Science.gov

Sample records for 193nm scanner lithography

  1. Carbon dioxide gas purification and analytical measurement for leading edge 193nm lithography

    NASA Astrophysics Data System (ADS)

    Riddle Vogt, Sarah; Landoni, Cristian; Applegarth, Chuck; Browning, Matt; Succi, Marco; Pirola, Simona; Macchi, Giorgio

    2015-03-01

    The use of purified carbon dioxide (CO2) has become a reality for leading edge 193 nm immersion lithography scanners. Traditionally, both dry and immersion 193 nm lithographic processes have constantly purged the optics stack with ultrahigh purity compressed dry air (UHPCDA). CO2 has been utilized for a similar purpose as UHPCDA. Airborne molecular contamniation (AMC) purification technologies and analytical measurement methods have been extensively developed to support the Lithography Tool Manufacturers purity requirements. This paper covers the analytical tests and characterizations carried out to assess impurity removal from 3.0 N CO2 (beverage grade) for its final utilization in 193 nm and EUV scanners.

  2. Inorganic immersion fluids for ultrahigh numerical aperture 193 nm lithography

    NASA Astrophysics Data System (ADS)

    Zhou, Jianming; Fan, Yongfa; Bourov, Anatoly; Smith, Bruce W.

    2006-05-01

    Immersion lithography has become attractive since it can reduce critical dimensions by increasing numerical aperture (NA) beyond unity. Among all the candidates for immersion fluids, those with higher refractive indices and low absorbance are desired. Characterization of the refractive indices and absorbance of various inorganic fluid candidates has been performed. To measure the refractive indices of these fluids, a prism deviation angle method was developed. Several candidates have been identified for 193 nm application with refractive indices near 1.55, which is approximately 0.1 higher than that of water at this wavelength. Cauchy parameters of these fluids were generated and approaches were investigated to tailor the fluid absorption edges to be close to 193 nm. The effects of these fluids on photoresist performance were also examined with 193 nm immersion lithography exposure at various NAs. Half-pitch 32 nm lines were obtained with phosphoric acid as the immersion medium at 1.5 NA. These fluids are potential candidates for immersion lithography technology.

  3. Novel high refractive index fluids for 193nm immersion lithography

    NASA Astrophysics Data System (ADS)

    Santillan, Julius; Otoguro, Akihiko; Itani, Toshiro; Fujii, Kiyoshi; Kagayama, Akifumi; Nakano, Takashi; Nakayama, Norio; Tamatani, Hiroaki; Fukuda, Shin

    2006-03-01

    Despite the early skepticism towards the use of 193-nm immersion lithography as the next step in satisfying Moore's law, it continuous to meet expectations on its feasibility in achieving 65-nm nodes and possibly beyond. And with implementation underway, interest in extending its capability for smaller pattern sizes such as the 32-nm node continues to grow. In this paper, we will discuss the optical, physical and lithographic properties of newly developed high index fluids of low absorption coefficient, 'Babylon' and 'Delphi'. As evaluated in a spectroscopic ellipsometer in the 193.39nm wavelength, the 'Babylon' and 'Delphi' high index fluids were evaluated to have a refractive index of 1.64 and 1.63 with an absorption coefficient of 0.05/cm and 0.08/cm, respectively. Lithographic evaluation results using a 193-nm 2-beam interferometric exposure tool show the imaging capability of both high index fluids to be 32-nm half pitch lines and spaces.

  4. High-index nanocomposite photoresist for 193-nm lithography

    NASA Astrophysics Data System (ADS)

    Bae, Woo Jin; Trikeriotis, Makros; Rodriguez, Robert; Zettel, Michael F.; Piscani, Emil; Ober, Christopher K.; Giannelis, Emmanuel P.; Zimmerman, Paul

    2009-03-01

    In immersion lithography, high index fluids are used to increase the numerical aperture (NA) of the imaging system and decrease the minimum printable feature size. Water has been used in first generation immersion lithography at 193 nm to reach the 45 nm node, but to reach the 38 and 32 nm nodes, fluids and resists with a higher index than water are needed. A critical issue hindering the implementation of 193i at the 32 nm node is the availability of high refractive index (n > 1.8) and low optical absorption fluids and resists. It is critical to note that high index resists are necessary only when a high refractive index fluid is in use. High index resist improves the depth of focus (DOF) even without high index fluids. In this study, high refractive index nanoparticles have been synthesized and introduced into a resist matrix to increase the overall refractive index. The strategy followed is to synthesize PGMEA-soluble nanoparticles and then disperse them into a 193 nm resist. High index nanoparticles 1-2 nm in diameter were synthesized by a combination of hydrolysis and sol-gel methods. A ligand exchange method was used, allowing the surface of the nanoparticles to be modified with photoresist-friendly moieties to help them disperse uniformly in the resist matrix. The refractive index and ultraviolet absorbance were measured to evaluate the quality of next generation immersion lithography resist materials.

  5. Nanocomposite liquids for 193 nm immersion lithography: a progress report

    NASA Astrophysics Data System (ADS)

    Chumanov, George; Evanoff, David D., Jr.; Luzinov, Igor; Klep, Viktor; Zdryko, Bogdan; Conley, Will; Zimmerman, Paul

    2005-05-01

    Immersion lithography is a new promising approach capable of further increasing the resolution of semiconductor devices. This technology requires the development of new immersion media that satisfy the following conditions: the media should have high refractive index, be transparent and photochemically stable in DUV spectral range. They should also be inert towards photoresists and optics and be liquid to permit rapid scanning. Here we propose and explore a novel strategy in which high refractive index medium is made of small solid particles suspended in liquid phases (nanocomposite liquids). The dielectric particles have high refractive index and the refractive index of nanocomposite liquids becomes volume weighted average between refractive indices of nanoparticles and the liquid phase. We investigate aluminum oxide (alumina) nanoparticles suspended in water. Alumina is known to have high (1.95) refractive index and low absorption coefficient at 193 nm. Alumina nanoparticles were prepared by chemical methods followed by removal of organic molecules left after hydrolysis reactions. Measurements of optical and reological properties of the nanocomposite liquid demonstrated potential advantage of this approach for 193 nm immersion lithography.

  6. Defectivity reduction by optimization of 193-nm immersion lithography using an interfaced exposure-track system

    NASA Astrophysics Data System (ADS)

    Carcasi, Michael; Hatakeyama, Shinichi; Nafus, Kathleen; Moerman, Richard; van Dommelen, Youri; Huisman, Peter; Hooge, Joshua; Scheer, Steven; Foubert, Philippe

    2006-03-01

    As the integration of semiconductor devices continues, pattern sizes required in lithography get smaller and smaller. To achieve even more scaling down of these patterns without changing the basic infrastructure technology of current cutting-edge 193-nm lithography, 193-nm immersion lithography is being viewed as a powerful technique that can accommodate next-generation mass productions needs. Therefore this technology has been seriously considered and after proof of concept it is currently entering the stage of practical application. In the case of 193-nm immersion lithography, however, because liquid fills the area between the projection optics and the silicon wafer, several causes of concern have been raised - namely, diffusion of moisture into the resist film due to direct resist-water interaction during exposure, dissolution of internal components of the resist into the de-ionized water, and the influence of residual moisture generated during exposure on post-exposure processing. To prevent these unwanted effects, optimization of the three main components of the lithography system: materials, track and scanner, is required. For the materials, 193nm resist formulation improvements specifically for immersion processing have reduced the leaching and the sensitivity to water related defects, further benefits can be seen by the application of protective top coat materials. For the track component, optimization of the processing conditions and immersion specific modules are proven to advance the progress made by the material suppliers. Finally, by optimizing conditions on the 3 rd generation immersion scanner with the latest hardware configuration, defectivity levels comparable to dry processing can be achieved. In this evaluation, we detail the improvements that can be realized with new immersion specific track rinse modules and formulate a hypothesis for the improvements seen with the rinsing process. Additionally, we show the current status of water induced

  7. High-index optical materials for 193nm immersion lithography

    NASA Astrophysics Data System (ADS)

    Burnett, John H.; Kaplan, Simon G.; Shirley, Eric L.; Horowitz, Deane; Clauss, Wilfried; Grenville, Andrew; Van Peski, Chris

    2006-03-01

    We report on our comprehensive survey of high-index UV optical materials that may enable extension of immersion lithography beyond a numerical aperture of 1.45. Band edge, refractive index, and intrinsic birefringence (IBR) at 193 nm determine basic viability. Our measurements of these properties have reduced the list of potential candidates to: ceramic spinel, lutetium aluminum garnet, and a class of germanium garnets. We discuss our measurements of the intrinsic properties of these materials and assess the present status of their material quality relative to requirements. Ceramic spinel has no significant IBR, but transmission and scatter for the best samples remain at least two orders of magnitude from specifications. Improving these would require a major development effort. Presently available lutetium aluminum garnet has material quality much closer to the specifications. However, the IBR is about three times the required value. The germanium garnets offer the possibility of a lower IBR, but a suitable candidate material has yet to be established.

  8. Adamantane based molecular glass resist for 193 nm lithography

    NASA Astrophysics Data System (ADS)

    Tanaka, Shinji; Ober, Christopher K.

    2006-03-01

    As the feature dimensions decreases there are several issues must be addressed to implement the corresponding technology in high volume production. Line width roughness (LWR) and line edge roughness (LER) are the most important technological issue arises as the feature dimension decreases. In order to improve both of LWR and LER, we have developed novel low molecular weight glass resists as high performance resist materials. These molecular glass resists are adamantane derivatives and are highly transparent at 193 nm. We have prepared series of new molecular glass resists based on adamantane core carrying acetal and ester protecting groups. Particularly, adamantane core derivatives of tripod structure were investigated in detail. Several compositions of them showed glass transition temperatures (Tg) above 120 °C. Lithographic evaluation confirmed their high sensitivity at 254 nm and e-beam exposure. It also resolved feature size as small as 200 nm line/space when it evaluated using e-beam lithography. These new molecular glass resists also have high plasma-etch resistance.

  9. Alternatives to chemical amplification for 193nm lithography

    NASA Astrophysics Data System (ADS)

    Baylav, Burak; Zhao, Meng; Yin, Ran; Xie, Peng; Scholz, Chris; Smith, Bruce; Smith, Thomas; Zimmerman, Paul

    2010-04-01

    Research has been conducted to develop alternatives to chemically amplified 193 nm photoresist materials that will be able to achieve the requirements associated with sub-32 nm device technology. New as well as older photoresist design concepts for non-chemically amplified 193 nm photoresists that have the potential to enable improvements in line edge roughness while maintaining adequate sensitivity, base solubility, and dry etch resistance for high volume manufacturing are being explored. The particular platforms that have been explored in this work include dissolution inhibitor photoresist systems, chain scissioning polymers, and photoresist systems based on polymers incorporating formyloxyphenyl functional groups. In studies of two-component acidic polymer/dissolution inhibitor systems, it was found that compositions using ortho-nitrobenzyl cholate (NBC) as the dissolution inhibitor and poly norbornene hexafluoro alcohol (PNBHFA) as the base resin are capable of printing 90 nm dense line/space patterns upon exposure to a 193 nm laser. Studies of chain scission enhancement in methylmethacrylate copolymers showed that incorporating small amounts of absorptive a-cleavage monomers significantly enhanced sensitivity with an acceptable increase in absorbance at 193 nm. Specifically, it was found that adding 3 mol% of α-methyl styrene (α-MS) reduced the dose to clear of PMMA-based resist from 1400 mJ/cm2 to 420 mJ/cm2. Preliminary data are also presented on a direct photoreactive design concept based on the photo-Fries reaction of formyloxyphenyl functional groups in acrylic copolymers.

  10. Modeling chemically amplified resists for 193-nm lithography

    NASA Astrophysics Data System (ADS)

    Croffie, Ebo H.; Cheng, Mosong; Neureuther, Andrew R.; Houlihan, Francis M.; Cirelli, Raymond A.; Sweeney, James R.; Dabbagh, Gary; Watson, Pat G.; Nalamasu, Omkaram; Rushkin, Ilya L.; Dimov, Ognian N.; Gabor, Allen H.

    2000-06-01

    Post exposure bake (PEB) models in the STORM program have been extended to study pattern formation in 193 nm chemically amplified resists. Applications to resists formulated with cycloolefin-maleic anhydride copolymers, cholate based dissolution inhibitor, nonaflate photoacid generator and base quencher are presented. The PEB modeling is based on the chemical and physical mechanisms including the thermally induced deprotection reaction, acid loss due to base neutralization and protected-sites-enhanced acid diffusion. Simplifying assumptions are made to derive analytical expressions for PEB. The model parameters are extracted from the following experiments. UV-visible spectroscopy is used to extract the resist absorbance parameters. The generation of acid is monitored using the method of 'base additions.' The extent of deprotection that occurs during the bake is determined by monitoring the characteristic FTIR absorbance band around 1170 cm-1 over a range of exposure doses and bake temperatures. Diffusion parameters are extracted from line end shortening (LES) measurements. These parameters are optimized using the Method of Feasible Directions algorithm. Application results show good agreement with experimental data for different LES features.

  11. Design, synthesis, and characterization of fluorine-free PAGs for 193-nm lithography

    NASA Astrophysics Data System (ADS)

    Liu, Sen; Glodde, Martin; Varanasi, Pushkara R.

    2010-04-01

    Photoacid generators (PAGs) are a key component in chemically amplified resists used in photolithography. Perfluorooctanesulfonates (PFOS) and other perfluoroalkylsulfonates (PFAS) have been well adopted as PAGs in 193 nm photoresist. Recently, concerns have been raised about their environmental impact due to their chemical persistency, bioaccumulation and toxicity. It is a general interest to find environmentally benign PAGs that are free of fluorine atoms. Here we describe the design, synthesis and characterization of a series of novel fluorine-free onium salts as PAGs for 193 nm photoresists. These PAGs demonstrated desirable physical and lithography properties when compared with PFAS-based PAGs for both dry and immersion exposures.

  12. Study of barrier coats for application in immersion 193-nm lithography

    NASA Astrophysics Data System (ADS)

    Houlihan, Francis; Kim, Wookyu; Sakamuri, Raj; Hamilton, Keino; Dimerli, Alla; Abdallah, David; Romano, Andrew; Dammel, Ralph R.; Pawlowski, Georg; Raub, Alex; Brueck, Steve

    2005-05-01

    We will describe our barrier coat approach for use in immersion 193 nm lithography. These barrier coats may act as either simple barriers providing protection against loss of resist components into water or in the case of one type of these formulations which have a refractive index at 193 nm which is the geometric mean between that of the resist and water provide, also top antireflective properties. Either type of barrier coat can be applied with a simple spinning process compatible with PGMEA based resin employing standard solvents such as alcohols and be removed during the usual resist development process with aqueous 0.26 N TMAH. We will discuss both imaging results with these materials on acrylate type 193 nm resists and also show some fundamental studies we have done to understand the function of the barrier coat and the role of differing spinning solvents and resins. We will show LS (55 nm) and Contact Hole (80 nm) resolved with a 193 nm resist exposed with the interferometric tool at the University of New Mexico (213 nm) with and without the use of a barrier coat.

  13. Chemical trimming overcoat: an enhancing composition and process for 193nm lithography

    NASA Astrophysics Data System (ADS)

    Liu, Cong; Rowell, Kevin; Joesten, Lori; Baranowski, Paul; Kaur, Irvinder; Huang, Wanyi; Leonard, JoAnne; Jeong, Hae-Mi; Im, Kwang-Hwyi; Estelle, Tom; Cutler, Charlotte; Pohlers, Gerd; Yin, Wenyan; Fallon, Patricia; Li, Mingqi; Jeon, Hyun; Xu, Cheng Bai; Trefonas, Pete

    2016-03-01

    As the critical dimension of devices is approaching the resolution limit of 193nm photo lithography, multiple patterning processes have been developed to print smaller CD and pitch. Multiple patterning and other advanced lithographic processes often require the formation of isolated features such as lines or posts by direct lithographic printing. The formation of isolated features with an acceptable process window, however, can pose a challenge as a result of poor aerial image contrast at defocus. Herein we report a novel Chemical Trimming Overcoat (CTO) as an extra step after lithography that allows us to achieve smaller feature size and better process window.

  14. Front-end-of-line process development using 193-nm lithography

    NASA Astrophysics Data System (ADS)

    Pollentier, Ivan K.; Ercken, Monique; Eliat, Astrid; Delvaux, Christie; Jaenen, Patrick; Ronse, Kurt G.

    2001-04-01

    It is expected that 193nm lithography will be introduced in front-end-of-line processing for all critical layers at the 100nm node, and possibly also for some layers at the 130nm node, where critical layers are required to have the lowest mask cost. These processes are currently being investigated at IMEC for CMOS logic applications. While the lithographic performance of 193 nm resists has improved significantly in the last year, most materials still have important processing issues that need further improvement. On one hand, the resists material itself suffers from for example poor dry etch resistance and SEM CD shrinkage. On the other hand, interaction with other materials such as SiON inorganic ARCs becomes more challenging in terms of footing behavior, adhesion, and line edge roughness. In this paper, the 193nm processing experience gained at IMEC will be outlined, as well as solutions for manufacturability. Front- end-of-line integration results will also be shown, mainly for gate applications. It will be demonstrated that currently several commercial resist are capable of printing 130nm gates within the +/- 10 percent CD tolerance, even after gate etch. The impact of line edge roughness will also be discussed. Finally, the feasibility of printing 100nm logic patterns using only binary masks has been demonstrated, including gate etch.

  15. Radiation sensitive developable bottom anti-reflective coatings (DBARC) for 193nm lithography: first generation

    NASA Astrophysics Data System (ADS)

    Toukhy, Medhat; Oberlander, Joseph; Mullen, Salem; Lu, PingHung; Neisser, Mark

    2007-03-01

    A first generation DBARC applicable for 1 st minimum 193nm lithography is described in this paper. The polymer used in this DBARC is insoluble in the casting solvent of the resist, which is propyleneglycolmonomethyletheracetate (PGMEA). Photo acid generator (PAG) and base extractions from the DBARC coating by the resist casting solvent were examined by the DBARC dissolution rates in the developer, before and after solvent treatments. Although the resist and the DBARC do not appear to intermix, strong interaction between the two is evident by their lithographic performance and dissolution rate study.

  16. Top surface imaging through vapor phase silylation for 193 nm lithography

    NASA Astrophysics Data System (ADS)

    Somervell, Mark Howell

    temperatures were synthesized. Using these alicyclic polymers at 193 nm produces high resolution features with greatly decreased LER. This dissertation describes the synthesis and characterization of these TSI polymers and their application to 193 nm lithography. Also, the fundamental physical mechanisms that control the silylation process are discussed.

  17. 193nm immersion lithography for high-performance silicon photonic circuits

    NASA Astrophysics Data System (ADS)

    Selvaraja, Shankar K.; Winroth, Gustaf; Locorotondo, Sabrina; Murdoch, Gayle; Milenin, Alexey; Delvaux, Christie; Ong, Patrick; Pathak, Shibnath; Xie, Weiqiang; Sterckx, Gunther; Lepage, Guy; Van Thourhout, Dries; Bogaerts, Wim; Van Campenhout, Joris; Absil, Philippe

    2014-04-01

    Large-scale photonics integration has been proposed for many years to support the ever increasing requirements for long and short distance communications as well as package-to-package interconnects. Amongst the various technology options, silicon photonics has imposed itself as a promising candidate, relying on CMOS fabrication processes. While silicon photonics can share the technology platform developed for advanced CMOS devices it has specific dimension control requirements. Though the device dimensions are in the order of the wavelength of light used, the tolerance allowed can be less than 1% for certain devices. Achieving this is a challenging task which requires advanced patterning techniques along with process control. Another challenge is identifying an overlapping process window for diverse pattern densities and orientations on a single layer. In this paper, we present key technology challenges faced when using optical lithography for silicon photonics and advantages of using the 193nm immersion lithography system. We report successful demonstration of a modified 28nm- STI-like patterning platform for silicon photonics in 300mm Silicon-On-Insulator wafer technology. By careful process design, within-wafer CD variation (1sigma) of <1% is achieved for both isolated (waveguides) and dense (grating) patterns in silicon. In addition to dimensional control, low sidewall roughness is a crucial to achieve low scattering loss in the waveguides. With this platform, optical propagation loss as low as ~0.7 dB/cm is achieved for high-confinement single mode waveguides (450x220nm). This is an improvement of >20 % from the best propagation loss reported for this cross-section fabricated using e-beam lithography. By using a single-mode low-confinement waveguide geometry the loss is further reduced to ~0.12 dB/cm. Secondly, we present improvement in within-device phase error in wavelength selective devices, a critical parameter which is a direct measure of line

  18. Next-generation 193-nm laser for sub-100-nm lithography

    NASA Astrophysics Data System (ADS)

    Duffey, Thomas P.; Blumenstock, Gerry M.; Fleurov, Vladimir B.; Pan, Xiaojiang; Newman, Peter C.; Glatzel, Holger; Watson, Tom A.; Erxmeyer, J.; Kuschnereit, Ralf; Weigl, Bernhard

    2001-09-01

    The next generation 193 nm (ArF) laser has been designed and developed for high-volume production lithography. The NanoLithTM 7000, offering 20 Watts average output power at 4 kHz repetition rates is designed to support the highest exposure tool scan speeds for maximum productivity and wafer throughput. Fundamental design changes made to the laser core technologies are described. These advancements in core technology support the delivery of highly line-narrowed light with lithography, meeting specifications for bandwidth, dose stability (+/- 0.3% in 20 ms window) and wavelength stability (+/- 0.05 pm average line center error in 20 ms window) across 2 - 4 kHz repetition rates. Improvements in optical materials and coatings have led to increased lifetime of optics modules. Optimization of the discharge electrode design has increased chamber lifetime. Early life-testing indicates that the NanoLithTM core technologies have the potential for 400% reduction of cost of consumables as compared to its predecessor, the ELX-5000A and has been discussed elsewhere.

  19. Novel low-reflective index fluoropolymers-based top anti-reflective coatings (TARC) for 193-nm lithography

    NASA Astrophysics Data System (ADS)

    Yamashita, Tsuneo; Hayami, Takashi; Ishikawa, Takuji; Kanemura, Takashi; Aoyama, Hirokazu

    2007-03-01

    Implant lithography, which has up to now utilized 365-nm (i-line) and 248-nm (KrF) light sources, must now turn to 193-nm (ArF) sources. In implant lithography, an anti-reflective material is often used to coat the resist-film. The top anti-reflective coating (abbreviated to TARC) is most often used to reduce CD swing. TARC materials must have low refractive index and water solubility. The TARC materials for used 193-nm use must have very low reflective index and alternatives to perfluorooctylsulfonic acid (PFOS) and perfluorooctanoic acid (PFOA) must be found. We synthesized some novel fluorinated amorphous polymers as 193-nm TARC candidates. Their fundamental properties were characterized, such as transparency and reflective index at 193-nm (wavelength) along with their solubility in water and a standard alkaline developer. High transparency, i.e., k value less than 0.01, and very low reflective index, i.e., lower than n=1.4 at 193-nm wavelength are confirmed. Their dissolution behaviors are studied using the Quartz Crystal Microbalance (QCM) method. In surprise finding, we find that several of the polymers examined, those that have high fluorine content, dissolved in water. Test results show that the proposed polymers can be applied as top anti reflective coatings .

  20. Extremely long life and low-cost 193nm excimer laser chamber technology for 450mm wafer multipatterning lithography

    NASA Astrophysics Data System (ADS)

    Tsushima, Hiroaki; Katsuumi, Hisakazu; Ikeda, Hiroyuki; Asayama, Takeshi; Kumazaki, Takahito; Kurosu, Akihiko; Ohta, Takeshi; Kakizaki, Kouji; Matsunaga, Takashi; Mizoguchi, Hakaru

    2014-04-01

    193nm ArF excimer lasers are widely used as light sources for the lithography process of semiconductor production. 193nm ArF exicmer lasers are expected to continue to be the main solution in photolithography, since advanced lithography technologies such as multiple patterning and Self-Aligned Double Patterning (SADP) are being developed. In order to apply these technologies to high-volume semiconductor manufacturing, the key is to reduce the total operating cost. To reduce the total operating cost, life extension of consumable part and reduction of power consumption are an important factor. The chamber life time and power consumption are a main factor to decide the total operating cost. Therefore, we have developed the new technology for extension of the chamber life time and low electricity consumption. In this paper, we will report the new technology to extend the life time of the laser chamber and to reduce the electricity consumption.

  1. Extension of 193 nm dry lithography to 45-nm half-pitch node: double exposure and double processing technique

    NASA Astrophysics Data System (ADS)

    Biswas, Abani M.; Li, Jianliang; Hiserote, Jay A.; Melvin, Lawrence S., III

    2006-10-01

    Immersion lithography and multiple exposure techniques are the most promising methods to extend lithography manufacturing to the 45nm node. Although immersion lithography has attracted much attention recently as a promising optical lithography extension, it will not solve all the problems at the 45-nm node. The 'dry' option, (i.e. double exposure/etch) which can be realized with standard processing practice, will extend 193-nm lithography to the end of the current industry roadmap. Double exposure/etch lithography is expensive in terms of cost, throughput time, and overlay registration accuracy. However, it is less challenging compared to other possible alternatives and has the ability to break through the κ I barrier (0.25). This process, in combination with attenuated PSM (att-PSM) mask, is a good imaging solution that can reach, and most likely go beyond, the 45-nm node. Mask making requirements in a double exposure scheme will be reduced significantly. This can be appreciated by the fact that the separation of tightly-pitched mask into two less demanding pitch patterns will reduce the stringent specifications for each mask. In this study, modeling of double exposure lithography (DEL) with att-PSM masks to target 45-nm node is described. In addition, mask separation and implementation issues of optical proximity corrections (OPC) to improve process window are studied. To understand the impact of OPC on the process window, Fourier analysis of the masks has been carried out as well.

  2. Double-exposure materials for pitch division with 193nm lithography: requirements, results

    NASA Astrophysics Data System (ADS)

    Bristol, Robert; Shykind, David; Kim, Sungwon; Borodovsky, Yan; Schwartz, Evan; Turner, Courtney; Masson, Georgeta; Min, Ke; Esswein, Katherine; Blackwell, James M.; Suetin, Nikolay

    2009-03-01

    We present the results of both theoretical and experimental investigations of materials for application either as a reversible Contrast Enhancement Layer (rCEL) or a Two-Stage PAG. The purpose of these materials is to enable Litho- Litho-Etch (LLE) patterning for Pitch Division (PD) at the 16nm logic node (2013 Manufacturing). For the rCEL, we find from modeling using an E-M solver that such a material must posses a bleaching capability equivalent to a Dill A parameter of greater than 100. This is at least a factor of ten greater than that achieved so far at 193nm by any usable organic material we have tested. In the case of the Two-Stage PAG, analytical and lithographic modeling yields a usable material process window, in terms of reversibility and two-photon vs. one-photon acid production rates (branching ratio). One class of materials, based on the cycloadduct of a tethered pair of anthracenes, has shown promise under testing at 193nm in acetonitrile. Sufficient reversibility without acid production, enabled by near-UV exposure, has been achieved. Acid production as a function of dose shows a clear quadratic component, consistent with a branching ratio greater than 1. The experimental data also supports a acid contrast value of approximately 0.05 that could in principle be obtained with this molecule under a pitch division double-exposure scenario.

  3. Low leaching and low LWR photoresist development for 193 nm immersion lithography

    NASA Astrophysics Data System (ADS)

    Ando, Nobuo; Lee, Youngjoon; Miyagawa, Takayuki; Edamatsu, Kunishige; Takemoto, Ichiki; Yamamoto, Satoshi; Tsuchida, Yoshinobu; Yamamoto, Keiko; Konishi, Shinji; Nakano, Katsushi; Tomoharu, Fujiwara

    2006-03-01

    receding contact angle become very important issue for not only defectivity but also scanner throughput. Some of our experimental results along this line of study are also included in the report. The last topic covered is LWR (Line Width Roughness) as an essential leverage for performance improvement, especially for the smaller CD that immersion lithography is aiming to define. Our recent effort to find effect and working concept to reduce LWR with low leaching materials is also described.

  4. Advanced patterning approaches based on negative-tone development (NTD) process for further extension of 193nm immersion lithography

    NASA Astrophysics Data System (ADS)

    Shirakawa, Michihiro; Inoue, Naoki; Furutani, Hajime; Yamamoto, Kei; Goto, Akiyoshi; Fujita, Mitsuhiro

    2015-03-01

    Two approaches which achieve the further evolution of NTD (Negative Tone Development) process are shown in this article. One is ACCEL (Advanced Chemical Contrast Enhancement Layer) process that can improve the lithography performance and the other is DTD (Dual Tone Development) process that can shrink patterning pitch below the limit of single exposure process. ACCEL is an additionally provided layer which is coated on a surface of NTD resist film before exposure and removed by NTD developer. ACCEL can enhance the acid distribution and dissolution contrast of the NTD resist. In fact, lithography performances such as exposure latitude (EL) and DOF improved dramatically by applying ACCEL compared to the NTD resist without ACCEL. We consider that suppression of excessive acid diffusion and material transfer between the resist layer and the ACCEL layer are the causes of the contrast enhancement. DTD process is one of the simplest pitch shrink method which is achieved by repeating PTD and NTD process. Feasibility study of DTD patterning has been demonstrated so far. However, Exposure latitude margin and CDU performance were not sufficient for applying DTD to HVM. We developed the novel DTD specific resist under a new concept, and 32 nm half pitch (hp) contact hole (CH) pattern was successfully formed with enough margins. DTD line and space (L/S) patterning are also demonstrated and 24 nm hp L/S pattern can be resolved. k1 factors of DTD CH and L/S patterns reach to 0.20 and 0.15, respectively.

  5. Designing dual-trench alternating phase-shift masks for 140-nm and smaller features using 248-nm KrF and 193-nm ArF lithography

    NASA Astrophysics Data System (ADS)

    Petersen, John S.; Socha, Robert J.; Naderi, Alex R.; Baker, Catherine A.; Rizvi, Syed A.; Van Den Broeke, Douglas J.; Kachwala, Nishrin; Chen, J. Fung; Laidig, Thomas L.; Wampler, Kurt E.; Caldwell, Roger F.; Takeuchi, Susumu; Yamada, Yoshiro; Senoh, Takashi; McCallum, Martin

    1998-09-01

    One method for making the alternating phase-shift mask involves cutting a trench into the quartz of the mask using an anisotropic dry etch, followed by an isotropic etch to move the corners of the trench underneath the chrome to minimize problems caused by diffraction at the bottom corners of the phase-trench. This manufacturing method makes the addition of subresolution scattering bars and serifs problematic, because the amount of the undercut causes chrome lifting of these small features. Adding an additional anisotropically etched trench to both cut and uncut regions is helpful, but the etch does not move the trench corners under the chrome and result in a loss to intensity and image contrast. At 248 nm illumination and 4X magnification, our work shows that a combination of 240 nm dual-trench and 5 nm to 10 nm undercut produces images with equal intensity between shifted and unshifted regions without loss of image contrasts. This paper demonstrates optical proximity correction for doing 100 nm, 120 nm, 140 nm and 180 nm lines of varying pitch for a simple alternating phase-shift mask, with no dual-trench or undercut. Then the electromagnetic field simulator, TEMPEST, is used to find the best combination of dual-trench depth and amount of undercut for an alternating phase-shift mask. Phase measurement using 248 nm light and depth measurement of thirty-six unique combinations of dual-trench and phase-shift trench are shown. Based on modeling and experimental results, recommendations for making a fine tuned dual-trench 248 nm mask, as well as an extension of the dual-trench alternating phase-shift technique to 193 nm lithography, are made.

  6. Novel spin-coating technology for 248-nm/193-nm DUV lithography and low-k spin on dielectrics of 200-mm/300-mm wafers

    NASA Astrophysics Data System (ADS)

    Gurer, Emir; Zhong, Tom X.; Lewellen, John W.; Lee, Ed C.

    2000-06-01

    An alternative coating technology was developed for 248 nm/193 nm DUV lithography and low-k spin on dielectric (SOD) materials used in the interconnect area. This is a 300 mm enabling technology which overcomes turbulent flow limitations above 2000 rpm and it prevents 40 - 60% reduction on the process latitudes of evaporation-related variables, common to 300 mm conventional coaters. Our new coating technology is fully enclosed and it is capable of controlling the solvent concentration above the resist film dynamically in the gas phase. This feature allows a direct control of the evaporation mass transfer which determines the quality of the final resist profiles. Following process advantages are reported in this paper: (1) Demonstrated that final resist film thickness can be routinely varied by 4000 angstrom at a fixed drying spin speed, thus minimizing the impact of turbulence wall for 300 mm wafers. (2) Evaporation control allows wider range of useful thickness from a fixed viscosity material. (3) Latitudes of evaporation-related process variables is about 40% larger than that of a conventional coater. (4) Highly uniform films of 0.05% were obtained for 8800 angstrom target thickness with tighter wafer-wafer profile control because of the enclosed nature of the technology. (5) Dynamic evaporation control facilitates resist consumption minimization. Preliminary results indicate feasibility of a 0.4 cc process of record (POR) for a 200 mm substrate. (6) Lower COO due to demonstrated relative insensitivity to environmental variables, robust resist consumption minimization and superior process capabilities. (7) Improved planarization and gap fill properties for the new generation photoresist/low-k SOD materials deposited using this enclosed coating technology.

  7. Negative-tone 193-nm resists

    NASA Astrophysics Data System (ADS)

    Cho, Sungseo; Vander Heyden, Anthony; Byers, Jeff D.; Willson, C. Grant

    2000-06-01

    A great deal of progress has been made in the design of single layer positive tone resists for 193 nm lithography. Commercial samples of such materials are now available from many vendors. The patterning of certain levels of devices profits from the use of negative tone resists. There have been several reports of work directed toward the design of negative tones resists for 193 nm exposure but, none have performed as well as the positive tone systems. Polymers with alicyclic structures in the backbone have emerged as excellent platforms from which to design positive tone resists for 193 nm exposure. We now report the adaptation of this class of polymers to the design of high performance negative tone 193 nm resists. New systems have been prepared that are based on a polarity switch mechanism for modulation of the dissolution rate. The systems are based on a polar, alicyclic polymer backbone that includes a monomer bearing a glycol pendant group that undergoes the acid catalyzed pinacol rearrangement upon exposure and bake to produce the corresponding less polar ketone. This monomer was copolymerized with maleic anhydride and a norbornene bearing a bis-trifluoromethylcarbinol. The rearrangement of the copolymer was monitored by FT-IR as a function of temperature. The synthesis of the norbornene monomers will be presented together with characterization of copolymers of these monomers with maleic anhydride. The lithographic performance of the new resist system will also be presented.

  8. Optical extension at the 193-nm wavelength

    NASA Astrophysics Data System (ADS)

    Zandbergen, Peter; McCallum, Martin; Amblard, Gilles R.; Domke, Wolf-Dieter; Smith, Bruce W.; Zavyalova, Lena; Petersen, John S.

    1999-07-01

    Lithography at 193nm is the first optical lithography technique that will be introduced for manufacturing of technology levels. where the required dimensions are smaller than the actual wavelength. This paper explores several techniques to extend 193nm to low k1 lithography. Most attention is given to binary mask solution in at 130nm dimensions, where k1 is 0.4. Various strong and Gaussian quadrupole illuminators were designed, manufactured and tested for this application. Strong quadrupoles show that largest DOF improvements. The drawback however, is that these strong quadrupoles are very duty cycle and dimensions specific, resulting in large proximity biases between different duty cycles. Due to their design, Gaussian quadrupoles sample much wider frequency ranges, resulting in less duty cycles specific DOF improvements and less proximity basis. At sub-130nm dimensions, strong phase shift masks provide significant latitude improvements, when compared to binary masks with quadrupole illumination. However, differences in dose to size for different duty cycles were up to 25 percent. For definition of contact holes, linewidth biasing through silylation, a key feature of the CARL bi-layer resist approach, demonstrated significant DOF latitude improvements compared to SLR at 140nm and 160nm contact holes.

  9. 193-nm full-field step-and-scan prototype at MIT Lincoln Laboratory

    NASA Astrophysics Data System (ADS)

    Hibbs, Michael S.; Kunz, Roderick R.

    1995-05-01

    Optical lithography at a 193-nm exposure wavelength has been under development at MIT Lincoln Laboratory for several years, supported by ARPA's Advanced Lithography Program. As part of this program, a prototype 193-nm full-field step-and-scan lithographic exposure system was built and installed in the clean-room facilities of MIT Lincoln Laboratory. This exposure system has now been in use for one year, supporting a program of photoresist and lithographic process development at 193 nm. This paper describes the characteristics of the exposure system and some of the advances in 193-nm lithography that have been achieved with the system.

  10. VUV spectrophotometry for photomasks characterization at 193 nm

    NASA Astrophysics Data System (ADS)

    Yang, Minghong; Leiterer, Jork; Gatto, Alexandre; Kaiser, Norbert; Höllein, Ingo; Teuber, Silvio; Bubke, Karsten

    2005-10-01

    This paper intends to develop a measurement system to characterize photomasks for 193 nm lithography applications. Based on the VUV spectrophotometer at the Fraunhofer IOF institute, some modifications have been addressed to fulfil these special measurements. Characterizations on photomasks have been successfully carried out, which show good correlations to simulations.

  11. Binary 193nm photomasks aging phenomenon study

    NASA Astrophysics Data System (ADS)

    Dufaye, Félix; Sartelli, Luca; Pogliani, Carlo; Gough, Stuart; Sundermann, Frank; Miyashita, Hiroyuki; Hidenori, Yoshioka; Charras, Nathalie; Brochard, Christophe; Thivolle, Nicolas

    2011-05-01

    193nm binary photomasks are still used in the semiconductor industry for the lithography of some critical layers for the nodes 90nm and 65nm, with high volumes and over long period. These 193nm binary masks seem to be well-known but recent studies have shown surprising degrading effects, like Electric Field induced chromium Migration (EFM) [1] or chromium migration [2] [3] . Phase shift Masks (PSM) or Opaque MoSi On Glass (OMOG) might not be concerned by these effects [4] [6] under certain conditions. In this paper, we will focus our study on two layers gate and metal lines. We will detail the effects of mask aging, with SEM top view pictures revealing a degraded chromium edge profile and TEM chemical analyses demonstrating the growth of a chromium oxide on the sidewall. SEMCD measurements after volume production indicated a modified CD with respect to initial CD data after manufacture. A regression analysis of these CD measurements shows a radial effect, a die effect and an isolated-dense effect. Mask cleaning effectiveness has also been investigated, with sulphate or ozone cleans, to recover the mask quality in terms of CD. In complement, wafer intrafield CD measurements have been performed on the most sensitive structure to monitor the evolution of the aging effect on mask CD uniformity. Mask CD drift have been correlated with exposure dose drift and isolated-dense bias CD drift on wafers. In the end, we will try to propose a physical explanation of this aging phenomenon and a solution to prevent from it occurring.

  12. Study of effects of sidewall angle on process window using 193nm CPL masks in a 300mm wafer manufacturing environment

    NASA Astrophysics Data System (ADS)

    Cheng, Yung Feng; Chou, Yueh Lin; Lin, C. L.; Huang, Peter

    2005-11-01

    As semiconductor process technology moves down below 90nm and 65nm, more and more wafer fabs are starting to apply 193nm CPL (Chromeless Phase Lithography) technology as the main lithography strategy for their most critical layers. However the 3D pattern profile is another critical factor, which affects image intensity and final process window. Since 193nm CPL is a relatively new technology in the semiconductor industry, it is important for us to understand the key mask specifications of 193nm CPL and their impact on wafer-level imaging. In this paper, we will study the effects of sidewall angle on process window and wafer CD using 193nm CPL masks in a 300mm wafer manufacturing environment. We begin our experiment by making several special 193nm CPL masks. These masks have been specially designed with different sidewall angles (SWA) with phase of 180 degrees. The sidewall angle spread represents approximately 10 degrees. We use specially designed test patterns that are compatible at the 65nm technology node. In our experiment, we first study the correlation between AFM (atomic force microscope)-determined profile angle and lithographic process behavior. In addition, simulation was also used to predict the impact of 3D profile on process performance. All lithographic experiments were performed on 300mm wafers using a high NA ASML 193nm scanner and high contrast resist. In this study, we have focused on the impact of sidewall angle on wafer process performance by comparing the wafer CD and pattern profile through focus. In order to establish more effective specifications of angle control in 193nm CPL between mask shop and wafer fabs, all AFM, wafer CD, and simulation results will be compared and correlated.

  13. High-performance 193nm photoresists based on fluorosulfonamide

    NASA Astrophysics Data System (ADS)

    Li, Wenjie; Chen, Kuang-Jung; Kwong, Ranee; Lawson, Margaret C.; Khojasteh, Mahmoud; Popova, Irene; Varanasi, P. Rao; Shimokawa, Tsutomu; Yamaguchi, Yoshikazu; Kusumoto, Shiro; Sugiura, Makoto; Kawakami, Takanori; Slezak, Mark; Dabbagh, Gary; Liu, Zhi

    2007-03-01

    The combination of immersion lithography and reticle enhancement techniques (RETs) has extended 193nm lithography into the 45nm node and possibly beyond. In order to fulfill the tight pitch and small critical dimension requirements of these future technology nodes, the performance of 193nm resist materials needs to further improve. In this paper, a high performance 193nm photoresist system based on fluorosulfonamide (FSM) is designed and developed. The FSM group has good transparency at 193nm. Compared to the commonly used hexafluoroalcohol (HFA) group, the trifluoromethyl sulfonamide (TFSM) functionality has a lower pKa value and contains less fluorine atoms. Polymers containing the TFSM functionality have exhibited improved dissolution properties and better etch resistance than their HFA counterparts. Resists based on the FSM-containing polymers have shown superior lithographic performance for line, trench and contact hole levels under the 45nm node exposure conditions. In addition, FSM resists have also demonstrated excellent bright field and dark field compatibility and thereby make it possible to use one resist for both bright field and dark field level applications. The structure, property and lithographic performance of the FSM resist system are reported.

  14. Cycloolefin-maleic anhydride copolymers for 193-nm resist compositions

    NASA Astrophysics Data System (ADS)

    Rahman, M. D.; Bae, Jun-Bom; Cook, Michelle M.; Durham, Dana L.; Kudo, Takanori; Kim, Woo-Kyu; Padmanaban, Munirathna; Dammel, Ralph R.

    2000-06-01

    Cycloolefin/maleic anhydride systems are a favorable approach to dry etch resistant resists for 193 nm lithography. This paper reports on poly(BNC/HNC/NC/MA) tetrapolymers, from t- butylnorbornene carboxylate (BNC), hydroxyethyl-norbornene carboxylate (HNC), norbornene carboxylic acid (NC) and maleic anhydride (MA). It was found that moisture has to be excluded in the synthesis of these systems if reproducible results are to be obtained. Lithographic evaluation of an optimized, modified polymer has shown linear isolated line resolution down to 100 nm using conventional 193 nm illumination. Possible reactions of the alcohol and anhydride moieties are discussed, and the effect of the anhydride unit on polymer absorbance is discussed using succinnic anhydride as a model compound.

  15. Inline detection of Chrome degradation on binary 193nm photomasks

    NASA Astrophysics Data System (ADS)

    Dufaye, Félix; Sippel, Astrid; Wylie, Mark; García-Berríos, Edgardo; Crawford, Charles; Hess, Carl; Sartelli, Luca; Pogliani, Carlo; Miyashita, Hiroyuki; Gough, Stuart; Sundermann, Frank; Brochard, Christophe

    2013-09-01

    193nm binary photomasks are still used in the semiconductor industry for the lithography of some critical layers for the nodes 90nm and 65nm, with high volumes and over long periods. However, these 193nm binary photomasks can be impacted by a phenomenon of chrome oxidation leading to critical dimensions uniformity (CDU) degradation with a pronounced radial signature. If not detected early enough, this CDU degradation may cause defectivity issues and lower yield on wafers. Fortunately, a standard cleaning and repellicle service at the mask shop has been demonstrated as efficient to remove the grown materials and get the photomask CD back on target.Some detection methods have been already described in literature, such as wafer CD intrafield monitoring (ACLV), giving reliable results but also consuming additional SEM time with less precision than direct photomask measurement. In this paper, we propose another approach, by monitoring the CDU directly on the photomask, concurrently with defect inspection for regular requalification to production for wafer fabs. For this study, we focused on a Metal layer in a 90nm technology node. Wafers have been exposed with production conditions and then measured by SEM-CD. Afterwards, this photomask has been measured with a SEM-CD in mask shop and also inspected on a KLA-Tencor X5.2 inspection system, with pixels 125 and 90nm, to evaluate the Intensity based Critical Dimension Uniformity (iCDU) option. iCDU was firstly developed to provide feed-forward CDU maps for scanner intrafield corrections, from arrayed dense structures on memory photomasks. Due to layout complexity and differing feature types, CDU monitoring on logic photomasks used to pose unique challenges.The selection of suitable feature types for CDU monitoring on logic photomasks is no longer an issue, since the transmitted intensity map gives all the needed information, as shown in this paper. In this study, the photomask was heavily degraded after more than 18,000 300

  16. Results from a new 193nm die-to-database reticle inspection platform

    NASA Astrophysics Data System (ADS)

    Broadbent, William H.; Alles, David S.; Giusti, Michael T.; Kvamme, Damon F.; Shi, Rui-fang; Sousa, Weston L.; Walsh, Robert; Xiong, Yalin

    2010-05-01

    A new 193nm wavelength high resolution reticle defect inspection platform has been developed for both die-to-database and die-to-die inspection modes. In its initial configuration, this innovative platform has been designed to meet the reticle qualification requirements of the IC industry for the 22nm logic and 3xhp memory generations (and shrinks) with planned extensions to the next generation. The 22nm/3xhp IC generation includes advanced 193nm optical lithography using conventional RET, advanced computational lithography, and double patterning. Further, EUV pilot line lithography is beginning. This advanced 193nm inspection platform has world-class performance and the capability to meet these diverse needs in optical and EUV lithography. The architecture of the new 193nm inspection platform is described. Die-to-database inspection results are shown on a variety of reticles from industry sources; these reticles include standard programmed defect test reticles, as well as advanced optical and EUV product and product-like reticles. Results show high sensitivity and low false and nuisance detections on complex optical reticle designs and small feature size EUV reticles. A direct comparison with the existing industry standard 257nm wavelength inspection system shows measurable sensitivity improvement for small feature sizes

  17. Advances in hardware, software, and automation for 193nm aerial image measurement systems

    NASA Astrophysics Data System (ADS)

    Zibold, Axel M.; Schmid, R.; Seyfarth, A.; Waechter, M.; Harnisch, W.; Doornmalen, H. v.

    2005-05-01

    A new, second generation AIMS fab 193 system has been developed which is capable of emulating lithographic imaging of any type of reticles such as binary and phase shift masks (PSM) including resolution enhancement technologies (RET) such as optical proximity correction (OPC) or scatter bars. The system emulates the imaging process by adjustment of the lithography equivalent illumination and imaging conditions of 193nm wafer steppers including circular, annular, dipole and quadrupole type illumination modes. The AIMS fab 193 allows a rapid prediction of wafer printability of critical mask features, including dense patterns and contacts, defects or repairs by acquiring through-focus image stacks by means of a CCD camera followed by quantitative image analysis. Moreover the technology can be readily applied to directly determine the process window of a given mask under stepper imaging conditions. Since data acquisition is performed electronically, AIMS in many applications replaces the need for costly and time consuming wafer prints using a wafer stepper/ scanner followed by CD SEM resist or wafer analysis. The AIMS fab 193 second generation system is designed for 193nm lithography mask printing predictability down to the 65nm node. In addition to hardware improvements a new modular AIMS software is introduced allowing for a fully automated operation mode. Multiple pre-defined points can be visited and through-focus AIMS measurements can be executed automatically in a recipe based mode. To increase the effectiveness of the automated operation mode, the throughput of the system to locate the area of interest, and to acquire the through-focus images is increased by almost a factor of two in comparison with the first generation AIMS systems. In addition a new software plug-in concept is realised for the tools. One new feature has been successfully introduced as "Global CD Map", enabling automated investigation of global mask quality based on the local determination of

  18. An anti-reflection coating for use with PMMA at 193 nm

    NASA Technical Reports Server (NTRS)

    Yen, Anthony; Smith, Henry I.; Schattenburg, M. L.; Taylor, Gary N.

    1992-01-01

    An antireflection coating (ARC) for use with poly(methyl methacrylate) (PMMA) resist for ArF excimer laser lithography (193 nm) was formulated. It consists of PMMA and a bis-azide, 4.4-prime-diazidodiphenyl sulfone (DDS) which crosslinks the film after deep UV (260 nm) irradiation and subsequent annealing. The reacted DDS then serves as the absorber for the 193 nm radiation and also prevents mixing of the ARC and PMMA during PMMA spin-coating and development. The effectiveness of the ARC was demonstrated by exposing, in PMMA, using achromatic holographic lithography, gratings of 100 nm period (about 50 nm linewidth) that are almost entirely free of an orthogonal standing wave.

  19. An anti-reflection coating for use with PMMA at 193 nm

    NASA Astrophysics Data System (ADS)

    Yen, Anthony; Smith, Henry I.; Schattenburg, M. L.; Taylor, Gary N.

    1992-02-01

    An antireflection coating (ARC) for use with poly(methyl methacrylate) (PMMA) resist for ArF excimer laser lithography (193 nm) was formulated. It consists of PMMA and a bis-azide, 4.4-prime-diazidodiphenyl sulfone (DDS) which crosslinks the film after deep UV (260 nm) irradiation and subsequent annealing. The reacted DDS then serves as the absorber for the 193 nm radiation and also prevents mixing of the ARC and PMMA during PMMA spin-coating and development. The effectiveness of the ARC was demonstrated by exposing, in PMMA, using achromatic holographic lithography, gratings of 100 nm period (about 50 nm linewidth) that are almost entirely free of an orthogonal standing wave.

  20. Pellicle choice for 193-nm immersion lithography photomasks

    NASA Astrophysics Data System (ADS)

    Cotte, Eric P.; Haessler, Ruediger; Utess, Benno; Antesberger, Gunter; Kromer, Frank; Teuber, Silvio

    2004-12-01

    An assessment of the mechanical performance of pellicles from different vendors was performed. Pellicle-induced distortions were experimentally measured and numerical simulations were run to predict what improvements were desirable. The experiments included mask registration measurements before and after pellicle mounting for three of the major pellicle suppliers, and adhesive gasket material properties characterization for previously untested samples. The finite element numerical simulations were verified via comparison to experimental data for pellicles with known frame bows, measured by the vendor. The models were extended to simulate the effect of the chucking of reticles in an exposure tool, as well as the various magnification correction schemes available in such tools. Results were compared to ITRS requirements to evaluate performances. This study enables the AMTC to give important feedback to pellicle suppliers and make proper recommendations to customers for future pellicle choices.

  1. Resist component leaching in 193-nm immersion lithography

    NASA Astrophysics Data System (ADS)

    Dammel, Ralph R.; Pawlowski, Georg; Romano, Andrew; Houlihan, Frank M.; Kim, Woo-Kyu; Sakamuri, Raj; Abdallah, David

    2005-05-01

    The leaching of ionic PAGs from model resist films into a static water volume is shown to follow first order kinetics. From the saturation concentration and the leaching time constant, the leaching rate at time zero is obtained which is a highly relevant parameter for evaluating lens contamination potential. The levels of leaching seen in the model resists generally exceed both static and rate-based dynamic leaching specifications. The dependence of leaching on anion structure shows that more hydrophobic anions have lower saturation concentration; however, the time constant of leaching increases with anion chain length. Thus in our model system, the initial leaching rates of nonaflate and PFOS anions are identical. Investigation of a water pre-rinse process unexpectedly showed that some PAG can still be leached from the surface although the pre-rinse times greatly exceeded the times required for saturation of the leaching phenomenon, which are expected to correspond to complete depletion of leachable PAG from the surface. A model is proposed to explain this phenomenon through re-organization of the surface as the surface energy changes during the air/water/air contact sequence of the pre-rinse process.

  2. Refractive index change during exposure for 193-nm chemically amplified resists

    NASA Astrophysics Data System (ADS)

    Oh, Hye-Keun; Sohn, Young-Soo; Sung, Moon-Gyu; Lee, Young-Mi; Lee, Eun-Mi; Byun, Sung Hwan; An, Ilsin; Lee, Kun-Sang; Park, In-Ho

    1999-06-01

    Some of the important areas to be improved for lithography simulation are getting correct exposure parameters and determining the change of refractive index. It is known that the real and imaginary refractive indices are changed during exposure. We obtained these refractive index changes during exposure for 193 nm chemically amplified resists. The variations of the transmittance as well as the resist thickness were measured during ArF excimer laser exposure. We found that the refractive index change is directly related to the concentration of the photo acid generator and de-protected resin. It is important to know the exact values of acid concentration from the exposure parameters since a small difference in acid concentration magnifies the variation in the amplified de-protection during post exposure bake. We developed and used a method to extract Dill ABC exposure parameters for 193 nm chemically amplified resist from the refractive index change upon exposure.

  3. IBM-JSR 193-nm negative tone resist: polymer design, material properties, and lithographic performance

    NASA Astrophysics Data System (ADS)

    Patel, Kaushal S.; Lawson, Margaret C.; Varanasi, Pushkara Rao; Medeiros, David R.; Wallraff, Gregory M.; Brock, Phillip J.; DiPietro, Richard A.; Nishimura, Yukio; Chiba, Takashi; Slezak, Mark

    2004-05-01

    It has been previously proposed that negative-tone resist process would have an intrinsic advantage for printing narrow trench geometry. To demonstrate this for 193nm lithography, a negative resist with performance comparable to a leading positive resist is required. In this paper we report the joint development of a hexafluoroalcohol containing, 193nm, negative-tone, chemically amplified resist based on the crosslinking approach. Lithographic performance is presented which includes the ability of the negative-tone resist to print 90nm line/space and isolated trenches with standard resist processing. The impact of the fluorinated polymer on etch performance is also quantified. Finally, key resist characteristics and their influence on performance and limiting factors such as microbridging are discussed.

  4. High speed hydraulic scanner for deep x-ray lithography

    SciTech Connect

    Milne, J.C.; Johnson, E.D.

    1997-07-01

    From their research and development in hard x-ray lithography, the authors have found that the conventional leadscrew driven scanner stages do not provide adequate scan speed or travel. These considerations have led the authors to develop a scanning system based on a long stroke hydraulic drive with 635 mm of travel and closed loop feedback to position the stage to better than 100 micrometers. The control of the device is through a PC with a custom LabView interface coupled to simple x-ray beam diagnostics. This configuration allows one to set a variety of scan parameters, including target dose, scan range, scan rates, and dose rate. Results from the prototype system at beamline X-27B are described as well as progress on a production version for the X-14B beamline.

  5. Faster qualification of 193-nm resists for 100-nm development using photo cell monitoring

    NASA Astrophysics Data System (ADS)

    Jones, Chris M.; Kallingal, Chidam; Zawadzki, Mary T.; Jeewakhan, Nazneen N.; Kaviani, Nazila N.; Krishnan, Prakash; Klaum, Arthur D.; Van Ess, Joel

    2003-05-01

    The development of 100-nm design rule technologies is currently taking place in many R&D facilities across the world. For some critical alyers, the transition to 193-nm resist technology has been required to meet this leading edge design rule. As with previous technology node transitions, the materials and processes available are undergoing changes and improvements as vendors encounter and solve problems. The initial implementation of the 193-nm resits process did not meet the photolithography requirements of some IC manufacturers due to very high Post Exposure Bake temperature sensitivity and consequently high wafer to wafer CD variation. The photoresist vendors have been working to improve the performance of the 193-nm resists to meet their customer's requirements. Characterization of these new resists needs to be carried out prior to implementation in the R&D line. Initial results on the second-generation resists evaluated at Cypress Semicondcutor showed better CD control compared to the aelrier resist with comparable Depth of Focus (DOF), Exposure Latitute, Etch Resistance, etc. In addition to the standard lithography parameters, resist characterization needs to include defect density studies. It was found that the new resists process with the best CD control, resulted in the introduction of orders of magnitude higher yield limiting defects at Gate, Contact adn Local Interconnect. The defect data were shared with the resists vendor and within days of the discovery the resist vendor was able to pinpoint the source of the problem. The fix was confirmed and the new resists were successfully released to production. By including defect monitoring into the resist qualification process, Cypress Semiconductor was able to 1) drive correction actions earlier resulting in faster ramp and 2) eliminate potential yield loss. We will discuss in this paper how to apply the Micro Photo Cell Monitoring methodology for defect monitoring in the photolithogprhay module and the

  6. Study of 193-nm resist degradation under various etch chemistries

    NASA Astrophysics Data System (ADS)

    Bazin, Arnaud; May, Michael; Pargon, Erwine; Mortini, Benedicte; Joubert, Olivier

    2007-03-01

    The effectivity of 193nm photoresists as dry etch masks is becoming more and more critical as the size of integrated devices shrinks. 193nm resists are known to be much less resistant to dry etching than 248nm resists based on a poly(hydroxystyrene) polymer backbone. The decrease in the resist film budget implies a better etch resistance to use single layer 193nm photoresists for the 65nm node and beyond. In spite of significant improvements made in the past decade regarding the etch resistance of photoresists, much of the fundamental chemistry and physics that could explain the behaviour of these materials has to be better understood. Such knowledge is necessary in order to propose materials and etch processes for the next technology nodes (45nm and below). In this paper, we report our studies on the etch behaviour of different 193nm resist materials as a function of etch chemistry. In a first step, we focus our attention on the interactions between photoresists and the reactive species of a plasma during a dry etch step. Etch experiments were carried out in a DPS (Decoupled Plasma Source) high density chamber. The gas chemistry in particular was changed to check the role of the plasma reactive species on the resist. O II, Cl II, CF 4, HBr and Ar gas were used. Etch rates and chemical modifications of different materials were quantified by ellipsometry, Fourier Transformed Infrared Spectroscopy (FTIR), and X-Ray Photoelectrons Spectroscopy (XPS). We evaluated different materials including 248nm model polymer backbones (pure PHS or functionalized PHS), and 193nm model polymers (PMMA and acrylate polymers) or resist formulations. Besides the influence of resist chemistry, the impact of plasma parameters was addressed.

  7. EUV lithography scanner for sub-8nm resolution

    NASA Astrophysics Data System (ADS)

    van Schoot, Jan; van Ingen Schenau, Koen; Valentin, Chris; Migura, Sascha

    2015-03-01

    EUV lithography for resolutions below 8 nm half pitch requires the numerical aperture (NA) of the projection lens to be significantly larger than the current state-of-the-art 0.33NA. In order to be economically viable, a throughput in the range of 100 wafers per hour is needed. As a result of the increased NA, the incidence angles of the light rays at the mask increase significantly. Consequently the shadowing deteriorates the aerial image contrast to unacceptably low values at the current 4x magnification. The only solution to reduce the angular range at the mask is to increase the magnification. Simulations show that we have to double the magnification to 8x in order to overcome the shadowing effects. Assuming that the mask infrastructure will not change the mask form factor, this would inevitably lead to a field size that is a quarter of the field size of current 0.33NA step and scan systems. This would reduce the throughput of the high-NA scanner to a value significantly below 100 wafers per hour unless additional measures are taken. This paper presents an anamorphic step and scan system capable to print fields that are half the field size of the current full field. The anamorphic system has the potential to achieve a throughput in excess of 150 wafers per hour by increasing the transmission of the optics as well as increasing the acceleration of the wafer- and mask stage. This makes it an economically viable lithography solution. Furthermore, the simulated imaging behavior of the system is demonstrated and its impact on the rest of the lithographic system is discussed.

  8. Novel single-layer photoresist containing cycloolefins for 193 nm

    NASA Astrophysics Data System (ADS)

    Park, Joo Hyeon; Seo, Dong-Chul; Kim, Ki-Dae; Park, Sun-Yi; Kim, Seong-Ju; Lee, Hosull; Jung, Jae Chang; Bok, Cheol-Kyu; Baik, Ki-Ho

    1998-06-01

    New matrix resins containing maleic anhydride and cycloolefin units for ArF excimer laser resist have been developed. Several series of these matrix resins having good dry-etching durability were prepared by free radical polymerization using AlBN as free radical initiator. All of the resists using the matrix resins revealed good coating uniformity and adhesion to silicon wafer, and were readily soluble in a variety of resist solvents such as MMP, EEP, PGMEA and EL. In preliminary 193 nm testing a resist formulated with the matrix resins sulfonium triflate as photoacid generator afforded positive images with 0.14 micrometers L/S resolution. In this paper, we will discuss the polymerization results and lithographic properties for 193 nm exposure tool.

  9. 193 nm photodissociation of larger multiply-charged biomolecules

    NASA Astrophysics Data System (ADS)

    Guan, Ziqiang; Kelleher, Neil L.; O'Connor, Peter B.; Aaserud, David J.; Little, Daniel P.; McLafferty, Fred W.

    1996-12-01

    In contrast to most ion dissociation methods, 193 nm ultraviolet photodissociation of electrosprayed melittin (2.8 kDa) and ubiquitin (8.6 kDa) molecular ions yields new c and z ions (backbone amine bond dissociation) that provide additional sequence information. Dissociation by collisions or infrared photons produce b and y ions; for cleavages between the same amino acids the c ion represents the addition of NH2 to the b ion, and z the loss of NH2 from the y ion, so that these ions can be differentiated by this ± 16.02 Da difference. However, 193 nm photodissociation of 12-29 kDa ions as yet does not give collectable product ions, and that of the very stable y182+ ion from ubiquitin only effects a side chain loss. 193 nm irradiation of negative ions of all-T 30-mer DNA appears to eject electrons; apparently this is the first observation of electron photodetachment from multiply-charged negative ions.

  10. Advances in 193 nm excimer lasers for mass spectrometry applications

    NASA Astrophysics Data System (ADS)

    Delmdahl, Ralph; Esser, Hans-Gerd; Bonati, Guido

    2016-03-01

    Ongoing progress in mass analysis applications such as laser ablation inductively coupled mass spectrometry of solid samples and ultraviolet photoionization mediated sequencing of peptides and proteins is to a large extent driven by ultrashort wavelength excimer lasers at 193 nm. This paper will introduce the latest improvements achieved in the development of compact high repetition rate excimer lasers and elaborate on the impact on mass spectrometry instrumentation. Various performance and lifetime measurements obtained in a long-term endurance test over the course of 18 months will be shown and discussed in view of the laser source requirements of different mass spectrometry tasks. These sampling type applications are served by excimer lasers delivering pulsed 193 nm output of several mJ as well as fast repetition rates which are already approaching one Kilohertz. In order to open up the pathway from the laboratory to broader market industrial use, sufficient component lifetimes and long-term stable performance behavior have to be ensured. The obtained long-term results which will be presented are based on diverse 193 nm excimer laser tube improvements aiming at e.g. optimizing the gas flow dynamics and have extended the operational life the laser tube for the first time over several billion pulses even under high duty-cycle conditions.

  11. Development of high coherence high power 193nm laser

    NASA Astrophysics Data System (ADS)

    Tanaka, Satoshi; Arakawa, Masaki; Fuchimukai, Atsushi; Sasaki, Yoichi; Onose, Takashi; Kamba, Yasuhiro; Igarashi, Hironori; Qu, Chen; Tamiya, Mitsuru; Oizumi, Hiroaki; Ito, Shinji; Kakizaki, Koji; Xuan, Hongwen; Zhao, Zhigang; Kobayashi, Yohei; Mizoguchi, Hakaru

    2016-03-01

    We have been developing a hybrid 193 nm ArF laser system that consists of a solid state seeding laser and an ArF excimer laser amplifier for power-boosting. The solid state laser consists of an Yb-fiber-solid hybrid laser system and an Er-fiber laser system as fundamentals, and one LBO and three CLBO crystals for frequency conversion. In an ArF power amplifier, the seed laser passes through the ArF gain media three times, and an average power of 110 W is obtained. As a demonstration of the potential applications of the laser, an interference exposure test is performed.

  12. 193nm single layer photoresists: defeating tradeoffs with a new class of fluoropolymers

    NASA Astrophysics Data System (ADS)

    Varanasi, Pushkara R.; Kwong, Ranee W.; Khojasteh, Mahmoud; Patel, Kaushal; Chen, Kuang-Jung; Li, Wenjie; Lawson, M. C.; Allen, Robert D.; Sooriyakumaran, Ratnam; Brock, P.; Sundberg, Linda K.; Slezak, Mark; Dabbagh, Gary; Liu, Z.; Nishimura, Yukio; Chiba, Takashi; Shimokawa, Tsutomu

    2005-05-01

    The focus of this paper is to utilize the acidity of hexafluoroalcohol (HFA) in addressing performance deficiencies associated with current 193nm methacrylate resist materials. In this study, we have designed and developed a variety of HFA pendant methacrylate monomers and the corresponding imaging polymers for ArF lithography. It was shown that typical swelling behavior observed in methacrylate resists can be substantially reduced or eliminated by replacing commonly used multicylcic lactone polar functionalities with acidic HFA side chains. The incorporation of aliphatic spacers between HFA and polymer backbone were found to be more effective than cyclic hindered moieties, in achieving linear dissolution characteristics. The typical poor etch stability associated with fluorine atoms in HFA can be substantially minimized by designing side chains with a combination of appropriate cyclic and aliphatic moieties and fine-tuning the corresponding polymer compositions. PEB sensitivity of high activation energy protecting group (e.g., methyladamentyl group) based methacrylate resists can be substantially improved through the incorporation of acidic HFA side chains (6nm/C to <1 nm/C). The key application space for HFA-methacrylate resists appears to be trench level lithography. It was also demonstrated that these HFA materials are compatible with immersion lithography and result in dramatically improved process windows for iso trench features, in addition to other lines/space features.

  13. 300-mW narrow-linewidth deep-ultraviolet light generation at 193 nm by frequency mixing between Yb-hybrid and Er-fiber lasers.

    PubMed

    Xuan, Hongwen; Zhao, Zhigang; Igarashi, Hironori; Ito, Shinji; Kakizaki, Kouji; Kobayashi, Yohei

    2015-04-20

    A narrow-linewidth, high average power deep-ultraviolet (DUV) coherent laser emitting at 193 nm is demonstrated by frequency mixing a Yb-hybrid laser with an Er-fiber laser. The Yb-hybrid laser consists of Yb-fiber lasers and an Yb:YAG amplifier. The average output power of the 193 nm laser is 310 mW at 6 kHz, which corresponds to a pulse energy of 51 μJ. To the best of our knowledge, this is the highest average power and pulse energy ever reported for a narrow-linewidth 193 nm light generated by a combination of solid-state and fiber lasers with frequency mixing. We believe this laser will be beneficial for the application of interference lithography by seeding an injection-locking ArF eximer laser. PMID:25969096

  14. Development of high coherence, 200mW, 193nm solid-state laser at 6 kHz

    NASA Astrophysics Data System (ADS)

    Nakazato, T.; Tsuboi, M.; Onose, T.; Tanaka, Y.; Sarukura, N.; Ito, S.; Kakizaki, K.; Watanabe, S.

    2015-02-01

    The high coherent, high power 193-nm ArF lasers are useful for interference lithography and microprosessing applications. In order to achieve high coherence ArF lasers, we have been developing a high coherence 193 nm solid state laser for the seeding to a high power ArF laser. We used the sum frequency mixing of the fourth harmonic (FH) of a 904-nm Ti:sapphire laser with a Nd:YVO4 laser (1342 nm) to generate 193-nm light. The laser system consists of a single-mode Ti:sapphire oscillator seeded by a 904-nm external cavity laser diode, a Pockels cell, a 6-pass amplifier, a 4-pass amplifier, a 2-pass amplifier and a wavelength conversion stage. The required repetition rate of 6 kHz corresponding to the ArF laser, along with a low gain at 904 nm induces serious thermal lens effects; extremely short focal lengths of the order of cm and bi-foci in the vertical and horizontal directions. From the analysis of thermal lens depending on pump intensity, we successfully compensated the thermal lens by dividing a 527-nm pump power with 15, 25 and 28 W to 3-stage amplifiers with even passes, resulting in the output power above 10W with a nearly diffraction limited beam. This 904-nm output was converted to 3.8 W in the second harmonic by LBO, 0.5 W in FH by BBO sequentially. Finally the output power of 230 mW was obtained at 193 nm by mixing the FH with a 1342-nm light in CLBO.

  15. Tuning and simulating a 193-nm resist for 2D applications

    NASA Astrophysics Data System (ADS)

    Howard, William B.; Wiaux, Vincent; Ercken, Monique; Bui, Bang; Byers, Jeff D.; Pochkowski, Mike

    2002-07-01

    For some applications, the usefulness of lithography simulation results depends strongly on the matching between experimental conditions and the simulation input parameters. If this matching is optimized and other sources of error are minimized, then the lithography model can be used to explain printed wafer experimental results. Further, simulation can be useful in predicting the results or in choosing the correct set of experiments. In this paper, PROLITH and ProDATA AutoTune were used to systematically vary simulation input parameters to match measured results on printed wafers used in a 193 nm process. The validity of the simulation parameters was then checked using 3D simulation compared to 2D top-down SEM images. The quality of matching was evaluated using the 1D metrics of average gate CD and Line End Shortening (LES). To ensure the most accurate simulation, a new approach was taken to create a compound mask from GDSII contextual information surrounding an accurate SEM image of the reticle region of interest. Corrections were made to account for all metrology offsets.

  16. Lactones in 193 nm resists: What do they do?

    NASA Astrophysics Data System (ADS)

    Ito, Hiroshi; Truong, Hoa D.; Brock, Phil J.

    2008-03-01

    Lactones are almost ubiquitously employed in 193 nm resists to increase the polarity of hydrophobic alicyclic polymers. What else do lactones do in 193 nm resists? We studied the behavior of methacrylate (MA) resists consisting of different protecting groups, hexafluoroalcohols, and norbornane lactone methacrylate (NLM, 2-oxo-3-oxatricyclo[4.2.1.04,8]nonan-5-yl methacrylate). When the protecting group is large [ethylcyclooctyl (ECO) and methyladamantyl (MAd)], thinning of the resist film that occurs in highly exposed areas upon postexposure bake (PEB) is significantly smaller than what is expected from the polymer composition. When the concentration of isopropylhexafluoroalcohol methacrylate (iPrHFAMA) is increased in the ECOMA-NLM polymer, the thinning increases and reaches 100% of theory and the ECOMA-norbornenehexafluoroalcohol methacrylate (NBHFAMA) resist loses quantitative thickness in highly-exposed areas upon PEB at 90 °C. This indicates that small lactones which are more basic than esters can trap deprotection fragments especially when the protecting group is large. Such entrapment was detected by IR spectroscopy and also observed at temperatures as high as 200 °C in thermogravimetric analysis (TGA). Incorporation of lactone appears to decrease the bake temperature sensitivity and the sensitivity of the resist perhaps due to trapping of photochemically generated acids by basic lactone. The lactone ring can be hydrolyzed during aqueous base development but does not seem to affect the dissolution rate, indicating that hydrolysis occurs in aqueous base solution after dissolution. Poly(methacrylic acid-NLM) dissolves as fast as poly(methacrylic acid) in 0.26 N tetramethylammonium hydroxide (TMAH) aqueous solution. While exposed P(ECOMA 47-NLM 53) resist dissolves in 0.26 N developer at about the same rate as authentically prepared poly(methacrylic acid 47-NLM 53), the dissolution rate of highly-exposed P(MAdMA 44-NLM 56) resist is much slower, indicating

  17. A study on effect of point-of-use filters on defect reduction for advanced 193nm processes

    NASA Astrophysics Data System (ADS)

    Vitorino, Nelson; Wolfer, Elizabeth; Cao, Yi; Lee, DongKwan; Wu, Aiwen

    2009-03-01

    Bottom Anti-Reflective Coatings (BARCs) have been widely used in the lithography process for decades. BARCs play important roles in controlling reflections and therefore improving swing ratios, CD variations, reflective notching, and standing waves. The implementation of BARC processes in 193nm dry and immersion lithography has been accompanied by defect reduction challenges on fine patterns. Point-of-Use filters are well known among the most critical components on a track tool ensuring low wafer defects by providing particle-free coatings on wafers. The filters must have very good particle retention to remove defect-causing particulate and gels while not altering the delicate chemical formulation of photochemical materials. This paper describes a comparative study of the efficiency and performance of various Point-of-Use filters in reducing defects observed in BARC materials. Multiple filter types with a variety of pore sizes, membrane materials, and filter designs were installed on an Entegris Intelligent(R) Mini dispense pump which is integrated in the coating module of a clean track. An AZ(R) 193nm organic BARC material was spin-coated on wafers through various filter media. Lithographic performance of filtered BARCs was examined and wafer defect analysis was performed. By this study, the effect of filter properties on BARC process related defects can be learned and optimum filter media and design can be selected for BARC material to yield the lowest defects on a coated wafer.

  18. Total lithography system based on a new application software platform enabling smart scanner management

    NASA Astrophysics Data System (ADS)

    Kono, Hirotaka; Masaki, Kazuo; Matsuyama, Tomoyuki; Wakamoto, Shinji; Park, Seemoon; Sugihara, Taro; Shibazaki, Yuichi

    2015-03-01

    Along with device shrinkage, higher accuracy will continuously be required from photo-lithography tools in order to enhance on-product yield. In order to achieve higher yield, the advanced photo-lithography tools must be equipped with sophisticated tuning knobs on the tool and with software that is flexible enough to be applied per layer. This means photo-lithography tools must be capable of handling many types of sub-recipes and parameters simultaneously. To enable managing such a large amount of data easily and to setup lithography tools smoothly, we have developed a total lithography system called Litho Turnkey Solution based on a new software application platform, which we call Plug and Play Manager (PPM). PPM has its own graphical user interface, which enables total management of various data. Here various data means recipes, sub-recipes, tuning-parameters, measurement results, and so on. Through PPM, parameter making by intelligent applications such as CDU/Overlay tuning tools can easily be implemented. In addition, PPM is also linked to metrology tools and the customer's host computer, which enables data flow automation. Based on measurement data received from the metrology tools, PPM calculates correction parameters and sends them to the scanners automatically. This scheme can make calibration feedback loops possible. It should be noted that the abovementioned functions are running on the same platform through a user-friendly interface. This leads to smart scanner management and usability improvement. In this paper, we will demonstrate the latest development status of Nikon's total lithography solution based on PPM; describe details of each application; and provide supporting data for the accuracy and usability of the system. Keywords: exposure

  19. Understanding dissolution behavior of 193nm photoresists in organic solvent developers

    NASA Astrophysics Data System (ADS)

    Lee, Seung-Hyun; Park, Jong Keun; Cardolaccia, Thomas; Sun, Jibin; Andes, Cecily; O'Connell, Kathleen; Barclay, George G.

    2012-03-01

    Herein, we investigate the dissolution behavior of 193-nm chemically amplified resist in different organic solvents at a mechanistic level. We previously reported the effect of solvent developers on the negative tone development (NTD) process in both dry and immersion lithography, and demonstrated various resist performance parameters such as photospeed, critical dimension uniformity, and dissolution rate contrast are strongly affected by chemical nature of the organic developer. We further pursued the investigation by examining the dependence of resist dissolution behavior on their solubility properties using Hansen Solubility Parameter (HSP). The effects of monomer structure, and resist composition, and the effects of different developer chemistry on dissolution behaviors were evaluated by using laser interferometry and quartz crystal microbalance. We have found that dissolution behaviors of methacrylate based resists are significantly different in different organic solvent developers such as OSDTM-1000 Developer* and n-butyl acetate (nBA), affecting their resist performance. This study reveals that understanding the resist dissolution behavior helps to design robust NTD materials for higher resolution imaging.

  20. 193-nm immersion photomask image placement in exposure tools

    NASA Astrophysics Data System (ADS)

    Cotte, Eric; Alles, Benjamin; Wandel, Timo; Antesberger, Gunter; Teuber, Silvio; Vorwerk, Manuel; Frangen, Andreas; Katzwinkel, Frank

    2006-03-01

    In case drastic changes need to be made to tool configurations or blank specifications, it is important to know as early as possible under which conditions the tight image placement requirements of future lithography nodes can be achieved. Modeling, such as finite element simulations, can help predict the magnitude of structural and thermal effects before actual manufacturing issues occur, and basic experiments using current tools can readily be conducted to verify the predicted results or perform feasibility tests for future nodes. Using numerical simulations, experimental mask registration, and printing data, the effects on image placement of stressed layer patterning, pellicle attachment, blank dimensional and material tolerances, as well as charging during e-beam writing were investigated for current mask blank specifications. This provides an understanding of the areas that require more work for image placement error budgets to be met and to insure the viability of optical lithography for future nodes.

  1. Lithography equipment

    NASA Astrophysics Data System (ADS)

    Levinson, Harry J.

    1996-07-01

    Until recently, lithography capability evolved consistently with Moore's law. It appears that semiconductor manufacturers are now deviating from Moore's law, which has implications for lithography equipment. DUV lithography is moving into production in a mix-and-match environment. Step- and-scan technology is the wave of the near-future, as a way to contend with the difficulty of manufacturing wide-field lenses. Resist processing equipment will undergo few fundamental changes, but will often be integrated with steppers, particularly for DUV applications. Metrology is being stretched beyond its limits for technologies below 250 nm. The move is on to 300 m diameter wafers, and 193 nm lithography is under consideration.

  2. Scanner performance predictor and optimizer in further low-k1 lithography

    NASA Astrophysics Data System (ADS)

    Aoyama, Hajime; Nakashima, Toshiharu; Ogata, Taro; Kudo, Shintaro; Kita, Naonori; Ikeda, Junji; Matsui, Ryota; Yamamoto, Hajime; Sukegawa, Ayako; Makino, Katsushi; Murayama, Masayuki; Masaki, Kazuo; Matsuyama, Tomoyuki

    2014-03-01

    Due to the importance of errors in lithography scanners, masks, and computational lithography in low-k1 lithography, application software is used to simultaneously reduce them. We have developed "Masters" application software, which is all-inclusive term of critical dimension uniformity (CDU), optical proximity effect (OPE), overlay (OVL), lens control (LNS), tool maintenance (MNT) and source optimization for wide process window (SO), for compensation of the issues on imaging and overlay. In this paper, we describe the more accurate and comprehensive solution of OPE-Master, LNS-Master and SO-Master with functions of analysis, prediction and optimization. Since OPE-Master employed a rigorous simulation, a root cause of error in OPE matching was found out. From the analysis, we had developed an additional knob and evaluated a proof-of- concept for the improvement. Influence of thermal issues on projection optics is evaluated with a heating prediction, and an optimization with scanner knobs on an optimized source taken into account mask 3D effect for obtaining usable process window. Furthermore, we discuss a possibility of correction for reticle expansion by heating comparing calculation and measurement.

  3. Plasma assisted deposition of metal fluorides for 193nm applications

    NASA Astrophysics Data System (ADS)

    Bischoff, Martin; Sode, Maik; Gaebler, Dieter; Kaiser, Norbert; Tuennermann, Andreas

    2008-10-01

    The ArF lithography technology requires a minimization of optical losses due to scattering and absorption. Consequently it is necessary to optimize the coating process of metal fluorides. The properties of metal fluoride thin films are mainly affected by the deposition methods, their parameters, and the vacuum conditions. Until now the best results were achieved by metal boat evaporation with high substrate temperature and without plasma assistance. In fact, it was demonstrated that the plasma assisted deposition process results in optical thin films with high packing density but the losses due to absorption were extremely high for deep and vacuum ultraviolet applications. This paper will demonstrate that most of the common metal fluorides can be deposited by electron beam evaporation with plasma assistance. In comparison to other deposition methods, the prepared thin films show low absorption in the VUV spectral range, high packing density, and less water content. The densification of the thin films was performed by a Leybold LION plasma source. As working gas, a variable mixture of fluorine and argon gas was chosen. To understand the deposition process and the interaction of the plasma with the deposition material, various characterization methods like plasma emission spectroscopy and ion current measurements were implemented.

  4. A new high-aperture 193 nm microscope for the traceable dimensional characterization of micro- and nanostructures

    NASA Astrophysics Data System (ADS)

    Ehret, G.; Pilarski, F.; Bergmann, D.; Bodermann, B.; Buhr, E.

    2009-08-01

    A new deep UV transmission microscope for traceable micro- and nanometrology is currently being set up at the Physikalisch-Technische Bundesanstalt (PTB), the National Metrology Institute of Germany. The new microscope is especially designed to enable linewidth measurements of micro- and nanostructures with an unsurpassed absolute measurement uncertainty of down to 10 nm (95% confidence interval). The optical resolution is about 100 nm. The main field of this tool will be critical dimension (CD) metrology of photomasks used in optical lithography. In particular, this system offers the possibility of 'at-wavelength' metrology for the currently applied 193 nm lithography technology. The high lateral resolution will be attained by means of 193 nm excimer laser radiation for illumination in conjunction with a high-aperture objective (NA = 0.9). The illumination and imaging system will provide various imaging modalities, ranging from ordinary brightfield to specially structured illumination schemes. Traceability to the SI unit 'meter' will be accomplished by means of laser interferometry. The mechanical set-up is characterized by an ultra-stable bridge construction on a granite base and has been designed with special emphasis on realizing a positioning stability in the nanometer range. The instrument is being set up in the Clean Room Centre of the PTB and will be ready for operation in mid 2009. Simulation calculations, based on a rigorous optical modeling of the expected microscope images, are presented. These simulations are made for the important application of measuring Cr structures on quartz photomasks. Based on these simulations and on available data of the uncertainties of various experimental parameters—including instrument and sample parameters—expected uncertainty budgets for the measurement of the width of Cr lines on quartz substrates are estimated.

  5. Cycloolefin/cyanoacrylate (COCA) copolymers for 193-nm and 157-nm lithography

    NASA Astrophysics Data System (ADS)

    Dammel, Ralph R.; Sakamuri, Raj; Lee, Sang-Ho; Rahman, Dalil; Kudo, Takanori; Romano, Andrew R.; Rhodes, Larry F.; Lipian, John-Henry; Hacker, Cheryl; Barnes, Dennis A.

    2002-07-01

    The copolymerization reaction between methyl cyanoacrylate (MCA) and a variety of cycloolefins (CO) was investigated. Cycololefin/cyanoacrylate (COCA) copolymers were obtained in good yields and with lithographically interesting molecular weights for all cycoolefins studied. Anionic MCA homopolymerization could be largely suppressed using acetic acid. Based on NMR data, the copolymerization may tend to a 1:1 CO:MCA incorporation ratio but further work with better suppression of the anionic component is needed to confirm this. Lithographic tests on copolymers of appropriately substituted norbornenes and MCA showed semi-dense and isolated line performance down to 90 nm.

  6. Water-developable resists based on glyceryl methacrylate for 193-nm lithography

    NASA Astrophysics Data System (ADS)

    Kim, Jin-Baek; Jang, Ji-Hyun; Choi, Jae-Hak; Lee, Kwan-Ku; Ko, Jong-Sung

    2004-05-01

    Novel water-developable negative resists were designed to induce both cross-linking and polarity change upon exposure and bake. The matrix polymers were synthesized by copolymerization of glyceryl methacrylate and methacrolein. The acid-catalyzed acetalization of the polymer induced cross-linking, polarity change, and increase in dry-etch resistance. The resist formulated with this polymer and cast in a water-ethanol mixture, showed 0.7 μm line and space patterns using a mercury-xenone lamp in a contact printing mode and pure water as a developer.

  7. The art of photomask materials for low-k1-193nm lithography

    NASA Astrophysics Data System (ADS)

    Hashimoto, Masahiro; Iwashita, Hiroyuki; Mitsui, Hideaki

    2009-04-01

    The resolution of photomask patterns were improved with a hardmask (HM) system. The system which is thin Sicompounds layer is easily etched by the hyper-thin resist (below 100nm thickness). The HM material has sufficient etching selectivity against the chrome-compounds which is the second layer chrome absorber for the phase-shifter. This hardmask layer has been completely removed during the phase-shifter etching. It means that the conventional phase-shit mask (PSM) has been made with the ultimately high-resolution without configuration changes. Below 50nm resolution of PSM was made with 90nm thickness resist on HM layer in this paper. The CD bias between a resist feature CD and a chrome feature CD was almost zero (below 1nm) in the optimized etching condition. We confirmed that the mask performances were the equal to COMS (Cr-HM on MoSi binary mask) in resolution and CD linearity. The performances of hardmask blanks will be defined by resist performance because of almost zero bias.

  8. Absorption coefficients for water vapor at 193 nm from 300 to 1073 K

    NASA Technical Reports Server (NTRS)

    Kessler, W. J.; Carleton, K. L.; Marinelli, W. J.

    1993-01-01

    Measurements of the water absorption coefficient at 193 nm from 300 to 1073 K are reported. The measurements were made using broadband VUV radiation and a monochromator-based detection system. The water vapor was generated by a saturator and metered into a flowing, 99 cm absorption cell via a water vapor mass flow meter. The 193 nm absorption coefficient measurements are compared to room temperature and high temperature shock tube measurements with good agreement. The absorption can be parameterized by a nu3 vibrational mode reaction coordinate and the thermal population of the nu3 mode.

  9. Developing an integrated imaging system for the 70-nm node using high numerical aperture ArF lithography

    NASA Astrophysics Data System (ADS)

    Petersen, John S.; Beach, James V.; Gerold, David J.; Maslow, Mark J.

    2002-07-01

    At its conception, 193 nm lithography was thought to be the best way to take optical lithography to the 180 nm node. It was expected that 193 nm could support the now-defunct 160 nm node before optical lithography would have to yield to an undetermined non-optical solution. Today, 193 nm must compete with 248 nm for the 130 nm node and is expected to support lithography until it is replaced by 157 nm at the 70 nm node. Given the challenges facing 157 nm, it is likely that lithographers will attempt to extend the utility of 193 nm to its theoretical limits.

  10. Properties of AlF3 and LaF3 films at 193nm

    NASA Astrophysics Data System (ADS)

    Xue, Chunrong; Shao, Jianda

    2010-10-01

    In order to develop low loss, high-performance 193nm Fluoride HR mirrors and anti-reflection coatings, LaF3 and AlF3 materials, used for a single-layer coating, were deposited by a molybdenum boat evaporation process. Various microstructures that formed under different substrate temperatures and with deposition rates were investigated. The relation between these microstructures (including cross section morphology, surface roughness and crystalline structure), the optical properties (including refractive index and optical loss) and mechanical properties (stress) were investigated. Furthermore, AlF3 used as a low-index material and LaF3 used as a high-index material were designed and deposited for multilayer coatings. Transmittance, reflectance, stress, and the laser-induced damage threshold (LIDT) were studied. It is shown that AlF3 and LaF3 thin films, deposited on the substrate at a temperature of 300 °C, obtained good quality thin films with high transmittance and little optical loss at 193 nm. For multilayer coatings, the absorption mainly comes from LaF3. Based on these studies, The thickness of 193nm films was controled by a 1/3 baffle with pre-coating technology. the LaF3/AlF3 AR coantings and HR mirrors at 193nm were designed and deposited. Under the present experimental conditions, the reflectance of LaF3/AlF3 HR mirror is up to 96%, and its transmittance is 1.5%. the LaF3/AlF3 AR coanting's residual reflectance is less than 0.14%, and single-sided transmittance is 93.85%. To get a high-performance 193nm AR coating, super-polished substrate is the best choice.

  11. High-performance 193-nm photoresist materials based on a new class of polymers containing spaced ester finctionalities

    NASA Astrophysics Data System (ADS)

    Khojasteh, Mahmoud; Chen, K. Rex; Kwong, Ranee W.; Lawson, Margaret C.; Varanasi, Pushkara R.; Patel, Kaushal S.; Kobayashi, Eiichi

    2003-06-01

    ArF lithography has been selected as the imaging method for the 90 nm technology node. Manufacturing related issues will have to be addressed when designing advanced 193 nm resists that are production worthy. Post exposure bake (PEB) sensitivity, dissolution properties and process window are some issues that need continuous improvement. Initially our investigation focused on a cyclic olefin (CO) platform which led us to a better understanding of the relationship between polymer structure and physical properties and how to improve cyclic olefin resist performance. Since then we have developed a new class of acrylate polymers with pendant "spaced ester" functionality. We have investigated the potential use of "spaced ester" functionality on improving the lithographic performance of CO and acrylate resist platforms. We have found that with "spaced ester" as pending group in CO polymer structures, it can lower the Tg and improve the dissolution properties of the CO resists. Resists formulated with acrylate containing "spaced ester" group exhibit excellent PEB temperature sensitivity (1 nm/°C), and are soluble in PGMEA. In addition, we have demonstrated sub-100 nm resolution with excellent process window through formulation optimization for acrylate based resists. This paper will focus on the "spaced ester" based polymer design, material properties; resist characteristics, and the lithographic performance for logic dense line applications.

  12. Characterization of AlF3 thin films at 193 nm by thermal evaporation

    NASA Astrophysics Data System (ADS)

    Lee, Cheng-Chung; Liu, Ming-Chung; Kaneko, Masaaki; Nakahira, Kazuhide; Takano, Yuuichi

    2005-12-01

    Aluminum fluoride (AlF3) was deposited by a resistive heating boat. To obtain a low optical loss and high laser-induced damage threshold (LIDT) at 193 nm, the films were investigated under different substrate temperatures, deposition rates, and annealing after coating. The optical property (the transmittance, refractive index, extinction coefficient, and optical loss) at 193 nm, microstructure (the cross-sectional morphology, surface roughness, and crystalline structure), mechanical property (stress), and LIDT of AlF3 thin films have been studied. AlF3 thin films deposited at a high substrate temperature and low deposition rate showed a lower optical loss. The highest LIDT occurred at the substrate temperature of 150 °C. The LIDT of the films prepared at a deposition rate of 2 Å/s was higher than that at other deposition rates. The annealing process did not influence the optical properties too much, but it did increase the LIDT and stress.

  13. Characterization of AlF3 thin films at 193 nm by thermal evaporation.

    PubMed

    Lee, Cheng-Chung; Liu, Ming-Chung; Kaneko, Masaaki; Nakahira, Kazuhide; Takano, Yuuichi

    2005-12-01

    Aluminum fluoride (AlF3) was deposited by a resistive heating boat. To obtain a low optical loss and high laser-induced damage threshold (LIDT) at 193 nm, the films were investigated under different substrate temperatures, deposition rates, and annealing after coating. The optical property (the transmittance, refractive index, extinction coefficient, and optical loss) at 193 nm, microstructure (the cross-sectional morphology, surface roughness, and crystalline structure), mechanical property (stress), and LIDT of AlF3 thin films have been studied. AlF3 thin films deposited at a high substrate temperature and low deposition rate showed a lower optical loss. The highest LIDT occurred at the substrate temperature of 150 degrees C. The LIDT of the films prepared at a deposition rate of 2 A/s was higher than that at other deposition rates. The annealing process did not influence the optical properties too much, but it did increase the LIDT and stress. PMID:16353803

  14. Studies on a cross-linking type positive 193nm photoresist material

    NASA Astrophysics Data System (ADS)

    Wang, Liyuan; Guo, Xin; Chu, Zhanxing; Wang, Wenjun

    2006-03-01

    A kind of diacid, acrylpimaric acid, with condensed alicyclic structure and good film-forming property, was prepared by the Diels-Alder reaction of abietic acid and acrylic acid. In their solid film, the diacid can react with divinyl ether, such as 1,3-divinyloxyethoxybenzene when baked above 80 °C and become insoluble in dilute aqueous base. Thus formed compound can be quickly decomposed at the presence of strong acid generated by PAG above 100 °C and become easily soluble in dilute aqueous base. A positive photoresist can be formed by the diacid, divinyl ether and PAG. The measured photosensitivity is less than 50 mj/cm2 when exposed to low pressure Hg lamp (254nm). The diacid mixture displayed lower transparency than estimated at 193 nm and should be further purified to be used in 193 nm photoresist.

  15. Temperature- and pressure-dependent absorption coefficients for CO2 and O2 at 193 nm

    NASA Astrophysics Data System (ADS)

    Hartinger, K. T.; Nord, S.; Monkhouse, P. B.

    Absorption of laser radiation at 193 nm by CO2 and O2 was studied at a series of different temperatures up to 1273 K and pressures up to 1 bar. The spectrum for CO2 was found to be broadband, so that absorption could be fitted to a Beer-Lambert law. On the other hand, the corresponding O2 spectrum is strongly structured and parameterisation requires a more complex relation, depending on both temperature and the product (pressure × absorption path length). In this context, the influence of spectral structure on the resulting spectrally integrated absorption coefficients is discussed. Using the fitting parameters obtained, effective transmissions at 193 nm can be calculated for a wide range of experimental conditions. As an illustration of the practical application of these data, the calculation of effective transmission for a typical industrial flue gas is described.

  16. Rayleigh rejection filters for 193-nm ArF laser Raman spectroscopy

    NASA Technical Reports Server (NTRS)

    Mckenzie, Robert L.

    1993-01-01

    Selected organic absorbers and their solvents are evaluated as spectral filters for the rejection of 193-nm Rayleigh light associated with the use of an ArF excimer laser for Raman spectroscopy. A simply constructed filter cell filled with 0.5 percent acetone in water and an optical path of 7 mm is shown effectively to eliminate stray Rayleigh light underlying the Raman spectrum from air while transmitting 60 percent of the Raman light scattered by O2.

  17. Collateral damage-free debridement using 193nm ArF laser

    NASA Astrophysics Data System (ADS)

    Wynne, James J.; Felsenstein, Jerome M.; Trzcinski, Robert; Zupanski-Nielsen, Donna; Connors, Daniel P.

    2011-03-01

    Burn eschar and other necrotic areas of the skin and soft tissue are anhydrous compared to the underlying viable tissue. A 193 nm ArF excimer laser, emitting electromagnetic radiation at 6.4 eV at fluence exceeding the ablation threshold, will debride such necrotic areas. Because such radiation is strongly absorbed by aqueous chloride ions through the nonthermal process of electron photodetachment, debridement will cease when hydrated (with chloride ions) viable tissue is exposed, avoiding collateral damage to this tissue. Such tissue will be sterile and ready for further treatment, such as a wound dressing and/or a skin graft.

  18. Substantial H-atom production from the 193 nm photolysis of triethylaluminum

    NASA Astrophysics Data System (ADS)

    Brum, Jeffrey L.; Deshmukh, Subhash; Koplitz, Brent

    1990-01-01

    The 193 nm irradiation of triethylaluminum (TEA) produces a significant amount of atomic hydrogen. Doppler profiles at Lyman-α (121.6 nm) reveal that the H atoms have little kinetic energy, the mean kinetic energy being ⩽ 0.35 eV. These observations are interpreted in the context of possible photodissociation pathways. The most likely route involves a single-photon absorption followed by dissociation to form the ethyl radical, which can further dissociate to produce C 2H 4 and H.

  19. 193 nm excimer laser sclerostomy in pseudophakic patients with advanced open angle glaucoma.

    PubMed Central

    Allan, B D; van Saarloos, P P; Cooper, R L; Constable, I J

    1994-01-01

    A modified open mask system incorporating an en face air jet to dry the target area during ablation and a conjunctival plication mechanism, which allows ab externo delivery of the 193 nm excimer laser without prior conjunctival dissection, has been developed to form small bore sclerostomies accurately and atraumatically. Full thickness sclerostomies, and sclerostomies guarded by a smaller internal ostium can be created. A pilot therapeutic trial was conducted in pseudophakic patients with advanced open angle glaucoma. Six full thickness sclerostomies (200 microns and 400 microns diameter) and three guarded sclerostomies were created in nine patients by 193 nm excimer laser ablation (fluence per pulse 400 mJ/cm2, pulse rate 16 Hz, air jet pressure intraocular pressure +25 mm Hg). After 6 months' follow up, intraocular pressure was controlled (< or = 16 mm Hg) in eight of the nine patients (6/9 without medication). Early postoperative complications included hyphaema (trace--2.5 mm) (6/9), temporary fibrinous sclerostomy occlusion (4/9), profound early hypotony (all patients without fibrinous occlusion), and suprachoroidal haemorrhage in one case. Conjunctival laser wounds were self sealing. Small bore laser sclerostomy procedures are functionally equivalent to conventional full thickness procedures, producing early postoperative hypotony, with an increased risk of suprachoroidal haemorrhage in association with this. Further research is required to improve control over internal guarding in excimer laser sclerostomy before clinical trials of this technique can safely proceed. Images PMID:8148335

  20. Photodissociation dynamics of propyne at 193 nm: a trajectory surface hopping study.

    PubMed

    Ghosh, Subhendu; Rauta, Akshaya Kumar; Maiti, Biswajit

    2016-03-01

    Photodissociation dynamics of propyne at 193 nm are studied using the fewest switches nonadiabatic trajectory surface hopping method on its first excited singlet electronic state (1(1)A''). The trajectories are propagated based on potential energies, gradients and nonadiabatic couplings calculated at the MRCIS(6,7) level with the 6-31++G(d,p) basis set. Our trajectory calculations have revealed that H + H3CCC is the major dissociation channel, which has also been predicted experimentally. For the primary photodissociation channel H + H3CCC we demonstrate that nonadiabatic dynamics do not play a significant role. This observation is however contradictory to most of the previously reported experimental predictions. The calculated product translation energy distribution for the acetylenic H atom elimination peaked at ∼18 kcal mol(-1), indicating that the dissociation occurs adiabatically on a moderately repulsive excited surface that correlates with the ground state products (CH3C[triple bond, length as m-dash]C + H). The H atom elimination process from the methyl fragment involving a transition state, which has to compete with the acetylenic H atom dissociation channel with no barrier in the excited singlet surface, was found to be too less probable to make a contribution to product branching. We observed that a fewer but significant number of trajectories led to CH3 + CCH product formation which has not been observed experimentally when propyne is excited at 193 nm. PMID:26928947

  1. Double patterning scheme for sub-0.25 k1 single damascene structures at NA=0.75, λ=193nm

    NASA Astrophysics Data System (ADS)

    Maenhoudt, M.; Versluijs, J.; Struyf, H.; Van Olmen, J.; Van Hove, M.

    2005-05-01

    Using 193nm lithography at NA=0.75, the minimum pitch that can be obtained in a single exposure is 160nm for dark field structures that are used in single damascene interconnect processing. In order to evaluate the critical electrical parameters for the smaller technologies, a double patterning scheme has been developed to obtain electrical structures at pitches from 140nm down to 100nm. This corresponds to k1-factors of 0.27 to 0.19 for dense trenches. The designs have been split up into two layers at more relaxed pitch (twice the final pitch). The first step consists in patterning a small semi-isolated trench at this more relaxed pitch. Because of the limited resist resolution for semi-isolated trenches, shrink techniques such as resist reflow or RELACS are needed. After etching this first layer into a low-k material or metal hard mask, planarization of the topography is critical before performing the second exposure. The second exposure is then identical to the first one, but overlay to the first layer is extremely critical in order to get a reasonable process window. In this paper, we illustrate the feasibility of the double patterning technique for early sub-65nm-node evaluation of low-k materials. The resolution and processing limits will be shown for single layer resist processing with RELACS shrink for 193nm lithography at NA=0.75. The planarization for the second photo is done using organic BARC. We will also quantify the overlay requirements to measured and introduced overlay errors.

  2. Photodissociation dynamics of 2-nitropropane and 2-methyl-2-nitropropane at 248 and 193 nm.

    PubMed

    Sengupta, Sumana; Indulkar, Yogesh; Kumar, Awadhesh; Dhanya, Suresh; Naik, Prakash Dattatray; Bajaj, Parma Nand

    2008-12-11

    Dynamics of formation of electronically excited NO2 and formation of OH fragment, during photo dissociation of 2-nitropropane (NP) and 2-methyl-2-nitropropane (MNP), were investigated at 193 and 248 nm. The radiative lifetime of the electronically excited NO2 fragment, observed at 193 nm, was measured to be 1.2 ( 0.1 micros and the rate coefficient of quenching of its emission by MNP was measured as (2.7 ( 0.1) x 10(-10) molecule(-1) cm3 s(-1). Formation of the ground electronic state of OH was confirmed in both molecules. State selective laser induced fluorescence technique was used to detect the nascent OH (X 2Pi, v'', J'') fragments in different ro-vibrational states, and to obtain information on energy partitioning. Though MNP and NP differ in the types of the available H atoms, the dynamics of OH formation is found to be the same in both. The relative population in different rotational states does not follow Boltzmann equilibrium distribution in both the molecules at 193 and 248 nm. The translational energies of the OH fragments, calculated from the Doppler width, are 21.2 ( 7.2 and 25.0 ( 2.5 kcal mol-1 for NP at 248 and 193 nm, respectively. The translational energies of the OH fragments, in the case of MNP, are found to be lower, 17.5 ( 4.1 and 22.0 ( 3.2 kcal mol-1,respectively, at 248 nm 193 nm. These results are compared with the earlier reports on photodissociation of nitromethane (NM), nitroethane (NE), and other nitroalkanes. All possible dissociation pathways of these molecules--NM, NE, NP, and MNPs leading to the formation of the OH fragment were investigated computationally, with geometry optimization at the B3LYP/6-311+G(d,p) level and energy calculation at the MP4(SDQ)/6-311+G (d,p) level. The results suggest that in NM, OH is formed after isomerization to CH2N(OH)O, whereas in all other cases OH is formed from HONO, a primary product of molecular elimination of nitroalkanes, formed with sufficient internal energy. PMID:19053556

  3. In die mask overlay control for 14nm double-patterning lithography

    NASA Astrophysics Data System (ADS)

    Chou, William; Cheng, James; Tseng, Alex C. P.; Wu, J. K.; Chang, Chin Kuei; Cheng, Jeffrey; Lee, Adder; Huang, Chain Ting; Peng, N. T.; Hsu, Simon C. C.; Yu, Chun Chi; Lu, Colbert; Yu, Julia; Craig, Peter; Pollock, Chuck; Ham, Young; McMurran, Jeff

    2015-10-01

    According to the ITRS roadmap, semiconductor industry drives the 193nm lithography to its limits, using techniques like Double Pattern Technology (DPT), Source Mask Optimization (SMO) and Inverse Lithography Technology (ILT). In terms of considering the photomask metrology, full in-die measurement capability is required for registration and overlay control with challenging specifications for repeatability and accuracy. Double patterning using 193nm immersion lithography has been adapted as the solution to enable 14nm technology nodes. The overlay control is one of the key figures for the successful realization of this technology. In addition to the various error contributions from the wafer scanner, the reticles play an important role in terms of considering lithographic process contributed errors. Accurate pattern placement of the features on reticles with a registration error below 4nm is mandatory to keep overall photomask contributions to overlay of sub 20nm logic within the allowed error budget. In this paper, we show in-die registration errors using 14nm DPT product masks, by measuring in-die overlay patterns comparing with regular registration patterns. The mask measurements are used to obtain an accurate model to predict mask contribution on wafer overlay of double patterning technology.

  4. Microstructure of magnesium fluoride films deposited by boat evaporation at 193 nm.

    PubMed

    Liu, Ming-Chung; Lee, Cheng-Chung; Kaneko, Masaaki; Nakahira, Kazuhide; Takano, Yuuichi

    2006-10-01

    Single layer magnesium fluoride (MgF2) was deposited on fused-silica substrates by a molybdenum boat evaporation process at 193 nm. The formation of various microstructures in relation to the different substrate temperatures and deposition rates were investigated. The relation between these microstructures (including cross-sectional morphology, surface roughness, and crystalline structures), the optical properties (including refractive index and optical loss) and stress, were all investigated. It was found that the laser-induced damage threshold (LIDT) would be affected by the microstructure, optical loss, and stress of the thin film. To obtain a larger LIDT value and better optical characteristics, MgF2 films should be deposited at a high substrate temperature (300 degrees C) and at a low deposition rate (0.05 nm s(-1)). PMID:16983421

  5. Microstructure of magnesium fluoride films deposited by boat evaporation at 193 nm

    NASA Astrophysics Data System (ADS)

    Liu, Ming-Chung; Lee, Cheng-Chung; Kaneko, Masaaki; Nakahira, Kazuhide; Takano, Yuuichi

    2006-10-01

    Single layer magnesium fluoride (MgF2) was deposited on fused-silica substrates by a molybdenum boat evaporation process at 193 nm. The formation of various microstructures in relation to the different substrate temperatures and deposition rates were investigated. The relation between these microstructures (including cross-sectional morphology, surface roughness, and crystalline structures), the optical properties (including refractive index and optical loss) and stress, were all investigated. It was found that the laser-induced damage threshold (LIDT) would be affected by the microstructure, optical loss, and stress of the thin film. To obtain a larger LIDT value and better optical characteristics, MgF2 films should be deposited at a high substrate temperature (300 °C) and at a low deposition rate (0.05 nm s-1).

  6. High speed AFM studies of 193 nm immersion photoresists during TMAH development

    NASA Astrophysics Data System (ADS)

    Ngunjiri, Johnpeter; Meyers, Greg; Cameron, Jim; Suzuki, Yasuhiro; Jeon, Hyun; Lee, Dave; Choi, Kwang Mo; Kim, Jung Woo; Im, Kwang-Hwyi; Lim, Hae-Jin

    2016-03-01

    In this paper we report on our studies of the dynamic process of resist development in real time. Using High Speed - Atomic Force Microscopy (HS-AFM) in dilute developer solution, changes in morphology and nanomechanical properties of patterned resist were monitored. The Bruker Dimension FastScan AFMTM was applied to analyze 193 nm acrylic-based immersion resists in developer. HS-AFM operated in Peak Force mapping mode allowed for concurrent measurements of image topography resist stiffness, adhesion to AFM probe and deformation during development. In our studies we focused on HS-AFM topography data as it readily revealed detailed information about initial resist morphology, followed by a resist swelling process and eventual dissolution of the exposed resist areas. HS-AFM showed potential for tracking and understanding development of patterned resist films and can be useful in evaluating the dissolution properties of different resist designs.

  7. Photoinduced absorption and refractive-index induction in phosphosilicate fibres by radiation at 193 nm

    SciTech Connect

    Rybaltovsky, A A; Sokolov, V O; Plotnichenko, V G; Lanin, Aleksei V; Semenov, S L; Dianov, Evgenii M; Gur'yanov, A N; Khopin, V F

    2007-04-30

    The photoinduced room-temperature-stable increase in the refractive index by {approx}5x10{sup -4} at a wavelength of 1.55 {mu}m was observed in phosphosilicate fibres without their preliminary loading with molecular hydrogen. It is shown that irradiation of preliminary hydrogen-loaded fibres by an ArF laser at 193 nm enhances the efficiency of refractive-index induction by an order of magnitude. The induced-absorption spectra of preforms with a phosphosilicate glass core and optical fibres fabricated from them are studied in a broad spectral range from 150 to 5000 nm. The intense induced-absorption band ({approx}800 cm{sup -1}) at 180 nm is found, which strongly affects the formation of the induced refractive index. The quantum-chemical model of a defect related to this band is proposed. (optical fibres)

  8. White-Light Emission from Silicone Rubber Modified by 193 nm ArF Excimer Laser

    NASA Astrophysics Data System (ADS)

    Okoshi, Masayuki; Sekine, Daisuke; Inoue, Narumi; Yamashita, Tsugito

    2007-04-01

    The photochemical surface modification of silicone ([SiO(CH3)2]n) rubber has been successfully demonstrated using a 193 nm ArF excimer laser, and white light of strong intensity was emitted upon exposure to a 325 nm He-Cd laser. The photoluminescence spectra of the modified silicone showed broad peaks centered at 410, 550, and 750 nm wavelengths. The modified surface was carbon-free silicon oxide, and the chemical composition ratio of O/Si was approximately 2. However, the surface was not silica glass (SiO2), as clarified by IR spectroscopy. Instead, nanometer-size particles of silicon oxide were formed on the surface of the modified silicone rubber.

  9. 193 nm Excimer laser processing of Si/Ge/Si(100) micropatterns

    NASA Astrophysics Data System (ADS)

    Gontad, F.; Conde, J. C.; Chiussi, S.; Serra, C.; González, P.

    2016-01-01

    193 nm Excimer laser assisted growth and crystallization of amorphous Si/Ge bilayer patterns with circular structures of 3 μm diameter and around 25 nm total thickness, is presented. Amorphous patterns were grown by Laser induced Chemical Vapor Deposition, using nanostencils as shadow masks and then irradiated with the same laser to induce structural and compositional modifications for producing crystalline SiGe alloys through fast melting/solidification cycles. Compositional and structural analyses demonstrated that pulses of 240 mJ/cm2 lead to graded SiGe alloys with Si rich discs of 2 μm diameter on top, a buried Ge layer, and Ge rich SiGe rings surrounding each feature, as predicted by previous numerical simulation.

  10. Optimization of 193-nm single-layer resists through statistical design

    NASA Astrophysics Data System (ADS)

    Gabor, Allen H.; Dimov, Ognian N.; Medina, Arturo N.; Neisser, Mark O.; Slater, Sydney G.; Wang, Ruey H.; Houlihan, Francis M.; Cirelli, Raymond A.; Dabbagh, Gary; Hutton, Richard S.; Rushkin, Ilya L.; Sweeney, James R.; Timko, Allen G.; Nalamasu, Omkaram; Reichmanis, Elsa

    1999-06-01

    Through a series of statistical design experiments we optimized the lithographic performance of a 193 nm single layer resists based on a norbornene-maleic anhydride matrix resin. Several interesting findings were found including that having the PEB temperature improved the performance of the resist. The polymer composition was found to strongly influence the lithographic performance of the resist. Variables that we examined included acrylate loading and blocking level. By optimizing the composition of the polymer, we have obtained resist with high etch resistance, square profiles and 0.130 micron dense line ultimate resolution in 0.5 micron thick films. The resist formulations are compatible with industry standard 0.262 N TMAH. During exposure the resists does not suffer from the outgassing of volatile species.

  11. Three-body dissociations: The photodissociation of dimethyl sulfoxide at 193 nm

    SciTech Connect

    Blank, D.A.; North, S.W.; Stranges, D.

    1997-04-01

    When a molecule with two equivalent chemical bonds is excited above the threshold for dissociation of both bonds, how the rupture of the two bonds is temporally coupled becomes a salient question. Following absorption at 193 nm dimethyl sulfoxide (CH{sub 3}SOCH{sub 3}) contains enough energy to rupture both C-S bonds. This can happen in a stepwise (reaction 1) or concerted (reaction 2) fashion where the authors use rotation of the SOCH{sub 3} intermediate prior to dissociation to define a stepwise dissociation: (1) CH{sub 3}SOCH{sub 3} {r_arrow} 2CH{sub 3} + SO; (2a) CH{sub 3}SOCH{sub 3} {r_arrow} CH{sub 3} + SOCH{sub 3}; and (2b) SOCH{sub 3} {r_arrow} SO + CH{sub 3}. Recently, the dissociation of dimethyl sulfoxide following absorption at 193 nm was suggested to involve simultaneous cleavage of both C-S bonds on an excited electronic surface. This conclusion was inferred from laser induced fluorescence (LIF) and resonant multiphoton ionization (2+1 REMPI) measurements of the internal energy content in the CH{sub 3} and SO photoproducts and a near unity quantum yield measured for SO. Since this type of concerted three body dissociation is very interesting and a rather rare event in photodissociation dynamics, the authors chose to investigate this system using the technique of photofragment translational spectroscopy at beamline 9.0.2.1. The soft photoionization provided by the VUV undulator radiation allowed the authors to probe the SOCH{sub 3} intermediate which had not been previously observed and provided good evidence that the dissociation of dimethyl sulfoxide primarily proceeds via a two step dissociation, reaction 2.

  12. An AC phase measuring interferometer for measuring dn/dT of fused silica and calcium fluoride at 193 nm

    SciTech Connect

    Shagam, R.N.

    1998-09-01

    A novel method for the measurement of the change in index of refraction vs. temperature (dn/dT) of fused silica and calcium fluoride at the 193 nm wavelength has been developed in support of thermal modeling efforts for the development of 193 nm-based photolithographic exposure tools. The method, based upon grating lateral shear interferometry, uses a transmissive linear grating to divide a 193 nm laser beam into several beam paths by diffraction which propagate through separate identical material samples. One diffracted order passing through one sample overlaps the undiffracted beam from a second sample and forms interference fringes dependent upon the optical path difference between the two samples. Optical phase delay due to an index change from heating one of the samples causes the interference fringes to change sinusoidally with phase. The interferometer also makes use of AC phase measurement techniques through lateral translation of the grating. Results for several samples of fused silica and calcium fluoride are demonstrated.

  13. Optical lithography for nanotechnology

    NASA Astrophysics Data System (ADS)

    Flagello, Donis G.; Arnold, Bill

    2006-09-01

    Optical lithography is continually evolving to meet the ever demanding requirements of the micro - and nano- technology communities. Since the optical exposure systems used in lithography are some of the most advanced and complex optical instruments ever built, they involve ever more complex illuminator designs, nearly aberration free lenses, and hyper numerical apertures approaching unity and beyond. Fortunately, the lithography community has risen to the challenge by devising many inventive optical systems and various methods to use and optimize exposure systems. The recent advancement of water immersion technology into lithography for 193nm wavelengths has allowed the numerical aperture (NA) of lithographic lenses to exceed 1.0 or a hyper-NA region. This allows resolution limits to extend to the 45nm node and beyond with NA>1.3. At these extreme NAs, the imaging within the photoresist is accomplished by not only using water immersion but also using polarized light lithography. This paper will review the current state-of-the-art in immersion, hyper-NA lithography. We show the latest results and discuss the various phenomena that may arise using these systems. Furthermore, we show some of the advanced image optimization techniques that allow lithographic printing at the physical limits of resolution. In addition, we show that the future of optical lithography is likely to go well beyond the 30nm regime using advancements in 193nm double-patterning technology and/or the use of extreme ultra-violet (EUV) optical systems.

  14. Beyond k1=0.25 lithography: 70-nm L/S patterning using KrF scanners

    NASA Astrophysics Data System (ADS)

    Ebihara, Takeaki; Levenson, Marc D.; Liu, Wei; He, Jim; Yeh, Wendy; Ahn, Sang; Oga, Toshihiro; Shen, Meihua; M'saad, Hichem

    2003-12-01

    The extendibility of optical lithography using KrF and ArF exposure tools is still being investigated, even, being demanded strongly now, due to the unforeseen issues, high cost, and general difficulty of NGLs - including F2 and immersion lithography. In spite of these challenges Moore's Law requires continued shrinks and the ITRS roadmap still keeps its aggressive timetable. In order to follow the ITRS roadmap, the resolution must keep improving by increasing the lens NA for optical exposure tools. However, the conventional limit of optical resolution (kpitch=0.5) is very close for the current technologies, perhaps limiting progress unless NGL becomes available quickly. Therefore we need to find a way to overcome this seemingly fundamental limit of optical resolution. In this paper, we propose two practical two-mask /double-exposure schemes for doubling resolution in future lithography. One method uses a Si-containing bi-layer resist, and the other method uses Applied Materials' APF (a removable hard mask). The basic ideas of both methods are similar: The first exposure forms 1:3 ratio L/S patterns in one resist/hard mask layer, then the second exposure images another 1:3 ratio L/S pattern in-between the two lines (or two spaces) formed by the first exposure. The combination of these two exposures can form, in theory, kpitch=0.25 patterns. In this paper, we will demonstrate 70nm L/S pattern (140nm pitch) or smaller by using a NA0.68 KrF Scanner and a strong-RET reticle, which corresponds to kpitch = 0.38 (k1=0.19). We will also investigate the critical alignment and CD control issues for these two-mask/dual-exposure schemes.

  15. Photodissociation of the Propargyl (C3D3) Radicals at 248 nm and 193 nm

    SciTech Connect

    Neumark., D.M.; Crider, P.E.; Castiglioni, L.; Kautzman, K.K.

    2009-01-21

    The photodissociation of perdeuterated propargyl (D{sub 2}CCCD) and propynyl (D{sub 3}CCC) radicals was investigated using fast beam photofragment translational spectroscopy. Radicals were produced from their respective anions by photodetachment at 540 nm and 450 nm (below and above the electron affinity of propynyl). The radicals were then photodissociated by 248 nm or 193 nm light. The recoiling photofragments were detected in coincidence with a time- and position-sensitive detector. Three channels were observed: D{sub 2} loss, CD + C{sub 2}D{sub 2}, and CD{sub 3} + C{sub 2}. Obervation of the D loss channel was incompatible with this experiment and was not attempted. Our translational energy distributions for D{sub 2} loss peaked at nonzero translational energy, consistent with ground state dissociation over small (< 1 eV) exit barriers with respect to separated products. Translational energy distributions for the two heavy channels peaked near zero kinetic energy, indicating dissociation on the ground state in the absence of exit barriers.

  16. 193 nm Ultraviolet Photodissociation Mass Spectrometry for Phosphopeptide Characterization in the Positive and Negative Ion Modes.

    PubMed

    Robinson, Michelle R; Taliaferro, Juliana M; Dalby, Kevin N; Brodbelt, Jennifer S

    2016-08-01

    Advances in liquid chromatography tandem mass spectrometry (LC-MS/MS) have permitted phosphoproteomic analysis on a grand scale, but ongoing challenges specifically associated with confident phosphate localization continue to motivate the development of new fragmentation techniques. In the present study, ultraviolet photodissociation (UVPD) at 193 nm is evaluated for the characterization of phosphopeptides in both positive and negative ion modes. Compared to the more standard higher energy collisional dissociation (HCD), UVPD provided more extensive fragmentation with improved phosphate retention on product ions. Negative mode UVPD showed particular merit for detecting and sequencing highly acidic phosphopeptides from alpha and beta casein, but was not as robust for larger scale analysis because of lower ionization efficiencies in the negative mode. HeLa and HCC70 cell lysates were analyzed by both UVPD and HCD. While HCD identified more phosphopeptides and proteins compared to UVPD, the unique matches from UVPD analysis could be combined with the HCD data set to improve the overall depth of coverage compared to either method alone. PMID:27425180

  17. Microsurgery of the retina with a needle-guided 193-nm excimer laser.

    PubMed

    Lewis, A; Palanker, D; Hemo, I; Pe'er, J; Zauberman, H

    1992-07-01

    This article presents a method used to guide the beam from an argon fluoride excimer laser to make it suitable for microsurgical purposes and confine it to areas that can be varied in dimension from 1 micron to tens or hundreds of microns. This approach guides the excimer laser beam with an articulated mechanical arm and confines it with variable-diameter tapered tubes, possibly allowing the use of this laser in in vitro retinal surgery with endolaser techniques. Currently, because of the lack of a delivery and focusing system for the 193-nm argon fluoride beam and its absorption by biologic liquids, this laser is used exclusively in ophthalmology for topical applications, such as corneal sculpting. This new method resolves these problems in a unique way with impressive results. Specifically, it was shown that, with this needle-guided excimer laser, it is possible to remove retinal tissue accurately without detectable damage to surrounding cells. Applications of this new technique in retinal surgery are discussed. PMID:1634334

  18. Product channels in the 193-nm photodissociation of HCNO (fulminic acid)

    NASA Astrophysics Data System (ADS)

    Feng, Wenhui; Hershberger, John F.

    2016-06-01

    IR diode laser spectroscopy was used to detect the products of HCNO (fulminic acid) photolysis at 193 nm. Six product channels are energetically possible at this photolysis wavelength: O + HCN, H + NCO/CNO, CN + OH, CO + NH, NO + CH and HNCO. In some experiments, isotopically labeled 15N18O, C2D6 or C6H12 reagents were included into the photolysis mixture in order to suppress and/or redirect possible secondary reactions. HCN, OC18O, 15N15NO, CO, DCN and HNCO molecules were detected upon laser photolysis of HCNO/reagents/buffer gas mixtures. Analysis of the yields of product molecules leads to the following photolysis quantum yields: ϕ1a (O + HCN) = 0.38 ± 0.04, ϕ1b (H + (NCO)) = 0.07 ± 0.02, ϕ1c (CN + OH) = 0.24 ± 0.03, ϕ1d (CO + NH(a1Δ)) < 0.22 ± 0.1, ϕ1e (HNCO) = 0.02 ± 0.01 and ϕ1f (CH + NO) = 0.21 ± 0.1, respectively.

  19. The stability of allyl radicals following the photodissociation of allyl iodide at 193 nm.

    SciTech Connect

    Fan, H.; Pratt, S. T.; Chemistry

    2006-01-01

    The photodissociation of allyl iodide (C{sub 3}H{sub 5}I) at 193 nm was investigated by using a combination of vacuum-ultraviolet photoionization of the allyl radical, resonant multiphoton ionization of the iodine atoms, and velocity map imaging. The data provide insight into the primary C-I bond fission process and into the dissociative ionization of the allyl radical to produce C{sub 3}H{sup 3+}. The experimental results are consistent with the earlier results of Szpunar et al. [J. Chem. Phys. 119, 5078 (2003)], in that some allyl radicals with internal energies higher than the secondary dissociation barrier are found to be stable. This stability results from the partitioning of available energy between the rotational and vibrational degrees of freedom of the radical, the effects of a centrifugal barrier along the reaction coordinate, and the effects of the kinetic shift in the secondary dissociation of the allyl radical. The present results suggest that the primary dissociation of allyl iodide to allyl radicals plus I*({sup 2}P{sub 1/2}) is more important than previously suspected.

  20. The stability of allyl radicals following the photodissociation of allyl iodide at 193 nm.

    PubMed

    Fan, H; Pratt, S T

    2006-10-14

    The photodissociation of allyl iodide (C3H5I) at 193 nm was investigated by using a combination of vacuum-ultraviolet photoionization of the allyl radical, resonant multiphoton ionization of the iodine atoms, and velocity map imaging. The data provide insight into the primary C-I bond fission process and into the dissociative ionization of the allyl radical to produce C3H3+. The experimental results are consistent with the earlier results of Szpunar et al. [J. Chem. Phys. 119, 5078 (2003)], in that some allyl radicals with internal energies higher than the secondary dissociation barrier are found to be stable. This stability results from the partitioning of available energy between the rotational and vibrational degrees of freedom of the radical, the effects of a centrifugal barrier along the reaction coordinate, and the effects of the kinetic shift in the secondary dissociation of the allyl radical. The present results suggest that the primary dissociation of allyl iodide to allyl radicals plus I*(2P(1/2)) is more important than previously suspected. PMID:17042585

  1. Photoacoustic injury and bone healing following 193nm excimer laser ablation.

    PubMed

    Lustmann, J; Ulmansky, M; Fuxbrunner, A; Lewis, A

    1992-01-01

    The argon-fluoride excimer laser was investigated as a cutting-ablating tool for bone surgery. A total of 52 rats were divided into two experimental groups and two control groups. In one experimental group cortical bone defects were made; in another experimental group defects penetrating into the medullary space were performed. In the two control groups similar defects were achieved using water-cooled carbide burs. The rats were sacrificed on each of the 3, 7, 10, 20, 30, and 40 postoperative day. The cortical bone, the medullary space, and the extrabony tissue were examined by means of light microscopy. In both experimental groups, bone damage, represented by osteocyte destruction, extended to 1,050-1,450 microns ahead from the irradiated site, and bone healing was very much impaired. In the control groups no histological changes could be identified and bone healing appeared to be within normal limits. We believe this extensive bone damage, following 193 nm irradiation, to be a result of photoacoustic waves propagating in the bone following each pulse. In view of our results we feel that excimer lasers presently in use are not suitable for bone surgery. This problem of photoacoustic damage can be overcome in one of two ways: by designing a CW excimer laser or by reducing the pulse width to the picosecond regime. PMID:1495367

  2. Mechanisms involved in HBr and Ar cure plasma treatments applied to 193 nm photoresists

    NASA Astrophysics Data System (ADS)

    Pargon, E.; Menguelti, K.; Martin, M.; Bazin, A.; Chaix-Pluchery, O.; Sourd, C.; Derrough, S.; Lill, T.; Joubert, O.

    2009-05-01

    In this article, we have performed detailed investigations of the 193 nm photoresist transformations after exposure to the so-called HBr and Ar plasma cure treatments using various characterization techniques (x-ray photoelectron spectroscopy, Fourier transformed infrared, Raman analyses, and ellipsometry). By using windows with different cutoff wavelengths patched on the photoresist film, the role of the plasma vacuum ultraviolet (VUV) light on the resist modifications is clearly outlined and distinguished from the role of radicals and ions from the plasma. The analyses reveal that both plasma cure treatments induce severe surface and bulk chemical modifications of the resist films. The synergistic effects of low energetic ion bombardment and VUV plasma light lead to surface graphitization or cross-linking (on the order of 10 nm), while the plasma VUV light (110-210 nm) is clearly identified as being responsible for ester and lactone group removal from the resist bulk. As the resist modification depth depends strongly on the wavelength penetration into the material, it is found that HBr plasma cure that emits near 160-170 nm can chemically modify the photoresist through its entire thickness (240 nm), while the impact of Ar plasmas emitting near 100 nm is more limited. In the case of HBr cure treatment, Raman and ellipsometry analyses reveal the formation of sp2 carbon atoms in the resist bulk, certainly thanks to hydrogen diffusion through the resist film assisted by the VUV plasma light.

  3. Mechanisms involved in HBr and Ar cure plasma treatments applied to 193 nm photoresists

    SciTech Connect

    Pargon, E.; Menguelti, K.; Martin, M.; Bazin, A.; Joubert, O.; Lill, T.

    2009-05-01

    In this article, we have performed detailed investigations of the 193 nm photoresist transformations after exposure to the so-called HBr and Ar plasma cure treatments using various characterization techniques (x-ray photoelectron spectroscopy, Fourier transformed infrared, Raman analyses, and ellipsometry). By using windows with different cutoff wavelengths patched on the photoresist film, the role of the plasma vacuum ultraviolet (VUV) light on the resist modifications is clearly outlined and distinguished from the role of radicals and ions from the plasma. The analyses reveal that both plasma cure treatments induce severe surface and bulk chemical modifications of the resist films. The synergistic effects of low energetic ion bombardment and VUV plasma light lead to surface graphitization or cross-linking (on the order of 10 nm), while the plasma VUV light (110-210 nm) is clearly identified as being responsible for ester and lactone group removal from the resist bulk. As the resist modification depth depends strongly on the wavelength penetration into the material, it is found that HBr plasma cure that emits near 160-170 nm can chemically modify the photoresist through its entire thickness (240 nm), while the impact of Ar plasmas emitting near 100 nm is more limited. In the case of HBr cure treatment, Raman and ellipsometry analyses reveal the formation of sp{sup 2} carbon atoms in the resist bulk, certainly thanks to hydrogen diffusion through the resist film assisted by the VUV plasma light.

  4. Top-coatless 193nm positive-tone development immersion resist for logic application

    NASA Astrophysics Data System (ADS)

    Liu, Lian Cong; Yeh, Tsung Ju; Lin, Yeh-Sheng; Huang, Yu Chin; Kuo, Chien Wen; Huang, Wen Liang; Lin, Chia Hung; Yu, Chun Chi; Hsu, Ray; Wan, I.-Yuan; Lin, Jeff; Im, Kwang-Hwyi; Lim, Hae Jin; Jeon, Hyun K.; Suzuki, Yasuhiro; Xu, Cheng Bai

    2015-03-01

    In this paper, we summarize our development efforts for a top-coatless 193nm immersion positive tone development (PTD) contact hole (C/H) resist with improved litho and defect performances for logic application specifically with an advance node. The ultimate performance goal was to improve the depth of focus (DoF) margin, mask error enhancement factor (MEEF), critical dimension uniformity (CDU), contact edge roughness (CER), and defect performance. Also, the through pitch CD difference was supposed to be comparable to the previous control resist. Effects of polymer and PAG properties have been evaluated for this purpose. The material properties focused in the evaluation study were polymer activation energy (Ea), polymer solubility differentiated by polymerization process types, and diffusion length (DL) and acidity (pKa) of photoacid generator (PAG). Additionally, the impact of post exposure bake (PEB) temperature was investigated for process condition optimization. As a result of this study, a new resist formulation to satisfy all litho and defect performance was developed and production yield was further improved.

  5. Defectivity reduction studies for ArF immersion lithography

    NASA Astrophysics Data System (ADS)

    Matsunaga, Kentaro; Kondoh, Takehiro; Kato, Hirokazu; Kobayashi, Yuuji; Hayasaki, Kei; Ito, Shinichi; Yoshida, Akira; Shimura, Satoru; Kawasaki, Tetsu; Kyoda, Hideharu

    2007-03-01

    Immersion lithography is widely expected to meet the manufacturing requirements of future device nodes. A critical development in immersion lithography has been the construction of a defect-free process. Two years ago, the authors evaluated the impact of water droplets made experimentally on exposed resist films and /or topcoat. (1) The results showed that the marks of drying water droplet called watermarks became pattern defects with T-top profile. In the case that water droplets were removed by drying them, formation of the defects was prevented. Post-exposure rinse process to remove water droplets also prevented formation of the defects. In the present work, the authors evaluated the effect of pre- and post-exposure rinse processes on hp 55nm line and space pattern with Spin Rinse Process Station (SRS) and Post Immersion Rinse Process Station (PIR) modules on an inline lithography cluster with the Tokyo Electron Ltd. CLEAN TRACK TM LITHIUS TM i+ and ASML TWINSCAN XT:1700Fi , 193nm immersion scanner. It was found that total defectivity is decreased by pre- and post-exposure rinse. In particular, bridge defects and large bridge defects were decreased by pre- and post-exposure rinse. Pre- and post-exposure rinse processes are very effective to reduce the bridge and large bridge defects of immersion lithography.

  6. Scanner OPC signatures: automatic vendor-to-vendor OPE matching

    NASA Astrophysics Data System (ADS)

    Renwick, Stephen P.

    2009-03-01

    As 193nm lithography continues to be stretched and the k1 factor decreases, optical proximity correction (OPC) has become a vital part of the lithographer's tool kit. Unfortunately, as is now well known, the design variations of lithographic scanners from different vendors cause them to have slightly different optical-proximity effect (OPE) behavior, meaning that they print features through pitch in distinct ways. This in turn means that their response to OPC is not the same, and that an OPC solution designed for a scanner from Company 1 may or may not work properly on a scanner from Company 2. Since OPC is not inexpensive, that causes trouble for chipmakers using more than one brand of scanner. Clearly a scanner-matching procedure is needed to meet this challenge. Previously, automatic matching has only been reported for scanners of different tool generations from the same manufacturer. In contrast, scanners from different companies have been matched using expert tuning and adjustment techniques, frequently requiring laborious test exposures. Automatic matching between scanners from Company 1 and Company 2 has remained an unsettled problem. We have recently solved this problem and introduce a novel method to perform the automatic matching. The success in meeting this challenge required three enabling factors. First, we recognized the strongest drivers of OPE mismatch and are thereby able to reduce the information needed about a tool from another supplier to that information readily available from all modern scanners. Second, we developed a means of reliably identifying the scanners' optical signatures, minimizing dependence on process parameters that can cloud the issue. Third, we carefully employed standard statistical techniques, checking for robustness of the algorithms used and maximizing efficiency. The result is an automatic software system that can predict an OPC matching solution for scanners from different suppliers without requiring expert intervention.

  7. A 193 nm laser photofragmentation time-of-flight mass spectrometric study of chloroiodomethane

    SciTech Connect

    Zhang, Tao; Ng, C.Y.; Qi Fei; Lam, C.-S.; Li, W.-K.

    2005-11-01

    The photodissociation dynamics of chloroiodomethane (CH{sub 2}ICl) at 193 nm has been investigated by employing the photofragment time-of-flight (TOF) mass spectrometric method. Using tunable vacuum ultraviolet undulator synchrotron radiation for photoionization sampling of nascent photofragments, we have identified four primary dissociation product channels: CH{sub 2}Cl+I({sup 2}P{sub 1/2})/I({sup 2}P{sub 3/2}), CH{sub 2}I+Cl({sup 2}P{sub 1/2})/Cl({sup 2}P{sub 3/2}), CHI+HCl, and CH{sub 2}+ICl. The state-selective detection of I({sup 2}P{sub 3/2}) and I({sup 2}P{sub 1/2}) has allowed the estimation of the branching ratio for I({sup 2}P{sub 1/2}):I({sup 2}P{sub 3/2}) to be 0.73: 0.27. Theoretical calculations based on the time-dependent density-functional theory have been also made to investigate excited electronic potential-energy surfaces, plausible intermediates, and transition structures involved in these photodissociation reactions. The translation energy distributions derived from the TOF measurements suggest that at least two dissociation mechanisms are operative for these photodissociation processes. One involves the direct dissociation from the 2 {sup 1}A{sup '} state initially formed by 193 nm excitation, leading to significant kinetic-energy releases. For the I-atom and Cl-atom elimination channels, the fragment kinetic-energy releases observed via this direct dissociation mechanism are consistent with those predicted by the impulsive dissociation models. Other mechanisms are likely predissociative or statistical in nature from the lower 1 {sup 1}A{sup '} and 1 {sup 1}A{sup ''} states and/or the ground X-tilde {sup 1}A{sup '} state populated by internal conversion from the 2 {sup 1}A{sup '} state. On the basis of the maximum kinetic-energy release for the formation of CH{sub 2}Cl+I({sup 2}P{sub 1/2}), we have obtained a value of 53{+-}2 kcal/mol for the 0 K bond dissociation energy of I-CH{sub 2}Cl. The intermediates and transition structures for the CHI

  8. Photolysis of Pure Solid O3 and O2 Films at 193nm

    NASA Technical Reports Server (NTRS)

    Raut, U.; Loeffler, M. J.; Fama, M.; Baragiola, R. A.

    2011-01-01

    We studied quantitatively the photochemistry of solid O3 and O2 films at 193 nm and 22 K with infrared spectroscopy and microgravimetry. Photolysis of pure ozone destroyed O3, but a small amount of ozone remained in the film at high fluence. Photolysis of pure O2 produced O3 in an amount that increased with photon fluence to a stationary level. For both O2 and O3 films, the O3:O2 ratio at large fluences is ?0.07, about two orders of magnitude larger than those obtained in gas phase photolysis. This enhancement is attributed to the increased photodissociation of O2 due to photoabsorption by O2 dimers, a process significant at solid-state densities. We obtain initial quantum yield for ozone synthesis from solid oxygen, phi (O3) = 0.24 0.06, and quantum yields for destruction of O3 and O2 in their parent solids, phi(-O3) = 1.0 0.2 and phi(-O2) = 0.36 0.1. Combined with known photoabsorption cross sections, we estimate probabilities for geminate recombination of 0.5 0.1 for O3 fragments and 0.88 0.03 for oxygen atoms from O2 dissociation. Using a single parameter kinetic model, we deduce the ratio of reaction cross sections for an O atom with O2 vs. O3 to be 0.1 0.2. The general good agreement of the model with the data suggests the validity of the central assumption of efficient energy and spin relaxation of photofragments in the solid prior to their reactions with other species.

  9. Primary and secondary processes in the 193 nm photodissociation of vinyl chloride

    SciTech Connect

    Blank, D.A.; Sun, W.; Suits, A.G.; Lee, Y.T.; North, S.W.; Hall, G.E.

    1998-04-01

    We have investigated the photodissociation of vinyl chloride (H{sub 2}CCHCl) at 193 nm using the technique of photofragment translational spectroscopy. The experiments were performed at the Chemical Dynamics Beamline at the Advanced Light Source and used vacuum ultraviolet synchrotron radiation for product photoionization. We have observed five primary dissociation channels following an initial {pi}{sup {asterisk}}{l_arrow}{pi} excitation. The majority of Cl atoms originate from an excited-state dissociation. The remaining dissociation channels are consistent with competition on the ground electronic state following internal conversion from the optically prepared state. These channels include atomic and molecular hydrogen elimination, HCl elimination, and a translationally slow Cl elimination channel. We have also identified and characterized two secondary decomposition channels: (1) the elimination of Cl from chlorovinyl radicals following the primary atomic hydrogen elimination channel, and (2) hydrogen atom elimination from vinyl radicals following the primary atomic Cl elimination. By measuring the truncation in the translational energy distribution for C{sub 2}H{sub 2}Cl products from primary atomic hydrogen elimination we deduce a barrier for the reverse reaction of Cl+acetylene of 11{plus_minus}2kcal/mol. Since Cl is known to add rapidly to acetylene with no activation barrier, we conclude that H loss primarily forms the ClCCH{sub 2} isomer, and that the observed 11 kcal/mol barrier pertains to a concerted addition/rearrangement path to form the {alpha}-chlorovinyl radical. Finally, we report low-resolution photoionization spectra for the nascent vinyl radical and HCl photoproducts, in which redshifts in the ionization onsets can be related to the internal energy content. {copyright} {ital 1998 American Institute of Physics.}

  10. Dynamics of ions produced by laser ablation of several metals at 193 nm

    SciTech Connect

    Baraldi, G.; Perea, A.; Afonso, C. N.

    2011-02-15

    This work reports the study of ion dynamics produced by ablation of Al, Cu, Ag, Au, and Bi targets using nanosecond laser pulses at 193 nm as a function of the laser fluence from threshold up to 15 J cm{sup -2}. An electrical (Langmuir) probe has been used for determining the ion yield as well as kinetic energy distributions. The results clearly evidence that ablation of Al shows unique features when compared to other metals. The ion yield both at threshold (except for Al, which shows a two-threshold-like behavior) and for a fixed fluence above threshold scale approximately with melting temperature of the metal. Comparison of the magnitude of the yield reported in literature using other wavelengths allows us to conclude its dependence with wavelength is not significant. The evolution of the ion yield with fluence becomes slower for fluences above 4-5 J cm{sup -2} with no indication of saturation suggesting that ionization processes in the plasma are still active up to 15 J cm{sup -2} and production of multiple-charged ions are promoted. This dependence is mirrored in the proportion of ions with kinetic energies higher than 200 eV. This proportion is not significant around threshold fluence for all metals except for Al, which is already 20%. The unique features of Al are discussed in terms of the energy of laser photons (6.4 eV) that is enough to induce direct photoionization from the ground state only in the case of this metal.

  11. Soft-tissue removal by the 193-nm excimer laser in a strongly absorbing liquid environment

    NASA Astrophysics Data System (ADS)

    Palanker, Daniel; Hemo, Itzhak; Turovets, Igor; Lewis, Aaron

    1994-08-01

    The 193 nm excimer laser delivered through special tips into biological liquid environments was applied to two different fields of microsurgery and two mechanism of tissue ablation were found to be operative. In vitreoretinal surgical applications, where the tip exit diameter was about 250 micrometers , the effective cutting regime of retina and vitreoretinal membranes occurred at energy fluences of about 250 - 350 mJ/cm2/pulse with a corresponding cutting depth of 50 - 150 micrometers /pulse. Gas bubbles, formed at the tip exit when it touched the tissue during irradiation, seem to be the driving force underlying the cutting process. This enabled us to achieve a much deeper cut in tissue than a micron-sized laser penetration depth. The system was applied to bovine and rabbit retina and rabbit vitreoretinal membranes and it was found that such tissue removal is fast enough for real vitreoretinal applications and the cut depth control is still good enough for this microsurgery. In the application of this system to drilling of 4 - 8 micrometers diameter holes in the zona pellucida of oocytes the optimal energy fluence is about 40 mJ/cm2/pulse with an ablation depth of about 2 micrometers /pulse. In this case no bubbles are formed and the process seems to be a non-explosive photodissociation of the tissue with subsequent slow dissolution of the products. This mechanism, in contrast to the vitreoretinal tissue removal, was found to be very selective to the type of material being ablated. This process was studied on a model of 20% gelatin gel, which is very close to the ablation properties of the zona pellucida.

  12. Photoinitiated decomposition of substituted ethylenes: The photodissociation of vinyl chloride and acrylonitrile at 193 nm

    SciTech Connect

    Blank, D.A.; Suits, A.G.; Lee, Y.T.

    1997-04-01

    Ethylene and its substituted analogues (H{sub 2}CCHX) are important molecules in hydrogen combustion. As the simplest {pi}-bonded hydrocarbons these molecules serve as prototypical systems for understanding the decomposition of this important class of compounds. The authors have used the technique of photofragment translational spectroscopy at beamline 9.0.2.1 to investigate the dissociation of vinyl chloride (X=Cl) and acrylonitrile (X=CN) following absorption at 193 nm. The technique uses a molecular beam of the reactant seeded in helium which is crossed at 90 degrees with the output of an excimer laser operating on the ArF transition, 193.3 nm. The neutral photoproducts which recoil out of the molecular beam travel 15.1 cm where they are photoionized by the VUV undulator radiation, mass selected, and counted as a function of time. The molecular beam source is rotatable about the axis of the dissociation laser. The authors have directly observed all four of the following dissociation channels for both systems: (1) H{sub 2}CCHX {r_arrow} H + C{sub 2}H{sub 2}X; (2) H{sub 2}CCHX {r_arrow} X + C{sub 2}H{sub 3}; (3) H{sub 2}CCHX {r_arrow} H{sub 2} + C{sub 2}HX; and (4) H{sub 2}CCHX {r_arrow} HX + C{sub 2}H{sub 2}. They measured translational energy distributions for all of the observed channels and measured the photoionization onset for many of the photoproducts which provided information about their chemical identity and internal energy content. In the case of acrylonitrile, selective product photoionization provided the ability to discriminate between channels 2 and 4 which result in the same product mass combination.

  13. New insights into the photodissociation of methyl iodide at 193 nm: stereodynamics and product branching ratios.

    PubMed

    Marggi Poullain, Sonia; González, Marta G; Samartzis, Peter C; Kitsopoulos, Theofanis N; Rubio-Lago, Luis; Bañares, Luis

    2015-11-28

    The stereodynamics of methyl iodide photodissociation after excitation at 193 nm has been studied using a combination of slice imaging and resonance enhanced multiphoton ionization (REMPI) detection of the methyl and iodine products. A weak anisotropic ring appearing in the image corresponding to vibrationally excited CH3(ν1 = 1) confirms the production of ground state I((2)P3/2) atoms at this excitation wavelength as a signature of the predissociation channel reported previously [M. G. González et al., J. Chem. Phys., 2011, 135, 021102] tentatively assigned to the coupling between the B-band (3)R1 Rydberg state and the A-band (1)Q1 repulsive state. Direct REMPI detection of ground state iodine atoms indicates that most of the I((2)P3/2) species are produced in correlation with highly internally excited methyl radicals, in excellent agreement with the recent results of Xu and Pratt [Xu et al., J. Chem. Phys., 2013, 139, 214310; Xu et al., J. Phys. Chem. A, 2015, 119, 7548]. From the comparison between the CH3(ν) second order Dixon's bipolar moments β(2)(0)(20), β(0)(0)(22), β(2)(0)(02) and β(2)(0)(22) measured in this work and those reported previously for the B-band origin and the A-band, a general picture of the CH3I photodissociation stereodynamics in terms of different effects, such as the breakdown of the unique recoil direction (URD) approximation, the non-adiabatic curve crossings and the depolarization induced by the parent molecule rotation, is drawn. PMID:26489797

  14. Photodissociation of vinyl cyanide at 193 nm: Nascent product distributions of the molecular elimination channels

    SciTech Connect

    Wilhelm, Michael J.; Nikow, Matthew; Letendre, Laura; Dai Hailung

    2009-01-28

    The photodissociation dynamics of vinyl cyanide (H{sub 2}CCHCN, acrylonitrile) and deuterated vinyl cyanide (D{sub 2}CCDCN) at 193 nm are examined using time-resolved Fourier transform infrared emission spectroscopy. Prior photofragment translational spectroscopy studies [D. A. Blank et al., J. Chem. Phys. 108, 5784 (1998)] of the dissociation have observed the presence of four main dissociation channels; two molecular and two radical in nature. However, with the exception of a<0.01 quantum yield determined for the CN radical loss channel, the branching ratios of the remaining three elimination channels were not measured. The time-resolved emission spectra, including those from the deuterated samples, revealed the presence of acetylene, hydrogen cyanide (HCN), as well as the energetically less stable isomer hydrogen isocyanide (HNC). Acetylene is found in two distinct energetic distributions, suggesting that both three- and four-centered elimination reactions are occurring significantly in the dissociation. In contrast to prior ab initio studies that have suggested the dominant nature of the three-center elimination of molecular hydrogen (H{sub 2}) and cyanovinylidene (:C=CHCN), we find this reaction channel to be of little importance as there is no evidence to support any significant presence of rovibrationally excited cyanoacetylene. Spectral modeling of the product distributions allows for the first experimental determination of the relative occurrence of the three-centered (resulting in HCN+vinylidene) versus four-centered (HNC+acetylene) elimination channels as 3.34 to 1.00, in contrast to the previously calculated value of 126:1. Rice-Ramsperger-Kassel-Marcus analysis depicts that the transition state energy of the four-centered reaction should be about 10 kcal mole{sup -1} lower than the three-centered reaction.

  15. THE FIRST LASING OF 193 NM SASE, 4TH HARMONIC HGHG AND ESASE AT THE NSLS SDL.

    SciTech Connect

    WANG, X.J.; SHEN Y.; WATANABE, T.; MURPHY, J.B.; ROSE, J.; TSANG, T.

    2006-08-28

    The first lasing of three types of single-pass high-gain FELs, SASE at 193 nm, 4th harmonic HGHG at 199 nm and ESASE at the Source Development Lab (SDL) of Brookhaven National Laboratory (BNL) is reported. The saturation of 4th harmonic HGHG and ESASE FELs was observed. We also observed the spectral broadening and instability of the 4th harmonic HGHG.

  16. Generation of intense 10-ps, 193-nm pulses using simple distributed feedback dye lasers and an ArF(*) amplifier.

    PubMed

    Hatten, D L; Cui, Y; Iii, W T; Mikes, T; Goldhar, J

    1992-11-20

    A pair of holographic distributed feedback dye lasers is used to generate 10-ps pulses at two selected wavelengths that are mixed in a BBO crystal to produce a pulse ~ 10 ps in duration at 193 nm. This seed pulse is subsequently amplified in an ArF(*) excimer laser to an energy of 10-15 mJ with <40 microJ in amplified spontaneous emission. The pulses are nearly transform limited and diffraction limited. PMID:20802565

  17. Photon-controlled fabrication of amorphous superlattice structures using ArF (193 nm) excimer laser photolysis

    SciTech Connect

    Lowndes, D.H.; Geohegan, D.B.; Eres, D.; Pennycook, S.J.; Mashburn, D.N.; Jellison G.E. Jr.

    1988-05-30

    Pulsed ArF (193 nm) excimer laser photolysis of disilane, germane, and disilane-ammonia mixtures has been used to deposit amorphous superlattices containing silicon, germanium, and silicon nitride layers. Transmission electron microscope cross-section views demonstrate that structures having thin (5--25 nm) layers and sharp interlayer boundaries can be deposited at substrate temperatures below the pyrolytic threshold, entirely under laser photolytic control.

  18. Improving vacuum-UV (VUV) photolysis of organic compounds in water with a phosphor converted xenon excimer lamp emitting at 193 nm.

    PubMed

    Schulze-Hennings, U; Pötschke, L; Wietor, C; Bringmann, S; Braun, N; Hayashi, D; Linnemann, V; Pinnekamp, J

    2016-01-01

    A novel vacuum ultraviolet excimer lamp emitting light at 193 nm was used to investigate the degradation of organic micropollutants in ultrapure water and wastewater treatment plant (WWTP) effluent. Overall, light at 193 nm proved to be efficient to degrade the investigated micropollutants (diclofenac, diatrizoic acid, sulfamethoxazole). Experiments with WWTP effluent proved the ability of radiation at 193 nm to degrade micropollutants which are hardly removed with commonly used oxidation technologies like ozonation (diatrizoic acid, ethylenediaminetetraacetic acid, perfluorooctanoic acid, and perfluorooctanesulfonic acid). PMID:27533863

  19. The interaction of 193-nm excimer laser irradiation with single-crystal zinc oxide: Neutral atomic zinc and oxygen emission

    SciTech Connect

    Kahn, E. H.; Langford, S. C.; Dickinson, J. T.; Boatner, Lynn A

    2013-01-01

    We report mass-resolved time-of-flight measurements of neutral particles from the surface of single-crystal ZnO during pulsed 193-nm irradiation at laser fluences below the threshold for avalanche breakdown. The major species emitted are atomic Zn and O. We examine the emissions of atomic Zn as a function of laser fluence and laser exposure. Defects at the ZnO surface appear necessary for the detection of these emissions. Our results suggest that the production of defects is necessary to explain intense sustained emissions at higher fluence. Rapid, clean surface etching and high atomic zinc kinetic energies seen at higher laser fluences are also discussed.

  20. Statistical Examination of the a and a + 1 Fragment Ions from 193 nm Ultraviolet Photodissociation Reveals Local Hydrogen Bonding Interactions

    NASA Astrophysics Data System (ADS)

    Morrison, Lindsay J.; Rosenberg, Jake A.; Singleton, Jonathan P.; Brodbelt, Jennifer S.

    2016-05-01

    Dissociation of proteins and peptides by 193 nm ultraviolet photodissociation (UVPD) has gained momentum in proteomic studies because of the diversity of backbone fragments that are produced and subsequent unrivaled sequence coverage obtained by the approach. The pathways that form the basis for the production of particular ion types are not completely understood. In this study, a statistical approach is used to probe hydrogen atom elimination from a + 1 radical ions, and different extents of elimination are found to vary as a function of the identity of the C-terminal residue of the a product ions and the presence or absence of hydrogen bonds to the cleaved residue.

  1. Statistical Examination of the a and a + 1 Fragment Ions from 193 nm Ultraviolet Photodissociation Reveals Local Hydrogen Bonding Interactions

    NASA Astrophysics Data System (ADS)

    Morrison, Lindsay J.; Rosenberg, Jake A.; Singleton, Jonathan P.; Brodbelt, Jennifer S.

    2016-09-01

    Dissociation of proteins and peptides by 193 nm ultraviolet photodissociation (UVPD) has gained momentum in proteomic studies because of the diversity of backbone fragments that are produced and subsequent unrivaled sequence coverage obtained by the approach. The pathways that form the basis for the production of particular ion types are not completely understood. In this study, a statistical approach is used to probe hydrogen atom elimination from a + 1 radical ions, and different extents of elimination are found to vary as a function of the identity of the C-terminal residue of the a product ions and the presence or absence of hydrogen bonds to the cleaved residue.

  2. Influence of thermal annealing and ultraviolet light irradiation on LaF3 thin films at 193 nm.

    PubMed

    Lee, Cheng-Chung; Liu, Ming-Chung; Kaneko, Masaaki; Nakahira, Kazuhide; Takano, Yuuichi

    2005-11-10

    Lanthanum fluoride (LaF3) thin films were prepared by resistive heating evaporation and electron-beam gun evaporation under the same deposition rate, deposition substrate temperature, and vacuum pressure. The coated LaF3 films were then treated by heat annealing and UV light irradiation. The optical properties, microstructures, stress, and laser-induced damage threshold (LIDT) at a wavelength of 193 nm were investigated. The surface roughness, optical loss, stress, and LIDT of the films were improved after the annealing. The films had better properties when irradiated by UV light as compared with heat annealing. PMID:16294967

  3. Photodissociation dynamics of the methyl perthiyl radical at 248 and 193 nm using fast-beam photofragment translational spectroscopy

    NASA Astrophysics Data System (ADS)

    Harrison, Aaron W.; Ryazanov, Mikhail; Sullivan, Erin N.; Neumark, Daniel M.

    2016-07-01

    The photodissociation dynamics of the methyl perthiyl radical (CH3SS) have been investigated using fast-beam coincidence translational spectroscopy. Methyl perthiyl radicals were produced by photodetachment of the CH3SS- anion followed by photodissociation at 248 nm (5.0 eV) and 193 nm (6.4 eV). Photofragment mass distributions and translational energy distributions were measured at each dissociation wavelength. Experimental results show S atom loss as the dominant (96%) dissociation channel at 248 nm with a near parallel, anisotropic angular distribution and translational energy peaking near the maximal energy available to ground state CH3S and S fragments, indicating that the dissociation occurs along a repulsive excited state. At 193 nm, S atom loss remains the major fragmentation channel, although S2 loss becomes more competitive and constitutes 32% of the fragmentation. The translational energy distributions for both channels are very broad at this wavelength, suggesting the formation of the S2 and S atom products in several excited electronic states.

  4. 193 nm Ultraviolet Photodissociation Mass Spectrometry of Tetrameric Protein Complexes Provides Insight into Quaternary and Secondary Protein Topology.

    PubMed

    Morrison, Lindsay J; Brodbelt, Jennifer S

    2016-08-31

    Protein-protein interfaces and architecture are critical to the function of multiprotein complexes. Mass spectrometry-based techniques have emerged as powerful strategies for characterization of protein complexes, particularly for heterogeneous mixtures of structures. In the present study, activation and dissociation of three tetrameric protein complexes (streptavidin, transthyretin, and hemoglobin) in the gas phase was undertaken by 193 nm ultraviolet photodissociation (UVPD) for the characterization of higher order structure. High pulse energy UVPD resulted in the production of dimers and low charged monomers exhibiting symmetrical charge partitioning among the subunits (the so-called symmetrical dissociation pathways), consistent with the subunit organization of the complexes. In addition, UVPD promoted backbone cleavages of the monomeric subunits, the abundances of which corresponded to the more flexible loop regions of the proteins. PMID:27480400

  5. Collision-induced desorption in 193-nm photoinduced reactions in (O{sub 2}+CO) adlayers on Pt(112)

    SciTech Connect

    Han Song; Ma Yunsheng; Matsushima, Tatsuo

    2005-09-01

    The spatial distribution of desorbing O{sub 2} and CO{sub 2} was examined in 193-nm photoinduced reactions in O{sub 2}+CO adlayers on stepped Pt (112)=[(s)3(111)x(001)]. The O{sub 2} desorption collimated in inclined ways in the plane along the surface trough, confirming the hot-atom collision mechanism. In the presence of CO(a), the product CO{sub 2} desorption also collimated in an inclined way, whereas the inclined O{sub 2} desorption was suppressed. The inclined O{sub 2} and CO{sub 2} desorption is explained by a common collision-induced desorption model. At high O{sub 2} coverage, the CO{sub 2} desorption collimated closely along the (111) terrace normal.

  6. Effect of hydrogen bonding on far-ultraviolet water absorption and potential implications for 193-nm ArF excimer laser-tissue interaction

    NASA Astrophysics Data System (ADS)

    Walsh, Joseph T., Jr.; Staveteig, Paul T.

    1995-05-01

    The mechanisms causing transient 193-nm optical absorption of collagen during ablative-fluence ArF excimer pulses are poorly understood. The preponderance of hypotheses proposed to explain this phenomenon, such as ultrafast secondary-structure denaturation of proteins and transient free radical formation, focus on the protein matrix and ignore potential contributions from other tissue components such as water. A substantial body of spectroscopic literature places 193 nm adjacent to a steep absorption edge of water that rises to 60,000 cm-1 at 163 nm; other evidence shows that this absorption edge shifts toward 193 nm upon hydrogen-bond breakage. In this paper we show that heating of water from 20-100°C increases the liquid's absorption coefficient. Further investigations using an infrared pump laser show a significant increase in absorption by water of a 193-nm probe beam. Based on this evidence, we speculate that 193-nm laser ablation of tissue may contain a photothermal component related to dynamic absorption of incident radiation by water.

  7. SEM metrology for advanced lithographies

    NASA Astrophysics Data System (ADS)

    Bunday, Benjamin; Allgair, John; Rice, Bryan J.; Byers, Jeff; Avitan, Yohanan; Peltinov, Ram; Bar-zvi, Maayan; Adan, Ofer; Swyers, John; Shneck, Roni Z.

    2007-03-01

    For many years, lithographic resolution has been the main obstacle for keeping the pace of transistor densification to meet Moore's Law. The industry standard lithographic wavelength has evolved many times, from G-line to I-line, deep ultraviolet (DUV) based on KrF, and 193nm based on ArF. At each of these steps, new photoresist materials have been used. For the 45nm node and beyond, new lithography techniques are being considered, including immersion ArF lithography and extreme ultraviolet (EUV) lithography. As in the past, these techniques will use new types of photoresists with the capability of printing 45nm node (and beyond) feature widths and pitches. This paper will show results of an evaluation of the critical dimension-scanning electron microscopy (CD-SEM)-based metrology capabilities and limitations for the 193nm immersion and EUV lithography techniques that are suggested in the International Technology Roadmap for Semiconductors. In this study, we will print wafers with these emerging technologies and evaluate the performance of SEM-based metrology on these features. We will conclude with preliminary findings on the readiness of SEM metrology for these new challenges.

  8. Photodissociation of the CHFCl 2 and CHCl 3 molecules and the CHCl 2 radical in a beam at 193 nm

    NASA Astrophysics Data System (ADS)

    Yang, Xuefeng; Felder, Peter; Robert Huber, J.

    1994-11-01

    The collision-free photodissociation of CHFCl 2 and CHCl 3 at 193 nm has been studied by photofragment translational spectroscopy. In both systems the primary dissociation proceeds: exclusively via the rupture of a CCl bond. The broad and unstructured UV spectra of the parent molecules and the rather high kinetic energy release ˜45% of the available energy) in conjunction with the narrow translational energy distributions of the fragments are consistent with the CCl bond fission being a direct dissociation process. The photofragment angular distributions are characterized by anisotropy parameter β=0.5±0.1 (CHFCl 2) and β=0.0±0.1 (CHCl 3). Therefore, the photolysis of CHFCl2 involves an electronic transition polarised parallel to the line connecting the two Cl atoms. In the case of CHCl3, the nearly isotropic fragment recoil is attributed to the excitation of overlapping transitions of A 1←A 1 and E←A 1 type, respectively, hence leading to an effective anisotropy parameter βeff= aβA1 + bβE˜0. The CHCl 2 radical produced in the primary reaction CHCl 3 + hν→ CHCl 2 + Cl can absorb a further photon and is then selectively dissociated by molecular elimination of HCl according to CHCl 2 + hν→CCl + HCl

  9. Photodissociation of the CHFCl2 and CHCl3 molecules and the CHCl2 radical in a beam at 193 nm

    NASA Astrophysics Data System (ADS)

    Yang, Xuefeng; Felder, Peter; Huber, J. Robert

    1994-11-01

    The collision-free photodissociation of CHFCl2 and CHCl3 at 193 nm has been studied by photofragment translational spectroscopy. In both systems the primary dissociation proceeds exclusively via the rupture of a C-Cl bond. The broad and unstructured UV spectra of the parent molecules and the rather high kinetic energy release (approximately = 45% of the available energy) in conjunction with the narrow translational energy distributions of the fragments are consistent with the C-Cl bond fission being a direct dissociation process. The photofragment angular distributions are characterized by anisotropy parameters beta = 0.5 +/- 0.1 (CHFCl2) and beta = 0.0 +/- 0.1 (CHCl3). Therefore, the photolysis of CHFCl2 involves an electronic transition polarised parallel to the line connecting the two Cl atoms. In the case of CHCl3, the nearly isotropic fragment recoil is attributed to the excitation of overlapping transitions of A(sub 1) from A(sub 1) and E from A(sub 1) type, respectively, hence leading to an effective anisotropy parameter beta(sub eff) = a(beta) A(sub 1) +b(beta)(sub E) approximately = 0. The CHCl2 radical produced in the primary reaction CHCl3 + h(nu) yields CHCl2 + Cl can absorb a further photon and is then selectively dissociated by molecular elimination of HCl according to CHCl2 + h(nu) yields CCl + HCl.

  10. Top-Down 193-nm Ultraviolet Photodissociation Mass Spectrometry for Simultaneous Determination of Polyubiquitin Chain Length and Topology

    PubMed Central

    2016-01-01

    Protein ubiquitin modifications present a vexing analytical challenge, because of the dynamic changes in the site of modification on the substrate, the number of ubiquitin moieties attached, and the diversity of linkage patterns in which they are attached. Presented here is a method to confidently assign size and linkage type of polyubiquitin modifications. The method combines intact mass measurement to determine the number of ubiquitin moieties in the chain with backbone fragmentation by 193-nm ultraviolet photodissociation (UVPD) to determine the linkage pattern. UVPD fragmentation of proteins leads to reproducible backbone cleavage at almost every inter-residue position, and in polyubiquitin chains, the N-terminally derived fragments from each constituent monomer are identical, up to the site of conjugation. The N-terminal ubiquitin fragment ions are superimposed to create a diagnostic pattern that allows easy recognition of the dominant chain linkages. The method is demonstrated by achieving almost-complete fragmentation of monoubiquitin and then, subsequently, fragmentation of dimeric, tetrameric, and longer Lys48- and Lys63-linked ubiquitin chains. The utility of the method for the analysis of mixed linkage chains is confirmed for mixtures of Lys48 and Lys63 tetramers with known relative concentrations and for an in vitro-formulated ubiquitin chain attached to a substrate protein. PMID:25559986

  11. Update on laser vision correction using wavefront analysis with the CustomCornea system and LADARVision 193-nm excimer laser

    NASA Astrophysics Data System (ADS)

    Maguen, Ezra I.; Salz, James J.; McDonald, Marguerite B.; Pettit, George H.; Papaioannou, Thanassis; Grundfest, Warren S.

    2002-06-01

    A study was undertaken to assess whether results of laser vision correction with the LADARVISION 193-nm excimer laser (Alcon-Autonomous technologies) can be improved with the use of wavefront analysis generated by a proprietary system including a Hartman-Schack sensor and expressed using Zernicke polynomials. A total of 82 eyes underwent LASIK in several centers with an improved algorithm, using the CustomCornea system. A subgroup of 48 eyes of 24 patients was randomized so that one eye undergoes conventional treatment and one eye undergoes treatment based on wavefront analysis. Treatment parameters were equal for each type of refractive error. 83% of all eyes had uncorrected vision of 20/20 or better and 95% were 20/25 or better. In all groups, uncorrected visual acuities did not improve significantly in eyes treated with wavefront analysis compared to conventional treatments. Higher order aberrations were consistently better corrected in eyes undergoing treatment based on wavefront analysis for LASIK at 6 months postop. In addition, the number of eyes with reduced RMS was significantly higher in the subset of eyes treated with a wavefront algorithm (38% vs. 5%). Wavefront technology may improve the outcomes of laser vision correction with the LADARVISION excimer laser. Further refinements of the technology and clinical trials will contribute to this goal.

  12. Surface morphology and subsurface damaged layer of various glasses machined by 193-nm ArF excimer laser

    NASA Astrophysics Data System (ADS)

    Liao, Yunn-shiuan; Chen, Ying-Tung; Chao, Choung-Lii; Liu, Yih-Ming

    2005-01-01

    Owing to the high bonding energy, most of the glasses are removed by photo-thermal rather than photo-chemical effect when they are ablated by the 193 or 248nm excimer lasers. Typically, the machined surface is covered by re-deposited debris and the sub-surface, sometimes surface as well, is scattered with micro-cracks introduced by thermal stress generated during the process. This study aimed to investigate the nature and extent of the surface morphology and sub-surface damaged (SSD) layer induced by the laser ablation. The effects of laser parameters such as fluence, shot number and repetition rate on the morphology and SSD were discussed. An ArF excimer laser (193 nm) was used in the present study to machine glasses such as soda-lime, Zerodur and BK-7. It is found that the melt ejection and debris deposition tend to pile up higher and become denser in structure under a higher energy density, repetition rate and shot number. There are thermal stress induced lateral cracks when the debris covered top layer is etched away. Higher fluence and repetition rate tend to generate more lateral and median cracks which propagate into the substrate. The changes of mechanical properties of the SSD layer were also investigated.

  13. Characterization of Therapeutic Monoclonal Antibodies at the Subunit-Level using Middle-Down 193 nm Ultraviolet Photodissociation.

    PubMed

    Cotham, Victoria C; Brodbelt, Jennifer S

    2016-04-01

    Monoclonal antibodies (mAbs) are a rapidly advancing class of therapeutic glycoproteins that possess wide clinical utility owing to their biocompatibility, high antigen specificity, and targeted immune stimulation. These therapeutic properties depend greatly on the composition of the immunoglobulin G (IgG) structure, both in terms of primary sequence and post-translational modifications (PTMs); however, large-scale production in cell culture often results in heterogeneous mixtures that can profoundly affect clinical safety and efficacy. This places a high demand on analytical methods that afford comprehensive structural characterization of mAbs to ensure their stringent quality control. Here we report the use of targeted middle-down 193 nm ultraviolet photodissociation (UVPD) to provide detailed primary sequence analysis and PTM site localization of therapeutic monoclonal antibody subunits (∼25 kDa) generated upon digestion with recombinant immunoglobulin G-degrading enzyme of Streptococcus pyogenes (IdeS) followed by chemical reduction. Under optimal conditions, targeted UVPD resulted in approximately 60% overall coverage of the IgG sequence, in addition to unambiguous glycosylation site localization and extensive coverage of the antigen-binding complementarity determining regions (CDRs) in a single LC-MS/MS experiment. Combining UVPD and ETD data afforded even deeper sequencing and greater overall characterization of IgG subunits. Overall, this targeted UVPD approach represents a promising new strategy for the comprehensive characterization of antibody-based therapeutics. PMID:26947921

  14. 193-nm excimer laser sclerostomy using a modified open mask delivery system in rhesus monkeys with experimental glaucoma.

    PubMed

    Allan, B D; van Saarloos, P P; Cooper, R L; Keogh, E J; Constable, I J

    1993-11-01

    Excimer laser sclerostomy is a new glaucoma filtration procedure in which the argon fluoride excimer laser at 193 nm is delivered ab externo through a modified open mask system incorporating an en-face air jet to dry the target area and preserve hemostasis during ablation and a conjunctival plication mechanism, which allows the conjunctival and scleral wounds created by through-and-through ablation to separate once the mask is removed. No preparatory dissection of the conjunctiva is required. Five 200-microns and five 500-microns sclerostomies were formed by ablation at a pulse repetition rate of 20 Hz and a fluence per pulse of 400 mJ/cm2 in fellow eyes of five rhesus monkeys with experimental glaucoma. Overall, seven of the ten eyes attained a functional result, with intraocular pressures remaining below 21 mmHg for 6 +/- 1 days and rising to the pre-operative level after 10 +/- 3 days without adjunctive antifibroblast medication. The duration of filtration for 200-microns and 500-microns sclerostomies was similar, and parallels that previously observed for posterior lip sclerectomy in the same animal model. The three eyes with no functional result all had incorrectly positioned sclerostomies. Choroidal detachment and significant shallowing of the anterior chamber did not occur. Excimer laser sclerostomy appears to be a viable technique for filtration, provided that mask placement is accurate. PMID:8258402

  15. Development of high-power, 6 kHz, single-mode Ti:sapphire laser at 904 nm for generating 193 nm light

    NASA Astrophysics Data System (ADS)

    Tsuboi, Mizuki; Nakazato, Tomoharu; Onose, Takashi; Tanaka, Yuichi; Sarukura, Nobuhiko; Kakizaki, Kouji; Watanabe, Shuntaro

    2015-04-01

    A high power, 6 kHz, single-mode Ti:sapphire laser operating at 904 nm has been developed to produce a 193 nm light source. The output power was above 10 W with a bandwidth of 160 MHz. The Hänsch-Couillaud locking scheme was successfully applied to stabilize the frequency of the pulse laser. The thermal lens in the Ti:sapphire crystal having a focal length down to 10 mm along with strong astigmatism was compensated by distributing thermal load to three amplifiers with an even number of passes, resulting in a nearly diffraction limited beam. This Ti:sapphire laser contributed to the generation of 193 nm light with an output power above 200 mW.

  16. Programmed defects study on masks for 45nm immersion lithography using the novel AIMS 45-193i

    NASA Astrophysics Data System (ADS)

    Scherübl, Thomas; Dürr, Arndt C.; Böhm, Klaus; Birkner, Robert; Richter, Rigo; Strößner, Ulrich

    2007-02-01

    Mask manufacturing for the 45nm node for hyper NA lithography requires tight defect and printability control at small features sizes. The AIMS TM1 technology is a well established methodology to analyze printability of mask defects, repairs and critical features by scanner emulation. With the step towards hyper NA imaging by immersion lithography the AIMS TM technology has been faced with new challenges like vector effects, polarized illumination and tighter specs for repeatability and tool stability. These requirements pushed the development of an entirely new AIMS TM generation. The AIMS TM 45-193i has been designed and developed by Carl Zeiss to address these challenges. A new mechanical platform with a thermal and environmental control unit enables high tool stability. Thus a new class of specification becomes available. The 193nm optical beam path together with an improved beam homogenizer is dedicated to emulate scanners up to 1.4 NA. New features like polarized illumination and vector effect emulation make the AIMS TM 45- 193i a powerful tool for defect disposition and scanner emulation for 45nm immersion lithography. In this paper results from one of the first production tools will be presented. Aerial images from phase shifting and binary masks with different immersion relevant settings will be discussed. Also, data from a long term repeatability study performed on masks with programmed defects will be shown. This study demonstrates the tool's ability to perform defect disposition with high repeatability. It is found that the tool will fulfill the 45nm node requirements to perform mask qualification for production use.

  17. Iso-sciatic point: novel approach to distinguish shadowing 3-D mask effects from scanner aberrations in extreme ultraviolet lithography

    NASA Astrophysics Data System (ADS)

    Leunissen, Leonardus H. A.; Gronheid, Roel; Gao, Weimin

    2006-06-01

    Extreme ultraviolet lithography (EUVL) uses a reflective mask with a multilayer coating. Therefore, the illumination is an off-axis ring field system that is non-telecentric on the mask side. This non-zero angle of incidence combined with the three-dimensional mask topography results in the so-called "shadowing effect". The shadowing causes the printed CD to depend on the orientation as well as on the position in the slit and it will significantly influence the image formation [1,2]. In addition, simulations show that the Bossung curves are asymmetrical due to 3-D mask effects and their best focus depends on the shadowing angle [3]. Such tilts in the Bossung curves are usually associated with aberrations in the optical system. In this paper, we describe an approach in which both properties can be disentangled. Bossung curve simulations with varying effective angles of incidence (between 0 and 6 degrees) show that at discrete defocus offsets, the printed linewidth is independent of the incident angle (and thus independent of the shadowing effect), the so-called iso-sciatic (constant shadowing) point. For an ideal optical system this means that the size of a printed feature with a given mask-CD and orientation does not change through slit. With a suitable test structure it is possible to use this effect to distinguish between mask topography and imaging effects from aberrations through slit. Simulations for the following aberrations tested the approach: spherical, coma and astigmatism.

  18. High-NA high-throughput scanner compatible 2-kHz KrF excimer laser for DUV lithography

    NASA Astrophysics Data System (ADS)

    Nakarai, Hiroaki; Hisanaga, Naoto; Suzuki, Natsushi; Matsunaga, Takeshi; Asayama, Takeshi; Akita, Jun; Igarashi, Toru; Ariga, Tatsuya; Bushida, Satoru; Enami, Tatsuo; Nodomi, Ryoichi; Takabayashi, Yuichi; Sakanishi, Syouich; Suzuki, Takashi; Tomaru, Hitoshi; Nakao, Kiyoharu

    2000-07-01

    We have succeeded in the development of an excimer laser with ultra narrow bandwidth applicable to high N.A. scanners targeting on the 0.13micrometers -design rule. Key word of our solution for 0.13micrometers -design rule was 'extended technologies of currently available KrF excimer laser unit. As the result we could shorten development time remarkably. The narrower the laser spectrum, the less the influence of chromatic aberration on exposure projection lens; this is a well-known fact. We have developed the technologies to achieve spectral bandwidths less than 0.5pm, 20 percent narrower than our current model G20K. In order to attain this number, the major design change was made on line narrowing module, which was redesigned to minimize the dispersion of wavelength element. In addition gas condition was fine-tuned for the new line narrowing module. Integrated energy stability has been improved within +/- 0.35 percent with 35 pulses window by the introduction of a high efficiency pules power module and a faster gas circulation system. The rest of oscillation performances and durability equate with the base model G20K. The intelligent gas control system extended gas exchange interval up to 200 million pulses or 7 days. The G20K already passed through 10 billion-pulse test. Total energy loss was within 4mJ which is small enough to be compensated by gas injection and voltage change; it is a unique compensation system of Komatsu.

  19. Combined overlay, focus and CD metrology for leading edge lithography

    NASA Astrophysics Data System (ADS)

    Ebert, Martin; Cramer, Hugo; Tel, Wim; Kubis, Michael; Megens, Henry

    2011-04-01

    and Focus measurements respectively. In addition CD profile information can be measured enabling proximity matching applications. By using a technique [2][3][4] to de-convolve dose and focus based on the profile measurement of a well-characterized process monitor target, we show that the dose and focus signature of a high NA 193nm immersion scanner can be effectively measured and corrected. A similar approach was also taken to address overlay errors using the diffraction based overlay capability [5] of the same metrology tool. We demonstrate the advantage of having a single metrology tool solution, which enables us to reduce dose, focus and overlay variability to their minimum non-correctable signatures. This technique makes use of the high accuracy and repeatability of the YieldStar tool and provides a common reference of scanner setup and user process. Using ASML's YieldStar in combination with ASML scanners, and control solutions allows for a direct link from the metrology tool to the system settings, ensuring that the appropriate system settings can be easily and directly updated.

  20. Laser ablation of ceramic Al2O3 at 193 nm and 248 nm: The importance of single-photon ionization processes

    NASA Astrophysics Data System (ADS)

    Peláez, R. J.; Afonso, C. N.; Bator, M.; Lippert, T.

    2013-06-01

    The aim of this work is to demonstrate that single-photon photoionization processes make a significant difference in the expansion and temperature of the plasma produced by laser ablation of ceramic Al2O3 in vacuum as well as to show their consequences in the kinetic energy distribution of the species that eventually will impact on the film properties produced by pulsed laser deposition. This work compares results obtained by mass spectrometry and optical spectroscopy on the composition and features of the plasma produced by laser ablation at 193 nm and 248 nm, i.e., photon energies that are, respectively, above and below the ionization potential of Al, and for fluences between threshold for visible plasma and up to ≈2 times higher. The results show that the ionic composition and excitation of the plasma as well as the ion kinetic energies are much higher at 193 nm than at 248 nm and, in the latter case, the population of excited ions is even negligible. The comparison of Maxwell-Boltzmann temperature, electron temperatures, and densities of the plasmas produced with the two laser wavelengths suggests that the expansion of the plasma produced at 248 nm is dominated by a single population. Instead, the one produced at 193 nm is consistent with the existence of two populations of cold and hot species, the latter associated to Al+ ions that travel at the forefront and produced by single photon ionization as well as Al neutrals and double ionized ions produced by electron-ion impact. The results also show that the most energetic Al neutrals in the plasma produced at the two studied wavelengths are in the ground state.

  1. Charting CEBL's role in mainstream semiconductor lithography

    NASA Astrophysics Data System (ADS)

    Lam, David K.

    2013-09-01

    historically kept it out of mainstream fabs. Thanks to continuing EBDW advances combined with the industry's move to unidirectional (1D) gridded layout style, EBDW promises to cost-efficiently complement 193nm ArF immersion (193i) optical lithography in high volume manufacturing (HVM). Patterning conventional 2D design layouts with 193i is a major roadblock in device scaling: the resolution limitations of optical lithography equipment have led to higher mask cost and increased lithography complexity. To overcome the challenge, IC designers have used 1D layouts with "lines and cuts" in critical layers.1 Leading logic and memory chipmakers have been producing advanced designs with lines-and-cuts in HVM for several technology nodes in recent years. However, cut masks in multiple optical patterning are getting extremely costly. Borodovsky proposes Complementary Lithography in which another lithography technology is used to pattern line-cuts in critical layers to complement optical lithography.2 Complementary E-Beam Lithography (CEBL) is a candidate to pattern the Cuts of optically printed Lines. The concept of CEBL is gaining acceptance. However, challenges in throughput, scaling, and data preparation rate are threatening to deny CEBL's role in solving industry's lithography problem. This paper will examine the following issues: The challenges of massively parallel pixel writing The solutions of multiple mini-column design/architecture in: Boosting CEBL throughput Resolving issues of CD control, CDU, LER, data rate, higher resolution, and 450mm wafers The role of CEBL in next-generation solution of semiconductor lithography

  2. Effect of the rinse solution to avoid 193-nm resist line collapse: a study for modification of resist polymer and process conditions

    NASA Astrophysics Data System (ADS)

    Masuda, Seiya; Kobayashi, Masakazu; Kim, Woo-Kyu; Anyadiegwu, Clement; Padmanaban, Munirathna; Dammel, Ralph R.; Tanaka, Keiichi; Yamada, Yoshiaki

    2004-05-01

    The device design rule is continuously shrinking toward optical resolution limit where k1 factor is below 0.3. The requirement for 193 nm photoresist below 90 nm node is quite challenging at the manufacturing phase. Using DI water rinse after development gives a significant amount of line collapse when the aspect ratio is over 3. To avoid line collapse, we co-developed special rinse solution for FIRM process with Tokyo Electron Ltd. Utilizing FIRM process, 90 nm dense line collapse was measured by CD SEM using focus-exposure matrices. The line collapse property has been observed using experimental 193 nm positive tone resist by varying monomer ratio of the polymer and process conditions. The surface property of the resist was also studied to investigate the interaction with rinse solution at the de-protected polymer region. However, a high surfactant concentration in the DI water rinse leads the swelling of the resist pattern profile. The resist component is the key to determine adequate surfactant concentration in rinse solution to minimize line collapse and pattern deformation

  3. Future trends in high-resolution lithography

    NASA Astrophysics Data System (ADS)

    Lawes, R. A.

    2000-02-01

    A perennial question is "what is the future of high-resolution lithography, a key technology that drives the semiconductor industry"? The dominant technology over the last 30 years has been optical lithography, which by lowering wavelengths to 193 nm (ArF) and 157 nm (F 2) and by using optical "tricks" such as phase shift masks, off-axis illumination and phase filters, should be capable of 100 nm CMOS technology. So where does this leave the competition? The 100-nm lithography used to be the domain of electron beam lithography but only in research laboratories. Significant efforts are being made to increase throughput by electron projection (scattering with angular limitation projection electron beam lithography or SCALPEL). X-ray lithography remains a demonstrated R&D tool waiting to be commercially exploited but the initial expenditure to do so is very high. Ion beam lithography and extreme ultraviolet (EUV) ( λ<12 nm) have also received attention in recent years. This paper will concentrate on some of the key issues and speculate on how and when an alternative to optical lithography will be embraced by industry.

  4. Competing C-Br and O-NO Photofission upon Excitation of BrCH2CH2ONO at 193 nm.

    PubMed

    Wang, Lei; Scrape, Preston G; Roberts, Trevor D; Joshi, Prakriti P; Butler, Laurie J

    2015-12-17

    This study characterizes two of the primary photodissociation channels of 2-bromoethyl nitrite, BrCH2CH2ONO, at 193 nm and the subsequent unimolecular dissociation channels of the nascent vibrationally excited BrCH2CH2O radicals produced from the O-NO bond photofission. We use a crossed laser-molecular beam scattering apparatus with electron bombardment detection. Upon photodissociation of BrCH2CH2ONO at 193 nm, the measured branching ratio between primary O-NO photofission and C-Br photofission is 3.9:1 (O-NO/C-Br). The measured O-NO photofission recoil kinetic energy distribution (P(ET)) peaks near 30 kcal/mol and extends from 20 to 50 kcal/mol. We use the O-NO photofission P(ET) to characterize the internal energy distribution in the nascent ground-electronic-state BrCH2CH2O radicals. At 193 nm, all of the BrCH2CH2O radicals are formed with enough internal energy to unimolecularly dissociate to CH2Br + H2CO or to BrCH2CHO + H. We also investigated the possibility of the BrCH2CH2O → CH2CHO + HBr reaction arising from the vibrationally excited BrCH2CH2O radicals produced from O-NO primary photodissociation. Signal strengths at HBr(+), however, demonstrate that the vinoxy product does not have HBr as a cofragment, so the BrCH2CH2O → HBr + vinoxy channel is negligible compared to the CH2Br + H2CO channel. We also report our computational prediction of the unimolecular dissociation channels of the vibrational excited CH2CH2ONO radical resulting from C-Br bond photofission. Our theoretical calculations on the ground-state CH2CH2ONO potential energy surface at the G4//B3LYP/6-311++G(3df,2p) level of theory give the energetics of the zero-point corrected minima and transition states. The lowest accessible barrier height for the unimolecular dissociation of CH2CH2ONO is a 12.7 kcal/mol barrier from the cis-ONO conformer, yielding NO2 + ethene. Our measured internal energy distribution of the nascent CH2CH2ONO radicals together with this computational result suggests

  5. Optimal design and fabrication method for antireflection coatings for P-polarized 193 nm laser beam at large angles of incidence (68°-74°).

    PubMed

    Jin, Jingcheng; Jin, Chunshui; Li, Chun; Deng, Wenyuan; Chang, Yanhe

    2013-09-01

    Most of the optical axes in modern systems are bent for optomechanical considerations. Antireflection (AR) coatings for polarized light at oblique incidence are widely used in optical surfaces like prisms or multiform lenses to suppress undesirable reflections. The optimal design and fabrication method for AR coatings with large-angle range (68°-74°) for a P-polarized 193 nm laser beam is discussed in detail. Experimental results showed that after coating, the reflection loss of a P-polarized laser beam at large angles of incidence on the optical surfaces is reduced dramatically, which could greatly improve the output efficiency of the optical components in the deep ultraviolet vacuum range. PMID:24323257

  6. Directed Self-assembly for Lithography Applications

    NASA Astrophysics Data System (ADS)

    Cheng, Joy

    2010-03-01

    Economics dictated that semiconductor devices need to be scaled approximately to 70 percent linearly in order to follow the pace of Moore's law and maintain cost effectiveness. Optical lithography has been the driving force for scaling; however, it approaches its physical limit to print patterns beyond 22nm node. Directed self-assembly (DSA), which combines ``bottom-up'' self-assembled polymers and ``top-down'' lithographically defined substrates, has been considered as a potential candidate to extend optical lithography. Benefit from nanometer-scale self-assembly features and the registration precision of advanced lithography, DSA provides precise and programmable nanopatterns beyond the resolution limit of conventional lithography. We have demonstrated DSA concepts including frequency multiplication and pattern rectification using guiding prepattern with proper chemical and topographical information generated by e-beam lithography. In addition, we seek to integrate DSA with 193 nm optical lithography in a straightforward manner in order to move DSA from the research stage to a viable manufacturing technology. Recently, we implemented various integration strategies using photolithography to produce guiding patterns for DSA. This new ability enables DSA to be applied to large areas with state-of-the-art lithography facilities.

  7. The economic impact of EUV lithography on critical process modules

    NASA Astrophysics Data System (ADS)

    Mallik, Arindam; Horiguchi, Naoto; Bömmels, Jürgen; Thean, Aaron; Barla, Kathy; Vandenberghe, Geert; Ronse, Kurt; Ryckaert, Julien; Mercha, Abdelkarim; Altimime, Laith; Verkest, Diederik; Steegen, An

    2014-04-01

    Traditionally, semiconductor density scaling has been supported by optical lithography. The ability of the exposure tools to provide shorter exposure wavelengths or higher numerical apertures have allowed optical lithography be on the forefront of dimensional scaling for the semiconductor industry. Unfortunately, the roadmap for lithography is currently at a juncture of a major paradigm shift. EUV Lithography is steadily maturing but not fully ready to be inserted into HVM. Unfortunately, there are no alternative litho candidates on the horizon that can take over from 193nm. As a result, it is important to look into the insertion point of EUV that would be ideal for the industry from an economical perspective. This paper details the benefit observed by such a transition. Furthermore, it looks into such detail with an EUV throughput sensitivity study.

  8. Internal energy of HCl upon photolysis of 2-chloropropene at 193 nm investigated with time-resolved Fourier-transform spectroscopy and quasiclassical trajectories

    SciTech Connect

    Chang, C.-M.; Huang, Y.-H.; Liu, S.-Y.; Lee, Y.-P.; Pombar-Perez, Marta; Martinez-Nunez, Emilio; Vazquez, Saulo A.

    2008-12-14

    Following photodissociation of 2-chloropropene (H{sub 2}CCClCH{sub 3}) at 193 nm, vibration-rotationally resolved emission spectra of HCl ({upsilon}{<=}6) in the spectral region of 1900-2900 cm{sup -1} were recorded with a step-scan time-resolved Fourier-transform spectrometer. All vibrational levels show a small low-J component corresponding to {approx}400 K and a major high-J component corresponding to 7100-18 700 K with average rotational energy of 39{+-}{sub 3}{sup 11} kJ mol{sup -1}. The vibrational population of HCl is inverted at {upsilon}=2, and the average vibrational energy is 86{+-}5 kJ mol{sup -1}. Two possible channels of molecular elimination producing HCl+propyne or HCl+allene cannot be distinguished positively based on the observed internal energy distribution of HCl. The observed rotational distributions fit qualitatively with the distributions of both channels obtained with quasiclassical trajectories (QCTs), but the QCT calculations predict negligible populations for states at small J. The observed vibrational distribution agrees satisfactorily with the total QCT distribution obtained as a weighted sum of contributions from both four-center elimination channels. Internal energy distributions of HCl from 2-chloropropene and vinyl chloride are compared.

  9. Electron stimulated desorption of the metallic substrate at monolayer coverage: Sensitive detection via 193 nm laser photoionization of neutral aluminum desorbed from CH3O/Al(111)

    NASA Astrophysics Data System (ADS)

    Young, C. E.; Whitten, J. E.; Pellin, M. J.; Gruen, D. M.; Jones, P. L.

    A fortuitous overlap between the gain profile of the 193 nm ArF excimer laser and the Al autoionizing transition (sup 2)S(sub 1/2) (512753/cm) yields to the left (sup 2)P(sup 0)J has been exploited in the direct observation of substrate metal atoms in an electron simulated desorption (ESD) process from the monolayer adsorbate system CH3O/Al(111). The identity of the mass 27 photoion was established as Al(+) by (1) isotopic substitution of C-13 in the methanol employed for methoxy formation, and (2) tunable laser scans utilizing the DJ-2 (J = 3/2, 5/2) intermediate levels at approximately 32436/cm and a 248 nm ionization step. An ESD yield of approximately x 10(exp -6) Al atoms/(electron at 1 keV) was established by comparison with a sputtering experiment in the same apparatus. Velocity distributions measured for the desorbed Al species showed some differences in comparison with methoxy velocity data: a slightly lower peak velocity and a significantly less prominent high-velocity component.

  10. Analyzing velocity map images to distinguish the primary methyl photofragments from those produced upon C-Cl bond photofission in chloroacetone at 193 nm.

    PubMed

    Alligood, Bridget W; Straus, Daniel B; Butler, Laurie J

    2011-07-21

    We use a combination of crossed laser-molecular beam scattering experiments and velocity map imaging experiments to investigate the three primary photodissociation channels of chloroacetone at 193 nm: C-Cl bond photofission yielding CH(3)C(O)CH(2) radicals, C-C bond photofission yielding CH(3)CO and CH(2)Cl products, and C-CH(3) bond photofission resulting in CH(3) and C(O)CH(2)Cl products. Improved analysis of data previously reported by our group quantitatively identifies the contribution of this latter photodissociation channel. We introduce a forward convolution procedure to identify the portion of the signal, derived from the methyl image, which results from a two-step process in which C-Cl bond photofission is followed by the dissociation of the vibrationally excited CH(3)C(O)CH(2) radicals to CH(3) + COCH(2). Subtracting this from the total methyl signal identifies the methyl photofragments that result from the CH(3) + C(O)CH(2)Cl photofission channel. We find that about 89% of the chloroacetone molecules undergo C-Cl bond photofission to yield CH(3)C(O)CH(2) and Cl products; approximately 8% result in C-C bond photofission to yield CH(3)CO and CH(2)Cl products, and the remaining 2.6% undergo C-CH(3) bond photofission to yield CH(3) and C(O)CH(2)Cl products. PMID:21786998

  11. Fundamental study of droplet spray characteristics in photomask cleaning for advanced lithography

    NASA Astrophysics Data System (ADS)

    Lu, C. L.; Yu, C. H.; Liu, W. H.; Hsu, Luke; Chin, Angus; Lee, S. C.; Yen, Anthony; Lee, Gaston; Dress, Peter; Singh, Sherjang; Dietze, Uwe

    2010-09-01

    The fundamentals of droplet-based cleaning of photomasks are investigated and performance regimes that enable the use of binary spray technologies in advanced mask cleaning are identified. Using phase Doppler anemometry techniques, the effect of key performance parameters such as liquid and gas flow rates and temperature, nozzle design, and surface distance on droplet size, velocity, and distributions were studied. The data are correlated to particle removal efficiency (PRE) and feature damage results obtained on advanced photomasks for 193-nm immersion lithography.

  12. Lithography of choice for the 45-nm node: new medium, new wavelength, or new beam?

    NASA Astrophysics Data System (ADS)

    Uesawa, Fumikatsu; Katsumata, Mikio; Ogawa, Kazuhisa; Takeuchi, Koichi; Omori, Shinji; Yoshizawa, Masaki; Kawahira, Hiroichi

    2004-05-01

    In order to clarify the direction of the lithography for the 45 nm node, the feasibilities of various lithographic techniques for gate, metal, and contact layers are studied by using experimental data and aerial image simulations. The focus and exposure budget have been determined from the actual data and the realistic estimation such as the focus distributions across a wafer measured by the phase shift focus monitor (PSFM), the focus and exposure reproducibility of the latest exposure tools, and the anticipated 45 nm device topography, etc. 193 nm lithography with a numerical aperture (NA) of 0.93 achieves the half pitch of 70 nm (hp70) by using an attenuated phase shift mask (att-PSM) and annular illumination. 193 nm immersion lithography has the possibility to achieve the hp60 without an alternative PSM (alt-PSM). For a gate layer, 50-nm/130-nm line-and-space (L/S) patterns as well as 50 nm isolated lines can be fabricated by an alt-PSM. Although specific aberrations degrade the critical dimension (CD) variation of an alt-PSM, +/-2.6 nm CD uniformity (CDU) is demonstrated by choosing the well-controlled projection lens and using a high flatness wafer. For a contact layers, printing 90 nm contacts is very critical by optical lithography even if the aggressive resolution enhancement technique (RET) is used. Especially for dense contact, the mask error factor (MEF) increases to around 10 and practical process margin is not available at all. On the other hand, low-energy electron-beam proximity-projection lithography (LEEPL) can fabricate 80 nm contact with large process margin. As a lithography tool for the contact layers of the 45 nm node devices, LEEPL is expected to replace 193 nm lithography.

  13. Analyzing velocity map images to distinguish the primary methyl photofragments from those produced upon C-Cl bond photofission in chloroacetone at 193 nm

    SciTech Connect

    Alligood, Bridget W.; Straus, Daniel B.; Butler, Laurie J.

    2011-07-21

    We use a combination of crossed laser-molecular beam scattering experiments and velocity map imaging experiments to investigate the three primary photodissociation channels of chloroacetone at 193 nm: C-Cl bond photofission yielding CH{sub 3}C(O)CH{sub 2} radicals, C-C bond photofission yielding CH{sub 3}CO and CH{sub 2}Cl products, and C-CH{sub 3} bond photofission resulting in CH{sub 3} and C(O)CH{sub 2}Cl products. Improved analysis of data previously reported by our group quantitatively identifies the contribution of this latter photodissociation channel. We introduce a forward convolution procedure to identify the portion of the signal, derived from the methyl image, which results from a two-step process in which C-Cl bond photofission is followed by the dissociation of the vibrationally excited CH{sub 3}C(O)CH{sub 2} radicals to CH{sub 3}+ COCH{sub 2}. Subtracting this from the total methyl signal identifies the methyl photofragments that result from the CH{sub 3}+ C(O)CH{sub 2}Cl photofission channel. We find that about 89% of the chloroacetone molecules undergo C-Cl bond photofission to yield CH{sub 3}C(O)CH{sub 2} and Cl products; approximately 8% result in C-C bond photofission to yield CH{sub 3}CO and CH{sub 2}Cl products, and the remaining 2.6% undergo C-CH{sub 3} bond photofission to yield CH{sub 3} and C(O)CH{sub 2}Cl products.

  14. A complete look at the multi-channel dissociation of propenal photoexcited at 193 nm: branching ratios and distributions of kinetic energy.

    PubMed

    Chaudhuri, Chanchal; Lee, Shih-Huang

    2011-04-28

    We observed fifteen photofragments upon photolysis of propenal (acrolein, CH(2)CHCHO) at 193 nm using photofragment translational spectroscopy and selective vacuum-ultraviolet (VUV) photoionization. All the photoproducts arise from nine primary and two secondary dissociation pathways. We measured distributions of kinetic energy of products and determined branching ratios of dissociation channels. Dissociation to CH(2)CHCO + H and CH(2)CH + HCO are two major primary channels with equivalent branching ratios of 33%. The CH(2)CHCO fragment spontaneously decomposes to CH(2)CH + CO. A proportion of primary products CH(2)CH from the fission of bond C-C of propenal further decompose to CHCH + H but secondary dissociation HCO → H + CO is negligibly small. Binary dissociation to CH(2)CH(2) (or CH(3)CH) + CO and concerted three-body dissociation to C(2)H(2) + CO + H(2) have equivalent branching ratios of 14%-15%. The other channels have individual branching ratios of ∼1%. The production of HCCO + CH(3) indicates the formation of intermediate methyl ketene (CH(3)CHCO) and the production of CH(2)CCH + OH and CH(2)CC + H(2)O indicate the formation of intermediate hydroxyl propadiene (CH(2)CCHOH) from isomerization of propenal. Distributions of kinetic energy release and dissociation mechanisms are discussed. This work provides a complete look and profound insight into the multi-channel dissociation mechanisms of propenal. The combination of a molecular beam apparatus and synchrotron VUV ionization allowed us to untangle the complex mechanisms of nine primary and two secondary dissociation channels. PMID:21423979

  15. EUV lithography imaging using novel pellicle membranes

    NASA Astrophysics Data System (ADS)

    Pollentier, Ivan; Vanpaemel, Johannes; Lee, Jae Uk; Adelmann, Christoph; Zahedmanesh, Houman; Huyghebaert, Cedric; Gallagher, Emily E.

    2016-03-01

    EUV mask protection against defects during use remains a challenge for EUV lithography. A stand-off protective membrane - a pellicle - is targeted to prevent yield losses in high volume manufacturing during handling and exposure, just as it is for 193nm lithography. The pellicle is thin enough to transmit EUV exposure light, yet strong enough to remain intact and hold any particles out of focus during exposure. The development of pellicles for EUV is much more challenging than for 193nm lithography for multiple reasons including: high absorption of most materials at EUV wavelength, pump-down sequences in the EUV vacuum system, and exposure to high intensity EUV light. To solve the problems of transmission and film durability, various options have been explored. In most cases a thin core film is considered, since the deposition process for this is well established and because it is the simplest option. The transmission specification typically dictates that membranes are very thin (~50nm or less), which makes both fabrication and film mechanical integrity difficult. As an alternative, low density films (e.g. including porosity) will allow thicker membranes for a given transmission specification, which is likely to improve film durability. The risk is that the porosity could influence the imaging. At imec, two cases of pellicle concepts based on reducing density have been assessed : (1) 3D-patterned SiN by directed self-assembly (DSA), and (2) carbon nanomaterials such as carbon nanotubes (CNT) and carbon nanosheets (CNS). The first case is based on SiN membranes that are 3D-patterned by Directed Self Assembly (DSA). The materials are tested relative to the primary specifications: EUV transmission and film durability. A risk assessment of printing performance is provided based on simulations of scattered energy. General conclusions on the efficacy of various approaches will provided.

  16. Feasibility study of optical/e-beam complementary lithography

    NASA Astrophysics Data System (ADS)

    Hohle, Christoph; Choi, Kang-Hoon; Freitag, Martin; Gutsch, Manuela; Jaschinsky, Philipp; Kahlenberg, Frank; Klein, Christof; Klikovits, Jan; Paul, Jan; Rudolph, Matthias; Thrun, Xaver

    2012-03-01

    Using electron beam direct write (EBDW) as a complementary approach together with standard optical lithography at 193nm or EUV wavelength has been proposed only lately and might be a reasonable solution for low volume CMOS manufacturing and special applications as well as design rule restrictions. Here, the high throughput of the optical litho can be combined with the high resolution and the high flexibility of the e-beam by using a mix & match approach (Litho- Etch-Litho-Etch, LELE). Complementary Lithography is mainly driven by special design requirements for unidirectional (1-D gridded) Manhattan type design layouts that enable scaling of advanced logic chips. This requires significant data prep efforts such as layout splitting. In this paper we will show recent results of Complementary Lithography using 193nm immersion generated 50nm lines/space pattern addressing the 32nm logic technology node that were cut with electron beam direct write. Regular lines and space arrays were patterned at GLOBALFOUNDRIES Dresden and have been cut in predefined areas using a VISTEC SB3050DW e-beam direct writer (50KV Variable Shaped Beam) at Fraunhofer Center Nanoelectronic Technologies (CNT), Dresden, as well as on the PML2 tool at IMS Nanofabrication, Vienna. Two types of e-beam resists were used for the cut exposure. Integration issues as well as overlay requirements and performance improvements necessary for this mix & match approach will be discussed.

  17. Determining the CH3SO2 --> CH3 + SO2 barrier from methylsulfonyl chloride photodissociation at 193 nm using velocity map imaging.

    PubMed

    Ratliff, Britni J; Tang, Xiaonan; Butler, Laurie J; Szpunar, David E; Lau, Kai-Chung

    2009-07-28

    These imaging experiments study the formation of the methylsulfonyl radical, CH(3)SO(2), from the photodissociation of CH(3)SO(2)Cl at 193 nm and determine the energetic barrier for the radical's subsequent dissociation to CH(3) + SO(2). We first state-selectively detect the angular and recoil velocity distributions of the Cl((2)P(3/2)) and Cl((2)P(1/2)) atoms to further refine the distribution of internal energy partitioned to the momentum-matched CH(3)SO(2) radicals. The internal energy distribution of the radicals is bimodal, indicating that CH(3)SO(2) is formed in both the ground state and low-lying excited electronic states. All electronically excited CH(3)SO(2) radicals dissociate, while those formed in the ground electronic state have an internal energy distribution which spans the dissociation barrier to CH(3) + SO(2). We detect the recoil velocities of the energetically stable methylsulfonyl radicals with 118 nm photoionization. Comparison of the total recoil translational energy distribution for all radicals to the distribution obtained from the detection of stable radicals yields an onset for dissociation at a translational energy of 70+/-2 kcal/mol. This onset allows us to derive a CH(3)SO(2) --> CH(3) + SO(2) barrier height of 14+/-2 kcal/mol; this determination relies on the S-Cl bond dissociation energy, taken here as the CCSD(T) predicted energy of 65.6 kcal/mol. With 118 nm photoionization, we also detect the velocity distribution of the CH(3) radicals produced in this experiment. Using the velocity distributions of the SO(2) products from the dissociation of CH(3)SO(2) to CH(3) + SO(2) presented in the following paper, we show that our fastest detected methyl radicals are not from these radical dissociation channels, but rather from a primary S-CH(3) bond photofission channel in CH(3)SO(2)Cl. We also present critical points on the ground state potential energy surface of CH(3)SO(2) at the //CCSD(T)/aug-cc-pV(Q + d)ZCCSD(T)/6-311++G(2df,p) level

  18. Intersystem crossing and nonadiabatic product channels in the photodissociation of N{sub 2}O{sub 4} at 193 nm

    SciTech Connect

    Mueller, J.A.; Morton, M.L.; Curry, S.L.; Abbatt, J.P.D.; Butler, L.J.

    2000-06-01

    This paper presents velocity and angular distribution measurements of the products of N{sub 2}O{sub 4} photodissociated at 193 nm. The data show evidence for only N-N bond fission, with no significant branching to N-O bond fission or NO elimination products. The translational energy distribution of the N-N bond fission products is bimodal, indicating that at least two different NO{sub 2} + NO{sub 2} product channels contribute significantly to the observed products. Both product channels have an anisotropy parameter of {beta} = 1.7 {+-} 0.2. Using a Franck-Condon-like sudden analysis, the authors tentatively assign the two fragmentation channels observed as NO{sub 2}({tilde X}{sup 2}A{sub 1}) + NO{sub 2}(1{sup 4}B{sub 2}/1{sup 4}A{sub 2}) and NO{sub 2}({tilde X}{sup 2}A{sub 1}) + NO{sub 2}(2{sup 2}B{sub 2}). To further characterize the system the authors present ab initio calculations (at the level of configuration interaction with single excitations) of the relevant excites states of N{sub 2}O{sub 4}. The data considered together with the calculations suggest a model for the product branching in which there is spin-orbit coupling in the Franck-Condon region between the excited state, which has mixed singlet {pi}{pi}* and n{sigma}* character, and a state with {sup 3}{pi}{sigma}* character. Branching to the NO{sub 2}({tilde X}) + NO{sub 2}(1{sup 4}B{sub 2}/1{sup 4}A{sub 2}) channel occurs upon intersystem crossing to the triplet surface, and formation of the {pi}{pi}* diabatic products NO{sub 2}(X) + NO{sub 2}(2{sup 2}B{sub 2}) occurs from the singlet {pi}{pi}* state nonadiabatic dynamics. Finally, the authors note that the observed parallel photofragment anisotropy, unexpected for {pi}{pi}* electronic excitation of N{sub 2}O{sub 4}, likely results from vibronic coupling with a {sigma}{sigma}* electronic state.

  19. Scatterometry for EUV lithography at the 22-nm node

    NASA Astrophysics Data System (ADS)

    Bunday, Benjamin; Vartanian, Victor; Ren, Liping; Huang, George; Montgomery, Cecilia; Montgomery, Warren; Elia, Alex; Liu, Xiaoping

    2011-03-01

    Moore's Law continues to drive improvements to lithographic resolution to increase integrated circuit transistor density, improve performance, and reduce cost. For the 22 nm node and beyond, extreme ultraviolet lithography (EUVL) is a promising technology with λ=13.5 nm, a larger k1 value and lower cost of ownership than other available technologies. For small feature sizes, process control will be increasingly challenging, as small features will create measurement uncertainties, yet with tighter specifications. Optical scatterometry is a primary candidate metrology for EUV lithography process control. Using simulation and experimental data, this work will explore scatterometry's application to a typical lithography process being used for EUV development, which should be representative of lithography processes that will be utilized for EUV High Volume manufacturing (HVM). EUV lithography will be performed using much thinner photoresist thicknesses than were used at the 248nm or 193nm lithography generations, and will probably include underlayers for adhesion improvement; these new processes conditions were investigated in this metrological study.

  20. Point-of-use filtration strategy for negative tone developer in extended immersion and extreme-ultraviolet (EUV) lithography

    NASA Astrophysics Data System (ADS)

    D'Urzo, L.; Foubert, P.; Stokes, H.; Thouroude, Y.; Xia, A.; Wu, Aiwen

    2015-03-01

    Negative tone development (NTD) has dramatically gained popularity in 193 nm dry and immersion lithography, due to their superior imaging performance [1, 2 and 3]. Popular negative tone developers are organic solvents such as n- butyl acetate (n-BA), aliphatic ketones, or high-density alcohols such as Methyl Isobutyl Carbinol (MIBC). In this work, a comparative study between ultra-high molecular weight polyethylene (UPE) and polytetrafluoroethylene (PTFE) POU filtration for n-BA based NTD has been carried out. Results correlate with the occurrence or the mitigation of micro bridges in a 45 nm dense line pattern created through immersion lithography as a function of POU membrane.

  1. Immersion lithography bevel solutions

    NASA Astrophysics Data System (ADS)

    Tedeschi, Len; Tamada, Osamu; Sanada, Masakazu; Yasuda, Shuichi; Asai, Masaya

    2008-03-01

    The introduction of Immersion lithography, combined with the desire to maximize the number of potential yielding devices per wafer, has brought wafer edge engineering to the forefront for advanced semiconductor manufactures. Bevel cleanliness, the position accuracy of the lithography films, and quality of the EBR cut has become more critical. In this paper, the effectiveness of wafer track based solutions to enable state-of-art bevel schemes is explored. This includes an integrated bevel cleaner and new bevel rinse nozzles. The bevel rinse nozzles are used in the coating process to ensure a precise, clean film edge on or near the bevel. The bevel cleaner is used immediately before the wafer is loaded into the scanner after the coating process. The bevel cleaner shows promise in driving down defectivity levels, specifically printing particles, while not damaging films on the bevel.

  2. Hydrogen Migration and Vinylidene Pathway for Formation of Methane in the 193 nm Photodissociation of Propene: CH3CH=CH2 and CD3CD=CD2

    NASA Technical Reports Server (NTRS)

    Zhao, Yi-Lei; Laufer, Allan H.; Halpern, Joshua B.; Fahr, Askar

    2007-01-01

    Photodissociation channels and the final product yields from the 193 nm photolysis of propene-h6 (CH2=CHCH3) and propene-d6 (CD2=CDCD3) have been investigated, employing gas chromatography, mass spectroscopy, and flame ionization (GC/MS/FID) detection methods. The yields of methane as well as butadiene relative to ethane show considerable variations when propene-h6 or propene-d6 are photolyzed. This suggests significant variances in the relative importance of primary photolytic processes and/or secondary radical reactions, occurring subsequent to the photolysis. Theoretical calculations suggest the potential occurrence of an intramolecular dissociation through a mechanism involving vinylidene formation, accompanied by an ethylenic H-migration through the pi-orbitals. This process affects the final yields of methane-h4 versus methane-d4 with respect to other products. The product yields from previous studies of the 193 nm photolysis of methyl vinyl ketone-h6 and -d6 (CH2=CHCOCH3, CD2=CDCOCD3), alternative precursors for generating methyl and vinyl radicals, are compared with the current results for propene.

  3. Demonstration of EDA flow for massively parallel e-beam lithography

    NASA Astrophysics Data System (ADS)

    Brandt, P.; Belledent, J.; Tranquillin, C.; Figueiro, T.; Meunier, S.; Bayle, S.; Fay, A.; Milléquant, M.; Icard, B.; Wieland, M.

    2014-03-01

    Today's soaring complexity in pushing the limits of 193nm immersion lithography drives the development of other technologies. One of these alternatives is mask-less massively parallel electron beam lithography, (MP-EBL), a promising candidate in which future resolution needs can be fulfilled at competitive cost. MAPPER Lithography's MATRIX MP-EBL platform has currently entered an advanced stage of development. The first tool in this platform, the FLX 1200, will operate using more than 1,300 beams, each one writing a stripe 2.2μm wide. 0.2μm overlap from stripe to stripe is allocated for stitching. Each beam is composed of 49 individual sub-beams that can be blanked independently in order to write in a raster scan pixels onto the wafer.

  4. Polarization aberration compensation method by adjusting illumination partial coherent factors in immersion lithography

    NASA Astrophysics Data System (ADS)

    Jia, Yue; Li, Yanqiu; Liu, Lihui; Han, Chunying; Liu, Xiaolin

    2014-11-01

    As the numerical aperture (NA) increasing and process factor k1 decreasing in 193nm immersion lithography, polarization aberration (PA) of projection optics leads to image quality degradation seriously. Therefore, this work proposes a new scheme for compensating polarization aberration. By simulating we found that adjusting the illumination source partial coherent factors σout is an effective method for decreasing the PA induced pattern critical dimension (CD) error while keeping placement error (PE) within an acceptable range. Our simulation results reveal that the proposed method can effectively compensate large PA in actual optics.

  5. Preliminary characterisation of new glass reference materials (GSA-1G, GSC-1G, GSD-1G and GSE-1G) by laser ablation-inductively coupled plasma-mass spectrometry using 193 nm, 213 nm and 266 nm wavelengths

    USGS Publications Warehouse

    Guillong, M.; Hametner, K.; Reusser, E.; Wilson, S.A.; Gunther, D.

    2005-01-01

    New glass reference materials GSA-1G, GSC-1G, GSD-1G and GSE-1G have been characterised using a prototype solid state laser ablation system capable of producing wavelengths of 193 nm, 213 nm and 266 nm. This system allowed comparison of the effects of different laser wavelengths under nearly identical ablation and ICP operating conditions. The wavelengths 213 nm and 266 nm were also used at higher energy densities to evaluate the influence of energy density on quantitative analysis. In addition, the glass reference materials were analysed using commercially available 266 nm Nd:YAG and 193 nm ArF excimer lasers. Laser ablation analysis was carried out using both single spot and scanning mode ablation. Using laser ablation ICP-MS, concentrations of fifty-eight elements were determined with external calibration to the NIST SRM 610 glass reference material. Instead of applying the more common internal standardisation procedure, the total concentration of all element oxide concentrations was normalised to 100%. Major element concentrations were compared with those determined by electron microprobe. In addition to NIST SRM 610 for external calibration, USGS BCR-2G was used as a more closely matrix-matched reference material in order to compare the effect of matrix-matched and non matrix-matched calibration on quantitative analysis. The results show that the various laser wavelengths and energy densities applied produced similar results, with the exception of scanning mode ablation at 266 nm without matrix-matched calibration where deviations up to 60% from the average were found. However, results acquired using a scanning mode with a matrix-matched calibration agreed with results obtained by spot analysis. The increased abundance of large particles produced when using a scanning ablation mode with NIST SRM 610, is responsible for elemental fractionation effects caused by incomplete vaporisation of large particles in the ICP.

  6. High-n immersion lithography

    NASA Astrophysics Data System (ADS)

    Sewell, Harry; Mulkens, Jan; Graeupner, Paul; McCafferty, Diane; Markoya, Louis; Donders, Sjoerd; Cortie, Rogier; Meijers, Ralph; Evangelista, Fabrizio; Samarakone, Nandarisi

    2008-03-01

    A two-year study on the feasibility of High-n Immersion Lithography shows very promising results. This paper reports the findings of the study. The evaluation shows the tremendous progress made in the development of second-generation immersion fluid technology. Candidate fluids from several suppliers have been evaluated. All the commercial fluids evaluated are viable, so there are a number of options. Life tests have been conducted on bench top fluid-handling systems and the results referenced to full-scale systems. Parameters such as Dose per Laser Pulse, Pulse Rate, Fluid Flow Rate, and Fluid Absorbency at 193nm, and Oxygen/Air Contamination Levels were explored. A detailed evaluation of phenomena such as Last Lens Element (LLE) contamination has been conducted. Lens cleaning has been evaluated. A comparison of High-n fluid-based technology and water-based immersion technology shows interesting advantages of High-n fluid in the areas of Defect and Resist Interaction. Droplet Drying tests, Resist Staining evaluations, and Resist Contrast impact studies have all been run. Defect-generating mechanisms have been identified and are being eliminated. The lower evaporation rate of the High-n fluids compared with water shows the advantages of High-n Immersion. The core issue for the technology, the availability of High-n optical material for use as the final lens element, is updated. Samples of LuAG material have been received from development partners and have been evaluated. The latest status of optical materials and the technology timelines are reported. The potential impact of the availability of the technology is discussed. Synergy with technologies such as Double Patterning is discussed. The prospects for <22nm (hp) are evaluated.

  7. Toward a universal resist dissolution model for lithography simulation

    NASA Astrophysics Data System (ADS)

    Robertson, Stewart A.; Mack, Chris A.; Maslow, Mark J.

    2001-04-01

    In lithography simulation dissolution rate equations are used to map development rate to the resist latent image. This work examines the quality of fit of four rate equations to experimental dissolution data for a wide variety of different resists ranging from medium contrast i-line novolak/DNQ materials to the state-of-the-art 248nm and 193nm chemically amplified photoresists. Three of the rate equations are routinely used for modeling: the Mack rate equation, the Enhanced Mack rate equation, and the Notch rate equation. The fourth is the recently developed Enhanced Notch model. Although each class of photoresist can be fitted reasonably well by one of the conventional rate equations, the Enhanced Notch model yields the best fit to the experimental data in all cases.

  8. Chloroacetone photodissociation at 193 nm and the subsequent dynamics of the CH3C(O)CH2 radical--an intermediate formed in the OH + allene reaction en route to CH3 + ketene.

    PubMed

    Alligood, Bridget W; FitzPatrick, Benjamin L; Szpunar, David E; Butler, Laurie J

    2011-02-01

    We use a combination of crossed laser-molecular beam experiments and velocity map imaging experiments to investigate the primary photofission channels of chloroacetone at 193 nm; we also probe the dissociation dynamics of the nascent CH(3)C(O)CH(2) radicals formed from C-Cl bond fission. In addition to the C-Cl bond fission primary photodissociation channel, the data evidence another photodissociation channel of the precursor, C-C bond fission to produce CH(3)CO and CH(2)Cl. The CH(3)C(O)CH(2) radical formed from C-Cl bond fission is one of the intermediates in the OH + allene reaction en route to CH(3) + ketene. The 193 nm photodissociation laser allows us to produce these CH(3)C(O)CH(2) radicals with enough internal energy to span the dissociation barrier leading to the CH(3) + ketene asymptote. Therefore, some of the vibrationally excited CH(3)C(O)CH(2) radicals undergo subsequent dissociation to CH(3) + ketene products; we are able to measure the velocities of these products using both the imaging and scattering apparatuses. The results rule out the presence of a significant contribution from a C-C bond photofission channel that produces CH(3) and COCH(2)Cl fragments. The CH(3)C(O)CH(2) radicals are formed with a considerable amount of energy partitioned into rotation; we use an impulsive model to explicitly characterize the internal energy distribution. The data are better fit by using the C-Cl bond fission transition state on the S(1) surface of chloroacetone as the geometry at which the impulsive force acts, not the Franck-Condon geometry. Our data suggest that, even under atmospheric conditions, the reaction of OH with allene could produce a small branching to CH(3) + ketene products, rather than solely producing inelastically stabilized adducts. This additional channel offers a different pathway for the OH-initiated oxidation of such unsaturated volatile organic compounds, those containing a C=C=C moiety, than is currently included in atmospheric models

  9. Lithography for enabling advances in integrated circuits and devices.

    PubMed

    Garner, C Michael

    2012-08-28

    Because the transistor was fabricated in volume, lithography has enabled the increase in density of devices and integrated circuits. With the invention of the integrated circuit, lithography enabled the integration of higher densities of field-effect transistors through evolutionary applications of optical lithography. In 1994, the semiconductor industry determined that continuing the increase in density transistors was increasingly difficult and required coordinated development of lithography and process capabilities. It established the US National Technology Roadmap for Semiconductors and this was expanded in 1999 to the International Technology Roadmap for Semiconductors to align multiple industries to provide the complex capabilities to continue increasing the density of integrated circuits to nanometre scales. Since the 1960s, lithography has become increasingly complex with the evolution from contact printers, to steppers, pattern reduction technology at i-line, 248 nm and 193 nm wavelengths, which required dramatic improvements of mask-making technology, photolithography printing and alignment capabilities and photoresist capabilities. At the same time, pattern transfer has evolved from wet etching of features, to plasma etch and more complex etching capabilities to fabricate features that are currently 32 nm in high-volume production. To continue increasing the density of devices and interconnects, new pattern transfer technologies will be needed with options for the future including extreme ultraviolet lithography, imprint technology and directed self-assembly. While complementary metal oxide semiconductors will continue to be extended for many years, these advanced pattern transfer technologies may enable development of novel memory and logic technologies based on different physical phenomena in the future to enhance and extend information processing. PMID:22802500

  10. Scanner Art

    ERIC Educational Resources Information Center

    Jaworski, Joy; Murphy, Kris

    2009-01-01

    In this article, the authors describe how they incorporated environmental awareness into their art curriculum. Here, they describe a digital photography project in which their students used flatbed scanners as cameras. Their students composed their objects directly on the scanner. The lesson enabled students to realize that artists have voices…

  11. Advanced light source technologies that enable high-volume manufacturing of DUV lithography extensions

    NASA Astrophysics Data System (ADS)

    Cacouris, Theodore; Rao, Rajasekhar; Rokitski, Rostislav; Jiang, Rui; Melchior, John; Burfeindt, Bernd; O'Brien, Kevin

    2012-03-01

    Deep UV (DUV) lithography is being applied to pattern increasingly finer geometries, leading to solutions like double- and multiple-patterning. Such process complexities lead to higher costs due to the increasing number of steps required to produce the desired results. One of the consequences is that the lithography equipment needs to provide higher operating efficiencies to minimize the cost increases, especially for producers of memory devices that experience a rapid decline in sales prices of these products over time. In addition to having introduced higher power 193nm light sources to enable higher throughput, we previously described technologies that also enable: higher tool availability via advanced discharge chamber gas management algorithms; improved process monitoring via enhanced on-board beam metrology; and increased depth of focus (DOF) via light source bandwidth modulation. In this paper we will report on the field performance of these technologies with data that supports the desired improvements in on-wafer performance and operational efficiencies.

  12. Lithography optics: its present and future

    NASA Astrophysics Data System (ADS)

    Matsumoto, Koichi; Mori, Takashi

    1998-09-01

    Firstly, various technical aspects of ArF optics are surveyed. At present, the ArF excimer laser is regarded as one of the most promising candidates as a next-generation light source for optical lithography. Discussions are ranging over some critical issues of ArF optics. The lifetime of ArF optics supposedly limited by the radiation compaction of silica glass is estimated in comparison with KrF optics. Availability of calcium fluoride (CaF2) is also discussed. As a designing issue, a comparative study is made about the optical configuration, dioptric or catadioptric. In the end, our resist-based performance is shown. Secondly, estimated are the future trend regarding minimum geometry and the optical parameters, such as numerical aperture and wavelength. For the estimation, simulations based on aerial images are performed, where in the resolution limit is defined as a minimum feature size which retains practical depth of focus. Pattern geometry is classified into two categories, which are dense lines and isolated lines. Available wavelengths are assumed to be KrF excimer laser ((λ =248 nm), ArF excimer laser (λ =193 nm) and F2 excimer laser (λ =157 nm). Based upon the simulation results, the resolution limit is estimated for each geometry and each wavelength.

  13. E-beam to complement optical lithography for 1D layouts

    NASA Astrophysics Data System (ADS)

    Lam, David K.; Liu, Enden D.; Smayling, Michael C.; Prescop, Ted

    2011-04-01

    The semiconductor industry is moving to highly regular designs, or 1D gridded layouts, to enable scaling to advanced nodes, as well as improve process latitude, chip size and chip energy consumption. The fabrication of highly regular ICs is straightforward. Poly and metal layers are arranged into 1D layouts. These 1D layouts facilitate a two-step patterning approach: a line-creation step, followed by a line-cutting step, to form the desired IC pattern (See Figure 1). The first step, line creation, can be accomplished with a variety of lithography techniques including 193nm immersion (193i) and Self-Aligned Double Patterning (SADP). It appears feasible to create unidirectional parallel lines to at least 11 nm half-pitch, with two applications of SADP for pitch division by four. Potentially, this step can also be accomplished with interference lithography or directed self assembly in the future. The second step, line cutting, requires an extremely high-resolution lithography technique. At advanced nodes, the only options appear to be the costly quadruple patterning with 193i, or EUV or E-Beam Lithography (EBL). This paper focuses on the requirements for a lithography system for "line cutting", using EBL to complement Optical. EBL is the most cost-effective option for line cutting at advanced nodes for HVM.

  14. Material design for immersion lithography with high refractive index fluid (HIF)

    NASA Astrophysics Data System (ADS)

    Miyamatsu, Takashi; Wang, Yong; Shima, Motoyuki; Kusumoto, Shiro; Chiba, Takashi; Nakagawa, Hiroki; Hieda, Katsuhiko; Shimokawa, Tsutomu

    2005-05-01

    ArF immersion lithography is considered as the most promising next generation technology which enables to a 45 nm node device manufacturing and below. Not only depth of focus enlargement, immersion lithography enables to use hyper numerical aperture (NA) larger than 1.0 and achieve higher resolution capability. For 193nm lithography, water is an ideal immersion fluid, providing suitable refractive index and transmission properties. Furthermore the higher refractive index fluid is expected to provide a potential extension of optical lithography to the 32 nm node. This paper describes the material design for immersion lithography with high refractive index fluid. We have developed promising high refractive index fluids which satisfy the requirement for immersion fluid by screening wide variety of organic compounds. The physical and chemical properties of this high refractive index fluid are discussed in detail. Also the topcoat material which has good matching with high refractive index fluid is developed. While this topcoat material is soluble into aqueous TMAH developer, it does not dissolve into water or high refractive index fluid and gives suitable contact angle for immersion scan exposure. Immersion exposure experiments using high refractive index fluid with and w/o topcoat material was carried out and its lithographic performance is presented in this paper.

  15. VUV lithography

    DOEpatents

    George, Edward V.; Oster, Yale; Mundinger, David C.

    1990-01-01

    Deep UV projection lithography can be performed using an e-beam pumped solid excimer UV source, a mask, and a UV reduction camera. The UV source produces deep UV radiation in the range 1700-1300A using xenon, krypton or argon; shorter wavelengths of 850-650A can be obtained using neon or helium. A thin solid layer of the gas is formed on a cryogenically cooled plate and bombarded with an e-beam to cause fluorescence. The UV reduction camera utilizes multilayer mirrors having high reflectivity at the UV wavelength and images the mask onto a resist coated substrate at a preselected demagnification. The mask can be formed integrally with the source as an emitting mask.

  16. VUV lithography

    DOEpatents

    George, E.V.; Oster, Y.; Mundinger, D.C.

    1990-12-25

    Deep UV projection lithography can be performed using an e-beam pumped solid excimer UV source, a mask, and a UV reduction camera. The UV source produces deep UV radiation in the range 1,700--1,300A using xenon, krypton or argon; shorter wavelengths of 850--650A can be obtained using neon or helium. A thin solid layer of the gas is formed on a cryogenically cooled plate and bombarded with an e-beam to cause fluorescence. The UV reduction camera utilizes multilayer mirrors having high reflectivity at the UV wavelength and images the mask onto a resist coated substrate at a preselected demagnification. The mask can be formed integrally with the source as an emitting mask. 6 figs.

  17. Maskless lithography

    DOEpatents

    Sweatt, William C.; Stulen, Richard H.

    1999-01-01

    The present invention provides a method for maskless lithography. A plurality of individually addressable and rotatable micromirrors together comprise a two-dimensional array of micromirrors. Each micromirror in the two-dimensional array can be envisioned as an individually addressable element in the picture that comprises the circuit pattern desired. As each micromirror is addressed it rotates so as to reflect light from a light source onto a portion of the photoresist coated wafer thereby forming a pixel within the circuit pattern. By electronically addressing a two-dimensional array of these micromirrors in the proper sequence a circuit pattern that is comprised of these individual pixels can be constructed on a microchip. The reflecting surface of the micromirror is configured in such a way as to overcome coherence and diffraction effects in order to produce circuit elements having straight sides.

  18. Two HCl-Elimination Channels and Two CO-Formation Channels Detected with Time-Resolved Infrared Emission upon Photolysis of Acryloyl Chloride [CH2CHC(O)Cl] at 193 nm.

    PubMed

    Lee, Pei-Wen; Scrape, Preston G; Butler, Laurie J; Lee, Yuan-Pern

    2015-07-16

    Following photodissociation of gaseous acryloyl chloride, CH2CHC(O)Cl, at 193 nm, temporally resolved vibration-rotational emission spectra of HCl (v ≤ 7, J ≤ 35) in region 2350-3250 cm(-1) and of CO (v ≤ 4, J ≤ 67) in region 1865-2300 cm(-1) were recorded with a step-scan Fourier-transform spectrometer. The HCl emission shows a minor low-J component for v ≤ 4 with average rotational energy Erot = 9 ± 3 kJ mol(-1) and vibrational energy Evib = 28 ± 7 kJ mol(-1) and a major high-J component for v ≤ 7 with average rotational energy Erot = 36 ± 6 kJ mol(-1) and vibrational energy Evib = 49 ± 9 kJ mol(-1); the branching ratio of these two channels is ∼0.2:0.8. Using electronic structure calculations to characterize the transition states and each intrinsic reaction coordinate, we find that the minor pathway corresponds to the four-center HCl-elimination of CH2ClCHCO following a 1,3-Cl-shift of CH2CHC(O)Cl, whereas the major pathway corresponds to the direct four-center HCl-elimination of CH2CHC(O)Cl. Although several channels are expected for CO produced from the secondary dissociation of C2H3CO and H2C═C═C═O, each produced from two possible dissociation channels of CH2CHC(O)Cl, the CO emission shows a near-Boltzmann rotational distribution with average rotational energy Erot = 21 ± 4 kJ mol(-1) and average vibrational energy Evib = 10 ± 4 kJ mol(-1). Consideration of the branching fractions suggests that the CO observed with greater vibrational excitation might result from secondary decomposition of H2C═C═C═O that was produced via the minor low-J HCl-elimination channel, while the internal state distributions of CO produced from the other three channels are indistinguishable. We also introduce a method for choosing the correct point along the intrinsic reaction coordinate for a roaming HCl elimination channel to generate a Franck-Condon prediction for the HCl vibrational energy. PMID:25658197

  19. Evaluation of corneal ablation by an optical parametric oscillator (OPO) at 2.94 μm and an Er:YAG laser and comparison to ablation by a 193-nm excimer laser

    NASA Astrophysics Data System (ADS)

    Telfair, William B.; Hoffman, Hanna J.; Nordquist, Robert E.; Eiferman, Richard A.

    1998-06-01

    Purpose: This study first evaluated the corneal ablation characteristics of (1) an Nd:YAG pumped OPO (Optical Parametric Oscillator) at 2.94 microns and (2) a short pulse Er:YAG laser. Secondly, it compared the histopathology and surface quality of these ablations with (3) a 193 nm excimer laser. Finally, the healing characteristics over 4 months of cat eyes treated with the OPO were evaluated. Methods: Custom designed Nd:YAG/OPO and Er:YAG lasers were integrated with a new scanning delivery system to perform PRK myopic correction procedures. After initial ablation studies to determine ablation thresholds and rates, human cadaver eyes and in-vivo cat eyes were treated with (1) a 6.0 mm Dia, 30 micron deep PTK ablation and (2) a 6.0 mm Dia, -5.0 Diopter PRK ablation. Cadaver eyes were also treated with a 5.0 mm Dia, -5.0 Diopter LASIK ablation. Finally, cats were treated with the OPO in a 4 month healing study. Results: Ablation thresholds below 100 mJ/cm2 and ablation rates comparable to the excimer were demonstrated for both infrared systems. Light Microscopy (LM) showed no thermal damage for low fluence treatments, but noticeable thermal damage at higher fluences. SEM and TEM revealed morphologically similar surfaces for low fluence OPO and excimer samples with a smooth base and no evidence of collagen shrinkage. The Er:YAG and higher fluence OPO treated samples revealed more damage along with visible collagen coagulation and shrinkage in some cases. Healing was remarkably unremarkable. All eyes had a mild healing response with no stromal haze and showed topographic flattening. LM demonstrated nothing except a moderate increase in keratocyte activity in the upper third of the stroma. TEM confirmed this along with irregular basement membranes. Conclusions: A non- thermal ablation process called photospallation is demonstrated for the first time using short pulse infrared lasers yielding damage zones comparable to the excimer and healing which is also comparable to

  20. Cylindrical Scanner

    1999-04-29

    The CS system is designed to provide a very fast imaging system in order to search for weapons on persons in an airport environment. The Cylindrical Scanner moves a vertical transceiver array rapidly around a person standing stationary. The software can be segmented in to three specific tasks. The first task is data acquisition and scanner control. At the operator's request, this task commands the scanner to move and the radar transceiver array to sendmore » data to the computer system in a known and well-ordered manner. The array is moved over the complete aperture in 10 to 12 seconds. At the completion of the array movement the second software task automatically reconstructs the high-resolution image from the radar data utilizing the integrated DSP boards. The third task displays the resulting images, as they become available, to the computer screen for user review and analysis.« less

  1. Cylindrical Scanner

    SciTech Connect

    Hall, Thomas E.

    1999-04-29

    The CS system is designed to provide a very fast imaging system in order to search for weapons on persons in an airport environment. The Cylindrical Scanner moves a vertical transceiver array rapidly around a person standing stationary. The software can be segmented in to three specific tasks. The first task is data acquisition and scanner control. At the operator's request, this task commands the scanner to move and the radar transceiver array to send data to the computer system in a known and well-ordered manner. The array is moved over the complete aperture in 10 to 12 seconds. At the completion of the array movement the second software task automatically reconstructs the high-resolution image from the radar data utilizing the integrated DSP boards. The third task displays the resulting images, as they become available, to the computer screen for user review and analysis.

  2. EUV lithography

    NASA Astrophysics Data System (ADS)

    Kemp, Kevin; Wurm, Stefan

    2006-10-01

    Extreme ultraviolet lithography (EUVL) technology and infrastructure development has made excellent progress over the past several years, and tool suppliers are delivering alpha tools to customers. However, requirements in source, mask, optics, and resist are very challenging, and significant development efforts are still needed to support beta and production-level performance. Some of the important advances in the past few years include increased source output power, tool and optics system development and integration, and mask blank defect reduction. For example, source power has increased to levels approaching specification, but reliable source operation at these power levels has yet to be fully demonstrated. Significant efforts are also needed to achieve the resolution, line width roughness, and photospeed requirements for EUV photoresists. Cost of ownership and extendibility to future nodes are key factors in determining the outlook for the manufacturing insertion of EUVL. Since wafer throughput is a critical cost factor, source power, resist sensitivity, and system design all need to be carefully considered. However, if the technical and business challenges can be met, then EUVL will be the likely technology of choice for semiconductor manufacturing at the 32, 22, 16 and 11 nm half-pitch nodes. To cite this article: K. Kemp, S. Wurm, C. R. Physique 7 (2006).

  3. Resists for next generation lithography

    SciTech Connect

    Brainard, Robert L.; Barclay, George G.; Anderson, Erik H.; Ocola, Leonidas E.

    2001-10-03

    Four Next Generation Lithographic options (EUV, x-ray, EPL, IPL) are compared against four current optical technologies (i-line, DUV, 193 nm, 157 nm) for resolution capabilities based on wavelength. As the wavelength of the incident radiation decreases, the nature of the interaction with the resist changes. At high energies, optical density is less sensitive to molecular structure then at 157 nm.

  4. Demonstration of lithography patterns using reflective e-beam direct write

    NASA Astrophysics Data System (ADS)

    Freed, Regina; Sun, Jeff; Brodie, Alan; Petric, Paul; McCord, Mark; Ronse, Kurt; Haspeslagh, Luc; Vereecke, Bart

    2011-04-01

    Traditionally, e-beam direct write lithography has been too slow for most lithography applications. E-beam direct write lithography has been used for mask writing rather than wafer processing since the maximum blur requirements limit column beam current - which drives e-beam throughput. To print small features and a fine pitch with an e-beam tool requires a sacrifice in processing time unless one significantly increases the total number of beams on a single writing tool. Because of the uncertainty with regards to the optical lithography roadmap beyond the 22 nm technology node, the semiconductor equipment industry is in the process of designing and testing e-beam lithography tools with the potential for high volume wafer processing. For this work, we report on the development and current status of a new maskless, direct write e-beam lithography tool which has the potential for high volume lithography at and below the 22 nm technology node. A Reflective Electron Beam Lithography (REBL) tool is being developed for high throughput electron beam direct write maskless lithography. The system is targeting critical patterning steps at the 22 nm node and beyond at a capital cost equivalent to conventional lithography. Reflective Electron Beam Lithography incorporates a number of novel technologies to generate and expose lithographic patterns with a throughput and footprint comparable to current 193 nm immersion lithography systems. A patented, reflective electron optic or Digital Pattern Generator (DPG) enables the unique approach. The Digital Pattern Generator is a CMOS ASIC chip with an array of small, independently controllable lens elements (lenslets), which act as an array of electron mirrors. In this way, the REBL system is capable of generating the pattern to be written using massively parallel exposure by ~1 million beams at extremely high data rates (~ 1Tbps). A rotary stage concept using a rotating platen carrying multiple wafers optimizes the writing strategy of

  5. Determining the CH{sub 3}SO{sub 2}{yields}CH{sub 3}+SO{sub 2} barrier from methylsulfonyl chloride photodissociation at 193 nm using velocity map imaging

    SciTech Connect

    Ratliff, Britni J.; Tang Xiaonan; Butler, Laurie J.; Szpunar, David E.; Lau, Kai-Chung

    2009-07-28

    These imaging experiments study the formation of the methylsulfonyl radical, CH{sub 3}SO{sub 2}, from the photodissociation of CH{sub 3}SO{sub 2}Cl at 193 nm and determine the energetic barrier for the radical's subsequent dissociation to CH{sub 3}+SO{sub 2}. We first state-selectively detect the angular and recoil velocity distributions of the Cl({sup 2}P{sub 3/2}) and Cl({sup 2}P{sub 1/2}) atoms to further refine the distribution of internal energy partitioned to the momentum-matched CH{sub 3}SO{sub 2} radicals. The internal energy distribution of the radicals is bimodal, indicating that CH{sub 3}SO{sub 2} is formed in both the ground state and low-lying excited electronic states. All electronically excited CH{sub 3}SO{sub 2} radicals dissociate, while those formed in the ground electronic state have an internal energy distribution which spans the dissociation barrier to CH{sub 3}+SO{sub 2}. We detect the recoil velocities of the energetically stable methylsulfonyl radicals with 118 nm photoionization. Comparison of the total recoil translational energy distribution for all radicals to the distribution obtained from the detection of stable radicals yields an onset for dissociation at a translational energy of 70{+-}2 kcal/mol. This onset allows us to derive a CH{sub 3}SO{sub 2}{yields}CH{sub 3}+SO{sub 2} barrier height of 14{+-}2 kcal/mol; this determination relies on the S-Cl bond dissociation energy, taken here as the CCSD(T) predicted energy of 65.6 kcal/mol. With 118 nm photoionization, we also detect the velocity distribution of the CH{sub 3} radicals produced in this experiment. Using the velocity distributions of the SO{sub 2} products from the dissociation of CH{sub 3}SO{sub 2} to CH{sub 3}+SO{sub 2} presented in the following paper, we show that our fastest detected methyl radicals are not from these radical dissociation channels, but rather from a primary S-CH{sub 3} bond photofission channel in CH{sub 3}SO{sub 2}Cl. We also present critical points on

  6. Overlay progress in EUV lithography towards adoption for manufacturing

    NASA Astrophysics Data System (ADS)

    Hermans, Jan V.; Laidler, David; Pigneret, Charles; van Dijk, Andre; Voznyi, Oleg; Dusa, Mircea; Hendrickx, Eric

    2011-04-01

    Extreme Ultra-Violet (EUV) lithography is a candidate for semiconductor manufacturing for the 16nm technology node and beyond. Due to the very short wavelength of 13.5nm, EUV lithography provides the capability to continue single exposure scaling with improved resolution and higher pattern fidelity compared to 193nm immersion lithography. However, reducing the wavelength brings new equipment and process challenges. To enable EUV photon transmission through the optical system, the entire optical path of an EUV exposure tool operates under vacuum, and in addition reticle and optics are reflective. To obtain the required CD and overlay performance, both wafer and reticle front surfaces need to have near-perfect flatness, as non-flatness directly contributes to focus and image placement errors, in the case of the reticle due to non-telecentricity. Traditional vacuum chucks, both for reticle and wafer, cannot be used and are replaced by electrostatic chucks. Any contribution of this new clamping method on CD and overlay control therefore needs to be investigated, including avoidance of particle contamination over time. This work was performed on ASML's EUV Alpha Demo Tool (ADT). We investigated the different, non-conventional contributions to overlay control on the ADT, with particular attention to the wafer clamping performance of the exposure chuck. We demonstrate that we were able to improve the overlay performance by compensating for the wafer clamping error during the wafer alignment sequence. The impact of different wafer types on overlay was also evaluated. In addition to clamping effects, thermal effects have also been shown to impact overlay and were evaluated by monitoring the thermal behavior of a wafer during exposure on the ADT and correlating to the resulting overlay.

  7. Top-surface imaging resists for lithography with strongly attenuated radiation

    SciTech Connect

    Ray-Chaudhuri, A.; Kubiak, G.; Henderson, C.; Wheeler, D.; Pollagi, T.

    1997-09-01

    Strong resist photoabsorption at wavelengths below 248 nm necessitates the use of a thin layer imaging (TLI) scheme for microlithography using 193 nm, 157 nm, or 13.4 nm radiation. Previous to this work, a TLI process commonly known as silylated top surface imaging (TSI) was developed by a Sandia/AT and T team for use in extreme ultraviolet lithography (EUVL) at 13.4 nm. Using this bilayer process, 0.13 {micro}m resolution with 87{degree} sidewalls in 0.7 {micro}m of resist was achieved for EUV exposures. New imaging layer polymers, silylation reagents and crosslinkers, and process conditions were screened for improvement in this TSI process with the ultimate goal of demonstrating a resist technology capable of 0.10 {micro}m critical dimension (CD). The results of these attempted improvements to the TSI process are described in this report.

  8. Optical scanner

    NASA Technical Reports Server (NTRS)

    Finkel, Mitchell W. (Inventor)

    1987-01-01

    An optical scanner for imaging lines in an object plane onto a linear array in a focal plane either continuously or discretely is described. The scanner consists of a set of four mutually perpendicularly oriented plane corner mirrors which provide a reflecting path that describes a parallelogram. In addition, there is a plane parallel scanning mirror with a front and back reflecting surface located midway between the first and fourth corner mirrors. It is oriented so that in the mid-scan position it is parallel to the first corner mirror, and therefore perpendicular to the fourth corner mirror. As the scan mirror rotates, rays incident from a plurality of lines in the object plane are selectively directed through the optical system arriving at a common intersection on the back surface of the scanning mirror where the rays are colinearly directed toward a lens and then imaged onto the linear array in the focal plane. A set of compensating mirrors may be introduced just before the imaging lens to compensate for a small and generally negligible path difference delta sub l between the axial and marginal rays.

  9. The Application of Silicon Rich Nitride Films for Use as Deep-Ultraviolet Lithography Phase-Shifting Masks

    NASA Astrophysics Data System (ADS)

    Jiang, Zhong-Tao; Yamaguchi, Tomuo; Ohshimo, Kentaro; Aoyama, Mitsuru; Asinovsky, Leo

    1998-02-01

    Silicon rich nitride (SiRN) film prepared by plasma enhanced chemical vapor deposition (PECVD) for use as the phase-shifting mask for Deep-ultraviolet (UV) lithography has been developed. Optical properties and compositional characterizations of the SiRN films using Auger electron spectroscopy (AES) and spectroscopic ellipsometry (SE) combined with an empirical dielectric function (EDF), as well as phase-shifting mask simulation show that the SiRN is feasible for use in the application of single layer halftone phase-shifting mask (SLHTPSM) in the Deep-UV range. Optical constants of n ≈ 2.5 and k < 0.6 at 193 nm were realized by approaching the N/Si composition to the stoichiometric ratio of Si3N4. The deposition conditions for the films having the transmittance of 5 - 10% with a 180° phase shift at 193 nm (ArF) have been determined. Short wavelength extrapolation by EDF best-fit parameters based on a proper film-stack model provides a potential method to characterize the optical properties of amorphous SiRN down to about 190 nm, which is outside the range of most commercial SE's.

  10. 7nm logic optical lithography with OPC-Lite

    NASA Astrophysics Data System (ADS)

    Smayling, Michael C.; Tsujita, Koichiro; Yaegashi, Hidetami; Axelrad, Valery; Nakayama, Ryo; Oyama, Kenichi; Yamauchi, Shohei; Ishii, Hiroyuki; Mikami, Koji

    2015-03-01

    The CMOS logic 22nm node was the last one done with single patterning. It used a highly regular layout style with Gridded Design Rules (GDR). Smaller nodes have required the same regular layout style but with multiple patterning for critical layers. A "line/cut" approach is being used to achieve good pattern fidelity and process margin.[1] As shown in Fig. 1, even with "line" patterns, pitch division will eventually be necessary. For the "cut" pattern, Design-Source-Mask Optimization (DSMO) has been demonstrated to be effective at the 20nm node and below.[2,3,4] Single patterning was found to be suitable down to 16nm, while double patterning extended optical lithography for cuts to the 10-12nm nodes. Design optimization avoided the need for triple patterning. Lines can be patterned with 193nm immersion with no complex OPC. The final line dimensions can be achieved by applying pitch division by two or four.[5] In this study, we extend the scaling using simplified OPC to the 7nm node for critical FEOL and BEOL layers. The test block is a reasonably complex logic function with ~100k gates of combinatorial logic and flip-flops, scaled from previous experiments. Simulation results show that for cuts at 7nm logic dimensions, the gate layer can be done with single patterning whose minimum pitch is 53nm, possibly some of the 1x metal layers can be done with double patterning whose minimum pitch is 53nm, and the contact layer will require triple patterning whose minimum pitch is 68nm. These pitches are less than the resolution limit of ArF NA=1.35 (72nm). However these patterns can be separated by a combination of innovative SMO for less than optical resolution limit and a process trick of hole-repair technique. An example of triple patterning coloring is shown in Fig 3. Fin and local interconnect are created by lines and trims. The number of trim patterns are 3 times (min. pitch=90nm) and twice (min. pitch=120nm), respectively. The small number of masks, large pitches, and

  11. Sub-20nm hybrid lithography using optical, pitch-division, and e-beam

    NASA Astrophysics Data System (ADS)

    Belledent, J.; Smayling, M.; Pradelles, J.; Pimenta-Barros, P.; Barnola, S.; Mage, L.; Icard, B.; Lapeyre, C.; Soulan, S.; Pain, L.

    2012-03-01

    A roadmap extending far beyond the current 22nm CMOS node has been presented several times. [1] This roadmap includes the use of a highly regular layout style which can be decomposed into "lines and cuts."[2] The "lines" can be done with existing optical immersion lithography and pitch division with self-aligned spacers.[3] The "cuts" can be done with either multiple exposures using immersion lithography, or a hybrid solution using either EUV or direct-write ebeam.[ 4] The choice for "cuts" will be driven by the availability of cost-effective, manufacturing-ready equipment and infrastructure. Optical lithography improvements have enabled scaling far beyond what was expected; for example, soft x-rays (aka EUV) were in the semiconductor roadmap as early as 1994 since optical resolution was not expected for sub-100nm features. However, steady improvements and innovations such as Excimer laser sources and immersion photolithography have allowed some manufacturers to build 22nm CMOS SOCs with single-exposure optical lithography. With the transition from random complex 2D shapes to regular 1D-patterns at 28nm, the "lines and cuts" approach can extend CMOS logic to at least the 7nm node. The spacer double patterning for lines and optical cuts patterning is expected to be used down to the 14nm node. In this study, we extend the scaling to 18nm half-pitch which is approximately the 10-11nm node using spacer pitch division and complementary e-beam lithography. For practical reasons, E-Beam lithography is used as well to expose the "mandrel" patterns that support the spacers. However, in a production mode, it might be cost effective to replace this step by a standard 193nm exposure and applying the spacer technique twice to divide the pitch by 3 or 4. The Metal-1 "cut" pattern is designed for a reasonably complex logic function with ~100k gates of combinatorial logic and flip-flops. Since the final conductor is defined by a Damascene process, the "cut" patterns become islands

  12. What is Scanner and NonScanner?

    Atmospheric Science Data Center

    2014-12-08

    ... (ERBE ADM). The scanner is designed for regional to large scale analysis, and due to the smaller footprint, the scanner product is able ... The large footprint (1000 km) is designed only for large scale analysis, thus products provide only all-sky data. Because the nonscanner ...

  13. Plasma etch challenges with new EUV lithography material introduction for patterning for MOL and BEOL

    NASA Astrophysics Data System (ADS)

    Lee, Changwoo; Nagabhirava, Bhaskar; Goss, Michael; Wang, Peng; Friddle, Phil; Schmitz, Stafan; Wu, Jian; Yang, Richard; Mignot, Yann; Rassoul, Nouradine; Hamieh, Bassem; Beique, Genevieve; Labonte, Andre; Labelle, Catherine; Arnold, John; Mucci, John

    2015-03-01

    As feature critical dimension (CD) shrinks towards and beyond the 7nm node, patterning techniques for optical lithography with double and triple exposure will be replaced by EUV patterning. EUV enables process and overlay improvement, as well as a potential cost reduction due to fewer wafer passes and masks required for patterning. However, the EUV lithography technique introduces newer types of resists that are thinner and softer compared to conventional 193nm resists currently being used. The main challenge is to find the key etch process parameters to improve the EUV resist selectivity, reduce LER and LWR, minimize line end shrink, improve tip-to-tip degradation, and avoid line wiggling while still enabling previous schemes such as trench-first-metal-hard-mask (TFMHM), self-aligned via (SAV) and self-aligned contact (SAC). In this paper, we will discuss some of the approaches that we have investigated to define the best etch process adjustments to enable EUV patterning. RF pulsing is one of the key parameters utilized to overcome most of the previously described challenges, and has also been coupled with stack optimization. This study will focus on RF pulsing (high vs. low frequency results) and bias control (RF frequency dependence). In particular, pulsing effects on resist morphology, selectivity and profile management will be reported, as well as the role of aspect ratio and etch chemistry on organic mask wiggling and collapse. This work was performed by the Research Alliance Teams at various IBM Research and Development Facilities.

  14. Full phase-shifting methodology for 65-nm node lithography

    NASA Astrophysics Data System (ADS)

    Pierrat, Christophe; Driessen, Frank A. J. M.; Vandenberghe, Geert

    2003-06-01

    A new methodology for completely phase-shifting a poly layout without creating local phase conflicts was proposed for lithographic techniques combining one phase-shifting mask and one binary mask exposure1. Critical and non-critical areas of the layout are identified and phase conflicts are avoided by splitting the shifter regions from non-critical areas to non-critical areas without crossing critical areas. The out-of-phase splits of the shifter regions are removed using the binary exposure. Simulation results and experimental data collected for 90nm technology node show no sign of process latitude loss around the areas where the shifters are split. The overlay latitude is commensurate with 90nm technology scanner requirements (tool to itself). Simulation work shows that the two exposures are balancing each other out of focus in the 45-degree cut regions thus ensuring large focus latitude. The focus latitude reported is larger than the main feature process latitude; this result was confirmed experimentally. A set of phase-shifting design rules commensurate with an aggressive 65nm node technology (140nm pitch) was put together. Under these conditions, we have identified certain types of cuts that should be avoided during the generation of the phase-shifting layout; this is primarily the case for cuts in "elbow" structures which exhibit limited process latitude. Other cuts like line-end cuts will have to be modified. In this case we have proposed a side cut when the line-end is facing a perpendicular line with a minimum spacing. Despite these restrictions, test structures for the 65nm technology node were successfully converted with no phase conflicts. Experimental verification done on test structures using a 0.75 NA, 193nm scanner demonstrates 0.33 k1 capability using the full phase methodology.

  15. Advanced Mask Aligner Lithography (AMALITH)

    NASA Astrophysics Data System (ADS)

    Voelkel, Reinhard; Vogler, Uwe; Bramati, Arianna

    2015-03-01

    Mask aligner lithography is very attractive for less-critical lithography layers and is widely used for LED, display, CMOS image sensor, micro-fluidics and MEMS manufacturing. Mask aligner lithography is also a preferred choice the semiconductor back-end for 3D-IC, TSV interconnects, advanced packaging (AdP) and wafer-level-packaging (WLP). Mask aligner lithography is a mature technique based on shadow printing and has not much changed since the 1980s. In shadow printing lithography a geometric pattern is transferred by free-space propagation from a photomask to a photosensitive layer on a wafer. The inherent simplicity of the pattern transfer offers ease of operation, low maintenance, moderate capital expenditure, high wafers-per-hour (WPH) throughput, and attractive cost-of-ownership (COO). Advanced mask aligner lithography (AMALITH) comprises different measures to improve shadow printing lithography beyond current limits. The key enabling technology for AMALITH is a novel light integrator systems, referred to as MO Exposure Optics® (MOEO). MOEO allows to fully control and shape the properties of the illumination light in a mask aligner. Full control is the base for accurate simulation and optimization of the shadow printing process (computational lithography). Now photolithography enhancement techniques like customized illumination, optical proximity correction (OPC), phase masks (AAPSM), half-tone lithography and Talbot lithography could be used in mask aligner lithography. We summarize the recent progress in advanced mask aligner lithography (AMALITH) and discuss possible measures to further improve shadow printing lithography.

  16. Ion beam lithography system

    DOEpatents

    Leung, Ka-Ngo

    2005-08-02

    A maskless plasma-formed ion beam lithography tool provides for patterning of sub-50 nm features on large area flat or curved substrate surfaces. The system is very compact and does not require an accelerator column and electrostatic beam scanning components. The patterns are formed by switching beamlets on or off from a two electrode blanking system with the substrate being scanned mechanically in one dimension. This arrangement can provide a maskless nano-beam lithography tool for economic and high throughput processing.

  17. Thirty years of lithography simulation

    NASA Astrophysics Data System (ADS)

    Mack, Chris A.

    2005-05-01

    Thirty years ago Rick Dill and his team at IBM published the first account of lithography simulation - the accurate description of semiconductor optical lithography by mathematical equations. Since then, lithography simulation has grown dramatically in importance in four important areas: as a research tool, as a development tool, as a manufacturing tool, and as a learning tool. In this paper, the history of lithography simulations is traced from its roots to today"s indispensable tools for lithographic technology development. Along the way, an attempt will be made to define the true value of lithography simulation to the semiconductor industry.

  18. An ice lithography instrument

    NASA Astrophysics Data System (ADS)

    Han, Anpan; Chervinsky, John; Branton, Daniel; Golovchenko, J. A.

    2011-06-01

    We describe the design of an instrument that can fully implement a new nanopatterning method called ice lithography, where ice is used as the resist. Water vapor is introduced into a scanning electron microscope (SEM) vacuum chamber above a sample cooled down to 110 K. The vapor condenses, covering the sample with an amorphous layer of ice. To form a lift-off mask, ice is removed by the SEM electron beam (e-beam) guided by an e-beam lithography system. Without breaking vacuum, the sample with the ice mask is then transferred into a metal deposition chamber where metals are deposited by sputtering. The cold sample is then unloaded from the vacuum system and immersed in isopropanol at room temperature. As the ice melts, metal deposited on the ice disperses while the metals deposited on the sample where the ice had been removed by the e-beam remains. The instrument combines a high beam-current thermal field emission SEM fitted with an e-beam lithography system, cryogenic systems, and a high vacuum metal deposition system in a design that optimizes ice lithography for high throughput nanodevice fabrication. The nanoscale capability of the instrument is demonstrated with the fabrication of nanoscale metal lines.

  19. Beam pen lithography

    NASA Astrophysics Data System (ADS)

    Huo, Fengwei; Zheng, Gengfeng; Liao, Xing; Giam, Louise R.; Chai, Jinan; Chen, Xiaodong; Shim, Wooyoung; Mirkin, Chad A.

    2010-09-01

    Lithography techniques are currently being developed to fabricate nanoscale components for integrated circuits, medical diagnostics and optoelectronics. In conventional far-field optical lithography, lateral feature resolution is diffraction-limited. Approaches that overcome the diffraction limit have been developed, but these are difficult to implement or they preclude arbitrary pattern formation. Techniques based on near-field scanning optical microscopy can overcome the diffraction limit, but they suffer from inherently low throughput and restricted scan areas. Highly parallel two-dimensional, silicon-based, near-field scanning optical microscopy aperture arrays have been fabricated, but aligning a non-deformable aperture array to a large-area substrate with near-field proximity remains challenging. However, recent advances in lithographies based on scanning probe microscopy have made use of transparent two-dimensional arrays of pyramid-shaped elastomeric tips (or `pens') for large-area, high-throughput patterning of ink molecules. Here, we report a massively parallel scanning probe microscopy-based approach that can generate arbitrary patterns by passing 400-nm light through nanoscopic apertures at each tip in the array. The technique, termed beam pen lithography, can toggle between near- and far-field distances, allowing both sub-diffraction limit (100 nm) and larger features to be generated.

  20. An ice lithography instrument

    SciTech Connect

    Han, Anpan; Chervinsky, John; Branton, Daniel; Golovchenko, J. A.

    2011-06-15

    We describe the design of an instrument that can fully implement a new nanopatterning method called ice lithography, where ice is used as the resist. Water vapor is introduced into a scanning electron microscope (SEM) vacuum chamber above a sample cooled down to 110 K. The vapor condenses, covering the sample with an amorphous layer of ice. To form a lift-off mask, ice is removed by the SEM electron beam (e-beam) guided by an e-beam lithography system. Without breaking vacuum, the sample with the ice mask is then transferred into a metal deposition chamber where metals are deposited by sputtering. The cold sample is then unloaded from the vacuum system and immersed in isopropanol at room temperature. As the ice melts, metal deposited on the ice disperses while the metals deposited on the sample where the ice had been removed by the e-beam remains. The instrument combines a high beam-current thermal field emission SEM fitted with an e-beam lithography system, cryogenic systems, and a high vacuum metal deposition system in a design that optimizes ice lithography for high throughput nanodevice fabrication. The nanoscale capability of the instrument is demonstrated with the fabrication of nanoscale metal lines.

  1. An ice lithography instrument.

    PubMed

    Han, Anpan; Chervinsky, John; Branton, Daniel; Golovchenko, J A

    2011-06-01

    We describe the design of an instrument that can fully implement a new nanopatterning method called ice lithography, where ice is used as the resist. Water vapor is introduced into a scanning electron microscope (SEM) vacuum chamber above a sample cooled down to 110 K. The vapor condenses, covering the sample with an amorphous layer of ice. To form a lift-off mask, ice is removed by the SEM electron beam (e-beam) guided by an e-beam lithography system. Without breaking vacuum, the sample with the ice mask is then transferred into a metal deposition chamber where metals are deposited by sputtering. The cold sample is then unloaded from the vacuum system and immersed in isopropanol at room temperature. As the ice melts, metal deposited on the ice disperses while the metals deposited on the sample where the ice had been removed by the e-beam remains. The instrument combines a high beam-current thermal field emission SEM fitted with an e-beam lithography system, cryogenic systems, and a high vacuum metal deposition system in a design that optimizes ice lithography for high throughput nanodevice fabrication. The nanoscale capability of the instrument is demonstrated with the fabrication of nanoscale metal lines. PMID:21721733

  2. An ice lithography instrument

    PubMed Central

    Han, Anpan; Chervinsky, John; Branton, Daniel; Golovchenko, J. A.

    2011-01-01

    We describe the design of an instrument that can fully implement a new nanopatterning method called ice lithography, where ice is used as the resist. Water vapor is introduced into a scanning electron microscope (SEM) vacuum chamber above a sample cooled down to 110 K. The vapor condenses, covering the sample with an amorphous layer of ice. To form a lift-off mask, ice is removed by the SEM electron beam (e-beam) guided by an e-beam lithography system. Without breaking vacuum, the sample with the ice mask is then transferred into a metal deposition chamber where metals are deposited by sputtering. The cold sample is then unloaded from the vacuum system and immersed in isopropanol at room temperature. As the ice melts, metal deposited on the ice disperses while the metals deposited on the sample where the ice had been removed by the e-beam remains. The instrument combines a high beam-current thermal field emission SEM fitted with an e-beam lithography system, cryogenic systems, and a high vacuum metal deposition system in a design that optimizes ice lithography for high throughput nanodevice fabrication. The nanoscale capability of the instrument is demonstrated with the fabrication of nanoscale metal lines. PMID:21721733

  3. Extreme ultraviolet lithography and three dimensional integrated circuit—A review

    NASA Astrophysics Data System (ADS)

    Wu, Banqiu; Kumar, Ajay

    2014-03-01

    Extreme ultraviolet lithography (EUVL) and three dimensional integrated circuit (3D IC) were thoroughly reviewed. Since proposed in 1988, EUVL obtained intensive studies globally and, after 2000, became the most promising next generation lithography method even though challenges were present in almost all aspects of EUVL technology. Commercial step-and-scan tools for preproduction are installed now with full field capability; however, EUV source power at intermediate focus (IF) has not yet met volume manufacturing requirements. Compared with the target of 200 W in-band power at IF, current tools can supply only approximately 40-55 W. EUVL resist has improved significantly in the last few years, with 13 nm line/space half-pitch resolution being produced with approximately 3-4 nm line width roughness (LWR), but LWR needs 2× improvement. Creating a defect-free EUVL mask is currently an obstacle. Actual adoption of EUVL for 22 nm and beyond technology nodes will depend on the extension of current optical lithography (193 nm immersion lithography, combined with multiple patterning techniques), as well as other methods such as 3D IC. Lithography has been the enabler for IC performance improvement by increasing device density, clock rate, and transistor rate. However, after the turn of the century, IC scaling resulted in short-channel effect, which decreases power efficiency dramatically, so clock frequency almost stopped increasing. Although further IC scaling by lithography reduces gate delay, interconnect delay and memory wall are dominant in determining the IC performance. 3D IC technology is a critical technology today because it offers a reasonable route to further improve IC performance. It increases device density, reduces the interconnect delay, and breaks memory wall with the application of 3D stacking using through silicon via. 3D IC also makes one chip package have more functional diversification than those enhanced only by shrinking the size of the features

  4. Birefringence issues with uniaxial crystals as last lens elements for high-index immersion lithography

    NASA Astrophysics Data System (ADS)

    Burnett, John H.; Benck, Eric C.; Kaplan, Simon G.; Sirat, Gabriel Y.; Mack, Chris

    2009-03-01

    We discuss the birefringence issues associated with use of crystalline sapphire, with uniaxial crystal structure, as a last lens element for high-index 193 nm immersion lithography. Sapphire is a credible high-index lens material candidate because with appropriate orientation and TE polarization the ordinary ray exhibits the required isotropic optical properties. Also, its material properties may give it higher potential to meet the stringent optical requirements compared to the potential of the principal candidate materials, cubic-symmetry LuAG and ceramic spinel. The TE polarization restriction is required anyway for hyper-NA imaging, due to TM-polarization contrast degradation effects. Further, the high uniaxial-structure birefringence of sapphire may offer the advantage that any residual TM polarization results in a relatively-uniform flare instead of contrast degradation. One issue with this concept is that spatial-dispersion-induced effects should cause some index anisotropy of the ordinary rays, in a way similar to the intrinsic birefringence (IBR) effects in cubic crystals, except that there is no ray splitting. We present the theory of this effect for the trigonal crystal structure of sapphire and discuss its implications for lithography optics. For this material the spatial-dispersion-induced effects are characterized by eight material parameters, of which three contribute to index anisotropy of the ordinary rays. Only one gives rise to azimuthal distortions, and may present challenges for correction. To assess the consequences of using sapphire as a last element, neglecting any IBR effects, we use lithography simulations to characterize the lithographic performance for a 1.7 NA design, and compare to that for LuAG.

  5. Study of stress birefringence for 193-nm immersion photomasks

    NASA Astrophysics Data System (ADS)

    Cotte, Eric; Selle, Michael; Bubke, Karsten; Teuber, Silvio

    2005-06-01

    The goal of the present study was to investigate and quantify reticle stress birefringence in exposure conditions. Birefringence can arise in fused silica photomask substrates due to their state of stress, and cause optical effects such as phase front distortion, ray bifurcation, and polarization changes. These effects potentially produce image blurring and illumination non-uniformity, leading to lower resolution and CD variations, respectively. The main sources of substrate stress studied were the absorber stack, the mounting of a pellicle, and the impact of initial reticle bow when chucking in an exposure tool. Jones calculus was used to relate birefringence at discrete locations in the reticle, derived from the state of stress, to the net birefringence experienced by light passing through the mask. Experimentally-obtained birefringence data as well as analytical calculations of stress birefringence caused by known states of stress were used to validate the models. These results can then be compared to photomask birefringence specifications or employed in optical simulations to determine the precise impact of this substrate stress birefringence.

  6. Characteristics of low E a 193-nm chemical amplification resists

    NASA Astrophysics Data System (ADS)

    Ogata, Toshiyuki; Kinoshita, Yohei; Furuya, Sanae; Matsumaru, Shogo; Takahashi, Motoki; Shiono, Daiju; Dazai, Takahiro; Hada, Hideo; Shirai, Masamitsu

    2006-03-01

    Polymers with methyl acetal ester moiety in the side chain as acid labile protecting group were synthesized and their thermal property, plasma stability and chemical amplification (CA) positive-tone resist characteristics were investigated. 2-Admantyloxymethyl (AdOM) groups in the copolymer indicated lower glass transition temperatures and higher thermal decomposition temperatures than those of 2-methyl-2-admantyl (MAd) groups in the copolymer. AdOM polymer film showed smooth surface roughness after Ar plasma exposure compared with MAd polymer film due to the high thermal stability. The activation energies (E a) of these deprotection reactions were calculated from Arrhenius plots of these deprotection reaction rate constants. In the low post exposure bake (PEB) temperature region, the E a of these resists decreased in the order MAd > AdOM. The low E a methyl acetal resists displayed good thermal flow resist characteristics for contact holes printing. In addition, the low E a methyl acetal resist achieved a wide exposure latitude of 8.1 % and depth of focus of 400 nm for printing 80 nm 1:1 dense line pattern using NSR-306C (NA 0.78, 2/3 annular). Furthermore, the 65 nm 1:1 dense lines using ASML XT1400 (NA 0.93, C-Quad) for low E a methyl acetal resist pattern showed no tapered and no footing profiles and small roughness on the lines pattern sidewall was observed.

  7. Mechanism of single-layer 193-nm dissolution inhibition resist

    NASA Astrophysics Data System (ADS)

    Yan, Zhenglin; Houlihan, Francis M.; Reichmanis, Elsa; Nalamasu, Omkaram; Reiser, Arnost; Dabbagh, Gary; Hutton, Richard S.; Osei, Dan; Sousa, Jose; Bolan, Kevin J.

    2000-06-01

    We have found that the progress of developer base into films of terpolymers of norbornene (NB)-maleic anhydride (MA) and acrylic acid (AA) is a percolation process with a critical site concentration of x(c) equals 0.084 which suggests that every acrylic acid site in the terpolymer of norbornene-maleic anhydride-acrylic acid can make 12 monomer units of the polymer water compatible. In practice these systems are being used with various tert-butyl esters of cholic acid as dissolution inhibitors. The cholates differ very much in their dissolution inhibition factors (lowest t-butyl cholate (1.3) to highest t-butyl lithocholate glutarate dimer (7.4). The change in these factors corrected for molarity follow the hydrophobic character of the dissolution as measured by log(p). A quick screening method has also been established to evaluate dissolution inhibitors based on our observation that the cloud point (the volume % acetone in a water/acetone which gives persistent cloudiness) parallels the dissolution inhibiting power as measured by the dissolution inhibition factor. For dissolution promotion, optimal results are obtained with t-butyl 1,3,5-cyclohexanetricarboxylate (f equals -6.3) and poorest results with t-butyl lithocholate (f equals -2.8); this appears to track with the number of carboxyl groups and the hydrophobicity of the carboxylic acids. The Rmax found for resist formulations tracks well with these findings. Another factor in determining the ultimate achievable contrast is the degree of acidolytic deprotection achieved by the material. It appears that acidolyticaly cleaveable carboxylate esters with a higher concentration of electron withdrawing groups such as t-butyl 1,3,5-cyclohexanetricarboxylate are more effective.

  8. Neutral particle lithography

    NASA Astrophysics Data System (ADS)

    Craver, Barry Paul

    Neutral particle lithography (NPL) is a high resolution, proximity exposure technique where a broad beam of energetic neutral particles floods a stencil mask and transmitted beamlets transfer the mask pattern to resist on a substrate, such that each feature is printed in parallel, rather than in the serial manner of electron beam lithography. It preserves the advantages of ion beam lithography (IBL), including extremely large depth-of-field, sub-5 nm resist scattering, and the near absence of diffraction, yet is intrinsically immune to charge-related artifacts including line-edge roughness and pattern placement errors due to charge accumulation on the mask and substrate. In our experiments, a neutral particle beam is formed by passing an ion beam (e.g., 30 keV He+) through a high pressure helium gas cell (e.g., 100 mTorr) to convert the ions to energetic neutrals through charge transfer scattering. The resolution of NPL is generally superior to that of IBL for applications involving insulating substrates, large proximity gaps, and ultra-small features. High accuracy stepped exposures with energetic neutral particles, where magnetic or electrostatic deflection is impossible, have been obtained by clamping the mask to the wafer, setting the proximity gap with a suitable spacer, and mechanically inclining the mask/wafer stack relative to the beam. This approach is remarkably insensitive to vibration and thermal drift; nanometer scale image offsets have been obtained with +/-2 nm placement accuracy for experiments lasting over one hour. Using this nanostepping technique, linewidth versus dose curves were obtained, from which the NPL lithographic blur was determined as 4.4+/-1.4 nm (1sigma), which is 2-3 times smaller than the blur of electron beam lithography. Neutral particle lithography has the potential to form high density, periodic patterns with sub-10 nm resolution.

  9. Scanner matching optimization

    NASA Astrophysics Data System (ADS)

    Kupers, Michiel; Klingbeil, Patrick; Tschischgale, Joerg; Buhl, Stefan; Hempel, Fritjof

    2009-03-01

    Cost of ownership of scanners for the manufacturing of front end layers is becoming increasingly expensive. The ability to quickly switch the production of a layer to another scanner in case it is down is important. This paper presents a method to match the scanner grids in the most optimal manner so that use of front end scanners in effect becomes interchangeable. A breakdown of the various components of overlay is given and we discuss methods to optimize the matching strategy in the fab. A concern here is how to separate the scanner and process induced effects. We look at the relative contributions of intrafield and interfield errors caused by the scanner and the process. Experimental results of a method to control the scanner grid are presented and discussed. We compare the overlay results before and after optimizing the scanner grids and show that the matching penalty is reduced by 20%. We conclude with some thoughts on the need to correct the remaining matching errors.

  10. Development of cleaning process for immersion lithography

    NASA Astrophysics Data System (ADS)

    Chang, Ching Yu; Yu, D. C.; Lin, John C.; Lin, Burn J.

    2006-03-01

    In immersion lithography, DI water fills the space between the resist surface and the last lens element. However water is also a good solvent for most of the leaching compounds from resists. The leaching materials from the resist and the original impurities in the water from pipelines pose a significant risk on bottom lens deterioration, wafer surface particles, and facility contamination. If the bottom lens surface deteriorates, it can cause flare and reduce transparency. Particles on the wafer surface can degrade image formation. In addition to contaminating the facility, the impurity inside the water can cause stains or defects after the water is evaporated from the wafer surface. In order to reduce the impact of such contamination, we have evaluated many chemicals for removing organic contamination as well as particles. We have collected and characterized immersion-induced particles from cleaning studies on bare silicon wafers. We have also used oxide wafers to simulate the lens damage caused by the cleaning chemicals. In case, a mega sonic power is not suitable for scanners last lens element in production FABs, the emulsion concept has also been adopted to remove the lens organic contaminants. We have studied many chemical and mechanical methods for tool cleaning, and identified those that possess good organic solubility and particle removal efficiency. These cleaning methods will be used in periodic maintenance procedures to ensure freedom from defects in immersion lithography.

  11. Colloidal pen lithography.

    PubMed

    Xue, Mianqi; Cai, Xiaojing; Chen, Ghenfu

    2015-02-01

    Colloidal pen lithography, a low-cost, high-throughput scanning probe contact printing method, has been developed, which is based on self-assembled colloidal arrays embedded in a soft elastomeric stamp. Patterned protein arrays are demonstrated using this method, with a feature size ranging from 100 nm to several micrometers. A brief study into the specificity reorganization of protein gives evidence for the feasibility of this method for writing protein chips. PMID:25288364

  12. Industrial strength lithography APC

    NASA Astrophysics Data System (ADS)

    Ausschnitt, Christopher P.; Barker, Brian; Muth, William A.; Postiglione, Marc; Walentosky, Thomas

    2003-06-01

    Fully automated semiconductor manufacturing, becoming a reality with the ramping of 300mm fabricators throughout the world, demands the integration of advanced process control (APC). APC is particularly critical for the lithography sector, whose performance correlates to yield and whose productivity often gates the line. We describe the implementation of a comprehensive lithography APC system at the IBM Center for Nanoelectronics, a 300mm manufacturing and development facility. The base lithography APC function encompasses closed-loop run-to-run control of exposure tool inputs to sustain the overlay and critical dimension outputs consistent with product specifications. Automation demands that no decision regarding the appropriate exposure tool run-time settings be left to human judgment. For each lot, the APC system provides optimum settings based on existing data derived from pertinent process streams. In the case where insufficient prior data exists, the APC system either invokes the appropriate combination of send ahead processing and/or pre-determined defaults. We give specific examples of the application of APC to stitched field and dose control, and quantify its technical benefits. Field matching < 0.1 ppm and critical dimension control < 2.5% is achieved among multiple exposure tools and masks.

  13. Tunable Resonant Scanners

    NASA Astrophysics Data System (ADS)

    Montagu, Jean I.

    1987-01-01

    The most attractive features of resonant scanners are high reliability and eternal life as well as extremely low wobble and jitter. Power consumption is also low, electronic drive is simple, and the device is capable of handling large beams. All of these features are delivered at a low cost in a small package. The resonant scanner's use in numerous high precision applications, however, has been limited because of the difficulty in controlling its phase and resonant frequency. This paper introduces the concept of tunable/controllable resonant scanners, discusses their features, and offers a number of tuning techniques. It describes two angular scanner designs and presents data on tunable range and life tests. It also reviews applications for these new tunable resonant scanners that preserve the desirable features of earlier models while removing the old problems with synchronization or time base flexibility. The three major types of raster scanning applications where the tunable resonant scanner may be of benefit are: 1. In systems with multiple time bases such as multiple scanner networks or with scanners keyed to a common clock (the line frequency or data source) or a machine with multiple resonant scanners. A typical application is image and text transmission, also a printer with a large data base where a buffer is uneconomical. 2. In systems sharing data processing or laser equipment for reasons of cost or capacity, typically multiple work station manufacturing processes or graphic processes. 3. In systems with extremely precise time bases where the frequency stability of conventional scanners cannot be relied upon.

  14. Two new design methods for lithography mask: phase-shifting scattering bar and interlaced phase-shifting mask

    NASA Astrophysics Data System (ADS)

    Yeh, Kwei-Tin; Huang, Chao-Yi

    2014-07-01

    For 193 nm immersion lithography, it is hard to print clear 4X nm dense images (ex. contact holes) on wafer without any modifications due to lower light intensity. In the past, the most common method is to add the scattering bars, which can enhance the light intensity of contact holes. However, with tinier pattern, the distance between scattering bars and contact holes will get quite close. Hence, the error tolerance for mask making was reduced. On the other hand, this method may also cause the pattern twist which will induce pattern crosslink. To solve this issue, a new design method for lithography mask was proposed, which is named "Phase-shifting Scattering Bar", and it shows better performance in 1D chain array patterns than those with traditional scattering bars. However, for even tinier patterns, it is quite difficult to put these scattering bars on mask. Hence, another special design named "Interlaced Phase-shifting Mask" was proposed to handle such tiny dense patterns. In this design, main patterns are also the scattering bars for adjacent patterns. Hence, there is no need for additional tiny scattering bars, and the mask making requirement can be also relaxed. Both of these two mask design are useful tools to trim and modify light intensity profile on wafer. The image contrast was largely enhanced which means a better resolution and a larger process window can be gained without the cost of new illumination equipments.

  15. Microfluidic Applications of Soft Lithography

    SciTech Connect

    Rose, K A; Krulevitch, P; Hamilton, J

    2001-04-10

    The soft lithography fabrication technique was applied to three microfluidic devices. The method was used to create an original micropump design and retrofit to existing designs for a DNA manipulation device and a counter biological warfare sample preparation device. Each device presented unique and original challenges to the soft lithography application. AI1 design constraints of the retrofit devices were satisfied using PDMS devices created through variation of soft lithography methods. The micropump utilized the versatility of PDMS, creating design options not available with other materials. In all cases, the rapid processing of soft lithography reduced the fabrication time, creating faster turnaround for design modifications.

  16. Investigation of Holographic Scanners

    NASA Astrophysics Data System (ADS)

    Xiang, Lian Qin

    Holographic scanners are capable of challenging both the speed and resolution of polygon scanners. This work investigates, in detail, the design and operation of a holographic scanner with an aspherical reflector. The characteristics of this holographic scanner are presented through theoretical analyses and computer simulation. The calculated data and the experimental results show that this system has excellent scan line straightness and scan linearity. The influence of the eccentricity and wobble of the hologram on the quality of the scan lines can be minimized by proper choice of system parameters. This unique system can readily perform 1-D, 2 -D, 3-D and selective scans. These features make suitable applications for robot vision, part inspection, high speed printing, and input/output devices for computers. If the hologram is operating in the reflective mode, there are no transmissive components in this scanner. It can be used with acoustic waves and electromagnetic waves with longer wavelengths, such as infrared, microwaves, millimeter waves. Since it is difficult to find a suitable recording material for these waves, a technique for making computer -generated holograms has also been developed here. The practical considerations for making quality holograms are summarized. An improved coating process for photoresist and a novel anti-reflection setup for the hologram plate are developed. The detailed experimental processes are included. The planar grating scanner for one dimensional, two-dimensional and cross-scanning patterns is analyzed and demonstrated. A comparison is made with two other two-dimensional scanners.

  17. Evidence of CH{sub 2}O (a-tilde{sup 3}A{sub 2}) and C{sub 2}H{sub 4} (a-tilde{sup 3}B{sub 1u}) produced from photodissociation of 1,3-trimethylene oxide at 193 nm

    SciTech Connect

    Lee, S.-H.; Ong, C.-S.; Lee, Yuan T.

    2006-02-21

    We investigated the dissociative ionization of formaldehyde (CH{sub 2}O) and ethene (C{sub 2}H{sub 4}) produced from photolysis of 1,3-trimethylene oxide at 193 nm using a molecular-beam apparatus and vacuum-ultraviolet radiation from an undulator for direct ionization. The CH{sub 2}O (C{sub 2}H{sub 4}) product suffers from severe dissociative ionization to HCO{sup +} (C{sub 2}H{sub 3}{sup +} and C{sub 2}H{sub 2}{sup +}) even though photoionization energy is as small as 9.8 eV. Branching ratios of fragmentation of CH{sub 2}O and C{sub 2}H{sub 4} following ionization are revealed as a function of kinetic energy of products using ionizing photons from 9.8 to 14.8 eV. Except several exceptions, branching ratios of daughter ions increase with increasing photon energy but decrease with increasing kinetic energy. The title reaction produces CH{sub 2}O and C{sub 2}H{sub 4} mostly on electronic ground states but a few likely on triplet states; C{sub 2}H{sub 4} (a-tilde{sup 3}B{sub 1u}) seems to have a yield greater than CH{sub 2}O (a-tilde{sup 3}A{sub 2}). The distinct features observed at small kinetic energies of daughter ions are attributed to dissociative ionization of photoproducts CH{sub 2}O (a-tilde{sup 3}A{sub 2}) and C{sub 2}H{sub 4} (a-tilde{sup 3}B{sub 1u}). The observation of triplet products indicates that intersystem crossing occurs prior to fragmentation of 1,3-trimethylene oxide.

  18. Optical simulations for fractional fluorine terminated coatings on nanoimprint lithography masks

    NASA Astrophysics Data System (ADS)

    Seidel, Thomas E.; Goldberg, Alexander; Halls, Mathew D.

    2015-10-01

    Simulations of the optical intensity within Nano Imprint Lithography (NIL) mask features have been made for patterned quartz masks having ultrathin film coatings with different indices of refraction. Fractionally fluorine terminated surfaces, previously proposed for improving the yield of NIL processes, are briefly reviewed. Optical intensity solutions within the feature were obtained using Panoramictech Maxwell solver software for variances in the optical constants of the coating films, aspect ratio, feature size, and wavelength.. The coated masks have conformal surface, higher index of refraction under-layer coating and a fractional terminated fluorine hydrocarbon (FHC) monomolecular layer. The values of optical constants for the FHC layers are unknown, so a range of ad-hoc values were simulated. Optical constants for quartz mask and Al2O3, TiO2 and Si under-layer films are taken from the literature. Wavelengths were varied from 193nm to 365nm. The question of photo-dissociation of the FHC layer for higher energy photons is addressed from first principles, with the result that the F-terminated layers are stable at higher wavelengths. Preliminary simulations for features filled with resist over various substrates are dependent on the antireflection character of the underlying film system. The optical intensity is generally increased within the simulated mask feature when coated with a higher index/FHC films relative to the uncoated reference quartz mask for ~5nm physical feature sizes.

  19. A method for compensating the polarization aberration of projection optics in immersion lithography

    NASA Astrophysics Data System (ADS)

    Jia, Yue; Li, Yanqiu; Liu, Lihui; Han, Chunying; Liu, Xiaolin

    2014-08-01

    As the numerical aperture (NA) of 193nm immersion lithography projection optics (PO) increasing, polarization aberration (PA) leads to image quality degradation seriously. PA induced by large incident angle of light, film coatings and intrinsic birefringence of lens materials cannot be ignored. An effective method for PA compensation is to adjust lens position in PO. However, this method is complicated. Therefore, in this paper, an easy and feasible PA compensation method is proposed: for ArF lithographic PO with hyper NA (NA=1.2), which is designed by our laboratory, the PA-induced critical dimension error (CDE) can be effectively reduced by optimizing illumination source partial coherent factor σout. In addition, the basic idea of our method to suppress pattern placement error (PE) is to adopt anti-reflection (AR) multi-layers MgF2/LaF3/MgF2 and calcium fluoride CaF2 of [111] crystal axes. Our simulation results reveal that the proposed method can effectively and quantificationally compensate large PA in the optics. In particular, our method suppresses the dynamic range of CDE from -12.7nm ~ +4.3nm to -1.1nm ~ +1.2nm, while keeping PE at an acceptable level.

  20. Understanding the photoresist surface-liquid interface for ArF immersion lithography

    NASA Astrophysics Data System (ADS)

    Conley, Will; LeSuer, Robert J.; Fan, Frank F.; Bard, Allen J.; Taylor, Chris; Tsiartas, Pavlos; Willson, Grant; Romano, Andrew; Dammel, Ralph

    2005-05-01

    Extraction of small molecule components into water from photoresist materials designed for 193 nm immersion lithography has been observed. Leaching of photoacid generator (PAG) has been monitored using three techniques: liquid scintillation counting (LSC); liquid chromatography mass spectrometry (LCMS); and scanning electrochemical microscopy (SECM). LSC was also used to detect leaching of residual casting solvent (RCS) and base. The amount of PAG leaching from the resist films, 30 - 50 ng/cm2, was quantified using LSC. Both LSC and LCMS results suggest that PAG and photoacid leach from the film only upon initial contact with water (within 10 seconds) and minimal leaching occurs thereafter for immersion times up to 30 minutes. Exposed films show an increase in the amount of photoacid anion leaching by upwards of 20% relative to unexposed films. Films pre-rinsed with water for 30 seconds showed no further PAG leaching as determined by LSC. No statistically significant amount of residual casting solvent was extracted after 30 minutes of immersion. Base extraction was quantified at 2 ng/cm2 after 30 seconds. The leaching process is qualitatively described by a model based on the stratigraphy of resist films.

  1. Arrays of metallic micro-/nano-structures by means of colloidal lithography and laser dewetting

    NASA Astrophysics Data System (ADS)

    Constantinescu, C.; Deepak, K. L. N.; Delaporte, P.; Utéza, O.; Grojo, D.

    2016-06-01

    Long-range arrays of prismatoid metal nanostructures are fabricated by a hybrid methodology, i.e. using Langmuir microsphere films and laser-assisted dewetting. As the initial step, we use colloidal lithography. Monolayers of 1-5 μm polystyrene microspheres covered with a thermally evaporated Ag or Au thin film of controlled thickness (5-50 nm) are then used as masks to pattern the surface of quartz, BK7 glass or silicon substrates, typically in the order of cm2. When removing the spheres by physico-chemical means (ultrasound bath and solvent wash), the resulting surface shows an array of nm-size prismatoid structures (Fischer patterns), that can be further processed by laser. Thus, by using two different lasers (355-nm wavelength, 50-ps duration and 193-nm wavelength, 15-ns duration) for the metal dewetting, we control the shape of the deposited nanostructures. A detailed study is presented here on the reshaping of such metal structures through laser annealing. This new hybrid methodology expands the panel of microsphere-assisted technologies employed in preparing surface nanomaterials.

  2. Forensics for flatbed scanners

    NASA Astrophysics Data System (ADS)

    Gloe, Thomas; Franz, Elke; Winkler, Antje

    2007-02-01

    Within this article, we investigate possibilities for identifying the origin of images acquired with flatbed scanners. A current method for the identification of digital cameras takes advantage of image sensor noise, strictly speaking, the spatial noise. Since flatbed scanners and digital cameras use similar technologies, the utilization of image sensor noise for identifying the origin of scanned images seems to be possible. As characterization of flatbed scanner noise, we considered array reference patterns and sensor line reference patterns. However, there are particularities of flatbed scanners which we expect to influence the identification. This was confirmed by extensive tests: Identification was possible to a certain degree, but less reliable than digital camera identification. In additional tests, we simulated the influence of flatfielding and down scaling as examples for such particularities of flatbed scanners on digital camera identification. One can conclude from the results achieved so far that identifying flatbed scanners is possible. However, since the analyzed methods are not able to determine the image origin in all cases, further investigations are necessary.

  3. Bubble-Pen Lithography.

    PubMed

    Lin, Linhan; Peng, Xiaolei; Mao, Zhangming; Li, Wei; Yogeesh, Maruthi N; Rajeeva, Bharath Bangalore; Perillo, Evan P; Dunn, Andrew K; Akinwande, Deji; Zheng, Yuebing

    2016-01-13

    Current lithography techniques, which employ photon, electron, or ion beams to induce chemical or physical reactions for micro/nano-fabrication, have remained challenging in patterning chemically synthesized colloidal particles, which are emerging as building blocks for functional devices. Herein, we develop a new technique - bubble-pen lithography (BPL) - to pattern colloidal particles on substrates using optically controlled microbubbles. Briefly, a single laser beam generates a microbubble at the interface of colloidal suspension and a plasmonic substrate via plasmon-enhanced photothermal effects. The microbubble captures and immobilizes the colloidal particles on the substrate through coordinated actions of Marangoni convection, surface tension, gas pressure, and substrate adhesion. Through directing the laser beam to move the microbubble, we create arbitrary single-particle patterns and particle assemblies with different resolutions and architectures. Furthermore, we have applied BPL to pattern CdSe/ZnS quantum dots on plasmonic substrates and polystyrene (PS) microparticles on two-dimensional (2D) atomic-layer materials. With the low-power operation, arbitrary patterning and applicability to general colloidal particles, BPL will find a wide range of applications in microelectronics, nanophotonics, and nanomedicine. PMID:26678845

  4. Diamond nanoimprint lithography

    NASA Astrophysics Data System (ADS)

    Taniguchi, Jun; Tokano, Yuji; Miyamoto, Iwao; Komuro, Masanori; Hiroshima, Hiroshi

    2002-10-01

    Electron beam (EB) lithography using polymethylmethacrylate (PMMA) and oxygen gas reactive ion etching (RIE) were used to fabricate fine patterns in a diamond mould. To prevent charge-up during EB lithography, thin conductive polymer was spin-coated over the PMMA resist, yielding dented line patterns 2 μ m wide and 270 nm deep. The diamond mould was pressed into PMMA on a silicon substrate heated to 130, 150 and 170ºC at 43.6, 65.4 and 87.2 MPa. All transferred PMMA convex line patterns were 2 μ m wide. Imprinted pattern depth increased with rising temperature and pressure. PMMA patterns on diamond were transferred by the diamond mould at 150ºC and 65.4 MPa, yielding convex line patterns 2 μ m wide and 200 nm high. Direct aluminium and copper patterns were obtained using the diamond mould at room temperature and 130.8 MPa. The diamond mould is thus useful for replicating patterns on PMMA and metals.

  5. A novel mask structure for measuring the defocus of scanner

    NASA Astrophysics Data System (ADS)

    Dong, Lisong; Song, Zhiyang; Su, Xiaojing; Wei, Yayi

    2016-03-01

    A new focus monitor mask having novel grating structure is proposed to measure the focus variation of the scanner. The grating pattern composes of transparent line, opaque line, π-phase shift groove and π/2 -phase shift groove with their width ratio equivalent to 1:4:1:2. By using this structure, one of the first order and one of the second order of the diffraction spectrum are eliminated. Therefore, the lithography image is formed by the interference of the zeroth order and the left positive (or negative) 1st and 2nd orders, which is more sensitive to the subtle change of focus. The basic principle and characteristic of the proposed mask is described in this paper. Simulations with the lithography simulator PROLITH shows that the monitoring accuracy is improved more than 25%, compared with the conventional phase grating focus monitor (PGFM). The novel mask proposed in our job has potential to be an efficient candidate for measuring the defocus of scanner in the immersion lithography with hyper NA.

  6. Lithography light source fault detection

    NASA Astrophysics Data System (ADS)

    Graham, Matthew; Pantel, Erica; Nelissen, Patrick; Moen, Jeffrey; Tincu, Eduard; Dunstan, Wayne; Brown, Daniel

    2010-04-01

    High productivity is a key requirement for today's advanced lithography exposure tools. Achieving targets for wafers per day output requires consistently high throughput and availability. One of the keys to high availability is minimizing unscheduled downtime of the litho cell, including the scanner, track and light source. From the earliest eximer laser light sources, Cymer has collected extensive performance data during operation of the source, and this data has been used to identify the root causes of downtime and failures on the system. Recently, new techniques have been developed for more extensive analysis of this data to characterize the onset of typical end-of-life behavior of components within the light source and allow greater predictive capability for identifying both the type of upcoming service that will be required and when it will be required. The new techniques described in this paper are based on two core elements of Cymer's light source data management architecture. The first is enhanced performance logging features added to newer-generation light source software that captures detailed performance data; and the second is Cymer OnLine (COL) which facilitates collection and transmission of light source data. Extensive analysis of the performance data collected using this architecture has demonstrated that many light source issues exhibit recognizable patterns in their symptoms. These patterns are amenable to automated identification using a Cymer-developed model-based fault detection system, thereby alleviating the need for detailed manual review of all light source performance information. Automated recognition of these patterns also augments our ability to predict the performance trending of light sources. Such automated analysis provides several efficiency improvements for light source troubleshooting by providing more content-rich standardized summaries of light source performance, along with reduced time-to-identification for previously

  7. Neon Ion Beam Lithography (NIBL).

    PubMed

    Winston, Donald; Manfrinato, Vitor R; Nicaise, Samuel M; Cheong, Lin Lee; Duan, Huigao; Ferranti, David; Marshman, Jeff; McVey, Shawn; Stern, Lewis; Notte, John; Berggren, Karl K

    2011-10-12

    Existing techniques for electron- and ion-beam lithography, routinely employed for nanoscale device fabrication and mask/mold prototyping, do not simultaneously achieve efficient (low fluence) exposure and high resolution. We report lithography using neon ions with fluence <1 ion/nm(2), ∼1000× more efficient than using 30 keV electrons, and resolution down to 7 nm half-pitch. This combination of resolution and exposure efficiency is expected to impact a wide array of fields that are dependent on beam-based lithography. PMID:21899279

  8. Advances in Nanoimprint Lithography.

    PubMed

    Traub, Matthew C; Longsine, Whitney; Truskett, Van N

    2016-06-01

    Nanoimprint lithography (NIL), a molding process, can replicate features <10 nm over large areas with long-range order. We describe the early development and fundamental principles underlying the two most commonly used types of NIL, thermal and UV, and contrast them with conventional photolithography methods used in the semiconductor industry. We then describe current advances toward full commercial industrialization of UV-curable NIL (UV-NIL) technology for integrated circuit production. We conclude with brief overviews of some emerging areas of research, from photonics to biotechnology, in which the ability of NIL to fabricate structures of arbitrary geometry is providing new paths for development. As with previous innovations, the increasing availability of tools and techniques from the semiconductor industry is poised to provide a path to bring these innovations from the lab to everyday life. PMID:27070763

  9. Programmable imprint lithography template

    DOEpatents

    Cardinale, Gregory F.; Talin, Albert A.

    2006-10-31

    A template for imprint lithography (IL) that reduces significantly template production costs by allowing the same template to be re-used for several technology generations. The template is composed of an array of spaced-apart moveable and individually addressable rods or plungers. Thus, the template can be configured to provide a desired pattern by programming the array of plungers such that certain of the plungers are in an "up" or actuated configuration. This arrangement of "up" and "down" plungers forms a pattern composed of protruding and recessed features which can then be impressed onto a polymer film coated substrate by applying a pressure to the template impressing the programmed configuration into the polymer film. The pattern impressed into the polymer film will be reproduced on the substrate by subsequent processing.

  10. Portable biochip scanner device

    DOEpatents

    Perov, Alexander; Sharonov, Alexei; Mirzabekov, Andrei D.

    2002-01-01

    A portable biochip scanner device used to detect and acquire fluorescence signal data from biological microchips (biochips) is provided. The portable biochip scanner device employs a laser for emitting an excitation beam. An optical fiber delivers the laser beam to a portable biochip scanner. A lens collimates the laser beam, the collimated laser beam is deflected by a dichroic mirror and focused by an objective lens onto a biochip. The fluorescence light from the biochip is collected and collimated by the objective lens. The fluorescence light is delivered to a photomultiplier tube (PMT) via an emission filter and a focusing lens. The focusing lens focuses the fluorescence light into a pinhole. A signal output of the PMT is processed and displayed.

  11. Biochip scanner device

    DOEpatents

    Perov, Alexander; Belgovskiy, Alexander I.; Mirzabekov, Andrei D.

    2001-01-01

    A biochip scanner device used to detect and acquire fluorescence signal data from biological microchips or biochips and method of use are provided. The biochip scanner device includes a laser for emitting a laser beam. A modulator, such as an optical chopper modulates the laser beam. A scanning head receives the modulated laser beam and a scanning mechanics coupled to the scanning head moves the scanning head relative to the biochip. An optical fiber delivers the modulated laser beam to the scanning head. The scanning head collects the fluorescence light from the biochip, launches it into the same optical fiber, which delivers the fluorescence into a photodetector, such as a photodiode. The biochip scanner device is used in a row scanning method to scan selected rows of the biochip with the laser beam size matching the size of the immobilization site.

  12. Resolution improvement and pattern generator development for the maskless micro-ion-beam reduction lithography system

    NASA Astrophysics Data System (ADS)

    Jiang, Ximan

    The shrinking of IC devices has followed the Moore's Law for over three decades, which states that the density of transistors on integrated circuits will double about every two years. This great achievement is obtained via continuous advance in lithography technology. With the adoption of complicated resolution enhancement technologies, such as the phase shifting mask (PSM), the optical proximity correction (OPC), optical lithography with wavelength of 193 nm has enabled 45 nm printing by immersion method. However, this achievement comes together with the skyrocketing cost of masks, which makes the production of low volume application-specific IC (ASIC) impractical. In order to provide an economical lithography approach for low to medium volume advanced IC fabrication, a maskless ion beam lithography method, called Maskless Micro-ion-beam Reduction Lithography (MMRL), has been developed in the Lawrence Berkeley National Laboratory. The development of the prototype MMRL system has been described by Dr. Vinh Van Ngo in his Ph.D. thesis. But the resolution realized on the prototype MMRL system was far from the design expectation. In order to improve the resolution of the MMRL system, the ion optical system has been investigated. By integrating a field-free limiting aperture into the optical column, reducing the electromagnetic interference and cleaning the RF plasma, the resolution has been improved to around 50 nm. Computational analysis indicates that the MMRL system can be operated with an exposure field size of 0.25 mm and a beam half angle of 1.0 mrad on the wafer plane. Ion-ion interactions have been studied with a two-particle physics model. The results are in excellent agreement with those published by the other research groups. The charge-interaction analysis of MMRL shows that the ion-ion interactions must be reduced in order to obtain a throughput higher than 10 wafers per hour on 300-mm wafers. In addition, two different maskless lithography strategies

  13. Micromachined scanner actuated by electromagnetic induction

    NASA Astrophysics Data System (ADS)

    Barbaroto, Pedro R.; Ferreira, Luiz O. S.; Doi, Ioshiaki

    2002-10-01

    A novel micromachined scanner with electromagnetic induction actuation principle is presented. It was manufactured by Si-LIG technique, where its mechanical structure was made by bulk silicon micromachining of 200μm thick (100) silicon substrate, and its electric circuit was made by deep UV lithography and Au electroplating. The monolithic mechanical structure is a 12×24 mm2 rectangular frame connected by 4.5mm long torsion bars to a 4×10mm2 rectangular rotor. On one face of the rotor is the electric circuit, a 70μm thick, single turn, electroplated Au coil with 3.3mΩ electrical resistance. The other face of the rotor was mirrored by a 1480Å thick Al film. An external magnetic circuit generated a constant 1150 Gauss magnetic field parallel to the coil plane and a 100 Gauss (peak value) field normal to the coil plane. Maximum deflection angle of 6.5°pp at the 1311Hz resonance frequency was measured, and the quality factor Q was 402. The results shown that electromagnetic induction actuation is adequate for meso-scale systems and capable of producing resonant scanners with performance compatible with applications like bar code readers.

  14. Hybrid Dispersion Laser Scanner

    PubMed Central

    Goda, K.; Mahjoubfar, A.; Wang, C.; Fard, A.; Adam, J.; Gossett, D. R.; Ayazi, A.; Sollier, E.; Malik, O.; Chen, E.; Liu, Y.; Brown, R.; Sarkhosh, N.; Di Carlo, D.; Jalali, B.

    2012-01-01

    Laser scanning technology is one of the most integral parts of today's scientific research, manufacturing, defense, and biomedicine. In many applications, high-speed scanning capability is essential for scanning a large area in a short time and multi-dimensional sensing of moving objects and dynamical processes with fine temporal resolution. Unfortunately, conventional laser scanners are often too slow, resulting in limited precision and utility. Here we present a new type of laser scanner that offers ∼1,000 times higher scan rates than conventional state-of-the-art scanners. This method employs spatial dispersion of temporally stretched broadband optical pulses onto the target, enabling inertia-free laser scans at unprecedented scan rates of nearly 100 MHz at 800 nm. To show our scanner's broad utility, we use it to demonstrate unique and previously difficult-to-achieve capabilities in imaging, surface vibrometry, and flow cytometry at a record 2D raster scan rate of more than 100 kHz with 27,000 resolvable points. PMID:22685627

  15. Optical fuel pin scanner

    DOEpatents

    Kirchner, Tommy L.; Powers, Hurshal G.

    1983-01-01

    An optical scanner for indicia arranged in a focal plane at a cylindrical outside surface by use of an optical system including a rotatable dove prism. The dove prism transmits a rotating image of an encircled cylindrical surface area to a stationary photodiode array.

  16. Freestanding Complex Optical Scanners.

    ERIC Educational Resources Information Center

    Frisbie, David A.

    A complex freestanding optical mark recognition (OMR) scanner is one which is not on-line to an external processor; it has intelligence stemming from an internal processor located within the unit or system. The advantages and disadvantages of a complex OMR can best be assessed after identifying the scanning needs and constraints of the potential…

  17. What Scanner products are available?

    Atmospheric Science Data Center

    2014-12-08

    ... There are single satellite and combined-satellite scanner products. The best source for these data is to order the ERBE scanner CD which gives all the S4G monthly mean 2.5 degree gridded data from ...

  18. Effect of wafer geometry on lithography chucking processes

    NASA Astrophysics Data System (ADS)

    Turner, Kevin T.; Sinha, Jaydeep K.

    2015-03-01

    Wafer flatness during exposure in lithography tools is critical and is becoming more important as feature sizes in devices shrink. While chucks are used to support and flatten the wafer during exposure, it is essential that wafer geometry be controlled as well. Thickness variations of the wafer and high-frequency wafer shape components can lead to poor flatness of the chucked wafer and ultimately patterning problems, such as defocus errors. The objective of this work is to understand how process-induced wafer geometry, resulting from deposited films with non-uniform stress, can lead to high-frequency wafer shape variations that prevent complete chucking in lithography scanners. In this paper, we discuss both the acceptable limits of wafer shape that permit complete chucking to be achieved, and how non-uniform residual stresses in films, either due to patterning or process non-uniformity, can induce high spatial frequency wafer shape components that prevent chucking. This paper describes mechanics models that relate non-uniform film stress to wafer shape and presents results for two example cases. The models and results can be used as a basis for establishing control strategies for managing process-induced wafer geometry in order to avoid wafer flatness-induced errors in lithography processes.

  19. The use of EUV lithography to produce demonstration devices

    NASA Astrophysics Data System (ADS)

    LaFontaine, Bruno; Deng, Yunfei; Kim, Ryoung-Han; Levinson, Harry J.; McGowan, Sarah; Okoroanyanwu, Uzodinma; Seltmann, Rolf; Tabery, Cyrus; Tchikoulaeva, Anna; Wallow, Tom; Wood, Obert; Arnold, John; Canaperi, Don; Colburn, Matthew; Kimmel, Kurt; Koay, Chiew-Seng; Mclellan, Erin; Medeiros, Dave; Rao, Satyavolu Papa; Petrillo, Karen; Yin, Yunpeng; Mizuno, Hiroyuki; Bouten, Sander; Crouse, Michael; van Dijk, Andre; van Dommelen, Youri; Galloway, Judy; Han, Sang-In; Kessels, Bart; Lee, Brian; Lok, Sjoerd; Niekrewicz, Brian; Pierson, Bill; Routh, Robert; Schmit-Weaver, Emil; Cummings, Kevin; Word, James

    2008-03-01

    In this paper, we describe the integration of EUV lithography into a standard semiconductor manufacturing flow to produce demonstration devices. 45 nm logic test chips with functional transistors were fabricated using EUV lithography to pattern the first interconnect level (metal 1). This device fabrication exercise required the development of rule-based 'OPC' to correct for flare and mask shadowing effects. These corrections were applied to the fabrication of a full-field mask. The resulting mask and the 0.25-NA fullfield EUV scanner were found to provide more than adequate performance for this 45 nm logic node demonstration. The CD uniformity across the field and through a lot of wafers was 6.6% (3σ) and the measured overlay on the test-chip (product) wafers was well below 20 nm (mean + 3σ). A resist process was developed and performed well at a sensitivity of 3.8 mJ/cm2, providing ample process latitude and etch selectivity for pattern transfer. The etch recipes provided good CD control, profiles and end-point discrimination, allowing for good electrical connection to the underlying levels, as evidenced by electrical test results. Many transistors connected with Cu-metal lines defined using EUV lithography were tested electrically and found to have characteristics very similar to 45 nm node transistors fabricated using more traditional methods.

  20. Extreme ultraviolet lithography machine

    DOEpatents

    Tichenor, Daniel A.; Kubiak, Glenn D.; Haney, Steven J.; Sweeney, Donald W.

    2000-01-01

    An extreme ultraviolet lithography (EUVL) machine or system for producing integrated circuit (IC) components, such as transistors, formed on a substrate. The EUVL machine utilizes a laser plasma point source directed via an optical arrangement onto a mask or reticle which is reflected by a multiple mirror system onto the substrate or target. The EUVL machine operates in the 10-14 nm wavelength soft x-ray photon. Basically the EUV machine includes an evacuated source chamber, an evacuated main or project chamber interconnected by a transport tube arrangement, wherein a laser beam is directed into a plasma generator which produces an illumination beam which is directed by optics from the source chamber through the connecting tube, into the projection chamber, and onto the reticle or mask, from which a patterned beam is reflected by optics in a projection optics (PO) box mounted in the main or projection chamber onto the substrate. In one embodiment of a EUVL machine, nine optical components are utilized, with four of the optical components located in the PO box. The main or projection chamber includes vibration isolators for the PO box and a vibration isolator mounting for the substrate, with the main or projection chamber being mounted on a support structure and being isolated.

  1. Nanowire lithography on silicon.

    PubMed

    Colli, Alan; Fasoli, Andrea; Pisana, Simone; Fu, Yongqing; Beecher, Paul; Milne, William I; Ferrari, Andrea C

    2008-05-01

    Nanowire lithography (NWL) uses nanowires (NWs), grown and assembled by chemical methods, as etch masks to transfer their one-dimensional morphology to an underlying substrate. Here, we show that SiO2 NWs are a simple and compatible system to implement NWL on crystalline silicon and fabricate a wide range of architectures and devices. Planar field-effect transistors made of a single SOI-NW channel exhibit a contact resistance below 20 kOmega and scale with the channel width. Further, we assess the electrical response of NW networks obtained using a mask of SiO2 NWs ink-jetted from solution. The resulting conformal network etched into the underlying wafer is monolithic, with single-crystalline bulk junctions; thus no difference in conductivity is seen between a direct NW bridge and a percolating network. We also extend the potential of NWL into the third dimension, by using a periodic undercutting that produces an array of vertically stacked NWs from a single NW mask. PMID:18386934

  2. Scanning probe nanoimprint lithography

    NASA Astrophysics Data System (ADS)

    Dinelli, F.; Menozzi, C.; Baschieri, P.; Facci, P.; Pingue, P.

    2010-02-01

    The present paper reports on a novel lithographic approach at the nanoscale level, which is based on scanning probe microscopy (SPM) and nanoimprint lithography (NIL). The experimental set-up consists of an atomic force microscope (AFM) operated via software specifically developed for the purpose. In particular, this software allows one to apply a predefined external load for a given lapse of time while monitoring in real-time the relative distance between the tip and the sample as well as the normal and lateral force during the embossing process. Additionally, we have employed AFM tips sculptured by means of focused ion beam in order to create indenting tools of the desired shape. Anti-sticking layers can also be used to functionalize the tips if one needs to investigate the effects of different treatments on the indentation and de-molding processes. The lithographic capabilities of this set-up are demonstrated on a polystyrene NIL-patterned sample, where imprinted features have been obtained upon using different normal load values for increasing time intervals, and on a thermoplastic polymer film, where the imprint process has been monitored in real-time.

  3. Lithography focus/exposure control and corrections to improve CDU at post etch step

    NASA Astrophysics Data System (ADS)

    Kim, Young Ki; Yelverton, Mark; Tristan, John; Lee, Joungchel; Gutjahr, Karsten; Hsu, Ching-Hsiang; Wei, Hong; Wang, Lester; Li, Chen; Subramany, Lokesh; Chung, Woong Jae; Kim, Jeong Soo; Ramanathan, Vidya; Yap, LipKong; Gao, Jie; Karur-Shanmugam, Ram; Golotsvan, Anna; Herrera, Pedro; Huang, Kevin; Pierson, Bill

    2014-04-01

    As leading edge lithography moves to advanced nodes in high-mix, high-volume manufacturing environment, automated control of critical dimension (CD) within wafer has become a requirement. Current control methods to improve CD uniformity (CDU) generally rely upon the use of field by field exposure corrections via factory automation or through scanner sub-recipe. Such CDU control methods are limited to lithography step and cannot be extended to etch step. In this paper, a new method to improve CDU at post etch step by optimizing exposure at lithography step is introduced. This new solution utilizes GLOBALFOUNDRIES' factory automation system and KLA-Tencor's K-T Analyzer as the infrastructure to calculate and feed the necessary field by field level exposure corrections back to scanner, so as to achieve the optimal CDU at post etch step. CD at post lithography and post etch steps are measured by scatterometry metrology tools respectively and are used by K-T Analyzer as the input for correction calculations. This paper will explain in detail the philosophy as well as the methodology behind this novel CDU control solution. In addition, applications and use cases will be reviewed to demonstrate the capability and potential of this solution. The feasibility of adopting this solution in high-mix, high-volume manufacturing environment will be discussed as well.

  4. LIGA Scanner Control Software

    1999-02-01

    The LIGA Scanner Software is a graphical user interface package that facilitates controlling the scanning operation of x-rays from a synchrotron and sample manipulation for making LIGA parts. The process requires scanning of the LIGA mask and the PMMA resist through a stationary x-ray beam to provide an evenly distributed x-ray exposure over the wafer. This software package has been written specifically to interface with Aerotech motor controllers.

  5. Holographic lithography for biomedical applications

    NASA Astrophysics Data System (ADS)

    Stankevicius, E.; Balciunas, E.; Malinauskas, M.; Raciukaitis, G.; Baltriukiene, D.; Bukelskiene, V.

    2012-06-01

    Fabrication of scaffolds for cell growth with appropriate mechanical characteristics is top-most important for successful creation of tissue. Due to ability of fast fabrication of periodic structures with a different period, the holographic lithography technique is a suitable tool for scaffolds fabrication. The scaffolds fabricated by holographic lithography can be used in various biomedical investigations such as the cellular adhesion, proliferation and viability. These investigations allow selection of the suitable material and geometry of scaffolds which can be used in creation of tissue. Scaffolds fabricated from di-acrylated poly(ethylene glycol) (PEG-DA-258) over a large area by holographic lithography technique are presented in this paper. The PEG-DA scaffolds fabricated by holographic lithography showed good cytocompatibility for rabbit myogenic stem cells. It was observed that adult rabbit muscle-derived myogenic stem cells grew onto PEG-DA scaffolds. They were attached to the pillars and formed cell-cell interactions. It demonstrates that the fabricated structures have potential to be an interconnection channel network for cell-to-cell interactions, flow transport of nutrients and metabolic waste as well as vascular capillary ingrowth. These results are encouraging for further development of holographic lithography by improving its efficiency for microstructuring three-dimensional scaffolds out of biodegradable hydrogels

  6. High throughput optical scanner

    DOEpatents

    Basiji, David A.; van den Engh, Gerrit J.

    2001-01-01

    A scanning apparatus is provided to obtain automated, rapid and sensitive scanning of substrate fluorescence, optical density or phosphorescence. The scanner uses a constant path length optical train, which enables the combination of a moving beam for high speed scanning with phase-sensitive detection for noise reduction, comprising a light source, a scanning mirror to receive light from the light source and sweep it across a steering mirror, a steering mirror to receive light from the scanning mirror and reflect it to the substrate, whereby it is swept across the substrate along a scan arc, and a photodetector to receive emitted or scattered light from the substrate, wherein the optical path length from the light source to the photodetector is substantially constant throughout the sweep across the substrate. The optical train can further include a waveguide or mirror to collect emitted or scattered light from the substrate and direct it to the photodetector. For phase-sensitive detection the light source is intensity modulated and the detector is connected to phase-sensitive detection electronics. A scanner using a substrate translator is also provided. For two dimensional imaging the substrate is translated in one dimension while the scanning mirror scans the beam in a second dimension. For a high throughput scanner, stacks of substrates are loaded onto a conveyor belt from a tray feeder.

  7. Photoinhibition superresolution lithography

    NASA Astrophysics Data System (ADS)

    Forman, Darren Lawrence

    While the prospect of nanoscale manufacturing has generated tremendous excitement, arbitrary patterning at nanometer length scales cannot be brought about with current photolithography---the technology that for decades has driven electronics miniaturization and enabled mass production of digital logic, memory, MEMS and flat-panel displays. This is due to the relatively long wavelength of light and diffraction, which imposes a physical not technological limit on the resolution of a far-field optical pattern. Photoinhibited superresolution (PInSR) lithography is a new scheme designed to beat the diffraction limit through two-color confinement of photopolymerization and, via efficient single-photon absorption kinetics, also be high-throughput capable. This thesis describes development of an integrated optical and materials system for investigating spatiotemporal dynamics of photoinhibited superresolution lithography, with a demonstrated 3x superresolution beyond the diffraction limit. The two-color response, arising from orthogonal photogeneration of species that participate in competing reactions, is shown to be highly complex. This is both a direct and indirect consequence of mobility. Interesting trade-offs arise: thin-film resins (necessitated by single-photon absorption kinetics) require high viscosity for film stability, but the photoinhibition effect is suppressed in viscous resins. Despite this apparent suppression, which can be overcome with high excitation of the photoinhibition system, the low mobility afforded by viscous materials is beneficial for confinement of active species. Diffusion-induced blurring of patterned photoinhibition is problematic in a resin with viscosity = 1,000 cP, and overcome in a resin with viscosity eta = 500,000 cP. Superresolution of factor 3x beyond the diffraction limit is demonstrated at 0.2 NA, with additional results indicating superresolution ability at 1.2 NA. Investigating the effect of diminished photoinhibition efficacy

  8. Using scanning electrochemical microscopy to probe chemistry at the solid-liquid interface in chemically amplified immersion lithography

    NASA Astrophysics Data System (ADS)

    LeSuer, Robert J.; Fan, Fu-Ren F.; Bard, Allen J.; Taylor, J. Christopher; Tsiartas, Pavlos; Willson, Grant; Conley, Willard E.; Feit, Gene; Kunz, Roderick R.

    2004-05-01

    Three modes of scanning electrochemical microscopy (SECM) - voltammetry, pH, and conductivity - have been used to better understand the chemistry at, and diffusion through, the solid/liquid interface formed between a resist film and water in 193 nm immersion lithography. Emphasis has been placed on investigating the photoacid generator (PAG), triphenylsulfonium perfluorobutanesulfonate, and the corresponding photoacid. The reduction of triphenylsulfonium at a hemispherical Hg microelectrode was monitored using square wave voltammetry to detect trace amounts of the PAG leaching from the surface. pH measurements at a 100 μm diameter Sb microelectrode show the formation of acid in the water layer above a resist upon exposure with UV irradiation. Bipolar conductance measurements at a 100 μm Pt tip positioned 100 μm from the surface indicate that the conductivity of the solution during illumination is dependent upon the percentage of PAG in the film. Liquid chromatography mass spectrometric analysis of water samples in contact with resist films has been used to quantify the amounts (< 10 ng/cm2) of PAG leaching from the film in the dark which occurs within the first 30 seconds of contact time. Washing the film removes approximately 80% of the total leachable PAG.

  9. Physical Limitations in Lithography for Microelectronics.

    ERIC Educational Resources Information Center

    Flavin, P. G.

    1981-01-01

    Describes techniques being used in the production of microelectronics kits which have replaced traditional optical lithography, including contact and optical projection printing, and X-ray and electron beam lithography. Also includes limitations of each technique described. (SK)

  10. Porphyrin-Based Photocatalytic Lithography

    SciTech Connect

    Bearinger, J; Stone, G; Christian, A; Dugan, L; Hiddessen, A; Wu, K J; Wu, L; Hamilton, J; Stockton, C; Hubbell, J

    2007-10-15

    Photocatalytic lithography is an emerging technique that couples light with coated mask materials in order to pattern surface chemistry. We excite porphyrins to create radical species that photocatalytically oxidize, and thereby pattern, chemistries in the local vicinity. The technique advantageously does not necessitate mass transport or specified substrates, it is fast and robust and the wavelength of light does not limit the resolution of patterned features. We have patterned proteins and cells in order to demonstrate the utility of photocatalytic lithography in life science applications.

  11. Polymer nanofibers by soft lithography

    NASA Astrophysics Data System (ADS)

    Pisignano, Dario; Maruccio, Giuseppe; Mele, Elisa; Persano, Luana; Di Benedetto, Francesca; Cingolani, Roberto

    2005-09-01

    The fabrication of polymeric fibers by soft lithography is demonstrated. Polyurethane, patterned by capillarity-induced molding with high-resolution elastomeric templates, forms mm-long fibers with a diameter below 0.3μm. The Young's modulus of the fabricated structures, evaluated by force-distance scanning probe spectroscopy, has a value of 0.8MPa. This is an excellent example of nanostructures feasible by the combination of soft nanopatterning and high-resolution fabrication approaches for master templates, and particularly electron-beam lithography.

  12. Microfabrication using soft lithography

    NASA Astrophysics Data System (ADS)

    Zhao, Xiao-Mei

    Soft Lithography is a group of non-photolithographic techniques currently being explored in our group. Four such techniques-microcontact printing (μCP), replica molding (REM), micromolding in capillaries (MIMIC), and microtransfer molding (μTM)-have been demonstrated for fabricating micro- and nanostructures of a variety of materials with dimension >=30 nm. Part I (Chapters 1-5) reviews several aspects of the three molding techniques REM, MIMIC, and μTM. Chapters 1-3 describe μTM and MIMIC, and the use of these techniques in the fabrication of functional devices. μTM is capable of generating μm-scale structures over large areas, on both planar and contoured surfaces, and is able to make 3-dimensional structures layer by layer. The capability of μTM and MIMIC has been demonstrated in the fabrication of single-mode waveguides, waveguide couplers and interferometers. The coupling between waveguides can be tailored by waveguide spacing or the differential in curing time between the waveguides and the cladding. Chapters 4-5 demonstrate the combination of REM and shrinkable polystyrene (PS) films to reduce the feature size of microstructures and to generate microstructures with high aspect ratios on both planar and curved surfaces. A shrinkable PS film is patterned with relief structures, and then heated and shrinks. Thermal shrinkage results in a 100-fold increase in the aspect ratio of the patterned microstructures in the PS film. The microstructures in the shrunken PS films can be transferred to many other materials by REM. Part II (Chapters 6-7) focuses on two issues in the microfabrication using self-assembled monolayers (SAMs) as ultrathin resists. Chapter 6 describes a selective etching solution for transferring patterns of SAMs of alkanethiolates into the underlying layers (e.g., gold, silver, and copper). This etching solution uses thiosulfate as the ligand that coordinates to the metal ions, and ferricyanide as the oxidant. It has been demonstrated to be

  13. 51. View of upper radar scanner switch in radar scanner ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    51. View of upper radar scanner switch in radar scanner building 105 from upper catwalk level showing emanating waveguides from upper switch (upper one-fourth of photograph) and emanating waveguides from lower radar scanner switch in vertical runs. - Clear Air Force Station, Ballistic Missile Early Warning System Site II, One mile west of mile marker 293.5 on Parks Highway, 5 miles southwest of Anderson, Anderson, Denali Borough, AK

  14. Integrated display scanner

    DOEpatents

    Veligdan, James T.

    2004-12-21

    A display scanner includes an optical panel having a plurality of stacked optical waveguides. The waveguides define an inlet face at one end and a screen at an opposite end, with each waveguide having a core laminated between cladding. A projector projects a scan beam of light into the panel inlet face for transmission from the screen as a scan line to scan a barcode. A light sensor at the inlet face detects a return beam reflected from the barcode into the screen. A decoder decodes the return beam detected by the sensor for reading the barcode. In an exemplary embodiment, the optical panel also displays a visual image thereon.

  15. From 120 to 32 nm CMOS technology: development of OPC and RET to rescue optical lithography

    NASA Astrophysics Data System (ADS)

    Trouiller, Yorick

    2006-10-01

    Starting from the 120 nm CMOS technology node down to the 32 nm node, we have entered into a new lithographic regime. The wavelength has not changed (only 193 nm), and we move closer and closer to the theoretical optical resolution limit. Therefore, Resolution Enhancement Techniques (RET) have been developed in order to print all shapes properly and close the resolution gap. The primary RET developed are off-axis illumination, sub-resolution assist features and a phase shift mask. Moreover, working closer to the resolution limit implies bigger image distortion between the mask and the silicon. For this purpose OPC (Optical Proximity Correction) has been widely used by making mask pre-compensation of all non linear effects, optical diffraction and interference effects, resist and etch. RET and OPC are also fundamentally linked. RET such as off-axis illumination generates more distortion, and therefore justifies the need of more aggressive OPC, and RET techniques like Alt PSM and sub-resolution assist features are generated through the OPC infrastructure. From its first industrial utilization for 120 nm node to 32 nm prospectively, many evolutions have been seen for OPC. These include the generalisation to all lithographic layers, moving to pixel based simulation, usage of full chip simulation and verification, the incorporation of process window effects like Energy Latitude or Depth of Focus into the OPC algorithm, and inverse lithography approach. For RET, we have seen huge differentiation depending on the type of application, such as logic or memory. In conclusion, we need to consider design as a third party that is playing a key role in this RET-OPC synergy. To use more aggressive RET and reduce the cycle time of OPC recipe development, more regular designs are considered as a key enabler for the future: they will allow logic makers to consider RET options that are pushed as far as those used by memory makers. To cite this article: Y. Trouiller, C. R. Physique 7

  16. Maskless, reticle-free, lithography

    DOEpatents

    Ceglio, Natale M.; Markle, David A.

    1997-11-25

    A lithography system in which the mask or reticle, which usually carries the pattern to be printed onto a substrate, is replaced by a programmable array of binary (i.e. on/off) light valves or switches which can be programmed to replicate a portion of the pattern each time an illuminating light source is flashed. The pattern of light produced by the programmable array is imaged onto a lithographic substrate which is mounted on a scanning stage as is common in optical lithography. The stage motion and the pattern of light displayed by the programmable array are precisely synchronized with the flashing illumination system so that each flash accurately positions the image of the pattern on the substrate. This is achieved by advancing the pattern held in the programmable array by an amount which corresponds to the travel of the substrate stage each time the light source flashes. In this manner the image is built up of multiple flashes and an isolated defect in the array will only have a small effect on the printed pattern. The method includes projection lithographies using radiation other than optical or ultraviolet light. The programmable array of binary switches would be used to control extreme ultraviolet (EUV), x-ray, or electron, illumination systems, obviating the need for stable, defect free masks for projection EUV, x-ray, or electron, lithographies.

  17. ITRS lithography roadmap: 2015 challenges

    NASA Astrophysics Data System (ADS)

    Neisser, Mark; Wurm, Stefan

    2015-08-01

    In the past few years, novel methods of patterning have made considerable progress. In 2011, extreme ultraviolet (EUV) lithography was the front runner to succeed optical lithography. However, although EUV tools for pilot production capability have been installed, its high volume manufacturing (HVM) readiness continues to be gated by productivity and availability improvements taking longer than expected. In the same time frame, alternative and/or complementary technologies to EUV have made progress. Directed self-assembly (DSA) has demonstrated improved defectivity and progress in integration with design and pattern process flows. Nanoimprint improved performance considerably and is pilot production capable for memory products. Maskless lithography has made progress in tool development and could have an α tool ready in the late 2015 or early 2016. But they all have to compete with multiple patterning. Quadruple patterning is already demonstrated and can pattern lines and spaces down to close to 10-nm half pitch. The other techniques have to do something better than quadruple patterning does to be chosen for implementation. DSA and NIL promise a lower cost. EUV promises a simpler and shorter process and the creation of 2-D patterns more easily with much reduced complexity compared to multiple patterning. Maskless lithography promises to make chip personalization easy and to be particularly cost effective for low-volume chip designs. Decision dates for all of the technologies are this year or next year.

  18. Biomolecular Patterning via Photocatalytic Lithography

    SciTech Connect

    Bearinger, J P; Hiddessen, A L; Wu, K J; Christian, A T; Dugan, L C; Stone, G; Camarero, J; Hinz, A K; Hubbell, J A

    2005-02-18

    We have developed a novel method for patterning surface chemistry: Photocatalytic Lithography. This technique relies on inexpensive stamp materials and light; it does not necessitate mass transport or specified substrates, and the wavelength of light should not limit feature resolution. We have demonstrated the utility of this technique through the patterning of proteins, single cells and bacteria.

  19. Graphic Arts/Offset Lithography.

    ERIC Educational Resources Information Center

    Hoisington, James; Metcalf, Joseph

    This revised curriculum for graphic arts is designed to provide secondary and postsecondary students with entry-level skills and an understanding of current printing technology. It contains lesson plans based on entry-level competencies for offset lithography as identified by educators and industry representatives. The guide is divided into 15…

  20. Maskless, reticle-free, lithography

    DOEpatents

    Ceglio, N.M.; Markle, D.A.

    1997-11-25

    A lithography system in which the mask or reticle, which usually carries the pattern to be printed onto a substrate, is replaced by a programmable array of binary (i.e. on/off) light valves or switches which can be programmed to replicate a portion of the pattern each time an illuminating light source is flashed. The pattern of light produced by the programmable array is imaged onto a lithographic substrate which is mounted on a scanning stage as is common in optical lithography. The stage motion and the pattern of light displayed by the programmable array are precisely synchronized with the flashing illumination system so that each flash accurately positions the image of the pattern on the substrate. This is achieved by advancing the pattern held in the programmable array by an amount which corresponds to the travel of the substrate stage each time the light source flashes. In this manner the image is built up of multiple flashes and an isolated defect in the array will only have a small effect on the printed pattern. The method includes projection lithographies using radiation other than optical or ultraviolet light. The programmable array of binary switches would be used to control extreme ultraviolet (EUV), x-ray, or electron, illumination systems, obviating the need for stable, defect free masks for projection EUV, x-ray, or electron, lithographies. 7 figs.

  1. Resolution Improvement and Pattern Generator Development for theMaskless Micro-Ion-Beam Reduction Lithography System

    SciTech Connect

    Jiang, Ximan

    2006-05-18

    The shrinking of IC devices has followed the Moore's Law for over three decades, which states that the density of transistors on integrated circuits will double about every two years. This great achievement is obtained via continuous advance in lithography technology. With the adoption of complicated resolution enhancement technologies, such as the phase shifting mask (PSM), the optical proximity correction (OPC), optical lithography with wavelength of 193 nm has enabled 45 nm printing by immersion method. However, this achievement comes together with the skyrocketing cost of masks, which makes the production of low volume application-specific IC (ASIC) impractical. In order to provide an economical lithography approach for low to medium volume advanced IC fabrication, a maskless ion beam lithography method, called Maskless Micro-ion-beam Reduction Lithography (MMRL), has been developed in the Lawrence Berkeley National Laboratory. The development of the prototype MMRL system has been described by Dr. Vinh Van Ngo in his Ph.D. thesis. But the resolution realized on the prototype MMRL system was far from the design expectation. In order to improve the resolution of the MMRL system, the ion optical system has been investigated. By integrating a field-free limiting aperture into the optical column, reducing the electromagnetic interference and cleaning the RF plasma, the resolution has been improved to around 50 nm. Computational analysis indicates that the MMRL system can be operated with an exposure field size of 0.25 mm and a beam half angle of 1.0 mrad on the wafer plane. Ion-ion interactions have been studied with a two-particle physics model. The results are in excellent agreement with those published by the other research groups. The charge-interaction analysis of MMRL shows that the ion-ion interactions must be reduced in order to obtain a throughput higher than 10 wafers per hour on 300-mm wafers. In addition, two different maskless lithography strategies

  2. Multispectral scanner optical system

    NASA Technical Reports Server (NTRS)

    Stokes, R. C.; Koch, N. G. (Inventor)

    1980-01-01

    An optical system for use in a multispectral scanner of the type used in video imaging devices is disclosed. Electromagnetic radiation reflected by a rotating scan mirror is focused by a concave primary telescope mirror and collimated by a second concave mirror. The collimated beam is split by a dichroic filter which transmits radiant energy in the infrared spectrum and reflects visible and near infrared energy. The long wavelength beam is filtered and focused on an infrared detector positioned in a cryogenic environment. The short wavelength beam is dispersed by a pair of prisms, then projected on an array of detectors also mounted in a cryogenic environment and oriented at an angle relative to the optical path of the dispersed short wavelength beam.

  3. Optical Scanner for Linear Arrays

    NASA Technical Reports Server (NTRS)

    Finkel, M. W.

    1986-01-01

    Optical scanner instantaneously reads contiguous lines forming scene or target in object plane. Reading active or passive and scans, continuous or discrete. Scans essentially linear with scan angle and symmetric about axial ray. Nominal focal error, resulting from curvature of scan, well within Rayleigh limit. Scanner specifically designed to be fully compatible with general requirements of linear arrays.

  4. Extreme Ultraviolet Lithography - Reflective Mask Technology

    SciTech Connect

    Walton, C.C.; Kearney, P.A.; Mirkarimi, P.B.; Bowers, J.M.; Cerjan, C.; Warrick, A.L.; Wilhelmsen, K.; Fought, E.; Moore, C.; Larson, C.; Baker, S.; Burkhart, S.C.; Hector, S.D.

    2000-05-09

    EUVL mask blanks consist of a distributed Bragg reflector made of 6.7nm-pitch bi-layers of MO and Si deposited upon a precision Si or glass substrate. The layer deposition process has been optimized for low defects, by application of a vendor-supplied but highly modified ion-beam sputter deposition system. This system is fully automated using SMIF technology to obtain the lowest possible environmental- and handling-added defect levels. Originally designed to coat 150mm substrates, it was upgraded in July, 1999 to 200 mm and has coated runs of over 50 substrates at a time with median added defects >100nm below 0.05/cm{sup 2}. These improvements have resulted from a number of ion-beam sputter deposition system modifications, upgrades, and operational changes, which will be discussed. Success in defect reduction is highly dependent upon defect detection, characterization, and cross-platform positional registration. We have made significant progress in adapting and extending commercial tools to this purpose, and have identified the surface scanner detection limits for different defect classes, and the signatures of false counts and non-printable scattering anomalies on the mask blank. We will present key results and how they have helped reduce added defects. The physics of defect reduction and mitigation is being investigated by a program on multilayer growth over deliberately placed perturbations (defects) of varying size. This program includes modeling of multilayer growth and modeling of defect printability. We developed a technique for depositing uniformly sized gold spheres on EUVL substrates, and have studied the suppression of the perturbations during multilayer growth under varying conditions. This work is key to determining the lower limit of critical defect size for EUV Lithography. We present key aspects of this work. We will summarize progress in all aspects of EUVL mask blank development, and present detailed results on defect reduction and mask blank

  5. Space-multiplexed optical scanner.

    PubMed

    Riza, Nabeel A; Yaqoob, Zahid

    2004-05-01

    A low-loss two-dimensional optical beam scanner that is capable of delivering large (e.g., > 10 degrees) angular scans along the elevation as well as the azimuthal direction is presented. The proposed scanner is based on a space-switched parallel-serial architecture that employs a coarse-scanner module and a fine-scanner module that produce an ultrahigh scan space-fill factor, e.g., 900 x 900 distinguishable beams in a 10 degrees (elevation) x 10 degrees (azimuth) scan space. The experimentally demonstrated one-dimensional version of the proposed scanner has a supercontinuous scan, 100 distinguishable beam spots in a 2.29 degrees total scan range, and 1.5-dB optical insertion loss. PMID:15130010

  6. ArF scanner performance improvement by using track integrated CD optimization

    NASA Astrophysics Data System (ADS)

    Huang, Jacky; Yu, Shinn-Sheng; Ke, Chih-Ming; Wu, Timothy; Wang, Yu-Hsi; Gau, Tsai-Sheng; Wang, Dennis; Li, Allen; Yang, Wenge; Kaoru, Araki

    2006-03-01

    In advanced semiconductor processing, shrinking CD is one of the main objectives when moving to the next generation technology. Improving CD uniformity (CDU) with shrinking CD is one of the biggest challenges. From ArF lithography CD error budget analysis, PEB (post exposure bake) contributes more than 40% CD variations. It turns out that hot plate performance such as CD matching and within-plate temperature control play key roles in litho cell wafer per hour (WPH). Traditionally wired or wireless thermal sensor wafers were used to match and optimize hot plates. However, sensor-to-sensor matching and sensor data quality vs. sensor lifetime or sensor thermal history are still unknown. These concerns make sensor wafers more suitable for coarse mean-temperature adjustment. For precise temperature adjustment, especially within-hot-plate temperature uniformity, using CD instead of sensor wafer temperature is a better and more straightforward metrology to calibrate hot plates. In this study, we evaluated TEL clean track integrated optical CD metrology (IM) combined with TEL CD Optimizer (CDO) software to improve 193-nm resist within-wafer and wafer-to-wafer CD uniformity. Within-wafer CD uniformity is mainly affected by the temperature non-uniformity on the PEB hot plate. Based on CD and PEB sensitivity of photo resists, a physical model has been established to control the CD uniformity through fine-tuning PEB temperature settings. CD data collected by track integrated CD metrology was fed into this model, and the adjustment of PEB setting was calculated and executed through track internal APC system. This auto measurement, auto feed forward, auto calibration and auto adjustment system can reduce the engineer key-in error and improve the hot plate calibration cycle time. And this PEB auto calibration system can easily bring hot-plate-to-hot-plate CD matching to within 0.5nm and within-wafer CDU (3σ) to less than 1.5nm.

  7. X-ray lithography source

    DOEpatents

    Piestrup, Melvin A.; Boyers, David G.; Pincus, Cary

    1991-01-01

    A high-intensity, inexpensive X-ray source for X-ray lithography for the production of integrated circuits. Foil stacks are bombarded with a high-energy electron beam of 25 to 250 MeV to produce a flux of soft X-rays of 500 eV to 3 keV. Methods of increasing the total X-ray power and making the cross section of the X-ray beam uniform are described. Methods of obtaining the desired X-ray-beam field size, optimum frequency spectrum and elminating the neutron flux are all described. A method of obtaining a plurality of station operation is also described which makes the process more efficient and economical. The satisfying of these issues makes transition radiation an exellent moderate-priced X-ray source for lithography.

  8. X-ray lithography source

    DOEpatents

    Piestrup, M.A.; Boyers, D.G.; Pincus, C.

    1991-12-31

    A high-intensity, inexpensive X-ray source for X-ray lithography for the production of integrated circuits is disclosed. Foil stacks are bombarded with a high-energy electron beam of 25 to 250 MeV to produce a flux of soft X-rays of 500 eV to 3 keV. Methods of increasing the total X-ray power and making the cross section of the X-ray beam uniform are described. Methods of obtaining the desired X-ray-beam field size, optimum frequency spectrum and eliminating the neutron flux are all described. A method of obtaining a plurality of station operation is also described which makes the process more efficient and economical. The satisfying of these issues makes transition radiation an excellent moderate-priced X-ray source for lithography. 26 figures.

  9. Mask technology for EUV lithography

    NASA Astrophysics Data System (ADS)

    Bujak, M.; Burkhart, Scott C.; Cerjan, Charles J.; Kearney, Patrick A.; Moore, Craig E.; Prisbrey, Shon T.; Sweeney, Donald W.; Tong, William M.; Vernon, Stephen P.; Walton, Christopher C.; Warrick, Abbie L.; Weber, Frank J.; Wedowski, Marco; Wilhelmsen, Karl C.; Bokor, Jeffrey; Jeong, Sungho; Cardinale, Gregory F.; Ray-Chaudhuri, Avijit K.; Stivers, Alan R.; Tejnil, Edita; Yan, Pei-yang; Hector, Scott D.; Nguyen, Khanh B.

    1999-04-01

    Extreme UV Lithography (EUVL) is one of the leading candidates for the next generation lithography, which will decrease critical feature size to below 100 nm within 5 years. EUVL uses 10-14 nm light as envisioned by the EUV Limited Liability Company, a consortium formed by Intel and supported by Motorola and AMD to perform R and D work at three national laboratories. Much work has already taken place, with the first prototypical cameras operational at 13.4 nm using low energy laser plasma EUV light sources to investigate issues including the source, camera, electro- mechanical and system issues, photoresists, and of course the masks. EUV lithograph masks are fundamentally different than conventional photolithographic masks as they are reflective instead of transmissive. EUV light at 13.4 nm is rapidly absorbed by most materials, thus all light transmission within the EUVL system from source to silicon wafer, including EUV reflected from the mask, is performed by multilayer mirrors in vacuum.

  10. Nanoimprint lithography for microfluidics manufacturing

    NASA Astrophysics Data System (ADS)

    Kreindl, Gerald; Matthias, Thorsten

    2013-12-01

    The history of imprint technology as lithography method for pattern replication can be traced back to 1970's but the most significant progress has been made by the research group of S. Chou in the 1990's. Since then, it has become a popular technique with a rapidly growing interest from both research and industrial sides and a variety of new approaches have been proposed along the mainstream scientific advances. Nanoimprint lithography (NIL) is a novel method for the fabrication of micro/nanometer scale patterns with low cost, high throughput and high resolution. Unlike traditional optical lithographic approaches, which create pattern through the use of photons or electrons to modify the chemical and physical properties of the resist, NIL relies on direct mechanical deformation of the resist and can therefore achieve resolutions beyond the limitations set by light diffraction or beam scattering that are encountered in conventional lithographic techniques. The ability to fabricate structures from the micro- to the nanoscale with high precision in a wide variety of materials is of crucial importance to the advancement of micro- and nanotechnology and the biotech- sciences as a whole and will be discussed in this paper. Nanoimprinting can not only create resist patterns, as in lithography, but can also imprint functional device structures in various polymers, which can lead to a wide range of applications in electronics, photonics, data storage, and biotechnology.

  11. Methods to achieve sub-100-nm contact hole lithography

    NASA Astrophysics Data System (ADS)

    Lindsay, Tracy K.; Kavanagh, Robert J.; Pohlers, Gerd; Kanno, Takafumi; Bae, Young C.; Barclay, George G.; Kanagasabapathy, Subbareddy; Mattia, Joseph

    2003-06-01

    There are numerous methods being explored by lithographers to achieve contact holes below 100nm. Regarding optical impact on contact hole imaging, very high numerical aperture tools are becoming available at 193nm (as high as 0.9) and various optical extension techniques such as assist features, focus drilling, phase shift masks, and off-axis illumination are being employed to improve the aerial image. In this paper, the impact of the ArF photoresist is investigated. Polymers capable of thermal reflow of larger (~140nm) to smaller (90nm and below) contact holes are presented. Improved materials to achieve the properties necessary for good contact hole imaging for standard single layer resist (SLR) processing are also discussed. State-of-the-art ultra-thin resists (UTR) for contact holes and 193nm bi-layer resist systems are also studied as viable techniques to achieving very small contact holes.

  12. Side scanner for supermarkets: a new scanner design standard

    NASA Astrophysics Data System (ADS)

    Cheng, Charles K.; Cheng, J. K.

    1996-09-01

    High speed UPC bar code has become a standard mode of data capture for supermarkets in the US, Europe, and Japan. The influence of the ergonomics community on the design of the scanner is evident. During the past decade the ergonomic issues of cashier in check-outs has led to occupational hand-wrist cumulative trauma disorders, in most cases causing carpal tunnel syndrome, a permanent hand injury. In this paper, the design of a side scanner to resolve the issues is discussed. The complex optical module and the sensor for aforesaid side scanner is described. The ergonomic advantages offer the old counter mounted vertical scanner has been experimentally proved by the industrial funded study at an independent university.

  13. Maskless, resistless ion beam lithography

    SciTech Connect

    Ji, Qing

    2003-03-10

    As the dimensions of semiconductor devices are scaled down, in order to achieve higher levels of integration, optical lithography will no longer be sufficient for the needs of the semiconductor industry. Alternative next-generation lithography (NGL) approaches, such as extreme ultra-violet (EUV), X-ray, electron-beam, and ion projection lithography face some challenging issues with complicated mask technology and low throughput. Among the four major alternative NGL approaches, ion beam lithography is the only one that can provide both maskless and resistless patterning. As such, it can potentially make nano-fabrication much simpler. This thesis investigates a focused ion beam system for maskless, resistless patterning that can be made practical for high-volume production. In order to achieve maskless, resistless patterning, the ion source must be able to produce a variety of ion species. The compact FIB system being developed uses a multicusp plasma ion source, which can generate ion beams of various elements, such as O{sub 2}{sup +}, BF{sub 2}{sup +}, P{sup +} etc., for surface modification and doping applications. With optimized source condition, around 85% of BF{sub 2}{sup +}, over 90% of O{sub 2}{sup +} and P{sup +} have been achieved. The brightness of the multicusp-plasma ion source is a key issue for its application to maskless ion beam lithography. It can be substantially improved by optimizing the source configuration and extractor geometry. Measured brightness of 2 keV He{sup +} beam is as high as 440 A/cm{sup 2} {center_dot} Sr, which represents a 30x improvement over prior work. Direct patterning of Si thin film using a focused O{sub 2}{sup +} ion beam has been investigated. A thin surface oxide film can be selectively formed using 3 keV O{sub 2}{sup +} ions with the dose of 10{sup 15} cm{sup -2}. The oxide can then serve as a hard mask for patterning of the Si film. The process flow and the experimental results for directly patterned poly-Si features

  14. Microfield exposure tool enables advances in EUV lithography development

    SciTech Connect

    Naulleau, Patrick

    2009-09-07

    With demonstrated resist resolution of 20 nm half pitch, the SEMATECH Berkeley BUV microfield exposure tool continues to push crucial advances in the areas of BUY resists and masks. The ever progressing shrink in computer chip feature sizes has been fueled over the years by a continual reduction in the wavelength of light used to pattern the chips. Recently, this trend has been threatened by unavailability of lens materials suitable for wavelengths shorter than 193 nm. To circumvent this roadblock, a reflective technology utilizing a significantly shorter extreme ultraviolet (EUV) wavelength (13.5 nm) has been under development for the past decade. The dramatic wavelength shrink was required to compensate for optical design limitations intrinsic in mirror-based systems compared to refractive lens systems. With this significant reduction in wavelength comes a variety of new challenges including developing sources of adequate power, photoresists with suitable resolution, sensitivity, and line-edge roughness characteristics, as well as the fabrication of reflection masks with zero defects. While source development can proceed in the absence of available exposure tools, in order for progress to be made in the areas of resists and masks it is crucial to have access to advanced exposure tools with resolutions equal to or better than that expected from initial production tools. These advanced development tools, however, need not be full field tools. Also, implementing such tools at synchrotron facilities allows them to be developed independent of the availability of reliable stand-alone BUY sources. One such tool is the SEMATECH Berkeley microfield exposure tool (MET). The most unique attribute of the SEMA TECH Berkeley MET is its use of a custom-coherence illuminator made possible by its implementation on a synchrotron beamline. With only conventional illumination and conventional binary masks, the resolution limit of the 0.3-NA optic is approximately 25 nm, however

  15. Coastal Zone Color Scanner

    NASA Technical Reports Server (NTRS)

    Johnson, B.

    1988-01-01

    The Coastal Zone Color Scanner (CZCS) spacecraft ocean color instrument is capable of measuring and mapping global ocean surface chlorophyll concentration. It is a scanning radiometer with multiband capability. With new electronics and some mechanical, and optical re-work, it probably can be made flight worthy. Some additional components of a second flight model are also available. An engineering study and further tests are necessary to determine exactly what effort is required to properly prepare the instrument for spaceflight and the nature of interfaces to prospective spacecraft. The CZCS provides operational instrument capability for monitoring of ocean productivity and currents. It could be a simple, low cost alternative to developing new instruments for ocean color imaging. Researchers have determined that with global ocean color data they can: specify quantitatively the role of oceans in the global carbon cycle and other major biogeochemical cycles; determine the magnitude and variability of annual primary production by marine phytoplankton on a global scale; understand the fate of fluvial nutrients and their possible affect on carbon budgets; elucidate the coupling mechanism between upwelling and large scale patterns in ocean basins; answer questions concerning the large scale distribution and timing of spring blooms in the global ocean; acquire a better understanding of the processes associated with mixing along the edge of eddies, coastal currents, western boundary currents, etc., and acquire global data on marine optical properties.

  16. Exposure tool chuck flatness study and effects on lithography

    NASA Astrophysics Data System (ADS)

    Mukherjee-Roy, Moitreyee; Tan, Cher-Huan; Tan, Yong K.; Samudra, Ganesh S.

    2001-04-01

    The flatness of the chuck on the stepper or scanner is critical to obtain good patterning performance especially in the sub quarter micron regime. In this study an attempt has been made to u7nderstand the flatness signature of the chuck by measuring the flatness of a super flat wafer in two different notch orientations and subtracting the signatures. If the chuck or the wafer were ideally flat then there would be no different in flatness signatures between the two orientations. However in practice difference was found as neither the chuck nor the wafer is perfectly flat. This difference could be used to obtain an understanding about the flatness signature on the scanner chuck itself. This signature could be used by equipment manufacturers as an additional method to measure chuck flatness so that only superior chucks are used for equipment that are being made for sub quarter micron lithography. The second part of this study consisted of finding out the effect of this flatness on the resulting CD on wafers. Wafers, with different flatness signatures, were exposed at different orientations and the CD variations were evaluated. All wafers showed improvements in the orientation of better flatness. For some wafers the improvements was significant but for others the result was close to the CD variation due to rework. This could be attributed to the inherent signatures on the wafers and how abrupt the change in flatness was. The wafer deformation factor was not analyzed for brevity as this would make the problem far more complex.

  17. YieldStar: a new metrology platform for advanced lithography control

    NASA Astrophysics Data System (ADS)

    Maas, Jos; Ebert, Martin; Bhattacharyya, Kaustuve; Cramer, Hugo; Becht, Arthur; Keij, Stefan; Plug, Reinder; Fuchs, Andreas; Kubis, Michael; Hoogenboom, Tom; Vaenkatesan, Vidya

    2011-03-01

    As leading edge lithography is moving to 2x-nm design rules, lithography control complements resolution as one of the main drivers and enablers to meet the very stringent overlay, focus and CD requirements. As part of ASML's holistic lithography roadmap, ASML is developing several application-specific optimization and control applications, such as LithoTuner Pattern Matcher and BaseLiner. These applications are all explicitly designed to improve the scanner process window (overlay, focus, CDU and matching). All these applications have in common that they require vast amounts of precise, accurate and process robust wafer data (either taken on product stacks or on so-called monitor wafers). To provide such essential data in a cost-effective manner, ASML developed a metrology platform, called YieldStar. This platform is based on an angle-resolved high-NA scatterometer. It is versatile, as YieldStar's sensor can measure overlay, CD and focus in a single measurement. Thanks to its high speed, large amounts of measurements can be quickly collected. In this paper the latest generation YieldStar is presented, the so-called 200 platform. This YieldStar 200 can be used in a stand-alone configuration (S-200) or as an integrated module in a lithography track (T-200). First overlay results show good TMU results without comprising speed. Furthermore, data is shown that demonstrate YieldStar's capability to reconstruct 3D CD patterns as well.

  18. Michigan experimental multispectral scanner system

    NASA Technical Reports Server (NTRS)

    Hasell, P. G., Jr.

    1972-01-01

    A functional description of a multispectral airborne scanner system that provides spectral bands along a single optical line of sight is reported. The airborne scanner consists of an optical telescope for scanning plane perpendicular to the longitudinal axis of the aircraft and radiation detectors for converting radiation to electrical signals. The system makes a linear transformation of input radiation to voltage recorded on analog magnetic tape.

  19. MSS D Multispectral Scanner System

    NASA Technical Reports Server (NTRS)

    Lauletta, A. M.; Johnson, R. L.; Brinkman, K. L. (Principal Investigator)

    1982-01-01

    The development and acceptance testing of the 4-band Multispectral Scanners to be flown on LANDSAT D and LANDSAT D Earth resources satellites are summarized. Emphasis is placed on the acceptance test phase of the program. Test history and acceptance test algorithms are discussed. Trend data of all the key performance parameters are included and discussed separately for each of the two multispectral scanner instruments. Anomalies encountered and their resolutions are included.

  20. 3D ultrafast laser scanner

    NASA Astrophysics Data System (ADS)

    Mahjoubfar, A.; Goda, K.; Wang, C.; Fard, A.; Adam, J.; Gossett, D. R.; Ayazi, A.; Sollier, E.; Malik, O.; Chen, E.; Liu, Y.; Brown, R.; Sarkhosh, N.; Di Carlo, D.; Jalali, B.

    2013-03-01

    Laser scanners are essential for scientific research, manufacturing, defense, and medical practice. Unfortunately, often times the speed of conventional laser scanners (e.g., galvanometric mirrors and acousto-optic deflectors) falls short for many applications, resulting in motion blur and failure to capture fast transient information. Here, we present a novel type of laser scanner that offers roughly three orders of magnitude higher scan rates than conventional methods. Our laser scanner, which we refer to as the hybrid dispersion laser scanner, performs inertia-free laser scanning by dispersing a train of broadband pulses both temporally and spatially. More specifically, each broadband pulse is temporally processed by time stretch dispersive Fourier transform and further dispersed into space by one or more diffractive elements such as prisms and gratings. As a proof-of-principle demonstration, we perform 1D line scans at a record high scan rate of 91 MHz and 2D raster scans and 3D volumetric scans at an unprecedented scan rate of 105 kHz. The method holds promise for a broad range of scientific, industrial, and biomedical applications. To show the utility of our method, we demonstrate imaging, nanometer-resolved surface vibrometry, and high-precision flow cytometry with real-time throughput that conventional laser scanners cannot offer due to their low scan rates.

  1. Study on RLS trade-off resist upgrade for production ready EUV lithography

    NASA Astrophysics Data System (ADS)

    Lee, Junghyung; Kim, Jieun; Jeong, Seunguk; Lim, Mijung; Koo, Sunyoung; Lim, Chang-Moon; Kim, Young-Sik

    2016-03-01

    Extreme Ultraviolet (EUV) is the most promising technology as substitute for multiple patterning based on ArF immersion lithography. If enough productivity can be accomplished, EUV will take main role in the chip manufacturing. Since the introduction of NXE3300, many significant results have been achieved in source power and availability, but lots of improvements are still required in various aspects for the implementation of EUV lithography on high volume manufacturing. Among them, it is especially important to attain high sensitivity resist without degrading other resolution performance. In this paper, performances of various resists were evaluated with real device patterns on NXE3300 scanner and technical progress of up-to-date EUV resists will be shown by comparing with the performance of their predecessors. Finally the prospect of overcoming the triangular trade-off between sensitivity, resolution, line edge roughness (LER) and achieving high volume manufacturing will be discussed.

  2. High-productivity immersion scanner enabling 1xnm hp manufacturing

    NASA Astrophysics Data System (ADS)

    Shirata, Yosuke; Shibazaki, Yuichi; Kosugi, Junichi; Kikuchi, Takahisa; Ohmura, Yasuhiro

    2013-04-01

    NSR-S622D, Nikon's new ArF immersion scanner, provides the best and practicable solutions to meet the escalating requirement from device manufactures to accommodate the further miniaturization of device pattern. NSR-S622D has various additional functions compared to the previous model such as the newly developed illumination system, new projection lens, new AF system new wafer table in addition to the matured Streamlign platform. These new features will derive the outstanding performance of NSR, enabling highly controlled CD uniformity, focus accuracy and overlay accuracy. NSR-S622D will provide the adequate capabilities that are demanded from a lithography tool for production of 1x nm hp node and beyond.

  3. Evaluation of SCAA mask technology as a pathway to the 65-nm node

    NASA Astrophysics Data System (ADS)

    Beach, James V.; Petersen, John S.; Maslow, Mark J.; Gerold, David J.; McCafferty, Diane C.

    2003-06-01

    This study takes an integrated approach utilizing a combination of high NA 193 nm lithography, a sidewall chrome alternating aperture (SCAA) phase shift mask, optical proximity correction (OPC) and customized illumination in an attempt to demonstrate the feasibility of using 193 nm lithography to support the 65 nm node. A SCAA mask was designed and built with line/space patterns ranging in pitch from 300 nm down to 140 nm. A range of mask biases were applied to the zero and pi spaces in order to examine to response of the lithography to a combination of the SCAA approach and asymmetric biasing. In combination to the asymmetric biasing, overlay bracketing was applied in order to measure the chrome overlay tolerances of the mask. Simulations suggested that an unconventionally small sigma of 0.15 would be the optimum coherence for a high 193 nm optical system. A custom 0.15 sigma partial coherence illuminator was, therefore, built and installed in the experimental ASML Micrascan V 0.75 NA 193 nm scanner. Wafers were exposed using 190 nm of 193 nm resist and an organic BARC. The 70 nm 1:1 line/space patterns resolved with a depth of focus of about 0.2 μm. The 75 nm 1:1 line/space patterns showed a 0.3-0.4 μm depth of focus. Both of these process windows were limited by pattern collapse. Addressing the pattern collapse may improve the depth of focus. Comparing mask measurements to wafer measurements show that little or no asymmetric biasing in necessary to balance the pitch. Moreover, the measured pitch was stable over a focus range of at least 0.4 microns demonstrating that any phase imbalance present was not significantly affecting the observed lithography.

  4. Why bother with x-ray lithography?

    NASA Astrophysics Data System (ADS)

    Smith, Henry I.; Schattenburg, Mark L.

    1992-07-01

    The manufacture of state-of-the-art integrated circuits uses UV optical projection lithography. Conventional wisdom (i.e., the trade journals) holds that this technology will take the industry to quarter-micrometer minimum features sizes and below. So, why bother with X-ray lithography? The reason is that lithography is a 'system problem', and proximity X-ray lithography is better matched to that system problem than any other technology, once the initial investment is surmounted. X-ray lithography offers the most cost-effective path to the future of ultra-large-scale integrated circuits with feature sizes of tenth micrometer and below (i.e., gigascale electronics and quantum-effect electronics).

  5. Mask lithography for display manufacturing

    NASA Astrophysics Data System (ADS)

    Sandstrom, T.; Ekberg, P.

    2010-05-01

    The last ten years have seen flat displays conquer our briefcases, desktops, and living rooms. There has been an enormous development in production technology, not least in lithography and photomasks. Current masks for large displays are more than 2 m2 and make 4-6 1X prints on glass substrates that are 9 m2. One of the most challenging aspects of photomasks for displays is the so called mura, stripes or blemishes which cause visible defects in the finished display. For the future new and even tighter maskwriter specifications are driven by faster transistors and more complex pixel layouts made necessary by the market's wish for still better image quality, multi-touch panels, 3D TVs, and the next wave of e-book readers. Large OLED screens will pose new challenges. Many new types of displays will be lowcost and use simple lithography, but anything which can show video and high quality photographic images needs a transistor backplane and sophisticated masks for its production.

  6. Combined dose and geometry correction (DMG) for low energy multi electron beam lithography (5kV): application to the 16nm node

    NASA Astrophysics Data System (ADS)

    Martin, Luc; Manakli, Serdar; Bayle, Sebastien; Belledent, Jérôme; Soulan, Sebastien; Wiedemann, Pablo; Farah, Abdi; Schiavone, Patrick

    2012-03-01

    Lithography faces today many challenges to meet the ITRS road-map. 193nm is still today the only existing industrial option to address high volume production for the 22nm node. Nevertheless to achieve such a resolution, double exposure is mandatory for critical level patterning. EUV lithography is still challenged by the availability of high power source and mask defectivity and suffers from a high cost of ownership perspective. Its introduction is now not foreseen before 2015. Parallel to these mask-based technologies, maskless lithography regularly makes significant progress in terms of potential and maturity. The massively parallel e-beam solution appears as a real candidate for high volume manufacturing. Several industrial projects are under development, one in the US, with the KLA REBL project and two in Europe driven by IMS Nanofabrication (Austria; MAPPER (The Netherlands). Among the developments to be performed to secure the takeoff of the multi-beam technology, the availability of a rapid and robust data treatment solution will be one of the major challenges. Within this data preparation flow, advanced proximity effect corrections must be implemented to address the 16nm node and below. This paper will detail this process and compare correction strategies in terms of robustness and accuracy. It will be based on results obtained using a MAPPER tool within the IMAGINE program driven by CEA-LETI, in Grenoble, France. All proximity effects corrections and the dithering step were performed using the software platform Inscale® from Aselta Nanographics. One important advantage of Inscale® is the ability to combine both model based dose and geometry adjustment to accurately pattern critical features. The paper will focus on the advantage of combining those two corrections at the 16nm node instead of using only geometry corrections. Thanks to the simulation capability of Inscale®, pattern fidelity and correction robustness will be evaluated and compared between

  7. Multispectral Scanner for Monitoring Plants

    NASA Technical Reports Server (NTRS)

    Gat, Nahum

    2004-01-01

    A multispectral scanner has been adapted to capture spectral images of living plants under various types of illumination for purposes of monitoring the health of, or monitoring the transfer of genes into, the plants. In a health-monitoring application, the plants are illuminated with full-spectrum visible and near infrared light and the scanner is used to acquire a reflected-light spectral signature known to be indicative of the health of the plants. In a gene-transfer- monitoring application, the plants are illuminated with blue or ultraviolet light and the scanner is used to capture fluorescence images from a green fluorescent protein (GFP) that is expressed as result of the gene transfer. The choice of wavelength of the illumination and the wavelength of the fluorescence to be monitored depends on the specific GFP.

  8. Spectroscopic Ellipsometry Applications in Advanced Lithography Research

    NASA Astrophysics Data System (ADS)

    Synowicki, R. A.; Pribil, Greg K.; Hilfiker, James N.; Edwards, Kevin

    2005-09-01

    Spectroscopic ellipsometry (SE) is an optical metrology technique widely used in the semiconductor industry. For lithography applications SE is routinely used for measurement of film thickness and refractive index of polymer photoresist and antireflective coatings. While this remains a primary use of SE, applications are now expanding into other areas of advanced lithography research. New applications include immersion lithography, phase-shift photomasks, transparent pellicles, 193 and 157 nm lithography, stepper optical coatings, imprint lithography, and even real-time monitoring of etch development rate in liquid ambients. Of recent interest are studies of immersion fluids where knowledge of the fluid refractive index and absorption are critical to their use in immersion lithography. Phase-shift photomasks are also of interest as the thickness and index of the phase-shift and absorber layers must be critically controlled for accurate intensity and phase transmission. Thin transparent pellicles to protect these masks must be also characterized for thickness and refractive index. Infrared ellipsometry is sensitive to chemical composition, film thickness, and how film chemistry changes with processing. Real-time monitoring of polymer film thickness during etching in a liquid developer allows etch rate and endpoint determination with monolayer sensitivity. This work considers these emerging applications to survey the current status of spectroscopic ellipsometry as a characterization technique in advanced lithography applications.

  9. Choosing a Scanner: Points To Consider before Buying a Scanner.

    ERIC Educational Resources Information Center

    Raby, Chris

    1998-01-01

    Outlines ten factors to consider before buying a scanner: size of document; type of document; color; speed and volume; resolution; image enhancement; image compression; optical character recognition; scanning subsystem; and the option to use a commercial bureau service. The importance of careful analysis of requirements is emphasized. (AEF)

  10. Method for extreme ultraviolet lithography

    DOEpatents

    Felter, T. E.; Kubiak, G. D.

    2000-01-01

    A method of producing a patterned array of features, in particular, gate apertures, in the size range 0.4-0.05 .mu.m using projection lithography and extreme ultraviolet (EUV) radiation. A high energy laser beam is used to vaporize a target material in order to produce a plasma which in turn, produces extreme ultraviolet radiation of a characteristic wavelength of about 13 nm for lithographic applications. The radiation is transmitted by a series of reflective mirrors to a mask which bears the pattern to be printed. The demagnified focused mask pattern is, in turn, transmitted by means of appropriate optics and in a single exposure, to a substrate coated with photoresists designed to be transparent to EUV radiation and also satisfy conventional processing methods.

  11. Defect tolerant transmission lithography mask

    DOEpatents

    Vernon, Stephen P.

    2000-01-01

    A transmission lithography mask that utilizes a transparent substrate or a partially transparent membrane as the active region of the mask. A reflective single layer or multilayer coating is deposited on the membrane surface facing the illumination system. The coating is selectively patterned (removed) to form transmissive (bright) regions. Structural imperfections and defects in the coating have negligible effect on the aerial image of the mask master pattern since the coating is used to reflect radiation out of the entrance pupil of the imaging system. Similarly, structural imperfections in the clear regions of the membrane have little influence on the amplitude or phase of the transmitted electromagnetic fields. Since the mask "discards," rather than absorbs, unwanted radiation, it has reduced optical absorption and reduced thermal loading as compared to conventional designs. For EUV applications, the mask circumvents the phase defect problem, and is independent of the thermal load during exposure.

  12. Method for extreme ultraviolet lithography

    DOEpatents

    Felter, T. E.; Kubiak, Glenn D.

    1999-01-01

    A method of producing a patterned array of features, in particular, gate apertures, in the size range 0.4-0.05 .mu.m using projection lithography and extreme ultraviolet (EUV) radiation. A high energy laser beam is used to vaporize a target material in order to produce a plasma which in turn, produces extreme ultraviolet radiation of a characteristic wavelength of about 13 nm for lithographic applications. The radiation is transmitted by a series of reflective mirrors to a mask which bears the pattern to be printed. The demagnified focused mask pattern is, in turn, transmitted by means of appropriate optics and in a single exposure, to a substrate coated with photoresists designed to be transparent to EUV radiation and also satisfy conventional processing methods.

  13. Miniature electron microscopes for lithography

    NASA Astrophysics Data System (ADS)

    Feinerman, Alan D.; Crewe, David A.; Perng, Dung-Ching; Spindt, Capp A.; Schwoebel, Paul R.; Crewe, Albert V.

    1994-05-01

    Two inexpensive and extremely accurate methods for fabricating miniature 10 - 50 kV and 0.5 - 10 kV electron beam columns have been developed: `slicing,' and `stacking.' Two or three miniature columns could be used to perform a 20 nm or better alignment of an x-ray mask to a substrate. An array of miniature columns could be used for rapid wafer inspection and high throughput electron beam lithography. The column fabrication methods combine the precision of semiconductor processing and fiber optic technologies to create macroscopic structures consisting of charged particle sources, deflecting and focusing electrodes, and detectors. The overall performance of the miniature column also depends on the emission characteristics of the micromachined electron source which is currently being investigated.

  14. Scaling behavior in interference lithography

    SciTech Connect

    Agayan, R.R.; Banyai, W.C.; Fernandez, A.

    1998-02-27

    Interference lithography is an emerging, technology that provides a means for achieving high resolution over large exposure areas (approximately 1 m{sup 2}) with virtually unlimited depth of field. One- and two-dimensional arrays of deep submicron structures can be created using near i-line wavelengths and standard resist processing. In this paper, we report on recent advances in the development of this technology, focusing, in particular, on how exposure latitude and resist profile scale with interference period We present structure width vs dose curves for periods ranging from 200 nm to 1 um, demonstrating that deep submicron structures can be generated with exposure latitudes exceeding 30%. Our experimental results are compared to simulations based on PROLITIV2.

  15. 28nm node process optimization: a lithography centric view

    NASA Astrophysics Data System (ADS)

    Seltmann, Rolf

    2014-10-01

    Many experts claim that the 28nm technology node will be the most cost effective technology node forever. This results from primarily from the cost of manufacturing due to the fact that 28nm is the last true Single Patterning (SP) node. It is also affected by the dramatic increase of design costs and the limited shrink factor of the next following nodes. Thus, it is assumed that this technology still will be alive still for many years. To be cost competitive, high yields are mandatory. Meanwhile, leading edge foundries have optimized the yield of the 28nm node to such a level that that it is nearly exclusively defined by random defectivity. However, it was a long way to go to come to that level. In my talk I will concentrate on the contribution of lithography to this yield learning curve. I will choose a critical metal patterning application. I will show what was needed to optimize the process window to a level beyond the usual OPC model work that was common on previous nodes. Reducing the process (in particular focus) variability is a complementary need. It will be shown which improvements were needed in tooling, process control and design-mask-wafer interaction to remove all systematic yield detractors. Over the last couple of years new scanner platforms were introduced that were targeted for both better productivity and better parametric performance. But this was not a clear run-path. It needed some extra affords of the tool suppliers together with the Fab to bring the tool variability down to the necessary level. Another important topic to reduce variability is the interaction of wafer none-planarity and lithography optimization. Having an accurate knowledge of within die topography is essential for optimum patterning. By completing both the variability reduction work and the process window enhancement work we were able to transfer the original marginal process budget to a robust positive budget and thus ensuring high yield and low costs.

  16. A case study in scanner optimisation

    PubMed Central

    Gibson, NM

    2013-01-01

    Ultrasound scanner preset programmes are factory set or tailored to user requirements. Scanners may, therefore, have different settings for the same application, even on similar equipment in a single department. The aims of this study were: (1) to attempt to match the performance of two scanners, where one was preferred and (2) to assess differences between six scanners used for breast ultrasound within our organisation. The Nottingham Ultrasound Quality Assurance software was used to compare imaging performance. Images of a Gammex RMI 404GS test object were collected from six scanners, using default presets, factory presets and settings matched to a preferred scanner. Resolution, low contrast performance and high contrast performance were measured. The performance of two scanners was successfully matched, where one had been preferred. Default presets varied across the six scanners, three different presets being used. The most used preset differed in settings across the scanners, most notably in the use of different frequency modes. The factory preset was more consistent across the scanners, the main variation being in dynamic range (55–70 dB). Image comparisons showed significant differences, which were reduced or eliminated by adjustment of settings to match a reference scanner. It is possible to match scanner performance using the Nottingham Ultrasound Quality Assurance software as a verification tool. Ultrasound users should be aware that scanners may not behave in a similar fashion, even with apparently equivalent presets. It should be possible to harmonise presets by consensus amongst users.

  17. Scanner as a Fine Art

    ERIC Educational Resources Information Center

    Fontes, Kris

    2008-01-01

    Not every art department is fortunate enough to have access to digital cameras and image-editing software, but if a scanner, computer, and printer are available, students can create some imaginative and surreal work. This high-school level lesson begins with a discussion of self-portraits, and then moves to students creating images by scanning…

  18. Multispectral scanner (MSS), ERTS-1

    NASA Technical Reports Server (NTRS)

    Arlauskas, J.

    1973-01-01

    The multispectral scanner onboard ERTS-A spacecraft provides simultaneous images in three visible bands and one near infrared band. The instrument employs fiber optics to transfer optical images to the detectors and photomultiplier tubes. Detector outputs are digitized and multiplexed for transmission from the spacecraft by analog to digital processor.

  19. Holographic analyzer and image scanner

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The characteristics, components, and operating procedures are described for a holographic camera real images projection displayer and scanner unit having the capability to upgrade to multiple types of automated raster scan patterns. Schematics of the optical components are included with a diagram of the electric circuit connections.

  20. Development of a computational lithography roadmap

    NASA Astrophysics Data System (ADS)

    Chen, J. Fung; Liu, Hua-Yu; Laidig, Thomas; Zuniga, Christian; Cao, Yu; Socha, Robert

    2008-03-01

    While lithography R&D community at large has already gotten the mind set for 32nm, all eyes are on 22nm node. Current consensus is to employ computational lithography to meet wafer CD uniformity (CDU) requirement. Resolution enhancement technologies (RET) and model OPC are the two fundamental components for computational lithography. Today's full-chip CDU specifications are already pushing physical limits at extreme lithography k I factor. While increasingly aggressive RET either by double exposure or double patterning are enabling imaging performance, for CDU control we need ever more accurate OPC at a greater computational efficiency. In this report, we discuss the desire for wanting more robust and accurate OPC models. One important trend is to have predictive OPC models allowing accurate OPC results to be obtained much faster, shortening the qualification process for exposure tools. We investigate several key parameters constitute to accuracy achievable in computational lithography. Such as the choice of image pixel size, numbers of terms needed for transmission cross coefficients (TCC), and "safe" ambit radius for assuring accurate CD prediction. Selections of image pixel size and "safe" ambit radius together determine % utilization for 2D fast Fourier transformation (FFT) for efficient full-chip OPC computation. For IC manufacturing beyond ArF, we made initial observations and estimations on EUV computational lithography. These discussions pave the way for developing a computational lithography roadmap extends to the end of Moore's Law. This computational lithography roadmap aims to be a complement for the current ITRS roadmap on what does it take to achieve CD correction accuracy.

  1. Improvements to Existing Jefferson Lab Wire Scanners

    SciTech Connect

    McCaughan, Michael D.; Tiefenback, Michael G.; Turner, Dennis L.

    2013-06-01

    This poster will detail the augmentation of selected existing CEBAF wire scanners with commercially available hardware, PMTs, and self created software in order to improve the scanners both in function and utility.

  2. Tin DPP source collector module (SoCoMo) ready for integration into Beta scanner

    NASA Astrophysics Data System (ADS)

    Yoshioka, Masaki; Teramoto, Yusuke; Jonkers, Jeroen; Schürmann, Max C.; Apetz, Rolf; Kilian, Volker; Corthout, Marc

    2011-04-01

    As the traditional techniques used in optical photolithography at 193 nm are running out of steam and are becoming prohibitively expensive, a new cost-effective, high power EUV (extreme ultra-violet) light source is needed to enable high volume manufacturing (HVM) of ever shrinking semiconductor devices. XTREME technologies GmbH and EUVA have jointly developed tin based LDP (Laser assisted Discharge Plasma) source systems during the last two years for the integration of such sources into scanners of the latest and future generations. The goals of the consortium are 1) to solve the wavelength gap - the growing gap between the printed critical dimensions (CD) driven by Moore's Law and the printing capability of lithographic exposure tools constrained by the wavelength of the light source - and 2) to enable the timely availability of EUV light sources for high volume manufacturing. A first Beta EUV Source Collector Module (SoCoMo) containing a tin based laser assisted discharge plasma source is in operation at XTREME technologies since September 2009. Alongside the power increase, the main focus of work emphasizes on the improvement of uptime and reliability of the system leveraging years of experience with the Alpha sources. Over the past period, a cumulated EUV dose of several hundreds of Mega Joules of EUV light has been generated at the intermediate focus, capable to expose more than a hundred thousand wafers with the right dose stability to create well-yielding transistors. During the last months, the entire system achieved an uptime - calculated according to the SEMI standards - of up to 80 %. This new SoCoMo has been successfully integrated and tested with a pre-production scanner and is now ready for first wafer exposures at a customer's site. In this paper we will emphasize what our innovative concept is against old type of Xe DPP and we will present the recent status of this system like power level, uptime and lifetime of components as well. In the second

  3. ITRS lithography roadmap: status and challenges

    NASA Astrophysics Data System (ADS)

    Neisser, Mark; Wurm, Stefan

    2012-09-01

    Recent ITRS lithography roadmaps show a big technology decision approaching the semiconductor industry about how to do leading edge lithography. The need is rapidly approaching for the industry to select an option for the 22-nm half pitch, but no decision has been made yet. The main options for the 22-nm half pitch are extreme ultraviolet (EUV), ArF immersion lithography with multiple patterning, and maskless lithography. For the 16-nm half pitch, directed self-assembly (DSA) is also an option. The EUV has the most industry investment and is the closest to current lithography in the way it works but still faces challenges in tool productivity and defect-free masks. The nanoimprint needs to overcome the defect, contamination, and overlay challenges before it can be applied to the semiconductor production. Maskless lithography may be used first for prototyping and small volume products where mask costs per chip produced would be very high. Double patterning could be extended to multiple pattering, but would give tremendous process complexity and exponentially rising mask costs due to the many exposures needed per level. The DSA, which only recently has emerged from the research stage, has the potential for very high resolution but represents a huge change in how critical dimensions are formed and controlled.

  4. A Simple X-Y Scanner.

    ERIC Educational Resources Information Center

    Halse, M. R.; Hudson, W. J.

    1986-01-01

    Describes an X-Y scanner used to create acoustic holograms. Scanner is computer controlled and can be adapted to digitize pictures. Scanner geometry is discussed. An appendix gives equipment details. The control program in ATOM BASIC and 6502 machine code is available from the authors. (JM)

  5. Magnetic nanostructures by colloidal lithography

    NASA Astrophysics Data System (ADS)

    Zhu, Frank Qing

    Structural, magnetic and in some cases magneto-transport properties of (1) symmetric and asymmetric ferromagnetic nanorings and (2) single layer, multilayer, and exchange biased ferromagnetic nanodots prepared by colloidal lithography are presented. A fast, reliable and cost effective method has been developed to fabricate large number (˜ 109) of magnetic nanorings over macroscopic areas (˜ cm2) with large areal densities (up to 45 rings/mum 2). Cobalt nanorings with diameters ranging from 100 nm to 500 nm have been fabricated by sputtering Co onto nanosphere-coated substrates followed by ion beam etching. X-ray diffraction verifies that the Co nanorings still have hexagonal close-packed (hcp) structure. Scanning electron microscopy reveals that the cross-section of the symmetric nanoring is tapered and uniform along the circumference, and the cross-section of the asymmetric nanoring changes progressively along the circumference. Two magnetic reversal processes have been found in magnetic nanorings---the vortex formation process and the onion rotation process. The co-existence of these two processes is the manifestation of the competition between the exchange energy and the magnetostatic energy in the nanorings. Micromagnetics simulations have been carried out to reveal the details of the magnetic reversals. The experimental and the computed hysteresis loops agree both qualitatively and quantitatively. For the 100 nm symmetric Co nanorings, the vortex formation process has a probability of about 40%, while the onion rotation process has 60% chances. To increase the probability of vortex formation process, a desirable process for application, asymmetric nanorings have been fabricated by ion beam etching at oblique angles. Unlike the symmetric nanorings, the probability of the vortex formation process in asymmetric nanorings can be controlled by the direction of the external field. For the 100 nm asymmetric nanorings, the fraction of the vortex formation process

  6. Nanometer x-ray lithography

    NASA Astrophysics Data System (ADS)

    Hartley, Frank T.; Khan Malek, Chantal G.

    1999-10-01

    New developments for x-ray nanomachining include pattern transfer onto non-planar surfaces coated with electrodeposited resists using synchrotron radiation x-rays through extremely high-resolution mask made by chemically assisted focused ion beam lithography. Standard UV photolithographic processes cannot maintain sub-micron definitions over large variation in feature topography. The ability of x-ray printing to pattern thin or thick layers of photoresist with high resolution on non-planar surfaces of large and complex topographies with limited diffraction and scattering effects and no substrate reflection is known and can be exploited for patterning microsystems with non-planar 3D geometries as well as multisided and multilayered substrates. Thin conformal coatings of electro-deposited positive and negative tone photoresist have been shown to be x-ray sensitive and accommodate sub-micro pattern transfer over surface of extreme topographical variations. Chemically assisted focused ion beam selective anisotropic erosion was used to fabricate x-ray masks directly. Masks with feature sizes less than 20 nm through 7 microns of gold were made on bulk silicon substrates and x-ray mask membranes. The technique is also applicable to other high density materials. Such masks enable the primary and secondary patterning and/or 3D machining of Nano-Electro-Mechanical Systems over large depths or complex relief and the patterning of large surface areas with sub-optically dimensioned features.

  7. Secondary Electrons in EUV Lithography

    SciTech Connect

    Torok, Justin; Re, Ryan Del; Herbol, Henry; Das, Sanjana; Bocharova, Irina; Paolucci, Angela; Ocola, Leonidas E.; Ventrice Jr., Carl; Lifshin, Eric; Denbeaux, Greg; Brainard, Robert L.

    2013-01-01

    Secondary electrons play critical roles in several imaging technologies, including extreme ultraviolet (EUV) lithography. At longer wavelengths of light (e.g. 193 and 248 nm), the photons are directly involved in the photochemistry occurring during photolysis. EUV light (13.5 nm, 92 eV), however, first creates a photoelectron, and this electron, or its subsequent daughter electrons create most of the chemical changes that occur during exposure. Despite the importance of these electrons, the details surrounding the chemical events leading to acid production remain poorly understood. Previously reported experimental results using high PAG-loaded resists have demonstrated that up to five or six photoacids can be generated per incident photon. Until recently, only electron recombination events were thought to play a role in acid generation, requiring that at least as many secondary electrons are produced to yield a given number of acid molecules. However, the initial results we have obtained using a Monte Carlo-based modeling program, LESiS, demonstrate that only two to three secondary electrons are made per absorbed EUV photon. A more comprehensive understanding of EUV-induced acid generation is therefore needed for the development of higher performance resists

  8. Masks for extreme ultraviolet lithography

    SciTech Connect

    Cardinale, G; Goldsmith, J; Kearney, P A; Larson, C; Moore, C E; Prisbrey, S; Tong, W; Vernon, S P; Weber, F; Yan, P-Y

    1998-09-01

    In extreme ultraviolet lithography (EUVL), the technology specific requirements on the mask are a direct consequence of the utilization of radiation in the spectral region between 10 and 15 nm. At these wavelengths, all condensed materials are highly absorbing and efficient radiation transport mandates the use of all-reflective optical systems. Reflectivity is achieved with resonant, wavelength-matched multilayer (ML) coatings on all of the optical surfaces - including the mask. The EUV mask has a unique architecture - it consists of a substrate with a highly reflective ML coating (the mask blank) that is subsequently over-coated with a patterned absorber layer (the mask). Particulate contamination on the EUVL mask surface, errors in absorber definition and defects in the ML coating all have the potential to print in the lithographic process. While highly developed technologies exist for repair of the absorber layer, no viable strategy for the repair of ML coating defects has been identified. In this paper the state-of-the-art in ML deposition technology, optical inspection of EUVL mask blank defects and candidate absorber patterning approaches are reviewed.

  9. Semiconductor foundry, lithography, and partners

    NASA Astrophysics Data System (ADS)

    Lin, Burn J.

    2002-07-01

    The semiconductor foundry took off in 1990 with an annual capacity of less than 0.1M 8-inch-equivalent wafers at the 2-mm node. In 2000, the annual capacity rose to more than 10M. Initially, the technology practiced at foundries was 1 to 2 generations behind that at integrated device manufacturers (IDMs). Presently, the progress in 0.13-mm manufacturing goes hand-in-hand with any of the IDMs. There is a two-order of magnitude rise in output and the progress of technology development outpaces IDMs. What are the reasons of the success? Is it possible to sustain the pace? This paper shows the quick rise of foundries in capacity, sales, and market share. It discusses the their uniqueness which gives rise to advantages in conjunction with challenges. It also shows the role foundries take with their customer partners and supplier partners, their mutual dependencies, as well as expectations. What role then does lithography play in the foundries? What are the lithographic challenges to sustain the pace of technology? The experience of technology development and transfer, at one of the major foundries, is used to illustrate the difficulties and progresses made. Looking into the future, as semiconductor manufacturing will become even more expensive and capital investment more prohibitive, we will make an attempt to suggest possible solutions.

  10. Extreme-UV lithography condenser

    DOEpatents

    Sweatt, William C.; Sweeney, Donald W.; Shafer, David; McGuire, James

    2001-01-01

    Condenser system for use with a ringfield camera in projection lithography where the condenser includes a series of segments of a parent aspheric mirror having one foci at a quasi-point source of radiation and the other foci at the radius of a ringfield have all but one or all of their beams translated and rotated by sets of mirrors such that all of the beams pass through the real entrance pupil of a ringfield camera about one of the beams and fall onto the ringfield radius as a coincident image as an arc of the ringfield. The condenser has a set of correcting mirrors with one of the correcting mirrors of each set, or a mirror that is common to said sets of mirrors, from which the radiation emanates, is a concave mirror that is positioned to shape a beam segment having a chord angle of about 25 to 85 degrees into a second beam segment having a chord angle of about 0 to 60 degrees.

  11. Optical scanner. [laser doppler velocimeters

    NASA Technical Reports Server (NTRS)

    Rhodes, D. B. (Inventor)

    1977-01-01

    An optical scanner that sequentially focuses optical energy (light) at selected points in space is described. The essential component is a scanning wheel including several glass windows with each window having a different thickness. Due to this difference in thickness, the displacement of the emerging light from the incident light is different for each window. The scanner transmits optical energy to a point in space while at the same time receiving any optical energy generated at that point and then moves on to the next selected point and repeats this transmit and receive operation. It fills the need for a system that permits a laser velocimeter to rapidly scan across a constantly changing flow field in an aerodynamic test facility.

  12. Vacuum Attachment for XRF Scanner

    NASA Technical Reports Server (NTRS)

    Schramm, Harry F.; Kaiser, Bruce

    2005-01-01

    Vacuum apparatuses have been developed for increasing the range of elements that can be identified by use of x-ray fluorescent (XRF) scanners of the type mentioned in the two immediately preceding articles. As a consequence of the underlying physical principles, in the presence of air, such an XRF scanner is limited to analysis of chlorine and elements of greater atomic number. When the XRF scanner is operated in a vacuum, it extends the range of analysis to lower atomic numbers - even as far as aluminum and sodium. Hence, more elements will be available for use in XRF labeling of objects as discussed in the two preceding articles. The added benefits of the extended capabilities also have other uses for NASA. Detection of elements of low atomic number is of high interest to the aerospace community. High-strength aluminum alloys will be easily analyzed for composition. Silicon, a major contaminant in certain processes, will be detectable before the process is begun, possibly eliminating weld or adhesion problems. Exotic alloys will be evaluated for composition prior to being placed in service where lives depend on them. And in the less glamorous applications, such as bolts and fasteners, substandard products and counterfeit items will be evaluated at the receiving function and never allowed to enter the operation

  13. IR line scanner on UAV

    NASA Astrophysics Data System (ADS)

    Liu, Shi-chao; Qin, Jie-xin; Qi, Hong-xing; Xiao, Gong-hai

    2011-08-01

    This paper introduces the designing principle and method of the IR line scanner on UAV in three aspects of optical-mechanical system, electronics system and processing software. It makes the system achieve good results in practical application that there are many features in the system such as light weight, small size, low power assumption, wide field of view, high instantaneous field of view, high noise equivalent temperature difference, wirelessly controlled and so on. The entire system is designed as follows: Multi-element scanner is put into use for reducing the electrical noise bandwidth, and then improving SNR; Square split aperture scanner is put into use for solving the image ratation distortion, besides fit for large velocity to height ratio; DSP is put into use for non-uniformity correction and background nosie subtraction, and then improving the imagery quality; SD card is put into use as image data storage media instead of the hard disk; The image data is stored in SD card in FAT32 file system, easily playbacked by processing software on Windows and Linux operating system; wireless transceiver module is put into use for wirelessly controlled.

  14. Robust scanner identification based on noise features

    NASA Astrophysics Data System (ADS)

    Gou, Hongmei; Swaminathan, Ashwin; Wu, Min

    2007-02-01

    A large portion of digital image data available today is acquired using digital cameras or scanners. While cameras allow digital reproduction of natural scenes, scanners are often used to capture hardcopy art in more controlled scenarios. This paper proposes a new technique for non-intrusive scanner model identification, which can be further extended to perform tampering detection on scanned images. Using only scanned image samples that contain arbitrary content, we construct a robust scanner identifier to determine the brand/model of the scanner used to capture each scanned image. The proposed scanner identifier is based on statistical features of scanning noise. We first analyze scanning noise from several angles, including through image de-noising, wavelet analysis, and neighborhood prediction, and then obtain statistical features from each characterization. Experimental results demonstrate that the proposed method can effectively identify the correct scanner brands/models with high accuracy.

  15. Mix-and-match overlay performance of the NSR-S622D immersion scanner

    NASA Astrophysics Data System (ADS)

    Makino, Katsushi; Kikuchi, Takahisa; Sasamoto, Satoru; Hongki, Park; Mori, Akiko; Takahashi, Nobuyuki; Wakamoto, Shinji

    2013-04-01

    Current technology nodes, as well as subsequent generations necessitate ongoing improvements to the mix-and-match overlay (MMO) capabilities of lithography scanners. This work will introduce newly developed scanner solutions to address this requirement, and performance data from the latest generation immersion scanner, the NSR-S622D, will be introduced. Enhanced MMO accuracy is imperative for the 22 nm half-pitch and future technology nodes. In order for the matched overlay accuracy to approach single machine overlay (SMO) capabilities, MMO errors must be reduced further. The dominant MMO error sources can be divided into three main areas: SMO, lens distortion matching and wafer grid matching. Nikon continues to decrease these matching error contributors over time, and the latest generation NSRS622D immersion scanner provides a number of innovative solutions to satisfy the most demanding overlay matching requirements ; as a result MMO performance within 3nm is achieved on S622D. Moreover, overlay master system is developed for further product overlay accuracy and stability improvement.

  16. Lithography aware overlay metrology target design method

    NASA Astrophysics Data System (ADS)

    Lee, Myungjun; Smith, Mark D.; Lee, Joonseuk; Jung, Mirim; Lee, Honggoo; Kim, Youngsik; Han, Sangjun; Adel, Michael E.; Lee, Kangsan; Lee, Dohwa; Choi, Dongsub; Liu, Zephyr; Itzkovich, Tal; Levinski, Vladimir; Levy, Ady

    2016-03-01

    We present a metrology target design (MTD) framework based on co-optimizing lithography and metrology performance. The overlay metrology performance is strongly related to the target design and optimizing the target under different process variations in a high NA optical lithography tool and measurement conditions in a metrology tool becomes critical for sub-20nm nodes. The lithography performance can be quantified by device matching and printability metrics, while accuracy and precision metrics are used to quantify the metrology performance. Based on using these metrics, we demonstrate how the optimized target can improve target printability while maintaining the good metrology performance for rotated dipole illumination used for printing a sub-100nm diagonal feature in a memory active layer. The remaining challenges and the existing tradeoff between metrology and lithography performance are explored with the metrology target designer's perspective. The proposed target design framework is completely general and can be used to optimize targets for different lithography conditions. The results from our analysis are both physically sensible and in good agreement with experimental results.

  17. Soft Lithography Using Nectar Droplets.

    PubMed

    Biswas, Saheli; Chakrabarti, Aditi; Chateauminois, Antoine; Wandersman, Elie; Prevost, Alexis M; Chaudhury, Manoj K

    2015-12-01

    In spite of significant advances in replication technologies, methods to produce well-defined three-dimensional structures are still at its infancy. Such a limitation would be evident if we were to produce a large array of simple and, especially, compound convex lenses, also guaranteeing that their surfaces would be molecularly smooth. Here, we report a novel method to produce such structures by cloning the 3D shape of nectar drops, found widely in nature, using conventional soft lithography.The elementary process involves transfer of a thin patch of the sugar solution coated on a glass slide onto a hydrophobic substrate on which this patch evolves into a microdroplet. Upon the absorption of water vapor, such a microdroplet grows linearly with time, and its final size can be controlled by varying its exposure time to water vapor. At any stage of the evolution of the size of the drop, its shape can be cloned onto a soft elastomer by following the well-known methods of molding and cross-linking the same. A unique new science that emerges in our attempt to understand the transfer of the sugar patch and its evolution to a spherical drop is the elucidation of the mechanics underlying the contact of a deformable sphere against a solid support intervening a thin liquid film. A unique aspect of this work is to demonstrate that higher level structures can also be generated by transferring even smaller nucleation sites on the surface of the primary lenses and then allowing them to grow by absorption of water vapor. What results at the end is either a well-controlled distribution of smooth hemispherical lenses or compound structures that could have potential applications in the fundamental studies of contact mechanics, wettability, and even in optics. PMID:26563988

  18. Hybrid lithography for triple patterning decomposition and E-beam lithography

    NASA Astrophysics Data System (ADS)

    Tian, Haitong; Zhang, Hongbo; Xiao, Zigang; Wong, Martin D. F.

    2014-03-01

    As we advances into 14/10nm technology node, single patterning technology is far from enough to fabricate the features with shrinking feature size. According to International Technology Roadmap for Semiconductors in 2011,1 double patterning lithography is already available for massive productions in industry for sub-32nm half pitch technology node. For 14/10nm technology node, double patterning begins to show its limitations as it uses too many stitches to resolve the native coloring conflicts. Stitches will increase the manufacturing cost, lead to potential functional errors of the chip, and cause the yield lost. Triple patterning lithography and E-Beam lithography are two emerging techniques to beat the diffraction limit for current optical lithography system. In this paper, we investigate combining the merits of triple patterning lithography and E-Beam lithography for standard cell based designs. We devise an approach to compute a stitch free decomposition with the optimal number of E-Beam shots for row structure layout. The approach is expected to highlight the necessity and advantages of using hybrid lithography for advanced technology node.

  19. A novel Si micromachined moving-coil induction actuated mm-sized resonant scanner

    NASA Astrophysics Data System (ADS)

    Oliveira, L. C. M.; Barbaroto, P. R.; Ferreira, L. O. S.; Doi, I.

    2006-01-01

    A novel silicon micromachined moving-coil scanner with electromagnetic induction actuation principle is presented. It was manufactured by the Si-LIG process, silicon-lithography-electroforming (Galvanoformung, from German), where its mechanical structure was made by bulk silicon micromachining of 200 µm thick (1 0 0) silicon substrate, and its armature was patterned by deep UV lithography and Au electroplating. The monolithic mechanical structure is a 12 × 24 mm2 rectangular frame connected by 4.5 mm long torsion bars to a 4 × 10 mm2 rectangular rotor. On one face of the rotor is the armature, a 70 µm thick, single turn, electroplated Au coil with 3.3 mΩ electrical resistance. The other face of the rotor was mirrored by a 1480 Å thick Al film. An external magnetic circuit generated a constant 0.115 T magnetic field parallel to the coil plane and a 0.01 T (peak value) field normal to the coil plane. A maximum mechanical deflection angle of 9.0° pp at the 1311.5 Hz resonance frequency was measured, and a quality factor, Q, of 347 was achieved in air. A mathematical model for the device was derived and a dimensioning procedure was developed. The results show that electromagnetic induction actuation is adequate for mm-sized systems and capable of producing resonant scanners with performance compatible with applications such as bar code readers.

  20. Advanced mask aligner lithography: new illumination system.

    PubMed

    Voelkel, Reinhard; Vogler, Uwe; Bich, Andreas; Pernet, Pascal; Weible, Kenneth J; Hornung, Michael; Zoberbier, Ralph; Cullmann, Elmar; Stuerzebecher, Lorenz; Harzendorf, Torsten; Zeitner, Uwe D

    2010-09-27

    A new illumination system for mask aligner lithography is presented. The illumination system uses two subsequent microlens-based Köhler integrators. The second Köhler integrator is located in the Fourier plane of the first. The new illumination system uncouples the illumination light from the light source and provides excellent uniformity of the light irradiance and the angular spectrum. Spatial filtering allows to freely shape the angular spectrum to minimize diffraction effects in contact and proximity lithography. Telecentric illumination and ability to precisely control the illumination light allows to introduce resolution enhancement technologies (RET) like customized illumination, optical proximity correction (OPC) and source-mask optimization (SMO) in mask aligner lithography. PMID:20940992

  1. Characterizing polarized illumination in high numerical aperture optical lithography with phase shifting masks

    NASA Astrophysics Data System (ADS)

    McIntyre, Gregory Russell

    shifted regions of an alternating PSM and projection lens birefringence, respectively. A secondary objective of this dissertation has been to leverage some of these functions to extend the application of pattern matching software to rapidly identify areas in a circuit design layout that may be vulnerable to polarization and high-NA effects. Additionally, polarization aberrations have been investigated, as they may become important with hyper-NA imaging systems. Three multi-phase test reticles have been developed for this thesis and have pushed the limits of photomask fabrication. Coupled with a variety of experimental and simulation studies at 193nm wavelength, they have validated the scientific principles of the PSM monitors and have offered unique insight into implementation issues such as electromagnetic (EM) effects and mask making tolerances. Although all five classes are novel theoretical concepts, it is believed that PSM Polarimetry is commercially viable. Despite a 70% loss of sensitivity due to mask making limitations and a 20% loss due to EM effects, it can likely still monitor polarization to within 2%. Experimental results are comparable to the only other known technique, which requires special equipment. Taken collectively, the five novel classes of PSM monitors offer the lithographer an independent tool-kit to ensure proper tool operation. They also provide circuit designers an understanding of the impact of imaging on layouts. Although they have been developed for optical lithography, their principles are relevant to any image-forming optical system and are likely to find applications in other fields of optics or acoustics.

  2. Lithography and design in partnership: a new roadmap

    NASA Astrophysics Data System (ADS)

    Kahng, Andrew B.

    2008-10-01

    We discuss the notion of a 'shared technology roadmap' between lithography and design from several perspectives. First, we examine cultural gaps and other intrinsic barriers to a shared roadmap. Second, we discuss how lithography technology can change the design technology roadmap. Third, we discuss how design technology can change the lithography technology roadmap. We conclude with an example of the 'flavor' of technology roadmapping activity that can truly bridge lithography and design.

  3. LAVA: lithography analysis using virtual access

    NASA Astrophysics Data System (ADS)

    Hsu, Chang; Yang, Rona; Cheng, Jeffery; Chien, Peter; Wen, Victor; Neureuther, Andrew R.

    1998-06-01

    A web site allowing remote operation of the SPLAT, SAMPLE, TEMPEST and SIMPL simulators has been developed to promote collaborative work on lithography and in particular on EUV technology. Based on the extensive use of platform independent programming languages, LAVA is accessible from all modern computing platforms. The software supporting the web site is available to others in creating similar web site sites and in making simulators such as those from other universities 'play' together. The web site explores new paradigms in remote operation of lithography simulators and introduces more application-oriented modes of interaction with technologists. The LAVA web site URL is http://cuervo.eecs.berkeley.edu/Volcano/

  4. Simple method for measuring acid generation quantum efficiency at 193 nm

    NASA Astrophysics Data System (ADS)

    Szmanda, Charles R.; Kavanagh, Robert J.; Bohland, John F.; Cameron, James F.; Trefonas, Peter, III; Blacksmith, Robert F.

    1999-06-01

    Traditional methods of measuring the Dill C Parameter involve monitoring the absorbance of a resist as a function of exposure. In chemically amplified resist, absorbance changes with exposure are small and frequently have little correlation to the amount of photoacid generated.

  5. Microstructure-related properties of magnesium fluoride films at 193nm by oblique-angle deposition.

    PubMed

    Guo, Chun; Kong, Mingdong; Lin, Dawei; Liu, Cunding; Li, Bincheng

    2013-01-14

    Magnesium fluoride (MgF2) films deposited by resistive heating evaporation with oblique-angle deposition have been investigated in details. The optical and micro-structural properties of single-layer MgF2 films were characterized by UV-VIS and FTIR spectrophotometers, scanning electron microscope (SEM), atomic force microscope (AFM), and x-ray diffraction (XRD), respectively. The dependences of the optical and micro-structural parameters of the thin films on the deposition angle were analyzed. It was found that the MgF2 film in a columnar microstructure was negatively inhomogeneous of refractive index and polycrystalline. As the deposition angle increased, the optical loss, extinction coefficient, root-mean-square (rms) roughness, dislocation density and columnar angle of the MgF2 films increased, while the refractive index, packing density and grain size decreased. Furthermore, IR absorption of the MgF2 films depended on the columnar structured growth. PMID:23388989

  6. Patterning of Ta/SiO2 high transmission EAPSM material for 193nm technology

    NASA Astrophysics Data System (ADS)

    Koepernik, Corinna; Becker, H. W.; Butschke, J.; Buttgereit, U.; Irmscher, M.; Nedelmann, L.; Schmidt, F.; Teuber, S.

    2005-06-01

    For the new Schott EAPSM Material, comprising a Ta/SiO2/Cr stack, a patterning process has been developed. The material offers the advantage of an independent adjustment of phase shift and transmission and is applicable for different wavelengths. Because of very homogenous Ta and SiO2 films and perfect etch selectivities it has been achieved a phase shift uniformity of 1.1° and a tight transmission deviation of 0.34% (absolute) across the entire mask. First dry etch process development has been focused on profiles and selectivities. The influence of process parameters on sidewall angle, profile bow, resist loss and Cr loss of the three patterning steps are shown. We have achieved excellent selectivities and a final sidewall angle of > 88°. The aerial image contrast of the first test plate is comparable to known attenuated phase shift material.

  7. The photodissociation of oxetane at 193 nm as the reverse of the Paterno-Buchi reaction

    SciTech Connect

    Lee, Shih-Huang

    2009-12-14

    We investigated the photodissociation of oxetane (1,3-trimethylene oxide) at 193.3 nm in a molecular-beam apparatus using photofragment-translational spectroscopy and selective photoionization. We measured time-of-flight (TOF) spectra and angular anisotropy parameters {beta}(t) as a function of flight time of products at m/z=26-30 u utilizing photoionization energies from 9.8 to 14.8 eV. The TOF distributions of the products alter greatly with the employed photon energy, whereas their {beta}(t) distributions are insensitive to the photon energy. Dissociation to H{sub 2}CO+C{sub 2}H{sub 4} is the major channel in the title reaction. Three distinct dissociation paths with branching ratios 0.923:0.058:0.019 are responsible for the three features observed in the distribution of kinetic energy released in the channel H{sub 2}CO+C{sub 2}H{sub 4}. The observation of H{sub 2} and H atoms, {approx}1% in branching, indicates that products H{sub 2}CO and C{sub 2}H{sub 4} spontaneously decompose to only a small extent. Most HCO, C{sub 2}H{sub 3}, and C{sub 2}H{sub 2} ions originate from dissociative photoionization of products H{sub 2}CO and C{sub 2}H{sub 4}. Except atomic H and H{sub 2}, the photoproducts have large angular anisotropies, {beta}{>=}-0.8, which reflects rapid dissociation of oxetane following optical excitation at 193.3 nm. The mechanisms of dissociation of oxetane are addressed. Our results confirm the quantum-chemical calculations of Palmer et al. and provide profound insight into the Paterno-Buchi reaction.

  8. Excimer laser photochemistry of silane-ammonia mixtures at 193 nm

    SciTech Connect

    Beach, D.B.; Jasinski, J.M. )

    1990-04-05

    The ArF excimer laser induced photochemistry of silane-ammonia mixtures has been studied with molecular beam sampling mass spectrometry. The observed products include disilane, trisilane, and all possible aminosilanes, SiH{sub x}(NH{sub 2}){sub 4-x}, x = 0-3. These products are formed under steady-state photolysis conditions and under single-laser-pulse conditions. A mechanism for the formation of these species is proposed and quantitatively evaluated.

  9. SYSTEM CONSIDERATIONS FOR MASKLESS LITHOGRAPHY

    SciTech Connect

    Karnowski, Thomas Paul; Joy, David; Allard Jr, Lawrence Frederick; Clonts, Lloyd G

    2004-01-01

    Lithographic processes for printing device structures on integrated circuits (ICs) are the fundamental technology behind Moore's law. Next-generation techniques like maskless lithography or ML2 have the advantage that the long, tedious and expensive process of fabricating a unique mask for the manufactured chip is not necessary. However, there are some rather daunting problems with establishing ML2 as a viable commercial technology. The data rate necessary for ML2 to be competitive in manufacturing is not feasible with technology in the near future. There is also doubt that the competing technologies for the writing mechanisms and corresponding photoresist (or analogous medium) will be able to accurately produce the desired patterns necessary to produce multi-layer semiconductor devices. In this work, we model the maskless printing system from a signal processing point of view, utilizing image processing algorithms and concepts to study the effects of various real-world constraints and their implications for a ML2 system. The ML2 elements are discrete devices, and it is doubtful that their motion can be controlled to the level where a one-for-one element to exposed pixel relationship is allowable. Some level of sub-element resolution can be achieved with gray scale levels, but with the highly integrated manufacturing practices required to achieve massive parallelism, the most effective elements will be simple on-off switches that fire a fixed level of energy at the target medium. Consequently gray-scale level devices are likely not an option. Another problem with highly integrated manufacturing methods is device uniformity. Consequently, we analyze the redundant scanning array concept (RSA) conceived by Berglund et al. which can defeat many of these problems. We determine some basic equations governing its application and we focus on applying the technique to an array of low-energy electron emitters. Using the results of Monte Carlo simulations on electron beam

  10. System considerations for maskless lithography

    NASA Astrophysics Data System (ADS)

    Karnowski, Thomas; Joy, David; Allard, Larry; Clonts, Lloyd

    2004-05-01

    Lithographic processes for printing device structures on integrated circuits (ICs) are the fundamental technology behind Moore's law. Next-generation techniques like maskless lithography or ML2 have the advantage that the long, tedious and expensive process of fabricating a unique mask for the manufactured chip is not necessary. However, there are some rather daunting prblems with establishing ML2 as a viable commercial technology. The data rate necessary for ML2 to be competitive in manufacturing is not feasible with technology in the near future. There is also doubt that the competing technologies for the writing mechanisms and corresponding photoresist (or analogous medium) will be able to accurately produce the desired patterns necessary to produce multi-layer semiconductor devices. In this work, we model the maskless printing system from a signal processing point of view, utilizing image processing algorithms and concepts to study the effects of various real-world constraints and their implications for a ML2 system. The ML2 elements are discrete devices, and it is doubtful that their motion can be controlled to the level where a one-for-one element to exposed pixel relationship is allowable. Some level of sub-element resolution can be achieved with gray scale levels, but with the highly integrated manufacturing practices required to achieve massive parallelism, the most effective elements will be simple on-ofrf switches that fire a fixed level of energy at the target medium. Consequently gray-scale level devidces are likely not an option. Another problem with highly integrated manufacturing methods is device uniformity. Consequently, we analyze the redundant scanning array concept (RSA) conceived by Berglund et al. which can defeat many of these problems. We determine some basic equations governing its application and we focus on applying the technique to an array of low-energy electron emitters. Using the results of Monte Carlo simulations on electron beam

  11. Advanced mask technique to improve bit line CD uniformity of 90 nm node flash memory in low-k1 lithography

    NASA Astrophysics Data System (ADS)

    Kim, Jong-doo; Choi, Jae-young; Kim, Jea-hee; Han, Jae-won

    2008-10-01

    As devices size move toward 90nm technology node or below, defining uniform bit line CD of flash devices is one of the most challenging features to print in KrF lithography. There are two principal difficulties in defining bit line on wafer. One is insufficient process margin besides poor resolution compared with ArF lithography. The other is that asymmetric bit line should be made for OPC(Optical Proximity Correction) modeling. Therefore advanced ArF lithography scanner should be used for define bit line with RETs (Resolution Enhancement Techniques) such as immersion lithography, OPC, PSM(Phase Shift Mask), high NA(Numerical Aperture), OAI(Off-Axis Illumination), SRAF(Sub-resolution Assistant Feature), and mask biasing.. Like this, ArF lithography propose the method of enhancing resolution, however, we must spend an enormous amount of CoC(cost of ownership) to utilize ArF photolithography process than KrF. In this paper, we suggest method to improve of bit line CD uniformity, patterned by KrF lithographic process in 90nm sFlash(stand alone Flash) devices. We applied new scheme of mask manufacturing, which is able to realize 2 different types of mask, binary and phase-shift, into one plate. Finally, we could get the more uniform bit lines and we expect to get more stable properties then before applying this technique.

  12. 100 nm half-pitch double exposure KrF lithography using binary masks

    NASA Astrophysics Data System (ADS)

    Geisler, S.; Bauer, J.; Haak, U.; Stolarek, D.; Schulz, K.; Wolf, H.; Meier, W.; Trojahn, M.; Matthus, E.

    2008-03-01

    In this paper we investigate the process margin for the 100nm half - pitch double exposure KrF lithography using binary masks for different illumination settings. The application of Double Exposure Lithography (DEL) would enlarge the capability of 248 nm exposure technique to smaller pitch e.g. for the integration of dedicated layers into 0.13 μm BiCMOS with critical dimension (CD) requirements exceeding the standard 248 nm lithography specification. The DEL was carried out with a KrF Scanner (Nikon S207D, NA Lens = 0.82) for a critical dimension (CD) of 100nm half pitch. The chemical amplified positive resists SL4800 or UV2000 (Rohm & Haas) with a thickness of 325nm were coated on a 70 nm AR10L (Rohm & Haas) bottom anti-reflective coating (BARC). With a single exposure and using binary masks it is not possible to resolve 100nm lines with a pitch of 200 nm, due to the refraction and the resolution limit. First we investigated the effect of focus variation. It is shown that the focus difference of 1st and 2nd exposure is one critical parameter of the DEL. This requires a good focus repeatability of the scanner. The depth of focus (DOF) of 360 nm with the coherence parameter σ = 0.4 was achieved for DEL with SL4800 resist. The influence of the better resist resolution of UV2000 on the process window will be shown (DOF = 460 nm). If we change the focus of one of the exposures the CD and DOF performance of spaces is reduced with simultaneous line position changing. Second we investigated the effect of different illumination shapes and settings. The results for conventional illumination with different values for σ and annular illumination with σ inner = 0.57 and σ outer = 0.85 will be shown. In summary, the results show that DEL has the potential to be a practical lithography enhancement method for device fabrication using high NA KrF tool generation.

  13. Towards ultimate optical lithography with NXT:1950i dual stage immersion platform

    NASA Astrophysics Data System (ADS)

    Castenmiller, Tom; van de Mast, Frank; de Kort, Toine; van de Vin, Coen; de Wit, Marten; Stegen, Raf; van Cleef, Stefan

    2010-04-01

    Optical lithography, currently being used for 45-nm semiconductor devices, is expected to be extended further towards the 32-nm and 22-nm node. A further increase of lens NA will not be possible but fortunately the shrink can be enabled with new resolution enhancement methods like source mask optimization (SMO) and double patterning techniques (DPT). These new applications lower the k1 dramatically and require very tight overlay control and CD control to be successful. In addition, overall cost per wafer needs to be lowered to make the production of semiconductor devices acceptable. For this ultimate era of optical lithography we have developed the next generation dual stage NXT:1950i immersion platform. This system delivers wafer throughput of 175 wafers per hour together with an overlay of 2.5nm. Several extensions are offered enabling 200 wafers per hour and improved imaging and on product overlay. The high productivity is achieved using a dual wafer stage with planar motor that enables a high acceleration and high scan speed. With the dual stage concept wafer metrology is performed in parallel with the wafer exposure. The free moving planar stage has reduced overhead during chuck exchange which also improves litho tool productivity. In general, overlay contributors are coming from the lithography system, the mask and the processing. Main contributors for the scanner system are thermal wafer and stage control, lens aberration control, stage positioning and alignment. The back-bone of the NXT:1950i enhanced overlay performance is the novel short beam fixed length encoder grid-plate positioning system. By eliminating the variable length interferometer system used in the previous generation scanners the sensitivity to thermal and flow disturbances are largely reduced. The alignment accuracy and the alignment sensitivity for process layers are improved with the SMASH alignment sensor. A high number of alignment marker pairs can be used without throughput loss, and

  14. Development of MOEMS technology in maskless lithography

    NASA Astrophysics Data System (ADS)

    Smith, David; Klenk, Dieter

    2009-02-01

    Micro-opto-electro-mechanical-systems (MOEMS) have proven to be a facilitating technology in the lithography industry. Recently, there have been significant advancements in digital micromirror device (DMD) based maskless lithography. These advancements have been in the areas of throughput, resolution, accuracy, and cost reduction. This progression in digital micromirror evolution provides considerable opportunities to displace existing lithographic techniques. Precise control of the individual mircormirrors, including scrolling, and full utilization of the FPGA, have allowed DMD-based lithography systems to reach new levels of throughput and repeatability, while reducing production and warranty costs. Throughput levels have far surpassed scanning laser techniques. Chip level cooling technologies allow for higher incident power to be reliably distributed over larger areas of the substrate. Resolution roadmaps are in place to migrate from the current 2400dpi (11μm) to 4800dpi (5.3μm). Without the constraints of mask requirements, mask alignment, storage, and defect analysis are not required, thus increasing accuracy and reducing cost. This contribution will examine the advancements in and benefits of DMD based maskless lithography.

  15. Recent Progress On Submicron Electron Beam Lithography

    NASA Astrophysics Data System (ADS)

    Takigawa, Tadahiro; Shimazaki, Kuniya; Kusui, Naoki

    1986-06-01

    In order to fabricate submicron pattern, total electron beam (EB) lithography system has been developed. Upper submicron pattern will be realized by optical lithography, which requires reticle with high accuracy. An EB writing system, EBM-130/40, has the performance of drawing capability of 4 M bit DRAM reticle pattern in about 40 minutes. The EB system incorporated with peripheral technologies including data compaction conversion software, reticle inspection system, APC-130R, and EBR-9 resist process can produce advanced reticles of number of about 600 per month. For lower submicron pattern formation, next generation lithography system is required. The EBM-130V is the variable shaped EB system with high acceleration voltage of 50 kV and high dosage of 50 μC/cm2 for direct writing and X-ray mask fabrication for development of the high bit density VLSI pattern. This system makes possible EB/optical combined lithography. Its metrology function allows it to measure X-ray mask distortion.

  16. Mask characterization for CDU budget breakdown in advanced EUV lithography

    NASA Astrophysics Data System (ADS)

    Nikolsky, Peter; Strolenberg, Chris; Nielsen, Rasmus; Nooitgedacht, Tjitte; Davydova, Natalia; Yang, Greg; Lee, Shawn; Park, Chang-Min; Kim, Insung; Yeo, Jeong-Ho

    2012-11-01

    As the ITRS Critical Dimension Uniformity (CDU) specification shrinks, semiconductor companies need to maintain a high yield of good wafers per day and a high performance (and hence market value) of finished products. This cannot be achieved without continuous analysis and improvement of on-product CDU as one of the main drivers for process control and optimization with better understanding of main contributors from the litho cluster: mask, process, metrology and scanner. In this paper we will demonstrate a study of mask CDU characterization and its impact on CDU Budget Breakdown (CDU BB) performed for an advanced EUV lithography with 1D and 2D feature cases. We will show that this CDU contributor is one of the main differentiators between well-known ArFi and new EUV CDU budgeting principles. We found that reticle contribution to intrafield CDU should be characterized in a specific way: mask absorber thickness fingerprints play a role comparable with reticle CDU in the total reticle part of the CDU budget. Wafer CD fingerprints, introduced by this contributor, may or may not compensate variations of mask CD's and hence influence on total mask impact on intrafield CDU at the wafer level. This will be shown on 1D and 2D feature examples in this paper. Also mask stack reflectivity variations should be taken into account: these fingerprints have visible impact on intrafield CDs at the wafer level and should be considered as another contributor to the reticle part of EUV CDU budget. We observed also MEEF-through-field fingerprints in the studied EUV cases. Variations of MEEF may also play a role for the total intrafield CDU and may be taken into account for EUV Lithography. We characterized MEEF-through-field for the reviewed features, the results to be discussed in our paper, but further analysis of this phenomenon is required. This comprehensive approach to characterization of the mask part of EUV CDU characterization delivers an accurate and integral CDU Budget

  17. Code-multiplexed optical scanner

    NASA Astrophysics Data System (ADS)

    Riza, Nabeel A.; Arain, Muzammil A.

    2003-03-01

    A three-dimensional (3-D) optical-scanning technique is proposed based on spatial optical phase code activation on an input beam. This code-multiplexed optical scanner (C-MOS) relies on holographically stored 3-D beam-forming information. Proof-of-concept C-MOS experimental results by use of a photorefractive crystal as a holographic medium generates eight beams representing a basic 3-D voxel element generated via a binary-code matrix of the Hadamard type. The experiment demonstrates the C-MOS features of no moving parts, beam-forming flexibility, and large centimeter-size apertures. A novel application of the C-MOS as an optical security lock is highlighted.

  18. Combined PET/MRI scanner

    DOEpatents

    Schlyer, David; Woody, Craig L.; Rooney, William; Vaska, Paul; Stoll, Sean; Pratte, Jean-Francois; O'Connor, Paul

    2007-10-23

    A combined PET/MRI scanner generally includes a magnet for producing a magnetic field suitable for magnetic resonance imaging, a radiofrequency (RF) coil disposed within the magnetic field produced by the magnet and a ring tomograph disposed within the magnetic field produced by the magnet. The ring tomograph includes a scintillator layer for outputting at least one photon in response to an annihilation event, a detection array coupled to the scintillator layer for detecting the at least one photon outputted by the scintillator layer and for outputting a detection signal in response to the detected photon and a front-end electronic array coupled to the detection array for receiving the detection signal, wherein the front-end array has a preamplifier and a shaper network for conditioning the detection signal.

  19. X-ray microtomographic scanners

    SciTech Connect

    Syryamkin, V. I. Klestov, S. A.

    2015-11-17

    The article studies the operating procedures of an X-ray microtomographic scanner and the module of reconstruction and analysis 3D-image of a test sample in particular. An algorithm for 3D-image reconstruction based on image shadow projections and mathematical methods of the processing are described. Chapter 1 describes the basic principles of X-ray tomography and general procedures of the device developed. Chapters 2 and 3 are devoted to the problem of resources saving by the system during the X-ray tomography procedure, which is achieved by preprocessing of the initial shadow projections. Preprocessing includes background noise removing from the images, which reduces the amount of shadow projections in general and increases the efficiency of the group shadow projections compression. In conclusion, the main applications of X-ray tomography are presented.

  20. Non-Destructive Testing Scanner

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Bio-Imaging Research's technology that originated in an aerospace program has come full circle with a new aerospace adaptation called the Advanced Computed Tomography Inspection System, or ACTIS. The medical version of CT scans the human body for tumors or other abnormalities, the ACTIS system finds imperfections in aerospace structures and components, such as castings, assemblies, rocket motors and nozzles. ACTIS is described by its developer as the most versatile CT scanner available for non-destructive testing applications. ACTIS is a variable geometry system. ACTIS source and detectors can be moved closer together or farther apart to optimize the geometry for different sizes of test objects. The combination of variable geometry, three sources, and focusing detectors makes ACTIS cost effective for a broad range of applications. System can scan anything from very small turbine blades to large rocket assemblies.

  1. Laser Scanner For Automatic Storage

    NASA Astrophysics Data System (ADS)

    Carvalho, Fernando D.; Correia, Bento A.; Rebordao, Jose M.; Rodrigues, F. Carvalho

    1989-01-01

    The automated magazines are beeing used at industry more and more. One of the problems related with the automation of a Store House is the identification of the products envolved. Already used for stock management, the Bar Codes allows an easy way to identify one product. Applied to automated magazines, the bar codes allows a great variety of items in a small code. In order to be used by the national producers of automated magazines, a devoted laser scanner has been develloped. The Prototype uses an He-Ne laser whose beam scans a field angle of 75 degrees at 16 Hz. The scene reflectivity is transduced by a photodiode into an electrical signal, which is then binarized. This digital signal is the input of the decodifying program. The machine is able to see barcodes and to decode the information. A parallel interface allows the comunication with the central unit, which is responsible for the management of automated magazine.

  2. Scanner Art and Links to Physics

    ERIC Educational Resources Information Center

    Russell, David

    2005-01-01

    A photocopier or scanner can be used to produce not only the standard motion graphs of physics, but a variety of other graphs that resemble gravitational and electrical fields. This article presents a starting point for exploring scanner graphics, which brings together investigation in art and design, physics, mathematics, and information…

  3. Academic and Career Advising of Scanners

    ERIC Educational Resources Information Center

    Bloom, Arvid J.; Tripp, Philip R.; Shaffer, Leigh S.

    2011-01-01

    "Scanners" has become a common term for a recently identified category of people who find choosing just one interest or career path difficult (Sher, 2006). Academic and career advisors who work with scanners will likely find that these students have difficulty selecting an academic major or career path and that they seem to suffer anxiety and a…

  4. 21 CFR 892.1220 - Fluorescent scanner.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Fluorescent scanner. 892.1220 Section 892.1220 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1220 Fluorescent scanner. (a) Identification....

  5. Discriminant analyses of Bendix scanner data

    NASA Technical Reports Server (NTRS)

    Richardson, A. J.; Wiegand, C. L.; Leamer, R. W.; Gerbermann, A. H.; Torline, R. J.

    1972-01-01

    Flights over Weslaco, Texas are discussed, using the 9-channel Bendix scanner, providing calibrated data in the 380 to 1000 nm wavelength interval. These flights were at 2000 ft. These data gave seasonal coverage from the time signals, representing mainly the soil background. The ground truth data are provided; signature processing studies relating scanner data to ground truth were also carried out.

  6. 21 CFR 892.1220 - Fluorescent scanner.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Fluorescent scanner. 892.1220 Section 892.1220 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1220 Fluorescent scanner. (a) Identification....

  7. 21 CFR 892.1220 - Fluorescent scanner.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Fluorescent scanner. 892.1220 Section 892.1220 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1220 Fluorescent scanner. (a) Identification....

  8. 21 CFR 892.1220 - Fluorescent scanner.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Fluorescent scanner. 892.1220 Section 892.1220 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1220 Fluorescent scanner. (a) Identification....

  9. 21 CFR 892.1220 - Fluorescent scanner.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Fluorescent scanner. 892.1220 Section 892.1220 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1220 Fluorescent scanner. (a) Identification....

  10. Evaluating Commercial Scanners for Astronomical Image Digitization

    NASA Astrophysics Data System (ADS)

    Simcoe, R. J.

    2009-08-01

    Many organizations have been interested in understanding if commercially available scanners are adequate for scientifically useful digitization. These scanners range in price from a few hundred to a few tens of thousands of dollars (USD), often with little apparent difference in performance specifications. This paper describes why the underlying technology used in flatbed scanners tends to effectively limit resolutions to the 600-1200 dots per inch (dpi) range and how the overall system Modulation Transfer Function (MTF) can be used to evaluate the quality of the digitized data for the small feature sizes found in astronomical images. Two scanners, the Epson V750 flatbed scanner and the Nikon Cool Scan 9000ED film strip scanner, are evaluated through their Modulation Transfer Functions (MTF). The MTF of the Harvard DASCH scanner is also shown for comparison. The particular goal of this evaluation was to understand if the scanners could be used for digitizing spectral plates at the University of Toronto. The plates of primary interest were about 15 mm (5/8 inch) wide by 180 mm (7~inches) long and ˜50 mm x 80 mm (2 x 3 inches). The results of the MTF work show that the Epson scanner, despite claims of high resolution, is of limited value for scientific imaging of feature sizes below about 50 μm and therefore not a good candidate for digitizing the spectral plates and problematic for scanning direct plates. The Nikon scanner is better and, except for some frustrating limitations in its software, its performance seems to hold promise as a digitizer for spectral plates in the University of Toronto collection.

  11. Prospects of DUV OoB suppression techniques in EUV lithography

    NASA Astrophysics Data System (ADS)

    Park, Chang-Min; Kim, Insung; Kim, Sang-Hyun; Kim, Dong-Wan; Hwang, Myung-Soo; Kang, Soon-Nam; Park, Cheolhong; Kim, Hyun-Woo; Yeo, Jeong-Ho; Kim, Seong-Sue

    2014-04-01

    Though scaling of source power is still the biggest challenge in EUV lithography (EUVL) technology era, CD and overlay controls for transistor's requirement are also precondition of adopting EUVL in mass production. Two kinds of contributors are identified as risks for CDU and Overlay: Infrared (IR) and deep ultraviolet (DUV) out of band (OOB) radiations from laser produced plasma (LPP) EUV source. IR from plasma generating CO2 laser that causes optics heating and wafer overlay error is well suppressed by introducing grating on collector to diffract IR off the optical axis and is the effect has been confirmed by operation of pre-production tool (NXE3100). EUV and DUV OOB which are reflected from mask black boarder (BB) are root causes of EUV-specific CD error at the boundaries of exposed shots which would result in the problem of CDU out of spec unless sufficiently suppressed. Therefore, control of DUV OOB reflection from the mask BB is one of the key technologies that must be developed prior to EUV mass production. In this paper, quantitative assessment on the advantage and the disadvantage of potential OOB solutions will be discussed. EUV and DUV OOB impacts on wafer CDs are measured from NXE3100 & NXE3300 experiments. Significant increase of DUV OOB impact on CD from NXE3300 compared with NXE3100 is observed. There are three ways of technology being developed to suppress DUV OOB: spectral purity filter (SPF) as a scanner solution, multi-layer etching as a solution on mask, and resist top-coating as a process solution. PROs and CONs of on-scanner, on-mask, and on-resist solution for the mass production of EUV lithography will be discussed.

  12. Nanoimprint lithography using IR laser irradiation

    NASA Astrophysics Data System (ADS)

    Grigaliūnas, V.; Tamulevičius, S.; Muehlberger, M.; Jucius, D.; Guobienė, A.; Kopustinskas, V.; Gudonytė, A.

    2006-11-01

    A new technique called "infrared laser-assisted nanoimprint lithography" was utilised to soften the thermoplastic polymer material mR-I 8020 during nanoimprint lithography. A laser setup and a sample holder with pressure and temperature control were designed for the imprint experiments. The polymer was spin coated onto crystalline Si <1 1 1> substrates. A prepatterned Si <1 1 1> substrate, which is transparent for the CO 2 laser irradiation, was used as an imprint stamp as well. It was shown, that the thermoplastic resist mR-I 8020 could be successfully imprinted using the infrared CW CO 2 laser irradiation ( λ = 10.6 μm). The etching rate of the CO 2 laser beam irradiated mR-I 8020 resist film under O 2 RF (13.56 MHz) plasma treatment and during O 2 reactive ion beam etching was investigated as well.

  13. Synchrotron beamlines for x-ray lithography

    NASA Astrophysics Data System (ADS)

    Trippe, Anthony P.; Pearce, W. J.

    1994-02-01

    Louisiana State University established the J. Bennett Johnston, Sr., Center for Advanced Microstructures and Devices (CAMD). Designed and constructed by the Brobeck Division of Maxwell Laboratories, the CAMD synchrotron light source is the first electron storage ring to be built by a commercial company in the United States. The synchrotron x-ray radiation generated at CAMD is an extremely useful exposure source for both thin and thick film lithography. Passing through a beamline containing two plane mirrors, the synchrotron light is used to expose thin resists for lithography of patterns with feature sizes of 0.25 micron and smaller. Two thick-resist beamlines, one using a single aspheric (collimating) mirror and one using a plane mirror, provide the higher flux photons required for miniaturization in silicon to produce microscopic mechanical devices including gears, motors, filters, and valves.

  14. Optimization criteria for SRAM design: lithography contribution

    NASA Astrophysics Data System (ADS)

    Cole, Daniel C.; Bula, Orest; Conrad, Edward W.; Coops, Daniel S.; Leipold, William C.; Mann, Randy W.; Oppold, Jeffrey H.

    1999-07-01

    Here we discuss the use of well calibrated resist and etch bias models, in conjunction with a fast microlithography aerial image simulator, to predict and 'optimize' the printed shapes through all critical levels in a dense SRAM design. Our key emphasis here is on 'optimization criteria', namely, having achieved good predictability for printability with lithography models, how to use this capability in conjunction of best electrical performance, yield, and density. The key lithography/design optimization issues discussed here are: (1) tightening of gate width variation by reducing spatial curvature in the source and drain regions, (2) achieving sufficient contact areas, (3) maximizing process window for overlay, (4) reducing leakage mechanisms by reducing contributions of stress and strain due to the printed shape of oxide isolation regions, (5) examining topological differences in design during the optimization process, (6) accounting for mask corner rounding, and (7) designing for scalability to smaller dimensions to achieve optical design reusability issues without hardware.

  15. 16. SITE BUILDING 002 SCANNER BUILDING FRONT LOBBY ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    16. SITE BUILDING 002 - SCANNER BUILDING - FRONT LOBBY VIEW. - Cape Cod Air Station, Technical Facility-Scanner Building & Power Plant, Massachusetts Military Reservation, Sandwich, Barnstable County, MA

  16. 17. SITE BUILDING 002 SCANNER BUILDING COMMANDER'S OFFICE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    17. SITE BUILDING 002 - SCANNER BUILDING - COMMANDER'S OFFICE VIEW. - Cape Cod Air Station, Technical Facility-Scanner Building & Power Plant, Massachusetts Military Reservation, Sandwich, Barnstable County, MA

  17. Roughness and variability in EUV lithography: Who is to blame? (part 1)

    NASA Astrophysics Data System (ADS)

    Vaglio Pret, Alessandro; Gronheid, Roel; Younkin, Todd R.; Winroth, Gustaf; Biafore, John J.; Anno, Yusuke; Hoshiko, Kenji; Constantoudis, Vassilios

    2013-04-01

    Process variability in today's EUV lithography might be a showstopper for features below 27nm dimensions. At these feature sizes, electrical devices are influenced by quantum effects and thus have to face the discrete behavior of light and matter. More in general, lithography uncertainties arise from each lithographic element: the source, the photomask, the optical system, and the photoresist. In order to individually assess all the different contributions to the final resist roughness, a EUV mask with known absorber pattern variability was used to expose different resists at different process conditions. CD-SEM analyses were performed on both mask absorber and resist pattern and then used to build a stochastic resist model. In this first paper, we present a complete characterization of the root causes which are responsible of the CD nonuniformity for 27nm half-pitch dense contact-holes exposed with the ASML NXE:3100 scanner installed at imec. Using the same stochastic model, a simulated evaluation to quantify the possible impact of the different elements composing the lithographic process is performed at higher numerical aperture.

  18. The study of lithography conditions to use advanced resist performance properly

    NASA Astrophysics Data System (ADS)

    Yang, Zhengkai; Wang, Wuping; Chen, Quan; Aoyama, Hajime; Takemasa, Kengo; Sei, Toshihiko; Miyazawa, Tami; Matsuyama, Tomoyuki; Shao, Chun

    2015-03-01

    Correlation of resist modeling of printed features with lithographic data is a necessary part of developing new lithographic processes. Recently, we have found a case in which the most advanced resist types sometimes show better behavior than expectations from optical simulation in terms of dose latitude, MEEF (mask error enhancement factor), and even CD variation through different pitches. This superior resist performance may allow greater margin for error in each component, such as mask, scanner, and metrology in very low-k1 lithography. On the other hand, since the resist pattern CD for the most advanced resist is very much different from the prediction of optical simulation, it is a challenge to build OPC models using the exposure result with the resist. In order to solve this issue, we have tried to use several litho parameters to reduce the gap between optical simulation and resist CDs for OPC modeling. In this paper we discuss the effect of the parameters to reduce the gap between optical model and actual resist behavior with keeping superior performance as much as possible. The method we mention may be a key to use the most advanced resist in near future. As a result the life of ArF immersion lithography in the critical layer would be extended than we expect today.

  19. Implementation of assist features in EUV lithography

    NASA Astrophysics Data System (ADS)

    Jiang, Fan; Burkhardt, Martin; Raghunathan, Ananthan; Torres, Andres; Gupta, Rachit; Word, James

    2015-03-01

    The introduction of EUV lithography will happen at a critical feature pitch which corresponds to a k1 factor of roughly 0.45. While this number seems not very aggressive compared to recent ArF lithography nodes, the number is sufficiently low that the introduction of assist features has to be considered. While the small NA makes the k1 factor larger, the depth of focus still needs to be scaled down with wavelength. However the exposure tool's focus control is not greatly improved over the ArF tools, so other solutions to improve the depth of focus, e.g. SRAFs, are needed. On the other hand, sub-resolution assist features (SRAFs) require very small mask dimensions, which make masks more costly to write and inspect. Another disadvantage of SRAFs is the fact that they may cause pattern-dependent best focus shift due to thick mask effects. Those effects can be predicted, but the shift of best focus and the associated tilt of Bossung curves make the process more difficult to control. We investigate the impact of SRAFs on printing in EUV lithography and evaluate advantages and disadvantages. By using image quality parameters such as best focus (BF), and depth of focus (DOF), respectively with and without SRAFs, we will answer the question if we can gain a net benefit for 1D and 2D patterns by adding SRAFs. SRAFs will only be introduced if any net improvement in process variation (PV) outweighs the additional expense of assist patterning on the mask. In this paper, we investigate the difference in printing behavior of symmetric and asymmetric SRAF placement and whether through slit effect needs to be considered in SRAF placement for EUV lithography.

  20. Formation of Magnetic Anisotropy by Lithography.

    PubMed

    Kim, Si Nyeon; Nam, Yoon Jae; Kim, Yang Doo; Choi, Jun Woo; Lee, Heon; Lim, Sang Ho

    2016-01-01

    Artificial interface anisotropy is demonstrated in alternating Co/Pt and Co/Pd stripe patterns, providing a means of forming magnetic anisotropy using lithography. In-plane hysteresis loops measured along two principal directions are explained in depth by two competing shape and interface anisotropies, thus confirming the formation of interface anisotropy at the Co/Pt and Co/Pd interfaces of the stripe patterns. The measured interface anisotropy energies, which are in the range of 0.2-0.3 erg/cm(2) for both stripes, are smaller than those observed in conventional multilayers, indicating a decrease in smoothness of the interfaces when formed by lithography. The demonstration of interface anisotropy in the Co/Pt and Co/Pd stripe patterns is of significant practical importance, because this setup makes it possible to form anisotropy using lithography and to modulate its strength by controlling the pattern width. Furthermore, this makes it possible to form more complex interface anisotropy by fabricating two-dimensional patterns. These artificial anisotropies are expected to open up new device applications such as multilevel bits using in-plane magnetoresistive thin-film structures. PMID:27216420

  1. Formation of Magnetic Anisotropy by Lithography

    PubMed Central

    Kim, Si Nyeon; Nam, Yoon Jae; Kim, Yang Doo; Choi, Jun Woo; Lee, Heon; Lim, Sang Ho

    2016-01-01

    Artificial interface anisotropy is demonstrated in alternating Co/Pt and Co/Pd stripe patterns, providing a means of forming magnetic anisotropy using lithography. In-plane hysteresis loops measured along two principal directions are explained in depth by two competing shape and interface anisotropies, thus confirming the formation of interface anisotropy at the Co/Pt and Co/Pd interfaces of the stripe patterns. The measured interface anisotropy energies, which are in the range of 0.2–0.3 erg/cm2 for both stripes, are smaller than those observed in conventional multilayers, indicating a decrease in smoothness of the interfaces when formed by lithography. The demonstration of interface anisotropy in the Co/Pt and Co/Pd stripe patterns is of significant practical importance, because this setup makes it possible to form anisotropy using lithography and to modulate its strength by controlling the pattern width. Furthermore, this makes it possible to form more complex interface anisotropy by fabricating two-dimensional patterns. These artificial anisotropies are expected to open up new device applications such as multilevel bits using in-plane magnetoresistive thin-film structures. PMID:27216420

  2. Metallic resist for phase-change lithography

    PubMed Central

    Zeng, Bi Jian; Huang, Jun Zhu; Ni, Ri Wen; Yu, Nian Nian; Wei, Wei; Hu, Yang Zhi; Li, Zhen; Miao, Xiang Shui

    2014-01-01

    Currently, the most widely used photoresists in optical lithography are organic-based resists. The major limitations of such resists include the photon accumulation severely affects the quality of photolithography patterns and the size of the pattern is constrained by the diffraction limit. Phase-change lithography, which uses semiconductor-based resists such as chalcogenide Ge2Sb2Te5 films, was developed to overcome these limitations. Here, instead of chalcogenide, we propose a metallic resist composed of Mg58Cu29Y13 alloy films, which exhibits a considerable difference in etching rate between amorphous and crystalline states. Furthermore, the heat distribution in Mg58Cu29Y13 thin film is better and can be more easily controlled than that in Ge2Sb2Te5 during exposure. We succeeded in fabricating both continuous and discrete patterns on Mg58Cu29Y13 thin films via laser irradiation and wet etching. Our results demonstrate that a metallic resist of Mg58Cu29Y13 is suitable for phase change lithography, and this type of resist has potential due to its outstanding characteristics. PMID:24931505

  3. REBL nanowriter: Reflective Electron Beam Lithography

    NASA Astrophysics Data System (ADS)

    Petric, Paul; Bevis, Chris; Brodie, Alan; Carroll, Allen; Cheung, Anthony; Grella, Luca; McCord, Mark; Percy, Henry; Standiford, Keith; Zywno, Marek

    2009-03-01

    REBL (Reflective Electron Beam Lithography) is being developed for high throughput electron beam direct write maskless lithography. The system is specifically targeting 5 to 7 wafer levels per hour throughput on average at the 45 nm node, with extendibility to the 32 nm node and beyond. REBL incorporates a number of novel technologies to generate and expose lithographic patterns at estimated throughputs considerably higher than electron beam lithography has been able to achieve as yet. A patented reflective electron optic concept enables the unique approach utilized for the Digital Pattern Generator (DPG). The DPG is a CMOS ASIC chip with an array of small, independently controllable cells or pixels, which act as an array of electron mirrors. In this way, the system is capable of generating the pattern to be written using massively parallel exposure by ~1 million beams at extremely high data rates (~ 1Tbps). A rotary stage concept using a rotating platen carrying multiple wafers optimizes the writing strategy of the DPG to achieve the capability of high throughput for sparse pattern wafer levels. The exposure method utilized by the DPG was emulated on a Vistec VB-6 in order to validate the gray level exposure method used in REBL. Results of these exposure tests are discussed.

  4. Hard-tip, soft-spring lithography.

    PubMed

    Shim, Wooyoung; Braunschweig, Adam B; Liao, Xing; Chai, Jinan; Lim, Jong Kuk; Zheng, Gengfeng; Mirkin, Chad A

    2011-01-27

    Nanofabrication strategies are becoming increasingly expensive and equipment-intensive, and consequently less accessible to researchers. As an alternative, scanning probe lithography has become a popular means of preparing nanoscale structures, in part owing to its relatively low cost and high resolution, and a registration accuracy that exceeds most existing technologies. However, increasing the throughput of cantilever-based scanning probe systems while maintaining their resolution and registration advantages has from the outset been a significant challenge. Even with impressive recent advances in cantilever array design, such arrays tend to be highly specialized for a given application, expensive, and often difficult to implement. It is therefore difficult to imagine commercially viable production methods based on scanning probe systems that rely on conventional cantilevers. Here we describe a low-cost and scalable cantilever-free tip-based nanopatterning method that uses an array of hard silicon tips mounted onto an elastomeric backing. This method-which we term hard-tip, soft-spring lithography-overcomes the throughput problems of cantilever-based scanning probe systems and the resolution limits imposed by the use of elastomeric stamps and tips: it is capable of delivering materials or energy to a surface to create arbitrary patterns of features with sub-50-nm resolution over centimetre-scale areas. We argue that hard-tip, soft-spring lithography is a versatile nanolithography strategy that should be widely adopted by academic and industrial researchers for rapid prototyping applications. PMID:21270890

  5. Current Status and Perspective of EUV Lithography

    NASA Astrophysics Data System (ADS)

    Nishiyama, Iwao

    The EUV lithography (EUVL) utilizes 13-nm photons as a light source. Because of the short wavelength, it provides a very high resolution and is applicable to the fabrication of multiple generations of semiconductor devices from 45 nm hp down to 32 and even 22 nm hp. This makes EUVL the most promising next-generation lithography, which will follow ArF immersion lithography. However, because the wavelength is so short, bringing EUVL to the level of a practical production tool involves many difficult challenges, such as the development of a high-power light source, high-precision reflective optics, low-defect multilayer masks, a high-resolution high-sensitivity resist, and so on. To overcome the technical difficulties and accelerate the development of EUVL, various projects have been launched and are currently running under the management of SEMATECH (US), NEDEA+ (Europe), and ASET and EUVA (Japan). These activities have produced great advances in EUVL technology in the past several years. A full-field exposure tool for process development (α tool) will be delivered in 2006, and an exposure tool for mass production (γ tool) will be delivered two or three years after that. This presentation gives an overview of recent progress in EUVL.

  6. Metallic resist for phase-change lithography.

    PubMed

    Zeng, Bi Jian; Huang, Jun Zhu; Ni, Ri Wen; Yu, Nian Nian; Wei, Wei; Hu, Yang Zhi; Li, Zhen; Miao, Xiang Shui

    2014-01-01

    Currently, the most widely used photoresists in optical lithography are organic-based resists. The major limitations of such resists include the photon accumulation severely affects the quality of photolithography patterns and the size of the pattern is constrained by the diffraction limit. Phase-change lithography, which uses semiconductor-based resists such as chalcogenide Ge₂Sb₂Te₅ films, was developed to overcome these limitations. Here, instead of chalcogenide, we propose a metallic resist composed of Mg₅₈Cu₂₉Y₁₃ alloy films, which exhibits a considerable difference in etching rate between amorphous and crystalline states. Furthermore, the heat distribution in Mg₅₈Cu₂₉Y₁₃ thin film is better and can be more easily controlled than that in Ge₂Sb₂Te₅ during exposure. We succeeded in fabricating both continuous and discrete patterns on Mg₅₈Cu₂₉Y₁₃ thin films via laser irradiation and wet etching. Our results demonstrate that a metallic resist of Mg₅₈Cu₂₉Y₁₃ is suitable for phase change lithography, and this type of resist has potential due to its outstanding characteristics. PMID:24931505

  7. Self-segregating materials for immersion lithography

    NASA Astrophysics Data System (ADS)

    Sanders, Daniel P.; Sundberg, Linda K.; Brock, Phillip J.; Ito, Hiroshi; Truong, Hoa D.; Allen, Robert D.; McIntyre, Gregory R.; Goldfarb, Dario L.

    2008-03-01

    In this paper, we employ the self-segregating materials approach used in topcoat-free resists for water immersion lithography to extend the performance of topcoat materials for water immersion and to increase the contact angles of organic fluids on topcoat-free resists for high index immersion lithography. By tailoring polymers that segregate to the air and resist interfaces of the topcoat, high contact angle topcoats with relatively low fluorine content are achieved. While graded topcoats may extend the performance and/or reduce the cost of topcoat materials, the large amount of unprotected acidic groups necessary for TMAH development prevent them from achieving the high contact angles and low hysteresis exhibited by topcoat-free resists. Another application of this self-segregating approach is tailoring resist surfaces for high index immersion. Due to the low surface tension and higher viscosities of organic fluids relative to water and their lower contact angles on most surfaces, film pulling cannot be prevented without dramatically reducing wafer scan rates; however, tuning the surface energy of the resist may be important to control stain morphology and facilitate fluid removal from the wafer. By tailoring fluoropolymer additives for high contact angles with second generation organic high index immersion fluids, we show herein that topcoat-free resists can be developed specifically for high index immersion lithography with good contact angles and lithographic imaging performance.

  8. Advanced lithography for micro-optics

    NASA Astrophysics Data System (ADS)

    Zeitner, U. D.; Kley, E.-B.

    2006-08-01

    Since the beginning of micro-optics fabrication most of the used technologies have been adapted from or are related to semiconductor fabrication techniques. These are widely known and the special microelectronics fabrication tools, especially lithography machines, are available at numerous places. Besides the fact that therefore micro-optics was able to took advantage of the steady development of semiconductor technology this tight linkage has also a lot of drawbacks. The adaptation of element properties to the fabrication limits given by the available technologies is very often connected with compromises in optical performance. In nowadays micro-optics fabrication has reached a level which justifies the development of fabrication tools specialized to its own demands. In the article the special demands of optical microstructures on the fabrication technologies are discussed and newly developed mico-optics fabrication tools are introduced. The first one is an electron-beam lithography machine for use with up substrates up to 300mm large and 15mm thick achieving a very high overlay accuracy and writing speed. The second one is a laser-lithography system capable to expose micro-optical structures onto non-planar substrates.

  9. Eddy current X-Y scanner system

    NASA Technical Reports Server (NTRS)

    Kurtz, G. W.

    1983-01-01

    The Nondestructive Evaluation Branch of the Materials and Processes Laboratory became aware of a need for a miniature, portable X-Y scanner capable of performing eddy current or other nondestructive testing scanning operations such as ultrasonic, or small areas of flat plate. The technical description and operational theory of the X-Y scanner system designed and built to fulfill this need are covered. The scanner was given limited testing and performs according to its design intent, which is to scan flat plate areas of approximately 412 sq cm (64 sq in) during each complete cycle of scanning.

  10. Optical design for POS hologram scanner

    NASA Astrophysics Data System (ADS)

    Yamazaki, Kozo; Ichikawa, Toshiyuki; Ikeda, Hiroyuki; Inagaki, Takefumi

    1986-08-01

    This paper presents newly developed optical design techniques for a shallow-type POS hologram scanner. POS scanner optical design involves design of the scan pattern to read the bar code and design of the detection system. For scan pattern design, we have developed a "readability map" method and a "scanning diagram" method. Detection system design took into account laser safety standards, and we used a technique for estimating the power of the detected signal. We have realized a shallow-type POS hologram scanner which is only 16cm high and can be operated from a sitting position.

  11. Pulsed Doppler lidar airborne scanner

    NASA Technical Reports Server (NTRS)

    Dimarzio, C. A.; Mcvicker, D. B.; Morrow, C. E.; Negus, C. C.

    1985-01-01

    This report covers the work accomplished during the reporting period on Pulsed Doppler Lidar Airborne Scanner and describes plans for the next reporting period. The objectives during the current phase of the contract are divided into four phases. Phase 1 includes ground testing of the system and analysis of data from the 1981 Severe Storms Test Flights. Phase 2 consists of preflight preparation and planning for the 1983 flight series. The flight test itself will be performed during Phase 3, and Phase 4 consists of post-flight analysis and operation of the system after that flight test. The range profile from five samples taken during Flight 10, around 1700 Z is given. The lowest curve is taken from data collected upwind of Mt. Shasta at about 10,000 feet of altitude, in a clear atmosphere, where no signals were observed. It thus is a good representation of the noise level as a function of range. The next curve was taken downwind of the mountain, and shows evidence of atmospheric returns. There is some question as to whether the data are valid at all ranges, or some ranges are contaminated by the others.

  12. Pulsed Doppler lidar airborne scanner

    NASA Astrophysics Data System (ADS)

    Dimarzio, C. A.; McVicker, D. B.; Morrow, C. E.; Negus, C. C.

    1985-10-01

    This report covers the work accomplished during the reporting period on Pulsed Doppler Lidar Airborne Scanner and describes plans for the next reporting period. The objectives during the current phase of the contract are divided into four phases. Phase 1 includes ground testing of the system and analysis of data from the 1981 Severe Storms Test Flights. Phase 2 consists of preflight preparation and planning for the 1983 flight series. The flight test itself will be performed during Phase 3, and Phase 4 consists of post-flight analysis and operation of the system after that flight test. The range profile from five samples taken during Flight 10, around 1700 Z is given. The lowest curve is taken from data collected upwind of Mt. Shasta at about 10,000 feet of altitude, in a clear atmosphere, where no signals were observed. It thus is a good representation of the noise level as a function of range. The next curve was taken downwind of the mountain, and shows evidence of atmospheric returns. There is some question as to whether the data are valid at all ranges, or some ranges are contaminated by the others.

  13. Flexure pivots for oscillatory scanners

    NASA Astrophysics Data System (ADS)

    Brown, David C.; Pruyn, Kristopher

    2002-06-01

    Flexures are quite ancient, and their use as pivots is also ancient. Long before the use of the most primitive sleeve bearings leather strap flexures were used as trunk lidhinges and the like. Early engines of war, including the ballista of the Romans, technically advanced hand bows, and the cross bows of the fourteenth century all employ flexure pivots as their enabling technology. Designers of modern scientific instruments, including optical and laser scanning equipment exploit the same attributes of the flexure which appealed to their forefathers: simplicity, reliability, lack of internal clearance, long service life, ease of construction, and often, it's high mechanical Q. A special case of the flexure pivot, the torsional pivot, has made possible very long lived scanners at speeds which are far out of the reach of other bearing types. Since success with flexures requires consideration of some simple but non-intuitive issues such as stress distribution and stress corrosion, this talk will emphasize the practicum of flexure design and application.

  14. A mask manufacturer's perspective on maskless lithography

    NASA Astrophysics Data System (ADS)

    Buck, Peter; Biechler, Charles; Kalk, Franklin

    2005-11-01

    Maskless Lithography (ML2) is again being considered for use in mainstream CMOS IC manufacturing. Sessions at technical conferences are being devoted to ML2. A multitude of new companies have been formed in the last several years to apply new concepts to breaking the throughput barrier that has in the past prevented ML2 from achieving the cost and cycle time performance necessary to become economically viable, except in rare cases. Has Maskless Lithography's (we used to call it "Direct Write Lithography") time really come? If so, what is the expected impact on the mask manufacturer and does it matter? The lithography tools used today in mask manufacturing are similar in concept to ML2 except for scale, both in throughput and feature size. These mask tools produce highly accurate lithographic images directly from electronic pattern files, perform multi-layer overlay, and mix-n-match across multiple tools, tool types and sites. Mask manufacturers are already accustomed to the ultimate low volume - one substrate per design layer. In order to achieve the economically required throughput, proposed ML2 systems eliminate or greatly reduce some of the functions that are the source of the mask writer's accuracy. Can these ML2 systems meet the demanding lithographic requirements without these functions? ML2 may eliminate the reticle but many of the processes and procedures performed today by the mask manufacturer are still required. Examples include the increasingly complex mask data preparation step and the verification performed to ensure that the pattern on the reticle is accurately representing the design intent. The error sources that are fixed on a reticle are variable with time on an ML2 system. It has been proposed that if ML2 is successful it will become uneconomical to be in the mask business - that ML2, by taking the high profit masks will take all profitability out of mask manufacturing and thereby endanger the entire semiconductor industry. Others suggest that a

  15. Deep-UV interference lithography combined with masked contact lithography for pixel wiregrid patterns

    NASA Astrophysics Data System (ADS)

    Lombardo, David; Shah, Piyush; Guo, Pengfei; Sarangan, Andrew

    2016-04-01

    Pixelated wiregrids are of great interest in polarimetric imagers, but there are no straightforward methods available for combining the uniform exposures of laser interference with a masking system to achieve pixels at different rotational angles. In this work we demonstrate a 266nm deep-UV interference lithography combined with a traditional i-line contact lithography to create such pixels. Aluminum wiregrids are first made, following by etching to create the pixels, and then a planarizing molybdenum film is used before patterning subsequent pixel arrays. The etch contrast between the molybdenum and the aluminum enables the release of the planarizing layer.

  16. 75 FR 44015 - Certain Semiconductor Products Made by Advanced Lithography Techniques and Products Containing...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-27

    ... COMMISSION Certain Semiconductor Products Made by Advanced Lithography Techniques and Products Containing... importation of certain semiconductor products made by advanced lithography techniques and products containing... certain semiconductor products made by advanced lithography techniques or products containing same...

  17. Hand-held optical fuel pin scanner

    DOEpatents

    Kirchner, Tommy L.; Powers, Hurshal G.

    1987-01-01

    An optical scanner for indicia arranged in a focal plane perpendicular to an optical system including a rotatable dove prism. The dove prism transmits a rotating image to a stationary photodiode array.

  18. Hand-held optical fuel pin scanner

    DOEpatents

    Kirchner, T.L.; Powers, H.G.

    1980-12-07

    An optical scanner for indicia arranged in a focal plane perpendicular to an optical system including a rotatable dove prism. The dove prism transmits a rotating image to a stationary photodiode array.

  19. Information extraction techniques for multispectral scanner data

    NASA Technical Reports Server (NTRS)

    Malila, W. A.; Crane, R. B.; Turner, R. E.

    1972-01-01

    The applicability of recognition-processing procedures for multispectral scanner data from areas and conditions used for programming the recognition computers to other data from different areas viewed under different measurement conditions was studied. The reflective spectral region approximately 0.3 to 3.0 micrometers is considered. A potential application of such techniques is in conducting area surveys. Work in three general areas is reported: (1) Nature of sources of systematic variation in multispectral scanner radiation signals, (2) An investigation of various techniques for overcoming systematic variations in scanner data; (3) The use of decision rules based upon empirical distributions of scanner signals rather than upon the usually assumed multivariate normal (Gaussian) signal distributions.

  20. How flatbed scanners upset accurate film dosimetry.

    PubMed

    van Battum, L J; Huizenga, H; Verdaasdonk, R M; Heukelom, S

    2016-01-21

    Film is an excellent dosimeter for verification of dose distributions due to its high spatial resolution. Irradiated film can be digitized with low-cost, transmission, flatbed scanners. However, a disadvantage is their lateral scan effect (LSE): a scanner readout change over its lateral scan axis. Although anisotropic light scattering was presented as the origin of the LSE, this paper presents an alternative cause. Hereto, LSE for two flatbed scanners (Epson 1680 Expression Pro and Epson 10000XL), and Gafchromic film (EBT, EBT2, EBT3) was investigated, focused on three effects: cross talk, optical path length and polarization. Cross talk was examined using triangular sheets of various optical densities. The optical path length effect was studied using absorptive and reflective neutral density filters with well-defined optical characteristics (OD range 0.2-2.0). Linear polarizer sheets were used to investigate light polarization on the CCD signal in absence and presence of (un)irradiated Gafchromic film. Film dose values ranged between 0.2 to 9 Gy, i.e. an optical density range between 0.25 to 1.1. Measurements were performed in the scanner's transmission mode, with red-green-blue channels. LSE was found to depend on scanner construction and film type. Its magnitude depends on dose: for 9 Gy increasing up to 14% at maximum lateral position. Cross talk was only significant in high contrast regions, up to 2% for very small fields. The optical path length effect introduced by film on the scanner causes 3% for pixels in the extreme lateral position. Light polarization due to film and the scanner's optical mirror system is the main contributor, different in magnitude for the red, green and blue channel. We concluded that any Gafchromic EBT type film scanned with a flatbed scanner will face these optical effects. Accurate dosimetry requires correction of LSE, therefore, determination of the LSE per color channel and dose delivered to the film. PMID:26689962

  1. Uncertainty Propagation for Terrestrial Mobile Laser Scanner

    NASA Astrophysics Data System (ADS)

    Mezian, c.; Vallet, Bruno; Soheilian, Bahman; Paparoditis, Nicolas

    2016-06-01

    Laser scanners are used more and more in mobile mapping systems. They provide 3D point clouds that are used for object reconstruction and registration of the system. For both of those applications, uncertainty analysis of 3D points is of great interest but rarely investigated in the literature. In this paper we present a complete pipeline that takes into account all the sources of uncertainties and allows to compute a covariance matrix per 3D point. The sources of uncertainties are laser scanner, calibration of the scanner in relation to the vehicle and direct georeferencing system. We suppose that all the uncertainties follow the Gaussian law. The variances of the laser scanner measurements (two angles and one distance) are usually evaluated by the constructors. This is also the case for integrated direct georeferencing devices. Residuals of the calibration process were used to estimate the covariance matrix of the 6D transformation between scanner laser and the vehicle system. Knowing the variances of all sources of uncertainties, we applied uncertainty propagation technique to compute the variance-covariance matrix of every obtained 3D point. Such an uncertainty analysis enables to estimate the impact of different laser scanners and georeferencing devices on the quality of obtained 3D points. The obtained uncertainty values were illustrated using error ellipsoids on different datasets.

  2. Challenges for 1x-nm device fabrication using EUVL: scanner and mask

    NASA Astrophysics Data System (ADS)

    Arnold, William H.

    2011-11-01

    EUVL lithography using high resolution step and scan systems operating at 13.5nm is being inserted in leading edge production lines for memory and logic devices. These tools use mirror optics and either laser produced plasma (LPP) or discharge produced plasma (DPP) sources along with reflective reduction masks to image circuit features. These tools show their capability to meet the challenging device requirements for imaging and overlay. Next generation scanners with resolution and overlay capability to produce 1X nm (10 nm class) memory and logic devices are in preparation. Challenges remain for EUVL, the principal of which are increasing source power enabling high productivity, building a volume mask business encouraging rapid learning cycles, and improving resist performance so it is capable of sub 20nm resolution.

  3. Fabrication of metallic nanowires and nanoribbons using laser interference lithography and shadow lithography

    SciTech Connect

    Park, Joong- Mok; Nalwa, Kanwar Singh; Leung, Wai; Constant, Kristen; Chaudhary, Sumit; Ho, Kai-Ming

    2010-04-30

    Ordered and free-standing metallic nanowires were fabricated by e-beam deposition on patterned polymer templates made by interference lithography. The dimensions of the nanowires can be controlled through adjustment of deposition conditions and polymer templates. Grain size, polarized optical transmission and electrical resistivity were measured with ordered and free-standing nanowires.

  4. EUV High-NA scanner and mask optimization for sub 8 nm resolution

    NASA Astrophysics Data System (ADS)

    van Schoot, Jan; van Ingen Schenau, Koen; Bottiglieri, Gerardo; Troost, Kars; Zimmerman, John; Migura, Sascha; Kneer, Bernhard; Neumann, Jens Timo; Kaiser, Winfried

    2015-10-01

    EUV lithography for resolution below 8 nm half pitch requires the numerical aperture (NA) of the projection lens to be significantly larger than the current state-of-the-art 0.33NA. In order to be economically viable, a throughput in the range of 100 wafers per hour is needed. As a result of the increased NA, the incidence angles of the light rays at the mask increase significantly. Consequently the shadowing and the variation of the multi-layer reflectivity deteriorate the aerial image contrast to unacceptably low values at the current 4x magnification. The only solution to reduce the angular range at the mask is to increase the magnification. Simulations show that we have to double the magnification to 8x in order to overcome the shadowing effects. Assuming that the mask infrastructure will not change the mask form factor, this would inevitably lead to a field size that is a quarter of the field size of current 0.33NA step and scan systems. This would reduce the throughput of the high-NA scanner to a value significantly below 100 wafers per hour unless additional measures are taken. This paper presents an anamorphic step and scan system capable to print fields that are half the field size of the current full field. The anamorphic system has the potential to achieve a throughput in excess of 150 wafers per hour by increasing the transmission of the optics as well as increasing the acceleration of the wafer stage and mask stage. This makes it an economically viable lithography solution. The proposed 4x/8x magnification is not the only logical solution. There are potentially other magnifications to increase the scanner performance while at the same time reducing the mask requirements.

  5. EUV high-NA scanner and mask optimization for sub-8nm resolution

    NASA Astrophysics Data System (ADS)

    van Schoot, Jan; van Ingen Schenau, Koen; Bottiglieri, Gerardo; Troost, Kars; Zimmerman, John; Migura, Sascha; Kneer, Bernhard; Neumann, Jens Timo; Kaiser, Winfried

    2016-03-01

    EUV lithography for resolution below 8 nm half pitch requires the numerical aperture (NA) of the projection lens to be significantly larger than the current state-of-the-art 0.33NA. In order to be economically viable, a throughput in the range of 100 wafers per hour is needed. As a result of the increased NA, the incidence angles of the light rays at the mask increase significantly. Consequently the shadowing and the variation of the multi-layer reflectivity deteriorate the aerial image contrast to unacceptably low values at the current 4x magnification. The only solution to reduce the angular range at the mask is to increase the magnification. Simulations show that we have to double the magnification to 8x in order to overcome the shadowing effects. Assuming that the mask infrastructure will not change the mask form factor, this would inevitably lead to a field size that is a quarter of the field size of current 0.33NA step and scan systems. This would reduce the throughput of the high-NA scanner to a value significantly below 100 wafers per hour unless additional measures are taken. This paper presents an anamorphic step and scan system capable to print fields that are half the field size of the current full field. The anamorphic system has the potential to achieve a throughput in excess of 150 wafers per hour by increasing the transmission of the optics as well as increasing the acceleration of the wafer stage and mask stage. This makes it an economically viable lithography solution. The proposed 4x/8x magnification is not the only logical solution. There are potentially other magnifications to increase the scanner performance while at the same time reducing the m ask requirements.

  6. Immersion and dry ArF scanners enabling 22nm HP production and beyond

    NASA Astrophysics Data System (ADS)

    Uehara, Yusaku; Ishikawa, Jun; Kohno, Hirotaka; Tanaka, Eiichiro; Ohba, Masanori; Shibazaki, Yuichi

    2012-03-01

    Pattern shrinks using multiple patterning techniques will continue to the 22nm half pitch (HP) node and beyond. The cutting-edge Nikon NSR-S621D immersion lithography tool, which builds upon the technology advancements of the NSR-S620D [1], was developed to satisfy the aggressive requirements for the 22 nm HP node and subsequent generations. The key design challenge for the S621D was to deliver further improvements to product overlay performance and CD uniformity, while also providing increased productivity. Since many different products are made within an IC manufacturing facility, various wafer process-related issues, including the flatness or grid distortion of the processed wafers and exposure-induced heating had to be addressed. Upgrades and enhancements were made to the S620D hardware and software systems to enable the S621D to minimize these process-related effects and deliver the necessary scanner performance. To enable continued process technology advancements, in addition to pattern shrinks at the most critical layers, resolution for less critical layers must also be improved proportionally. As a result, increased demand for dry ArF instead of KrF scanners is expected for less critical layers, and dry ArF tools are already being employed for some of these applications. Further, multiple patterning techniques, such as sidewall double patterning, actually enable use of dry ArF instead of immersion scanners for some critical layers having relaxed pattern resolution requirements. However, in order for this to be successful, the ArF dry tool must deliver overlay performance that is comparable to the latest generation immersion systems. Understanding these factors, an ArF dry scanner that has excellent overlay performance could be used effectively for critical layers and markedly improve cost of ownership (CoO). Therefore, Nikon has developed the NSR-S320F, a new dry ArF scanner also built upon the proven S620D Streamlign platform. By incorporating the

  7. Materials Design for Block Copolymer Lithography

    NASA Astrophysics Data System (ADS)

    Sweat, Daniel Patrick

    Block copolymers (BCPs) have attracted a great deal of scientific and technological interest due to their ability to spontaneously self-assemble into dense periodic nanostructures with a typical length scale of 5 to 50 nm. The use of self-assembled BCP thin-films as templates to form nanopatterns over large-area is referred to as BCP lithography. Directed self-assembly of BCPs is now viewed as a viable candidate for sub-20 nm lithography by the semiconductor industry. However, there are multiple aspects of assembly and materials design that need to be addressed in order for BCP lithography to be successful. These include substrate modification with polymer brushes or mats, tailoring of the block copolymer chemistry, understanding thin-film assembly and developing epitaxial like methods to control long range alignment. The rational design, synthesis and self-assembly of block copolymers with large interaction parameters (chi) is described in the first part of this dissertation. Two main blocks were chosen for introducing polarity into the BCP system, namely poly(4-hydroxystyrene) and poly(2-vinylpyridine). Each of these blocks are capable of ligating Lewis acids which can increase the etch contrast between the blocks allowing for facile pattern transfer to the underlying substrate. These BCPs were synthesized by living anionic polymerization and showed excellent control over molecular weight and dispersity, providing access to sub 5-nm domain sizes. Polymer brushes consist of a polymer chain with one end tethered to the surface and have wide applicability in tuning surface energy, forming responsive surfaces and increasing biocompatibility. In the second part of the dissertation, we present a universal method to grow dense polymer brushes on a wide range of substrates and combine this chemistry with BCP assembly to fabricate nanopatterned polymer brushes. This is the first demonstration of introducing additional functionality into a BCP directing layer and opens up

  8. Illumination optimization in optical projective lithography

    NASA Astrophysics Data System (ADS)

    Jiang, Hai-bo; Xing, Ting-wen; Du, Meng; Chen, An

    2013-08-01

    As lithography still pushing toward to lower K1 imaging, traditional illumination source shapes may perform marginally in resolving complex layouts, freeform source shapes are expected to achieve better image quality. Illumination optimization as one of inverse lithography techniques attempts to synthesize the input source which leads to the desired output wafer pattern by inverting the forward model from mask to wafer. Usually, inverse lithography problem could be solved by standard numerical methods. Recently, a set of gradient-based numerical methods have been developed to solve the mask optimization problem based on Hopkins' approach. In this study, the same method is also applied to resolve the illumination optimization but based on Abbe imaging formulation for partially coherent illumination. Firstly we state a pixel-based source representation, and analyze the constraint condition for source intensity. Secondly, we propose an objective function which includes three aspects: image fidelity, source smoothness and discretization penalty. Image fidelity is to ensure that the image is as close to the given mask as possible. Source smoothness and discretization penalty are to decrease the source complexity. All of the three items could be described mathematically. Thirdly, we describe the detailed optimization flow, and present the advantages of using Abbe imaging formulation as calculation mode of light intensity. Finally, some simulations were done with initial conventional illumination for 90nm isolated, dense and elbow features separately. As a result, we get irregular dipole source shapes for isolated and dense pattern, and irregular quadrupole for elbow pattern. The results also show that our method could provide great improvements in both image fidelity and source complexity.

  9. Molecular resists for EUV and EB lithography

    NASA Astrophysics Data System (ADS)

    Takemoto, Ichiki; Ando, Nobuo; Edamatsu, Kunishige; Lee, Youngjoon; Takashima, Masayuki; Yokoyama, Hiroyuki

    2008-03-01

    Extreme ultraviolet lithography at a wavelength of 13.5 nm has been prepared for next generation lithography for several years. Of primary concern in EUV lithography is line edge roughness as well as high sensitivity. In recent years, various types of resist, such as protected PHS resin resist and molecular resist, have been investigated. In order to reduce LER, we have studied novel molecular resists which are promising alternative to polymeric photoresists for use as imaging materials with improved resolution and line edge roughness. The work reported in this paper has focused on the development of a new class of chemically amplified molecular resists that are composed of a single molecule which contains all of the different functionalities desired in a chemically amplified resists. For the purpose of improvement of the resist performance, we have designed the resist material of a protected polyphenol derivative (protected Compound A). PAG moiety is bonded to Compound A to achieve uniform PAG density and to control the acid diffusion length in a resist film. We analyzed uniformity of PAG density in a resist film by using gradient shaving preparation and TOF-SIMS analysis. From the TOF-SIMS spectra, the ions intensities of the PAG moiety are almost constant from the surface to the bottom of the film. Therefore, we can conclude that PAG is distributed homogeneously. Under e-beam exposure, a 100nm thick film of the PAG bonded molecular resist resolved lines down to 100nm. We also discussed the new design for molecular resists, their synthesis and lithographic performance.

  10. Plasma formed ion beam projection lithography system

    SciTech Connect

    Leung, Ka-Ngo; Lee, Yung-Hee Yvette; Ngo, Vinh; Zahir, Nastaran

    2002-01-01

    A plasma-formed ion-beam projection lithography (IPL) system eliminates the acceleration stage between the ion source and stencil mask of a conventional IPL system. Instead a much thicker mask is used as a beam forming or extraction electrode, positioned next to the plasma in the ion source. Thus the entire beam forming electrode or mask is illuminated uniformly with the source plasma. The extracted beam passes through an acceleration and reduction stage onto the resist coated wafer. Low energy ions, about 30 eV, pass through the mask, minimizing heating, scattering, and sputtering.

  11. Wave and Particle in Molecular Interference Lithography

    SciTech Connect

    Juffmann, Thomas; Truppe, Stefan; Geyer, Philipp; Major, Andras G.; Arndt, Markus; Deachapunya, Sarayut; Ulbricht, Hendrik

    2009-12-31

    The wave-particle duality of massive objects is a cornerstone of quantum physics and a key property of many modern tools such as electron microscopy, neutron diffraction or atom interferometry. Here we report on the first experimental demonstration of quantum interference lithography with complex molecules. Molecular matter-wave interference patterns are deposited onto a reconstructed Si(111) 7x7 surface and imaged using scanning tunneling microscopy. Thereby both the particle and the quantum wave character of the molecules can be visualized in one and the same image. This new approach to nanolithography therefore also represents a sensitive new detection scheme for quantum interference experiments.

  12. Wave and particle in molecular interference lithography.

    PubMed

    Juffmann, Thomas; Truppe, Stefan; Geyer, Philipp; Major, András G; Deachapunya, Sarayut; Ulbricht, Hendrik; Arndt, Markus

    2009-12-31

    The wave-particle duality of massive objects is a cornerstone of quantum physics and a key property of many modern tools such as electron microscopy, neutron diffraction or atom interferometry. Here we report on the first experimental demonstration of quantum interference lithography with complex molecules. Molecular matter-wave interference patterns are deposited onto a reconstructed Si(111) 7x7 surface and imaged using scanning tunneling microscopy. Thereby both the particle and the quantum wave character of the molecules can be visualized in one and the same image. This new approach to nanolithography therefore also represents a sensitive new detection scheme for quantum interference experiments. PMID:20366311

  13. Nanoimprint lithography: an enabling technology for nanophotonics

    NASA Astrophysics Data System (ADS)

    Yao, Yuhan; Liu, He; Wang, Yifei; Li, Yuanrui; Song, Boxiang; Bratkovsk, Alexandre; Wang, Shih-Yuan; Wu, Wei

    2015-11-01

    Nanoimprint lithography (NIL) is an indispensable tool to realize a fast and accurate nanoscale patterning in nanophotonics due to high resolution and high yield. The number of publication on NIL has increased from less than a hundred per year to over three thousand per year. In this paper, the most recent developments on NIL patterning transfer processes and its applications on nanophotonics are discussed and reviewed. NIL has been opening up new opportunities for nanophotonics, especially in fabricating optical meta-materials. With more researches on this low-cost high-throughput fabrication technology, we should anticipate a brighter future for nanophotonics and NIL.

  14. EUV lithography: progress, challenges, and outlook

    NASA Astrophysics Data System (ADS)

    Wurm, S.

    2014-10-01

    Extreme Ultraviolet Lithography (EUVL) has been in the making for more than a quarter century. The first EUVL production tools have been delivered over the past year and chip manufacturers and suppliers are maturing the technology in pilot line mode to prepare for high volume manufacturing (HVM). While excellent progress has been made in many technical and business areas to prepare EUVL for HVM introduction, there are still critical technical and business challenges to be addressed before the industry will be able to use EUVL in HVM.

  15. Atom Lithography with a Holographic Light Mask

    NASA Astrophysics Data System (ADS)

    Mützel, M.; Tandler, S.; Haubrich, D.; Meschede, D.; Peithmann, K.; Flaspöhler, M.; Buse, K.

    2002-02-01

    In atom lithography with optical masks, deposition of an atomic beam on a given substrate is controlled by a standing light-wave field. The lateral intensity distribution of the light field is transferred to the substrate with nanometer scale. We have tailored a complex pattern of this intensity distribution through diffraction of a laser beam from a hologram that is stored in a photorefractive crystal. This method can be extended to superpose 1000 or more laser beams. The method is furthermore applicable during growth processes and thus allows full 3D structuring of suitable materials with periodic and nonperiodic patterns at nanometer scales.

  16. Antiadhesion considerations for UV nanoimprint lithography

    SciTech Connect

    Houle, F. A.; Rettner, C. T.; Miller, D. C.; Sooriyakumaran, R.

    2007-05-21

    Low surface energy fluorosilane layers are widely used as release coatings for quartz templates in UV nanoimprint lithography, yet they are generally found to degrade with use. It is found that these layers are chemically attacked when used with UV cured methacrylate and vinyl ether resists, as found previously for acrylate resists, leading to the conclusion that low reactivity and not low surface energy is of importance for effective release layers. It is shown that an ion-beam deposited diamondlike carbon release coating is a useful alternative, having both stability in a reactive environment and lower adhesion despite its higher surface energy.

  17. Film stacking architecture for immersion lithography process

    NASA Astrophysics Data System (ADS)

    Goto, Tomohiro; Sanada, Masakazu; Miyagi, Tadashi; Shigemori, Kazuhito; Kanaoka, Masashi; Yasuda, Shuichi; Tamada, Osamu; Asai, Masaya

    2008-03-01

    In immersion lithography process, film stacking architecture will be necessary due to film peeling. However, the architecture will restrict lithographic area within a wafer due to top side EBR accuracy In this paper, we report an effective film stacking architecture that also allows maximum lithographic area. This study used a new bevel rinse system on RF3 for all materials to make suitable film stacking on the top side bevel. This evaluation showed that the new bevel rinse system allows the maximum lithographic area and a clean wafer edge. Patterning defects were improved with suitable film stacking.

  18. Exposure tool control for advanced semiconductor lithography

    NASA Astrophysics Data System (ADS)

    Matsuyama, Tomoyuki

    2015-08-01

    This is a review paper to show how we control exposure tool parameters in order to satisfy patterning performance and productivity requirements for advanced semiconductor lithography. In this paper, we will discuss how we control illumination source shape to satisfy required imaging performance, heat-induced lens aberration during exposure to minimize the aberration impact on imaging, dose and focus control to realize uniform patterning performance across the wafer and patterning position of circuit patterns on different layers. The contents are mainly about current Nikon immersion exposure tools.

  19. Laser lithography by photon scanning tunneling microscopy

    SciTech Connect

    Lee, I.; Warmack, R.J.; Ferrell, T.L.

    1993-06-01

    We have investigated the possibility of using a photon scanning tunneling microscope (PSTM) for laser lithography. A contrast enhancement material (CEM) is coated onto a sample slide and coupled to the prism of a PSTM. The CEM becomes transparent above a laser (HeCd at a wavelength of 442 nm) intensity threshold attained due to the proximity of the probe tip. The same surface can then be inspected using the given experimental configuration by replacing the HeCd laser line with a non-exposing 633-nm HeNe laser line. Direct patterns can be produced by varying the exposure time and the shape of the probe tip.

  20. MEMS temperature scanner: principles, advances, and applications

    NASA Astrophysics Data System (ADS)

    Otto, Thomas; Saupe, Ray; Stock, Volker; Gessner, Thomas

    2010-02-01

    Contactless measurement of temperatures has gained enormous significance in many application fields, ranging from climate protection over quality control to object recognition in public places or military objects. Thereby measurement of linear or spatially temperature distribution is often necessary. For this purposes mostly thermographic cameras or motor driven temperature scanners are used today. Both are relatively expensive and the motor drive devices are limited regarding to the scanning rate additionally. An economic alternative are temperature scanner devices based on micro mirrors. The micro mirror, attached in a simple optical setup, reflects the emitted radiation from the observed heat onto an adapted detector. A line scan of the target object is obtained by periodic deflection of the micro scanner. Planar temperature distribution will be achieved by perpendicularly moving the target object or the scanner device. Using Planck radiation law the temperature of the object is calculated. The device can be adapted to different temperature ranges and resolution by using different detectors - cooled or uncooled - and parameterized scanner parameters. With the basic configuration 40 spatially distributed measuring points can be determined with temperatures in a range from 350°C - 1000°C. The achieved miniaturization of such scanners permits the employment in complex plants with high building density or in direct proximity to the measuring point. The price advantage enables a lot of applications, especially new application in the low-price market segment This paper shows principle, setup and application of a temperature measurement system based on micro scanners working in the near infrared range. Packaging issues and measurement results will be discussed as well.

  1. A review of roll-to-roll nanoimprint lithography

    PubMed Central

    2014-01-01

    Since its introduction in 1995, nanoimprint lithography has been demonstrated in many researches as a simple, low-cost, and high-throughput process for replicating micro- and nanoscale patterns. Due to its advantages, the nanoimprint lithography method has been rapidly developed over the years as a promising alternative to conventional nanolithography processes to fulfill the demands generated from the recent developments in the semiconductor and flexible electronics industries, which results in variations of the process. Roll-to-roll (R2R) nanoimprint lithography (NIL) is the most demanded technique due to its high-throughput fulfilling industrial-scale application. In the present work, a general literature review on the various types of nanoimprint lithography processes especially R2R NIL and the methods commonly adapted to fabricate imprint molds are presented to provide a clear view and understanding on the nanoimprint lithography technique as well as its recent developments. PACS 81.16.Nd PMID:25024682

  2. Precise Indoor Localization for Mobile Laser Scanner

    NASA Astrophysics Data System (ADS)

    Kaijaluoto, R.; Hyyppä, A.

    2015-05-01

    Accurate 3D data is of high importance for indoor modeling for various applications in construction, engineering and cultural heritage documentation. For the lack of GNSS signals hampers use of kinematic platforms indoors, TLS is currently the most accurate and precise method for collecting such a data. Due to its static single view point data collection, excessive time and data redundancy are needed for integrity and coverage of data. However, localization methods with affordable scanners are used for solving mobile platform pose problem. The aim of this study was to investigate what level of trajectory accuracies can be achieved with high quality sensors and freely available state of the art planar SLAM algorithms, and how well this trajectory translates to a point cloud collected with a secondary scanner. In this study high precision laser scanners were used with a novel way to combine the strengths of two SLAM algorithms into functional method for precise localization. We collected five datasets using Slammer platform with two laser scanners, and processed them with altogether 20 different parameter sets. The results were validated against TLS reference. The results show increasing scan frequency improves the trajectory, reaching 20 mm RMSE levels for the best performing parameter sets. Further analysis of the 3D point cloud showed good agreement with TLS reference with 17 mm positional RMSE. With precision scanners the obtained point cloud allows for high level of detail data for indoor modeling with accuracies close to TLS at best with vastly improved data collection efficiency.

  3. LANSCE-R WIRE-SCANNER SYSTEM

    SciTech Connect

    Gruchalla, Michael E.

    2011-01-01

    The National Instruments cRIO platform is used for the new LANSCE-R wire-scanner systems. All wire-scanner electronics are integrated into a single BiRa BiRIO 4U cRIO chassis specifically designed for the cRIO crate and all interface electronics. The BiRIO chassis, actuator and LabVIEW VIs provide a complete wire-scanner system integrated with EPICS. The new wire-scanner chassis includes an 8-slot cRIO crate with Virtex-5 LX 110 FPGA and Power-PC real-time controller, the LANL-developed cRIO 2-axis wire-sensor analog interface module (AFE), NI9222 cRIO 4-channel 16-bit digitizer, cRIO resolver demodulator, cRIO event receiver, front-panel touch panel display, motor driver, and all necessary software, interface wiring, connectors and ancillary components. This wirescanner system provides a complete, turn-key, 2-axis wire-scanner system including 2-channel low-noise sensewire interface with variable DC wire bias and wireintegrity monitor, 16-bit signal digitizers, actuator motor drive and control, actuator position sensing, limit-switch interfaces, event receiver, LabVIEW and EPICS interface, and both remote operation and full stand-alone operation using the touch panel.

  4. Development of a novel laser range scanner

    NASA Astrophysics Data System (ADS)

    Pheiffer, Thomas S.; Lennon, Brian; Simpson, Amber L.; Miga, Michael I.

    2011-03-01

    Laser range scanning an organ surface intraoperatively provides a cost effective and accurate means of measuring geometric changes in tissue. A novel laser range scanner with integrated tracking was designed, developed, and analyzed with the goal of providing intraoperative surface data during neurosurgery. The scanner is fitted with passive spheres to be optically tracked in the operating room. The design notably includes a single-lens system capable of acquiring the geometric information (as a Cartesian point cloud) via laser illumination and charge-coupled device (CCD) collection, as well as the color information via visible light collection on the same CCD. The geometric accuracy was assessed by scanning a machined phantom of known dimensions and comparing relative distances of landmarks from the point cloud to the known distances. The ability of the scanner to be tracked was first evaluated by perturbing its orientation in front of the optical tracking camera and recording the number of spheres visible to the camera at each orientation, and then by observing the variance in point cloud locations of a fixed object when the tracking camera is moved around the scanner. The scanning accuracy test resulted in an RMS error of 0.47 mm with standard deviation of 0.40 mm. The sphere visibility test showed that four diodes were visible in most of the probable operating orientations, and the overall tracking standard deviation was observed to be 1.49 mm. Intraoperative collection of cortical surface scans using the new scanner is currently underway.

  5. Cognition for robot scanner based remote welding

    NASA Astrophysics Data System (ADS)

    Thombansen, U.; Ungers, Michael

    2014-02-01

    The effort for reduced cycle times in manufacturing has supported the development of remote welding systems which use a combination of scanners for beam delivery and robots for scanner positioning. Herein, close coupling of both motions requires a precise command of the robot trajectory and the scanner positioning to end up with a combined beam delivery. Especially the path precision of the robot plays a vital role in this kinematic chain. In this paper, a sensor system is being presented which allows tracking the motion of the laser beam against the work piece. It is based on a camera system which is coaxially connected to the scanner thus observing the relative motion of the laser beam relative to the work piece. The acquired images are processed with computer vision algorithms from the field of motion detection. The suitability of the algorithms is being demonstrated with a motion tracking tool which visualizes the homogeneity of the tracking result. The reported solution adds cognitive capabilities to manufacturing systems for robot scanner based materials processing. It allows evaluation of the relative motion between work piece and the laser beam. Moreover, the system can be used to adapt system programming during set-up of a manufacturing task or to evaluate the functionality of a manufacturing system during production. The presented sensor system will assist in optimizing manufacturing processes.

  6. EXPERIMENTS IN LITHOGRAPHY FROM REMOTE SENSOR IMAGERY.

    USGS Publications Warehouse

    Kidwell, R. H.; McSweeney, J.; Warren, A.; Zang, E.; Vickers, E.

    1983-01-01

    Imagery from remote sensing systems such as the Landsat multispectral scanner and return beam vidicon, as well as synthetic aperture radar and conventional optical camera systems, contains information at resolutions far in excess of that which can be reproduced by the lithographic printing process. The data often require special handling to produce both standard and special map products. Some conclusions have been drawn regarding processing techniques, procedures for production, and printing limitations.

  7. Absolute dosimetry for extreme-ultraviolet lithography

    NASA Astrophysics Data System (ADS)

    Berger, Kurt W.; Campiotti, Richard H.

    2000-06-01

    The accurate measurement of an exposure dose reaching the wafer on an extreme ultraviolet (EUV) lithographic system has been a technical challenge directly applicable to the evaluation of candidate EUV resist materials and calculating lithography system throughputs. We have developed a dose monitoring sensor system that can directly measure EUV intensities at the wafer plane of a prototype EUV lithographic system. This sensor system, located on the wafer stage adjacent to the electrostatic chuck used to grip wafers, operates by translating the sensor into the aerial image, typically illuminating an 'open' (unpatterned) area on the reticle. The absolute signal strength can be related to energy density at the wafer, and thus used to determine resist sensitivity, and the signal as a function of position can be used to determine illumination uniformity at the wafer plane. Spectral filtering to enhance the detection of 13.4 nm radiation was incorporated into the sensor. Other critical design parameters include the packaging and amplification technologies required to place this device into the space and vacuum constraints of a EUV lithography environment. We describe two approaches used to determine the absolute calibration of this sensor. The first conventional approach requires separate characterization of each element of the sensor. A second novel approach uses x-ray emission from a mildly radioactive iron source to calibrate the absolute response of the entire sensor system (detector and electronics) in a single measurement.

  8. Dynamic maskless holographic lithography and applications

    NASA Astrophysics Data System (ADS)

    McAdams, Daniel R.

    The purpose of this research is to improve the resolution of dynamic maskless holographic lithography (DMHL) by using two-photon absorption, to provide a more thorough characterization of the process, and to expand the functionality of the process by adding previously undemonstrated patterning modes. Two-photon DMHL will be performed in both 2D and 3D configurations with specific characterization relating to process resolution and repeatability. The physical limits of DMHL will be discussed and ways to circumvent them will be proposed and tested. DMHL eliminates the need for a separate mask for every different pattern exposure and allows for real-time shaping of the exposure pattern. It uses an electrically addressable spatial light modulator (SLM) to create an arbitrary intensity pattern at the specimen plane. The SLM is a phase mask that displays a hologram. An algorithm is used to find an appropriate phase hologram for each desired intensity pattern. Each pixel of the SLM shapes the wavefront of the incoming laser light so that the natural Fourier transforming property of a lens causes the desired image to appear in the specimen plane. The process enables one-off projects to be done without the cost of fabricating a mask, and makes it possible to perform lithography with fewer (or even no) moving parts.

  9. Pattern-integrated interference lithography instrumentation

    NASA Astrophysics Data System (ADS)

    Burrow, G. M.; Leibovici, M. C. R.; Kummer, J. W.; Gaylord, T. K.

    2012-06-01

    Multi-beam interference (MBI) provides the ability to form a wide range of sub-micron periodic optical-intensity distributions with applications to a variety of areas, including photonic crystals (PCs), nanoelectronics, biomedical structures, optical trapping, metamaterials, and numerous subwavelength structures. Recently, pattern-integrated interference lithography (PIIL) was presented as a new lithographic method that integrates superposed pattern imaging with interference lithography in a single-exposure step. In the present work, the basic design and systematic implementation of a pattern-integrated interference exposure system (PIIES) is presented to realize PIIL by incorporating a projection imaging capability in a novel three-beam interference configuration. A fundamental optimization methodology is presented to model the system and predict MBI-patterning performance. To demonstrate the PIIL method, a prototype PIIES experimental configuration is presented, including detailed alignment techniques and experimental procedures. Examples of well-defined PC structures, fabricated with a PIIES prototype, are presented to demonstrate the potential of PIIL for fabricating dense integrated optical circuits, as well as numerous other subwavelength structures.

  10. Hard Transparent Arrays for Polymer Pen Lithography.

    PubMed

    Hedrick, James L; Brown, Keith A; Kluender, Edward J; Cabezas, Maria D; Chen, Peng-Cheng; Mirkin, Chad A

    2016-03-22

    Patterning nanoscale features across macroscopic areas is challenging due to the vast range of length scales that must be addressed. With polymer pen lithography, arrays of thousands of elastomeric pyramidal pens can be used to write features across centimeter-scales, but deformation of the soft pens limits resolution and minimum feature pitch, especially with polymeric inks. Here, we show that by coating polymer pen arrays with a ∼175 nm silica layer, the resulting hard transparent arrays exhibit a force-independent contact area that improves their patterning capability by reducing the minimum feature size (∼40 nm), minimum feature pitch (<200 nm for polymers), and pen to pen variation. With these new arrays, patterns with as many as 5.9 billion features in a 14.5 cm(2) area were written using a four hundred thousand pyramid pen array. Furthermore, a new method is demonstrated for patterning macroscopic feature size gradients that vary in feature diameter by a factor of 4. Ultimately, this form of polymer pen lithography allows for patterning with the resolution of dip-pen nanolithography across centimeter scales using simple and inexpensive pen arrays. The high resolution and density afforded by this technique position it as a broad-based discovery tool for the field of nanocombinatorics. PMID:26928012

  11. Mask cost of ownership for advanced lithography

    NASA Astrophysics Data System (ADS)

    Muzio, Edward G.; Seidel, Philip K.

    2000-07-01

    As technology advances, becoming more difficult and more expensive, the cost of ownership (CoO) metric becomes increasingly important in evaluating technical strategies. The International SEMATECH CoC analysis has steadily gained visibility over the past year, as it attempts to level the playing field between technology choices, and create a fair relative comparison. In order to predict mask cots for advanced lithography, mask process flows are modeled using bets-known processing strategies, equipment cost, and yields. Using a newly revised yield mode, and updated mask manufacture flows, representative mask flows can be built. These flows are then used to calculate mask costs for advanced lithography down to the 50 nm node. It is never the goal of this type of work to provide absolute cost estimates for business planning purposes. However, the combination of a quantifiable yield model with a clearly defined set of mask processing flows and a cost model based upon them serves as an excellent starting point for cost driver analysis and process flow discussion.

  12. Mask and lithography techniques for FPD

    NASA Astrophysics Data System (ADS)

    Sandstrom, T.; Wahlsten, M.; Sundelin, E.; Hansson, G.; Svensson, A.

    2015-09-01

    Large-field projection lithography for FPDs has developed gradually since the 90s. The LCD screen technology has remained largely unchanged and incremental development has given us better image quality, larger screen sizes, and above all lower cost per area. Recently new types of mobile devices with very high pixel density and/or OLED displays have given rise to dramatically higher requirem ents on photomask technology. Devices with 600 ppi or m ore need lithography with higher optical resolution and better linewidth control. OLED di splays pose new challenges with high sensitivity to transistor parameters and to capacitive cross-talk. New mask requirements leads to new maskwriter requirements and Mycronic has developed a new generation of large -area mask writers with significantly improved properties. This paper discusses and shows data for the improved writers. Mask production to high er quality stan dards also need metrology to verify the quality and Mycronic has introduced a 2D metrology tool with accuracy adequate for current and future masks. New printing or additive methods of producing disp lays on plastic or metal foil will make low-cost disp lays available. This inexpensive type of disp lays will exist side by side with the photographic quality displays of TVs and mobile devices, which will continue to be a challenge in terms of mask and production quality.

  13. Economic consequences of high throughput maskless lithography

    NASA Astrophysics Data System (ADS)

    Hartley, John G.; Govindaraju, Lakshmi

    2005-11-01

    Many people in the semiconductor industry bemoan the high costs of masks and view mask cost as one of the significant barriers to bringing new chip designs to market. All that is needed is a viable maskless technology and the problem will go away. Numerous sites around the world are working on maskless lithography but inevitably, the question asked is "Wouldn't a one wafer per hour maskless tool make a really good mask writer?" Of course, the answer is yes, the hesitation you hear in the answer isn't based on technology concerns, it's financial. The industry needs maskless lithography because mask costs are too high. Mask costs are too high because mask pattern generators (PG's) are slow and expensive. If mask PG's become much faster, mask costs go down, the maskless market goes away and the PG supplier is faced with an even smaller tool demand from the mask shops. Technical success becomes financial suicide - or does it? In this paper we will present the results of a model that examines some of the consequences of introducing high throughput maskless pattern generation. Specific features in the model include tool throughput for masks and wafers, market segmentation by node for masks and wafers and mask cost as an entry barrier to new chip designs. How does the availability of low cost masks and maskless tools affect the industries tool makeup and what is the ultimate potential market for high throughput maskless pattern generators?

  14. Benchtop Micromolding of Polystyrene by Soft Lithography

    PubMed Central

    Wang, Yuli; Balowski, Joseph; Phillips, Colleen; Phillips, Ryan; Sims, Christopher E.; Allbritton, Nancy L.

    2012-01-01

    Polystyrene (PS), a standard material for cell culture consumable labware, was molded into microstructures with high fidelity of replication by an elastomeric polydimethylsiloxane (PDMS) mold. The process was a simple, benchtop method based on soft lithography using readily available materials. The key to successful replica molding by this simple procedure relies on the use of a solvent, for example, gamma-butyrolactone, which dissolves PS without swelling the PDMS mold. PS solution was added to the PDMS mold, and evaporation of solvent was accomplished by baking the mold on a hotplate. Microstructures with feature sizes as small as 3 µm and aspect ratios as large as 7 were readily molded. Prototypes of microfluidic chips made from PS were prepared by thermal bonding of a microchannel molded in PS with a flat PS substrate. The PS microfluidic chip displayed much lower adsorption and absorption of hydrophobic molecules (e.g. rhodamine B) compared to a comparable chip created from PDMS. The molded PS surface exhibited stable surface properties after plasma oxidation as assessed by contact angle measurement. The molded, oxidized PS surface remained an excellent surface for cell culture based on cell adhesion and proliferation. The micromolded PS possessed properties that were ideal for biological and bioanalytical needs, thus making it an alternative material to PDMS and suitable for building lab-on-a-chip devices by soft lithography methods. PMID:21811715

  15. Laser scanners: from industrial to biomedical applications

    NASA Astrophysics Data System (ADS)

    Duma, Virgil-Florin

    2013-11-01

    We present a brief overview of our contributions in the field of laser scanning technologies, applied for a variety of applications, from industrial, dimensional measurements to high-end biomedical imaging, such as Optical Coherence Tomography (OCT). Polygon Mirror (PM) scanners are presented, as applied from optical micrometers to laser sources scanned in frequency for Swept Sources (SSs) OCT. Galvanometer-based scanners (GSs) are approached to determine the optimal scanning function in order to obtain the highest possible duty cycle. We demonstrated that this optimal scanning function is linear plus parabolic, and not linear plus sinusoidal, as it has been previously considered in the literature. Risley prisms (rotational double wedges) scanners are pointed out, with our exact approach to determine and simulate their scan patterns in order to optimize their use in several types of applications, including OCT. A discussion on the perspectives of scanning in biomedical imaging, with a focus on OCT concludes the study.

  16. CT densitometry of the lungs: Scanner performance

    SciTech Connect

    Kemerink, G.J.; Lamers, R.J.S.; Thelissen, G.R.P.; Engelshoven, J.M.A. van

    1996-01-01

    Our goal was to establish the reproducibility and accuracy of the CT scanner in densitometry of the lungs. Scanner stability was assessed by analysis of daily quality checks. Studies using a humanoid phantom and polyethylene foams for lung were performed to measure reproducibility and accuracy. The dependence of the CT-estimated density on reconstruction filter, zoom factor, slice thickness, table height, data truncation, and objects outside the scan field was determined. Stability of the system at air density was within {approx}1 HU and at water density within {approx}2 HU. Reproducibility and accuracy for densities found for lung were within 2-3%. Dependence on the acquisition and reconstruction parameters was neglible, with the exceptions of the ultra high resolution reconstruction algorithm in the case of emphysema, and objects outside the scan field. The performance of the CT scanner tested is quite adequate for densitometry of the lungs. 26 refs., 5 figs., 4 tabs.

  17. High precision kinematic surveying with laser scanners

    NASA Astrophysics Data System (ADS)

    Gräfe, Gunnar

    2007-12-01

    The kinematic survey of roads and railways is becoming a much more common data acquisition method. The development of the Mobile Road Mapping System (MoSES) has reached a level that allows the use of kinematic survey technology for high precision applications. The system is equipped with cameras and laser scanners. For high accuracy requirements, the scanners become the main sensor group because of their geometric precision and reliability. To guarantee reliable survey results, specific calibration procedures have to be applied, which can be divided into the scanner sensor calibration as step 1, and the geometric transformation parameter estimation with respect to the vehicle coordinate system as step 2. Both calibration steps include new methods for sensor behavior modeling and multisensor system integration. To verify laser scanner quality of the MoSES system, the results are regularly checked along different test routes. It can be proved that a standard deviation of 0.004 m for height of the scanner points will be obtained, if the specific calibrations and data processing methods are applied. This level of accuracy opens new possibilities to serve engineering survey applications using kinematic measurement techniques. The key feature of scanner technology is the full digital coverage of the road area. Three application examples illustrate the capabilities. Digital road surface models generated from MoSES data are used, especially for road surface reconstruction tasks along highways. Compared to static surveys, the method offers comparable accuracy at higher speed, lower costs, much higher grid resolution and with greater safety. The system's capability of gaining 360 profiles leads to other complex applications like kinematic tunnel surveys or the precise analysis of bridge clearances.

  18. How flatbed scanners upset accurate film dosimetry

    NASA Astrophysics Data System (ADS)

    van Battum, L. J.; Huizenga, H.; Verdaasdonk, R. M.; Heukelom, S.

    2016-01-01

    Film is an excellent dosimeter for verification of dose distributions due to its high spatial resolution. Irradiated film can be digitized with low-cost, transmission, flatbed scanners. However, a disadvantage is their lateral scan effect (LSE): a scanner readout change over its lateral scan axis. Although anisotropic light scattering was presented as the origin of the LSE, this paper presents an alternative cause. Hereto, LSE for two flatbed scanners (Epson 1680 Expression Pro and Epson 10000XL), and Gafchromic film (EBT, EBT2, EBT3) was investigated, focused on three effects: cross talk, optical path length and polarization. Cross talk was examined using triangular sheets of various optical densities. The optical path length effect was studied using absorptive and reflective neutral density filters with well-defined optical characteristics (OD range 0.2-2.0). Linear polarizer sheets were used to investigate light polarization on the CCD signal in absence and presence of (un)irradiated Gafchromic film. Film dose values ranged between 0.2 to 9 Gy, i.e. an optical density range between 0.25 to 1.1. Measurements were performed in the scanner’s transmission mode, with red-green-blue channels. LSE was found to depend on scanner construction and film type. Its magnitude depends on dose: for 9 Gy increasing up to 14% at maximum lateral position. Cross talk was only significant in high contrast regions, up to 2% for very small fields. The optical path length effect introduced by film on the scanner causes 3% for pixels in the extreme lateral position. Light polarization due to film and the scanner’s optical mirror system is the main contributor, different in magnitude for the red, green and blue channel. We concluded that any Gafchromic EBT type film scanned with a flatbed scanner will face these optical effects. Accurate dosimetry requires correction of LSE, therefore, determination of the LSE per color channel and dose delivered to the film.

  19. Multisegmented ion chamber for CT scanner dosimetry

    SciTech Connect

    Moore, M.M.; Cacak, R.K.; Hendee, W.R.

    1981-01-01

    A multisegmented, ionization chamber capable of determining dosimetric profiles from a CT scanner has been developed and tested. The chamber consists of a number of 2 mm wide electrically isolated segments from which ionization currents may be measured. Presented here are the performance characteristics of the chamber including energy response, dose linearity, and corrections for ''cross talk'' between segments. Sample dosimetric profiles are depicted for 3 and 6 mm nominal beam widths at two locations in a dosimetric phantom positioned in the x-ray beam of a fourth generation CT scanner. The results agree well with the conventional method of obtaining dosimetry measurements with TLD chips.

  20. Medical imaging with a microwave tomographic scanner.

    PubMed

    Jofre, L; Hawley, M S; Broquetas, A; de los Reyes, E; Ferrando, M; Elias-Fusté, A R

    1990-03-01

    A microwave tomographic scanner for biomedical applications is presented. The scanner consists of a 64 element circular array with a useful diameter of 20 cm. Electronically scanning the transmitting and receiving antennas allows multiview measurements with no mechanical movement. Imaging parameters are appropriate for medical use: a spatial resolution of 7 mm and a contrast resolution of 1% for a measurement time of 3 s. Measurements on tissue-simulating phantoms and volunteers, together with numerical simulations, are presented to assess the system for absolute imaging of tissue distribution and for differential imaging of physiological, pathological, and induced changes in tissues. PMID:2329003

  1. LANSCE Wire Scanner System Prototype: Switchyard Test

    SciTech Connect

    Sedillo, James D

    2012-04-11

    On November 19, 2011, the beam diagnostics team of Los Alamos National Laboratory's LANSCE accelerator facility conducted a test of a prototype wire scanner system for future deployment within the accelerator's switchyard area. The primary focus of this test was to demonstrate the wire scanner control system's ability to extend its functionality beyond acquiring lower energy linac beam profile measurements to acquiring data in the switchyard. This study summarizes the features and performance characteristics of the electronic and mechanical implementation of this system with details focusing on the test results.

  2. Miniature rotating transmissive optical drum scanner

    NASA Technical Reports Server (NTRS)

    Lewis, Robert (Inventor); Parrington, Lawrence (Inventor); Rutberg, Michael (Inventor)

    2013-01-01

    A miniature rotating transmissive optical scanner system employs a drum of small size having an interior defined by a circumferential wall rotatable on a drum axis, an optical element positioned within the interior of the drum, and a light-transmissive lens aperture provided at an angular position in the circumferential wall of the drum for scanning a light beam to or from the optical element in the drum along a beam azimuth angle as the drum is rotated. The miniature optical drum scanner configuration obtains a wide scanning field-of-view (FOV) and large effective aperture is achieved within a physically small size.

  3. The conical scanner evaluation system design

    NASA Technical Reports Server (NTRS)

    Cumella, K. E.; Bilanow, S.; Kulikov, I. B.

    1982-01-01

    The software design for the conical scanner evaluation system is presented. The purpose of this system is to support the performance analysis of the LANDSAT-D conical scanners, which are infrared horizon detection attitude sensors designed for improved accuracy. The system consists of six functionally independent subsystems and five interface data bases. The system structure and interfaces of each of the subsystems is described and the content, format, and file structure of each of the data bases is specified. For each subsystem, the functional logic, the control parameters, the baseline structure, and each of the subroutines are described. The subroutine descriptions include a procedure definition and the input and output parameters.

  4. Multispectral scanner imagery for plant community classification.

    NASA Technical Reports Server (NTRS)

    Driscoll, R. S.; Spencer, M. M.

    1973-01-01

    Optimum channel selection among 12 channels of multispectral scanner imagery identified six as providing the best information for computerized classification of 11 plant communities and two nonvegetation classes. Intensive preprocessing of the spectral data was required to eliminate bidirectional reflectance effects of the spectral imagery caused by scanner view angle and varying geometry of the plant canopy. Generalized plant community types - forest, grassland, and hydrophytic systems - were acceptably classified based on ecological analysis. Serious, but soluble, errors occurred with attempts to classify specific community types within the grassland system. However, special clustering analyses provided for improved classification of specific grassland communities.

  5. Functional Extensions To High Performance Document Scanners

    NASA Astrophysics Data System (ADS)

    Green, W. B.; Chansky, L. M.; Land, R. A.; Van den Heuvel, R. C.; Kraemer, E. J.; Steele, L. W.; Sherrill, C. J.

    1989-07-01

    Document processing systems based on electronic imaging technology are evolving rapidly, motivated by technology advances in optical storage, image scanners, image compression, high speed digital communications, and high resolution displays. These evolving systems require high speed reliable image scanning systems to create the digital image data base that is at the heart of the applications addressed by these evolving systems. High speed production document scanners must provide the capability of converting a wide variety of input material into high quality digital imagery. The required capabilities include: (i) the ability to scan varying sizes and weights of paper, (ii) image enhancement techniques adequate to produce quality imagery from a document material that may depart significantly from standard high contrast black and white office correspondence, (iii) standard compression options, and (iv) a standard interface to a host or control processor providing full control of all scanner operations and all image processing options. As electronic document processing systems proliferate, additional capabilities will be required to support automated or semi-automated document indexing and selective capture of document content. Capabilities now present on microfilming systems will be required as options or features on document capture systems. These capabilities will include: endorsers, bar code readers, and optical character recognition (OCR) capability. Bar code and OCR capabilities will be required to support automated indexing of scanned material, and OCR capability within specific areas of scanned document material will be required to support indexing and specific application needs. These features will also be supported and controlled through a standard host interface. This paper describes the architecture of the TDC DocuScan Digital Image Scanner. The scanner is a double-sided scanner that produces compressed imagery of both sides of a scanned page in under two

  6. Infrared scanner concept verification test report

    NASA Technical Reports Server (NTRS)

    Bachtel, F. D.

    1980-01-01

    The test results from a concept verification test conducted to assess the use of an infrared scanner as a remote temperature sensing device for the space shuttle program are presented. The temperature and geometric resolution limits, atmospheric attenuation effects including conditions with fog and rain, and the problem of surface emissivity variations are included. It is concluded that the basic concept of using an infrared scanner to determine near freezing surface temperatures is feasible. The major problem identified is concerned with infrared reflections which result in significant errors if not controlled. Action taken to manage these errors result in design and operational constraints to control the viewing angle and surface emissivity.

  7. Liftoff lithography of metals for extreme ultraviolet lithography mask absorber layer patterning

    NASA Astrophysics Data System (ADS)

    Lyons, Adam; Teki, Ranganath; Hartley, John

    2012-03-01

    The authors present a process for patterning Extreme Ultraviolet Lithography (EUVL) mask absorber metal using electron beam evaporation and bi-layer liftoff lithography. The Line Edge Roughness (LER) and Critical Dimension Uniformity (CDU) of patterned chrome absorber are determined for various chrome thicknesses on silicon substrates, and the viability of the method for use with nickel absorber and on EUVL masks is demonstrated. Scanning Electron Microscope (SEM) data is used with SuMMIT software to determine the absorber LER and CDU. The Lawrence Berkeley National Labs Actinic Inspection Tool (AIT) is used to verify the printability of the pattern down to 24nm half pitch. The effect of processing on the integrity of the mask multilayer is measured using an actinic reflectometer at the College of Nanoscale Science and Engineering.

  8. Throughput enhancement technique for MAPPER maskless lithography

    NASA Astrophysics Data System (ADS)

    Wieland, M. J.; Derks, H.; Gupta, H.; van de Peut, T.; Postma, F. M.; van Veen, A. H. V.; Zhang, Y.

    2010-03-01

    MAPPER Lithography is developing a maskless lithography technology based on massively-parallel electron-beam writing in combination with high speed optical data transport for switching the electron beams. With 13,000 electron beams each delivering a current of 13nA on the wafer, a throughput of 10 wph is realized for 22nm node lithography. By clustering several of these systems together high throughputs can be realized in a small footprint. This enables a highly cost-competitive alternative to double patterning and EUV. The most mature and reliable electron source currently available that combines a high brightness, a high emission current and uniform emission is the dispenser cathode. For this electron source a reduced brightness of 106 A/m2SrV has been measured, with no restrictions on emission current. With this brightness however it is possible to realize a beam current of 0.3nA (@ 25nm spotsize), which is almost a factor 50 lower than the 13nA that is required for 10 wph. Three methods can be distinguished to increase the throughput: 1. Use an electron source with a 50× higher brightness 2. Increase the number of beams and lenses 50× 3. Patterned beams: Image multiple sub-beams with each projection lens MAPPER has selected option 3) 'Patterned beams' as the method to increase the beam current to 13nA. This because an electron source with a 50x higher brightness is simply not available at this time, and increasing the number of beams and lenses 50× leads to undesirable engineering issues. During the past years MAPPER has been developing the concept of 'Patterned beams'. By imaging 7×7 sub-beams per projection lens the beam current is increased to the required 13nA level. This technique will also be used to maintain throughput at 10 wph for smaller technology nodes by further increasing the number of sub-beams per projection lens. In this paper we will describe the electron optical design used to image these multiple sub-beams per lens, as well as

  9. An operational multispectral scanner for bathymetric surveys - The ABS NORDA scanner

    NASA Technical Reports Server (NTRS)

    Haimbach, Stephen P.; Joy, Richard T.; Hickman, G. Daniel

    1987-01-01

    The Naval Ocean Research and Development Activity (NORDA) is developing the Airborne Bathymetric Survey (ABS) system, which will take shallow water depth soundings from a Navy P-3 aircraft. The system combines active and passive sensors to obtain optical measurements of water depth. The ABS NORDA Scanner is the systems passive multispectral scanner whose design goal is to provide 100 percent coverage of the seafloor, to depths of 20 m in average coastal waters. The ABS NORDA Scanner hardware and operational environment is discussed in detail. The optical model providing the basis for depth extraction is reviewed and the proposed data processing routine discussed.

  10. Direct three-dimensional patterning using nanoimprint lithography

    NASA Astrophysics Data System (ADS)

    Li, Mingtao; Chen, Lei; Chou, Stephen Y.

    2001-05-01

    We demonstrated that nanoimprint lithography (NIL) can create three-dimensional patterns, sub-40 nm T-gates, and air-bridge structures, in a single step imprint in polymer and metal by lift-off. A method based on electron beam lithography and reactive ion etching was developed to fabricate NIL molds with three-dimensional protrusions. The low-cost and high-throughput nanoimprint lithography for three-dimensional nanostructures has many significant applications such as monolithic microwave integrated circuits and nanoelectromechanical system.

  11. Lithography trends based on projections of the ITRS (Invited Paper)

    NASA Astrophysics Data System (ADS)

    Arden, Wolfgang

    2005-06-01

    The microelectronic industry has gone through an enormous technical evolution in the last four decades. Both the tech-nological and economic challenges of microelectronics were increasing consistently in the past few years. This paper discusses the future trends in micro- and nano-technologies with special emphasis on lithography. The trends of minia-turization will be sketched with reference to the International Technology Roadmap for Semiconductors (ITRS). After a description of general trends in technology node timing, an overview will be given on the future lithography require-ments and the technical solutions including options for post-optical lithography as, for example, Extreme UV.

  12. High resolution fabrication of nanostructures using controlled proximity nanostencil lithography

    NASA Astrophysics Data System (ADS)

    Jain, T.; Aernecke, M.; Liberman, V.; Karnik, R.

    2014-02-01

    Nanostencil lithography has a number of distinct benefits that make it an attractive nanofabrication processes, but the inability to fabricate features with nanometer precision has significantly limited its utility. In this paper, we describe a nanostencil lithography process that provides sub-15 nm resolution even for 40-nm thick structures by using a sacrificial layer to control the proximity between the stencil and substrate, thereby enhancing the correspondence between nanostencil patterns and fabricated nanostructures. We anticipate that controlled proximity nanostencil lithography will provide an environmentally stable, clean, and positive-tone candidate for fabrication of nanostructures with high resolution.

  13. Workshop on compact storage ring technology: applications to lithography

    SciTech Connect

    Not Available

    1986-05-30

    Project planning in the area of x-ray lithography is discussed. Three technologies that are emphasized are the light source, the lithographic technology, and masking technology. The needs of the semiconductor industry in the lithography area during the next decade are discussed, particularly as regards large scale production of high density dynamic random access memory devices. Storage ring parameters and an overall exposure tool for x-ray lithography are addressed. Competition in this area of technology from Germany and Japan is discussed briefly. The design of a storage ring is considered, including lattice design, magnets, and beam injection systems. (LEW)

  14. Resolution considerations in MeV ion microscopy and lithography

    NASA Astrophysics Data System (ADS)

    Norarat, Rattanaporn; Whitlow, Harry J.

    2015-04-01

    There a disparity between the way the resolution is specified in microscopy and lithography using light compared to MeV ion microscopy and lithography. In this work we explore the implications of the way the resolution is defined with a view to answering the questions; how are the resolving powers in MeV ion microscopy and lithography relate to their optical counterparts? and how do different forms of point spread function affect the modulation transfer function and the sharpness of the edge profile?

  15. Thermoplastic microcantilevers fabricated by nanoimprint lithography

    NASA Astrophysics Data System (ADS)

    Greve, Anders; Keller, Stephan; Vig, Asger L.; Kristensen, Anders; Larsson, David; Yvind, Kresten; Hvam, Jørn M.; Cerruti, Marta; Majumdar, Arunava; Boisen, Anja

    2010-01-01

    Nanoimprint lithography has been exploited to fabricate micrometre-sized cantilevers in thermoplastic. This technique allows for very well defined microcantilevers and gives the possibility of embedding structures into the cantilever surface. The microcantilevers are fabricated in TOPAS and are up to 500 µm long, 100 µm wide, and 4.5 µm thick. Some of the cantilevers have built-in ripple surface structures with heights of 800 nm and pitches of 4 µm. The yield for the cantilever fabrication is 95% and the initial out-of-plane bending is below 10 µm. The stiffness of the cantilevers is measured by deflecting the cantilever with a well-characterized AFM probe. An average stiffness of 61.3 mN m-1 is found. Preliminary tests with water vapour indicate that the microcantilevers can be used directly for vapour sensing applications and illustrate the influence of surface structuring of the cantilevers.

  16. Photoresist composition for extreme ultraviolet lithography

    DOEpatents

    Felter, T. E.; Kubiak, G. D.

    1999-01-01

    A method of producing a patterned array of features, in particular, gate apertures, in the size range 0.4-0.05 .mu.m using projection lithography and extreme ultraviolet (EUV) radiation. A high energy laser beam is used to vaporize a target material in order to produce a plasma which in turn, produces extreme ultraviolet radiation of a characteristic wavelength of about 13 nm for lithographic applications. The radiation is transmitted by a series of reflective mirrors to a mask which bears the pattern to be printed. The demagnified focused mask pattern is, in turn, transmitted by means of appropriate optics and in a single exposure, to a substrate coated with photoresists designed to be transparent to EUV radiation and also satisfy conventional processing methods. A photoresist composition for extreme ultraviolet radiation of boron carbide polymers, hydrochlorocarbons and mixtures thereof.

  17. Nanoscale plasmonic stamp lithography on silicon.

    PubMed

    Liu, Fenglin; Luber, Erik J; Huck, Lawrence A; Olsen, Brian C; Buriak, Jillian M

    2015-02-24

    Nanoscale lithography on silicon is of interest for applications ranging from computer chip design to tissue interfacing. Block copolymer-based self-assembly, also called directed self-assembly (DSA) within the semiconductor industry, can produce a variety of complex nanopatterns on silicon, but these polymeric films typically require transformation into functional materials. Here we demonstrate how gold nanopatterns, produced via block copolymer self-assembly, can be incorporated into an optically transparent flexible PDMS stamp, termed a plasmonic stamp, and used to directly functionalize silicon surfaces on a sub-100 nm scale. We propose that the high intensity electric fields that result from the localized surface plasmons of the gold nanoparticles in the plasmonic stamps upon illumination with low intensity green light, lead to generation of electron-hole pairs in the silicon that drive spatially localized hydrosilylation. This approach demonstrates how localized surface plasmons can be used to enable functionalization of technologically relevant surfaces with nanoscale control. PMID:25654172

  18. Lithography process window analysis with calibrated model

    NASA Astrophysics Data System (ADS)

    Zhou, Wenzhan; Yu, Jin; Lo, James; Liu, Johnson

    2004-05-01

    As critical-dimension shrink below 0.13 μm, the SPC (Statistical Process Control) based on CD (Critical Dimension) control in lithography process becomes more difficult. Increasing requirements of a shrinking process window have called on the need for more accurate decision of process window center. However in practical fabrication, we found that systematic error introduced by metrology and/or resist process can significantly impact the process window analysis result. Especially, when the simple polynomial functions are used to fit the lithographic data from focus exposure matrix (FEM), the model will fit these systematic errors rather than filter them out. This will definitely impact the process window analysis and determination of the best process condition. In this paper, we proposed to use a calibrated first principle model to do process window analysis. With this method, the systematic metrology error can be filtered out efficiently and give a more reasonable window analysis result.

  19. Nanoimprint lithography using disposable biomass template

    NASA Astrophysics Data System (ADS)

    Hanabata, Makoto; Takei, Satoshi; Sugahara, Kigen; Nakajima, Shinya; Sugino, Naoto; Kameda, Takao; Fukushima, Jiro; Matsumoto, Yoko; Sekiguchi, Atsushi

    2016-04-01

    A novel nanoimprint lithography process using disposable biomass template having gas permeability was investigated. It was found that a disposable biomass template derived from cellulose materials shows an excellent gas permeability and decreases transcriptional defects in conventional templates such as quartz, PMDS, DLC that have no gas permeability. We believe that outgasses from imprinted materials are easily removed through the template. The approach to use a cellulose for template material is suitable as the next generation of clean separation technology. It is expected to be one of the defect-less thermal nanoimprint lithographic technologies. It is also expected that volatile materials and solvent including materials become available that often create defects and peelings in conventional temples that have no gas permeability.

  20. Novel electrostatic column for ion projection lithography

    SciTech Connect

    Chalupka, A.; Stengl, G.; Buschbeck, H.; Lammer, G.; Vonach, H.; Fischer, R.; Hammel, E.; Loeschner, H.; Nowak, R.; Wolf, P. ); Finkelstein, W.; Hill, R.W. ); Berry, I.L. ); Harriott, L.R. ); Melngailis, J. ); Randall, J.N. ); Wolfe, J.C. ); Stroh, H.; Wollnik, H. ); Mondelli, A.A.; Petillo, J.J. ); Leung, K. (Lawrence Berkeley Laboratory, University of Californi

    1994-11-01

    Ion projection lithography (IPL) is being considered for high volume sub-0.25-[mu]m lithography. A novel ion-optical column has been designed for exposing 20[times]20 mm[sup 2] fields at 3[times] reduction from stencil mask to wafer substrates. A diverging lens is realized by using the stencil mask as the first electrode of the ion-optical column. The second and third electrode form an accelerating field lens. The aberrations of the first two lenses (diverging lens and field lens) are compensated by an asymmetric Einzel lens projecting an ion image of the stencil mask openings onto the wafer substrate with better than 2 mrad telecentricity. Less than 30 nm intrafield distortion was calculated within 20[times]20 mm[sup 2] exposure fields. The calculation uncertainty is estimated to be about 10 nm. The calculation holds for helium ions with [approx]10 keV ion energy at the stencil mask and 150 keV ion energy at the wafer plane. A virtual ion source size of 10 [mu]m has been assumed. The calculated chromatic aberrations are less than 60 nm, assuming 6 eV energy spread of the ions extracted from a duoplasmatron source. Recently a multicusp ion source has been developed for which preliminary results indicate an energy spread of less than 2 eV. Thus, with a multicusp source chromatic aberrations of less than 20 nm are to be expected. The ion energy at the crossover between the field lens and the asymmetric Einzel lens is 200 keV. Therefore, stochastic space charge induced degradations in resolution can be kept sufficiently low. The divergence of the ion image projected to the wafer plane is less than 2 mrad. Thus, the usable'' depth of focus for the novel ion optics is in the order of 10 [mu]m.

  1. Integrating nanosphere lithography in device fabrication

    NASA Astrophysics Data System (ADS)

    Laurvick, Tod V.; Coutu, Ronald A.; Lake, Robert A.

    2016-03-01

    This paper discusses the integration of nanosphere lithography (NSL) with other fabrication techniques, allowing for nano-scaled features to be realized within larger microelectromechanical system (MEMS) based devices. Nanosphere self-patterning methods have been researched for over three decades, but typically not for use as a lithography process. Only recently has progress been made towards integrating many of the best practices from these publications and determining a process that yields large areas of coverage, with repeatability and enabled a process for precise placement of nanospheres relative to other features. Discussed are two of the more common self-patterning methods used in NSL (i.e. spin-coating and dip coating) as well as a more recently conceived variation of dip coating. Recent work has suggested the repeatability of any method depends on a number of variables, so to better understand how these variables affect the process a series of test vessels were developed and fabricated. Commercially available 3-D printing technology was used to incrementally alter the test vessels allowing for each variable to be investigated individually. With these deposition vessels, NSL can now be used in conjunction with other fabrication steps to integrate features otherwise unattainable through current methods, within the overall fabrication process of larger MEMS devices. Patterned regions in 1800 series photoresist with a thickness of ~700nm are used to capture regions of self-assembled nanospheres. These regions are roughly 2-5 microns in width, and are able to control the placement of 500nm polystyrene spheres by controlling where monolayer self-assembly occurs. The resulting combination of photoresist and nanospheres can then be used with traditional deposition or etch methods to utilize these fine scale features in the overall design.

  2. Biomedical imaging and sensing using flatbed scanners.

    PubMed

    Göröcs, Zoltán; Ozcan, Aydogan

    2014-09-01

    In this Review, we provide an overview of flatbed scanner based biomedical imaging and sensing techniques. The extremely large imaging field-of-view (e.g., ~600-700 cm(2)) of these devices coupled with their cost-effectiveness provide unique opportunities for digital imaging of samples that are too large for regular optical microscopes, and for collection of large amounts of statistical data in various automated imaging or sensing tasks. Here we give a short introduction to the basic features of flatbed scanners also highlighting the key parameters for designing scientific experiments using these devices, followed by a discussion of some of the significant examples, where scanner-based systems were constructed to conduct various biomedical imaging and/or sensing experiments. Along with mobile phones and other emerging consumer electronics devices, flatbed scanners and their use in advanced imaging and sensing experiments might help us transform current practices of medicine, engineering and sciences through democratization of measurement science and empowerment of citizen scientists, science educators and researchers in resource limited settings. PMID:24965011

  3. Ultrasonic Scanner Control and Data Acquisition

    NASA Technical Reports Server (NTRS)

    Hemann, John

    2002-01-01

    The research accomplishments under this grant were very extensive in the areas of ULTRASONIC SCANNER CONTROL AND DATA ACQUISITION. Rather than try to summarize all this research I have enclosed research papers and reports which were completed with the hnding provided by the grant. These papers and reports are listed below:

  4. Learning and Teaching with a Computer Scanner

    ERIC Educational Resources Information Center

    Planinsic, G.; Gregorcic, B.; Etkina, E.

    2014-01-01

    This paper introduces the readers to simple inquiry-based activities (experiments with supporting questions) that one can do with a computer scanner to help students learn and apply the concepts of relative motion in 1 and 2D, vibrational motion and the Doppler effect. We also show how to use these activities to help students think like…

  5. Miniature 'Wearable' PET Scanner Ready for Use

    ScienceCinema

    Paul Vaska

    2013-07-22

    Scientists from BNL, Stony Brook University, and collaborators have demonstrated the efficacy of a "wearable," portable PET scanner they've developed for rats. The device will give neuroscientists a new tool for simultaneously studying brain function and behavior in fully awake, moving animals.

  6. Wire scanner software and firmware issues

    SciTech Connect

    Gilpatrick, John Doug

    2008-01-01

    The Los Alamos Neutron Science Center facility presently has 110 slow wire scanning profile measurement instruments located along its various beam lines. These wire scanners were developed and have been operating for at least 30 years. While the wire scanners solved many problems to operate and have served the facility well they have increasingly suffered from several problems or limitations, such as maintenance and reliability problems, antiquated components, slow data acquisition, and etc. In order to refurbish these devices, these wire scanners will be replaced with newer versions. The replacement will consist of a completely new beam line actuator, new cables, new electronics and brand new software and firmware. This note describes the functions and modes of operation that LabVIEW VI software on the real time controller and FPGA LabVIEW firmware will be required. It will be especially interesting to understand the overall architecture of these LabVIEW VIs. While this note will endeavor to describe all of the requirements and issues for the wire scanners, undoubtedly, there will be missing details that will be added as time progresses.

  7. Characterization of color scanners based on SVR

    NASA Astrophysics Data System (ADS)

    Li, Bin; Zhang, Yi-xin

    2012-01-01

    By researching the principle of colorimetric characterization method and Support Vector Regression (SVR), we analyze the feasibility of nonlinear transformation from scanner RGB color space to CIELAB color space based on SVR and built a new characterization model. Then we use the MATLABR2009a software to make a data simulation experiment to verify the accuracy of this model and figure out the color differences by CIEDE2000 color difference formula. Based on CIEDE2000 color difference formula, the average, the maximum and the minimum color differences of the training set are 1.2376, 2.5593 and 0.2182, the average, the maximum and the minimum color differences of the text set are 1.9318, 4.1421 and 0.4228. From the experimental results, we can make a conclusion that SVR can realize the nonlinear transformation from scanner RGB color space to CIELAB color space and the model satisfies the accuracy of scanner characterization. Therefore, SVR can be used into the color scanner characterization management.

  8. Bottled liquid explosive scanner by near infrared

    NASA Astrophysics Data System (ADS)

    Itozaki, Hideo

    2016-05-01

    A bottled liquid explosive scanner has been developed using near infrared technology for glass or PET bottles and ultrasound technology for metal cans. It has database of near infrared absorbance spectra and sound velocities of various liquids. Scanned liquids can be identified by using this database. This device has been certified by ECAC and installed at Japanese international airport.

  9. Miniature 'Wearable' PET Scanner Ready for Use

    SciTech Connect

    Paul Vaska

    2011-03-09

    Scientists from BNL, Stony Brook University, and collaborators have demonstrated the efficacy of a "wearable," portable PET scanner they've developed for rats. The device will give neuroscientists a new tool for simultaneously studying brain function and behavior in fully awake, moving animals.

  10. Biomedical Imaging and Sensing using Flatbed Scanners

    PubMed Central

    Göröcs, Zoltán; Ozcan, Aydogan

    2014-01-01

    In this Review, we provide an overview of flatbed scanner based biomedical imaging and sensing techniques. The extremely large imaging field-of-view (e.g., ~600–700 cm2) of these devices coupled with their cost-effectiveness provide unique opportunities for digital imaging of samples that are too large for regular optical microscopes, and for collection of large amounts of statistical data in various automated imaging or sensing tasks. Here we give a short introduction to the basic features of flatbed scanners also highlighting the key parameters for designing scientific experiments using these devices, followed by a discussion of some of the significant examples, where scanner-based systems were constructed to conduct various biomedical imaging and/or sensing experiments. Along with mobile phones and other emerging consumer electronics devices, flatbed scanners and their use in advanced imaging and sensing experiments might help us transform current practices of medicine, engineering and sciences through democratization of measurement science and empowerment of citizen scientists, science educators and researchers in resource limited settings. PMID:24965011

  11. Micro-optics and lithography simulation are key enabling technologies for shadow printing lithography in mask aligners

    NASA Astrophysics Data System (ADS)

    Voelkel, Reinhard; Vogler, Uwe; Bramati, Arianna; Noell, Wilfried

    2015-02-01

    Mask aligners are lithographic tools used to transfer a pattern of microstructures by shadow printing lithography onto a planar wafer. Contact lithography allows us to print large mask fields with sub-micron resolution, but requires frequent mask cleaning. Thus, contact lithography is used for small series of wafer production. Proximity lithography, where the mask is located at a distance of typically 30-100 μm above the wafer, provides a resolution of approximately 3-5 μm, limited by diffraction effects. Proximity lithography in mask aligners is a very cost-efficient method widely used in semiconductor, packaging and MEMS manufacturing industry for high-volume production. Micro-optics plays a key role in improving the performance of shadow printing lithography in mask aligners. Refractive or diffractive micro-optics allows us to efficiently collect the light from the light source and to precisely shape the illumination light (customized illumination). Optical proximity correction and phase shift mask technology allow us to influence the diffraction effects in the aerial image and to enhance resolution and critical dimension. The paper describes the status and future trends of shadow printing lithography in mask aligners and the decisive role of micro-optics as key enabling technology.

  12. Aerial image measurement technique for automated reticle defect disposition (ARDD) in wafer fabs

    NASA Astrophysics Data System (ADS)

    Zibold, Axel M.; Schmid, Rainer M.; Stegemann, B.; Scheruebl, Thomas; Harnisch, Wolfgang; Kobiyama, Yuji

    2004-08-01

    The Aerial Image Measurement System (AIMS)* for 193 nm lithography emulation has been brought into operation successfully worldwide. A second generation system comprising 193 nm AIMS capability, mini-environment and SMIF, the AIMS fab 193 plus is currently introduced into the market. By adjustment of numerical aperture (NA), illumination type and partial illumination coherence to match the conditions in 193 nm steppers or scanners, it can emulate the exposure tool for any type of reticles like binary, OPC and PSM down to the 65 nm node. The system allows a rapid prediction of wafer printability of defects or defect repairs, and critical features, like dense patterns or contacts on the masks without the need to perform expensive image qualification consisting of test wafer exposures followed by SEM measurements. Therefore, AIMS is a mask quality verification standard for high-end photo masks and established in mask shops worldwide. The progress on the AIMS technology described in this paper will highlight that besides mask shops there will be a very beneficial use of the AIMS in the wafer fab and we propose an Automated Reticle Defect Disposition (ARDD) process. With smaller nodes, where design rules are 65 nm or less, it is expected that smaller defects on reticles will occur in increasing numbers in the wafer fab. These smaller mask defects will matter more and more and become a serious yield limiting factor. With increasing mask prices and increasing number of defects and severability on reticles it will become cost beneficial to perform defect disposition on the reticles in wafer production. Currently ongoing studies demonstrate AIMS benefits for wafer fab applications. An outlook will be given for extension of 193 nm aerial imaging down to the 45 nm node based on emulation of immersion scanners.

  13. Occurrence and characteristics of mutual interference between LIDAR scanners

    NASA Astrophysics Data System (ADS)

    Kim, Gunzung; Eom, Jeongsook; Park, Seonghyeon; Park, Yongwan

    2015-05-01

    The LIDAR scanner is at the heart of object detection of the self-driving car. Mutual interference between LIDAR scanners has not been regarded as a problem because the percentage of vehicles equipped with LIDAR scanners was very rare. With the growing number of autonomous vehicle equipped with LIDAR scanner operated close to each other at the same time, the LIDAR scanner may receive laser pulses from other LIDAR scanners. In this paper, three types of experiments and their results are shown, according to the arrangement of two LIDAR scanners. We will show the probability that any LIDAR scanner will interfere mutually by considering spatial and temporal overlaps. It will present some typical mutual interference scenario and report an analysis of the interference mechanism.

  14. 11. SITE BUILDING 002 SCANNER BUILDING EVAPORATIVE COOLING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    11. SITE BUILDING 002 - SCANNER BUILDING - EVAPORATIVE COOLING TOWER SYSTEM IN FOREGROUND. - Cape Cod Air Station, Technical Facility-Scanner Building & Power Plant, Massachusetts Military Reservation, Sandwich, Barnstable County, MA

  15. 28. SITE BUILDING 002 SCANNER BUILDING AT INTERIOR ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    28. SITE BUILDING 002 - SCANNER BUILDING - AT INTERIOR OF LEVEL 5, FACE A - SHOWS ANTENNA RECEIVERS, EMITTERS/RECEIVERS, IN GENERAL ARRANGEMENT. - Cape Cod Air Station, Technical Facility-Scanner Building & Power Plant, Massachusetts Military Reservation, Sandwich, Barnstable County, MA

  16. 31. SITE BUILDING 002 SCANNER BUILDING AT INTERIOR ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    31. SITE BUILDING 002 - SCANNER BUILDING AT INTERIOR - BACK OF POWER SUPPLY UNITS 3045-17 AND 3046-29. - Cape Cod Air Station, Technical Facility-Scanner Building & Power Plant, Massachusetts Military Reservation, Sandwich, Barnstable County, MA

  17. 2. SITE BUILDING 002 SCANNER BUILDING VIEW IS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. SITE BUILDING 002 - SCANNER BUILDING - VIEW IS LOOKING NORTH 80° WEST "B" FACE ALONG BUILDING "A" FACE. - Cape Cod Air Station, Technical Facility-Scanner Building & Power Plant, Massachusetts Military Reservation, Sandwich, Barnstable County, MA

  18. 3. SITE BUILDING 002 SCANNER BUILDING VIEW IS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. SITE BUILDING 002 - SCANNER BUILDING - VIEW IS LOOKING NORTH 30° WEST AT "A" FACE. - Cape Cod Air Station, Technical Facility-Scanner Building & Power Plant, Massachusetts Military Reservation, Sandwich, Barnstable County, MA

  19. 32. SITE BUILDING 002 SCANNER BUILDING MECHANICAL ROOM ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    32. SITE BUILDING 002 - SCANNER BUILDING - MECHANICAL ROOM 105, VIEW OF OPERATIONAL SCHEMATIC OF COOLING SYSTEM LOOPS. - Cape Cod Air Station, Technical Facility-Scanner Building & Power Plant, Massachusetts Military Reservation, Sandwich, Barnstable County, MA

  20. 18. SITE BUILDING 002 SCANNER BUILDING VIEW OF ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    18. SITE BUILDING 002 - SCANNER BUILDING - VIEW OF SITE SECURITY OFFICE ACCESS DOOR FROM EXTERIOR OF OFFICE. - Cape Cod Air Station, Technical Facility-Scanner Building & Power Plant, Massachusetts Military Reservation, Sandwich, Barnstable County, MA

  1. 13. SITE BUILDING 002 SCANNER BUILDING "B" FACE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    13. SITE BUILDING 002 - SCANNER BUILDING - "B" FACE LOADING DOCK AND PERSONNEL ACCESS RAMP TO FALLOUT SHELTER. - Cape Cod Air Station, Technical Facility-Scanner Building & Power Plant, Massachusetts Military Reservation, Sandwich, Barnstable County, MA

  2. 33. SITE BUILDING 002 SCANNER BUILDING MECHANICAL ROOM ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    33. SITE BUILDING 002 - SCANNER BUILDING - MECHANICAL ROOM 105, VIEW OF CHILLER ROOM MOTOR CONTROL CENTER. - Cape Cod Air Station, Technical Facility-Scanner Building & Power Plant, Massachusetts Military Reservation, Sandwich, Barnstable County, MA

  3. 1. SITE BUILDING 022 SCANNER BUILDING VIEW IS LOOKING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. SITE BUILDING 022- SCANNER BUILDING - VIEW IS LOOKING NORTH 70°WEST AT "B" AND "A" FACES. - Cape Cod Air Station, Technical Facility-Scanner Building & Power Plant, Massachusetts Military Reservation, Sandwich, Barnstable County, MA

  4. 4. SITE BUILDING 002 SCANNER BUILDING SOUTH 30° ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. SITE BUILDING 002 - SCANNER BUILDING - SOUTH 30° WEST - VIEW IS LOOKING AT "B" FACE. - Cape Cod Air Station, Technical Facility-Scanner Building & Power Plant, Massachusetts Military Reservation, Sandwich, Barnstable County, MA

  5. 23. SITE BUILDING 002 SCANNER BUILDING RADAR CONTROL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    23. SITE BUILDING 002 - SCANNER BUILDING - RADAR CONTROL INTERFACE "RCL NO. 2" WITH COMPUTER CONTROL DISC DRIVE UNITS IN FOREGROUND. - Cape Cod Air Station, Technical Facility-Scanner Building & Power Plant, Massachusetts Military Reservation, Sandwich, Barnstable County, MA

  6. 24. SITE BUILDING 002 SCANNER BUILDING OPERATIONS CENTER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    24. SITE BUILDING 002 - SCANNER BUILDING - OPERATIONS CENTER -- MWOC IN OPEARATION AT 1924 ZULU TIME. 26 OCTOBER, 1999. - Cape Cod Air Station, Technical Facility-Scanner Building & Power Plant, Massachusetts Military Reservation, Sandwich, Barnstable County, MA

  7. 22. SITE BUILDING 002 SCANNER BUILDING RADAR CONTROL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    22. SITE BUILDING 002 - SCANNER BUILDING - RADAR CONTROL ROOM. RECEIVER EQUIPMENT ON RIGHT WITH RF RADIATION MONITOR CABINET. - Cape Cod Air Station, Technical Facility-Scanner Building & Power Plant, Massachusetts Military Reservation, Sandwich, Barnstable County, MA

  8. Calibration and equivalency analysis of image plate scanners

    SciTech Connect

    Williams, G. Jackson Maddox, Brian R.; Chen, Hui; Kojima, Sadaoki; Millecchia, Matthew

    2014-11-15

    A universal procedure was developed to calibrate image plate scanners using radioisotope sources. Techniques to calibrate scanners and sources, as well as cross-calibrate scanner models, are described to convert image plate dosage into physical units. This allows for the direct comparison of quantitative data between any facility and scanner. An empirical relation was also derived to establish sensitivity response settings for arbitrary gain settings. In practice, these methods may be extended to any image plate scanning system.

  9. Calibration and equivalency analysis of image plate scanners.

    PubMed

    Williams, G Jackson; Maddox, Brian R; Chen, Hui; Kojima, Sadaoki; Millecchia, Matthew

    2014-11-01

    A universal procedure was developed to calibrate image plate scanners using radioisotope sources. Techniques to calibrate scanners and sources, as well as cross-calibrate scanner models, are described to convert image plate dosage into physical units. This allows for the direct comparison of quantitative data between any facility and scanner. An empirical relation was also derived to establish sensitivity response settings for arbitrary gain settings. In practice, these methods may be extended to any image plate scanning system. PMID:25430350

  10. Impacts of cost functions on inverse lithography patterning.

    PubMed

    Yu, Jue-Chin; Yu, Peichen

    2010-10-25

    For advanced CMOS processes, inverse lithography promises better patterning fidelity than conventional mask correction techniques due to a more complete exploration of the solution space. However, the success of inverse lithography relies highly on customized cost functions whose design and know-how have rarely been discussed. In this paper, we investigate the impacts of various objective functions and their superposition for inverse lithography patterning using a generic gradient descent approach. We investigate the most commonly used objective functions, which are the resist and aerial images, and also present a derivation for the aerial image contrast. We then discuss the resulting pattern fidelity and final mask characteristics for simple layouts with a single isolated contact and two nested contacts. We show that a cost function composed of a dominant resist-image component and a minor aerial-image or image-contrast component can achieve a good mask correction and contour targets when using inverse lithography patterning. PMID:21164674

  11. Lithography imaging control by enhanced monitoring of light source performance

    NASA Astrophysics Data System (ADS)

    Alagna, Paolo; Zurita, Omar; Lalovic, Ivan; Seong, Nakgeuon; Rechsteiner, Gregory; Thornes, Joshua; D'havé, Koen; Van Look, Lieve; Bekaert, Joost

    2013-04-01

    Reducing lithography pattern variability has become a critical enabler of ArF immersion scaling and is required to ensure consistent lithography process yield for sub-30nm device technologies. As DUV multi-patterning requirements continue to shrink, it is imperative that all sources of lithography variability are controlled throughout the product life-cycle, from technology development to high volume manufacturing. Recent developments of new ArF light-source metrology and monitoring capabilities have been introduced in order to improve lithography patterning control.[1] These technologies enable performance monitoring of new light-source properties, relating to illumination stability, and enable new reporting and analysis of in-line performance.

  12. Scanner show-through reduction using reflective optics

    NASA Astrophysics Data System (ADS)

    Feng, Xiao-fan

    2003-12-01

    Document scanners are used to convert paper documents to digital format for document distribution or archiving. Scanners are also used in copier and fax machine to convert document to electrical signal in analog and digital format. Most document scanners use white backing to avoid black border or black hole in scanned images. One problem with white backing is that show-through from the backside is visible for duplex printed (two sided) documents. This paper describes an optical method to eliminate show-through without reverting back to the black border or black hole. The scanner cover is made into a saw-tooth shaped mirror surface. The surface is oriented so that it reflects the light from the scanner lamp to the scanner lens. When scanning the scanner cover as in the case of a hole in the paper, it reflects light (specular reflection) from the scanner lamp directly to the scanner lens. Because the scanner lamp is much brighter than the reflected light from the document, only a small portion of the reflected light is needed to have the same output as scanning a piece of white paper. Radiometric calculation shows that this new approach can reduce the overall reflection from the scanner cover to 8% when scanning a document, and yet, appear to be white when no document is in between the cover and scan bar. The show-through is greatly reduced due to this reduced overall reflection from the scanner cover.

  13. Single-Event-Upset Laser Scanner With Optical Bias

    NASA Technical Reports Server (NTRS)

    Kim, Quiesup

    1992-01-01

    Light-assisted microelectronic advanced laser scanner (LAMEALS) is augmented version of microelectronic advanced laser scanner (MEALS) described in article, "Laser Scanner Tests For Single-Event Upsets", (NPO-18216). Only major difference, steady illumination from helium/neon laser, argon-ion laser, and/or other source(s) combined with pulsed dye-laser illumination of MEALS into single illuminating beam.

  14. 21 CFR 882.1925 - Ultrasonic scanner calibration test block.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Ultrasonic scanner calibration test block. 882.1925 Section 882.1925 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN... Ultrasonic scanner calibration test block. (a) Identification. An ultrasonic scanner calibration test...

  15. 21 CFR 882.1925 - Ultrasonic scanner calibration test block.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Ultrasonic scanner calibration test block. 882.1925 Section 882.1925 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN... Ultrasonic scanner calibration test block. (a) Identification. An ultrasonic scanner calibration test...

  16. 21 CFR 892.1300 - Nuclear rectilinear scanner.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Nuclear rectilinear scanner. 892.1300 Section 892...) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1300 Nuclear rectilinear scanner. (a) Identification. A nuclear rectilinear scanner is a device intended to image the distribution of radionuclides...

  17. 21 CFR 892.1330 - Nuclear whole body scanner.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Nuclear whole body scanner. 892.1330 Section 892...) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1330 Nuclear whole body scanner. (a) Identification. A nuclear whole body scanner is a device intended to measure and image the distribution...

  18. 21 CFR 892.1330 - Nuclear whole body scanner.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Nuclear whole body scanner. 892.1330 Section 892...) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1330 Nuclear whole body scanner. (a) Identification. A nuclear whole body scanner is a device intended to measure and image the distribution...

  19. 21 CFR 892.1300 - Nuclear rectilinear scanner.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Nuclear rectilinear scanner. 892.1300 Section 892...) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1300 Nuclear rectilinear scanner. (a) Identification. A nuclear rectilinear scanner is a device intended to image the distribution of radionuclides...

  20. Applications of Optical Scanners in an Academic Center.

    ERIC Educational Resources Information Center

    Molinari, Carol; Tannenbaum, Robert S.

    1995-01-01

    Describes optical scanners, including how the technology works; applications in data management and research; development of instructional materials; and providing community services. Discussion includes the three basic types of optical scanners: optical character recognition (OCR), optical mark readers (OMR), and graphic scanners. A sidebar…

  1. 21 CFR 892.1330 - Nuclear whole body scanner.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ...) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1330 Nuclear whole body scanner. (a) Identification. A nuclear whole body scanner is a device intended to measure and image the distribution of... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Nuclear whole body scanner. 892.1330 Section...

  2. 21 CFR 892.1330 - Nuclear whole body scanner.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ...) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1330 Nuclear whole body scanner. (a) Identification. A nuclear whole body scanner is a device intended to measure and image the distribution of... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Nuclear whole body scanner. 892.1330 Section...

  3. 21 CFR 892.1330 - Nuclear whole body scanner.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ...) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1330 Nuclear whole body scanner. (a) Identification. A nuclear whole body scanner is a device intended to measure and image the distribution of... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Nuclear whole body scanner. 892.1330 Section...

  4. Manipulation of heat-diffusion channel in laser thermal lithography.

    PubMed

    Wei, Jingsong; Wang, Yang; Wu, Yiqun

    2014-12-29

    Laser thermal lithography is a good alternative method for forming small pattern feature size by taking advantage of the structural-change threshold effect of thermal lithography materials. In this work, the heat-diffusion channels of laser thermal lithography are first analyzed, and then we propose to manipulate the heat-diffusion channels by inserting thermal conduction layers in between channels. Heat-flow direction can be changed from the in-plane to the out-of-plane of the thermal lithography layer, which causes the size of the structural-change threshold region to become much smaller than the focused laser spot itself; thus, nanoscale marks can be obtained. Samples designated as "glass substrate/thermal conduction layer/thermal lithography layer (100 nm)/thermal conduction layer" are designed and prepared. Chalcogenide phase-change materials are used as thermal lithography layer, and Si is used as thermal conduction layer to manipulate heat-diffusion channels. Laser thermal lithography experiments are conducted on a home-made high-speed rotation direct laser writing setup with 488 nm laser wavelength and 0.90 numerical aperture of converging lens. The writing marks with 50-60 nm size are successfully obtained. The mark size is only about 1/13 of the focused laser spot, which is far smaller than that of the light diffraction limit spot of the direct laser writing setup. This work is useful for nanoscale fabrication and lithography by exploiting the far-field focusing light system. PMID:25607209

  5. A survey of advanced excimer optical imaging and lithography

    NASA Astrophysics Data System (ADS)

    Matsumoto, Koichi; Suwa, Kyoichi

    1998-11-01

    The first item discussed in this paper is to estimate the future trend regarding minimum geometry and the optical parameters, such as NA and wavelength. Simulations based on aerial images are performed for the estimation. The resolution limit is defined as a minimum feature size which retains practical depth of focus (DOF). Pattern geometry is classified into two categories, which are dense lines and isolated lines. Available wavelengths are assumed to be KrF excimer laser (λ=248 nm), ArF excimer laser (λ=193 nm) and F2 excimer laser (λ=157 nm). Based upon the simulation results, the resolution limit is estimated for each geometry and each wavelength. The second item is to survey ArF optics. At present, the ArF excimer laser is regarded as one of the most promising candidates as a next-generation light source. Discussions are ranging over some critical issues. The lifetime of ArF optics supposedly limited by the radiation compaction of silica glass is estimated in comparison with KrF optics. Availability of calcium fluoride (CaF2) is also discussed. As a designing issue, a comparative study is made about the optical configuration, dioptric or catadioptric. In the end, our resist-based performance is shown.

  6. Source-mask co-optimization: optimize design for imaging and impact of source complexity on lithography performance

    NASA Astrophysics Data System (ADS)

    Hsu, Stephen; Li, Zhipan; Chen, Luoqi; Gronlund, Keith; Liu, Hua-yu; Socha, Robert

    2009-12-01

    The co-optimization of the source and mask patterns [1, 2] is vital to future advanced ArF technology node development. This paper extends work previously reported on this topic [3, 4]. We will systematically study the impact of source on designs with different k1 values using SMO. Previous work compared the co-optimized versus iterative source-mask optimization methods [3]. We showed that the co-optimization method clearly improved lithography performance. This paper's approach consists of: 1) Co-optimize a pixelated freeform source and a continuous transmission gray tone mask based on a user specified cost function; 2) ASML-certified scanner-specific models and constraints are applied to the optimized source; 3) Assist feature (AF) "seeds" are identified from the optimized continuous transmission mask (CTM). Both the AF seed and the main feature are subsequently converted into a polygon mask; 4) The extracted AF seeds and main features are co-optimized with the source to achieve the best lithographic performance. Using this approach, we first use a DRAM brick wall design to demonstrate that using the same cost function metric by adjusting the optimization conditions creates an image log slope only optimization that can easily be applied. An optimize design for imaging methodology is introduced and shown to be important for low k1 imaging. A typical 2x node SRAM design is used to illustrate an integrated SMO design rule optimization flow. We use the same SRAM layout that used design rule optimization to study the source complexity impact with a range of k1 values that varies from 0.42 to 0.35. For the source type, we use freeform and traditional finite pole shape DOEs, all subject to ASML's scanner-specific models and constraints. We report the process window, MEF and process variation band (PV band) with different source types to find which source type give the best lithography performance.

  7. Application of optical CD metrology for alternative lithography

    NASA Astrophysics Data System (ADS)

    Asano, Masafumi; Kawamoto, Akiko; Matsuki, Kazuto; Godny, Stephane; Lin, Tingsheng; Wakamoto, Koichi

    2013-04-01

    Directed self-assembly (DSA) and nanoimprint lithography (NIL) have been widely developed for low-cost nanoscale patterning. Although they are currently regarded as "alternative lithography," some papers show their potential to be candidates for next-generation lithography (NGL). To actualize the potential, the contribution of metrology engineers is necessary. Since the characteristics of the lithography techniques are different from those of conventional lithography, new metrology schemes correlated with each characteristic are required. In DSA of block copolymer (BCP), a guide is needed to control the direction and position of BCP. Therefore, it is necessary to monitor the relationship between the guide and the BCP pattern. Since the depth of guide or the coating thickness variation of BCP over guide influences the behavior of phase separation of BCP, 3D metrology becomes increasingly important. In NIL, residual resist thickness (RLT) underneath the pattern should be measured because its variation affects the CD variation of transferred pattern. 3D metrology is also important in NIL. Optical critical dimension (OCD) metrology will be a powerful tool for 3D metrology. In this work, some applications of OCD for alternative lithography have been studied. For DSA, we have tried to simultaneously monitor the guide and BCP pattern in a DSA-based contact hole shrinking process. Sufficient measurement accuracy for CD and shapes for guide and BCP patterns was achievable. For NIL, sufficient sensitivity to RLT measurement was obtained.

  8. Successful demonstration of a comprehensive lithography defect monitoring strategy

    NASA Astrophysics Data System (ADS)

    Peterson, Ingrid B.; Breaux, Louis H.; Cross, Andrew; von den Hoff, Michael

    2003-07-01

    This paper describes the validation of the methodology, the model and the impact of an optimized Lithography Defect Monitoring Strategy at two different semiconductor manufacturing factories. The lithography defect inspection optimization was implemented for the Gate Module at both factories running 0.13-0.15μm technologies on 200mm wafers, one running microprocessor and the other memory devices. As minimum dimensions and process windows decrease in the lithography area, new technologies and technological advances with resists and resist systems are being implemented to meet the demands. Along with these new technological advances in the lithography area comes potentially unforeseen defect issues. The latest lithography processes involve new resists in extremely thin, uniform films, exposing the films under conditions of highly optimized focus and illumination, and finally removing the resist completely and cleanly. The lithography cell is defined as the cluster of process equipment that accomplishes the coating process (surface prep, resist spin, edge-bead removal and soft bake), the alignment and exposure, and the developing process (post-exposure bake, develop, rinse) of the resist. Often the resist spinning process involves multiple materials such as BARC (bottom ARC) and / or TARC (top ARC) materials in addition to the resist itself. The introduction of these new materials with the multiple materials interfaces and the tightness of the process windows leads to an increased variety of defect mechanisms in the lithography area. Defect management in the lithography area has become critical to successful product introduction and yield ramp. The semiconductor process itself contributes the largest number and variety of defects, and a significant portion of the total defects originate within the lithography cell. From a defect management perspective, the lithography cell has some unique characteristics. First, defects in the lithography process module have the

  9. Electrothermal MEMS fiber scanner for optical endomicroscopy.

    PubMed

    Seo, Yeong-Hyeon; Hwang, Kyungmin; Park, Hyeon-Cheol; Jeong, Ki-Hun

    2016-02-22

    We report a novel MEMS fiber scanner with an electrothermal silicon microactuator and a directly mounted optical fiber. The microactuator comprises double hot arm and cold arm structures with a linking bridge and an optical fiber is aligned along a silicon fiber groove. The unique feature induces separation of resonant scanning frequencies of a single optical fiber in lateral and vertical directions, which realizes Lissajous scanning during the resonant motion. The footprint dimension of microactuator is 1.28 x 7 x 0.44 mm3. The resonant scanning frequencies of a 20 mm long optical fiber are 239.4 Hz and 218.4 Hz in lateral and vertical directions, respectively. The full scanned area indicates 451 μm x 558 μm under a 16 Vpp pulse train. This novel laser scanner can provide many opportunities for laser scanning endomicroscopic applications. PMID:26907043

  10. The Galileo star scanner observations at Amalthea

    NASA Astrophysics Data System (ADS)

    Fieseler, Paul D.; Adams, Olen W.; Vandermey, Nancy; Theilig, E. E.; Schimmels, Kathryn A.; Lewis, George D.; Ardalan, Shadan M.; Alexander, Claudia J.

    2004-06-01

    In November of 2002, the Galileo spacecraft passed within 250 km of Jupiter's moon Amalthea. An onboard telescope, the star scanner, observed a series of bright flashes near the moon. It is believed that these flashes represent sunlight reflected from 7 to 9 small moonlets located within about 3000 km of Amalthea. From star scanner geometry considerations and other arguments, we can constrain the diameter of the observed bodies to be between 0.5 m to several tens of kilometers. In September of 2003, while crossing Amalthea's orbit just prior to Galileo's destruction in the jovian atmosphere, a single additional body seems to have been observed. It is suspected that these bodies are part of a discrete rocky ring embedded within Jupiter's Gossamer ring system.

  11. Ghost signals in Allison emittance scanners

    SciTech Connect

    Stockli, Martin P.; Leitner, M.; Moehs, D.P.; Keller, R.; Welton, R.F.; /SNS Project, Oak Ridge /Tennessee U.

    2004-12-01

    For over 20 years, Allison scanners have been used to measure emittances of low-energy ion beams. We show that scanning large trajectory angles produces ghost signals caused by the sampled beamlet impacting on an electric deflection plate. The ghost signal strength is proportional to the amount of beam entering the scanner. Depending on the ions, and their velocity, the ghost signals can have the opposite or the same polarity as the main beam signals. The ghost signals cause significant errors in the emittance estimates because they appear at large trajectory angles. These ghost signals often go undetected because they partly overlap with the real signals, are mostly below the 1% level, and often hide in the noise. A simple deflection plate modification is shown to reduce the ghost signal strength by over 99%.

  12. Ghost Signals In Allison Emittance Scanners

    SciTech Connect

    Stockli, Martin P.; Leitner, M.; Keller, R.; Moehs, D.P.; Welton, R. F.

    2005-03-15

    For over 20 years, Allison scanners have been used to measure emittances of low-energy ion beams. We show that scanning large trajectory angles produces ghost signals caused by the sampled beamlet impacting on an electric deflection plate. The ghost signal strength is proportional to the amount of beam entering the scanner. Depending on the ions, and their velocity, the ghost signals can have the opposite or the same polarity as the main beam signals. The ghost signals cause significant errors in the emittance estimates because they appear at large trajectory angles. These ghost signals often go undetected because they partly overlap with the real signals, are mostly below the 1% level, and often hide in the noise. A simple deflection plate modification is shown to reduce the ghost signal strength by over 99%.

  13. Compact conscious animal positron emission tomography scanner

    DOEpatents

    Schyler, David J.; O'Connor, Paul; Woody, Craig; Junnarkar, Sachin Shrirang; Radeka, Veljko; Vaska, Paul; Pratte, Jean-Francois; Volkow, Nora

    2006-10-24

    A method of serially transferring annihilation information in a compact positron emission tomography (PET) scanner includes generating a time signal for an event, generating an address signal representing a detecting channel, generating a detector channel signal including the time and address signals, and generating a composite signal including the channel signal and similarly generated signals. The composite signal includes events from detectors in a block and is serially output. An apparatus that serially transfers annihilation information from a block includes time signal generators for detectors in a block and an address and channel signal generator. The PET scanner includes a ring tomograph that mounts onto a portion of an animal, which includes opposing block pairs. Each of the blocks in a block pair includes a scintillator layer, detection array, front-end array, and a serial encoder. The serial encoder includes time signal generators and an address signal and channel signal generator.

  14. Point Relay Scanner Utilizing Ellipsoidal Mirrors

    NASA Technical Reports Server (NTRS)

    Manhart, Paul K. (Inventor); Pagano, Robert J. (Inventor)

    1997-01-01

    A scanning system uses a polygonal mirror assembly with each facet of the polygon having an ellipsoidal mirror located thereon. One focal point of each ellipsoidal mirror is located at a common point on the axis of rotation of the polygonal mirror assembly. As the mirror assembly rotates. a second focal point of the ellipsoidal mirrors traces out a scan line. The scanner can be utilized for scanned output display of information or for scanning information to be detected.

  15. Scanner-based macroscopic color variation estimation

    NASA Astrophysics Data System (ADS)

    Kuo, Chunghui; Lai, Di; Zeise, Eric

    2006-01-01

    Flatbed scanners have been adopted successfully in the measurement of microscopic image artifacts, such as granularity and mottle, in print samples because of their capability of providing full color, high resolution images. Accurate macroscopic color measurement relies on the use of colorimeters or spectrophotometers to provide a surrogate for human vision. The very different color response characteristics of flatbed scanners from any standard colorimetric response limits the utility of a flatbed scanner as a macroscopic color measuring device. This metamerism constraint can be significantly relaxed if our objective is mainly to quantify the color variations within a printed page or between pages where a small bias in measured colors can be tolerated as long as the color distributions relative to the individual mean values is similar. Two scenarios when converting color from the device RGB color space to a standardized color space such as CIELab are studied in this paper, blind and semi-blind color transformation, depending on the availability of the black channel information. We will show that both approaches offer satisfactory results in quantifying macroscopic color variation across pages while the semi-blind color transformation further provides fairly accurate color prediction capability.

  16. A near-infrared confocal scanner

    NASA Astrophysics Data System (ADS)

    Lee, Seungwoo; Yoo, Hongki

    2014-06-01

    In the semiconductor industry, manufacturing of three-dimensional (3D) packages or 3D integrated circuits is a high-performance technique that requires combining several functions in a small volume. Through-silicon vias, which are vertical electrical connections extending through a wafer, can be used to direct signals between stacked chips, thus increasing areal density by stacking and connecting multiple patterned chips. While defect detection is essential in the semiconductor manufacturing process, it is difficult to identify defects within a wafer or to monitor the bonding results between bonded surfaces because silicon and many other semiconductor materials are opaque to visible wavelengths. In this context, near-infrared (NIR) imaging is a promising non-destructive method to detect defects within silicon chips, to inspect bonding between chips and to monitor the chip alignment since NIR transmits through silicon. In addition, a confocal scanner provides high-contrast, optically-sectioned images of the specimen due to its ability to reject out-of-focus noise. In this study, we report an NIR confocal scanner that rapidly acquires high-resolution images with a large field of view through silicon. Two orthogonal line-scanning images can be acquired without rotating the system or the specimen by utilizing two orthogonally configured resonant scanning mirrors. This NIR confocal scanner can be efficiently used as an in-line inspection system when manufacturing semiconductor devices by rapidly detecting defects on and beneath the surface.

  17. Telescope with a wide field of view internal optical scanner

    NASA Technical Reports Server (NTRS)

    Degnan, III, John James (Inventor); Zheng, Yunhui (Inventor)

    2012-01-01

    A telescope with internal scanner utilizing either a single optical wedge scanner or a dual optical wedge scanner and a controller arranged to control a synchronous rotation of the first and/or second optical wedges, the wedges constructed and arranged to scan light redirected by topological surfaces and/or volumetric scatterers. The telescope with internal scanner further incorporates a first converging optical element that receives the redirected light and transmits the redirected light to the scanner, and a second converging optical element within the light path between the first optical element and the scanner arranged to reduce an area of impact on the scanner of the beam collected by the first optical element.

  18. Characterization of 'metal resist' for EUV lithography

    NASA Astrophysics Data System (ADS)

    Toriumi, Minoru; Sato, Yuta; Kumai, Reiji; Yamashita, Yoshiyuki; Tsukiyama, Koichi; Itani, Toshiro

    2016-03-01

    We characterized EIDEC metal resist for EUV lithography by various measurement methods. The low-voltage aberration-corrected scanning transmission electron microscopy combined with electron energy-loss spectroscopy showed the morphology of metal resists in nanometer regions and enabled studying the distribution of resist component in the resist film. The zirconium oxide metal resist kept the core-shell structure in the resist films and the titanium oxide metal resist showed the aggregation in the film. X-ray diffractometry and ab initio molecular dynamics simulation showed the amorphous structure with short-range order of the zirconium oxide metal resist. X-ray Photoelectron spectroscopy of the zirconium oxide-methacrylic acid metal resist showed the decomposition of the shell molecules and the increase of electron density at zirconium atoms after the EUV exposure. Infrared (IR) spectra indicated that the shell molecules made the various bindings to the metal core and the specific vibrational mode of shell molecules showed the divergent responsivity to the irradiation wavenumber of the IR Free electron laser.

  19. Metal hierarchical patterning by direct nanoimprint lithography

    PubMed Central

    Radha, Boya; Lim, Su Hui; Saifullah, Mohammad S. M.; Kulkarni, Giridhar U.

    2013-01-01

    Three-dimensional hierarchical patterning of metals is of paramount importance in diverse fields involving photonics, controlling surface wettability and wearable electronics. Conventionally, this type of structuring is tedious and usually involves layer-by-layer lithographic patterning. Here, we describe a simple process of direct nanoimprint lithography using palladium benzylthiolate, a versatile metal-organic ink, which not only leads to the formation of hierarchical patterns but also is amenable to layer-by-layer stacking of the metal over large areas. The key to achieving such multi-faceted patterning is hysteretic melting of ink, enabling its shaping. It undergoes transformation to metallic palladium under gentle thermal conditions without affecting the integrity of the hierarchical patterns on micro- as well as nanoscale. A metallic rice leaf structure showing anisotropic wetting behavior and woodpile-like structures were thus fabricated. Furthermore, this method is extendable for transferring imprinted structures to a flexible substrate to make them robust enough to sustain numerous bending cycles. PMID:23446801

  20. X-ray lithography using holographic images

    DOEpatents

    Howells, Malcolm R.; Jacobsen, Chris

    1995-01-01

    A non-contact X-ray projection lithography method for producing a desired X-ray image on a selected surface of an X-ray-sensitive material, such as photoresist material on a wafer, the desired X-ray image having image minimum linewidths as small as 0.063 .mu.m, or even smaller. A hologram and its position are determined that will produce the desired image on the selected surface when the hologram is irradiated with X-rays from a suitably monochromatic X-ray source of a selected wavelength .lambda.. On-axis X-ray transmission through, or off-axis X-ray reflection from, a hologram may be used here, with very different requirements for monochromaticity, flux and brightness of the X-ray source. For reasonable penetration of photoresist materials by X-rays produced by the X-ray source, the wavelength X, is preferably chosen to be no more than 13.5 nm in one embodiment and more preferably is chosen in the range 1-5 nm in the other embodiment. A lower limit on linewidth is set by the linewidth of available microstructure writing devices, such as an electron beam.