Science.gov

Sample records for 1980-86 lava dome

  1. Morphology and growth of the 2009 Redoubt Volcano lava dome

    NASA Astrophysics Data System (ADS)

    Bull, K. F.; Anderson, S. W.; Diefenbach, A. K.; Wessels, R. L.

    2010-12-01

    Redoubt Volcano began to extrude the third and final lava dome of the 2009 eruption on April 4. By July 1 the dome had filled the summit crater and ceased to grow, reaching a volume of 70M m3. The first 12 days of growth (4/4-16) produced blocky lava of unknown vesicularity that effused at a rate of 35 m3sec-1. Lava formed a round dome, and began to flow northward down a steep, glacial gorge. The effusion rate from 4/16-5/4 decreased to 4 m3sec-1. At that time, while blocky lava continued to be exposed on the margins and south side of the dome, more finely fragmented lava began to appear at the top of the dome directly above the vent. This material, more scoriaceous than the blocky lava was tracked by webcam images, and sampled in August, 2010. Dome growth continued for the next two months in the form of inflation and steep, north-directed flow. The effusion rate increased 5/4-16 to an average of 18 m3sec-1 and the surface area comprising fragmented, scoriaceous lava increased from 10 to 30%. This time period includes 2 days (5/14-16) of high effusion rate (27 m3sec-1) and an increase in the surface area of scoriaceous lava by 15%/day. Effusion rates decreased steadily to 2 m3sec-1 shortly before growth ceased around July 1. Fragmental, scoriaceous lava, however, continued to increase in area over the dome surface, spreading as a relatively cool carapace over the top of the dome. By 7/1 the fragmental carapace covered ~40% of the total dome area. Lava along the southern half, lower margins and northern toe of the dome appeared relatively dense and blocky. The hottest areas on the dome (~200-300°C) were found in blocky areas and along radial cracks that originate at the top of the dome, overlying the vent. We can gain insights regarding degassing processes by comparing similarities and differences in surface morphology of Redoubt’s dome with the 1980-86 Mount St. Helens (MSH) dome. The 1980-86 MSH dome displayed lobes with a predominantly scoriaceous carapace

  2. What factors control superficial lava dome explosivity?

    PubMed Central

    Boudon, Georges; Balcone-Boissard, Hélène; Villemant, Benoît; Morgan, Daniel J.

    2015-01-01

    Dome-forming eruption is a frequent eruptive style and a major hazard on numerous volcanoes worldwide. Lava domes are built by slow extrusion of degassed, viscous magma and may be destroyed by gravitational collapse or explosion. The triggering of lava dome explosions is poorly understood: here we propose a new model of superficial lava-dome explosivity based upon a textural and geochemical study (vesicularity, microcrystallinity, cristobalite distribution, residual water contents, crystal transit times) of clasts produced by key eruptions. Superficial explosion of a growing lava dome may be promoted through porosity reduction caused by both vesicle flattening due to gas escape and syn-eruptive cristobalite precipitation. Both processes generate an impermeable and rigid carapace allowing overpressurisation of the inner parts of the lava dome by the rapid input of vesiculated magma batches. The relative thickness of the cristobalite-rich carapace is an inverse function of the external lava dome surface area. Explosive activity is thus more likely to occur at the onset of lava dome extrusion, in agreement with observations, as the likelihood of superficial lava dome explosions depends inversely on lava dome volume. This new result is of interest for the whole volcanological community and for risk management. PMID:26420069

  3. The hydrothermal alteration of cooling lava domes

    NASA Astrophysics Data System (ADS)

    Ball, Jessica L.; Stauffer, Philip H.; Calder, Eliza S.; Valentine, Greg A.

    2015-12-01

    Hydrothermal alteration is a recognized cause of volcanic instability and edifice collapse, including that of lava domes or dome complexes. Alteration by percolating fluids transforms primary minerals in dome lavas to weaker secondary products such as clay minerals; moreover, secondary mineral precipitation can affect the porosity and permeability of dome lithologies. The location and intensity of alteration in a dome depend heavily on fluid pathways and availability in conjunction with heat supply. Here we investigate postemplacement lava dome weakening by hydrothermal alteration using a finite element numerical model of water migration in simplified dome geometries. This is combined with the rock alteration index (RAI) to predict zones of alteration and secondary mineral precipitation. Our results show that alteration potential is highest at the interface between the hot core of a lava dome and its clastic talus carapace. The longest lived alteration potential fields occur in domes with persistent heat sources and permeabilities that allow sufficient infiltration of water for alteration processes, but not so much that domes cool quickly. This leads us to conclude that alteration-induced collapses are most likely to be shallow seated and originate in the talus or talus/core interface in domes which have a sustained supply of magmatic heat. Mineral precipitation at these zones of permeability contrast could create barriers to fluid flow, potentially causing gas pressurization which might promote deeper seated and larger volume collapses. This study contributes to our knowledge of how hydrothermal alteration can affect lava domes and provides constraints on potential sites for alteration-related collapses, which can be used to target hazard monitoring.

  4. Phenocryst fragments in rhyolitic lavas and lava domes

    NASA Astrophysics Data System (ADS)

    Allen, S. R.; McPhie, J.

    2003-08-01

    Although rhyolitic lavas and lava domes are characterised by evenly porphyritic textures, not all the phenocrysts are whole euhedra. We undertook image analysis of 46 rhyolitic lava and lava dome samples to determine the abundance and shape of quartz and feldspar phenocryst fragments. Phenocryst fragments were identified in nearly all samples. On average, fragments amount to ˜5% of the total phenocryst population, or ˜0.5 modal%. The abundance of fragments in lavas and lava domes is not related to the groundmass texture (whether vesicular, flow banded, massive, glassy or crystalline), nor to distance from source. Fragments are, however, more abundant in samples with higher phenocryst contents. The phenocryst fragments in rhyolitic lavas and lava domes are mainly medium to large (0.5-3.5 mm), almost euhedral crystals with only a small portion removed, or chunky, equant, subhedral fragments, and occur in near-jigsaw-fit or clast-rotated pairs or groups. The fragments probably formed in response to decompression of large melt inclusions. Shear during laminar flow then dismembered the phenocrysts; continued laminar shear separated and rotated the fragments. Fractures probably formed preferentially along weaknesses in the phenocrysts, such as zones of melt inclusions, cleavage planes and twin composition planes. Rare splintery fragments are also present, especially within devitrified domains. Splinters are attributed to comminution of solid lava adjacent to fractures that were later healed. For comparison, we measured crystal abundance in a further 12 rhyolite samples that include block and ash flow deposits and ignimbrite. Phenocryst fragments within clasts in the block and ash flow samples showed similar shapes and abundances to those fragments within the lava and lava domes. Crystal fragments are much more abundant in ignimbrite (exceeding 67% of the crystal population) however, and dominated by small, equant, anhedral chunks or splinters. The larger crystals in

  5. Experimental Studies of Lava Dome Fracture

    NASA Astrophysics Data System (ADS)

    Smith, R.; Sammonds, P. R.; Kilburn, C. R.

    2005-12-01

    Renewed extrusion at andesitic to dacitic lava domes and collapses of these domes are usually preceded by fracturing and frictional sliding of material in and around the lava dome and magma conduit. This is observed through the occurrence of shallow high frequency earthquakes. Samples of andesite from Mount Shasta in the Cascades, a typical material for both lava domes and shallow underlying country rock, have been deformed in compression and tension, at temperatures of up to 900°C, and under confining pressures of up to 70MPa. During these tests the axial load, sample deformation and acoustic emissions were recorded, in order to compare the results with field observations of deformation and short period seismicity at lava domes. Typical strengths at room temperature and pressure were 6MPa in tension, and 100MPa in compression. Increased temperatures increased the tensile strength, but reduced the compressive strength, whereas both strengths increased with increasing confining pressure. There were ~10 times more acoustic emissions at room temperature than at maximum test temperatures, indicating that increased temperatures favour ductile, rather than brittle, failure. These results suggest that young, hot lava domes may collapse or erupt with little precursory short period seismicity, whilst older, cooler domes are likely to exhibit stronger short period seismic precursors. However, hotter material is likely to exhibit more recognisable deformation precursors. This is consistent with the seismicity observed after the 18 May 1980 climactic eruption at Mount St Helens, where there was ~100 times more seismicity prior to eruptions in 1985 and 1986 than there was prior to eruptions in 1980 and 1981. During these later eruptions, the interior of the dome would still have been ductile due to its temperature and the overburden weight acting as a confining pressure, but the large amount of pre-failure deformation in this zone could drive fracturing of the cooler outer

  6. The longevity of lava dome eruptions

    NASA Astrophysics Data System (ADS)

    Wolpert, Robert L.; Ogburn, Sarah E.; Calder, Eliza S.

    2016-02-01

    Understanding the duration of past, ongoing, and future volcanic eruptions is an important scientific goal and a key societal need. We present a new methodology for forecasting the duration of ongoing and future lava dome eruptions based on a database (DomeHaz) recently compiled by the authors. The database includes duration and composition for 177 such eruptions, with "eruption" defined as the period encompassing individual episodes of dome growth along with associated quiescent periods during which extrusion pauses but unrest continues. In a key finding, we show that probability distributions for dome eruption durations are both heavy tailed and composition dependent. We construct objective Bayesian statistical models featuring heavy-tailed Generalized Pareto distributions with composition-specific parameters to make forecasts about the durations of new and ongoing eruptions that depend on both eruption duration to date and composition. Our Bayesian predictive distributions reflect both uncertainty about model parameter values (epistemic uncertainty) and the natural variability of the geologic processes (aleatoric uncertainty). The results are illustrated by presenting likely trajectories for 14 dome-building eruptions ongoing in 2015. Full representation of the uncertainty is presented for two key eruptions, Soufriére Hills Volcano in Montserrat (10-139 years, median 35 years) and Sinabung, Indonesia (1-17 years, median 4 years). Uncertainties are high but, importantly, quantifiable. This work provides for the first time a quantitative and transferable method and rationale on which to base long-term planning decisions for lava dome-forming volcanoes, with wide potential use and transferability to forecasts of other types of eruptions and other adverse events across the geohazard spectrum.

  7. Small domes on Venus - Probable analogs of Icelandic lava shields

    NASA Technical Reports Server (NTRS)

    Garvin, James B.; Williams, Richard S., Jr.

    1990-01-01

    On the basis of observed shapes and volumetric estimates, small, dome-like features on radar images of Venus are interpreted to be analogs of Icelandic lava-shield volcanoes. Morphometric data for Venusian domes in Aubele and Slyuta as well as measurements of representative dome volumes and areas from Tethus Regio are used to demonstrate that the characteristic aspect ratios and flank slopes of these features are consistent with a subclass of low Icelandic lava-shield volcanoes (LILS).

  8. Small domes on Venus: probable analogs of Icelandic lava shields

    USGS Publications Warehouse

    Garvin, James B.; Williams, Richard S.

    1990-01-01

    On the basis of observed shapes and volumetric estimates, we interpret small, dome-like features on radar images of Venus to be analogs of Icelandic lava-shield volcanoes. Using morphometric data for venusian domes in Aubele and Slyuta (in press), as well as our own measurements of representative dome volumes and areas from Tethus Regio, we demonstrate that the characteristic aspect ratios and flank slopes of these features are consistent with a subclass of low Icelandic lava-shield volcanoes (LILS ). LILS are slightly convex in cross-section with typical flank slopes of ∼3°. Plausible lava-shield-production rates for the venusian plains suggest formation of ∼53 million shields over the past 0.25 Ga. The cumulative global volume of lava that would be associated with this predicted number of lava shields is only a factor of 3–4 times that of a single oceanic composite shield volcano such as Mauna Loa. The global volume of all venusian lava shields in the 0.5–20-km size range would only contribute a meter of resurfacing over geologically significant time scales. Thus, venusian analogs to LILS may represent the most abundant landform on the globally dominant plains of Venus, but would be insignificant with regard to the global volume of lava extruded. As in Iceland, associated lavas from fissure eruptions probably dominate plains volcanism and should be evident on the higher resolution Magellan radar images.

  9. Degassing processes during lava dome growth: Insights from Santiaguito lava dome, Guatemala

    NASA Astrophysics Data System (ADS)

    Holland, A. S. Peter; Watson, I. Matthew; Phillips, Jeremy C.; Caricchi, Luca; Dalton, Marika P.

    2011-04-01

    Eruptions of intermediate magma may be explosive or effusive. The development of open system degassing has been proposed as a pre-requisite for effusion of intermediate magma, however processes leading to open system degassing are poorly understood. To better understand degassing processes during lava dome extrusion we report high temporal-resolution SO 2 emission rate measurements collected with an ultra violet imaging camera at Santiaguito, Guatemala. Santiaguito is an ideal case study as the dome lava is compositionally very similar to products of the 1902 Plinian eruption of the parental Santa María volcano. We find that degassing is weak (0.4-1 kg s - 1 ) but continuous, and explosions are associated with small increases in emission rates (up to 2-3 kg s - 1 ). Continuous repose degassing occurs through a shallow cap rock which likely represents a proto-crust on the block lava flow which is extruded from the same vent. The continual permeability of the upper conduit argues against a mechanism of explosion triggering in which gas pressure builds beneath a viscous cap rock or plug. Rather, we consider degassing data better consistent with a model of shear-fracturing at the conduit margins. Using field constraints, we model the viscosity of Santiaguito magma as a function of depth and show that conditions for shear-fracturing are met from 150-600 m to the surface. This is in line with independent estimates of explosion initiation depth. We show that repose timescales are orders of magnitude longer than the timescale for shear fracture, and suggest that explosions are triggered when a continuous network of smaller-scale fractures develops, at which point decompression occurs and an explosion is triggered. Fracture healing occurs by viscous relaxation however near to the surface where viscosity is highest, an unconsolidated gouge layer may develop. Our model implies that the observed explosions are a by-product of extrusion. Shear-fracturing can drive open system

  10. Key variables influencing patterns of lava dome growth and collapse

    NASA Astrophysics Data System (ADS)

    Husain, T.; Elsworth, D.; Voight, B.; Mattioli, G. S.; Jansma, P. E.

    2013-12-01

    Lava domes are conical structures that grow by the infusion of viscous silicic or intermediate composition magma from a central volcanic conduit. Dome growth can be characterized by repeated cycles of growth punctuated by collapse, as the structure becomes oversized for its composite strength. Within these cycles, deformation ranges from slow long term deformation to sudden deep-seated collapses. Collapses may range from small raveling failures to voluminous and fast-moving pyroclastic flows with rapid and long-downslope-reach from the edifice. Infusion rate and magma rheology together with crystallization temperature and volatile content govern the spatial distribution of strength in the structure. Solidification, driven by degassing-induced crystallization of magma leads to the formation of a continuously evolving frictional talus as a hard outer shell. This shell encapsulates the cohesion-dominated soft ductile core. Here we explore the mechanics of lava dome growth and failure using a two-dimensional particle-dynamics model. This meshless model follows the natural evolution of a brittle carapace formed by loss of volatiles and rheological stiffening and avoids difficulties of hour-glassing and mesh-entangelment typical in meshed models. We test the fidelity of the model against existing experimental and observational models of lava dome growth. The particle-dynamics model follows the natural development of dome growth and collapse which is infeasible using simple analytical models. The model provides insight into the triggers that lead to the transition in collapse mechasnism from shallow flank collapse to deep seated sector collapse. Increase in material stiffness due to decrease in infusion rate results in the transition of growth pattern from endogenous to exogenous. The material stiffness and strength are strongly controlled by the magma infusion rate. Increase in infusion rate decreases the time available for degassing induced crystallization leading to a

  11. The longevity of lava dome eruptions: analysis of the global DomeHaz database

    NASA Astrophysics Data System (ADS)

    Ogburn, S. E.; Wolpert, R.; Calder, E.; Pallister, J. S.; Wright, H. M. N.

    2015-12-01

    The likely duration of ongoing volcanic eruptions is a topic of great interest to volcanologists, volcano observatories, and communities near volcanoes. Lava dome forming eruptions can last from days to centuries, and can produce violent, difficult-to-forecast activity including vulcanian to plinian explosions and pyroclastic density currents. Periods of active dome extrusion are often interspersed with periods of relative quiescence, during which extrusion may slow or pause altogether, but persistent volcanic unrest continues. This contribution focuses on the durations of these longer-term unrest phases, hereafter eruptions, that include periods of both lava extrusion and quiescence. A new database of lava dome eruptions, DomeHaz, provides characteristics of 228 eruptions at 127 volcanoes; for which 177 have duration information. We find that while 78% of dome-forming eruptions do not continue for more than 5 years, the remainder can be very long-lived. The probability distributions of eruption durations are shown to be heavy-tailed and vary by magma composition. For this reason, eruption durations are modeled with generalized Pareto distributions whose governing parameters depend on each volcano's composition and eruption duration to date. Bayesian predictive distributions and associated uncertainties are presented for the remaining duration of ongoing eruptions of specified composition and duration to date. Forecasts of such natural events will always have large uncertainties, but the ability to quantify such uncertainty is key to effective communication with stakeholders and to mitigation of hazards. Projections are made for the remaining eruption durations of ongoing eruptions, including those at Soufrière Hills Volcano, Montserrat and Sinabung, Indonesia. This work provides a quantitative, transferable method and rationale on which to base long-term planning decisions for dome forming volcanoes of different compositions, regardless of the quality of an

  12. Timescales of texture development in a cooling lava dome

    NASA Astrophysics Data System (ADS)

    von Aulock, F. W.; Nichols, A. R. L.; Kennedy, B. M.; Oze, C.

    2013-08-01

    Crystal growth and crack development in cooling lava domes are both capable of redistributing and mobilizing water. Cracking and hydration decrease the stability of a dome, which may lead to hazards including partial dome collapse and block and ash flows. By examining the distribution of water around crystals and cracks, we identify and confine temperature and timescales of texture development in glassy rocks of volcanic domes. Four generations of textures have been identified: type a: spherulites, type b: cracks associated with spherulite growth, type c: perlitic cracks, and type d: disparate cracks. High-resolution imaging using Fourier Transform Infrared Spectroscopy (FTIR) performed on samples from the Ngongotaha dome, New Zealand, show an increase in H2O of up to 450% along gradients of around 100 μm up to 300 μm in length from perlitic cracks, spherulitic cracks and in haloes around spherulites. No gradients in water concentrations across the disparate cracks are present. Water diffusion models show potential timescale-temperature couples that coincide with textural observations and previous studies, and allow us to develop a conceptual model of spherulite growth and cracking in a cooling lava dome. Spherulite growth starts around the glass transition temperature (Tg) when the viscous melt cools to a brittle solid and proceeds with cracking related to volume changes at slightly lower temperatures and shorter timescales (days to weeks) compared to spherulite growth. Perlitic cracking happens at T≪Tg, allowing hydration of a permeable network within weeks to months. Low temperature (≲50 °C) cracks could not be hydrated in the time since eruption (≃230 ka). Our data show that textures in cooling glass develop during cooling below Tg within days, producing cracks and crystals that create inhomogeneities in the spatial distribution of water. The lengthscales of water diffusion away from spherulites, spherulite cracks, and perlite cracks suggest that most

  13. Emplacement of the final lava dome of the 2009 eruption of Redoubt Volcano, Alaska

    NASA Astrophysics Data System (ADS)

    Bull, Katharine F.; Anderson, Steven W.; Diefenbach, Angela K.; Wessels, Rick L.; Henton, Sarah M.

    2013-06-01

    After more than 8 months of precursory activity and over 20 explosions in 12 days, Redoubt Volcano, Alaska began to extrude the fourth and final lava dome of the 2009 eruption on April 4. By July 1 the dome had filled the pre-2009 summit crater and ceased to grow. By means of analysis and annotations of time-lapse webcam imagery, oblique-image photogrammetry techniques and capture and analysis of forward-looking infrared (FLIR) images, we tracked the volume, textural, effusive-style and temperature changes in near-real time over the entire growth period of the dome. The first month of growth (April 4-May 4) produced blocky intermediate- to high-silica andesite lava (59-62.3 wt.% SiO2) that initially formed a round dome, expanding by endogenous growth, breaking the surface crust in radial fractures and annealing them with warmer, fresh lava. On or around May 1, more finely fragmented and scoriaceous andesite lava (59.8-62.2 wt.% SiO2) began to appear at the top of the dome coincident with increased seismicity and gas emissions. The more scoriaceous lava spread radially over the dome surface, while the dome continued to expand from endogenous growth and blocky lava was exposed on the margins and south side of the dome. By mid-June the upper scoriaceous lava had covered 36% of the dome surface area. Vesicularity of the upper scoriaceous lava range from 55 to 66%, some of the highest vesicularity measurements recorded from a lava dome. We suggest that the stability of the final lava dome primarily resulted from sufficient fracturing and clearing of the conduit by preceding explosions that allowed efficient degassing of the magma during effusion. The dome was thus able to grow until it was large enough to exceed the magmastatic pressure in the chamber, effectively shutting off the eruption.

  14. Near-automatic generation of lava dome DEMs from photos

    NASA Astrophysics Data System (ADS)

    James, M. R.; Varley, N.

    2012-04-01

    Acquiring accurate digital elevation models (DEMs) of growing lava domes is critical for hazard assessment. However, most techniques require expertise and time (e.g. photogrammetry) or expensive equipment (e.g. laser scanning and radar-based techniques). Here, we use a photo-based approach developed within the computer vision community that offers the potential for near-automatic DEM construction using a consumer-grade digital camera and freely available software. The technique is based on a combination of structure-from-motion and multi-view stereo algorithms (SfM-MVS) and can generate dense 3D point clouds (millions of points) from multiple photographs of a scene taken from different positions. Processing is carried out by automated 'reconstruction pipeline' software downloadable from the internet, e.g. http://blog.neonascent.net/archives/bundler-photogrammetry-package/. Such reconstructions are initally un-scaled and un-oriented so additional software (http://www.lancs.ac.uk/ staff/jamesm/software/sfm_georef.htm) has been developed to permit scaling or full georeferencing. Although this step requires the presence of some control points or knowledge of scale within the scene, it does not have the relatively strict image acquisition and control requirements of traditional photogrammetry. For accuracy and to allow error analysis, georeferencing observations are made within the image set, rather than requiring feature matching within the point cloud. Here we demonstrate the results of using the technique for deriving 3D models of the Volcán de Colima lava dome. 5 image sets have been collected by different people over a period of 12 months during overflights in a light aircraft. Although the resulting imagery is of variable quality for 3D reconstruction, useful data can be extracted from each set. Scaling and georeferencing is carried out using a combination of ortho-imagery (downloaded from Bing) and a few GPS points. Overall precisions are ~1 m and DEM qualities

  15. Venusian pancake domes: Insights from terrestrial voluminous silicic lavas and thermal modeling

    NASA Technical Reports Server (NTRS)

    Manley, Curtis R.

    1993-01-01

    The so-called 'pancake' domes, and several other volcanoes on Venus, appear to represent large extrusions of silicic lava. Similar voluminous rhyolite lava flows, often associated with mantle plumes, are known on Earth. Venus' high ambient temperature, and insulation by the dome's brecciated carapace, both act to prolong cooling of a dome's interior, allowing for episodic lava input over an extended period of time. Field relations and aspect ratios of terrestrial voluminous rhyolite lavas imply continuous, non-episodic growth, reflecting tapping of a large volume of dry, anatectic silicic magma. Petrogenetically, the venusian domes may be analogous to chains of small domes on Earth, which represent 'leakage' of evolved material from magma bodies fractionating from much more mafic liquids.

  16. Magma ascent dynamic through Ti diffusion in magnetites. Application to lava dome-forming eruptions. Implications to lava dome superifical explosivity.

    NASA Astrophysics Data System (ADS)

    Boudon, Georges; Balcone-Boissard, Hélène; Morgan, Dan J.

    2016-04-01

    Superficial lava dome explosivity represents a major hazard during lava dome growth. But the origin of this explosive activity remains unclear until recently. By using geochemical (residual water content, silica abundance) and textural (vesicularity, microcristallinity) data, we constrain the occurrence of such hazard to the beginning of the lava dome activity. During the first stages of growth, the lava dome is small enough to develop an impermeable carapace that isolates a less degassed batch of magma inside, thus allowing an internal overpressurization of the volcano (Boudon et al., 2015). This study more precisely details the petrology and the texture of titano-magnetites as archive of magma ascent dynamic within the conduit. Titano-magnetites may exhibit two types of textures: exsolved or "limpid". When they are exsolved, no time constrain may be extracted as they re-equilibrate. On the contrary, when they are unexsolved, major element distribution, in particular Ti, may act as a powerful tool to decipher magma dynamic (differentiation, mixing) and estimate time that corresponds to the magma ascent time. The composition and elemental diffusion profiles are acquired by EPMA, following textural investigations by SEM. The time is then obtained by modelling the profile as a diffusion profile using the intracristalline diffusion coefficients published in literature. We applied this methodology to examples of lava dome superficial explosivity on Montagne Pelée in Martinique (Lesser Antilles Arc), and on Puy Chopine volcano in La Chaine des Puys, (French Massif Central). More precisely, the first phase of the Puy Chopine lava dome growth experienced a superficial explosion, as for Montagne Pelée, the first stages of the 1902 eruption (several superficial explosions occurred) and the 650 y. BP eruption (two superficial explosions destroyed the growing lava dome). We show that, for a single event, the vesiculated, undegassed batch of magma responsible of the

  17. Topaz rhyolites of Nathrop, Colorado: Lava domes or rheomorphic flows?

    NASA Astrophysics Data System (ADS)

    Hernandez, B. M.; Panter, K. S.; Van Der Voo, R.

    2013-12-01

    Deposits of topaz-bearing rhyolite at Ruby and Sugarloaf Mountains in central Colorado are considered to be remnants of lava domes. The deposits are part of the Late Eocene-Oligocene Central Colorado Volcanic Field [1] that lies along the eastern margin of the Arkansas Graben of the Rio Grande Rift. Topaz-bearing rhyolite lava domes and flows have been identified elsewhere in Colorado and the western U.S., but an assortment of geomorphological, lithostratigraphical, and textural features of Ruby and Sugarloaf Mountains call into question their strict classification as such. Alternatively, the lava flows may be interpreted as rheomorphic ignimbrites. The volcanic deposits encompass a sequence of steeply (~70°) west-dipping units that form two N-S elongated edifices ~0.5 km long and a few hundred meters high. Their common lithostratigraphy from bottom to top is tuff breccia, vitrophyre, and flow-banded rhyolite. The tuff breccia includes large (up to ~1 m) pumice blocks and lithics that vary from nearly absent to moderately abundant (10-20%). At Sugarloaf lithics include rare cobble-sized clasts of granite, but the majority consists of flow-banded rhyolite. The tuff breccia grades normally upward into the vitrophyre with increased welding and a eutaxitic fabric defined by fiamme with increasing aspect ratios. Lithics are abundant in the vitrophyre at Sugarloaf but are rare or absent in the vitrophyre at Ruby Mountain. The transition from the vitrophyre to the flow-banded rhyolite is abrupt (<1 m) at both locations, though the lower rhyolite is less competent. The flow-banded rhyolite at Sugarloaf is crystal-rich (up to 50%), containing plagioclase, sanidine, smoky quartz, and biotite, while at Ruby the rhyolite is relatively crystal poor (2-3%) and biotite is absent. Pumiceous zones and lithophysae occur within the rhyolite at both locations. Zones of auto-brecciation are often associated with convoluted flow banding, especially along a vertical contact with

  18. Photogrammetric monitoring of lava dome growth during the 2009 eruption of Redoubt Volcano

    NASA Astrophysics Data System (ADS)

    Diefenbach, Angela K.; Bull, Katharine F.; Wessels, Rick L.; McGimsey, Robert G.

    2013-06-01

    The 2009 eruption of Redoubt Volcano, Alaska, began with a phreatic explosion on 15 March followed by a series of at least 19 explosive events and growth and destruction of at least two, and likely three, lava domes between 22 March and 4 April. On 4 April explosive activity gave way to continuous lava effusion within the summit crater. We present an analysis of post-4 April lava dome growth using an oblique photogrammetry approach that provides a safe, rapid, and accurate means of measuring dome growth. Photogrammetric analyses of oblique digital images acquired during helicopter observation flights and fixed-wing volcanic gas surveys produced a series of digital elevation models (DEMs) of the lava dome from 16 April to 23 September. The DEMs were used to calculate estimates of volume and time-averaged extrusion rates and to quantify morphological changes during dome growth. Effusion rates ranged from a maximum of 35 m3 s- 1 during the initial two weeks to a low of 2.2 m3 s- 1 in early summer 2009. The average effusion rate from April to July was 9.5 m3 s- 1. Early, rapid dome growth was characterized by extrusion of blocky lava that spread laterally within the summit crater. In mid-to-late April the volume of the dome had reached 36 × 106 m3, roughly half of the total volume, and dome growth within the summit crater began to be limited by confining crater walls to the south, east, and west. Once the dome reached the steep, north-sloping gorge that breaches the crater, growth decreased to the south, but the dome continued to inflate and extend northward down the gorge. Effusion slowed during 16 April-1 May, but in early May the rate increased again. This rate increase was accompanied by a transition to exogenous dome growth. From mid-May to July the effusion rate consistently declined. The decrease is consistent with observations of reduced seismicity, gas emission, and thermal anomalies, as well as declining rates of geodetic deflation or inflation. These trends

  19. Hydrogen-isotope evidence for extrusion mechanisms of the Mount St Helens lava dome

    NASA Technical Reports Server (NTRS)

    Anderson, Steven W.; Fink, Jonathan H.

    1989-01-01

    Hydrogen isotope analyses were used to determine water content and deuterium content for 18 samples of the Mount St Helens dome dacite in an attempt to identify the triggering mechanisms for periodic dome-building eruptions of lava. These isotope data, the first ever collected from an active lava dome, suggest a steady-state process of magma evolution combining crystallization-induced volatile production in the chamber with three different degassing mechanisms: closed-system volatile loss in the magma chamber, open-system volatile release during ascent, and kinetically controlled degassing upon eruption at the surface. The data suggest the future dome-building eruptions may require a new influx of volatile-rich magma into the chamber.

  20. An assessment of hydrothermal alteration in the Santiaguito lava dome complex, Guatemala: implications for dome collapse hazards

    USGS Publications Warehouse

    Ball, Jessica L.; Calder, Eliza S.; Hubbard, Bernard E.; Bernstein, Marc L.

    2013-01-01

    A combination of field mapping, geochemistry, and remote sensing methods has been employed to determine the extent of hydrothermal alteration and assess the potential for failure at the Santiaguito lava dome complex, Guatemala. The 90-year-old complex of four lava domes has only experienced relatively small and infrequent dome collapses in the past, which were associated with lava extrusion. However, existing evidence of an active hydrothermal system coupled with intense seasonal precipitation also presents ideal conditions for instability related to weakened clay-rich edifice rocks. Mapping of the Santiaguito dome complex identified structural features related to dome growth dynamics, potential areas of weakness related to erosion, and locations of fumarole fields. X-ray diffraction and backscattered electron images taken with scanning electron microscopy of dacite and ash samples collected from around fumaroles revealed only minor clay films, and little evidence of alteration. Mineral mapping using ASTER and Hyperion satellite images, however, suggest low-temperature (<150 °C) silicic alteration on erosional surfaces of the domes, but not the type of pervasive acid-sulfate alteration implicated in collapses of other altered edifices. To evaluate the possibility of internal alteration, we re-examined existing aqueous geochemical data from dome-fed hot springs. The data indicate significant water–rock interaction, but the Na–Mg–K geoindicator suggests only a short water residence time, and δ18O/δD ratios show only minor shifts from the meteoric water line with little precipitation of secondary (alteration) minerals. Based on available data, hydrothermal alteration on the dome complex appears to be restricted to surficial deposits of hydrous silica, but the study has highlighted, importantly, that the 1902 eruption crater headwall of Santa María does show more advanced argillic alteration. We also cannot rule out the possibility of advanced alteration

  1. An assessment of hydrothermal alteration in the Santiaguito lava dome complex, Guatemala: implications for dome collapse hazards

    NASA Astrophysics Data System (ADS)

    Ball, Jessica L.; Calder, Eliza S.; Hubbard, Bernard E.; Bernstein, Marc L.

    2013-01-01

    A combination of field mapping, geochemistry, and remote sensing methods has been employed to determine the extent of hydrothermal alteration and assess the potential for failure at the Santiaguito lava dome complex, Guatemala. The 90-year-old complex of four lava domes has only experienced relatively small and infrequent dome collapses in the past, which were associated with lava extrusion. However, existing evidence of an active hydrothermal system coupled with intense seasonal precipitation also presents ideal conditions for instability related to weakened clay-rich edifice rocks. Mapping of the Santiaguito dome complex identified structural features related to dome growth dynamics, potential areas of weakness related to erosion, and locations of fumarole fields. X-ray diffraction and backscattered electron images taken with scanning electron microscopy of dacite and ash samples collected from around fumaroles revealed only minor clay films, and little evidence of alteration. Mineral mapping using ASTER and Hyperion satellite images, however, suggest low-temperature (<150 °C) silicic alteration on erosional surfaces of the domes, but not the type of pervasive acid-sulfate alteration implicated in collapses of other altered edifices. To evaluate the possibility of internal alteration, we re-examined existing aqueous geochemical data from dome-fed hot springs. The data indicate significant water-rock interaction, but the Na-Mg-K geoindicator suggests only a short water residence time, and δ18O/δD ratios show only minor shifts from the meteoric water line with little precipitation of secondary (alteration) minerals. Based on available data, hydrothermal alteration on the dome complex appears to be restricted to surficial deposits of hydrous silica, but the study has highlighted, importantly, that the 1902 eruption crater headwall of Santa María does show more advanced argillic alteration. We also cannot rule out the possibility of advanced alteration within the

  2. Volumes and eruption rates for the 2008-2009 Chaitén rhyolite lava dome

    NASA Astrophysics Data System (ADS)

    Pallister, J. S.; Diefenbach, A. K.; Griswold, J.; Muñoz, J.; Lara, L. E.; Valenzuela, C.; Burton, W. C.; Keeler, R.

    2010-12-01

    The 2008 eruption of Chaitén caldera, southern Chile, was one of the most explosive on Earth in the past two decades. The eruption began early on 2 May 2008 (UTC) and produced sub-plinian to plinian ash columns between 2 May and 9 May, before transitioning from explosive eruption of tephra to effusive eruption of rhyolite lava. A series of lava flow lobes accumulated within the caldera between late May and the end of the year, burying most of Chaitén’s prehistoric lava dome. A prominent lava spine was also extruded, starting in late 2008. The spine collapsed on 19 February 2009, producing a pyroclastic flow that extended out of the caldera and 7 km down the Río Chaitén. Dome growth continued through 2009, filling in much of the spine-collapse area and further expanding the composite dome through endogenous growth. Dome volumes are computed and eruption rates estimated using satellite data from 2008-10, photogrammetric analysis of oblique aerial photographs taken in January 2010, and digital elevation models derived from ASTER, SRTM, LIDAR and topographic maps. The 2008-10 dome has a total volume of approximately 0.8 km3. About 0.5 km3 erupted within the first four months, when extrusion rates were in the range 10-100 m3s-1. Extrusion rates decreased exponentially over the eruptive period. The 2008-10 dome is similar in volume and composition to the prehistoric lava dome, which has a volume of at least 0.5 km3. Together the two domes constitute about 20-40% of the 3.5-7 km3 collapse volume of the prehistoric caldera. The unusually rapid extrusion rates during the first four months are among the highest ever measured for silicic lava. Chaitén’s 2008-10 lava is obsidian and microcrystalline rhyolite with 75.35+/-0.02% SiO2. A large volume of low viscosity crystal-poor magma (about 0.1% phenocrysts) coupled with high extrusion pressures during the extended transition from explosive to effusive eruption style resulted in these exceptionally high extrusion rates.

  3. Effects of lava-dome emplacement on the Mount St. Helens crater glacier

    NASA Astrophysics Data System (ADS)

    Walder, J. S.; Schilling, S. P.; Denlinger, R. P.; Vallance, J. W.

    2004-12-01

    Since the end of the 1981-1986 episode of lava-dome growth at Mount St. Helens, an unusual glacier has grown rapidly within the crater of the volcano. The glacier, which is fed primarily by avalanching from the crater walls, contains about 30% rock debris by volume, has a maximum thickness of about 220 m and a volume of about 120 million cubic m, and forms a crescent that wraps around the old lava dome on both east and west sides. The new (October 2004) lava dome in the south of the crater began to grow centered roughly on the contact between the old lava dome and the glacier, in the process uplifting both ice and old dome rock. As the new dome is spreading to the south, the adjacent glacier is bulging upward. Firn layers on the outer flank of the glacier bulge have been warped upward almost vertically. In contrast, ice adjacent to the new dome has been thoroughly fractured. The overall style of deformation is reminiscent of that associated with salt-dome intrusion. Drawing an analogy to sand-box experiments, we suggest that the glacier is being deformed by high-angle reverse faults propagating upward from depth. Comparison of Lidar images of the glacier from September 2003 and October 2004 reveals not only the volcanogenic bulge but also elevated domains associated with the passage of kinematic waves, which are caused by glacier-mass-balance perturbations and have nothing to do with volcanic activity. As of 25 October 2004, growth of the new lava dome has had negligible hydrological consequences. Ice-surface cauldrons are common consequences of intense melting caused by either subglacial eruptions (as in Iceland) or subglacial venting of hot gases (as presently taking place at Mount Spurr, Alaska). However, there has been a notable absence of ice-surface cauldrons in the Mount St. Helens crater glacier, aside from a short-lived pond formed where the 1 October eruption pierced the glacier. We suggest that heat transfer to the glacier base is inefficient because

  4. Permeability development during compaction of pumiceous dome lavas: testing the permeable foam collapse model

    NASA Astrophysics Data System (ADS)

    Ashwell, P.; Kendrick, J. E.; Lavallee, Y.; kennedy, B.; Hess, K.; von Aulock, F. W.; Cole, J. W.; Dingwell, D. B.

    2011-12-01

    The evolution of the porous network during lava dome extrusions is commonly perceived as the key control on the permeability which regulates the pore pressure, thereby challenging the stability of the dome. Here, we present experimental results of porosity and permeability evolution during compaction of aphiric and crystal-bearing rhyolitic, pumiceous (porosity ~60 %) lavas from Tarawera and Ngongotaha volcanoes (Taupo Volcanic Zone, New Zealand), respectively. The The Ngongotaha sample is from the crystal-free dome carapace (erupted ~200 ka following caldera collapse at Rotorua Caldera), while the Tarawera sample is a crystalline, pumiceous clast from a dome-collapse generated block and ash flow (at Okataina Caldera ~1314 AD). This study tests the validity of the 'permeable foam' model by comparing properties of the experimentally compacted pumice to denser material seen in the exposed cores of Tarawera and Ngongotaha. Cylindrical samples were deformed under an axial stress of 2.8 MPa at 650-750°C (above their calorimetric glass transition temperature) up a total axial strain of 50 %. The porosity and permeability of the samples were characterized at strain increments of 10 %. The samples exhibit strain hardening during compaction. A rapid reduction in permeability along the primary axis occurs during the initial stage of compression and continues to decrease with increasing strain and densification of the lava. Development of permeability of each lava differs as the crystallinity affects the compaction process. The development of textures and microstructures is characterised using petrographic analysis and neutron computed tomography. The findings from the study are then put into the context of lava dome growth at Tarawera and Ngongotaha volcanoes.

  5. Blowing off steam: Tuffisite formation as a regulator for lava dome eruptions

    NASA Astrophysics Data System (ADS)

    Kendrick, Jackie; Lavallée, Yan; Varley, Nick; Wadsworth, Fabian; Lamb, Oliver; Vasseur, Jérémie

    2016-04-01

    Tuffisites are veins of variably sintered, pyroclastic particles that form in conduits and lava domes as a result of localized fragmentation events during gas-and-ash explosions. Those observed in-situ on the active 2012 lava dome of Volcán de Colima range from voids with intra-clasts showing little movement and interpreted to be failure-nuclei, to sub-parallel lenses of sintered granular aggregate interpreted as fragmentation horizons, through to infilled fractures with evidence of viscous remobilization. All tuffisites show evidence of sintering. Further examination of the complex fracture-and-channel patterns reveals viscous backfill by surrounding magma, suggesting that lava fragmentation was followed by stress relaxation and continued viscous deformation as the tuffisites formed. The natural tuffisites are more permeable than the host andesite, and have a wide range of porosity and permeability compared to a narrower window for the host rock, and gauging from their significant distribution across the dome, we posit that the tuffisite veins may act as important outgassing pathways. To investigate tuffisite formation we crushed and sieved andesite from the lava dome and sintered it at magmatic temperatures for different times. We then assessed the healing and sealing ability by measuring porosity and permeability, showing that sintering reduces both over time. During sintering the porosity-permeability reduction occurs due to the formation of viscous necks between adjacent grains, a process described by the neck-formation model of Frenkel (1945). This process leads the granular starting material to a porosity-permeability regime anticipated for effusive lavas, and which describes the natural host lava as well as the most impervious of natural tuffisites. This suggests that tuffisite formation at Volcán de Colima constructed a permeable network that enabled gas to bleed passively from the magma. We postulate that this progressively reduced the lava dome

  6. Alteration minerals on the Santiaguito lava dome complex, Santa María volcano, Guatemala

    NASA Astrophysics Data System (ADS)

    Ball, J. L.; Calder, E. S.; Giese, R.

    2010-12-01

    Santiaguito is a relatively young complex of four lava domes located at the foot of the Santa María volcano in Guatemala. The domes have been erupting intermittently since 1922, and have shown various degrees of hydrothermal activity throughout their development. Hydrothermal systems in older volcanic edifices (Casita in Nicaragua, La Soufriere of Guadeloupe) are known to weaken rock and promote collapses, but their effects and development in young lava domes is less well constrained. Santiaguito has experienced several relatively small dome collapses (≦ 3 million m3) in the past, but it is unclear what role hydrothermal processes have played in these collapses. Currently, low-temperature active fumaroles are present on the domes, indicating the presence of a hydrothermal system. Samples of unconsolidated ash and sediment and rock chips were collected from the interior of fumaroles on the El Brujo lava dome to determine if hydrothermal alteration minerals were present. X-ray diffraction (XRD) was used to identify the presence of clay minerals in the powdered samples. Additional semi-quantitative identification was obtained using backscattered electron images (BSE) collected with a scanning electron microscope (SEM). Both analyses were performed at the University at Buffalo. Preliminary XRD analyses were unable to conclusively detect alteration minerals in powdered samples; however, BSE images of the same samples appeared to show alteration minerals (montmorillonite, saponite) adhering to individual ash grains. Further SEM analyses are being conducted on thin sections of the rock chips to determine if alteration minerals are present in dome rock as well as in the unconsolidated material. Development of alteration minerals on the relatively young (~50-90 year old) Santiaguito lava domes may indicate an increased risk for alteration-driven instabilities and collapses. Altered volcanic rocks are less competent, have lower shear strength and are more susceptible to

  7. A Laboratory Study of the 2004-2008 Mount St Helens Lava Dome: Mechanical Behaviour, Rheology, and Earthquakes.

    NASA Astrophysics Data System (ADS)

    Smith, R.; Sammonds, P. R.; Tuffen, H.; Meredith, P. G.

    2009-05-01

    Lava domes are often modelled as a fluid whose dynamics are controlled by the viscosity and pressurisation of the fluid. However, the behaviour of active domes such as the 2004-2008 Mount St Helens dome and spine complex reveals that most of the lava dome deformation occurs on shear fracture planes. Evidence from seismology and exposed magma conduits at other volcanoes also indicates that the final ascent of magma into these domes may be controlled by shear fracture zones at the conduit margins. These observations demonstrate that fracturing may exert a stronger control on lava dome dynamics than fluid mechanics does. It is therefore important to expand the limited existing data on the high temperature rock mechanics of dome lavas under eruptive conditions. Acoustic emissions (AE) recorded whilst producing such data can provide a link between laboratory experiments and seismicity recorded during lava dome eruptions. Here we present results of uniaxial and triaxial deformation of a dacite sample extruded at Mount St Helens lava dome in December 2005, which has unsurpassed age constraints. This provides the unique opportunity to compare experimental results to the geophysical signals recorded as the sample was extruded. A newly modified high temperature triaxial compression apparatus was used to deform 25 mm diameter cylindrical samples at temperatures up to 1000°C, effective pressures up to 10 MPa, and strain rates from 10-4 s-1 to 10-6 s-1. It was thus possible to deform samples at temperatures, strain rates, and effective pressures typical of the Mount St Helens lava dome system and of active andesitic and dacitic lava dome systems in general, whilst also recording AE. The experimental results show the effect of temperature, effective pressure, and strain rate on the compressive strength, failure mode, and rheology of dome lavas within the brittle ductile transition. They provide key parameters and constraints for developing numerical and analytical models of

  8. Computational modeling of lava domes using particle dynamics to investigate the effect of conduit flow mechanics on flow patterns

    NASA Astrophysics Data System (ADS)

    Husain, Taha Murtuza

    Large (1--4 x 106 m3) to major (> 4 x 106 m3) dome collapses for andesitic lava domes such as Soufriere Hills Volcano, Montserrat are observed for elevated magma discharge rates (6--13 m3/s). The gas rich magma pulses lead to pressure build up in the lava dome that result in structural failure of the over steepened canyon-like walls which may lead to rockfall or pyroclastic flow. This indicates that dome collapse intimately related to magma extrusion rate. Variation in magma extrusion rate for open-system magma chambers is observed to follow alternating periods of high and low activity. Periodic behavior of magma exhibits a rich diversity in the nature of its eruptive history due to variation in magma chamber size, total crystal content, linear crystal growth rate and magma replenishment rate. Distinguished patterns of growth were observed at different magma flow rates ranging from endogenous to exogenous dome growth for magma with varying strengths. Determining the key parameters that control the transition in flow pattern of the magma during its lava dome building eruption is the main focus. This dissertation examines the mechanical effects on the morphology of the evolving lava dome on the extrusion of magma from a central vent using a 2D particle dynamics model. The particle dynamics model is coupled with a conduit flow model that incorporates the kinetics of crystallization and rheological stiffening to investigate important mechanisms during lava dome building eruptions. Chapter I of this dissertation explores lava dome growth and failure mechanics using a two-dimensional particle-dynamics model. The model follows the evolution of fractured lava, with solidification driven by degassing induced crystallization of magma. The particle-dynamics model emulates the natural development of dome growth and rearrangement of the lava dome which is difficult in mesh-based analyses due to mesh entanglement effects. The deformable talus evolves naturally as a frictional

  9. Halogen Degassing during Emplacement and Crystallization of the Chaitén Rhyolitic Lava Dome(s)

    NASA Astrophysics Data System (ADS)

    Lowenstern, J. B.; Bleick, H.; Castro, J. M.; Pallister, J. S.; Eichelberger, J. C.

    2010-12-01

    Despite relatively modest ash emissions, the 2008-2009 eruption at Chaitén volcano severely damaged as much as 400 km2 of forest vegetation to the N, E and S of the volcano (Pallister et al., Eos, in press). We explored the possibility that near-surface crystallization of the 0.5-0.8 km3 rhyolite lava dome released sufficient halogens to effect vegetation as far as 15 km away. Electron microprobe analysis of glass from melt inclusions (MI), pumice fallout, lava-dome groundmass, and juvenile lithics reveals evidence for open-system behavior during “second boiling” of the lava dome. The 2008-09 eruptive pumices are crystal-poor (0.1 to 1.0 vol.%), with rare crystals of plagioclase, orthopyroxene, Ti-magnetite, and either biotite or hornblende (depending on the sample). The dome samples are similar, but have groundmass that is variably crystallized to fine-grained microlites (generally < 5 µm in width) of plagioclase, orthopyroxene, and Ti-magnetite. Biotite and amphibole are absent from the groundmass, presumably because H2O-pressures in the surface-degassed melt dropped sufficiently to destabilize these hydrous phases. S and F are uniformly low in MI and pumiceous glasses, averaging < 50 ppm in each, consistent with low measured SO2 emissions (Carn et al., Eos, 90:205). Cl is more variable. Pumiceous glass averages 860±90 ppm, similar to two glassy lithics interpreted as quenched melts quarried from the conduit. MI in plagioclase from a hornblende-bearing pumice and from biotite-bearing dome rocks contained 990±280 ppm Cl. Higher Cl values (~3000 ppm) were reported by Castro & Dingwell (Nature, 2009, 461:780) for MI in biotite-bearing pumice, consistent with additional syn-eruptive release of HCl during the early weeklong explosive phase. Analysis of matrix glasses in dome samples demonstrate trends of increasing K and Si during crystallization of groundmass, and decreasing Al, Mg, Fe, and Ca. The 45% increase in K implies at least that amount of

  10. Laboratory Studies of High Temperature Deformation and Fracture of Lava Domes

    NASA Astrophysics Data System (ADS)

    Smith, R.; Sammonds, P.; Tuffen, H.; Meredith, P.

    2007-12-01

    The high temperature fracture mechanics of magma at high temperatures exerts a fundamental control on the stability of lava domes and the timing and style of eruptions at andesitic to dacitic volcanoes. This is evidenced in the pervasive fracturing seen in both ancient and active magma conduits and lava domes; in addition to the volcanic earthquakes that occur before and during episodes of dome growth and dome collapse. Uniaxial and triaxial deformation experiments have been performed on crystal rich and crystal free magmas (andesite from Ancestral Mount Shasta, California, USA and a rhyolitic obsidian from Krafla, Iceland) at a range of temperatures (up to 900°C), confining pressures (up to 50 MPa) and strain rates (10-5s-1) to 10-3s-1) whilst recording acoustic emissions (AE). Results from these experiments provide useful inputs into models of lava dome stability, extrusion mechanisms, and source mechanisms for volcanic earthquakes. However, the large sample sizes used to ensure valid results (25mm diameter and 75mm length) made it difficult to maintain stable high temperatures under confined conditions. Also, only rudimentary AE data could be obtained, due to the distance of the transducers from the samples to keep them away from the high temperatures. Here, we present modifications to this apparatus, which include a new furnace, improved loading system, additional pore pressure and permeability measurement capability, and vastly improved acoustic monitoring. This allows (1)stable higher temperatures (up to 1000°C) to be achieved under confined conditions, (2) high temperature and moderate pressure (up to 70 MPa) hydrostatic measurements of permeability and acoustic velocities, (3) high temperature triaxial deformation under different pore fluid and pressure conditions, and (4) full waveform AE monitoring for all deformation experiments. This system can thus be used to measure the physical properties and strength of rocks under volcanic conditions and to

  11. Finite Element Model of a Two-Phase Non-Newtonian Thixotropic Fluid: Mount St. Helens Lava Dome

    NASA Astrophysics Data System (ADS)

    Vincent, P.; Zevada, P.

    2011-12-01

    Extrusion of highly viscous lavas that spread laterally and form lava domes in the craters of large volcanoes is associated with significant volcanic hazards. Gas overpressure driven fragmentation of the lava dome or collapse and slumping of marginal sections or the entire mass of the dome can trigger dangerous pyroclastic flows that threaten surrounding populations up to tens of kilometers away. The rate of lava dome growth in the mature state of the dome evolution is often oscillatory. Relatively quiescent episodes are terminated by renewed extrusion and emplacement of exogenous "lobes" or "spines" of lava on the surface of the dome. Emplacement of new lobes is preceded by pressurization of magma in the magmatic conduit that can trigger volcanic eruptions and is preceded by crater floor deformation (e.g. Swanson and Holcombe, 1990). This oscillatory behavior was previously attributed primarily to crystallization kinetics and gas exsolution generating cyclic overpressure build-ups. Analogue modeling of the lava domes has revealed that the oscillatory growth rate can be reproduced by extrusion of isothermal, pseudoplastic and thixotropic plaster of Paris (analogue material for the magma) on a sand layer (analogue material for the unconsolidated deposits of the crater floor). The patterns of dome growth of these models closely correspond to both the 1980-1985 and 2004-2005 growth episodes of Mt. St. Helens lava dome (Swanson and Holcombe, 1990; Major et al., 2005). They also suggest that the oscillatory growth dynamics of the lavas can be explained by the mechanical interaction of the non-Newtonian magma with the frictional and deformable substrate below the lava dome rather than complex crystallization kinetics (e.g. Melnik and Sparks, 1999). In addition, these results suggest that the renewed growth episode of Mt. St. Helens dome in 2006 could be associated with an even higher degree of magma pressurization in the conduit than occurred during the 1980 - 1986

  12. Explosive destruction of a Pliocene hot lava dome underwater: Dogashima (Japan)

    NASA Astrophysics Data System (ADS)

    Jutzeler, Martin; McPhie, Jocelyn; Allen, Sharon R.

    2015-10-01

    Transition from effusive to explosive volcanism is common during subaerial eruptions, and here we demonstrate that this behavior is also possible underwater. The pyroclastic facies produced underwater are distinctive and can be used to distinguish subaqueous from subaerial eruptions and depositional settings. The Pliocene Dogashima Formation (Izu Peninsula, Japan) is a pumice-rich succession originally deposited in an open-marine, below wave-base setting (Jutzeler et al., 2014a). A thick, clast-supported, gray andesite breccia composed of very coarse, dense andesite clasts with quenched margins was sourced from disintegration of an active lava dome. Overall, the gray andesite breccia is gradationally to sharply overlain by thick, graded, clast-supported white pumice breccia chiefly composed of angular pumice clasts and free broken crystals. Regional setting and distinctive facies show that this succession was produced by a fully underwater, magmatic volatile-driven, pumice-forming explosive eruption. The gradational contact between the two breccias, compositional similarities, rare mingled clasts, and fluidal textures in the gray andesite clasts suggest that the explosive eruption destroyed a hot lava dome and generated an eruption-fed, high-concentration density current. In most places, the coarsest hot lava dome fragments were deposited first, followed by the lower density white pumice clasts. The low amount of fine (< 2 mm) components, well-developed hydraulically controlled grading and sorting, clast angularity, and very coarse dome-derived clasts, some including well-defined quenched margins and common fluidal textures, distinguish the products of subaqueous effusive-to-explosive eruptions from their subaerial counterparts.

  13. The unique radar scattering properties of silicic lava flows and domes

    NASA Technical Reports Server (NTRS)

    Plaut, Jeffrey J.; Stofan, Ellen R.; Anderson, Steven W.; Crown, David A.

    1995-01-01

    Silicic (silica-rich) lava flows, such as rhyolite, rhyodacite, and dacite, possess unique physical properties primarily because of the relatively high viscosity of the molten lava. Silicic flows tend to be thicker than basaltic flows, and the resulting large-scale morphology is typically a steep-sided dome or flow lobe, with aspect ratios (height/length) sometimes approaching unity. The upper surfaces of silicic domes and flows are normally emplaced as relatively cool, brittle slabs that fracture as they are extruded from the central vent areas, and are then rafted away toward the flow margin as a brittle carapace above a more ductile interior layer. This mode of emplacement results in a surface with unique roughness characteristics, which can be well-characterized by multiparameter synthetic aperture radar (SAR) observations. In this paper, we examine the scattering properties of several silicic domes in the Inyo volcanic chain in the Eastern Sierra of California, using AIRSAR and TOPSAR data. Field measurements of intermediate-scale (cm to tens of m) surface topography and block size are used to assess the mechanisms of the scattering process, and to quantify the unique roughness characteristics of the flow surfaces.

  14. Growth of intra-caldera lava domes controlled by various modes of caldera collapse, the Štiavnica volcano-plutonic complex, Western Carpathians

    NASA Astrophysics Data System (ADS)

    Tomek, Filip; Žák, Jiří; Holub, František V.; Chlupáčová, Marta; Verner, Kryštof

    2016-02-01

    The Štiavnica volcano-plutonic complex is an erosional relic of Miocene caldera-stratovolcano in the Western Carpathians. The complex exposes a vertical section from the volcano basement through subvolcanic intrusions and a ring fault to volcanic edifice, comprising mostly andesitic lava flows and domes. This paper examines internal structure, magnetic fabric as derived from the anisotropy of magnetic susceptibility (AMS), and emplacement dynamics of three intra-caldera andesite domes (referred to as Domes 1-3) located near the presumed ring fault. Magnetic fabrics, carried by multi-domain titanomagnetite and titanomaghemite, are interpreted as recording various mechanisms of dome growth controlled by active caldera collapse. Dome 1 is explained as a lava coulée, fed by conduits located along the ring fault, with a long lava outflow down the sloping caldera floor. Dome 2 represents an elongated, ring fault-parallel dome wherein the lava flowed a short distance over a flat floor. Dome 3 is interpreted as a composite dome fed from multiple linear fissures opened at a high angle to the ring fault. Subsequently, the dome was intruded by ring fault-parallel dikes that may have potentially fed overlying, now largely eroded lava domes and flows. Finally, we suggest that all domes formed during collapse of the Štiavnica caldera and the various mechanisms of their growth reflect different stages of the caldera evolution from piston (Dome 2) through trap-door (Dome 1) to piecemeal (Dome 3).

  15. Electrical resistivity tomography applied to a complex lava dome: 2D and 3D models comparison

    NASA Astrophysics Data System (ADS)

    Portal, Angélie; Fargier, Yannick; Lénat, Jean-François; Labazuy, Philippe

    2015-04-01

    The study of volcanic domes growth (e.g. St. Helens, Unzen, Montserrat) shows that it is often characterized by a succession of extrusion phases, dome explosions and collapse events. Lava dome eruptive activity may last from days to decades. Therefore, their internal structure, at the end of the eruption, is complex and includes massive extrusions and lava lobes, talus and pyroclastic deposits as well as hydrothermal alteration. The electrical resistivity tomography (ERT) method, initially developed for environmental and engineering exploration, is now commonly used for volcano structure imaging. Because a large range of resistivity values is often observed in volcanic environments, the method is well suited to study the internal structure of volcanic edifices. We performed an ERT survey on an 11ka years old trachytic lava dome, the Puy de Dôme volcano (French Massif Central). The analysis of a recent high resolution DEM (LiDAR 0.5 m), as well as other geophysical data, strongly suggest that the Puy de Dôme is a composite dome. 11 ERT profiles have been carried out, both at the scale of the entire dome (base diameter of ~2 km and height of 400 m) on the one hand, and at a smaller scale on the summit part on the other hand. Each profile is composed of 64 electrodes. Three different electrode spacing have been used depending on the study area (35 m for the entire dome, 10 m and 5 m for its summit part). Some profiles were performed with half-length roll-along acquisitions, in order to keep a good trade-off between depth of investigation and resolution. Both Wenner-alpha and Wenner-Schlumberger protocols were used. 2-D models of the electrical resistivity distribution were computed using RES2DINV software. In order to constrain inversion models interpretation, the depth of investigation (DOI) method was applied to those results. It aims to compute a sensitivity index on inversion results, illustrating how the data influence the model and constraining models

  16. The 2006 lava dome eruption of Merapi Volcano (Indonesia): Detailed analysis using MODIS TIR

    NASA Astrophysics Data System (ADS)

    Carr, Brett B.; Clarke, Amanda B.; Vanderkluysen, Loÿc

    2016-02-01

    Merapi is one of Indonesia's most active and dangerous volcanoes. Prior to the 2010 VEI 4 eruption, activity at Merapi during the 20th century was characterized by the growth and collapse of a series of lava domes. Periods of very slow growth were punctuated by short episodes of increased eruption rates characterized by dome collapse-generated pyroclastic density currents (PDCs). An eruptive event of this type occurred in May-June, 2006. For effusive eruptions such as this, detailed extrusion rate records are important for understanding the processes driving the eruption and the hazards presented by the eruption. We use thermal infrared (TIR) images from the Moderate Resolution Imaging Spectrometer (MODIS) instrument on NASA's Aqua and Terra satellites to estimate extrusion rates at Merapi Volcano during the 2006 eruption using the method of Harris and Ripepe (2007). We compile a set of 75 nighttime MODIS images of the eruptive period to produce a detailed time series of thermal radiance and extrusion rate that reveal multiple phases of the 2006 eruption. These data closely correspond to the published ground-based observational record and improve observation density and detail during the eruption sequence. Furthermore, additional analysis of radiance values for thermal anomalies in Band 21 (λ = 3.959 μm) of MODIS images results in a new framework for detecting different styles of activity. We successfully discriminate among slow dome growth, rapid dome growth, and PDC-producing dome collapse. We also demonstrate a positive correlation between PDC frequency and extrusion rate, and provide evidence that extrusion rate can increase in response to external events such as dome collapses or tectonic earthquakes. This study represents a new method of documenting volcanic activity that can be applied to other similar volcanic systems.

  17. The danger of collapsing lava domes; lessons for Mount Hood, Oregon

    USGS Publications Warehouse

    Brantley, S.R.; Scott, W.E.

    1993-01-01

    Nestled in the crater of Oregon's majestic Mount Hood volcano is Crater Rock, a prominent feature known to thousands of skiers, climbers, and tourists who journey each year to the famous Timberline Lodge located high on the volcano's south flank. Crater Rock stands about 100m above the sloping crater floor and warm fumaroles along its base emit sulfur gases and a faint steam plume that is sometimes visible from the lodge. What most visitors do not know, however, is that Crater Rock is a volcanic lava dome only 200 years old. 

  18. Ground-based Mm-radar Imaging of Lava Domes and Flows.

    NASA Astrophysics Data System (ADS)

    Macfarlane, D. G.; Odbert, H. M.; Robertson, D. A.; James, M. R.; Wadge, G.; Pinkerton, H.

    2006-12-01

    AVTIS (All-weather Volcano Topography Imaging Sensor) is a tripod-mounted imaging system, capable of both active (topography) and passive (temperature) imaging at 94 GHz. The use of these mm-wavelengths provides a high-resolution imaging capability from a portable instrument which can operate through cloud and aerosol. The instrument is designed to avoid the problem of obscuration by cloud which is common at many volcanoes and can prevent regular monitoring by most traditional measurement techniques (e.g. photogrammetry, lidar, thermal imaging). In its active (radar) mode, AVTIS acquires topographic data (in a manner similar to that of a terrestrial laser scanner) at a rate of 3 lines-of-sight per second, with a range resolution of less than 1 m and a maximum range of about 7 km. In its passive (radiometer) mode, a brightness temperature image is acquired with an apparent temperature resolution of about 5 K. AVTIS has been deployed to measure lava flows at Arenal volcano, Costa Rica and to the lava dome of Soufrière Hills volcano, Montserrat. At Arenal, topographic scans repeated every few days demonstrated the ability of AVTIS to detect changes associated with the advance of a lava flow, from a range of 3 km. The active lava flow was identified as a region of surface height increase (averaging about 10 m) and by its high reflectivity. Subtraction of acquired topographic surfaces indicated a flow advance rate of about 0.2 cubic metres per second. On Montserrat, opportunistic topographic scans of the lava dome from a distance of about 1 km have enabled extrusion rates to be calculated to an accuracy of about 0.1 cubic metres per second over several days. Equivalent radiometric scans recorded temperature images in cloudy conditions comparable to those attained using an infra-red camera during clear weather. Repeat imaging (up to three per hour) over several days from a distance of 6 km has provided information on the dynamics of dome growth. We discuss the data and

  19. Unusual gravitational failures on lava domes of Tatun Volcanic Group, Northern Taiwan.

    NASA Astrophysics Data System (ADS)

    Belousov, Alexander; Belousova, Marina; Chen, Chang-Hwa; Zellmer, Georg

    2010-05-01

    Tatun Volcanic Group of Northern Taiwan was formed mainly during the Pleistocene - Early Holocene. Most of the volcanoes are represented by andesitic lava domes of moderate sizes: heights up to 400 m (absolute altitudes 800-1100 m a.s.l.), base diameters up to 2 km, and volumes up to 0.3 km³. Many of the domes have broadly opened (0.5-1.0 km across and up to 140° wide), shallow-incised horseshoe-shaped scars formed by gravitational collapses. The failure planes did not intersect the volcanic conduits, and the scars were not filled by younger volcanic edifices: most of the collapses occurred a long time after the eruptions had ceased. The largest collapse, with a volume 0.1 km³, occurred at eastern part of Datun lava dome. Specific feature of the collapse was that the rear slide blocks did not travel far from the source; they stopped high inside the collapse scar, forming multiple narrow toreva blocks descending downslope. The leading slide blocks formed a low mobile debris avalanche (L~5 km; H~1 km; H/L~0.2). The deposit is composed mainly of block facies. The age of the collapse is older than 24,000 yrs, because the related debris avalanche deposit is covered by a younger debris avalanche deposit of Siaoguanyin volcano having calibrated 14C age 22,600-23,780 BP. The Siaoguanyin debris avalanche was formed as a result of collapse of southern part of a small flank dome. Specific feature of the resulted avalanche - it was hot during deposition. The deposit contains carbonized wood; andesite boulders within the deposit frequently have radial cooling joints, and in rare cases "bread-crust" surfaces. The paucity of fine fractions in the deposit can be connected with elutriation of fines into the convective cloud when the hot avalanche travelled downslope. However in several locations the deposit is represented by typical avalanche blocks surrounded by heterolithologic mixed facies containing abundant clasts of Miocene sandstone (picked up from the substrate). Thus

  20. Lava Dome Growth at Volcan de Fuego MEXICO (Colima Volcano), October 2001 to May 2002

    NASA Astrophysics Data System (ADS)

    Suarez-Plascencia, C.; Nunez-Cornu, F. J.; Reyes-Davila, G. A.

    2002-12-01

    The Volcan de Fuego (19.512 N, 103.617 W) is located on the border between the States of Jalisco and Colima, Mexico, it is also known as Colima Volcano or Zapotl n Volcano, is a stratovolcano rising nearly 4000 m above sea level, and is the most active volcano in Mexico. Recent activity has been characterized by at least 3 different phases since January 1998 when seismic swarms began and ended with the extrusion of blocky lava in November 22, 1998 by the West vent as the 1991 eruptive process. That extrusive period lasted until the end of January, 1999 when was possible to observe a change in the seismic pattern, which mark the beginning of a new eruptive regime, an explosive one. On February 10, 1999 at approximately 0154 local time, 0754 gmt, an explosive event happens at the summit dome of Volc n de Fuego, four more big explosions took place at the summit the last one at dawn February 22, 2001. These explosions opened a new crater at the summit with a elliptical form with radius of 260 x 225 m and depth between 40 m and 15 m. A small dome structure inside the new crater was reported by March 2001. A reconnaissance flight in August 2001 shows two main features in the main crater an steep-sided mound(scoria cone) over the West vent and an inner crater on the NE vent. On October 31 Civil Defense members at Nevado Base on Nevado de Colima observed a neddle over the main crater rim, reconnaissance flight shows a spiny, 40 m high with a diameter of 20 m grows from the NE vent, the spiny seems to formed by material of the 1976 eruption. Continuous aerial observations allow us to follow the growth of a new dome pushing out the spiny. On November 23 the dimensions of the dome under the spiny were a radius of about 14 m and 21 m high for a total extrusion of 86,000 m3 which implies a extrusion rate of 0.027m3 /seg. By December the dome push out the spiny and began to grow from the NW vent. By December 29 an increase in the rate of extrusion was observed reaching a value

  1. Thermal structure and heat loss at the summit crater of an active lava dome

    NASA Astrophysics Data System (ADS)

    Sahetapy-Engel, Steve T.; Harris, Andrew J. L.

    2009-01-01

    Forward-Looking Infrared (FLIR) nighttime thermal images were used to extract the thermal and morphological properties for the surface of a blocky-to-rubbley lava mass active within the summit crater of the Caliente vent at Santiaguito lava dome (Guatemala). Thermally the crater was characterized by three concentric regions: a hot outer annulus of loose fine material at 150-400°C, an inner cold annulus of blocky lava at 40-80°C, and a warm central core at 100-200°C comprising younger, hotter lava. Intermittent explosions resulted in thermal renewal of some surfaces, mostly across the outer annulus where loose, fine, fill material was ejected to expose hotter, underlying, material. Surface heat flux densities (radiative + free convection) were dominated by losses from the outer annulus (0.3-1.5 × 104 s-1m-2), followed by the hot central core (0.1-0.4 × 104 J s-1m-2) and cold annulus (0.04-0.1 × 104 J s-1m-2). Overall surface power output was also dominated by the outer annulus region (31-176 MJ s-1), but the cold annulus contributed equal power (2.41-7.07 MJ s-1) as the hot central core (2.68-6.92 MJ s-1) due to its greater area. Cooled surfaces (i.e. the upper thermal boundary layer separating surface temperatures from underlying material at magmatic temperatures) across the central core and cold annulus had estimated thicknesses, based on simple conductive model, of 0.3-2.2 and 1.5-4.3 m. The stability of the thermal structure through time and between explosions indicates that it is linked to a deeper structural control likely comprising a central massive plug, feeding lava flow from the SW rim of the crater, surrounded by an arcuate, marginal fracture zone through which heat and mass can preferentially flow.

  2. The Taylor Creek Rhyolite of New Mexico: a rapidly emplaced field of lava domes and flows

    USGS Publications Warehouse

    Duffield, W.A.; Dalrymple, G.B.

    1990-01-01

    The Tertiary Taylor Creek Rhyolite of southwest New Mexico comprises at least 20 lava domes and flows. Each of the lavas was erupted from its own vent, and the vents are distributed throughout a 20 km by 50 km area. The volume of the rhyolite and genetically associated pyroclastic deposits is at least 100 km3 (denserock equivalent). The rhyolite contains 15%-35% quartz, sanidine, plagioclase, ??biotite, ??hornblende phenocrysts. Quartz and sanidine account for about 98% of the phenocrysts and are present in roughly equal amounts. With rare exceptions, the groundmass consists of intergrowths of fine-grained silica and alkali feldspar. Whole-rock major-element composition varies little, and the rhyolite is metaluminous to weakly peraluminous; mean SiO2 content is about 77.5??0.3%. Similarly, major-element compositions of the two feldsparphenocryst species also are nearly constant. However, whole-rock concentrations of some trace-elements vary as much as several hundred percent. Initial radiometric age determinations, all K-Ar and fission track, suggest that the rhyolite lava field grew during a period of at least 2 m.y. Subsequent 40Ar/39Ar ages indicate that the period of growth was no more than 100 000 years. The time-space-composition relations thus suggest that the Taylor Creek Rhyolite was erupted from a single magma reservoir whose average width was at least 30 km, comparable in size to several penecontemporaneous nearby calderas. However, this rhyolite apparently is not related to a caldera structure. Possibly, the Taylor Creek Phyolite magma body never became sufficiently volatile rich to produce a large-volume pyroclastic eruption and associated caldera collapse, but instead leaked repeatedly to feed many relatively small domes and flows. The new 40Ar/39Ar ages do not resolve preexisting unknown relative-age relations among the domes and flows of the lava field. Nonetheless, the indicated geologically brief period during which Taylor Creek Rhyolite magma was

  3. Using Horizontal Cosmic Muons to Investigate the Density Distribution of the Popocatepetl Volcano Lava Dome

    NASA Astrophysics Data System (ADS)

    Grabski, V.; Lemus, V.; Nuñez-Cadena, R.; Aguilar, S.; Menchaca-Rocha, A.; Fucugauchi, J. U.

    2013-05-01

    Study of volcanic inner density distributions using cosmic muons is an innovative method, which is still in stage of development[1]. The method can be used to determine the average density along the muon track, as well as the density distribution of any volume by measuring the attenuation of cosmic muon flux in it[2]. In this study we present an analysis of using the muon radiography, integrating geophysical data to determine the density distribution of the Popocatepetl volcano. Popocatepelt is a large andesitic stratovolcano built in the Trans-Mexican volcanic arc, which has been active over the past years. The recent activity includes emplacement of a lava dome, with vulcanian explosions and frequent scoria and ash emissions. The study is directed to detect any variations in the dome and magmatic conduit system in some interval of time in the volume of Popocatepetl volcano lava dome. The study forms part of a long-term project of volcanic hazard monitoring that includes the Popocatepetl and Colima volcanoes[3]. The volcanoes are being studied by conventional geophysical techniques, including aerogeophysical surveys directed to determine the internal structure and characterize source characteristics and mechanism. The detector design mostly depends on the volume size to be investigated as well as the image-taking frequency to detect dynamic density variations. In this study we present a detector prototype design and suggestions on data taking, transferring and analyzing systems. We also present the approximate cost estimation of the suggested detector and discussion on a proposal about the creation of a national network for a volcanic alarm system. References [1] eg.H. Tanaka, et al., Nucl. Instr. and Meth. A 507 (2003) 657. [2] V. Grabski et al, NIM A 585 (2008) 128-135. [3] G. Conte, J. Urrutia-Fucugauchi, et al., International Geology Review, Vol. 46, 2004, p. 210-225.

  4. Preliminary paragenetic interpretation of the Quaternary topaz rhyolite lava domes of the Blackfoot volcanic field, southeastern Idaho

    NASA Astrophysics Data System (ADS)

    Lochridge, W. K., Jr.; McCurry, M. O.; Goldsby, R.

    2015-12-01

    The Quaternary topaz rhyolite lava domes of the bimodal, basalt-dominated Blackfoot volcanic field (BVF), SE Idaho occur in three clusters. We refer to these as the China Hat lava dome field (southernmost; ~ 57 ka), and the 1.4 to 1.5 Ma Sheep Island and White Mountain (northernmost) lava dome fields. The rhyolites and surrounding, more voluminous basalt lavas closely resemble coeval Quaternary rocks erupted to the north along the Eastern Snake River Plain segment of the Yellowstone-Snake River Plain volcanic track. However rhyolites in BVF are distinguished by having more evolved Sr- and Nd-isotopic ratios, as well as having phenocryst assemblages that includes hydrous phases (biotite and hornblende), thorite, and vapor-phase topaz. This study seeks to improve our understanding of the unique conditions of magma evolution that led to these differences. We focus on textural features of major and accessory phenocrysts as a basis for inferring paragenesis for rhyolites from the China Hat lava dome field. Preliminary work indicates that there are three sequentially formed populations of textures among magmatic phases: 1. population of anhedral quartz and plagioclase; 2. population of euhedral grains that includes quartz, sandine, plagioclase, biotite, hornblende, Fe-Ti oxides, zircon and apatite; 3. boxy cellular (skeletal?) sanidine and quartz. We speculate that the first population are resorbed antecrysts, the second formed prior to eruption as autocrysts (at or near equilibrium?), and the third formed soon before or during eruption.

  5. Tephra deposits associated with a large lava dome collapse, Soufrière Hills Volcano, Montserrat, 12 15 July 2003

    NASA Astrophysics Data System (ADS)

    Edmonds, Marie; Herd, Richard A.; Strutt, Michael H.

    2006-05-01

    The 12-13 July 2003 dome collapse at Soufrière Hills Volcano, Montserrat, was the largest event of its kind during the eruption thus far (1995-2005), involving the removal of 210 million m 3 of the lava dome complex over 18 h. Less than 2% of the total volume of material involved in the dome collapse was deposited on land. A pyroclastic density current deposit alongshore and inland from the Tar River Fan was generated from a single blast originating at the shoreline. The blast was caused by the interaction of pyroclastic flows with seawater. We propose that at the peak of the lava dome collapse, a sharp increase in the volume flux of pyroclastic flows caused substantial displacement of seawater from the shoreline, followed by inrush of seawater when the flux decreased a few minutes later. The tsunami allowed penetration of seawater into the main body of the pyroclastic flow at the shoreline, which led to explosive fragmentation of pyroclastic blocks. Tephra fall deposits accumulated at a high rate on Montserrat, causing extensive damage to vegetation and buildings. Their stratigraphy recorded fallout from high co-pyroclastic flow clouds, from a vulcanian explosion cloud at the peak in collapse rate (caused by the fragmentation of degassed lava dome) and from four vulcanian explosion clouds after the dome collapse (caused by fragmentation of bubbly magma in the conduit). The total tephra fall volume is estimated at 10-20 million m 3.

  6. A new application of a finite element heat and mass transfer numerical modeling code (FEHM) to heat and fluid circulation in lava domes

    NASA Astrophysics Data System (ADS)

    Ball, J. L.; Stauffer, P. H.; Calder, E. S.

    2012-12-01

    Lava domes have been well-characterized in terms of their surface structure and activity, but there is much to be learned about their internal structure and geothermal systems. Even when a lava dome is no longer actively erupting, subsurface studies are often difficult to conduct; lava domes are highly complex structures, but their rugged nature often precludes systematic drilling and/or geophysical surveys. Because of this, we know little about the internal geothermal activity that may still contribute to both hazards and opportunities for exploitation of mineral deposits and hot groundwater. Despite the difficulty of studying the interior of lava domes directly, numerical modeling can still provide insights into the behavior of their geothermal systems. Lava domes have the potential to be highly transmissive structures, and the presence of hot springs in the vicinity of lava domes (Santiaguito in Guatemala, La Soufriere on Guadeloupe) suggests that water circulation may be an important process in post-eruptive dome evolution. FEHM, a heat and mass transfer modeling code developed at Los Alamos National Laboratory (fehm.lanl.gov) is an ideal tool to study fluid and gas circulation in geologic structures. FEHM was developed for subsurface reservoir modeling (originally for the Hot Dry Rock geothermal project) and is capable of dealing with both high- (magmatic) and low-temperature fluids. In this study, FEHM has been used in combination with a LANL-developed grid-generating utility (LaGriT) to create an idealized model of water circulation in a saturated lava dome. Multiple material regions are used to represent the dome core, outer talus layer, conduit, and volcanic substrate. Material properties (such as permeability, porosity, density, etc.) were chosen from a combination of literature review and sensitivity testing using a simplified dome geometry and a continuum modeling approach that accounts for fractures (Equivalent Porous Medium) was used when applying

  7. Muon radiography and deformation analysis of the lava dome formed by the 1944 eruption of Usu, Hokkaido —Contact between high-energy physics and volcano physics—

    PubMed Central

    TANAKA, Hiroyuki K. M.; YOKOYAMA, Izumi

    2008-01-01

    Lava domes are one of the conspicuous topographic features on volcanoes. The subsurface structure of the lava dome is important to discuss its formation mechanism. In the 1944 eruption of Volcano Usu, Hokkaido, a new lava dome was formed at its eastern foot. After the completion of the lava dome, various geophysical methods were applied to the dome to study its subsurface structure, but resulted in a rather ambiguous conclusion. Recently, from the results of the levelings, which were repeated during the eruption, “pseudo growth curves” of the lava dome were obtained. The curves suggest that the lava dome has a bulbous shape. In the present work, muon radiography, which previously proved effective in imaging the internal structure of Volcano Asama, has been applied to the Usu lava dome. The muon radiography measures the distribution of the “density length” of volcanic bodies when detectors are arranged properly. The result obtained is consistent with the model deduced from the pseudo growth curves. The measurement appears to afford useful method to clarify the subsurface structure of volcanoes and its temporal changes, and in its turn to discuss volcanic processes. This is a point of contact between high-energy physics and volcano physics. PMID:18941290

  8. Catastrophic lava dome failure at Soufrière Hills Volcano, Montserrat, 12-13 July 2003

    USGS Publications Warehouse

    Herd, Richard A.; Edmonds, Marie; Bass, Venus A.

    2005-01-01

    The lava dome collapse of 12–13 July 2003 was the largest of the Soufrière Hills Volcano eruption thus far (1995–2005) and the largest recorded in historical times from any volcano; 210 million m3 of dome material collapsed over 18 h and formed large pyroclastic flows, which reached the sea. The evolution of the collapse can be interpreted with reference to the complex structure of the lava dome, which comprised discrete spines and shear lobes and an apron of talus. Progressive slumping of talus for 10 h at the beginning of the collapse generated low-volume pyroclastic flows. It undermined the massive part of the lava dome and eventually prompted catastrophic failure. From 02:00 to 04:40 13 July 2003 large pyroclastic flows were generated; these reached their largest magnitude at 03:35, when the volume flux of material lost from the lava dome probably approached 16 million m3 over two minutes. The high flux of pyroclastic flows into the sea caused a tsunami and a hydrovolcanic explosion with an associated pyroclastic surge, which flowed inland. A vulcanian explosion occurred during or immediately after the largest pyroclastic flows at 03:35 13 July and four further explosions occurred at progressively longer intervals during 13–15 July 2003. The dome collapse lasted approximately 18 h, but 170 of the total 210 million m3 was removed in only 2.6 h during the most intense stage of the collapse.

  9. Mechanisms of Strain Localization within the 2004-2008 Mt. St. Helens lava domes: The role of effusion rate?

    NASA Astrophysics Data System (ADS)

    Friedlander, B.; Kennedy, L.; Russell, J. K.; Pallister, J. S.

    2010-12-01

    Degassed, high viscosity magmas commonly erupt from volcanic vents to produce mounds, domes and spines of partly to fully crystallized lava. Although lava domes are generally products effusive styles of eruption, these systems have the capacity to rapidly switch from effusive to explosive behavior. Soufriere Hills, Montserrat and Unzen, Japan volcanoes have each demonstrated the ability to oscillate between effusive growth of lava domes and the gravitational collapse of these unstable landforms, leading to explosive pyroclastic eruptions. Mount St. Helens reawakened 24 years after erupting in the 1980’s to produce a series of 7 dacitic lava domes and spines from 2004-2008. The rate of extrusion of lava domes peaked at 6 m3/second in November 2004 and subsequently slowed to < 0.6 m3/s in February 2006. These early spines were mantled by 1-3 meters of fault gouge and were accompanied by a consistent “drum beat” microseismicity that was monitored closely by the USGS Cascades Volcano Observatory. Here we present field, petrographic and microstructural observations on the nature of deformation attending the extrusion of the 2004-2006 dacite lava domes at Mount St. Helens. Specifically, we have produced a series of metre-scale maps showing the transition in structural state from the massive, undeformed dacite to the cataclasite and gouge zones of Spine 4, 5 and 6. These maps elucidate the strain partitioning and zones of deformation within the spines. Samples collected from across these zones are currently being studied to recover the microstructural deformation mechanisms attending the extrusion of these dacite spines. The shear zones vary in thickness and range in thickness from one to three meters from Spines 4- 6. The outermost damage zones range in thickness from 1-100cm of fault gouge composed of fractured dacite and wall rocks interleaved with layers of fine to coarse-grained slickensides. Below the gouge, spines 4 and 5 show mostly brittle deformation with

  10. Computer vision: automating DEM generation of active lava flows and domes from photos

    NASA Astrophysics Data System (ADS)

    James, M. R.; Varley, N. R.; Tuffen, H.

    2012-12-01

    Accurate digital elevation models (DEMs) form fundamental data for assessing many volcanic processes. We present a photo-based approach developed within the computer vision community to produce DEMs from a consumer-grade digital camera and freely available software. Two case studies, based on the Volcán de Colima lava dome and the Puyehue Cordón-Caulle obsidian flow, highlight the advantages of the technique in terms of the minimal expertise required, the speed of data acquisition and the automated processing involved. The reconstruction procedure combines structure-from-motion and multi-view stereo algorithms (SfM-MVS) and can generate dense 3D point clouds (millions of points) from multiple photographs of a scene taken from different positions. Processing is carried out by automated software (e.g. http://blog.neonascent.net/archives/bundler-photogrammetry-package/). SfM-MVS reconstructions are initally un-scaled and un-oriented so additional geo-referencing software has been developed. Although this step requires the presence of some control points, the SfM-MVS approach has significantly easier image acquisition and control requirements than traditional photogrammetry, facilitating its use in a broad range of difficult environments. At Colima, the lava dome surface was reconstructed from recent and archive images taken from light aircraft over flights (2007-2011). Scaling and geo-referencing was carried out using features identified in web-sourced ortho-imagery obtained as a basemap layer in ArcMap - no ground-based measurements were required. Average surface measurement densities are typically 10-40 points per m2. Over mean viewing distances of ~500-2500 m (for different surveys), RMS error on the control features is ~1.5 m. The derived DEMs (with 1-m grid resolution) are sufficient to quantify volumetric change, as well as to highlight the structural evolution of the upper surface of the dome following an explosion in June 2011. At Puyehue Cord

  11. The Collapse of the Lava Dome at Soufriere Hills Volcano, 12-13 July 2003

    NASA Astrophysics Data System (ADS)

    Herd, R.; Edmonds, M.; Strutt, M.; Ottermeiler, L.

    2003-12-01

    A large dome collapse took place at the Soufriere Hills Volcano, Montserrat, on 12 July 2003. Around 120 million m3 of lava dome and talus collapsed to the east, generating large pyroclastic flows in the Tar River Valley. The collapse took place after a three-day-long hybrid earthquake swarm, which merged into a continuous tremor in the early morning of 12 July 2003. A period of brief but intense period of rainfall occurred between 6:30 and 9:30 am, which coincided with the onset of pyroclastic flow activity. Pyroclastic flows continued throughout the day, slowly increasing in volume and energy as the hotter interior of the talus and dome were exposed, this stage being similar to the evolution of dome collapses on 20 March 2000 and 29 July 2001. At 18:00 phreatic explosions began to take place where the block and ash flows were hitting sea on the Tar River Fan, sending black jets 50-100 metres vertically above the Fan. By 20:00 the pyroclastic flows were associated with energetic surges that were observed to be traveling 2-3 km over the surface of the sea at the mouth of the Tar River Valley. From 22:30 to 01:30 13 July the most energetic sequence of events took place, with one very large vulcanian explosion from the exposed upper conduit and dome remnants and 3-4 smaller explosive events. These explosions took place shortly after large volumes of dome material slumped into the sea down the Tar River Valley, the largest occurring at 23:34. This event caused a 1 metre high tsunami in Guadeloupe. The subsequent explosions were recorded by pressure sensors both on Montserrat and on the island of Martinique, 260 km to the south. This large single flow in the Tar River was associated with a block and ash flow that was confined to the Tar River valley and a powerful surge component derived from the lower reaches of the Tar River valley, which spread northwards, covering 10 km2 and reaching as far as Spanish Point, Bethel Village and White's Yard. This surge was immensely

  12. Integrated, multi-parameter, investigation of eruptive dynamics at Santiaguito lava dome, Guatemala

    NASA Astrophysics Data System (ADS)

    Lavallée, Yan; De Angelis, Silvio; Rietbrock, Andreas; Lamb, Oliver; Hornby, Adrian; Lamur, Anthony; Kendrick, Jackie E.; von Aulock, Felix W.; Chigna, Gustavo

    2016-04-01

    Understanding the nature of the signals generated at volcanoes is central to hazard mitigation efforts. Systematic identification and understanding of the processes responsible for the signals associated with volcanic activity are only possible when high-resolution data are available over relatively long periods of time. For this reason, in November 2014, the Liverpool Earth Observatory (LEO), UK, in collaboration with colleagues of the Instituto Nacional de Sismologia, Meteorologia e Hidrologia (INSIVUMEH), Guatemala, installed a large multi-parameter geophysical monitoring network at Santiaguito - the most active volcano in Guatemala. The network, which is to date the largest temporary deployment on Santiaguito, includes nine three-component broadband seismometers, three tiltmeters, and five infrasound microphones. Further, during the initial installation campaign we conducted visual and thermal infrared measurements of surface explosive activity and collected numerous rock samples for geochemical, geophysical and rheological characterisation. Activity at Santiaguito began in 1922, with the extrusion of a series of lava domes. In recent years, persistent dome extrusion has yielded spectacularly episodic piston-like motion displayed by characteristic tilt/seismic patterns (Johnson et al, 2014). This cyclicity episodically concludes with gas emissions or gas-and-ash explosions, observed to progress along a complex fault system in the dome. The explosive activity is associated with distinct geophysical signals characterised by the presence of very-long period earthquakes as well as more rapid inflation/deflation cycles; the erupted ash further evidences partial melting and thermal vesiculation resulting from fault processes (Lavallée et al., 2015). One year of data demonstrates the regularity of the periodicity and intensity of the explosions; analysis of infrasound data suggests that each explosion expulses on the order of 10,000-100,000 kg of gas and ash. We

  13. Geophysical imaging of the inner structure of a lava dome and its environment through gravimetry and magnetism

    NASA Astrophysics Data System (ADS)

    Portal, A.; Gailler, L.-S.; Labazuy, P.; Lénat, J.-F.

    2016-06-01

    Volcanic lava domes are compound edifices resulting from complex growth processes including intrusion and extrusion phases, explosions and collapses. Here, we present the study of a complex volcanic system, located in the Chaîne des Puys volcanic field (French Massif Central, France) and centred on the Puy de Dôme volcano, an 11,000 years old volcano. Our approach is based on a morpho-structural analysis of a high resolution DTM (0.5 m) and geophysical imaging methods. Both gravity and magnetic high resolution surveys have been carried out on the lava dome and the nearby volcanic structures. We computed 3D inverse and 2D forwards models. Based on our current knowledges about volcanic dome structure, the geophysical models allow us to propose a synthetic geological model of the inner structure of the Puy de Dôme and surrounding areas. This model suggests a scenario for the formation of the lava dome and the inferred intrusions located on both sides. The Puy de Dôme could possibly be the southern tip of the northern intrusion.

  14. Advances in our Understanding of Lava-Dome Eruptions Arising From the Study of Soufriere Hills Volcano, Montserrat

    NASA Astrophysics Data System (ADS)

    Edmonds, M.

    2006-12-01

    The eruption of Soufrière Hills Volcano, Montserrat, began in July 1995 and is ongoing 11 years later. Over 0.6 km3 andesite lava has been erupted at rates of up to around 10 m3/s; more generally at rates of 1-3 m3/s. The style of eruption has been dominantly effusive: a lava dome has grown and repeatedly collapsed, generating pyroclastic flows and surges. The eruption has been the focus of intense international scientific study; as a result, there have been major advances in understanding how such volcanoes work that can be applied to other volcanoes in similar tectonic settings. The traditional concept of magma chambers containing stored, molten magma is inadequate for Soufrière Hills; instead, both petrological evidence and ground deformation suggests that hot, mafic magma rises from depth and re-melts the silicic, highly crystalline rocks beneath the volcano shortly before eruption. Even during pauses in lava eruption, magma continues to be supplied at depth beneath the volcano. The hot, mafic magma supplies a vapor phase as it degasses, which ascends to the surface and is erupted with the andesite. The vapor is rich in SO2 and HCl gases, the proportions of which vary with the rate and style of eruption. Extensive study at Soufrière Hills and elsewhere has revealed that intense shallow degassing, cooling and crystallization of magma causes development of large rheological gradients and overpressures. After the observation of pulsatory magma effusion and transitions between effusive and explosive styles of eruption, models were developed to describe pressurization, flow rate and escape of gas in the upper few hundred meters of the conduit. A number of large lava dome collapses have offered an opportunity to observe the phenomena associated with the instability of lava domes, volcanic flows and the interaction between these flows and seawater. Large- volume pyroclastic flows have entered the sea and caused hydrovolcanic activity and energetic surges. The rate

  15. Monitoring lava-dome growth during the 2004-2008 Mount St. Helens, Washington, eruption using oblique terrestrial photography

    USGS Publications Warehouse

    Major, J.J.; Dzurisin, D.; Schilling, S.P.; Poland, Michael P.

    2009-01-01

    We present an analysis of lava dome growth during the 2004–2008 eruption of Mount St. Helens using oblique terrestrial images from a network of remotely placed cameras. This underutilized monitoring tool augmented more traditional monitoring techniques, and was used to provide a robust assessment of the nature, pace, and state of the eruption and to quantify the kinematics of dome growth. Eruption monitoring using terrestrial photography began with a single camera deployed at the mouth of the volcano's crater during the first year of activity. Analysis of those images indicates that the average lineal extrusion rate decayed approximately logarithmically from about 8 m/d to about 2 m/d (± 2 m/d) from November 2004 through December 2005, and suggests that the extrusion rate fluctuated on time scales of days to weeks. From May 2006 through September 2007, imagery from multiple cameras deployed around the volcano allowed determination of 3-dimensional motion across the dome complex. Analysis of the multi-camera imagery shows spatially differential, but remarkably steady to gradually slowing, motion, from about 1–2 m/d from May through October 2006, to about 0.2–1.0 m/d from May through September 2007. In contrast to the fluctuations in lineal extrusion rate documented during the first year of eruption, dome motion from May 2006 through September 2007 was monotonic (± 0.10 m/d) to gradually slowing on time scales of weeks to months. The ability to measure spatial and temporal rates of motion of the effusing lava dome from oblique terrestrial photographs provided a significant, and sometimes the sole, means of identifying and quantifying dome growth during the eruption, and it demonstrates the utility of using frequent, long-term terrestrial photography to monitor and study volcanic eruptions.

  16. Pyroclastic flows generated by gravitational instability of the 1996-97 lava dome of Soufriere Hills Volcano, Montserrat

    USGS Publications Warehouse

    Cole, P.D.; Calder, E.S.; Druitt, T.H.; Hoblitt, R.; Robertson, R.; Sparks, R.S.J.; Young, S.R.

    1998-01-01

    Numerous pyroclastic flows were produced during 1996-97 by collapse of the growing andesitic lava dome at Soufriere Hills Volcano, Montserrat. Measured deposit volumes from these flows range from 0.2 to 9 ?? 106 m3. Flows range from discrete, single pulse events to sustained large scale dome collapse events. Flows entered the sea on the eastern and southern coasts, depositing large fans of material at the coast. Small runout distance (<1 km) flows had average flow front velocities in the order of 3-10 m/s while flow fronts of the larger runout distance flows (up to 6.5 km) advanced in the order of 15-30 m/s. Many flows were locally highly erosive. Field relations show that development of the fine grained ash cloud surge component was enhanced during the larger sustained events. Periods of elevated pyroclastic flow productivity and sustained dome collapse events are linked to pulses of high magma extrusion rates.Numerous pyroclastic flows were produced during 1996-97 by collapse of the growing andesitic lava dome at Soufriere Hills Volcano, Montserrat. Measured deposit volumes from these flows range from 0.2 to 9??106 m3. Flows range from discrete, single pulse events to sustained large scale dome collapse events. Flows entered the sea on the eastern and southern coasts, depositing large fans of material at the coast. Small runout distance (<1 km) flows had average flow front velocities in the order of 3-10 m/s while flow fronts of the larger runout distance flows (up to 6.5 km) advanced in the order of 15-30 m/s. Many flows were locally highly erosive. Field relations show that development of the fine grained ash cloud surge component was enhanced during the larger sustained events. Periods of elevated dome pyroclastic flow productivity and sustained collapse events are linked to pulses of high magma extrusion rates.

  17. Merapi's lava dome splitting explosion on 18 November 2013 observed by lidar and digital image correlation analysis.

    NASA Astrophysics Data System (ADS)

    Darmawan, Herlan; Walter, Thomas; Nikkhoo, Mehdi; Richter, Nicole

    2015-04-01

    After the 2010 Merapi eruption, the lava dome in the summit of the volcano was firstly growing and then subject to gradual cooling and contraction. In November 2013, a major phreatomagmatic explosion occurred, which caused an eruption column rising over 2 km high and destroyed a number of monitoring instruments in the near field. Bombs were thrown out over 1 km distance. The eruption produced volcanic ash and very fine materials. Deformation data from tilt or EDM showed no wide inflation or deflation associated with this eruption. In addition, high resolution TerraSAR-X data analysis also showed no edifice-wide deformation (Walter et al., 2015). Here we further examine two datasets to determine the morphologic and structural effects of this eruption. First we exploit fixed installed monitoring cameras and use a digital image correlation method to investigate geometric changes before and after the eruption. Second we acquired a high resolution terrestrial Lidar data set after the explosion and compared this another lidar data set acquired before. The result shows details on the splitted dome, the volume of the eruption and thickness of the deposits, and suggests that a new block at the front of the dome is inherently unstable and might break off to form a block and ash flow in the near future. Reference: TR Walter, Subandriyo J, Kirbani S, Bathke H, Suryanto W, Aisyah N, Darmawan H, Jousset P, Lühr BG, Dahm T (2015) Volcano-tectonic control of Merapi's lava dome splitting: The November 2013 fracture observed from high resolution TerraSAR-X data. Tectonophysics 639, 12 January 2015, Pages 23-33. doi:10.1016/j.tecto.2014.11.007

  18. Cardiovascular Deaths among Alaskan Natives, 1980-86.

    ERIC Educational Resources Information Center

    Middaugh, John P.

    1990-01-01

    Analyzes death certificate data to discover the number of deaths of Alaskan natives caused by cardiovascular disease. Rates from cardiovascular diseases and atherosclerosis from 1980-86 among Alaskan natives were lower than rates among other Alaskans, while death rates from other causes were higher. Discusses the possible impact of diet. (JS)

  19. Rheology of Lava Flows on Europa and the Emergence of Cryovolcanic Domes

    NASA Technical Reports Server (NTRS)

    Quick, Lynnae C.; Glaze, Lori S.; Baloga, Steve M.

    2015-01-01

    There is ample evidence that Europa is currently geologically active. Crater counts suggest that the surface is no more than 90 Myr old, and cryovolcanism may have played a role in resurfacing the satellite in recent geological times. Europa's surface exhibits many putative cryovolcanic features, and previous investigations have suggested that a number of domes imaged by the Galileo spacecraft may be volcanic in origin. Consequently, several Europa domes have been modeled as viscous effusions of cryolava. However, previous models for the formation of silicic domes on the terrestrial planets contain fundamental shortcomings. Many of these shortcomings have been alleviated in our new modeling approach, which warrants a re-assessment of the possibility of cryovolcanic domes on Europa.

  20. An experimental insight into the evolution of permeability at high temperatures and applications for shallow conduit and lava dome degassing

    NASA Astrophysics Data System (ADS)

    Chadderton, Amy; Sammonds, Peter; Meredith, Philip; Smith, Rosanna; Tuffen, Hugh; Gaunt, Elizabeth

    2016-04-01

    Two recent eruptions in Chile, at Chaitén Volcano in 2008-10 and Cordón Caulle in 2011-12, allowed the first detailed observations of rhyolitic activity and provided insights into the evolution of highly silicic eruptions. Both events exhibited simultaneous explosive and effusive activity, with both lava and ash plumes emitted from the same vent [1]. The permeability of fracture networks that act as fluid flow pathways is key to understanding such eruptive behaviour. Here, we report results from a systematic experimental investigation of permeability in volcanic rocks at magmatic temperatures and pressures, in the presence of pore fluids using our newly-developed high-temperature permeability facility. Enhancements to the High Temperature Triaxial Deformation Cell at UCL [2] have enabled us to make permeability measurements on 25mm x 50mm cores at both elevated temperature and elevated hydrostatic pressure [3]. We present results from several suites of permeability measurements on samples of dome dacite from the 2004-08 eruption of Mount St Helens, and rhyolite collected from the lava dome formed during the 2008-10 eruption of Chaitén, Chile. Tests were conducted at temperatures up to 900oC and under an effective pressure of 5 MPa, using the steady-state flow technique. Samples were cooled to room temperature between each high temperature test, and the permeability of each sample was re-measured before heating to the next temperature increment in the series. Additional longer duration high temperature tests were also conducted to investigate the development of a permeable network at high temperatures over time. The results show a complex permeability evolution that includes a reduction in permeability by approximately 3 orders of magnitude up to 600oC. Together with thermal cracking tests, AE data and SEM/thin section analysis these new experimental permeability results are applied to enhance our understanding of the complex issue of shallow conduit and lava

  1. Intrusive and extrusive growth of the Mount St Helens lava dome

    NASA Technical Reports Server (NTRS)

    Fink, Jonathan H.; Malin, Michael C.; Anderson, Steven W.

    1990-01-01

    High-resolution, digital topographic maps of the Mount St. Helens dome derived from aerial photographs are used here to make a quantitative assessment of the partitioning of magma into endogenous intrusion and exogenous lobes. The endogenous growth is found to be predictable, which shows that the cooling dome controls its own development independently of such deep-seated factors as magma overpressure and extrusion rate. The observed regular decrease in exogenous growth rate also allows volume prediction. Knowledge of the volume can be used to determine when an ongoing eruptive event should end. Finally, the observed transition from predominantly exogenous to predominantly endogenous growth reflects the increase in crust thickness, which in turn seems to depend on long repose periods rather than some fundamental change in the character of the dome.

  2. Gravitational Failures of Lava Domes at Intersections With Tectonic Faults: Examples from Tatun Volcanic Group, Northern Taiwan

    NASA Astrophysics Data System (ADS)

    Belousova, M.; Belousov, A.; Chen, C.

    2009-12-01

    The dominantly andesitic Tatun Volcanic Group of Northern Taiwan was formed during the Pleistocene - Early Holocene. The volcanoes are represented by lava domes of moderate sizes: heights up to 350 m (absolute altitudes 800 - 1120 m a.s.l.), base diameters up to 1.5 km, and volumes up to 0.3 km3. Many of the domes have broad, shallow horseshoe-shaped scars (0.5-1.0 km across) formed by gravitational collapses. Field examination revealed deposits of collapses of volcanoes Datun, Cising, Siaoguanyin, Cigu, and Dajianhou. The largest of the collapses (V ~ 0.1 km3) occurred at Mt. Datun. The collapse formed a typical debris avalanche deposit composed mainly of block facies. The avalanche traveled a distance L ~ 5 km, dropped a height H ~ 1 km, and was moderately mobile H/L ~ 0.2. The age of the collapse is > 24,000 yrs because the related debris avalanche deposit is covered by a younger debris avalanche deposit of Siaoguanyin volcano containing charcoal having calibrated 14C age 22,600-23,780 BP. The Siaoguanyin debris avalanche deposit (V~ 0.02 km3; L ~ 6 km; H ~ 1 km; H/L ~ 0.16) is composed of massive, very coarse-grained, fines-poor, gravelly material represented predominantly by very dense, dark-grey andesite. The avalanche was hot during deposition; material of a lava dome which had no time to cool down completely after extrusion was involved into the collapse. The avalanche speed was 40 m/s at a distance 5 km from the source, basing on 80 m of the avalanche run-up. The latest (calibrated age 6000-6080 BP) large-scale collapse (V~0.05 km3, H/L ~ 0.25) occurred at Mt. Cising in the form of numerous retrogressive landslide blocks, which did not transform into a long runout debris avalanche. The leading snout of the landslide traveled 2.0 km, while rear slide blocks traveled only several hundred meters and stopped near the landslide source. Its maximum dropped height is only ~0.5 km. A former lava coulee, which was involved in the collapse, underwent weak

  3. Using structure-from-motion for monitoring active lava flows and domes

    NASA Astrophysics Data System (ADS)

    James, Mike R.; Robson, Stuart; Varley, Nick

    2016-04-01

    3-D reconstruction software based on structure-from-motion (SfM) algorithms can substantially reduce the requirements and learning curve for generating topographic data from photographs, and thus offers strong potential for data collection in many dynamic environments. Unfortunately, SfM-based software tends not to provide the rigorous metrics that are used to assess the quality of results in conventional photogrammetry software. Here, we use examples of repeat oblique airborne acquisitions from a volcanic dome (Volcán de Colima, Mexico) and terrestrial time-lapse stereo-photography (Mt. Etna, Sicily) to examine the sensitivity of results to imaging characteristics and SfM processing procedures. At Volcán de Colima, photographs were acquired with a relatively favourable convergent geometry, from an opened window in a light aircraft. However, hazards prevent the deployment of ground control, so the derived topographic shape relies entirely on the image tie points generated automatically by the software. In contrast, at Mt. Etna, control targets could be used but, with only two (mildly convergent) cameras, the image geometry is naturally weaker that at Colima. We use both of these cases to explore some of the challenges involved with understanding the error inherent in projects processed using SfM-based approaches. Results are compared with those achieved using a rigorous close-range photogrammetry package.

  4. Compositional gradients in large reservoirs of silicic magma as evidenced by ignimbrites versus Taylor Creek Rhyolite lava domes

    USGS Publications Warehouse

    Duffield, W.A.; Ruiz, J.

    1992-01-01

    The Taylor Creek Rhyolite of southwest New Mexico consists of 20 lava domes and flows that were emplaced during a period of a few thousand years or less in late Oligocene time. Including genetically associated pyroclastic deposits, which are about as voluminous as the lava domes and flows, the Taylor Creek Rhyolite represents roughly 100 km3 of magma erupted from vents distributed throughout an area of several hundred square kilometers. Major-element composition is metaluminous to weakly peraluminous high-silica rhyolite and is nearly constant throughout the lava field. The magma reservoir for the Taylor Creek Rhyolite was vertically zoned in trace elements, 87Sr/86Sr, and phenocryst abundance and size. Mean trace-element concentrations, ranges in concentrations, and element-pair correlations are similar to many subalkaline silicic ignimbrites. However, the polarity of the zonation was opposite that in reservoirs for ignimbrites, for most constituents. For example, compared to the Bishop Tuff, only 87Sr/86Sr and Sc increased upward in both reservoirs. Quite likely, a dominant but nonerupted volume of the magma reservoir for the Taylor Creek Rhyolite was zoned like that for the Bishop Tuff, whereas an erupted, few-hundred-meter-thick cap on the magma body was variably contaminated by roof rocks whose contribution to this part of the magma system moderated relatively extreme trace-element concentrations of uncontaminated Taylor Creek Rhyolite but did not change the sense of correlation for most element pairs. The contaminant probably was a Precambrian rock of broadly granitic composition and with very high 87Sr/86Sr. Although examples apparently are not yet reported in the literature, evidence for a similar thin contaminated cap on reservoirs for large-volume silicic ignimbrites may exist in the bottom few meters of ignimbrites or perhaps only in the pumice fallout that normally immediately precedes ignimbrite emplacement. 87Sr/86Sr in sanidine phenocrysts of the

  5. Evidence for the development of permeability anisotropy in lava domes and volcanic conduits

    NASA Astrophysics Data System (ADS)

    Farquharson, Jamie I.; Heap, Michael J.; Lavallée, Yan; Varley, Nick R.; Baud, Patrick

    2016-09-01

    The ease at which exsolving volatiles can migrate though magma and outgas influences the explosivity of a volcanic eruption. Volcanic rocks often contain discrete discontinuities, providing snapshots of strain localisation processes that occur during magma ascent and extrusion. Whether these features comprise pathways for or barriers to fluid flow is thus of relevance for volcanic eruption and gas emission modelling. We report here on nine discontinuity-bearing andesite blocks collected from Volcán de Colima, Mexico. We present a systematic porosity and permeability study of fifty cores obtained from the blocks collected, and interpret the genetic processes of the discontinuities through detailed microstructural examination. Bands in pumiceous blocks were inferred to be relicts of inhomogeneous bubble expansion which, despite significantly increasing porosity, do not markedly affect permeability. Other discontinuities in our blocks are interpreted to be shear strain-induced flow banding, cavitation porosity, and/or variably healed fractures. In each of these cases, an increase in permeability (up to around three orders of magnitude) was measured relative to the host material. A final sample contained a band of lower porosity than the host rock, characterised by variably infilled pores. In this case, the band was an order of magnitude less permeable than the host rock, highlighting the complex interplay between dilatant and densifying processes in magma. We therefore present evidence for significant permeability anisotropy within the conduit and/or dome of a volcanic system. We suggest that the abundance and distribution of strain localisation features will influence the escape or entrapment of volatiles and therefore the evolution of pore pressure within active volcanic systems. Using a simple upscaling model, we illustrate the relative importance of permeable structures over different lengthscales. Strain localisation processes resulting in permeability

  6. Enhanced crystal fabric analysis of a lava flow sample by neutron texture diffraction: A case study from the Castello d'Ischia dome

    NASA Astrophysics Data System (ADS)

    Walter, Jens M.; Iezzi, Gianluca; Albertini, Gianni; Gunter, Mickey E.; Piochi, Monica; Ventura, Guido; Jansen, Ekkehard; Fiori, Fabrizio

    2013-01-01

    The crystal fabric of a lava has been analyzed for the first time by neutron texture diffraction. In this study we quantitatively investigate the crystallographic preferred orientation of feldspars in the Castello d'Ischia (Ischia Island, Italy) trachytic exogenous dome. The crystallographic preferred orientation was measured with the monochromatic neutron texture diffractometer SV7 at the Forschungszentrum Jülich in Germany and a Rietveld refinement was applied to the sum diffraction pattern. The complementary thin section analysis showed that the three-dimensional crystal shape and the corresponding shape preferred orientation are in agreement with the quantitative orientation distributions of the neutron texture data. The (0k0) crystallographic planes of the feldspars are roughly parallel to the local flow bands, whereas the other corresponding pole figures show that a pivotal rotation of the anorthoclase and sanidine crystals was active during the emplacement of this lava dome. In combination with scanning electron microscopy investigations, electron probe microanalysis, XRF, and X-ray diffraction, the Rietveld refinement of the neutron diffraction data indicates a slow cooling dynamic on the order of several months during their crystallization under subaerial conditions. Results attained here demonstrate that neutron texture diffraction is a powerful tool that can be applied to lava flows.

  7. Quantification of magma ascent rate through rockfall monitoring at the growing/collapsing lava dome of Volcán de Colima, Mexico

    NASA Astrophysics Data System (ADS)

    Mueller, S. B.; Varley, N. R.; Kueppers, U.; Lesage, P.; Reyes Davila, G. Á.; Dingwell, D. B.

    2013-07-01

    The most recent eruptive phase of Volcán de Colima, Mexico, started in 1998 and was characterized by dome growth with a variable effusion rate, interrupted intermittently by explosive eruptions. Between November 2009 and June 2011, activity at the dome was mostly limited to a lobe on the western side where it had previously started overflowing the crater rim, leading to the generation of rockfall events. As a consequence of this, no significant increase in dome volume was perceivable and the rate of magma ascent, a crucial parameter for volcano monitoring and hazard assessment could no longer be quantified via measurements of the dome's dimensions. Here, we present alternative approaches to quantify the magma ascent rate. We estimate the volume of individual rockfalls through the detailed analysis of sets of photographs (before and after individual rockfall events). The relationship between volume and infrared images of the freshly exposed dome surface and the seismic signals related to the rockfall events were then investigated. Larger rockfall events exhibited a correlation between its previously estimated volume and the surface temperature of the freshly exposed dome surface, as well as the mean temperature of rockfall mass distributed over the slope. We showed that for larger events, the volume of the rockfall correlates with the maximum temperature of the newly exposed lava dome as well as a proxy for seismic energy. It was therefore possible to calibrate the seismic signals using the volumes estimated from photographs and the count of rockfalls over a certain period was used to estimate the magma extrusion flux for the period investigated. Over the course of the measurement period, significant changes were observed in number of rockfalls, rockfall volume and hence averaged extrusion rate. The extrusion rate was not constant: it increased from 0.008 ± 0.003 to 0.02 ± 0.007 m3 s-1 during 2010 and dropped down to 0.008 ± 0.003 m3 s-1 again in March 2011. In

  8. Origin and potential geothermal significance of China Hat and other late Pleistocene topaz rhyolite lava domes of the Blackfoot Volcanic Field, SE Idaho

    NASA Astrophysics Data System (ADS)

    McCurry, M. O.; Pearson, D. M.; Welhan, J. A.; Kobs-Nawotniak, S. E.; Fisher, M. A.

    2014-12-01

    The Snake River Plain and neighboring regions are well known for their high heat flow and robust Neogene-Quaternary tectonic and magmatic activity. Interestingly, however, there are comparatively few surficial manifestations of geothermal activity. This study is part of a renewed examination of this region as a possible hidden or blind geothermal resource. We present a testable, integrated volcanological, petrogenetic, tectonic and hydrothermal conceptual model for 57 ka China Hat and cogenetic topaz rhyolite lava domes of the Blackfoot Volcanic Field. This field is well suited for analysis as a blind resource because of its distinctive combination of (1) young bimodal volcanism, petrogenetic evidence of shallow magma storage and evolution, presence of coeval extension, voluminous travertine deposits, and C- and He-isotopic evidence of active magma degassing; (2) a paucity of hot springs or other obvious indicators of a geothermal resource in the immediate vicinity of the lava domes; and (3) proximity to a region of high crustal heat flow, high-T geothermal fluids at 2.5-5 km depth and micro-seismicity characterized by its swarming nature. Eruptions of both basalt and rhyolite commonly evolve from minor phreatomagmatic to effusive. In our model, transport of both magmatic and possible deep crustal aqueous fluids may be controlled by preexisting crustal structures, including west-dipping thrust faults. Geochemical evolution of rhyolite magma is dominated by mid- to upper-crustal fractional crystallization (with pre-eruption storage and phenocryst formation at ~14 km). Approximately 1.2 km3 of topaz rhyolite have been erupted since 1.4 Ma, yielding an average eruption rate of 0.8 km3/m.y. Given reasonable assumptions of magma cumulate formation and eruption rates, and initial and final volatile concentrations, we infer average H2O and CO2 volatile fluxes from the rhyolite source region of ~2MT/year and 340 T/day, respectively. Lithium flux may be comparable to CO2.

  9. Long-period events, the most characteristic seismicity accompanying the emplacement and extrusion of a lava dome in Galeras Volcano, Colombia, in 1991

    NASA Astrophysics Data System (ADS)

    Cruz, Fernando Gil; Chouet, Bernard A.

    1997-05-01

    Since its reactivation in 1988 the principal eruptions of Galeras Volcano occurred on May 4-9, 1989, July 16, 1992, and January 14, March 23, April 3, April 14 and June 7, 1993. The initial eruption was a phreatic event which clearly marked a new period of activity. A lava dome was extruded within the main crater in October 1991 and subsequently destroyed in an explosive eruption on July 16, 1992. The eruptions that followed were all vulcanian-type explosions. The seismicity accompanying the emplacement, extrusion, and destruction of the lava dome was dominated by a mix of long-period (LP) events and tremor displaying a variety of waveforms. Repetitive LP events with dominant periods in the range 0.2-1 s were observed in October and November 1991 and visually correlated with short energetic pulses of gas venting through a crack bisecting the dome surface. Each LP event was characterized by a weak precursory signal with dominant periods in the range 0.05-0.1 s lasting roughly 7 s. Using the fluid-driven crack model of Chouet (1988, 1992), we infer that two distinct cracks may have acted as sources for the LP and precursor signals. Spectral analyses of the data yield the following parameters for the LP source: crack length, 240-360 m; crack width, 130-150 m; crack aperture, 0.5-3.4 mm; crack stiffness, 100-500; sound speed of fluid, 880 m/s; and excess pressure, 0.01-0.19 MPa. Similar analyses yield the parameters of the precursor source: crack length, 20-30 m; crack width, 15-25 m; crack aperture, 2.3-8.7 mm; crack stiffness, 5-15; sound speed of fluid, 140 m/s; and excess pressure, 0.06-0.15 MPa. Combined with geologic and thermodynamic constraints obtained from field observations, these seismic parameters suggest a gas-release mechanism in which the episodic collapse of a foam layer trapped at the top of the magma column subjacent to the dome releases a slug of pressurized gas which escapes to the surface while dilating a preexisting system of cracks in the dome

  10. Long-period events, the most characteristic seismicity accompanying the emplacement and extrusion of a lava dome in Galeras Volcano, Colombia, in 1991

    USGS Publications Warehouse

    Gil, Cruz F.; Chouet, B.A.

    1997-01-01

    Since its reactivation in 1988 the principal eruptions of Galeras Volcano occurred on May 4-9, 1989, July 16, 1992, and January 14, March 23, April 3, April 14 and June 7, 1993. The initial eruption was a phreatic event which clearly marked a new period of activity. A lava dome was extruded within the main crater in October 1991 and subsequently destroyed in an explosive eruption on July 16, 1992. The eruptions that followed were all vulcanian-type explosions. The seismicity accompanying the emplacement, extrusion, and destruction of the lava dome was dominated by a mix of long-period (LP) events and tremor displaying a variety of waveforms. Repetitive LP events with dominant periods in the range 0.2-1 s were observed in October and November 1991 and visually correlated with short energetic pulses of gas venting through a crack bisecting the dome surface. Each LP event was characterized by a weak precursory signal with dominant periods in the range 0.05-0.1 s lasting roughly 7 s. Using the fluid-driven crack model of Chouet (1988, 1992), we infer that two distinct cracks may have acted as sources for the LP and precursor signals. Spectral analyses of the data yield the following parameters for the LP source: crack length, 240-360 m; crack width, 130-150 m; crack aperture, 0.5-3.4 mm; crack stiffness, 100-500; sound speed of fluid, 880 m/s; and excess pressure, 0.01-0.19 MPa. Similar analyses yield the parameters of the precursor source: crack length, 20-30 m; crack width, 15-25 m; crack aperture, 2.3-8.7 mm; crack stiffness, 5-15; sound speed of fluid, 140 m/s; and excess pressure, 0.06-0.15 MPa. Combined with geologic and thermodynamic constraints obtained from field observations, these seismic parameters suggest a gas-release mechanism in which the episodic collapse of a foam layer trapped at the top of the magma column subjacent to the dome releases a slug of pressurized gas which escapes to the surface while dilating a preexisting system of cracks in the dome

  11. Crystallization conditions and petrogenesis of the lava dome from the ˜900 years BP eruption of Cerro Machín Volcano, Colombia

    NASA Astrophysics Data System (ADS)

    Laeger, Kathrin; Halama, Ralf; Hansteen, Thor; Savov, Ivan P.; Murcia, Hugo F.; Cortés, Gloria P.; Garbe-Schönberg, Dieter

    2013-12-01

    The last known eruption at Cerro Machín Volcano (CMV) in the Central Cordillera of Colombia occurred ˜900 years BP and ended with the formation of a dacitic lava dome. The dome rocks contain both normally and reversely zoned plagioclase (An24-54), unzoned and reversely zoned amphiboles of dominantly tschermakite and pargasite/magnesio-hastingsite composition and olivine xenocrysts (Fo = 85-88) with amphibole/clinopyroxene overgrowth, all suggesting interaction with mafic magma at depth. Plagioclase additionally exhibits complex oscillatory zoning patterns reflecting repeated replenishment, fractionation and changes in intrinsic conditions in the magma reservoir. Unzoned amphiboles and cores of the reversely zoned amphiboles give identical crystallization conditions of 910 ± 30 °C and 360 ± 70 MPa, corresponding to a depth of about 13 ± 2 km, at moderately oxidized conditions (f = +0.5 ± 0.2 ΔNNO). The water content in the melt, calculated based on amphibole chemistry, is 7.1 ± 0.4 wt.%. Rims of the reversely zoned amphiboles are relatively enriched in MgO and yield higher crystallization temperatures (T = 970 ± 25 °C), slightly lower melt H2O contents (6.1 ± 0.7 wt.%) and overlapping pressures (410 ± 100 MPa). We suggest that these rims crystallized following an influx of mafic melt into a resident magma reservoir at mid-crustal depths, further supported by the occurrence of xenocrystic olivine. Crystallization of biotite, albite-rich plagioclase and quartz occurred at comparatively low temperatures (probably <800 °C) during early stages of ascent or storage at shallower levels. Based on amphibole mineral chemistry, the felsic resident melt had a rhyolitic composition (71 ± 2 wt.% SiO2), whereas the hybrid magma, from which the amphibole rims crystallized, was dacitic (64 ± 3 wt.% SiO2). The bulk rock chemistry of the CMV lava dome dacites is homogenous. They have elevated (La/Nb)N ratios of 3.8-4.5, typical for convergent margin magmas, and display

  12. Monitoring lava dome changes by means of differential DEMs from TanDEM-X interferometry: Examples from Merapi, Indonesia and Volcán de Colima, Mexico

    NASA Astrophysics Data System (ADS)

    Kubanek, J.; Westerhaus, M.; Heck, B.

    2013-12-01

    Estimating the amount of erupted material during a volcanic crisis is one of the major challenges in volcano research. One way to do this and to discriminate between juvenile and non-juvenile fraction is to assess topographic changes before and after an eruption while using area-wide 3D data. LiDAR or other airborne systems may be a good source, but the recording fails when clouds due to volcanic activity obstruct the sight. In addition, costs as well as logistics are high for local observatories. When dealing with dome-building volcanoes, acquiring the data gets further complicated. As the volcano dome can change rapidly in active phases, it is nearly impossible to collect data at the right time. However, when dealing with gross volume change estimates, at least two data sets - taken directly before and after the eruption - are essential. The innovative German Earth observation mission TanDEM-X (TerraSAR-X add-on for Digital Elevation Measurement) is of great importance to overcome some of these problems. The two almost identical radar satellites TerraSAR-X and TanDEM-X fly in a close formation, thus recording images of the same place on the Earth surface at the same time (bistatic mode). As the radar signal penetrates clouds, digital elevation models (DEMs) of the area of investigation can be generated without problems even with cloud cover. A time series analysis of the differential DEMs therefore opens the possibility to assess volume changes at active lava domes. We choose Merapi in Indonesia and Volcán de Colima in Mexico as test sites. Both volcanoes reside in a state of long term effusive eruption, interrupted every few years by phases of dome destruction, generation of pyroclastic flows and deposition of volcanic material. The availability of extensive ground truth data for both test sites further enables to validate the spaceborne data and results. Here, we analyze lava dome changes due to the hazardous Merapi 2010 eruption. We show a series of DEMs

  13. The Rise and Fall of the Soufriere Hills Volcano Lava Dome, Montserrat, BWI, July 2001-July 2003: Science, Hazards, and Volatile Public Perceptions

    NASA Astrophysics Data System (ADS)

    Dunkley, P.; Voight, B.; Edmonds, M.; Herd, R.; Strutt, M.; Thompson, G.; Bass, V.; Aspinall, W. P.; Neuberg, J.; Sparks, R.; Mattioli, G.; Hidayat, D.; Elsworth, D.; Widiwijayanti, C.

    2003-12-01

    Days after the major collapse (45 x 106 m3) of the eastern flank of the lava dome on 29 July 2001, new dome growth was observed within the 200-m deep collapse amphitheatre. accompanied by cyclic seismicity. By January 2002 the summit was broad with an altitude of 990m. A switch in dome activity occurred in April, but Growth nearly stagnated in June and part of July, with the top of the extrusion lobe at 1048m. but GPS monitoring suggested that the magma reservoir continued to inflate, and growth resumed in late July. In August, a lobe grew toward the north and buried the northern buttress and an important drainage channel that formerly led to the east. One of the regular six-monthly meetings of the Risk Assessment Panel (RAP) took place on 3-4 Sept 02 and concluded that if a NW switch in dome growth were to occur, the margins of the Belham Valley on the west could be at high risk; a flow and surge hazard line was provided to officials, crossing the populated area near Salem. Shortly after the RAP Report was finalized, a switch in growth direction toward the northwest in fact occurred. On 7 Oct, the RAP were asked to re-appraise Belham Valley risks given the altered but not unanticipated circumstances; they judged that a potential existed for a hazardous flow down Belham Valley, although RAP emphasized that their assessment did not predict that a large flow would occur soon, nor in that sector. On 8 Oct the Governor ordered an evacuation of an exclusion zone defined by the RAP's hazard line as adjusted to permit administrative control, and the boundary remained in force until Aug 03, with growing public discontent toward the Governor's exercise of Emergency Powers, and toward MVO, as expressed by a caustic vocal minority with provocative exacerbation by the local newspaper and some politicians. Meanwhile, dome growth continued with some switches in direction, a collapse of 5 x 106 m3 occurred eastward on 8 Dec to Spanish Point, and pyroclastic flows occurred in

  14. Fragmentation and Cataclasis of Lava Domes: Field Evidence of Conduit-Margin Faulting and Cryptodome Unloading at Mount St. Helens

    NASA Astrophysics Data System (ADS)

    Pallister, J. S.; Hagstrum, J.; Cashman, K.; Tuffen, H.

    2007-12-01

    Structures and textures preserved in dome rocks reveal much about ascent history, seismicity, and dynamics of eruptions. The current eruption of Mount St. Helens (MSH) produced dacite spines mantled by fault gouge and breccia. Flow-banded spine interiors attest to early degassing and ductile deformation; micro-textures and structures in the spine margins indicate entirely brittle shear, rock breakage, grain-flow and gas-escape along fractures. Paleomagnetic pole positions and demagnetization data constrain cataclasis to the sub-vertical volcanic conduit at temperatures above 500°-570°C. Low water content of matrix glass and presence of tridymite require nearly complete decompression-driven solidification at depths <1 km, coincident with the eruption's seismogenic zone. 1-3 m thick cataclastic breccia of spine margins contains multiple Reidel shears in a conjugate set formed by shear between the vertically extruding spines and conduit walls. This breccia is overlain by a thin (<10 cm) outer mantle of finely comminuted gouge with 1-3 mm-thick, surface-parallel layers of slickenside-bearing ultracataclasite, forming through-going fault planes. Slickenside lineations and direction indicators are consistent with upward transport of the spines. These relations document two dominant modes of brittle failure in the spine margins, similar to the brittle S-C fabrics seen in tectonic fault zones. The Reidel shears represent limited-slip planes (S-shears), which are inclined relative to the primary bounding fault planes (C-surfaces). We infer that the Reidel shears formed as multiple, domino-like episodes of fracture, prior to transfer of slip to the bounding C-surfaces. Because the depth of deformation is the same as the depth of the seismogenic zone, and because there are two distinct modes of brittle fracture (S and C fabrics) as well as two distinct types of earthquakes (volcano-tectonic and longer-period hybrids) it is logical to infer that these structures are sources

  15. Transition from Effusive to Explosive Activity during Lava Dome Eruption: The Example of the 2010 of Merapi Volcano (Java, Indonesia)

    NASA Astrophysics Data System (ADS)

    Drignon, M. J.; Arbaret, L.; Burgisser, A.; Komorowski, J. C.; Martel, C.; Putra, R.

    2014-12-01

    Understanding the transition between effusive and explosive activity in dome-forming volcanoes remains a challenging question for eruption forecasting and eruptive scenario definition. The explosive activity of 26 Oct. and 5 Nov. during the 2010 eruption of Merapi volcano offers the opportunity to explore this transition by quantifying the mechanisms that led to the dome explosion. Forty-three pumice samples were analyzed by 1) scanning electron microscope for textural analysis and 2) elemental analyzer for water content. The SEM images were processed so as to determine the proportions of gas bubbles, microlites and glass in each sample. These data were combined with the glass water content to feed the simple physical model developed by Burgisser et al. [1,2] to calculate pre-explosive pressure, depth, and porosity level for each pyroclastic pumice sample. Preliminary results indicate that the water content in the melt is high, reaching 7 wt.%. These water contents yield a wide range of pre-eruptive pressures. Samples from 26 Oct. originated at pressures from a few MPa to 280 MPa. These pressures correspond to depths ranging from a few hundred meters to more than 10 km. This suggests that large overpressures were associated with conduit evacuation that reached unexpected depths. Samples from the 5 Nov. event range from ~10 to ~100 MPa. This suggests that this event also evacuated a large part of the volcanic conduit. Pre-explosive porosities of both events are low (<10 vol. %) along the depth of the entire conduit, which suggests extensive permeable outgassing of the magma-filed conduit prior to each explosive evacuation. Ongoing work includes analysis of melt CO2 content due to preliminary evidence that it played an important role in the 2010 Merapi eruption. The modeled conduit properties serve as baseline data for conduit flow modeling and building plausible eruptive scenarios. [1] Burgisser et al. (2010) J. Volcanol. Geotherm. Res. 194, 27-41. [2] Burgisser et

  16. Effects of lava-dome growth on the crater glacier of Mount St. Helens, Washington: Chapter 13 in A volcano rekindled: the renewed eruption of Mount St. Helens, 2004-2006

    USGS Publications Warehouse

    Walder, Joseph S.; Schilling, Steve P.; Vallance, James W.; LaHusen, Richard G.; Sherrod, David R.; Scott, William E.; Stauffer, Peter H.

    2008-01-01

    The process of lava-dome emplacement through a glacier was observed for the first time as the 2004-6 eruption of Mount St. Helens proceeded. The glacier that had grown in the crater since the cataclysmic 1980 eruption was split in two by the new lava dome. The two parts of the glacier were successively squeezed against the crater wall. Photography, photogrammetry, and geodetic measurements document glacier deformation of an extreme variety, with strain rates of extraordinary magnitude as compared to normal temperate alpine glaciers. Unlike such glaciers, the Mount St. Helens crater glacier shows no evidence of either speed-up at the beginning of the ablation season or diurnal speed fluctuations during the ablation season. Thus there is evidently no slip of the glacier over its bed. The most reasonable explanation for this anomaly is that meltwater penetrating the glacier is captured by a thick layer of coarse rubble at the bed and then enters the volcano’s groundwater system rather than flowing through a drainage network along the bed. Mechanical consideration of the glacier-squeeze process also leads to an estimate for the driving pressure applied by the growing lava dome.

  17. Using thermal remanent magnetisation (TRM) to distinguish block and ash flow and debris flow deposits, and to estimate their emplacement temperature: 1991-1995 lava dome eruption at Mt. Unzen Volcano, Japan

    NASA Astrophysics Data System (ADS)

    Uehara, D.; Cas, R. A. F.; Folkes, C.; Takarada, S.; Oda, H.; Porreca, M.

    2015-09-01

    The 1991-1995 Mt. Unzen eruption (Kyushu, Japan) produced 13 lava domes, approximately 9400 block and ash pyroclastic flows (BAF) resulting from lava dome collapse events and syn- and post-dome collapse debris flow (DF) events. In the field, it can be very difficult to distinguish from field facies characteristics which deposits are primary hot BAF, cold BAF or rock avalanche, or secondary DF deposits. In this study we use a combination of field observations and thermal remanent magnetisation (TRM) analysis of juvenile, lava dome derived clasts from seven deposits of the 1991-1995 Mt. Unzen eruption in order to distinguish between primary BAF deposits and secondary DF deposits and to determine their emplacement temperature. Four major TRM patterns were identified: (1) Type I: clasts with a single magnetic component oriented parallel to the Earth's magnetic field at time and site of emplacement. This indicates that these deposits were deposited at very high temperature, between the Curie temperature of magnetite (~ 540 °C) and the glass transition temperature of the lava dome (~ 745 °C). These clasts are found in high temperature BAF deposits. (2) Type II: clasts with two magnetic components of magnetisation. The lower temperature magnetic components are parallel to the Earth's magnetic field at time of the Unzen eruption. Temperature estimations for these deposits can range from 80 to 540 °C. We found this paleomagnetic behaviour in moderate temperature BAF or warm DF deposits. (3) Type III: clasts with three magnetic components, with a lower temperature component oriented parallel to the Earth's magnetic field at Unzen. The individual clast temperatures estimated for this kind of deposit are usually less than 300 °C. We interpret this paleomagnetic behaviour as the effect of different thermal events during their emplacement history. There are several interpretations for this paleomagnetic behaviour including remobilisation of moderate temperature BAF, warm DF

  18. Use of thermal infrared imaging for monitoring renewed dome growth at Mount St. Helens, 2004: Chapter 17 in A volcano rekindled: the renewed eruption of Mount St. Helens, 2004-2006

    USGS Publications Warehouse

    Schneider, David J.; Vallance, James W.; Wessels, Rick L.; Logan, Matthew; Ramsey, Michael S.; Sherrod, David R.; Scott, William E.; Stauffer, Peter H.

    2008-01-01

    A helicopter-mounted thermal imaging radiometer documented the explosive vent-clearing and effusive phases of the eruption of Mount St. Helens in 2004. A gyrostabilized gimbal controlled by a crew member housed the radiometer and an optical video camera attached to the nose of the helicopter. Since October 1, 2004, the system has provided thermal and video observations of dome growth. Flights conducted as frequently as twice daily during the initial month of the eruption monitored rapid changes in the crater and 1980-86 lava dome. Thermal monitoring decreased to several times per week once dome extrusion began. The thermal imaging system provided unique observations, including timely recognition that the early explosive phase was phreatic, location of structures controlling thermal emissions and active faults, detection of increased heat flow prior to the extrusion of lava, and recognition of new lava extrusion. The first spines, 1 and 2, were hotter when they emerged (maximum temperature 700-730°C) than subsequent spines insulated by as much as several meters of fault gouge. Temperature of gouge-covered spines was about 200°C where they emerged from the vent, and it decreased rapidly with distance from the vent. The hottest parts of these spines were as high as 500-730°C in fractured and broken-up regions. Such temperature variation needs to be accounted for in the retrieval of eruption parameters using satellite-based techniques, as such features are smaller than pixels in satellite images.

  19. Remote camera observations of lava dome growth at Mount St. Helens, Washington, October 2004 to February 2006: Chapter 11 in A volcano rekindled: the renewed eruption of Mount St. Helens, 2004-2006

    USGS Publications Warehouse

    Poland, Michael P.; Dzurisin, Daniel; LaHusen, Richard G.; Major, John J.; Lapcewich, Dennis; Endo, Elliot T.; Gooding, Daniel J.; Schilling, Steve P.; Janda, Christine G.; Sherrod, David R.; Scott, William E.; Stauffer, Peter H.

    2008-01-01

    Images from a Web-based camera (Webcam) located 8 km north of Mount St. Helens and a network of remote, telemetered digital cameras were used to observe eruptive activity at the volcano between October 2004 and February 2006. The cameras offered the advantages of low cost, low power, flexibility in deployment, and high spatial and temporal resolution. Images obtained from the cameras provided important insights into several aspects of dome extrusion, including rockfalls, lava extrusion rates, and explosive activity. Images from the remote, telemetered digital cameras were assembled into time-lapse animations of dome extrusion that supported monitoring, research, and outreach efforts. The wide-ranging utility of remote camera imagery should motivate additional work, especially to develop the three-dimensional quantitative capabilities of terrestrial camera networks.

  20. Frictional properties of gouge generated during the 2004-2005 lava dome extrusion at Mount St. Helens and implications for seismicity

    NASA Astrophysics Data System (ADS)

    Moore, P. L.; Iverson, N. R.; Iverson, R. M.

    2005-12-01

    Lava dome extrusion during the 2004-2005 eruption of Mount St. Helens has been accompanied by abundant, nearly periodic, shallow-focus seismicity. This seismic activity is hypothesized to result from incremental uplift of a nearly crystalline magma plug driven by magma ascent from below. Wear along the margin of the uplifting plug has formed a layer of striated, crushed rock, or gouge, which accommodates the relative displacement. Interpretation of the seismicity therefore requires some knowledge of the frictional properties of this gouge. Laboratory experiments were performed in a large ring-shear device to test the dependence of the gouge's peak and steady-state frictional strength on shearing rate and hold time. The sample (0.012 m3 in volume) was sheared under constant normal stresses ranging from 4 kPa to nearly 0.2 MPa and at rates ranging from 10-6 to 10-3 m s-1. At all normal stresses, the gouge exhibited rate-weakening behavior when sheared at rates slower than 10-4 m s-1, but at faster rates there was a transition to rate-strengthening. In a series of slide-hold-slide tests (hold time ranging from 3 to almost 105 seconds) performed under constant normal stress and shearing rate, the peak strength of the gouge was found to increase logarithmically with hold time. These results have several implications for the ongoing seismicity at Mount St. Helens. The rate-weakening behavior at low slip rates indicates that the gouge is susceptible to stick-slip behavior and thus may account for observed seismicity. Indeed, regular stick-slip oscillations were observed in two experiments under the highest load and lowest rates of shear. However, because there is a transition to rate-strengthening at higher slip rates, the gouge properties may impose a limit on the size of seismogenic slip events. Additionally, the dependence of peak strength on hold time suggests that slip history may also influence the magnitudes of seismic events.

  1. Quantification of magma ascent rate through rockfall monitoring at the growing/collapsing lava dome of Volcán de Colima, Mexico

    NASA Astrophysics Data System (ADS)

    Mueller, S. B.; Varley, N. R.; Kueppers, U.; Lesage, P.; Reyes Davila, G. Á.; Dingwell, D. B.

    2013-01-01

    The most recent eruptive phase of Volcán de Colima, Mexico, started in 1998 and was characterized by episodic dome growth with a variable effusion rate, interrupted intermittently by explosive eruptions. Between November 2009 and June 2011, growth at the dome was limited to a lobe on the western side where it had previously started overflowing the crater rim, leading to the generation of rockfall events. This meant that no significant increase in dome volume was perceivable and the rate of magma ascent, a crucial parameter for volcano monitoring and hazard assessment, could no longer be quantified via measurements of the dome's dimensions. Here, we present alternative approaches to quantify the magma ascent rate. We estimate the volume of individual rockfalls through the detailed analysis of sets of photographs (before and after individual rockfall events). The relationship between volume and infrared images of the freshly exposed dome surface and the seismic signals related to the rockfall events was then investigated. Larger events exhibited a correlation between the previously estimated volume of a rockfall and the surface temperature of the freshly exposed dome surface as well as the mean temperature of rockfall masses distributed over the slope. We showed that for larger events, the volume of the rockfall correlates with the maximum temperature at the newly formed cliff as well as the seismic energy. By calibrating the seismic signals using the volumes estimated from photographs, the count of rockfalls over a certain period was used to estimate the magma extrusion flux for the period investigated. Over the course of the measurement period, significant changes were observed in number of rockfalls, rockfall volume and hence averaged extrusion rate. The extrusion rate was not constant: it increased from 0.008 m3 s-1 to 0.02 m3 s-1 during 2010 and dropped down to 0.008 m3 s-1 again in March 2011. In June 2011, magma extrusion had come to a halt. The methodology

  2. Extrusion rate of the Mount St. Helens lava dome estimated from terrestrial imagery, November 2004-December 2005: Chapter 12 in A volcano rekindled: the renewed eruption of Mount St. Helens, 2004-2006

    USGS Publications Warehouse

    Major, Jon J.; Kingsbury, Cole G.; Poland, Michael P.; LaHusen, Richard G.; Sherrod, David R.; Scott, William E.; Stauffer, Peter H.

    2008-01-01

    Oblique, terrestrial imagery from a single, fixed-position camera was used to estimate linear extrusion rates during sustained exogenous growth of the Mount St. Helens lava dome from November 2004 through December 2005. During that 14-month period, extrusion rates declined logarithmically from about 8-10 m/d to about 2 m/d. The overall ebbing of effusive output was punctuated, however, by episodes of fluctuating extrusion rates that varied on scales of days to weeks. The overall decline of effusive output and finer scale rate fluctuations correlated approximately with trends in seismicity and deformation. Those correlations portray an extrusion that underwent episodic, broad-scale stick-slip behavior superposed on the finer scale, smaller magnitude stick-slip behavior that has been hypothesized by other researchers to correlate with repetitive, nearly periodic shallow earthquakes.

  3. Magma production and growth of the lava dome of the Soufriere Hills Volcano, Montserrat, West Indies: November 1995 to December 1997

    NASA Astrophysics Data System (ADS)

    Sparks, R. S. J.; Young, S. R.; Barclay, J.; Calder, E. S.; Cole, P.; Darroux, B.; Davies, M. A.; Druitt, T. H.; Harford, C.; Herd, R.; James, M.; Lejeune, A. M.; Loughlin, S.; Norton, G.; Skerrit, G.; Stasiuk, M. V.; Stevens, N. S.; Toothill, J.; Wadge, G.; Watts, R.

    From November 1995 to December 1997 a total volume of 246 × 106 (DRE) m³ of andesite magma erupted, partitioned into 93 × 106 m³ of the dome, 125 × 106 m³ of pyroclastic flow deposits and 28 × 106 m³ of explosive ejecta. In the first 11 weeks magma discharge rate was low (0.5 m³/s). From February 1996 to May 1997 discharge rates have averaged 2.1 m³/s, but have fluctuated significantly and have increased with time. Three pulses lasting a few months can be recognised with discharge rates reaching 3 to 8 m³/s. Short term pulsations in growth lasting a few days reach discharge rates of over 10 m³/s and there are periods of days to a few weeks when dome growth is < 0.5 m³/s. Discharge rate increased from May 1997 with an average rate of 7.5 m³/s to December 1997. The observations indicate an open magmatic system.

  4. Submarine Analogs to Venusian Pancake Domes

    NASA Technical Reports Server (NTRS)

    Bridges, Nathan T.

    1995-01-01

    The morphology and dimensions of the large diameter, steep-sided, flat-topped "pancake domes" on Venus make them unlike any type of terrestrial subaerial volcano. Comparisons between images of Hawaiian seamounts and pancake domes show similarities in shapes and secondary features. The morphometry of pancake domes is closer to that of Pacific seamounts than subaerial lava domes. Considering both morphology and morphometry, seamounts seem a better analog to the pancake domes. The control of volatile exsolution by pressure on Venus and the seafloor can cause lavas to have similar viscosities and densities, although the latter will be counteracted by high buoyancy underwater. However, analogous effects of the Venusian and seafloor alone are probably not sufficient to produce similar volcanoes. Rather, Venusian lavas of various compositions may behave like basalt on the seafloor if appropriate rates and modes of extrusion and planetary thermal structure are also considered.

  5. Dome Schools.

    ERIC Educational Resources Information Center

    Cirulli, Carol

    1999-01-01

    Back in 1988, Emmett, Idaho, built the first monolithic dome school. Now, school boards in Arizona, Missouri, Florida, Minnesota, and New Mexico are among those that have voted to build domed school buildings. A monolithic dome is a steel- reinforced, concrete structure with a smooth, round surface that is inspired by the shape of an egg. (MLF)

  6. Emplacement Scenarios for Volcanic Domes on Venus

    NASA Technical Reports Server (NTRS)

    Glaze, Lori S.; Baloga, Steve M.; Stofan, Ellen R.

    2012-01-01

    One key to understanding the history of resurfacing on Venus is better constraints on the emplacement timescales for the range of volcanic features visible on the surface. A figure shows a Magellan radar image and topography for a putative lava dome on Venus. 175 such domes have been identified with diameters ranging from 19 - 94 km, and estimated thicknesses as great as 4 km. These domes are thought to be volcanic in origin and to have formed by the flow of viscous fluid (i.e., lava) on the surface.

  7. Emplacement of Volcanic Domes on Venus and Europa

    NASA Technical Reports Server (NTRS)

    Quick, Lynnae C.; Glaze, Lori S.; Baloga, Steve M.

    2015-01-01

    Placing firmer constraints on the emplacement timescales of visible volcanic features is essential to obtaining a better understanding of the resurfacing history of Venus. Fig. 1 shows a Magellan radar image and topography for a putative venusian lava dome. 175 such domes have been identified, having diameters that range from 19 - 94 km, and estimated thicknesses as great as 4 km [1-2]. These domes are thought to be volcanic in origin [3], having formed by the flow of a viscous fluid (i.e., lava) onto the surface. Among the unanswered questions surrounding the formation of Venus steep-sided domes are their emplacement duration, composition, and the rheology of the lava. Rheologically speaking, maintenance of extremely thick, 1-4 km flows necessitates higher viscosity lavas, while the domes' smooth upper surfaces imply the presence of lower viscosity lavas [2-3]. Further, numerous quantitative issues, such as the nature and duration of lava supply, how long the conduit remained open and capable of supplying lava, the volumetric flow rate, and the role of rigid crust in influencing flow and final morphology all have implications for subsurface magma ascent and local surface stress conditions. The surface of Jupiter's icy moon Europa exhibits many putative cryovolcanic constructs [5-7], and previous workers have suggested that domical positive relief features imaged by the Galileo spacecraft may be volcanic in origin [5,7-8] (Fig. 2). Though often smaller than Venus domes, if emplaced as a viscous fluid, formation mechanisms for europan domes may be similar to those of venusian domes [7]. Models for the emplacement of venusian lava domes (e.g. [9-10]) have been previously applied to the formation of putative cryolava domes on Europa [7].

  8. Monolithic Domes.

    ERIC Educational Resources Information Center

    Lanham, Carol

    2002-01-01

    Describes how the energy savings, low cost, and near-absolute protection from tornadoes provided by monolithic domes is starting to appeal to school districts for athletic and other facilities, including the Italy (Texas) Independent School District. Provides an overview of monolithic dome construction. (EV)

  9. Hydrologic environments and water-quality characteristics at four landfills in Mecklenburg County, North Carolina, 1980-86

    USGS Publications Warehouse

    Cardinell, A.P.; Barnes, C.R.; Eddins, W.H.; Coble, R.W.

    1989-01-01

    A water-quality study was conducted during 1980-86 at four landfills in Mecklenburg County, North Carolina. Each landfill has a three-layered hydrogeologic system typical of the Piedmont, consisting of (1) the regolith; (2) a transition zone; and (3) unweathered, fractured crystalline bedrock. As much as 7.6 inches per year of rainfall enters the ground-water system and has the potential to generate leachate within landfill cells. Ground water and leachate discharge to tributaries within the landfill sites or to streams adjacent to them. Water-quality samples were collected from 53 monitoring wells and 20 surface-water sites. Samples were analyzed for selected physical and biological characteristics, major inorganic ions, nutrients, trace elements, and organic compounds. Selected indicators of water quality, including specific conductance; hardness; and concentrations of chloride, manganese, dissolved solids, total organic carbon, and specific organic compounds were analyzed to determine the effects of each landfill on ground- and surface-water quality. Increases in concentrations of inorganic constituents above background levels were detected in ground water downgradient of the landfills. The increases were generally greatest in samples from wells in close proximity to the older landfill cells. In general, the increases in concentrations in downgradient wells were greater for calcium, magnesium, and chloride than for other major ions. Manganese exhibited the largest relative increase in concentration between upgradient and downgradient wells of any constituent, and manganese concentration data were effective in defining areas with extensive anaerobic biological activity. Differences between upgradient and downgradient concentrations of total organic carbon and specific organic compounds generally were not as apparent. The most frequently identified organic contaminants were the herbicides 2,4-D and 2,4,5-T. Chlorofluoromethanes were identified in three of four

  10. Processes Affecting the Formation and Degradation of Silicic Lava Flow Surface Boulders

    NASA Astrophysics Data System (ADS)

    Anderson, S. W.; Crown, D. A.; Stofan, E. R.; Plaut, J. J.

    1996-03-01

    Boulders are a ubiquitous but often neglected feature present on silicic lava flows and domes. As part of an analysis of the emplacement history of silicic extrusions, we determined boulder size distributions on young lava flows and studied the development of boulders on the active Mount St. Helens and Mount Unzen lava domes. We find measurable variations in average boulder size across a single extrusion and between different extrusions that are related to changes in emplacement conditions during eruption and flow emplacement.

  11. Petrology of the 2004-2006 Mount St. Helens lava dome -- implications for magmatic plumbing and eruption triggering: Chapter 30 in A volcano rekindled: the renewed eruption of Mount St. Helens, 2004-2006

    USGS Publications Warehouse

    Pallister, John S.; Thornber, Carl R.; Cashman, Katharine V.; Clynne, Michael A.; Lowers, Heather; Mandeville, Charles W.; Brownfield, Isabelle K.; Meeker, Gregory P.; Sherrod, David R.; Scott, William E.; Stauffer, Peter H.

    2008-01-01

    The question of new versus residual magma has implications for the long-term eruptive behavior of Mount St. Helens, because arrival of a new batch of dacitic magma from the deep crust could herald the beginning of a new long-term cycle of eruptive activity. It is also important to our understanding of what triggered the eruption and its future course. Two hypotheses for triggering are considered: (1) top-down fracturing related to the shallow groundwater system and (2) an increase in reservoir pressure brought about by recent magmatic replenishment. With respect to the future course of the eruption, similarities between textures and character of eruption of the 2004-6 dome and the long-duration (greater than 100 years) pre-1980 summit dome, along with the low eruptive rate of the current eruption, suggest that the eruption could continue sluggishly or intermittently for years to come.

  12. A Radar Survey of Lunar Dome Fields

    NASA Technical Reports Server (NTRS)

    Carter, Lynn M.; Campbell, Bruce A.; Hawke, B. Ray; Bussey, Ben

    2011-01-01

    The near side of the Moon has several areas with a high concentration of volcanic domes. These low relief structures are considerably different in morphology from terrestrial cinder cones, and some of the domes may be similar to some terrestrial shields formed through Hawaiian or Strombolian eruptions from a central pipe vent or small fissure [1]. The domes are evidence that some volcanic lavas were more viscous than the mare flood basalts that make up most of the lunar volcanic flows. It is still not known what types of volcanism lead to the creation of specific domes, or how much dome formation may have varied across the Moon. Prior work has shown that some domes have unusual radar polarization characteristics that may indicate a surface or subsurface structure that is different from that of other domes. Such differences might result from different styles of late-stage volcanism for some of the domes, or possibly from differences in how the erupted materials were altered over time (e.g. by subsequent volcanism or nearby cratering events). For example, many of the domes in the Marius Hills region have high circular polarization ratios (CPRs) in S-band (12.6 cm wavelength) and/or P-band (70 cm wavelength) radar data [2]. The high CPRs are indicative of rough surfaces, and suggest that these domes may have been built from overlapping blocky flows that in some cases have been covered by meters of regolith [2, 3]. In other cases, domes have low circular polarization ratios indicative of smooth, rock-poor surfaces or possibly pyroclastics. The 12 km diameter dome Manilius 1 in Mare Vaporum [1], has a CPR value of 0.20, which is significantly below values for the surrounding basalts [4]. To better understand the range of surface properties and styles of volcanism associated with the lunar domes, we are currently surveying lunar dome fields including the Marius Hills, Cauchy/Jansen dome field, the Gruithuisen domes, and domes near Hortensius and Vitruvius.

  13. Lava Lamp

    ERIC Educational Resources Information Center

    Leif, Todd R.

    2008-01-01

    This past semester I brought a Lava Lite[R] Lamp into my classroom. Why bring such a thing into class? Many of today's students are part of the "retro" movement. They buy clothes from the '60s, they wear their hair like people did in the '60s, and they look for the ideals and themes related to living in the 1960s. Physics education reform is also…

  14. Use of digital aerophotogrammetry to determine rates of lava dome growth, Mount St. Helens, Washington, 2004-2005: Chapter 8 in A volcano rekindled: the renewed eruption of Mount St. Helens, 2004-2006

    USGS Publications Warehouse

    Schilling, Steve P.; Thompson, Ren A.; Messerich, James A.; Iwatsubo, Eugene Y.; Sherrod, David R.; Scott, William E.; Stauffer, Peter H.

    2008-01-01

    Successful application of aerophotogrammetry was possible during the critical earliest parts of the eruption because we had baseline data and photogrammetric infrastructure in place before the eruption began. The vertical aerial photographs, including the DEMs and calculations derived from them, were one of the most widely used data sets collected during the 2004-5 eruption, as evidenced in numerous contributions to this volume. These data were used to construct photogeologic maps, deformation vector fields, and profiles of the evolving dome and glacier. Extruded volumes and rates proved to be critical parameters to constrain models and hypotheses of eruption dynamics and thus helped to assess volcano hazards.

  15. Growth of the 2004-2006 lava-dome complex at Mount St. Helens, Washington: Chapter 9 in A volcano rekindled: the renewed eruption of Mount St. Helens, 2004-2006

    USGS Publications Warehouse

    Vallance, James W.; Schneider, David J.; Schilling, Steve P.; Sherrod, David R.; Scott, William E.; Stauffer, Peter H.

    2008-01-01

    The chief near-surface controls on spine extrusion during 2004-6 have been vent location, relict topographic surfaces from the 1980s, and spine remnants emplaced previously during the present eruption. In contrast, glacier ice has had minimal influence on spine growth. Ice as thick as 150 m has prevented formation of marginal angle-of-repose talus fans but has not provided sufficient resistance to stop spine growth or slow it appreciably. Spines initially emerged along a relict south-facing slope as steep as 40° on the 1980s dome. The open space of the moat between that dome and the crater walls permitted initial southward migration of recumbent spines. An initial spine impinged on the opposing slopes of the crater and stopped; in contrast, recumbent whaleback spines of phase 3 impinged on opposing walls of the crater at oblique angles and rotated eastward before breaking up. Once spine remnants occupied all available open space to the south, spines thrust over previous remnants. Finally, with south and east portions of the moat filled, spine growth proceeded westward. Although Crater Glacier had only a small influence on the growing spines, spine growth affected the glacier dramatically, initially dividing it into two arms and then bulldozing it hundreds of meters, first east and then west, and heaping it more than 100 m higher than its original altitude.

  16. Dome forming eruptions: a global hazards database

    NASA Astrophysics Data System (ADS)

    Ogburn, S. E.; Loughlin, S.; Calder, E. S.; Ortiz, N.

    2009-12-01

    The analysis of global datasets of historical eruptions is a powerful tool for decision-making as well as for scientific discovery. Lava dome forming eruptions are common throughout the world, can extend for significant periods of time and have many associated hazards, thus providing a rich source of data to mine. A database on dome forming eruptions is under development with the view to aiding comparative studies, providing scientists with valuable data for analysis, and enabling advances in modeling of associated hazards. For new eruptive episodes in particular, and in the absence of monitoring data or a knowledge of a volcano’s eruptive history, global analysis can provide a method of understanding what might be expected based on similar eruptions in the past. Important scientific information has already been gleaned from disparate collections of dome-forming eruption hazard information, such as variation in the mobility of different types of pyroclastic flows, magma ascent and extrusion dynamics, and mechanisms of lava dome collapse. Further, modeling (both empirically-based and geophysically-based) of volcanic phenomena requires extensive data for development, calibration and validation. This study investigates the relationship between large explosive eruptions (VEI ≥ 4) and lava dome-growth from 1000 CE to present by development of a world-wide database of all relevant information, including dome growth duration, pauses between episodes of dome growth, and extrusion rates. Data sources include the database of volcanic activity maintained by the Smithsonian Institute (Global Volcanism Program) and all relevant published review papers, research papers and reports. For example, nearly all dome-forming eruptions have been associated with some level of explosive activity. Most explosions are vulcanian with eruption plumes reaching less than 15 km, and with a Volcanic Explosivity Index (VEI) <3. However large Plinian explosions with a VEI ≥ 4 can also occur

  17. Lava Flows

    NASA Technical Reports Server (NTRS)

    2006-01-01

    [figure removed for brevity, see original site] Context image for PIA03658 Lava Flows

    These relatively young lava flows are part of Arsia Mons.

    Image information: VIS instrument. Latitude -22.5N, Longitude 242.3E. 17 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  18. Lava Lamp

    NASA Astrophysics Data System (ADS)

    Leif, Todd R.

    2008-04-01

    This past semester I brought a Lava Lite® Lamp into my classroom. Why bring such a thing into class? Many of today's students are part of the "retro" movement. They buy clothes from the '60s, they wear their hair like people did in the '60s, and they look for the ideals and themes related to living in the 1960s. Physics education reform is also examining ideas from the "retro" world of science. This was the post-Sputnik era, a time when science was done by actually doing it and not necessarily by lecturing about it. Cliff Swartz, former TPT editor, once mentioned during a presentation at a Texas AAPT meeting, "The world of physics teaching is cyclic, like a swinging pendulum. We as physics teachers jump from `new ideas' back to our old ones, each generation testing what works best for them."

  19. Measuring the Rate of Lava Effusion by InSAR

    NASA Astrophysics Data System (ADS)

    Wadge, G.

    2004-06-01

    The rate at which lava emerges from a volcano is a fundamental property of the dynamics of the eruption. Intensive field measurements can capture this. However, for many, often cloud-covered, volcanoes with long-lived eruptions, spaceborne InSAR provides a potentially useful source of information. Repeated DEM creation at intervals allows the changing thickness of the lava flow field to be measured and incremental changes to calculate the volumetric lava flux rate. ERS data from (i) an andesitic lava dome eruption at Soufri re Hills, Montserrat , and (ii) a basaltic andesite lava flow-field at Arenal volcano, Costa Rica illustrate the method. There are two main limitations. Firstly, flowing or otherwise thermo- mechanically unstable surfaces that are active between interferogram pair acquisitions leads to decorrelation. This effect is particularly difficult on lava domes where the surface is extremely dynamic. Compound lava flow-fields are more tractable. Secondly, very slight motions on flows that have "stopped" can be confused with topography in repeat-pass interferograms. The InSAR-measured rate of lava effusion at Arenal fits well with rates calculated by other methods over the last 30 years. Radar systems best suited to this task should be L-band, have short orbit repeat intervals and moderate perpendicular baselines.

  20. Shapes of Venusian 'pancake' domes imply episodic emplacement and silicic composition

    NASA Technical Reports Server (NTRS)

    Fink, Jonathan H.; Bridges, Nathan T.; Grimm, Robert E.

    1993-01-01

    The main evidence available for constraining the composition of the large circular 'pancake' domes on Venus is their gross morphology. Laboratory simulations using polyethylene glycol show that the height to diameter (aspect) ratios of domes of a given total volume depend critically on whether their extrusion was continuous or episodic, with more episodes leading to greater cooling and taller domes. Thus without observations of their emplacement, the compositions of Venusian domes cannot be uniquely constrained by their morphology. However, by considering a population of 51 Venusian domes to represent a sampling of many stages during the growth of domes with comparable histories, and by plotting aspect ratio versus total volume, we find that the shapes of the domes are most consistent with episodic emplacement. On Earth this mode of dome growth is found almost exclusively in lavas of dacite to rhyolite composition, strengthening earlier inferences about the presence of evolved magmas on Venus.

  1. Dome growth at Mount Cleveland, Aleutian Arc, quantified by time-series TerraSAR-X imagery

    USGS Publications Warehouse

    Wang, Teng; Poland, Michael; Lu, Zhong

    2016-01-01

    Synthetic aperture radar imagery is widely used to study surface deformation induced by volcanic activity; however, it is rarely applied to quantify the evolution of lava domes, which is important for understanding hazards and magmatic system characteristics. We studied dome formation associated with eruptive activity at Mount Cleveland, Aleutian Volcanic Arc, in 2011–2012 using TerraSAR-X imagery. Interferometry and offset tracking show no consistent deformation and only motion of the crater rim, suggesting that ascending magma may pass through a preexisting conduit system without causing appreciable surface deformation. Amplitude imagery has proven useful for quantifying rates of vertical and areal growth of the lava dome within the crater from formation to removal by explosive activity to rebirth. We expect that this approach can be applied at other volcanoes that host growing lava domes and where hazards are highly dependent on dome geometry and growth rates.

  2. Lunar Lava Tube Sensing

    NASA Technical Reports Server (NTRS)

    York, Cheryl Lynn; Walden, Bryce; Billings, Thomas L.; Reeder, P. Douglas

    1992-01-01

    Large (greater than 300 m diameter) lava tube caverns appear to exist on the Moon and could provide substantial safety and cost benefits for lunar bases. Over 40 m of basalt and regolith constitute the lava tube roof and would protect both construction and operations. Constant temperatures of -20 C reduce thermal stress on structures and machines. Base designs need not incorporate heavy shielding, so lightweight materials can be used and construction can be expedited. Identification and characterization of lava tube caverns can be incorporated into current precursor lunar mission plans. Some searches can even be done from Earth. Specific recommendations for lunar lava tube search and exploration are (1) an Earth-based radar interferometer, (2) an Earth-penetrating radar (EPR) orbiter, (3) kinetic penetrators for lunar lava tube confirmation, (4) a 'Moon Bat' hovering rocket vehicle, and (5) the use of other proposed landers and orbiters to help find lunar lava tubes.

  3. New Monolithic Dome Schools.

    ERIC Educational Resources Information Center

    Parker, Freda

    2000-01-01

    Discusses how the Grand Meadow (Minnesota) school district got more than twice the grant money asked for from the state's legislature as well as voter approval for five new $8 million monolithic domes for their K-12 facility. Three additional school district successes in developing monolithic domes for their schools are examined. (GR)

  4. The ongoing dome emplacement and destruction cyclic process at Popocatépetl volcano, Central Mexico

    NASA Astrophysics Data System (ADS)

    Gómez-Vazquez, Angel; De la Cruz-Reyna, Servando; Mendoza-Rosas, Ana Teresa

    2016-09-01

    The ongoing eruptive activity of Popocatépetl volcano has been characterized by emplacement and subsequent destruction of a succession of lava domes. Between the onset of the current eruption in 1994 and the time of this submission, 38 episodes of lava dome formation and removal have been identified. Each dome has showed particular features related to the magma extrusion process. Among other manifestations, dome-emplacement events have been usually accompanied by relatively low-intensity, protracted explosions referred to as exhalations. After variable times of residence, emplacements have ended in partial or total destruction of the domes by strong vulcanian explosions that produced sizeable ash plumes, with most of them also ejecting incandescent debris onto the volcano flanks. Here, we present a detailed account for the observed activity related to the domes' growth and destruction, related seismic monitoring signals, and morphological features of the domes based on 19 years of visual observations and image analysis. We then discuss a model for the process of dome growth and destruction and its hazard implications.

  5. Kaguyak dome field and its Holocene caldera, Alaska Peninsula

    NASA Astrophysics Data System (ADS)

    Fierstein, Judy; Hildreth, Wes

    2008-10-01

    Kaguyak Caldera lies in a remote corner of Katmai National Park, 375 km SW of Anchorage, Alaska. The 2.5-by-3-km caldera collapsed ~ 5.8 ± 0.2 ka ( 14C age) during emplacement of a radial apron of poorly pumiceous crystal-rich dacitic pyroclastic flows (61-67% SiO 2). Proximal pumice-fall deposits are thin and sparsely preserved, but an oxidized coignimbrite ash is found as far as the Valley of Ten Thousand Smokes, 80 km southwest. Postcaldera events include filling the 150-m-deep caldera lake, emplacement of two intracaldera domes (61.5-64.5% SiO 2), and phreatic ejection of lakefloor sediments onto the caldera rim. CO 2 and H 2S bubble up through the lake, weakly but widely. Geochemical analyses ( n = 148), including pre-and post-caldera lavas (53-74% SiO 2), define one of the lowest-K arc suites in Alaska. The precaldera edifice was not a stratocone but was, instead, nine contiguous but discrete clusters of lava domes, themselves stacks of rhyolite to basalt exogenous lobes and flows. Four extracaldera clusters are mid-to-late Pleistocene, but the other five are younger than 60 ka, were truncated by the collapse, and now make up the steep inner walls. The climactic ignimbrite was preceded by ~ 200 years by radial emplacement of a 100-m-thick sheet of block-rich glassy lava breccia (62-65.5% SiO 2). Filling the notches between the truncated dome clusters, the breccia now makes up three segments of the steep caldera wall, which beheads gullies incised into the breccia deposit prior to caldera formation. They were probably shed by a large lava dome extruding where the lake is today.

  6. Kaguyak dome field and its Holocene caldera, Alaska Peninsula

    USGS Publications Warehouse

    Fierstein, J.; Hildreth, W.

    2008-01-01

    Kaguyak Caldera lies in a remote corner of Katmai National Park, 375??km SW of Anchorage, Alaska. The 2.5-by-3-km caldera collapsed ~ 5.8 ?? 0.2??ka (14C age) during emplacement of a radial apron of poorly pumiceous crystal-rich dacitic pyroclastic flows (61-67% SiO2). Proximal pumice-fall deposits are thin and sparsely preserved, but an oxidized coignimbrite ash is found as far as the Valley of Ten Thousand Smokes, 80??km southwest. Postcaldera events include filling the 150-m-deep caldera lake, emplacement of two intracaldera domes (61.5-64.5% SiO2), and phreatic ejection of lakefloor sediments onto the caldera rim. CO2 and H2S bubble up through the lake, weakly but widely. Geochemical analyses (n = 148), including pre-and post-caldera lavas (53-74% SiO2), define one of the lowest-K arc suites in Alaska. The precaldera edifice was not a stratocone but was, instead, nine contiguous but discrete clusters of lava domes, themselves stacks of rhyolite to basalt exogenous lobes and flows. Four extracaldera clusters are mid-to-late Pleistocene, but the other five are younger than 60??ka, were truncated by the collapse, and now make up the steep inner walls. The climactic ignimbrite was preceded by ~ 200??years by radial emplacement of a 100-m-thick sheet of block-rich glassy lava breccia (62-65.5% SiO2). Filling the notches between the truncated dome clusters, the breccia now makes up three segments of the steep caldera wall, which beheads gullies incised into the breccia deposit prior to caldera formation. They were probably shed by a large lava dome extruding where the lake is today.

  7. Evidence for Amazonian highly viscous lavas in the southern highlands on Mars

    NASA Astrophysics Data System (ADS)

    Brož, Petr; Hauber, Ernst; Platz, Thomas; Balme, Matt

    2015-04-01

    We have identified small-scale volcanic edifices, two cones and three domes with associated flows, within Terra Sirenum, a region situated in the martian southern highlands. Based on thermal, morphological, and morphometrical properties, and the determination of absolute model ages, we conclude that these features were formed by volcanic activity of viscous lavas in the mid-Amazonian epoch, relatively recently in martian history. If our hypothesis is correct, this small volcanic field represents rare evidence of young volcanic activity in the martian highlands in which martian equivalents of terrestrial lava domes and coulées might be present. On Earth, such landforms are usually formed by highly viscous evolved lavas, i.e., andesitic to rhyolitic, for which observational evidence is sparse on Mars. Hence, this field might be one of only a few where martian evolved lavas might be investigated in detail.

  8. New approaches to inferences for steep-sided domes on Venus

    NASA Astrophysics Data System (ADS)

    Quick, Lynnae C.; Glaze, Lori S.; Baloga, Stephen M.; Stofan, Ellen R.

    2016-06-01

    New mathematical approaches for the relaxation and emplacement of viscous lava domes are presented and applied to steep-sided domes on Venus. A similarity solution approach is applied to the governing equation for fluid flow in a cylindrical geometry for two distinct scenarios. In the first scenario, dome relaxation is explored assuming a constant volume of fluid (i.e. lava) has been rapidly emplaced onto the surface. Cooling of lava is represented by a time-variable viscosity and singularities inherent in previous models for dome relaxation have been eliminated. At the onset of relaxation, bulk dynamic viscosities lie in the range between 1010-1016 Pa s, consistent with basaltic-andesite to rhyolitic compositions. Plausible relaxation times range from 5 to 5000 years, depending on initial lava viscosity. The first scenario, however, is only valid during the final stages of dome relaxation and does not consider the time taken for lava to be extruded onto the surface. In the second scenario, emplacement and growth of a steep-sided dome is considered when the volume of lava on the surface increases over time (i.e. time-variable volume approach). The volumetric flowrate may depend on an arbitrary power of the dome thickness, thus embracing Newtonian as well as other rheologies for describing terrestrial and planetary mass flows. The approach can be used to distinguish between basic flowrate models for fluid emplacement. The formalism results in radial expansion of a dome proportional to t1/2, consistent with the diffusive nature of the governing equation. The flow at the front is shown to thicken as the front advances for a constant rate of lava supply. Emplacement times are intimately correlated with the bulk rheology. Comparison of the theoretical profiles with the shape of a typical dome on Venus indicates that a Newtonian bulk rheology is most appropriate, consistent with prior studies. However, results here suggest a bulk dynamic viscosity of 1012-1013 Pa s and

  9. Improvement of a 2D numerical model of lava flows

    NASA Astrophysics Data System (ADS)

    Ishimine, Y.

    2013-12-01

    I propose an improved procedure that reduces an improper dependence of lava flow directions on the orientation of Digital Elevation Model (DEM) in two-dimensional simulations based on Ishihara et al. (in Lava Flows and Domes, Fink, JH eds., 1990). The numerical model for lava flow simulations proposed by Ishihara et al. (1990) is based on two-dimensional shallow water model combined with a constitutive equation for a Bingham fluid. It is simple but useful because it properly reproduces distributions of actual lava flows. Thus, it has been regarded as one of pioneer work of numerical simulations of lava flows and it is still now widely used in practical hazard prediction map for civil defense officials in Japan. However, the model include an improper dependence of lava flow directions on the orientation of DEM because the model separately assigns the condition for the lava flow to stop due to yield stress for each of two orthogonal axes of rectangular calculating grid based on DEM. This procedure brings a diamond-shaped distribution as shown in Fig. 1 when calculating a lava flow supplied from a point source on a virtual flat plane although the distribution should be circle-shaped. To improve the drawback, I proposed a modified procedure that uses the absolute value of yield stress derived from both components of two orthogonal directions of the slope steepness to assign the condition for lava flows to stop. This brings a better result as shown in Fig. 2. Fig. 1. (a) Contour plots calculated with the original model of Ishihara et al. (1990). (b) Contour plots calculated with a proposed model.

  10. The 1984 to 1996 cyclic activity of Lascar Volcano, northern Chile: cycles of dome growth, dome subsidence, degassing and explosive eruptions

    NASA Astrophysics Data System (ADS)

    Matthews, Stephen J.; Gardeweg, Moyra C.; Sparks, R. Stephen J.

    Lascar Volcano (5592m 23°22'S, 67°44'W) entered a new period of vigorous activity in 1984, culminating in a major explosive eruption in April 1993. Activity since 1984 has been characterised by cyclic behaviour with recognition of four cycles up to the end of 1993. In each cycle a lava dome is extruded in the active crater, accompanied by vigorous degassing through high-temperature, high-velocity fumaroles distributed on and around the dome. The fumaroles are the source of a sustained steam plume above the volcano. The dome then subsides back into the conduit. During the subsidence phase the velocity and gas output of the fumaroles decrease, and the cycle is completed by violent explosive activity. Subsidence of both the dome and the crater floor is accommodated by movement on concentric, cylindrical or inward-dipping conical fractures. The observations are consistent with a model in which gas loss from the dome is progressively inhibited during a cycle and gas pressure increases within and below the lava dome, triggering a large explosive eruption. Factors that can lead to a decrease in gas loss include a decrease in magma permeability by foam collapse, reduction in permeability due to precipitation of hydrothermal minerals in the pores and fractures within the dome and in country rock surrounding the conduit, and closure of open fractures during subsidence of the dome and crater floor. Dome subsidence may be a consequence of reduction in magma porosity (foam collapse) as degassing occurs and pressurisation develops as the permeability of the dome and conduit system decreases. Superimposed upon this activity are small explosive events of shallow origin. These we interpret as subsidence events on the concentric fractures leading to short-term pressure increases just below the crater floor.

  11. Lava Flow Dynamics

    NASA Technical Reports Server (NTRS)

    Taylor, G. Jeffrey

    1996-01-01

    This grant originally had four major tasks, all of which were addressed to varying extents during the course of the research: (1) Measure the fractal dimensions of lava flows as a function of topography, substrate, and rheology; (2) The nature of lava tube systems and their relation to flow fields; (3) A quantitative assessment of lava flow dynamics in light of the fractal nature of lava flow margins; and (4) Development and application of a new remote sensing tool based on fractal properties. During the course of the research, the project expanded to include the following projects: (1) A comparison of what we can-learn from remote sensing studies of lava flow morphology and from studies of samples of lava flows; (2) Study of a terrestrial analog of the nakhlites, one of the groups of meteorites from Mars; and (3) Study of the textures of Hawaiian basalts as an aid in understanding the dynamics (flow rates, inflation rates, thermal history) of flow interiors. In addition, during the first year an educational task (development and writing of a teacher's guide and activity set to accompany the lunar sample disk when it is sent to schools) was included.

  12. Basaltic Lava Channels

    NASA Astrophysics Data System (ADS)

    Cashman, K. V.; Griffiths, R. W.; Kerr, R. C.

    2004-12-01

    In Hawaii, the mode of lava transport - through open channels or through insulating lava tubes - determines the thermal, rheological, and emplacement history of a lava flow. Most Hawaiian lavas are erupted at near-liquidus temperatures and are therefore crystal-poor; lava transport through open channels allows rapid cooling and consequent rapid increases in lava crystallinity. Solidified aa flows resulting from channelized flow are typically fine-grained throughout their thickness, indicating cooling of the entire flow thickness during transport. In contrast, transport of lava through insulating tubes permits flow over long distances with little cooling. Flows emerging from such tubes typically have pahoehoe flow surfaces with glassy crusts. Groundmass textures that coarsen from the flow rind to the interior reflect rates of post-emplacement, rather than syn-emplacement, cooling. To distinguish eruption conditions that result in lava channels from those that allow formation of lava tubes, we have performed a series of laboratory experiments involving injection of PEG 600 (a wax with a Newtonian rheology and freezing temperature of 19ºC) into cold water through both uniform and non-uniform sloping channels. In uniform channels, tube formation can be distinguished from open channel flow using a dimensionless parameter based on a solidification time scale, an advection time scale, and a Rayleigh number that describes convection by heat loss from crust-free shear zones. Theoretical analysis predicts that in the open channel regime, the width of the crust (dc) will vary with the channel width (W) as dc = W5/3. Crustal coverage of non-uniform channels in both laboratory experiments and field examples from Kilauea Volcano, Hawaii, is consistent with this prediction. However, experiments in non-uniform channels illustrate additional controls on the surface coverage of lava channels. Most important is crustal extension resulting from flow acceleration through constrictions

  13. The lunar Gruithuisen silicic extrusive domes: Topographic configuration, morphology, ages, and internal structure

    NASA Astrophysics Data System (ADS)

    Ivanov, M. A.; Head, J. W.; Bystrov, A.

    2016-07-01

    The Gruithuisen domes, situated on the western portion of the Imbrium basin rim, form three tall mountains (NW, Gamma, Delta) totaling ∼780 km3 in volume. The shapes of the domes are significantly different from that of mare-type domes elsewhere on the Moon. We use data from the Lunar Reconnaissance Orbiter (LRO) and Kaguya missions (LRO Lunar Orbiter Laser Altimeter, Lunar Reconnaissance Orbiter Camera, Diviner, and the Kaguya imager) to characterize the domes and assess models for their origin. The configuration of the domes (steep slopes, up to ∼18-20°) and their specific remote sensing characteristics (strong downturn in the UV, and results from the M3 and Diviner instruments) suggest that the domes formed by eruptions of highly viscous lava. The estimated surface volumes of the domes vary from ∼20 km3 (NW dome) to ∼290 km3 (Gamma dome) to ∼470 km3 (Delta dome). The domes occur on the portion of the Imbrium basin rim that is overlain by ejecta from the post-Imbrium Iridum crater. In some areas, relatively high albedo smooth volcanic plains are seen within the Iridum ejecta near the Gruithuisen domes, and low albedo mare deposits surround and embay the domes and Iridum crater. Dating of different units and features by crater counts indicates that impact melts from the Iridum basin are ∼3.9 Ga old, the domes Gamma and Delta are ∼3.8 Ga, and the ages of the plains near the domes vary from ∼2.3 to ∼3.6 Ga. A fresh impact crater exposes the internal structure of the Gamma dome. The most prominent features on the wall of the crater are rough, blocky layers that are typical of volcanic plains in the highlands and maria around the domes. The layers are interleaved with fine-grained materials of higher and lower albedo and the visible orientation of the layers changes over short (a few hundred meters) distances. These characteristics of the internal structure of the dome are consistent with eruptions of high viscosity lava (rough layers) that

  14. Pancakelike domes on Venus

    NASA Technical Reports Server (NTRS)

    Mckenzie, Dan; Ford, Peter G.; Liu, Fang; Pettengill, Gordon H.

    1992-01-01

    The shape of seven large domes on the plains of Venus, with volumes between 100 and 1000 cu km, is compared with that of an axisymmetric gravity current spreading over a rigid horizontal surface. Both the altimetric profiles and the horizontal projection of the line of intersection of domes on the SAR images agree well with the theoretical similarity solution for a newtonian fluid, but not with the shape calculated for a rigid-plastic rheology, nor with that for a static model with a strong skin. As a viscous current spreads, it generates an isotropic strain rate tensor whose magnitude is independent of radius. Such a flow can account for the randomly oriented cracks that are uniformly distributed on the surface of the domes. The stress induced by the flow in the plains material below is obtained, and is probably large enough to produce the short radial cracks in the surface of the plains beyond the domes. The viscosity of the domes can be estimated from their thermal time constants if spreading is possible only when the fluid is hot, and lies between 10(exp 14) and 10(exp 17) Pa s. Laboratory experiments show that such viscosities correspond to temperatures of 610 - 690 C in dry rhyolitic magmas. These temperatures agree with laboratory measurements of the solidus temperature of wet rhyolite. These results show that the development of the domes can be understood using simple fluid dynamical ideas, and that the magmas involved can be produced by wet melting at depths below 10 km, followed by eruption and degassing.

  15. The foaming of lavas

    NASA Technical Reports Server (NTRS)

    Okeefe, J. A.; Walton, W.

    1976-01-01

    Foaming is of great practical and theoretical significance for volcanic processes on the earth, the moon, and perhaps the meteorite parent bodies. The theory of foams agrees with steelmaking experience to indicate that their presence depends on the existence of solutes in the lavas which reduce the surface tension, and are not saturated. These solutes concentrate at the surface, and are called surfactants. The surfactant responsible for the formation of volcanic ash was not identified; it appears to be related to the oxygen partial pressure above the lava. This fact may explain why lunar and meteoritic melts are not observed to foam. Experimental studies are needed to clarify the process.

  16. Rigidity of lattice domes

    NASA Technical Reports Server (NTRS)

    Savelyev, V. A.

    1979-01-01

    The means of ensuring total rigidity of lattice domes, using comparison with solid shells of 1-3 layers are discussed. Irregularities of manufacture, processing, and other factors are considered, as they relate to diminution of rigidity. The discussion uses the concepts of upper and lower critical loads on the structure in question.

  17. Controls on lava-snow interactions from propogation styles during the 2012-13 Tolbachik eruption

    NASA Astrophysics Data System (ADS)

    Edwards, Benjamin; Belousov, Alexander; Belousov, Marina

    2014-05-01

    Knowledge of how volcanism interacts with hydrosphere/cryosphere is critical for understanding the functioning and evolution of the Earth, establishing volcanism-climate linkages, and estimations of related hazards. Until now, no special studies have been focused on interactions between snowpack and advancing incandescent lava during volcanic eruptions, even though snow is the most widely distributed form of solid H2O on the planet. It was thought a priori that snow might melt rapidly in front of active lava flows producing vigorous floods. Here we present results of unique field observations made in the snowpack in front of advancing basaltic lava flows during the 2012-13 eruption at Tolbachik volcano, Kamchatka, Russia. Our observations in the first time demonstrate that in reality heat transfer through lava/snow boundary occurs relatively slowly, so that melting of the majority of the snow pack occurs over the span of several hours-days after emplacement of the lava flows, producing only local and sporadic meltwater floods. Two fundamentally different styles of lava propagation result in two strikingly different responses of snowpack: i) 'a'a lava advancing in a rolling caterpillar-track motion propagates on top of snowpack; the melt water accumulates in (saturates) the layer of snow buried underneath the lava flow and does not interact notably with the lava material, and ii) pahoehoe lava advancing as inflating lobes propagates beneath/inside snowpack, locally generating slowly growing 'snow-domes'; the melt water precipitates down into incandescent lava producing chilling and local thermal shock/quench fragmentation (minor hyaloclastite production). Our observations show that lava-snow interactions can vary significantly depending on styles of flow front advance. Lava flows emplaced over areas covered with snow bear features that can be distinguished in old stratigraphic sequences and used for paleoclimatic reconstructions on Earth, Mars and other planets.

  18. Constraints on Determining the Eruption Style and Composition of Terrestrial Lavas from Space

    NASA Technical Reports Server (NTRS)

    Wright, Robert; Glaze, Lori; Baloga, Stephen M.

    2011-01-01

    The surface temperatures of active lavas relate to cooling rates, chemistry, and eruption style. We analyzed 61 hyperspectral satellite images acquired by the National Aeronautics and Space Administration s Earth Observing-1 (EO-1) Hyperion imaging spectrometer to document the surface temperature distributions of active lavas erupted at 13 volcanoes. Images were selected to encompass the range of common lava eruption styles, specifically, lava fountains, flows, lakes, and domes. Our results reveal temperature distributions for terrestrial lavas that correlate with composition (i.e., a statistically significant difference in the highest temperatures retrieved for mafic lavas and intermediate and felsic lavas) and eruption style. Maximum temperatures observed for mafi c lavas are approx.200 C higher than for intermediate and felsic lavas. All eruption styles exhibit a low-temperature mode at approx.300 C; lava fountains and 'a' a flows also exhibit a higher-temperature mode at approx.700 C. The observed differences between the temperatures are consistent with the contrasting rates at which the lava surfaces are thermally renewed. Eruption styles that allow persistent and pervasive thermal renewal of the lava surface (e.g., fractured crusts on channel-fed 'a' a flows) exhibit a bimodal temperature distribution; eruption styles that do not (e.g., the continuous skin of pahoehoe lavas) exhibit a single mode. We conclude that insights into composition and eruption style can only be gained remotely by analyzing a large spatio-temporal sample of data. This has implications for determining composition and eruption style at the Jovian moon Io, for which no in situ validation is available.

  19. High-resolution Digital Mapping of Historical Lava Flows as a Test-bed for Lava Flow Models

    NASA Astrophysics Data System (ADS)

    Pyle, D. M.; Parks, M.; Nomikou, P.; Mather, T. A.; Simou, E.; Kalnins, L. M.; Paulatto, M.; Watts, A. B.

    2013-12-01

    Quantitative analysis of high-resolution lava flow morphology can improve our understanding of past effusive eruptions by providing insight into eruptive processes and the rheological properties of erupted magmas. We report the results of an ongoing investigation into the young dacite lava flows of the Kameni islands, Santorini volcano, Greece, which were emplaced during both subaerial and shallow submarine eruptions over the past 3000 years. Historical eruptions of the Kameni islands since 1866 have been very carefully documented in contemporaneous scientific reports. Eruptions since 1573 appear to be time-predictable, with a close relationship between eruption length, the size of extruded lava domes, and the time elapsed since the previous eruption. A new NERC - Airborne Survey and Research Facility LiDAR survey of the Kameni islands was completed in May 2012, using a Leica ALS50 Airborne Laser Scanner mounted on a Dornier 228 aircraft. The topographic surface was mapped at an average point density of 2.1 points per square metre, and covers the entire extent of the youngest subaerial lava flow fields on Santorini. A 2-m DEM derived from the 2012 LiDAR dataset was merged with a 5-m resolution bathymetric grid, based on multibeam surveys carried out by the Hellenic Centre for Marine Research, during cruises in 2001 and 2006, using a SEABEAM 2120 hull-mounted swath system. The resultant grid provides the first high resolution map of both subaerial and submarine historic lava flows emplaced in the centre of the Santorini caldera, and includes several previously unidentified submarine flows and cones. Attribute maps were used to delineate and identify discrete lava flows both onshore and offshore; and morphometric profiles were used to compute accurate volumetric estimates for each of the historic flows, and to determine bulk rheological properties of the lavas, assuming a Bingham rheology. This ongoing work will improve our analysis of the relationship between

  20. Venus - Complex Lava Flows at Sif Mons

    NASA Technical Reports Server (NTRS)

    1991-01-01

    This is a full resolution mosaic centered at 25 degrees north latitude, 351 east longitude. The region is approximately 160 kilometers (100 miles) across. It shows a series of complex lava flows which emerge from the northern flank of Sif Mons, a large volcano just to the south. Several of the flows occupy narrow troughs formed by long fractures. A sequence of events that can be inferred from this image is the formation of the dark background plains by eruptions of extremely fluid volcanic material, and the formation of the small shield volcanoes on the plains surface that can be seen in the upper left part of the image. Next, the region was domed upward probably by heat from the interior of Venus that ultimately caused magmas to break out from the surface near the summit regions forming the Sif volcanic structure and its associated flank eruptions which can be seen in this image.

  1. LAVA Applications to Open Rotors

    NASA Technical Reports Server (NTRS)

    Kiris, Cetin C.; Housman, Jeff; Barad, Mike; Brehm, Christoph

    2015-01-01

    Outline: LAVA (Launch Ascent Vehicle Aerodynamics); Introduction; Acoustics Related Applications; LAVA Applications to Open Rotor; Structured Overset Grids; Cartesian Grid with Immersed Boundary; High Speed Case; High Speed Case with Plate Low Speed Case.

  2. Platy Lava Surface

    NASA Technical Reports Server (NTRS)

    2004-01-01

    [figure removed for brevity, see original site]

    This VIS image was taken in the Tartarus region of Mars. The lava flows covering the upper right portion of the image have a very different texture than the Arsia Mons flows. These flows illustrate a platy lava surface. This surface type develops when the top of a lava flows cools and then is broken into pieces by continued movement of the flow. Molten lava will squeeze up between the plates of cooled lava, forming the ridges seen in the image.

    Image information: VIS instrument. Latitude 5.9, Longitude 157.8 East (202.2 West). 19 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  3. Observations on lava, snowpack and their interactions during the 2012-13 Tolbachik eruption, Klyuchevskoy Group, Kamchatka, Russia

    NASA Astrophysics Data System (ADS)

    Edwards, Benjamin R.; Belousov, Alexander; Belousova, Marina; Melnikov, Dmitry

    2015-12-01

    Observations made during January and April 2013 show that interactions between lava flows and snowpack during the 2012-13 Tolbachik fissure eruption in Kamchatka, Russia, were controlled by different styles of emplacement and flow velocities. `A`a lava flows and sheet lava flows generally moved on top of the snowpack with few immediate signs of interaction besides localized steaming. However, lavas melted through underlying snowpack 1-4 m thick within 12 to 24 h, and melt water flowed episodically from the beneath flows. Pahoehoe lava lobes had lower velocities and locally moved beneath/within the snowpack; even there the snow melting was limited. Snowpack responses were physical, including compressional buckling and doming, and thermal, including partial and complete melting. Maximum lava temperatures were up to 1355 K (1082 °C; type K thermal probes), and maximum measured meltwater temperatures were 335 K (62.7 °C). Theoretical estimates for rates of rapid (e.g., radiative) and slower (conductive) snowmelt are consistent with field observations showing that lava advance was fast enough for `a`a and sheet flows to move on top of the snowpack. At least two styles of physical interactions between lava flows and snowpack observed at Tolbachik have not been previously reported: migration of lava flows beneath the snowpack, and localized phreatomagmatic explosions caused by snowpack failure beneath lava. The distinctive morphologies of sub-snowpack lava flows have a high preservation potential and can be used to document snowpack emplacement during eruptions.

  4. Hidden Outgassing Dynamics at Kilauea (Hawaii) Lava Lake

    NASA Astrophysics Data System (ADS)

    Del Bello, E.; Taddeucci, J.; Orr, T. R.; Houghton, B. F.; Scarlato, P.; Patrick, M. R.

    2014-12-01

    Lava lakes offer unique opportunities for understanding how magmatic volatiles physically escape from low-viscosity, vesicular magma in open-vent conditions, a process often referred to as magma outgassing. Large-scale lava convection movements and meter-scale bubble explosions, sometimes triggered by rock falls, are acknowledged outgassing processes but may not be the only ones. In 2013 we used high-frequency (50-500 Hz) thermal and visible imaging to investigate the short-timescale dynamics of the currently active Halema`uma`u lava lake. At that time, besides the dominant release of large bubbles, three types of peculiar outgassing features were observed on the lava lake surface. The first, diffusely observed throughout the observation experiment, consisted of prolonged (up to seconds) gas venting from 'spot vents'. These vents appeared to open and close without the ejection of material or bubble bursting, and were the site of hot gas emission. Spot vents were located both between and inside cooling plates, and followed the general circulation pattern together with the rest of the lava lake surface. The second feature, observed only once, consisted of the transient wobbling of the whole lava lake surface. This wobbling, with a wavelength of meters to tens of meters, was not related to any external trigger, and dampened soon without apparent consequences on the other lake dynamics. Finally, we observed large (meters) doming areas of the lake surface randomly fluctuating over seconds to minutes. These areas were either stationary or moved independently of the general lake surface circulation, and usually were not affected by other lake surface features (e.g., cooling plate boundaries). These three features, though trivial for the overall lake outgassing, testify that the lava lake has a complex shallow subsurface architecture, in which permeable channels and gas pockets act independently of the more common bubble bursts.

  5. Lava Tube Collapse Pits

    NASA Technical Reports Server (NTRS)

    2004-01-01

    [figure removed for brevity, see original site]

    We will be looking at collapse pits for the next two weeks. Collapse pits on Mars are formed in several ways. In volcanic areas, channelized lava flows can form roofs which insulate the flowing lava. These features are termed lava tubes on Earth and are common features in basaltic flows. After the lava has drained, parts of the roof of the tube will collapse under its own weight. These collapse pits will only be as deep as the bottom of the original lava tube. Another type of collapse feature associated with volcanic areas arises when very large eruptions completely evacuate the magma chamber beneath the volcano. The weight of the volcano will cause the entire edifice to subside into the void space below it. Structural features including fractures and graben will form during the subsidence. Many times collapse pits will form within the graben. In addition to volcanic collapse pits, Mars has many collapse pits formed when volatiles (such as subsurface ice) are released from the surface layers. As the volatiles leave, the weight of the surrounding rock causes collapse pits to form.

    These collapse pits are found in the southern hemisphere of Mars. They are likely lava tube collapse pits related to flows from Hadriaca Patera.

    Image information: VIS instrument. Latitude -36.8, Longitude 89.6 East (270.4 West). 19 meter/pixel resolution. Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space

  6. Lava flows are fractals

    NASA Technical Reports Server (NTRS)

    Bruno, B. C.; Taylor, G. J.; Rowland, S. K.; Lucey, P. G.; Self, S.

    1992-01-01

    Results are presented of a preliminary investigation of the fractal nature of the plan-view shapes of lava flows in Hawaii (based on field measurements and aerial photographs), as well as in Idaho and the Galapagos Islands (using aerial photographs only). The shapes of the lava flow margins are found to be fractals: lava flow shape is scale-invariant. This observation suggests that nonlinear forces are operating in them because nonlinear systems frequently produce fractals. A'a and pahoehoe flows can be distinguished by their fractal dimensions (D). The majority of the a'a flows measured have D between 1.05 and 1.09, whereas the pahoehoe flows generally have higher D (1.14-1.23). The analysis is extended to other planetary bodies by measuring flows from orbital images of Venus, Mars, and the moon. All are fractal and have D consistent with the range of terrestrial a'a and have D consistent with the range of terrestrial a'a and pahoehoe values.

  7. Surface Structures of Hawaiian Lavas

    NASA Technical Reports Server (NTRS)

    Rowland, S. K.; Walker, G. P. L.

    1985-01-01

    Surface and internal lava structures can be valid indicators of lava viscosity and rheology, provided that care is taken to identify and eliminate structures which are strain-rate-dependent. Here, a spectrum of types among Hawaiian basaltic flows is found ranging from pahoehoe to a'a, that are interpreted as marking a progression in lava viscosity and a change in rheology. The most fluid type in this spectrum is normal pahoehoe that has a smooth but commonly wrinkled or folded (ropy) surface. The next type, distinctly more viscous and probably non-Newtonian in rheology, is spiny pahoehoe which is characterized by a spinose surface and an absence of ropy structures. Preliminary studies on the long lavas of Mauna Loa indicated, perhaps surprisingly, that there is no clear-cut correlation of lava length with type in this spectrum of lavas, indicating that viscosity/yield strength of the basaltic lavas per se are not the primary controls determining flow length. Flowage of the lava through lava tubes, while it may help to account for the long flow distance of some lavas, is not a generally applicable explanation for long flow length.

  8. Seismicity associated with dome growth and collapse at the Soufriere Hills Volcano, Montserrat

    USGS Publications Warehouse

    Miller, A.D.; Stewart, R.C.; White, R.A.; Luckett, R.; Baptie, B.J.; Aspinall, W.P.; Latchman, J.L.; Lynch, L.L.; Voight, B.

    1998-01-01

    Varied seismicity has accompanied growth and collapse of the lava dome of the Soufriere Hills Volcano, Montserrat. Earthquakes have been classified as either volcano-tectonic, long-period or hybrid, and daily variations in the numbers of events have mapped changes in the style of eruption. Repetitive hybrid earthquakes were common during the first months of dome growth. In July 1996 the style of seismicity changed and regular short-lived hybrid earthquake swarms became common. This change was probably caused by an increase in the magma flux. Earthquake swarms have preceded almost all major dome collapses, and have accompanied cyclical deformation, thought to be due to a built-up of pressure in the upper conduit which is later released by magma moving into the dome.Varied seismicity has accompanied growth and collapse of the lava dome of the Soufriere Hills Volcano, Montserrat. Earthquakes have been classified as either volcano-tectonic, long-period or hybrid, and daily variations in the numbers of events have mapped changes in the style of eruption. Repetitive hybrid earthquakes were common during the first months of dome growth. In July 1996 the style of seismicity changed and regular, short-lived hybrid earthquake swarms became common. This change was probably caused by an increase in the magma flux. Earthquake swarms have preceded almost all major dome collapses, and have accompanied cyclical deformation, thought to be due to a build-up of pressure in the upper conduit which is later released by magma moving into the dome.

  9. Drilling investigation of a young magmatic intrusion beneath Inyo Dome, Long Valley Caldera, California. Progress report

    SciTech Connect

    Vogel, T.A.

    1985-01-01

    Progress to date indicates: (1) the conduit and lava flow at Obsidian Dome consist of two magma types; (2) the more mafic magma occurs at the base of Obsidian Dome and at the margins of the conduit and was emplaced first; (3) the more silicic magma occurs in the center of the conduit and in the dike; (4) the ilmenite-magnetite and orthopyroxene-augite geothermometers have not reequilibrated in the conduit or dike; (5) the more mafic magma's emplacement temperature was 974/sup 0/C compared to the silicic magma's 951/sup 0/C; and (6) trace elements are characteristic of each magma type. (ACR)

  10. The Effect of Lava Texture on LiDAR Attributes and Full Waveform

    NASA Astrophysics Data System (ADS)

    Anderson, S. W.; Finnegan, D. C.; LeWinter, A.

    2013-12-01

    The distribution of glassy, vesicular, and crystalline textures on lava flow and dome surfaces provides insights regarding the physical and chemical processes occurring during emplacement. For silicic flows, these textures may reflect variations in the volatile content of lava upon eruption. To assess the efficacy of texture detection with our terrestrial full waveform LiDAR system capable of measuring ~125,000 topographic points/second, we analyzed attribute and full waveform data from a variety of lava textures displayed on recent rhyolitic obsidian flows of the Inyo Dome chain (California) and pahoehoe and aa flows at Kilauea volcano (Hawaii). We find that attributes such as intensity, amplitude and deviation of the returned 1550nm laser pulse fall into discrete ranges associated with glassy, pumiceous and crystalline textures on both the rhyolitic and basaltic surfaces. This enables detection of vesicularity at ranges in excess of 500 m, making LiDAR a useful tool for remotely determining lava texture. Scan times using our Riegl VZ1000 and VZ400 systems require only minutes, allowing for repeated scans over a short time period, and processing times are <1 hour. We have also analyzed the full digitized waveforms of LiDAR pulses returned from these surfaces, and find that they also have unique signatures related to texture. We therefore suggest that LiDAR can provide reliable information on lava texture during eruption, aiding in the interpretation of eruption hazards from increasing volatile contents.

  11. Satellite Measurements of Lava Extrusion Rate at Volcán Reventador, Ecuador

    NASA Astrophysics Data System (ADS)

    Arnold, D. W. D.; Biggs, J.; Ebmeier, S. K.; Vallejo Vargas, S.; Naranjo, M. F.

    2015-12-01

    The extrusion rate of lava at active volcanoes provides a principle control on the style of eruptive behavior and the extent of lava flows, while also providing information about magma supply to the volcano. Measurements of extrusion rate at active volcanoes are therefore important for assessing hazard, and improving understanding of volcanic systems. Volcán Reventador is an asymmetric stratovolcano in the Cordillera Real of Ecuador. The largest historically observed eruption at Reventador in 2002 has been followed by several periods of eruptive activity. Eruptions are characterised by effusion of andesitic to basaltic-andesitic lava flows, and Vulcanian explosions. The ongoing eruption at Reventador therefor provides an excellent target for investigating the link between effusion rate, explosivity, and lava flow behaviour. Satellite InSAR provides regular observations of the volcano, even during night or periods of cloud cover. We use a dataset of Radarsat-2 and TanDEM-X imagery, with intervals of 11 to 192 days, over the period 2011 to 2014 to measure the extent, thickness and volume of new lava flows at Reventador. We use radar amplitude and inteferometric coherence to map 25 individual lava flows, as well as pyroclastic deposits and changes in lava dome morphology. We observe 43 Mm3 of deposits over a three year period, giving an average effusion rate of 0.5 m3s-1. We do not observe any ground deformation due to magmatic sources at Reventador, therefore variations in lava effusion rate can be interpreted as changes in the magma supply to the volcano. We investigate the link between variations in effusion rate and the length, area, thickness, and aspect ratio of lava flows, and the explosive-effusive transition. We also characterise the relationship between lava flow age, thickness, and subsidence rate.

  12. The GREGOR dome, pathfinder for the EST dome

    NASA Astrophysics Data System (ADS)

    Hammerschlag, Robert H.; Kommers, Johannes N.; Visser, Simon; Bettonvil, Felix C. M.; van Schie, Anton G. M.; van Leverink, Simon J.; Sliepen, Guus; Jägers, Aswin P. L.

    2012-09-01

    The completely open-foldable dome of the GREGOR telescope is a further development of the DOT dome, respectively 9 and 7 meter in diameter. New technical developments are implemented and tested at the GREGOR dome, that are important for the design of the much larger dome for the EST, which will be 28 meter in diameter. The GREGOR dome is the first with more than one clamp working simultaneously for closing the dome and bringing the membranes on the required high tension for storm resistance. The storm Delta with 245 km/h 1-minute mean maximum at the location of the GREGOR gave no problems nor did the storms afterwards. Opening and closing experiences are up to wind speeds of 90 km/h without problems. Good observing circumstances never occur with higher wind speeds. A double layer of membranes is applied in the GREGOR construction whereas the DOT dome is equipped with a single layer. Simultaneous climate measurements inside and outside the dome have proven the thermal-insulation capability of this double-layer construction. The experiences with the GREGOR showed that the elongation by tensioning of the prestrained membrane material is much lower than originally expected. In the meantime, more strong and stiff membrane material is available and applied in the EST design. As a consequence, the clamps of the EST can have a relatively much shorter length and there is no need anymore for simultaneous operation of the clamps and the main actuators in low speed with help of a frequency inverter. The clamps can close after the main bow operation is finished, which simplifies the electrical control.

  13. Geodesic Domes in the Classroom.

    ERIC Educational Resources Information Center

    Lund, Charles

    1978-01-01

    Some practical, hands-on ways in which ideas about geodesic domes can be used in secondary school mathematics are described. Instructions for constructing a one-frequency geodesic sphere are given. (MP)

  14. A Dome Amidst the Hexagons

    ERIC Educational Resources Information Center

    American School and University, 1976

    1976-01-01

    Describes the design of the gymnasium of York (South Carolina) Comprehensive High School, a circular 12,000 square foot structure with a prefabricated domed roof constructed of steel hubs and curved wooden beams. (JG)

  15. Deriving Lava Eruption Temperatures on Io Using Lava Tube Skylights

    NASA Astrophysics Data System (ADS)

    Davies, A. G.; Keszthelyi, L. P.; McEwen, A. S.

    2015-12-01

    The eruption temperature of Io's silicate lavas constrains Io's interior state and composition [1] but reliably measuring this temperature remotely is a challenge that has not yet been met. Previously, we established that eruption processes that expose large areas at the highest temperatures, such as roiling lava lakes or lava fountains, are suitable targets for this task [2]. In this study we investigate the thermal emission from lava tube skylights for basaltic and ultramafic composition lavas. Tube-fed lava flows are known on Io so skylights could be common. Unlike the surfaces of lava flows, lava lakes, and lava fountains which all cool very rapidly, skylights have steady thermal emission on a scale of days to months. The thermal emission from such a target, measured at multiple visible and NIR wavelengths, can provide a highly accurate diagnostic of eruption temperature. However, the small size of skylights means that close flybys of Io are necessary, requiring a dedicated Io mission [3]. We have modelled the thermal emission spectrum for different skylight sizes, lava flow stream velocities, end-member lava compositions, and skylight radiation shape factors, determining the flow surface cooling rates. We calculate the resulting thermal emission spectrum as a function of viewing angle. From the resulting 0.7:0.9 μm ratios, we see a clear distinction between basaltic and ultramafic compositions for skylights smaller than 20 m across, even if sub-pixel. If the skylight is not resolved, observations distributed over weeks that show a stationary and steady hot spot allow the presence of a skylight to be confidently inferred. This inference allows subsequent refining of observation design to improve viewing geometry of the target. Our analysis will be further refined as accurate high-temperature short-wavelength emissivity values become available [4]. This work was performed at the Jet Propulsion Laboratory-California Institute of Technology, under contract to

  16. Radar scattering properties of steep-sided domes on Venus

    NASA Technical Reports Server (NTRS)

    Ford, Peter G.

    1994-01-01

    More than 100 quasi-circular steep-sided volcanic domes, with diameters ranging from 6 to 60 km, have been observed on the surface of Venus by the Magellan radar mapper. Assuming that they have the shape of a solidified high-viscosity Newtonian fluid, their radar scattering properties can be studied in detail from Magellan images, since a typical radar swath resolves each dome into several tens of thousands of measurements of radar cross section at incidence angles varying fom 15 deg to 55 deg. Through examination of 20 domes in detail, it appears that many of those situated on lava plains scatter radar in a manner that is indistinguishable from that of the surrounding material, suggesting that either (1) they were formed of a relatively high-density high-viscosity material, e.g., andesite, rather than a lower-density one, e.g., rhyolite or dacite; or (2) that their surfaces share a common origin with those of their surroundings, e.g., through in situ weathering or aeolian deposition.

  17. Lava crusts and flow dynamics

    NASA Technical Reports Server (NTRS)

    Kilburn, C. R. J.

    1993-01-01

    Lava flows can be considered as hot viscous cores within thinner, solidified crusts. Interaction between crust and core determines a flow's morphological and dynamical evolution. When the lava core dominates, flow advance approaches a steady state. When crusts are the limiting factor, advance is more irregular. These two conditions can be distinguished by a timescale ratio comparing rates of core deformation and crustal formation. Aa and budding pahoehoe lavas are used as examples of core- and crustal-dominated flows, respectively. A simple model describes the transition between pahoehoe and aa flow in terms of lava discharge rate, underlying slope, and either the thickness or velocity of the flow front. The model shows that aa morphologies are characterized by higher discharge rates and frontal velocities and yields good quantitative agreement with empirical relations distinguishing pahoehoe and aa emplacement on Hawaii.

  18. Lava flows and volcanic landforms

    NASA Astrophysics Data System (ADS)

    Tarquini, Simone

    2016-04-01

    Lava flows constitute a large portion of the edifice of basaltic volcanoes. The substantial difference existing between the emplacement dynamics of different basaltic lava flows suggests a relation between the dominant flow dynamic and the overall shape of the ensuing volcano. Starting from the seminal works of Walker (1971, 1973) it is proposed that the rate of heat dissipation per unit volume of lava can be the founding principium at the roots of the emplacement dynamics of lava flows. Within the general framework of the thermodynamics of irreversible processes, a conceptual model is presented, in which the dynamic of lava flows can evolve in a linear or in a nonlinear regime on the basis of the constraint active on the system: a low constraint promotes a linear dynamic (i.e. fluctuations are damped), a high constraint a nonlinear one (i.e. fluctuations are enhanced). Two cases are considered as end-members for a linear and a nonlinear dynamic in lava flows: the typical "Hawaiian" sheet flow and the classic "Etnean" channelized flow (respectively). In lava flows, the active constraint is directly proportional to the slope of the topography and to the thermal conductivity and thermal capacity of the surrounding environment, and is inversely proportional to the lava viscosity and to the supply rate. The constraint indicates the distance from the equilibrium conditions of the system, and determines the rate of heat dissipation per unit volume. In subaerial flows, the heat dissipated during the emplacement is well approximated by the heat lost through radiation, which can be retrieved through remote-sensing techniques and can be used to correlate dynamic and dissipation. The model presented recombines previously unrelated concepts regarding the dynamics and the thermal regimes observed in different lava flows, providing a global consistent picture. References Walker GPL (1971) Compound and simple lava flows and flood basalts. Bull Volcanol 35:579-590 Walker GPL (1973

  19. Wind, Water, and Lava

    NASA Technical Reports Server (NTRS)

    2003-01-01

    [figure removed for brevity, see original site]

    Released 18 June 2003

    The three main geological agents acting on the Martian surface are visible in this image, within an outflow channel to the east of the Tharsis volcanos and north of Valles Marineris. In a wide channel previously eroded by water, linear features have been eroded into the rock by the wind. Later, lava flows embayed the streamlined rocks. A second, younger flow lobe is visible at the bottom of the image.

    Image information: VIS instrument. Latitude 17, Longitude 283.6 East (76.4 West). 19 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  20. Radar topography of domes on planetary surfaces

    USGS Publications Warehouse

    Neish, C.D.; Lorenz, R.D.; Kirk, R.L.

    2008-01-01

    We investigate the possibility of measuring the heights and morphology of viscously emplaced domes using radar imagery. We accurately reproduce the known height and shape of a terrestrial salt dome, and estimate the heights of several venusian pancake domes to within a factor of two. The terrestrial salt dome is consistent with a Bingham flow, while the much larger venusian pancake domes are consistent with a Newtonian flow. Applying the same techniques to Ganesa Macula, a potential cryovolcanic dome on Titan, we estimate a height between 2.0-4.9 km. Additional factors such as variable roughness and composition might account for some of the discrepancies observed. ?? 2008 Elsevier Inc.

  1. 'Heat Dome' Heats Up United States

    MedlinePlus

    ... page: https://medlineplus.gov/news/fullstory_160028.html 'Heat Dome' Heats Up United States Much of the country to ... July 22, 2016 (HealthDay News) -- As a massive "heat dome" stretches across the United States this week, ...

  2. Late Pleistocene zircon ages for intracaldera domes at Gölcük (Isparta, Turkey)

    NASA Astrophysics Data System (ADS)

    Schmitt, Axel K.; Danišík, Martin; Siebel, Wolfgang; Elitok, Ömer; Chang, Yu-Wei; Shen, Chuan-Chou

    2014-10-01

    Pleistocene to Quaternary volcanism in the Isparta region (SW Anatolia, Turkey) comprises potassic lavas and pyroclastic deposits, which are largely centered around Gölcük caldera. Trachytic intracaldera lava domes represent the latest eruptive event at Gölcük, and their eruption age is crucial for defining a minimum age for the preceding caldera-forming explosive eruption. Here, we present combined U-Th and (U-Th)/He zircon geochronological data for two intracaldera lava domes constraining their crystallization and eruption ages, respectively. U-Th zircon crystallization ages peak between ca. 15 and 25 ka. In rare instances U-Th zircon crystallization ages date back to ca. 59 and 136 ka. U-Th zircon crystallization ages also permit (U-Th)/He eruption ages from the same crystals to be individually corrected for uranium series decay chain disequilibrium, which is mainly due to the deficit of the intermediate daughter 230Th in zircon. Average disequilibrium-corrected (U-Th)/He zircon ages are 14.1 ± 0.5 and 12.9 ± 0.4 ka (1σ). These ages are indistinguishable within analytical uncertainties suggesting that both lavas erupted quasi simultaneously. This contradicts published K-Ar ages that suggest an extended hiatus from ca. 52 to 24 ka between intracaldera dome eruptions. Evidence for protracted zircon crystallization over several thousands of years prior to eruption indicates the presence of a long-lived magma reservoir underneath Gölcük caldera. Implications of the revised eruptive geochronology presented here include younger ages for the latest effusive eruptions at Gölcük, and potentially also a more recent explosive eruption than previously assumed.

  3. Estimating SiO 2 content of lava deposits in the humid tropics using remotely sensed imagery

    NASA Astrophysics Data System (ADS)

    Bastero, Cielo F.; Lagmay, Alfredo Mahar F. A.

    2006-03-01

    Remote sensing methods used to determine the rheology and SiO 2 composition of lava flows on Mars were utilized to estimate the composition of lava deposits in the Philippines. Test cases were conducted on two lava domes and two lava flow deposits to determine whether remote sensing methods can be applied as a rapid and economical means to assess hazards associated with volcanoes in the humid tropics. Our study shows that dimensional parameters derived from digital elevation models (DEMs) generated from airborne sensors are effective in determining the SiO 2 content of lava deposits. The SiO 2 values computed from the rheological properties of lava are found to be comparable to geochemically analyzed field samples. These results suggest that remote sensing methods to estimate the composition of lava deposits is viable and can serve as a potentially useful tool for rapid and economic hazards assessment of volcanoes in tropical regions. With the growing number of high-resolution satellite sensors that routinely image the Earth's surface, such a technique can be widely utilized.

  4. Compositionally Constraining Elysium Lava Fields

    NASA Astrophysics Data System (ADS)

    Karunatillake, S.; Button, N. E.; Skok, J. R.

    2013-12-01

    Chemical provinces of Mars defined recently [1-3] became possible with the maps of elemental mass fractions generated with Mars Odyssey Gamma and Neutron Spectrometer (GS) data [4,5]. These provide a unique perspective by representing compositional signatures distinctive of the regolith vertically at decimeter depths and laterally at hundreds of kilometer scale. Some provinces overlap compellingly with regions highlighted by other remote sensing observations, such as the Mars Radar Stealth area [3]. The spatial convergence of mutually independent data with the consequent highlight of a region provides a unique opportunity of insight not possible with a single type of remote sensing observation. Among such provinces, previous work [3] highlighted Elysium lava flows as a promising candidate on the basis of convergence with mapped geologic units identifying Elysium's lava fields generally, and Amazonian-aged lava flows specifically. The South Eastern lava flows of Elysium Mons, dating to the recent Amazonian epoch, overlap compellingly with a chemical province of K and Th depletion relative to the Martian midlatitudes. We characterize the composition, geology, and geomorphology of the SE Elysium province to constrain the confluence of geologic and alteration processes that may have contributed to its evolution. We compare this with the North Western lava fields, extending the discussion on chemical products from the thermal evolution of Martian volcanism as discussed by Baratoux et al. [6]. The chemical province, by regional proximity to Cerberus Fossae, may also reflect the influence of recently identified buried flood channels [7] in the vicinity of Orcus Patera. Despite the compelling chemical signature from γ spectra, fine grained unconsolidated sediment hampers regional VNTIR (Visible, Near, and Thermal Infrared) spectral analysis. But some observations near scarps and fresh craters allow a view of small scale mineral content. The judicious synthesis of

  5. Dome growth, collapse, and valley fill at Soufrière Hills Volcano, Montserrat, from 1995 to 2013: Contributions from satellite radar measurements of topographic change

    USGS Publications Warehouse

    Arnold, D. W. D.; Biggs, J.; Wadge, G.; Ebmeier, S. K.; Odbert, H. M.; Poland, Michael P.

    2016-01-01

    Frequent high-resolution measurements of topography at active volcanoes can provide important information for assessing the distribution and rate of emplacement of volcanic deposits and their influence on hazard. At dome-building volcanoes, monitoring techniques such as LiDAR and photogrammetry often provide a limited view of the area affected by the eruption. Here, we show the ability of satellite radar observations to image the lava dome and pyroclastic density current deposits that resulted from 15 years of eruptive activity at Soufrière Hills Volcano, Montserrat, from 1995 to 2010. We present the first geodetic measurements of the complete subaerial deposition field on Montserrat, including the lava dome. Synthetic aperture radar observations from the Advanced Land Observation Satellite (ALOS) and TanDEM-X mission are used to map the distribution and magnitude of elevation changes. We estimate a net dense-rock equivalent volume increase of 108 ± 15M m3 of the lava dome and 300 ± 220M m3 of talus and subaerial pyroclastic density current deposits. We also show variations in deposit distribution during different phases of the eruption, with greatest on-land deposition to the south and west, from 1995 to 2005, and the thickest deposits to the west and north after 2005. We conclude by assessing the potential of using radar-derived topographic measurements as a tool for monitoring and hazard assessment during eruptions at dome-building volcanoes.

  6. Deformation and seismic precursors to dome-collapse and fountain-collapse nuées ardentes at Merapi Volcano, Java, Indonesia, 1994-1998

    USGS Publications Warehouse

    Voight, B.; Young, K.D.; Hidayat, D.; ,; Purbawinata, M.A.; Ratdomopurbo, A.; ,; ,; Sayudi, D.S.; LaHusen, R.; Marso, J.; Murray, T.L.; Dejean, M.; Iguchi, M.; Ishihara, K.

    2000-01-01

    Following the eruption of January 1992, episodes of lava dome growth accompanied by generation of dome-collapse nuées ardentes occurred in 1994–1998. In addition, nuées ardentes were generated by fountain-collapse in January 1997, and the 1998 events also suggest an explosive component. Significant tilt and seismic precursors on varying time scales preceded these events. Deformation about the summit has been detected by electronic tiltmeters since November 1992, with inflation corresponding generally to lava dome growth, and deflation (or decreased inflation) corresponding to loss of dome mass. Strong short-term (days to weeks) accelerations in tilt rate and seismicity occurred prior to the major nuées ardentes episodes, apart from those of 22 November 1994 which were preceded by steadily increasing tilt for over 200 days but lacked short-term precursors. Because of the combination of populated hazardous areas and the lack of an issued warning, about 100 casualties occurred in 1994. In contrast, the strong precursors in 1997 and 1998 provided advance warning to observatory scientists, enabled the stepped raising of alert levels, and aided hazard management. As a result of these factors, but also the fortunate fact that the large nuées ardentes did not quite descend into populated areas, no casualties occurred. The nuée ardente episode of 1994 is interpreted as purely due to gravitational collapse, whereas those of 1997 and 1998 were influenced by gas-pressurization of the lava dome.

  7. Reproducing Actual Morphology of Planetary Lava Flows

    NASA Astrophysics Data System (ADS)

    Miyamoto, H.; Sasaki, S.

    1996-03-01

    Assuming that lava flows behave as non-isothermal laminar Bingham fluids, we developed a numerical code of lava flows. We take the self gravity effects and cooling mechanisms into account. The calculation method is a kind of cellular automata using a reduced random space method, which can eliminate the mesh shape dependence. We can calculate large scale lava flows precisely without numerical instability and reproduce morphology of actual lava flows.

  8. Newberry Volcano's youngest lava flows

    USGS Publications Warehouse

    Robinson, Joel E.; Donnelly-Nolan, Julie M.; Jensen, Robert A.

    2015-01-01

    The central caldera is visible in the lower right corner of the center map, outlined by the black dashed line. The caldera collapsed about 75,000 years ago when massive explosions sent volcanic ash as far as the San Francisco Bay area and created a 3,000-ft-deep hole in the center of the volcano. The caldera is now partly refilled by Paulina and East Lakes, and the byproducts from younger eruptions, including Newberry Volcano’s youngest rhyolitic lavas, shown in red and orange. The majority of Newberry Volcano’s many lava flows and cinder cones are blanketed by as much as 5 feet of volcanic ash from the catastrophic eruption of Mount Mazama that created Crater Lake caldera approximately 7,700 years ago. This ash supports abundant tree growth and obscures the youthful appearance of Newberry Volcano. Only the youngest volcanic vents and lava flows are well exposed and unmantled by volcanic ash. More than one hundred of these young volcanic vents and lava flows erupted 7,000 years ago during Newberry Volcano’s northwest rift zone eruption.

  9. Lava Flows of Daedalia Planum

    NASA Technical Reports Server (NTRS)

    2002-01-01

    [figure removed for brevity, see original site]

    This THEMIS image captures a portion of several lava flows in Daedalia Planum southwest of the Arsia Mons shield volcano. Textures characteristic of the variable surface roughness associated with different lava flows in this region are easily seen. The lobate edges of the flows are distinctive, and permit the discrimination of many overlapping individual flows. The surfaces of some flows look wrinkly and ropy, probably indicating a relatively fluid type of lava flow referred to as pahoehoe. The surface textures of lava flows can thus sometimes be used for comparative purposes to infer lava viscosity and effusion rates. Numerous parallel curved ridges are visible on the upper surfaces of some of the lava flows. These ridges make the flow surface look somewhat ropy, and at smaller scales this flow might be referred to as pahoehoe, however, these features are probably better referred to as pressure ridges. Pressure ridges form on the surface of a lava flow when the upper part of the flow is exposed to air, cooling it, but the insulated much warmer interior of the flow continues to move down slope (and more material is pushed forward from behind), causing the surface to compress and pile up like a rug.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with

  10. Lava Flow at Kilauea, Hawaii

    NASA Technical Reports Server (NTRS)

    2007-01-01

    On July 21, 2007, the world's most active volcano, Kilauea on Hawaii's Big Island, produced a new fissure eruption from the Pu'u O'o vent, which fed an open lava channel and lava flows toward the east. Access to the Kahauale'a Natural Area Reserve was closed due to fire and gas hazards. The two Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) nighttime thermal infrared images were acquired on August 21 and August 30, 2007. The brightest areas are the hottest lava flows from the recent fissure eruption. The large lava field extending down to the ocean is part of the Kupaianaha field. The most recent activity there ceased on June 20, but the lava is still hot and appears bright on the images. Magenta areas are cold lava flows from eruptions that occurred between 1969 and 2006. Clouds are cold (black) and the ocean is a uniform warm temperature, and light gray in color. These images are being used by volcanologists at the U.S. Geological Survey Hawaii Volcano Observatory to help monitor the progress of the lava flows.

    With its 14 spectral bands from the visible to the thermal infrared wavelength region, and its high spatial resolution of 15 to 90 meters (about 50 to 300 feet), ASTER images Earth to map and monitor the changing surface of our planet.

    ASTER is one of five Earth-observing instruments launched December 18, 1999, on NASA's Terra spacecraft. The instrument was built by Japan's Ministry of Economy, Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products.

    The broad spectral coverage and high spectral resolution of ASTER provides scientists in numerous disciplines with critical information for surface mapping, and monitoring of dynamic conditions and temporal change. Example applications are: monitoring glacial advances and retreats; monitoring potentially active volcanoes; identifying crop stress; determining cloud

  11. Time, temperature and water pressure dependent reheating of volcanic plugs, conduits and domes

    NASA Astrophysics Data System (ADS)

    Kennedy, B. M.; Jellinek, M.; Russell, K.

    2009-12-01

    Active lava domes show periodic magma supply and are frequently re-intruded and reheated. We propose that the timescale, temperature, and water pressure of reheating control whether crack and bubble networks open or close, and whether or not gas can escape. Interpretations of historic eruptions indicate open, permeable magmatic systems favour degassing and non-explosive eruptions, whereas, closed impermeable systems favour pressure build up and explosive eruptions. Despite the observations and interpretations mentioned above, the evolution of open and closed systems during reheating remains poorly understood. We reheated rhyolite dome and pumice samples under open (atmospheric pressure and dry) and closed (pressurized and wet) conditions. Open and closed porosity was measured before and after experiments by helium pycnometry, textures were examined with the Scanning Electron Microscope (SEM), and bulk water contents were measured by infrared spectroscopy during loss on ignition. Open (atmospheric pressure, 200-1100°C) experiments show that (1) short timescales and low temperatures allow degassing without deformation, (2) intermediate timescales and temperatures favour bubble and crack growth, and (3) longer timescales and higher temperatures produce bubble collapse and crack healing. Closed experiments at (450C-750°C and 2-10 MPa) show that, (1) low temperatures and high pressures promote rehydration (regassing) without deformation, and (2) high temperatures at all pressures allow degassing with bubble collapse. Our results indicate that during reheating of an open silicic volcanic plug residual water will degas with little deformation, unless mafic magma temperatures and longer timescales occur. Bubble collapse in remelted enclaves of rhyolite supports that the explosivity of the 1886 basaltic eruption of Mt. Tarawera, New Zealand, may have been enhanced by extreme reheating and sealing of the rhyolite plug by reheating from hot basaltic magma. In contrast, our

  12. Salt dome discoveries mounting in Mississippi

    SciTech Connect

    Ericksen, R.L.

    1996-06-17

    Exploratory drilling around piercement salt domes in Mississippi has met with a string of successes in recent months. Exploration of these salt features is reported to have been initiated through the review of non-proprietary, 2D seismic data and subsurface control. This preliminary data and work were then selectively upgraded by the acquisition of additional, generally higher quality, conventional 2D seismic lines. This current flurry of successful exploration and ensuing development drilling by Amerada Hess Corp. on the flanks of salt domes in Mississippi has resulted in a number of significant Hosston discoveries/producers at: Carson salt dome in Jefferson Davis County; Dry Creek salt dome in Covington County, Midway salt dome in lamar County, Monticello salt dome in Lawrence County, and Prentiss salt dome in Jefferson Davis County. The resulting production from these fields is gas and condensate, with wells being completed on 640 acre production units.

  13. 238U-230Th crystallization ages for the oldest domes of the Mono Craters, eastern California

    NASA Astrophysics Data System (ADS)

    Marcaida, M.; Vazquez, J. A.

    2014-12-01

    The Mono Craters volcanic chain is one of the youngest areas of rhyolitic volcanism in the Mono Lake-Long Valley region of eastern California. Located just south of Mono Lake, the Mono Craters comprise at least 28 individual domes and flows (numbered 3-30, north to south); however, the timing and frequency of eruptions remain poorly resolved. The earliest signs of volcanic activity are preserved as numerous tephra layers (Ashes 1-19, top to bottom) in the late Pleistocene Wilson Creek formation of ancestral Mono Lake, which indicate that rhyolitic volcanism from Mono Craters began by at least ca. 62 ka [1]. Although the current chronology indicates that most of the Mono Craters are younger than ca. 20 ka [2-4], similar compositions of titanomagnetite from both pumice and lava potentially correlate several Wilson Creek tephras to porphyritic biotite-bearing domes 11, 24, and 19 of the Mono Craters [5], suggesting that multiple domes in the Mono Craters chain reflect volcanism older than ca. 20 ka. Ash 3 is correlated to dome 11 based on similar ca. 20 ka ages and titanomagnetite compositions [6]. More recently, we performed ion microprobe 238U-230Th dating of unpolished rims of allanite and zircon from domes 24 and 19, yielding isochron ages of ca. 38 ka and ca. 42 ka, respectively. The age of dome 24 is consistent with the ca. 38 ka age of its potential correlative tephra layers [1, 5], indicating that dome 24 is likely the extrusive equivalent of Ashes 9-10. Dome 19 has titanomagnetite crystals with similar bimodal chemistry to titanomagnetites from Ash 15 [5]. The age of dome 19 is indistinguishable from the 238U-230Th age of Ash 15 [1], which erupted during a prominent geomagnetic excursion, originally designated as the "Mono Lake" excursion. Combining geochronological and titanomagnetite compositional data confirms that Ash 15 and its extrusive equivalent, dome 19, erupted during the Laschamp excursion. [1] Vazquez, J.A. and Lidzbarski, M.I. (2012) EPSL 357

  14. Selected caves and lava-tube systems in and near Lava Beds National Monument, California

    USGS Publications Warehouse

    Waters, Aaron Clement; Donnelly-Nolan, Julie M.; Rogers, Bruce W.

    1990-01-01

    Much of the north and south flanks of the Medicine Lake shield were built from molten lava transmitted through lava tubes. These tubes formed beneath the congealing surface of basalt flows in somewhat the same way that a brook may continue to flow beneath a cover of its own winter ice. As molten lava emerges from a vent and flows downslope, congealing lava from the top and sides of the central channel often forms a bridge over the lava stream. The sticking together of bits of lava spatter and fragile lava crusts strengthens the bridge in the manner that thin crusts of floating ice raft together to cover a brook during early stages of a winter freeze. Eruption of basalt lava, however, is a much more violent and spasmodic process than the steady gathering of water that feeds a brook. If liquid lava stops rising from its source deep within the earth, the still-molten lava moving beneath the crusted-over top of a lava flow will continue to drain downhill and may ultimately leave an open lavatube cave-often large enough for people to walk through. It is rare, however, to find such a simple scenario recorded intact among the hundreds of lava-tube caves in the monument. Even before the top and walls of a lava flow have time to cool during a pause in lava supply, a new and violent eruption of lava may refill the open tube, overflow its upper end, and spread a new lava flow beside or on top of the first flow. Even if the original tube is large enough to contain the renewed supply of lava, this tube must deliver the new lava beyond the end of its original flow and thus the lava field extends farther and farther downslope. If the gradient of flow flattens, the tube may subdivide into a number of smaller distributaries, which spread laterally over the more gently sloping ground. 

  15. Programmable shape transformation of elastic spherical domes.

    PubMed

    Abdullah, Arif M; Braun, Paul V; Hsia, K Jimmy

    2016-07-20

    We investigate mismatch strain driven programmable shape transformation of spherical domes and report the effects of different geometric and structural characteristics on dome behavior in response to applied mismatch strain. We envision a bilayer dome design where the differential swelling of the inner layer with respect to the passive outer layer in response to changes in dome surroundings (such as the introduction of an organic solvent) introduces mismatch strain within the bilayer system and causes dome shape transformation. Finite element analysis reveals that, in addition to snap-through, spherical domes undergo bifurcation buckling and eventually gradual bending to morph into cylinders with increasing mismatch strain. Besides demonstrating how the snap-through energy barrier depends on the spherical dome shape, our analysis identifies three distinct groups of dome geometries based on their mismatch strain-transformed configuration relationships. Our experiments with polymer-based elastic bilayer domes that exhibit differential swelling in organic solvents qualitatively confirm the finite element predictions. We establish that, in addition to externally applied stimuli (mismatch strain), bilayer spherical dome morphing can be tuned and hence programmed through its geometry and structural characteristics. Incorporation of an elastic instability mechanism such as snap-through within the framework of stimuli-responsive functional devices can improve their response time which is otherwise controlled by diffusion. Hence, our proposed design guidelines can be used to realize deployable, multi-functional, reconfigurable, and therefore, adaptive structures responsive to a diverse set of stimuli across multiple length scales.

  16. Measuring the Dome Growth of the 2004-2005 Eruption of Mount St. Helens

    NASA Astrophysics Data System (ADS)

    Schilling, S. P.; Denlinger, R.; Thompson, R. A.; Messerich, J.

    2005-12-01

    In October 2004, a new period of dome growth began that changed the topography of the 1980 crater at Mount St. Helens dramatically. From October 2004 through July 2005, nearly 60 million cubic meters of lava extruded onto the crater floor immediately south of the 1980-1986 lava dome. The eruption intensely deformed and divided the crater glacier on this floor. It created spectacular crevassing and rapid advance of the east arm of the glacier then caused crevassing and broad uplift of the glacier's west arm. Time-sequential vertical aerial photography documents morphologic change and enabled construction of a series of 13 2-m-resolution digital elevation models (DEMs) for the period between October 4, 2004 and July 14, 2005. Vertical aerial photographs flown at a nominal 1:12000 scale were acquired at three-week intervals, scanned at 12-micron resolution, and rectified using a soft-copy (i.e., digital image) photogrammetric workstation. Aerotriangulated models were constructed using ground control outside the area of active deformation, derived from pre-eruption GPS and photogrammetric data, and passed to subsequent model sets. Resulting location accuracy is on the order of decimeters. The DEM data allow us to estimate dome volumes during growth. To extract volumetric changes and calculate extrusion rates, each DEM surface was compared to pre-eruption reference surfaces from 2000 and 2003, as well as to the preceding DEM surface. On July 14, 2005, the new dome was approximately 700 m long (NW-SE) and 560 m wide (SW-NE). The volume of the new dome (including talus), was about 58 million cubic meters, approximately two-thirds the volume of the 1980-1986 dome. The volumetric growth rate in 2004-2005 ranged from a maximum of 9 m3/sec in the early stages of growth to an average of 1-3 m3/sec thereafter. The DEMs also are used to quantify dome height variations, size of the conduit opening, and the mechanics of dome emplacement (growth and collapse) as well as deformation

  17. Lava Flows in Eastern Tharsis

    NASA Technical Reports Server (NTRS)

    2002-01-01

    (Released 31 May 2002) This image may at first appear somewhat bland -- there is little contrast in the surface materials due to dust cover, and there are few impact craters -- but there are some very interesting geologic features here. The great Tharsis volcanoes have produced vast fields of lava flows, such as those shown in this image, to the east of Tharsis Tholus. The flows in this image have moved from west to east, down the regional topographic slope. The lobate edges of the flows are distinctive, and permit the discrimination of many overlapping individual flows that may represent tens, hundreds, thousands, or even millions of years worth of volcanic activity (overlapping relationships are especially evident at the bottom of the image). Viewed at full resolution, the image reveals interesting patterns and textures on the top surfaces of these flows. In particular, at the top of the image, there are numerous parallel curved ridges visible on the upper surfaces of the lava flows. These ridges make the flow surface look somewhat ropy, and at smaller scales this flow might be referred to as pahoehoe, indicative of a relatively fluid type of lava flow. At the scales observed here, however, these features are probably better referred to as pressure ridges. Pressure ridges form on the surface of a lava flow when the upper part of the flow is exposed to air, freezing it, but the insulated unfrozen interior of the flow continues to move down slope (and more material is pushed forward from behind), causing the surface to compress and pile up like a rug. Rough-looking flows with less distinct (more random) patterns on their surfaces may be flows that are more like terrestrial a'a flows, which are distinguished from pahoehoe flows by their higher viscosities and effusion rates. Near the center of the image there is an east-west trending, smooth-floored depression. The somewhat continuous width of this depression suggests that it is not simply formed by the edges of two

  18. Lava Flows around Olympus Mons

    NASA Technical Reports Server (NTRS)

    2002-01-01

    [figure removed for brevity, see original site]

    At first glance, this image of lava flows around the large scarp of Olympus Mons shows little contrast in surface materials due to dust cover, but a closer look reveals textures characteristic of the variable surface roughness associated with different lava flows in this region. The lobate edges of the flows are distinctive, and permit the discrimination of many overlapping individual flows. On small scales, the surfaces of some flows look wrinkly and ropy, indicating a relatively fluid type of lava flow referred to as pahoehoe. Other surfaces appear more rough and broken, and might be referred to as a'a flows, which have higher viscosities and effusion rates compared to pahoehoe flows. The surface textures of lava flows can thus sometimes be used for comparative purposes to infer lava viscosity and effusion rates. There is also a bright streak in the wind shadow of the impact crater in the lower left of the image where dust that settles onto the surface is not easily scoured away.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and

  19. Compositional gradients surrounding spherulites in obsidian and their relationship to spherulite growth and lava cooling

    NASA Astrophysics Data System (ADS)

    Gardner, James E.; Befus, Kenneth S.; Watkins, James; Hesse, Marc; Miller, Nathan

    2012-10-01

    Spherical masses of crystal fibers (spherulites) crystalize from rhyolitic melt/glass mainly in response to significant undercooling while lava cools. Spherulite growth should induce compositional gradients in the surrounding glass from expulsion of incompatible constituents and diffusion of those constituents away from the spherulite. Finite-difference numerical modeling of one-dimensional diffusion, in which diffusivities are allowed to vary with temperature, is used to investigate how compositional gradients reflect spherulite growth and lava cooling. Overall, three forms of gradients are identified. Elements that diffuse quickly are expelled from the spherulite but then migrate away too quickly to become enriched at the boundary of the spherulite. Elements that diffuse slowly are trapped within the growing spherulite. Between those endmembers are elements that are not trapped, yet diffuse slow enough that they become enriched at the contact. Their slow diffusion away then elevates their concentrations in the surrounding glass. How enriched those elements are at the spherulite-matrix interface and how far their enrichments extend outwards into the glass reflect how spherulites grow and thermal conditions during growth. Concentrations of H2O, Rb, F, Li, Cl, Na, K, Sr, Cs, Ba, and Be were measured in and around spherulites in obsidian from a 4.7 ± 1 km3 rhyolite lava dome erupted from Tequila volcano, Mexico. Measurable concentration gradients are found for H2O, Rb, and F. Attributes of those gradients and the behaviors of the other elements are in accord with their experimentally constrained diffusivities. Spherulites appear to have grown following radial, rather than volumetric, growth. The observed gradients (and lack of others) are more consistent with growth mainly below the glass transition, which would necessitate the dome cooling at ca. 10-5 to 10-7 °C s-1. Such slow cooling is consistent with the relatively large volume of the dome.

  20. Cooling rate and thermal structure determined from progressive magnetization of the Dacite Dome at Mount St. Helens, Washington

    NASA Astrophysics Data System (ADS)

    Dzurisin, Daniel; Denlinger, Roger P.; Rosenbaum, Joseph G.

    1990-03-01

    Our study of a magnetic anomaly associated with the recently active dacite dome at Mount St. Helens suggests that the dome consists of a hot, nonmagnetized core surrounded by a cool, magnetized carapace and flanking talus. The talus does not contribute to the anomaly because its constituent blocks are randomly oriented. Temporal changes in the magnetic anomaly indicate that the magnetized carapace thickened at an average rate of 0.03±0.01 m/d from 1984 to 1986. Petrographic and rock magnetic properties of dome samples indicate that the dominant process responsible for these changes is magnetization of extensively oxidized rock at progressively deeper levels within the dome as the rock cools through its blocking temperature, rather than subsequent changes in magnetization caused by further oxidation. Newly extruded material cools rapidly for a short period as heat is conducted outward in response to convective heat loss from its surface. The cooling rate gradually declines for several weeks, and thereafter the material cools at a relatively constant rate by convective heat loss from its interior along fractures that propagate inward. The rate of internal convective heat loss through fractures varies with rainfall, snowmelt, and large-scale fracturing during subsequent eruptive episodes. In accordance with a model for solidification of the 1959 lava lake at Kilauea Iki, Hawaii, we picture the dome's magnetized carapace as being a two-phase, porous, convective zone separated from the nonmagnetized core of the dome by a thin, single-phase conductive zone. As a consequence of the heat balance between the conductive and convective zones, the blocking-temperature isotherm migrates inward at a relatively constant rate. If the dome remains inactive, the time scale for its complete magnetization is estimated to be 18-36 years, a forecast which can be refined by shallow drilling into the dome and by continuing studies of its growing magnetic anomaly.

  1. Volcano dome dynamics at Mount St. Helens: Deformation and intermittent subsidence monitored by seismicity and camera imagery pixel offsets

    NASA Astrophysics Data System (ADS)

    Salzer, J. T.; Thelen, W. A.; James, M. R.; Walter, T. R.; Moran, S. C.; Denlinger, R. P.

    2015-12-01

    The morphology of a volcanic lava dome and its rate of change play key roles in the estimation of dome stability. While long term variations of dome morphology can be quantified using aerial remote sensing, changes over shorter time scales and smaller spatial scales are more difficult to determine. However, intermittent destabilization of the dome, in particular on flanks of the domes, can be significant. This study focuses on short term deformation associated with earthquakes and tremor at Mount St. Helens, observed over a 6 week period in the summer of 2006. We use Digital Image Correlation (DIC) to compute the displacement field between successive optical images acquired by multiple fixed cameras with clear views of the dome. The results of the these calculations are compared to the occurrence of seismic events. A systematic time-series DIC analysis of image pairs showed no sharp changes in the dome morphology during periods without seismic events. However, the results reveal that the steady dome growth at Mount St. Helens was interrupted by short term displacements reaching magnitudes on the order of a meter. These displacements are only observed in association with low frequency, large magnitude seismic events, followed by tremor with frequencies between 5 Hz and likely exceeding 30 Hz. For selected events that coincide with the timing of the acquisition of an accurate DEM of the crater floor, we reproject the displacement fields obtained from two cameras onto the topography. This enables 3D displacement vectors to be derived, showing that the co-seismic deformation is marked by subsidence of the dome in a segmented fashion, the central region displaying mainly vertical motion, while the displacements on the talus are more slope-parallel. The exact relationship between the recorded seismic energy and the observed deformation of the dome can not be resolved because the cameras were only sampling every 15 - 60 minutes. However, our analysis suggests that the

  2. Lava Flows Cooling: The initial hypothesis

    NASA Astrophysics Data System (ADS)

    Cordonnier, B.; Self, S.; Manga, M.

    2013-12-01

    Many cooling models of lava have one precondition: an instantaneous-thick layer emplacement with a spatially uniform temperature, often as high as the effusion temperature. The cooling is then mostly controlled by conduction and is a function of the thermal parameters and dimensions of the lava flow (most important being thickness). However, many lavas, especially pahoehoe and compound lavas, are not directly emplaced with an established lava thickness but, rather, inflate from their core or result from piling-up of several layers, respectively. In both cases, this leads initially to thin fast-cooling lavas in which the final emplacement temperature may differ strongly from the initial temperature of the liquid lava feeding the flow. Here we investigate both the behavior of inflating flows and superposition layering of lava. With a modified Peclet Number (Pe), where the velocity has been replaced by the inflation rate, we identify the conditions where lavas lose the most of their thermal energy before the final thickness is reached. For a given growth rate, inflating flows are hotter than those that grow through superposition. In the latter case, temperature depends not only with Pe, but also on the discrete lava-layer thickness. A clear quantification of the energy loss during these processes has been established and demonstrates the impact of each of them on the temperature of emplacement. Apart from this simple point, our study raises the question of lava-flow morphology. The two processes described, despite having opposite thermal effects, may be coupled during a single eruptive event. When a lava reaches its emplacement temperature and stops, then the pressing material uphill starts to bifurcate, turn around or superpose the previously emplaced layer. Our Peclet number could be again modified to consider the traditional emplacement condition of a Graetz number of 300. Beyond this point, the inflating process turns into a superposing process and the conditions

  3. Ascent and emplacement dynamics of obsidian lavas inferred from microlite textures

    NASA Astrophysics Data System (ADS)

    Befus, Kenneth S.; Manga, Michael; Gardner, James E.; Williams, Matthew

    2015-10-01

    To assess the eruption and emplacement of volumetrically diverse rhyolite lavas, we measured microlite number densities and orientations from samples collected from nine lavas in Yellowstone Caldera and two from Mono Craters, USA. Microlite populations are composed of Fe-Ti oxides ± alkali feldspar ± clinopyroxene. Number densities range from 108.11 ± 0.03 to 109.45 ± 0.15 cm-3 and do not correlate with distance from the vent across individual flows and are remarkably similar between large- and small-volume lavas. Together, those observations suggest that number densities are unmodified during emplacement and that ascent rates in the conduit are similar between small domes and large lava flows. Microtextures produced by continuous decompression experiments best replicate natural textures at decompression rates of 1-2 MPa hr-1. Acicular microlites have a preferred orientation in all natural samples. Because the standard deviation of microlite orientation does not become better aligned with distance travelled, we conclude that microlites exit the conduit aligned and that strain during subaerial flow was insufficient to further align microlites. The orientations of microlite trend and plunge in near-vent samples indicate that pure shear was the dominant style of deformation in the conduit. We speculate that collapsing permeable foam(s) provides a mechanism to concurrently allow microlite formation and alignment in response to the combination of degassing and flattening by pure shear.

  4. Emplacement of Long Lava Flows: Detailed Topography of the Carrizozo Basalt Lava Flow, New Mexico

    NASA Technical Reports Server (NTRS)

    Zimbelman, J. R; Johnston, A. K.

    2000-01-01

    The Carrizozo flow in south-central New Mexico was examined to obtain detailed topography for a long basaltic lava flow. This information will be helpful in evaluating emplacement models for long lava flows.

  5. Dome cities for extreme environments

    NASA Technical Reports Server (NTRS)

    Leonard, Raymond S.; Schwartz, Milton

    1992-01-01

    Extreme environments whether they be the frigid nights of the polar regions, the burning sands of the desert, or the harsh environment of space pose interesting challenges to the architect, the engineer, and the constructor in their efforts to create habitats for mankind. In space, the goals are to provide radiation protection while also providing an aesthetic living environment for long duration missions. Because of the need to provide both radiation protection and options for expansion of base facilities, a unique structural system which separates the radiation protection systems from the pressure envelope of the habitats was created. The system uses cable networks in a tensioned structural system, which supports the lunar regolith used for shielding above the facilities. The system is modular, easily expandable, and simple to construct. Additional innovations include the use of rock melting perpetrators for piles and anchoring deadmen, and various sized craters to provide side shielding. The reflective properties of the fabric used in the membrane are utilized to provide diffuse illumination. The use of craters along with the suspended shielding allows the dome to be utilized in fashions similar to those proposed by various designers unaware of the Moon's hostile radiation environment. Additional topics addressed deal with construction techniques for large domes, i.e., on the order of 100's to 1000's of meters, thermal control, the integration of tertiary water treatment schemes with architectural design, human factors, and its implications for the design of habitats for long term use in extreme environments.

  6. Characterizing Lava Flows With LiDAR

    NASA Astrophysics Data System (ADS)

    Deligne, N. I.; Cashman, K. V.; Deardorff, N.; Dietterich, H. R.; House, P. K.; Soule, S.

    2009-12-01

    Digital elevation models (DEMs) have been used in volcanology in predictive modeling of lava flow paths, both for assessment of potential hazards and specific predictions of lava flow paths. Topographic analysis of a lava flow is potentially useful for mapping and quantifying flow surface morphologies, which in turn can be used to determine flow emplacement conditions, such as effusion rate, steadiness of flow, and interactions with pre-existing topography and surface water. However, this has been limited in application because of the coarse resolution of most DEMs. In recent years, use of Light Detection and Ranging (LiDAR) airborne laser altimetry, capable of producing high resolution (≤ 1 meter) DEMs, has become increasingly common in the geomorphic and mapping community. However, volcanologists have made little use of airborne LiDAR. Here we compare information obtained using field observations and standard (10 meter) DEMs against LiDAR high resolution DEMs to assess the usefulness, capabilities, and limitations of LiDAR as applicable to lava flows. We compare morphologic characteristics of five lava flows of different compositions, tectonic settings, flow extents, slopes, and eruption duration: (1) 1984 Mauna Loa lava flow, Hawaii; (2) December 1974 Kilauea lava flow, Hawaii; (3) c. 1600 ybp Collier Cone lava flow, central Oregon Cascades; (4) Holocene lava flows from the Sand Mountain volcanic chain, central Oregon Cascades; and (5) Pleistocene lava flows along the Owyhee River, eastern Oregon basin and range. These lava flows range in composition from basalt to andesite, and have eruption durations ranging from 6 hours (observed) to years (inferred). We measure channel width, levee and flow front heights, compression ridge amplitude, wavelength and tumuli dimensions, and surface roughness. For all but the smallest scale features, LiDAR is easily used to quantify these features, which often is impossible or technically challenging to do in the field, while

  7. Utility of Lava Tubes on Other Worlds

    NASA Technical Reports Server (NTRS)

    Walden, Bryce E.; Billings, T. L.; York, Cheryl Lynn; Gillett, S. L.; Herbert, M. V.

    1998-01-01

    On Mars, as on Earth, lava tubes are found in the extensive lava fields associated with shield volcanism. Lunar lava-tube traces are located near mare-highland boundaries, giving access to a variety of minerals and other resources, including steep slopes, prominent heights for local area communications and observation, large-surface areas in shade, and abundant basalt plains suitable for landing sites, mass-drivers, surface transportation, regolith harvesting, and other uses. Methods for detecting lava tubes include visual observations of collapse trenches and skylights, ground-penetrating radar, gravimetry, magnetometry, seismography, atmospheric effects, laser, lidar, infrared, and human or robotic exploration.

  8. Environmental assessment: Richton Dome site, Mississippi

    SciTech Connect

    none,

    1986-05-01

    In February 1983, the US Department of Energy (DOE) identified the Richton Dome site in Mississippi as one of the nine potentially acceptable sites for a mined geologic repository for spent nuclear fuel and high-level radioactive waste. To determine their suitability, the Richton Dome site and the eight other potentially acceptable sites have been evaluated in accordance with the DOE's General Guidelines for the Recommendation of Sites for the Nuclear Waste Repositories. These evaluations were reported in draft environmental assessments (EAs), which were issued for public review and comment. After considering the comments received on the draft EAs, the DOE prepared the final EAs. The site is in the Gulf interior region, which is one of five distinct geohydrologic settings considered for the first repository. This setting contains two other potentially acceptable sites--the Cypress Creek Dome site in Mississippi and the Vacherie Dome site in Louisiana. Although the Cypress Creek Dome and the Vacherie Dome sites are suitable for site characterization, the DOE has concluded that the Richton Dome site is the preferred site in the Gulf interior region. On the basis of the evaluations reported in this EA, the DOE has found that the Richton Dome site is not disqualified under the guidelines.

  9. Environmental assessment: Richton Dome Site, Mississippi

    SciTech Connect

    none,

    1986-05-01

    In February 1983, the US Department of Energy (DOE) identified the Richton Dome site in Mississippi as one of the nine potentially acceptable sites for a mined geologic repository for spent nuclear fuel and high-level radioactive waste. To determine their suitability, the Richton Dome site and the eight other potentially acceptable sites have been evaluated in accordance with the DOE's General Guidelines for the Recommendation of Sites for the Nuclear Waste Repositories. These evaluations were reported in draft environmental assessments (EAs), which were issued for public review and comment. After considering the comments received on the draft EAs, the DOE prepared the final EAs. The site is in the Gulf interior region, which is one of five distinct geohydrologic settings considered for the first repository. This setting contains two other potentially acceptable sites--the Cypress Creek Dome site in Mississippi and the Vacherie Dome site in Louisiana. Although the Cypress Creek Dome and the Vacherie Dome sites are suitable for site characterization, the DOE has concluded that the Richton Dome site is the preferred site in the Gulf interior region. On the basis of the evaluations reported in this EA, the DOE has found that the Richton Dome site is not disqualified under the guidelines.

  10. Identification, distribution and significance of lunar volcanic domes.

    NASA Technical Reports Server (NTRS)

    Smith, E. I.

    1973-01-01

    Over 300 previously unrecognized volcanic domes were identified on Lunar Orbiter photographs using the following criteria: (1) the recognition of land forms on the Moon similar in morphology to terrestrial volcanic domes, (2) structural control, (3) geomorphic discordance, and (4) the recognition of land forms modified by dome-like swellings. Many terrestrial volcanic domes are similar in morphology to lunar domes. This analogy suggests that some lunar hills are in fact extrusive volcanic domes. Many of the domes identified in this paper seem to be related to basins and craters, and with the exception of local tectonic grid control few domes are related to any observable Moon-wide pattern.

  11. Propagation style controls lava-snow interactions.

    PubMed

    Edwards, B R; Belousov, A; Belousova, M

    2014-01-01

    Understanding interactions between volcanic eruptions and the cryosphere (a.k.a. glaciovolcanism) is important for climate reconstructions as well as for hazard mitigation at ice-clad volcanoes. Here we present unique field observations of interactions between snowpack and advancing basaltic lava flows during the 2012-13 eruption at Tolbachik volcano, Kamchatka, Russia. Our observations show that lava-snow heat transfer is slow, and that styles of lava propagation control snowpack responses. 'A'a and sheet lava flows advance in a rolling caterpillar-track motion on top of the rigid, snowpack substrate with minor lava-snow interaction. In contrast, pahoehoe lava propagates by inflation of lobes beneath/inside the snowpack, producing rigorous lava-snow interaction via meltwater percolation down into the incandescent lava causing production of voluminous steam, rapid surface cooling and thermal shock fragmentation. The textures produced by pahoehoe-snowpack interactions are distinctive and, where observed at other sites, can be used to infer syn-eruption seasonality and climatic conditions. PMID:25514031

  12. Propagation style controls lava-snow interactions.

    PubMed

    Edwards, B R; Belousov, A; Belousova, M

    2014-01-01

    Understanding interactions between volcanic eruptions and the cryosphere (a.k.a. glaciovolcanism) is important for climate reconstructions as well as for hazard mitigation at ice-clad volcanoes. Here we present unique field observations of interactions between snowpack and advancing basaltic lava flows during the 2012-13 eruption at Tolbachik volcano, Kamchatka, Russia. Our observations show that lava-snow heat transfer is slow, and that styles of lava propagation control snowpack responses. 'A'a and sheet lava flows advance in a rolling caterpillar-track motion on top of the rigid, snowpack substrate with minor lava-snow interaction. In contrast, pahoehoe lava propagates by inflation of lobes beneath/inside the snowpack, producing rigorous lava-snow interaction via meltwater percolation down into the incandescent lava causing production of voluminous steam, rapid surface cooling and thermal shock fragmentation. The textures produced by pahoehoe-snowpack interactions are distinctive and, where observed at other sites, can be used to infer syn-eruption seasonality and climatic conditions.

  13. Propagation style controls lava-snow interactions

    NASA Astrophysics Data System (ADS)

    Edwards, B. R.; Belousov, A.; Belousova, M.

    2014-12-01

    Understanding interactions between volcanic eruptions and the cryosphere (a.k.a. glaciovolcanism) is important for climate reconstructions as well as for hazard mitigation at ice-clad volcanoes. Here we present unique field observations of interactions between snowpack and advancing basaltic lava flows during the 2012-13 eruption at Tolbachik volcano, Kamchatka, Russia. Our observations show that lava-snow heat transfer is slow, and that styles of lava propagation control snowpack responses. ‧A‧a and sheet lava flows advance in a rolling caterpillar-track motion on top of the rigid, snowpack substrate with minor lava-snow interaction. In contrast, pahoehoe lava propagates by inflation of lobes beneath/inside the snowpack, producing rigorous lava-snow interaction via meltwater percolation down into the incandescent lava causing production of voluminous steam, rapid surface cooling and thermal shock fragmentation. The textures produced by pahoehoe-snowpack interactions are distinctive and, where observed at other sites, can be used to infer syn-eruption seasonality and climatic conditions.

  14. Deposits from the 12 July Dome Collapse and Explosive Activity at Soufriere Hills Volcano, 12-15 July 2003

    NASA Astrophysics Data System (ADS)

    Edmonds, M.; Herd, R.; Strutt, M.; Mann, C.

    2003-12-01

    A large dome collapse took place on 12-13 July 2003 at Soufriere Hills Volcano. This event was the largest in magnitude during the 1995-2003 eruption and involved over 120 million m3 andesite dome and talus material. The collapse took place over 18 hours and culminated in an explosive phase that continued intermittently until 15 July 2003. Prior to the collapse, the total volume of the dome was 230 million m3 and was made up of remnants of lava erupted 1997-2001, talus material and fresh andesite dome lava erupted during the last two years. Talus made up around 50% of the total dome volume. This paper describes and interprets the pyroclastic flow and airfall deposits from this event, using other monitoring data and empirical evidence to reconstruct the dome collapse. The airfall and pyroclastic flow deposits were studied in detail over the weeks following the collapse. Airfall deposits were studied at 45 locations around the island and 75 samples were collected for analysis. The surge deposit stretched over 10 km2 on land and 35 pits were dug at intervals through it. The sections were described and sampled, yielding a further 60 samples for grain size analysis. Further sampling was carried out on the block and ash deposits in the Tar River Valley and on the Tar River Fan. Pumices from the post-collapse explosion sequence were collected and their densities measured and mass coverage estimated. Deposit maps for airfall, lithics and pumices were constructed for all of the individual events and a map to show the distribution of the main surge unit was generated. The collapse was monitored in real-time using the MVO seismic network and observations from the field. The sequence of events was as follows. From 09:00 to 18:00, low-energy pyroclastic flows took place, confined to the Tar River Valley, which reached the sea at the mouth of Tar River. These flows gradually increased in energy throughout the day but were not associated with energetic, large surges. By 18:00 the

  15. Lava-snow interactions at Tolbachik 2012-13 eruption: comparison to recent field observations and experiments

    NASA Astrophysics Data System (ADS)

    Edwards, B. R.; Belousov, A.; Belousova, M.; Izbekov, P. E.; Bindeman, I. N.; Gardeev, E.; Muravyev, Y. D.; Melnikov, D.

    2013-12-01

    More than a dozen volcanic eruptions in the past twenty years have produced lava interaction with snow or ice, some of which have produced damaging floods/lahars. However, the factors controlling melting during lava-snow/ice interactions is not well understood. Recent observations from the presently ongoing eruption at Tolbachik, Kamchatka confirm some general observations from large-scale experiments, and recent eruptions (2010 Fimmvorduhals; Edwards et al, 2012), but also show new types of behavior not before described. The new observations provide further constraints on heat transfer between ice/snow and three different lava morphologies: ';a'a, pahoehoe, and toothpaste. ';A'a flows at Tolbachik commonly were able to travel over seasonal snow cover (up to 4 m thick), especially where the snow was covered by tephra within 1.5 km of the vent area. Locally, heated meltwater discharge events issued from beneath the front of advancing lava, even though snow observation pits dug in front of advancing ';a'a flows also showed that in some areas melting was not as extensive. Once, an ';a'a flow was seen to collapse through snow, generating short-lived phreatomagmatic/phreatic activity. Closer to the vent, pahoehoe flow lobes and sheet flows occasionally spilled over onto snow and were able to rapidly transit snow with few obvious signs of melting/steam generation. Most of these flows did melt through basal snow layers within 24 hours however. We were also able to closely observe ';toothpaste' lava flows ';intruding' into snow in several locations, including snow-pits, and to watch it pushing up through snow forming temporary snow domes. Toothpaste lava caused the most rapid melting and most significant volumes of steam, as the meltwater drained down into the intruding lava. Behaviour seen at Tolbachik is similar to historic (e.g., Hekla 1947; Einarrson, 1949) and recent observations (e.g. Fimmvorduhals), as well as large-scale experiments (Edwards et al., 2013). While

  16. Arc jet testing of a Dynasil dome

    NASA Astrophysics Data System (ADS)

    Burrell, Jack O.; Strobel, Forrest A.

    1999-07-01

    Arc jet testing of the Hera modified ballistic reentry vehicle - 1E (MBRV-1E) nosetip was conducted in June of 1998. The tests were conducted in the Air Force's Arnold Engineering Development Center HEAT-H1 arc plasma test facility in Tullahoma, Tennessee. The MBRV-1 vehicle is a separating short- to medium-range target. The MBRV-1E nosetip incorporates a custom designed quartz dome that is integrated into the nosetip stagnation region. The dome was bonded to the baseline nosetip material, a well characterized carbon-carbon composite material, using a silica based ceramic bond materials. The objectives of the test were to demonstrate the thermal performance and structural integrity of the nosetip design by exposing tip to arc plasma-heated flow simulating the reentry flight environment. Pre-test analysis of the Dynasil dome performed using finite element analysis predicted the dome would survive the test conditions with no failures. Post-test inspection of the dome revealed a hard, opaque coating on the outer surface of the dome. Once removed, the dome was shown to have numerous surface cracks near the stagnation region. In addition to the surface cracks, significant pitting on the surface was observed through both an optical microscope and a scanning electron microscope. Post-test analyses were performed to determine the cause of these surface cracks. It was concluded that the cracks occurred during cooldown, and were a result of significant strength degradation which was caused by the surface pitting.

  17. Subsidence and collapse at Texas Salt Domes

    SciTech Connect

    Mullican, W.F.

    1989-01-01

    This book provides a description of the mechanisms and extent of natural and man-induced subsidence and collapse at Texas salt domes. In the Houston diapir province, Frasch mining has caused subsidence bowls and collapse sinkholes at 12 of the 14 sulfur-productive domes. Understanding the structural and hydrologic instability that results at the surface and subsurface is crucial in evaluating the suitability of salt domes as repositories for waste disposal. Part of the Bureau's Coastal Salt Dome Program, this study used aerial photographs, remote-sensing methods, historical and modern topographic maps, and field checks to detect subsidence and collapse associated with natural salt diapiric processes and commercial resource recovery and to determine which processes are likely to reduce the stability and integrity of hydrologic and structural barriers around salt diapirs. Figures and tables illustrating the extent and evolution of subsidence and collapse, along with photographs showing their effects, highlight the text discussion of the salt domes detailed in this study-Boling, Orchard, Moss Bluff, Spindletop, Hoskins Mound, Fannett, Long Point, Nash, High Island, Bryan Mound, Clemens, and Gulf. The author concludes that Frasch sulfur mining from cap rocks causes the most catastrophic subsidence and collapse and that subsidence over salt domes includes processes ranging from trough subsidence to various types of subsurface caving. He concludes that salt domes characterized by subsidence and collapse are unfavorable sites for storage/disposal of hazardous wastes.

  18. Cooling rate and thermal structure determined from progressive magnetization of the dacite dome at Mount St. Helens, Washington

    SciTech Connect

    Dzurisin, D. ); Denlinger, R.P. ); Rosenbaum, J.G. )

    1990-03-10

    The study suggests that the dome consists of a hot, nonmagnetized core surrounded by a cool magnetized carapace and flanking talus. Temporal changes in the magnetic anomaly indicate that the magnetized carapace thickened at an average rate of 0.03 {plus minus} 0.01 m/d from 1984 to 1986. Petrographic and rock magnetic properties of dome samples indicate that the dominant process responsible for these changes is magnetization of extensively oxidized rock at progressively deeper levels within the dome as the rock cools through its blocking temperature, rather than subsequent changes in magetization caused by further oxidation. Newly extruded material cools rapidly for a short period as heat is conducted outward in response to convective heat loss from its surface. The cooling rate gradually declines for several weeks, and thereafter the material cools at a relatively constant rate by convective heat loss from its interior along fractures that propagate inward. The rate of internal convective heat loss through fractures varies with rainfall, snowmelt, and large-scale fracturing during subsequent eruptive episodes. In accordance with a model for solidification of the 1959 lava lake at Kilauea Iki, Hawaii, the authors picture the dome's magnetized carapace as being a two-phase, porous, convective zone separated from the nonmagnetized core of the dome by a thin, single-phase conductive zone. As a consequence of the heat balance between the conductive and convective zones, the blocking-temperature isotherm migrates inward at a relatively constant rate. If the dome remains inactive, the time scale for its complete magnetization is estimated to be 18-36 years, a forecast which can be refined by shallow drilling into the dome and by continuing studies of its growing magnetic anomaly.

  19. Fractionation, ascent, and extrusion of magma at the Santiaguito volcanic dome, Guatemala

    NASA Astrophysics Data System (ADS)

    Scott, J.; Mather, T. A.; Pyle, D. M.

    2011-12-01

    The silicic dome complex of Santiaguito, Guatemala has exhibited continuous low-level activity for nearly 90 years[1]. Despite its longevity, remarkably little is known about the magmatic plumbing system beneath Santiaguito. We present preliminary constraints on this system, based on petrological analyses of lava samples. Amphibole thermobarometry suggests magma evolves during slow ascent through a phenocryst fractionation zone - a complex of dikes and sills, extending from at least ~24 km to at most ~12 km beneath Santiaguito. Discontinuous plagioclase size distributions suggest this slow fractionation ends at depth, and degassing-induced crystallization of microlites begins. The texture and geochemistry of microlites is consistent with uninterrupted final ascent; there is no evidence of shallow magma storage beneath Santiaguito. The normative composition of matrix glass, and the morphology and volume of plagioclase microlites suggests ascending magma crosses the rigidification threshold within <1 km of the surface. The term "rigidification" refers to the point at which crystallization ends, vesicles are preserved, and ductile behaviour is replaced by dominantly brittle behaviour, previously referred to as "final melt quench". We suggest rigidification slows the ascent of magma and may create the conduit plug previously observed at Santiaguito[2]. This rigid mass of magma may begin to fracture almost immediately to form a semi-permeable plug, before extruding onto the surface as blocky lava. The extrusion rate may be reflected in the extent of matrix glass decomposition to crystalline silica and alkali feldspar. This preliminary picture of the plumbing system beneath Santiaguito may lead to a greater understanding of the behaviour of this enigmatic volcano, and of the danger it poses to the region. However, our findings raise many further questions about the dynamics within silicic dome-forming systems that need to be addressed if we are to work towards a broad

  20. Pressure Dome for High-Pressure Electrolyzer

    NASA Technical Reports Server (NTRS)

    Norman, Timothy; Schmitt, Edwin

    2012-01-01

    A high-strength, low-weight pressure vessel dome was designed specifically to house a high-pressure [2,000 psi (approx. = 13.8 MPa)] electrolyzer. In operation, the dome is filled with an inert gas pressurized to roughly 100 psi (approx. = 690 kPa) above the high, balanced pressure product oxygen and hydrogen gas streams. The inert gas acts to reduce the clamping load on electrolyzer stack tie bolts since the dome pressure acting axially inward helps offset the outward axial forces from the stack gas pressure. Likewise, radial and circumferential stresses on electrolyzer frames are minimized. Because the dome is operated at a higher pressure than the electrolyzer product gas, any external electrolyzer leak prevents oxygen or hydrogen from leaking into the dome. Instead the affected stack gas stream pressure rises detectably, thereby enabling a system shutdown. All electrical and fluid connections to the stack are made inside the pressure dome and require special plumbing and electrical dome interfaces for this to be accomplished. Further benefits of the dome are that it can act as a containment shield in the unlikely event of a catastrophic failure. Studies indicate that, for a given active area (and hence, cell ID), frame outside diameter must become ever larger to support stresses at higher operating pressures. This can lead to a large footprint and increased costs associated with thicker and/or larger diameter end-plates, tie-rods, and the frames themselves. One solution is to employ rings that fit snugly around the frame. This complicates stack assembly and is sometimes difficult to achieve in practice, as its success is strongly dependent on frame and ring tolerances, gas pressure, and operating temperature. A pressure dome permits an otherwise low-pressure stack to operate at higher pressures without growing the electrolyzer hardware. The pressure dome consists of two machined segments. An O-ring is placed in an O-ring groove in the flange of the bottom

  1. Field-based description of rhyolite lava flows of the Calico Hills Formation, Nevada National Security Site, Nevada

    USGS Publications Warehouse

    Sweetkind, Donald S.; Bova, Shiera C.

    2015-01-01

    In the area south of the Rainier Mesa caldera, surface and subsurface geologic data are combined to interpret the overall thickness of the Calico Hills Formation and the proportion of lava flow lithology across the study area. The formation is at least 500 meters (m) thick and contains the greatest proportion of rhyolite lava flow to the northeast of Yucca Mountain in the lower part of Fortymile Canyon. The formation thins to the south and southwest where it is between 50 and 200 m thick beneath Yucca Mountain and contains no rhyolite lavas. Geologic mapping and field-based correlation of individual lava flows allow for the interpretation of the thickness and extent of specific flows and the location of their source areas. The most extensive flows have widths from 2 to 3 kilometers (km) and lengths of at least 5–6 km. Lava flow thickness varies from 150 to 250 m above interpreted source vents to between 30 and 80 m in more distal locations. Rhyolite lavas have length-to-height ratios of 10:1 or greater and, in one instance, a length-to-width ratio of 2:1 or greater, implying a tongue-shaped geometry instead of circular domes or tabular bodies. Although geologic mapping did not identify any physical feature that could be positively identified as a vent, lava flow thickness and the size of clasts in subjacent pyroclastic deposits suggest that primary vent areas for at least some of the flows in the study area are on the east side of Fortymile Canyon, to the northeast of Yucca Mountain.

  2. Three long lava flows in north Queensland

    NASA Astrophysics Data System (ADS)

    Stephenson, P. J.; Burch-Johnston, A. T.; Stanton, D.; Whitehead, P. W.

    1998-11-01

    The Kinrara, Toomba, and Undara basaltic lava flows are from 55 to 160 km long and range in age from 13 to 190 ka. The lavas were emplaced down low gradients (0.2° to 0.4°) with volumes ranging up to 30 km3. They were not unusually hot at eruption (1130°-1160°) nor unusually fluid. Gentle topography controlled the flows, and shallow drainage lines captured them. Lava tubes operated in places, and some drained to form caves. Injection under surface crust was widespread, producing inflation features ranging from tumuli and low plateaus to extensive ridges. Sustained eruption was essential for the development of the long flows, but each is composite, with pauses between successive pulses that partially covered the earlier, longer flows. The lava structures are mainly pahoehoe but some 'a'a lavas are present. Of the three volcanoes involved, Undara is a simple low-angle lava cone with a 200-m-wide crater, Toomba is a low-angled cone with several eruption centers, and Kinrara has a deep crater with evidence of strong fountaining. Effusion rates are not known but may have been relatively low, similar to those observed in Hawaiian volcanoes. Lava tubes, most of which remained undrained, are believed to have been of major importance in flow emplacement. Given the evidence of successive flows and the time needed to develop widespread inflation, it is suggested that the two long flows over 100 km involved many decades of eruption.

  3. Dynamics of the Mount Nyiragongo lava lake

    NASA Astrophysics Data System (ADS)

    Burgi, P.-Y.; Darrah, T. H.; Tedesco, D.; Eymold, W. K.

    2014-05-01

    The permanent and presently rising lava lake at Mount Nyiragongo constitutes a major potential geological hazard to the inhabitants of the Virunga volcanic region in the Democratic Republic of Congo (DRC) and Rwanda. Based on two field campaigns in June 2010 and 2011, we estimate the lava lake level from the southeastern crater rim (~400 m diameter) and lava lake area (~46,550 m2), which constrains, respectively, the lava lake volume (~9 × 106 m3) and volume flow rate needed to keep the magma in a molten state (0.6 to 3.5 m3 s-1). A bidirectional magma flow model, which includes the characterization of the conduit diameter and funnel-shaped lava lake geometry, is developed to constrain the amount of magma intruded/emplaced within the magmatic chamber and rift-related structures that extend between Mount Nyiragongo's volcanic center and the city of Goma, DRC, since Mount Nyiragongo's last eruption (17 January 2002). Besides matching field data of the lava lake level covering the period 1977 to 2002, numerical solutions of the model indicate that by 2022, 20 years after the January 2002 eruption, between 300 and 1700 × 106 m3 (0.3 to 1.7 km3) of magma could have intruded/emplaced underneath the edifice, and the lava lake volume could exceed 15 × 106 m3.

  4. Lava flow texture LiDAR signatures

    NASA Astrophysics Data System (ADS)

    Whelley, P.; Garry, W. B.; Scheidt, S. P.; Irwin, R. P., III; Fox, J.; Bleacher, J. E.; Hamilton, C. W.

    2014-12-01

    High-resolution point clouds and digital elevation models (DEMs) are used to investigate lava textures on the Big Island of Hawaii. An experienced geologist can distinguish fresh or degraded lava textures (e.g., blocky, a'a and pahoehoe) visually in the field. Lava texture depends significantly on eruption conditions, and it is therefore instructive, if accurately determined. In places where field investigations are prohibitive (e.g., Mercury, Venus, the Moon, Mars, Io and remote regions on Earth) lava texture must be assessed from remote sensing data. A reliable method for differentiating lava textures in remote sensing data remains elusive. We present preliminary results comparing properties of lava textures observed in airborne and terrestrial Light Detection and Ranging (LiDAR) data. Airborne data, in this study, were collected in 2011 by Airborne 1 Corporation and have a ~1m point spacing. The authors collected the terrestrial data during a May 2014 field season. The terrestrial scans have a heterogeneous point density. Points close to the scanner are 1 mm apart while 200 m in the distance points are 10 cm apart. Both platforms offer advantages and disadvantages beyond the differences in scale. Terrestrial scans are a quantitative representation of what a geologist sees "on the ground". Airborne scans are a point of view routinely imaged by other remote sensing tools, and can therefore be quickly compared to complimentary data sets (e.g., spectral scans or image data). Preliminary results indicate that LiDAR-derived surface roughness, from both platforms, is useful for differentiating lava textures, but at different spatial scales. As all lava types are quite rough, it is not simply roughness that is the most advantageous parameter; rather patterns in surface roughness can be used to differentiate lava surfaces of varied textures. This work will lead to faster and more reliable volcanic mapping efforts for planetary exploration as well as terrestrial

  5. Early life recorded in archean pillow lavas.

    PubMed

    Furnes, Harald; Banerjee, Neil R; Muehlenbachs, Karlis; Staudigel, Hubert; de Wit, Maarten

    2004-04-23

    Pillow lava rims from the Mesoarchean Barberton Greenstone Belt in South Africa contain micrometer-scale mineralized tubes that provide evidence of submarine microbial activity during the early history of Earth. The tubes formed during microbial etching of glass along fractures, as seen in pillow lavas from recent oceanic crust. The margins of the tubes contain organic carbon, and many of the pillow rims exhibit isotopically light bulk-rock carbonate delta13C values, supporting their biogenic origin. Overlapping metamorphic and magmatic dates from the pillow lavas suggest that microbial life colonized these subaqueous volcanic rocks soon after their eruption almost 3.5 billion years ago. PMID:15105498

  6. Early life recorded in archean pillow lavas.

    PubMed

    Furnes, Harald; Banerjee, Neil R; Muehlenbachs, Karlis; Staudigel, Hubert; de Wit, Maarten

    2004-04-23

    Pillow lava rims from the Mesoarchean Barberton Greenstone Belt in South Africa contain micrometer-scale mineralized tubes that provide evidence of submarine microbial activity during the early history of Earth. The tubes formed during microbial etching of glass along fractures, as seen in pillow lavas from recent oceanic crust. The margins of the tubes contain organic carbon, and many of the pillow rims exhibit isotopically light bulk-rock carbonate delta13C values, supporting their biogenic origin. Overlapping metamorphic and magmatic dates from the pillow lavas suggest that microbial life colonized these subaqueous volcanic rocks soon after their eruption almost 3.5 billion years ago.

  7. Environmental assessment overview: Richton Dome site, Mississippi

    SciTech Connect

    none,

    1986-05-01

    In February 1983, the US Department of Energy (DOE) identified the Richton Dome site in Mississippi as one of the nine potentially acceptable sites for a mined geologic repository for spent nuclear fuel and high-level radioactive waste. To determine their suitability, the Richton Dome site and the eight other potentially acceptable sites have been evaluated in accordance with the DOE's General Guidelines for the Recommendation of Sites for the Nuclear Waste Repositories. The site is in the Gulf interior region, which is one of five distinct geohydrologic settings considered for the first repository. On the basis of the evaluations reported in this EA, the DOE has found that the Richton Dome site is not disqualified under the guidelines. On the basis of these findings, the DOE is nominating the Richton Dome site as one of five sites suitable for characterization. 3 figs.

  8. 'Heat Dome' Not Budging Until Week's End

    MedlinePlus

    ... fullstory_160083.html 'Heat Dome' Not Budging Until Week's End Eastern part of country still in its ... not be budging before the end of the week, weather forecasters said Tuesday. "With no strong pushes ...

  9. Yukimarimo at Dome C, Antarctica

    NASA Astrophysics Data System (ADS)

    Petenko, Igor

    2015-04-01

    Natural frostballs called "yukimarimo" were observed at at Dome C, Antarctica, during the winter of 2014. Frostballs have spheroidal or lightly oblate form. Four cases of the yukimarimo were observed in the period April - August. The characteristics concerning their sizes, density, distribution over the surface varied for different cases. The diameters ranged from several millimetres to 120 mm, the density ranged from 15 to 60 kg/m3 . The heaviest one weighted 14 g and had a diameter of ≈90 mm. The initial "material" from which they formed resembles candy floss or fluff. In one case, only the initial stage of the small-yukimarimo formation was observed; the further development was interrupted. The meteorological conditions observed diuring the yukimarimo were not particular. The near-surface temperature varied between -70° and -60°C. Winds favouring to the yukimarimo formation were low, but not less than 2 m/s^1. A two-step mechanism of their formation and development is assumed: 1) at the initial stage, an electrostatic attraction favours the clumping of ice crystals to form some ice mass resembling floss structured in spherical pieces; 2) some pieces of ice floss are rolled by the wind and collect more ice crystals and increase in size like to a tumbleweed. Special comprehensive studies of electrical properties of the frost during the initial stage are necessary. Videos of moving yukimarimo at different stages of their formation are available.

  10. The design research of a spinel dome

    NASA Astrophysics Data System (ADS)

    Zhao, Hongwei; Hou, Tianjin; Zhu, Bin; Huang, Qiu; Gao, Zhifeng

    2011-08-01

    Based on the aerodynamic heating simulated results of a spinel middle-infrared (Mid IR) image guide missile dome flying at supersonic speed, a series of experiments are made and some methods of eliminating aero-heating effect are carried out successfully. First, a simulation experiment on the ground discarding an outside protective shell of a spinel dome is accomplished in order to inspect the withstanding impact ability of the dome. Second, an arc wind tunnel experiment is fulfilled to obtain thermal mechanics characteristic of the spinel dome, and a method to buildup obviously mechanics intensity is approved which is coating diamond protective layer on the external wall of the spinel dome. Third, two heated dome imaging experiments on the ground are made to study the aero-optical phenomenon. Finally, a rocket sled experiment of a guide missile head is made successfully. Experimental results show that when the guide missile head flies in a supersonic, by adjusting the frame integration time of detector etc. the aero-optic effect would decrease greatly.

  11. Emplacement of submarine lava flow fields: A geomorphological model from the Niños eruption at the Galápagos Spreading Center

    NASA Astrophysics Data System (ADS)

    McClinton, J. Timothy; White, Scott M.

    2015-03-01

    In the absence of any direct observations of an active submarine eruption at a mid-ocean ridge (MOR), our understanding of volcanic processes there is based on the interpretation of eruptive products. Submarine lava flow morphology serves as a primary indicator of eruption and emplacement processes; however, there is typically a lack of visual observations and bathymetric data at a scale and extent relevant to submarine lava flows, which display meter to submeter-scale morphological variability. In this paper, we merge submersible-based visual observations with high-resolution multibeam bathymetry collected by an autonomous underwater vehicle (AUV) and examine the fine-scale geomorphology of Niños, a submarine lava flow field at the Galápagos Spreading Center (GSC).We identify separate morphological facies (i.e., morphofacies) within the lava flow field, each having distinct patterns of lava flow morphology and volcanic structures. The spatial and stratigraphic arrangement of morphofacies suggests that they were emplaced sequentially as the eruption progressed, implying that the Niños eruption consisted of at least three eruptive phases. We estimate eruption parameters and develop a chronological model that describes the construction of the Niños lava flow field. An initial phase with high effusion rates emplaced sheet flows, then an intermediate phase emplaced a platform of lobate lavas, and then an extended final phase with low effusion rates emplaced a discontinuous row of pillow lava domes. We then compare this model to mapped lava flow fields at other MORs. Despite disparities in scale, the morphological similarities of volcanic features at MORs with different spreading rates suggest common emplacement processes that are primarily controlled by local magma supply.

  12. Geomagnetic polarity zones for icelandic lavas

    USGS Publications Warehouse

    Dagley, P.; Wilson, R.L.; Ade-Hall, J. M.; Walker, G.P.L.; Haggerty, S.E.; Sigurgeirsson, T.; Watkins, N.D.; Smith, P.J.; Edwards, J.; Grasty, R.L.

    1967-01-01

    Analysis of cores collected from a sequence of lavas in Eastern Iceland has made possible an accurate calculation of the average rate of reversal of the Earth's magnetic field. ?? 1967 Nature Publishing Group.

  13. Taylor instability in rhyolite lava flows

    NASA Technical Reports Server (NTRS)

    Baum, B. A.; Krantz, W. B.; Fink, J. H.; Dickinson, R. E.

    1989-01-01

    A refined Taylor instability model is developed to describe the surface morphology of rhyolite lava flows. The effect of the downslope flow of the lava on the structures resulting from the Taylor instability mechanism is considered. Squire's (1933) transformation is developed for this flow in order to extend the results to three-dimensional modes. This permits assessing why ridges thought to arise from the Taylor instability mechanism are preferentially oriented transverse to the direction of lava flow. Measured diapir and ridge spacings for the Little and Big Glass Mountain rhyolite flows in northern California are used in conjunction with the model in order to explore the implications of the Taylor instability for flow emplacement. The model suggests additional lava flow features that can be measured in order to test whether the Taylor instability mechanism has influenced the flows surface morphology.

  14. Lunar lava tube radiation safety analysis.

    PubMed

    De Angelis, Giovanni; Wilson, J W; Clowdsley, M S; Nealy, J E; Humes, D H; Clem, J M

    2002-12-01

    For many years it has been suggested that lava tubes on the Moon could provide an ideal location for a manned lunar base, by providing shelter from various natural hazards, such as cosmic radiation, meteorites, micrometeoroids, and impact crater ejecta, and also providing a natural environmental control, with a nearly constant temperature, unlike that of the lunar surface showing extreme variation in its diurnal cycle. An analysis of radiation safety issues on lunar lava tubes has been performed by considering radiation from galactic cosmic rays (GCR) and Solar Particle Events (SPE) interacting with the lunar surface, modeled as a regolith layer and rock. The chemical composition has been chosen as typical of the lunar regions where the largest number of lava tube candidates are found. Particles have been transported all through the regolith and the rock, and received particles flux and doses have been calculated. The radiation safety of lunar lava tubes environments has been demonstrated.

  15. Determination of eruption temperature of Io's lavas using lava tube skylights

    NASA Astrophysics Data System (ADS)

    Davies, Ashley Gerard; Keszthelyi, Laszlo P.; McEwen, Alfred S.

    2016-11-01

    Determining the eruption temperature of Io's dominant silicate lavas would constrain Io's present interior state and composition. We have examined how eruption temperature can be estimated at lava tube skylights through synthesis of thermal emission from the incandescent lava flowing within the lava tube. Lava tube skylights should be present along Io's long-lived lava flow fields, and are attractive targets because of their temporal stability and the narrow range of near-eruption temperatures revealed through them. We conclude that these skylights are suitable and desirable targets (perhaps the very best targets) for the purposes of constraining eruption temperature, with a 0.9:0.7-μm radiant flux ratio ≤6.3 being diagnostic of ultramafic lava temperatures. Because the target skylights may be small - perhaps only a few m or 10 s of m across - such observations will require a future Io-dedicated mission that will obtain high spatial resolution (< 100 m/pixel), unsaturated observations of Io's surface at multiple wavelengths in the visible and near-infrared, ideally at night. In contrast to observations of lava fountains or roiling lava lakes, where accurate determination of surface temperature distribution requires simultaneous or near-simultaneous (< 0.1 s) observations at different wavelengths, skylight thermal emission data are superior for the purposes of temperature derivation, as emission is stable on much longer time scales (minutes, or longer), so long as viewing geometry does not greatly change during that time.

  16. Ground Deformation Associated with the 2004-2005 Dome-building Eruption of Mount St. Helens, Washington

    NASA Astrophysics Data System (ADS)

    Dzurisin, D.; Lisowski, M.; Schilling, S. P.; Lahusen, R. G.; Sherrod, D. R.; Iwatsubo, E. Y.; Diefenbach, A.; Thompson, S. K.

    2005-12-01

    Following nearly 18 years of eruptive quiescence, a new dacite lava dome began growing in the crater at Mount St. Helens in October 2004. Extrusion was preceded by an intense swarm of shallow earthquakes starting on September 23, by several small explosions starting on October 1, and by remarkable uplift of the south crater floor and glacier. The resulting welt, which was first identified in air photos on September 27, was 450 m wide and 100 m high on October 11 when the first new lava emerged from it. Campaign-style GPS surveys in 2000 and 2003 of a 50-station network concentrated within 10 km of the volcano's summit, but extending more than 30 km radially and covering an area of more than 7400 km2, revealed no surface deformation indicative of magmatic inflation or deflation. A single-frequency continuous GPS station on the 1980-1986 lava dome and annual GPS surveys of points on the dome and surrounding crater floor showed only subsidence of the dome at rates of a few cm/yr, which we attribute to cooling and compaction. A continuous GPS station (JRO1) located 9 km NNW of the vent abruptly started moving toward the volcano, suggesting deflation of a deep magma reservoir, concurrent with the onset of seismicity. Southward motion of JRO1, which is distinctly different from the regional trend of clockwise block rotation in SW Washington, gradually slowed from ~0.5 mm/d before emergence of the new dome to an average of ~0.04 mm/d during the first 11 months of continuous extrusion. Meanwhile, the extrusion rate was relatively steady at ~2 m3/s. Taken together, the JRO1 GPS and extrusion-rate results indicate that the crustal magma reservoir feeding the eruption is being replenished. Twelve new continuous GPS stations were installed on or near the volcano starting in October 2004 by the USGS Cascades Volcano Observatory and UNAVCO Inc., the latter representing the Plate Boundary Observatory. Like JRO1, these stations moved mostly toward the volcano during the ensuing 11

  17. Multi-scale heterogeneity in rhyolitic lava at Hrafntinnuhryggur, Krafla, Iceland

    NASA Astrophysics Data System (ADS)

    Tuffen, Hugh; Castro, Jonathan M.; Woodroffe, Nicola; Hounslow, Mark W.

    2010-05-01

    Small-volume rhyolitic lava flows and domes erupted through thin ice at Hrafntinnuhryggur, Krafla, Iceland[1] display remarkable textural heterogeneity over a range of spatial scales from microns to metres. As textures in the exposed feeder dyke are uniform and the aphyric magma was originally compositionally homogeneous, this heterogeneity must have emerged through strong spatial variations in deformation, vesiculation and crystallization within the lava bodies themselves. Metre-scale textural zonations occur between the margin and the interior of lava bodies. Spherulitic lava interiors are enveloped by concentric zones of lithophysae-rich obsidian, coarsely-vesicular obsidian in various stages of collapse and flow-banded, faulted obsidian[1]. These zonations reflect divergent pathways of lava evolution at different background cooling rates, which allow differing extents of late-stage crystallization and secondary vesiculation. The liberation of latent heat during spherulite crystallization[2] is an example of a feedback that can magnify the resultant textural diversity, as heat release can trigger both accelerated crystallization and vesiculation of the lava. Striking textural heterogeneities also occur on much smaller spatial scales within the lava. The flow-banded obsidian displays a broad spectrum of colours on a millimetre scale and different-coloured bands have distinct magnetic properties. This indicates that contrasting populations of sub-micron magnetite, haematite and clinoferrosilite grains are present in adjacent flow bands. Some flow bands contain remnants of now-collapsed vesicles, indicating that heterogeneous degassing may have led to highly-localised melt dehydration, redox conditions and resultant crystal nucleation. Strain localization is another feedback that can play a major role in emphasizing differences between neighbouring flow bands. Two other types of textural heterogeneity occur on still-smaller spatial scales. Firstly, individual

  18. Dome, Sweet Dome--Geodesic Structures Teach Math, Science, and Technology Principles

    ERIC Educational Resources Information Center

    Shackelford, Ray; Fitzgerald, Michael

    2007-01-01

    Today, geodesic domes are found on playgrounds, homes, over radar installations, storage facilities, at Disney's Epcot Center, and at World's Fairs. The inventor of the design, Buckminster Fuller, thought that geodesic domes could be used to cover large areas and even designed one to cover all of New York's Manhattan Island. This article details…

  19. Lava Flows On Ascraeus Mons Volcano

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Ascraeus Mons Volcano: Like Earth, Mars has many volcanoes and volcanic features. This high-resolution view shows some of the lava flows near the summit of Ascraeus Mons, one of the three giant shield volcanoes known as the 'Tharsis Montes'. Volcanoes form when magma (molten rock) erupts out onto the surface of a planet. Based on Viking-era observations, Ascraeus Mons is considered to be one of the tallest volcanoes on Mars... its summit is more than 11 km (6.8 miles) above the surrounding plain. The summit is more than 23 km (14 miles) higher in elevation than the place where Mars Pathfinder landed in July 1997.

    Description of MOC Image: This picture shows an area that is about 20 km (12 miles) higher in elevation than the Mars Pathfinder landing site. The picture shows three main features: (1) a crater at the center-right, (2) a sinuous, discontinuous channel across the upper half, and (3) a rough and pitted, elevated surface across the lower half of the image.

    (1) Crater at center right. Distinguishing meteor craters from volcanic craters can sometimes be a challenge on Mars. This particular crater was most likely formed by meteor impact because it has a raised rim and a faint radial ejecta pattern around the outside of it. This crater is 600 m (2000 feet) across, about 3/4 the size of the famous 'Meteor Crater' near Winslow, Arizona.

    (2) Sinuous channel. The type of discontinuous channel running across the upper half of the image is sometimes referred to as a 'sinuous rille'. These are common on the volcanic plains of the Moon and among volcanoes and volcanic plains on Earth. Such a channel was once a lava tube. It is running down the middle of an old lava flow. The 'tube' looks like a 'channel' because its roof has collapsed. The discontinuous nature of this channel is the result of the collapse, or 'cave-in' of what was once the roof of the lava tube. It is common for certain types of relatively fluid lavas to form

  20. Keck Geology Consortium Lava Project: Undergraduate Research Linking Natural and Experimental Basaltic Lava Flows

    NASA Astrophysics Data System (ADS)

    Karson, J. A.; Hazlett, R. W.; Wysocki, R.; Bromfield, M. E.; Browne, N. C.; Davis, N. C.; Pelland, C. G.; Rowan, W. L.; Warner, K. A.

    2014-12-01

    Undergraduate students in the Keck Geology Consortium Lava Project participated in a month-long investigation of features of basaltic lava flows from two very different perspectives. The first half of the project focused on field relations in basaltic lava flows from the 1984 Krafla Fires eruption in northern Iceland. Students gained valuable experience in the collection of observations and samples in the field leading to hypotheses for the formation of selected features related to lava flow dynamics. Studies focused on a wide range of features including: morphology and heat loss in lava tubes (pyroducts), growth and collapse of lava ponds and overflow deposits, textural changes of lava falls (flow over steep steps), spaced spatter cones from flows over wet ground, and anisotropy of magnetic susceptibility related to flow kinematics. In the second half of the program students designed, helped execute, documented, and analyzed features similar to those they studied in the field with large-scale (50-250 kg) basaltic lava flows created in the Syracuse University Lava Project (http://lavaproject.syr.edu). Data collected included video from multiple perspectives, infrared thermal (FLIR) images, still images, detailed measurements of flow dimensions and rates, and samples for textural and magnetic analyses. Experimental lava flow features provided critical tests of hypotheses generated in the field and a refined understanding of the behavior and final morphology of basaltic lava flows. The linked field and experimental studies formed the basis for year-long independent research projects under the supervision of their faculty mentors, leading to senior theses at the students' respective institutions.

  1. Flood lavas on Earth, Io and Mars

    USGS Publications Warehouse

    Keszthelyi, L.; Self, S.; Thordarson, T.

    2006-01-01

    Flood lavas are major geological features on all the major rocky planetary bodies. They provide important insight into the dynamics and chemistry of the interior of these bodies. On the Earth, they appear to be associated with major and mass extinction events. It is therefore not surprising that there has been significant research on flood lavas in recent years. Initial models suggested eruption durations of days and volumetric fluxes of order 107 m3 s-1 with flows moving as turbulent floods. However, our understanding of how lava flows can be emplaced under an insulating crust was revolutionized by the observations of actively inflating pahoehoe flows in Hawaii. These new ideas led to the hypothesis that flood lavas were emplaced over many years with eruption rates of the order of 104 m3 s-1. The field evidence indicates that flood lava flows in the Columbia River Basalts, Deccan Traps, Etendeka lavas, and the Kerguelen Plateau were emplaced as inflated pahoehoe sheet flows. This was reinforced by the observation of active lava flows of ??? 100 km length on Io being formed as tube-fed flow fed by moderate eruption rates (102-103 m3 s-1). More recently it has been found that some flood lavas are also emplaced in a more rapid manner. New high-resolution images from Mars revealed 'platy-ridged' flood lava flows, named after the large rafted plates and ridges formed by compression of the flow top. A search for appropriate terrestrial analogues found an excellent example in Iceland: the 1783-1784 Laki Flow Field. The brecciated Laki flow top consists of pieces of pahoehoe, not aa clinker, leading us to call this 'rubbly pahoehoe'. Similar flows have been found in the Columbia River Basalts and the Kerguelen Plateau. We hypothesize that these flows form with a thick, insulating, but mobile crust, which is disrupted when surges in the erupted flux are too large to maintain the normal pahoehoe mode of emplacement Flood lavas emplaced in this manner could have

  2. Holodeck: Telepresence Dome Visualization System Simulations

    NASA Technical Reports Server (NTRS)

    Hite, Nicolas

    2012-01-01

    This paper explores the simulation and consideration of different image-projection strategies for the Holodeck, a dome that will be used for highly immersive telepresence operations in future endeavors of the National Aeronautics and Space Administration (NASA). Its visualization system will include a full 360 degree projection onto the dome's interior walls in order to display video streams from both simulations and recorded video. Because humans innately trust their vision to precisely report their surroundings, the Holodeck's visualization system is crucial to its realism. This system will be rigged with an integrated hardware and software infrastructure-namely, a system of projectors that will relay with a Graphics Processing Unit (GPU) and computer to both project images onto the dome and correct warping in those projections in real-time. Using both Computer-Aided Design (CAD) and ray-tracing software, virtual models of various dome/projector geometries were created and simulated via tracking and analysis of virtual light sources, leading to the selection of two possible configurations for installation. Research into image warping and the generation of dome-ready video content was also conducted, including generation of fisheye images, distortion correction, and the generation of a reliable content-generation pipeline.

  3. Mapping lava flow hazards using computer simulation

    SciTech Connect

    Wadge, G.; Young, P.A.V.; Mckendrick, I.J.

    1994-01-01

    Computer simulations of the paths of flowing lava are achieved using a program, FLOWFRONT, that describes the behavior of flow and digital models of the terrain. Two methods of application of simulations of the hazards posed by lava flows are described. The first, deterministic, method requires that program parameters such as vent position, minimum flow thickness, and thickness/slope relationship be based on the ambient eruptive conditions so that the future course of a specific lava flow can be simulated. This is illustrated using retrospective modeling of the first 21 days of the eruption of an andesitic lava flow at Lonquimay volcano, Chile, in 1988-1989. The usefulness of this method for real-time predictive modeling is likely to be limited by the lack of accurate field data on flow characteristics, the simple nature of the model, and the sensitivity to parameter choice of the final planimetric form of the model flow. The second application is probabilistic in nature and creates a map of the likelihood of inundation by lava flows that is useful for long-term land use planning. This method uses the historical record of past eruptions to constrain a series of Monte Carlo simulations and is illustrated using data from Etna volcano in Sicily. A multivariate statistical analysis of nine parameters for the 1763-1989 eruption catalog using simulated annealing permitted a classification of Etna`s flank eruptions into two types: A and B. Type A eruptions are short-lived and produce linear lava flows; type B eruptions are long-lived, and produce lava flows that are much broader in shape, and their vents are restricted to the eastern flank of the volcano.

  4. Mapping of Daedalia Planum Lava Field

    NASA Astrophysics Data System (ADS)

    Giacomini, Lorenza; Carli, Cristian; Massironi, Matteo; Pasquarè, Giorgio; Sgavetti, Maria

    2010-05-01

    Daedalia Planum is one of the Tharsis volcanic plains and is located southwest of the Arsia Mons. MOLA, THEMIS, MOC and OMEGA data have been analysed, providing a multi-scale characterisation of this Martian lava field. According to Mars Global Surveyor's MOLA data, the flanks of Arsia have an average slope <5°, while the surrounding regions, including Daedalia Planum, have slopes <0,5° and commonly <0,1°. Mars Odyssey/THEMIS VIS and IR images show a plain covered by a huge number of lava flows. Older and larger lava flows on the field have a length greater than ~1500 km. Moreover most of the Daedalia flows are associated to wrinkly and ropy surfaces, typical of pahoehoe lavas. On the base of the morphology differences among the flows and through stratigraphic relationships we performed a geological map of the area. MEX/OMEGA spectra were collected in different areas of the lava field. Besides the similar absorption bands OMEGA spectra showed also some differences in reflectance and spectral slope. The spectral map created using the SAM classification reveals that these spectral variations are generally in agreement with the lava flows mapped previously on the base of the flows morphology and stratigraphy. This suggested that such variability is related with different surface textures of the lava flow. Moreover in some cases spectral map highlighted the presence of spectral subunits inside the same stratigraphic unit, due likely to a different mineralogy or rock textures. Therefore spectral analysis revealed useful to improve the geological mapping of the Daedalia Planum region.

  5. Lava Flows On Ascraeus Mons Volcano

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Ascraeus Mons Volcano: Like Earth, Mars has many volcanoes and volcanic features. This high-resolution view shows some of the lava flows near the summit of Ascraeus Mons, one of the three giant shield volcanoes known as the 'Tharsis Montes'. Volcanoes form when magma (molten rock) erupts out onto the surface of a planet. Based on Viking-era observations, Ascraeus Mons is considered to be one of the tallest volcanoes on Mars... its summit is more than 11 km (6.8 miles) above the surrounding plain. The summit is more than 23 km (14 miles) higher in elevation than the place where Mars Pathfinder landed in July 1997.

    Description of MOC Image: This picture shows an area that is about 20 km (12 miles) higher in elevation than the Mars Pathfinder landing site. The picture shows three main features: (1) a crater at the center-right, (2) a sinuous, discontinuous channel across the upper half, and (3) a rough and pitted, elevated surface across the lower half of the image.

    (1) Crater at center right. Distinguishing meteor craters from volcanic craters can sometimes be a challenge on Mars. This particular crater was most likely formed by meteor impact because it has a raised rim and a faint radial ejecta pattern around the outside of it. This crater is 600 m (2000 feet) across, about 3/4 the size of the famous 'Meteor Crater' near Winslow, Arizona.

    (2) Sinuous channel. The type of discontinuous channel running across the upper half of the image is sometimes referred to as a 'sinuous rille'. These are common on the volcanic plains of the Moon and among volcanoes and volcanic plains on Earth. Such a channel was once a lava tube. It is running down the middle of an old lava flow. The 'tube' looks like a 'channel' because its roof has collapsed. The discontinuous nature of this channel is the result of the collapse, or 'cave-in' of what was once the roof of the lava tube. It is common for certain types of relatively fluid lavas to form

  6. Geology, geochronology, and potential volcanic hazards in the Lava Ridge-Hells Half Acre area, eastern Snake River Plain, Idaho

    USGS Publications Warehouse

    Kuntz, Mel A.; Dalrymple, G. Brent

    1979-01-01

    The evaluation of volcanic hazards for the proposed Safety Test Reactor Facility (STF) at the Argonne National Laboratory-West (ANLW) site, Idaho National Engineering Laboratory (INEL), Idaho, involves an analysis of the geology of the Lava Ridge-Hells Half Acre area and of K-At age determinations on lava flows in cored drill holes. The ANLW site at INEL lies in a shallow topographic depression bounded on the east and south by volcanic rift zones that are the locus of past shield-type basalt volcanism and by rhyolite domes erupted along the ring fracture of an inferred rhyolite caldera. The K-At age data indicate that the ANLW site has been flooded by basalt lava flows at irregular intervals from perhaps a few thousand years to as much as 300,000-400,000 years, with an average recurrence interval between flows of approximately 80,000-100,000 years. At least five major lava flows have covered the ANLW site within the past 500,000 years.

  7. Ambient Effects on Basalt and Rhyolite Lavas under Venusian, Subaerial, and Subaqueous Conditions

    NASA Technical Reports Server (NTRS)

    Bridges, Nathan T.

    1997-01-01

    Both subaerial and subaqueous environments have been used as analog settings for Venus volcanism. To assess the merits of this, the effects of ambient conditions on the physical properties of lava on Venus, the seafloor, and land on Earth are evaluated. Rhyolites on Venus and on the surface of Earth solidify before basalts do because of their lower eruption temperatures. Rhyolite crust is thinner than basalt crust at times less than about an hour, especially on Venus. At later times, rhyolite crust is thicker because of its lower latent heat relative to basalt. The high pressure on the seafloor and Venus inhibits the exsolution of volatiles in lavas. Vesicularity and bulk density are proportional, so that lavas of the same composition should be more dense on the seafloor and less dense on land. Because viscosity depends partly upon the fraction of unvesiculated water in a melt, basalts with the same initial volatile abundance will be least viscous on the seafloor and most viscous on land. Assuming the same preeruptive H2O contents, molten rhyolites on Venus will have viscosities approx. 10% that of rhyolites on land. Despite lower expected viscosities, under-water flows are more buoyant and should have heights like subaerial and Venusian lavas of the same composition and extrusive history. In cases where the influence of crust is insignificant, a volume of rhyolite will have a higher aspect ratio than the same volume of basalt, no matter what the environment. If flow rheology is dominated by the presence of strong crust, aspect ratios differ little among environments or between compositions. These analyses support a rhyolitic interpretation for the composition of Venusian festooned flows and a basaltic interpretation for the composition of Venusian steep-sided domes. Although ambient effects are significant, extrusion rate and eruption history must also be considered to explain analogous volcanic landforms on Earth and Venus.

  8. Geology of Damon Mound Salt Dome, Texas

    SciTech Connect

    Collins, E.W.

    1989-01-01

    Geological investigation of the stratigraphy, cap-rock characteristics, deformation and growth history, and growth rate of a shallow coastal diapir. Damon Mound salt dome, located in Brazoria County, has salt less than 600 feet and cap rock less than 100 feet below the surface; a quarry over the dome provides excellent exposures of cap rock as well as overlying Oligocene to Pleistocene strata. These conditions make it ideal as a case study for other coastal diapirs that lack bedrock exposures. Such investigations are important because salt domes are currently being considered by chemical waste disposal companies as possible storage and disposal sites. In this book, the author reviews previous research, presents additional data on the subsurface and surface geology at Damon Mound, and evaluates Oligocene to post-Pleistocene diapir growth.

  9. Environmental assessment, Richton Dome site, Mississippi (US)

    SciTech Connect

    none,

    1986-05-01

    The Nuclear Waste Policy Act of 1982 (42 USC Sections 10101-10226) requires the environmental assessment of a potential site to include a statement of the basis for the nomination of a site as suitable for characterization. Volume 2 of this environmental assessment provides a detailed evaluation of the Richton Dome Site and its suitability as the site for a radioactive waste disposal facility under DOE siting guidelines, as well as a comparison of the Richton Dome site with other proposed sites. Evaluation of the Richton Dome site is based on the reference repository design, but the evaluation will not change if based on the Mission Plan repository concept. The comparative evaluation of proposed sites is required under DOE guidelines, but is not intended to directly support the subsequent recommendation of three sites for characterization as candidate sites. 428 refs., 24 figs., 62 tabs. (MHB)

  10. Internal ballistics model update for ASRM dome

    NASA Technical Reports Server (NTRS)

    Bowden, Mark H.; Jenkins, Billy Z.

    1991-01-01

    A previous report (no. 5-32279, contract NAS8-36955, DO 51) describes the measures taken to adapt the NASA Complex Burning Region Model and code so that is was applicable to the Advanced Solid Rocket Motor as envisioned at that time. The code so modified was called the CBRM-A. CBRM-A could calculate the port volume and burning area for the star, transition, and cylindrically perforated regions of the motor. Described here is a subsequent effort to add computation of port volume and burning area for the Advanced Solid Rocket Motor head dome. Sample output, input, and overview of the models are included. The software was configured in two forms - a stand alone head dome code and a code integrating the head dome solution with the CBRM-A.

  11. Nornahraun lava morphology and mode of emplacement

    NASA Astrophysics Data System (ADS)

    Pedersen, Gro B. M.; Höskuldsson, Armann; Riishuus, Morten S.; Jónsdóttir, Ingibjörg; Gudmundsson, Magnús T.; Sigmundsson, Freysteinn; Óskarsson, Birgir V.; Drouin, Vincent; Gallagher, Catherine; Askew, Rob; Moreland, William M.; Dürig, Tobias; Dumont, Stephanie; Þórdarson, Þór

    2015-04-01

    The ongoing Nornahraun eruption is the largest effusive eruption in Iceland since the Laki eruption in 1783-84, with an estimated lava volume of ~1.15 km3 covering an area of ~83.4 km2 (as of 5 JAN 2015). The eruption provides an unprecedented opportunity to study i) lava morphologies and their emplacement styles, ii) the transition from from open to closed lava pathways and iii) lava pond formation. Tracking of the lava advancement and morphology has been performed by GPS and GoPro cameras installed in 4×4 vehicles as well as video footage. Complimentary observations have been provided from aircraft platforms and by satellite data. Of particular importance for lava morphology observations are 1-12 m/pixel airborne SAR images (x-band). The Nornahraun flow field comprises a continuum of morphologies from pāhoehoe to 'a'ā, which have varied tem-porally and spatially. At the onset of the eruption 31 AUG, lava flows advanced rapidly (400-800 m/hr) from the 1.5 km long fissure as large slabby pāhoehoe [1-3] sheet lobes, 100-500 m wide and 0.3-1 m thick at the flow fronts. By 1 SEPT, the flows began channeling towards the NE constrained by the older Holuhraun I lava field and the to-pography of flood plain itself. A central open channel developed, feeding a 1-2 km wide active 'a'ā frontal lobe that advanced 1-2 km/day. In addition to its own caterpillar motion, the frontal lobe advanced in a series of 30-50 m long breakouts, predominantly slabby and rubbly pāhoehoe [4,5]. These breakouts had initial velocities of 10-30 m/hr and reached their full length within tens of minutes and subsequently inflated over hours. With the continuous advancement of the 'a'ā flow front, the breakouts were incorporated into the 'a'ā flow fronts and seldom preserved. At the margins of the frontal lava lobe, the breakouts were more sporadic, but predominantly rubbly pāhoehoe and slabby pāhoehoe, as at the flow front. The lava flow advanced ENE into Jökulsá á Fjöllum on 7 SEPT

  12. Mapping lava flow hazards using computer simulation

    NASA Astrophysics Data System (ADS)

    Wadge, G.; Young, P. A. V.; McKendrick, I. J.

    1994-01-01

    Computer simulations of the paths of flowing lava are achieved using a program, FLOWFRONT, that describes the behavior of flow and digital models of the terrain. Two methods of application of simulations of the hazards posed by lava flows are described. The first, deterministic, method requires that program parameters such as vent position, minimum flow thickness, and thickness/slope relationship be based on the ambient eruptive conditions so that the future course of a specific lava flow can be simulated. This is illustrated using retrospective modeling of the first 21 days of the eruption of an andesitic lava flow at Lonquimay volcano, Chile, in 1988-1989. The usefulness of this method for real-time predictive modeling is likely to be limited by the lack of accurate field data on flow characteristics, the simple nature of the model, and the sensitivity to parameter choice of the final planimetric form of the model flow. The second application is probabilistic in nature and creates a map of the likelihood of inundation by lava flows that is useful for long-term land use planning. This method uses the historical record of past eruptions to constrain a series of Monte Carlo simulations and is illustrated using data from Etna volcano in Sicily. A multivariate statistical analysis of nine parameters for the 1763-1989 eruption catalog using simulated annealing permitted a classification of Etna's flank eruptions into two types: A and B. Type A eruptions are short-lived and produce linear lava flows; type B eruptions are long-lived, and produce lava flows that are much broader in shape, and their vents are restricted to the eastern flank of the volcano. The simulation method consists of creating a probability surface of the location of future eruption vents and segmenting the region according to the most likely historical eruption on which to base the simulation. Analysis of the autocorrelation of the historical eruptions shows that type A eruptions are strongly

  13. Table Mountain Shoshonite Porphyry Lava Flows and Their Vents, Golden, Colorado

    USGS Publications Warehouse

    Drewes, Harald

    2008-01-01

    South Table Mountain, lava flow 3 forms a low, broad dome that forced flow 4 into channels now restricted to the west and northeast flanks of that mesa. Mesa-capping lava flows 3 and 4 are broken by many small normal faults and are warped into open synclines, probably in response to local stresses associated with the settling of piedmont deposits into the Denver Basin. Mid-Tertiary deposits are inferred to have covered the upper part of the Denver Formation and its lavas; these deposits could thus have been instrumental in changing the stream flow direction to the east before the onset of Neogene uplift and consequent canyon cutting across the flows. Other younger deposits may also have covered the area, to be linked to this consequent canyon cutting.

  14. Vent , Voluminous Lava Emissions, Steep Slopes and Pyroclastic Flows at Arenal Volcano, Costa Rica

    NASA Astrophysics Data System (ADS)

    Malavassi, E.; Fernández, E.; Duarte, E.; van der Laat, R.; Berrocal, M.; Barboza, V.; Hernández, E.; Marino, T.; Sáenz, W.; Hernández, L.

    2004-12-01

    voluminous lava flow, preceded the collapse of its NW rim. This rim consisted mainly of loose bombs and blocks accumulated after the period of strombolian eruptions during the late eighties and early nineties. After 1999, the south vent of crater C deflated showing a crateric depression. In contrast, the north vent of crater C became inflated and filled with lava. New vents opened on the north vent rim of crater C. They formed cones located NE and SW of the vent. Both cones have been active, nevertheless the most active vent has been the NE vent after 1999. The nature of these cones have been discussed extensively as there are evidences that small lobes have been extruded from their flanks suggesting a dome-like behavior. In parallel, after 1999, lava flows were shorter, developing blocks that cascaded the slopes of the volcano at very short distances from the vent. Several small volume, gravitational collapse pyroclastic flow events originated from the NE cone of the north vent of crater C since 1999. They represent the most important volcanic hazard for visitors of the volcano that get too close to see the volcano. Plume heights, erupted volumes and the number of daily explosions have been decreasing after 1999, suggesting an important decrement in the activity of Arenal volcano.

  15. Studies of fluid instabilities in flows of lava and debris

    NASA Technical Reports Server (NTRS)

    Fink, Jonathan H.

    1987-01-01

    At least two instabilities have been identified and utilized in lava flow studies: surface folding and gravity instability. Both lead to the development of regularly spaced structures on the surfaces of lava flows. The geometry of surface folds have been used to estimate the rheology of lava flows on other planets. One investigation's analysis assumed that lava flows have a temperature-dependent Newtonian rheology, and that the lava's viscosity decreased exponentially inward from the upper surface. The author reviews studies by other investigators on the analysis of surface folding, the analysis of Taylor instability in lava flows, and the effect of surface folding on debris flows.

  16. The Payun-Matru lava field: a source of analogues for Martian long lava flows

    NASA Astrophysics Data System (ADS)

    Giacomini, L.; Pasquarè, G.; Massironi, M.; Frigeri, A.; Bistacchi, A.; Frederico, C.

    2007-08-01

    The Payun Matru Volcanic complex is a Quaternary fissural structure belonging to the back-arc extensional area of the Andes in the Mendoza Province (Argentina). The eastern portion of the volcanic structure is covered by a basaltic field of pahoehoe lava flows advanced over more than 180 km from the fissural feeding vents that are aligned with a E-W fault system (Carbonilla fault). Thanks to their widespread extension, these flows represent some of the largest lava flows in the world and the Pampas Onduladas flow can be considered the longest sub-aerial individual lava flow on the Earth surface [1,2]. These gigantic flows propagated over the nearly flat surface of the Pampean foreland, moving on a 0.3 degree slope. The very low viscosity of the olivine basalt lavas, coupled with the inflation process and an extensive system of lava tubes are the most probable explanation for their considerable length. The inflation process likely develop under a steady flow rate sustained for a long time [3]. A thin viscoelastic crust, built up at an early stage, is later inflated by the underlying fluid core, which remains hot and fluid thanks to the thermal-shield effect of the crust. The crust is progressively thickened by accretion from below and spreading is due to the continuous creation of new inflated lobes, which develop at the front of the flow. Certain morphological features are considered to be "fingerprints" of inflation [4, 5, 6]; these include tumuli, lava rises, lava lobes and ridges. All these morphologies are present in the more widespread Payun Matru lava flows that, where they form extensive sheetflows, can reach a maximum thickness of more than 20 meters. After the emplacement of the major flows, a second eruptive cycle involved the Payun Matru volcanic structure. During this stage thick and channelized flows of andesitic and dacitic lavas, accompanied the formation of two trachitic and trachiandesitic strato-volcanoes (Payun Matru and Payun Liso) culminated

  17. Fire, Lava Flows, and Human Evolution

    NASA Astrophysics Data System (ADS)

    Medler, M. J.

    2015-12-01

    Richard Wrangham and others argue that cooked food has been obligate for our ancestors since the time of Homo erectus. This hypothesis provides a particularly compelling explanation for the smaller mouths and teeth, shorter intestines, and larger brains that separate us from other hominins. However, natural ignitions are infrequent and it is unclear how earlier hominins may have adapted to cooked food and fire before they developed the necessary intelligence to make or control fire. To address this conundrum, we present cartographical evidence that the massive and long lasting lava flows in the African Rift could have provided our ancestors with episodic access to heat and fire as the front edges of these flows formed ephemeral pockets of heat and ignition and other geothermal features. For the last several million years major lava flows have been infilling the African Rift. After major eruptions there were likely more slowly advancing lava fronts creating small areas with very specific adaptive pressures and opportunities for small isolated groups of hominins. Some of these episodes of isolation may have extended for millennia allowing these groups of early hominins to develop the adaptations Wrangham links to fire and cooked food. To examine the potential veracity of this proposal, we developed a series of maps that overlay the locations of prominent hominin dig sites with contemporaneous lava flows. These maps indicate that many important developments in hominin evolution were occurring in rough spatial and temporal proximity to active lava flows. These maps indicate it is worth considering that over the last several million years small isolated populations of hominins may have experienced unique adaptive conditions while living near the front edges of these slowly advancing lava flows.

  18. Geology of selected lava tubes in the Bend Area, Oregon

    NASA Technical Reports Server (NTRS)

    Greely, R.

    1971-01-01

    Longitudinal profiles representing 5872.5 m of mapped lava tubes and a photogeologic map relating lava tubes to surface geology, regional structure and topography are presented. Three sets of lava tubes were examined: (1) Arnold Lava Tube System (7km long) composed of collapsed and uncollapsed tube segments and lava ponds, (2) Horse Lava Tube System (11 km long) composed of parallel and anastomosing lava tube segments, and (3) miscellaneous lava tubes. Results of this study tend to confirm the layered lava hypothesis of Ollier and Brown (1965) for lava tube formation; however, there are probably several modes of formation for lava tubes in general. Arnold System is a single series of tubes apparently formed in a single basalt flow on a relatively steep gradient. The advancing flow in which the tubes formed was apparently temporarily halted, resulting in the formation of lava ponds which were inflated and later drained by the lava tube system. Horse System probably formed in multiple, interconnected flows. Pre-flow gradient appears to have been less than for Arnold System, and resulted in meandrous, multiple tube networks.

  19. After-Hours Science: Gee, A Dome!

    ERIC Educational Resources Information Center

    Santos, John G.

    1984-01-01

    Nature's Classroom (Southbridge, MA), which provides field experiences, academic classes, and activities in the natural sciences, has been recognized as an outstanding program by the National Science Teachers Association's Search for Excellence in Science Education project. Various program activities (including building a geodesic dome) are…

  20. Dome Storage of Farmer Stock Peanuts

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The small-scale farmer stock storage research facility at the National Peanut Research Laboratory in Dawson, GA consisting of four warehouses and four monolithic domes was used to conduct a 3-yr study looking at the effects of storing peanuts through the summer months following harvest. The study wa...

  1. Geodesic Dome Activity Provides Serious Fun!

    ERIC Educational Resources Information Center

    Anderson, Richard

    2009-01-01

    After the author's class completed last year's 44'-long timber-framed covered bridge project, he was pondering what other learning challenge he could pose to his students. He came across an article on geodesic dome construction in the September 2007 issue of "Tech Directions" and, he had his answer. In this article, the author and his students…

  2. The Urban Dust Dome: A Demonstration Model

    ERIC Educational Resources Information Center

    Cross, Ralph D.

    1973-01-01

    Working plans for an inexpensive urban dust dome model are presented together with some generalizations about urban atmosphere pollution. Theories and principles of atmospheric pollution which are introduced can be made meaningful to elementary students through classroom use of this model. (SM)

  3. 4. TURNOUT AND RETAINING WALL AT BASE OF TURTLEBACK DOME. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. TURNOUT AND RETAINING WALL AT BASE OF TURTLEBACK DOME. FACING EAST AT VIEW OF YOSEMITE VALLEY; EL CAPITAN ON LEFT, HALF DOME AT CENTER AND SENTINEL DOME AT LEFT REAR. POST AT LOWER LEFT MARKED 'W3' IS MARKER FOR SELF GUIDED TOUR TO PARK. - Wawona Road, Between South Entrance & Yosemite Valley, Yosemite Village, Mariposa County, CA

  4. 49 CFR 178.255-3 - Expansion domes.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false Expansion domes. 178.255-3 Section 178.255-3 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY... Portable Tanks § 178.255-3 Expansion domes. (a) Expansion domes, if applied, must have a minimum...

  5. 49 CFR 178.255-3 - Expansion domes.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 3 2012-10-01 2012-10-01 false Expansion domes. 178.255-3 Section 178.255-3 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY... Portable Tanks § 178.255-3 Expansion domes. (a) Expansion domes, if applied, must have a minimum...

  6. 49 CFR 178.255-3 - Expansion domes.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false Expansion domes. 178.255-3 Section 178.255-3 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY... Portable Tanks § 178.255-3 Expansion domes. (a) Expansion domes, if applied, must have a minimum...

  7. 49 CFR 178.255-3 - Expansion domes.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 3 2014-10-01 2014-10-01 false Expansion domes. 178.255-3 Section 178.255-3 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY... Portable Tanks § 178.255-3 Expansion domes. (a) Expansion domes, if applied, must have a minimum...

  8. 49 CFR 178.255-3 - Expansion domes.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Expansion domes. 178.255-3 Section 178.255-3 Transportation Other Regulations Relating to Transportation PIPELINE AND HAZARDOUS MATERIALS SAFETY... Specifications for Portable Tanks § 178.255-3 Expansion domes. (a) Expansion domes, if applied, must have...

  9. 9. CRATER RIM DRIVE NEAR THURSTON LAVA TUBE. VIEW OF ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    9. CRATER RIM DRIVE NEAR THURSTON LAVA TUBE. VIEW OF CRENELATED LAVA STONE GUARD WALL AND ROCK CUT OPPOSITE. NOTE CATTLE GUARD ACROSS ROAD PARTIALLY PAVED OVER. - Crater Rim Drive, Volcano, Hawaii County, HI

  10. Quantitative constraints on the growth of submarine lava pillars from a monitoring instrument that was caught in a lava flow

    NASA Astrophysics Data System (ADS)

    Chadwick, William W.

    2003-11-01

    Lava pillars are hollow, vertical chimneys of solid basaltic lava that are common features within the collapsed interiors of submarine sheet flows on intermediate and fast spreading mid-ocean ridges. They are morphologically similar to lava trees that form on land when lava overruns forested areas, but the sides of lava pillars are covered with distinctive, evenly spaced, thin, horizontal lava crusts, referred to hereafter as "lava shelves." Lava stalactites up to 5 cm long on the undersides of these shelves are evidence that cavities filled with a hot vapor phase existed temporarily beneath each crust. During the submarine eruption of Axial Volcano in 1998 on the Juan de Fuca Ridge a monitoring instrument, called VSM2, became embedded in the upper crust of a lava flow that produced 3- to 5-m-high lava pillars. A pressure sensor in the instrument showed that the 1998 lobate sheet flow inflated 3.5 m and then drained out again in only 2.5 hours. These data provide the first quantitative constraints on the timescale of lava pillar formation and the rates of submarine lava flow inflation and drainback. They also allow comparisons to lava flow inflation rates observed on land, to theoretical models of crust formation on submarine lava, and to previous models of pillar formation. A new model is presented for the rhythmic formation of alternating lava crusts and vapor cavities to explain how stacks of lava shelves are formed on the sides of lava pillars during continuous lava drainback. Each vapor cavity is created between a stranded crust and the subsiding lava surface. A hot vapor phase forms within each cavity as seawater is syringed through tiny cracks in the stranded crust above. Eventually, the subsiding lava causes the crust above to fail, quenching the hot cavity and forming the next lava crust. During the 1998 eruption at Axial Volcano, this process repeated itself about every 2 min during the 81-min-long drainback phase of the eruption, based on the thickness

  11. White Sands, Carrizozo Lava Beds, NM

    NASA Technical Reports Server (NTRS)

    1973-01-01

    A truly remarkable view of White Sands and the nearby Carrizozo Lava Beds in southeast NM (33.5N, 106.5W). White Sands, site of the WW II atomic bomb development and testing facility and later post war nuclear weapons testing that can still be seen in the cleared circular patterns on the ground.

  12. Circulation patterns in active lava lakes

    NASA Astrophysics Data System (ADS)

    Redmond, T. C.; Lev, E.

    2014-12-01

    Active lava lakes provide a unique window into magmatic conduit processes. We investigated circulation patterns of 4 active lava lakes: Kilauea's Halemaumau crater, Mount Erebus, Erta Ale and Nyiragongo, and in an artificial "lava lake" constructed at the Syracuse University Lava Lab. We employed visual and thermal video recordings collected at these volcanoes and use computer vision techniques to extract time-dependent, two-dimensional surface velocity maps. The large amount of data available from Halemaumau enabled us to identify several characteristic circulation patterns. One such pattern is a rapid acceleration followed by rapid deceleration, often to a level lower than the pre-acceleration level, and then a slow recovery. Another pattern is periodic asymmetric peaks of gradual acceleration and rapid deceleration, or vice versa, previously explained by gas pistoning. Using spectral analysis, we find that the dominant period of circulation cycles at approximately 30 minutes, 3 times longer than the dominant period identified previously for Mount Erebus. Measuring a complete surface velocity field allowed us to map and follow locations of divergence and convergence, therefore upwelling and downwelling, thus connecting the surface flow with that at depth. At Nyiragongo, the location of main upwelling shifts gradually, yet is usually at the interior of the lake, for Erebus it is usually along the perimeter yet often there is catastrophic downwelling at the interior; For Halemaumau upwelling/downwelling position is almost always on the perimeter. In addition to velocity fields, we developed an automated tool for counting crustal plates at the surface of the lava lakes, and found a correlation, and a lag time, between changes if circulation vigor and the average size of crustal plates. Circulation in the artificial basaltic lava "lake" was limited by its size and degree of foaming, yet we measured surface velocities and identify patterns. Maximum surface velocity

  13. Lava Flows in the Grand Canyon

    NASA Technical Reports Server (NTRS)

    2003-01-01

    Over vast expanses of time, natural processes like floods and volcanoes deposit layers of rock on the Earth's surface. To delve down through layers of rock is to explore our planet's history. Sometimes rock layers are exposed through human activity, such as drilling or excavation. Other times, rivers carve through the rock. One of the best, and most well-known, examples of a river exposing ancient rocks is Colorado River in Arizona's Grand Canyon. What fewer people know is that the Grand Canyon also has a history of relatively recent (on geologic time scales) volcanism. The evidence--hardened lava--spills down the canyon walls all the way to the river. On June 22, 2003, the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) on NASA's Terra satellite captured this image of the Grand Canyon, near 36.2 degrees north latitude and 113.2 degrees west longitude. ASTER detects light visible to human eyes as well as 'invisible' infrared light. Because different minerals reflect different portions of the light spectrum, ASTER can see varying mineral compositions of the rocks it observes, as well as detecting vegetation. In this three-dimensional visualization, lava fields appear brownish gray, darker than the layers of limestone, sandstone and other rock in the canyon. Vegetation appears green, and sparsely vegetated areas appear mustard. Water in the Colorado River is blue-purple. Geologists estimate that between 1.8 million and 400,000 years ago, lava flows actually dammed the Colorado River more than a dozen times. Some of the lava dams were as high as 600 meters (about 1,969 feet), forming immense reservoirs. Over time, enough water and sediment built up to push the river flow over the tops of these dams and eventually erode them away. Today, remnants of these lava dams remain throughout the area, along with the much older rock layers they cover. Among the most well known examples of these 'frozen' lava cascades is Lava Falls, which spills down to the

  14. Lava flows composition of the Daedalia Planum

    NASA Astrophysics Data System (ADS)

    Carli, Cristian; Giacomini, Lorenza; Sgavetti, Maria; Massironi, Matteo

    2010-05-01

    Daedalia Planum is a large lava plain, consisting of more than 1500 km lava flows emplaced over an almost flat terrain in the south-east area of Arsia Mons. The morphology of this region has been studied by Giacomini et al. (Planet.SpaceSci., 2009) and revealed the presence of various features indicative of inflation mechanisms. Thirteen morphologic units have been delineated and the stratigraphic relationships among these units have been established by the authors. Several compositional data indicate that most of the Mars surface appears to consist of tholeiitic basalts where rocks previously identified as andesite may be basaltic rocks coated with alteration rinds (McSween et al., Science, 2009). Some primitive alkaline olivine-rich basaltic rocks have been also recognized by rover exploration (McSween et al., J.Geophys.Res., 2006). The visible and near-infrared reflectance spectra contain electronic absorptions characteristic of mafic minerals including pyroxenes and olivine. These minerals, together with plagioclase, are the major components of lava's rocks. We have analyzed data acquired by the OMEGA orbiter spectrometer of the Mars Express mission. Several OMEGA's images have been studied collecting sets of spectra from each of the thirteen geological units. The spectra indicate a relatively uniform composition of the lavas, characterized by two wide absorption bands (I and II) at about 1000 and 2000 nm, respectively. These spectral features are diagnostic of the presence of pyroxenes, and the continuum removed spectra permit us to recognize the presence of two different pyroxenes . The precise minima positions of band I, between 950 and 1000 nm, and of band II, between 1800 and 2000 nm, suggest the presence in this region of low calcium and subcalcium clinopyroxene, like pigeonite and augite, with variable relative abundances. The presence of these types of pyroxenes suggests a tholeiitic composition of the Daedalia Planum long lava flows, in agreement with

  15. Venus - Volcanic Domes on Flank of Volcanic Maat in East Ovda Region

    NASA Technical Reports Server (NTRS)

    1991-01-01

    This Magellan image is centered about 3.2 degrees north latitude, 194.9 degrees longitude in the eastern Ovda region of Venus. The image, which is 90 km (56 miles) in width and 80 km (50 miles) in length, shows some small volcanic domes on the flank of the volcano Maat. The bright flows to the east are most likely rough lava flows while the darker flows to the west are probably smoother flows. The dark flows do show some roughness, however, as can be seen by the structure in the flows to the southwest. These dark flows also have some debris that has been deposited on top of the flows. The debris may be fine material from the surrounding plains on top of the flow by wind or it may be ash from the volcano. Small volcanic domes are very common features on the surface of Venus, indicating that there has been much volcanic activity on the surface. Assuming that the central volcanic cone is symmetrical in shape and knowing the length of the cone's side and the incidence angle, radar foreshortening yields a height and slope of 688 meters and 8.2 degrees, respectively for the cone. These values are similar to heights and slopes of some volcanic cones on the Earth.

  16. Ice-Confined Basaltic Lava Flows: Review and Discussion

    NASA Astrophysics Data System (ADS)

    Skilling, I.; Edwards, B. R.

    2012-12-01

    Basaltic lavas that are interpreted as having been emplaced in subglacial or ice-confined subaerial settings are known from several localities in Iceland, British Columbia and Antarctica. At least four different types of observations have been used to date to identify emplacement of basaltic lavas in an ice-rich environment: i) gross flow morphology, ii) surface structures, iii) evidence for ice-confined water during emplacement, and iv) lava fracture patterns. Five types of ice-confined lava are identified: sheets, lobes, mounds, linear ridges and sinuous ridges. While the appearance of lavas is controlled by the same factors as in the submarine environment, such as the geometry and configuration of vents and lava tubes, flow rheology and rates, and underlying topography, the presence of ice can lead to distinct features that are specific to the ice-confined setting. Other types have very similar or identical equivalents in submarine environment, albeit with some oversteepening/ice contact surfaces. Ice-confined lavas can form as (1) subaerial or subaqueous lavas emplaced against ice open to the air, (2) subaqueous lavas emplaced into pre-existing sub-ice drainage networks, and (3) subaqueous lavas emplaced into ponded water beneath ice. Their surface structures reflect the relationship between rates of lava flow emplacement at the site of ice-water-lava contact, ice melting and water drainage. Variations in local lava flow rates could be due to lava cooling, constriction, inflation, tube development, ice melting, ice collapse, lava collapse, changes in eruption rate etc. Episodes of higher lava flow rate would favour direct ice contact and plastic compression against the ice, generating oversteepened and/or overthickened chilled margins, cavities in the lava formed by melting of enveloped ice blocks (cryolith cavities) and structures such as flattened pillows and lava clasts embedded into the glassy margins. Melting back of the confining ice generates space to

  17. Implications of Viscosity-Contrast for Co-Extruding Two-Component Magmas, Triggering Eruptions and Forming Layered Domes

    NASA Astrophysics Data System (ADS)

    Carrigan, C. R.; Clarke, S. M.

    2004-12-01

    Polymer co-extrusion experiments represent excellent dynamical analogies with two-magma transport and the effusion of composite lava domes. They demonstrate that the co-extrusion of magmas having different viscosity can explain not only the observed normal zoning in magma dikes and conduits but also the compositional layering observed in effused lava domes. New results indicate that dike and conduit zoning along with dome layering are strongly dependent on the viscosity contrast between the flowing magmas. Realistic models of magma storage and dike formation show that co-extrusion of magmas is both more readily explained and energetically preferred over serial intrusion processes. Co-extrusion during the formation of dikes may play an important role in triggering larger volcanic eruptions. Lubrication of the flow by a typically, more mafic, lower-viscosity component allows a more viscous but also more highly volatile-charged magma to be transported greater distances upward in the dike resulting in exsolution of a gas phase and the formation of a magma foam. Transition to a foam lowers the bulk density of the magma enabling dikes to propagate greater vertical distances for a given back pressure. Our new results suggest that a dike propagating across a sloping magma-chamber roof intersecting both "wet" silicic and relatively "dry" mafic layers has the greatest probability of reaching the surface in the dike segment where the magmas flow co-extrusively. Thus, bimodal eruptive compositions are dynamically preferred in such a petrologically common magmatic regime. This work was performed under the auspices of the U.S. Department of Energy by University of California, Lawrence Livermore National Laboratory under contract No. W-7405-Eng-48.

  18. Historical review: viruses, crystals and geodesic domes.

    PubMed

    Morgan, Gregory J

    2003-02-01

    In the mid 1950s, Francis Crick and James Watson attempted to explain the structure of spherical viruses. They hypothesized that spherical viruses consist of 60 identical equivalently situated subunits. Such an arrangement has icosahedral symmetry. Subsequent biophysical and electron micrographic data suggested that many viruses had >60 subunits. Drawing inspiration from architecture, Donald Caspar and Aaron Klug discovered a solution to the problem - they proposed that spherical viruses were structured like miniature geodesic domes.

  19. Underwater Calibration of Dome Port Pressure Housings

    NASA Astrophysics Data System (ADS)

    Nocerino, E.; Menna, F.; Fassi, F.; Remondino, F.

    2016-03-01

    Underwater photogrammetry using consumer grade photographic equipment can be feasible for different applications, e.g. archaeology, biology, industrial inspections, etc. The use of a camera underwater can be very different from its terrestrial use due to the optical phenomena involved. The presence of the water and camera pressure housing in front of the camera act as additional optical elements. Spherical dome ports are difficult to manufacture and consequently expensive but at the same time they are the most useful for underwater photogrammetry as they keep the main geometric characteristics of the lens unchanged. Nevertheless, the manufacturing and alignment of dome port pressure housing components can be the source of unexpected changes of radial and decentring distortion, source of systematic errors that can influence the final 3D measurements. The paper provides a brief introduction of underwater optical phenomena involved in underwater photography, then presents the main differences between flat and dome ports to finally discuss the effect of manufacturing on 3D measurements in two case studies.

  20. Fabric and texture at Siple Dome, Antarctica

    USGS Publications Warehouse

    Diprinzio, C.L.; Wilen, L.A.; Alley, R.B.; Fitzpatrick, J.J.; Spencer, M.K.; Gow, A.J.

    2005-01-01

    Preferred c-axis orientations are present in the firn at Siple Dome, West Antarctica, and recrystallization begins as shallow as 200 m depth in ice below -20??C, based on digital analysis of c-axis fabrics, grain-sizes and other characteristics of 52 vertical thin sections prepared in the field from the kilometer-long Siple Dome ice core. The shallowest section analyzed, from 22 m, shows clustering of c axes toward the vertical. By 200 m depth, girdle fabric and other features of recrystallized ice are evident in layers (or regions), separated by layers (regions) of typically finer-grained ice lacking evidence of recrystallization. Ice from about 700-780 m depth, which was deposited during the last ice age, is especially fine-grained, with strongly vertical c axes, but deeper ice shows much larger crystals and strong evidence of recrystallization. Azimuthal asymmetry of some c-axis fabrics, trends in grain-size, and other indicators reveal additional information on processes and history of ice flow at Siple Dome.

  1. Catalog of Mount St. Helens 2004-2007 Dome Samples with Major- and Trace-Element Chemistry

    USGS Publications Warehouse

    Thornber, Carl R.; Pallister, John S.; Rowe, Michael C.; McConnell, Siobhan; Herriott, Trystan M.; Eckberg, Alison; Stokes, Winston C.; Cornelius, Diane Johnson; Conrey, Richard M.; Hannah, Tammy; Taggart, Joseph E.; Adams, Monique; Lamothe, Paul J.; Budahn, James R.; Knaack, Charles M.

    2008-01-01

    Sampling and analysis of eruptive products at Mount St. Helens is an integral part of volcano monitoring efforts conducted by the U.S. Geological Survey?s Cascades Volcano Observatory (CVO). The objective of our eruption sampling program is to enable petrological assessments of pre-eruptive magmatic conditions, critical for ascertaining mechanisms for eruption triggering and forecasting potential changes in eruption behavior. This report provides a catalog of near-vent lithic debris and new dome-lava collected during 34 intra-crater sampling forays throughout the October 2004 to October 2007 (2004?7) eruptive interval at Mount St. Helens. In addition, we present comprehensive bulk-rock geochemistry for a time-series of representative (2004?7) eruption products. This data, along with that in a companion report on Mount St. Helens 2004 to 2006 tephra by Rowe and others (2008), are presented in support of the contents of the U.S. Geological Survey Professional Paper 1750 (Sherrod and others, eds., 2008). Readers are referred to appropriate chapters in USGS Professional Paper 1750 for detailed narratives of eruptive activity during this time period and for interpretations of sample characteristics and geochemical data. The suite of rock samples related to the 2004?7 eruption of Mount St. Helens and presented in this catalog are archived at the David A. Johnson Cascades Volcano Observatory, Vancouver, Wash. The Mount St. Helens 2004?7 Dome Sample Catalogue with major- and trace-element geochemistry is tabulated in 3 worksheets of the accompanying Microsoft Excel file, of2008-1130.xls. Table 1 provides location and sampling information. Table 2 presents sample descriptions. In table 3, bulk-rock major and trace-element geochemistry is listed for 44 eruption-related samples with intra-laboratory replicate analyses of 19 dacite lava samples. A brief overview of the collection methods and lithology of dome samples is given below as an aid to deciphering the dome sample

  2. Holocene regional gradients of dust provenance and flux between Talos Dome and Dome C, East Antarctica.

    NASA Astrophysics Data System (ADS)

    Delmonte, B.; Andersson, P. S.; Baroni, C.; Narcisi, B.; Petit, J. R.; Salvatore, M. C.; Albani, S.; Maggi, V.

    2012-04-01

    Aeolian sequences from Central East Antarctic ice cores provide climate and environmental information of hemispheric significance. Close to the margins of the ice sheet, high-elevation ice-free terrains protruding above the ice sheet surface can provide an additional input of fine dust particles to the atmosphere, making peripheral locations particularly interesting for the study of the regional climate evolution. In the Talos Dome area of East Antarctica, entrainment and transport of local mineral particles is merely influenced by local wind direction and strength, which in turn is tuned by regional climate changes. We investigate the spatial variability of modern and Holocene dust flux, grain size and isotopic (Sr-Nd) composition along a hypothetic transect from Talos Dome all through the interior of the ice sheet (Dome C/Vostok area), and compare the geochemical fingerprint of dust extracted from firn and ice cores to the equivalent size fraction of regolith and glacial deposits from high altitude Victoria Land sources. This study aims to better understand the environmental gradients of dust flux and provenance from the marginal Talos Dome site to the higher Dome C drainage area, with implications for the regional atmospheric circulation, while documenting the isotopic composition of local exposed sediments.

  3. The mechanics of ground deformation precursory to dome-building extrusions at Mount St. Helens 1981-1982.

    USGS Publications Warehouse

    Chadwick, W.W.; Archuleta, R.J.; Swanson, D.A.

    1988-01-01

    Detailed monitoring at Mount St. Helens since 1980 has enabled prediction of the intermittent eruptive activity (mostly dome growth) with unprecedented success. During 1981 and 1982, accelerating deformation of the crater floor around the vent (including radial cracks, thrust faults, and ground tilt) was the earliest indicator of impending activity. The magnitude of the shear stress required to match observed dipslacements (1-7 MPa) is inversely proportional to the conduit diameter (estimated to be 25-100 m). The most probable source of this shear stress is the flow of viscous magma up to the conduit and into the lava dome. A model is proposed in which the accelerating deformation, beginning as much as 4 weeks before extrusions, is caused by the increasing velocity of ascending magma in the conduit. This model is examined by using deformation data of the dome before four extrusions in 1981 and 1982 to estimate the volumetric flow rate through the conduit. This flow rate and an estimate of the effective viscosity of the magma enable calculation of an ascent velocity and an applied shear stress that, again, depend on the conduit diameter. The results of these calculations are consistent with the finite element experiments and show that the proposed model is feasible. Precursory deformation like that measured at Mount St. Helens should be observable at similar volcanoes elsewhere because it is caused by the fundamental process of magma ascent.-from Authors

  4. Flow direction determination of lava flows.

    NASA Technical Reports Server (NTRS)

    Smith, E. I.; Rhodes, R. C.

    1972-01-01

    The flow direction technique, previously applied to ash-flow sheets, can be used to determine direction of movement and locate eruptive centers for lava flows. The method provides statistically stronger and more consistent flow direction data for lava than ash-flow tuff. The accuracy and reliability of the technique was established on the porphyritic basaltic andesite of Mount Taylor, New Mexico, which erupted from a known center, the Mount Taylor Amphitheater. The technique was then applied to volcanic units with unknown sources: the John Kerr Peak Quartz Latite and mid-Tertiary andesite flows in the Mogollon Mountains, both in southwestern New Mexico. The flow direction technique indicated flow patterns and suggested source areas for each rock unit. In the Mogollon Mountains flow direction measurements were supported by independent directional criteria such as dips of cross beds, stratigraphic thickening, facies changes, and megascopic textures.-

  5. Voluminous submarine lava flows from Hawaiian volcanoes

    SciTech Connect

    Holcomb, R.T.; Moore, J.G.; Lipman, P.W.; Belderson, R.H.

    1988-05-01

    The GLORIA long-range sonar imaging system has revealed fields of large lava flows in the Hawaiian Trough east and south of Hawaii in water as deep as 5.5 km. Flows in the most extensive field (110 km long) have erupted from the deep submarine segment of Kilauea's east rift zone. Other flows have been erupted from Loihi and Mauna Loa. This discovery confirms a suspicion, long held from subaerial studies, that voluminous submarine flows are erupted from Hawaiian volcanoes, and it supports an inference that summit calderas repeatedly collapse and fill at intervals of centuries to millenia owing to voluminous eruptions. These extensive flows differ greatly in form from pillow lavas found previously along shallower segments of the rift zones; therefore, revision of concepts of volcano stratigraphy and structure may be required.

  6. Support of LAVA Integration and Testing

    NASA Technical Reports Server (NTRS)

    Jackson, Marcus Algernon

    2014-01-01

    The Lunar Advanced Volatile Analysis (LAVA) subsystem is a part of the Regolith and Environment Science & Oxygen and Lunar Volatile Analysis (RESOLVE) Payload that will fly to the lunar pole on the Resource Prospector Mission (RPM) in 2019. The purpose of the mission is to characterize the water on the surface and subsurface of the moon in various locations in order to map the distribution. This characterization of water will help to understand how feasible water is as a resource that can be used for drinking water, breathable air, and propellants in future missions. This paper describes the key support activities performed during a 10 week internship; specifically, troubleshooting the Near Infrared Spectrometer for the Surge Tank (NIRST) instrument count loss, contributing to a clamp to be used in the installation of Resistive Temperature Detectors (RTDs) to tubing, performing a failure analysis of the LAVA Fluid Subsystem (FSS), and finalizing trade studies for release.

  7. Kilauea Iki lava lake experiment plans

    SciTech Connect

    Dunn, J.C.; Hills, R.G.

    1981-01-01

    Twelve experimental studies are proposed to complete field laboratory work at Kilauea Iki lava lake. Of these twelve experiments, eleven do not require the presence of melt. Some studies are designed to use proven techniques in order to expand our existing knowledge, while others are designed to test new concepts. Experiments are grouped into three main categories: geophysics, energy extraction, and drilling technology. Each experiment is described in terms of its location, purpose, background, configuration, operation, and feasibility.

  8. Geothermometry of Kilauea Iki lava lake, Hawaii

    USGS Publications Warehouse

    Helz, R.T.; Thornber, C.R.

    1987-01-01

    Data on the variation of temperature with time and in space are essential to a complete understanding of the crystallization history of basaltic magma in Kilauea Iki lava lake. Methods used to determine temperatures in the lake have included direct, downhole thermocouple measurements and Fe-Ti oxide geothermometry. In addition, the temperature variations of MgO and CaO contents of glasses, as determined in melting experiments on appropriate Kilauean samples, have been calibrated for use as purely empirical geothermometers and are directly applicable to interstitial glasses in olivine-bearing core from Kilauea Iki. The uncertainty in inferred quenching temperatures is ??8-10?? C. Comparison of the three methods shows that (1) oxide and glass geothermometry give results that are consistent with each other and consistent with the petrography and relative position of samples, (2) downhole thermo-couple measurements are low in all but the earliest, shallowest holes because the deeper holes never completely recover to predrilling temperatures, (3) glass geothermometry provides the greatest detail on temperature profiles in the partially molten zone, much of which is otherwise inaccessible, and (4) all three methods are necessary to construct a complete temperature profile for any given drill hole. Application of glass-based geothermometry to partially molten drill core recovered in 1975-1981 reveals in great detail the variation of temperature, in both time and space, within the partially molten zone of Kilauea Iki lava lake. The geothermometers developed here are also potentially applicable to glassy samples from other Kilauea lava lakes and to rapidly quenched lava samples from eruptions of Kilauea and Mauna Loa. ?? 1987 Springer-Verlag.

  9. The eruptive history of the Tequila volcanic field, western Mexico: ages, volumes, and relative proportions of lava types

    NASA Astrophysics Data System (ADS)

    Lewis-Kenedi, Catherine B.; Lange, Rebecca A.; Hall, Chris M.; Delgado-Granados, Hugo

    2005-06-01

    The eruptive history of the Tequila volcanic field (1600 km2) in the western Trans-Mexican Volcanic Belt is based on 40Ar/39Ar chronology and volume estimates for eruptive units younger than 1 Ma. Ages are reported for 49 volcanic units, including Volcán Tequila (an andesitic stratovolcano) and peripheral domes, flows, and scoria cones. Volumes of volcanic units ≤1 Ma were obtained with the aid of field mapping, ortho aerial photographs, digital elevation models (DEMs), and ArcGIS software. Between 1120 and 200 kyrs ago, a bimodal distribution of rhyolite (~35 km3) and high-Ti basalt (~39 km3) dominated the volcanic field. Between 685 and 225 kyrs ago, less than 3 km3 of andesite and dacite erupted from more than 15 isolated vents; these lavas are crystal-poor and show little evidence of storage in an upper crustal chamber. Approximately 200 kyr ago, ~31 km3 of andesite erupted to form the stratocone of Volcán Tequila. The phenocryst assemblage of these lavas suggests storage within a chamber at ~2 3 km depth. After a hiatus of ~110 kyrs, ~15 km3 of andesite erupted along the W and SE flanks of Volcán Tequila at ~90 ka, most likely from a second, discrete magma chamber located at ~5 6 km depth. The youngest volcanic feature (~60 ka) is the small andesitic volcano Cerro Tomasillo (~2 km3). Over the last 1 Myr, a total of 128±22 km3 of lava erupted in the Tequila volcanic field, leading to an average eruption rate of ~0.13 km3/kyr. This volume erupted over ~1600 km2, leading to an average lava accumulation rate of ~8 cm/kyr. The relative proportions of lava types are ~22 43% basalt, ~0.4 1% basaltic andesite, ~29 54% andesite, ~2 3% dacite, and ~18 40% rhyolite. On the basis of eruptive sequence, proportions of lava types, phenocryst assemblages, textures, and chemical composition, the lavas do not reflect the differentiation of a single (or only a few) parental liquids in a long-lived magma chamber. The rhyolites are geochemically diverse and were likely

  10. Eruption of Alkaline Basalts Prior to the Calc-alkaline Lavas of Mt. Cleveland Volcano, Aleutian Arc, Alaska

    NASA Astrophysics Data System (ADS)

    Bridges, D. L.; Nicolaysen, K. P.

    2005-12-01

    Mt. Cleveland is a 1,730 m stratovolcano, located on Chuginadak Island, that has erupted at least 23 times historically, with the latest occurring in August 2005. Major, trace, and REE analyses of 63 samples from Mt. Cleveland, including 8 from proximal cinder cones and 4 from andesitic domes on the lower flanks, identify two distinct lava suites. Modern Cleveland (MC) basalts to dacites (50.5-66.7 wt.% SiO2) exhibit a calc-alkaline differentiation trend. Major element trends suggest crystal fractionation of plagioclase +/- ortho- and clinopyroxene in MC lavas and olivine in cinder cone deposits. Resorption textures on plagioclase and olivine phenocrysts and multiple populations of plagioclase predominate throughout the MC suite suggesting magma mixing is a major process at Cleveland. Frothy white xenoliths of plagioclase + quartz + biotite are encased in glass and erupted as small pumiceous fragments in 2001. The partial resorption of the xenocrysts indicates assimilation is also an active crustal process at Cleveland. MC trace element spider diagrams exhibit a typical arc pattern in which HFS elements including Nb are depleted, and Pb and LIL elements are enriched. Th/La, Sm/La, and Sr, Nd, Pb, and Hf isotopic ratios indicate both a North Pacific MORB and a sediment component in the source of modern Cleveland lavas, consistent with sediment flux estimates of 90 to 95 m3/m/yr and an updip sediment thickness of 1300 to 1400 meters. Average 206Pb/204Pb, 207Pb/204Pb, 87Sr/86Sr, and 143Nd/144Nd values for the calc-alkaline suite are 18.93, 15.58, 0.70345, and 0.51303 respectively. The second suite consists of 3 olivine-rich, mildly alkaline basalts (48.5-49.4 wt.% SiO2), of older stratigraphic position than MC lavas representing deposits from an older phase of activity (ancestral Cleveland, AC). La/Yb, Sr/Y, and Th/Nb ratios indicate lower degrees of partial melting, relative to MC lavas, and suggests presence of garnet in the source region. The AC lavas, however, are

  11. Modeling steam pressure under martian lava flows

    USGS Publications Warehouse

    Dundas, Colin M.; Keszthelyi, Laszlo P.

    2013-01-01

    Rootless cones on Mars are a valuable indicator of past interactions between lava and water. However, the details of the lava–water interactions are not fully understood, limiting the ability to use these features to infer new information about past water on Mars. We have developed a model for the pressurization of a dry layer of porous regolith by melting and boiling ground ice in the shallow subsurface. This model builds on previous models of lava cooling and melting of subsurface ice. We find that for reasonable regolith properties and ice depths of decimeters, explosive pressures can be reached. However, the energy stored within such lags is insufficient to excavate thick flows unless they draw steam from a broader region than the local eruption site. These results indicate that lag pressurization can drive rootless cone formation under favorable circumstances, but in other instances molten fuel–coolant interactions are probably required. We use the model results to consider a range of scenarios for rootless cone formation in Athabasca Valles. Pressure buildup by melting and boiling ice under a desiccated lag is possible in some locations, consistent with the expected distribution of ice implanted from atmospheric water vapor. However, it is uncertain whether such ice has existed in the vicinity of Athabasca Valles in recent history. Plausible alternative sources include surface snow or an aqueous flood shortly before the emplacement of the lava flow.

  12. Conformal dome aberration correction by designing the inner surface

    NASA Astrophysics Data System (ADS)

    Zhang, Wang; Chen, Shouqian; Fan, Zhigang

    2016-12-01

    The ray transmission models of optical domes were established, and the characteristics of the rays while passing through a hemispherical dome and a conformal dome were comparatively analysed. Acquiring the minimum deviated angles from the inner surface of the conformal dome was then determined to be the designing goal for reducing the dynamic aberrations. Based on this, the inner surface of the conformal dome was optimized and thus, the dynamic aberrations were reduced. Finally, a completely cooled conformal optical system was designed. The results show that the optical system have produced good imaging quality within all the fields of regard, which further illustrates that designing the inner surface of a conformal dome is an effective method for aberration correction.

  13. Evidence for Neoarchaean extensional faults in the Vredefort Dome, South Africa.

    NASA Astrophysics Data System (ADS)

    mashabela, sello

    2013-04-01

    The Vredefort Dome is an approximately 80-90 km wide impact structure, situated 120 km southwest of Johannesburg in South Africa. The dome is a preserved centrally uplifted region of an ancient 250-300 km wide multi-ringed crater that formed at 2.02 Ga. The ancient crater underwent 5-10 km of erosion to expose the Vredefort Dome, allowing for unique study of the deeper levels of the impact crater. The Vredefort Dome is composed of a 40 km wide core, bounded by a 20-25 km wide collar. The core is wholly composed of Mesoarchaean basement gneiss (ca. 3.1 Ga), and the collar is made up of mid-amphibolite to lower greenschist facies supracrustal rocks (ca. 3.0-2.2 Ga). Fault development in the collar has largely been attributed to the impact, except for two fault systems. The two exceptions have been described as pre-impact faults, with apparent strike-slip displacements up to 3 km. It is the focus of this study to distinguish pre-impact structures from impact-related structures. Ortho-photographs, satellite images, and field mapping have shown that pre-impact faults were listric in character, and associated with second order accommodation faults. The main fault is associated with a 20 m wide zone of pseudotachylitic breccia. Most of the pseudotachylitic breccia in the dome has been attributed to the impact, so these faults were possibly associated with earlier pseudotachylite generation. Cleavage associated with the listric faults is displaced by impact-related faults, confirming the existence of two deformation events in the dome. The geometry of the listric faults is similar to those observed in the West Wits Line and West Rand goldfields (55 km north of Vredefort Dome), which have been modelled by Manzi et al. (2012, a, b; submitted) using 3D seismic techniques. The authors attribute the development of listric faults (or a rift-like system of faults) to crustal extension that took place during deposition of Klipriviersberg Group lavas and Platberg Group (2709

  14. Using Lava Tube Skylights To Derive Lava Eruption Temperatures on Io

    NASA Astrophysics Data System (ADS)

    Davies, Ashley Gerard; Keszthelyi, Laszlo P.; McEwen, Alfred S.

    2015-11-01

    The eruption temperature of Io’s silicate lavas constrains Io’s interior state and composition [1]. We have examined the theoretical thermal emission from lava tube skylights above basaltic and ultramafic lava channels. Assuming that tube-fed lava flows are common on Io, skylights could also be common. Skylights present steady thermal emission on a scale of days to months. We find that the thermal emission from such a target, measured at multiple visible and NIR wavelengths, can provide a highly accurate diagnostic of eruption temperature. However, the small size of skylights means that close flybys of Io are necessary, requiring a dedicated Io mission [2]. Observations would ideally be at night or in eclipse. We have modelled the thermal emission spectrum for different skylight sizes, lava flow stream velocities, end-member lava compositions, and skylight radiation shape factors, determining the resulting flow surface cooling rates. We calculate the resulting thermal emission spectrum as a function of viewing geometry. From the resulting 0.7:0.9 μm ratios, we see a clear distinction between basaltic and ultramafic compositions for skylights smaller than 20 m across, even if sub-pixel. Our analysis will be further refined as accurate high-temperature short-wavelength emissivity values become available [3]. This work was performed at the Jet Propulsion Laboratory-California Institute of Technology, under contract to NASA. We thank the NASA OPR Program for support. References: [1] Keszthelyi et al. (2007) Icarus 192, 491-502 [2] McEwen et al. (2015) The Io Volcano Observer (IVO) LPSC-46 abstract 1627 [3] Ramsey and Harris (2015) IAVCEI-2015, Prague, Cz. Rep., abstract IUGG-3519.

  15. Identifying suitable "piercement" salt domes for nuclear waste storage sites

    SciTech Connect

    Kehle, R.

    1980-08-01

    Piercement salt domes of the northern interior salt basins of the Gulf of Mexico are being considered as permanent storage sites for both nuclear and chemically toxic wastes. The suitable domes are stable and inactive, having reached their final evolutionary configuration at least 30 million years ago. They are buried to depths far below the level to which erosion will penetrate during the prescribed storage period and are not subject to possible future reactivation. The salt cores of these domes are themselves impermeable, permitting neither the entry nor exit of ground water or other unwanted materials. In part, a stable dome may be recognized by its present geometric configuration, but conclusive proof depends on establishing its evolutionary state. The evolutionary state of a dome is obtained by reconstructing the growth history of the dome as revealed by the configuration of sedimentary strata in a large area (commonly 3,000 square miles or more) surrounding the dome. A high quality, multifold CDP reflection seismic profile across a candidate dome will provide much of the necessary information when integrated with available subsurface control. Additional seismic profiles may be required to confirm an apparent configuration of the surrounding strata and an interpreted evolutionary history. High frequency seismic data collected in the near vicinity of a dome are also needed as a supplement to the CDP data to permit accurate depiction of the configuration of shallow strata. Such data must be tied to shallow drill hole control to confirm the geologic age at which dome growth ceased. If it is determined that a dome reached a terminal configuration many millions of years ago, such a dome is incapable of reactivation and thus constitutes a stable storage site for nuclear wastes.

  16. Lava Flows and Lava Tubes: What They Are, How They Form (DVD)

    NASA Astrophysics Data System (ADS)

    Garcia, Michael O.

    This DVD is a treat for volcanologists, Earth scientists, and others who are curious about volcanoes. Beautiful photography of lava flows from the current eruption of Kilauea Volcano in Hawaii is explained by volcanologist Ken Hon, a noted authority on the formation of lava flow fields. Hon and Gansecki are with the Geology Department at the University of Hawaii at Hilo, which provides them with close proximity to document the wonders and changing personality of the ongoing Pu'u'O'o eruption. They are assisted by volcanologist Jenda Johnson.

  17. Dispersive thermohaline convection near salt domes: a case at Napoleonville Dome, southeast Louisiana, USA

    NASA Astrophysics Data System (ADS)

    Jamshidzadeh, Zahra; Tsai, Frank T.-C.; Ghasemzadeh, Hasan; Mirbagheri, Seyed Ahmad; Barzi, Majid Tavangari; Hanor, Jeffrey S.

    2015-08-01

    Density-driven flow around salt domes is strongly influenced by salt concentration and temperature gradients. In this study, a thermohaline convection numerical modeling is developed to investigate flow, salinity, and heat transport around salt domes under the impact of fluid dispersivity and variable density and viscosity. `Dispersive fluid flux of total fluid mass' is introduced to the density-driven flow equation to improve thermohaline modeling in porous media. The dispersive fluid flux term is derived to account for an additional fluid flux driven by the density gradient and mechanical dispersion. The model is first tested by a hypothetical salt-dome problem, where a circulation of flow is induced by an overpressure and density effect. The result shows a distinct salt-transport change due to the inclusion of the dispersive fluid flux and temperature effect. Then, the model is applied to investigate changes of groundwater flow, salinity, and heat transport near the west of Napoleonville salt dome, southeastern Louisiana, USA, due to a salt cavern failure. The result shows that an instant overpressure assumed to be created by the salt-cavern wall breach has little impact on salinity near the ground surface within a period of 3 months. However, salinity is significantly elevated near the breach area of the salt cavern, caused by strong flow velocities.

  18. Sampling Elysium lavas (13 deg N, 203 deg W)

    NASA Technical Reports Server (NTRS)

    Allen, Carlton C.

    1994-01-01

    The proposed Pathfinder landing site presents the opportunity to determine chemical and mineralogical compositions of an Elysium lava flow. The flow is part of a geologic unit of planetary significance. The proposed site appears suitable for landing, and lava surfaces should be accessible to the Pathfinder instruments. By analogy to terrestrial flood basalts, any lava analyzed by Pathfinder is likely to be representative of the entire Elysium province.

  19. Gusev Rocks Solidified from Lava (3-D)

    NASA Technical Reports Server (NTRS)

    2006-01-01

    In recent weeks, as NASA's Mars Exploration Rover Spirit has driven through the basin south of 'Husband Hill,' it has been traversing mainly sand and dune deposits. This week, though, Spirit has been maneuvering along the edge of an arc-shaped feature called 'Lorre Ridge' and has encountered some spectacular examples of basaltic rocks with striking textures. This panoramic camera (Pancam) image shows a group of boulders informally named 'FuYi.' These basaltic rocks were formed by volcanic processes and may be a primary constituent of Lorre Ridge and other interesting landforms in the basin.

    Spirit first encountered basalts at its landing site two years ago, on a vast plain covered with solidified lava that appeared to have flowed across Gusev Crater. Later, basaltic rocks became rare as Spirit climbed Husband Hill. The basaltic rocks that Spirit is now seeing are interesting because they exhibit many small holes or vesicles, similar to some kinds of volcanic rocks on Earth. Vesicular rocks form when gas bubbles are trapped in lava flows and the rock solidifies around the bubbles. When the gas escapes, it leaves holes in the rock. The quantity of gas bubbles in rocks on Husband Hill varies considerably; some rocks have none and some, such as several here at FuYi, are downright frothy.

    The change in textures and the location of the basalts may be signs that Spirit is driving along the edge of a lava flow. This lava may be the same as the basalt blanketing the plains of Spirit's landing site, or it may be different. The large size and frothy nature of the boulders around Lorre Ridge might indicate that eruptions once took place at the edge of the lava flow, where the lava interacted with the rocks of the basin floor. Scientists hope to learn more as Spirit continues to investigate these rocks.

    As Earth approaches the Chinese New Year (The Year of the Dog), the Athena science team decided to use nicknames representing Chinese culture and geography

  20. Gusev Rocks Solidified from Lava (False Color)

    NASA Technical Reports Server (NTRS)

    2006-01-01

    In recent weeks, as NASA's Mars Exploration Rover Spirit has driven through the basin south of 'Husband Hill,' it has been traversing mainly sand and dune deposits. This week, though, Spirit has been maneuvering along the edge of an arc-shaped feature called 'Lorre Ridge' and has encountered some spectacular examples of basaltic rocks with striking textures. This panoramic camera (Pancam) image shows a group of boulders informally named 'FuYi.' These basaltic rocks were formed by volcanic processes and may be a primary constituent of Lorre Ridge and other interesting landforms in the basin.

    Spirit first encountered basalts at its landing site two years ago, on a vast plain covered with solidified lava that appeared to have flowed across Gusev Crater. Later, basaltic rocks became rare as Spirit climbed Husband Hill. The basaltic rocks that Spirit is now seeing are interesting because they exhibit many small holes or vesicles, similar to some kinds of volcanic rocks on Earth. Vesicular rocks form when gas bubbles are trapped in lava flows and the rock solidifies around the bubbles. When the gas escapes, it leaves holes in the rock. The quantity of gas bubbles in rocks on Husband Hill varies considerably; some rocks have none and some, such as several here at FuYi, are downright frothy.

    The change in textures and the location of the basalts may be signs that Spirit is driving along the edge of a lava flow. This lava may be the same as the basalt blanketing the plains of Spirit's landing site, or it may be different. The large size and frothy nature of the boulders around Lorre Ridge might indicate that eruptions once took place at the edge of the lava flow, where the lava interacted with the rocks of the basin floor. Scientists hope to learn more as Spirit continues to investigate these rocks.

    As Earth approaches the Chinese New Year (The Year of the Dog), the Athena science team decided to use nicknames representing Chinese culture and geography

  1. Precipitation regime and stable isotopes at Dome C and Dome Fuji, East Antarctica

    NASA Astrophysics Data System (ADS)

    Schlosser, Elisabeth; Dittmann, Anna; Stenni, Barbara; Masson-Delmotte, Valerie; Powers, Jordan G.; Manning, Kevin W.; Raphael, Marilyn; Fujita, Koji; Werner, Martin; Valt, Mauro; Cagnati, Anselmo

    2016-04-01

    Dome Fuji and Dome C, both deep ice-core drilling sites in East Antarctica, are the only stations, for which direct daily precipitation measurements and stable isotope ratios of the precipitation samples are available. Whereas the Dome F series encompasses only one year of measurements, the Dome C series has been started in 2006 and is ongoing. For Dome C, the type of precipitation (diamond dust, hoar frost, snowfall) was determined based on crystal type analysis. The weather situations causing precipitation at the stations were analysed using data from the Antarctic Mesoscale Prediction System (AMPS). At both sites, major snowfall events were always related to an amplification of Rossby waves in the circumpolar westerlies, which led to an increased meridional transport of moisture and energy. Furthermore, increased amounts of diamond dust were observed after such event-type precipitation. The stable isotope data of the precipitation samples were related to the different weather situations and precipitation types and also simulated using a simple Rayleigh-type model (MCIM) and compared to output from the global isotopic-enhanced model ECHAM5wiso. Possible moisture sources were estimated using the synoptic analysis combined with back-trajectory calculation. MCIM was better in reproducing the annual cycle of deuterium excess, whereas ECHAM5wiso generally showed a smaller bias of the isotope ratios. Hoar frost shows isotope signals very different from diamond dust and snowfall, which hints at a more local cycle of sublimation and deposition for this type of precipitation, whereas both snowfall and diamond dust are related to large-scale moisture transport. Contrary to the literature, a more northern moisture source was found to be not necessarily associated with more depleted snowfall. This is explained by the strong warm air advection accompanying snowfall events, which decreases the temperature difference between source area and deposition site and thus leads to

  2. Identifying hazards associated with lava deltas

    USGS Publications Warehouse

    Poland, Michael P.; Orr, Tim R.

    2014-01-01

    Lava deltas, formed where lava enters the ocean and builds a shelf of new land extending from the coastline, represent a significant local hazard, especially on populated ocean island volcanoes. Such structures are unstable and prone to collapse—events that are often accompanied by small explosions that can deposit boulders and cobbles hundreds of meters inland. Explosions that coincide with collapses of the East Lae ‘Apuki lava delta at Kīlauea Volcano, Hawai‘i, during 2005–2007 followed an evolutionary progression mirroring that of the delta itself. A collapse that occurred when the lava–ocean entry was active was associated with a blast of lithic blocks and dispersal of spatter and fine, glassy tephra. Shortly after delta growth ceased, a collapse exposed hot rock to cold ocean water, resulting in an explosion composed entirely of lithic blocks and lapilli. Further collapse of the delta after several months of inactivity, by which time it had cooled significantly, resulted in no recognizable explosion deposit. Seaward displacement and subsidence of the coastline immediately inland of the delta was measured by both satellite and ground-based sensors and occurred at rates of several centimeters per month even after the lava–ocean entry had ceased. The anomalous deformation ended only after complete collapse of the delta. Monitoring of ground deformation may therefore provide an indication of the potential for delta collapse, while the hazard associated with collapse can be inferred from the level of activity, or the time since the last activity, on the delta.

  3. Geochemical Stratigraphy of Southern Parana' Lava Piles

    NASA Astrophysics Data System (ADS)

    Marzoli, A.; De Min, A.; Marques, L. S.; Nardy, A.; Chiaradia, M.

    2015-12-01

    Basaltic lava flows of the Paranà Large Igneous Province exhibit significant regional and stratigraphic geochemical variations. While the most notable difference concerns the dominance of low-Ti (TiO2 < 2.0 wt.%) and high-Ti types in the southern and northern part of the province, respectively, detailed analyses of lava flow sequences sampled mostly in drill cores allowed definition of six main groups of chemically distinct flow units. The chemical and possible age differences among these units were then used to define the global time-related evolution of Paranà basaltic magmatism and involvement of distinct mantle-source components. Newly sampled outcropping lava flow sequences from the southern Paranà do however only partially support this picture. Our new major and trace element and Sr-Nd-Pb isotopic data show that high- and low-Ti basaltic flows are interlayered. In particular, Pitanga type high-Ti basalts are interlayered with Gramado and Esmeralda low-Ti basalts (these latter being present both towards the base and the top of the sequence) in Paranà State, while in Santa Caterina State Gramado flows are interlayered with Urubici-type high-Ti basalts. The interlayering of distinct basaltic magma type requires near-synchronous eruption of chemically strongly different magma types generated from clearly heterogeneous mantle sources and erupted through separated magma plumbing systems, without apparent interaction (mixing) among the distinct basalts. In conclusion, the relative timing of low- and high-Ti magma types seems to be much more complicated than previously thought, as for example Esmeralda or Pitanga basalts, previously considered as quite late and postdating Gramado basalts, are indeed synchronous with them.

  4. Lava thicknesses: Implications for rheological and crustal development

    NASA Technical Reports Server (NTRS)

    Kilburn, C. R. J.; Lopes, R. M. C.

    1988-01-01

    The morphology of a lava flow is strongly influenced by its rheological structure. The rheological structure is, in turn, dependent on numerous factors including: (1) bulk composition, (2) crystallingity, (3) vesicularity, and (4) crustal development. Identifying which of the latter factors are most significant, and hence most readily investigated by remote-sensing techniques, is necessary to clarify short-term objectives and expectations from the study of Martian lava flows. Insights into the rheological controls on flow morphology are provided by variations in thickness of undrained lava streams on Etna and Vesuvius, Southern Italy. Both pahoehoe and aa lavas were studied.

  5. Lava tubes - Potential shelters for habitats. [on moon

    NASA Technical Reports Server (NTRS)

    Horz, F.

    1985-01-01

    Natural caverns occur on the moon in the form of 'lava tubes', which are the drained conduits of underground lava rivers. The inside dimensions of these tubes measure tens to hundreds of meters, and their roofs are expected to be thicker than 10 meters. Consequently, lava tube interiors offer an environment that is naturally protected from the hazards of radiation and meteorite impact. Further, constant, relatively benign temperatures of -20 C prevail. These are extremely favorable environmental conditions for human activities and industrial operations. Significant operational, technological, and economical benefits might result if a lunar base were constructed inside a lava tube.

  6. Determining the Compositions of Extraterrestrial Lava Flows

    NASA Technical Reports Server (NTRS)

    Fink, Jonathan H.

    2002-01-01

    The primary purpose of this research project has been to develop techniques that allow the emplacement conditions of volcanic landforms on other planets to be related to attributes that can be remotely detected with available instrumentation. The underlying assumption of our work is that the appearance of a volcano, lava flow, debris avalanche, or exhumed magmatic intrusion can provide clues about the conditions operating when that feature was first emplaced. Magma composition, amount of crustal heat flow, state of tectonic stress, and climatic conditions are among the important variables that can be inferred from the morphology and texture of an igneous body.

  7. DOME: operational metrics under one roof

    NASA Astrophysics Data System (ADS)

    Primas, F.; Marteau, S.; Tacconi-Garman, L. E.; Mainieri, V.; Rejkuba, M.; Mysore, S.

    2012-09-01

    Thirteen VLT/I instruments plus some extra critical components like the block-scheduling of the Laser Guide Star Facility and VLTI baselines make for a rather complex machine that constantly challenges our operational efficiencies. DOME (Dashboard for Operational Metrics at ESO) is an ongoing project developed, implemented and maintained by the ESO User Support Department. It aims at providing an ESO-internal dashboard where key operational metrics are published and updated at regular intervals. Here, we will present the project and report on the indicators that have been looked at until now.ty and VLTI baselines make for a rather complex machine that constantly challenges our operational efficiencies. DOME (Dashboard for Operational Metrics at ESO) is an ongoing project developed, implemented and maintained by the ESO User Support Department. It aims at providing an ESO-internal dashboard where key operational metrics are published and updated at regular intervals. Here, we will present the project and report on the indicators that have been looked at until now.

  8. The 2013-2014 Effusive Eruption of Sinabung Volcano, Sumatra, Indonesia: Satellite Thermal Observations and Ground-Based Photogrammetry of a Growing Lava Lobe

    NASA Astrophysics Data System (ADS)

    Carr, B. B.; Vanderkluysen, L.; Clarke, A. B.

    2014-12-01

    Sinabung is a 2460 m high andesitic volcano located in northern Sumatra, Indonesia. Sinabung had no confirmed historical activity until a small (VEI 2) explosive eruption in August-September 2010. In September 2013, explosions began again and were accompanied by lava dome growth and subsequent dome-collapse generated pyroclastic flows (Bulletin of the Global Volcanism Network 35:07; 39:01). The Center for Volcanology and Geological Hazard Mitigation (Indonesia) estimated dome growth at 3.5 m3/s in late December 2013. From January to March 2014 lava extrusion continued and formed a lobe down Sinabung's south flank. As of this writing, effusion and growth of the lava lobe continues, but at a much slower rate. Pyroclastic flows generated by collapse of the steep sides of the lobe remain a hazard. We use thermal infrared (TIR) images from the Moderate Resolution Imaging Spectroradiomter (MODIS) to observe volcanic activity at Sinabung during the 2013-2014 eruption and estimate effusion rates following the methods of Harris & Ripepe (2007, Geophys. Res. Let. 34). We also use new analysis of those thermal images to characterize style of activity, distinguishing pyroclastic flow activity from pure lava lobe growth. Preliminary results from satellite images show an average effusion rate of 1.1 m3/s during January-March 2014, with peak effusion rates from individual TIR images of 4-7 m3/s in mid-January. These numbers are in good agreement with the ground-based estimates, and they provide improved temporal resolution of the activity as it evolved. Since March, effusion rates have decreased to below 0.01 m3/s on average. Using the MODIS images, we estimate the maximum possible total erupted volume to be 7 million m3, and have constrained the accuracy of this estimate using Structure-from-Motion (SfM) photogrammetry from ground-based visual images of the lava lobe. Following explosions in 2010 and 2013 and high effusion rates from January to March 2014, the ongoing slow

  9. Altered former alkalic carbonatite lava from Oldoinyo Lengai, Tanzania: Inferences for calcite carbonatite lavas

    NASA Astrophysics Data System (ADS)

    Dawson, J. B.; Garson, M. S.; Roberts, B.

    1987-08-01

    The active volcano Oldoinyo Lengai, Tanzania, is well known for its extrusions of alkalic carbonatite lava, first witnessed in 1960. An older carbonatite flow from the volcano was originally also rich in Na and K, but replacement of nyerereite by pirssonite as a result of leaching of these elements (together with soluble components such as SO3, Cl, and Rb) and addition of Ca has resulted in a rock intermediate in bulk composition between the unique 1960 Lengai lavas and calcite-rich carbonatite flows reported from other localities. Further replacement of Na by Ca could theoretically result in a pure calcite rock, and we suggest that the partially altered alkalic lava described here is the “missing link” between lavas that are now calcitic but which had a high alkali content when originally extruded. The suggested link between alkali carbonate precursors and present-day calcium carbonate “lavas” explains the apparent paradox between the existence of calcite-rich “flows” and the experimental evidence that denies the possibility of hot, liquid calcium carbonate.

  10. Topographic Attributes of Three Hawaiian Lava Flows: Implications for Evaluation of Lava Flow Emplacement on Mars

    NASA Astrophysics Data System (ADS)

    Zimbelman, J. R.

    2004-12-01

    Differential Global Positioning System surveys were carried out recently across portions of three lava flows on the Big Island of Hawaii. Transects crossed an entire flow in several cases, and in other cases provided detailed information about selected flow margins. The 1907 basalt (a'a) flow from the southwestern rift zone of Mauna Loa has easy access at several points via the Ocean View Estates road system; flow thickness ranges from about 1 m near the middle of the eastern flow lobe to more than 10 m toward the distal end of this flow. Several components of a benmoreite (alkali-rich basaltic andesite) flow complex from Mauna Kea were examined near the small community of Mana (with permission of the Parker Ranch management), on the western flank of the volcano. The flows are more than 14,000 years old and completely covered with soil more than a meter thick, but flow morphology at the decameter scale remains very evident in aerial photographs; some benmoreite flows have up to 30 m of relief along their middle reaches. A trachyte flow more than 100,000 years old extends down slope from Puu Waawaa, on the northern flank of Hualalai; Puu Anahulu represents a very advanced stage of magmatic differentiation that resulted in a flow complex with more than 120 m of relief at its southern margin. Width/thickness represents a good discriminator between these three Hawaiian lava flows. Unfortunately, width is often the most difficult parameter to measure remotely for flows on other planets. Recent imaging data from the Thermal Emission Imaging System on the Mars Odyssey spacecraft reveal important new details of lava flows in the Tharsis region of Mars, some of which can be combined with elevation information from the Mars Orbiter Laser Altimeter. The precise topographic characteristics of diverse Hawaiian lava flows provide a new tool for evaluating the potential emplacement conditions for some Martian lava flows, which appear to be more consistent with the basalt to

  11. Lava tube shatter rings and their correlation with lava flux increases at Kīlauea Volcano, Hawai`i

    NASA Astrophysics Data System (ADS)

    Orr, Tim R.

    2011-04-01

    Shatter rings are circular to elliptical volcanic features, typically tens of meters in diameter, which form over active lava tubes. They are typified by an upraised rim of blocky rubble and a central depression. Prior to this study, shatter rings had not been observed forming, and, thus, were interpreted in many ways. This paper describes the process of formation for shatter rings observed at Kīlauea Volcano during November 2005-July 2006. During this period, tilt data, time-lapse images, and field observations showed that episodic tilt changes at the nearby Pu`u `Ō`ō cone, the shallow magmatic source reservoir, were directly related to fluctuations in the level of lava in the active lava tube, with periods of deflation at Pu`u `Ō`ō correlating with increases in the level of the lava stream surface. Increases in lava level are interpreted as increases in lava flux, and were coincident with lava breakouts from shatter rings constructed over the lava tube. The repetitive behavior of the lava flux changes, inferred from the nearly continuous tilt oscillations, suggests that shatter rings form from the repeated rise and fall of a portion of a lava tube roof. The locations of shatter rings along the active lava tube suggest that they form where there is an abrupt decrease in flow velocity through the tube, e.g., large increase in tube width, abrupt decrease in tube slope, and (or) sudden change in tube direction. To conserve volume, this necessitates an abrupt increase in lava stream depth and causes over-pressurization of the tube. More than a hundred shatter rings have been identified on volcanoes on Hawai`i and Maui, and dozens have been reported from basaltic lava fields in Iceland, Australia, Italy, Samoa, and the mainland United States. A quick study of other basaltic lava fields worldwide, using freely available satellite imagery, suggests that they might be even more common than previously thought. If so, this confirms that episodic fluctuation in lava

  12. Lava tube shatter rings and their correlation with lava flux increases at Kīlauea Volcano, Hawai‘i

    USGS Publications Warehouse

    Orr, T.R.

    2011-01-01

    Shatter rings are circular to elliptical volcanic features, typically tens of meters in diameter, which form over active lava tubes. They are typified by an upraised rim of blocky rubble and a central depression. Prior to this study, shatter rings had not been observed forming, and, thus, were interpreted in many ways. This paper describes the process of formation for shatter rings observed at Kīlauea Volcano during November 2005–July 2006. During this period, tilt data, time-lapse images, and field observations showed that episodic tilt changes at the nearby Pu‘u ‘Ō‘ō cone, the shallow magmatic source reservoir, were directly related to fluctuations in the level of lava in the active lava tube, with periods of deflation at Pu‘u ‘Ō‘ō correlating with increases in the level of the lava stream surface. Increases in lava level are interpreted as increases in lava flux, and were coincident with lava breakouts from shatter rings constructed over the lava tube. The repetitive behavior of the lava flux changes, inferred from the nearly continuous tilt oscillations, suggests that shatter rings form from the repeated rise and fall of a portion of a lava tube roof. The locations of shatter rings along the active lava tube suggest that they form where there is an abrupt decrease in flow velocity through the tube, e.g., large increase in tube width, abrupt decrease in tube slope, and (or) sudden change in tube direction. To conserve volume, this necessitates an abrupt increase in lava stream depth and causes over-pressurization of the tube. More than a hundred shatter rings have been identified on volcanoes on Hawai‘i and Maui, and dozens have been reported from basaltic lava fields in Iceland, Australia, Italy, Samoa, and the mainland United States. A quick study of other basaltic lava fields worldwide, using freely available satellite imagery, suggests that they might be even more common than previously thought. If so, this confirms that episodic

  13. A Geohydrologic Analysis of an Upland-Dome Aquifer System, a Case Study of Ester Dome, Alaska

    NASA Astrophysics Data System (ADS)

    Youcha, E. K.; Lilly, M. R.; Hinzman, L. D.

    2001-12-01

    We are investigating the Ester Dome upland-dome aquifer system located seven miles west of Fairbanks, Alaska. The bedrock of the Fairbanks area is composed primarily of pre-Cambrian to mid-Paleozoic metamorphic rocks of the Yukon-Tanana metamorphic complex (Forbes, 1982). Common geomorphic structures in the Tanana-Yukon Uplands are bedrock domes. Igneous intrusives underlie many of Interior Alaska's dome structures. The Fairbanks Mining District is dominated by either upland bedrock aquifers or valley alluvial aquifers. The geohydrology of an upland dome is characterized by open boundaries. A typical watershed approach is to define a drainage system and define no-flow boundaries. Alaska Interior dome systems are the inverse of this approach. Boundaries are more likely to be all discharging ground water and surface water. A ground-water monitoring network of 50 observation wells on Ester Dome allows us to obtain field data to help interpret upland-dome geohydrologic processes. Seasonal and pumping water-level fluctuations occur in several wells, but many wells show no seasonal or short-term variation in water levels. Geologic variation on Ester Dome helps explain these differences. Ester Dome consists of four major stratigraphic units: quaternary alluvial and eolian deposits, Fairbanks Schist, Muskox Amphibolite and Schist, and cretaceous plutonic rocks. Additionally, permafrost is present in much of the low-lying valleys and north-facing slopes of the dome. Water levels in wells will exhibit different responses since the hydrogeologic properties of each unit differ. Snow surveys and precipitation recorders were established at varying elevations on Ester Dome to examine the changes in precipitation spatially and to evaluate recharge processes. In general, precipitation on the dome increases with elevation. The amount of unknown information on Ester Dome makes simplified analysis approaches harder to evaluate taking into account all the possible geohydrologic models

  14. Evaluation of the structure and stratigraphy over Richton Dome, Mississippi

    SciTech Connect

    Werner, M.L.

    1986-05-01

    The structure and stratigraphy over Richton Salt Dome, Mississippi, have been evaluated from 70 borings that were completed to various depths above the dome. Seven lithologic units have been identified and tentatively correlated with the regional Tertiary stratigraphy. Structure-contour and thickness maps of the units show the effects of dome growth from Eocene through early Pliocene time. Growth of the salt stock from late Oligocene through early Pliocene is estimated to have averaged 0.6 to 2.6 centimeters (0.2 to 1.1 inches) per 1000 years. No dome growth has occurred since the early Pliocene. The late Oligocene to early Pliocene strata over and adjacent to the dome reflect arching over the entire salt stock; some additional arching over individual centers may represent pre-Quaternary differential movement in the salt stock. The lithology and structure of the caprock at the Richton Salt Dome indicate that the caprock probably was completely formed by late Oligocene. In late Oligocene, the caprock was fractured by arching and altered by gypsum veining. Since late Oligocene, there are no indications of significant hydrologic connections through the caprock - that is, there are no indications of dissolution collapse or further anhydrite caprock accumulation. This structural and stratigraphic analysis provides insights on dome growth history, dome geometry, and neardome hydrostratigraphy that will aid in planning site characterization field activities, including an exploratory shaft, and in the conceptual design of a high-level waste (HLW) repository.

  15. Astronaut Alan Bean doing acrobatics in OWS dome area

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Astronaut Alan L. Bean, Skylab 3 commander, doing acrobatics in the dome area of the Orbital Workshop (OWS) on the space station cluster in Earth orbit. The dome area is about 22 feet in diameter and 19 feet from top to bottom.

  16. The Carrier Dome Controversy: Rewriting the Town-Gown Relationship.

    ERIC Educational Resources Information Center

    Kirby, Donald J.

    1988-01-01

    On December 16, 1986, a new Syracuse city administration and the university announced an agreement exempting the Syracuse University Carrier Dome from real estate taxes; in return the city would receive a share of ticket proceeds from nonacademic Dome events. This settled a controversy that began when the city demanded payment of city taxes in…

  17. The Mairan domes: silicic volcanic constructs on the Moon

    USGS Publications Warehouse

    Glotch, Timothy D.; Hagerty, Justin J.; Lucey, Paul G.; Hawke, B. Ray; Giguere, Thomas A.; Arnold, Jessica A.; Williams, Jean-Pierre; Jolliff, Bradley L.; Paige, David A.

    2011-01-01

    The Mairan domes are four features located in northern Oceanus Procellarum at ∼312.3E, 41.4N on the Moon. High resolution visible imagery, visible-to-mid-IR spectra, and Lunar Prospector Th abundance data all indicate that these four domes have a composition that is consistent with derivation from a Si-rich, highly evolved magma.

  18. Astronaut Jack Lousma doing acrobatics in OWS dome area

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Astronaut Jack R. Lousma, Skylab 3 pilot, doing acrobatics in the dome area of the Orbital Workshop (OWS) on the space station cluster in Earth orbit. The dome area is about 22 feet in diameter and 19 feet from top to bottom.

  19. SOLUTION MINING IN SALT DOMES OF THE GULF COAST EMBAYMENT

    SciTech Connect

    Griswold, G. B.

    1981-02-01

    Following a description of salt resources in the salt domes of the gulf coast embayment, mining, particularly solution mining, is described. A scenario is constructed which could lead to release of radioactive waste stored in a salt dome via inadvertent solution mining and the consequences of this scenario are analyzed.

  20. Peralkaline silicate lavas at Oldoinyo Lengai, Tanzania

    NASA Astrophysics Data System (ADS)

    Klaudius, Jurgis; Keller, Jörg

    2006-10-01

    A detailed study of Oldoinyo Lengai has led to the recognition of two major cone-building stages. An early, predominantly phonolitic stage, Lengai I, forms the southern cone. The recent nephelinitic Lengai II developed following a major sector collapse event over Lengai I. Petrography of Lengai II lavas show that nephelinite is combeite- and wollastonite-bearing. All Oldoinyo Lengai lavas are peralkaline and highly evolved in terms of low Mg#, Ni and Cr values. Within the unique Lengai II combeite-wollastonite-nephelinite (CWN) peralkalinity increases with time to extreme values (Na + K)/Al = 2.36. Mineralogical expression of peralkalinity is the presence of combeite and Na-rich clinopyroxene. In addition, exceptionally high Fe 2O 3 (up to 10.28 wt.%) in nepheline is an indicator for alumina deficiency. Combeite also shows high Fe 3+. Phonolite and CWN of Lengai I and Lengai II show similarly enriched LILE and LREE values and generally parallel patterns in PM normalized and REE plots.

  1. Pressure Analysis for LAVA-OVEN

    NASA Technical Reports Server (NTRS)

    Cendana, Donna Q.

    2014-01-01

    The Lunar Advanced Volatiles Analysis (LAVA) and the Oxygen Volatiles Extraction Node (OVEN) are subsystems included in the Regolith Environment Science, and Oxygen Lunar Volatiles Extraction (RESOLVE) payload bound for the Moon in 2019. This Resource Prospector Mission (RPM) has the objective of landing on a shadowed region of the Moons South Pole to collect data and determine whether the resources could be effectively used for space exploration systems. The quantification of the resources will help understand if it can adequately minimize materials carried from Earth by: providing life support, propellants, construction materials or energy supply to the payload or crew. This paper outlines the procedures done for the pressure analysis of the LAVA-OVEN (LOVEN) Integration Testing. The pressure analysis quantifies how much gases and water are present in the sample tested during the Engineering Testing Unit (ETU) phase of instrument development. Ultimately the purpose of these tests is to improve the estimate of the amount of water in each Lunar sample and reduce the time necessary for this estimate. The governing principle that was used for the analysis is the Ideal Gas Law, PV=nRT where P stands for pressure, V for volume, n for number of moles, R being the gas constant and T for temperature. We also estimate the errors involved in these measured and derived quantities since a key objective of the mission is to estimate the quantity of volatiles present in the lunar samples introduced into OVEN.

  2. A flexible open-source toolkit for lava flow simulations

    NASA Astrophysics Data System (ADS)

    Mossoux, Sophie; Feltz, Adelin; Poppe, Sam; Canters, Frank; Kervyn, Matthieu

    2014-05-01

    Lava flow hazard modeling is a useful tool for scientists and stakeholders confronted with imminent or long term hazard from basaltic volcanoes. It can improve their understanding of the spatial distribution of volcanic hazard, influence their land use decisions and improve the city evacuation during a volcanic crisis. Although a range of empirical, stochastic and physically-based lava flow models exists, these models are rarely available or require a large amount of physical constraints. We present a GIS toolkit which models lava flow propagation from one or multiple eruptive vents, defined interactively on a Digital Elevation Model (DEM). It combines existing probabilistic (VORIS) and deterministic (FLOWGO) models in order to improve the simulation of lava flow spatial spread and terminal length. Not only is this toolkit open-source, running in Python, which allows users to adapt the code to their needs, but it also allows users to combine the models included in different ways. The lava flow paths are determined based on the probabilistic steepest slope (VORIS model - Felpeto et al., 2001) which can be constrained in order to favour concentrated or dispersed flow fields. Moreover, the toolkit allows including a corrective factor in order for the lava to overcome small topographical obstacles or pits. The lava flow terminal length can be constrained using a fixed length value, a Gaussian probability density function or can be calculated based on the thermo-rheological properties of the open-channel lava flow (FLOWGO model - Harris and Rowland, 2001). These slope-constrained properties allow estimating the velocity of the flow and its heat losses. The lava flow stops when its velocity is zero or the lava temperature reaches the solidus. Recent lava flows of Karthala volcano (Comoros islands) are here used to demonstrate the quality of lava flow simulations with the toolkit, using a quantitative assessment of the match of the simulation with the real lava flows. The

  3. Construction dynamics of a lava channel

    NASA Astrophysics Data System (ADS)

    Harris, Andrew J. L.; Favalli, Massimiliano; Mazzarini, Francesco; Hamilton, Christopher W.

    2009-05-01

    We use a kinematic GPS and laser range finder survey of a 200 m-long section of the Muliwai a Pele lava channel (Mauna Ulu, Kilauea) to examine the construction processes and flow dynamics responsible for the channel-levee structure. The levees comprise three packages. The basal package comprises an 80-150 m wide 'a'a flow in which a ˜2 m deep and ˜11 m wide channel became centred. This is capped by a second package of thin (<45 cm thick) sheets of pahoehoe extending no more than 50 m from the channel. The upper-most package comprises localised 'a'a overflows. The channel itself contains two blockages located 130 m apart and composed of levee chunks veneered with overflow lava. The channel was emplaced over 50 h, spanning 30 May-2 June, 1974, with the flow front arriving at our section (4.4 km from the vent) 8 h after the eruption began. The basal 'a'a flow thickness yields effusion rates of 35 m3 s-1 for the opening phase, with the initial flow advancing across the mapped section at ˜10 m/min. Short-lived overflows of fluid pahoehoe then built the levee cap, increasing the apparent channel depth to 4.8 m. There were at least six pulses at 90-420 m3 s-1, causing overflow of limited extent lasting no more than 5 min. Brim-full flow conditions were thus extremely short-lived. During a dominant period of below-bank flow, flow depth was ˜2 m with an effusion rate of ˜35 m3 s-1, consistent with the mean output rate (obtained from the total flow bulk volume) of 23-54 m3 s-1. During pulses, levee chunks were plucked and floated down channel to form blockages. In a final low effusion rate phase, lava ponded behind the lower blockage to form a syn-channel pond that fed 'a'a overflow. After the end of the eruption the roofed-over pond continued to drain through the lower blockage, causing the roof to founder. Drainage emplaced inflated flows on the channel floor below the lower blockage for a further ˜10 h. The complex processes involved in levee-channel construction

  4. The explosive origin of obsidian lava (Invited)

    NASA Astrophysics Data System (ADS)

    Castro, J. M.; Bindeman, I. N.; Tuffen, H.; Schipper, C.

    2013-12-01

    A long-standing challenge in volcanology has been to explain why explosive eruptions of rhyolite magma transition into outpourings of lava. Many studies suggest that lava is the product of non-explosive processes that allow magmatic vapour to escape in an open-system manner without wholesale fragmentation. Recent eruptions at Chaitén and Cordón Caulle volcanoes have shown that effusive rhyolites are anything but 'non-explosive' and may erupt simultaneously with vigourous pyroclastic fountains for months from a common vent. This behaviour implies that pyroclastic processes play a critical if not dominant role in degassing magma sufficiently such that it erupts effusively. Here we use H-isotope and bulk H2O measurements paired with textural evidence from the 2008 Chaitén and 2011 Cordón Caulle eruptions to demonstrate that effusion requires explosion(s)--lavas are the direct product of brittle deformation that fosters batched degassing into transient pyroclastic channels that repetitively and explosively vent from effusing lava. Evidence for cyclical brecciation and collapse of porous and permeable magmatic foams is abundant in the textures and structures of tuffisites--ash and lapilli-filled pyroclastic channels--found in volcanic bombs at both Chaitén and Cordón Caulle. We have used FTIR and a TCEA-MAT 253 system to precisely measure total water and D/H in erupted glass. Bulk H2O measurements on tuffisite and adjacent bomb obsidian indicate significantly lower H2O (~0.2-1.0 wt.%) in the tuffisite veins. These depletions imply effective local degassing and rapid advective transport of exsolved vapour through the veins. The H-isotopic signatures of tuffisites are also different from the hosting material insofar as being enriched in deuterium (up to -20‰). Such deuterium enrichments are inconsistent with isotope fractionation during both closed- and open-system degassing, but can be explained if an abundant and more primitive volatile phase from less degassed

  5. A Multi-Aperture Scintillation Sensor for Dome A, Antarctica

    NASA Astrophysics Data System (ADS)

    Chen, Hualin; Pei, Chong; Yuan, Xiangyan

    2013-01-01

    Site-testing measurements by the Australian group has already shown that Dome C on the Antarctic plateau is one of the best ground-based astronomical sites. Furthermore, Dome A, the Antarctic Kunlun Station, as the highest point on Antarctic inland plateau, where a Chinese Antarctic scientific expedition team first reached in 2005, is widely predicted to be an even better astronomical site by the international astronomical community. Preliminary site-testing carried out by the Center for Antarctic Astronomy (CAS) also confirms Dome A as a potential astronomical site. Multi-aperture scintillation sensors (MASS) can measure the seeing and isoplantic angle, the turbulence profile, etc., which are very important site-testing parameters that we urgently need. The MASS site testing at Dome A is presented here, and includes the method of processing data and the hardware for the extreme conditions of Dome A, Antarctica.

  6. Effects of hypersonic vehicle's optical dome on infrared imaging

    NASA Astrophysics Data System (ADS)

    Zhang, Zhenjun; Cao, Zhiguo; Wang, Wenwu

    2011-09-01

    When an optically guided hypersonic vehicle flies in the atmosphere, the scene is viewed through an optical dome. Because of hypersonic friction with the atmosphere, the optical dome is inevitably covered by a serious shock wave, which threatens to alter the dome's physical parameters and further induce wavefront distortion and degradation of images. By studying the physical phenomena occurring within the optical dome in such an adverse environment, this paper identifies the relationship between the variation of the dome's optical characteristics and the infrared image degradation. The research indicates that the image quality degrades sharply as the vehicle's Mach number increases. Simulations also show that while the thermo-optic effect, elastic-optic effect, thermal deformation, and variation of transmittance have little effect on the optical system, the thermal radiation severely degrades images when vehicles fly at hypersonic speeds. Photo-Optical Instrumentation Engineers

  7. Baseline design and requirements for the LSST rotating enclosure (dome)

    NASA Astrophysics Data System (ADS)

    Neill, D. R.; DeVries, J.; Hileman, E.; Sebag, J.; Gressler, W.; Wiecha, O.; Andrew, J.; Schoening, W.

    2014-07-01

    The Large Synoptic Survey Telescope (LSST) is a large (8.4 meter) wide-field (3.5 degree) survey telescope, which will be located on the Cerro Pachón summit in Chile. As a result of the wide field of view, its optical system is unusually susceptible to stray light; consequently besides protecting the telescope from the environment the rotating enclosure (Dome) also provides indispensible light baffling. All dome vents are covered with light baffles which simultaneously provide both essential dome flushing and stray light attenuation. The wind screen also (and primarily) functions as a light screen providing only a minimum clear aperture. Since the dome must operate continuously, and the drives produce significant heat, they are located on the fixed lower enclosure to facilitate glycol water cooling. To accommodate day time thermal control, a duct system channels cooling air provided by the facility when the dome is in its parked position.

  8. Phase competition in trisected superconducting dome

    NASA Astrophysics Data System (ADS)

    Vishik, Inna

    2012-02-01

    The momentum-resolved nature of angle-resolved photoemission spectroscopy (ARPES) has made it a key probe of emergent phases in the cuprates, such as superconductivity and the pseudogap, which have anisotropic momentum-space structure. ARPES can be used to infer the origin of spectral gaps from their distinct phenomenology---temperature, doping, and momentum dependence, and this principle has been used to argue that the pseudogap is a distinct phase from superconductivity, rather than a precursor [1]. We have studied Bi2Sr2CaCu2O8+δ (Bi-2212) using laser-ARPES, and our data give evidence for three distinct quantum phases comprising the superconducting ground state, accompanied by abrupt changes at p˜0.076 and p˜0.19 in the doping-and-temperature dependence of the gaps near the bond-diagonal (nodal) direction [2]. The latter doping likely marks the quantum critical point of the pseudogap, while the former represents a distinct competing phase at the edge of the superconducting dome. Additionally, we find that the pseudogap advances closer towards the node when superconductivity is weak, just below Tc or at low doping, and retreats towards the antinode well below Tc and at higher doping. This phase competition picture together with the two critical doping are synthesized into our proposed phase diagram, which also reconciles conflicting phase diagrams commonly used in the field. Our results underscore the importance of quantum critical phenomena to cuprate superconductivity, provide a microscopic picture of phase competition in momentum space, and predict the existence of phase boundaries inside the superconducting dome which are different from simple extrapolations from outside the dome. [4pt] [1] I. M. Vishik, W. S. Lee, R.-H. He, M. Hashimoto, Z. Hussain, T. P. Devereaux, and Z.-X. Shen. New J. Phys. 12, 105008 (2010). [0pt] [2] I. M. Vishik, M. Hashimoto, R.-H. He, W. S. Lee, F. Schmitt, D. H. Lu, R.G. Moore, C. Zhang, W. Meevasana, T. Sasagawa, S. Uchida, K

  9. Geologic study of Kettle dome, northeast Washington. Final report

    SciTech Connect

    Not Available

    1980-10-01

    This geologic study of Kettle dome, northeast Washington, encompasses an area of approximately 800 square miles (2048 sq km). The evaluation of uranium occurrences associated with the igneous and metamorphic rocks of the dome and the determination of the relationship between uranium mineralization and stratigraphic, structural, and metamorphic features of the dome are the principal objectives. Evaluation of the validity of a gneiss dome model is a specific objective. The principal sources of data are detailed geologic mapping, surface radiometric surveys, and chemical analyses of rock samples. Uranium mineralization is directly related to the presence of pegmatite dikes and sills in biotite gneiss and amphibolite. Other characteristics of the uranium occurrences include the associated migmatization and high-grade metamorphism of wallrock adjacent to the pegmatite and the abrupt decrease in uranium mineralization at the pegmatite-gneiss contact. Subtle chemical characteristics found in mineralized pegmatites include: (1) U increase as K/sub 2/O increases, (2) U decreases as Na/sub 2/O increases, and (3) U increases as CaO increases at CaO values above 3.8%. The concentration of uranium occurrences in biotite gneiss and amphibolite units results from the preferential intrusion of pegmitites into these well-foliated rocks. Structural zones of weakness along dome margins permit intrusive and migmatitic activity to affect higher structural levels of the dome complex. As a result, uranium mineralization is localized along dome margins. The uranium occurrences in the Kettle dome area are classified as pegmatitic. Sufficient geologic similarities exist between Kettle dome and the Rossing uranium deposit to propose the existence of economic uranium targets within Kettle dome.

  10. The Discovery Dome: A Tool for Increasing Student Engagement

    NASA Astrophysics Data System (ADS)

    Brevik, Corinne

    2015-04-01

    The Discovery Dome is a portable full-dome theater that plays professionally-created science films. Developed by the Houston Museum of Natural Science and Rice University, this inflatable planetarium offers a state-of-the-art visual learning experience that can address many different fields of science for any grade level. It surrounds students with roaring dinosaurs, fascinating planets, and explosive storms - all immersive, engaging, and realistic. Dickinson State University has chosen to utilize its Discovery Dome to address Earth Science education at two levels. University courses across the science disciplines can use the Discovery Dome as part of their curriculum. The digital shows immerse the students in various topics ranging from astronomy to geology to weather and climate. The dome has proven to be a valuable tool for introducing new material to students as well as for reinforcing concepts previously covered in lectures or laboratory settings. The Discovery Dome also serves as an amazing science public-outreach tool. University students are trained to run the dome, and they travel with it to schools and libraries around the region. During the 2013-14 school year, our Discovery Dome visited over 30 locations. Many of the schools visited are in rural settings which offer students few opportunities to experience state-of-the-art science technology. The school kids are extremely excited when the Discovery Dome visits their community, and they will talk about the experience for many weeks. Traveling with the dome is also very valuable for the university students who get involved in the program. They become very familiar with the science content, and they gain experience working with teachers as well as the general public. They get to share their love of science, and they get to help inspire a new generation of scientists.

  11. Transdomes: Emplacement of Migmatite Domes in Oblique Tectonic Settings

    NASA Astrophysics Data System (ADS)

    Teyssier, C. P.; Rey, P. F.; Whitney, D. L.; Mondy, L. S.; Roger, F.

    2014-12-01

    Many migmatite domes are emplaced within wrench corridors in which a combination of strike-slip and extensional detachment zones (pull-apart, extensional relay, or transfer zones) focus deep-crust exhumation. The Montagne Noire dome (France, Variscan Massif Central) exemplifies wrench-related dome formation and displays the following structural, metamorphic, and geochronologic characteristics of a 'transdome': the dome is elongate in the direction of extension; foliation outlines a double dome separated by a high-strain zone; lineation is shallowly plunging with a fairly uniform trend that parallels the strike of the high-strain zone; subdomes contain recumbent structures overprinted by upright folds that affected upward by flat shear zones associated with detachment tectonics; domes display a large syn-deformation metamorphic gradient from core (upper amphibolite facies migmatite) to margin (down to greenschist facies mylonite); some rocks in the dome core experienced isothermal decompression revealed by disequilibrium reaction textures, particularly in mafic rocks (including eclogite); and results of U-Pb geochrononology indicate a narrow range of metamorphic crystallization from core to mantling schist spanning ~10 Myr. 3D numerical modeling of transdomes show that the dome solicits a larger source region of partially molten lower crust compared to 2D models; this flowing crust creates a double-dome architecture as in 2D models but there are differences in the predicted thermal history and flow paths. In a transtension setting, flow lines converge at depth (radial-centripetal flow) toward the zone of extension and diverge at shallow levels in a more uniform direction that is imposed by upper crust motion and deformation. This evolution produces a characteristic pattern of strain history, progressive fabric overprint, and P-T paths that are comparable to observed dome rocks.

  12. Volcanic gas emissions during active dome growth at Mount Cleveland, Alaska, August 2015

    NASA Astrophysics Data System (ADS)

    Werner, Cynthia; Kern, Christoph; Lyons, John; Kelly, Peter; Schneider, David; Wallace, Kristi; Wessels, Rick

    2016-04-01

    Volcanic gas emissions and chemistry data were measured for the first time at Mount Cleveland (1730 m) in the Central Aleutian arc, Alaska, on August 14-15, 2015 as part of the NSF-GeoPRISMS initiative, and co-funded by the Deep Carbon Observatory (DCO) and the USGS Alaska Volcano Observatory. The measurements were made in the month following two explosive events (July 21 and August 7, 2015) that destroyed a small dome (˜50x85 m), which had experienced episodic growth in the crater since November, 2014. These explosions resulted in the elevation of the aviation color code and alert level from Yellow/Advisory to Orange/Watch on July 21, 2015. Between the November, 2014 and July, 2015 dome-destroying explosions, the volcano experienced: (1) frequent periods of elevated surface temperatures in the summit region (based on Mid-IR satellite observations), (2) limited volcano-seismic tremor, (3) visible degassing as recorded in webcam images with occasionally robust plumes, and (4) at least one aseismic volcanic event that deposited small amounts of ash on the upper flanks of the volcano (detected by infrasound, observed visually and in Landsat 8 images). Intermittent plumes were also sometimes detectable up to 60 km downwind in Mid-IR satellite images, but this was not typical. Lava extrusion resumed following the explosion as indicated in satellite data by highly elevated Mid-IR surface temperatures, but was not identifiable in seismic data. By early-mid August, 2015, a new dome growing in the summit crater had reached 80 m across with temperatures of 550-600 C as measured on August 4 with a helicopter-borne thermal IR camera. A semitransparent plume extended several kilometers downwind of the volcano during the field campaign. A helicopter instrumented with an upward-looking UV spectrometer (mini DOAS) and a Multi-GAS was used to measure SO2 emission rates and in situ mixing ratios of H2O, CO2, SO2, and H2S in the plume. On August 14 and 15, 2015, a total of 14

  13. Lava Flows on Io: Modelling Cooling After Solidification

    NASA Technical Reports Server (NTRS)

    Davies, A. G.; Matson, D. L.; Veeder, G. J.; Johnson, T. V.; Blaney, D. L.

    2003-01-01

    We have modeled the cooling of lava bodies on Io after solidification of the lava, a process that has been little explored since Carr (1986). With recent estimates of lava flow thicknesses on Io ranging from 1 m to 10 m, the modeling of thermal emission from active volcanism must take into account the cooling behaviour after the solidification of the lava, which we model using a finite-element model. Once a lava body is fully solidified, the surface temperature decreases faster, as heat loss is no longer buffered by release of latent heat. This is significant as observed surface temperature is often the only clue available to determine lava surface age. We also find that cooling from the base of the lava is an important process that accelerates the solidification of a flow and therefore subsequent cooling. It is necessary to constrain the cooling process in order to better understand temperature-area relationships on Io's surface and to carry out stochastic modelling of lava flow emplacement.

  14. The Lifferth Dome for Small Telescopes

    NASA Astrophysics Data System (ADS)

    Wilson, B. L.; Olsen, C. S.; Iverson, E. P.; Paget, A.; Lifferth, W.; Brown, P. J.; Moody, J. W.

    2004-12-01

    The Lifferth Dome is a pull-off roof designed for small telescopes and other observational equipment. It was specifically designed for the needs of the ROVOR project. The roof itself is completely removed from the observatory housing walls and cranked off to the side below the optical horizon. This is done using two swing arms on either side of the observatory that work in unison to lift the roof off the structure and rotate down and away into a cleared location. The torque is provided by a threaded rod connected to an electric motor at the back of the building. As the motor rotates, the threads turn through a threaded sleeve connected directly to the support arms. Advantages to this design are no lost horizon, no roller surfaces to keep clean, low power and simple limit switches. Operation is by computer control using by National Instruments LabVIEW via the internet. We present its design and construction.

  15. Structural review of the Vredefort dome

    NASA Technical Reports Server (NTRS)

    Colliston, W. P.; Reimold, W. U.

    1992-01-01

    The structure of the older-than-3.2-Ga Archean basement and Archean-to-Precambrian sedimentary/volcanic rocks (3.07 to ca. 2.2 Ga) in the center of the Witwatersrand Basin to the southwest of Johannesburg (South Africa) is dominated by the ca. 2.0-Ga megascopic Vredefort 'Dome' structure. The effect of the 'Vredefort event' is demonstrably large and is evident within a northerly arc of about 100 km radius around the granitic core of the structure. Northerly asymmetric overturning of the strata is observed within the first 17 km (strata is horizontal in the south), followed by a 40-km-wide rim synclinorium. Fold and fault structures (normal, reverse, and strike-slip) are locally as well as regionally concentrically arranged with respect to the northern and western sides of the structure. The unusual category of brittle deformation, the so-called 'shock deformation', observed in the collar strata has attracted worldwide attention over the past two decades. These deformation phenomena include the presence of coesite and stishovite, mylonites, and pseudotachylites, cataclasis at a microscopic scale, and the ubiquitous development of multiply striated joint surfaces (which include shatter cones, orthogonal, curviplanar, and conjugate fractures). The macroscopic to microscopic deformation features have led to the formulation of various hypotheses to account for the origin of the Vredefort structure: (1) tectonic hypotheses--deep crustal shear model, doming and N-directed thrust fault model, fold interference model, and diapir model; (2) the exogenous bolide impact hypothesis; and (3) the endogenous cryptoexplosion model.

  16. Geohydrology of the Keechi, Mount Sylvan, Oakwood, and Palestine salt domes in the northeast Texas salt-dome basin

    USGS Publications Warehouse

    Carr, Jerry E.; Halasz, Stephen J.; Peters, Henry B.

    1980-01-01

    Additional problems concerning the hydrologic stability of Oakwood and Palestine Salt Domes have resulted from the disposal of oil-field salinewater in the cap rock at the Oakwood Dome and previous solution mining of salt at the Palestine Dome Additional investigations are needed to determine if a selected dome is hydrologically stable. Needed investigations include: (1) A more complete comparative analysis of the regional and local geohydrologic system; (2) a site-specific drilling and sampling program to analyze the cap rock-aquifer boundary, sediment distribution, hydraulic-parameter variations, hydraulic-head relationships, and hydrochemical patterns; and (3) mass-transport computer modeling of ground-water flow at the domes.

  17. Rift-related volcanism and karst geohydrology of the southern Ozark Dome

    USGS Publications Warehouse

    Harrison, Richard W.; Weary, David J.; Orndorff, Randall C.; Repetski, John E.; Pierce, Herbert A.; Lowell, Gary R.; Evans, Kevin R.; Aber, James S.

    2010-01-01

    This field trip examines the geology and geohydrology of a dissected part of the Salem Plateau in the Ozark Plateaus province of south-central Missouri. Rocks exposed in this area include karstified, flat-lying, lower Paleozoic carbonate platform rocks deposited on Mesoproterozoic basement. The latter is exposed as an uplift located about 40 mi southwest of the St. Francois Mountains and form the core of the Ozark dome. On day 1, participants will examine and explore major karst features developed in Paleozoic carbonate strata on the Current River; this will include Devil's Well and Round Spring Cavern as well as Montauk, Round, Alley, and Big Springs. The average discharge of the latter is 276 × 106 gpd and is rated in the top 20 springs in the world. Another, Alley Spring, is equally spectacular with an average discharge of 81 × 106 gpd. Both are major contributors to the Current and Eleven Point River drainage system which includes about 50 Mesoproterozoic volcanic knobs and two granite outcrops. These knobs are mainly caldera-erupted ignimbrites with a total thickness of 7–8 km. They are overlain by post-collapse lavas and intruded by domes dated at 1470 Ma. Volcaniclastic sediment and air-fall lapilli tuff are widely distributed along this synvolcanic unconformity. On day 2, the group will examine the most important volcanic features and the southernmost granite exposure in Missouri. The trip concludes with a discussion of the Missouri Gravity Low, the Eminence caldera, and the volcanic history of southern Missouri as well as a discussion of geologic controls on regional groundwater flow through this part of the Ozark aquifer.

  18. Shallow outgassing changes disrupt steady lava lake activity, Kilauea Volcano

    NASA Astrophysics Data System (ADS)

    Patrick, M. R.; Orr, T. R.; Swanson, D. A.; Lev, E.

    2015-12-01

    Persistent lava lakes are a testament to sustained magma supply and outgassing in basaltic systems, and the surface activity of lava lakes has been used to infer processes in the underlying magmatic system. At Kilauea Volcano, Hawai`i, the lava lake in Halema`uma`u Crater has been closely studied for several years with webcam imagery, geophysical, petrological and gas emission techniques. The lava lake in Halema`uma`u is now the second largest on Earth, and provides an unprecedented opportunity for detailed observations of lava lake outgassing processes. We observe that steady activity is characterized by continuous southward motion of the lake's surface and slow changes in lava level, seismic tremor and gas emissions. This normal, steady activity can be abruptly interrupted by the appearance of spattering - sometimes triggered by rockfalls - on the lake surface, which abruptly shifts the lake surface motion, lava level and gas emissions to a more variable, unstable regime. The lake commonly alternates between this a) normal, steady activity and b) unstable behavior several times per day. The spattering represents outgassing of shallowly accumulated gas in the lake. Therefore, although steady lava lake behavior at Halema`uma`u may be deeply driven by upwelling of magma, we argue that the sporadic interruptions to this behavior are the result of shallow processes occurring near the lake surface. These observations provide a cautionary note that some lava lake behavior is not representative of deep-seated processes. This behavior also highlights the complex and dynamic nature of lava lake activity.

  19. Morphology and dynamics of inflated subaqueous basaltic lava flows

    NASA Astrophysics Data System (ADS)

    Deschamps, Anne; Grigné, Cécile; Le Saout, Morgane; Soule, Samuel Adam; Allemand, Pascal; Van Vliet-Lanoe, Brigitte; Floc'h, France

    2014-06-01

    eruptions onto low slopes, basaltic Pahoehoe lava can form thin lobes that progressively coalesce and inflate to many times their original thickness, due to a steady injection of magma beneath brittle and viscoelastic layers of cooled lava that develop sufficient strength to retain the flow. Inflated lava flows forming tumuli and pressure ridges have been reported in different kinds of environments, such as at contemporary subaerial Hawaiian-type volcanoes in Hawaii, La Réunion and Iceland, in continental environments (states of Oregon, Idaho, Washington), and in the deep sea at Juan de Fuca Ridge, the Galapagos spreading center, and at the East Pacific Rise (this study). These lava have all undergone inflation processes, yet they display highly contrasting morphologies that correlate with their depositional environment, the most striking difference being the presence of water. Lava that have inflated in subaerial environments display inflation structures with morphologies that significantly differ from subaqueous lava emplaced in the deep sea, lakes, and rivers. Their height is 2-3 times smaller and their length being 10-15 times shorter. Based on heat diffusion equation, we demonstrate that more efficient cooling of a lava flow in water leads to the rapid development of thicker (by 25%) cooled layer at the flow surface, which has greater yield strength to counteract its internal hydrostatic pressure than in subaerial environments, thus limiting lava breakouts to form new lobes, hence promoting inflation. Buoyancy also increases the ability of a lava to inflate by 60%. Together, these differences can account for the observed variations in the thickness and extent of subaerial and subaqueous inflated lava flows.

  20. Lunar Pit Craters Presumed to be the Entrances of Lava Caves by Analogy to the Earth Lava Tube Pits

    NASA Astrophysics Data System (ADS)

    Hong, Ik-Seon; Yi, Yu; Kim, Eojin

    2014-06-01

    Lava caves could be useful as outposts for the human exploration of the Moon. Lava caves or lava tubes are formed when the external surface of the lava flows cools more quickly to make a hardened crust over subsurface lava flows. The lava flow eventually ceases and drains out of the tube, leaving an empty space. The frail part of the ceiling of lava tube could collapse to expose the entrance to the lava tubes which is called a pit crater. Several pit craters with the diameter of around 100 meters have been found by analyzing the data of SELENE and LRO lunar missions. It is hard to use these pit craters for outposts since these are too large in scale. In this study, small scale pit craters which are fit for outposts have been investigated using the NAC image data of LROC. Several topographic patterns which are believed to be lunar caves have been found and the similar pit craters of the Earth were compared and analyzed to identify caves. For this analysis, the image data of satellites and aerial photographs are collected and classified to construct a database. Several pit craters analogous to lunar pit craters were derived and a morphological pit crater model was generated using the 3D printer based on this database.

  1. Rheological analyses of lava flows on Mars

    NASA Technical Reports Server (NTRS)

    Moore, H. J.; Davis, P. A.

    1991-01-01

    Researchers obtained 183 profiles of lava flows on Mars using photoclinometry. These photoclinometric profiles were leveled by adjusting them until the levee crests or bases had the same elevations (depending on the situation). Here, researchers report some of the results of their analysis of 27 flows on the flanks of Alba Patera (3 flows), near the summit of Ascraeus Mons (6 flows), the flanks of Arsia Mons (3 flows), and the flanks of Olympus Mons (15 flows). Results suggest that the flows examined to date are not felsic or ultramafic; rather, they probably range from basalts to basaltic andesites. Thus, the suggestion that flows on Olympus Mons and elsewhere may be more silicic than Hawaiian basalts is supported by the researchers' results. These suggestions are testable with suitable measurements of silica contents of the flows.

  2. Karst processes evidences on a Martian evaporite Dome

    NASA Astrophysics Data System (ADS)

    Baioni, D.; Zupan Hajna, N.; Wezel, F. C.

    2009-04-01

    In the eastern part of Tithonium Chasma (Mars) a body displaying a dome shape morphology is located. According to OMEGA mineralogical data (OMEGA data orbit 531_3) and further studies the dome appears to consist of kieserite, an evaporitic mineral also found on the Earth. Previous works highlighted the presence on the dome surface of karst-like landforms and morphologies that strongly resemble the evaporitic karst morphologies found on the Earth. Through the analysis of the new MRO HIRISE images we have investigated the Martian landform and the possible processes involved in their formation and shaping in great detail. The results of our study out show that the landforms observed clearly indicate the presence of solutional processes that also acted in a selective way just as in the evaporite rocks on the Earth. The analysis carried out highlight that the Martian dome can be also formed of different materials with different solutional proprieties. The dome quite probably it is constituted mainly by salts such as carnallite, kainite and halite (a mineral without spectral signatures that might be present in the dome). Our observation also suggest that on the dome liquid water must have existed in the past for enough time so that the solution features we investigated could be formed.

  3. Correlation of the Deccan and Rajahmundry Trap lavas: Are these the longest and largest lava flows on Earth?

    USGS Publications Warehouse

    Self, S.; Jay, A.E.; Widdowson, M.; Keszthelyi, L.P.

    2008-01-01

    We propose that the Rajahmundry Trap lavas, found near the east coast of peninsular India, are remnants of the longest lava flows yet recognized on Earth (??? 1000??km long). These outlying Deccan-like lavas are shown to belong to the main Deccan Traps. Several previous studies have already suggested this correlation, but have not demonstrated it categorically. The exposed Rajahmundry lavas are interpreted to be the distal parts of two very-large-volume pa??hoehoe flow fields, one each from the Ambenali and Mahabaleshwar Formations of the Wai Sub-group in the Deccan Basalt Group. Eruptive conditions required to emplace such long flows are met by plausible values for cooling and eruption rates, and this is shown by applying a model for the formation of inflated pa??hoehoe sheet flow lobes. The model predicts flow lobe thicknesses similar to those observed in the Rajahmundry lavas. For the last 400??km of flow, the lava flows were confined to the pre-existing Krishna valley drainage system that existed in the basement beyond the edge of the gradually expanding Deccan lava field, allowing the flows to extend across the subcontinent to the eastern margin where they were emplaced into a littoral and/or shallow marine environment. These lavas and other individual flow fields in the Wai Sub-group may exceed eruptive volumes of 5000??km3, which would place them amongst the largest magnitude effusive eruptive units yet known. We suggest that the length of flood basalt lava flows on Earth is restricted mainly by the size of land masses and topography. In the case of the Rajahmundry lavas, the flows reached estuaries and the sea, where their advance was perhaps effectively terminated by cooling and/or disruption. However, it is only during large igneous province basaltic volcanism that such huge volumes of lava are erupted in single events, and when the magma supply rate is sufficiently high and maintained to allow the formation of very long lava flows. The Rajahmundry lava

  4. First field identification of the Cuonadong dome in southern Tibet: implications for EW extension of the North Himalayan gneiss dome

    NASA Astrophysics Data System (ADS)

    Fu, Jiangang; Li, Guangming; Wang, Genhou; Huang, Yong; Zhang, Linkui; Dong, Suiliang; Liang, Wei

    2016-07-01

    The Cuonadong dome exposes in east-southern margin of the North Himalayan gneiss domes (NHGD), which is reported first time in this study. The Cuonadong dome is located at the southern part of the Zhaxikang ore concentration area, which is divided into three tectono-lithostratigraphic units by two curved faults around the dome geometry from upper to lower (or from outer to inner): the upper unit, middle unit and lower unit, and the outer fault is Nading fault, while the inner fault is Jisong fault. The Cuonadong dome is a magmatic orthogneiss and leucogranite mantled by orthogneiss and metasedimentary rocks, which in turn are overlain by Jurassic metasedimentary and sedimentary rocks. The grades of metamorphism and structural deformation increase towards the core, which is correspondence with the Ridang Formation low-metamorphic schist, tourmaline granitic-biotite gneiss, garnet-mica gneiss and mylonitic quartz-mica gneiss. The Cuonadong dome preserves evidences for four major deformational events: firstly top-to-S thrust (D1), early approximately N-S extensional deformation (D2), main approximately E-W extensional deformation (D3), and late collapse structural deformation (D4) around the core of the Cuonadong dome, which are consistent to three groups lineation: approximately N-S-trending lineation including L1 and L2, E-W trending L3, and L4 with plunging towards outside of the dome, respectively. The formation of the Cuonadong dome was probably resulted from the main E-W extensional deformation which is a result of eastward flow of middle or lower crust from beneath Tibet accommodated by northward oblique underthrusting of Indian crust beneath Tibet. The establishment of the Cuonadong dome enhanced the E-W extension of the NHGD, which is further divided into two structural dome zones according to the different extensional directions: approximately N-S extensional North Himalayan gneiss domes (NS-NHGD) and E-W extensional North Himalayan gneiss domes (EW

  5. Similarities in basalt and rhyolite lava flow emplacement processes

    NASA Astrophysics Data System (ADS)

    Magnall, Nathan; James, Mike; Tuffen, Hugh; Vye-Brown, Charlotte

    2016-04-01

    Here we use field observations of rhyolite and basalt lava flows to show similarities in flow processes that span compositionally diverse lava flows. The eruption, and subsequent emplacement, of rhyolite lava flows is currently poorly understood due to the infrequency with which rhyolite eruptions occur. In contrast, the emplacement of basaltic lava flows are much better understood due to very frequent eruptions at locations such as Mt Etna and Hawaii. The 2011-2012 eruption of Cordón Caulle in Chile enabled the first scientific observations of the emplacement of an extensive rhyolite lava flow. The 30 to 100 m thick flow infilled a topographic depression with a negligible slope angle (0 - 7°). The flow split into two main channels; the southern flow advanced 4 km while the northern flow advanced 3 km before stalling. Once the flow stalled the channels inflated and secondary flows or breakouts formed from the flow front and margins. This cooling rather than volume-limited flow behaviour is common in basaltic lava flows but had never been observed in rhyolite lava flows. We draw on fieldwork conducted at Cordón Caulle and at Mt Etna to compare the emplacement of rhyolite and basaltic flows. The fieldwork identified emplacement features that are present in both lavas, such as inflation, breakouts from the flow font and margins, and squeeze-ups on the flow surfaces. In the case of Cordón Caulle, upon extrusion of a breakout it inflates due to a combination of continued lava supply and vesicle growth. This growth leads to fracturing and breakup of the breakout surface, and in some cases a large central fracture tens of metres deep forms. In contrast, breakouts from basaltic lava flows have a greater range of morphologies depending on the properties of the material in the flows core. In the case of Mt Etna, a range of breakout morphologies are observed including: toothpaste breakouts, flows topped with bladed lava as well as breakouts of pahoehoe or a'a lava. This

  6. Lost Jim Lava Flow, Seward Peninsula, Alaska as an analog for lava-ice interactions on Mars

    NASA Astrophysics Data System (ADS)

    Marcucci, E.; Hamilton, C.; Herrick, R. R.

    2015-12-01

    On Mars, volcanism within Elysium Planitia may have occurred as recently as ~10 million years ago, which associated lava flows being emplaced with ice-bearing permafrost. On Earth, there are few active volcanic regions that are cold enough to support permafrost, but the Seward Peninsula in Alaska is a prime location to study recent volcano-ice interactions. In the early 2000s, J.E. Beget and J.S. Kargel explored two areas in Alaska that exhibit features characteristic of explosive volcanism that may be the result of lava-ice interaction. These locations include the Lost Jim Lava Flow (65°29'N, 163°17'W) and several large maars (66°23'N, 164°29'W). The work presented here focuses on the Lost Jim Lava Flow, emanating from Lost Jim Cone and flowing West and North. The flow was erupted 1000-2000 years ago, covers ~225 km2, and ranges 3-30 m in thickness. Previous fieldwork identified pits along the margins of the flow that were interpreted to be collapse features (i.e., thermokarst) that formed as ground-ice beneath the lava melted due to heat transfer from the overlaying lava flow. This investigation utilizes stereo photogrammetry to generate high-resolution digital terrain models (DTMs) of these flow features to assess if these pits are indeed the products of thermokarstification, or if they are lava-rise pits formed by lava flow inflation. The DTMs were generated from ALOS PRISM data and DigitalGlobe Worldview 1 and 2 panchromatic satellite images taken as stereo-pairs or -triplets. With these new models the extent and morphology of the flow and pits will be categorized across the entire flow. These results are also compared to young lava flows on Mars, which may have experienced lava-ice interactions. Understanding the expression of such interactions on Earth may aid in the identification and interpretation of analogous eruptions on Mars.

  7. Maximum potential erosion and inundation of seven interior salt domes

    SciTech Connect

    Aronow, S.

    1982-08-01

    Seven interior salt domes have been evaluated in regard to erosion or inundation due to natural events. The most likely possibility of either event occurring would be associated with continental glaciation. The domes were evaluated based on maximum previous sea level changes due to glaciation and effects caused by melting of existing ice sheets. Results are listed for each of the seven domes. Past history indicates a likelihood of returning to a glacial period. The subsequent fall of sea level may cause regrading of streams in the area. A conservative evaluation of this phenomenon was performed and the results are reported.

  8. Sequential dome-collapse nuées ardentes analyzed from broadband seismic data, Merapi Volcano, Indonesia

    USGS Publications Warehouse

    Brodscholl, A.; Kirbani, S.B.; Voight, B.

    2000-01-01

    The broadband data were evaluated using the assumption that avalanches with the same source areas and descent paths exhibit a linear relation between source volume and recorded seismic-amplitude envelope area. A result of the analysis is the determination of the volume of selected individual events. From the field surveys, the total volume of the collapsed dome lava is 2.6 Mm3. Discounting the volumetric influence of rockfalls, the average size of the 44 nuées ardentes is therefore about 60,000 m3. The largest collapse event at 10:54 is estimated to involve 260,000 m3, based on an analysis of the seismicity. The remaining 23 phase I events averaged 60,000 m3, with the total volume of all phase I events accounting for 63% of the unstable dome. The 20 phase II events comprised 37% of the total volume and averaged 47,000 m3. The methods described here can be put to practical use in real-time monitoring situations. Broadband data were essential in this study primarily because of the wide dynamic range.

  9. Benchmarking computational fluid dynamics models for lava flow simulation

    NASA Astrophysics Data System (ADS)

    Dietterich, Hannah; Lev, Einat; Chen, Jiangzhi

    2016-04-01

    Numerical simulations of lava flow emplacement are valuable for assessing lava flow hazards, forecasting active flows, interpreting past eruptions, and understanding the controls on lava flow behavior. Existing lava flow models vary in simplifying assumptions, physics, dimensionality, and the degree to which they have been validated against analytical solutions, experiments, and natural observations. In order to assess existing models and guide the development of new codes, we conduct a benchmarking study of computational fluid dynamics models for lava flow emplacement, including VolcFlow, OpenFOAM, FLOW-3D, and COMSOL. Using the new benchmark scenarios defined in Cordonnier et al. (Geol Soc SP, 2015) as a guide, we model viscous, cooling, and solidifying flows over horizontal and sloping surfaces, topographic obstacles, and digital elevation models of natural topography. We compare model results to analytical theory, analogue and molten basalt experiments, and measurements from natural lava flows. Overall, the models accurately simulate viscous flow with some variability in flow thickness where flows intersect obstacles. OpenFOAM, COMSOL, and FLOW-3D can each reproduce experimental measurements of cooling viscous flows, and FLOW-3D simulations with temperature-dependent rheology match results from molten basalt experiments. We can apply these models to reconstruct past lava flows in Hawai'i and Saudi Arabia using parameters assembled from morphology, textural analysis, and eruption observations as natural test cases. Our study highlights the strengths and weaknesses of each code, including accuracy and computational costs, and provides insights regarding code selection.

  10. A comparative Study of Circulation Patterns at Active Lava Lakes

    NASA Astrophysics Data System (ADS)

    Lev, Einat; Oppenheimer, Clive; Spampinato, Letizia; Hernandez, Pedro; Unglert, Kathi

    2016-04-01

    Lava lakes present a rare opportunity to study magma dynamics in a large scaled-up "crucible" and provide a unique natural laboratory to ground-truth dynamic models of magma circulation. The persistence of lava lakes allows for long-term observations of flow dynamics and of lava properties, especially compared to surface lava flows. There are currently five persistent lava lakes in the world: Halemaumau in Kilauea (Hawaii, USA), Erta Ale (Ethiopia), Nyiragongo (Congo), Erebus (Antarctica), and Villarica (Chile). Marum and Benbow craters of Ambrym volcano (Vanuatu) and Masaya (Nicaragua) have often hosted lava lakes as well. We use visible-light and thermal infrared time-lapse and video footage collected at all above lakes (except Villarica, where the lake is difficult to observe), and compare the circulation patterns recorded. We calculate lake surface motion from the footage using the optical flow method (Lev et al., 2012) to produce 2D velocity fields. We mined both the surface temperature field and the surface velocity field for patterns using machine learning techniques such as "self-organizing maps (SOMs)" and "principle component analysis (PCA)". We use automatic detection technique to study the configuration of crustal plates at the lakes' surface. We find striking differences among the lakes, in flow direction, flow speed, frequency of changes in flow direction and speed, location and consistency of upwelling and downwelling, and crustal plate configuration. We relate the differences to lake size, shallow conduit geometry, lava viscosity, crystal and gas content, and crust integrity.

  11. Rebuilding Mount St. Helens

    USGS Publications Warehouse

    Schilling, Steve P.; Ramsey, David W.; Messerich, James A.; Thompson, Ren A.

    2006-01-01

    On May 18, 1980, Mount St. Helens, Washington exploded in a spectacular and devastating eruption that shocked the world. The eruption, one of the most powerful in the history of the United States, removed 2.7 cubic kilometers of rock from the volcano's edifice, the bulk of which had been constructed by nearly 4,000 years of lava-dome-building eruptions. In seconds, the mountain's summit elevation was lowered from 2,950 meters to 2,549 meters, leaving a north-facing, horseshoe-shaped crater over 2 kilometers wide. Following the 1980 eruption, Mount St. Helens remained active. A large lava dome began episodically extruding in the center of the volcano's empty crater. This dome-building eruption lasted until 1986 and added about 80 million cubic meters of rock to the volcano. During the two decades following the May 18, 1980 eruption, Crater Glacier formed tongues of ice around the east and west sides of the lava dome in the deeply shaded niche between the lava dome and the south crater wall. Long the most active volcano in the Cascade Range with a complex 300,000-year history, Mount St. Helens erupted again in the fall of 2004 as a new period of dome building began within the 1980 crater. Between October 2004 and February 2006, about 80 million cubic meters of dacite lava erupted immediately south of the 1980-86 lava dome. The erupting lava separated the glacier into two parts, first squeezing the east arm of the glacier against the east crater wall and then causing equally spectacular crevassing and broad uplift of the glacier's west arm. Vertical aerial photographs document dome growth and glacier deformation. These photographs enabled photogrammetric construction of a series of high-resolution digital elevation models (DEMs) showing changes from October 4, 2004 to February 9, 2006. From the DEMs, Geographic Information Systems (GIS) applications were used to estimate extruded volumes and growth rates of the new lava dome. The DEMs were also used to quantify dome

  12. Lava emplacements at Shiveluch volcano (Kamchatka) from June 2011 to September 2014 observed by TanDEM-X SAR-Interferometry

    NASA Astrophysics Data System (ADS)

    Heck, Alexandra; Kubanek, Julia; Westerhaus, Malte; Gottschämmer, Ellen; Heck, Bernhard; Wenzel, Friedemann

    2016-04-01

    As part of the Ring of Fire, Shiveluch volcano is one of the largest and most active volcanoes on Kamchatka Peninsula. During the Holocene, only the southern part of the Shiveluch massive was active. Since the last Plinian eruption in 1964, the activity of Shiveluch is characterized by periods of dome growth and explosive eruptions. The recent active phase began in 1999 and continues until today. Due to the special conditions at active volcanoes, such as smoke development, danger of explosions or lava flows, as well as poor weather conditions and inaccessible area, it is difficult to observe the interaction between dome growth, dome destruction, and explosive eruptions in regular intervals. Consequently, a reconstruction of the eruption processes is hardly possible, though important for a better understanding of the eruption mechanism as well as for hazard forecast and risk assessment. A new approach is provided by the bistatic radar data acquired by the TanDEM-X satellite mission. This mission is composed of two nearly identical satellites, TerraSAR-X and TanDEM-X, flying in a close helix formation. On one hand, the radar signals penetrate clouds and partially vegetation and snow considering the average wavelength of about 3.1 cm. On the other hand, in comparison with conventional InSAR methods, the bistatic radar mode has the advantage that there are no difficulties due to temporal decorrelation. By interferometric evaluation of the simultaneously recorded SAR images, it is possible to calculate high-resolution digital elevation models (DEMs) of Shiveluch volcano and its surroundings. Furthermore, the short recurrence interval of 11 days allows to generate time series of DEMs, with which finally volumetric changes of the dome and of lava flows can be determined, as well as lava effusion rates. Here, this method is used at Shiveluch volcano based on data acquired between June 2011 and September 2014. Although Shiveluch has a fissured topography with steep slopes

  13. Evaluation of Lava Tube Formation Mechanisms Using Three-Dimensional Mapping, and Viscosity Modeling: Lava Beds National Monument, California.

    NASA Astrophysics Data System (ADS)

    Dedecker, J.; Gant, M.

    2014-12-01

    This study explores the relationships between lava tube morphology, lava effusion rate estimates, and the mechanism of lava tube formation. Effusion rate estimates for extinct lava tubes were calculated using a combination of three-dimensional mapping of lava tube caves, and viscosity models utilizing whole-rock compositions (Giordano et al., 2008, Earth Planet. Sci. Lett.), and petrographic data (Harris and Allen, 2008, J. Geophys. Res.). The mechanism of lava tube formation was evaluated using measured tube lengths and effusion rate estimates and comparing these data with observations from Hawaiian channel- and tube-fed flows (Pinkerton and Wilson, 1994, J. Volcanol. Geoth. Res.). Three-dimensional map data for lava tube caves were collected using a laser rangefinder to measure the cross-sectional shape and down-tube distance, and a tandem compass/inclinometer to measure the azimuth and inclination between survey stations in the tube. Total tube length consists of the mapped tube length plus the distance between collapse pits and trenches along the trend of the tube. Effusion rates were estimated using the Hagen-Poiseuille equation, measured mean cross-sectional radii and slope of lava tubes, and estimated effective viscosities of rock samples collected from mapped tubes at temperatures between 1080-1160 °C and water contents of 0-1 wt.%. A lava density of 1560 g/cm3was used for 0.40 vesicle fraction basalt. There is a positive correlation between measured tube lengths and cross-sectional radii (Fig. 1). We propose that this relationship reflects the positive correlation between flow lengths and effusion rates in active Hawaiian channel-fed flows. Measured tube lengths vs. effusion rate estimates were compared with data for Hawaiian channel-fed flows (Fig. 2). The two data sets overlap and have parallel trends. These results suggest that the lava tube caves studied formed by the roofing-over of channel-fed flows or had segments of channel-fed flow. We propose

  14. Lava flow dynamics driven by temperature-dependent viscosity variations

    NASA Astrophysics Data System (ADS)

    Diniega, S.; Smrekar, S. E.; Anderson, S. W.; Stofan, E. R.

    2011-12-01

    As lava viscosity can change 1-2 orders of magnitude due to small changes in temperature, several studies have predicted the formation of low-viscosity/high-temperature "fingers" (similar to a Saffman-Taylor type instability) within an initially near-uniform flow. We examine the onset and evolution of such fingers within a uniform lava sheet flow due to an influx of lava with slightly-variable temperature. We assume Hele-shaw-type geometry (depth << other dimensions), Newtonian and laminar fluid flow, a simple Nahme's exponential law relating temperature and viscosity, and radiative heat-loss through the flow's upper surface. Through the use of numerical simulation and steady-state analysis of model equations, we identify solutions that provide pahoehoe lava flows with a natural mechanism for the formation of lava channels/tubes within a sheet flow. Preliminary results indicate that flow-focusing occurs rapidly due to the thermo-viscosity relation, but zones of hotter flow commonly settle into a new steady-state and it is difficult to create perpetually-lengthening hot-fingers of lava (which seem more physically similar to developing lava tubes). This suggests that additional and/or discontinuous physical processes (such as decreasing radiative rates due to thickening of the surface crust or crystallization abruptly retarding flow within lower-temperature regions) may play important roles in the continued growth of preferred flow zones. We also derive qualitative and quantitative estimates of environmental controls on finger size, spacing, and location. This work has application to Earth and planetary volcanology studies as pahoehoe flows dominate terrestrial basaltic lavas and the eruption/emplacement mechanics that yield long lava flows on the Earth and Mars are not yet well understood.

  15. Compound Lava Flow Fields on Planetary Surfaces: Hawaiian Analogue Studies

    NASA Astrophysics Data System (ADS)

    Crown, D. A.; Byrnes, J. M.; Ramsey, M. S.

    2002-12-01

    Quantitative, process-oriented analyses of planetary volcanism have primarily been based on analogue studies of single-lobed lava flows emplaced as discrete units. Comparative analyses of compound lava flow fields on the Earth and terrestrial planets are being conducted in order to include volcanic styles characterized by complex distributary systems, stratigraphic relationships, and emplacement histories. Field observations, differential Global Positioning Systems (dGPS) measurements, and visible, thermal, and radar remote sensing are being used to characterize Hawaiian lava flow fields and develop techniques for analyses of planetary flow fields using datasets with high spatial and/or spectral resolution, such as MOC and THEMIS. These terrestrial studies allow flow field surface morphology, topography, and lava textures as well as detailed maps of distributary networks to be used to examine flow field growth and development. Information on flow field evolution is provided by delineating relationships between remote sensing signatures, surface morphology, and lava transport processes and by identifying input parameters for flowfield emplacement models. Investigations of the Mauna Ulu (1969-1974) and Puu Oo (1983-present) flow fields (Kilauea Volcano, HI) have focused on understanding the nature of distributary networks at various scales in order to determine spatial and temporal variations in lava transport. Initial work at Mauna Ulu has included analyses of 1) the distribution, network morphometry, and volumetric significance of lava channels in the medial zone of the flow field, and 2) the distribution, lava texture, and volumetric significance of breakouts from surface conduits and subsurface storage. Analyses of the temporal evolution of individual conduit systems provide the basis for interpretation of complex patterns of overlapping surface units that characterize local flow stratigraphy. Reconstruction of lava transport networks and relationships to surface

  16. Extensive young dacite lava flows between boninite and BABB in a backarc setting: NE Lau Basin

    NASA Astrophysics Data System (ADS)

    Embley, R. W.; Rubin, K. H.

    2015-12-01

    Several hundred square kilometers of young dacite lava flows mapped by their high acoustic backscatter erupted in several batches in proximity to boninite and back-arc basin basalt (BABB) in the NE Lau Basin, the world's fastest opening back-arc region and a site proposed as a modern analogue in some ophiolite models. Where sampled, these lavas are aphyric, glassy dacites and are not associated with andesite extrusives (commonly observed elsewhere). Several flow fields occur on the flank of the large silicic Niuatahi seamount. Two of the largest lava fields and several smaller ones (~220 km2) erupted as far as 60 km north of Niuatahi. Their occurrence is likely controlled by crustal fractures from the long-term extension in this rear-arc region. Determining thickness of these flows is problematic, but relief of 30-100 m on flow fronts and in collapsed areas yields volume estimates as high as ~7-18 km3 for the northern group. The mean silica content of the largest and best sampled dacite flow field (LL-B) is 65.6 ±0.2%, a remarkably consistent composition for such an extensive flow (~140 km2). Camera tows show lower viscosity flow forms, including many anastomatosing pillow tubes and ropey surfaces, as well as endogenous domes, ridges and lobes (some with "crease-like" extrusion ridges, and inflated lobes with extrusion structures). An enigmatic 2 x 1.5 km, 30-m deep collapse depression could mark an eruption center for the LL-B flow field. Low viscosity flow morphologies on portions of LL-B and a nearby smaller flow field implies high effusion rates during some phases of the eruption(s), which in turn implies some combination of higher than normal liquidus temperature and high water content. Submarine dacite flows have been described in ancient sequences from the Archaean through the Miocene but this is the first modern occurrence of large volume submarine dacite flows. The volume of these young dacite flows implies the presence of large differentiated melt

  17. Bayesian Inversion using Physics-based Models Applied to Dome Extrusion at Mount St. Helens 2004-2008

    NASA Astrophysics Data System (ADS)

    Wong, Y. Q.; Segall, P.; Anderson, K. R.; Bradley, A. M.

    2015-12-01

    Physics-based models of volcanic eruptions have grown more sophisticated over the past few decades. These models, combined with Bayesian inversion, offer the potential of integrating diverse geological and geophysical datasets to better understand volcanic systems. Using a Markov Chain Monte Carlo (MCMC) algorithm with a physics-based conduit model, we invert data from the 2004-2008 dome-forming eruption at Mount St. Helens, USA. We extend the 1D cylindrical conduit model of Anderson and Segall [2011] to include vertical and lateral gas loss from the magma, as well as equilibrium crystallization. The melt viscosity increases strongly with crystal content. Magma permeability obeys the Kozeny-Carman law with a threshold porosity. Excess pressure in the magma chamber drives Newtonian flow of magma upwards until the viscous resistance to flow exceeds the rate-dependent frictional strength on the conduit wall, at which point the magma transitions from viscous flow to plug flow. We investigate the steady-state solutions for lava dome growth between March and December 2005, in which magma chamber pressure, initial water content, permeability and friction parameters are unknown model parameters. These parameters are constrained by: dome rock porosity, extrusion rate from photogrammetry, plug depth from drumbeat earthquakes, and crystallization pressure from petrologic studies. Posterior probability density functions (PDFs) reveal the constraints on the model parameters and their correlations. Assuming lithostatic normal stress on the plug, low coefficients of friction (0.1-0.3) are required to allow extrusion at the observed rate while maintaining reasonable magma chamber pressures. Lower effective normal stress or melt viscosity could allow for larger friction coefficients. Future work will investigate the time-dependent system, thereby allowing us to incorporate time-evolving geodetic and eruption rate data into the inversion.

  18. Degassing history of a mid-ocean ridge rhyolite dome on the Alarcon Rise, Gulf of California

    NASA Astrophysics Data System (ADS)

    Portner, R. A.; Dreyer, B. M.; Clague, D. A.; Lowenstern, J. B.; Head, J. W., III; Saal, A. E.

    2014-12-01

    A 2350 meter deep rhyolite lava dome and surrounding intermediate-mafic complex on the Alarcon Rise mid-ocean ridge in the Gulf of California was sampled extensively during a 2012 MBARI expedition. The dome is predominantly composed of sparsely vesicular (<10%) obsidian with local deposits of pumiceous breccia. Pumiceous lapilli comprise highly vesicular (40-60%) fracture networks that separate non-vesicular obsidian "pseudoclasts". Textures and major element geochemistry suggest that both lithologies originated from the same magma that formed the majority of the dome. This is corroborated by comparable major element compositions (~75% SiO2) and near-equilibrium phenocryst assemblages including olivine (Fo10) and plagioclase (An17). Attenuated total reflectance (ATR) and transmission FTIR spectroscopy was used to measure H2O concentrations in olivine and plagioclase melt inclusions as well as host glasses (CO2 was below detection, <30 ppm). Rhyolite host glass contains 1.5-2.0 wt% H2O, similar to nearby andesite and dacite. These concentrations agree with saturation limits for H2O (1.7%) at the depth of Alarcon Rise, but are slightly less than what is predicted by fractional crystallization modeling. Melt inclusions from plagioclase and olivine in rhyolite contain a maximum of 3.5-4.5% H2O suggesting that up to 3.0% H2O exsolved into bubbles during a 3 km ascent. Hydrostatic pressures (23 MPa) at the eruptive vent would have permitted 53% vesiculation in agreement with petrographic observations. Although ~50% vesiculation and exsolved H2O contents of 3.0 wt% are less than the ideal threshold for magmatic fragmentation, the presence of highly vesicular ash particles representing fragmented pumiceous breccia argues otherwise. We posit that decoupled volatiles from a deeper magma body migrated through fracture networks to the surface causing mild explosivity.

  19. A glassy lava flow from Toconce volcano and its relation with the Altiplano-Puna Magma Body in Central Andes

    NASA Astrophysics Data System (ADS)

    Godoy, B.; Rodriguez, I.; Aguilera, F.

    2012-12-01

    Toconce is a composite stratovolcano located at the San Pedro - Linzor volcanic chain (SPLVC). This volcanic chain distributes within the Altiplano-Puna region (Central Andes) which is characterized by extensive rhyodacitic-to-rhyolitic ignimbritic fields, and voluminous domes of dacitic-to-rhyolitic composition (de Silva, 1989). The felsic melts that gave origin to ignimbrites and domes at this area were generated by mixing of mantle-derived magmas and anatectic melts assimilated during their ascent through the thick crust. Thus, partially molten layers exist in the upper crust below the APVC (de Silva et al., 2006). Evidence of large volumes of such melts has been also proposed by geophysical methods (i.e. the Altiplano-Puna Magma Body; Chmielowsky et al., 1999) In this work, petrography and whole rock, mineralogical and melt inclusions geochemistry of a glassy lava flow of Toconce volcano are presented. Petrographically, this lava flow shows a porphyric texture, with euhdral to subhedral plagioclase, ortho- and clino-pyroxene phenocrysts immersed in a glassy groundmass. Geochemically, the lava flow has 64.7% wt. SiO2. The glassy groundmass (~70% wt. SiO2) is more felsic than all the lavas in the volcanic chain (47-68% wt., Godoy et al., 2011). Analyzed orthopyroxene-hosted melt inclusions show an even higher SiO2 content (72-75% wt.), and a decreasing on Al2O3, Na2O, and CaO content with differentiation. Crystallization pressures of this lava flow, obtained using Putirka's two-pyroxene and clinopyroxene-liquid models (Putirka, 2008), range between 6 and 9 kbar. According to crystallization pressures, and major element composition, a felsic source located at shallow crustal pressures - where plagioclase is a stable mineralogical phase - originated the inclusions. This could be related to the presence of the Altiplano-Puna Magma Body (APMB) located below SPLVC. On the other hand, glassy groundmass, and disequilibrium textures in minerals of this lava flow could

  20. Effusive silicic volcanism in the Central Andes: The Chao dacite and other young lavas of the Altiplano-Puna Volcanic Complex

    NASA Technical Reports Server (NTRS)

    De Silva, S. L.; Self, S.; Francis, P. W.; Drake, R. E.; Ramirez, Carlos R.

    1994-01-01

    The largest known Quaternary silicic lava body in the world is Cerro Chao in north Chile, a 14-km-long coulee with a volume of at least 26 cu km. It is the largest of a group of several closely similar dacitic lavas erupted during a recent (less than 100,000 year old) magmatic episode in the Altiplano-Puna Volcanic Complex (APVC; 21-24 deg S) of the Centra; Andean Volcanic Zone. The eruption of Chao proceeded in three phases. Phase 1 was explosive and produced approximately 1 cu km of coarse, nonwelded dacitic pumice deposits and later block and ash flows that form an apron in front of the main lava body. Phase 2 was dominantly effusive and erupted approximately 22.5 cu km of magma in the form of a composite coulee covering approximately 53 sq km with a 400-m-high flow front and a small cone of poorly expanded pumice around the vent. The lava is homogeneous with rare flow banding and vesicular tops and selvages. Ogives (flow ridges) reaching heights of 30 m form prominent features on its surface. Phase 3 produced a 6-km-long, 3-km-wide flow that emanated from a collapsed dome. Ogives are subdued, and the lava is glassier than that produced in previous phases. All the Chao products are crystal-rich high-K dacites and rhyodacites with phenocrysts of plagioclase, quartz, hornblende, biotite, sphene, rare snidine, and oxides. Phenocryst contents reach 40-60 vol % (vesicle free) in the main phase 2 lavas but are lower in the phase 1 (20-25%) and phase 3 (approximately 40%) lavas. Ovoid andesitic inclusions with vesicular interiors and chilled margins up to 10 cm are found in the later stages of phase 2 and compose up to 5% of the phase 3 lava. There is little evidence for preeruptive zonation of the magma body in composition, temperature (approximately 840 C), fO2 (19(exp -11), or water content, so we propose that eruption of the Chao complex was driven by intrusion of fresh, hot andesitic magma into a crystallizing and largely homogeneous body of dacitic magma

  1. Map Showing Lava Inundation Zones for Mauna Loa, Hawaii

    USGS Publications Warehouse

    Trusdell, F.A.; Graves, P.; Tincher, C.R.

    2002-01-01

    Introduction The Island of Hawaii is composed of five coalesced basaltic volcanoes. Lava flows constitute the greatest volcanic hazard from these volcanoes. This report is concerned with lava flow hazards on Mauna Loa, the largest of the island shield volcanoes. Hilo lies 58 km from the summit of Mauna Loa, the Kona coast 33 km, and the southernmost point of the island 61 km. Hawaiian volcanoes erupt two morphologically distinct types of lava, aa and pahoehoe. The surfaces of pahoehoe flows are rather smooth and undulating. Pahoehoe flows are commonly fed by lava tubes, which are well insulated, lava-filled conduits contained within the flows. The surfaces of aa flows are extremely rough and composed of lava fragments. Aa flows usually form lava channels rather than lava tubes. In Hawaii, lava flows are known to reach distances of 50 km or more. The flows usually advance slowly enough that people can escape from their paths. Anything overwhelmed by a flow will be damaged or destroyed by burial, crushing, or ignition. Mauna Loa makes up 51 percent of the surface area of the Island of Hawaii. Geologic mapping shows that lava flows have covered more than 40 percent of the surface every 1,000 years. Since written descriptions of its activity began in A.D. 1832, Mauna Loa has erupted 33 times. Some eruptions begin with only brief seismic unrest, whereas others start several months to a year following increased seismic activity. Once underway, the eruptions can produce lava flows that reach the sea in less than 24 hours, severing roads and utilities. For example, the 1950 flows from the southwest rift zone reached the ocean in approximately three hours. The two longest flows of Mauna Loa are pahoehoe flows from the 50-kilometer-long 1859 and the 48-kilometer-long 1880-81 eruptions. Mauna Loa will undoubtedly erupt again. When it does, the first critical question that must be answered is: Which areas are threatened with inundation? Once the threatened areas are

  2. Modelling the thermal effects of spherulite growth in rhyolitic lava

    NASA Astrophysics Data System (ADS)

    Tuffen, H.; Cordonnier, B.; Castro, J. M.

    2012-12-01

    Rhyolitic lava flows, sills and dykes commonly comprise a spherulitic interior enveloped by a glassy carapace. Spherulite crystallisation has long been assumed to be a "passive" process that occurs during cooling of the lava around and below its glass transition temperature (~600-700 °C). It has also been suggested to be self-limiting due to diffusion controlled growth, creating only a small proportion of spherulites embedded in glass (snowflake obsidian). However, textures in rhyolitic lava bodies at Hrafntinnuhryggur, Krafla, Iceland indicate that near-complete spherulite crystallisation can occur, and suggest that parts of the lava spatially associated with zones of spherulite and lithophysae growth may be significantly heated. Evidence for heating includes melting of parts of the glassy lava carapace by lower-viscosity, invading melt of identical composition. Additionally, spherulitic crystal morphologies have been grown experimentally at undercoolings of only 100 °C. As the liquidus temperature of dry rhyolite may approach 1200 °C, this means that spherulites could continue to grow in degassed magma at temperatures of >900 °C, well above the initial magma temperature. We use new constraints on spherulite growth rates to model the thermal effects of spherulite growth within rhyolitic lava bodies, using three growth laws (size- and temperature-dependent, diffusion controlled and linear) and a variety of initial temperatures, nucleation densities and seed nuclei sizes. Models consider both latent heat release due to crystallisation and conductive cooling. Model results indicate that, when lava bodies are sufficiently large, spherulite growth can cause considerable heating (possibly >150 °C), enabling parts of lava bodies to heat to above the initial eruption temperature. This heating can lead to a viscosity reduction of orders of magnitude and trigger vesiculation. Model results indicate that cooling rates of between 10-3 to 10-5 °C/s ought to mark the

  3. Comparative analysis between Payen and Daedalia Planum lava fields

    NASA Astrophysics Data System (ADS)

    Giacomini, Lorenza; Massironi, Matteo; Pasquarè, Giorgio; Carli, Cristian; Martellato, Elena; Frigeri, Alessandro; Cremonese, Gabriele; Bistacchi, Andrea; Federico, Costanzo

    The Payen volcanic complex is a large Quaternary fissural structure belonging to the back-arc extensional area of the Andes in the Mendoza Province (Argentina). From the eastern portion of this volcanic structure huge pahoehoe lava flows were emitted, extending more than 180 km from the feeding vents. These huge flows propagated over the nearly flat surface of the Pampean foreland (ca 0.3° slope). The very low viscosity of the olivine basalt lavas, coupled with the inflation process are the most probable explanation for their considerable length. In an inflation process a thin viscoelastic crust, produced at an early stage, is later inflated by the underlying fluid core, which remains hot and fluid thanks to the thermal-shield effect of the crust. The inflation shows some typical morphological fingerprints like tumuli, lava lobes, lava rises and lava ridges. In order to compare the morphology of the Argentinean Payen flows with lava flows on Mars, MOLA, THEMIS, MOC, MRO/HIRISE, and MEX/OMEGA data have been analysed, providing a multi-scale characterisation of Martian flows. Mars Global Surveyor/MOLA data were used to investigate the topographic environment over which flows propagated on Mars in order to detect very low angle slopes where possibly inflation processes could have developed. Then Mars Odyssey/THEMIS and Mars Global Surveyor's MOC data were used to detect Martian lava flows with inflation "fingerprints", whereas OMEGA data were used to obtain some inferences about their composition. Finally the MRO/HIRISE images recently acquired, can provide further details and constraints on surface morphologies and lava fronts. All these data were used to analyze Daedalia Planum lava field, at about 300 km southwest of Arsia Mons, and clear morphological similarities with the longest flows of the Payen lava fields were found. These striking morphological analogies suggest that inflation process is quite common also for the Daedalia field. This is also supported by

  4. A New Perspective on Mount St. Helens - Dramatic Landform Change and Associated Hazards at the Most Active Volcano in the Cascade Range

    USGS Publications Warehouse

    Ramsey, David W.; Driedger, Carolyn L.; Schilling, Steve P.

    2008-01-01

    Mount St. Helens has erupted more frequently than any other volcano in the Cascade Range during the past 4,000 years. The volcano has exhibited a variety of eruption styles?explosive eruptions of pumice and ash, slow but continuous extrusions of viscous lava, and eruptions of fluid lava. Evidence of the volcano?s older eruptions is recorded in the rocks that build and the deposits that flank the mountain. Eruptions at Mount St. Helens over the past three decades serve as reminders of the powerful geologic forces that are reshaping the landscape of the Pacific Northwest. On May 18, 1980, a massive landslide and catastrophic explosive eruption tore away 2.7 cubic kilometers of the mountain and opened a gaping, north-facing crater. Lahars flowed more than 120 kilometers downstream, destroying bridges, roads, and buildings. Ash from the eruption fell as far away as western South Dakota. Reconstruction of the volcano began almost immediately. Between 1980 and 1986, 80 million cubic meters of viscous lava extruded episodically onto the crater floor, sometimes accompanied by minor explosions and small lahars. A lava dome grew to a height of 267 meters, taller than the highest buildings in the nearby city of Portland, Oregon. Crater Glacier formed in the deeply shaded niche between the 1980-86 lava dome and the south crater wall. Its tongues of ice flowed around the east and west sides of the dome. Between 1989 and 1991, multiple explosions of steam and ash rocked the volcano, possibly a result of infiltrating rainfall being heated in the still-hot interior of the dome and underlying crater floor. In September 2004, rising magma caused earthquake swarms and deformation of the crater floor and glacier, which indicated that Mount St. Helens might erupt again soon. On October 1, 2004, a steam and ash explosion signaled the beginning of a new phase of eruptive activity at the volcano. On October 11, hot rock reached the surface and began building a new lava dome immediately

  5. 4. WASHBURN POINT VISTA AREA. HALF DOME AT CENTER REAR. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. WASHBURN POINT VISTA AREA. HALF DOME AT CENTER REAR. LOOKING NE. GIS: N-37 43 13.7 / W-119 34 23.0 - Glacier Point Road, Between Chinquapin Flat & Glacier Point, Yosemite Village, Mariposa County, CA

  6. DETAIL OF DOMED BOTTOM, ALTITUDE CHAMBER R, FACING EAST ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    DETAIL OF DOMED BOTTOM, ALTITUDE CHAMBER R, FACING EAST - Cape Canaveral Air Force Station, Launch Complex 39, Altitude Chambers, First Street, between Avenue D and Avenue E, Cape Canaveral, Brevard County, FL

  7. DETAIL OF THE INTERIOR OF THE DOMED LID, ALTITUDE CHAMBER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    DETAIL OF THE INTERIOR OF THE DOMED LID, ALTITUDE CHAMBER R, FACING NORTHWEST - Cape Canaveral Air Force Station, Launch Complex 39, Altitude Chambers, First Street, between Avenue D and Avenue E, Cape Canaveral, Brevard County, FL

  8. DETAIL VIEW OF BRIDGE CRANE USED TO LIFT DOMED LIDS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    DETAIL VIEW OF BRIDGE CRANE USED TO LIFT DOMED LIDS OF THE ALTITUDE CHAMBERS, FACING SOUTHWEST - Cape Canaveral Air Force Station, Launch Complex 39, Altitude Chambers, First Street, between Avenue D and Avenue E, Cape Canaveral, Brevard County, FL

  9. DETAIL OF THE EXTERIOR OF THE DOMED LID, ALTITUDE CHAMBER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    DETAIL OF THE EXTERIOR OF THE DOMED LID, ALTITUDE CHAMBER R, FACING NORTHWEST - Cape Canaveral Air Force Station, Launch Complex 39, Altitude Chambers, First Street, between Avenue D and Avenue E, Cape Canaveral, Brevard County, FL

  10. DETAIL OF DOMED BOTTOM, ALTITUDE CHAMBER L, FACING NORTHWEST ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    DETAIL OF DOMED BOTTOM, ALTITUDE CHAMBER L, FACING NORTHWEST - Cape Canaveral Air Force Station, Launch Complex 39, Altitude Chambers, First Street, between Avenue D and Avenue E, Cape Canaveral, Brevard County, FL

  11. 4. FACING EAST ACROSS BRIDGE AT HALF DOME WITH BICYCLE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. FACING EAST ACROSS BRIDGE AT HALF DOME WITH BICYCLE PATH MARKERS IN FOREGROUND AND ELECTRICAL TRANSFORMER FOR CAMPGROUND TO RIGHT. - Ahwahnee Bridge, Spanning Merced River on service road, Yosemite Village, Mariposa County, CA

  12. 8. Detail view of steam dome attached to top of ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. Detail view of steam dome attached to top of Lancashire double flue boiler. - Hacienda Azucarera El Coto, Sugar Mill Ruins, .5 Mi. SW of Rt. 347 Bridge Over Guanajibo River, San German, San German Municipio, PR

  13. Geomorphogenesis and Carbon Fluxes of Tropical Peat Domes

    NASA Astrophysics Data System (ADS)

    Cobb, A.; Hoyt, A.; Dommain, R.; Harvey, C. F.

    2015-12-01

    Tropical peatlands sequester and release globally significant quantities of carbon dioxide as peat domes grow and subside on millennial time scales. Research to date indicates that the hydrologic feedback between water table depth and peat accumulation is fundamentally similar across tropical peatlands, but peat accumulation and fluxes cannot always be spatially uniform across the landscape because peat accumulates in domes. We show that upscaling from local measurements to landscape fluxes of CO2 and CH4 requires (1) sampling in both the growing interiors and the static margins of peat domes, and (2) use of topographical data from the peatland. Similarly, inference of past carbon sequestration from dated peat cores requires a model for the partitioning of peatlands into domes by drainage networks.

  14. STEEL TRUSS TENSION RING SUPPORTING DOME ROOF. TENSION RING COVERED ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    STEEL TRUSS TENSION RING SUPPORTING DOME ROOF. TENSION RING COVERED BY ARCHITECTURAL FINISH. TENSION RING ROLLER SUPPORT AT COLUMN OBSCURED BY COLUMN COVERINGS. - Houston Astrodome, 8400 Kirby Drive, Houston, Harris County, TX

  15. 5. GLACIER POINT ROAD VIEW AT SENTINEL DOME PARKING AREA. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. GLACIER POINT ROAD VIEW AT SENTINEL DOME PARKING AREA. LOOKING E. GIS: N-37 42 43.8 / W-119 35 12.1 - Glacier Point Road, Between Chinquapin Flat & Glacier Point, Yosemite Village, Mariposa County, CA

  16. 1. PARKING LOT AT GLACIER POINT. HALF DOME AT CENTER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. PARKING LOT AT GLACIER POINT. HALF DOME AT CENTER REAR. LOOKING NE. GIS: N-36 43 45.8 / W-119 34 14.1 - Glacier Point Road, Between Chinquapin Flat & Glacier Point, Yosemite Village, Mariposa County, CA

  17. Numerical and Experimental Approaches Toward Understanding Lava Flow Heat Transfer

    NASA Astrophysics Data System (ADS)

    Rumpf, M.; Fagents, S. A.; Hamilton, C.; Crawford, I. A.

    2013-12-01

    We have performed numerical modeling and experimental studies to quantify the heat transfer from a lava flow into an underlying particulate substrate. This project was initially motivated by a desire to understand the transfer of heat from a lava flow into the lunar regolith. Ancient regolith deposits that have been protected by a lava flow may contain ancient solar wind, solar flare, and galactic cosmic ray products that can give insight into the history of our solar system, provided the records were not heated and destroyed by the overlying lava flow. In addition, lava-substrate interaction is an important aspect of lava fluid dynamics that requires consideration in lava emplacement models Our numerical model determines the depth to which the heat pulse will penetrate beneath a lava flow into the underlying substrate. Rigorous treatment of the temperature dependence of lava and substrate thermal conductivity and specific heat capacity, density, and latent heat release are imperative to an accurate model. Experiments were conducted to verify the numerical model. Experimental containers with interior dimensions of 20 x 20 x 25 cm were constructed from 1 inch thick calcium silicate sheeting. For initial experiments, boxes were packed with lunar regolith simulant (GSC-1) to a depth of 15 cm with thermocouples embedded at regular intervals. Basalt collected at Kilauea Volcano, HI, was melted in a gas forge and poured directly onto the simulant. Initial lava temperatures ranged from ~1200 to 1300 °C. The system was allowed to cool while internal temperatures were monitored by a thermocouple array and external temperatures were monitored by a Forward Looking Infrared (FLIR) video camera. Numerical simulations of the experiments elucidate the details of lava latent heat release and constrain the temperature-dependence of the thermal conductivity of the particulate substrate. The temperature-dependence of thermal conductivity of particulate material is not well known

  18. Dome shaped features on Europa's surface

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The Solid State Imaging system aboard the spacecraft Galileo took this image of the surface of Europa on February 20, 1997 during its sixth orbit around Jupiter. The image is located near 16 North, 268 West; illumination is from the lower-right. The area covered is approximately 48 miles (80 kilometers) by 56 miles (95 kilometers) across. North is toward the top of the image.

    This image reveals that the icy surface of Europa has been disrupted by ridges and faults numerous times during its past. These ridges have themselves been disrupted by the localized formation of domes and other features that may be indicative of thermal upwelling of water from beneath the crust. These features provide strong evidence for the presence of subsurface liquid during Europa's recent past.

    The Jet Propulsion Laboratory, Pasadena, CA manages the mission for NASA's Office of Space Science, Washington, DC.

    This image and other images and data received from Galileo are posted on the World Wide Web, on the Galileo mission home page at URL http://galileo.jpl.nasa.gov. Background information and educational context for the images can be found at URL http://www.jpl.nasa.gov/galileo/sepo

  19. Snodar: 2009 performance at Dome A, Antarctica

    NASA Astrophysics Data System (ADS)

    Bonner, Colin S.; Ashley, Michael C. B.; Bradley, Stuart G.; Cui, Xiangqun; Feng, Longlong; Gong, Xuefei; Lawrence, Jon S.; Luong-van, Daniel M.; Shang, Zhaohui; Storey, John W. V.; Wang, Lifan; Yang, Huigen; Yang, Ji; Zhou, Xu; Zhu, Zhenxi

    2010-07-01

    Snodar is a high resolution acoustic radar designed specifically for profiling the atmospheric boundary layer on the high Antarctic plateau. Snodar profiles the atmospheric temperature structure function constant to a vertical resolution of 1 m or better with a minimum sample height of 8 m. The maximum sampling height is dependent on atmospheric conditions but is typically at least 100 m. Snodar uses a unique in-situ intensity calibration method that allows the instrument to be autonomously recalibrated throughout the year. The instrument is initially intensity calibrated against tower-mounted differential microthermal sensors. A calibration sphere is located in the near-field of the antenna to provide a fixed echo of known intensity, allowing the instrument to be continuously re-calibrated once deployed. This allows snow accumulation, transducer wear and system changes due to temperature to be monitored. Year-round power and communications are provided by the PLATO facility. This allows processed data to be downloaded every 6 hours while raw data is stored on-site for collection the following summer. Over 4 million processed samples have been downloaded through PLATO to date. We present signal attenuation from accumulation of snow and ice on Snodar's parabolic reflector during the 2009 at Dome A.

  20. Volcanism in southern Guinevere Planitia, Venus: Regional volcanic history and morphology of volcanic domes

    NASA Technical Reports Server (NTRS)

    Crown, David A.; Stofan, Ellen R.; Plaut, Jeffrey J.

    1993-01-01

    Guinevere Planitia is a low-lying region located between the highlands of Beta Regio and Eistla Regio. Analyses of Pioneer Venus, Goldstone, and Arecibo radar data suggested that the surface of Guinevere Planitia is dominated by volcanism, primarily in the form of bright, dark, and mottled plains units. Also identified in this region was the Beta-Eistla Deformation Zone, composed of ovoids and discontinuous segments of lineament belts that have been embayed by the surrounding plains. The resolution of Magellan SAR images allows detailed investigations of the volcanic deposits found in the area in order to determine the types of eruptive activity which have occurred and to constrain the regional volcanic history. Analyses of an area of southern Guinevere Planitia between 0-25 deg N and 300-330 deg indicate the presence of a wide variety of volcanic land forms, including large shield volcanoes, widespread plains, lava flow fields, and small domes, cones, and shields as well as coronae and other circular structures that have associated volcanic deposits.

  1. Dome houses and energy conservation: an introductory bibliography. [38 references to dome efficiency

    SciTech Connect

    Not Available

    1983-01-01

    The appearance of geodesic domes in conventional neighborhoods is recent. The current popularity of these spherical designs is due to their energy efficiency. Some manufacturers have claimed over 40% efficiency improvement over conventional homes of the same size. A host of low utility bills across the country is now backing up these claims. This bibliography concentrates on the period from 1960 to the present, although there are a few entries from earlier periods. Most of the material is available in articles rather than books.

  2. Perforating domed plasmonic films for broadband and omnidirectional antireflection.

    PubMed

    Ai, Bin; Gu, Panpan; Möhwald, Helmuth; Zhang, Gang

    2016-08-25

    Domed Ag nano-hole/disk array films exhibit a reflectivity of less than 0.7% over a wide spectral range (400-1000 nm) and even lower values down to 0.05% with an oblique incidence angle; this unique optical response is attributed to three key factors: diffractive scattering loss on nanostructures, localized plasmonic absorption and curved surface (domed units). PMID:27510646

  3. Hardened Lava Meets Wind on Mars

    NASA Technical Reports Server (NTRS)

    2006-01-01

    NASA's Mars Exploration Rover Spirit used its microscopic imager to capture this spectacular, jagged mini-landscape on a rock called 'GongGong.' Measuring only 3 centimeters (1.2 inches) across, this surface records two of the most important and violent forces in the history of Mars -- volcanoes and wind.

    GongGong formed billions of years ago in a seething, stirring mass of molten rock. It captured bubbles of gases that were trapped at great depth but had separated from the main body of lava as it rose to the surface. Like taffy being stretched and tumbled, the molten rock was deformed as it moved across an ancient Martian landscape. The tiny bubbles of gas were deformed as well, becoming elongated. When the molten lava solidified, the rock looked like a frozen sponge.

    Far from finished with its life, the rock then withstood billions of years of pelting by small sand grains carried by Martian dust storms that sometimes blanketed the planet. The sand wore away the surface until, little by little, the delicate strands that enclosed the bubbles of gas were breached and the spiny texture we see today emerged.

    Even now, wind continues to deposit sand and dust in the holes and crevices of the rock.

    Similar rocks can be found on Earth where the same complex interplay of volcanoes and weathering occur, whether it be the pelting of rocks by sand grains in the Mojave desert or by ice crystals in the frigid Antarctic.

    GongGong is one of a group of rocks studied by Spirit and informally named by the Athena Science Team to honor the Chinese New Year (the Year of the Dog). In Chinese mythology, GongGong was the god-king of water in the North Land. When he sacrificed his life to knock down Mount BuZhou, he defeated the bad Emperor in Heaven, freed the sun, moon and stars to go from east to west, and caused all the rivers in China to flow from west to east.

    Spirit's microscopic imager took this image during on the rover's 736th day, or sol, of

  4. Rhyolite lava fracturing and degassing induced spherulitic growth of Sawajiriwan and Sanukayama lavas in Kozushima Island, Japan

    NASA Astrophysics Data System (ADS)

    Furukawa, K.; Uno, K.; Kanamaru, T.

    2015-12-01

    Sawajiriwan and Sanukayama rhyolite lavas are distributed along west and east coasts of Kozushima Island, Japan, respectively (Taniguchi, 1977). They were erupted in about 40,000-50,000 years ago (Yokoyama et al., 2004). The both lavas are characterized by alignment of spherulites as well as previous works (Seaman et al., 2009; Clay et al., 2013). Seaman et al. (2009) attributed the spherulite alignment to the contrasting water concentration and concluded that the heterogeneity of water contents has already achieved within the magma chamber. In this study, we propose that development of the spherulite alignment is significantly related to the fracturing within the lavas. In Sawajiriwan lava, the distal part is well exposed and shows ramp structure and reverse faults with ductile-deformed fault planes. The both structures were formed within consistent compressional stress deduced from their geometry. Discrepancy of the structure would be attributed to the strain rate variation within the advancing lava. The spherulite alignment is characteristically developed along the planes. This indicates that the fractures acted as degassing pathway, and the part achieved large undercooling. The fault planes would be healed and deformed after decreasing strain rate, and spherulites were eventually grown along the planes. In Sanukayama lava, the ductile-deformed cataclastic faults are often developed as well as Sawajiriwan lava. The cataclasite is composed of porphyroclasts and nano- and micro-scale fine particles such as microlite and crystalline fragments. Microscopic observation clearly showed that the fine particles are released from the fault margin into the surrounding melt and are aligned along the flow line. Spherulites typically nucleated on the aligned fine particles, and consequently spherulite alignment was developed. We concluded from the lavas that development of the spherulite alignment is significantly related to the fracturing within the lavas.

  5. Unique dome design for the SOAR telescope project

    NASA Astrophysics Data System (ADS)

    Teran, Jose U.; Porter, David S.; Hileman, Edward A.; Neff, Daniel H.

    2000-08-01

    The SOAR telescope dome is a 20 meter diameter 5/8 spherical structure built on a rotating steel frame with an over the top nesting shutter and covered with a fiberglass panel system. The insulated fiberglass panel system can be self- supporting and is typically used for radomes on ground based tracking systems. The enclosed observing area is ventilated using a down draft ventilation system. The rotating steel frame is comprised of a ring beam and dual arch girders to provide support to the panel system sections and guide the shutter. The dual door shutter incorporates a unique differential drive system that reduces the complexity of the control system. The dome, shutter and windscreen `track' the telescope for maximum wind protection. The dome rotates on sixteen fixed compliant bogie assemblies. The dome is designed for assembly in sections off the facility and lifted into place for minimal impact on assembly of other telescope systems. The expected cost of the complete dome; including structure, drives, and controls is under 1.7 million. The details covered in this paper are the initial trade-offs and rationale required by SOAR to define the dome, the detailed design performed by M3 Engineering and Technology, and the choices made during the design.

  6. New field evidence for silicic ignimbrites and proximal lavas and their distribution in the Parana Basin, Brazil

    NASA Astrophysics Data System (ADS)

    Tramontano, S.; Harmon, L. J.; Gravley, D. M.; Gualda, G. A. R.

    2014-12-01

    Silicic ignimbrites and lavas are sometimes very difficult to distinguish from one another in the field. Their accurate identification provides the basis for a better understanding of the origin of these deposits, including processes related to magma extraction, fragmentation and eruption style. We are studying the silicic volcanics in the Paraná Rift Basin in southern Brazil (the ~130 to 135 Ma Palmas member of the Serra Geral Formation), the counterpart to the Etendeka silicic volcanics in Africa. We present new field evidence for the identification of tabular-shaped ignimbrite-like packages, which contrast with dome-shaped proximal viscous lavas and domes. The tabular-shaped packages are highly welded and devitrified, but primary feldspar and pyroxene crystals can still be identified in outcrops. Flow/cooling unit boundaries can be seen at outcrop scale as well as at the kilometer scale where successive flat-topped terraces have been cut into the volcanic landscape. These packages bear conspicuous swarms of vesicle-poor black lens-shaped features set in a light colored matrix. The lenses range in their aspect ratio (2D height vs. length) and can be > 2 m long. Horizontal jointing is superimposed on the black lens-bearing outcrops and their spacing appears to coincide with the aspect ratio of the lenses, i.e. thinner lenses have a narrower joint spacing. Locally wider lenses grade down into completely stretched and/or flattened lenses that resemble conventional flow banding. We interpret these tabular packages as ignimbrites and the vesicle-poor black lenses as juvenile magma blobs (distinct from typical pumice or fiamme). A notably different flow-banded, irregularly deformed, and sometimes obsidian-bearing lithology appears in a number of locations. It supports topography characterized by rolling hills that contrasts markedly with the tilted plateaus supported by ignimbrites. The difference in morphology between ignimbrites and lavas is most readily observed in

  7. Magmatic architecture of dome-building eruptions at Volcán de Colima, Mexico

    NASA Astrophysics Data System (ADS)

    Lavallée, Yan; Varley, N. R.; Alatorre-Ibargüengoitia, M. A.; Hess, K.-U.; Kueppers, U.; Mueller, S.; Richard, D.; Scheu, B.; Spieler, O.; Dingwell, D. B.

    2012-01-01

    Changes in the physical, chemical and rheological properties of ascending magma regulate the style of volcanic eruptions. Volcán de Colima's eruptive cycles of lava dome growth and explosions have been thoroughly monitored during the period 1998-2010 and provide a remarkable opportunity for deepening our understanding of the underlying processes responsible for the evolution of magma properties. Here, we integrate direct observation with analytical and experimental data to: (1) constrain the configuration of the shallow plumbing system and its influence on eruptive activity, (2) describe the rheological behaviour of the magma and (3) assess the conditions that lead to fragmentation and, ultimately, to explosive eruptions. The configuration of the shallow plumbing system was inferred from direct observation of extrusion sites and porosity of the erupted products. During the ongoing eruptive phase, magma was never extruded from a central vent: Both explosive and effusive activities were restricted to discrete vents inside the crater. Extensive field-based density measurements on 500 blocks in pyroclastic flow deposits reveal a bimodality of porosity at values of 12 and 26 vol.%. The least porous rocks tend to be altered, whereas the more porous rocks are pristine. This bimodal distribution, combined with the lack of a central vent, suggests the presence of a central, dense, altered plug, the fragments of which are entrained during explosive eruptions. During effusive periods, the plug appears to deflect the ascent of magma at a shallow depth and, consequently, the site of lava extrusion. The rheological properties and deformation-induced seismogenic behaviour of the magmas were investigated using a uniaxial deformation apparatus instrumented with acoustic sensors. The homogeneity in the physicochemical properties of the erupted magma permits the description of a flow law at eruptive temperature and strain rate conditions. The crystal-rich magma of Volcán de Colima

  8. Detail of redwood tank on lava rock platform. Trestle and ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Detail of redwood tank on lava rock platform. Trestle and steel tanks can be see in right background. - Hawaii Volcanoes National Park Water Collection System, Hawaii Volcanoes National Park, Volcano, Hawaii County, HI

  9. Athabasca Valles, Mars: A lava-draped channel system

    USGS Publications Warehouse

    Jaeger, W.L.; Keszthelyi, L.P.; McEwen, A.S.; Dundas, C.M.; Russell, P.S.

    2007-01-01

    Athabasca Valles is a young outflow channel system on Mars that may have been carved by catastrophic water floods. However, images acquired by the High-Resolution Imaging Science Experiment camera onboard the Mars Reconnaissance Orbiter spacecraft reveal that Athabasca Valles is now entirely draped by a thin layer of solidified lava - the remnant of a once-swollen river of molten rock. The lava erupted from a fissure, inundated the channels, and drained downstream in geologically recent times. Purported ice features in Athabasca Valles and its distal basin, Cerberus Palus, are actually composed of this lava. Similar volcanic processes may have operated in other ostensibly fluvial channels, which could explain in part why the landers sent to investigate sites of ancient flooding on Mars have predominantly found lava at the surface instead.

  10. Lunar Lava Tubes as Potential Human Settlements and Refuge Sites

    NASA Astrophysics Data System (ADS)

    Lemke, K. A.; Mardon, A. A.

    2015-10-01

    Lava tubes have been detected on the surface of Earth's moon via satellite images. Upon further exploration of these caves through robotic technology and other means, a refuge place for astronauts may be installed.

  11. Athabasca Valles, Mars: a lava-draped channel system.

    PubMed

    Jaeger, W L; Keszthelyi, L P; McEwen, A S; Dundas, C M; Russell, P S

    2007-09-21

    Athabasca Valles is a young outflow channel system on Mars that may have been carved by catastrophic water floods. However, images acquired by the High-Resolution Imaging Science Experiment camera onboard the Mars Reconnaissance Orbiter spacecraft reveal that Athabasca Valles is now entirely draped by a thin layer of solidified lava-the remnant of a once-swollen river of molten rock. The lava erupted from a fissure, inundated the channels, and drained downstream in geologically recent times. Purported ice features in Athabasca Valles and its distal basin, Cerberus Palus, are actually composed of this lava. Similar volcanic processes may have operated in other ostensibly fluvial channels, which could explain in part why the landers sent to investigate sites of ancient flooding on Mars have predominantly found lava at the surface instead.

  12. Simulation of inflated pahoehoe lava flows

    NASA Astrophysics Data System (ADS)

    Glaze, Lori S.; Baloga, Stephen M.

    2013-04-01

    A new stochastic model simulates late-stage pahoehoe lobes where random processes dominate emplacement. The model prescribes probabilistic rules for determining where and when parcels of lava move within the lobe. Unlike a classical Brownian motion random walk, the model allows individual parcels to remain dormant, but fluid, for multiple time steps. The randomness of parcel volume transfers within the lobe interior as well as at the margins qualitatively reflects inflation processes observed in the field. The fraction of inflated volume to total volume increases with the total volume, with greater than 75% of the lobe volume contributed through inflation for typical lobes. The influence on planform shape and topographic cross-sectional profiles of total volume, source area and shape, topographic confinement, and sequential breakouts at the lobe margins, are all explored with the stochastic model. Each of these factors influences the overall lobe thickness and width. The model provides a means for assessing the relative importance of these processes through comparisons with field data. For the first time, Gaussian and parabolic functions are quantitatively fit to field measurements of pahoehoe lobes. Both functional forms provide adequate description of the cross-sectional flow shapes. When comparing simulated lobes to field data, sequential breakouts at the lobe margins are found to be an important process controlling the final topographic distribution of observed pahoehoe lobes.

  13. Clinker formation in basaltic and trachybasaltic lava flows

    NASA Astrophysics Data System (ADS)

    Loock, Sébastien; van Wyk de Vries, Benjamin; Hénot, Jean-Marc

    2010-09-01

    Clinker is a term used to describe massive or scoriaceous fragments commonly associated with ‘a‘ā lava flows. Clinker is generally considered to form by fragmentation of an upper vesiculated crust, due to an increase in apparent viscosity and/or to an increase in shear strain rate. Surface clinker is considered to be transported to the flow front and incorporated at the base by caterpillar motion. Clinker that we have observed on a variety of lava flows has very variable textures, which suggests several different mechanisms of formation. In order to study clinker formation, we examined several lava flows from the Chaîne des Puys Central France, where good sections, surface morphology and surface textures are widespread and clearly visible. We observed basal and surface ‘a‘ā clinker that has fragmentation textures similar to those observed in ash formed in eruptions under dry conditions. In two pāhoehoe flows we have observed basal clinker that formed in-situ. Two other flows display clinker features identical to those commonly observed in phreatomagmatic ash, such as adhering particles, blocky shapes, spherical glass and attached microphenocrysts. Another pāhoehoe flow has a flakey, angular basal breccia, with microfaulted and abraded clasts. These were probably formed at a cooled lava base by large amounts of simple shear and consequent intra-lava brittle faulting. Using these observations we propose three different ways of fragmentation. (1) Clinker can form at the surface and eventually produce roll-over basal breccia. (2) Water/lava interactions can form basal clinker by phreatomagmatic fragmentation. Water/lava ratio variations may produce different clinker structures, in a manner similar to observed textural changes in phreatomagmatic eruptions. (3) Clinker can be formed by brittle brecciation during basal simple shear. The different clinker can provide information about the mechanisms and environmental conditions during lava flow emplacement.

  14. Validating Cellular Automata Lava Flow Emplacement Algorithms with Standard Benchmarks

    NASA Astrophysics Data System (ADS)

    Richardson, J. A.; Connor, L.; Charbonnier, S. J.; Connor, C.; Gallant, E.

    2015-12-01

    A major existing need in assessing lava flow simulators is a common set of validation benchmark tests. We propose three levels of benchmarks which test model output against increasingly complex standards. First, imulated lava flows should be morphologically identical, given changes in parameter space that should be inconsequential, such as slope direction. Second, lava flows simulated in simple parameter spaces can be tested against analytical solutions or empirical relationships seen in Bingham fluids. For instance, a lava flow simulated on a flat surface should produce a circular outline. Third, lava flows simulated over real world topography can be compared to recent real world lava flows, such as those at Tolbachik, Russia, and Fogo, Cape Verde. Success or failure of emplacement algorithms in these validation benchmarks can be determined using a Bayesian approach, which directly tests the ability of an emplacement algorithm to correctly forecast lava inundation. Here we focus on two posterior metrics, P(A|B) and P(¬A|¬B), which describe the positive and negative predictive value of flow algorithms. This is an improvement on less direct statistics such as model sensitivity and the Jaccard fitness coefficient. We have performed these validation benchmarks on a new, modular lava flow emplacement simulator that we have developed. This simulator, which we call MOLASSES, follows a Cellular Automata (CA) method. The code is developed in several interchangeable modules, which enables quick modification of the distribution algorithm from cell locations to their neighbors. By assessing several different distribution schemes with the benchmark tests, we have improved the performance of MOLASSES to correctly match early stages of the 2012-3 Tolbachik Flow, Kamchakta Russia, to 80%. We also can evaluate model performance given uncertain input parameters using a Monte Carlo setup. This illuminates sensitivity to model uncertainty.

  15. Field constraints for modeling the emplacement of the 2010 Gigjökull lava flow, southern Iceland: interplay between subaqueous, ice contact and subaerial lava emplacement

    NASA Astrophysics Data System (ADS)

    Edwards, B.; Oddsson, B.; Gudmundsson, M. T.; Rossi, R.

    2012-04-01

    One of the least accessible products of the 2010 Eyjafjallajokull eruption is the trachyandesite lava that flowed north from the summit eruption site down through Gigjökull glacier. Based on numerous overflights during 2010, syn-eruption satellite imagery and two on-site investigations in 2011, we have developed a preliminary model to illustrate the progressive movement of the complex lava flow down through Gigjökull. Previous workers have documented the events surrounding the explosive summit eruptions, including the flow path for the majority of the water derived from melting ~0.1 cubic km of summit ice, which moved over, through and beneath Gigjökull producing a series of jokulhlaups during April and May 2010. Overflights in 2010 and 2011 show that most of the upper parts of the lava flow are surfaced by oxidized, blocky lava that appears very similar to what would be expected from an entirely subaerial lava flow. However, exposures at the lowest end of the flow preserve a record documenting lava emplacement in water and through ice tunnels. We describe 8 different components visible in this northernmost, lowest part of the lava flow, including: (1) upper subaerial levee-bounded lava flow, (2) subaerial blocky lava bench, (3) subaqueous/ice contact lava mounds, (4) subaqueous/ice contact sheet lava complex, (5) ponded, glaciolacustrine sediments, (6) subaerial slabby lava flow, (7) subaqueous pillow lava lobes, and (8) ice-tunnel confined lava flows. In combination these 8 components are consistent a model for lava emplacement through a valley glacier. We propose that the lava flow, which appears to have started moving down the glacier from a tephra cone immediately north of the main summit craters after the largest of the jokulhlaups, exploited newly formed and/or pre-existing sub-ice drainage systems along the base of Gigjökull. Initial meltwater from the eruption site created/enhanced basal ice drainage systems. Lava flows exploited these drainage systems

  16. Stochastic modeling of a lava-flow aquifer system

    USGS Publications Warehouse

    Cronkite-Ratcliff, Collin; Phelps, Geoffrey A.

    2014-01-01

    This report describes preliminary three-dimensional geostatistical modeling of a lava-flow aquifer system using a multiple-point geostatistical model. The purpose of this study is to provide a proof-of-concept for this modeling approach. An example of the method is demonstrated using a subset of borehole geologic data and aquifer test data from a portion of the Calico Hills Formation, a lava-flow aquifer system that partially underlies Pahute Mesa, Nevada. Groundwater movement in this aquifer system is assumed to be controlled by the spatial distribution of two geologic units—rhyolite lava flows and zeolitized tuffs. The configuration of subsurface lava flows and tuffs is largely unknown because of limited data. The spatial configuration of the lava flows and tuffs is modeled by using a multiple-point geostatistical simulation algorithm that generates a large number of alternative realizations, each honoring the available geologic data and drawn from a geologic conceptual model of the lava-flow aquifer system as represented by a training image. In order to demonstrate how results from the geostatistical model could be analyzed in terms of available hydrologic data, a numerical simulation of part of an aquifer test was applied to the realizations of the geostatistical model.

  17. Fracturing as a Quantitative Indicator of Lava Flow Dynamics

    NASA Astrophysics Data System (ADS)

    Kilburn, C. R.; Solana, C.

    2005-12-01

    The traditional classification of lava flows into pahoehoe and aa varieties reflects differences in how a flow can fracture its surface during advance. Both types of lava have a low strength upon eruption and require surface cooling to produce a crust that can fracture. Among pahoehoe lavas, applied stresses are small enough to allow the growth of a continuous crust, which is broken intermittently as the flow advances by propagating a collection of lava tongues. Among aa lavas, in contrast, applied stresses are large enough to maintain persistent crustal failure. The differences in fracturing characteristics has been used to quantify the transition between flow regimes and suggests that shear fracture may dominate tensile failure. Applied to Lanzarote, the model confirms the inference from incomplete eye-witness accounts of the 1730-36 Timanfaya eruption that pahoehoe flows were able to advance about an order of magnitude more quickly than would have been expected by analogy with Hawaiian pahoehoe flow-fields of similar dimensions. Surface texture and morphology, therefore, are insufficient guides for constraining the rate and style of pahoehoe emplacement. Applications include improved hazard assessments during effusive eruptions and new evaluations of the emplacement conditions for very large-volume pahoehoe lava flows.

  18. Studies of vesicle distribution patterns in Hawaiian lavas

    NASA Technical Reports Server (NTRS)

    Walker, George P. L.

    1987-01-01

    Basaltic lava flows are generally vesicular, and the broader facts relating to vesicle distribution have long been established; few studies have yet been made with a view to determining how and when vesicles form in the cooling history of the lava, explaining vesicle shape and size distribution, and gaining enough understanding to employ vesicles as a geological tool. Various avenues of approach exist by which one may seek to gain a better understanding of these ubiquitous structures and make a start towards developing a general theory, and three such avenues have recently been explored. One avenue involves the study of pipe vesicles; these are a well known feature of lava flows and are narrow pipes which occur near the base of many pahoehoe flow units. Another avenue of approach is that presented by the distinctive spongy pahoehoe facies of lava that is common in distal locations on Hawaiian volcanoes. A third avenue of approach is that of the study of gas blisters in lava. Gas blisters are voids, which can be as much as tens of meters wide, where the lava split along a vesicle-rich layer and the roof up-arched by gas pressure. These three avenues are briefly discussed.

  19. Lamprophyric lavas in the Colima graben, SW Mexico

    NASA Astrophysics Data System (ADS)

    Allan, J. F.; Carmichael, I. S. E.

    1984-12-01

    The Colima graben, located in SW Mexico, is one of three grabens which intersect about 50 km SSW of Guadalajara, forming a triple junction. The 90 km long, 20 60 km wide Colima graben represents a N-S rift of the E-W trending Mexican Volcanic Belt. Since the Early Pliocene, the Colima graben has served as a locus for the eruption of alkaline lavas, the most recent of which are basanites and minettes erupted from Late Pleistocene cinder cones (Luhr and Carmichael 1981). In this paper, we report on older alkaline lavas which crop out in the graben's walls. These rocks include phlogopite- and hornblende-bearing lamprophyres, a phlogopite-kalsilite-ankaratrite, and high-K andesites. These lavas crop out throughout the Colima graben area, and are intimately associated with calc-alkaline lavas in the field. Compared to these, the alkaline rocks are strikingly enriched in the incompatible elements, particularly Ba, Sr, P, and the LREE. Unlike the younger Late Pleistocene alkaline cinder cone lavas, most of the graben wall lamprophyres and the high-K andesites represent magmas that appear to have undergone significant evolution since their generation, including fractionation, crustal contamination, and possible magma mixing. Least-squares modeling indicates that the cinder cone minettes represent reasonable parental magmas for the graben lamprophyres. The occurrence of these alkaline lavas in an active calc-alkaline volcanic arc is unusual, and we suggest that they are a manifestation of the rifting processes which produced the Colima graben.

  20. Geostrophic circulation between the Costa Rica Dome and Central America

    NASA Astrophysics Data System (ADS)

    Brenes, C. L.; Lavín, M. F.; Mascarenhas, Affonso S.

    2008-05-01

    The geostrophic circulation between the Costa Rica Dome and Central America is described from CTD observations collected in two surveys: (a) The Wet Cruise in September-October 1993, and the Jet Cruise in February-March 1994. Poleward coastal flow was present on both occasions, but the transition from flow around the dome to the poleward Costa Rica Coastal Current flow was quite tortuous because of the presence of mesoscale eddies. In particular, a warm anticyclonic eddy was found off the Gulf of Fonseca during both cruises, at an almost identical position and with similar dimensions (150 m deep, 250 km in diameter) and surface speed (0.5 m s -1). In the Gulf of Panama, poleward flow was also observed, weaker in February-March 1994 than in September-October 1993, when it penetrated to 600 m depth and transported 8.5 Sv. In September-October 1993, the current between the dome and the coast was mostly ˜100 m deep and weak (˜0.15 m s -1), although in its southern side it was deeper (˜450 m) and faster at 0.3 m s -1. The poleward transport between the dome and the coast was ˜7 Sv. In February-March 1994 the Costa Rica Dome was a closed ring adjacent to the continental shelf, ˜500 km in diameter, at least 400 m deep, had geostrophic surface speeds ˜0.25 m s -1, and subsurface maximum speed (0.15-0.20 m s -1) at ˜180 m depth; the associated uplift of the isotherms was ˜150 m. The flow in the south part of the dome splits into two branches, the weakest one going around the dome and the strongest one continuing east and turning south before reaching the Gulf of Panama.

  1. Geochemical characteristics of Cocos Plate seamount lavas

    NASA Astrophysics Data System (ADS)

    Allan, James F.; Batiza, Rodey; Sack, Richard O.

    1994-03-01

    A wide compositional continuum of basalts has been erupted from near-ridge seamounts constructed on the Cocos Plate between the Clipperton and Orozco Francture Zones. They range from highly evolved to moderately primitive (3.0 7.8% MgO), LREE-enriched alkali basalts, to moderately evolved to near-primary (5.2 9.5% MgO) tholeiites indistinguishable from N-type MORB. The data set of 159 quench glass analyses exhibits a remarkably consistent variation in both major and trace element composition that is keyed to variations in (La/Sm). Modeling of potential liquid lines of descent at pressures ranging from 1 bar to 8 kbar shows that this covariation is partially due to systematic differences in liquid lines of descent, where the alkaline lavas have undergone substantially more high pressure clinopyroxene fractionation and substantially less low pressure plagioclase fractionation than the tholeiites. In addition, systematic variation in the composition of the more primitive glasses indicates that they were derived from mixing of discrete enriched and depleted melts in the heterogenous seamount mantle source at pressures of 8 10 kbar and greater, and that clinopyroxene may be a residual phase during partial melting. These results show that porous media flow in the seamount mantle source is minor and that melt transport is accomplished primarily through cracking and diking. This study supports suggestions that the general homogeneity of basalt along the EPR is due to mixing in sub-axial magma chambers and mush zones, with additional mixing during partial mantle melting and melt segregation.

  2. Wind tunnel study of an observatory dome with a circular aperture

    NASA Technical Reports Server (NTRS)

    Zilliac, Gregory G.; Cliffton, Ethan W.

    1990-01-01

    Results of a wind tunnel test of a new concept in observatory dome design, the Fixed Shutter Dome are presented. From an aerodynamic standpoint, the new dome configuration is similar in overall shape to conventional observatory domes, with the exception of the telescope viewing aperture. The new design consists of a circular aperture of reduced area in contrast to conventional domes with rectangular or slotted openings. Wind tunnel results of a side-by-side comparison of the new dome with a conventional dome demonstrate that the mean and fluctuating velocity through the aperture and in the center of the new dome configuration are lower than those of conventional domes, thus reducing the likelihood of telescope flow-induced vibration.

  3. Explosive activity associated with the growth of volcanic domes

    USGS Publications Warehouse

    Newhall, C.G.; Melson, W.G.

    1983-01-01

    Domes offer unique opportunities to measure or infer the characteristics of magmas that, at domes and elsewhere, control explosive activity. A review of explosive activity associated with historical dome growth shows that: 1. (1) explosive activity has occurred in close association with nearly all historical dome growth; 2. (2) whole-rock SiO2 content, a crude but widely reported indicator of magma viscosity, shows no systematic relationship to the timing and character of explosions; 3. (3) the average rate of dome growth, a crude indicator of the rate of supply of magma and volatiles to the near-surface enviornment, shows no systematic relationship to the timing or character of explosions; and 4. (4) new studies at Arenal and Mount St. Helens suggest that water content is the dominant control on explosions from water-rich magmas, whereas the crystal content and composition of the interstitial melt (and hence magma viscosity) are equally or more important controls on explosions from water-poor magmas. New efforts should be made to improve current, rather limited techniques for monitoring pre-eruption volatile content and magma viscosity, and thus the explosive potential of magmas. ?? 1983.

  4. Two types of superconducting domes in unconventional superconductors

    NASA Astrophysics Data System (ADS)

    Das, Tanmoy; Panagopoulos, Christos

    In this talk, we present a comprehensive analysis of the SC properties and phase diagrams across several families of unconventional superconductors within the copper-oxides, heavy-fermions, organics, and the recently discovered iron-pnictides, iron-chalcogenides, and oxybismuthides. We find that there are two types of SC domes present in all families of SC materials, arising sometimes as completely isolated, or merged into one, or in some materials only any one of them appears. One of the SC dome appearing at or near a possible QCP usually possesses a lower transition temperature (Tc) . The other SC dome appearing at a different value of the tuning parameter around a non-Fermi liquid (NFL) state often has higher Tc. Both SC domes are not necessarily linked to each other, and so does the QCP and NFL state. In materials, where both domes are present, they can be isolated by multiple tuning (such as such as disorder, or pressure, or magnetic field in addition to doping, and vice versa), giving a unique opportunity to decouple the relationship between QCP, NFL, and their role on superconductivity. The systematic study the NFL state might be a generic route to higher-Tc superconductivity.

  5. Fracture fillings and intrusive pyroclasts, Inyo Domes, California

    SciTech Connect

    Heiken, G.; Wohletz, K.; Eichelberger, J.

    1988-05-10

    Fractures containing juvenile magmatic pyroclasts were encountered during drilling into a 600-year-old feeder dike beneath the Inyo Domes chain, California. The Inyo Domes consist of a north-south trending, 10-km-long chain of domes, rhyolitic tuff rings, and phreatic craters. Boreholes were cored through the 51-m-diameter conduit of Obsidian Dome, the largest of the Inyo Domes, and through an unvented portion of the intrusion (dike) 1 km to the south. Pyroclast-bearing fractures were intersected in both holes: (1) 7- to 40-cm-thick fractures in welded basaltic scoria and quartz monzonite country rock are adjacent to the conduit at depths of 400--411 m and 492--533 m; they contain gray, clastic deposits, which show truncated cross bedding and convolute bedding; (2) adjacent to the dike, massive fracture fillings occur at depths of 289--302 m (129 m east of the dike) and 366--384 m (95--87 m east of the dike).

  6. The behaviour of repaired composite domes subjected to external pressure

    NASA Astrophysics Data System (ADS)

    Mistry, J.; Levy-Neto, F.

    1992-07-01

    Six hemispherical and four torispherical composite plastic domes reinforced with either carbon or E-glass woven fabrics or a combination of both have been tested under external pressure. The domes were prepared using male or female moulds and employed the hand lay-up/vacuum bag method for their manufacture. The domes were observed to fail either by buckling or as a result of material failure. Both modes of failure were usually located at the meridian having the minimum average thickness. These domes were then repaired using a recommended technique and retested. It has been shown that the integrity of the repaired zones was guaranteed and further damage to the domes during retesting moved to new locations usually corresponding to the areas of the new minimum average thickness meridian. Two computer programs based on finite difference and finite element methods were employed to predict the critical buckling or material failure loads. The theoretical predictions were shown to correlate very well with the experimental results.

  7. Upheaval Dome, An Analogue Site for Gale Center

    NASA Technical Reports Server (NTRS)

    Conrad, P. G.; Eignebrode, J. L.

    2011-01-01

    We propose Upheaval Dome in southeastern Utah as an impact analogue site on Earth to Mars Science Laboratory candidate landing site Gale Crater. The genesis of Upheaval Dome was a mystery for some time--originally thought to be a salt dome. The 5 km crater was discovered to possess shocked quartz and other shock metamorphic features just a few years ago, compelling evidence that the crater was formed by impact, although the structural geology caused Shoemaker and Herkenhoff to speculate an impact origin some 25 years earlier. The lithology of the crater is sedimentary. The oldest rocks are exposed in the center of the dome, upper Permian sandstones, and progressively younger units are well exposed moving outward from the center. These are Triassic sandstones, siltstones and shales, which are intruded by clastic dikes. There are also other clay-rich strata down section, as is the case with Gale Crater. There is significant deformation in the center of the crater, with folding and steeply tilted beds, unlike the surrounding Canyonlands area, which is relatively undeformed. The rock units are well exposed at Upheaval Dome, and there are shatter cones, impactite fragments, shocked quartz grains and melt rocks present. The mineral shock features suggest that the grains were subjected to dynamic pressures> 10 GPa.

  8. Rheology of lava flows on Mercury: An analog experimental study

    NASA Astrophysics Data System (ADS)

    Sehlke, A.; Whittington, A. G.

    2015-11-01

    We experimentally determined the rheological evolution of three basaltic analog compositions appropriate to Mercury's surface, during cooling, and crystallization. Investigated compositions are an enstatite basalt, and two magnesian basalts representing the compositional end-members of the northern volcanic plains with 0.19 wt % (NVP) and 6.26 wt % Na2O (NVP-Na). The viscosity-strain rate dependence of lava was quantified using concentric cylinder viscometry. We measured the viscosities of the crystal-free liquids from 1600°C down to the first detection of crystals. Liquidus temperatures of the three compositions studied are around 1360°C, and all three compositions are more viscous than Hawaiian basalt at the same temperature. The onset of pseudoplastic behavior was observed at crystal fractions ~0.05 to 0.10, which is consistent with previous studies on mafic lavas. We show that all lavas develop detectable yield strengths at crystal fractions around 0.20, beyond which the two-phase suspensions are better described as Herschel-Bulkley fluids. By analogy with the viscosity-strain rate conditions at which the pahoehoe to `a`a transition occurs in Kilauea basalt, this transition is predicted to occur at ~1260 ± 10°C for the enstatite basalt, at ~1285 ± 20°C for the NVP, and at ~1240 ± 40°C for the NVP-Na lavas. Our results indicate that Mercury lavas are broadly similar to terrestrial ones, which suggests that the extensive smooth lava plains of Mercury could be due to large effusion rates (flood basalts) and not to unusually fluid lavas.

  9. The Influence of Topographic Obstacles on Basaltic Lava Flow Morphologies

    NASA Astrophysics Data System (ADS)

    von Meerscheidt, H. C.; Brand, B. D.; deWet, A. P.; Bleacher, J. E.; Hamilton, C. W.; Samuels, R.

    2014-12-01

    Smooth pāhoehoe and jagged ´áā represent two end-members of a textural spectrum that reflects the emplacement characteristics of basaltic lava flows. However, many additional textures (e.g., rubbly and slabby pāhoehoe) reflect a range of different process due to lava flow dynamics or interaction with topography. Unfortunately the influence of topography on the distribution of textures in basaltic lava flows is not well-understood. The 18 ± 1.0 ka Twin Craters lava flow in the Zuni-Bandera field (New Mexico, USA) provides an excellent site to study the morphological changes of a lava flow that encountered topographic obstacles. The flow field is 0.2-3.8 km wide with a prominent central tube system that intersects and wraps around a 1000 m long ridge, oriented perpendicular to flow. Upstream of the ridge, the flow has low-relief inflation features extending out and around the ridge. This area includes mildly to heavily disrupted pāhoehoe with interdispersed agglutinated masses, irregularly shaped rubble and lava balls. Breakouts of ´áā and collapse features are also common. These observations suggest crustal disruption due to flow-thickening upstream from the ridge and the movement of lava out and around the obstacle. While the ridge influenced the path of the tube, which wraps around the southern end of the ridge, the series of collapse features and breakouts of ´áā along the tube system are more likely a result of changes in flux throughout the tube system because these features are found both upstream and downstream of the obstacle. This work demonstrates that topography can significantly influence the formation history and surface disruption of a flow field, and in some cases the influence of topography can be separated from the influences of changes in flux along a tube system.

  10. Fractal analysis: A new remote sensing tool for lava flows

    NASA Technical Reports Server (NTRS)

    Bruno, B. C.; Taylor, G. J.; Rowland, S. K.; Lucey, P. G.; Self, S.

    1992-01-01

    Many important quantitative parameters have been developed that relate to the rheology and eruption and emplacement mechanics of lavas. This research centers on developing additional, unique parameters, namely the fractal properties of lava flows, to add to this matrix of properties. There are several methods of calculating the fractal dimension of a lava flow margin. We use the 'structured walk' or 'divider' method. In this method, we measure the length of a given lava flow margin by walking rods of different lengths along the margin. Since smaller rod lengths transverse more smaller-scaled features in the flow margin, the apparent length of the flow outline will increase as the length of the measuring rod decreases. By plotting the apparent length of the flow outline as a function of the length of the measuring rod on a log-log plot, fractal behavior can be determined. A linear trend on a log-log plot indicates that the data are fractal. The fractal dimension can then be calculated from the slope of the linear least squares fit line to the data. We use this 'structured walk' method to calculate the fractal dimension of many lava flows using a wide range of rod lengths, from 1/8 to 16 meters, in field studies of the Hawaiian islands. We also use this method to calculate fractal dimensions from aerial photographs of lava flows, using lengths ranging from 20 meters to over 2 kilometers. Finally, we applied this method to orbital images of extraterrestrial lava flows on Venus, Mars, and the Moon, using rod lengths up to 60 kilometers.

  11. Lunar Lava Tubes - The Promise of New Orbital Data

    NASA Technical Reports Server (NTRS)

    Allen, Carlton C.

    2009-01-01

    The basaltic plains of the Moon contain lava channels on scales of tens of meters to hundreds of kilometers. Many of these channels are segmented, strongly suggesting that some portions include covered lava tubes. Lunar lava tubes are expected to provide unique environments below the harsh lunar surface, maintaining near-isothermal conditions and substantial shielding from solar and galactic radiation. A lava tube has often been suggested as natural shelter for a future human outpost. Previous searches for lunar lava tubes have been limited by a combination of image resolution and completeness of coverage. The five robotic Lunar Orbiter spacecraft combined to photograph essentially the entire lunar surface with a resolution of 60 m, and covered selected sites with resolutions as high as 2 m. The highest-resolution Apollo images, from the mapping and panoramic cameras, covered swaths totaling 16% of the lunar surface, at resolutions of approximately 5 m. The Lunar Reconnaissance Orbiter -- launched in June 2009 to a polar orbit -- carries a suite of instruments that will revolutionize lunar remote sensing, including the identification and characterization of lava tubes. The Lunar Reconnaissance Orbiter Camera (LROC) system includes a multi-spectral wide-angle camera with a resolution of 70 m, allowing a comprehensive survey of the entire lunar surface. The LROC narrow-angle camera is providing targeted images at resolutions of 0.5 - 2 m, including stereo coverage, which should allow detection of tube entrances and breakdown structures. The Lunar Orbiter Laser Altimeter is producing a global topographic map with a vertical resolution of 1 m and a horizontal resolution of 50 m. These data will be critical to understanding lava dynamics and tube emplacement.

  12. Spectral and Morphological Analysis of Daedalia Planum Lava Field

    NASA Astrophysics Data System (ADS)

    Giacomini, L.; Massironi, M.; Carli, C.; Martellato, E.; Pasquarè, G.; Pompilio, L.; Cremonese, G.

    2008-12-01

    Daedalia Planum is one of the Tharsis volcanic plains and is located southwest of the Arsia Mons. According to MOLA data, the flanks of Arsia have an average slope < 5°, while the surrounding regions, including Daedalia Planum, have slopes < 0.5° and commonly < 0.1°. MOC and THEMIS images show a plain covered by a huge number of lava flows. Older and larger lava flows on the field have a length greater than 1500, even if determining their absolute length is difficult as subsequent lava flows have buried the source vents. MEX/OMEGA data reveal that Daedalia Planum lavas have a spectral shapes comparable to those observed in laboratory for rock slabs of Earth's basalts. Moreover most of the Daedalia flows are associated to wrinkly and ropy surfaces, typical of pahoehoe lavas. The Daedalia Planum flow surfaces show several morphological features that remember the inflation fingerprints. This suggests that also Daedalia Planum could have been interested by inflation. However these features appear dissimilar to inflation forms on Elysium Planitia flows. Different degrees of erosion could explain such dissimilarities. In particular Daedalia Planum flow surfaces appear heavily modelled by wind erosion whereas the Elysium Planitia features seem fresher. The different age between the two areas support this hypothesis. Our crater counting dated the most recent Daedalia Planum flows to about 230 Myr , by contrast the Elysium Planitia lava flows range from 100 to 10 My. In conclusion, the inflation process on Martian flows could be more frequent than previously supposed and, consequently, effusion rates and rheological properties of Martian lavas more variable.

  13. Magma rheology from 3D geometry of martian lava flows

    NASA Astrophysics Data System (ADS)

    Allemand, P.; Deschamps, A.; Lesaout, M.; Delacourt, C.; Quantin, C.; Clenet, H.

    2012-04-01

    Volcanism is an important geologic agent which has been recently active at the surface of Mars. The composition of individual lava flows is difficult to infer from spectroscopic data because of the absence of crystallized minerals and the possible cover of the flows by dust. The 3D geometry of lava flows provides an interesting alternative to infer the chemical composition of lavas and effusion rates. Indeed, chemical composition exerts a strong control on the viscosity and yield strength of the magma and global geometry of lava flow reflects its emplacement rate. Until recently, these studies where realized from 2D data. The third dimension, which is a key parameter, was deduced or supposed from local shadow measurements on MGS Themis IR images with an uncertainty of more than 500%. Recent CTX data (MRO mission) allow to compute Digital Elevation Model at a resolution of 1 or 2 pixels (5 to 10 m) with the help of Isis and the Ames Stereo Pipeline pipe line. The CTX images are first transformed in format readable by Isis. The external geometric parameters of the CTX camera are computed and added to the image header with Isis. During a correlation phase, the homologous pixels are searched on the pair of stereo images. Finally, the DEM is computed from the position of the homologous pixels and the geometrical parameters of the CTX camera. Twenty DEM have been computed from stereo images showing lava flows of various ages on the region of Cerberus, Elyseum, Daedalia and Amazonis planitia. The 3D parameters of the lava flows have been measured on the DEMs and tested against shadows measurement. These 3D parameters have been inverted to estimate the viscosity and the yield strength of the flow. The effusion rate has also been estimated. These parameters have been compared to those of similar lava flows of the East Pacific rise.

  14. Lunar red spots: Stratigraphic sequence and ages of domes and plains in the Hansteen and Helmet regions on the lunar nearside

    NASA Astrophysics Data System (ADS)

    Wagner, R.; Head, J. W.; Wolf, U.; Neukum, G.

    2010-06-01

    Basaltic mare materials extruded between ˜ 4 Ga and ˜ 1.2 Ga ago and formed large expanses on the lunar nearside. In contrast to the maria, volcanic shields, domes, and cones also occur but cover only a small area of the total lunar surface. One specific type of dome is characterized (1) by steep slopes, (2) by a high albedo similar to lunar highlands, and (3) by a strong absorption in the ultraviolet. Because of this latter feature they appear spectrally red and therefore were termed red spots. Their morphology suggests that these domes were created by much more viscous, silica-rich lava. Also, red spots which are believed to be possibly volcanic in origin are associated with light plains materials. In order to constrain the formation of these presumed volcanic features in context with the formation of the surrounding mare and highland materials, we carried out (1) geologic and morphologic mapping of high-resolution Lunar Orbiter IV and Apollo 16 frames and (2) measurements of superimposed crater frequencies on geologic units in order to assess stratigraphy and geological history in the following two volcanic provinces in which red spots occur: (1) the Hansteen region, dominated by the dome Hansteen α (also known as the Arrowhead), and (2) the Helmet region, dominated by light plains, possibly of volcanic origin, such as the feature called the Helmet and Darney χ, and the southern Montes Riphaeus. In the Hansteen region, the dome Hansteen α postdates craters Billy (3.88 Ga) and Hansteen (3.87 Ga) but predates most of the mare materials (3.51 Ga). Cratering model ages of the dome range from 3.74 to 3.65 Ga, placing its major activity as extending into the late Imbrian. In the Helmet region, presumed highland volcanism associated with red spots started in the Nectarian with Darney χ (3.94 Ga). Cratering model ages measured on the Helmet light plains range from 3.8 to 2.08 Ga. The origin of these light plains and local resurfacing processes in this unit

  15. Late Holocene lava flow morphotypes of the northern Harrat Rahat, Kingdom of Saudi Arabia: implications for the description of continental lava fields

    NASA Astrophysics Data System (ADS)

    Murcia, H. F.; Nemeth, K.; Moufti, R.; Lindsay, J. M.; El-Masry, N.; Cronin, S. J.; Qaddah, A.; Smith, I. E.

    2013-12-01

    Lava morphotype refers to the surface morphology of a lava flow after solidification. In Saudi Arabia, young and well-preserved mafic lava fields (Harrats) display a wide range of these morphotypes. This study examines those exhibited by four of the post-4500 yrs. BP lava fields in the northern Harrat Rahat (<10 Ma) and describes these lava fields from general characteristics to detailed lava structures. This study also discusses the relationship between rheology and morphotypes, and proposes a preliminary correlation with whole-rock chemical composition. The Harrat Rahat lava fields include one or more lobes that may extend over 20 km from the source, with thicknesses varying between 1-2 m up to 12 m. Each lava flow episode covered areas between ~32 and ~61 km2, with individual volumes estimated between ~0.085 and ~0.29 km3. The whole-rock chemical compositions of these lavas lie between 44.3 to 48.4% SiO2, 9.01-4.28% MgO and 3.13-6.19% NaO+K2O. Seven different morphotypes with several lava structures are documented: Shelly, Slabby, Rubbly-pahoehoe, Platy, Cauliflower, Rubbly-a'a, and Blocky. These may be related to the shear strain and/or apparent viscosity of the lava flows formed from typical pahoehoe (pure or Hawaiian-pahoehoe, or sheet-pahoehoe). The well-preserved lava fields in Harrat Rahat allow the development of a more expanded classification scheme than has been traditionally applied. In addition to the whole-rock composition, these morphotypes may be indicators of other properties such as vesicularity, crystallization, effusion mechanism, as well as significant along-flow variations in topography and lava thickness and temperature that modify the rheology. The linearity of transitions between morphotypes observed in the lava fields suggest that real time forecasting of the evolution of lava flows might be possible.

  16. Analogue experiments as benchmarks for models of lava flow emplacement

    NASA Astrophysics Data System (ADS)

    Garel, F.; Kaminski, E. C.; Tait, S.; Limare, A.

    2013-12-01

    During an effusive volcanic eruption, the crisis management is mainly based on the prediction of lava flow advance and its velocity. The spreading of a lava flow, seen as a gravity current, depends on its "effective rheology" and on the effusion rate. Fast-computing models have arisen in the past decade in order to predict in near real time lava flow path and rate of advance. This type of model, crucial to mitigate volcanic hazards and organize potential evacuation, has been mainly compared a posteriori to real cases of emplaced lava flows. The input parameters of such simulations applied to natural eruptions, especially effusion rate and topography, are often not known precisely, and are difficult to evaluate after the eruption. It is therefore not straightforward to identify the causes of discrepancies between model outputs and observed lava emplacement, whereas the comparison of models with controlled laboratory experiments appears easier. The challenge for numerical simulations of lava flow emplacement is to model the simultaneous advance and thermal structure of viscous lava flows. To provide original constraints later to be used in benchmark numerical simulations, we have performed lab-scale experiments investigating the cooling of isoviscous gravity currents. The simplest experimental set-up is as follows: silicone oil, whose viscosity, around 5 Pa.s, varies less than a factor of 2 in the temperature range studied, is injected from a point source onto a horizontal plate and spreads axisymmetrically. The oil is injected hot, and progressively cools down to ambient temperature away from the source. Once the flow is developed, it presents a stationary radial thermal structure whose characteristics depend on the input flow rate. In addition to the experimental observations, we have developed in Garel et al., JGR, 2012 a theoretical model confirming the relationship between supply rate, flow advance and stationary surface thermal structure. We also provide

  17. Lava flow risk maps at Mount Cameroon volcano

    NASA Astrophysics Data System (ADS)

    Favalli, M.; Fornaciai, A.; Papale, P.; Tarquini, S.

    2009-04-01

    Mount Cameroon, in the southwest Cameroon, is one of the most active volcanoes in Africa. Rising 4095 m asl, it has erupted nine times since the beginning of the past century, more recently in 1999 and 2000. Mount Cameroon documented eruptions are represented by moderate explosive and effusive eruptions occurred from both summit and flank vents. A 1922 SW-flank eruption produced a lava flow that reached the Atlantic coast near the village of Biboundi, and a lava flow from a 1999 south-flank eruption stopped only 200 m from the sea, threatening the villages of Bakingili and Dibunscha. More than 450,000 people live or work around the volcano, making the risk from lava flow invasion a great concern. In this work we propose both conventional hazard and risk maps and novel quantitative risk maps which relate vent locations to the expected total damage on existing buildings. These maps are based on lava flow simulations starting from 70,000 different vent locations, a probability distribution of vent opening, a law for the maximum length of lava flows, and a database of buildings. The simulations were run over the SRTM Digital Elevation Model (DEM) using DOWNFLOW, a fast DEM-driven model that is able to compute detailed invasion areas of lava flows from each vent. We present three different types of risk maps (90-m-pixel) for buildings around Mount Cameroon volcano: (1) a conventional risk map that assigns a probability of devastation by lava flows to each pixel representing buildings; (2) a reversed risk map where each pixel expresses the total damage expected as a consequence of vent opening in that pixel (the damage is expressed as the total surface of urbanized areas invaded); (3) maps of the lava catchments of the main towns around the volcano, within every catchment the pixels are classified according to the expected impact they might produce on the relative town in the case of a vent opening in that pixel. Maps of type (1) and (3) are useful for long term planning

  18. Superconducting dome in a gate-tuned band insulator.

    PubMed

    Ye, J T; Zhang, Y J; Akashi, R; Bahramy, M S; Arita, R; Iwasa, Y

    2012-11-30

    A dome-shaped superconducting region appears in the phase diagrams of many unconventional superconductors. In doped band insulators, however, reaching optimal superconductivity by the fine-tuning of carriers has seldom been seen. We report the observation of a superconducting dome in the temperature-carrier density phase diagram of MoS(2), an archetypal band insulator. By quasi-continuous electrostatic carrier doping achieved through a combination of liquid and solid gating, we revealed a large enhancement in the transition temperature T(c) occurring at optimal doping in the chemically inaccessible low-carrier density regime. This observation indicates that the superconducting dome may arise even in doped band insulators.

  19. Geodesic-dome tank roof cuts water contamination, vapor losses

    SciTech Connect

    Barrett, A.E. )

    1989-07-10

    Colonial Pipeline Co. has established an ongoing program for using geodesic-dome roofs on tanks in liquid petroleum-product service. As its standard, Colonial adopted geodesicodone roofs, in conjunction with internal floating decks, to replace worn external floating roofs on existing tanks used in gasoline service and for use on new tanks in all types of product service. Geodesic domes are clear-span structures requiring no internal-support columns. This feature allows the associated use of a floating deck that is as vapor tight as is possible to construct. Further, geodesic domes can practically eliminate rainwater contamination, eliminate wind-generated vapor losses, and greatly reduce filling losses associated with conventional external floating roofs.

  20. Dome-shaped PDC cutters drill harder rock effectively

    SciTech Connect

    Moran, D.P. )

    1992-12-14

    This paper reports that rock mechanics and sonic travel time log data indicate that bits with convex-shaped polycrystalline diamond compact (PDC) cutters can drill harder rock formations than comparable bits with flat PDC cutters. The Dome-shaped cutters have drilled carbonate formations with sonic travel times as small as 50 [mu]sec/ft, compared to the standard cutoff of 75 [mu]sec/ft for flat PCD cutters. Recent field data from slim hole wells drilled in the Permian basin have shown successful applications of the 3/8-in. Dome cutter in the Grayburg dolomite with its sonic travel times as low as 50-55 [mu]sec/ft and compressive strengths significantly greater than the standard operating range for PDC bit applications. These field data indicate that the Dome cutters can successfully drill hard rock. The convex cutter shape as good impact resistance, cuttings removal, heat dissipation, and wear resistance.

  1. Rheology of a long lava flow at Pavonis Mons, Mars

    NASA Astrophysics Data System (ADS)

    Baloga, S. M.; Mouginis-Mark, P. J.; Glaze, L. S.

    2003-07-01

    Dimensions of lava flows can be used to unravel the relative roles of viscosity changes and concurrent formation of levees, stationary margins, and stagnant zones. This approach is applied to data derived from the Mars Orbiter Laser Altimeter (MOLA) experiment for a long lava flow on the plains north of Pavonis Mons, Mars. We obtain a formula for the relative change in viscosity on the basis of a steady state Newtonian flow rate. Our approach features a new length scale that describes the transfer of lava from the active advancing component to passive components. This length scale can be determined from planetary image and topographic data by estimating the volume fraction of lava contained in flow margins relative to the total flow volume. We find only modest changes in viscosity over the distal 175 km of the Pavonis flow. Allowing the flow to also lose volume through degassing (resulting in a density increase) does little to affect the overall viscosity change. Thickening and widening of the flow with distance are as expected for a single coherent, isothermal, viscous flow. This dynamic regime features a balance between the formation of an outer skin and shedding of lava into stationary zones. Requirements for attaining such a regime include a thick flow, shallow slopes over extended distances, and preexisting surface roughness that is small compared to flow thickness. This style of emplacement may explain why many of the long, thick sheet-like flows on the plains of Mars often exhibit an unexpected lack of thickening with distance.

  2. The Influence of Slope Breaks on Lava Flow Surface Disruption

    NASA Technical Reports Server (NTRS)

    Glaze, Lori S.; Baloga, Stephen M.; Fagents, Sarah A.; Wright, Robert

    2014-01-01

    Changes in the underlying slope of a lava flow impart a significant fraction of rotational energy beyond the slope break. The eddies, circulation and vortices caused by this rotational energy can disrupt the flow surface, having a significant impact on heat loss and thus the distance the flow can travel. A basic mechanics model is used to compute the rotational energy caused by a slope change. The gain in rotational energy is deposited into an eddy of radius R whose energy is dissipated as it travels downstream. A model of eddy friction with the ambient lava is used to compute the time-rate of energy dissipation. The key parameter of the dissipation rate is shown to be rho R(sup 2/)mu, where ? is the lava density and mu is the viscosity, which can vary by orders of magnitude for different flows. The potential spatial disruption of the lava flow surface is investigated by introducing steady-state models for the main flow beyond the steepening slope break. One model applies to slow-moving flows with both gravity and pressure as the driving forces. The other model applies to fast-moving, low-viscosity, turbulent flows. These models provide the flow velocity that establishes the downstream transport distance of disrupting eddies before they dissipate. The potential influence of slope breaks is discussed in connection with field studies of lava flows from the 1801 Hualalai and 1823 Keaiwa Kilauea, Hawaii, and 2004 Etna eruptions.

  3. FLAMMABLE GAS DIFFUSION THROUGH SINGLE SHELL TANK (SST) DOMES

    SciTech Connect

    MEACHAM, J.E.

    2003-11-10

    This report quantified potential hydrogen diffusion through Hanford Site Single-Shell tank (SST) domes if the SSTs were hypothetically sealed airtight. Results showed that diffusion would keep headspace flammable gas concentrations below the lower flammability limit in the 241-AX and 241-SX SST. The purpose of this document is to quantify the amount of hydrogen that could diffuse through the domes of the SSTs if they were hypothetically sealed airtight. Diffusion is assumed to be the only mechanism available to reduce flammable gas concentrations. The scope of this report is limited to the 149 SSTs.

  4. Exploring Learning through Audience Interaction in Virtual Reality Dome Theaters

    NASA Astrophysics Data System (ADS)

    Apostolellis, Panagiotis; Daradoumis, Thanasis

    Informal learning in public spaces like museums, science centers and planetariums is increasingly popular during the last years. Recent advancements in large-scale displays allowed contemporary technology-enhanced museums to get equipped with digital domes, some with real-time capabilities like Virtual Reality systems. By conducting extensive literature review we have come to the conclusion that little to no research has been carried out on the leaning outcomes that the combination of VR and audience interaction can provide in the immersive environments of dome theaters. Thus, we propose that audience collaboration in immersive virtual reality environments presents a promising approach to support effective learning in groups of school aged children.

  5. Using Lava Inflation Structures to Estimate Eruption Duration in Fossil Lava Fields: the Helgafell Eruption 5900 BP

    NASA Astrophysics Data System (ADS)

    Mattsson, H.; Höskuldsson, A.

    2002-12-01

    Lava inflation structures, such as tumuli and pressure ridges, are common features in subarial pahoehoe flow fields but has also been reported from submarine lava flows. Tumuli form by clogging of individual lava tubes inside a flow field or when the lava supply rate exceeds the flow front displacement, which causes inflation of previously formed crust and formation of the characteristic whale-back shape of tumuli. Axial and radial clefts cut the tumuli ("inflation-clefts"). Measurements on active lava flows has shown that the time (during which inflation occur) correlates posetively with the square of the measured inflation-cleft depth, and can therefore be used to calculating active time of inflation by measuring cleft depths in fossil flows. Over threehundred measurements of inflation cleft depths were collected from tumuli and pressure ridges located in the Helgafell lava field, Vestmannaeyjar, South Iceland. The Helgafell eruption occurred approximately 5900 BP, and emplaced the largest lava flow on the island covering 6.5 km2 (~ 0.6 km3 DRE). The erupted lava are plagioclase-phyric alkali basalt, exhibiting considerable variation (7.0 wt% MgO to 4.4 wt% MgO) due to flow fractionation and incorporation of large (< 7 cm) plagioclase xenocrysts. Measurements of inflation cleft depths show that a minimum crustal thickness of 0.3 m is required to initiate tumulus growth. The deepest clefts are located furthest away from the vent, which coinsides with the largest elevation difference between tumuli and source (e.g. uppermost point of lava tube). The cleft measurements where combined with careful stratigraphic mapping in order to estimate the total duration of the Helgafell eruption. It is important to keep in mind that tumuli are surface features and only reflect inflation of the uppermost flows. The maximum time calculated for active inflation must therefore correspond to a minimum eruption duration. By doing these calculations, and adding measurements of tumuli

  6. Insights into the dynamics of the Nyiragongo lava lake level

    NASA Astrophysics Data System (ADS)

    Smets, Benoît; d'Oreye, Nicolas; Geirsson, Halldor; Kervyn, Matthieu; Kervyn, François

    2016-04-01

    Nyiragongo volcano, in North Kivu, Democratic Republic of Congo, is among the most active volcanoes in Africa and on Earth. Since the first European observations in the late 19th Century, its eruptive activity mostly concentrated into its main crater, with the presence of a persistent lava lake from at least 1928 to 1977 and since 2002. The size, shape and elevation of this lava lake have evolved through time, modifying the topography of the main crater. In January 1977 and 2002, the uppermost magmatic system of Nyiragongo, including the lava lake, was drained during flank eruptions. These flank events caused major disasters, mostly due to the exceptionally fast-moving lava flows and the presence of a dense population living at foot of this volcano. Despite a large scientific interest and societal concern, the study of the eruptive activity of Nyiragongo remains limited by climate and vegetation conditions that, most of the time, limit use of satellite remote sensing techniques, and recurrent armed conflicts in the Kivu region, which sometimes prevent field access to the main crater. Here we focus on the dynamics of the Nyiragongo lava lake level and its relationship with the volcanic plumbing system by describing the historical and recent lava lake activity and presenting new quantitative observations using close-range photogrammetry, a Stereographic Time-Lapse Camera (STLC) system and high-resolution satellite SAR and InSAR remote sensing. Results highlight that, contrary to the interpretation found in some recent publications, the lava lake drainages appear to be the consequence and not the cause of the 1977 and 2002 flank eruptions. Two types of short-term lava lake level variations are observed. The first one corresponds to cyclic metre-scale variations attributed to gas piston activity. The STLC data recorded in September 2011 show hour-scale gas piston cycles reaching up to 3.8 m, which are interpreted to be related to gas accumulation and release in the

  7. Gigantic self-confined pahoehoe inflated lava flows in Argentina

    NASA Astrophysics Data System (ADS)

    Pasquare', G.; Bistacchi, A.

    2007-05-01

    The largest lava flows on Earth are pahoehoe basalts emplaced by inflation, a process which can change lava lobes initially a few decimetres thick into large lava sheets several metres thick. Inflation involves the initial formation of a thin, solidified, viscoelastic crust, under which liquid lava is continually added. This thermally efficient endogenous growth process explains the spread of huge volumes of lava over large, almost flat areas, as in the sheet flows which characterise the distal portions of Hawaiian volcanoes or some continental flood basalt provinces. Long, narrow, inflated pahoehoe flows have occasionally been described, either emplaced along pre-existing river channels or confined within topographic barriers. In this contribution we present previously unknown inflated pahoehoe lava flows following very long, narrow pathways over an almost flat surface, with no topographic confinement. Lava, which erupted in Late Quaternary times from the eastern tip of a 60 km long volcanic fissure in Argentina, formed several discrete flows extending as far as 180 km from the source. This fissure was characterized by a long-lasting and complex activity. Alkali-basaltic lava flows were emitted at the two extremities of the fissure system. In the intermediate section of the fissure, the Payun Matru, a great trachitic composite volcano, developed, giving rise to a large caldera which produced large pyroclastic flows. Alkali-basalts predate and postdate the trachitic activity, in fact at the end of the trachitic activity, new basaltic lava flows (mainly aa) were emitted from both ends of the fissure. We studied in details the youngest of the gigantic flows (Pampas Onduladas lava flow), which progressively develops through differing thermally-efficient flow mechanisms. The flow created a large shield volcanic structure at the eastern tip of the E-W fissure and spread to the E forming a very large and thick inflated pahoehoe sheet flow. Leaving the flanks of the

  8. Bubbled lava from the floor of the Sea of Okhotsk

    NASA Astrophysics Data System (ADS)

    Baturin, G. N.; Dubinchuk, V. T.; Rashidov, V. A.

    2014-05-01

    A sample of bubbled lava raised from a submarine volcano in the Sea of Okhotsk was analyzed by means of electron microscopy and the ICP-MS technique. The outside of the sample is flecked with rounded micro- and macrocavities, and the inner part is characterized by a liquation structure. Along with this, the unstructured mass of the rock contains globular particles of nearly the same diameters as the cavities. The lava is close to andesites and volcanic ashes of Kamchatka Peninsula in the macro- and microelemental composition but different in the somewhat increased content of barium, strontium, lithium, niobium, tungsten, uranium, and thorium. It is suggested that the cavities were formed during the eruption of the submarine volcano owing to contact of the boiling gas-saturated lava with seawater accompanied by the ejection of ash, which was spread by marine currents over long distances.

  9. Chasing lava: a geologist's adventures at the Hawaiian Volcano Observatory

    USGS Publications Warehouse

    Duffield, Wendell A.

    2003-01-01

    A lively account of the three years (1969-1972) spent by geologist Wendell Duffield working at the Hawaiian Volcano Observatory at Kilauea, one of the world's more active volcanoes. Abundantly illustrated in b&w and color, with line drawings and maps, as well. Volcanologists and general readers alike will enjoy author Wendell Duffield's report from Kilauea--home of Pele, the goddess of fire and volcanoes. Duffield's narrative encompasses everything from the scientific (his discovery that the movements of cooled lava on a lava lake mimic the movements of the earth's crust, providing an accessible model for understanding plate tectonics) to the humorous (his dog's discovery of a snake on the supposedly snake-free island) to the life-threatening (a colleague's plunge into molten lava). This charming account of living and working at Kilauea, one of the world's most active volcanoes, is sure to be a delight.

  10. Influence of cooling on lava-flow dynamics

    NASA Astrophysics Data System (ADS)

    Stasiuk, Mark V.; Jaupart, Claude; Stephen, R.; Sparks, J.

    1993-04-01

    Experiments have been carried out to determine the effects of cooling on the flow of fluids with strongly temperature dependent viscosity. Radial viscous-gravity currents of warm glucose syrup were erupted at constant rate into a flat tank filled with a cold aqueous solution. Cold, viscous fluid accumulates at the leading edge, altering the flow shape and thickness and slowing the spreading. The flows attain constant internal temperature distributions and bulk viscosities. The value of the bulk viscosity depends on the Péclet number, which reflects the advective and diffusive heat transport properties of the flow, the flow skin viscosity, which reflects cooling, and the eruption viscosity. Our results explain why most lava flows have bulk viscosities much higher than the lava eruption viscosity. The results can be applied to understanding dynamic lava features such as flow-front thickening, front avalanches, and welded basal breccias.

  11. Lava Flow Hazard Assessment for the Idaho National Laboratory: A Probabilistic Approach to Modeling Lava Flow Inundation with MOLASSES

    NASA Astrophysics Data System (ADS)

    Gallant, E.; Connor, C.; Richardson, J. A.; Wetmore, P. H.; Connor, L.

    2015-12-01

    We present the results of a lava flow hazard assessment for the Idaho National Laboratory (INL) using a new lava flow code, MOLASSES (MOdular LAva Simulation Software for Earth Science). INL is a nuclear research and development facility located on the eastern Snake River Plain with the potential for lava flow inundation from both monogenetic and polygenetic basaltic eruptions. Previously published inventories of observed surface vents and vents that are buried by younger lava flows and inferred from interpretation of borehole stratigraphy were used to created spatial density maps of vents within the INL region. Monte carlo simulations were run using the MOLASSES code to compare the difference between events initiated using only surface vents and events initiated using both the surface and the buried vents. We find that the inclusion of the buried vent locations drastically increases the number of site inundations and events initiating within INL boundaries. This highlights the need to seek out a more complete eruption record in an area of heavy prehistoric activity to better assess future hazard and associated risk.

  12. Transitional directions from Early Miocene Lavas at Samothraki Island, N. Greece

    NASA Astrophysics Data System (ADS)

    Kondopoulou, Despina; Valet, Jean-Pierre; Zananiri, Irene; Voidomatis, Philippos

    2014-05-01

    The North Hellenic orogen was formed at the expenses of the Variscan and Jurassic oceanic crust, preserved in scattered ophiolitic massifs. Strong post-orogenic extension with coeval emplacement of granodioritic plutons, deposition of clastic sediments and calc-alkaline volcanism appeared from the Middle-Late Eocene to the Middle Miocene. These widespread Tertiary volcanic products, outcropping also in north and central Aegean, have been extensively studied as far as their emplacement conditions are concerned. In parallel, they have been the object of several palaeomagnetic studies, all consistently indicating a general pattern of clockwise rotations. The island of Samothraki belongs to the Circum-Rhodope Zone, a series of Triassic-Jurassic continental margin sedimentary and volcanic rocks that surround the crystalline Serbo-Macedonian and Rhodope Massifs. The geochronological data, along with the morphology and the eruption mode of the Samothraki Tertiary volcanic rocks, allow a division into three groups, namely the "old", the "intermediate" and the "young" ones. Several radiometric ages have been assigned to the three groups, spanning from 25 to 19 Ma. Isotope and trace-element modeling do not favor a continuous evolution of these magmas. The major granitic and volcanic formations of the island have been subjected to paleomagnetic studies. The results revealed a complex pattern with coexisting straightforward directions and puzzling ones, only within the younger lavas, mostly domes. These samples are characterized by a medium temperature component with an eastward declination and a positive inclination and a high temperature one with a negative inclination. Experiments of absolute paleointensity have been conducted on twenty-eight samples from 3 separate domes with ages between 22-19 Ma using a modified Thellier technique with very narrow 4°C to 10°C temperature steps between 500°C and 595°C. The results indicate significantly low field values at two sites

  13. Birth of a lava lake: Nyamulagira volcano 2011-2015

    NASA Astrophysics Data System (ADS)

    Coppola, D.; Campion, R.; Laiolo, M.; Cuoco, E.; Balagizi, C.; Ripepe, M.; Cigolini, C.; Tedesco, D.

    2016-03-01

    Since 1938, Nyamulagira volcano (Democratic Republic of Congo) has operated as a classic pressurized basaltic closed system, characterized by frequent dike-fed flank eruptions. However, on June 24, 2014, an active lava lake was observed in its summit, after a period of 76 years. The small lava lake is now exposed at the bottom of a pit-crater and is rising and growing. Based on satellite-derived infrared (IR) data, SO2 fluxes and periodic field surveys, we provide evidence that the development of the lava lake was gradual and occurred more than 2 years before it was first observed in the field. Notably, this process followed the voluminous 2011-2012 distal flank eruption and was coeval with weakening of the central rock column below the summit. Hence, the opening and development of the pit-crater favoured the continuous rise of fresh magma through the central conduit and promoted the gradual "re-birth" of the Nyamulagira lava lake. Budgeted volumes of magma erupted, and magma degassed at depth indicate that the formation of the lava lake is due to the draining and refilling of a shallow plumbing system (1-2 km depth), probably in response to the rift-parallel 2011-2012 distal eruption. We thus suggest that the transition from lateral to central activity did not result from a substantial change in the magma supply rate but, more likely, from the perturbation of the plumbing system (and related stress field) associated with the distal eruption. The processes observed at Nyamulagira are not unique and suggest that rift-fissure eruptions, in addition to triggering caldera collapses or lava lake drainages, may also induce a progressive resumption of central vent activity. Current activity at Nyamulagira represents a tangible and major hazard for the population living at the base of its southern flank.

  14. LAMELLA DOME FRAMING DETAIL. NOTE CATWALK AT 12 O'CLOCK AND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    LAMELLA DOME FRAMING DETAIL. NOTE CATWALK AT 12 O'CLOCK AND SUSPENDED PENTAGONAL LIGHT RING GONDOLA. ALSO NOTE COMPRESSION RING AT CROWN OF DOME. - Houston Astrodome, 8400 Kirby Drive, Houston, Harris County, TX

  15. Late-stage flood lavas in the Elysium region, Mars

    NASA Technical Reports Server (NTRS)

    Plescia, J. B.

    1987-01-01

    In the southeastern part of the Elysium region is a unit that exhibits little texture and a generally low albedo and that has a very low crater frequency. This unit has been mapped as smooth plains material and previously interpreted as an eolian deposit on the basis of Mariner 9 images. More recently, the unit was mapped as material deposited during a channeling episode. The author interprets the smooth plains unit as being a volcanic deposit composed of low viscosity lava flows: both flood lavas and individual flows. The reasons for these conclusions are given and briefly discussed.

  16. Fractal dimension analyses of lava surfaces and flow boundaries

    NASA Technical Reports Server (NTRS)

    Cleghorn, Timothy F.

    1993-01-01

    An improved method of estimating fractal surface dimensions has been developed. The accuracy of this method is illustrated using artificially generated fractal surfaces. A slightly different from usual concept of linear dimension is developed, allowing a direct link between that and the corresponding surface dimension estimate. These methods are applied to a series of images of lava flows, representing a variety of physical and chemical conditions. These include lavas from California, Idaho, and Hawaii, as well as some extraterrestrial flows. The fractal surface dimension estimations are presented, as well as the fractal line dimensions where appropriate.

  17. Thermo-Rheological Feedbacks in Silicic Lavas and Ignimbrites

    NASA Astrophysics Data System (ADS)

    Whittington, A. G.; Robert, G.; Andrews, G. D.; Avard, G.; Romine, W. L.; Ye, J.

    2012-12-01

    The rheology of lava is highly dependent on temperature, both directly (via non-Arrhenian temperature dependence of melt viscosity) and indirectly (via increasing crystal content). Rheology feeds back to temperature, because rapidly sheared melts can undergo viscous heating (heat production = viscosity × [strain rate]2), and rapid disequilibrium crystallization can cause heating due to latent heat release (ΔHxt). The heat budget of partially crystalline lava balances these gains with conductive losses controlled by thermal diffusivity (D) and conductivity (k = DρCP, where ρ is density and CP is heat capacity). We measured the apparent viscosity of several crystalline dacitic lavas from Santiaguito, Guatemala and Bezymianny, Kamchatka. At conditions appropriate to lava flows (shear stress ~0.1 to 0.4 MPa, strain rate ~10-8 to 10-5s-1), apparent viscosity is best modeled as a power-law with no yield strength. Viscosity of the flow core, at ~850°C, is estimated ~5×1010 Pa.s. There is no evidence for significant crystallization during flow emplacement at Santiaguito, but viscous heating may be significant ongoing heat source within these flows (~100Wm-3 if most shearing is restricted to a ~1m wide zone), enabling highly viscous lava to travel long distances (~4 km in ~2 yrs for Santiaguito). Extremely high-grade, lava-like welded ignimbrites are deposited by many of the largest explosive eruptions in Earth history with volumes typically ranging between 10 to 1000 km3 and volcanic explosivity indices of 8 to 9. The lava-like and rheomorphic Grey's Landing ignimbrite, Idaho, provides abundant field evidence supporting the upward-migration of a transient, 1 - 2 m thick, sub-horizontal ductile shear zone at the interface between the pyroclastic density current and deposit, through which all of the deposit passed. We test the syn-depositional shear zone model through a combination of rheological experiments and thermo-mechanical modeling. Our results demonstrate that

  18. Steep-sided domes on Venus - Characteristics, geologic setting, and eruption conditions from Magellan data

    NASA Technical Reports Server (NTRS)

    Pavri, Betina; Head, James W., III; Klose, K. B.; Wilson, Lionel

    1992-01-01

    A survey of more than 95 percent of the Venus surface reveals 145 steep-sided domes which can be subdivided into a variety of morphologic forms, the most common being shaped like inverted bowls or flat-topped domes. Results of a preliminary analysis of the distribution and geologic setting of the domes are presented. The relation of the domes to analogous terrestrial features is examined, and possible models for their mode of emplacement are outlined.

  19. Field Measurements of the 1983 Royal Gardens Lava Flows, Kilauea Volcano, and 1984 Mauna Loa Lava Flow, Hawaii

    NASA Technical Reports Server (NTRS)

    Fink, J.; Zimbelman, J.

    1985-01-01

    Theoretical models used in the remote determination of lava flow rheology and compositions rely on estimates of such geometric and flow parameters as volume flow rates, levee heights, and channel dimensions, as well as morphologic and structural patterns on the flow surfaces. Quantitative measures of these variables are difficult to obtain, even under optimum conditions. Detailed topographic profiles across several Hawaiian lava flows that were carefully monitored by the U.S. Geological Survey during their emplacement in 1983 were surveyed in order to test various flow emplacement models. Twenty two accurate channel cross sections were constructed by combining these profiles with digitized pre-flow topographic measurements. Levee heights, shear zone widths, and flow depths could then be read directly from the cross sections and input into the models. The profiles were also compared with ones constructed for some Martian lava flows.

  20. Field measurements of the 1983 Royal Gardens lava flows, Kilauea Volcano, and 1984 Mauna Loa lava flows, Hawaii

    NASA Astrophysics Data System (ADS)

    Fink, J.; Zimbelman, J.

    1985-04-01

    Theoretical models used in the remote determination of lava flow rheology and compositions rely on estimates of such geometric and flow parameters as volume flow rates, levee heights, and channel dimensions, as well as morphologic and structural patterns on the flow surfaces. Quantitative measures of these variables are difficult to obtain, even under optimum conditions. Detailed topographic profiles across several Hawaiian lava flows that were carefully monitored by the U.S. Geological Survey during their emplacement in 1983 were surveyed in order to test various flow emplacement models. Twenty two accurate channel cross sections were constructed by combining these profiles with digitized pre-flow topographic measurements. Levee heights, shear zone widths, and flow depths could then be read directly from the cross sections and input into the models. The profiles were also compared with ones constructed for some Martian lava flows.

  1. 19. View of satcom communication dome with TR radome in ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    19. View of satcom communication dome with TR radome in background right. - Clear Air Force Station, Ballistic Missile Early Warning System Site II, One mile west of mile marker 293.5 on Parks Highway, 5 miles southwest of Anderson, Anderson, Denali Borough, AK

  2. The E-ELT project: the dome design status

    NASA Astrophysics Data System (ADS)

    Marchiori, G.; De Lorenzi, S.; Busatta, A.

    2012-09-01

    Further to the re-dimensioning of the E-ELT (European Extremely Large Telescope) telescope to 37 metres, the project of the dome has been completely reviewed, together with the Auxiliary Building and the Foundations. The Dome is now constituted by a structure with a steel hemispherical architecture, 79m.-high, with a 101m.-external pier diameter and a 42m-wide observing slit. These dimensions require the application of technologies for big structures (like stadiums, hangars, etc.) in order to comply with the manufacturing, transport and assembly constrains. The dome is characterized by an agglomerate of mechathronic technologies originated by the long experience matured by EIE in the industrial and astronomical fields. The solutions adopted for the NTT, the VLT, the LBT, the VST and the VISTA have demonstrated, along the years of service, their functionality, as well as their reliability and maintainability. Moreover, innovative technologies have been introduced, especially for what concerns the rotation systems of the Dome, the louvers, the windscreen, etc. The architecture of the control systems has been completed re-formulated, and they are now able to manage in real time all the exigencies of the E-ELT Observatory. All Project phases have been properly analysed and simulated, guaranteeing the completeness of the constructability and the maintainability. The entire work has been developed in close cooperation with ESO Project Team, further to a specific contract.

  3. [Analysis of the Basic Stress Pathway Above Acetabular Dome].

    PubMed

    Nie, Yong; Ma, Jun; Haung, Qiang; Hu, Qinsheng; Shi, Xiaojun; Pei, Fuxing

    2015-08-01

    The basic stress pathway above the acetabular dome is important for the maintenance of implant stability in acetabular reconstruction of total hip arthroplasty (THA). The purpose of this study was to describe the basic stress pathway to provide evidence for clinical acetabular reconstruction guidance of THA. A subject-specific finite element (FE) model was developed from CT data to generate 3 normal hip models and a convergence study was conducted to determine the number of pelvic trabecular bone material properties using 5 material assignment plans. In addition, in the range of 0 to 20 mm above the acetabular dome, the models were sectioned and the stress pathway was defined as two parts, i.e., 3D, trabecular bone stress distribution and quantified cortical bone stress level. The results showed that using 100 materials to define the material property of pelvic trabecular bone could assure both the accuracy and efficiency of the FE model. Under the same body weight condition, the 3D trabecular bone stress distributions above the acetabular dome were consistent, and especially the quantified cortical bone stress levels were all above 20 MPa and showed no statistically significant difference (P>0.05). Therefore, defining the basic stress pathway above the acetabular dome under certain body weight condition contributes to design accurate preoperative plan for acetabular reconstruction, thus helping restore the normal hip biomechanics and preserve the stability of the implants. PMID:26710451

  4. Laparoscopic ureteral reimplantation: a simplified dome advancement technique.

    PubMed

    Lima, Guilherme C; Rais-Bahrami, Soroush; Link, Richard E; Kavoussi, Louis R

    2005-12-01

    Laparoscopic Boari flap reimplantation has been used to treat long distal ureteral strictures. This technique requires extensive bladder mobilization and complex intracorporeal suturing. This demonstrates a novel laparoscopic bladder dome advancement approach for ureteral reimplantation. This technique obviates the need for bladder pedicle dissection and simplifies the required suturing.

  5. Sustainable Outreach: Lessons Learned from Space Update and Discovery Dome

    NASA Astrophysics Data System (ADS)

    Reiff, P. H.; Sumners, C.; Law, C. C.

    2009-12-01

    A sustainable program lives on past its initial funding cycle, and develops a network of users that ensures continued life, either by fees, advertising revenue, or by making the program more successful in later sponsored grants. Teachers like free things, so having a sponsor for products such as lithographs or CD-Roms is key to wide distribution. In 1994 we developed “Space Update®”, under the NASA “Public Use of the Internet” program. It has new editions annually, with over 40,000 distributed so far (many purchased but most free at teacher and student workshops). In 1996 we created a special edition “Space Weather®”, which includes the space weather module from Space Update plus other resources. Initially developed with funding from the IMAGE mission, it is now sponsored by Cluster and MMS. A new edition is published annually and distributed in the “Sun-Earth Day” packet; total distribution now exceeds 180,000. “Earth Update” was created in 1999 under cooperative agreement “Museums Teaching Planet Earth”. It now has a total distribution of over 20,000. Both Earth Update and Space Update were developed to be museum kiosk software, and more than 15 museums have them on display. Over 4,000 users are active in our e-Teacher network and 577 in our museum educator network. Although these can certainly be considered successful because of their longevity and user base, we have had a far more dramatic sustainable program arise in the last six years… the “Discovery Dome®”. Invented at HMNS and developed under NASA Cooperative Agreement “Immersive Earth”, this dome was the first digital portable planetarium that also showed fulldome movies with an interactive interface (first shown to the public at the Dec 2003 AGU meeting). The Discovery Dome network (tinyurl.com/DiscDome) has spun those initial 6 NASA-funded domes into over 90 installations in 22 states and 23 countries. Creating high quality content is quite expensive and so needs

  6. Textural evidence for origin of salt dome anhydrite cap rocks, Winnfield Dome, Louisiana

    SciTech Connect

    Ulrich, M.R.; Kyle, J.R.; Price, P.E.

    1985-02-01

    Textures within anhydrite cap rock are products of repeated cycles of halie dissolution and residual anhydrite accretion at tops of salt stocks. Quarrying operations at Winnfield dome have exposed extensive portions of the anhydrite cap rock zone. This zone is composed primarily of unoriented, xenoblastic anhydrite crystals in laminae less than 1 mm to several centimeters thick. Laminations are defined by thin, dark sulfide accumulations and pressure solution of anhydrite. Deformed, banded anhydrite clasts are contained locally within laminae. Multiple-laminated, concave downward anhydrite mounds occur along some horizons. They may contain anhydrite breccia fragments or sulfides. Coarsely crystalline salt mounds, containing disseminated idioblastic anhydrite also occur along horizons. Mound morphologies vary from tall and thin to broad and squat; maximum dimensions range from less than 0.5 to about 2.0 m. These moundlike structures are related spatially and genetically. Moundlike structures are believed to form from salt spines along the salt-anhydrite contact. As the spine dissolves through several cycles of dissolution and accretion, a laminated anhydrite mound is preserved; if the spine becomes isolated from dissolution, then a salt inclusion is preserved. Anhydrite beds within the Louann Salt, deformed during diapirism, are preserved as deformed anhydrite clasts. Steeply dipping, bedded anhydrite zones within the salt stock may produce brecciated anhydrite mounds when incorporated into the cap rock. Sulfides record the movement of metalliferous fluids through the salt-anhydrite contact.

  7. Experiments on Natural-Scale Basaltic Lava Flows: Scope and First Results of the Syracuse University Lava Project

    NASA Astrophysics Data System (ADS)

    Karson, J.; Wysocki, R.; Kissane, M. T.; Smith, C.; Spencer, S.

    2012-12-01

    The Syracuse University Lava Project creates natural-scale basaltic lava flows for scientific investigations, educational opportunities and artistic projects. Modified furnaces designed for melting and pouring metals are used to create individual basaltic lava flow lobes of up to 450 kg (10-2m2) with the potential to generate much larger flow fields under controlled conditions. At present, the starting material used in 1.1 Ga Keewenan basalt from the Mid-Continent Rift in NW Wisconsin, a relatively uniform, well-characterized tholeiitic-alkalic basalt. Other compositions (andesite, komatiite, carbonatite) are planned for future experiments. Basaltic gravel is heated to 1100° to 1300°C in a crucible resulting in homogeneous, convecting basaltic magma. Lava is poured over a variety of surfaces including rock slabs, wet or dry sand, H2O or CO2 ice, rough or smooth material, and confined or unconfined channels. Resulting lava flows can be dissected for mapping details of morphological and textural variations. Video from various perspectives is used to document flow behavior and evolution. Infrared images constrain flow temperatures. Textural features of flows such as vesicles and plagioclase microlites have vertical and lateral variations similar to those of natural flows. Differing experimental set-ups provide analogs for a wide range of terrestrial, marine, and extraterrestrial lava flows. In an initial series of experiments, basaltic lava flows (50-200 kg) were poured over dry sand at near constant effusion rates (~10-4m3s-1). Flow temperature and slope were varied to produce a range of different flow morphologies. The results show systematic behavior consistent with observations of natural lava flows and analog experiments. At relatively high T (>1200°C) and steeper slopes (>15°) thin, narrow, leveed flows form. At intermediate T and slope, sheet-like, ropey, pahoehoe forms develop. Flows at the lowest T (1100°C) and gentlest slopes (<10°) investigated

  8. Geology of the Upheaval Dome impact structure, southeast Utah

    USGS Publications Warehouse

    Kriens, B.J.; Shoemaker, E.M.; Herkenhoff, K. E.

    1999-01-01

    Two vastly different phenomena, impact and salt diapirism, have been proposed for the origin of Upheaval Dome, a spectacular scenic feature in southeast Utah. Detailed geologic mapping and seismic refraction data indicate that the dome originated by collapse of a transient cavity formed by impact. Evidence is as follows: (1) sedimentary strata in the center of the structure are pervasively imbricated by top-toward-the-center thrust faulting and are complexly folded as well; (2) top-toward-the-center normal faults are found at the perimeter of the structure; (3) clastic dikes are widespread; (4) the top of the underlying salt horizon is at least 500 m below the surface at the center of the dome, and there are no exposures of salt or associated rocks of the Paradox Formation in the dome to support the possibility that a salt diapir has ascended through it; and (5) planar microstructures in quartz grains, fantailed fracture surfaces (shatter surfaces), and rare shatter cones are present near the center of the structure. We show that the dome formed mainly by centerward motion of rock units along listric faults. Outcrop-scale folding and upturning of beds, especially common in the center, are largely a consequence of this motion. We have also detected some centerward motion of fault-bounded wedges resulting from displacements on subhorizontal faults that conjoin and die out within horizontal bedding near the perimeter of the structure. The observed deformation corresponds to the central uplift and the encircling ring structural depression seen in complex impact craters. Copyright 1999 by the American Geophysical Union.

  9. Where lava meets the sea; Kilauea Volcano, Hawaii

    USGS Publications Warehouse

    Mattox, T.N.

    1993-01-01

    Seaside explosions of the type and magnitude of the event on November 24, 1992, are infrequent. the observation of this event represents a rare opportunity to enhance our understanding of the birth of littoral cones and the nature of explosive activity when lava enters the ocean. 

  10. An assemblage of lava flow features on Mercury

    NASA Astrophysics Data System (ADS)

    Byrne, Paul K.; Klimczak, Christian; Williams, David A.; Hurwitz, Debra M.; Solomon, Sean C.; Head, James W.; Preusker, Frank; Oberst, Jürgen

    2013-06-01

    contrast to other terrestrial planets, Mercury does not possess a great variety of volcanic features, its history of volcanism instead largely manifest by expansive smooth plains. However, a set of landforms at high northern latitudes on Mercury resembles surface flow features documented on Earth, the Moon, Mars, and Venus. The most striking of such landforms are broad channels that host streamlined islands and that cut through the surrounding intercrater plains. Together with narrower, more sinuous channels, coalesced depressions, evidence for local flooding of intercrater plains by lavas, and a first-order analysis of lava flow rates, the broad channels define an assemblage of flow features formed by the overland flow of, and erosion by, voluminous, high-temperature, low-viscosity lavas. This interpretation is consistent with compositional data suggesting that substantial portions of Mercury's crust are composed of magnesian, iron-poor lithologies. Moreover, the proximity of this partially flooded assemblage to extensive volcanic plains raises the possibility that the formation of these flow features may preface total inundation of an area by lavas emplaced in a flood mode and that they escaped complete burial only due to a waning magmatic supply. Finally, that these broad channels on Mercury are volcanic in nature yet resemble outflow channels on Mars, which are commonly attributed to catastrophic water floods, implies that aqueous activity is not a prerequisite for the formation of such distinctive landforms on any planetary body.

  11. Removal of methylene blue by lava adsorption and catalysis oxidation.

    PubMed

    Ma, Jianfeng; Zhang, Jinbao; Li, Dinglong

    2010-03-01

    Adsorption has been found to be effective for the removal of dyes from effluent; however, the contaminant will cause secondary pollution if it is not properly treated. In this paper, the ability of lava as a low-cost adsorbent and catalyst for the removal of a commercial dye, Methylene Blue (MB), from aqueous solution has been investigated under various experimental conditions. It was found that lava had a high efficiency (more than 98%) for MB removal by adsorption. The adsorption equilibrium data can be fitted well by the Langmuir adsorption isotherm model. The adsorption kinetics was shown to be pseudo-second-order. After adsorption the contaminant could be catalysis oxidized by lava with the aids of H2O2 and ultrasound. The result showed that 95% of the MB could be decomposed in 100 min with the aid of ultrasound at 85 W/cm2. Overall, this study demonstrates lava as a promising material for wastewater treatment to remove and decompose dyes in a single treatment step.

  12. Lava Lakes on Io: New Perspectives from Modeling

    NASA Technical Reports Server (NTRS)

    Gregg, Tracy K. P.; Lopes, Rosaly M.

    2004-01-01

    Ionian paterae are a class of volcanic feature that are characterized by irregular craters with steep walls, flat floors, and arcuate margins that may or may not exhibit nesting. Loki (310 W, 12 N) is Io's largest patera at approx.200 km in diameter (Figure 1), and may account for 15% of Io's total heat flow. Earth-based infrared data, as well as information collected using the Galileo Near-Infrared Mapping Spectrometer (NIMS) and the Photopolarimeter Radiometer (PPR) have been used to interpret Loki s eruption style. Debate continues over whether Loki s occasional (periodic or not) temperature increases are due to an overturning lava lake within the patera, or to an eruption of surface flows on the patera floor. Interpretation of model results and comparisons with active terrestrial lava lakes suggest that Loki behaves quite differently from active lava lakes on Earth, and that surface flows (rather than an overturning lava lake) are a more likely explanation of Loki's thermal brightening.

  13. OVEN & LAVA Subsystems in the RESOLVE Payload for Resource Prospector

    NASA Technical Reports Server (NTRS)

    Captain, Janine E.

    2015-01-01

    A short briefing in Power Point of the status of the OVEN subsystem and the LAVA subsystems of the RESOLVE payload being developed under the Resource Prospector mission. The purpose of the mission is to sample and analyze volatile ices embedded in the lunar soil at the poles of the Moon and is expected to be conducted in the 2020 time frame.

  14. Oblique view of the northeast side, note the lava rock ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Oblique view of the northeast side, note the lava rock stem wall below the windows of the shed-roof addition, view facing west - U.S. Marine Corps Base Hawaii, Kaneohe Bay, Golf Course Equipment & Repair Shop, Reeves & Moffett Roads, Kaneohe, Honolulu County, HI

  15. Rheology of lava flows on Mercury: an experimental study

    NASA Astrophysics Data System (ADS)

    Sehlke, A.; Whittington, A. G.

    2014-12-01

    The morphology of lava flows is controlled by the physical properties of the lava and its effusion rates, as well as environmental influences such as surface medium, slope and ambient temperature and pressure conditions. The important rheological properties of lavas include viscosity (η) and yield strength (σy), strongly dependent on temperature (T), composition (X), crystal fraction (φc) and vesicularity (φb). The crystal fraction typically increases as temperature decreases, and also influences the residual liquid composition. The rheological behavior of multi-phase lava flows is expressed as different flow morphologies, for example basalt flows transition from smooth pahoehoe to blocky `a`a at higher viscosities and/or strain rates. We have previously quantified the rheological conditions of this transition for Hawaiian basalts, but lavas on Mercury are very different in composition and expected crystallization history. Here we determine experimentally the temperature and rheological conditions of the pahoehoe-`a`a transition for two likely Mercury lava compositions using concentric cylinder viscometry. We detect first crystals at 1302 ºC for an enstatite basalt and 1317 ºC for a basaltic komatiite composition representative of the northern volcanic plains (NVP). In both cases, we observe a transition from Newtonian to pseudo-plastic response at crystal fractions > 10 vol%. Between 30 to 40 vol%, a yield strength (τ0) around 26±6 and 110±6 Pa develops, classifying the two-phase suspensions as Herschel-Bulkley fluids. The measured increase in apparent viscosity (ηapp) ranges from 10 Pa s to 104 Pa s. This change in rheological properties occurs only in a temperature range up to 100 ºC below the liquidus. By analogy with the rheological conditions of the pahoehoe-`a`a transition for Hawaiian basalts, we can relate the data for Mercury to lava flow surface morphology as shown in Figure 1, where the onset of the transition threshold zone (TTZ) for the

  16. Fire and Ice: Lavas on Io, Cryolavas on Titan

    NASA Astrophysics Data System (ADS)

    Lopes, R. M.; Gregg, T. K.; Spencer, J. R.; Mitchell, K. L.; Williams, D. A.

    2007-12-01

    Volcanic flows in our solar system are remarkably varied. Io and Titan are particularly good examples of relatively large bodies that have erupted a variety of flows, ranging from basaltic and possibly sulfur and ultramafic lavas on Io to mixtures of water and possibly ammonia and methanol on Titan. These exotic extraterrestrial flows can be much different from the examples we see on Earth, but the similarities are also striking. Understanding their eruption mechanisms is important for better constraining how effusive eruptions behave on Earth under present and past conditions. Io has exceptionally long lava flows, but these are rare compared to the most common form of Ionian volcanism; lava lakes and lava flows that are confined within calderas [Lopes et al., 2004, Icarus; Gregg and Lopes, Icarus, in press]. The largest lava flows on Io can be considered analogues to continental flood basalts on Earth, being hundreds of km long and containing many different flow units. The composition of these flows on Io is thought to be either basaltic or ultramafic. Galileo results showed the largest active flow in the Solar System at Amirani [300 km long; Kezthelyi et al., 2001, JGR 106] and recent observations by the New Horizons spacecraft showed a new flow at Masubi that is about 200 km long. Ionian flows at volcanoes such as Masubi, Maui, and Prometheus generate persistently active plumes and the movement of the Prometheus plume has been related to the growth of the lava flow [Kieffer et al. 2000, Science 288]. Sulfur flows are thought to exist on Io, but are largely a by-product of silicic volcanism. On Earth, sulfur flows are rare but have formed from melting hydrothermal sulfur deposits. Flows around Emakong on Io are thought to be sulfur flows [Williams et al., 2001, JGR 106], but to date there are no measurements that can confirm their composition. Ra Patera's flows at the time of the Voyager encounter was thought to be a site of sulfur volcanism [Pieri et al., 1984

  17. Non-Newtonian and Viscoelastic Properties of Lava Flows

    NASA Astrophysics Data System (ADS)

    Bagdassarov, N. S.

    2004-12-01

    Lava flow models require an in-depth knowledge of the rheological properties of lava. Previous measurements have shown that, at typical eruption temperatures, lavas are non-Newtonian. The reasons for this include the formation and destruction of crystal networks and bubble deformation during shear. The effects of bubbles are investigated experimentally in this contribution using analogue fluids with bubble concentrations <20%. The shear-thinning behaviour of bubbly liquids noted by previous workers is shown to be dependent on the previous shearing history of the fluid. This thixotropic behaviour, which was investigated using a rotational vane viscometer, is caused by delayed bubble deformation and recovery when subjected to changes in shear stress. A rotational vane viscometer and torsional deformation apparatus were used to investigate the rheological properties of bubbly liquids and foams in order to determine a viscoelastic transition. These experiments have shown that the foams tested are viscoelastic power law fluids with a yield strength. Non-Newtonian properties and yield strength of foams are shown to be a probable cause of accelerating flow fragmentation in tube flow experiments on expanding foams. The flow of a bubbly fluid through a narrowing conduit may cause a pulsating regime of a flow due to periodic slip and slip-free boundary conditions near the walls of a conduit. Slip boundary conditions can lead to instability in viscoelastic shear flow causing short wavelength fluctuations at high shear rates. This mechanism may also take place during explosive volcanic eruptions. The frequency and amplitude of oscillation shear affect the structure of lavas which are thixotropic non-Newtonian liquids. The frequency dependent structure of lavas can be identified via frequency hysteresis and time-evolution of internal friction and viscosity. The rheological properties of basaltic lavas from Etna, Hawai'i and Vesuvius have been investigated at temperatures

  18. Origin of lead in andean calc-alkaline lavas, southern peru.

    PubMed

    Tilton, G R; Barreiro, B A

    1980-12-12

    Lead isotope data from Quaternary andesitic lavas of the Arequipa and Barroso groups of southern Peru and from regional Precambrian granulitic gneisses reveal a lead component in the lavas from the gneisses. The lava leads can be accounted for by two-component mixtures of lead from mantle and lower crustal sources, although the mixing process need not have occurred in the lower crust.

  19. Transitional lava flows as potential analogues for lunar impact melts

    NASA Astrophysics Data System (ADS)

    Neish, Catherine; Hughes, Scott; Hamilton, Christopher; Kobs Nawotniak, Shannon; Garry, William Brent; Skok, John Roma; Elphic, Richard; Carter, Lynn; Bandfield, Joshua; Osinski, Gordon; Lim, Darlene; Heldmann, Jennifer

    2015-11-01

    Lunar impact melt deposits are among the roughest surface materials on the Moon at the decimeter scale, even though they appear smooth at the meter scale. These characteristics distinguish them from well-studied terrestrial analogues, such as Hawaiian pāhoehoe and ´a´ā lava flows. The morphology of impact melt deposits can be related to their emplacement conditions, so understanding the origin of these unique surface properties will inform us as to the circumstances under which they were formed. Although there is no perfect archetype for lunar impact melts on Earth, certain terrestrial environments lend themselves as functional analogues. Specifically, a variety of transitional lava flow types develop if the surface of a pāhoehoe-like flow is disrupted, producing ‘slabby’ or ‘rubbly’ flows that are extremely rough at the decimeter scale. We investigated the surface roughness of transitional lava flows at Craters of the Moon (COTM) National Monument, comparing radar imagery and high-resolution topographic profiles to similar data sets acquired by the Lunar Reconnaissance Orbiter for impact melt deposits on the Moon. Results suggest that the lava flows at COTM have similar radar properties to lunar impact melt deposits, but the terrestrial flows are considerably rougher at the meter scale. It may be that lunar impact melts represent a unique lava type not observed on Earth, whose surface texture is influenced by their high emplacement temperatures and/or cooling in a vacuum. Information about the surface properties of lunar impact melt deposits will be critical for future landed missions that wish to sample these materials.

  20. Debris avalanches and slumps on the margins of volcanic domes on Venus: Characteristics of deposits

    NASA Technical Reports Server (NTRS)

    Bulmer, M. H.; Guest, J. E.; Beretan, K.; Michaels, Gregory A.; Saunders, R. Stephen

    1992-01-01

    Modified volcanic domes, referred to as collapsed margin domes, have diameters greater than those of terrestrial domes and were therefore thought to have no suitable terrestrial analogue. Comparison of the collapsed debris using the Magellan SAR images with volcanic debris avalanches on Earth has revealed morphological similarities. Some volcanic features identified on the seafloor from sonar images have diameters similar to those on Venus and also display scalloped margins, indicating modification by collapse. Examination of the SAR images of collapsed dome features reveals a number of distinct morphologies to the collapsed masses. Ten examples of collapsed margin domes displaying a range of differing morphologies and collapsed masses have been selected and examined.

  1. Pre-eruptive storage conditions and eruption dynamics of a small rhyolite dome: Douglas Knob, Yellowstone volcanic field, USA

    NASA Astrophysics Data System (ADS)

    Befus, Kenneth S.; Zinke, Robert W.; Jordan, Jacob S.; Manga, Michael; Gardner, James E.

    2014-03-01

    The properties and processes that control the size, duration, and style of eruption of rhyolite magma are poorly constrained because of a paucity of direct observations. Here, we investigate the small-volume, nonexplosive end-member. In particular, we determine the pre-eruptive storage conditions and eruption dynamics of Douglas Knob, a 0.011-km3 obsidian dome that erupted from a 500-m-long fissure in the Yellowstone volcanic system. To determine pre-eruptive storage conditions, we analyzed compositions of phenocrysts, matrix glass, and quartz-hosted glass inclusions by electron microprobe and Fourier-transform infrared analyses. The pre-eruptive melt is a high-silica rhyolite (˜75 wt.% SiO2) and was stored at 760 ± 30 °C and 50 ± 25 MPa prior to eruption, assuming vapor saturation at depth. To investigate emplacement dynamics and kinematics, we measured number densities and orientations of microlites at various locations across the lava dome. Microlites in samples closest to the inferred fissure vent are the most aligned. Alignment does not increase with distance traveled away from the vent, suggesting microlites record conduit processes. Strains of <5 accumulated in the conduit during ascent after microlite formation, imparted by a combination of pure and simple shear. Average microlite number density in samples varies from 104.9 to 105.7 mm-3. Using the magma ascent model of Toramaru et al. (J Volcanol Geotherm Res 175:156-157, 2008), microlite number densities imply decompression rates ranging from 0.03 to 0.11 MPa h-1 (˜0.4-1.3 mm s-1 ascent rates). Such slow ascent would allow time for passive degassing at depth in the conduit, thus resulting in an effusive eruption. Using calculated melt viscosity, we infer that the dike that fed the eruption was 4-8 m in width. Magma flux through this dike, assuming fissure dimensions at the surface represent its geometry at depth, implies an eruption duration of 17-210 days. That duration is also consistent with the

  2. Site testing for submillimetre astronomy at Dome C, Antarctica

    NASA Astrophysics Data System (ADS)

    Tremblin, P.; Minier, V.; Schneider, N.; Durand, G. Al.; Ashley, M. C. B.; Lawrence, J. S.; Luong-van, D. M.; Storey, J. W. V.; Durand, G. An.; Reinert, Y.; Veyssiere, C.; Walter, C.; Ade, P.; Calisse, P. G.; Challita, Z.; Fossat, E.; Sabbatini, L.; Pellegrini, A.; Ricaud, P.; Urban, J.

    2011-11-01

    Aims: Over the past few years a major effort has been put into the exploration of potential sites for the deployment of submillimetre astronomical facilities. Amongst the most important sites are Dome C and Dome A on the Antarctic Plateau, and the Chajnantor area in Chile. In this context, we report on measurements of the sky opacity at 200 μm over a period of three years at the French-Italian station, Concordia, at Dome C, Antarctica. We also present some solutions to the challenges of operating in the harsh polar environment. Methods: The 200-μm atmospheric opacity was measured with a tipper. The forward atmospheric model MOLIERE (Microwave Observation LIne Estimation and REtrieval) was used to calculate the atmospheric transmission and to evaluate the precipitable water vapour content (PWV) from the observed sky opacity. These results have been compared with satellite measurements from the Infrared Atmospheric Sounding Interferometer (IASI) on Metop-A, with balloon humidity sondes and with results obtained by a ground-based microwave radiometer (HAMSTRAD). In addition, a series of experiments has been designed to study frost formation on surfaces, and the temporal and spatial evolution of thermal gradients in the low atmosphere. Results: Dome C offers exceptional conditions in terms of absolute atmospheric transmission and stability for submillimetre astronomy. Over the austral winter the PWV exhibits long periods during which it is stable and at a very low level (0.1 to 0.3 mm). Higher values (0.2 to 0.8 mm) of PWV are observed during the short summer period. Based on observations over three years, a transmission of around 50% at 350 μm is achieved for 75% of the time. The 200-μm window opens with a typical transmission of 10% to 15% for 25% of the time. Conclusions: Dome C is one of the best accessible sites on Earth for submillimetre astronomy. Observations at 350 or 450 μm are possible all year round, and the 200-μm window opens long enough and with a

  3. Geological evaluation of Gulf Coast salt domes: overall assessment of the Gulf Interior Region

    SciTech Connect

    1981-10-01

    The three major phases in site characterization and selection are regional studies, area studies, and location studies. This report characterizes regional geologic aspects of the Gulf Coast salt dome basins. It includes general information from published sources on the regional geology; the tectonic, domal, and hydrologic stability; and a brief description the salt domes to be investigated. After a screening exercise, eight domes were chosen for further characterization: Keechi, Oakwood, and Palestine Domes in Texas; Vacherie and Rayburn's domes in North Louisiana; and Cypress Creek and Richton domes in Mississippi. A general description of each, maps of the location, property ownership, and surface geology, and a geologic cross section were presented for each dome.

  4. Field-based density measurements as tool to identify preeruption dome structure: set-up and first results from Unzen volcano, Japan

    NASA Astrophysics Data System (ADS)

    Kueppers, Ulrich; Scheu, Bettina; Spieler, Oliver; Dingwell, Donald B.

    2005-03-01

    For an improvement in the quality of conduit flow and dome-related explosive eruption models, knowledge of the preeruption or precollapse density of the rocks involved is necessary. As close investigation is impossible during eruption, the best substitute comes from quantitative investigation of the eruption deposits. The porosity of volcanic rocks is of primary importance for the eruptive behaviour and, accordingly, a key-parameter for realistic models of dome stability and conduit flow. Fortunately, this physical property may be accurately determined via density measurements. We developed a robust, battery-powered device for rapid and reliable density measurements of dry rock samples in the field. The density of the samples (sealed in plastic bags at 250 mbar) is determined using the Archimedean principle. We have tested the device on the deposits of the 1990-1995 eruption of Unzen volcano, Japan. Short setup and operation times allow up to 60 measurements per day under fieldwork conditions. The rapid accumulation of correspondingly large data sets has allowed us to acquire the first statistically significant data set of clast density distribution in block-and-ash flow deposits. More than 1100 samples with a total weight of 2.2 tons were measured. The data set demonstrates that the deposits of the last eruptive episode at Unzen display a bimodal density distribution, with peaks at 2.0±0.1 and 2.3±0.1 g/cm 3, corresponding to open porosity values of 20 and 8 vol.%, respectively. We use this data set to link the results of laboratory-based fragmentation experiments to field studies at recently active lava domes.

  5. Late-Pleistocene flank collapse triggered by dome growth at Tacaná volcano, México-Guatemala, and its relationship to the regional stress regime

    NASA Astrophysics Data System (ADS)

    Macías, J. L.; Arce, J. L.; García-Palomo, A.; Mora, J. C.; Layer, P. W.; Espíndola, J. M.

    2010-01-01

    During late Pleistocene time, the extrusion of an andesitic dome at the summit of Tacaná volcano caused the collapse of its northwestern flank. The stratocone collapse was nearly parallel to the σ min stress direction suggesting that failure was controlled by the regional stress field. The event produced a debris avalanche that was channelized in the San Rafael River and moved 8 km downstream. The deposit covered a minimum area of 4 km2, had a volume of 0.8 ± 0.5 km3, with an H/L (vertical drop to horizontal transport distance ratio) of ~0.35, defining a degree of mobility that is atypical for volcanic debris avalanches. The flank failure undermined the summit dome leading to its collapse and the generation of a series of block-and-ash flows that were emplaced in quick succession and covered the avalanche surface. The collapse event left a 600-m-wide summit amphitheatre with a 30-degree opening to the northwest, and >200 m thick debris that blocked the San Rafael River. Remobilization of this material produced debris flows that eroded the primary deposits and cascaded into the Coatán River. After the collapse, the activity of Tacaná continued with the emission of the Agua Zarca lava flow dated at 10 ± 6 ka (40Ar/39Ar), and pyroclastic surges dated at 10,610 + 330/-315 yr BP (14C), which provide a minimum age for the collapse event. During the Holocene, Tacaná has been very active producing explosive and effusive eruptions that ended with the extrusion of two summit domes that today occupy the amphitheatre. The 1950 and 1986 phreatic outbursts occurred along the Pleistocene collapse scar. Currently ~300,000 inhabitants live within a 35 km radius of Tacaná, and could conceivably be impacted by future events of similar magnitude.

  6. Advanced imaging techniques III: a scalable and modular dome illumination system for scientific microphotography on a budget

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A scalable and modular LED illumination dome for microscopic scientific photography is described and illustrated, and methods for constructing such a dome are detailed. Dome illumination for insect specimens has become standard practice across the field of insect systematics, but many dome designs ...

  7. Constraints on Lava Flow Emplacement Derived From Precision Topographic Measurements

    NASA Astrophysics Data System (ADS)

    Zimbelman, J. R.; Bjonnes, E. E.

    2005-12-01

    Precision topography obtained with a Differential Global Positioning System (DGPS) was used to derive constraints on the physical properties of two lava flows on the Big Island of Hawaii. We used a Trimble 4800 DGPS to collect positional information across the lava flows with < 2 cm horizontal and < 4 cm vertical precision (but field tests show that points are usually repeatable to < 1 cm both horizontally and vertically). The DGPS data were overlaid on georeferenced aerial and satellite imaging data, allowing us to correlate the measured topographic points to field notes and photographs, as well as to the local setting evident in the vertical images. We combined field and imaging data for the eastern lobe of the 1907 basalt flow from the southwestern rift zone of Mauna Loa volcano, east of the Ocean View Estates subdivision, and for portions of a grass-covered Pleistocene benmoreite flow near Mana on the western flank of Mauna Kea volcano. Measured physical dimensions of the Hawaiian lava flows obtained from the DGPS data were then used to calculate the yield strength, average effusion rate, and effective viscosity of the lavas using published relationships derived from diverse theories of fluid flow. Yield strengths obtained from three different expressions ranged from 5800 to 56000 Pa for the Mauna Loa basalt flow and from 13000 to 28000 Pa for the Mauna Kea benmoreite flow. Total flow length could not be determined for the Mauna Kea flow, but the entire surface portion of the 1907 flow is well exposed; this allowed us to calculate an average effusion rate of 29 m/s and effective viscosities ranging from 17000 to 280000 Pa-s for this flow, broadly consistent with values published for the 1984 basalt flow from the eastern rift zone of Mauna Loa. These results improve our confidence in being able to derive similar constraints on the likely emplacement conditions of lava flows on other planets, such as the enormous lava flows commonly found on the martian, venusian

  8. Analysis of the TMI-2 dome radiation monitor

    SciTech Connect

    Murphy, M B; Mueller, G M; Jernigan, W C

    1985-08-01

    Questions have been raised regarding the accuracy of the in-containment radiation readings from the LOCA qualified, dome radiation monitor, HP-R-214 during the March 28, 1979 accident at the Three Mile Island Unit 2 Reactor. This report discusses the accuracy of the readings, gives the results of examining the radiation monitor itself, and estimates the radiation environment inside containment during the accident.

  9. Arthroscopic intralesional curettage for large benign talar dome cysts

    PubMed Central

    El Shazly, Ossama; Abou El Soud, Maged M.; Nasef Abdelatif, Nasef Mohamed

    2015-01-01

    Introduction: Surgical management of large talar dome cysts is challenging due to increased morbidity by associated cartilage damage and malleolar osteotomy. The purpose of this study is to evaluate the clinical and radiological outcome of endoscopic curettage and bone graft for large talar dome cysts. Methods: This is a retrospective analysis of data for eight patients (eight feet) who were treated by arthroscopic curettage and grafting for large talar dome cysts. Seven cases were treated by posterior ankle arthroscopy as the lesion was located posteriorly while one case was treated by anterior ankle arthroscopy as the lesion was breached anteriorly. Results: The final diagnosis, was; large osteochondral lesion of talus (two cases), aneurysmal bone cyst (ABC) (two case), intra-osseous ganglion (two cases), Chronic infection in talus (one case) and angiomatous lesion of the talus (one case). The mean follow up period was 18.3 (±3.06 SD) months (range 16–25 months). The median preoperative AOFAS score was 74.5 (±5.34 SD) points. The mean postoperative AOFAS score at one year follow up was 94.6 (±2.97 SD) points. None of the patient had recurrence of the lesion during follow up. Return to normal daily activity was achieved at 11.25 (±2.37 SD) weeks. Discussion: In this short case series study, large talar dome bony cysts of different pathologies including aneurysmal bone cysts could be treated effectively by endoscopic curettage and bone grafting with no recurrence no complications during the follow-up period. PMID:27163087

  10. Advances in spinel ceramic technology for large windows and domes

    NASA Astrophysics Data System (ADS)

    Sepulveda, Juan L.; Loutfy, Raouf O.; Chang, Sekyung; Ibrahim, Sharly; Traggis, Nick

    2009-05-01

    This paper describes MER's recent advances on the development of high strength, transparent magnesium aluminum spinel technology for large IR windows and domes. The novel spinel material exhibits high optical and IR transparency in the 0.2 - 5.5 μm wavelength, is very resistant to abrasion, with density higher than 99.9% of theoretical, with very fine and uniform grain size, and flexural strength of 300 MPa. Spinel domes technology has been scaled up to produce hemispherical 180° aperture domes in sizes up to 7" in diameter using freeze casting technology to produce the green dome preforms. MER is also pursuing the production of large size spinel windows by either producing monolithic large single windows or by edge bonding several smaller size windows. Both approaches present challenges. Production of monolithic large size windows is limited by equipment size, availability, and investment capital while the edge bonding approach requires perfect transparency and strength at the bonded edge. MER together with Precision Photonics Corp. are developing high strength, edge bonded, transparent magnesium aluminum spinel windows for next generation aircraft and other defense armor applications which require windows as large as 30"x30"x0.5" at an affordable cost. MER has further improved strength of the spinel by accurate control of the average grain size and grain size scatter while remarkable transmission is obtained by elimination of the intergrain/intragrain porosity, and by eliminating all possible contamination. The spinel bonding technology under development consists of chemically activated direct bonding (CADB®), an epoxy-free solution-assisted optical-contacting process developed by Precision Photonics Corporation (PPC).

  11. Submarine lava flow direction revealed by neutron diffraction analysis in mineral lattice orientation

    NASA Astrophysics Data System (ADS)

    Zucali, M.; Fontana, E.; Panseri, M.; Tartarotti, P.; Capelli, S.; Ouladdiaf, B.

    2014-03-01

    ocean crust is formed by the rising of magma from mid-ocean ridges and voluminous (1-30 km3) flows of lava away from ridge axes. However, our understanding of the emplacement kinematics of submarine lava is often limited to plan view geometries of near-axis lava. Drilled cores provide in situ access to the intact internal structure of submarine lavas. We used neutron diffraction to study off-axis lava flows drilled into the uppermost crust of ODP/IODP-Site 1256 (Cocos Plate). We provide quantitative insights into submarine lava microstructures and strong evidence for a secondary lava injection into the interior of a solidifying flow of lava along the NW-SE direction parallel to the paleo-ridge axis of the East Pacific Rise. The dynamics of lava inflow are controlled by crystal abundance and the temperature of the lava-crystal mixture rather than by local seafloor topography. We provide a description of an in situ shear within submarine lavas revealed by composite shape and lattice preferred orientations, accounting for a dominant laminar nonuniform-type flow.

  12. Upgrading, monitoring and operation of a dome drive system

    NASA Astrophysics Data System (ADS)

    Bauman, Steven E.; Cruise, Bill; Look, Ivan; Matsushige, Grant; Roberts, Larry; Salmon, Derrick; Taroma, Ralph; Vermeulen, Tom; Richards, Krieg

    2014-08-01

    CFHT's decision to move away from classical observing prompted the development of a remote observing environment aimed at producing science observations from headquarters facility in Waimea, HI. This remote observing project commonly referred to as the Observatory Automation Project (OAP ) was completed at the end of January 2011 and has been providing the majority of science data ever since. A comprehensive feasibility study was conducted to determine the options available to achieve remote operations of the observatory dome drive system. After evaluation, the best option was to upgrade the original hydraulic system to utilize variable frequency drive (VFD) technology. The project upgraded the hydraulic drive system, which initially utilized a hydraulic power unit and three (3) identical drive units to rotate the dome. The new electric drive system replaced the hydraulic power unit with electric motor controllers, and each drive unit reuses the original drive and swaps one for one the original hydraulic motors with an electric motor. The motor controllers provide status and monitoring parameters for each drive unit which convey the functionality and health of the system. This paper will discuss the design upgrades to the dome drive rotation system, as well as some benefits, control, energy savings, and monitoring.

  13. An Operationally Based Vision Assessment Simulator for Domes

    NASA Technical Reports Server (NTRS)

    Archdeacon, John; Gaska, James; Timoner, Samson

    2012-01-01

    The Operational Based Vision Assessment (OBVA) simulator was designed and built by NASA and the United States Air Force (USAF) to provide the Air Force School of Aerospace Medicine (USAFSAM) with a scientific testing laboratory to study human vision and testing standards in an operationally relevant environment. This paper describes the general design objectives and implementation characteristics of the simulator visual system being created to meet these requirements. A key design objective for the OBVA research simulator is to develop a real-time computer image generator (IG) and display subsystem that can display and update at 120 frame s per second (design target), or at a minimum, 60 frames per second, with minimal transport delay using commercial off-the-shelf (COTS) technology. There are three key parts of the OBVA simulator that are described in this paper: i) the real-time computer image generator, ii) the various COTS technology used to construct the simulator, and iii) the spherical dome display and real-time distortion correction subsystem. We describe the various issues, possible COTS solutions, and remaining problem areas identified by NASA and the USAF while designing and building the simulator for future vision research. We also describe the critically important relationship of the physical display components including distortion correction for the dome consistent with an objective of minimizing latency in the system. The performance of the automatic calibration system used in the dome is also described. Various recommendations for possible future implementations shall also be discussed.

  14. Cybersickness Following Repeated Exposure to DOME and HMD Virtual Environments

    NASA Technical Reports Server (NTRS)

    Taylor, Laura C.; Harm, Deborah L.; Kennedy, Robert S.; Reschke, Millard F.; Loftin, R. Bowen

    2011-01-01

    Virtual environments (VE) offer unique training opportunities, including training astronauts to preadapt them to the novel sensory conditions of microgravity. However, one unresolved issue with VE use is the occurrence of cybersickness during and following exposure to VE systems. Most individuals adapt and become less ill with repeated interaction with VEs. The goal of this investigation was to compare motion sickness symptoms (MSS) produced by dome and head-mounted (HMD) displays and to examine the effects of repeated exposures on MSS. Sixty-one subjects participated in the study. Three experimental sessions were performed each separated by one day. The subjects performed a navigation and pick and place task in either a dome or HMD VE. MSS were measured using a Simulator Sickness Questionnaire before, immediately after, and at 1, 2, 4 and 6 hours following exposure to the VEs. MSS data were normalized by calculating the natural log of each score and an analysis of variance was performed. We observed significant main effects for day and time and a significant day by time interaction for total sickness and for each of the subscales, nausea, oculomotor and disorientation. However, there was no significant main effect for device. In conclusion, subjects reported a large increase in MSS immediately following exposure to both the HMD and dome, followed by a rapid recovery across time. Sickness severity also decreased over days, which suggests that subjects become dual-adapted over time making VE training a viable pre-flight countermeasure for space motion sickness.

  15. Dome petroleum puts Lindbergh and Primrose Projects on hold

    SciTech Connect

    Not Available

    1986-09-01

    During 1985 Dome Petroleum Limited announced two new commercial oil sands projects in Alberta, Canada. The Lindbergh Commercial Project was to produce approximately 12,000 barrels per day (15,000 barrels per day total including pilot projects in the same area) by 1989. The Primrose Lake Project was to produce 25,000 barrels per day in 5000 barrels per day stages over a give year period. In June both projects were put on hold by Dome due to the dramatic decline in oil prices that has occurred since the beginning of 1986. At the Lindbergh Project, drilling on the first phase was halted after 31 wells were completed. These wells have been placed on primary production. Steaming, gathering, and processing equipment was committed prior to the oil price decline, and is being stored for use when the oil price recovers. With regard to the Primrose Lake Project, Dome has postponed the proposed 1986 drilling program completely. The project will be re-activated when oil prices return to levels that make it economically viable.

  16. Ice crystal precipitation at Dome C site (East Antarctica)

    NASA Astrophysics Data System (ADS)

    Santachiara, G.; Belosi, F.; Prodi, F.

    2016-01-01

    For the first time, falling ice crystals were collected on glass slides covered with a thin layer of 2% formvar in chloroform at the Dome Concordia site (Dome C), Antarctica. Samplings were performed in the framework of the 27th Italian Antarctica expedition of the Italian National Program for Research in Antarctica in the period 21 February-6 August 2012. Events of clear-sky precipitations and precipitations from clouds were considered and the replicas obtained were examined under Scanning Electron Microscope (SEM). Several shapes of ice crystals were identified, including "diamond dust" (plates, pyramids, hollow and solid columns), and crystal aggregates varying in complexity. Single events often contained both small (10 μm to 50 μm) and large (hundreds of microns) crystals, suggesting that crystals can form simultaneously near the ground (height of a few hundred metres) and at higher layers (height of thousands of metres). Images of sampled crystal replicas showed that single bullets are not produced separately, but by the disintegration of combinations of bullets. Rimed ice crystals were absent in the Dome C samples, i.e. the only mode of crystal growth was water vapour diffusion. On considering the aerosol in the sampled crystals, we reached the conclusion that inertial impaction, interception and Brownian motion were insufficient to explain the scavenged aerosol. We therefore presume that phoretic forces play a role in scavenging during the crystal growth process.

  17. Charged nano-domes and bubbles in epitaxial graphene.

    PubMed

    Trabelsi, A Ben Gouider; Kusmartsev, F V; Robinson, B J; Ouerghi, A; Kusmartseva, O E; Kolosov, O V; Mazzocco, R; Gaifullin, Marat B; Oueslati, M

    2014-04-25

    For the first time, new epitaxial graphene nano-structures resembling charged 'bubbles' and 'domes' are reported. A strong influence, arising from the change in morphology, on the graphene layer's electronic, mechanical and optical properties has been shown. The morphological properties of these structures have been studied with atomic force microscopy (AFM), ultrasonic force microscopy (UFM) and Raman spectroscopy. After initial optical microscopy observation of the graphene, a detailed description of the surface morphology, via AFM and nanomechanical UFM measurements, was obtained. Here, graphene nano-structures, domes and bubbles, ranging from a few tens of nanometres (150–200 nm) to a few μm in size have been identified. The AFM topographical and UFM stiffness data implied the freestanding nature of the graphene layer within the domes and bubbles, with heights on the order of 5–12 nm. Raman spectroscopy mappings of G and 2D bands and their ratio confirm not only the graphene composition of these structures but also the existence of step bunching, defect variations and the carrier density distribution. In particular, inside the bubbles and substrate there arises complex charge redistribution; in fact, the graphene bubble–substrate interface forms a charged capacitance. We have determined the strength of the electric field inside the bubble–substrate interface, which may lead to a minigap of the order of 5 meV opening for epitaxial graphene grown on 4H-SiC face-terminated carbon.

  18. An Overview of Recent Observations on Lava-H2Ointeractions

    NASA Astrophysics Data System (ADS)

    Edwards, B. R.

    2014-12-01

    Lava flows can be sensitive recorders of their environments of formation (e.g., pillow lava). However, while deposits formed during interactions between lava and frozen water are increasing critical for constraining paleoclimate reconstructions on Earth and Mars, those interactions are subtle and complex. Fortunately, recent observations made during eruptions (2010 Fimmvorduhals/Eyjafjallajokull, Iceland; 2012-13 Tolbachik, Russia; 2013 Veniaminof, Alaska), during large-scale experiments (Syracuse Lava Lab), and on ancient deposits are shedding new light on these complexities. To understand these observations, it is critical to constrain the nature (porosity, permeability, ability to deform) of the boundary between the lava and the substrate. When lava travels directly on top of non-permeable ice, meltwater is produced rapidly enough to significantly accelerate lava movement (e.g., 'hydroplaning' or 'Leidenfrost effect'). The lack of surface permeability also facilitates ingestion of steam into the base of the lava for several minutes on the scale of experiments (dm); anomalously large gas cavities are also present in modern and ancient lava flow deposits inferred to have formed in water/ice-rich environments. When lava is emplaced directly on snow, the permeability of the substrate controls meltwater accumulation, which can facilitate/hinder heat transfer but can also weaken the substrate. Finally, the presence of basal lava flow breccia ('a'a flows) or an earlier erupted tephra blanket at the lava-H2O boundary acts to significantly slow heat transfer. The speed of lava emplacement may also be important. The lavas emplaced during most of the eruptions above were not able to cover a large enough area to quickly generate significant volumes of meltwater. However, at the high discharge rates for the first few days of the Tolbachik eruption (~400 m3 s-1), effusion onto a less permeable surface (e.g., ice instead of snow) could generate significant volumes of meltwater.

  19. Lava-seawater vapor interaction at the mid-ocean ridge crest: an important volcanic process to explain lava transport and flow morphology on the deep sea floor

    NASA Astrophysics Data System (ADS)

    Ridley, W. I.; Perfit, M.; Fornari, D.; Cann, J.; Smith, D.

    2003-12-01

    Eruption of lava from seafloor vents at the mid-ocean ridge (MOR) crest remains a poorly understood phenomena, despite the fact that it is the dominant volcanic process on earth. During the last decade only a handful of MOR eruptions have been documented using either NOAA-PMEL hydrophone detected events or serendipity, and observations of seafloor manifestations of those effusive events did not capture the actual interaction between erupted lava and near-freezing ambient seawater. Because of the great physical and technological obstacles to actually observing volcanic eruption processes in the deep sea, we must rely on the physical and chemical evidence left behind in the cooled seafloor lava flows to deduce the likely processes that occurred. Based on observations and sampling of numerous lava flows from slow to fast-spreading MORs we find a plethora of delicate macroscopic features preserved on the crusts of lava flows and in lava pillars that suggest intense and extensive interactions between hot magma and seawater during seafloor eruptions resulting in a briny vapor phase. Undersides of many lobate and sheet lava crusts have glassy drips (lava stalactites) and flanges (relict bubble walls) that could only have formed in cavities initially filled with a hot vapor at magmatic temperatures as lava was transported across the seafloor. Detailed petrologic observations of the surfaces of drips and flanges, including the presence of molten salt, exotic Cl- and S-bearing secondary silicates, secondary sulfates and almost pure forsterite, suggest that the vapor phase was flashed seawater. This vapor phase is a key to understanding delicate drip structures formed on lava crusts and the mechanisms by which lava is distributed far from eruptive fissures on the deep sea floor. We suggest that vaporized seawater is incorporated at the flow front as lava moves over the seafloor. The vapor rises as streams of bubbles through the lava behind the flow front and then collects

  20. Lunar Mare Dome Identification and Morphologic Properties Analysis Using Chang'E-2 Lunar Data

    NASA Astrophysics Data System (ADS)

    Zeng, Xingguo; Mu, Lingli; Li, Chunlai; Liu, Jianjun; Ren, Xin; Wang, Yuanyuan

    2016-04-01

    Identify the lunar mare dome and study the morphologic properties to know more knowledge about the structure will enhance the study of lunar volcanism. Traditionally, most lunar domes are identified by the scientists from exploring the images or topographic maps of the lunar surface with manual method, which already found out a bunch of lunar domes in specific local areas. For the purpose of getting more knowledge about global lunar dome, it is necessary to identify the lunar dome from the global lunar mare. However, it is hard to find new lunar domes from the global lunar mare only with manual method, since in that case, the large volume lunar data is needed and such work is too time consumed, so that, there are few researchers who have indentified and study the properties of the lunar dome from the perspective of lunar global scale. To solve the problem mentioned above, in this approach , CE-2 DEM, DOM data in 7m resolution were used in the detection and morphologic analysis of the lunar domes and a dome detection method based on topographic characteristics were developed.We firstly designed a method considering the morphologic characteristics to identify the lunar dome with Chang'E2(CE-2) lunar global data, after that, the initial identified result with properties is analyzed, and finally, by integrating the result with lunar domes already found by former researchers, we made some maps about the spatial distribution of the global lunar mare dome. With the CE-2 data covering the former lunar domes and the new found lunar domes, we surveyed and calculated some morphologic properties, and found that, lunar domes are circular or eclipse shaped, obviously different from background in topography,which has a average diameter between 3-25km, circular degree less than 1.54, with a average slope less than 10°, average height less than 650m and diameter/height less than 0.065. Almost all of the lunar domes are located in the extent of 58°N~54°S,167°W~180°E,and nearly

  1. Radiative temperature measurements at Kupaianaha lava lake, Kilauea Volcano, Hawaii

    NASA Astrophysics Data System (ADS)

    Flynn, Luke P.; Mouginis-Mark, Peter J.; Gradie, Jonathan C.; Lucey, Paul G.

    1993-04-01

    The radiative temperature of the surface of Kupaianaha lava lake is computed using field spectroradiometer data. Observations were made during periods of active overturning. The lake surface exhibits three stages of activity. Magma fountaining and overturning events characterize stage 1, which exhibits the hottest crustal temperatures and the largest fractional hot areas. Rifting events between plates of crust mark stage 2; crustal temperatures in this stage are between 100 C and 340 C, and fractional hot areas are at least an order of magnitude smaller than those in stage 1. Stage 3 is characterized by quiescent periods when the lake is covered by a thick crust. This stage dominates the activity of the lake more than 90 percent of the time. The results of this study are relevant for satellite and airborne measurement of the thermal characteristics of active volcanoes, and indicate that the thermal output of a lava lake varies on a time scale of seconds to minutes.

  2. Predicting the impact of lava flows at Mount Etna, Italy

    NASA Astrophysics Data System (ADS)

    Crisci, Gino M.; Avolio, Maria V.; Behncke, Boris; D'Ambrosio, Donato; di Gregorio, Salvatore; Lupiano, Valeria; Neri, Marco; Rongo, Rocco; Spataro, William

    2010-04-01

    Forecasting the time, nature, and impact of future eruptions is difficult at volcanoes such as Mount Etna, in Italy, where eruptions occur from the summit and on the flanks, affecting areas distant from each other. Nonetheless, the identification and quantification of areas at risk from new eruptions are fundamental for mitigating potential human casualties and material damage. Here, we present new results from the application of a methodology to define flexible high-resolution lava invasion susceptibility maps based on a reliable computational model for simulating lava flows at Etna and on a validation procedure for assessing the correctness of susceptibility mapping in the study area. Furthermore, specific scenarios can be extracted at any time from the simulation database, for land use and civil defense planning in the long term, to quantify, in real time, the impact of an imminent eruption, and to assess the efficiency of protective measures.

  3. Scientists Engage With the Public During Lava Flow Threat

    NASA Astrophysics Data System (ADS)

    McCarter, Tricia

    2014-11-01

    On 27 June, lava from Kīlauea, an active volcano on the island of Hawai`i, began flowing to the northeast, threatening the residents in Pāhoa, a community in the District of Puna, as well as the only highway accessible to this area. Scientists from the U.S. Geological Survey's Hawaiian Volcano Observatory (HVO) and the Hawai`i County Civil Defense have been monitoring the volcano's lava flow and communicating with affected residents through public meetings since 24 August. Eos recently spoke with Michael Poland, a geophysicist at HVO and a member of the Eos Editorial Advisory Board, to discuss how he and his colleagues communicated this threat to the public.

  4. Acute renal toxicity after ingestion of Lava light liquid.

    PubMed

    Erickson, T B; Aks, S E; Zabaneh, R; Reid, R

    1996-06-01

    A 65-year-old man with a history of alcohol abuse and seizure disorder presented to the emergency department with altered mental status, increased anion gap acidosis, phenytoin toxicity, and acute kidney failure. The patient had ingested the liquid contents of a Lava light, which contained chlorinated paraffin, polyethylene glycol (molecular weight 200), kerosene, and micro-crystalline wax. Gas chromatography-mass spectrophotometry of the patient's blood produced results consistent with the same analysis of the Lava light contents. After 3 days of declining mental status and worsening kidney function, the patient required hemodialysis. After a prolonged hospitalization, the patient was discharged home with residual renal insufficiency. Although multifactorial, the associated renal toxicity was most probably related to the low molecular weight polyethylene glycol content of the lamp's liquid contents. PMID:8644972

  5. Microscopic and macroscopic assessment of the emplacement of obsidian lavas

    NASA Astrophysics Data System (ADS)

    Befus, K. S.; Williams, M.; Gardner, J. E.

    2013-12-01

    Rhyolitic obsidian lavas are common in silicic volcanic systems, but quantitative data related to the emplacement of such lavas is rare. To assess the emplacement dynamics of rhyolitic obsidian lavas we measured the 3D orientation of microlites in samples collected systematically across five of the Central Plateau Member lavas of Yellowstone. Eruption volumes and maximum flow distances of targeted lava flows range from 0.01-70 km3 and 0.13-22 km, respectively. The dataset allows us to examine how deformation during emplacement varies with eruption size. Oriented thin sections were prepared from samples thought to be in place (i.e., not rotated by autobrecciation or erosion). In each sample, we petrographically measured the trend and plunge of >130 acicular Fe-Ti oxide microlites. The 3D microlite orientation can be used in two ways to understand the kinematics of emplacement. First, microlite orientations can be used to infer the dominant directions of fluid stretching because microlite long axes align in the direction of local extension. Second, the degree of alignment of a microlite population (i.e., standard deviation of trend and plunge), irrespective of preferred orientation, is dependent on the strain microlites experience during emplacement. We found that microlites are strongly aligned in all samples from all flows. Microlites are aligned roughly parallel to the direction of flow in samples collected near the flow front. Conversely, microlites are generally aligned orthogonal to the flow direction in samples collected from interior portions of the flows. In individual flows, the degree of alignment shows no correlation with distance travelled, instead it has slight random variations. Large- and small-volume flows display indistinguishable degrees of microlite alignment. Microlites provide a indicator of flow direction near flow fronts where strain is imparted by simple shear. In the interior portions of flows, strain is induced by pure shear via flattening

  6. Subglacial lava propagation, ice melting and heat transfer during emplacement of an intermediate lava flow in the 2010 Eyjafjallajökull eruption

    NASA Astrophysics Data System (ADS)

    Oddsson, Björn; Gudmundsson, Magnús T.; Edwards, Benjamin R.; Thordarson, Thorvaldur; Magnússon, Eyjólfur; Sigurðsson, Gunnar

    2016-07-01

    During the 2010 Eyjafjallajökull eruption in South Iceland, a 3.2-km-long benmoreite lava flow was emplaced subglacially during a 17-day effusive-explosive phase from April 18 to May 4. The lava flowed to the north out of the ice-filled summit caldera down the outlet glacier Gígjökull. The flow has a vertical drop of about 700 m, an area of ca. 0.55 km2, the total lava volume is ca. 2.5·107 m3 and it is estimated to have melted 10-13·107 m3 of ice. During the first 8 days, the lava advanced slowly (<100 m day-1), building up to a thickness of 80-100 m under ice that was initially 150-200 m thick. Faster advance (up to 500 m day-1) formed a thinner (10-20 m) lava flow on the slopes outside the caldera where the ice was 60-100 m thick. This subglacial lava flow was emplaced along meltwater tunnels under ice for the entire 3.2 km of the flow field length and constitutes 90 % of the total lava volume. The remaining 10 % belong to subaerial lava that was emplaced on top of the subglacial lava flow in an ice-free environment at the end of effusive activity, forming a 2.7 km long a'a lava field. About 45 % of the thermal energy of the subglacial lava was used for ice melting; 4 % was lost with hot water; about 1 % was released to the atmosphere as steam. Heat was mostly released by forced convection of fast-flowing meltwater with heat fluxes of 125-310 kWm-2.

  7. Effective pine bark composting with the Dome Aeration Technology

    SciTech Connect

    Trois, Cristina . E-mail: troisc@ukzn.ac.za; Polster, Andreas

    2007-07-01

    In South Africa garden refuse is primarily disposed of in domestic landfills. Due to the large quantities generated, any form of treatment would be beneficial for volume reduction, waste stabilization and resource recovery. Dome Aeration Technology (DAT) is an advanced process for aerobic biological degradation of garden refuse and general waste [Paar, S., Brummack, J., Gemende, B., 1999a. Advantages of dome aeration in mechanical-biological waste treatment. In: Proceedings of the 7th International Waste Management and Landfill Symposium, Cagliari, 4-8 October 1999; Paar, S., Brummack, J., Gemende, B., 1999b. Mechanical-biological waste stabilization by the dome aeration method. Environment Protection Engineering 25 (3/99). Mollekopf, N., Brummack, J., Paar, S., Vorster, K., 2002. Use of the Dome Aeration Technology for biochemical stabilization of waste prior to landfilling. In: Proceedings of the Wastecon 2002, Waste Congress and Exhibition, Durban, South Africa.]. It is a non-reactor open windrow composting process, with the main advantage being that the input material needs no periodic turning. A rotting time of only 3-4 months indicates the high efficiency. Additionally, the low capital/operational costs, low energy inputs and limited plant requirements provide potential for use in aerobic refuse stabilization. The innovation in the DAT process is the passive aeration achieved by thermally driven advection through open windrows caused by temperature differences between the degrading material and the outside environment. This paper investigates the application of Dome Aeration Technology to pine bark composting as part of an integrated waste management strategy. A full-scale field experiment was performed at the Bisasar Road Landfill Site in Durban to assess the influence of climate, waste composition and operational conditions on the process. A test windrow was constructed and measurements of temperature and airflow through the material were taken. The process

  8. Fractal geometry of some Martian lava flow margins: Alba Patera

    NASA Technical Reports Server (NTRS)

    Kauhanen, K.

    1993-01-01

    Fractal dimension for a few lava flow margins on the gently sloping flanks of Alba Patera were measured using the structured walk method. Fractal behavior was observed at scales ranging from 20 to 100 pixels. The upper limit of the linear part of log(margin length) vs. log(scale) profile correlated well to the margin length. The lower limit depended on resolution and flow properties.

  9. Lava effusion rate definition and measurement--A review

    USGS Publications Warehouse

    Calvari, Sonia; Dehn, Jonathan; Harris, A.

    2007-01-01

    Measurement of effusion rate is a primary objective for studies that model lava flow and magma system dynamics, as well as for monitoring efforts during on-going eruptions. However, its exact definition remains a source of confusion, and problems occur when comparing volume flux values that are averaged over different time periods or spatial scales, or measured using different approaches. Thus our aims are to: (1) define effusion rate terminology; and (2) assess the various measurement methods and their results. We first distinguish between instantaneous effusion rate, and time-averaged discharge rate. Eruption rate is next defined as the total volume of lava emplaced since the beginning of the eruption divided by the time since the eruption began. The ultimate extension of this is mean output rate, this being the final volume of erupted lava divided by total eruption duration. Whether these values are total values, i.e. the flux feeding all flow units across the entire flow field, or local, i.e. the flux feeding a single active unit within a flow field across which many units are active, also needs to be specified. No approach is without its problems, and all can have large error (up to ∼50%). However, good agreement between diverse approaches shows that reliable estimates can be made if each approach is applied carefully and takes into account the caveats we detail here. There are three important factors to consider and state when measuring, giving or using an effusion rate. First, the time-period over which the value was averaged; second, whether the measurement applies to the entire active flow field, or a single lava flow within that field; and third, the measurement technique and its accompanying assumptions.

  10. Topographic and Stochastic Influences on Pahoehoe Lava Lobe Emplacement

    NASA Technical Reports Server (NTRS)

    Hamilton, Christopher W.; Glaze, Lori S.; James, Mike R.; Baloga, Stephen M.

    2013-01-01

    A detailed understanding of pahoehoe emplacement is necessary for developing accurate models of flow field development, assessing hazards, and interpreting the significance of lava morphology on Earth and other planetary surfaces. Active pahoehoe lobes on Kilauea Volcano, Hawaii, were examined on 21-26 February 2006 using oblique time-series stereo-photogrammetry and differential global positioning system (DGPS) measurements. During this time, the local discharge rate for peripheral lava lobes was generally constant at 0.0061 +/- 0.0019 m3/s, but the areal coverage rate of the lobes exhibited a periodic increase every 4.13 +/- 0.64 minutes. This periodicity is attributed to the time required for the pressure within the liquid lava core to exceed the cooling induced strength of its margins. The pahoehoe flow advanced through a series of down slope and cross-slope breakouts, which began as approximately 0.2 m-thick units (i.e., toes) that coalesced and inflated to become approximately meter-thick lobes. The lobes were thickest above the lowest points of the initial topography and above shallow to reverse facing slopes, defined relative to the local flow direction. The flow path was typically controlled by high-standing topography, with the zone directly adjacent to the final lobe margin having an average relief that was a few centimeters higher than the lava inundated region. This suggests that toe-scale topography can, at least temporarily, exert strong controls on pahoehoe flow paths by impeding the lateral spreading of the lobe. Observed cycles of enhanced areal spreading and inflated lobe morphology are also explored using a model that considers the statistical likelihood of sequential breakouts from active flow margins and the effects of topographic barriers.

  11. Preferential Weathering of Carbonatite Lava at Ol Doinyo Lengai, Tanzania

    NASA Astrophysics Data System (ADS)

    Robertson, C. H.; Harpp, K. S.; Geist, D.; Bosselait, M.

    2014-12-01

    Although carbonatites have been produced since the Archean and are preserved in the geologic record, the East African Rift is home to the only active carbonatite volcano, at Ol Doinyo Lengai. It has long been known that the natrocarbonatites become strongly weathered the first time they are exposed to rain. We studied the weathering patterns in the field and have determined the mineralogical transformations via petrography and XRD. Mass transport is assessed by XRF and ICP-MS analyses. Water preferentially dissolves specific minerals in the pristine lava, permeating through earlier layers of flow to form stalactites, which have differing mineralogical composition. These hang both from the host flow and from the bottom of underlying earlier flows. The weathering product is characterized by trona, a hydrated carbonate mineral, as well as the sodium sulfate mineral aphthitalite. Data from XRD analysis of the carbonatite lava confirm transformation of its original minerals, nyerereite and gregoryite, into secondary hydrated carbonate minerals gaylussite and pirssonite (e.g., Zaitsev and Keller, 2006). This transformation is attributed to the instability of the erupted minerals at atmospheric conditions. Data from XRF analysis indicate a 4-fold increase in the amount of sodium present in the stalactite as well as a 8-fold increase in potassium. Trace element analysis by ICP-MS indicates significantly elevated levels of vanadium, copper, and rubidium in the weathering product, whereas strontium, barium, lanthanum, and cesium are left behind in high concentrations in the carbonatite lava. Our results provide further evidence supporting the proposal by Dawson et al. (1987) that calcium carbonate dominated lava flows result from extensive weathering of sodic carbonatite flows.

  12. Design and Development of a Composite Dome for Experimental Characterization of Material Permeability

    NASA Technical Reports Server (NTRS)

    Estrada, Hector; Smeltzer, Stanley S., III

    1999-01-01

    This paper presents the design and development of a carbon fiber reinforced plastic dome, including a description of the dome fabrication, method for sealing penetrations in the dome, and a summary of the planned test series. This dome will be used for the experimental permeability characterization and leakage validation of composite vessels pressurized using liquid hydrogen and liquid nitrogen at the Cryostat Test Facility at the NASA Marshall Space Flight Center (MSFC). The preliminary design of the dome was completed using membrane shell analysis. Due to the configuration of the test setup, the dome will experience some flexural stresses and stress concentrations in addition to membrane stresses. Also, a potential buckling condition exists for the dome due to external pressure during the leak testing of the cryostat facility lines. Thus, a finite element analysis was conducted to assess the overall strength and stability of the dome for each required test condition. Based on these results, additional plies of composite reinforcement material were applied to local regions on the dome to alleviate stress concentrations and limit deflections. The dome design includes a circular opening in the center for the installation of a polar boss, which introduces a geometric discontinuity that causes high stresses in the region near the hole. To attenuate these high stresses, a reinforcement system was designed using analytical and finite element analyses. The development of a low leakage polar boss system is also investigated.

  13. Integrated field and numerical modeling investigation of crustal flow mechanisms and trajectories in migmatite domes

    NASA Astrophysics Data System (ADS)

    Whitney, Donna; Teyssier, Christian; Rey, Patrice

    2016-04-01

    Integrated field-based and modeling studies provide information about the driving mechanisms and internal dynamics of migmatite domes, which are important structures for understanding the rheology of the lithosphere in orogens. Dome-forming processes range from extension (isostasy) driven flow to density (buoyancy) driven systems. Vertical flow (up or down) is on the scale of tens of km. End-member buoyancy-driven domes are typically Archean (e.g., Pilbara, Australia). Extension-driven systems include the migmatite domes in metamorphic core complexes of the northern North American Cordillera, as well as some domes in Variscan core complexes. The Entia dome of central Australia is a possible hybrid dome in which extension and density inversion were both involved in dome formation. The Entia is a "double dome", comprised of a steep high-strain zone bordered by high melt-fraction migmatite (subdomes). Field and numerical modeling studies show that these are characteristics of extension-driven domes, which form when flowing deep crust ascends beneath normal faults in the upper crust. Entia dome migmatite shows abundant evidence for extension, in addition to sequences of cascading, cuspate folds (well displayed in amphibolite) that are not present in the carapace of the dome, that do not have a consistent axial planar fabric, and that developed primarily at subsolidus conditions. We propose that these folds developed in mafic layers that had a density contrast with granodioritic migmatite, and that they formed during sinking of a denser layer above the rising migmatite subdomes. Extension-driven flow of partially molten (granodioritic) crust was therefore accompanied by sinking of a dense, mafic, mid-crustal layer, resulting in complex P-T-d paths of different lithologic units within the dome. This scenario is consistent with field and 2D modeling results, which together show how a combination of structural geology, metamorphic petrology, and modeling can illuminate the

  14. Tracking the Evolution of Young Mush at Long Valley through High Spatial Resolution U-Th Zircon Dating and Sanidine Geospeedometry of Inyo Domes Rhyolite

    NASA Astrophysics Data System (ADS)

    Matthews, N. E.; Vazquez, J. A.

    2012-12-01

    The Inyo Domes rhyolitic chain, which erupted at ca. 1350 CE from a fissure near the northern boundary of Long Valley caldera, California, provides an example of rhyolitic mush that has been episodically tapped over an interval of hundreds of thousands of years1. Our new data reveal that the mixed magmas each have unique crystallization histories with varying residence times but also exhibit evidence for final mixing within a hundred years of final eruption. In order to evaluate the timing of crystallization and history of rejuvenation, we present ion microprobe 238U-230Th zircon geochronology coupled with geospeedometry from trace-element zoning data for crystals extracted from the Inyo Domes and older related rhyolite. The South Deadman and Glass Creek domes display complex magma mixing features, involving a coarsely-porphyritic (CP) and finely-porphyritic (FP) rhyolite which are distinct in their mineralogy, chemistry and textures. The CP lava is similar in texture and mineralogy to the ~100 ka Deer Mountain rhyolite, situated to the south of the Inyo chain. In contrast, the FP lava may relate to magma sourced in the Mono chain to the north of the caldera2. Mafic enclaves are commonly found within CP lava, suggesting late stage mixing and heating episodes in the crystal mush. High-resolution records of zircon crystallization were obtained using SHRIMP-RG analyses of unpolished rims for crystals embedded in indium, along with sectioned crystals exposing interiors. Deer Mountain zircons have rims that grew immediately prior to eruption (~100 ka) and cores that are significantly older (~250 ka), providing evidence for zircon growth during protracted evolution of the mush body. South Deadman Dome CP rhyolite contains three populations of zircon, with apparent populations of ~30 ka, ~100 ka, and >200 ka, the latter two correlating to populations sampled by the earlier Deer Mountain eruption. Zircons extracted from FP rhyolite return near-eruption ages (~1 ka) and do

  15. Selected hydrologic data from the vicinity of Rayburns and Vacherie salt domes, northern Louisiana salt-dome basin

    USGS Publications Warehouse

    Ryals, G.N.; Hosman, R.L.

    1980-01-01

    The U.S. Department of Energy is considering salt domes in northern Louisiana as possible sites for storage of nuclear waste. As part of this National Waste Terminal Storage (NWTS) Program, the U.S. Geological Survey is conducting a regional study of the geohydrology of the northern Louisiana salt-dome basin. Field studies involving the collection of data began in 1977. Data-collection networks were established for both ground- and surface- water sources, primarily in the vicinity of two salt domes, Rayburns and Vacherie. Groundwater data collection involved measuring water levels and sampling existing production wells and test wells drilled by the Louisiana State University for Environmental Studies. Samples were analyzed for one or more of the following categories of chemical constituents: inorganic, trace metal, and radiochemical. A network of surface-water stations was set up for measuring discharge and collecting periodic samples. Initial sampling was for analysis for inorganic chemical constituents and radioactive elements. Subsequent sampling has been for inorganic chemical constituents. (USGS)

  16. An analogue experimental model of depth fluctuations in lava lakes

    NASA Astrophysics Data System (ADS)

    Witham, Fred; Woods, Andrew W.; Gladstone, Charlotte

    2006-07-01

    Lava lakes, consisting of molten degassing lava in summit craters of active basaltic volcanoes, sometimes exhibit complex cycles of filling and emptying on time-scales of hours to weeks such as recorded at Pu’u’O’o in Hawaii and Oldoinyo Lengai in Tanzania. Here we report on a new series of analogue laboratory experiments of two-phase flow in a reservoir-conduit-lava lake system which spontaneously generates oscillations in the depth of liquid within the lake. During the recharge phase, gas supplied from a subsurface reservoir of degassing magma drives liquid magma up the conduit, causing the lake to fill. As the magmastatic pressure in the lake increases, the upward supply of magma, driven by the gas bubbles, falls. Eventually the upflow becomes unstable, and liquid drains downwards from the lake, driven by the magmastatic pressure of the overlying lake, suppressing the ascent of any more bubbles from the chamber. At a later stage, once the lake has drained sufficiently, the descent speed of liquid through the conduit decreases below the ascent speed of the bubbles, and the recharge cycle resumes. Application of a quantitative model of the experiments to the natural system is broadly consistent with field data.

  17. The formation of vesicular cylinders in pahoehoe lava flows

    NASA Astrophysics Data System (ADS)

    Fowler, A. C.; Rust, Alison C.; Vynnycky, M.

    2015-01-01

    Vertical cylinders of bubble-enriched, chemically evolved volcanic rock are found in many inflated pahoehoe lava flows. We provide a putative theoretical explanation for their formation, based on a description of a crystallising three-phase (liquid, solid, gas) crystal pile in which the water-saturated silicate melt exsolves steam and becomes more silica-rich as it crystallises anhydrous minerals. These cylinders resemble pipes that form in solidifying binary alloys as a result of sufficiently vigorous porous medium convection within the mush. A convection model with the addition of gas bubbles that provide the buoyancy source indicates that the effective Rayleigh number is too low for convection to occur in the mush of a basalt lava flow. However, the formation of gas bubbles during crystallisation means that the base state includes fluid migration up through the crystal mush even without convection. Stability considerations suggest that it is plausible to form a positive feedback where increased local porosity causes increased upwards fluid flow, which brings more silicic melt up and lowers the liquidus temperature, promoting locally higher porosity. Numerical solutions show that there are steady solutions in which cylinders form, and we conclude that this model provides a viable explanation for vesicular cylinder formation in inflated basalt lava flows.

  18. Transitional Lava Flows As Potential Analogues for Lunar Impact Melts

    NASA Astrophysics Data System (ADS)

    Neish, C.

    2014-12-01

    Lunar impact melts appear to be some of the roughest materials on the Moon at the centimeter scale, even though they appear smooth at the meter scale. These characteristics are unlike any terrestrial analogues yet studied, such as Hawaiian pahoehoe and a'a lava flows. The morphology of impact melt flows can be related to their emplacement conditions and melt properties through thermo-rheological models, so understanding the origin of these unique surface properties will inform us as to the conditions at which they were emplaced. In collaboration with the SSERVI FINESSE team, I am investigating the surface properties of several transitional lava types (e.g., rubbly pahoehoe) at Craters of the Moon National Monument in Idaho. I compare AIRSAR radar images of a range of lava flows to ground-based and high-resolution aerial imagery, for comparison to Mini-RF and Lunar Reconnaissance Orbiter Narrow Angle Camera (NAC) images of impact melts on the Moon. In the process, I will identify appropriate terrestrial analogues for these unusual materials, helping us to understand their emplacement conditions. Information about the surface properties of impact melt will also be critical for any future landed missions that wish to sample these materials on terrestrial planets.

  19. Assessing Lava Flow Hazards from Mauna Loa: A Natural Laboratory

    NASA Astrophysics Data System (ADS)

    Trusdell, F. A.

    2007-12-01

    The primary goal of the U.S. Geological Survey's Hawaiian Volcano Observatory is to provide scientific information that can be used to reduce risks from volcanic activity. With detailed geologic mapping, we are using GIS to assess lava flow hazards for Mauna Loa. Mauna Loa makes up 51 percent of the surface area of the island of Hawai"i. Its lava flows extend 50 km or more from source vents and have reached the sea in less than 24 hours. Mauna Loa has been showing signs of inflation and will undoubtedly erupt again. Anything in the path of a flow will be buried, crushed, or ignited. Emergency managers need to know the areas threatened with inundation, the frequency of inundation, and the people, property, and facilities at risk. We have prepared several different types of analyses: topographic, inundation, economic, and recurrence, to assess the potential hazards that lava flows present to communities on the island of Hawaii. GIS has greatly facilitated our ability to provide hazards analysis which should serve as a guide for planning by emergency managers and the public. It has enabled us to quantify volcanic risk on Mauna Loa in ways never before attempted for any volcano.

  20. Palæomagnetism of Hawaiian lava flows

    USGS Publications Warehouse

    Doell, Richard R.; Cox, Allan

    1961-01-01

    PALÆOMAGNETIC investigations of volcanic rocks extruded in various parts of the world during the past several million years have generally revealed a younger sequence of lava flows magnetized nearly parallel to the field of a theoretical geocentric axial dipole, underlain by a sequence of older flows with exactly the opposite direction of remanent magnetization. A 180-degree reversal of the geomagnetic field, occurring near the middle of the Pleistocene epoch, has been inferred by many workers from such results1–3. This is a preliminary report of an investigation of 755 oriented samples collected from 152 lava flows on the island of Hawaii, selected to represent as many stratigraphic horizons as possible. (Sampling details are indicated in Table 1.) This work was undertaken because Hawaii's numerous thick sequences of lava flows, previously mapped as Pliocene to Historic by Stearns and Macdonald4, and afterwards assigned ages ranging from later Tertiary to Recent, by Macdonald and Davis5, appeared to offer an ideal opportunity to examine the most recent reversal of Earth's field.

  1. Map showing lava-flow hazard zones, Island of Hawaii

    USGS Publications Warehouse

    Wright, Thomas L.; Chun, Jon Y.F.; Exposo, Jean; Heliker, Christina; Hodge, Jon; Lockwood, John P.; Vogt, Susan M.

    1992-01-01

    This map shows lava-flow hazard zones for the five volcanoes on the Island of Hawaii. Volcano boundaries are shown as heavy, dark bands, reflecting the overlapping of lava flows from adjacent volcanoes along their common boundary. Hazard-zone boundaries are drawn as double lines because of the geologic uncertainty in their placement. Most boundaries are gradational, and the change In the degree of hazard can be found over a distance of a mile or more. The general principles used to place hazard-zone boundaries are discussed by Mullineaux and others (1987) and Heliker (1990). The differences between the boundaries presented here and in Heliker (1990) reflect new data used in the compilation of a geologic map for the Island of Hawaii (E.W. Wolfe and Jean Morris, unpub. data, 1989). The primary source of information for volcano boundaries and generalized ages of lava flows for all five volcanoes on the Island of Hawaii is the geologic map of Hawaii (E.W. Wolfe and Jean Morris, unpub. data, 1989). More detailed information is available for the three active volcanoes. For Hualalai, see Moore and others (1987) and Moore and Clague (1991); for Mauna Loa, see Lockwood and Lipman (1987); and for Kilauea, see Holcomb (1987) and Moore and Trusdell (1991).

  2. Observations of obsidian lava flow emplacement at Puyehue-Cordón Caulle, Chile

    NASA Astrophysics Data System (ADS)

    Tuffen, H.; Castro, J. M.; Schipper, C. I.; James, M. R.

    2012-04-01

    The dynamics of obsidian lava flow emplacement remain poorly understood as active obsidian lavas are seldom seen. In contrast with well-documented basaltic lavas, we lack observational data on obsidian flow advance and temporal evolution. The ongoing silicic eruption at Puyehue-Cordón Caulle volcanic complex (PCCVC), southern Chile provides an unprecedented opportunity to witness and study obsidian lava on the move. The eruption, which started explosively on June 4th 2011, has since June 20 generated an active obsidian flow field that remains active at the time of writing (January 2012), with an area of ~6 km2, and estimated volume of ~0.18 km3. We report on observations, imaging and sampling of the north-western lava flow field on January 4th and 10th 2012, when vent activity was characterised by near-continuous ash venting and Vulcanian explosions (Schipper et al, this session) and was simultaneously feeding the advancing obsidian flow (Castro et al, this session). On January 4th the north-western lava flow front was characterised by two dominant facies: predominant rubbly lava approximately 30-40 m thick and mantled by unstable talus aprons, and smoother, thinner lobes of more continuous lava ~50 m in length that extended roughly perpendicular to the overall flow direction, forming lobes that protrude from the flow margin, and lacked talus aprons. The latter lava facies closely resembled squeeze-up structures in basaltic lava flows[1] and appeared to originate from and overlie the talus apron of the rubbly lava. Its upper surface consisted of smooth, gently folded lava domains cut by crevasse-like tension gashes. During ~2 hours of observation the squeeze-up lava lobe was the most frequent location of small-volume rockfalls, which occurred at ~1-10 minute intervals from the flow front and indicated a locus of lava advance. On January 10th the squeeze-up lava lobes had evolved significantly, with disruption and breakage of smooth continuous lava surfaces to form

  3. Lava flow hazard modeling during the 2014-2015 Fogo eruption, Cape Verde

    NASA Astrophysics Data System (ADS)

    Cappello, Annalisa; Ganci, Gaetana; Calvari, Sonia; Pérez, Nemesio M.; Hernández, Pedro A.; Silva, Sónia V.; Cabral, Jeremias; Del Negro, Ciro

    2016-04-01

    Satellite remote sensing techniques and lava flow forecasting models have been combined to enable a rapid response during effusive crises at poorly monitored volcanoes. Here we used the HOTSAT satellite thermal monitoring system and the MAGFLOW lava flow emplacement model to forecast lava flow hazards during the 2014-2015 Fogo eruption. In many ways this was one of the major effusive eruption crises of recent years, since the lava flows actually invaded populated areas. Combining satellite data and modeling allowed mapping of the probable evolution of lava flow fields while the eruption was ongoing and rapidly gaining as much relevant information as possible. HOTSAT was used to promptly analyze MODIS and SEVIRI data to output hot spot location, lava thermal flux, and effusion rate estimation. This output was used to drive the MAGFLOW simulations of lava flow paths and to continuously update flow simulations. We also show how Landsat 8 OLI and EO-1 ALI images complement the field observations for tracking the flow front position through time and adding considerable data on lava flow advancement to validate the results of numerical simulations. The integration of satellite data and modeling offers great promise in providing a unified and efficient system for global assessment and real-time response to effusive eruptions, including (i) the current state of the effusive activity, (ii) the probable evolution of the lava flow field, and (iii) the potential impact of lava flows.

  4. Discriminating lava flows of different age within Nyamuragira's volcanic field using spectral mixture analysis

    NASA Astrophysics Data System (ADS)

    Li, Long; Canters, Frank; Solana, Carmen; Ma, Weiwei; Chen, Longqian; Kervyn, Matthieu

    2015-08-01

    In this study, linear spectral mixture analysis (LSMA) is used to characterize the spectral heterogeneity of lava flows from Nyamuragira volcano, Democratic Republic of Congo, where vegetation and lava are the two main land covers. In order to estimate fractions of vegetation and lava through satellite remote sensing, we made use of 30 m resolution Landsat Enhanced Thematic Mapper Plus (ETM+) and Advanced Land Imager (ALI) imagery. 2 m Pleiades data was used for validation. From the results, we conclude that (1) LSMA is capable of characterizing volcanic fields and