Sample records for 193ir radiatsionnyj zakhvat

  1. Determination of partial (n,xngamma) cross-sections in 193-Ir

    SciTech Connect

    Talou, P; Chadwick, M B; Nelson, R; Fotiades, N; Devlin, M; Garrett, P E; Younes, W; Becker, J A


    The {sup 193}Ir(n,n'){sup 193m}Ir cross section for the production of the 80-keV isomer in {sup 193}Ir is evaluated using a combination of experimental data and nuclear reaction modeling, from threshold to about 20 MeV. Four discrete {gamma} lines feeding the isomer were recently observed with the GEANIE {gamma}-ray detector at LANSCE. Theoretical calculations of the nuclear reaction mechanisms in play are then carried out to evaluate the contributions not accounted for in the experimental setup (direct population; fraction of {gamma}-lines not observed in the experiment; etc). Experiment and modeling are then combined to provide a total cross section for the production of the Iridium isomer. We finally compare our result with activation measurement data available for a few energy points.

  2. Determination of effective resonance energy for the 193Ir(n,γ)194Ir reaction by the cadmium ratio method

    NASA Astrophysics Data System (ADS)

    Budak, Mustafa Guray; Karadag, Mustafa; Yücel, Haluk


    In this work, the effective resonance energy, Ebarr -value for the 193Ir(n,γ)194Ir reaction was measured using cadmium ratio method. A dual monitor (197Au-98Mo), which has convenient resonance properties, was employed for characterization of the irradiation sites. Then analytical grade iridium oxide samples diluted with CaCO3 to lower neutron self-shielding effect stacked in small cylindrical Teflon boxes were irradiated once with a 1 mm thick Cd cylindrical box placed in a thermalized neutron field of an 241Am-Be neutron source then without it. The activities produced in samples during 193Ir(n,γ)194Ir reaction were measured using a p-type HPGe detector γ-ray spectrometer with a 44.8% relative efficiency. The correction factors for thermal, epithermal neutron self-shielding (Gth, Gepi), true coincidence summing (Fcoi) and gamma-ray self-absorption (Fs) effects were determined with appropriate approaches and programs. Thus, the experimental Ebarr -value was determined to be 2.65 ± 0.61 eV for 193Ir target nuclide. The recent data for Q0 and FCd values for Ebarr determination were based on k0-NAA online database. The present experimental Ebarr value was calculated and compared with more recent values for Q0 and FCd for 193Ir. Additionally, the Ebarr -values was theoretically calculated from the up-to-date resonance data obtained from ENDF/B VII library using two different approaches. Since there is no experimentally determined Ebarr -value for the 193Ir isotope, the results are compared with the calculated ones given in the literature.

  3. [sub 193]Ir Moessbauer study of chloro(carbonyl)bis-(triphenylphosphine)(buckminsterfullerene)iridium

    SciTech Connect

    Vertes, A.; Gal, M. ); Wagner, F.E. ); Tuczek, F.; Guetlich, P. )


    The authors have measured the Moessbauer spectrum of the adduct of chlorocarbonylbis(triphenylphosphine)iridium (CCTI) with buckminsterfullerene (C[sub 60]) and, for comparison, remeasured the spectra of both the parent compound CCTI and its adduct with tetracyanoethylene, CCTI-TCNE. Moessbauer spectra of the [sup 193]Ir 73 keV [gamma]-transition were taken at 4.2 K. The source was metallic [sup 193]Os, which, being hexagonal, exhibits a quadrupole splitting of about 0.48 mm/s. The individual lines of the quadrupole doublets of the studied samples are therefore not simple Lorentzians; this circumstance is taken into account in the fitting procedure. The full widths at half-maximum of the individual superimposed Lorentzian lines obtained by the least-squares fits are between 0.75 and 0.79 mm s[sup [minus]1] and thus but slightly larger than the natural line width of 0.60 mm s[sup [minus]1].

  4. New 193Ir(n,n'y)193mIr Evaluated Nuclear Cross Sections for Radchem

    SciTech Connect

    Nelson, R O; Fotiades, N; Devlin, M; Talou, P; Chadwick, M B; MacFarlane, R; Trellue, H R; Hayes, A C; Jungman, G; White, M; Frankle, S; Garrett, P E; Younes, W; Becker, J A


    New measurements performed with the GEANIE {gamma}-ray detector array at LANSCE, and theoretical calculations performed by T-16 have improved the accuracy with which the energy-dependent cross section for production of the long-lived isomer in 193Ir is known. Comparisons with critical assemblies data show excellent agreement. Evaluation work is nearly complete to enable the use of the new data in applied calculations.

  5. 193Ir Mössbauer spectroscopy of Pt-IrO 2 nanoparticle catalysts developed for detection and removal of carbon monoxide from air

    NASA Astrophysics Data System (ADS)

    Sawicki, J. A.; Marcinkowska, K.; Wagner, F. E.


    Mössbauer spectroscopy of 73.0 keV gamma-ray transition in 193Ir and supplementary analytical techniques were used to study the microstructure and chemical form of polymer-supported hydrophobic bimetallic Pt-Ir catalysts for detection and removal of CO from humid air at ambient conditions. The catalysts, typically with a composition of 9 wt.% Pt and 1 wt.% Ir, were prepared by incipient wetness impregnation of polystyrene-divinylbenzene (SDB) granules with ethanol solutions of hexachloroplatinic and hexachloroiridic acids. This procedure, followed by reduction in H 2 or CO at only 200 °C or 250 °C, resulted in formation of highly-dispersed Pt-Ir particles usually smaller than 20 nm and having high catalytic activity and selectivity. Mössbauer spectra of 73.0 keV gamma-ray transition in 193Ir were taken after consecutive steps of preparation and exposure of catalysts to better understand and further improve the fabrication processes. In the as-impregnated state, iridium was found mostly as Ir(III) in [IrCl 6] 3- ions, with only a small fraction of Ir(IV) in [IrCl 6] 2- ions. The iridium in bimetallic clusters formed by reduction in hydrogen showed a strong tendency towards oxidation on exposure to air at room temperature, while Pt remained mostly metallic. In the most active and stable catalysts, the Ir and Pt in metallic regions of the clusters did not tend to segregate, unlike in Pt-Ir/silica-supported catalysts studied by us earlier. Further, this study shows that the IrO 2-like regions in the clusters exhibit stronger deviations from local symmetry and stoichiometry of crystalline IrO 2 than observed previously in Pt-Ir/silica catalysts. Our study also indicates that in the examined Pt-IrO 2 nanoparticles iridium largely provides the dissociative O 2 adsorption sites, while the CO adsorption occurs primarily at metallic Pt sites.

  6. Kak Amerikantsy iskali vetra v pole, a nashli radiatsionnyj poyas i kak Russkie iskali radiatsionnyj poyas, a nashli solnechnyj veter Chast' I %t How Americans looked for "a wind in a field" but found a radiation belt, and how Russians looked for a radiation belt but found a solar wind or physical experiments on the first artificial Earth's satellites and a discovery of radiation belts

    NASA Astrophysics Data System (ADS)

    Zavidonov, I. V.

    The history of the most important scientific discovery of the early space era - the discovery of the inner and outer radiation belts of the Earth in 1958 is reconstructed. The paper uses archival records to bring to light the relative contributions of Soviet and American reseachers to the complex process of discovery. It also shows how misuses of science in mass-media political propaganda led to misrepresentations of the real historical portrayal of early space research.

  7. Method of preparing high specific activity platinum-195m

    SciTech Connect

    Mirzadeh, Saed; Du, Miting; Beets, Arnold L.; Knapp, Jr., Furn F.


    A method of preparing high-specific-activity .sup.195m Pt includes the steps of: exposing .sup.193 Ir to a flux of neutrons sufficient to convert a portion of the .sup.193 Ir to .sup.195m Pt to form an irradiated material; dissolving the irradiated material to form an intermediate solution comprising Ir and Pt; and separating the Pt from the Ir by cation exchange chromatography to produce .sup.195m Pt.

  8. High specific activity platinum-195m

    SciTech Connect

    Mirzadeh, Saed; Du, Miting; Beets, Arnold L.; Knapp, Jr., Furn F.


    A new composition of matter includes .sup.195m Pt characterized by a specific activity of at least 30 mCi/mg Pt, generally made by method that includes the steps of: exposing .sup.193 Ir to a flux of neutrons sufficient to convert a portion of the .sup.193 Ir to .sup.195m Pt to form an irradiated material; dissolving the irradiated material to form an intermediate solution comprising Ir and Pt; and separating the Pt from the Ir by cation exchange chromatography to produce .sup.195m Pt.

  9. Refining Radchem Detectors: Iridium

    NASA Astrophysics Data System (ADS)

    Arnold, C. W.; Bredeweg, T. A.; Vieira, D. J.; Bond, E. M.; Jandel, M.; Rusev, G.; Moody, W. A.; Ullmann, J. L.; Couture, A. J.; Mosby, S.; O'Donnell, J. M.; Haight, R. C.


    Accurate determination of neutron fluence is an important diagnostic of nuclear device performance, whether the device is a commercial reactor, a critical assembly or an explosive device. One important method for neutron fluence determination, generally referred to as dosimetry, is based on exploiting various threshold reactions of elements such as iridium. It is possible to infer details about the integrated neutron energy spectrum to which the dosimetry sample or ``radiochemical detector'' was exposed by measuring specific activation products post-irradiation. The ability of radchem detectors like iridium to give accurate neutron fluence measurements is limited by the precision of the cross-sections in the production/destruction network (189Ir-193Ir). The Detector for Advanced Neutron Capture Experiments (DANCE) located at LANSCE is ideal for refining neutron capture cross sections of iridium isotopes. Recent results from a measurement of neutron capture on 193-Ir are promising. Plans to measure other iridium isotopes are underway.

  10. Cross section measurements for γ-process studies using a LEPS detector

    NASA Astrophysics Data System (ADS)

    Szücs, T.; Kiss, GG; Rauscher, T.; Török, Zs; Halász, Z.; Fülöp, Zs; Gyürky, Gy; Somorjai, E.


    In this paper we present the ongoing experiments at ATOMKI related to our systematic γ-process studies. These studies are intended to enlarge the limited experimental database from α-induced reactions on nuclei in the heavier mass range of the γ -process. In all presented cases the activation method was used. The details of the cross section measurements and preliminary results on115In(α,n)118mSb, 115In(α,γ)119Sb 162Er(α,n)165Yb, 162Er(α,γ)166Yb, 164Er(α,n)167Yb, 166Er(α,n)169Yb 191Ir(α,n)194Au, 191Ir(α,γ)195Au, 193Ir(α,n)196mAu, 193Ir(α,n)196Au reactions are presented.

  11. Preparation of iridium targets by electrodeposition for neutron capture cross section measurements


    Bond, Evelyn M.; Moody, W. Allen; Arnold, Charles; Bredeweg, Todd A.; Jandel, Marian; Rusev, Gencho Y.


    Here, the preparation of 191Ir and 193Ir electrodeposits for neutron capture cross-section measurements at the detector for advanced neutron capture experiments located at the at Los Alamos Neutron Science Center is described. The electrodeposition of iridium in the desired thickness of 0.4–1 mg/cm2 is challenging. Better yields and thicknesses were obtained using electrodeposition from isopropyl alcohol solutions than from ammonium sulfate solutions. 191Ir and 193Ir targets were initially prepared using the standard single-sided electrodeposition cell. Iridium electrodepositions using a double-sided electrodeposition cell were developed and were optimized, resulting in thick, uniform iridium deposits. LA UR 15-22475.


    SciTech Connect



    We describe new method for energy-energy covariance calculation from the thermal energy up to 20 MeV. It is based on three powerful basic components: (i) Atlas of Neutron Resonances in the resonance region; (ii) the nuclear reaction model code EMPIRE in the unresolved resonance and fast neutron regions, and (iii) the Bayesian code KALMAN for correlations and error propagation. Examples for cross section uncertainties and correlations on {sup 90}Zr and {sup 193}Ir illustrate this approach in the resonance and fast neutron regions.

  13. Precise test of internal-conversion theory: transitions measured in five nuclei spanning 50≤Z≤78.


    Hardy, J C; Nica, N; Iacob, V E; Miller, S; Maguire, M; Trzhaskovskaya, M B


    In a research program aimed at testing calculated internal-conversion coefficients (ICCs), we have made precise measurements of αK values for transitions in five nuclei, (197)Pt, (193)Ir, (137)Ba, (134)Cs and (119)Sn, which span a wide range of A and Z values. In all cases, the results strongly favor calculations in which the final-state electron wave function has been computed using a potential that includes the atomic vacancy created by the internal-conversion process.

  14. Studying the R-branch and the Q-branch emission spectral lines of diatomic molecules using improved analytical formula

    NASA Astrophysics Data System (ADS)

    Jiang, Yonghong; Sun, Weiguo; Zhang, Yi; Fu, Jia; Fan, Qunchao; Li, Huidong; Feng, Hao


    The difference converging method (DCM) used to predict the R-branch and the Q-branch high-lying rotational lines for diatomic systems is improved in this study. The key analytical formulae of the DCM method are modified by adding a higher order spectral term Hυ, and adding a physical converging criterion to improve the accuracy of predictions. Applications of the improved DCM method to the R-branch of the TiF molecule and the Q-branch of the 193IrN molecule show that the accuracy of the R-branch and the Q-branch rotational lines is about one order of magnitude better than the results obtained using the previous formulae, which demonstrate the necessity of the added small term Hυ and the physical converging criterion. The DCM results are also shown to be better than the extrapolated rotational lines using the least-squares method.

  15. Alpha-induced reactions in iridium

    SciTech Connect

    Bhardwaj, M.K.; Rizvi, I.A.; Chaubey, A.K. )


    The excitation function of ({alpha},{ital xn}) reactions on {sup 191}Ir (abundance 37.3%) and on {sup 193}Ir (abundance 62.7%) has been measured for the 17--55 MeV alpha-particle bombarding energy range. The stacked foil activation technique and {gamma}-ray spectroscopy were used to determine the cross sections. The experimental data were compared with calculated values obtained by means of a geometry-dependent hybrid model. The initial exciton number {ital n}{sub 0}=4 with {ital n}=2, {ital p}=2, and {ital h}=0 gives the best agreements with the presently measured results. To calculate the excitation function theoretically a computer code was used. This set of excitation functions provides a data basis for probing the validity of combined equilibrium and preequilibrium reaction models in a considerable energy range.

  16. Electronic transitions of iridium monophosphide

    NASA Astrophysics Data System (ADS)

    Yang, M.; Chan, Man-Chor; Cheung, A. S.-C.


    Laser induced fluorescence spectrum of IrP in the near infrared spectral region between 720 and 820 nm has been recorded and analyzed. Six vibrational bands with resolved rotational structure for both 191IrP and 193IrP were analyzed, they have been grouped into three new electronic transitions: the [13.6] Ω = 2 - a3Π2, the [12.3]1Π1-X1Σ+, and the [12.7]1Π1-X1Σ+ transitions. Ab initio calculation results were used to aid the assignment of the observed transitions. A new triplet state has been observed for the first time. The observed electronic states of IrP are compared with those of the isovalent IrN molecule.

  17. Feeding of the 1 1/2- isomers in stable Ir and Au isotopes

    SciTech Connect

    Fotiadis, Nikolaos; Nelson, Ronald O; Devlin, Matthew; Holloway, Shannon T; Kawano, Toshihiko; Talou, Patrick; Chadwick, Mark B; Becker, John A; Garrett, Paul E


    Excited states were studied and absolute partial {gamma}-ray cross sections were measured using the ({eta}, {eta}'{gamma}) reaction in {sup 191}Ir, {sup 193}Ir and {sup 197}Au. A Compton-suppressed germanium-detector array (GEANIE) for {gamma}-ray spectroscopy and the broad-spectrum pulsed neutron source of the Los Alamos Neutron Science Center's WNR facility were used for the measurement. The energy of the incident neutrons was determined using the time-of-flight technique. Absolute partial {gamma}-ray cross sections were measured up to incident neutron energy of 20 MeV for several transitions feeding directly the 1 1/2- isomers and ground states in {sup 191}Ir, {sup 193}Ir and {sup 197}Au. The feeding of the 1 1/2- isomers, which originate from the odd proton occupying the h{sub 1 1/2} orbital, was found for the three targets to be very similar and increasing relative to the feeding of the corresponding ground state with increasing neutron energy up to E{sub n} {approx} 10 MeV. Above this neutron energy the opening of the (n, 2{sub n}) reaction channel strongly affects the population of the isomers and leads to a decrease of their relative population compared to the population of the ground states. The experimental results are compared with theoretical predictions from the GNASH reaction model calculation implementing a version of the spin distribution for the pre-equilibrium reaction piece with either a compound nucleus spin distribution (CN-GNASH) or a Feshbach-Kerman-Koonin (FKK-GNASH) quantum mechanical spin distribution. The effects of the spin cutoff parameter values on the population of states are examined. Evidence is presented that FKK-GNASH provides a description of the experimental data that mitigates the need for adjustment of the level density parameter to fit the data.

  18. Precision mass measurements of some isotopes of tungsten and mercury for an adjustment to the mass table in the region A = 184 to A = 204

    NASA Astrophysics Data System (ADS)

    Barillari, Domenico K.

    This thesis concerns the precise re-measurement of mass values in the region of the mercury isotopes, such that important discrepancies in the high-mass end of the mass table could be resolved. Scope and contents. Four mass spectroscopic doublets involving a comparison between 201Hg, 199Hg and 183W (and using a chlorocarbon reference) are reported from measurements made with the upgraded Manitoba 11 deflection instrument. The measurements address the problem of a mass table mis-adjustment in the region of the valley of β-stability between the tungsten group and the noble metals. The results, forming a well-closed loop of mass differences, support the earlier results of Kozier [Ko(1977)] regarding the (stable) mercury isotope masses and confirm an approximate 20 μu discrepancy in the mass adjustment of Audi et al [Au(1993)]. A local least- square re-adjustment conducted using these and existing mass table data suggests that the error originates with mass differences pertaining to one or more other nuclide pairs, perhaps 193Ir-192Ir. The work on upgrading the precision voltage supply and potentiometry system of the Manitoba II instrument is also reported, as is a new assessment on the data processing method. (Abstract shortened by UMI.)

  19. Investigation of the generation of several long-lived radionuclides of importance in fusion reactor technology: Report on a Coordinated Research Program sponsored by the International Atomic Energy Agency

    SciTech Connect

    Smith, D.L.; Pashchenko, A.B.


    The IAEA initiated a Coordinated Research Program (CRP) in 1988 to obtain reliable information for 16 long-lived activation reactions of special importance to fusion reactor technology: {sup 27}Al (n, 2n){sup 26}Al, {sup 63}Cu(n,p){sup 63}Ni, {sup 94}Mo(n,p) {sup 94}Nb, {sup 109}Ag(n,2n){sup 108m}Ag, {sup 179}Hf(n,2n) {sup 178m2}Hf, {sup 182}W(n,n{sup `}a){sup 178m2}Hf, {sup 151}Eu(n,2n) {sup 150}gEu, {sup 153}Eu(n,2n){sup 152+m2}Eu, {sup 159}Tb(n, 2n){sup 158}Tb, {sup 158}Dy(n,p){sup 158}Tb, {sup 193}Ir(n,2n) {sup 192m2}Ir, {sup 187}Re(n,2n){sup 186m}Re, {sup 62}Ni(n{gamma}) {sup 63}Ni, {sup 98}Mo(n,{gamma}){sup 99}Mo({beta}-){sup 99}Tc, {sup 165}Ho(n,{gamma}) {sup 166m}Ho and {sup 191}Ir(n,{gamma}){sup 192m2}Ir. this paper documents progress achieved from the start of the program through mid- 1993.

  20. Laser Spectroscopy of Iridium Monochloride

    NASA Astrophysics Data System (ADS)

    Linton, Colan; Adam, Allan G.; Foran, Samantha; Ma, Tongmei; Steimle, Timothy


    Iridium monochloride (IrCl) molecules have been produced in the gas phase using laser ablation sources at the University of New Brunswick (UNB) and Arizona State University (ASU). Low resolution laser induced fluorescence (LIF) spectra, obtained at UNB using a pulsed dye laser, showed three bands at 557, 545 and 534 nm which appeared to form an upper state vibrational progression. Dispersed fluorescence (DF) spectra, obtained by exciting each band at its band head frequency, showed a ground state vibrational progression extending from v=0 to 6. High resolution spectra (FWHM=0.006 wn), taken using a cw ring dye laser, showed resolved rotational lines, broadened by unresolved Ir (I=3/2) hyperfine structure, in both the 193Ir35Cl and 191Ir35Cl isotopologues. Vibrational assignments of 0-0, 1-0 and 2-0 for the three bands were determined from the isotope structure and the rotational analysis showed the transition to be ^3Φ_4 - ^3Φ_4, similar to that previously observed in IrF. Higher resolution spectra (FWHM=0.001 wn) of the 1-0 band, obtained at ASU, showed resolved hyperfine structure from which the magnetic and quadrupole hyperfine parameters in the ground and excited states were determined. The interpretation of the hyperfine parameters in terms of the electron configurations will be presented along with a comparison of the properties of IrCl and IrF.

  1. IER-163 Post-Experiment MCNP Calculations (U)

    SciTech Connect

    Favorite, Jeffrey A.


    IER-163 has been modeled with high fidelity in MCNP6. The model k{sub eff} was high, as in other similar calculations. The fission ratio {sup 238}U(n,f)/{sup 235}U(n,f) was 12.6% too small compared with measurements; the ratio {sup 239}Pu(n,f)/{sup 235}U(n,f) was 11.5% too small compared with measurements; the iridium ratio {sup 193}Ir(n,n{prime})/{sup 191}Ir(n,{gamma}) was 16.4% too large; and the gold ratios {sup 197}Au(n,2n)/{sup 197}Au(n,{gamma}), {sup 197}Au(n,2n)/{sup 235}U(n,f), and {sup 197}Au(n,{gamma})/{sup 235}U(n,f) were within one standard deviation of the measured values. It is suggested that the calculated {sup 235}U fission rate is too large and the calculated {sup 238}U fission rate is too small.


    SciTech Connect



    This is the final report of the work performed under the LANL contract on neutron cross section evaluations for ENDF/B-VII (April 2005-May 2006). The purpose of the contract was to ensure seamless integration of the LANL neutron cross section evaluations in the new ENDF/B-VII library. The following work was performed: (1) LANL evaluated data files submitted for inclusion in ENDF/B-VII were checked and, when necessary, formal formatting errors were corrected. As a consequence, ENDF checking codes, run on all LANL files, do not report any errors that would rise concern. (2) LANL dosimetry evaluations for {sup 191}Ir and {sup 193}Ir were completed to match ENDF requirements for the general purpose library suitable for transport calculations. A set of covariances for both isotopes is included in the ENDF files. (3) Library of fission products was assembled and successfully tested with ENDF checking codes, processed with NJOY-99.125 and simple MCNP calculations. (4) KALMAN code has been integrated with the EMPIRE system to allow estimation of covariances based on the combination of measurements and model calculations. Covariances were produced for 155,157-Gd and also for 6 remaining isotopes of Gd.

  3. Nuclear Data Sheets for A = 194

    NASA Astrophysics Data System (ADS)

    Browne, E.; Singh, B.


    Abstract:Experimental data pertaining to all nuclei with mass A = 194 were evaluated. Level schemes from both radioactive decay and reaction studies are presented, along with associated tables of experimental data and adopted properties for levels and γ rays. The literature cutoff date for this revision is September 30, 1996. This revision replaces 89SiO1. Extensive high-spin experiments using large gamma-detector arrays have revealed superdeformed structures in 194Hg (three SD bands: Yrast and pair of excited signature partners), 194Tl (six SD bands: Three pairs of signature partners), and 194Pb (three SD bands: Yrast and pair of excited signature partners). For yrast bands (SD-1) in 194Hg and 194Pb, connecting transitions between the SD band and normal bands have recently (96Kh04, 96Lo12,96Br07) been reported. Several dipole (oblate) bands in 194Pb, some based on high-K (oblate) states have been reported from similar in-beam γ-ray experiments. New γγ coincidence measurements (93Ko59, 94KoZQ) using the 193Ir(n,γ) reaction helped to place several transitions in the level scheme and established the 31.85-ms 194Ir isomer at 147.078 KeV 5. Results from the first study of the 193Ir(d,p) reaction (94Ga30) agree with those from (n,γ). Unpublished (95TeZZ) γγ coincidence results (using HERA, an array of 20 intrinsic germanium detectors) revealed a new level in 194Pt at 1737.4 KeV. It also provided correct placement in the decay scheme for many γ rays from 194Au ɛ decay. Recent measurements (92Hu04) of the α-decay chain 202Fr- 196At- 194Bi confirm the existence of 194Bi isomers, and show population to previously unknown levels at 218 and 396 KeV in 194Bi. Cutoff Date:All data received by September 30, 1996 were evaluated. General Policies and Organization of Material:See the January issue of Nuclear Data Sheets. Acknowledgments:Evaluators wish to thank R.R.P. Teixeira (95TeZZ) for making available their unpublished data on 194Au ɛ decay. General Comments

  4. High-precision determination of {sup 234}U/{sup 238}U activity ratios in natural waters and carbonates by ICPMS

    SciTech Connect

    Ketterer, M.E.; Khourey, C.J.


    A method has been developed for precise measurement of {sup 234}U/{sup 238}U activity ratios in natural waters and carbonates using quadrupole inductively coupled plasma mass spectrometry. A recovery of 80--85% of seawater U is achieved by Fe(III) coprecipitation followed by extraction chromatography with a supported dipentyl pentane phosphonate material; 90--95% of U is recovered from carbonates, which are dissolved in HNO{sub 3} and subjected to the same extraction chromatographic preparation. Isotopic measurements are made via recirculating pneumatic nebulization of small volumes of solutions containing 0.5--5 mg/L U. {sup 234}U/{sup 235}U is measured as a proxy for determination of {sup 234}U/{sup 238}U; iridium is added to sample solutions and the ion ratio {sup 191}Ir{sup 40}Ar{sup +}/{sup 193}Ir{sup 40}Ar{sup +} is measured for internal mass discrimination correction {sup 234}U/{sup 238}U activity ratios in the range 1.143--1.154 are observed for 13 seawater and contemporary corals, in agreement with the established marine {sup 234}U/{sup 238}U activity ratio. For samples sizes of 5--25 {micro}g U, ICPMS uncertainties of {+-} 0.2--0.5% relative, 2{theta} standard error, approach those obtained for < 0.1 {micro}g U by thermal ionization mass spectrometry. Measurements of {sup 234}U/{sup 238}U activity ratios in bottled waters, Lake Erie surface waters, mollusk fossils, and fertilizers are also demonstrated.

  5. Evaluation of laser-induced breakdown spectroscopy analysis potential for addressing radiological threats from a distance

    NASA Astrophysics Data System (ADS)

    Gaona, I.; Serrano, J.; Moros, J.; Laserna, J. J.


    Although radioactive materials are nowadays valuable tools in nearly all fields of modern science and technology, the dangers stemming from the uncontrolled use of ionizing radiation are more than evident. Since preparedness is a key issue to face the risks of a radiation dispersal event, development of rapid and efficient monitoring technologies to control the contamination caused by radioactive materials is of crucial interest. Laser-induced breakdown spectroscopy (LIBS) exhibits appealing features for this application. This research focuses on the assessment of LIBS potential for the in-situ fingerprinting and identification of radioactive material surrogates from a safe distance. LIBS selectivity and sensitivity to detect a variety of radioactive surrogates, namely 59Co, 88Sr, 130Ba, 133Cs, 193Ir and 238U, on the surface of common urban materials at a distance of 30 m have been evaluated. The performance of the technique for nuclear forensics has been also studied on different model scenarios. Findings have revealed the difficulties to detect and to identify the analytes depending on the surface being interrogated. However, as demonstrated, LIBS shows potential enough for prompt and accurate gathering of essential evidence at a number of sites after the release, either accidental or intentional, of radioactive material. The capability of standoff analysis confers to LIBS unique advantages in terms of fast and safe inspection of forensic scenarios. The identity of the radioactive surrogates is easily assigned from a distance and the sensitivity to their detection is in the range of a few hundreds of ng per square centimeter.

  6. Evaluated Iridium, Yttrium, and Thulium Cross Sections and Integral Validation Against Critical Assembly and Bethe Sphere Measurements

    SciTech Connect

    Chadwick, M.B. Frankle, S.; Trellue, H.; Talou, P.; Kawano, T.; Young, P.G.; MacFarlane, R.E.; Wilkerson, C.W.


    D-U spheres and the fast critical assemblies), the (n,2n) products are overpredicted by 5-30 % for the three detectors, suggesting either the threshold region (n,2n) cross sections are too high, or that the MCNP-simulated neutron flux is too large for neutron energies above about 8 MeV; (3) Capture: The capture products for yttrium are modeled accurately for the LiD Bethe spheres, but are underpredicted by about 20% for the LiD-U Bethe spheres and the critical assemblies; for iridium-191 they are predicted accurately in the critical assemblies; and for thulium they are generally overpredicted by 10-30 %; (4) Inelastic scattering in iridium: The evaluated {sup 193}Ir(n,n{sup '}){sup 193m}Ir cross section performs well over a very wide range of neutron spectra (where the 193m/190 spectrum hardness index varies by over three orders of magnitude), the differences between simulation and experiment typically being better than 10-15%; (5) Iridium 193m/190 spectrum hardness index: Our simulations reproduce the measured 193m/190 data typically to better than 10-20% over three orders of magnitude in the 193m/190 ratio. The aforementioned indications from data testing involving assemblies containing actinides - that the (n,2n) products are overpredicted by 5-30% - could be used to motivate a decrease in the evaluated (n,2n) cross sections in the approximately 8-12 MeV range. However, at this stage we have not modified these cross sections since: (a) They are consistent with the cross section laboratory measurements; and (b) It is possible that the cross sections are correct and instead the simulated integral assembly neutron spectrum is too high for neutron energies above 8 MeV. The latter possibility is particularly intriguing given all three detector materials showed a bias in the same direction, and that the evaluated actinide prompt fission spectra and inelastic scattering data are probably uncertain to at least 20% above 8 MeV. We also discuss refinements needed in the transport