyperopia -- up to +6.00D. Both myopic and hyperopic astigmatism could be corrected, up to 6.00D of astigmatism. A total of 105 patients participated. Sixty-six patients were myopic and 39 were hyperopic. The mean (+/- SD) age was 42.8 +/- 9.3 years for myopia and 53.2 +/- 9.9 years for hyperopia. At 3 months postop. Sixty-one myopic eyes were available for evaluation. Uncorrected visual acuity was 20/20 in 70% of eyes and 20/40 in 92.9% of all eyes. The refractive outcome was within +/- 0.50D in 73.8% of eyes and within +/- 1.00D in 96.7 of eyes. Thirty-eight hyperopic eyes were available. Uncorrected visual acuity was 20/20 in 42.1% of eyes and 20/40 in 88% of all eyes. The refractive outcome was within +/- 0.50D in 57.9% of eyes and within +/- 1.00D in 86.8% of eyes. Complications were not sight threatening and were discussed in detail. Lasik with the LADARVision laser appears to be safe and effective.

  8. Extraluminal laser angioplasty (ELAN): a new method for treating atherosclerotic vessels

    NASA Astrophysics Data System (ADS)

    Will, Fabian; Singh, Ajoy I.; Ertmer, Wolfgang; Welling, Herbert; Lubatschowski, Holger

    2003-06-01

    ELAN is a new method for treating atherosclerotic vessels. Its purpose is to restore wall flexibility by removing arterial wall tissue from the outer arterial layer. This leads to expansion of the narrowed vessel resulting in increased blood flow. We generated cuts in dissected arteries of sheep and pigs by photo-ablation with an ArF-Excimer Laser operating at a wavelength of 193 nm. During the cutting process the vessel diameter was monitored by measuring the running time of the laser induced pressure transients with a pressure transducer lying under the artery. A nearly linear increase of the diameter dependent on the residual wall thickness was found with a maximum increase of vessel diameter about 10%. We also observed that the arterial wall maintains stable to very small residual wall thicknesses i.e. deep cutting. To support the experiments and to test different geometries of tissue removal we performed FEM-Analysis. We simulated vessel deformation and the total strain depending on the depth, width and number of cuts in the outer artieral wall. We also found a significant increase of the "lumen" in a model with atherosclerotic shape obtained from a histological section.

  9. Microhollow cathode discharge excimer lamps

    SciTech Connect

    Schoenbach, Karl H.; El-Habachi, Ahmed; Moselhy, Mohamed M.; Shi, Wenhui; Stark, Robert H.

    2000-05-01

    Microhollow cathode discharges are high-pressure, nonequilibrium gas discharges between a hollow cathode and a planar or hollow anode with electrode dimensions in the 100 {mu}m range. The large concentration of high-energy electrons, in combination with the high-gas density favors excimer formation. Excimer emission was observed in xenon and argon, at wavelengths of 128 and 172 nm, respectively, and in argon fluoride and xenon chloride, at 193 and 308 nm. The radiant emittance of the excimer radiation was found to increase monotonically with pressure. However, due to the decrease in source size with pressure, the efficiency (ratio of excimer radiant power to input electrical power), has for xenon and argon fluoride a maximum at {approx}400 Torr. The maximum efficiency is between 6% and 9% for xenon, and {approx}2% for argon fluoride. (c) 2000 American Institute of Physics.

  10. Microhollow cathode discharge excimer lamps

    NASA Astrophysics Data System (ADS)

    Schoenbach, Karl H.; El-Habachi, Ahmed; Moselhy, Mohamed M.; Shi, Wenhui; Stark, Robert H.

    2000-05-01

    Microhollow cathode discharges are high-pressure, nonequilibrium gas discharges between a hollow cathode and a planar or hollow anode with electrode dimensions in the 100 μm range. The large concentration of high-energy electrons, in combination with the high-gas density favors excimer formation. Excimer emission was observed in xenon and argon, at wavelengths of 128 and 172 nm, respectively, and in argon fluoride and xenon chloride, at 193 and 308 nm. The radiant emittance of the excimer radiation was found to increase monotonically with pressure. However, due to the decrease in source size with pressure, the efficiency (ratio of excimer radiant power to input electrical power), has for xenon and argon fluoride a maximum at ˜400 Torr. The maximum efficiency is between 6% and 9% for xenon, and ˜2% for argon fluoride.

  11. Transient absorption probe of intermolecular triplet excimer of naphthalene in fluid solutions: Identification of the species based on comparison to the intramolecular triplet excimers of covalently-linked dimers

    SciTech Connect

    Wang, X.; Kofron, W.G.; Kong, S.; Rajesh, C.S.; Modarelli, D.A.; Lim, E.C.

    2000-02-24

    The authors report here the observation of the laser-induced transient absorption spectrum of intermolecular triplet excimers of naphthalene in fluid solution. This assignment is confirmed by comparison to the transient absorption spectra of the intramolecular triplet excimers of covalently linked dimers of naphthalene and quinoxaline.

  12. Laser Ablation - Accelerator Mass Spectrometry: An Approach for Rapid Radiocarbon Analyses of Carbonate Archives at High Spatial Resolution.

    PubMed

    Welte, Caroline; Wacker, Lukas; Hattendorf, Bodo; Christl, Marcus; Fohlmeister, Jens; Breitenbach, Sebastian F M; Robinson, Laura F; Andrews, Allen H; Freiwald, André; Farmer, Jesse R; Yeman, Christiane; Synal, Hans-Arno; Günther, Detlef

    2016-09-01

    A new instrumental setup, combining laser ablation (LA) with accelerator mass spectrometry (AMS), has been investigated for the online radiocarbon ((14)C) analysis of carbonate records. Samples were placed in an in-house designed LA-cell, and CO2 gas was produced by ablation using a 193 nm ArF excimer laser. The (14)C/(12)C abundance ratio of the gas was then analyzed by gas ion source AMS. This configuration allows flexible and time-resolved acquisition of (14)C profiles in contrast to conventional measurements, where only the bulk composition of discrete samples can be obtained. Three different measurement modes, i.e. discrete layer analysis, survey scans, and precision scans, were investigated and compared using a stalagmite sample and, subsequently, applied to terrestrial and marine carbonates. Depending on the measurement mode, a precision of typically 1-5% combined with a spatial resolution of 100 μm can be obtained. Prominent (14)C features, such as the atomic bomb (14)C peak, can be resolved by scanning several cm of a sample within 1 h. Stalagmite, deep-sea coral, and mollusk shell samples yielded comparable signal intensities, which again were comparable to those of conventional gas measurements. The novel LA-AMS setup allowed rapid scans on a variety of sample materials with high spatial resolution. PMID:27396439

  13. Laser Ablation - Accelerator Mass Spectrometry: An Approach for Rapid Radiocarbon Analyses of Carbonate Archives at High Spatial Resolution.

    PubMed

    Welte, Caroline; Wacker, Lukas; Hattendorf, Bodo; Christl, Marcus; Fohlmeister, Jens; Breitenbach, Sebastian F M; Robinson, Laura F; Andrews, Allen H; Freiwald, André; Farmer, Jesse R; Yeman, Christiane; Synal, Hans-Arno; Günther, Detlef

    2016-09-01

    A new instrumental setup, combining laser ablation (LA) with accelerator mass spectrometry (AMS), has been investigated for the online radiocarbon ((14)C) analysis of carbonate records. Samples were placed in an in-house designed LA-cell, and CO2 gas was produced by ablation using a 193 nm ArF excimer laser. The (14)C/(12)C abundance ratio of the gas was then analyzed by gas ion source AMS. This configuration allows flexible and time-resolved acquisition of (14)C profiles in contrast to conventional measurements, where only the bulk composition of discrete samples can be obtained. Three different measurement modes, i.e. discrete layer analysis, survey scans, and precision scans, were investigated and compared using a stalagmite sample and, subsequently, applied to terrestrial and marine carbonates. Depending on the measurement mode, a precision of typically 1-5% combined with a spatial resolution of 100 μm can be obtained. Prominent (14)C features, such as the atomic bomb (14)C peak, can be resolved by scanning several cm of a sample within 1 h. Stalagmite, deep-sea coral, and mollusk shell samples yielded comparable signal intensities, which again were comparable to those of conventional gas measurements. The novel LA-AMS setup allowed rapid scans on a variety of sample materials with high spatial resolution.

  14. Direct current planar excimer source

    NASA Astrophysics Data System (ADS)

    Zhu, W.; Takano, N.; Schoenbach, K. H.; Guru, D.; McLaren, J.; Heberlein, J.; May, R.; Cooper, J. R.

    2007-07-01

    Excimer emission at 172 nm was observed from xenon discharges generated between a perforated anode, with opening dimensions in the sub-millimetre range, and a planar cathode. A thin dielectric layer 100-250 µm in thickness, with the same size opening as the anode, is aligned with the anode opening and used to separate the electrodes. Devices with this structure are referred to as cathode boundary layer (CBL) discharge or micro-hollow cathode discharge devices, depending on the surface structure of the cathode. The emission intensity and efficiency of these devices are pressure- and current-dependent. Typical power densities and internal efficiencies (ratio of excimer radiant power to electrical input power) are 0.5-1.5 W cm-2 and 3-5%, respectively. In the current range between normal and abnormal mode operation, the CBL discharge shows regularly arranged filaments (self-organization). Optimum emission of the excimer radiation is observed at the transition from the normal glow mode to self-organization. The resistive current-voltage characteristic in the self-organization region allows the operation of multiple CBL devices in parallel without individual ballast, but with an excimer emission slightly off the maximum value. The measured decrease of the excimer emission to about 10% of its initial value after approximately 250 h of continuous operation seems to be caused by the increasing contamination of xenon, through minor leaks in the discharge chamber and/or the outgassing of chamber components. Refilling the chamber with fresh gas after such an extended operation resulted in full recovery of the discharge with respect to excimer emission. The results suggest the possibility of generating extended lifetime, intense, large area, planar excimer sources using CBL discharges in sealed discharge chambers including getters.

  15. Chromosome mutations and tissue regeneration in the cornea after the UV laser irradiation

    NASA Astrophysics Data System (ADS)

    Razhev, Alexander M.; Bagayev, Sergei N.; Lebedeva, Lidya I.; Akhmametyeva, Elena M.; Zhupikov, Andrey A.

    2003-06-01

    In present paper the findings on chromosome mutations, the nature of damage and the repair of the cornea tissue after UV irradiation by excimer lasers at 193, 223 and 248 nm were made. Structural mutations induced by short-pulses UV irradiation were shown to be similar to spontaneous ones by the type, time of formation in the mitotic cycle and location of acentrics. Ten hours after irradiation of the cornea with doses of 0,09 to 1,5 J/cm2 the incidence of cells with chromosome aberrations increased linearly with dose and amounted to 11,7% at 248 nm, 5,5% at 223 nm and 2,6% at 193 nm per 1 J/cm2. No induced chromosome aberrations occurred 72 hour following irradiation. Within the dose range from 3,0 to 18 J/cm2 the cytogenesis effect of radiation was less manifest than that with the doses mentioned above, the frequency of chromosome aberrations being independent of either radiation wavelength or radiation dose and amounted of 2,5 to 3,0%. Thus, large doses of powerful short-pulse UV radiation are safe according to the structural mutation criterion.

  16. Time-resolved infrared diode laser spectroscopy of the ν1 (C O stretch) band of the CoCO radical

    NASA Astrophysics Data System (ADS)

    Ikeda, Seiki; Hikida, Toshihide; Tanaka, Takehiko; Tanaka, Keiichi

    2008-02-01

    Infrared spectrum of the cobalt carbonyl radical CoCO produced by the 193 nm excimer laser photolysis of cobalt tricarbonyl nitrosyl Co(CO) 3NO was observed by time-resolved diode laser spectroscopy. More than 600 lines were identified as belonging to the ν1 (C-O stretch) fundamental band, consisting of the Ω=5/2 and 3/2 subbands, and the associated hot bands 112, 101211, 101311, and 101222. The 2Δi electronic ground state of CoCO was experimentally confirmed. The ν1 band origins are 1974.172582(93) cm -1 and 1973.53178(14) cm -1 for the Ω=5/2 and 3/2 subbands, respectively. The rotational constant in the ground state was determined as B0=4427.146(50) MHz. The centrifugal distortion constant D0=1.1243(68) kHz was obtained for the Ω=5/2 substate of the ground state. The equilibrium rotational constant Be=4435.44(14) MHz was derived, together with the vibration-rotation interaction constants.

  17. Purification of silane via laser-induced chemistry

    DOEpatents

    Clark, John H.; Anderson, Robert G.

    1979-01-01

    Impurities such as PH.sub.3, AsH.sub.3, and B.sub.2 H.sub.6 may be removed from SiH.sub.4 by means of selective photolysis with ultraviolet radiation of the appropriate wavelength. An ArF laser operating at 193 nm provides an efficient and effective radiation source for the photolysis.

  18. Computed estimation of visual acuity after laser refractive keratectomy

    NASA Astrophysics Data System (ADS)

    Rol, Pascal O.; Parel, Jean-Marie A.; Hanna, Khalil

    1991-06-01

    A number of surgical techniques has been developed to correct ametropia (refractive defaults) of the eye by changing the anterior corneal radius. Because the air-cornea interface makes up for about two-third of the refractive power of the eye, a refractive correction is obtained by a suitable photoablation of the cornea. For this purpose, e.g., an ArF excimer laser which emits a wavelength of 193 nm is being used. After a mechanical removal of the epithelium, the Bowman's layer and the corneal stroma are photoablated on typically 50% of the central surface of the cornea with various precomputed shapes. Methods using a variable diaphragm1 or a scanning slit2 are being utilized. After regrowth of the epithelium, a smooth interface with air develops itself, which can be attributed to a mechanical equilibration. Yet, SEM studies have shown that with such kind of treatments, irregularities can remain in the new stromal surface (Fig. 1). A possible explanation for this effect is associated with an inhomogeneous energy distribution of the laser beam profile3. To some extent, the stromal surface is equalized by the epithelial layer during healing& However, as the corneal epithelium and stroma have different refractive indices, a scatter of the incident light may result causing a haze in the cornea and a blur of the image at the retina. In such a case the resolution and the contrast performance of the eye which is expected from a successful operation, may be reduced. This study is an attempt to quantify the vision blur as a function of the deformation observed at the epithelium-stroma interface.

  19. Surface micro-structuring of intercalation cathode materials for lithium-ion batteries: a study of laser-assisted cone formation

    NASA Astrophysics Data System (ADS)

    Pfleging, W.; Smyrek, P.; Hund, J.; Bergfeldt, T.; Pröll, J.

    2015-03-01

    Strong efforts are currently undertaken in order to further improve the electrochemical performance of high energy lithium-ion batteries containing thick composite electrode materials. The properties of these electrode materials such as active surface area, film thickness, and film porosity strongly impact the cell life-time and cycling stability. A rather new approach is to generate hierarchical architectures into cathode materials by laser direct ablation as well as by laserassisted formation of self-organized structures. It could be shown that appropriate surface structures can lead to a significant improvement of lithium-ion diffusion kinetics leading to higher specific capacities at high charging and discharging currents. In this paper, the formation of self-organized conical structures in intercalation materials such as LiCoO2 and LiNi1/3Mn1/3Co1/3O2 is investigated in detail. For this purpose, the cathode materials are exposed to excimer laser radiation with wavelengths of 248 nm and 193 nm leading to cone structures with outer dimensions in the micrometer range. The process of cone formation is investigated using laser ablation inductively coupled plasma mass spectrometry and laser-induced breakdown spectroscopy (LIBS). Cone formation can be initiated for laser fluences up to 3 J/cm2 while selective removal of lithium was observed to be one of the key issues for starting the cone formation process. It could be shown that material re-deposition supports the cone-growth process leading to a low loss of active material. Besides the cone formation process, laser-induced chemical surface modification will be analysed by LIBS.

  20. Laser-Ablation (U-Th)/He Geochronology

    NASA Astrophysics Data System (ADS)

    Hodges, K.; Boyce, J.

    2003-12-01

    Over the past decade, ultraviolet laser microprobes have revolutionized the field of 40Ar/39Ar geochronology. They provide unprecedented information about Ar isotopic zoning in natural crystals, permit high-resolution characterization of Ar diffusion profiles produced during laboratory experiments, and enable targeted dating of multiple generations of minerals in thin section. We have modified the analytical protocols used for 40Ar/39Ar laser microanalysis for use in (U-Th)/He geochronologic studies. Part of the success of the 40Ar/39Ar laser microprobe stems from fact that measurements of Ar isotopic ratios alone are sufficient for the calculation of a date. In contrast, the (U-Th)/He method requires separate analysis of U+Th and 4He. Our method employs two separate laser microprobes for this process. A target mineral grain is placed in an ultrahigh vacuum chamber fitted with a window of appropriate composition to transmit ultraviolet radiation. A focused ArF (193 nm) excimer laser is used to ablate tapered cylindrical pits on the surface of the target. The liberated material is scrubbed with a series of getters in a fashion similar to that used for 40Ar/39Ar geochronology, and the 4He abundance is determined using a quadrupole mass spectrometer with well-calibrated sensitivity. A key requirement for calculation of the 4He abundance in the target is a precise knowledge of the volume of the ablation pit. This is the principal reason why we employ the ArF excimer for 4He analysis rather than a less-expensive frequency-multiplied Nd-YAG laser; the excimer creates tapered cylindrical pits with extremely reproducible and easily characterized geometry. After 4He analysis, U and Th are measured on the same sample surface using the more familiar technique of laser-ablation inductively coupled plasma mass spectrometry (LA-ICPMS). Our early experiments have been done using a frequency-quintupled Nd-YAG microprobe (213nm), While the need to analyze U+Th and He in separate

  1. X-ray contact microscopy using a plasma source generated by long and short (120ns and 10ns) excimer laser pulses

    SciTech Connect

    Cotton, R.; Bollanti, S.; Di Lazzaro, P.

    1995-12-31

    Soft X-ray contact microscopy (SXCM), using a pulsed X-ray source, offers the possibility of imaging the ultrastructure of living biological systems at sub-50nm resolution. The authors have developed a pulsed plasma X-ray source for this application, generated by the large volume XeCl laser Hercules. Various unstable optical resonator configurations were employed to achieve a high laser intensity to increase the conversion efficiency to water window X-rays (280--530 eV). Optimum plasma conditions for SXCM are discussed, including the effect of pulse duration on image resolution. Soft X-ray contact images of Chlamydomonas dysosmos (unicellular alga) and the cyanobacteria Leptolyngbya are shown. In addition, the potential of producing a movie film of the development of X-ray images within the photoresist (acting as the recording medium) is discussed, following the resist development while viewing by atomic force microscopy.

  2. High-speed laser microsurgery of alert fruit flies for fluorescence imaging of neural activity

    PubMed Central

    Sinha, Supriyo; Liang, Liang; Ho, Eric T. W.; Urbanek, Karel E.; Luo, Liqun; Baer, Thomas M.; Schnitzer, Mark J.

    2013-01-01

    Intravital microscopy is a key means of monitoring cellular function in live organisms, but surgical preparation of a live animal for microscopy often is time-consuming, requires considerable skill, and limits experimental throughput. Here we introduce a spatially precise (<1-µm edge precision), high-speed (<1 s), largely automated, and economical protocol for microsurgical preparation of live animals for optical imaging. Using a 193-nm pulsed excimer laser and the fruit fly as a model, we created observation windows (12- to 350-µm diameters) in the exoskeleton. Through these windows we used two-photon microscopy to image odor-evoked Ca2+ signaling in projection neuron dendrites of the antennal lobe and Kenyon cells of the mushroom body. The impact of a laser-cut window on fly health appears to be substantially less than that of conventional manual dissection, for our imaging durations of up to 18 h were ∼5–20 times longer than prior in vivo microscopy studies of hand-dissected flies. This improvement will facilitate studies of numerous questions in neuroscience, such as those regarding neuronal plasticity or learning and memory. As a control, we used phototaxis as an exemplary complex behavior in flies and found that laser microsurgery is sufficiently gentle to leave it intact. To demonstrate that our techniques are applicable to other species, we created microsurgical openings in nematodes, ants, and the mouse cranium. In conjunction with emerging robotic methods for handling and mounting flies or other small organisms, our rapid, precisely controllable, and highly repeatable microsurgical techniques should enable automated, high-throughput preparation of live animals for optical experimentation. PMID:24167298

  3. High-speed laser microsurgery of alert fruit flies for fluorescence imaging of neural activity.

    PubMed

    Sinha, Supriyo; Liang, Liang; Ho, Eric T W; Urbanek, Karel E; Luo, Liqun; Baer, Thomas M; Schnitzer, Mark J

    2013-11-12

    Intravital microscopy is a key means of monitoring cellular function in live organisms, but surgical preparation of a live animal for microscopy often is time-consuming, requires considerable skill, and limits experimental throughput. Here we introduce a spatially precise (<1-µm edge precision), high-speed (<1 s), largely automated, and economical protocol for microsurgical preparation of live animals for optical imaging. Using a 193-nm pulsed excimer laser and the fruit fly as a model, we created observation windows (12- to 350-µm diameters) in the exoskeleton. Through these windows we used two-photon microscopy to image odor-evoked Ca(2+) signaling in projection neuron dendrites of the antennal lobe and Kenyon cells of the mushroom body. The impact of a laser-cut window on fly health appears to be substantially less than that of conventional manual dissection, for our imaging durations of up to 18 h were ∼5-20 times longer than prior in vivo microscopy studies of hand-dissected flies. This improvement will facilitate studies of numerous questions in neuroscience, such as those regarding neuronal plasticity or learning and memory. As a control, we used phototaxis as an exemplary complex behavior in flies and found that laser microsurgery is sufficiently gentle to leave it intact. To demonstrate that our techniques are applicable to other species, we created microsurgical openings in nematodes, ants, and the mouse cranium. In conjunction with emerging robotic methods for handling and mounting flies or other small organisms, our rapid, precisely controllable, and highly repeatable microsurgical techniques should enable automated, high-throughput preparation of live animals for optical experimentation. PMID:24167298

  4. Interaction of wide band gap single crystals with 248 nm excimer laser radiation. XII. The emission of negative atomic ions from alkali halides

    SciTech Connect

    Kimura, Kenichi; Langford, S. C.; Dickinson, J. T.

    2007-12-01

    Many wide band gap materials yield charged and neutral emissions when exposed to sub-band-gap laser radiation at power densities below the threshold for optical breakdown and plume formation. In this work, we report the observation of negative alkali ions from several alkali halides under comparable conditions. We observe no evidence for negative halogen ions, in spite of the high electron affinities of the halogens. Significantly, the positive and negative alkali ions show a high degree of spatial and temporal overlap. A detailed study of all the relevant particle emissions from potassium chloride (KCl) suggests that K{sup -} is formed by the sequential attachment of two electrons to K{sup +}.

  5. Series operation of direct current xenon chloride excimer sources

    NASA Astrophysics Data System (ADS)

    El-Habachi, Ahmed; Shi, Wenhui; Moselhy, Mohamed; Stark, Robert H.; Schoenbach, Karl H.

    2000-09-01

    Stable, direct current microhollow cathode discharges in mixtures of hydrochloric acid, hydrogen, xenon, and neon have been generated in a pressure range of 200-1150 Torr. The cathode hole diameter was 250 μm. Sustaining voltages range from 180 to 250 V at current levels of up to 5 mA. The discharges are strong sources of xenon chloride excimer emission at a wavelength of 308 nm. Internal efficiencies of approximately 3% have been reached at a pressure of 1050 Torr. The spectral radiant power at this pressure was measured as 5 mW/nm at 308 nm for a 3 mA discharge. By using a sandwich electrode configuration, consisting of five perforated, alternate layers of metal and dielectric, a tandem discharge—two discharges in series—could be generated. For an anode-cathode-anode configuration the excimer irradiance, recorded on the axis of the discharge, was twice as large as that of a single discharge. The extension of this basic tandem electrode structure to a multiple electrode configuration allows the generation of high irradiance excimer sources. Placing such a structure with a string of microhollow cathode discharge into an optical resonator promises to lead to a direct current microexcimer laser.

  6. An excimer-based FAIMS detector for detection of ultra-low concentration of explosives

    NASA Astrophysics Data System (ADS)

    Chistyakov, Alexander A.; Kotkovskii, Gennadii E.; Sychev, Alexey V.; Perederiy, Anatoly N.; Budovich, V. L.; Budovich, D. V.

    2014-05-01

    A new method of explosives detection based on the field asymmetric ion mobility spectrometry (FAIMS) and ionization by an excimer emitter has been developed jointly with a portable detector. The excimer emitter differs from usual UVionizing lamps by mechanism of emitting, energy and spectral characteristics. The developed and applied Ar2-excimer emitter has the working volume of 1 cm3, consuming power 0.6 W, the energy of photons of about 10 eV (λ=126 nm), the FWHM radiation spectrum of 10 nm and emits more than 1016 photon per second that is two orders of magnitude higher than UV-lamp of the same working volume emits. This also exceeds by an order of magnitude the quantity of photons per second for 10-Hz solid state YAG:Nd3+ - laser of 1mJ pulse energy at λ=266 nm that is also used to ionize the analyte. The Ar2-excimer ionizes explosives by direct ionization mechanism and through ionization of organic impurities. The developed Ar2-excimer-based ion source does not require cooling due to low level discharge current of emitter and is able to work with no repair more than 10000 hrs. The developed excimer-based explosives detector can analyze both vapors and traces of explosives. The FAIMS spectra of the basic types of explosives like trinitrotoluene (TNT), cyclotrimethylenetrinitramine (RDX), dinitrotoluene (DNT), cyclotetramethylenetetranitramine (HMX), nitroglycerine (NG), pentaerythritol tetranitrate (PETN) under Ar2-excimer ionization are presented. The detection limit determined for TNT vapors equals 1x10-14 g/cm3, for TNT traces- 100 pg.

  7. YO A{sup 2}II{sub 1/2,3/2} vibrational state distributions measured after the excimer laser ablation of Y{sub 2}O{sub 3} using a laser-initiated pulsed discharge as a probe

    SciTech Connect

    Fried, D.; Kushida, T.; Reck, G.P.; Rothe, E.W.

    1994-02-01

    The vibrational populations of the YO A{sup 2}II-{Chi}{sup 2}{Sigma} system of YO were measured in the plasmas generated after the excimer laser ablation of Y{sub 2}O{sub 3} in oxygen when both continuous and pulsed electric fields were applied. When an electric field is applied antiparallel to the direction of propagation of the ejected electrons, two luminous plumes appear, separated by several microseconds. The measured vibrational populations of the YO A{sup 2}II-{Chi}{sup 2}{Sigma} system are different for each plume. The YO A{sup 2}II populations were nonthermal in the first plume, representing emission from chemiluminescent reactive collisions in the plume after ablation. The second emission pulse, initiated by the discharge of a high-voltage capacitor, probes the ground-state YO in the plume via electron collisions. This pulsed electric field holds promise as a diagnostic probe of the ground-state species emitted in laser ablative processes. 11 refs., 5 figs., 1 tab.

  8. Prevention of distal embolization and no-reflow in patients with acute myocardial infarction and total occlusion in the infarct-related vessel: a subgroup analysis of the cohort of acute revascularization in myocardial infarction with excimer laser-CARMEL multicenter study.

    PubMed

    Dahm, Johannes B; Ebersole, Douglas; Das, Tony; Madyhoon, Hooman; Vora, Kishor; Baker, John; Hilton, David; Topaz, On

    2005-01-01

    To overcome the adverse complications of percutaneous coronary interventions in thrombus laden lesions (i.e., distal embolization, platelet activation, no-reflow phenomenon), mechanical removal of the thrombus or distal embolization protection devices are frequently required. Pulsed-wave ultraviolet excimer laser light at 308 nm can vaporize thrombus, suppress platelet aggregation, and, unlike other thrombectomy devices, ablate the underlying plaque. The following multicenter registry was instituted to evaluate the safety and efficacy of laser ablation in patients presenting with acute myocardial infarction (AMI) complicated by persistent thrombotic occlusions. Patients with AMI and complete thrombotic occlusion of the infarct-related vessel were included in eight participating centers. Patients with further compromising conditions (i.e., cardiogenic shock, thrombolysis failures) were also included. Primary endpoint was procedural respective laser success; secondary combined endpoints were TIMI flow and % stenosis by quantitative coronary analysis and visual assessment at 1-month follow-up. Eighty-four percent of all patients enrolled (n = 56) had a very large thrombus burden (TIMI thrombus scale > or = 3), and 49% were compromised by complex clinical presentation, i.e., cardiogenic shock (21%), degenerated saphenous vein grafts (26%), or thrombolysis failures (5%). Laser success was achieved in 89%, angiographic success in 93%, and the overall procedural success rate was 86%. The angiographic prelaser total occlusion was reduced angiographically to 58% +/- 25% after laser treatment and to 4% +/- 13% final residual stenosis after adjunctive balloon angioplasty and/or stent placement. TIMI flow increased significantly from grade 0 to 2.7 +/- 0.5 following laser ablation (P < 0.001) and 3.0 +/- 0.2 upon completion of the angioplasty procedure (P > 0.001 vs. baseline). Distal embolizations occurred in 4%, no-reflow was observed in 2%, and perforations in 0.6% of cases

  9. Excimer emission from microhollow cathode argon discharges

    NASA Astrophysics Data System (ADS)

    Moselhy, Mohamed; Petzenhauser, Isfried; Frank, Klaus; Schoenbach, Karl H.

    2003-12-01

    Microhollow cathode discharges (MHCDs) operated in rare gases are sources of intense excimer emission. Of particular interest is argon, because of its relatively low cost and the short wavelength (128 nm) of its excimer emission. The measured internal efficiency, obtained in static argon at atmospheric pressure, was found to be on the order of 1%. Flowing argon through a direct current (DC) MHCD at atmospheric pressure caused the argon excimer internal efficiency to increase to 6%, indicating that the low efficiency in static argon is mainly due to impurities. Applying 10 ns pulses to the DC plasma resulted in an increase in excimer power from 30 mW DC to 180 mW peak power, at an efficiency of 5-6%. The increase in excimer power correlates with an increase in the electron density. For DC operation, electron densities of 1015 cm-3 were measured in atmospheric pressure argon micro-plasmas, which increased to values beyond 1016 cm-3 for nanosecond pulsed operation. This increase in electron density and excimer power is due to pulsed electron heating, an effect that has allowed us to raise the mean electron energy from 1 eV, for DC operation, to 2.25 eV in the pulsed mode.

  10. Excimer Emission from Argon Microhollow Cathode Discharges

    NASA Astrophysics Data System (ADS)

    Moselhy, Mohamed; Schoenbach, Karl H.

    2002-10-01

    Excimer emission from direct current microhollow cathode discharges had been studied for rare gases and mixtures of rare gases and halides as working gases [1]. In static xenon, the dc efficiency was measured as 6%-9%. In static argon, however, the efficiency is only on the order of 1%. This relatively low value was found to be due to excimer quenching processes caused by impurities. By flowing the argon, rather than operating under static conditions we could increase the efficiency to 6%. Applying a 10 ns pulse of 600 V to the DC discharge in argon resulted in an increased intensity by a factor of six. The decay time for argon excimer emission was found to be 500 ns, indicating that quenching processes even with purging of the discharge chamber are still more effective by a factor of six in depopulating the excimer level than excimer radiation. The major quenching effect is based on resonant energy transfer from the argon excimer to atomic oxygen [2]. The addition of small amounts of oxygen allowed us therefore to convert the argon excimer emission centered at 128 nm into narrowband emission at 130.4 nm (oxygen triplet) with an optical power of up to 13 mW.This material was supported by NSF (CTS-0078618).[1] Karl H. Schoenbach, Ahmed El-Habachi, Mohamed M. Moselhy, Wenhui Shi, and Robert H. Stark, Physics of Plasmas 7, 2186 (2000). [2] M. Moselhy, R.H. Stark, K.H. Schoenbach, and U. Kogelschatz, Appl. Phys. Lett. 78, 880 (2001).

  11. Excimer emission from cathode boundary layer discharges

    NASA Astrophysics Data System (ADS)

    Moselhy, Mohamed; Schoenbach, Karl H.

    2004-02-01

    The excimer emission from direct current glow discharges between a planar cathode and a ring-shaped anode of 0.75 and 1.5 mm diameter, respectively, separated by a gap of 250 μm, was studied in xenon and argon in a pressure range from 75 to 760 Torr. The thickness of the "cathode boundary layer" plasma, in the 100 μm range, and a discharge sustaining voltage of approximately 200 V, indicates that the discharge is restricted to the cathode fall and the negative glow. The radiant excimer emittance at 172 nm increases with pressure and reaches a value of 4 W/cm2 for atmospheric pressure operation in xenon. The maximum internal efficiency, however, decreases with pressure having highest values of 5% for 75 Torr operation. When the discharge current is reduced below a critical value, the discharge in xenon changes from an abnormal glow into a mode showing self-organization of the plasma. Also, the excimer spectrum changes from one with about equal contributions from the first and second continuum to one that is dominated by the second continuum emission. The xenon excimer emission intensity peaks at this discharge mode transition. In the case of argon, self-organization of the plasma was not seen, but the emission of the excimer radiation (128 nm) again shows a maximum at the transition from abnormal to normal glow. As was observed with xenon, the radiant emittance of argon increases with pressure, and the efficiency decreases. The maximum radiant emittance is 1.6 W/cm2 for argon at 600 Torr. The maximum internal efficiency is 2.5% at 200 Torr. The positive slope of the current-voltage characteristics at maximum excimer emission in both cases indicates the possibility of generating intense, large area, flat excimer lamps.

  12. Excimer Emission from Cathode Boundary Layer Discharges

    NASA Astrophysics Data System (ADS)

    Moselhy, M. M.; Ansari, J.; Schoenbach, K. H.

    2003-10-01

    The excimer emission from direct current glow discharges between a planar cathode and a ring shaped anode of 0.75 mm diameter, separated by only 250 μm, was studied in high-pressure xenon and argon. The thickness of the "cathode boundary layer" (CBL) plasma, approximately 150 μm, with a discharge sustaining voltage of approximately 200 V, indicates that the discharge is restricted to the cathode fall and the negative glow. For currents on the order of 1 mA, the discharge in xenon changes from an abnormal glow into a mode showing selforganization of the plasma. At this transition, maximum excimer emission (at 172 nm) with internal efficiencies of 3 to 5% is observed. The maximum radiant emittance is 4 W/cm^2 for atmospheric pressure operation. In the case of argon, selforganization of the plasma was not seen, however the emission of the excimer radiation (128 nm) again shows a maximum, in this case at the transition from abnormal to normal glow, with efficiencies of 2%. The maximum radiant emittance is 1.6 W/cm^2 for argon at 600 Torr. The positive slope of the current-voltage characteristics at maximum excimer emission indicates the possibility to generate large area flat excimer sources. Work supported by NSF (CTS-0078618 and INT-0001438).

  13. Nuclear-induced excimer fluorescence

    NASA Technical Reports Server (NTRS)

    Wilson, J. W.; Shapiro, A.

    1980-01-01

    A theoretical calculation of a proposed atomic iodine laser system excited by a nuclear-powered photon source is considered. Overall system efficiency of 1.6% is calculated for the KrF fluorescent system and 2.3% for the Ar2F system. Laser power output of about 30 kW is estimated for a laser tube 1.8 cm in diameter and 60 cm long when used with a fast burst reactor. Such systems should easily scale to very high power.

  14. Laser Safety Device

    NASA Technical Reports Server (NTRS)

    1992-01-01

    A major focus of work done at Air Products and Chemicals' Laser Application Laboratory is on use of ultraviolet radiation using high energy excimer lasers. Because light within the wavelength of excimer lasers is invisible, it can cause serious damage to eyes and tissue. To contain the laser beam, Air Products Incorporated a Jet Propulsion Laboratory invention described in a technical support package into its beam stops. The technology interrupts the laser pathway and allows workers to remain in the target area without shutting off the laser.

  15. Advances in laser ablation MC-ICPMS isotopic analysis of rock materials

    NASA Astrophysics Data System (ADS)

    Young, E. D.

    2007-12-01

    single-step equilibrium processes to 0.510 or even lower for kinetic processes. Rayleigh fractionation involving a kinetic process with a single-step β of 0.510 produces an effective β of 0.512. Such differences in fractionation laws can be crucial for determining excesses or deficits in isotopes relative to mass fractionation. Contrary to some assertions, Si isotope ratios can be measured with high accuracy and precision using 193 nm excimer lasers with nanosecond pulse widths (Shahar and Young, 2007). Silicon isotope ratios in CAIs measured by 193 nm LA-MC-ICPMS have been combined with Mg isotope ratios to constrain the astrophysical environments in which these oldest solar system materials formed. Accuracy of the measurements was determined using gravimetric standards of various matrix compositions. The results establish that matrix effects for Si are below detection at the ± 0.2 ‰ precision of the laser ablation technique. High mass resolving power (m/Δ m ~ 9000) is necessary to obtain accurate Si isotope ratios by laser ablation. High-precision LA-MC-ICPMS measurements of 176Hf/177Hf in zircons can be obtained by normalizing to 179Hf/177Hf assuming an exponential fractionation law and no mass-dependent Hf, Lu, or Yb stable isotope fractionation. With corrections for interfering 176Lu and 176Yb precision for this method can be on the order of 0.3 epsilon (0.03 ‰). The approach has been used to infer the existence of continental crust on Earth 4.4 billion years before present (Harrison et al., 2005).

  16. Mechanism of single-layer 193-nm dissolution inhibition resist

    NASA Astrophysics Data System (ADS)

    Yan, Zhenglin; Houlihan, Francis M.; Reichmanis, Elsa; Nalamasu, Omkaram; Reiser, Arnost; Dabbagh, Gary; Hutton, Richard S.; Osei, Dan; Sousa, Jose; Bolan, Kevin J.

    2000-06-01

    We have found that the progress of developer base into films of terpolymers of norbornene (NB)-maleic anhydride (MA) and acrylic acid (AA) is a percolation process with a critical site concentration of x(c) equals 0.084 which suggests that every acrylic acid site in the terpolymer of norbornene-maleic anhydride-acrylic acid can make 12 monomer units of the polymer water compatible. In practice these systems are being used with various tert-butyl esters of cholic acid as dissolution inhibitors. The cholates differ very much in their dissolution inhibition factors (lowest t-butyl cholate (1.3) to highest t-butyl lithocholate glutarate dimer (7.4). The change in these factors corrected for molarity follow the hydrophobic character of the dissolution as measured by log(p). A quick screening method has also been established to evaluate dissolution inhibitors based on our observation that the cloud point (the volume % acetone in a water/acetone which gives persistent cloudiness) parallels the dissolution inhibiting power as measured by the dissolution inhibition factor. For dissolution promotion, optimal results are obtained with t-butyl 1,3,5-cyclohexanetricarboxylate (f equals -6.3) and poorest results with t-butyl lithocholate (f equals -2.8); this appears to track with the number of carboxyl groups and the hydrophobicity of the carboxylic acids. The Rmax found for resist formulations tracks well with these findings. Another factor in determining the ultimate achievable contrast is the degree of acidolytic deprotection achieved by the material. It appears that acidolyticaly cleaveable carboxylate esters with a higher concentration of electron withdrawing groups such as t-butyl 1,3,5-cyclohexanetricarboxylate are more effective.

  17. Practical Laser Ablation U-Th Thermochronology and Geochronology

    NASA Astrophysics Data System (ADS)

    Hodges, K.; Van Soest, M. C.; Tripathy, A.; Boyce, J. W.

    2012-12-01

    (U-Th)/He thermochronology of the accessory phases apatite and zircon has become an essential tool for many landscape evolution and tectonic studies. Moreover, new geochronologic applications of the (U-Th)/He method -dating impact events, young volcanic eruptions, and secondary hydrothermal mineralization, for example - are only recently being explored. A significant impediment to all applications of the method is a commonly observed scatter of replicate dates for different crystals from an individual sample, typically greater than that which can be explained by analytical imprecision alone. While several reasons for this have been proposed, three are certainly important: 1) the propensity for many accessory minerals to be strongly and complexly zoned in U and Th; 2) inclusions of other (U+Th)-rich minerals in dated grains; and 3) frequently ignored and generally unquantifiable uncertainties in the alpha ejection corrections applied to dated crystals. For nearly a decade, we have worked to establish a new technique that avoids or minimizes the impact of these factors. Individual crystals are mounted, polished, and imaged to resolve internal zonation and inclusion content as a means of selecting appropriate grains for analysis. A 193 nm ArF excimer laser is used to ablate sample from the center of the polished surface, sufficiently far from the crystal rim to eliminate the need for an alpha ejection correction. 4He is measured in the ablated material by magnetic sector, gas-source mass spectrometry. After precise measurement of the ablation pit to permit the determination of 4He concentration, the sample is removed and mounted for U + Th analysis by laser ablation inductively coupled, plasma mass spectrometry. For parent element analyses, the ablation pit is targeted so as to encompass the 4He ablation pit on a scale large enough to integrate intragranular U + Th zoning and account for recoil redistribution of 4He within grains. We have documented the efficacy of

  18. Beam Delivery System For UV Laser Ablation Of The Cornea

    NASA Astrophysics Data System (ADS)

    Yoder, P. R.; Telfair, W. B.; Warner, J. W.; Martin, C. A.; Bennett, P. S.

    1988-06-01

    We describe an electro-optical apparatus capable of delivering a homogenized, intensity-contoured 193 nm wavelength laser beam to the anterior surface of the cornea. Beam fluence is adequate to produce controlled ablation over areas as large as 7 mm diameter. Preliminary experimental results demonstrating recontouring of the corneal surface as a means of correcting myopia are presented. Means to be used for reducing hyperopia and astigmatism also are described.

  19. In-Situ Apatite Laser Ablation U-Th-Sm/He Dating, Methods and Challenges

    NASA Astrophysics Data System (ADS)

    Pickering, J. E.; Matthews, W.; Guest, B.; Hamilton, B.; Sykes, C.

    2015-12-01

    In-situ, laser ablation U-Th-Sm/He dating is an emerging technique in thermochronology that has been proven as a means to date zircon and monzonite1-5. In-situ U-Th-Sm/He thermochronology eliminates many of the problems and inconveniences associated with traditional, whole grain methods, including; reducing bias in grain selection based on size, shape and clarity; allowing for the use of broken grains and grains with inclusions; avoiding bad neighbour effects; and eliminating safety hazards associated with dissolution. In-situ apatite laser ablation is challenging due to low concentrations of U and Th and thus a low abundance of radiogenic He. For apatite laser ablation to be effective the ultra-high-vacuum (UHV) line must have very low and consistent background levels of He. To reduce He background, samples are mounted in a UHV stable medium. Our mounting process uses a MicroHePP (Microscope Mounted Heated Platen Press) to press samples into FEP (fluorinated ethylene propylene) bonded to an aluminum backing plate. Samples are ablated using a Resonetics 193 nm excimer laser and liberated He is measured using a quadrupole mass spectrometer on the ASI Alphachron noble gas line; collectively this system is known as the Resochron. The ablated sites are imaged using a Zygo Zescope optical profilometer and ablated pit volume measured using PitVol, a custom MatLab algorithm developed to enable precise and unbiased measurement of the ablated pit geometry. We use the well-characterized Durango apatite to demonstrate the accuracy and precision of the method. He liberated from forty-two pits, having volumes between 1700 and 9000 um3, were measured using the Resochron. The ablated sites were imaged using a Zygo Zescope optical profilometer and ablated pit volume measured using PitVol. U, Th and Sm concentrations were measured by laser ablation and the U-Th-Sm/He age calculated by standard age equation. An age of 33.8±0.31 Ma was determined and compares well with conventional

  20. Laser assisted deposition

    NASA Technical Reports Server (NTRS)

    Dutta, S.

    1983-01-01

    Applications of laser-based processing techniques to solar cell metallization are discussed. Laser-assisted thermal or photolytic maskless deposition from organometallic vapors or solutions may provide a viable alternative to photovoltaic metallization systems currently in use. High power, defocused excimer lasers may be used in conjunction with masks as an alternative to direct laser writing to provide higher throughput. Repeated pulsing with excimer lasers may eliminate the need for secondary plating techniques for metal film buildup. A comparison between the thermal and photochemical deposition processes is made.

  1. NaCd excimer emission bands

    NASA Astrophysics Data System (ADS)

    Pichler, G.; Veža, D.; Fijan, D.

    1988-06-01

    The analysis of the visible spectrum of a high pressure sodium lamp filled with sodium, cadium and xenon revealed the existence of NaCd excimer spectral features. These are four red satellite bands at 691, 697, 709 and 726.5 nm and diffuse bands peaking at 479.1 and 484.3 nm. Both spectral phenomena are related to those found earlier for the NaHg system. An interpretation of the red satellite bands origin is given in terms of a qualitative model for the four lowest potential curves of the NaCd excimer. In this model the essential feature is the avoided crossing between B 2∑ 1/2 and A 2∏ 1/2 electronic states, which causes a complex structure of the satellite bands in the very far red wing of the sodium D lines broadened by cadmium.

  2. Advances in solid state laser technology for space and medical applications

    NASA Technical Reports Server (NTRS)

    Byvik, C. E.; Buoncristiani, A. M.

    1988-01-01

    Recent developments in laser technology and their potential for medical applications are discussed. Gas discharge lasers, dye lasers, excimer lasers, Nd:YAG lasers, HF and DF lasers, and other commonly used lasers are briefly addressed. Emerging laser technology is examined, including diode-pumped lasers and other solid state lasers.

  3. Selective irradiation of radicals for biomedical treatment using vacuum ultraviolet light from an excimer lamp

    NASA Astrophysics Data System (ADS)

    Ono, Ryo; Tokumitsu, Yusuke; Zen, Shungo; Yonemori, Seiya

    2014-10-01

    In plasma medicine, radicals are considered to play important roles. However, the medical effect of each radical, such as OH and O, is unknown. To examine the effect of each radical, selective production of radicals is needed. We developed selective production of radicals for biomedical treatment using a vacuum ultraviolet (VUV) light emitted from an excimer lamp. Selective irradiation of OH radicals can be achieved by irradiating the 172-nm VUV light from a Xe2 excimer lamp to a humid helium flow in a quartz tube. The water molecules are strongly photodissociated by the VUV light to produce OH radicals. A photochemical simulation for the selective OH production is developed to calculate the OH density. The calculated OH density is compared with OH density measured using laser-induced fluorescence (LIF). Selective production of other radicals than OH is also discussed.

  4. Pulsed microhollow cathode discharge excimer sources

    NASA Astrophysics Data System (ADS)

    Moselhy, Mohamed; Shi, Wenhui; Strak, Robert H.; Schoenbach, Karl H.

    2001-10-01

    Microhollow cathode discharges (MHCDs) are non-equilibrium, high-pressure gas discharges between perforated electrodes separated by a dielectric layer. Typical dimensions for the electrode foil thickness and hole diameter are 100 μm. Direct current experiments in xenon, argon, neon, helium, argon fluoride, and xenon chloride [1,2] have been performed. The excimer efficiency varies between 1 % and 9 %. Pulsed operation allowed us to increase the current from 8 mA (dc) to approximately 80 mA (pulsed with a pulse width of 700 μs), limited by the onset of instabilities. The total excimer power was found to increase linearly with current, however, the radiant emittance and efficiency stayed constant. Reducing the pulse duration into the nanosecond range allowed us to increase the current into the ampere range. The maximum measured excimer power was 2.75 W per microdischarge. The maximum radiant emittance was 15 W/cm^2 and the efficiency reached values of 20 %. This effect is assumed to be due to non-equilibrium electron heating in the high-pressure plasma [3]. This work was supported by the National Science Foundation under grant # CTS0078618. 1. Karl H. Schoenbach, Ahmed El-Habachi, Mohamed M. Moselhy, Wenhui Shi, and Robert H. Stark, Physics of Plasmas 7, 2186 (2000). 2. P. Kurunczi, J. Lopez, H. Shah, and K. Becker, Int. J. Mass Spectrom. 205, 277 (2001). 3. Robert H. Stark and Karl H. Schoenbach, J. Appl. Phys. 89, 3568 (2001).

  5. Hypersonic Wake Diagnostics Using Laser Induced Fluorescence Techniques

    NASA Technical Reports Server (NTRS)

    Mills, Jack L.; Sukenik, Charles I.; Balla, Robert J.

    2011-01-01

    A review of recent research performed in iodine that involves a two photon absorption of light at 193 nm will be discussed, and it's potential application to velocimetry measurements in a hypersonic flow field will be described. An alternative seed atom, Krypton, will be presented as a good candidate for performing nonintrusive hypersonic flow diagnostics. Krypton has a metastable state with a lifetime of approximately 43 s which would prove useful for time of flight measurement (TOF) and a sensitivity to collisions that can be utilized for density measurements. Calculations using modest laser energies and experimental values show an efficiency of excited state production to be on the order of 10(exp -6) for a two photon absorption at 193 nm.

  6. Quasi ?non-destructive? laser ablation-inductively coupled plasma-mass spectrometry fingerprinting of sapphires

    NASA Astrophysics Data System (ADS)

    Guillong, M.; Günther, D.

    2001-07-01

    A homogenized 193 nm excimer laser with a flat-top beam profile was used to study the capabilities of LA-ICP-MS for 'quasi' non-destructive fingerprinting and sourcing of sapphires from different locations. Sapphires contain 97-99% of Al 2O 3 (corundum), with the remainder composed of several trace elements, which can be used to distinguish the origin of these gemstones. The ablation behavior of sapphires, as well as the minimum quantity of sample removal that is required to determine these trace elements, was investigated. The optimum ablation conditions were a fluency of 6 J cm -2, a crater diameter of 120 μm, and a laser repetition rate of 10 Hz. The optimum time for the ablation was determined to be 2 s, equivalent to 20 laser pulses. The mean sample removal was 60 nm per pulse (approx. 3 ng per pulse). This allowed satisfactory trace element determination, and was found to cause the minimum amount of damage, while allowing for the fingerprinting of sapphires. More than 40 isotopes were measured using different spatial resolutions (20-120 μm) and eight elements were reproducibly detected in 25 sapphire samples from five different locations. The reproducibility of the trace element distribution is limited by the heterogeneity of the sample. The mean of five or more replicate analyses per sample was used. Calibration was carried out using NIST 612 glass reference material as external standard. The linear dynamic range of the ICP-MS (nine orders of magnitude) allowed the use of Al, the major element in sapphire, as an internal standard. The limits of detection for most of the light elements were in the μg g -1 range and were better for heavier elements (mass >85), being in the 0.1 μg g -1 range. The accuracy of the determinations was demonstrated by comparison with XRF analyses of the same set of samples. Using the quantitative analyses obtained using LA-ICP-MS, natural sapphires from five different origins were statistically classified using ternary plots and

  7. Energy-resolved study of laser-stimulated Si + desorption from Si(1 0 0)

    NASA Astrophysics Data System (ADS)

    Liu, H. T.; Wu, Z.

    1995-06-01

    An energy-resolved study of Si + desorption from Si(1 0 0) under the irradiation of low fluence 193 nm pulsed laser beam is made using high resolution mass-selected time-of-flight (TOF) technique. New features in the kinetic energy distribution of desorbed Si ions have been observed. A simple DIET model is found to provide a reasonably good understanding for the main features in the TOF spectra.

  8. Laser Ablation in situ (U-Th-Sm)/He and U-Pb Double-Dating of Apatite and Zircon: Techniques and Applications

    NASA Astrophysics Data System (ADS)

    McInnes, B.; Danišík, M.; Evans, N.; McDonald, B.; Becker, T.; Vermeesch, P.

    2015-12-01

    We present a new laser-based technique for rapid, quantitative and automated in situ microanalysis of U, Th, Sm, Pb and He for applications in geochronology, thermochronometry and geochemistry (Evans et al., 2015). This novel capability permits a detailed interrogation of the time-temperature history of rocks containing apatite, zircon and other accessory phases by providing both (U-Th-Sm)/He and U-Pb ages (+trace element analysis) on single crystals. In situ laser microanalysis offers several advantages over conventional bulk crystal methods in terms of safety, cost, productivity and spatial resolution. We developed and integrated a suite of analytical instruments including a 193 nm ArF excimer laser system (RESOlution M-50A-LR), a quadrupole ICP-MS (Agilent 7700s), an Alphachron helium mass spectrometry system and swappable flow-through and ultra-high vacuum analytical chambers. The analytical protocols include the following steps: mounting/polishing in PFA Teflon using methods similar to those adopted for fission track etching; laser He extraction and analysis using a 2 s ablation at 5 Hz and 2-3 J/cm2fluence; He pit volume measurement using atomic force microscopy, and U-Th-Sm-Pb (plus optional trace element) analysis using traditional laser ablation methods. The major analytical challenges for apatite include the low U, Th and He contents relative to zircon and the elevated common Pb content. On the other hand, apatite typically has less extreme and less complex zoning of parent isotopes (primarily U and Th). A freeware application has been developed for determining (U-Th-Sm)/He ages from the raw analytical data and Iolite software was used for U-Pb age and trace element determination. In situ double-dating has successfully replicated conventional U-Pb and (U-Th)/He age variations in xenocrystic zircon from the diamondiferous Ellendale lamproite pipe, Western Australia and increased zircon analytical throughput by a factor of 50 over conventional methods

  9. Magnetically induced pulser laser excitation

    SciTech Connect

    Taylor, R.S.; Leopold, K.E.

    1985-02-15

    A novel excitation scheme has been developed for excimer discharge lasers. The technique uses pulse transformer technology to induce a fast, high voltage pulse directly onto a ground potential laser electrode resulting in the breakdown of the laser gas mix. Saturation of the pulse transformer core inductance then permits efficient energy transfer from the main energy storage circuit into the discharge. When this excitation technique was used in a XeCl laser an output energy density of 2.5 J/l and an overall electrical to optical efficiency of 2% were obtained. The technique appears promising for the development of high energy, high average power excimer lasers.

  10. Concentration, temperature, and density in a hydrogen-air flame by excimer-induced Raman scattering

    NASA Technical Reports Server (NTRS)

    Wehrmeyer, Joseph A.; Bowling, John M.; Pitz, Robert W.

    1988-01-01

    Single-pulse, vibrational Raman scattering (VRS) is an attractive laser diagnostic for the study of supersonic hydrogen-air combustion. The VRS technique gives a complete thermodynamic description of the gas mixture at a point in the reacting flow. Single-pulse, vibrational Raman scattering can simultaneously provide independent measurements of density, temperature, and concentration of each major species (H2, H2O, O2 and N2) in a hydrogen/air turbulent combustor. Also the pressure can be calculated using the ideal gas law. However, single-pulse VRS systems in current use for measurement of turbulent combustion have a number of shortcomings when applied to supersonic flows: (1) slow repetition rate (1 to 5 Hz), (2) poor spatial resolution (0.5x0.3x0.3 cu mm), and (3) marginal time resolution. Most of these shortcomings are due to the use of visible wavelength flash-lamp pumped dye lasers. The advent of UV excimer laser allows the possibility of dramatic improvements in the single-pulse, vibrational Raman scattering. The excimer based VRS probe will greatly improve repetition rate (100 to 500 Hz), spatial resolution (0.1x0.1x0.1 cu mm) and time resolution (30ns). These improvements result from the lower divergence of the UV excimer, higher repetition rate, and the increased Raman cross-sections (15 to 20 times higher) at ultra-violet (UV) wavelengths. With this increased capability, single-pulse vibrational Raman scattering promises to be an ideal non-intrusive probe for the study of hypersonic propulsion flows.

  11. Laser ablation of human atherosclerotic plaque without adjacent tissue injury

    NASA Technical Reports Server (NTRS)

    Grundfest, W. S.; Litvack, F.; Forrester, J. S.; Goldenberg, T.; Swan, H. J. C.

    1985-01-01

    Seventy samples of human cadaver atherosclerotic aorta were irradiated in vitro using a 308 nm xenon chloride excimer laser. Energy per pulse, pulse duration and frequency were varied. For comparison, 60 segments were also irradiated with an argon ion and an Nd:YAG laser operated in the continuous mode. Tissue was fixed in formalin, sectioned and examined microscopically. The Nd:YAG and argon ion-irradiated tissue exhibited a central crater with irregular edges and concentric zones of thermal and blast injury. In contrast, the excimer laser-irradiated tissue had narrow deep incisions with minimal or no thermal injury. These preliminary experiments indicate that the excimer laser vaporizes tissue in a manner different from that of the continuous wave Nd:YAG or argon ion laser. The sharp incision margins and minimal damage to adjacent normal tissue suggest that the excimer laser is more desirable for general surgical and intravascular uses than are the conventionally used medical lasers.

  12. Single-frequency Er(3+)-doped silica-based planar waveguide laser with integrated photo-imprinted Bragg reflectors

    NASA Astrophysics Data System (ADS)

    Kitagawa, T.; Bilodeau, F.; Malo, B.; Theriault, S.; Albert, J.; Jihnson, D. C.; Hill, K. O.; Hattori, K.; Hibino, Y.

    1994-08-01

    Single-longitudinal-mode operation of Er(3+)-P2O5 -codoped silica planar waveguide lasers which are equipped with integrated Bragg grating reflectors is demonstrated, with a polarized output of 340 mu W at 1546 nm. The gratings are photo-imprinted using 193 nm light exposure through a phase mask in GeO2-free optical waveguides that have been sensitized by H2 loading.

  13. Permanent excimer superstructures by supramolecular networking of metal quantum clusters

    NASA Astrophysics Data System (ADS)

    Santiago-Gonzalez, Beatriz; Monguzzi, Angelo; Azpiroz, Jon Mikel; Prato, Mirko; Erratico, Silvia; Campione, Marcello; Lorenzi, Roberto; Pedrini, Jacopo; Santambrogio, Carlo; Torrente, Yvan; De Angelis, Filippo; Meinardi, Francesco; Brovelli, Sergio

    2016-08-01

    Excimers are evanescent quasi-particles that typically form during collisional intermolecular interactions and exist exclusively for their excited-state lifetime. We exploited the distinctive structure of metal quantum clusters to fabricate permanent excimer-like colloidal superstructures made of ground-state noninteracting gold cores, held together by a network of hydrogen bonds between their capping ligands. This previously unknown aggregation state of matter, studied through spectroscopic experiments and ab initio calculations, conveys the photophysics of excimers into stable nanoparticles, which overcome the intrinsic limitation of excimers in single-particle applications—that is, their nearly zero formation probability in ultra-diluted solutions. In vitro experiments demonstrate the suitability of the superstructures as nonresonant intracellular probes and further reveal their ability to scavenge reactive oxygen species, which enhances their potential as anticytotoxic agents for biomedical applications.

  14. Laser tissue interaction in direct myocardial revascularization.

    PubMed

    Shehada, R E; Mansour, H N; Grundfest, W S

    2000-06-01

    This investigation examines the various laser choices used for transmyocardial laser revascularization (TMLR) with emphasis on the laser-tissue interaction. A series of in vivo (porcine model, n=27) and in vitro experiments were performed to study the effects of CO(2), holmium:YAG, and XeCl excimer lasers on the histological outcome of TMR channels. Computerized histopathological analysis has revealed that the CO(2) and holmium:YAG lasers produce substantial unpredictable thermal damage and differ predominantly in the amount of the mechanical injury or tissue shredding. In comparison, the excimer laser appears to produce the most uniform tissue ablation with the least thermal and shockwave damage.

  15. Identification and imaging of OH (nu'' = O) and O(2) (nu'' = 6 or 7) in an automobile spark-ignition engine using a tunable KrF excimer laser.

    PubMed

    Andresen, P; Schlüter, H; Wolff, D; Voges, H; Koch, A; Hentschel, W; Oppermann, W; Rothe, E

    1992-12-20

    Planar laser-induced predissociative fluorescence is applied to image state-specific densities of OH and hot O(2) inside an internal-combustion car engine. Improved instrumentation is described. It includes better imaging optics and a spectrometer that permits desired molecular quantum states to be selected and identified in real time. The OH (nu'' = 0) images are cleanly separated from the isooctane fuel and they display a thin superequilibrium region at the flame front. In contrast, vibrationally excited O(2) (nu'' = 6 or nu'' = 7) is uniformly distributed behind the front. Uneven and broken flame fronts are commonly observed.

  16. Pyrene Excimer Signaling Molecular Beacons for Probing Nucleic Acids

    PubMed Central

    Conlon, Patrick; Yang, Chaoyong James; Wu, Yanrong; Chen, Yan; Martinez, Karen; Kim, Youngmi; Stevens, Nathan; Marti, Angel A.; Jockusch, Steffen

    2008-01-01

    Molecular beacon DNA probes, containing one to four pyrene monomers on the 5′ end and the quencher DABCYL on the 3′ end, were engineered and employed for real-time probing of DNA sequences. In the absence of a target sequence, the multiple-pyrene labeled molecular beacons (MBs) assumed a stem-closed conformation resulting in quenching of the pyrene excimer fluorescence. In the presence of target, the beacons switched to a stem-open conformation which separated the pyrene label from the quencher molecule and generated an excimer emission signal proportional to the target concentration. Steady-state fluorescence assays resulted in a sub-nanomolar limit of detection in buffer, while time-resolved signaling enabled low-nanomolar target detection in cell growth media. It was found that the excimer emission intensity could be scaled by increasing the number of pyrene monomers conjugated to the 5′ terminal. Each additional pyrene monomer resulted in substantial increases in the excimer emission intensities, quantum yields, and excited-state lifetimes of the hybridized MBs. The long fluorescence lifetime (~40 ns), large Stokes shift (130 nm), and tunable intensity of the excimer make this multiple-pyrene moiety a useful alternative to traditional fluorophore labeling in nucleic acid probes. In addition, this excimer complex serves as an efficient FRET donor for red-emitting fluorophores, such as TMR, for further extending the Stokes shift of the fluorescent complex. PMID:18078339

  17. Gas and metal vapor lasers and applications; Proceedings of the Meeting, Los Angeles, CA, Jan. 22, 23, 1991

    NASA Astrophysics Data System (ADS)

    Kim, Jin J.; Tittel, Frank K.

    Various papers on gas and metal vapor lasers and applications are presented. Individual topics addressed include: high-power copper vapor laser development, modified off-axis unstable resonator for copper vapor laser, industrial applications of metal vapor lasers, newly developed excitation circuit for kHz pulsed lasers, copper vapor laser precision processing, development of solid state pulse power supply for copper vapor laser, multiple spectral structure of the 578.2-nm line for copper vapor laser, adsorption of bromine in CuBr laser, processing of polytetrafluoroethylene with high-power VUV laser radiation, characterization of a subpicosecond XeF(C - A) excimer laser, X-ray preionization for high-repetition-rate discharge excimer lasers. Also discussed are: investigation of microwave-pumped excimer and rare-gas laser transitions, influence of gas composition of XeCl laser performance, output power stabilization of a XeCl excimer laser by HCl gas injection, excimer laser machining of optical fiber taps, diagnostics of a compact UV-preionized XeCl laser with BCl3 halogen donor, blackbody-pumped CO32 lasers using Gaussian and waveguide cavities, chemical problems of high-power sealed-off CO lasers, laser action of Xe and Ne pumped by electron beam, process monitoring during CO2 laser cutting, double-pulsed TEA CO2 laser, superhigh-gain gas laser, high-power ns-pulse iodine laser provided with SBS mirror. (No individual items are abstracted in this volume)

  18. Constraints on the noble gas composition of the Icelandic plume source by laser analyses of individual vesicles in the volcanic glass DICE 11

    NASA Astrophysics Data System (ADS)

    Colin, A. P.; Moreira, M. A.; Gautheron, C.; Burnard, P.

    2014-12-01

    Models of Earth's volatile acquisition and evolution attempt to reproduce the current noble gas abundances and isotopic composition of the mantle reservoirs. The volatile composition of the OIB reservoir - assumed to preserve a higher proportion of primordial noble gases than the degassed MORB reservoir - is a strong constraint for those models. However, the correct values of the neon and argon isotopic ratios in OIBs are still a subject of debate, because of the contamination of the samples by air-derived noble gases. Although there is no consensus on the origin of this contamination - is it empty vesicles or cracks in volcanic glasses filled with seawater; air dissolution in the magma at the timing of magma eruption; assimilation of oceanic crust in the magma chamber?- targeting directly with a laser the vesicle to analyse in volcanic glasses is an efficient way to reduce this contamination. Here we present analyses of individual vesicles of an Icelandic volcanic glass, DICE 11, that was extensively studied in the past by crushing pieces of the volcanic glass under vacuum, because it was considered to have a pure plume origin. The mm-sized sample was imaged tomographically with a 5μm resolution. For opening bubbles, we used a 193nm Excimer laser to avoid diffusion of noble gases by local heating. CO2 contents were estimated by pressure measurement in the laser cell using a sensitive manometer. We analysed He and Ar isotopes, plus 22Ne abundance on a Helix SFT mass-spectrometer. We also present new He, Ne and Ar compositions obtained by step crushing on similar samples (DICE 10 and DICE 11). 3He/4He isotopic ratios are homogeneous in all the vesicles and consistent with analyses by crushing, about 18Ra. Precise 40Ar/36Ar isotopic ratios were obtained on the largest vesicles only, due to high blank contribution to the smallest vesicles, and are about 9000, i.e. the highest values obtained by step-crushing. Considering that the Ar and He isotopic compositions

  19. Methods Development for In Situ Laser-Ablation Pb and Sr Isotopic Analyses Using a Double-Focusing Single-Collector ICPMS

    NASA Astrophysics Data System (ADS)

    Pietruszka, A. J.; Neymark, L. A.

    2014-12-01

    Laser-ablation (LA) ICPMS isotopic analyses of Pb and Sr in geological materials have mostly used multi-collector instruments equipped with Faraday-type detectors (e.g., [1-3]). The main limitation of this approach is that samples with relatively high concentrations of Pb and Sr are typically required. Here we present the development of analytical methods for the accurate and precise in situ measurement of Pb and Sr isotope ratios in relatively low-concentration samples using a laser ablation system (193-nm excimer laser) with a double-focusing single-collector (SC) ICPMS (Nu AttoMTM). Our methods build on published techniques [4-6] that used different LA-SC-ICPMS instrumentation to demonstrate the benefits of fast-scanning ion-counting measurements combined with flat-top peaks. We have paid special attention to the characterization and correction of instrumental artifacts using solutions of the NIST SRM981 Pb and SRM987 Sr standards in "wet plasma" mode. For Pb, this includes correcting for the interference of 204Hg on 204Pb, characterizing the effects of tails from thallium (at masses 203 and 205) on the Pb peaks, evaluating the stability of the instrumental mass bias, and maintaining linearity of the detector response over the full dynamic range. For Sr, this includes correcting for the interference of 86Kr on 86Sr and 87Rb on 87Sr, verifying the accuracy of an internal correction for instrumental mass bias, and calibrating the ion optics scanning parameters. LA-SC-ICPMS results for Pb and Sr isotopic measurements of international glass standards and newly developed in-house mineral and glass reference materials will be presented. [1] Davidson et al. (2001) EPSL 184, 427-442. [2] Ramos et al. (2004) Chem. Geol. 211, 135-158. [3] Simon et al. (2007) GCA 71, 2014-2035. [4] Jochum et al. (2005) IJMS 242, 281-289. [5] Jochum et al. (2006) JAAS 21, 666-675. [6] Jochum et al. (2009) JAAS 24, 1237-1243.

  20. Photoassociation and photoinduced charge transfer in bridged diaryl compounds. 6. Intramolecular triplet excimers of dicarbazolylalkanes and their comparison to an intermolecular triplet excimer of carbazole

    SciTech Connect

    Cai, J.; Lim, E.C. )

    1994-03-10

    A time-resolved emission study of intramolecular triplet excimer formation has been carried out for dicarbazolylmethane (DCM) and dicarbazolylpropane (DCP) in fluid solution at room temperature. The triplet excimer formation was deduced from the comparison of the phosphorescence with the corresponding emission from the intermolecular triplet excimer of carbazole. It has been found that whereas the triplet excimer formation in DCP is evident in both polar and nonpolar solvents, the excimer formation in DCM is observed only in polar solvents at longer delay times. The result indicates that the conformation favored by the triplet excimer is more readily attainable in DCP than in DCM. The enhancement of the triplet excimer formation by polar solvent, which is also observed for carbazole, suggests that the triplet excimers are stabilized (at least in part) by charge resonance interactions. Comparison of the temporal characteristics of the normal delayed fluorescence of DCP with those of the corresponding excimer phosphorescence suggests that the delayed fluorescence at long delay times is produced by bimolecular annihilation of the intramolecular triplet excimers. This in turn implies that the excited singlet-state species produced by bimolecular annihilation of the triplet excimers is unstable and rearranges into monomeric (i.e., non-interacting) conformation prior to its decay by emission of radiation. 16 refs., 7 figs.

  1. Laser micromachining: new developments and applications

    NASA Astrophysics Data System (ADS)

    Rizvi, Nadeem H.; Milne, David K.; Rumsby, Phil T.; Gower, Malcolm C.

    2000-06-01

    Excimer laser micromachining has developed into a mature production method and many industrial applications such as the drilling of ink-jet printer nozzles, production environments. The important concepts of excimer laser micromachining systems are described and the novel methods which have been developed in this area are presented. In particular, techniques for the production of complex, multi- level 3D microstructures are described and examples of such features are used to illustrate the relevant applications. Furthermore, some initial micromachining result from a sub- nanosecond, solid-state fiber laser are presented to highlight the rapidly-growing area of laser micro processing using ultra-short pulse lasers.

  2. Neutron detection by scintillation of noble-gas excimers

    NASA Astrophysics Data System (ADS)

    McComb, Jacob Collin

    Neutron detection is a technique essential to homeland security, nuclear reactor instrumentation, neutron diffraction science, oil-well logging, particle physics and radiation safety. The current shortage of helium-3, the neutron absorber used in most gas-filled proportional counters, has created a strong incentive to develop alternate methods of neutron detection. Excimer-based neutron detection (END) provides an alternative with many attractive properties. Like proportional counters, END relies on the conversion of a neutron into energetic charged particles, through an exothermic capture reaction with a neutron absorbing nucleus (10B, 6Li, 3He). As charged particles from these reactions lose energy in a surrounding gas, they cause electron excitation and ionization. Whereas most gas-filled detectors collect ionized charge to form a signal, END depends on the formation of diatomic noble-gas excimers (Ar*2, Kr*2,Xe* 2) . Upon decaying, excimers emit far-ultraviolet (FUV) photons, which may be collected by a photomultiplier tube or other photon detector. This phenomenon provides a means of neutron detection with a number of advantages over traditional methods. This thesis investigates excimer scintillation yield from the heavy noble gases following the boron-neutron capture reaction in 10B thin-film targets. Additionally, the thesis examines noble-gas excimer lifetimes with relationship to gas type and gas pressure. Experimental data were collected both at the National Institute of Standards and Technology (NIST) Center for Neutron Research, and on a newly developed neutron beamline at the Maryland University Training Reactor. The components of the experiment were calibrated at NIST and the University of Maryland, using FUV synchrotron radiation, neutron imaging, and foil activation techniques, among others. Computer modeling was employed to simulate charged-particle transport and excimer photon emission within the experimental apparatus. The observed excimer

  3. Pyrene excimer signaling molecular beacons for probing nucleic acids.

    PubMed

    Conlon, Patrick; Yang, Chaoyong James; Wu, Yanrong; Chen, Yan; Martinez, Karen; Kim, Youngmi; Stevens, Nathan; Marti, Angel A; Jockusch, Steffen; Turro, Nicholas J; Tan, Weihong

    2008-01-01

    Molecular beacon DNA probes, containing 1-4 pyrene monomers on the 5' end and the quencher DABCYL on the 3' end, were engineered and employed for real-time probing of DNA sequences. In the absence of a target sequence, the multiple-pyrene labeled molecular beacons (MBs) assumed a stem-closed conformation resulting in quenching of the pyrene excimer fluorescence. In the presence of target, the beacons switched to a stem-open conformation, which separated the pyrene label from the quencher molecule and generated an excimer emission signal proportional to the target concentration. Steady-state fluorescence assays resulted in a subnanomolar limit of detection in buffer, whereas time-resolved signaling enabled low-nanomolar target detection in cell-growth media. It was found that the excimer emission intensity could be scaled by increasing the number of pyrene monomers conjugated to the 5' terminal. Each additional pyrene monomer resulted in substantial increases in the excimer emission intensities, quantum yields, and excited-state lifetimes of the hybridized MBs. The long fluorescence lifetime ( approximately 40 ns), large Stokes shift (130 nm), and tunable intensity of the excimer make this multiple-pyrene moiety a useful alternative to traditional fluorophore labeling in nucleic acid probes.

  4. Xenon excimer emission from pulsed microhollow cathode discharges

    NASA Astrophysics Data System (ADS)

    Moselhy, M.; Shi, W.; Stark, R. H.; Schoenbach, K. H.

    2001-08-01

    By applying electrical pulses of 20 ns duration to xenon microplasmas, generated by direct current microhollow cathode discharges, we were able to increase the xenon excimer emission by more than an order of magnitude over direct current discharge excimer emission. For pulsed voltages in excess of 500 V, the optical power at 172 nm was found to increase exponentially with voltage. Largest values obtained were 2.75 W of vacuum-ultraviolet optical power emitted from a single microhollow cathode discharge in 400 Torr xenon with a 750 V pulse applied to a discharge. Highest radiative emittance was 15.2 W/cm2. The efficiency for excimer emission was found to increase linearly with pulsed voltages above 500 V reaching values of 20% at 750 V.

  5. Mass-Selective Laser Photoionization.

    ERIC Educational Resources Information Center

    Smalley, R. E.

    1982-01-01

    Discusses the nature and applications of mass-selective laser photoionization. The ionization can be done with a single intense laser pulse lasting a few billionths of a second with no molecular fragmentation. Applications focus on: (1) benzene clusters, excimers, and exciplexes; (2) metal clusters; and (3) triplet formation and decay. (Author/JN)

  6. Laser amplifier developments at Mercury

    SciTech Connect

    Rose, E.A.; Brucker, J.P.; Honig, E.M.; McCown, A.W.; Romero, V.O.; York, G.W.

    1993-09-01

    Electron-beam pumped laser amplifiers have been modified to address the mission of krypton-fluoride excimer laser technology development. Methods are described for improving the performance and reliability of two pre-existing amplifiers at minimal cost and time. Preliminary performance data are presented to support the credibility of the approach.

  7. EMERGING TECHNOLOGY PROJECT BULLETIN: LASER INDUCED PHOTOCHEMICAL OXIDATIVE DESTRUCTION

    EPA Science Inventory

    The process developed by Energy and Environmental Engineering, Incorporated, is designed to photochemically oxidize organic compounds in wastewater by applying ultraviolet radiation using an Excimer laser. The photochemical reactor can destroy low to moderate concentrations...

  8. Enabling laser applications in microelectronics manufacturing

    NASA Astrophysics Data System (ADS)

    Delmdahl, Ralph; Brune, Jan; Fechner, Burkhard; Senczuk, Rolf

    2016-02-01

    In this experimental study, we report on high-pulse-energy excimer laser drilling into high-performance build-up films which are pivotal in microelectronics manufacturing. Build-up materials ABF-GX13 from Ajinomoto as well as ZS-100 from Zeon Corporation are evaluated with respect to their viability for economic excimer laser-based micro-via formation. Excimer laser mask imaging projection at laser wavelengths of 193, 248 and 308 nm is employed to generate matrices of smaller micro-vias with different diameters and via pitches. High drilling quality is achievable for all excimer laser wavelengths with the fastest ablation rates measured in the case of 248 and 308 nm wavelengths. The presence of glass fillers in build-up films as in the ABF-GX13 material poses some limitations to the minimum achievable via diameter. However, surprisingly good drilling results are obtainable as long as the filler dimensions are well below the diameter of the micro-vias. Sidewall angles of vias are controllable by adjusting the laser energy density and pulse number. In this work, the structuring capabilities of excimer lasers in build-up films as to taper angle variations, attainable via diameters, edge-stop behavior and ablation rates will be elucidated.

  9. Autokeratomileusis Laser

    NASA Astrophysics Data System (ADS)

    Kern, Seymour P.

    1987-03-01

    Refractive defects such as myopia, hyperopia, and astigmatism may be corrected by laser milling of the cornea. An apparatus combining automatic refraction/keratometry and an excimer type laser for precision reshaping of corneal surfaces has been developed for testing. When electronically linked to a refractometer or keratometer or holographic imaging device, the laser is capable of rapidly milling or ablating corneal surfaces to preselected dioptric power shapes without the surgical errors characteristic of radial keratotomy, cryokeratomileusis or epikeratophakia. The excimer laser simultaneously generates a synthetic Bowman's like layer or corneal condensate which appears to support re-epithelialization of the corneal surface. An electronic feedback arrangement between the measuring instrument and the laser enables real time control of the ablative milling process for precise refractive changes in the low to very high dioptric ranges. One of numerous options is the use of a rotating aperture wheel with reflective portions providing rapid alternate ablation/measurement interfaced to both laser and measurement instrumentation. The need for the eye to be fixated is eliminated or minimized. In addition to reshaping corneal surfaces, the laser milling apparatus may also be used in the process of milling both synthetic and natural corneal inlays for lamellar transplants.

  10. Synthesis of materials with infrared and ultraviolet lasers

    SciTech Connect

    Lyman, J.L.

    1988-01-01

    This paper discusses three divergent examples of synthesis of materials with lasers. The three techniques are: (1) infrared (CO/sub 2/) laser synthesis of silane (SiH/sub 4/) from disilane (Si/sub 2/H/sub 6/); (2) excimer (ArF) laser production of fine silicon powders from methyl- and chloro-substituted silanes; and, (3) excimer (KrF) laser production of fine metallic powders by laser ablation. The mechanism for each process is discussed along with some conclusions about the features of the laser radiation that enable each application. 19 refs., 12 figs., 2 tabs.

  11. Laser Materials and Laser Spectroscopy - A Satellite Meeting of IQEC '88

    NASA Astrophysics Data System (ADS)

    Wang, Zhijiang; Zhang, Zhiming

    1989-03-01

    The Table of Contents for the book is as follows: * Laser Materials * Laser Site Spectroscopy of Transition Metal Ions in Glass * Spectroscopy of Chromium Doped Tunable Laser Materials * Spectroscopic Properties of Nd3+ Ions in LaMgAl11O19 Crystal * Spectral Study and 2.938 μm Laser Emission of Er3+ in the Y3Al5O12 Crystal * Raman-infrared Spectra and Radiationless Relaxation of Laser Crystal NdAl3(BO3)4 * A Study on HB and FLN in BaFCl0.5Br0.5:Sm2+ at 77K * Pair-pumped Upconversion Solid State Lasers * CW Upconversion Laser Action in Neodymium and Erbium doped Solids * Ultra-high Sensitive Upconversion Fluorescence of YbF3 Doped with Trace Tm3+ and Er3+ * The Growth and Properties of NYAB and EYAB Multifunctional Crystal * Study on Fluorescence and Laser Light of Er3+ in Glass * Growth and Properties of Single Crystal Fibers for Laser Materials * A Study on the Quality of Sapphire, Ruby and Ti3+ Doped Sapphire Grown by Temperature Gradient Technique (TGT) and Czochralski Technique (CZ) * The Measurement of Output Property of Ti3+ Al2O3 Laser Crystal * An Xα Study of the Laser Crystal MgF2 : V2+ * Q-switched NAB Laser * Miniature YAG Lasers * Study of High Efficiency {LiF}:{F}^-_2 Color Center Crystals * Study on the Formation Conditions and Optical Properties of (F2+)H Color Center in NaCl:OH- Crystals * Novel Spectroscopic Properties of {LiF}:{F}^+_3 - {F}_2 Mixed Color Centers Laser Crystals * Terraced Substrate Visible GaAlAs Semiconductor Lasers with a Large Optical Cavity * The Temperature Dependence of Gain Spectra, Threshold Current and Auger Recombination in InGaAsP-InP Double Heterojunction Laser diode * Time-resolved Photoluminescence and Energy Transfer of Bound Excitons in GaP:N Crystals * Optical Limiting with Semiconductors * A Critical Review of High-efficiency Crystals for Tunable Lasers * Parametric Scattering in β - BaB2O4 Crystal Induced by Picosecond Pulses * Generation of Picosecond Pulses at 193 nm by Frequency Mixing in β - BaB2O4

  12. HCl yield and chemical kinetics study of the reaction of Cl atoms with CH3I at the 298 K temperature using the infra-red tunable diode laser absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Sharma, R. C.; Blitz, M.; Wada, R.; Seakins, P. W.

    2014-07-01

    Pulsed ArF excimer laser (193 nm) - CW infrared(IR) tunable diode laser Herriott type absorption spectroscopic technique has been made for the detection of product hydrochloric acid HCl. Absorption spectroscopic technique is used in the reaction chlorine atoms with methyl iodide (Cl + CH3I) to the study of kinetics on reaction Cl + CH3I and the yield of (HCl). The reaction of Cl + CH3I has been studied with the support of the reaction Cl + C4H10 (100% HCl) at temperature 298 K. In the reaction Cl + CH3I, the total pressure of He between 20 and 125 Torr at the constant concentration of [CH3I] 7.0 × 1014 molecule cm-3. In the present work, we estimated adduct formation is very important in the reaction Cl + CH3I and reversible processes as well and CH3I molecule photo-dissociated in the methyl [CH3] radical. The secondary chemistry has been studied as CH3 + CH3ICl = product, and CH3I + CH3ICl = product2. The system has been modeled theoretically for secondary chemistry in the present work. The calculated and experimentally HCl yield nearly 65% at the concentration 1.00 × 1014 molecule cm-3 of [CH3I] and 24% at the concentration 4.0 × 1015 molecule cm-3 of [CH3I], at constant concentration 4.85 × 1012 molecule cm-3 of [CH3], and at 7.3 × 1012 molecule cm-3 of [Cl]. The pressure dependent also studied product of HCl at the constant [CH3], [Cl] and [CH3I]. The experimental results are also very good matching with the modelling work at the reaction CH3 + CH3ICl = product (k = (2.75 ± 0.35) × 10-10 s-1) and CH3I + CH3ICl = product2 (k = 1.90 ± 0.15) × 10-12 s-1. The rate coefficients of the reaction CH3 + CH3ICl and CH3I + CH3ICl has been made in the present work. The experimental results has been studied by two method (1) phase locked and (2) burst mode.

  13. HCl yield and chemical kinetics study of the reaction of Cl atoms with CH3I at the 298K temperature using the infra-red tunable diode laser absorption spectroscopy.

    PubMed

    Sharma, R C; Blitz, M; Wada, R; Seakins, P W

    2014-07-15

    Pulsed ArF excimer laser (193 nm)-CW infrared (IR) tunable diode laser Herriott type absorption spectroscopic technique has been made for the detection of product hydrochloric acid HCl. Absorption spectroscopic technique is used in the reaction chlorine atoms with methyl iodide (Cl+CH3I) to the study of kinetics on reaction Cl+CH3I and the yield of (HCl). The reaction of Cl+CH3I has been studied with the support of the reaction Cl+C4H10 (100% HCl) at temperature 298 K. In the reaction Cl+CH3I, the total pressure of He between 20 and 125 Torr at the constant concentration of [CH3I] 7.0×10(14) molecule cm(-3). In the present work, we estimated adduct formation is very important in the reaction Cl+CH3I and reversible processes as well and CH3I molecule photo-dissociated in the methyl [CH3] radical. The secondary chemistry has been studied as CH3+CH3ICl = product, and CH3I+CH3ICl = product2. The system has been modeled theoretically for secondary chemistry in the present work. The calculated and experimentally HCl yield nearly 65% at the concentration 1.00×10(14) molecule cm(-3) of [CH3I] and 24% at the concentration 4.0×10(15) molecule cm(-3) of [CH3I], at constant concentration 4.85×10(12) molecule cm(-3) of [CH3], and at 7.3×10(12) molecule cm(-3) of [Cl]. The pressure dependent also studied product of HCl at the constant [CH3], [Cl] and [CH3I]. The experimental results are also very good matching with the modelling work at the reaction CH3+CH3ICl = product (k = (2.75±0.35)×10(-10) s(-1)) and CH3I+CH3ICl = product2 (k = 1.90±0.15)×10(-12) s(-1). The rate coefficients of the reaction CH3+CH3ICl and CH3I+CH3ICl has been made in the present work. The experimental results has been studied by two method (1) phase locked and (2) burst mode.

  14. Laser Angioplasty

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The principal method of dealing with coronary artery blockage is bypass surgery. A non-surgical alternative available to some patients is balloon angioplasty. For several years, medical researchers have been exploring another alternative that would help a wider circle of patients than the balloon treatment and entail less risk than bypass surgery. A research group is on the verge of an exciting development: laser angioplasty with a 'cool' type of laser, called an excimer laser, that does not damage blood vessel walls and offers non-surgical cleansing of clogged arteries with extraordinary precision. The system is the Dymer 200+ Excimer Laser Angioplasty System, developed by Advanced Intraventional Systems. Used in human clinical tests since 1987, the system is the first fully integrated 'cool' laser capable of generating the requisite laser energy and delivering the energy to target arteries. Thirteen research hospitals in the U.S. have purchased Dymer 200+ systems and used them in clinical trials in 121 peripheral and 555 coronary artery cases. The success rate in opening blocked coronary arteries is 85 percent, with fewer complications than in balloon angioplasty. Food and Drug Administration approval for the system is hoped for in the latter part of 1990. * Advanced Intraventional Systems became Spectranetics in 1994 and discontinued the product.

  15. Excimer emission from high pressure microhollow cathode discharges in xenon

    SciTech Connect

    El-Habachi, A.; Schoenbach, K.H.

    1998-12-31

    By reducing the diameter of the cathode opening in hollow cathode discharge geometry to values on the order of 100 micrometers the authors were able to operate the discharged in argon and xenon in a direct current mode at atmospheric pressure. The micro-discharges have been shown to emit excimer radiation peaking at wavelengths of 130 nm and 170 nm, respectively. They have in this study particularly concentrated on the xenon VUV radiation. The emission from a 100 micrometers microhollow cathode discharge in xenon at pressures between 40 and 760 Torr was measured over the spectral range from 130 nm to 400 nm. At 40 Torr, the 147 nm Xenon resonance line dominates the emission spectra. There are some indications of the first continuum which extends from the resonance line towards longer wavelength. The second excimer continuum peaking at 170 nm appears at higher pressures. At pressures greater than 300 Torr, it dominates the emission spectra up to the longest recorded wavelength of 400 nm. In order to determine the absolute values of the excimer radiation the emission was compared to that of calibrated UV sources: a Hg lamp and a Deuterium lamp. The results gave them a value of the efficiency defined as the ratio of the optical power of the excimer emitter to the input electrical power, of 5.3% and 6.3%, respectively. A single discharge, which was in this experiment run with a current of 3 mA at a forward voltage of 200 to 250 V, emits therefore {approximately}40 mW of VUV radiation concentrated in the spectral range from 150 to 190 nm. The possibility to operate the discharges in parallel opens the possibility to fabricate scalable flat panel excimer lamps.

  16. Lasers.

    ERIC Educational Resources Information Center

    Schewe, Phillip F.

    1981-01-01

    Examines the nature of laser light. Topics include: (1) production and characteristics of laser light; (2) nine types of lasers; (3) five laser techniques including holography; (4) laser spectroscopy; and (5) laser fusion and other applications. (SK)

  17. Lasers '83. Proceedings of the international conference

    SciTech Connect

    Powell, R.C.

    1985-01-01

    Among the topics discussed are the development history of the semiconductor diode laser, laser material processing, nonlinear spectroscopy, recent advancements in diode lasers, laser-driven particle accelerators, laser applications in the atmospheric sciences, laser-assisted collisions, novel (garnet and alexandrite) solid state laser materials, IR molecular lasers, devices and components for fiber-optic communications, free-electron lasers and masers, and picosecond optical phenomena. Also covered are laser-stimulated materials surface processes, color center laser developments, blue-green and metal vapor lasers, laser chemistry, nonlinear effects, high energy lasers, excimer lasers, laser trapping of ions, optical cavities and propagation, laser isotope separation, laser trapping of atoms, laser applications in biochemistry, tunable coherent short wavelength radiation, laser spectroscopy, picosecond studies of condensed phase molecular systems, and combustion and plasma diagnostics.

  18. Critical review on refractive surgical lasers

    NASA Astrophysics Data System (ADS)

    Lin, J. T.

    1995-03-01

    The current status of refractive surgical lasers (including excimer and nonexcimer lasers) is reviewed with an emphasis on photorefractive keratectomy (PRK). The correlation of engineering parameters and the clinical requirements with optimal conditions are presented. The fundamentals of corneal reshaping with formulas for ablation profiles and the advantages of the multizone method are discussed. Updated information on the Mini-Excimer PRK laser system, with an emphasis on the scanning delivery device, is presented. PMMA ablation profiles performed by standard diaphragm and scanning modes are compared for surface ablation quality. Scanning mode ablation patterns for myopia, hyperopia, and regular and irregular astigmatism are presented.

  19. Variable laser attenuator

    DOEpatents

    Foltyn, S.R.

    1987-05-29

    The disclosure relates to low loss, high power variable attenuators comprising one or more transmissive and/or reflective multilayer dielectric filters. The attenuator is particularly suitable to use with unpolarized lasers such as excimer lasers. Beam attenuation is a function of beam polarization and the angle of incidence between the beam and the filter and is controlled by adjusting the angle of incidence the beam makes to the filter or filters. Filters are selected in accordance with beam wavelength. 9 figs.

  20. Variable laser attenuator

    DOEpatents

    Foltyn, Stephen R.

    1988-01-01

    The disclosure relates to low loss, high power variable attenuators comprng one or more transmissive and/or reflective multilayer dielectric filters. The attenuator is particularly suitable to use with unpolarized lasers such as excimer lasers. Beam attenuation is a function of beam polarization and the angle of incidence between the beam and the filter and is controlled by adjusting the angle of incidence the beam makes to the filter or filters. Filters are selected in accordance with beam wavelength.

  1. Formation of pyrene excimers in mesoporous ormosil thin films for visual detection of nitro-explosives.

    PubMed

    Beyazkilic, Pinar; Yildirim, Adem; Bayindir, Mehmet

    2014-04-01

    We report the preparation of mesoporous thin films with bright pyrene excimer emission and their application in visual and rapid detection of nitroaromatic explosive vapors. The fluorescent films were produced by physically encapsulating pyrene molecules in the organically modified silica (ormosil) networks which were prepared via a facile template-free sol-gel method. Formation and stability of pyrene excimer emission were investigated in both porous and nonporous ormosil thin films. Excimer emission was significantly brighter and excimer formation ability was more stable in porous films compared to nonporous films. Rapid and selective quenching was observed in the excimer emission against vapors of nitroaromatic molecules; trinitrotoluene (TNT), dinitrotoluene (DNT), and nitrobenzene (NB). Fluorescence quenching of the films can be easily observed under UV light, enabling the naked-eye detection of nitro-explosives. Furthermore, excimer emission signal can be recovered after quenching and the films can be reused at least five times.

  2. Properties of zirconia thin films deposited by laser ablation

    SciTech Connect

    Cancea, V. N.; Filipescu, M.; Colceag, D.; Dinescu, M.; Mustaciosu, C.

    2013-11-13

    Zirconia thin films have been deposited by laser ablation of a ceramic ZrO{sub 2} target in vacuum or in oxygen background at 0.01 mbar. The laser beam generated by an ArF laser (λ=193 nm, ν=40 Hz) has been focalized on the target through a spherical lens at an incident angle of 45°. The laser fluence has been established to a value from 2.0 to 3.4 Jcm{sup −2}. A silicon (100) substrate has been placed parallel to the target, at a distance of 4 cm, and subsequently has been heated to temperatures ranging between 300 °C and 600 °C. Thin films morphology has been characterized by atomic force microscopy and secondary ion mass spectrometry. Biocompatibility of these thin films has been assessed by studying the cell attachment of L929 mouse fibroblasts.

  3. High-speed camera imaging for laser ablation process: for further reliable elemental analysis using inductively coupled plasma-mass spectrometry.

    PubMed

    Hirata, Takafumi; Miyazaki, Zen

    2007-01-01

    Production of laser ablation-induced sample aerosols has been visualized using a high-speed camera device coupled with shadowgraphy technique. The time resolution of the method is 1 micros, and production of the sample grains was successfully defined by the imaging system. An argon-fluoride excimer laser operated at 193-nm wavelength was used to ablate the solid samples. When the laser was shot onto the sample (Si wafer), a dome-shaped dark area appeared at the ablation pit. This dark area reflects changes in refractive index of ambient He probably due to emission of electrons or ions from the ablation pit. The dark area expanded hemispherically from the ablation pit with a velocity close to the speed of sound (approximately 1000 m/s for He at 300 K). This was followed by the excitation or ionization of the vaporized sample, known as the plasma plume. Immediately after the formation of the plasma plume, sample aerosols were produced and released from the ablation pit along the propagation of the laser-induced shockwave. Production of the sample aerosols was significantly delayed (approximately 4 micros) from the onset of the laser shot. The typical speed of particles released from the ablation pit was 100-200 m/s, which was significantly slower than the reported velocity of the plasma plume expansion (104 m/s). Since the initial measured speed of the sample particles was rather close to the speed of sound, the sample aerosols could be rapidly decelerated to the terminal velocity by a gas drag force with ambient He. The release angle of the sample aerosols from the ablation pit was very shallow (<10 degrees ), which may be due to the downforce produced by the thermal expansion of the ambient gas above the ablation pit. The shallower release angle and the contribution of the downforce probably results in the redeposition of sample aerosols or vapor around the ablation pit. In fact, the degree of sample redeposition around the ablation pit can be effectively minimized

  4. Expansion dynamics of laser produced plasma

    SciTech Connect

    Doggett, B.; Lunney, J. G.

    2011-05-01

    We consider the applicability of the isentropic, adiabatic gas dynamical model of plume expansion for laser ablation in vacuum. We show that the model can be applied to ionized plumes and estimate the upper electron temperature limit on the applicability of the isentropic approximation. The model predictions are compared with Langmuir ion probe measurements and deposition profiles obtained for excimer laser ablation of silver.

  5. SITE - EMERGING TECHNOLOGIES: LASER INDUCED PHOTO- CHEMICAL OXIDATIVE DESTRUCTION OF TOXIC ORGANICS IN LEACHATES AND GROUNDWATERS

    EPA Science Inventory

    The technology described in this report has been developed under the Emerging Technology Program of the Superfund Innovative Technology Evaluation (SITE) Program to photochemically oxidize organic compounds in wastewater by applying ultraviolet radiation using an excimer laser. T...

  6. Excimer emission from pulsed microhollow cathode discharges in xenon

    SciTech Connect

    Lee, B.-J.; Nam, S. H.; Rahaman, H.; Iberler, M.; Jacoby, J.; Frank, K.

    2013-12-15

    Direct current (dc) microhollow cathode discharge (MHCD) is an intense source for excimer radiation in vacuum ultraviolet at a wavelength of 172 nm in a high pressure xenon (Xe) gas. The concentration of precursors for the excimer formation, i.e., excited and ionized gas atoms, increases significantly by applying high voltage pulse onto the dc MHCD over the pulse duration range from 20 to 100 ns. The intensity of the excimer emission for the voltage pulse of 20 ns duration exceeds that of the emission intensity obtained from the same MHCD operated only in the dc mode, by one order of magnitude. In addition, the emission intensity increases by one order of magnitude over the pulse duration range from 20 to 100 ns. It can be assumed that the emission intensity of the MHCD source increases as long as the duration of the high voltage pulse is shorter than the electron relaxation time. For the high voltage pulse of 100 ns duration, the emission intensity has been found to be further enhanced by a factor of three when the gas pressure is increased from 200 to 800 mbar.

  7. Excimer emission from pulsed microhollow cathode discharges in xenon

    NASA Astrophysics Data System (ADS)

    Lee, B.-J.; Rahaman, H.; Nam, S. H.; Iberler, M.; Jacoby, J.; Frank, K.

    2013-12-01

    Direct current (dc) microhollow cathode discharge (MHCD) is an intense source for excimer radiation in vacuum ultraviolet at a wavelength of 172 nm in a high pressure xenon (Xe) gas. The concentration of precursors for the excimer formation, i.e., excited and ionized gas atoms, increases significantly by applying high voltage pulse onto the dc MHCD over the pulse duration range from 20 to 100 ns. The intensity of the excimer emission for the voltage pulse of 20 ns duration exceeds that of the emission intensity obtained from the same MHCD operated only in the dc mode, by one order of magnitude. In addition, the emission intensity increases by one order of magnitude over the pulse duration range from 20 to 100 ns. It can be assumed that the emission intensity of the MHCD source increases as long as the duration of the high voltage pulse is shorter than the electron relaxation time. For the high voltage pulse of 100 ns duration, the emission intensity has been found to be further enhanced by a factor of three when the gas pressure is increased from 200 to 800 mbar.

  8. Tunable, rare earth-doped solid state lasers

    DOEpatents

    Emmett, John L.; Jacobs, Ralph R.; Krupke, William F.; Weber, Marvin J.

    1980-01-01

    Laser apparatus comprising combinations of an excimer pump laser and a rare earth-doped solid matrix, utilizing the 5d-4f radiative transition in a rare earth ion to produce visible and ultra-violet laser radiation with high overall efficiency in selected cases and relatively long radiative lifetimes.

  9. Potential of laser ablation and laser desorption mass spectrometry to characterize organic and inorganic environmental pollutants on dust particles.

    PubMed

    Carré, Vincent; Aubriet, Frédéric; Scheepers, Paul T; Krier, Gabriel; Muller, Jean-François

    2005-01-01

    Stainless steel factories are known to release particles into the atmosphere. Such particulate matter contains significant amounts of heavy metals or toxic inorganic compounds and organic pollutants such as, for example, Cr(VI) and polycyclic aromatic hydrocarbons (PAHs). The investigation of Cr(VI) and PAHs is often complicated by the associated matrix. Organic and inorganic pollutants present in stainless steel dust particles have been investigated with the same laser microprobe mass spectrometer according to two original methodologies. These analytical methods do not require time-consuming pretreatment (extraction, solubilization) or preconcentration steps. More specifically, experiments are conducted with a Fourier transform ion cyclotron resonance mass spectrometer coupled to an ArF (193 nm) or a tripled frequency Nd-YAG (355 nm) laser. Experiments at 355 nm allow the nature of the most frequently occurring Cr(III)/Cr(VI) compounds in dust particles to be identified. Examination of PAHs at 193 nm is assisted by the formation of pi-complexes with 7,7',8,8'-tetracyanoquinodimethane to prevent their evaporation in the mass spectrometer during analysis and to ensure an increase in sensitivity.

  10. Progress of light source technologies from KrF laser to F2 laser

    NASA Astrophysics Data System (ADS)

    Mizoguchi, Hakaru

    2001-04-01

    More than 1,000 units of KrF excimer laser steppers were already installed in semiconductor mass-production lines which require design rule of less than 0.15 micrometers . Higher NA lens compatibility, productivity and CoO become critical issues of KrF excimer laser stepper. Advanced 2kHz KrF excimer laser G20K/G21K offers the solutions for these three issues. Next generation excimer laser ArF has already finished the stage of principle demonstration and has moved to next level of practical inspection, such as stability, productivity, and economic efficiency. Gigaphoton 4kHz ArF, G40A, solved all of these issues. Furthermore sub-0.10 micrometers design rule region F2 laser has been examined at several organizations. In March, 2000, Komatsu successfully developed 2kHz F2 laser for catadioptric projection optics by the fund of NEDO. Gigaphoton is ready to fabricate G20F, 2kHz F2 laser based upon the result of NEDO research. ASET started new F2 laser lithography development program at Hiratsuka Research Center with collaboration of Nikon, Canon, Gigaphoton, Komatsu, and Ushio from April 2000, ending March 2002.

  11. Lasers '86; Proceedings of the Ninth International Conference on Lasers and Applications, Orlando, FL, Nov. 3-7, 1986

    SciTech Connect

    Mcmillan, R.W.

    1987-01-01

    Laser physics, technology, and applications are examined in reviews and reports. Topics addressed include VUV and X-ray lasers, vibrational energy transfer and kinetics, medical applications, ultrashort lasers and spectroscopy, surface and material interactions, lasers in atmospheric physics, and fiber-optic systems. Consideration is given to alexandrite lasers, four-wave mixing and nonlinear optics, chemical lasers, semiconductor lasers, photothermal and photoacoustic spectroscopy, dye lasers, optical phase conjugation and SBS, excimer lasers, SDI laser applications, remote-sensing with lasers, FELs, and applications in chemistry. Diagrams, drawings, graphs, and photographs are provided.

  12. Theoretical investigation of perylene dimers and excimers and their signatures in X-ray diffraction.

    PubMed

    Velardez, Gustavo Fabián; Lemke, Henrik T; Breiby, Dag W; Nielsen, Martin M; Møller, Klaus Braagaard; Henriksen, Niels E

    2008-09-01

    The structures of the ground and excimer states of perylene pairs are calculated [using density functional theory (DFT) and time-dependent DFT techniques] in a free as well as a crystal environment, and their spectroscopic properties are studied for the most stable configurations. The vertical transition energies for the absorption and emission bands are obtained, and they are in good agreement with experimental data. In these calculations, up to six excited states are considered. With the calculated structures of the ground and excimer states, the scattering factors are analyzed as a function of the concentration of excimers in a crystal. The intensity of the 110, 005, and 0 10 0 reflections are found to be fairly sensitive to the presence of excimers in the crystal. The finite (nanosecond) lifetime of the excimer may make it possible to observe this state using time-resolved X-ray diffraction techniques. PMID:18690671

  13. Soot particle disintegration and detection using two laserELFFS

    SciTech Connect

    Stipe, Christopher B.; Lucas, Donald; Koshland, Catherine P.; Sawyer, Robert F.

    2004-11-17

    A two laser technique is used to study laser-particle interactions and the disintegration of soot by high power UV light. Two separate 20 ns laser pulses irradiate combustion generated soot nanoparticles with 193 nm photons. The first laser pulse, from 0 to 14.7 J/cm{sup 2}, photofragments the soot particles and electronically excites the liberated carbon atoms. The second laser pulse, held constant at 13 J/cm{sup 2}, irradiates the remaining particle fragments and other products of the first laser pulse. The atomic carbon fluorescence at 248 nm produced by the first laser pulse increases linearly with laser fluence from 1 to 6 J/cm{sup 2}. At higher fluences, the signal from atomic carbon signal saturates. The carbon fluorescence from the second laser pulse decreases as the fluence from the first laser increases, ultimately approaching zero as first laser fluence approaches 10 J/cm{sup 2}, suggesting that the particles fully disintegrate at high laser fluences. We use an energy balance parameter, called the photon-atom ratio (PAR), to aid in understanding laser-particle interactions. These results help define the regimes where photofragmentation fluorescence methods quantitatively measure total soot concentrations.

  14. Excimer Emission from Pulsed Tandem Microhollow Cathode Discharges in Xenon

    NASA Astrophysics Data System (ADS)

    Lee, Byung-Joon; Rahaman, Hasibur; Nam, Sang Hoon; Iberler, Marcus; Teske, Christian; Jacoby, Joachim; Frank, Klaus

    2012-05-01

    This paper describes an extension of a basic single microhollow cathode discharge (MHCD) to a tandem MHCD, i.e., two discharges in series from an anode-cathode-anode configuration. When a high-voltage pulse is superimposed with a direct current (DC) tandem MHCD, an intense excimer emission along the discharge axis in a high pressure xenon gas is generated which is two orders of magnitude higher than that of the DC tandem MHCD. In addition, the emission intensity increases to almost twice by increasing cathode thickness from 250 to 1000 µm. The emission is further enhanced by increasing the gas pressure from 400 to 800 mbar.

  15. Laser research and development in the Northeast; Proceedings of the Meeting, Cambridge, MA, Sept. 16, 17, 1986

    SciTech Connect

    Trainor, D.W.; Chicklis, E.P.

    1987-01-01

    The development and scaling of excimer lasers with emphasis on both electron-beam and discharge pumpings; a chemical means of generating laser action in the visible region; the use of stimulated Raman techniques to improve the beam quality output of systems employing excimer lasers; the research and development of CO/sub 2/ lasers; a CO/sub 2/ laser amplifier for radar applications; medical laser usage; and laser monitors for trace species in environmental and industrial processes are examined. Consideration is given to high power laser research and development for laser energetics; linear and nonlinear frequency converters; 450 nm laser operation in Tm(3+):YLF; alexandrite lasers and their applications; and the performance limitations of vibronic lasers. Topics discussed include the laser ignition of oil spills; the application of laser rangers to submunitions; the design and application of laser intensity stabilizers; and a 535 nm active atomic line filter that uses the Tl metastable state as an absorbing medium.

  16. Laser technologies in ophthalmic surgery

    NASA Astrophysics Data System (ADS)

    Atezhev, V. V.; Barchunov, B. V.; Vartapetov, S. K.; Zav'yalov, A. S.; Lapshin, K. E.; Movshev, V. G.; Shcherbakov, I. A.

    2016-08-01

    Excimer and femtosecond lasers are widely used in ophthalmology to correct refraction. Laser systems for vision correction are based on versatile technical solutions and include multiple hard- and software components. Laser characteristics, properties of laser beam delivery system, algorithms for cornea treatment, and methods of pre-surgical diagnostics determine the surgical outcome. Here we describe the scientific and technological basis for laser systems for refractive surgery developed at the Physics Instrumentation Center (PIC) at the Prokhorov General Physics Institute (GPI), Russian Academy of Sciences.

  17. APPLICATIONS OF LASERS AND OTHER TOPICS IN QUANTUM ELECTRONICS: Laser system based on a commercial microwave oscillator with time compression of a microwave pump pulse

    NASA Astrophysics Data System (ADS)

    Arteev, M. S.; Vaulin, V. A.; Slinko, V. N.; Chumerin, P. Yu; Yushkov, Yu G.

    1992-06-01

    An analysis is made of the possibility of using a commercial microsecond microwave oscillator, supplemented by a device for time compression of microwave pulses, in pumping of industrial lasers with a high efficiency of conversion of the pump source energy into laser radiation. The results are reported of preliminary experiments on the commissioning of an excimer XeCl laser.

  18. Excimer UV lamp irradiation induced grafting on synthetic polymers

    NASA Astrophysics Data System (ADS)

    Praschak, D.; Bahners, T.; Schollmeyer, E.

    Surface modifications on polyethyleneterephthalate (PET) films following excimer UV lamp irradiation induced grafting were studied. Characteristics of the modifications depending on the conditions during the irradiation were analysed using contact-angle measurements, X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), differential scanning calorimetry (DSC) and Fourier-transform infrared spectroscopy (FTIR). Depending on the conditions during the irradiation different surface modifications were obtained, which can generally be classified regarding the hydrophilic or hydrophobic characteristics of the resulting surface. It is shown that not every substance that meets the general demands will be grafted on synthetic polymers using excimer UV radiation. Examples of agents that can simply be grafted onto polymer surfaces and those that undergo further crosslinking, building up thin films are listed. Agents used for grafting on polymers are 1,5-hexadiene, perfluoro-4-methyl-pent-2-ene, polyethyleneglycol 200, monosilane and polyethylene. The transferability of the effects achieved to substrates such as polyparaphenylene terephthalamide or polymetaphenylene isophthalamide is shown.

  19. Pulsed Operation of Microhollow Cathode Discharge Excimer Sources

    NASA Astrophysics Data System (ADS)

    Moselhy, M.; El-Habachi, A.; Schoenbach, K. H.

    1999-10-01

    Spatially resolved measurements on DC microhollow cathode discharges showed that the average radiant emittance of the xenon excimer source increases superlinearly with pressure [1]. At a current of 3 mA and a pressure of 750 Torr, the radiant emittance is approximately 20 W/cm2. For DC operation the current was limited to 8 mA to avoid thermal damage. Pulsed operation at 700 microseconds pulse width allowed us to extend the current range to 80 mA before the discharge became unstable. Pulsing the discharge allowed us also to explore its temporal development and the current dependence of the radiative power at high currents. The results showed that the time to reach a steady-state is about 200 microseconds, independent of pressure and current, in the parameter range of up to 1 atm and 80 mA, respectively. For operation at 80 mA, and 200 V, at 250 Torr the electrical power is 16 W; the optical power, assuming the same efficiency as for DC operation (8linear dependence of the intensity on current allows to generate excimer point sources which can easily be controlled electrically over a wide optical power range. This work is supported by the U.S. Department of Energy (DoE), Advanced Energy Division, and the National Science Foundation (NSF). [1] A. El-Habachi, M. Moselhy and K. H. Schoenbach, this conference.

  20. Investigation of Pyrene Excimer formation in various manufacturing processes and ionic structures

    NASA Astrophysics Data System (ADS)

    Jang, Hyun-Sook; Nieh, Mu-Ping

    2013-03-01

    Electrospun pyrene (Py)/polystyrene/tetrabutylammonium hexafluorophosphate (TBAPF6) thin films can provide high-sensitivity and high-selectivity detection of nitro-aromatic explosives through fluorescence quenching of the Py excimers. However, we have found that the formation of Py excimers in Py/PS/TBAPF6 thin films depends greatly on the manufacturing processes. Our results indicate that high solvent vapor pressure promotes the Py excimer fluorescence, while high temperature (around or greater than Tg of the PS) has an opposite effect in absence of solvent - reducing the Py excimer fluorescence. Moreover, we have found that salts structure such as cation chain length, anion strength can significantly affect the formation of Py excimer both in solution and solid state, presumably due to self-aggregation of the salts and electrostatic interactions between ions and pyrene excimer. 13C-NMR and steady-state fluorescence result indicate that the salt induces peak shift to the downfield in the spectra and quenches the Py excimer intensity drastically. Ph.D. Candidate, Institute of Material Science, Polymer program