Science.gov

Sample records for 1987a axion trapping

  1. Axions and SN 1987A: Axion trapping

    NASA Technical Reports Server (NTRS)

    Burrows, Adam; Ressell, M. Ted; Turner, Michael S.

    1990-01-01

    If an axion of mass between about 10(exp -3) and 10 eV exists, axion emission would have significantly affected the cooling of the nascent neutron star associated with SN 1987A. For an axion of mass greater than about 10(exp -2) eV axions would, like neutrinos, have a mean-free path that is smaller than the size of a neutron star, and thus would become trapped and radiated from an axion sphere. The trapping regime is treated by using numerical models of the initial cooling of a hot neutron star that incorporate a diffusion approximation for axion-energy transport. The axion opacity due to inverse nucleon-nucleon, axion bremsstrahlung is computed; and then the numerical models are used to calculate the integrated axion luminosity, the temperature of the axion sphere, and the effect of axion emission on the neutrino bursts detected by the Kamiokande II (KII) and Irvine-Michigan-Brookhaven (IMB) water-Cherenkov detectors. The larger the axion mass, the stronger the trapping and the smaller the axion luminosity. The estimate of the axion mass is confirmed above which trapping is so strong that axion emission does not significantly affect the neutrino burst. Based upon the neutrino-burst duration - the most sensitive barometer of axion cooling - it is concluded that for an axion mass greater than about 3 eV axion emission would not have had a significant effect on the neutrino bursts detected by KII and IMB. It is strongly suggested that an axion with mass in the interval 10(exp -3) to 3 eV is excluded by the observation of neutrinos from SN 1987A.

  2. Axions and SN 1987A: Axion trapping

    NASA Technical Reports Server (NTRS)

    Burrows, Adam; Ressell, M. Ted; Turner, Michael S.

    1990-01-01

    If an axion of mass between about 10(exp -3) eV and 1 eV exists, axion emission would have significantly affected the cooling of the nascent neutron star associated with SN 1987A. For an axion of mass less than about 10(exp -2) eV, axions produced deep inside the neutron star simply stream out; in a previous paper this case has been addressed. Remarkably, for an axion of mass greater than about 10(exp -2) eV axions would, like neutrinos, have a mean-free path that is smaller than the size of a neutron star, and thus would become 'trapped' and radiated from an axion sphere. In this paper the trapping regime is treated by using numerical models of the initial cooling of a hot neutron star that incorporate a leakage approximation scheme for axion-energy transport. The axion opacity is computed due to inverse nucleon-nucleon, axion bremsstrahlung, and numerical models are used to calculate the integrated axion luminosity, the temperature of the axion sphere, and the effect of axion emission on the neutrino bursts detected by the Kamiokande 2 (K2) and Irvine-Michigan-Brookhaven (IMB) water-Cherenkov detectors. The larger the axion mass, the stronger the trapping and the smaller the axion luminosity. The earlier estimate is confirmed and refined of the axion mass above which trapping is so strong that axion emission does not significantly affect the neutrino burst. Based upon the neutrino-burst duration--the most sensitive barometer of axion cooling--it is concluded that for an axion mass of greater than about 0.3 eV, axion emission would not have had a significant effect on the neutrino bursts detected by K2 and IMB. The present work, together with the previous work, strongly suggests that an axion with mass in the interval 10(exp -3) eV to 0.3 eV is excluded by SN 1987A.

  3. Axions and SN1987A

    NASA Technical Reports Server (NTRS)

    Burrows, Adam; Turner, Michael S.; Brinkmann, R. P.

    1988-01-01

    The effect of free-streaming axion emission on numerical models for the cooling of the newly born neutron star associated with SN1987A is considered. It is found that for an axion mass of greater than approximately 10 to the -3 eV, axion emission shortens the duration of the expected neutrino burst so significantly that it would be inconsistent with the neutrino observations made by the Kamiokande II and Irvine-Michigan-Brookhaven detectors. However, the possibility has not been investigated that axion trapping (which should occur for masses greater than or equal to 0.02 eV) sufficiently reduces axion emission so that axion masses greater than approximately 2 eV would be consistent with the neutrino observations.

  4. Axions, SN 1987A, and one pion exchange

    NASA Technical Reports Server (NTRS)

    Turner, Michael S.; Kang, Ho-Shik; Steigman, Gary

    1988-01-01

    Nucleon-nucleon, axion bremsstrahlung is the primary mechanism for axion emission from the nascent neutron star associated with SN 1987A, and the rate for this process has been calculated in the one pion exchange approximation (OPE). The axion mass limit which follows from SN 1987A, m sub a less than or approx equal to 10 to the -3 eV, is the most stringent astrophysical bound, and has received much scrutiny. It has been suggested that by using OPE to calculate the cross section for the analog process, pp yields pp + pi sup o, and comparing the result of the experimental data one can test the validity of this approximation, and further, that such a comparison indicates that OPE leads to a value for this cross section which is a factor of 30 to 40 too large. If true, this would suggest that the axion mass limit should be revised upward by a factor of approximately 6. The cross section for pp yields pp + pi sup o using OPE is carefully evaluated, and excellent agreement found (to better than a factor of 2) with the experimental data.

  5. Revisiting the SN1987A gamma-ray limit on ultralight axion-like particles

    SciTech Connect

    Payez, Alexandre; Ringwald, Andreas; Evoli, Carmelo; Mirizzi, Alessandro; Fischer, Tobias; Giannotti, Maurizio E-mail: carmelo.evoli@desy.de E-mail: mgiannotti@barry.edu E-mail: andreas.ringwald@desy.de

    2015-02-01

    We revise the bound from the supernova SN1987A on the coupling of ultralight axion-like particles (ALPs) to photons. In a core-collapse supernova, ALPs would be emitted via the Primakoff process, and eventually convert into gamma rays in the magnetic field of the Milky Way. The lack of a gamma-ray signal in the GRS instrument of the SMM satellite in coincidence with the observation of the neutrinos emitted from SN1987A therefore provides a strong bound on their coupling to photons. Due to the large uncertainty associated with the current bound, we revise this argument, based on state-of-the-art physical inputs both for the supernova models and for the Milky-Way magnetic field. Furthermore, we provide major amendments, such as the consistent treatment of nucleon-degeneracy effects and of the reduction of the nuclear masses in the hot and dense nuclear medium of the supernova. With these improvements, we obtain a new upper limit on the photon-ALP coupling: g{sub aγ} ∼< 5.3 × 10{sup -12} GeV{sup -1}, for m{sub a} ∼< 4.4 × 10{sup -10} eV, and we also give its dependence at larger ALP masses m{sub a}. Moreover, we discuss how much the Fermi-LAT satellite experiment could improve this bound, should a close-enough supernova explode in the near future.

  6. Revisiting the SN1987A gamma-ray limit on ultralight axion-like particles

    NASA Astrophysics Data System (ADS)

    Payez, Alexandre; Evoli, Carmelo; Fischer, Tobias; Giannotti, Maurizio; Mirizzi, Alessandro; Ringwald, Andreas

    2015-02-01

    We revise the bound from the supernova SN1987A on the coupling of ultralight axion-like particles (ALPs) to photons. In a core-collapse supernova, ALPs would be emitted via the Primakoff process, and eventually convert into gamma rays in the magnetic field of the Milky Way. The lack of a gamma-ray signal in the GRS instrument of the SMM satellite in coincidence with the observation of the neutrinos emitted from SN1987A therefore provides a strong bound on their coupling to photons. Due to the large uncertainty associated with the current bound, we revise this argument, based on state-of-the-art physical inputs both for the supernova models and for the Milky-Way magnetic field. Furthermore, we provide major amendments, such as the consistent treatment of nucleon-degeneracy effects and of the reduction of the nuclear masses in the hot and dense nuclear medium of the supernova. With these improvements, we obtain a new upper limit on the photon-ALP coupling: gaγ lesssim 5.3 × 10-12 GeV-1, for ma lesssim 4.4 × 10-10 eV, and we also give its dependence at larger ALP masses ma. Moreover, we discuss how much the Fermi-LAT satellite experiment could improve this bound, should a close-enough supernova explode in the near future.

  7. Limits to the radiative decays of neutrinos and axions from gamma-ray observations of SN 1987A

    NASA Technical Reports Server (NTRS)

    Kolb, Edward W.; Turner, Michael S.

    1989-01-01

    Gamma-ray observations obtained by the SMM gamma-ray spectrometer in the energy range 4.1-6.4 MeV are used to provide limits on the possible radiative decay of neutrinos and axions emitted by SN 1987A. For branching ratio values for the radiative decay modes of less than about 0.0001, the present limits are more stringent than those based upon the photon flux from decaying relic neutrinos. The data are also used to set an axion mass limit.

  8. Axion Searches

    NASA Astrophysics Data System (ADS)

    Sikivie, Pierre

    The following sections are included: * INTRODUCTION TO AXION PHYSICS * THE COSMOLOGICAL AXION ENERGY DENSITY * The contribution from initial vacuum misalignment * The contribution from cosmic axion strings * THE CAVITY DETECTOR OF GALACTIC HALO AXIONS * THE PHASE SPACE STRUCTURE OF COLD DARK MATTER HALOS * TELESCOPE SEARCH FOR THE 2γ DECAY OF RELIC AXIONS * A SOLAR AXION DETECTOR * ACKNOWLEDGEMENT * REFERENCES

  9. Supernova 1987A

    NASA Astrophysics Data System (ADS)

    McCray, R.; Murdin, P.

    2002-10-01

    Supernova 1987A (SN1987A) in the LARGE MAGELLANIC CLOUD (LMC) is the brightest supernova to be observed since SN1604 (Kepler), the first to be observed in every band of the ELECTROMAGNETIC SPECTRUM and the first to be detected through its initial burst of NEUTRINOS. Although the bolometric luminosity of SN1987A today is ≈10-6 of its value at maximum light (Lmax≈2.5×108L⊙), it ...

  10. Experimental probes of axions

    SciTech Connect

    Chou, Aaron S.; /Fermilab

    2009-10-01

    Experimental searches for axions or axion-like particles rely on semiclassical phenomena resulting from the postulated coupling of the axion to two photons. Sensitive probes of the extremely small coupling constant can be made by exploiting familiar, coherent electromagnetic laboratory techniques, including resonant enhancement of transitions using microwave and optical cavities, Bragg scattering, and coherent photon-axion oscillations. The axion beam may either be astrophysical in origin as in the case of dark matter axion searches and solar axion searches, or created in the laboratory from laser interactions with magnetic fields. This note is meant to be a sampling of recent experimental results.

  11. Dense Axion Stars

    NASA Astrophysics Data System (ADS)

    Braaten, Eric; Mohapatra, Abhishek; Zhang, Hong

    2016-09-01

    If the dark matter particles are axions, gravity can cause them to coalesce into axion stars, which are stable gravitationally bound systems of axions. In the previously known solutions for axion stars, gravity and the attractive force between pairs of axions are balanced by the kinetic pressure. The mass of these dilute axion stars cannot exceed a critical mass, which is about 10-14M⊙ if the axion mass is 10-4 eV . We study axion stars using a simple approximation to the effective potential of the nonrelativistic effective field theory for axions. We find a new branch of dense axion stars in which gravity is balanced by the mean-field pressure of the axion Bose-Einstein condensate. The mass on this branch ranges from about 10-20M⊙ to about M⊙ . If a dilute axion star with the critical mass accretes additional axions and collapses, it could produce a bosenova, leaving a dense axion star as the remnant.

  12. Dense Axion Stars

    NASA Astrophysics Data System (ADS)

    Mohapatra, Abhishek; Braaten, Eric; Zhang, Hong

    2016-03-01

    If the dark matter consists of axions, gravity can cause them to coalesce into axion stars, which are stable gravitationally bound Bose-Einstein condensates of axions. In the previously known axion stars, gravity and the attractive force between pairs of axions are balanced by the kinetic pressure. If the axion mass energy is mc2 =10-4 eV, these dilute axion stars have a maximum mass of about 10-14M⊙ . We point out that there are also dense axion stars in which gravity is balanced by the mean-field pressure of the axion condensate. We study axion stars using the leading term in a systematically improvable approximation to the effective potential of the nonrelativistic effective field theory for axions. Using the Thomas-Fermi approximation in which the kinetic pressure is neglected, we find a sequence of new branches of axion stars in which gravity is balanced by the mean-field interaction energy of the axion condensate. If mc2 =10-4 4 eV, the first branch of these dense axion stars has mass ranging from about 10-11M⊙ toabout M⊙.

  13. Dense Axion Stars.

    PubMed

    Braaten, Eric; Mohapatra, Abhishek; Zhang, Hong

    2016-09-16

    If the dark matter particles are axions, gravity can cause them to coalesce into axion stars, which are stable gravitationally bound systems of axions. In the previously known solutions for axion stars, gravity and the attractive force between pairs of axions are balanced by the kinetic pressure. The mass of these dilute axion stars cannot exceed a critical mass, which is about 10^{-14}M_{⊙} if the axion mass is 10^{-4}  eV. We study axion stars using a simple approximation to the effective potential of the nonrelativistic effective field theory for axions. We find a new branch of dense axion stars in which gravity is balanced by the mean-field pressure of the axion Bose-Einstein condensate. The mass on this branch ranges from about 10^{-20}M_{⊙} to about M_{⊙}. If a dilute axion star with the critical mass accretes additional axions and collapses, it could produce a bosenova, leaving a dense axion star as the remnant.

  14. Supernova 1987A

    NASA Technical Reports Server (NTRS)

    Mccray, Richard; Li, Hong Wei

    1988-01-01

    Supernova 1987A (February 23, 1987) in the Large Magellanic Cloud is the brightest supernova to be observed since SN 1604 AD (Kepler). Detection of a burst of neutrinos indicates that a neutron star was formed. Radioactive decay of about 0.07 solar mass of Co-56 is responsible for the observed optical light as well as hard X-rays and gamma-ray lines. Ultraviolet, optical, and infrared 'light echoes' and soft X-rays provide information on the distribution of circumstellar matter and the evolution of the progenitor star.

  15. Vacuum selection on axionic landscapes

    SciTech Connect

    Wang, Gaoyuan; Battefeld, Thorsten E-mail: tbattefe@astro.physik.uni-goettingen.de

    2016-04-01

    We compute the distribution of minima that are reached dynamically on multi-field axionic landscapes, both numerically and analytically. Such landscapes are well suited for inflationary model building due to the presence of shift symmetries and possible alignment effects (the KNP mechanism). The resulting distribution of dynamically reached minima differs considerably from the naive expectation based on counting all vacua. These differences are more pronounced in the presence of many fields due to dynamical selection effects: while low lying minima are preferred as fields roll down the potential, trajectories are also more likely to get trapped by one of the many nearby minima. We show that common analytic arguments based on random matrix theory in the large D-limit to estimate the distribution of minima are insufficient for quantitative arguments pertaining to the dynamically reached ones. This discrepancy is not restricted to axionic potentials. We provide an empirical expression for the expectation value of such dynamically reached minimas' height and argue that the cosmological constant problem is not alleviated in the absence of anthropic arguments. We further comment on the likelihood of inflation on axionic landscapes in the large D-limit.

  16. Redefining the Axion Window

    NASA Astrophysics Data System (ADS)

    Di Luzio, Luca; Mescia, Federico; Nardi, Enrico

    2017-01-01

    A major goal of axion searches is to reach inside the parameter space region of realistic axion models. Currently, the boundaries of this region depend on somewhat arbitrary criteria, and it would be desirable to specify them in terms of precise phenomenological requirements. We consider hadronic axion models and classify the representations RQ of the new heavy quarks Q . By requiring that (i) the Q 's are sufficiently short lived to avoid issues with long-lived strongly interacting relics, (ii) no Landau poles are induced below the Planck scale; 15 cases are selected which define a phenomenologically preferred axion window bounded by a maximum (minimum) value of the axion-photon coupling about 2 times (4 times) larger than is commonly assumed. Allowing for more than one RQ, larger couplings, as well as complete axion-photon decoupling, become possible.

  17. Inflationary Axion Cosmology

    DOE R&D Accomplishments Database

    Wilczek, Frank; Turner, Michael S.

    1990-09-01

    If Peccei-Quinn (PQ) symmetry is broken after inflation, the initial axion angle is a random variable on cosmological scales; based on this fact, estimates of the relic-axion mass density give too large a value if the axion mass is less than about 10-6 eV. This bound can be evaded if the Universe underwent inflation after PQ symmetry breaking and if the observable Universe happens to be a region where the initial axion angle was atypically small, .1 . (ma/10-6eV)0.59. We show consideration of fluctuations induced during inflation severely constrains the latter alternative.

  18. Emission of Photons and Relativistic Axions from Axion stars

    NASA Astrophysics Data System (ADS)

    Mohapatra, Abhishek; Braaten, Eric; Zhang, Hong

    2017-01-01

    The number of nonrelativistic axions can be changed by inelastic reactions that produce relativistic axions or photons. Any even number of nonrelativistic axions can scatter inelastically into two relativistic axions. Any odd number of axions can annihilate into two photons. This reaction produces a monochromatic radio-frequency signal at an odd-integer harmonic of the fundamental frequency set by the axion mass. The loss rates of axions from axion stars through these inelastic relations are calculated using the framework of a nonrelativistic effective field theory. Odd-integer harmonics of a fundamental radio-frequency signal provide a unique signature for collapsing axion stars or any dense configuration of axions. Supported by NSF and the DOE.

  19. Quality of the Peccei-Quinn symmetry in the aligned QCD axion and cosmological implications

    NASA Astrophysics Data System (ADS)

    Higaki, Tetsutaro; Jeong, Kwang Sik; Kitajima, Naoya; Takahashi, Fuminobu

    2016-06-01

    We show that the required high quality of the Peccei-Quinn symmetry can be naturally explained in the aligned QCD axion models where the QCD axion arises from multiple axions with decay constants much smaller than the axion window, e.g., around the weak scale. Even in the presence of general Planck-suppressed Peccei-Quinn symmetry breaking operators, the effective strong CP phase remains sufficiently small in contrast to the standard axion models without the alignment. The QCD axion potential has small or large modulations due to the symmetry breaking operators, which can significantly affect the axion cosmology. When the axions are trapped in different minima, domain walls appear and their scaling behavior suppresses the axion isocurvature perturbations at super-horizon scales. Our scenario predicts many axions and saxions coupled to gluons, and they may be searched for at collider experiments. In particular, the recently found diphoton excess at 750 GeV could be due to one of such (s)axions.

  20. (Mainly) axion dark matter

    NASA Astrophysics Data System (ADS)

    Baer, Howard

    2016-06-01

    The strong CP problem of QCD is at heart a problem of naturalness: why is the FF ˜ term highly suppressed in the QCD Lagrangian when it seems necessary to explain why there are three and not four light pions? The most elegant solution posits a spontaneously broken Peccei-Quinn (PQ) symmetry which requires the existence of the axion field a. The axion field settles to the minimum of its potential thus removing the offensive term but giving rise to the physical axion whose coherent oscillations can make up the cold dark matter. Only now are experiments such as ADMX beginning to explore QCD axion parameter space. Since a bonafide scalar particle- the Higgs boson- has been discovered, one might expect its mass to reside at the axion scale fa ˜ 1011 GeV. The Higgs mass is elegantly stabilized by supersymmetry: in this case the axion is accompanied by its axino and saxion superpartners. Requiring naturalness also in the electroweak sector implies higgsino-like WIMPs so then we expect mixed axion-WIMP dark matter. Ultimately we would expect detection of both an axion and a WIMP while signals for light higgsinos may show up at LHC and must show up at ILC.

  1. Axion dark matter searches

    SciTech Connect

    Stern, Ian P.; Collaboration: ADMX Collaboration; ADMX-HF Collaboration

    2014-06-24

    Nearly all astrophysical and cosmological data point convincingly to a large component of cold dark matter in the Universe. The axion particle, first theorized as a solution to the strong charge-parity problem of quantum chromodynamics, has been established as a prominent CDM candidate. Cosmic observation and particle physics experiments have bracketed the unknown mass of the axion between approximately a μeV and a meV. The Axion Dark Matter eXperiement (ADMX) has successfully completed searches between 1.9 and 3.7 μeV down to the KSVZ photon-coupling limit. ADMX and the Axion Dark Matter eXperiement High-Frequency (ADMX-HF) will search for axions at weaker coupling and/or higher frequencies within the next few years. Status of the experiments, current research and development, and projected mass-coupling exclusion limits are presented.

  2. Axion dark matter searches

    SciTech Connect

    Stern, Ian P.

    2014-01-01

    We report nearly all astrophysical and cosmological data point convincingly to a large component of cold dark matter in the Universe. The axion particle, first theorized as a solution to the strong charge-parity problem of quantum chromodynamics, has been established as a prominent CDM candidate. Cosmic observation and particle physics experiments have bracketed the unknown mass of the axion between approximately a μeV and a meV. The Axion Dark Matter eXperiement (ADMX) has successfully completed searches between 1.9 and 3.7 μeV down to the KSVZ photon-coupling limit. ADMX and the Axion Dark Matter eXperiement High-Frequency (ADMX-HF) will search for axions at weaker coupling and/or higher frequencies within the next few years. Status of the experiments, current research and development, and projected mass-coupling exclusion limits are presented.

  3. Windows on the axion

    SciTech Connect

    Turner, M.S.

    1989-04-01

    Peccei-Quinn symmetry with attendant axion is a most compelling, and perhaps the most minimal, extension of the standard model, as it provides a very elegant solution to the nagging strong CP-problem associated with the THETA vacuum structure of QCD. However, particle physics gives little guidance as to the axion mass; a priori, the plausible values span the range: 10/sup /minus/12/ eV /approx lt/ m/sub a/ /approx lt/ 10/sup 6/ eV, some 18 orders-of-magnitude. Axions have a host of interesting astrophysical and cosmological effects, including, modifying the evolution of stars of all types (our sun, red giants, white dwarfs, and neutron stars), contributing significantly to the mass density of the Universe today, and producing detectable line radiation through the decays of relic axions. Consideration of these effects has probed 14 orders-of-magnitude in axion mass, and has left open only two windows for further exploration: 10/sup /minus/6/ eV /approx lt/ m/sub a/ /approx lt/ 10/sup /minus/3/ eV and 1 eV /approx lt/ m/sub a/ /approx lt/ 5 eV (hadronic axions only). Both these windows are accessible to experiment, and a variety of very interesting experiments, all of which involve ''heavenly axions,'' are being planned or are underway. 58 refs., 6 figs., 1 tab.

  4. Axion dark matter searches

    DOE PAGES

    Stern, Ian P.

    2014-01-01

    We report nearly all astrophysical and cosmological data point convincingly to a large component of cold dark matter in the Universe. The axion particle, first theorized as a solution to the strong charge-parity problem of quantum chromodynamics, has been established as a prominent CDM candidate. Cosmic observation and particle physics experiments have bracketed the unknown mass of the axion between approximately a μeV and a meV. The Axion Dark Matter eXperiement (ADMX) has successfully completed searches between 1.9 and 3.7 μeV down to the KSVZ photon-coupling limit. ADMX and the Axion Dark Matter eXperiement High-Frequency (ADMX-HF) will search for axionsmore » at weaker coupling and/or higher frequencies within the next few years. Status of the experiments, current research and development, and projected mass-coupling exclusion limits are presented.« less

  5. Particle physics: Axions exposed

    NASA Astrophysics Data System (ADS)

    Lombardo, Maria Paola

    2016-11-01

    Physicists are hunting for a particle called the axion that could solve two major puzzles in fundamental physics. An ambitious study calculates the expected mass of this particle, which might reshape the experimental searches. See Letter p.69

  6. Tidal streams from axion miniclusters and direct axion searches

    SciTech Connect

    Tinyakov, Peter; Tkachev, Igor; Zioutas, Konstantin E-mail: tkachev@inr.ru

    2016-01-01

    In some axion dark matter models a dominant fraction of axions resides in dense small-scale substructures, axion miniclusters. A fraction of these substructures is disrupted and forms tidal streams where the axion density may still be an order of magnitude larger than the average. We discuss implications of these streams for the direct axion searches. We estimate the fraction of disrupted miniclusters and the parameters of the resulting streams, and find that stream-crossing events would occur at a rate of about 1/(20 yr) for 2–3 days, during which the signal in axion detectors would be amplified by a factor ∼ 10. These estimates suggest that the effect of the tidal disruption of axion miniclusters may be important for direct axion searches and deserves a more thorough study.

  7. The QCD axion from aligned axions and diphoton excess

    NASA Astrophysics Data System (ADS)

    Higaki, Tetsutaro; Jeong, Kwang Sik; Kitajima, Naoya; Takahashi, Fuminobu

    2016-04-01

    We argue that the QCD axion can arise from many aligned axions with decay constants much smaller than the conventional axion window. If the typical decay constant is of O (100) GeV to 1 TeV, one or more of the axions or saxions may account for the recently found diphoton excess at ∼ 750 GeV. Our scenario predicts many axions and saxions coupled to gluons with decay constants of order the weak scale, and therefore many collider signatures by heavy axions and saxions will show up at different energy scales. In particular, if the inferred broad decay width is due to multiple axions or saxions, a non-trivial peak structure may become evident when more data is collected. We also discuss cosmological implications of the aligned QCD axion scenario. In the Appendix we give a possible UV completion and argue that the high quality of the Peccei-Quinn symmetry is naturally explained in our scenario.

  8. Astrophysics of Collapsing Axion Stars

    NASA Astrophysics Data System (ADS)

    Eby, Joshua; Leembruggen, Madelyn; Suranyi, Peter; Wijewardhana, L. C. R.

    2017-01-01

    Axion stars are condensed states of large numbers of axion particles, bound by self-gravitation and quantum self-interactions. The mass of weakly bound axion stars is limited by gravitational stability, with condensates exceeding the maximum mass subject to collapse. During the collapse process, the axion density increases and higher-order self-interactions become increasingly relevant. By taking these terms into account, we provide evidence that in spite of a leading attractive interaction, collapsing axion stars stabilize in a dense state which is larger than its Schwarzschild radius, and so do not form black holes. During the last moments of collapse, number changing processes take place in the axion star with a very large rate, leading to emission of many highly energetic axions which escape from galaxies and galaxy clusters. Finally, if axion stars are a significant fraction of cold dark matter, then frequent collisions with each other or with ordinary stars could catalyze this collapse process as well.

  9. Photon propagator for axion electrodynamics

    SciTech Connect

    Itin, Yakov

    2007-10-15

    The axion modified electrodynamics is usually used as a model for description of possible violation of Lorentz invariance in field theory. The low-energy manifestation of Lorentz violation can hopefully be observed in experiments with electromagnetic waves. It justifies the importance of studying how a small axion addition can modify the wave propagation. Although a constant axion does not contribute to the dispersion relation at all, even a slowly varying axion field destroys the light cone structure. In this paper, we study the wave propagation in the axion modified electrodynamics in the framework of the premetric approach. In addition to the modified dispersion relation, we derive the axion generalization of the photon propagator in Feynman and Landau gauge. Our consideration is free of the usual restriction to the constant gradient axion field. It is remarkable that the axion modified propagator is Hermitian. Consequently, the dissipation effects are absent even in the phenomenological model considered here.

  10. SN1987A's Twentieth Anniversary

    NASA Astrophysics Data System (ADS)

    2007-02-01

    Looking back at 20 Years of Observations of this Supernova with ESO telescopes The unique supernova SN 1987A has been a bonanza for astrophysicists. It provided several observational 'firsts,' like the detection of neutrinos from an exploding star, the observation of the progenitor star on archival photographic plates, the signatures of a non-spherical explosion, the direct observation of the radioactive elements produced during the blast, observation of the formation of dust in the supernova, as well as the detection of circumstellar and interstellar material. ESO PR Photo 08a/07 ESO PR Photo 08a/07 SN1987A in the Large Magellanic Cloud Today, it is exactly twenty years since the explosion of Supernova 1987A in the Large Magellanic Cloud was first observed, at a distance of 163,000 light-years. It was the first naked-eye supernova to be seen for 383 years. Few events in modern astronomy have met with such an enthusiastic response by the scientists and now, after 20 years, it continues to be an extremely exciting object that is further studied by astronomers around the world, in particular using ESO's telescopes. When the first signs of Supernova 1987A, the first supernova of the year 1987, were noticed early on 24 February of that year, it was clear that this would be an unusual event. It was discovered by naked-eye and on a panoramic photographic plate taken with a 10-inch astrograph on Las Campanas in Chile by Oscar Duhalde and Ian Shelton, respectively. A few hours earlier, still on 23 February, two large underground detectors - in Japan and the USA - had registered the passage of high-energy neutrinos. Since SN 1987A exploded in the Large Magellanic Cloud (LMC), it was only accessible to telescopes in the Southern Hemisphere, more particularly in Australia, South Africa, and South America. In Chile, ESO's observatory at La Silla with its armada of telescopes with sizes between 0.5 and 3.6-m, played an important role. ESO PR Photo 08c/07 ESO PR Photo 08c/07 The

  11. SN 1987A Transforms into SN Remnant 1987A

    NASA Astrophysics Data System (ADS)

    Crotts, Arlin; Heathcote, Stephen; Lawrence, Stephen

    2014-08-01

    The ejecta and circumstellar ring of SN 1987A are colliding violently. Over several years, we have seen radical changes in the circumstellar nebula as it is overrun by high-speed ejecta, giving birth to a supernova remnant (SNR). We have already discovered (and published), via this observational program, new interactions between ejecta and nebula, as several hot spots appearing every year, and see now the whole innermost nebula interacting. This means that observations, especially spectroscopy, of SNR 1987A have entered a new phase in which ground-based observations can reveal the collective behavior of the SNR, especially when combined with HST data. The collision is predicted (and observed) to produce intense IR/optical emission, in new and previously-observed lines. Depending on whether these arise in the ejecta or nebula, and whether shock or EUV-excited, they have linewidths ~10 to 15,000 km/s; frequent moderate- dispersion spectra are required. With the interaction region now enveloping the inner ring, ionizing radiation has started flooding the entire structure. SOAR/Goodman is ideal for this, covering velocity scales, wavelengths and time intervals unavailable to HST, allowing the first ever study of the creation of a nearby SNR. In particular we need timely, good-seeing Goodman spectra of the reverse shock of SN 1987A's circumstellar/ejecta interaction this semester to combine with our scheduled HST/STIS spectra and WFC3 images (in August 2014) and thereby measure of the compositon of deep layers in the SN progenitor star by studying ionic species measurements not seen by HST data alone.

  12. Axion domain wall baryogenesis

    SciTech Connect

    Daido, Ryuji; Kitajima, Naoya; Takahashi, Fuminobu

    2015-07-28

    We propose a new scenario of baryogenesis, in which annihilation of axion domain walls generates a sizable baryon asymmetry. Successful baryogenesis is possible for a wide range of the axion mass and decay constant, m≃10{sup 8}–10{sup 13} GeV and f≃10{sup 13}–10{sup 16} GeV. Baryonic isocurvature perturbations are significantly suppressed in our model, in contrast to various spontaneous baryogenesis scenarios in the slow-roll regime. In particular, the axion domain wall baryogenesis is consistent with high-scale inflation which generates a large tensor-to-scalar ratio within the reach of future CMB B-mode experiments. We also discuss the gravitational waves produced by the domain wall annihilation and its implications for the future gravitational wave experiments.

  13. Dark matter in axion landscape

    NASA Astrophysics Data System (ADS)

    Daido, Ryuji; Kobayashi, Takeshi; Takahashi, Fuminobu

    2017-02-01

    If there are a plethora of axions in nature, they may have a complicated potential and create an axion landscape. We study a possibility that one of the axions is so light that it is cosmologically stable, explaining the observed dark matter density. In particular we focus on a case in which two (or more) shift-symmetry breaking terms conspire to make the axion sufficiently light at the potential minimum. In this case the axion has a flat-bottomed potential. In contrast to the case in which a single cosine term dominates the potential, the axion abundance as well as its isocurvature perturbations are significantly suppressed. This allows an axion with a rather large mass to serve as dark matter without fine-tuning of the initial misalignment, and further makes higher-scale inflation to be consistent with the scenario.

  14. The lifetime of axion stars

    NASA Astrophysics Data System (ADS)

    Eby, Joshua; Suranyi, Peter; Wijewardhana, L. C. R.

    2016-05-01

    We investigate the decay of condensates of scalars in a field theory defined by V (𝒜) = m2f2[1 -cos(𝒜/f)], where m and f are the mass and decay constant of the scalar field. An example of such a theory is that of the axion, in which case the condensates are called axion stars. The axion field, 𝒜, is self-adjoint. As a result, the axion number is not an absolutely conserved quantity. Therefore, axion stars are not stable and have finite lifetimes. Bound axions, localized on the volume of the star, have a coordinate uncertainty δx ˜ R ˜ 1/(maΔ), where R is the radius of the star and Δ = 1 - E0 2/ma 2. Here ma and E0 are the mass, and the ground state energy of the bound axion. Then the momentum distribution of axions has a width of δp ˜ maΔ. At strong binding, Δ = 𝒪(1), bound axions can easily transfer a sufficient amount of momentum to create and emit a free axion, leading to fast decay of the star with a transition rate Γ ˜ ma. However, when Δ ≪ 1, the momentum distribution is more restricted, and as shown in this paper, the transition rate for creating a free axion decreases as exp(-pδx) ˜exp(-Δ-1). Then sufficiently large, weakly bound axion stars, produced after the Big Bang, survive until the present time. We plot the region of their stability, limited by decay through axion loss and by gravitational instability, as a function of the mass of the axion and the mass of the star.

  15. Composite accidental axions

    NASA Astrophysics Data System (ADS)

    Redi, Michele; Sato, Ryosuke

    2016-05-01

    We present several models where the QCD axion arises accidentally. Confining gauge theories can generate axion candidates whose properties are uniquely determined by the quantum numbers of the new fermions under the Standard Model. The Peccei-Quinn symmetry can emerge accidentally if the gauge theory is chiral. We generalise previous constructions in a unified framework. In some cases these models can be understood as the deconstruction of 5-dimensional gauge theories where the Peccei-Quinn symmetry is protected by locality but more general constructions are possible.

  16. Tunneling in axion monodromy

    NASA Astrophysics Data System (ADS)

    Brown, Jon; Cottrell, William; Shiu, Gary; Soler, Pablo

    2016-10-01

    The Coleman formula for vacuum decay and bubble nucleation has been used to estimate the tunneling rate in models of axion monodromy in recent literature. However, several of Coleman's original assumptions do not hold for such models. Here we derive a new estimate with this in mind using a similar Euclidean procedure. We find that there are significant regions of parameter space for which the tunneling rate in axion monodromy is not well approximated by the Coleman formula. However, there is also a regime relevant to large field inflation in which both estimates parametrically agree. We also briefly comment on the applications of our results to the relaxion scenario.

  17. Search for solar axions

    NASA Astrophysics Data System (ADS)

    Newman, Seth Aaron

    Peccei and Quinn proposed an elegant solution for restoring CP symmetry to the QCD Lagrangian [37]. This method includes an additional global U(1) symmetry included in the QCD Lagrangian which is spontaneously broken at a high energy scale, fa. Breaking the symmetry generates a Nambu-Goldstone boson called the axion. Although there are various detection mechanisms that search for the axion, this thesis focuses on the the axio-electric effect. The axio-electric is similar to the photo-electric effect in that an axion is absorbed by an atom which subsequently emits an electron. The electron's energy is equivalent to the incoming axion energy minus the binding energy. The higher shell electrons immediately replenish the missing binding energy yielding a single energy peak at the incoming axion's energy. The 14.4 keV M1 transition of 57Fe is one possible axion source. The development of an optimum trigger algorithm has lowered the threshold for analysis in TeO2 bolometers to a few keV making an axion signature accessible to CUORE related R&D experiments such as the Chinese Crystal Validation Runs (CCVR) and Three Towers Test (TTT). These TeO2 crystal detectors have masses 750 and 790 grams, respectively. Each crystal has a stabilization heater and a germanium thermometer attached to its surface by an epoxy glue. The two previous experiments are R&D tests for the upcoming larger experiment, CUORE. CUORE will be made of 988 TeO2 crystals arranged in 19 towers with 13 floors each, each floor with 4 detectors. This thesis examined 87.01 kg·days of Three Towers data for an axion signal. A peak is observed in the region of interest with a statistical significance less than 1sigma over the expected background fluctuations, yielding a total background rate of 0.185 +/- 0.001 (Stat.) +/- 0.006 (Syst.) Counts/kg/day at 95% C.L. This places an experimental limit on the coupling constant fa of f a (S = 0.50) ≥ 1.16 x 106 GeV at 95% C.L. Projecting the TTT result to the CUORE

  18. Experimental overview of axion searches

    SciTech Connect

    van Bibber, K.

    1995-06-28

    Experimental methods to search for the ``invisible axion`` (f{sub a} {much_gt} 250 GeV) are reviewed. The report focuses on the axion-photon coupling, both for laboratory experiments as well as those looking for stellar or cosmologically produced axions. The conclusion is that while the axion-photon mixing in principle would permit laboratory axion searches which are broadband in mass, in fact no such experiment could have the sensitivity to the axion, where m{sub afa} {approx} m{sub {pi}f{pi}}. The only experiments which promise to have any chance to find the axion are the microwave cavity experiments, which presume axions to constitute our galactic halo dark matter. The conversion of axions into a monochromatic microwave signal in a resonant circuit affords the experiment the extraordinary sensitivity required to see the axion, at the expense of being narrow-band in mass, i.e. a tuning experiment. Two such efforts are underway in the world.

  19. Supernova 1987A at 30

    NASA Astrophysics Data System (ADS)

    Spyromilio, J.; Leibundgut, B.; Fransson, C.; Larsson, J.; Migotto, K.; Girard, J.

    2017-03-01

    Thirty years on, SN 1987A continues to develop and, over the last decade in particular, has: revealed the presence of a large centrally concentrated reservoir of dust; shown the presence of molecular species within the ejecta; expanded such that the ejecta structure is angularly resolved; begun the destruction of the circumstellar ring and transitioned to being dominated by energy sources external to the ejecta. We are participating in a live experiment in the creation of a supernova remnant and here the recent progress is briefly overviewed. Exciting developments can be expected as the ejecta and the reverse shock continue their interaction, the X-rays penetrate into the cold molecular core and we observe the return of the material into the interstellar medium. We anticipate that the nature of the remnant of the leptonisation event in the centre will also be revealed.

  20. Axion inflation with cross-correlated axion isocurvature perturbations

    SciTech Connect

    Kadota, Kenji; Kobayashi, Tatsuo; Otsuka, Hajime E-mail: kobayashi@particle.sci.hokudai.ac.jp

    2016-01-01

    We study the inflation scenarios, in the framework of superstring theory, where the inflaton is an axion producing the adiabatic curvature perturbations while there exists another light axion producing the isocurvature perturbations. We discuss how the non-trivial couplings among string axions can generically arise, and calculate the consequent cross-correlations between the adiabatic and isocurvature modes through concrete examples. Based on the Planck analysis on the generally correlated isocurvature perturbations, we show that there is a preference for the existence of the correlated isocurvature modes for the axion monodromy inflation while the natural inflation disfavors such isocurvature modes.

  1. Axion inflation with cross-correlated axion isocurvature perturbations

    SciTech Connect

    Kadota, Kenji; Kobayashi, Tatsuo; Otsuka, Hajime

    2016-01-25

    We study the inflation scenarios, in the framework of superstring theory, where the inflaton is an axion producing the adiabatic curvature perturbations while there exists another light axion producing the isocurvature perturbations. We discuss how the non-trivial couplings among string axions can generically arise, and calculate the consequent cross-correlations between the adiabatic and isocurvature modes through concrete examples. Based on the Planck analysis on the generally correlated isocurvature perturbations, we show that there is a preference for the existence of the correlated isocurvature modes for the axion monodromy inflation while the natural inflation disfavors such isocurvature modes.

  2. Structure of axionic domain walls

    NASA Astrophysics Data System (ADS)

    Huang, M. C.; Sikivie, P.

    1985-09-01

    The structure of axionic domain walls is investigated using the low-energy effective theory of axions and pions. We derive the spatial dependence of the phases of the Peccei-Quinn scalar field and the QCD quark-antiquark condensates inside an axionic domain wall. Thence an accurate estimate of the wall surface energy density is obtained. The equations of motion for axions, photons, leptons, and baryons in the neighborhood of axionic domain walls are written down and estimates are given for the wall reflection and transmission coefficients of these particles. Finally, we discuss the energy dissipation by axionic domain walls oscillating in the early universe due to the reflection of particles in the primordial soup.

  3. Towards a Realistic Axion Star

    SciTech Connect

    Barranco, J.; Bernal, A.

    2008-07-02

    In this work we estimate the radius and the mass of a self-gravitating system made of axions. The quantum axion field satisfies the Klein-Gordon equation in a curved space-time and the metric components of this space-time are solutions to the Einstein equations with a source term given by the vacuum expectation value of the energy-momentum operator constructed from the axion field. As a first step towards an axion star we consider the up to the {phi}{sup 6} term in the axion potential expansion. We found that axion stars would have masses of the order of asteroids ({approx}10{sup -10}M{center_dot}) and radius of the order {approx} few centimeters.

  4. Level crossing between the QCD axion and an axionlike particle

    NASA Astrophysics Data System (ADS)

    Daido, Ryuji; Kitajima, Naoya; Takahashi, Fuminobu

    2016-04-01

    We study a level crossing between the QCD axion and an axionlike particle, focusing on the recently found phenomenon, the axion roulette, where the axionlike particle runs along the potential, passing through many crests and troughs, until it gets trapped in one of the potential minima. We perform detailed numerical calculations to determine the parameter space where the axion roulette takes place, and as a result domain walls are likely formed. The domain wall network without cosmic strings is practically stable, and it is nothing but a cosmological disaster. In a certain case, one can make domain walls unstable and decay quickly by introducing an energy bias without spoiling the Peccei-Quinn solution to the strong charge parity problem.

  5. Axion Bounds from Precision Cosmology

    SciTech Connect

    Raffelt, G. G.; Hamann, J.; Hannestad, S.; Mirizzi, A.; Wong, Y. Y. Y.

    2010-08-30

    Depending on their mass, axions produced in the early universe can leave different imprints in cosmic structures. If axions have masses in the eV-range, they contribute a hot dark matter fraction, allowing one to constrain m{sub a} in analogy to neutrinos. In the more favored scenario where axions play the role of cold dark matter and if reheating after inflation does not restore the Peccei-Quinn symmetry, the axion field provides isocurvature fluctuations that are severely constrained by precision cosmology. There remains a small sliver in parameter space where isocurvature fluctuations could still show up in future probes.

  6. Axions in String Theory

    SciTech Connect

    Svrcek, Peter; Witten, Edward; /Princeton, Inst. Advanced Study

    2006-06-09

    In the context of string theory, axions appear to provide the most plausible solution of the strong CP problem. However, as has been known for a long time, in many string-based models, the axion coupling parameter Fa is several orders of magnitude higher than the standard cosmological bounds. We re-examine this problem in a variety of models, showing that Fa is close to the GUT scale or above in many models that have GUT-like phenomenology, as well as some that do not. On the other hand, in some models with Standard Model gauge fields supported on vanishing cycles, it is possible for Fa to be well below the GUT scale.

  7. Constraints on small-field axion inflation

    NASA Astrophysics Data System (ADS)

    Kobayashi, Tatsuo; Oikawa, Akane; Omoto, Naoya; Otsuka, Hajime; Saga, Ikumi

    2017-03-01

    We study general class of small-field axion inflations, which are the mixture of polynomial and sinusoidal functions suggested by the natural and axion monodromy inflations. The axion decay constants leading to the successful axion inflations are severely constrained in order not to spoil the big bang nucleosynthesis and overproduce the isocurvature perturbation originating from the QCD axion. We in turn find that the cosmologically favorable axion decay constants are typically of order the grand unification scale or the string scale, which is consistent with the prediction of closed-string axions.

  8. Axion dark matter detection using atomic transitions.

    PubMed

    Sikivie, P

    2014-11-14

    Dark matter axions may cause transitions between atomic states that differ in energy by an amount equal to the axion mass. Such energy differences are conveniently tuned using the Zeeman effect. It is proposed to search for dark matter axions by cooling a kilogram-sized sample to millikelvin temperatures and count axion induced transitions using laser techniques. This appears to be an appropriate approach to axion dark matter detection in the 10^{-4}  eV mass range.

  9. New constraints for heavy axion-like particles from supernovae

    SciTech Connect

    Giannotti, M.; Nita, R.; Duffy, L.D. E-mail: ldd@lanl.gov

    2011-01-01

    We derive new constraints on the coupling of heavy pseudoscalar (axion-like) particles to photons, based on the gamma ray flux expected from the decay of these particles into photons. After being produced in the supernova core, these heavy axion-like particles would escape and a fraction of them would decay into photons before reaching the Earth. We have calculated the expected flux on Earth of these photons from the supernovae SN 1987A and Cassiopeia A and compared our results to data from the Fermi Large Area Telescope. This analysis provides strong constraints on the parameter space for axion-like particles. For a particle mass of 100 MeV, we find that the Peccei-Quinn constant, f{sub a}, must be greater than about 10{sup 15} GeV. Alternatively, for f{sub a} = 10{sup 12} GeV, we exclude the mass region between approximately 100 eV and 1 GeV.

  10. Axionic mirage mediation

    SciTech Connect

    Nakamura, Shuntaro; Okumura, Ken-ichi; Yamaguchi, Masahiro

    2008-06-01

    Although mirage mediation is one of the most plausible mediation mechanisms of supersymmetry breaking, it suffers from two crucial problems. One is the {mu}/B{mu} problem, and the second is the cosmological one. The former stems from the fact that the B parameter tends to be comparable with the gravitino mass, which is 2 orders of magnitude larger than the other soft masses. The latter problem is caused by the decay of the modulus whose branching ratio into the gravitino pair is sizable. In this paper, we propose a model of mirage mediation, in which Peccei-Quinn symmetry is incorporated. In this axionic mirage mediation, it is shown that the Peccei-Quinn symmetry breaking scale is dynamically determined around 10{sup 10} GeV to 10{sup 12} GeV due to the supersymmetry breaking effects, and the {mu} problem can be solved naturally. Furthermore, in our model, the lightest supersymmetric particle (LSP) is the axino, that is, the superpartner of the axion. The overabundance of the LSPs due to decays of the modulus/gravitino, which is the most serious cosmological difficulty in the mirage mediation, can be avoided if the axino is sufficiently light. The next-LSPs (NLSPs) produced by the gravitino decay eventually decay into the axino LSPs, yielding the dominant component of the axinos remaining today. It is shown that the axino with a mass of O(100) MeV is naturally realized, which can constitute the dark matter of the Universe, with a free-streaming length of the order of 0.1 Mpc. The saxion, the real scalar component of the axion supermultiplet, can also be cosmologically harmless due to the dilution of the modulus decay. The lifetime of the NLSP is relatively long, but much shorter than 1 sec, when the big-bang nucleosynthesis commences. The decay of the NLSP would provide intriguing collider signatures.

  11. Dirac neutrinos and SN 1987A

    NASA Technical Reports Server (NTRS)

    Turner, Michael S.

    1991-01-01

    Previous work has shown that the cooling of SN 1987A excludes a Dirac-neutrino mass greater than theta(20 keV) for nu(sub e), nu(sub mu), or nu(sub tau). The emission of wrong-helicity, Dirac neutrinos from SN 1987A, is re-examined. It is concluded that the effect of a Dirac neutrino on the cooling of SN 1987A has been underestimated due to neutrino degeneracy and additional emission processes. The limit that follows from the cooling of SN 1987A is believed to be greater (probably much greater) than 10 keV. This result is significant in light of the recent evidence for a 17 keV mass eigenstate that mixes with the electron neutrino.

  12. Model of visible QCD axion

    NASA Astrophysics Data System (ADS)

    Fukuda, Hajime; Harigaya, Keisuke; Ibe, Masahiro; Yanagida, Tsutomu T.

    2015-07-01

    We pursue a class of visible axion models where the axion mass is enhanced by strong dynamics in a mirrored copy of the Standard Model in the line of the idea put forward by Rubakov. In particular, we examine the consistency of the models with laboratory, astrophysical, and cosmological constraints. As a result, viable parameter regions are found, where the mass of the axion is of O (100 ) MeV or above while the Peccei-Quinn breaking scale is at around 103 - 5 GeV .

  13. Is the Universal String Axion the QCD Axion

    SciTech Connect

    Gaillard, Mary K.; Kain, Ben

    2005-10-14

    We consider the class of effective supergravity theories from the weakly coupled heterotic string in which local supersymmetry is broken by gaugino condensation in a hidden sector, with dilaton stabilization achieved through corrections to the classical dilaton Kahler potential. If there is a single hidden condensing (simple) gauge group, the axion is massless (up to contributions from higher dimension operators) above the QCD condensation scale. We show how the standard relation between the axion mass and its Planck scale coupling constant is modified in this class of models due to a contribution to the axion-gluon coupling that appears below the scale of supersymmetry breaking when gluinos are integrated out. In particular there is a point of enhanced symmetry in parameter space where the axion mass is suppressed. We revisit the question of the universal axion as the Peccei-Quinn axion in the light of these results, and find that the strong CP problem is avoided in most compactifications of the weakly coupled heterotic string.

  14. Axion Isocurvature and Magnetic Monopoles

    NASA Astrophysics Data System (ADS)

    Nomura, Yasunori; Rajendran, Surjeet; Sanches, Fabio

    2016-04-01

    We propose a simple mechanism to suppress axion isocurvature fluctuations using hidden sector magnetic monopoles. This allows for the Peccei-Quinn scale to be of the order of the unification scale consistently with high scale inflation.

  15. Axions in gravity with torsion

    NASA Astrophysics Data System (ADS)

    Castillo-Felisola, Oscar; Corral, Cristóbal; Kovalenko, Sergey; Schmidt, Iván; Lyubovitskij, Valery E.

    2015-04-01

    We study a scenario allowing a solution of the strong charge parity problem via the Peccei-Quinn mechanism, implemented in gravity with torsion. In this framework there appears a torsion-related pseudoscalar field known as the Kalb-Ramond axion. We compare it with the so-called Barbero-Immirzi axion recently proposed in the literature also in the context of the gravity with torsion. We show that they are equivalent from the viewpoint of the effective theory. The phenomenology of these torsion-descended axions is completely determined by the Planck scale without any additional model parameters. These axions are very light and very weakly interacting with ordinary matter. We briefly comment on their astrophysical and cosmological implications in view of the recent BICEP2 and Planck data.

  16. Planck data and ultralight axions

    SciTech Connect

    Csáki, Csaba; Kaloper, Nemanja; Terning, John E-mail: kaloper@physics.ucdavis.edu

    2015-06-01

    We examine the effects of photon-axion mixing on the CMB. We show that if there are very underdense regions between us and the last scattering surface which contain coherent magnetic fields (whose strength can be orders of magnitude weaker than the current bounds), then photon-axion mixing can induce observable deviations in the CMB spectrum. Specifically, we show that the mixing can give rise to non-thermal spots on the CMB sky. As an example we consider the well known CMB cold spot, which according to the Planck data has a weak distortion from a black body spectrum, that can be fit by our model. While this explanation of the non-thermality in the region of the cold spot is quite intriguing, photon-axion oscillations do not explain the temperature of the cold spot itself. Nevertheless we demonstrate the possible sensitivity of the CMB to ultralight axions which could be exploited by observers.

  17. Ultrasensitive Searches for the Axion

    SciTech Connect

    van Bibber, K A; Rosenberg, L J

    2006-07-14

    The axion, a hypothetical elementary particle arising from a compelling solution to the strong-CP problem, has eluded discovery for three decades. Experiments based on coherent axion-photon mixing in strong magnetic fields are just now reaching the sensitivity to detect it, either as the dark matter or as a component of the solar flux. Although of lower sensitivity, purely laboratory experiments hold potential for surprise.

  18. Axion dynamics in wormhole background

    SciTech Connect

    Rey, S.

    1989-05-15

    When axions are coupled to gravity, it is known that wormholes exist asgravitational instantons. These wormholes break global U(1) symmetry explicitlythus giving rise to the wormhole-induced low-energy effective Lagrangian. Wederive systematically this effective Lagrangian to lower orders in thederivative expansion. The role of U(1) symmetry to the third-quantized fieldtheory of topology change and the invisible-axion phenomenology in the wormholebackground are also discussed.

  19. Two applications of axion electrodynamics

    NASA Technical Reports Server (NTRS)

    Wilczek, Frank

    1987-01-01

    The equations of axion electrodynamics are studied. Variations in the axion field can give rise to peculiar distributions of charge and current. These effects provide a simple understanding of the fractional electric charge on dyons and of some recently discovered oddities in the electrodynamics of antiphase boundaries in PbTe. Some speculations regarding the possible occurrence of related phenomena in other solids are presented.

  20. Portal Connecting Dark Photons and Axions.

    PubMed

    Kaneta, Kunio; Lee, Hye-Sung; Yun, Seokhoon

    2017-03-10

    The dark photon and the axion (or axionlike particle) are popular light particles of the hidden sector. Each of them has been actively searched for through the couplings called the vector portal and the axion portal. We introduce a new portal connecting the dark photon and the axion (axion-photon-dark photon, axion-dark photon-dark photon), which emerges in the presence of the two particles. This dark axion portal is genuinely new couplings, not just from a product of the vector portal and the axion portal, because of the internal structure of these couplings. We present a simple model that realizes the dark axion portal and discuss why it warrants a rich phenomenology.

  1. Portal Connecting Dark Photons and Axions

    NASA Astrophysics Data System (ADS)

    Kaneta, Kunio; Lee, Hye-Sung; Yun, Seokhoon

    2017-03-01

    The dark photon and the axion (or axionlike particle) are popular light particles of the hidden sector. Each of them has been actively searched for through the couplings called the vector portal and the axion portal. We introduce a new portal connecting the dark photon and the axion (axion-photon-dark photon, axion-dark photon-dark photon), which emerges in the presence of the two particles. This dark axion portal is genuinely new couplings, not just from a product of the vector portal and the axion portal, because of the internal structure of these couplings. We present a simple model that realizes the dark axion portal and discuss why it warrants a rich phenomenology.

  2. The Progenitor of SN 1987A. [IUE

    NASA Technical Reports Server (NTRS)

    Sonneborn, G.

    1988-01-01

    Spatially resolved IUE spectra (1150 to 2000 A) taken at the position of SN 1987A in March 1987 show that the 12th mag B3 I star Sk -69 deg 202 disappeared. Only the fainter companion stars (Star 2 and Star 3) are present near the site of the supernova. It is concluded that Sk -69 deg 202 exploded to produce SN 1987A. The known characteristics of Sk -69 deg 202 are consistent with the interpretation that the progenitor was a relatively compact star, having a high-velocity low-density stellar wind prior to the outburst. Recent IUE spectra of SN 1987A (May 1988) show no evidence that Sk -69 deg 202 still exists inside the expanding ejecta.

  3. Axion cooling of neutron stars

    NASA Astrophysics Data System (ADS)

    Sedrakian, Armen

    2016-03-01

    Cooling simulations of neutron stars and their comparison with the data from thermally emitting x-ray sources put constraints on the properties of axions, and by extension, of any light pseudoscalar dark matter particles, whose existence has been postulated to solve the strong-C P problem of QCD. We incorporate the axion emission by pair-breaking and formation processes by S - and P -wave nucleonic condensates in a benchmark code for cooling simulations, as well as provide fit formulas for the rates of these processes. Axion cooling of neutron stars has been simulated for 24 models covering the mass range 1 to 1.8 solar masses, featuring nonaccreted iron and accreted light-element envelopes, and a range of nucleon-axion couplings. The models are based on an equation state predicting conservative physics of superdense nuclear matter that does not allow for the onset of fast cooling processes induced by phase transitions to non-nucleonic forms of matter or high proton concentration. The cooling tracks in the temperature vs age plane were confronted with the (time-averaged) measured surface temperature of the central compact object in the Cas A supernova remnant as well as surface temperatures of three nearby middle-aged thermally emitting pulsars. We find that the axion coupling is limited to fa/107 GeV ≥(5 - 10 ) , which translates into an upper bound on axion mass ma≤(0.06 - 0.12 ) eV for Peccei-Quinn charges of the neutron |Cn|˜0.04 and proton |Cp|˜0.4 characteristic for hadronic models of axions.

  4. Planckian axions in string theory

    NASA Astrophysics Data System (ADS)

    Bachlechner, Thomas C.; Long, Cody; McAllister, Liam

    2015-12-01

    We argue that super-Planckian diameters of axion fundamental domains can arise in Calabi-Yau compactifications of string theory. In a theory with N axions θ i , the fundamental domain is a polytope defined by the periodicities of the axions, via constraints of the form - π < Q i j θ j < π. We compute the diameter of the fundamental domain in terms of the eigenvalues f 1 2 ≤ … ≤ f N 2 of the metric on field space, and also, crucially, the largest eigenvalue of ( QQ ⊤)-1. At large N, QQ ⊤ approaches a Wishart matrix, due to universality, and we show that the diameter is at least Nf N , exceeding the naive Pythagorean range by a factor > √{N} . This result is robust in the presence of P > N constraints, while for P = N the diameter is further enhanced by eigenvector delocalization to N 3/2 f N . We directly verify our results in explicit Calabi-Yau compactifications of type IIB string theory. In the classic example with h 1,1 = 51 where parametrically controlled moduli stabilization was demonstrated by Denef et al. in [1], the largest metric eigenvalue obeys f N ≈ 0.013 M pl. The random matrix analysis then predicts, and we exhibit, axion diameters ≈ M pl for the precise vacuum parameters found in [1]. Our results provide a framework for pursuing large-field axion inflation in well-understood flux vacua.

  5. SAINTS - The SN 1987A Intensive Study

    NASA Astrophysics Data System (ADS)

    Kirshner, Robert

    2010-09-01

    SAINTS is a program to observe SN 1987A, the brightest supernova since 1604, as it matures into the youngest supernova remnant at age 23. HST is the essential tool for observing SN 1987A's many physical components. A violent encounter is underway between the fastest-moving debris and the circumstellar ring: shocks excite "hotspots." Radio, optical, infrared and X-ray fluxes have been rising rapidly: we have organized VLT, Spitzer, and Chandra observations to understand the several emission mechanisms at work. The inner debris, excited by radioactive isotopes from the explosion, is now resolved and seen to be aspherical, providing direct evidence on the shape of the explosion itself and on dust that formed in the debris. Questions about SN 1987A remain unanswered. For example, whereis the compact object whose formation sent neutrinos our way in February 1987 ? A rich and unbroken data set from SAINTS will help answer these central questions and will build an archive for the future to help answer questions we have not yet thought to ask. For Cycle 18, these data will include novel observations with the IR channel of WFC3 and UV observations with COS.

  6. Constraints on Bose-Einstein-condensed axion dark matter from the Hi nearby galaxy survey data

    NASA Astrophysics Data System (ADS)

    Li, Ming-Hua; Li, Zhi-Bing

    2014-05-01

    One of the leading candidates for dark matter is the axion or axionlike particle in the form of a Bose-Einstein condensate (BEC). In this paper, we present an analysis of 17 high-resolution galactic rotation curves from the Hi nearby galaxy survey (THINGS) data [F. Walter et al., Astron. J. 136, 2563 (2008)] in the context of the axionic Bose-Einstein condensed dark matter model. Assuming a repulsive two-body interaction, we solve the nonrelativistic Gross-Pitaevskii equation for N gravitationally trapped bosons in the Thomas-Fermi approximation. We obtain the maximum possible radius R and the mass profile M(r) of a dilute axionic Bose-Einstein condensed gas cloud. A standard least- χ2 method is employed to find the best-fit values of the total mass M of the axion BEC and its radius R. The local mass density of BEC axion dark matter is ρa ≃0.02 GeV /cm3, which agrees with that presented by Beck [C. Beck, Phys. Rev. Lett. 111, 231801 (2013)]. The axion mass ma we obtain depends not only on the best-fit value of R, but also on the s-wave scattering length a (ma∝a1/3). The transition temperature Ta of an axion BEC on galactic scales is also estimated. Comparing the calculated Ta with the ambient temperature of galaxies and galaxy clusters implies that a ˜10-3 fm. The corresponding axion mass is ma≃0.58 meV. We compare our results with others.

  7. Axion as a cold dark matter candidate: analysis to third order perturbation for classical axion

    SciTech Connect

    Noh, Hyerim; Hwang, Jai-chan; Park, Chan-Gyung E-mail: jchan@knu.ac.kr

    2015-12-01

    We investigate aspects of axion as a coherently oscillating massive classical scalar field by analyzing third order perturbations in Einstein's gravity in the axion-comoving gauge. The axion fluid has its characteristic pressure term leading to an axion Jeans scale which is cosmologically negligible for a canonical axion mass. Our classically derived axion pressure term in Einstein's gravity is identical to the one derived in the non-relativistic quantum mechanical context in the literature. We present the general relativistic continuity and Euler equations for an axion fluid valid up to third order perturbation. Equations for axion are exactly the same as that of a zero-pressure fluid in Einstein's gravity except for an axion pressure term in the Euler equation. Our analysis includes the cosmological constant.

  8. The photo-philic QCD axion

    NASA Astrophysics Data System (ADS)

    Farina, Marco; Pappadopulo, Duccio; Rompineve, Fabrizio; Tesi, Andrea

    2017-01-01

    We propose a framework in which the QCD axion has an exponentially large coupling to photons, relying on the "clockwork" mechanism. We discuss the impact of present and future axion experiments on the parameter space of the model. In addition to the axion, the model predicts a large number of pseudoscalars which can be light and observable at the LHC. In the most favorable scenario, axion Dark Matter will give a signal in multiple axion detection experiments and the pseudo-scalars will be discovered at the LHC, allowing us to determine most of the parameters of the model.

  9. Axion dark matter: strings and their cores

    SciTech Connect

    Fleury, Leesa; Moore, Guy D.

    2016-01-04

    Axions constitute a well-motivated dark matter candidate, and if PQ symmetry breaking occurred after inflation, it should be possible to make a clean prediction for the relation between the axion mass and the axion dark matter density. We show that axion (or other global) string networks in 3D have a network density that depends logarithmically on the string separation-to-core ratio. This logarithm would be about 10 times larger in axion cosmology than what we can achieve in numerical simulations. We simulate axion production in the early Universe, finding that, for the separation-to-core ratios we can achieve, the changing density of the network has little impact on the axion production efficiency.

  10. Axion dark matter: strings and their cores

    SciTech Connect

    Fleury, Leesa; Moore, Guy D. E-mail: guy.moore@physik.tu-darmstadt.de

    2016-01-01

    Axions constitute a well-motivated dark matter candidate, and if PQ symmetry breaking occurred after inflation, it should be possible to make a clean prediction for the relation between the axion mass and the axion dark matter density. We show that axion (or other global) string networks in 3D have a network density that depends logarithmically on the string separation-to-core ratio. This logarithm would be about 10 times larger in axion cosmology than what we can achieve in numerical simulations. We simulate axion production in the early Universe, finding that, for the separation-to-core ratios we can achieve, the changing density of the network has little impact on the axion production efficiency.

  11. Resonant conversions of QCD axions into hidden axions and suppressed isocurvature perturbations

    SciTech Connect

    Kitajima, Naoya; Takahashi, Fuminobu E-mail: fumi@tuhep.phys.tohoku.ac.jp

    2015-01-01

    We study in detail MSW-like resonant conversions of QCD axions into hidden axions, including cases where the adiabaticity condition is only marginally satisfied, and where anharmonic effects are non-negligible. When the resonant conversion is efficient, the QCD axion abundance is suppressed by the hidden and QCD axion mass ratio. We find that, when the resonant conversion is incomplete due to a weak violation of the adiabaticity, the CDM isocurvature perturbations can be significantly suppressed, while non-Gaussianity of the isocurvature perturbations generically remain unsuppressed. The isocurvature bounds on the inflation scale can therefore be relaxed by the partial resonant conversion of the QCD axions into hidden axions.

  12. Backreacted axion field ranges in string theory

    NASA Astrophysics Data System (ADS)

    Baume, Florent; Palti, Eran

    2016-08-01

    String theory axions are interesting candidates for fields whose potential might be controllable over super-Planckian field ranges and therefore as possible candidates for inflatons in large field inflation. Axion monodromy scenarios are setups where the axion shift symmetry is broken by some effect such that the axion can traverse a large number of periods potentially leading to super-Planckian excursions. We study such scenarios in type IIA string theory where the axion shift symmetry is broken by background fluxes. In particular we calculate the backreaction of the energy density induced by the axion vacuum expectation value on its own field space metric. We find universal behaviour for all the compactifications studied where up to a certain critical axion value there is only a small backreaction effect. Beyond the critical value the backreaction is strong and implies that the proper field distance as measured by the backreacted metric increases at best logarithmically with the axion vev, thereby placing strong limitations on extending the field distance any further. The critical axion value can be made arbitrarily large by the choice of fluxes. However the backreaction of these fluxes on the axion field space metric ensures a precise cancellation such that the proper field distance up to the critical axion value is flux independent and remains sub-Planckian. We also study an axion alignment scenario for type IIA compactifications on a twisted torus with four fundamental axions mixing to leave an axion with an effective decay constant which is flux dependent. There is a choice of fluxes for which the alignment parameter controlling the effective decay constant is unconstrained by tadpoles and can in principle lead to an arbitrarily large effective decay constant. However we show that these fluxes backreact on the fundamental decay constants so as to precisely cancel any enhancement leaving a sub-Planckian effective decay constant.

  13. Linear polarimetric study of SN 1987A

    NASA Astrophysics Data System (ADS)

    Clocchiatti, A.; Mendez, M.; Benvenuto, O.; Feinstein, C.; Marraco, H.

    Linear polarization measurements of SN 1987A were made with 0.83-m and a 2.15-m telescopes. It is found that the polarization decreases with time (Benvenuto et al., 1987) Because the polarization produced by the interstellar matter is time independent and the wavelength dependence of the observed polarization is far from the interstellar relation (Serkowski et al., 1975) it is suggested that the time dependent characteristic is due to an intrinsic polarization vector.

  14. The Continuing Fall of SN 1987A

    NASA Astrophysics Data System (ADS)

    Dwek, Eli; Arendt, Richard; Bouchet, Patrice; Danziger, John; Frank, Kari; Gehrz, Robert; Park, Sangwook; Woodward, Charles

    2016-08-01

    We propose to use a total of 0.8 hr to obtain 3.6 and 4.5 micron photometry of SNR 1987A at four final epochs between 10900 and 11500 days after the explosion. SN 1987A has been monitored at approximately 6 month intervals throughout the Spitzer mission. The latest IRAC data clearly show that at 3.6 and 4.5 micron, the SN emission has peaked and is now in decline. Continued observation of SN 1987A will allow us to track the decline as the blast wave moves completely past the equatorial ring (ER). The rate at which new dust is swept up should be dropping to zero, and as the presently swept up dust is gradually destroyed (or cools) the emission should continue to fade. The dust traced at these wavelengths is thought to be collisionally-heated by the SN blast wave that also gives rise to the soft X-ray emission from the ER. Early in the mission, the intensity of the mid-IR emission (24 micron) was generally well correlated with that of the X-ray emission. However, the 3.6 and 4.5 micron emission are no longer tracking the brightness of the soft X-ray emission. These differences could stem from a variety of causes, including the sputtering of the dust or changes in the morphology of the ER. Ongoing X-ray observations of the remnant are taking place. Supplementing these with IR observations is essential for determining the spatial distribution, nature, and evolution of this hot dust component. Additionally, the observations may still reveal the appearance of a new emission component from the SN ejecta which is currently interacting with the reverse shock. These observations will complete the record of Spitzer's observations of SN 1987A, spanning more than 15 years from launch to end of mission.

  15. Axion, μ term, and supersymmetric hybrid inflation

    NASA Astrophysics Data System (ADS)

    Lazarides, G.; Panagiotakopoulos, C.; Shafi, Q.

    2017-03-01

    We show how successful supersymmetric hybrid inflation is realized in realistic models where the resolution of the minimal supersymmetric standard model μ problem is intimately linked with axion physics. The scalar fields that accompany the axion, such as the saxion, are closely monitored during and after inflation to ensure that the axion isocurvature perturbations lie below the observational limits. The scalar spectral index ns≃0.96 - 0.97 , while the tensor-to-scalar ratio r , a canonical measure of gravity waves, lies well below the observable range in our example. The axion domain walls are inflated away, and depending on the axion decay constant fa and the magnitude of the μ parameter, the axions and/or the lightest supersymmetric particle compose the dark matter in the Universe. Nonthermal leptogenesis is naturally implemented in this class of models.

  16. R-axion detection at LHC

    SciTech Connect

    Goh, Hock-Seng; Ibe, Masahiro; /SLAC

    2009-06-19

    Supersymmetric models with spontaneously broken approximate R-symmetry contains a light spin 0 particle, the R-axion. The properties of the particle can be a powerful probe of the structure of the new physics. In this paper, we discuss the possibilities of the R-axion detection at the LHC experiments. It is challenge to observe this light particle in the LHC environment. However, for typical values in which the mass of the R-axion is a few hundred MeV, we show that those particles can be detected by searching for displaced vertices from R-axion decay.

  17. Axion induced oscillating electric dipole moments

    DOE PAGES

    Hill, Christopher T.

    2015-06-24

    In this study, the axion electromagnetic anomaly induces an oscillating electric dipole for any magnetic dipole. This is a low energy theorem which is a consequence of the space-time dependent cosmic background field of the axion. The electron will acquire an oscillating electric dipole of frequency ma and strength ~ 10-32 e-cm, within four orders of magnitude of the present standard model DC limit, and two orders of magnitude above the nucleon, assuming standard axion model and dark matter parameters. This may suggest sensitive new experimental venues for the axion dark matter search.

  18. Axion induced oscillating electric dipole moments

    SciTech Connect

    Hill, Christopher T.

    2015-06-24

    In this study, the axion electromagnetic anomaly induces an oscillating electric dipole for any magnetic dipole. This is a low energy theorem which is a consequence of the space-time dependent cosmic background field of the axion. The electron will acquire an oscillating electric dipole of frequency ma and strength ~ 10-32 e-cm, within four orders of magnitude of the present standard model DC limit, and two orders of magnitude above the nucleon, assuming standard axion model and dark matter parameters. This may suggest sensitive new experimental venues for the axion dark matter search.

  19. The Infrared Evolution of SN1987A

    NASA Astrophysics Data System (ADS)

    Dwek, Eli; Arendt, Richard; Bouchet, Patrice; Burrows, David; Challis, Peter; Danziger, John; De Buizer, James; Gehrz, Robert; Kirshner, Robert; McCray, Richard; Park, Sangwook; Polomski, Elisha; Woodward, Charles

    2006-05-01

    We will use the SPITZER to continue the ongoing monitoring of SN1987A, the youngest supernova remnant that is undergoing noticable evolutionary changes during the lifetime of the Great Observatories. At infrared wavelengths SN1987A provides a unique complimentary view of the interaction of the SN blast wave with the equatorial ring (ER). Dust in theÊ ERÊ is being swept up by the expanding shock and collisionally heated by the X-ray emitting gas observed with CHANDRA, giving rise to IR emission that reveals the composition and amount of dust that formed in the outflow of the presupernova star. The IR observations also provide a unique tool for studying physical processes - the collisional heating and destruction of dust -Ê in dusty X-ray emitting plasmas. Parts of the blast wave has penetrated the denser regions of the ER, creating the "hotspots" observed with HUBBLE. IR line emission from these regions provide important information on the physical conditions and theÊelemental and dust composition in these cooling shocks. Additionally, the ejecta of the SN explosion contains dust that was observed to have formed about 530 days after the explosion. Its imminent interaction with the ring will heat up this dust, which will be observable with SPITZER. In addition to providing useful information on SN1987A and its environment, the proposed observations will address key global issues regarding the origin and evolution of dust in the universe: how much dust is formed in SN ejecta and in quiescent stellar outflows, and how efficiently grains are destroyed by interstellar shock waves.

  20. Unparticle constraints from supernova 1987A

    SciTech Connect

    Hannestad, Steen; Raffelt, Georg; Wong, Yvonne Y. Y.

    2007-12-15

    The existence of an unparticle sector, weakly coupled to the standard model, would have a profound impact on supernova (SN) physics. Emission of energy into the unparticle sector from the core of SN 1987A would have significantly shortened the observed neutrino burst. The unparticle interaction with nucleons, neutrinos, electrons and muons is constrained to be so weak that it is unlikely to provide any missing-energy signature at colliders. One important exception are models where scale invariance in the hidden sector is broken by the Higgs vacuum expectation value. In this case the SN emission is suppressed by threshold effects.

  1. IUE investigations of SN 1987A

    NASA Technical Reports Server (NTRS)

    Kirshner, Robert P.

    1989-01-01

    IUE observations of the SN 1987A began shortly after the discovery and have been frequent through 1988 and 1989, using the fine error sensor for photometry, low dispersion spectra for the supernova spectrum, and high dispersion observations for the interstellar medium when the supernova was bright and for circumstellar gas surrounding the supernova as the initial event faded. The UV data were very useful in determining which star exploded, assessing the ionizing pulse produced as the shock hit the surface of the star, and in constraining the stellar evolution that preceded the explosion through observations of a circumstellar shell.

  2. Massive Dirac neutrinos and SN 1987A

    NASA Technical Reports Server (NTRS)

    Burrows, Adam; Gandhi, Raj; Turner, Michael S.

    1992-01-01

    The wrong-helicity states of a Dirac neutrino can provide an important cooling mechanism for young neutron stars. Based on numerical models of the early cooling of the neutron star associated with SN 1987A which self-consistently incorporate wrong-helicity neutrino emission, it is argued that a Dirac neutrino of mass greater than 30 keV (25 keV if it is degenerate) leads to shortening of the neutrino burst that is inconsistent with the Irvine-Michigan-Brookhaven and Kamiokande II data. If pions are as abundant as nucleons in the cores of neutron stars, the present limit improves to 15 keV.

  3. Theoretical infrared spectra of SN 1987A

    NASA Technical Reports Server (NTRS)

    Colgan, Sean W. J.; Hollenbach, David J.

    1988-01-01

    A simple model for the ejecta of SN 1987A is used to show that the expected fluxes in infared fine structure lines from nickel, cobalt, iron, argon, sulfur, silicon, and neon are likely to be detectable for several years following the supernova explosion. Energy sources due to radioactive decay and a central pulsar are considered separately. Most of the mass of heavy elements resides in the inner, pure metal shells of the ejecta, so that the infrared lines will probe the temperature, ejecta masses, and dynamics of this region and not the overlying, hydrogen-rich envelope.

  4. Hydrogen Molecules in SN 1987A

    NASA Technical Reports Server (NTRS)

    Culhane, Michael; McCray, Richard

    1995-01-01

    The observations of CO and SiO in the infrared spectrum of SN 1987A clearly indicate that molecules can form in the debris of a supernova explosion. Since H2 is not easily observable we compute its abundance theoretically. For conditions typical of the inner (v less than 2500 km/s) envelope of SN 1987A, the fraction of H that is in molecular form rises to approx. 1% by t approx. 800 days. For t less than 500 days the formation is dominated by the gas-phase reactions H + H(+) yields H2(+) + hv; H2(+) + H yields H2 + H(+). Thereafter, the formation is dominated by the reactions H + e yields H(-) + hv; H(-) + H yields H2 + e. At early times the H(-) may absorb approx. 10%-30% of visible photons, contributing to the apparent paucity of H alpha emission. For t greater than 1000 days the abundance of H2 'freezes out' due to the slowing of all reactions. The opacity of the supernova envelope in the range 912 less than lambda less than or approx. equal to 1400 A (the upper limit depending on temperature) is dominated by resonance scattering in the Lyman and Werner bands of H2. The resulting fluorescence emission bands of H2 in the range 1150 less than lambda less than 1650 A may be observable in the UV spectra of supernovae at late times.

  5. Neutrino-axion-dilaton interconnection

    NASA Astrophysics Data System (ADS)

    Bertolini, Stefano; Di Luzio, Luca; Kolešová, Helena; Malinský, Michal; Vasquez, Juan Carlos

    2016-01-01

    We show that a recently proposed framework that provides a simple connection between Majorana neutrinos and an invisible axion in minimal scalar extensions of the standard electroweak model can be naturally embedded in a classically scale-invariant setup. The explicit breaking of the scale invariance à la Coleman-Weinberg generates the Peccei-Quinn and electroweak scales. The spontaneous breaking of the chiral U (1 )PQ triggers the generation of neutrino masses via Type-II seesaw and, at the same time, provides a dynamical solution to the strong C P problem as well as the axion as a dark matter candidate. The electroweak and neutrino mass scales are obtained via a technically natural ultraweak limit of the singlet scalar interactions. Accordingly, a realistic and perturbatively stable scalar spectrum, possibly in the reach of the LHC, is naturally obtained. A very light pseudodilaton characterizes such a setting. The vacuum stability of the extended setup is discussed.

  6. Gravitational waves from axion monodromy

    NASA Astrophysics Data System (ADS)

    Hebecker, Arthur; Jaeckel, Joerg; Rompineve, Fabrizio; Witkowski, Lukas T.

    2016-11-01

    Large field inflation is arguably the simplest and most natural variant of slow-roll inflation. Axion monodromy may be the most promising framework for realising this scenario. As one of its defining features, the long-range polynomial potential possesses short-range, instantonic modulations. These can give rise to a series of local minima in the post-inflationary region of the potential. We show that for certain parameter choices the inflaton populates more than one of these vacua inside a single Hubble patch. This corresponds to a dynamical phase decomposition, analogously to what happens in the course of thermal first-order phase transitions. In the subsequent process of bubble wall collisions, the lowest-lying axionic minimum eventually takes over all space. Our main result is that this violent process sources gravitational waves, very much like in the case of a first-order phase transition. We compute the energy density and peak frequency of the signal, which can lie anywhere in the mHz-GHz range, possibly within reach of next-generation interferometers. We also note that this ``dynamical phase decomposition" phenomenon and its gravitational wave signal are more general and may apply to other inflationary or reheating scenarios with axions and modulated potentials.

  7. Gravitational waves from axion monodromy

    SciTech Connect

    Hebecker, Arthur; Jaeckel, Joerg; Rompineve, Fabrizio; Witkowski, Lukas T.

    2016-11-02

    Large field inflation is arguably the simplest and most natural variant of slow-roll inflation. Axion monodromy may be the most promising framework for realising this scenario. As one of its defining features, the long-range polynomial potential possesses short-range, instantonic modulations. These can give rise to a series of local minima in the post-inflationary region of the potential. We show that for certain parameter choices the inflaton populates more than one of these vacua inside a single Hubble patch. This corresponds to a dynamical phase decomposition, analogously to what happens in the course of thermal first-order phase transitions. In the subsequent process of bubble wall collisions, the lowest-lying axionic minimum eventually takes over all space. Our main result is that this violent process sources gravitational waves, very much like in the case of a first-order phase transition. We compute the energy density and peak frequency of the signal, which can lie anywhere in the mHz-GHz range, possibly within reach of next-generation interferometers. We also note that this “dynamical phase decomposition' phenomenon and its gravitational wave signal are more general and may apply to other inflationary or reheating scenarios with axions and modulated potentials.

  8. Axion string dynamics I: 2+1D

    NASA Astrophysics Data System (ADS)

    Fleury, Leesa M.; Moore, Guy D.

    2016-05-01

    If the axion exists and if the initial axion field value is uncorrelated at causally disconnected points, then it should be possible to predict the efficiency of cosmological axion production, relating the axionic dark matter density to the axion mass. The main obstacle to making this prediction is correctly treating the axion string cores. We develop a new algorithm for treating the axionic string cores correctly in 2+1 dimensions. When the axionic string cores are given their full physical string tension, axion production is about twice as efficient as in previous simulations. We argue that the string network in 2+1 dimensions should behave very differently than in 3+1 dimensions, so this result cannot be simply carried over to the physical case. We outline how to extend our method to 3+1D axion string dynamics.

  9. Axion string dynamics I: 2+1D

    SciTech Connect

    Fleury, Leesa M.; Moore, Guy D.

    2016-05-03

    If the axion exists and if the initial axion field value is uncorrelated at causally disconnected points, then it should be possible to predict the efficiency of cosmological axion production, relating the axionic dark matter density to the axion mass. The main obstacle to making this prediction is correctly treating the axion string cores. We develop a new algorithm for treating the axionic string cores correctly in 2+1 dimensions. When the axionic string cores are given their full physical string tension, axion production is about twice as efficient as in previous simulations. We argue that the string network in 2+1 dimensions should behave very differently than in 3+1 dimensions, so this result cannot be simply carried over to the physical case. We outline how to extend our method to 3+1D axion string dynamics.

  10. Fermion production during and after axion inflation

    SciTech Connect

    Adshead, Peter; Sfakianakis, Evangelos I.

    2015-11-11

    We study derivatively coupled fermions in axion-driven inflation, specifically m{sub ϕ}{sup 2}ϕ{sup 2} and monodromy inflation, and calculate particle production during the inflationary epoch and the post-inflationary axion oscillations. During inflation, the rolling axion acts as an effective chemical potential for helicity which biases the gravitational production of one fermion helicity over the other. This mechanism allows for efficient gravitational production of heavy fermion states that would otherwise be highly suppressed. Following inflation, the axion oscillates and fermions with both helicities are produced as the effective frequency of the fermion field changes non-adiabatically. For certain values of the fermion mass and axion-fermion coupling strength, the two helicity states are produced asymmetrically, resulting in unequal number-densities of left- and right-helicity fermions.

  11. Neutrino astrophysics and SN 1987A

    NASA Astrophysics Data System (ADS)

    Aglietta, M.; Badino, G.; Bologna, G.; Castagnoli, C.; Castellina, A.

    1990-04-01

    The Mont Blanc observation of the Large Magellanic Cloud supernova, exploded on February 23, 1987 is summarized. The problem of two bursts, recorded in different underground detectors and separated in time by 4.7 hours, is also discussed. Since the different observations are not contradictory from the experimental point of view, some changes are required in the current predictions of the theoretical models of a gravitational stellar collapse in order to fit all the experimental data. Finally, the combined analysis of the data, recorded in all the neutrino and gravitational wave detectors running at the time of the supernova, clearly indicates a long duration of the phenomenon. Thus, any serious tentative to explain how a star ends its life as a supernova should be based on all the experimental data available, recorded in different, independent experiments running at intercontinental distances at the time of supernova 1987A.

  12. Axion BEC: A model beyond CDM

    NASA Astrophysics Data System (ADS)

    Yang, Qiaoli

    I started work on the field of dark matter and cosmology with Dr. Sikivie three years ago with a goal to distinguish observationally axions or axion-like particles (ALPs) from other dark matter candidates such as weakly interacting massive particles (WIMPs) and sterile neutrinos. The subject is exciting because if one can determine the identity of the dark matter, it will be a mile-stone of physics beyond the standard model. On the high energy frontier, the standard model with three generation fermions is firmly established. However, it is not complete because the theory does not contain a plausible dark matter candidate, with properties required from observation, and the theory has fine-tuning problems such as the strong CP problem. On the cosmology and astrophysics frontiers, new observations of the dynamics of galaxy clusters, the rotation curves of galaxies, the abundances of light elements, gravitational lensing, and the anisotropies of the CMBR reach unprecedented accuracy. They imply cold dark matter (CDM) is 23% of the total energy density of the universe. Although many "beyond the standard model" theories may provide proper candidates to serve as CDM particles, the axion is especially compelling because it not only serves as the CDM particle, but also solves the strong CP problem. The axion was initially motivated by the strong CP problem, namely the puzzle why there is no CP violation in the strong interactions. Peccei and Quinn solved the problem by introducing a new UPQ(1) symmetry, and later Weinberg and Wilczek pointed out that the spontaneous breaking of UPQ(1) symmetry leads to a new pseudoscalar particle, the axion[1][2][3]. Axion models were proposed in which the symmetry breaking scale may be much larger than the electroweak scale, in which case the axion is very light and couples extremely weakly to ordinary matter. Furthermore, it was realized [4] that the cold axions, produced by the misalignment mechanism during the QCD phase transition, have

  13. Supernova 1987A in the Large Magellanic Cloud

    NASA Astrophysics Data System (ADS)

    Kafatos, Minas; Michalitsianos, Andrew G.

    2006-11-01

    Foreword; Acknowledgements; Workshop participants; 1. Images and spectrograms of Sanduleak - 69º202, the SN 1987a progenitor N. R. Walborn; 2. The progenitor of SN 1987A G. Sonneborn; 3. Another supernova with a blue progenitor C. M. Gaskell and W. C. Keel; 4. Optical and infrared observations of SN 1987A from Cerro Tololo Inter-American Observatory M. M. Phillips; 5. SN 1987A: observational results obtained at ESO I. J. Danziger, P. Bouchet, R. A. E. Fosbury, C. Gouiffes, L. B. Lucy, A. F. M. Moorwood, E. Oliva and F. Rufener; 6. Observations of SN 1987A at the South African Astronomical Observatory (SAAO) M. W. Feast; 7. Observations of SN 1987A at the Anglo-Australian Telescope W. J. Couch; 8. Linear polarimetric study of SN 1987A A. Clocchiatti, M. Méndez, O. Benvenuto, C. Feinstein, H. Marraco, B. García and N. Morrell; 9. Infrared spectroscopy of SN 1987A from the NASA Kuiper Airborne Observatory H. P. Larson, S. Drapatz, M. J. Mumma and H. A. Weaver; 10. Radio observations of SN 1987A N. Bartel et al.; 11. Ultraviolet observations of SN 1987A: clues to mass loss R. P. Kirshner; 12. On the energetics of SN 1987A N. Panagia; 13. On the nature and apparent uniqueness of SN 1987A A. V. Filippenko; 14. A comparison of the SN 1987A light curve with other type II supernovae, and the detectability of similar supernovae M. F. Schmitz and C. M. Gaskell; 15. P-Cygni features and photospheric velocities L. Bildsten and J. C. L. Wang; 16. The Neutrino burst from SN 1987A detected in the Mont Blanc LSD experiment M. Aglietta et al.; 17. Toward observational neutrino astrophysics M. Koshiba; 18. The discovery of neutrinos from SN 1987A with the IMB detector J. Matthews; 19. Peering into the abyss: the neutrinos from SN 1987A A. Burrows; 20. Phenomenological analysis of neutrino emission from SN 1987A J. N. Bahcall, D. N. Spergel and W. H. Press; 21. Mass determination of neutrinos H. Y. Chiu; 22. Neutrino transport in a type II supernova D. C. Ellison, P. M. Giovanoni

  14. Hydrogen axion star: metallic hydrogen bound to a QCD axion BEC

    NASA Astrophysics Data System (ADS)

    Bai, Yang; Barger, Vernon; Berger, Joshua

    2016-12-01

    As a cold dark matter candidate, the QCD axion may form Bose-Einstein condensates, called axion stars, with masses around 10-11 M ⊙. In this paper, we point out that a brand new astrophysical object, a Hydrogen Axion Star (HAS), may well be formed by ordinary baryonic matter becoming gravitationally bound to an axion star. We study the properties of the HAS and find that the hydrogen cloud has a high pressure and temperature in the center and is likely in the liquid metallic hydrogen state. Because of the high particle number densities for both the axion star and the hydrogen cloud, the feeble interaction between axion and hydrogen can still generate enough internal power, around 1013 W × ( m a /5 meV)4, to make these objects luminous point sources. High resolution ultraviolet, optical and infrared telescopes can discover HAS via black-body radiation.

  15. Axionic shortcuts for high energy photons

    SciTech Connect

    Nicolaidis, A.

    2010-04-01

    We study the photon axion mixing in the presence of large extra dimensions. The eigenvalues and eigenstates of the mixing matrix are analyzed and we establish the resonance condition for the total conversion of a high energy photon into a Kaluza-Klein (KK) axion state. This resonant transition, a photon transformed into a KK axion traveling freely through the bulk and converting back into a photon, may provide a plausible explanation for the transparency of the universe to energetic photons. If the brane we live in is curved, then there are shortcuts through the bulk, which the axion can take. Within our model, the photons having the appropriate resonance energy are using the axionic shortcut and arrive earlier compared to the photons which follow the geodesic on the brane. We suggest that such axionic shortcuts are at the root of the dispersion of time arrival of photons observed by the MAGIC telescope. We indicate also the cosmological significance of the existence of axionic shortcuts for the photon.

  16. Axion mass estimates from resonant Josephson junctions

    NASA Astrophysics Data System (ADS)

    Beck, Christian

    2015-03-01

    Recently it has been proposed that dark matter axions from the galactic halo can produce a small Shapiro step-like signal in Josephson junctions whose Josephson frequency resonates with the axion mass (Beck, 2013). Here we show that the axion field equations in a voltage-driven Josephson junction environment allow for a nontrivial solution where the axion-induced electrical current manifests itself as an oscillating supercurrent. The linear change of phase associated with this nontrivial solution implies the formal existence of a large magnetic field in a tiny surface area of the weak link region of the junction which makes incoming axions decay into microwave photons. We derive a condition for the design of Josephson junction experiments so that they can act as optimum axion detectors. Four independent recent experiments are discussed in this context. The observed Shapiro step anomalies of all four experiments consistently point towards an axion mass of (110±2) μeV. This mass value is compatible with the recent BICEP2 results and implies that Peccei-Quinn symmetry breaking was taking place after inflation.

  17. CAST: An Inspiring Axion Helioscope ala Sikivie

    SciTech Connect

    Zioutas, K.; Anastassopoulos, V.; Tsagri, M.; Semertzidis, Y.; Papaevangelou, T.

    2010-08-30

    CAST is a data taking axion helioscope using a recycled LHC test magnet, CERN's detector technology and cryogenics expertise. An imaging X-ray telescope improves substantially the detection sensitivity and axion-ID. Massive axion-like particles of the Kaluza-Klein type were first introduced to explain the paradox of the hot corona, which is even hotter at locations overlying magnetic spots. This is suggesting that the CAST detection principle might be at work there, but being somehow modified and performing better. Remarkably, the density profile of the Sun allows for resonance crossing (m{sub axion}c{sup 2{approx_equal}}h{omega}{sub plasma}), which axion helioscopes are aiming to reach. The restless Sun favours this occasionally even further. Then, such processes can give rise to a chimera of converted axions or the like, making the Sun appear, within known physics, as mysterious and unpredictable as it is. CAST axion limits were used to conclude also for the hidden sector paraphotons. This is then suggestive for novel helioscopes for exotica like paraphotons, chameleons, etc. Pierre Sikivie's pioneering idea was to use a magnetic field as a catalyst to transform particles from the dark sector to ours, and vice versa.

  18. Search for axions with the CDMS experiment.

    PubMed

    Ahmed, Z; Akerib, D S; Arrenberg, S; Bailey, C N; Balakishiyeva, D; Baudis, L; Bauer, D A; Beaty, J; Brink, P L; Bruch, T; Bunker, R; Cabrera, B; Caldwell, D O; Cooley, J; Cushman, P; Dejongh, F; Dragowsky, M R; Duong, L; Figueroa-Feliciano, E; Filippini, J; Fritts, M; Golwala, S R; Grant, D R; Hall, J; Hennings-Yeomans, R; Hertel, S; Holmgren, D; Hsu, L; Huber, M E; Kamaev, O; Kiveni, M; Kos, M; Leman, S W; Mahapatra, R; Mandic, V; Moore, D; McCarthy, K A; Mirabolfathi, N; Nelson, H; Ogburn, R W; Pyle, M; Qiu, X; Ramberg, E; Rau, W; Reisetter, A; Saab, T; Sadoulet, B; Sander, J; Schnee, R W; Seitz, D N; Serfass, B; Sundqvist, K M; Tarka, M; Wang, G; Yellin, S; Yoo, J; Young, B A

    2009-10-02

    We report on the first axion search results from the Cryogenic Dark Matter Search (CDMS) experiment at the Soudan Underground Laboratory. An energy threshold of 2 keV for electron-recoil events allows a search for possible solar axion conversion into photons or local galactic axion conversion into electrons in the germanium crystal detectors. The solar axion search sets an upper limit on the Primakov coupling g(agammagamma) of 2.4x10(-9) GeV-1 at the 95% confidence level for an axion mass less than 0.1 keV/c2. This limit benefits from the first precise measurement of the absolute crystal plane orientations in this type of experiment. The galactic axion search analysis sets a world-leading experimental upper limit on the axioelectric coupling g(aee) of 1.4x10(-12) at the 90% confidence level for an axion mass of 2.5 keV/c2.

  19. Recent constraints on axion-photon and axion-electron coupling with the CAST experiment

    DOE PAGES

    Ruz, J.; Vogel, J. K.; Pivovaroff, M. J.

    2015-03-24

    The CERN Axion Solar Telescope (CAST) is a helioscope looking for axions arising from the solar core plasma and arriving to Earth. The experiment, located in Geneva (Switzerland) is able to follow the Sun during sunrise and sunset. Four x-ray detectors mounted on both ends of the magnet wait for photons from axion-to-photon conversion due to the Primakoff effect. Up to date, with the completion of Phases I and II, CAST has been looking for axions that could be produced in the Sun by both, hadronic and non-hadronic mechanisms.

  20. The next generation of axion helioscopes: The international axion observatory (IAXO)

    DOE PAGES

    Vogel, J. K.; Armengaud, E.; Avignone, F. T.; ...

    2015-03-24

    The International Axion Observatory (IAXO) is a proposed 4th-generation axion helioscope with the primary physics research goal to search for solar axions via their Primakoff conversion into photons of 1 – 10 keV energies in a strong magnetic field. IAXO will achieve a sensitivity to the axion-photon coupling gaγ down to a few ×10⁻¹² GeV⁻¹ for a wide range of axion masses up to ~ 0.25 eV. This is an improvement over the currently best (3rd generation) axion helioscope, the CERN Axion Solar Telescope (CAST), of about 5 orders of magnitude in signal strength, corresponding to a factor ~ 20more » in the axion photon coupling. IAXO’s sensitivity relies on the construction of a large superconducting 8-coil toroidal magnet of 20 m length optimized for axion research. Each of the eight 60 cm diameter magnet bores is equipped with x-ray optics focusing the signal photons into ~ 0.2 cm² spots that are imaged by very low background x-ray detectors. The magnet will be built into a structure with elevation and azimuth drives that will allow solar tracking for 12 hours each day. This contribution is a summary of our papers [1, 2, 3] and we refer to these for further details.« less

  1. The next generation of axion helioscopes: The international axion observatory (IAXO)

    SciTech Connect

    Vogel, J. K.; Armengaud, E.; Avignone, F. T.; Betz, M.; Brax, P.; Brun, P.; Cantatore, G.; Carmona, J. M.; Carosi, G. P.; Caspers, F.; Caspi, S.; Cetin, S. A.; Chelouche, D.; Christensen, F. E.; Dael, A.; Dafni, T.; Davenport, M.; Derbin, A. V.; Desch, K.; Diago, A.; Döbrich, B.; Dratchnev, I.; Dudarev, A.; Eleftheriadis, C.; Fanourakis, G.; Ferrer-Ribas, E.; Galán, J.; García, J. A.; Garza, J. G.; Geralis, T.; Gimeno, B.; Giomataris, I.; Gninenko, S.; Gómez, H.; González-Díaz, D.; Guendelman, E.; Hailey, C. J.; Hiramatsu, T.; Hoffmann, D. H.H.; Horns, D.; Iguaz, F. J.; Irastorza, I. G.; Isern, J.; Imai, K.; Jakobsen, A. C.; Jaeckel, J.; Jakovčić, K.; Kaminski, J.; Kawasaki, M.; Karuza, M.; Krčmar, M.; Kousouris, K.; Krieger, C.; Lakić, B.; Limousin, O.; Lindner, A.; Liolios, A.; Luzón, G.; Matsuki, S.; Muratova, V. N.; Nones, C.; Ortega, I.; Papaevangelou, T.; Pivovaroff, M. J.; Raffelt, G.; Redondo, J.; Ringwald, A.; Russenschuck, S.; Ruz, J.; Saikawa, K.; Savvidis, I.; Sekiguchi, T.; Semertzidis, Y. K.; Shilon, I.; Sikivie, P.; Silva, H.; ten Kate, H.; Tomas, A.; Troitsky, S.; Vafeiadis, T.; van Bibber, K.; Vedrine, P.; Villar, J. A.; Walckiers, L.; Weltman, A.; Wester, W.; Yildiz, S. C.; Zioutas, K.

    2015-03-24

    The International Axion Observatory (IAXO) is a proposed 4th-generation axion helioscope with the primary physics research goal to search for solar axions via their Primakoff conversion into photons of 1 – 10 keV energies in a strong magnetic field. IAXO will achieve a sensitivity to the axion-photon coupling g down to a few ×10⁻¹² GeV⁻¹ for a wide range of axion masses up to ~ 0.25 eV. This is an improvement over the currently best (3rd generation) axion helioscope, the CERN Axion Solar Telescope (CAST), of about 5 orders of magnitude in signal strength, corresponding to a factor ~ 20 in the axion photon coupling. IAXO’s sensitivity relies on the construction of a large superconducting 8-coil toroidal magnet of 20 m length optimized for axion research. Each of the eight 60 cm diameter magnet bores is equipped with x-ray optics focusing the signal photons into ~ 0.2 cm² spots that are imaged by very low background x-ray detectors. The magnet will be built into a structure with elevation and azimuth drives that will allow solar tracking for 12 hours each day. This contribution is a summary of our papers [1, 2, 3] and we refer to these for further details.

  2. The circumstellar ring of SN 1987A

    NASA Astrophysics Data System (ADS)

    Fransson, Claes; Migotto, Katia; Larsson, Josefin; Pesce, Dominic; Challis, Peter; Chevalier, Roger A.; France, Kevin; Kirshner, Robert P.; Leibundgut, Bruno; Lundqvist, Peter; McCray, Richard; Spyromilio, Jason; Taddia, Francesco; Jerkstrand, Anders; Mattila, Seppo; Smith, Nathan; Sollerman, Jesper; Wheeler, J. Craig; Crotts, Arlin; Garnavich, Peter; Heng, Kevin; Lawrence, Stephen S.; Panagia, Nino; Pun, Chun S. J.; Sonneborn, George; Sugerman, Ben

    2016-06-01

    The circumstellar ring of supernova 1987A first became visible a few months after the explosion due to photoionisation by the supernova flash. From 1995 hotspots appeared in the ring and their brightness increased nearly exponentially as a result of interaction with the supernova blast wave. Imaging and spectroscopic observations with the Hubble Space Telescope and the Very Large Telescope now show that both the shocked and the unshocked emission components from the ring have been decreasing since ~ 2009. In addition, the most recent images reveal the brightening of new spots outside the ring. These observations indicate that the hotspots are being dissolved by the shocks and that the blast wave is now expanding and interacting with dense clumps beyond the ring. Based on the currently observed decay we predict that the ring will be destroyed by ~ 2025, while the blast wave will reveal the distribution of gas as it expands outside the ring, thus tracing the mass-loss history of the supernova progenitor.

  3. LSND, SN1987A, and CPT violation

    SciTech Connect

    Murayama, Hitoshi; Yanagida, T.

    2000-10-17

    We point out that neutrino events observed at Kamiokande andIMB from SN1987A disfavor the neutrino oscillation parameters preferredby the LSND experiment. For Delta m2>0 (the light side), theelectron neutrinos from the neutronization burst would be lost, while thefirst event at Kamiokande is quite likely to be due to an electronneutrino. For Delta m2<0 (the dark side), the average energy of thedominantly bar nu e events is already lower than the theoreticalexpectations, which would get aggravated by a complete conversion frombar nu mu to bar nu e. If taken seriously, the LSND data are disfavoredindependent of the existence of a sterile neutrino. A possible remedy isCPT violation, which allows different mass spectra for neutrinos andanti-neutrinos and hence can accommodate atmospheric, solar and LSND datawithout a sterile neutrino. If this is the case, Mini-BooNE must run inbar nu rather than the planned nu mode to test the LSND signal. Wespeculate on a possible origin of CPT violation.

  4. Nonthermal axion dark radiation and constraints

    NASA Astrophysics Data System (ADS)

    Mazumdar, Anupam; Qutub, Saleh; Saikawa, Ken'ichi

    2016-09-01

    The Peccei-Quinn mechanism presents a neat solution to the strong C P problem. As a by-product, it provides an ideal dark matter candidate, "the axion", albeit with a tiny mass. Axions therefore can act as dark radiation if excited with large momenta after the end of inflation. Nevertheless, the recent measurement of relativistic degrees of freedom from cosmic microwave background radiation strictly constrains the abundance of such extra relativistic species. We show that ultrarelativistic axions can be abundantly produced if the Peccei-Quinn field was initially displaced from the minimum of the potential. This in lieu places an interesting constraint on the axion dark matter window with large decay constant which is expected to be probed by future experiments. Moreover, an upper bound on the reheating temperature can be placed, which further constrains the thermal history of our Universe.

  5. Axions from cosmic string and wall decay

    SciTech Connect

    Hagmann, C A

    2010-03-10

    If inflation occurred with a reheat temperature > T{sub PQ}, axions from the decay of global axion strings and domain walls would make an important contribution to the cosmological energy density, comparable to that from vacuum misalignment. Several groups have numerically studied the evolution of axion strings and walls in the past, however substantial uncertainties remain in their contribution to the present density {Omega}{sub a,string+wall} {approx} 1-100 (f{sub a}/10{sup 12} GeV){sup 7/6}, where f{sub a} is the axion decay constant. I will describe the numerical methods used in our simulations and show results for several string and wall configurations.

  6. Symmetries of field equations of axion electrodynamics

    NASA Astrophysics Data System (ADS)

    Nikitin, A. G.; Kuriksha, Oksana

    2012-07-01

    The group classification of models of axion electrodynamics with arbitrary self-interaction of axionic field is carried out. It is shown that extensions of the basic Poincaré invariance of these models appear only for constant and exponential interactions. The related conservation laws are discussed. The maximal continuous symmetries of the 3d Chern-Simons electrodynamics and Carroll-Field-Jackiw electrodynamics are presented. Using the Inönü-Wigner contraction the nonrelativistic limit of equations of axion electrodynamics is found. Exact solutions for the electromagnetic and axion fields are discussed including those which describe propagation with group velocities faster than the speed of light. However these solutions are causal since the corresponding energy velocities are subluminal.

  7. Axions as hot and cold dark matter

    SciTech Connect

    Jeong, Kwang Sik; Kawasaki, Masahiro; Takahashi, Fuminobu E-mail: kawasaki@icrr.u-tokyo.ac.jp

    2014-02-01

    The presence of a hot dark matter component has been hinted at 3σ by a combination of the results from different cosmological observations. We examine a possibility that pseudo Nambu-Goldstone bosons account for both hot and cold dark matter components. We show that the QCD axions can do the job for the axion decay constant f{sub a}∼axions, pseudo Nambu-Goldstone bosons coupled to the standard model sector through the Higgs portal, and axions produced by modulus decay.

  8. The Remnant of Supernova 1987A

    NASA Astrophysics Data System (ADS)

    McCray, Richard; Fransson, Claes

    2016-09-01

    Although it has faded by a factor of ˜107, SN 1987A is still bright enough to be observed in almost every band of the electromagnetic spectrum. Today, the bolometric luminosity of the debris is dominated by a far-infrared (˜200μm) continuum from ˜0.5 M⊙ of dust grains in the interior debris. The dust is heated by UV, optical, and near-infrared (NIR) emission resulting from radioactive energy deposition by 44Ti. The optical light of the supernova debris is now dominated by illumination of the debris by X-rays resulting from the impact of the outer supernova envelope with an equatorial ring (ER) of gas that was expelled some 20,000 years before the supernova explosion. X-ray and optical observations trace a complex system of shocks resulting from this impact, whereas radio observations trace synchrotron radiation from relativistic electrons accelerated by these shocks. The luminosity of the remnant is dominated by an NIR (˜20μm) continuum from dust grains in the ER heated by collisions with ions in the X-ray emitting gas. With the Atacama Large Millimeter Array (ALMA), we can observe the interior debris at millimeter/submillimeter wavelengths, which are not absorbed by the interior dust. The ALMA observations reveal bright emission lines from rotational transitions of CO and SiO lines that provide a new window into the interior structure of the supernova debris. Optical, NIR, and ALMA observations all indicate strongly asymmetric ejecta. Intensive searches have failed to yield any evidence for the compact object expected to reside at the center of the remnant. The current upper limit to the luminosity of such an object is a few tens of solar luminosities.

  9. Dark-matter QCD-axion searches.

    PubMed

    Rosenberg, Leslie J

    2015-10-06

    In the late 20th century, cosmology became a precision science. Now, at the beginning of the next century, the parameters describing how our universe evolved from the Big Bang are generally known to a few percent. One key parameter is the total mass density of the universe. Normal matter constitutes only a small fraction of the total mass density. Observations suggest this additional mass, the dark matter, is cold (that is, moving nonrelativistically in the early universe) and interacts feebly if at all with normal matter and radiation. There's no known such elementary particle, so the strong presumption is the dark matter consists of particle relics of a new kind left over from the Big Bang. One of the most important questions in science is the nature of this dark matter. One attractive particle dark-matter candidate is the axion. The axion is a hypothetical elementary particle arising in a simple and elegant extension to the standard model of particle physics that nulls otherwise observable CP-violating effects (where CP is the product of charge reversal C and parity inversion P) in quantum chromo dynamics (QCD). A light axion of mass 10(-(6-3)) eV (the invisible axion) would couple extraordinarily weakly to normal matter and radiation and would therefore be extremely difficult to detect in the laboratory. However, such an axion is a compelling dark-matter candidate and is therefore a target of a number of searches. Compared with other particle dark-matter candidates, the plausible range of axion dark-matter couplings and masses is narrowly constrained. This focused search range allows for definitive searches, where a nonobservation would seriously impugn the dark-matter QCD-axion hypothesis. Axion searches use a wide range of technologies, and the experiment sensitivities are now reaching likely dark-matter axion couplings and masses. This article is a selective overview of the current generation of sensitive axion searches. Not all techniques and experiments

  10. Dark-matter QCD-axion searches

    PubMed Central

    Rosenberg, Leslie J

    2015-01-01

    In the late 20th century, cosmology became a precision science. Now, at the beginning of the next century, the parameters describing how our universe evolved from the Big Bang are generally known to a few percent. One key parameter is the total mass density of the universe. Normal matter constitutes only a small fraction of the total mass density. Observations suggest this additional mass, the dark matter, is cold (that is, moving nonrelativistically in the early universe) and interacts feebly if at all with normal matter and radiation. There’s no known such elementary particle, so the strong presumption is the dark matter consists of particle relics of a new kind left over from the Big Bang. One of the most important questions in science is the nature of this dark matter. One attractive particle dark-matter candidate is the axion. The axion is a hypothetical elementary particle arising in a simple and elegant extension to the standard model of particle physics that nulls otherwise observable CP-violating effects (where CP is the product of charge reversal C and parity inversion P) in quantum chromo dynamics (QCD). A light axion of mass 10−(6–3) eV (the invisible axion) would couple extraordinarily weakly to normal matter and radiation and would therefore be extremely difficult to detect in the laboratory. However, such an axion is a compelling dark-matter candidate and is therefore a target of a number of searches. Compared with other particle dark-matter candidates, the plausible range of axion dark-matter couplings and masses is narrowly constrained. This focused search range allows for definitive searches, where a nonobservation would seriously impugn the dark-matter QCD-axion hypothesis. Axion searches use a wide range of technologies, and the experiment sensitivities are now reaching likely dark-matter axion couplings and masses. This article is a selective overview of the current generation of sensitive axion searches. Not all techniques and

  11. Axion Research at CAPP/IBS

    NASA Astrophysics Data System (ADS)

    Youn, Sungwoo

    2016-07-01

    The axion, a hypothetical fundamental particle, was postulated as an attractive solution to the CP problem in quantum chromodynamics and believed to be an ideal candidate for the cold dark matter. The Center for Axion and Precision Physics Research of the Institute for Basic Science has launched a state of the art experiment to search for the hypothesised new particle using microwave resonant cavities. I will discuss R&D efforts at our center and plans for the experiment.

  12. Planckian axions and the Weak Gravity Conjecture

    NASA Astrophysics Data System (ADS)

    Bachlechner, Thomas C.; Long, Cody; McAllister, Liam

    2016-01-01

    Several recent works [1-3] have claimed that the Weak Gravity Conjecture (WGC) excludes super-Planckian displacements of axion fields, and hence large-field axion inflation, in the absence of monodromy. We argue that in theories with N ≫ 1 axions, super-Planckian axion diameters D are readily allowed by the WGC. We clarify the non-trivial relationship between the kinetic matrix K — unambiguously defined by its form in a Minkowski-reduced basis — and the diameter of the axion fundamental domain, emphasizing that in general the diameter is not solely determined by the eigenvalues f 1 2 ≤ ṡ ṡ ṡ ≤ f N 2 of K: the orientations of the eigenvectors with respect to the identifications imposed by instantons must be incorporated. In particular, even if one were to impose the condition f N < M pl, this would imply neither D < M pl nor D < √{N}{M}_{pl} . We then estimate the actions of instantons that fulfill the WGC. The leading instanton action is bounded from below by S≥ {S}{M}_{pl}/{f}_N , with {S} a fixed constant, but in the universal limit S≳ S√{N} {M}_{pl}/{f}_N . Thus, having f N > M pl does not immediately imply the existence of unsuppressed higher harmonic contributions to the potential. Finally, we argue that in effective axion-gravity theories, the zero-form version of the WGC can be satisfied by gravitational instantons that make negligible contributions to the potential.

  13. Dust and Other Recent Discoveries in SN 1987A

    NASA Technical Reports Server (NTRS)

    Sonneborn, George

    2011-01-01

    Supernova 1987 A in the Large Magellanic Cloud is one of the most intensively studied objects in the universe and a Rosetta Stone for understanding the explosions of massive stars. Now almost 25 years old, SN 1987 A is a very young supernova remnant, a phase previously unobserved in any other supernova. In this talk I will discuss recent observations from the far ultraviolet to the far-infrared with HST, the VLT, and the Herschel Space Observatory. These data reveal new insights into the composition, geometry, and heating of the explosion debris, the shock interaction with circumstellar material, and dust in the SN 1987 A system.

  14. Axion response in gapless systems.

    PubMed

    Bergman, Doron L

    2011-10-21

    The strong topological insulator in 3D is expected to realize a quantized magnetoelectric response, the so-called axion response. However, many of the materials predicted to be topological insulators have turned out to be metallic, with bulk Fermi surfaces. Following the result of Bergman and Refael [Phys. Rev. B 82, 195417 (2010)] that the surface states of the topological insulator persist even when the band structure gap is closed, we explore the fate of the magnetoelectric response in such systems. We find that a nonquantized magnetoelectric coupling remains once a bulk Fermi surface opens. More generally, we find higher-dimensional analogs of the intrinsic anomalous Hall effect for all Chern forms-quantized transport coefficients in the gapped case become nonquantized when the gap is closed. In particular, the nonquantized magnetoelectric response in 3D descends from the intrinsic anomalous Hall effect analog in 4D.

  15. Hubble Observations of Supernova 1987A, 1994-2006

    NASA Video Gallery

    A time-lapse sequence of 12 years of Hubble observing SN 1987A shows the onrushing stellar shock wave from the stellar explosion as it is slamming into, heating up, and illuminating the inner regio...

  16. Small field axion inflation with sub-Planckian decay constant

    SciTech Connect

    Kadota, Kenji; Kobayashi, Tatsuo; Oikawa, Akane; Omoto, Naoya; Otsuka, Hajime; Tatsuishi, Takuya H.

    2016-10-10

    We study an axion inflation model recently proposed within the framework of type IIB superstring theory, where we pay a particular attention to a sub-Planckian axion decay constant. Our axion potential can lead to the small field inflation with a small tensor-to-scalar ratio, and a typical reheating temperature can be as low as GeV.

  17. Small field axion inflation with sub-Planckian decay constant

    NASA Astrophysics Data System (ADS)

    Kadota, Kenji; Kobayashi, Tatsuo; Oikawa, Akane; Omoto, Naoya; Otsuka, Hajime; Tatsuishi, Takuya H.

    2016-10-01

    We study an axion inflation model recently proposed within the framework of type IIB superstring theory, where we pay a particular attention to a sub-Planckian axion decay constant. Our axion potential can lead to the small field inflation with a small tensor-to-scalar ratio, and a typical reheating temperature can be as low as GeV.

  18. Windows on the axion. [quantum chromodynamics (QCD)

    NASA Technical Reports Server (NTRS)

    Turner, Michael S.

    1989-01-01

    Peccei-Quinn symmetry with attendant axion is a most compelling, and perhaps the most minimal, extension of the standard model, as it provides a very elegant solution to the nagging strong CP-problem associated with the theta vacuum structure of QCD. However, particle physics gives little guidance as to the axion mass; a priori, the plausible values span the range: 10(-12)eV is approx. less than m(a) which is approx. less than 10(6)eV, some 18 orders-of-magnitude. Laboratory experiments have excluded masses greater than 10(4)eV, leaving unprobed some 16 orders-of-magnitude. Axions have a host of interesting astrophysical and cosmological effects, including, modifying the evolution of stars of all types (our sun, red giants, white dwarfs, and neutron stars), contributing significantly to the mass density of the Universe today, and producting detectable line radiation through the decays of relic axions. Consideration of these effects has probed 14 orders-of-magnitude in axion mass, and has left open only two windows for further exploration: 10(-6)eV is approx. less than m(a) is approx. less than 10(-3)eV and 1eV is approx. less than m(a) is approx. less than 5eV (hadronic axions only). Both these windows are accessible to experiment, and a variety of very interesting experiments, all of which involve heavenly axions, are being planned or are underway.

  19. Simulating the Outer Nebula of SN 1987A

    NASA Astrophysics Data System (ADS)

    Fitzpatrick, Ben; Morris, Thomas; Podsiadlowski, Philipp

    2014-01-01

    As has been shown previously, the triple-ring nebula around SN 1987A can be understood as a direct consequence of the merger of two stars, some 20,000 yr before the explosion. Here we present new SPH simulations that also include the pre-merger mass loss and show that this may be able to explain other structures observed around SN 1987A, such as Napoleon's hat and various light echoes.

  20. Lattice QCD input for axion cosmology

    NASA Astrophysics Data System (ADS)

    Berkowitz, Evan; Buchoff, Michael I.; Rinaldi, Enrico

    2015-08-01

    One intriguing beyond-the-Standard-Model particle is the QCD axion, which could simultaneously provide a solution to the Strong C P Problem and account for some, if not all, of the dark matter density in the Universe. This particle is a pseudo-Nambu-Goldstone boson of the conjectured Peccei-Quinn symmetry of the Standard Model. Its mass and interactions are suppressed by a heavy symmetry-breaking scale, fa, the value of which is roughly greater than 109 GeV (or, conversely, the axion mass, ma, is roughly less than 104 μ eV ). The density of axions in the Universe, which cannot exceed the relic dark matter density and is a quantity of great interest in axion experiments like ADMX, is a result of the early Universe interplay between cosmological evolution and the axion mass as a function of temperature. The latter quantity is proportional to the second derivative of the temperature-dependent QCD free energy with respect to the C P -violating phase, θ . However, this quantity is generically nonperturbative, and previous calculations have only employed instanton models at the high temperatures of interest (roughly 1 GeV). In this and future works, we aim to calculate the temperature-dependent axion mass at small θ from first-principle lattice calculations, with controlled statistical and systematic errors. Once calculated, this temperature-dependent axion mass is input for the classical evolution equations of the axion density of the Universe, which is required to be less than or equal to the dark matter density. Due to a variety of lattice systematic effects at the very high temperatures required, we perform a calculation of the leading small-θ cumulant of the theta vacua on large volume lattices for SU(3) Yang-Mills with high statistics as a first proof of concept, before attempting a full QCD calculation in the future. From these pure glue results, the misalignment mechanism yields the axion mass bound ma≥(14.6 ±0.1 ) μ eV when Peccei-Quinn breaking occurs

  1. Coupled Boltzmann computation of mixed axion neutralino dark matter in the SUSY DFSZ axion model

    SciTech Connect

    Bae, Kyu Jung; Baer, Howard; Serce, Hasan; Lessa, Andre E-mail: baer@nhn.ou.edu E-mail: serce@ou.edu

    2014-10-01

    The supersymmetrized DFSZ axion model is highly motivated not only because it offers solutions to both the gauge hierarchy and strong CP problems, but also because it provides a solution to the SUSY μ-problem which naturally allows for a Little Hierarchy. We compute the expected mixed axion-neutralino dark matter abundance for the SUSY DFSZ axion model in two benchmark cases—a natural SUSY model with a standard neutralino underabundance (SUA) and an mSUGRA/CMSSM model with a standard overabundance (SOA). Our computation implements coupled Boltzmann equations which track the radiation density along with neutralino, axion, axion CO (produced via coherent oscillations), saxion, saxion CO, axino and gravitino densities. In the SUSY DFSZ model, axions, axinos and saxions go through the process of freeze-in—in contrast to freeze-out or out-of-equilibrium production as in the SUSY KSVZ model—resulting in thermal yields which are largely independent of the re-heat temperature. We find the SUA case with suppressed saxion-axion couplings (ξ=0) only admits solutions for PQ breaking scale f{sub a}∼< 6× 10{sup 12} GeV where the bulk of parameter space tends to be axion-dominated. For SUA with allowed saxion-axion couplings (ξ =1), then f{sub a} values up to ∼ 10{sup 14} GeV are allowed. For the SOA case, almost all of SUSY DFSZ parameter space is disallowed by a combination of overproduction of dark matter, overproduction of dark radiation or violation of BBN constraints. An exception occurs at very large f{sub a}∼ 10{sup 15}–10{sup 16} GeV where large entropy dilution from CO-produced saxions leads to allowed models.

  2. Coupled Boltzmann computation of mixed axion neutralino dark matter in the SUSY DFSZ axion model

    NASA Astrophysics Data System (ADS)

    Bae, Kyu Jung; Baer, Howard; Lessa, Andre; Serce, Hasan

    2014-10-01

    The supersymmetrized DFSZ axion model is highly motivated not only because it offers solutions to both the gauge hierarchy and strong CP problems, but also because it provides a solution to the SUSY μ-problem which naturally allows for a Little Hierarchy. We compute the expected mixed axion-neutralino dark matter abundance for the SUSY DFSZ axion model in two benchmark cases—a natural SUSY model with a standard neutralino underabundance (SUA) and an mSUGRA/CMSSM model with a standard overabundance (SOA). Our computation implements coupled Boltzmann equations which track the radiation density along with neutralino, axion, axion CO (produced via coherent oscillations), saxion, saxion CO, axino and gravitino densities. In the SUSY DFSZ model, axions, axinos and saxions go through the process of freeze-in—in contrast to freeze-out or out-of-equilibrium production as in the SUSY KSVZ model—resulting in thermal yields which are largely independent of the re-heat temperature. We find the SUA case with suppressed saxion-axion couplings (ξ=0) only admits solutions for PQ breaking scale falesssim 6× 1012 GeV where the bulk of parameter space tends to be axion-dominated. For SUA with allowed saxion-axion couplings (ξ =1), then fa values up to ~ 1014 GeV are allowed. For the SOA case, almost all of SUSY DFSZ parameter space is disallowed by a combination of overproduction of dark matter, overproduction of dark radiation or violation of BBN constraints. An exception occurs at very large fa~ 1015-1016 GeV where large entropy dilution from CO-produced saxions leads to allowed models.

  3. Bose-Einstein condensation of dark matter axions.

    PubMed

    Sikivie, P; Yang, Q

    2009-09-11

    We show that cold dark matter axions thermalize and form a Bose-Einstein condensate (BEC). We obtain the axion state in a homogeneous and isotropic universe, and derive the equations governing small axion perturbations. Because they form a BEC, axions differ from ordinary cold dark matter in the nonlinear regime of structure formation and upon entering the horizon. Axion BEC provides a mechanism for the production of net overall rotation in dark matter halos, and for the alignment of cosmic microwave anisotropy multipoles.

  4. Resonantly Detecting Axion-Mediated Forces with Nuclear Magnetic Resonance

    NASA Astrophysics Data System (ADS)

    Arvanitaki, Asimina; Geraci, Andrew A.

    2014-10-01

    We describe a method based on precision magnetometry that can extend the search for axion-mediated spin-dependent forces by several orders of magnitude. By combining techniques used in nuclear magnetic resonance and short-distance tests of gravity, our approach can substantially improve upon current experimental limits set by astrophysics, and probe deep into the theoretically interesting regime for the Peccei-Quinn (PQ) axion. Our method is sensitive to PQ axion decay constants between 109 and 1012 GeV or axion masses between 10-6 and 10-3 eV, independent of the cosmic axion abundance.

  5. Bump in the blue axion isocurvature spectrum

    NASA Astrophysics Data System (ADS)

    Chung, Daniel J. H.; Upadhye, Amol

    2017-01-01

    Blue axion isocurvature perturbations are both theoretically well motivated and interesting from a detectability perspective. These power spectra generically have a break from the blue region to a flat region. Previous investigations of the power spectra were analytic, which left a gap in the predicted spectrum in the break region due to the nonapplicability of the used analytic techniques. We therefore compute the isocurvature spectrum numerically for an explicit supersymmetric axion model. We find a bump that enhances the isocurvature signal for this class of scenarios. A fitting function of three parameters is constructed that fits the spectrum well for the particular axion model we study. This fitting function should be useful for blue isocurvature signal hunting in data and making experimental sensitivity forecasts.

  6. Isocurvature forecast in the anthropic axion window

    SciTech Connect

    Hamann, J.; Hannestad, S.; Raffelt, G.G.; Wong, Y.Y.Y. E-mail: sth@phys.au.dk E-mail: yvonne.wong@cern.ch

    2009-06-01

    We explore the cosmological sensitivity to the amplitude of isocurvature fluctuations that would be caused by axions in the ''anthropic window'' where the axion decay constant f{sub a} >> 10{sup 12} GeV and the initial misalignment angle Θ{sub i} << 1. In a minimal ΛCDM cosmology extended with subdominant scale-invariant isocurvature fluctuations, existing data constrain the isocurvature fraction to α < 0.09 at 95% C.L. If no signal shows up, Planck can improve this constraint to 0.042 while an ultimate CMB probe limited only by cosmic variance in both temperature and E-polarisation can reach 0.017, about a factor of five better than the current limit. In the parameter space of f{sub a} and H{sub I} (Hubble parameter during inflation) we identify a small region where axion detection remains within the reach of realistic cosmological probes.

  7. Axion cold dark matter in nonstandard cosmologies

    SciTech Connect

    Visinelli, Luca; Gondolo, Paolo

    2010-03-15

    We study the parameter space of cold dark matter axions in two cosmological scenarios with nonstandard thermal histories before big bang nucleosynthesis: the low-temperature reheating (LTR) cosmology and the kination cosmology. If the Peccei-Quinn symmetry breaks during inflation, we find more allowed parameter space in the LTR cosmology than in the standard cosmology and less in the kination cosmology. On the contrary, if the Peccei-Quinn symmetry breaks after inflation, the Peccei-Quinn scale is orders of magnitude higher than standard in the LTR cosmology and lower in the kination cosmology. We show that the axion velocity dispersion may be used to distinguish some of these nonstandard cosmologies. Thus, axion cold dark matter may be a good probe of the history of the Universe before big bang nucleosynthesis.

  8. Axionic suppression of plasma wakefield acceleration

    NASA Astrophysics Data System (ADS)

    Burton, D. A.; Noble, A.; Walton, T. J.

    2016-09-01

    Contemporary attempts to explain the existence of ultra-high energy cosmic rays using plasma-based wakefield acceleration deliberately avoid non-standard model particle physics. However, such proposals exploit some of the most extreme environments in the Universe and it is conceivable that hypothetical particles outside the standard model have significant implications for the effectiveness of the acceleration process. Axions solve the strong CP problem and provide one of the most important candidates for cold dark matter, and their potential significance in the present context should not be overlooked. Our analysis of the field equations describing a plasma augmented with axions uncovers a dramatic axion-induced suppression of the energy gained by a test particle in the wakefield driven by a particle bunch, or an intense pulse of electromagnetic radiation, propagating at ultra-relativistic speeds within the strongest magnetic fields in the Universe.

  9. Discrete Abelian gauge symmetries and axions

    NASA Astrophysics Data System (ADS)

    Honecker, Gabriele; Staessens, Wieland

    2015-07-01

    We combine two popular extensions of beyond the Standard Model physics within the framework of intersecting D6-brane models: discrete ℤn symmetries and Peccei-Quinn axions. The underlying natural connection between both extensions is formed by the presence of massive U(1) gauge symmetries in D-brane model building. Global intersecting D6-brane models on toroidal orbifolds of the type T6/ℤ2N and T6/ℤ2 × ℤ2M with discrete torsion offer excellent playgrounds for realizing these extensions. A generation-dependent ℤ2 symmetry is identified in a global Pati-Salam model, while global left-right symmetric models give rise to supersymmetric realizations of the DFSZ axion model. In one class of the latter models, the axion as well as Standard Model particles carry a non-trivial ℤ3 charge.

  10. Axions as quintessence in string theory

    SciTech Connect

    Panda, Sudhakar; Sumitomo, Yoske; Trivedi, Sandip P.

    2011-04-15

    We construct a model of quintessence in string theory based on the idea of axion monodromy as discussed by McAllister, Silverstein and Westphal [L. McAllister, E. Silverstein, and A. Westphal, Phys. Rev. D 82, 046003 (2010)]. In the model, the quintessence field is an axion whose shift symmetry is broken by the presence of 5-branes which are placed in highly warped throats. This gives rise to a potential for the axion field which is slowly varying, even after incorporating the effects of moduli stabilization and supersymmetry breaking. We find that the resulting time dependence in the equation of state of dark energy is potentially detectable, depending on the initial conditions. The model has many very light extra particles which live in the highly warped throats, but these are hard to detect. A signal in the rotation of the CMB polarization can also possibly arise.

  11. Self-gravitating system made of axions

    SciTech Connect

    Barranco, J.; Bernal, A.

    2011-02-15

    We show that the inclusion of an axionlike effective potential in the construction of a self-gravitating system of scalar fields decreases its compactness when the value of the self-interaction coupling constant is increased. By including the current values for the axion mass m and decay constant f{sub a}, we have computed the mass and the radius for self-gravitating systems made of axion particles. It is found that such objects will have asteroid size masses and radii of a few meters, thus a self-gravitating system made of axions could play the role of scalar mini-MACHOs and mimic a cold dark matter model for the galactic halo.

  12. Electric and magnetic energy at axion haloscopes

    NASA Astrophysics Data System (ADS)

    Ko, B. R.; Themann, H.; Jang, W.; Choi, J.; Kim, D.; Lee, M. J.; Lee, J.; Won, E.; Semertzidis, Y. K.

    2016-12-01

    We review the electro-magnetic energy at axion haloscopes and find that the electric and the corresponding magnetic energy stored in the cavity modes or, equivalently, the mode dependent electric and magnetic form factors are the same regardless of the position of the cavity inside the solenoid. Furthermore, we extend our argument to the cases satisfying ∇→×B→external=0 , where B→external is a static magnetic field provided by a magnet at an axion haloscope. Two typical magnets, solenoidal and toroidal, satisfy ∇→×B→external=0 ; thus, the electric and the corresponding magnetic energy stored in the cavity modes are always the same in both cases. The energy, however, is independent of the position of the cavity in axion haloscopes with a solenoid, and depends on those with a toroidal magnet.

  13. Cosmological perturbations of axion with a dynamical decay constant

    SciTech Connect

    Kobayashi, Takeshi; Takahashi, Fuminobu

    2016-08-25

    A QCD axion with a time-dependent decay constant has been known to be able to accommodate high-scale inflation without producing topological defects or too large isocurvature perturbations on CMB scales. We point out that a dynamical decay constant also has the effect of enhancing the small-scale axion isocurvature perturbations. The enhanced axion perturbations can even exceed the periodicity of the axion potential, and thus lead to the formation of axionic domain walls. Unlike the well-studied axionic walls, the walls produced from the enhanced perturbations are not bounded by cosmic strings, and thus would overclose the universe independently of the number of degenerate vacua along the axion potential.

  14. CAST constraints on the axion-electron coupling

    DOE PAGES

    None, None

    2013-05-09

    In non-hadronic axion models, which have a tree-level axion-electron interaction, the Sun produces a strong axion flux by bremsstrahlung, Compton scattering, and axio- recombination, the “BCA processes.” Based on a new calculation of this flux, including for the first time axio-recombination, we derive limits on the axion-electron Yukawa coupling gae and axion-photon interaction strength gaγ using the CAST phase-I data (vacuum phase). For ma ≲ 10 meV/c2 we find gaγ gae < 8.1 × 10–23 GeV–1 at 95% CL. We stress that a next-generation axion helioscope such as the proposed IAXO could push this sensitivity into a range beyond stellarmore » energy-loss limits and test the hypothesis that white-dwarf cooling is dominated by axion emission.« less

  15. The Ubiquitous SQUID: From Axions to Cancer

    NASA Astrophysics Data System (ADS)

    Clarke, John

    2011-03-01

    I briefly review the principles, practical implementation and applications of the dc SQUID (Superconducting QUantum Interference Device), an ultrasensitive detector of magnetic flux. Cosmological observations show that a major constituent of the universe is cold dark matter (CDM). A candidate particle for CDM is the axion which, in the presence of a magnetic field, is predicted to decay into a photon with energy given by the axion mass, ranging from 0.001 to 1 meV. The axion detector constructed at LLNL consists of a cooled, tunable cavity surrounded by a 7-T superconducting magnet. Photons from the axion decay would be detected by a cooled semiconductor amplifier. To search for the axion over an octave of frequency, however, would take two centuries. Now at the University of Washington, Seattle the axion detector will be upgraded by cooling it to 50 mK and installing a near-quantum limited SQUID amplifier. The scan time will be reduced by three orders of magnitude to a few months. In medical physics, we use an ultralow-field magnetic resonance imaging (ULFMRI) system with SQUID detection to obtain images in a magnetic field of 0.132 mT, four orders of magnitude lower than in conventional MRI. An advantage of low fields is that different types of tissue exhibit much greater contrast in the relaxation time T1 than in high fields. We have measured T1 in ex vivo specimens of surgically removed healthy and malignant prostate tissue. The percentage of tumor in each specimen is determined with pathology. The MRI contrast between two specimens from a given patient scales with the difference in the percentage of tumor; in healthy tissue T1 is typically 50 percent higher than in a tumor. These results suggest that ULFMRI with T1-weighted contrast may have clinical applications to imaging prostate cancer and potentially other types of cancer. Supported by DOE BES and HEP, and NIH

  16. Axionic band structure of the cosmological constant

    NASA Astrophysics Data System (ADS)

    Bachlechner, Thomas C.

    2016-01-01

    We argue that theories with multiple axions generically contain a large number of vacua that can account for the smallness of the cosmological constant. In a theory with N axions, the dominant instantons with charges 풬 determine the discrete symmetry of vacua. Subleading instantons break the leading periodicity and lift the vacuum degeneracy. For generic integer charges the number of distinct vacua is given by √{det (풬⊤풬 ) }∝eN. Our construction motivates the existence of a landscape with a vast number of vacua in a large class of four-dimensional effective theories.

  17. Holographic Lifshitz superconductors with an axion field

    NASA Astrophysics Data System (ADS)

    Tallarita, Gianni

    2014-05-01

    We use a Yang-Mills field coupled to an axion as probes of a black hole with arbitrary Lifshitz scaling to investigate, via holography, superconducting phase transitions of the dual theory with a ⟨px+ipy⟩ condensate. In the relativistic case with no axion, this phase is known to be unstable, the stable phase corresponding to condensates of the ⟨px⟩ form. We investigate this stability in theories with nonrelativistic scaling. Finally we numerically compute the "Hall" conductivity of these black holes in the nonsuperconducting phase as a function of their Lifshitz scaling.

  18. SN 1987A: The Supernova of the Century

    NASA Technical Reports Server (NTRS)

    Sonneborne, George

    2012-01-01

    Supernova 1987 A in the Large Magellanic Cloud is one of the most intensively studied objects in the universe and a Rosetta Stone for understanding the explosions of massive stars. Approaching its 25th anniversary, SN 1987 A is a very young supernova remnant, a phase previously unobserved in any other supernova. The supernova of the 20th Century is now the supernova remnant of the 21st Century. In this talk I will discuss recent observations from the far-ultraviolet to the far-infrared with HST, the VLT, Spitzer, and the Herschel Space Observatory. These data reveal new insights into the composition, geometry, and heating of the explosion debris, the shock interaction with circumstellar material, and dust in the SN 1987 A system.

  19. What does SN1987A say about extra dimensions?

    NASA Astrophysics Data System (ADS)

    Veerahanumak, Satheeshkumar

    2010-02-01

    There has been a tremendous progress in the last decade in our efforts to confront the String-inspired ideas with experiments or observations. There are two approaches to this problem. One is to use the LHC data and other is to use astronomical data. Among the latter, using SN1987A data for placing the constraints on the models of extra dimensions is very popular. In this poster, we consider all the possible energy loss mechanisms of SN1987A and study the constraints they place on the number and size of extra dimensions and the higher dimensional Planck scale in the ADD scenario. )

  20. Review of dark-matter axion experiments

    SciTech Connect

    van Bibber, K; Kinion, D

    2000-08-30

    We review the status of two ongoing large-scale searches for axions which may constitute the dark matter of our Milky Way halo. The experiments are based on the microwave cavity technique proposed by Sikivie, and marks a 'second-generation' to the original experiments performed by the Rochester-Brookhaven-Fermilab collaboration, and the University of Florida group.

  1. Axion hot dark matter bounds after Planck

    SciTech Connect

    Archidiacono, Maria; Hannestad, Steen; Mirizzi, Alessandro; Raffelt, Georg; Wong, Yvonne Y.Y. E-mail: sth@phys.au.dk E-mail: raffelt@mpp.mpg.de

    2013-10-01

    We use cosmological observations in the post-Planck era to derive limits on thermally produced cosmological axions. In the early universe such axions contribute to the radiation density and later to the hot dark matter fraction. We find an upper limit m{sub a} < 0.67 eV at 95% C.L. after marginalising over the unknown neutrino masses, using CMB temperature and polarisation data from Planck and WMAP respectively, the halo matter power spectrum extracted from SDSS-DR7, and the local Hubble expansion rate H{sub 0} released by the Carnegie Hubble Program based on a recalibration of the Hubble Space Telescope Key Project sample. Leaving out the local H{sub 0} measurement relaxes the limit somewhat to 0.86 eV, while Planck+WMAP alone constrain the axion mass to 1.01 eV, the first time an upper limit on m{sub a} has been obtained from CMB data alone. Our axion limit is therefore not very sensitive to the tension between the Planck-inferred H{sub 0} and the locally measured value. This is in contrast with the upper limit on the neutrino mass sum, which we find here to range from Σ m{sub ν} < 0.27 eV at 95% C.L. combining all of the aforementioned observations, to 0.84 eV from CMB data alone.

  2. The pooltable analogy to axion physics

    SciTech Connect

    Sikivie, P.

    1996-01-01

    An imaginary character named TSP finds himself in a playroom whose floor is tilted to one side. However, the pooltable in the playroom is horizontal. TSP wonders how this can be. In doing so, he embarks upon an intellectual journey which parallels that which has been travelled during the past two decades by physicists interested in the Strong CP Problem and axion physics.

  3. Axion models with high scale inflation

    NASA Astrophysics Data System (ADS)

    Moroi, Takeo; Mukaida, Kyohei; Nakayama, Kazunori; Takimoto, Masahiro

    2014-11-01

    We revisit the cosmological aspects of axion models. In the high-scale inflation scenario, the Peccei-Quinn (PQ) symmetry is likely to be restored during/after inflation. If the curvature of the PQ scalar potential at the origin is smaller than its vacuum expectation value; for instance in a class of SUSY axion models, thermal inflation happens before the radial component of the PQ scalar (saxion) relaxes into the global minimum of the potential and the decay of saxion coherent oscillation would produce too much axion dark radiation. In this paper, we study how to avoid the overproduction of axion dark radiation with some concrete examples. We show that, by taking account of the finite-temperature dissipation effect appropriately, the overproduction constraint can be relaxed since the PQ scalar can take part in the thermal plasma again even after the PQ phase transition. We also show that it can be further relaxed owing to the late time decay of another heavy CP-odd scalar, if it is present.

  4. Cavity Microwave Searches for Cosmological Axions

    SciTech Connect

    Carosi, G; van Bibber, K

    2007-01-22

    This chapter will cover the search for dark matter axions based on microwave cavity experiments proposed by Pierre Sikivie. We will start with a brief overview of halo dark matter and the axion as a candidate. The principle of resonant conversion of axions in an external magnetic field will be described as well as practical considerations in optimizing the experiment as a signal-to-noise problem. A major focus of this chapter will be the two complementary strategies for ultra-low noise detection of the microwave photons--the 'photon-as-wave' approach (i.e. conventional heterojunction amplifiers and soon to be quantum-limited SQUID devices), and 'photon-as-particle' (i.e. Rydberg-atom single-quantum detection). Experimental results will be presented; these experiments have already reached well into the range of sensitivity to exclude plausible axion models, for limited ranges of mass. The section will conclude with a discussion of future plans and challenges for the microwave cavity experiment.

  5. New confining force solution of the QCD axion domain-wall problem.

    PubMed

    Barr, S M; Kim, Jihn E

    2014-12-12

    The serious cosmological problems created by the axion-string-axion-domain-wall system in standard axion models are alleviated by positing the existence of a new confining force. The instantons of this force can generate an axion potential that erases the axion strings long before QCD effects become important, thus preventing QCD-generated axion walls from ever appearing. Axion walls generated by the new confining force would decay so early as not to contribute significantly to the energy in axion dark matter.

  6. OSSE Observations of 57Co In SN1987A

    DTIC Science & Technology

    1992-01-01

    ray--observations; nucleosynthesis ; X-rays: general 1E.O. Hulburt Center for Space Research, Naval Research Laboratory, Washington DC 20375 2Dept...gamma-ray thickness of the ejecta. Nucleosynthetic models for SN1987A and general nucleosynthesis constraints suggest that the production ratio of 57Ni

  7. IAUS 331: Supernova 1987A thirty years later

    NASA Astrophysics Data System (ADS)

    Ray, Alak

    2017-04-01

    First the neutrinos arrived, then the burst of light: messengers of a cataclysmic event in the galaxy next door. Alak Ray recounts IAUS 331, a conference that celebrated the thirtieth anniversary of the supernova of a lifetime, SN1987A, and explored the critical role of asymmetry in the explosions, surroundings and initial conditions.

  8. Broadband and Resonant Approaches to Axion Dark Matter Detection.

    PubMed

    Kahn, Yonatan; Safdi, Benjamin R; Thaler, Jesse

    2016-09-30

    When ultralight axion dark matter encounters a static magnetic field, it sources an effective electric current that follows the magnetic field lines and oscillates at the axion Compton frequency. We propose a new experiment to detect this axion effective current. In the presence of axion dark matter, a large toroidal magnet will act like an oscillating current ring, whose induced magnetic flux can be measured by an external pickup loop inductively coupled to a SQUID magnetometer. We consider both resonant and broadband readout circuits and show that a broadband approach has advantages at small axion masses. We estimate the reach of this design, taking into account the irreducible sources of noise, and demonstrate potential sensitivity to axionlike dark matter with masses in the range of 10^{-14}-10^{-6}  eV. In particular, both the broadband and resonant strategies can probe the QCD axion with a GUT-scale decay constant.

  9. Limits to the radiative decay of the axion

    NASA Technical Reports Server (NTRS)

    Ressell, M. Ted

    1991-01-01

    An axion with a mass greater than 1 eV should be detectable through its decay into two photons. The astrophysical and cosmological limits which define a small window of allowed axion mass above 3 eV are discussed. A firm upper bound to the axion's mass of M(sub a) less than or equal to 8 eV is derived by considering the effect of decaying axions upon the diffuse extragalactic background radiation and the brightness of the night sky due to axions in the halo of the Milky Way galaxy. The intergalactic light of clusters of galaxies is shown to be an ideal place to search for an emission line arising from the radiative decay of axions. An unsuccessful search for this emission line in three clusters of galaxies is then detailed. Limits to the presence of any intracluster line emission are derived with the result that axions with masses between 3 and 8 eV are excluded by the data, effectively closing this window of axion mass, unless a severe cancellation of axionic decay amplitudes occurs. The intracluster flux limits are then used to constrain the amplitude of any such model dependence.

  10. Axions and the evolution of structure in the universe

    NASA Technical Reports Server (NTRS)

    Stecker, F. W.; Shafi, Q.

    1983-01-01

    A cosmological scenario where axions provide the dark matter in the universe is considered. Fluctuations in the axion-field energy denisty produced by domain walls and strings cause the appearance of 'axion clumps' of masses of order 10 to the 6th solar masses which most likely collapse to black holes by or at the time that the universe becomes axion dominated at T approximately 10 eV. These objects form the building blocks for the clustering hierarchy theory of galaxy and supercluster formation on scales up to about 10 Mpc and 10 to the 15th solar masses.

  11. The evolution of structure in the universe from axions

    NASA Technical Reports Server (NTRS)

    Stecker, F. W.; Shafi, Q.

    1982-01-01

    A scenario where axions provide the dark matter in the universe is considered. Fluctuations in the axion field density produced by domain walls and strings cause the appearance of axion clumps of masses of order 10 to the 6th power solar mass which most likely collapse to black holes by or at the time that the universe becomes axion dominated at T is approximately 10 eV. These objects form the building blocks for a clustering hierarchy theory of galaxy and supercluster formation on scales up to approximately 10 Mpc and approximately 10 to the 15th power solar mass.

  12. On the possibility of large axion moduli spaces

    SciTech Connect

    Rudelius, Tom

    2015-04-01

    We study the diameters of axion moduli spaces, focusing primarily on type IIB compactifications on Calabi-Yau three-folds. In this case, we derive a stringent bound on the diameter in the large volume region of parameter space for Calabi-Yaus with simplicial Kähler cone. This bound can be violated by Calabi-Yaus with non-simplicial Kähler cones, but additional contributions are introduced to the effective action which can restrict the field range accessible to the axions. We perform a statistical analysis of simulated moduli spaces, finding in all cases that these additional contributions restrict the diameter so that these moduli spaces are no more likely to yield successful inflation than those with simplicial Kähler cone or with far fewer axions. Further heuristic arguments for axions in other corners of the duality web suggest that the difficulty observed in [1] of finding an axion decay constant parametrically larger than M{sub p} applies not only to individual axions, but to the diagonals of axion moduli space as well. This observation is shown to follow from the weak gravity conjecture of [2], so it likely applies not only to axions in string theory, but also to axions in any consistent theory of quantum gravity.

  13. On the possibility of large axion moduli spaces

    SciTech Connect

    Rudelius, Tom

    2015-04-28

    We study the diameters of axion moduli spaces, focusing primarily on type IIB compactifications on Calabi-Yau three-folds. In this case, we derive a stringent bound on the diameter in the large volume region of parameter space for Calabi-Yaus with simplicial Kähler cone. This bound can be violated by Calabi-Yaus with non-simplicial Kähler cones, but additional contributions are introduced to the effective action which can restrict the field range accessible to the axions. We perform a statistical analysis of simulated moduli spaces, finding in all cases that these additional contributions restrict the diameter so that these moduli spaces are no more likely to yield successful inflation than those with simplicial Kähler cone or with far fewer axions. Further heuristic arguments for axions in other corners of the duality web suggest that the difficulty observed in http://dx.doi.org/10.1088/1475-7516/2003/06/001 of finding an axion decay constant parametrically larger than M{sub p} applies not only to individual axions, but to the diagonals of axion moduli space as well. This observation is shown to follow from the weak gravity conjecture of http://dx.doi.org/10.1088/1126-6708/2007/06/060, so it likely applies not only to axions in string theory, but also to axions in any consistent theory of quantum gravity.

  14. A search for axions at a power reactor

    NASA Astrophysics Data System (ADS)

    Cavaignac, J. F.; Hoummada, A.; Koang, D. H.; Ost, B.; Vignon, B.; Wilson, R.; Declais, Y.; Girardi, G.; de Kerret, H.; Pessard, H.; Thenard, J. M.

    1983-01-01

    A search has been conducted for the axion at the Bugey reactor which is owned and operated by Electricité de France. The axion production should be proportional to the magnetic transition of np capture, and be detectable by its decay into 2γ rays. No signal was observed in this measurement. Also no axion signal was seen from a single proton magnetic transition of 97Nb. Using those two results, the axion can be excluded with a mass up to 1 MeV in the Peccei-Quinn formalism.

  15. Curvaton and QCD axion in supersymmetric theories

    NASA Astrophysics Data System (ADS)

    Chun, Eung Jin; Dimopoulos, Konstantinos; Lyth, David H.

    2004-11-01

    A pseudo-Nambu-Goldstone boson as curvaton avoids the η problem of inflation which plagues most curvaton candidates. We point out that a concrete realization of the curvaton mechanism with a pseudo-Nambu-Goldstone boson can be found in the supersymmetric Peccei-Quinn mechanism resolving the strong CP problem. In the flaton models of Peccei-Quinn symmetry breaking, the angular degree of freedom associated with the QCD axion can naturally be a flat direction during inflation and provides successful curvature perturbations. In this scheme, the preferred values of the axion scale and the Hubble parameter during inflation turn out to be about 1010 and 1012 GeV, respectively. Moreover, it is found that a significant isocurvature component, (anti)correlated to the overall curvature perturbation, can be generated, which is a smoking gun for the curvaton scenario. Finally, non-Gaussianity in the perturbation spectrum at a potentially observable level is also possible.

  16. Axion dark matter from topological defects

    NASA Astrophysics Data System (ADS)

    Kawasaki, Masahiro; Saikawa, Ken'ichi; Sekiguchi, Toyokazu

    2015-03-01

    The cosmological scenario where the Peccei-Quinn symmetry is broken after inflation is investigated. In this scenario, topological defects such as strings and domain walls produce a large number of axions, which contribute to the cold dark matter of the Universe. The previous estimations of the cold dark matter abundance are updated and refined based on the field-theoretic simulations with improved grid sizes. The possible uncertainties originated in the numerical calculations are also discussed. It is found that axions can be responsible for the cold dark matter in the mass range ma=(0.9 - 1.4 )×1 0-4 eV for the models with the domain wall number NDW=1 , and ma≈O (1 0-4- 1 0-2) eV with a mild tuning of parameters for the models with NDW>1 . Such higher mass ranges can be probed in future experimental studies.

  17. Mixed axion-wino dark matter

    NASA Astrophysics Data System (ADS)

    Bae, Kyu; Baer, Howard; Lessa, Andre; Serce, Hasan

    2015-07-01

    A variety of supersymmetric models give rise to a split mass spectrum characterized by very heavy scalars but sub-TeV gauginos, usually with a wino-like LSP. Such models predict a thermally-produced underabundance of wino-like WIMP dark matter so that non-thermal DM production mechanisms are necessary. We examine the case where theories with a wino-like LSP are augmented by a Peccei-Quinn sector including an axion-axino-saxion supermultiplet in either the SUSY KSVZ or SUSY DFSZ models and with/without saxion decays to axions/axinos. We show allowed ranges of PQ breaking scale f_a for various cases which are generated by solving the necessary coupled Boltzmann equations. We also present results for a model with radiatively-driven naturalness but with a wino-like LSP.

  18. Massive neutrinos and invisible axion minimally connected

    NASA Astrophysics Data System (ADS)

    Bertolini, Stefano; Di Luzio, Luca; Kolešová, Helena; Malinský, Michal

    2015-03-01

    We survey a few minimal scalar extensions of the standard electroweak model that provide a simple setup for massive neutrinos in connection with an invisible axion. The presence of a chiral U (1 ) à la Peccei-Quinn drives the pattern of Majorana neutrino masses while providing a dynamical solution to the strong C P problem and an axion as a dark matter candidate. We paradigmatically apply such a renormalizable framework to type-II seesaw and to two viable models for neutrino oscillations where the neutrino masses arise at one and two loops, respectively. We comment on the naturalness of the effective setups as well as on their implications for vacuum stability and electroweak baryogenesis.

  19. Large Non-Gaussianity in Axion Inflation

    SciTech Connect

    Barnaby, Neil; Peloso, Marco

    2011-05-06

    The inflationary paradigm has enjoyed phenomenological success; however, a compelling particle physics realization is still lacking. Axions are among the best-motivated inflaton candidates, since the flatness of their potential is naturally protected by a shift symmetry. We reconsider the cosmological perturbations in axion inflation, consistently accounting for the coupling to gauge fields c{phi}FF-tilde, which is generically present in these models. This coupling leads to production of gauge quanta, which provide a new source of inflaton fluctuations, {delta}{phi}. For c > or approx. 10{sup 2}M{sub p}{sup -1}, these dominate over the vacuum fluctuations, and non-Gaussianity exceeds the current observational bound. This regime is typical for concrete realizations that admit a UV completion; hence, large non-Gaussianity is easily obtained in minimal and natural realizations of inflation.

  20. Black hole mergers and the QCD axion at Advanced LIGO

    NASA Astrophysics Data System (ADS)

    Arvanitaki, Asimina; Baryakhtar, Masha; Dimopoulos, Savas; Dubovsky, Sergei; Lasenby, Robert

    2017-02-01

    In the next few years, Advanced LIGO (aLIGO) may see gravitational waves (GWs) from thousands of black hole (BH) mergers. This marks the beginning of a new precision tool for physics. Here we show how to search for new physics beyond the standard model using this tool, in particular the QCD axion in the mass range μa˜10-14 to 10-10 eV . Axions (or any bosons) in this mass range cause rapidly rotating BHs to shed their spin into a large cloud of axions in atomic Bohr orbits around the BH, through the effect of superradiance (SR). This results in a gap in the mass vs spin distribution of BHs when the BH size is comparable to the axion's Compton wavelength. By measuring the spin and mass of the merging objects observed at LIGO, we could verify the presence and shape of the gap in the BH distribution produced by the axion. The axion cloud can also be discovered through the GWs it radiates via axion annihilations or level transitions. A blind monochromatic GW search may reveal up to 1 05 BHs radiating through axion annihilations, at distinct frequencies within ˜3 % of 2 μa . Axion transitions probe heavier axions and may be observable in future GW observatories. The merger events are perfect candidates for a targeted GW search. If the final BH has high spin, a SR cloud may grow and emit monochromatic GWs from axion annihilations. We may observe the SR evolution in real time.

  1. Supernova 1987 A - The nebular loops and 'Napoleon's Hat'

    NASA Astrophysics Data System (ADS)

    Wang, L.; Wampler, E. J.

    1992-08-01

    We discuss observations of the circumstellar environment of SN 1987A that were obtained between August 1989 and January 1992 at ESO's New Technology Telescope. We find that the angular dimensions of the two nebular loops (Wampler et al., 1990) have not changed during this period. Therefore these loops are confined to a small region. The expansion velocity of the loops is less than about 40 km/s if the loops expanded with a uniform velocity from a common origin. This structure and velocity is hard to reproduce with existing wind interaction models. Our observations further suggest that the Napoleon's Hat nebula does not originate from the general background LMC dust, but from a bow shock dust whose origins are closely related to the stellar winds from the progenitor star of SN 1987A.

  2. Light echoes and transient luminescence near SN 1987A

    NASA Technical Reports Server (NTRS)

    Crotts, Arlin P. S.; Kunkel, William E.; Mccarthy, Patrick J.

    1989-01-01

    The discovery of two new light echoes from sheets of material behind supernova 1987A and present images of the progenitor's circumstellar shell are reported, indicating diffuse echoes from the star's red giant wind. The echo sheets' geometry explains well the behavior of SN 1987's 10-micron flux, but the circumstellar shell appears to be 70 percent larger than the prediction from the analysis of narrow UV emission lines. The sheets' recombination time show them relatively thin and dense. The data also constrain the existence of any fourth star in the Sanduleak -69 deg 202 system and show that the feature reported 8 arcsecs from the supernova is probably not an echo from a thin sheet in SN 1987A's foreground.

  3. Possible binary star progenitor for SN1987A

    NASA Astrophysics Data System (ADS)

    White, Graeme L.; Malin, D. F.

    1987-05-01

    Accurate optical astrometry gives a position (B1950.0) for the Large Magellanic Cloud supernova, SN 1987A, relative to the FK 4 system as right ascension, RA = 05h 35min 49.95 s±0.039 s, declination δ = -69°17arcmin57.9arcsec±0.27arcsec. Differential astrometry carried out on prime-focus plates taken with the AAT indicates that the component, star 1, of Sanduleak's star Sk -69202 is within 0.05±0.13 arc s of the supernova. The authors conclude that the progenitor of SN 1987A was star 1 or a fainter binary companion.

  4. Radio evolution of the remnant of Supernova 1987A

    NASA Astrophysics Data System (ADS)

    Zanardo, Giovanna

    Radio supernovae result from the collision between a supernova (SN) shock and the progenitor's circumstellar medium (CSM). Supernova 1987A in the Large Magellanic Cloud, as the only nearby core-collapse supernova observed with a telescope since its early stages, has allowed unique studies of the SN-CSM interaction and the complex structure of the resulting emission. This thesis investigates the evolution of the remnant of SN 1987A, as the shock wave impacts the dense CSM in the equatorial ring, and the possible presence of a compact object in the remnant interior, using new data from the Australia Telescope Compact Array, the Atacama Large Millimeter/submillimeter Array, the Australian Long Baseline Array, and the Parkes telescope.

  5. Similarity Analysis of Experiments on SN 1987A Hydrodynamics

    NASA Astrophysics Data System (ADS)

    Ryutov, D.; Kane, J.; Remington, B.

    1997-11-01

    Similarity criteria for experimentally studying hydrodynamic aspects of the SN 1987A explosion are considered. Particular emphasis is made on the study of Richtmyer-Meshkov and Rayleigh-Taylor instabilities. At the early stage of the explosion (t ~a few hours), for the power-law adiabat equations and high pressure in the pusher, there exist a universal similarity that allows one to establish direct links between the SN event and laboratory experiments of the type described in [1]. For the late stage (t ~20 yr) the plasma becomes weakly collisional and transparent to radiation. Radiation losses are insignificant at this stage. We predict an important role of the fire-hose instability in the plasma flow past the SN 1987A ring. We discuss experimental setting where these phenomena could be simulated in a correct way. [1] B. Remington et al. "Phys. Plasmas", v. 4, 1994 (1997); J. Kane et al., ApJ. 478, L75 (1997)

  6. Observing SN 1987A with the International Ultraviolet Explorer

    NASA Technical Reports Server (NTRS)

    Kirshner, Robert P.

    1991-01-01

    The International Ultraviolet Explorer (IUE) satellite played a leading role in elucidating the nature of SN 1987A, providing a unique ultraviolet perspective on the brightest supernova since 1604. IUE observations of SN 1987A began promptly after discovery and were frequent through 1988 and 1989, using the FES (Fine Error Sensor) for photometry, low dispersion spectra for the supernova spectrum, high dispersion observations for the interstellar medium when the supernova was bright, and for circumstellar gas surrounding the supernova as the initial event faded. The UV data were especially useful in determining which star exploded, assessing the ionizing pulse produced as the shock hit the surface of the star, and in constraining the stellar evolution that preceded the explosion through observation of a circumstellar shell.

  7. First results from the Faint Object Camera - SN 1987A

    NASA Technical Reports Server (NTRS)

    Jakobsen, P.; Albrecht, R.; Barbieri, C.; Blades, J. C.; Boksenberg, A.

    1991-01-01

    The first images of SN 1987A taken on day 1278 after outburst with the Faint Object Camera on board the Hubble Space Telescope are presented. The supernova is well detected and resolved spatially in three broadband ultraviolet exposures spanning the 1500-3800 A range and in a narrow-band image centered on the forbidden O III 5007 line. Simple uniform disk fits to the profiles of SN 1987A yield an average angular diameter of 170 + or - 30 mas, corresponding to an average expansion velocity of 6000 km/s. The derived broadband ultraviolet fluxes, when corrected for interstellar absorption, indicate a blue ultraviolet spectrum corresponding to a color temperature near 13,000 K.

  8. Regularly pulsed neutrinos from supernova SN1987A?

    NASA Technical Reports Server (NTRS)

    Harwit, Martin; Wasserman, Ira M.; Biermann, Peter L.; Meyer, Hinrich

    1987-01-01

    Some consequences of the 8.9 millisecond periodicity observed in neutrino events from SN1987A with the Kamiokonde and IMB experiments are discussed. Interpreting the apparent period as a rotation of a compact object would imply that the neutrino emission is anisotropic and that the neutrino mass, averaged over all observed flavors, is less than 0.2 eV/c-squared. It is also noted that P = 8.9 ms is a reasonable period for very young pulsars.

  9. The Mont Blanc detection of neutrinos from SN 1987A.

    NASA Astrophysics Data System (ADS)

    Aglietta, M.; Badino, G.; Bologna, G.; Castagnoli, C.; Castellina, A.; Dadykin, V. L.; Fulgione, W.; Galeotti, P.; Kalchukov, F. F.; Kortchaguin, V. B.; Kortchaguin, P. V.; Malguin, A. S.; Ryassny, V. G.; Ryazhkaya, O. G.; Saavedra, O.; Talochkin, V. P.; Trinchero, G.; Vernetto, S.; Zatsepin, G. T.; Yakushev, V. F.

    The authors discuss the event detected in the Mont Blanc Underground Neutrino Observatory on February 23, 1987, during the occurrence of supernova SN 1987A. The pulse amplitudes, the background imitation probability, and the energetics connected with the event are reported. It is also shown that some interactions recorded at the same time in other underground experiments, with a lower detection efficiency, are consistent with the Mont Blanc event.

  10. The Origin of the Rings Around SN1987A

    NASA Astrophysics Data System (ADS)

    Martin, Crystal L.; Arnett, David

    1994-12-01

    Hubble Space Telescope (HST) images show three elliptical rings of fluorescing gas around SN1987A. The progenitor's mass loss history is encoded in this circumstellar structure, and the spatial and temporal variations in the winds' velocity, density, and chemical composition can be derived if the formation of the nebula is understood. Hence, SN1987A's nebula provides a unique opportunity to learn how the outer layers of a massive star were changing during the relatively short, late evolutionary stages preceeding core collapse. A successful model may have applications in a much broader context as well, since the morphology of SN1987A's nebula is not unique. The Crab Nebula, Eta Carina, and a class of planetary nebulae share the same basic geometry -- a double-lobed bubble constricted at the waist by higher density gas in a disk or torus. We present a direct comparison of the interacting-winds model for the formation of SN1987A's nebula and HST images. New two-dimensional hydrodynamic calculations of the interaction of the fast wind from the blue supergiant progenitor with a slower wind expelled during an earlier red supergiant phase are used to construct emission-measure images. The similarity of the overall morphology of these images and the HST images suggests the interacting-winds model is the likely solution for the origin of the nebula. We demonstrate the remarkable agreement between the time scales in this model and a series of stellar evolution calculations. Further work with the interacting-winds model is needed to establish the physical processes responsible for the extreme flattening inferred for the red supergiant wind and the subtle differences between the images.

  11. Cosmological properties of a gauged axion

    SciTech Connect

    Coriano, Claudio; Mariano, Antonio; Guzzi, Marco; Lazarides, George

    2010-09-15

    We analyze the most salient cosmological features of axions in extensions of the standard model with a gauged anomalous extra U(1) symmetry. The model is built by imposing the constraint of gauge invariance in the anomalous effective action, which is extended with Wess-Zumino counterterms. These generate axionlike interactions of the axions to the gauge fields and a gauged shift symmetry. The scalar sector is assumed to acquire a nonperturbative potential after inflation, at the electroweak phase transition, which induces a mixing of the Stueckelberg field of the model with the scalars of the electroweak sector, and at the QCD phase transition. We discuss the possible mechanisms of sequential misalignments which could affect the axions of these models, and generated, in this case, at both transitions. We compute the contribution of these particles to dark matter, quantifying their relic densities as a function of the Stueckelberg mass. We also show that models with a single anomalous U(1) in general do not account for the dark energy, due to the presence of mixed U(1)-SU(3) anomalies.

  12. Multiverse dark matter: SUSY or axions

    NASA Astrophysics Data System (ADS)

    D'Eramo, Francesco; Hall, Lawrence J.; Pappadopulo, Duccio

    2014-11-01

    The observed values of the cosmological constant and the abundance of Dark Matter (DM) can be successfully understood, using certain measures, by imposing the anthropic requirement that density perturbations go non-linear and virialize to form halos. This requires a probability distribution favoring low amounts of DM, i.e. low values of the PQ scale f for the QCD axion and low values of the superpartner mass scale for LSP thermal relics. In theories with independent scanning of multiple DM components, there is a high probability for DM to be dominated by a single component. For example, with independent scanning of f and , TeV-scale LSP DM and an axion solution to the strong CP problem are unlikely to coexist. With thermal LSP DM, the scheme allows an understanding of a Little SUSY Hierarchy with multi-TeV superpartners. Alternatively, with axion DM, PQ breaking before (after) inflation leads to f typically below (below) the projected range of the current ADMX experiment of f = (3 - 30) × 1011 GeV, providing strong motivation to develop experimental techniques for probing lower f.

  13. Search For Hadronic Axions Emitted From The Sun

    SciTech Connect

    Ljubicic, A.; Kekez, D.; Krecak, Z.

    2007-10-26

    We made a search for hadronic axions, which could be emitted from the Sun in the axiobremsstrahlung process and absorbed in the HPGe detector by axioelectric effect. An upper limit on hadronic axion mass of 100 eV is obtained at the 95% confidence level.

  14. 3D lumped LC resonators as low mass axion haloscopes

    NASA Astrophysics Data System (ADS)

    McAllister, Ben T.; Parker, Stephen R.; Tobar, Michael E.

    2016-08-01

    The axion is a hypothetical particle considered to be the most economical solution to the strong C P problem. It can also be formulated as a compelling component of dark matter. The haloscope, a leading axion detection scheme, relies on the conversion of galactic halo axions into real photons inside a resonant cavity structure in the presence of a static magnetic field, where the generated photon frequency corresponds to the mass of the axion. For maximum sensitivity it is key that the central frequency of the cavity mode structure coincides with the frequency of the generated photon. As the mass of the axion is unknown, it is necessary to perform searches over a wide range of frequencies. Currently there are substantial regions of the promising preinflationary low-mass axion range without any viable proposals for experimental searches. We show that three-dimensional resonant LC circuits with separated magnetic and electric fields, commonly known as reentrant cavities, can be sensitive dark matter haloscopes in this region, with frequencies inherently lower than those achievable in the equivalent size of empty resonant cavity. We calculate the sensitivity and accessible axion mass range of these experiments, designing geometries to exploit and maximize the separated magnetic and electric coupling of the axion to the cavity mode.

  15. Future cosmological sensitivity for hot dark matter axions

    SciTech Connect

    Archidiacono, Maria; Basse, Tobias; Hannestad, Steen; Hamann, Jan; Raffelt, Georg; Wong, Yvonne Y.Y. E-mail: tb06@phys.au.dk E-mail: sth@phys.au.dk E-mail: yvonne.y.wong@unsw.edu.au

    2015-05-01

    We study the potential of a future, large-volume photometric survey to constrain the axion mass m{sub a} in the hot dark matter limit. Future surveys such as EUCLID will have significantly more constraining power than current observations for hot dark matter. Nonetheless, the lowest accessible axion masses are limited by the fact that axions lighter than ∼ 0.15 eV decouple before the QCD epoch, assumed here to occur at a temperature T{sub QCD} ∼ 170 MeV; this leaves an axion population of such low density that its late-time cosmological impact is negligible. For larger axion masses, m{sub a} ∼> 0.15 eV, where axions remain in equilibrium until after the QCD phase transition, we find that a EUCLID-like survey combined with Planck CMB data can detect m{sub a} at very high significance. Our conclusions are robust against assumptions about prior knowledge of the neutrino mass. Given that the proposed IAXO solar axion search is sensitive to m{sub a}∼<0.2 eV, the axion mass range probed by cosmology is nicely complementary.

  16. Searching for low mass axions with an LC-circuit

    NASA Astrophysics Data System (ADS)

    Crisosto, N.; Sikivie, P.; Sullivan, N. S.; Tanner, D. B.; ADMX Collaboration

    2016-03-01

    Axions are a promising cold dark matter candidate. Axion haloscopes such as ADMX, which use the conversion of axions to photons in the presence of a magnetic field, are used to search for axions which decay into microwave photons. To search for lighter, low frequency axions in the unexplored sub 107 eV (50 MHz) range a tunable LC circuit has been proposed. Progress in the development of such an LC circuit based search will be presented. The use of both electrical and mechanical tuning mechanisms will be included. Supported by DOE Grants DE-SC0010280, DE-FG02-97ER41029, DE-FG02-96ER40956, DE-AC52-07NA27344, DE-AC03-76SF00098, and the Livermore LDRD program.

  17. Mixed axion/neutralino dark matter in the SUSY DFSZ axion model

    SciTech Connect

    Bae, Kyu Jung; Baer, Howard; Chun, Eung Jin E-mail: baer@nhn.ou.edu

    2013-12-01

    We examine mixed axion/neutralino cold dark matter production in the SUSY DFSZ axion model where an axion superfield couples to Higgs superfields. We calculate a wide array of axino and saxion decay modes along with their decay temperatures, and thermal and non-thermal production rates. For a SUSY benchmark model with a standard underabundance (SUA) of Higgsino-like dark matter (DM), we find for the PQ scale f{sub a}∼<10{sup 12} GeV that the DM abundance is mainly comprised of axions as the saxion/axino decay occurs before the standard neutralino freeze-out and thus its abundance remains suppressed. For 10{sup 12}∼10{sup 14} GeV, both neutralino dark matter and dark radiation are typically overproduced. For judicious parameter choices, these can be suppressed and the combined neutralino/axion abundance brought into accord with measured values. A SUSY benchmark model with a standard overabundance (SOA) of bino DM is also examined and typically remains excluded due at least to too great a neutralino DM abundance for f{sub a}∼<10{sup 15} GeV. For f{sub a}∼>10{sup 15} GeV and lower saxion masses, large entropy production from saxion decay can dilute all relics and the SOA model can be allowed by all constraints.

  18. Constraints on the axion-electron coupling for solar axions produced by a Compton process and bremsstrahlung

    SciTech Connect

    Derbin, A. V.; Kayunov, A. S.; Muratova, V. V.; Semenov, D. A.; Unzhakov, E. V.

    2011-01-15

    The search for solar axions produced by Compton ({gamma}+e{sup -}{yields}e{sup -}+A) and bremsstrahlunglike (e{sup -}+Z{yields}Z+e{sup -}+A) processes has been performed. The axion flux in both cases depends on the axion-electron coupling constant. The resonant excitation of the low-lying nuclear level of {sup 169}Tm was looked for: A+{sup 169}Tm{yields}{sup 169}Tm{sup *}{yields}{sup 169}Tm+{gamma} (8.41 keV). The Si(Li) detector and {sup 169}Tm target installed inside the low-background setup were used to detect 8.41 keV {gamma} rays. As a result, a new model-independent restriction on the axion-electron and the axion-nucleon couplings was obtained: g{sub Ae}x|g{sub AN}{sup 0}+g{sub AN}{sup 3}|{<=}2.1x10{sup -14}. In the model of the hadronic axion this restriction corresponds to the upper limit on the axion-electron coupling and on the axion mass g{sub Ae}xm{sub A{<=}}3.1x10{sup -7} eV (90% C.L.). The limits on the axion mass are m{sub A{<=}}105 eV and m{sub A{<=}}1.3 keV for the Dine-Fischler-Srednicki-Zhitnitskii- and Kim-Shifman-Vainstein-Zakharov-axion models, correspondingly (90% C.L.).

  19. Observing Supernova 1987A with the Refurbished Hubble Space Telescope

    NASA Technical Reports Server (NTRS)

    France, Kevin; McCray, Richard; Heng, Kevin; Kirshner, Robert P.; Challis, Peter; Bouchet, Patrice; Crotts, Arlin; Dwek, Eli; Fransson, Claes; Garnavich, Peter M.; Larsson, Josefin; Lundqvist, Peter; Panagia, Nino; Pun, Chun S. J.; Smith, Nathan; Sollerman, Jesper; Sonneborn, George; Stocke, John T.; Wheeler, J. Craig

    2010-01-01

    The young remnant of supernova 1987A (SN 1987A) offers an unprecedented glimpse into the hydrodynamics and kinetics of fast astrophysical shocks. We have been monitoring SN 1987A with the Hubble Space Telescope (HST) since it was launched. The recent repair of the Space Telescope Imaging Spectrograph (STIS) allows us to compare observations in 2004, just before its demise, with those in 2010, shortly after its resuscitation by NASA astronauts. We find that the Ly-alpha and H-alpha lines from shock emission continue to brighten, while their maximum velocities continue to decrease. We report evidence for nearly coherent, resonant scattering of Lya photons (to blueshifts approximately -12,000 km /s) from hotspots on the equatorial ring. We also report emission to the red of Ly-alpha that we attribute to N v lambda lambda 1239,1243 Angstrom line emission. These lines are detectable because, unlike hydrogen atoms, N4+ ions emit hundreds of photons before they are ionized. The profiles of the N v lines differ markedly from that of H-alpha. We attribute this to scattering of N4+ ions by magnetic fields in the ionized plasma. Thus, N v emission provides a unique probe of the isotropization zone of the collisionless shock. Observations with the recently installed Cosmic Origins Spectrograph (COS) will enable us to observe the N v lambda lambda 1239,1243 Angstrom line profiles with much higher signal-to-noise ratios than possible with STIS and may reveal lines of other highly ionized species (such as C IVlambda lambda 1548,1551 Angstrom) that will test our explanation for the N v emission

  20. The Continuing Infrared Evolution of SN1987A

    NASA Astrophysics Data System (ADS)

    Dwek, Eli; Arendt, Richard; Bouchet, Patrice; Burrows, David; Challis, Peter; Danziger, John; De Buizer, James; Gehrz, Robert; Kirshner, Robert; McCray, Richard; Park, Sangwook; Polomski, Elisha; Woodward, Charles

    2008-03-01

    We will use the SPITZER to continue the ongoing monitoring of SN1987A, the youngest supernova remnant that is undergoing noticable evolutionary changes during the lifetime of the Great Observatories. At infrared wavelengths SN1987A provides a unique complimentary view of the interaction of the SN blast wave with the equatorial ring (ER). Dust in the ER is being swept up by the expanding shock and collisionally heated by the X-ray emitting gas observed with CHANDRA, giving rise to IR emission that reveals the composition and amount of dust that formed in the outflow of the presupernova star. The IR observations also provide a unique tool for studying physical processes - the collisional heating and destruction of dust - in dusty X-ray emitting plasmas. Parts of the blast wave has penetrated the denser regions of the ER, creating the 'hotspots' observed with HUBBLE. IR line emission from these regions provide important information on the physical conditions and the elemental and dust composition in these cooling shocks. Additionally, the ejecta of the SN explosion contains dust that was observed to have formed about 530 days after the explosion. Its imminent interaction with the ring will heat up this dust, which will be observable with SPITZER. In addition to providing useful information on SN1987A and its environment, the proposed observations will address key global issues regarding the origin and evolution of dust in the universe: how much dust is formed in SN ejecta and in quiescent stellar outflows, and how efficiently grains are destroyed by interstellar shock waves.

  1. The Continuing Infrared Evolution of SN1987A

    NASA Astrophysics Data System (ADS)

    Dwek, Eli; Arendt, Richard; Bouchet, Patrice; Burrows, David; Challis, Peter; Danziger, John; De Buizer, James; Gehrz, Robert; Kirshner, Robert; McCray, Richard; Park, Sangwook; Polomski, Elisha; Woodward, Charles

    2007-05-01

    We will use the SPITZER to continue the ongoing monitoring of SN1987A, the youngest supernova remnant that is undergoing noticable evolutionary changes during the lifetime of the Great Observatories. At infrared wavelengths SN1987A provides a unique complimentary view of the interaction of the SN blast wave with the equatorial ring (ER). Dust in theÊ ERÊ is being swept up by the expanding shock and collisionally heated by the X-ray emitting gas observed with CHANDRA, giving rise to IR emission that reveals the composition and amount of dust that formed in the outflow of the presupernova star. The IR observations also provide a unique tool for studying physical processes - the collisional heating and destruction of dust -Ê in dusty X-ray emitting plasmas. Parts of the blast wave has penetrated the denser regions of the ER, creating the 'hotspots' observed with HUBBLE. IR line emission from these regions provide important information on the physical conditions and theÊelemental and dust composition in these cooling shocks. Additionally, the ejecta of the SN explosion contains dust that was observed to have formed about 530 days after the explosion. Its imminent interaction with the ring will heat up this dust, which will be observable with SPITZER. In addition to providing useful information on SN1987A and its environment, the proposed observations will address key global issues regarding the origin and evolution of dust in the universe: how much dust is formed in SN ejecta and in quiescent stellar outflows, and how efficiently grains are destroyed by interstellar shock waves.

  2. Hubble Reveals Structure Of Supernova 1987a Explosion Debris

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This Hubble Space Telescope picture shows Supernova 1987A and its neighborhood. The series of four panels shows the evolution of the SN 1987A debris from February 1994 to February 1996. Material from the stellar interior was ejected into space during the supernova explosion in February 1987. The explosion debris is expanding at nearly 6 million miles per hour. Ten years now after the explosion, this cosmic fireball is large enough --- about one-sixth of a light-year in diameter --- to be resolved from the Earth's orbit with the Hubble Space Telescope. The debris is resolved into two opposing blobs and is dim in the center. The apparent direction of ejection is the same as the short axis of the bright inner ring that surrounds the supernova. This suggests that the explosion is directed out of the plane of the ring. The ring is probably composed of materials lost by the pre-supernova star in the last stages of its evolution. Supernova 1987A is located 167,000 light-years away from Earth in the Large Magellanic Cloud. The telescope captured the images with the Wide Field and Planetary Camera 2. The central image of the supernova and the ring system was taken in light emitted by nitrogen gas (658 nanometers) on Sept. 24, 1994. The series of debris images were taken using a visible light filter of wavelength around 550 nanometers taken (from left to right) on Feb. 4, 1994, Sept. 24, 1994, March 5, 1995, and Feb. 6, 1996. Credit: Chun Shing Jason Pun (NASA/GSFC), Robert P. Kirshner (Harvard-Smithsonian Center for Astrophysics), and NASA

  3. Supernova 1987A: The Supernova of a Lifetime

    NASA Astrophysics Data System (ADS)

    Kirshner, Robert

    2017-01-01

    Supernova 1987A, the brightest supernova since Kepler's in 1604, was detected 30 years ago at a distance of 160 000 light years in the Large Magellanic Cloud, a satellite galaxy of the Milky Way. Visible with the naked eye and detected with the full range of technology constructed since Kepler's time, SN 1987A has continued to be a rich source of empirical information to help understand supernova explosions and their evolution into supernova remnants. While the light output has faded by a factor of 10 000 000 over those 30 years, instrumentation, like the Hubble Space Telescope, the Chandra X-ray Observatory, and the Atacama Large Millimeter Array has continued to improve so that this supernova continues to be visible in X-rays, ultraviolet light, visible light, infrared light and in radio emission. In this review, I will sketch what has been learned from these observations about the pre-supernova star and its final stages of evolution, the explosion physics, the energy sources for emission, and the shock physics as the expanding debris encounters the circumstellar ring that was created about 20 000 years before the explosion. Today, SN 1987A is making the transition to a supernova remnant- the energetics are no longer dominated by the radioactive elements produced in the explosion, but by the interaction of the expanding debris with the surrounding gas. While we are confident that the supernova explosion had its origin in gravitational collapse, careful searches for a compact object at the center of the remnant place upper limits of a few solar luminosities on that relic. Support for HST GO programs 13401 and 13405 was provided by NASA through grants from the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS5-26555.

  4. NASA plans for observations of SN1987A

    NASA Technical Reports Server (NTRS)

    Riegler, Guenter R.

    1987-01-01

    The scientific aims and technological implementation of NASA observations of SN 1987A are outlined in a status report. Key questions to be answered involve nucleosynthesis and the light curves of type II SN; the multilayer structure of the progenitor and the SNR; circumstellar gas, shock-wave, and dust formation; and the evolution of the core remnant. Consideration is given to continued SMM, IUE, Voyager UVS, and DSN observations; future space missions such as GRO, AXAF, and Rosat; balloon-borne gamma-ray, rocket-borne X-ray, and airborne IR observations; and the Science Communications Network and Data Archive.

  5. Bounds on hadronic axions from stellar evolution

    NASA Astrophysics Data System (ADS)

    Raffelt, Georg G.; Dearborn, David S. P.

    1987-10-01

    We consider in detail the effect of the emission of ``hadronic'' invisible axions (which do not couple to electrons) from the interior of stars on stellar evolution. To this end we calculate plasma emission rates for axions due to the Primakoff process for the full range of conditions encountered in a giant star. Much attention is paid to plasma, degeneracy, and screening effects. We reconsider the solar bound by evolving a 1.0 Msolar star to solar age and lowering the presolar helium abundance so as to obtain the correct present-day luminosity of the Sun. The previous bound on the axion-photon coupling of G9<~2.5 (corresponding to ma<~17 eV R where R is a model-dependent factor of order unity) is confirmed, where G9 is the coupling constant G in units of 10-9 GeV-1. We then follow the evolution of a 1.3Msolar star from zero age to the top of the giant branch. Helium ignites for all values of G consistent with the solar bound; however, the core mass, surface temperature, and luminosity at the helium flash exceed the standard values. The luminosity at the helium flash is larger than about twice the standard value unless G9<~0.3 (corresponding to ma<~2 eV R), in conflict with observational data, which are statistically weak, however. We find our most stringent limits from the helium-burning lifetime. In the absence of axion cooling we calculate a lifetime of 1.2×108 yr which corresponds well with the value 1.5×108 yr derived from the number of red giants in the ``clump'' of the open cluster M67 and with the value 1.3×108 yr derived from the number of such stars in the old galactic disk population. We obtain a conservative limit of G9<0.3 which, at saturation, results in a helium-burning lifetime an order of magnitude low. We believe that G9<~0.1 (ma<~0.7 eV R) is a reasonably safe limit which, if saturated, leads to a calculated helium-burning lifetime a factor of 2 below the observed value. Our results exclude the recently suggested possibility of detecting

  6. CAST constraints on the axion-electron coupling

    SciTech Connect

    Barth, K.; Davenport, M.; Lella, L. Di; Belov, A.; Beltran, B.; Carmona, J.M.; Dafni, T.; Galan, J.; García, J.A.; Braeuninger, H.; Englhauser, J.; Friedrich, P.; Collar, J.I.; Eleftheriadis, C.; Fanourakis, G.; Geralis, T.; Ferrer-Ribas, E.; Giomataris, I.; Fischer, H.; Franz, J. E-mail: Julia.Vogel@cern.ch; and others

    2013-05-01

    In non-hadronic axion models, which have a tree-level axion-electron interaction, the Sun produces a strong axion flux by bremsstrahlung, Compton scattering, and axio-recombination, the ''BCA processes.'' Based on a new calculation of this flux, including for the first time axio-recombination, we derive limits on the axion-electron Yukawa coupling g{sub ae} and axion-photon interaction strength g{sub aγ} using the CAST phase-I data (vacuum phase). For m{sub a}∼<10 meV/c{sup 2} we find g{sub aγ} g{sub ae} < 8.1 × 10{sup −23} GeV{sup −1} at 95% CL. We stress that a next-generation axion helioscope such as the proposed IAXO could push this sensitivity into a range beyond stellar energy-loss limits and test the hypothesis that white-dwarf cooling is dominated by axion emission.

  7. Constraints on axions from the extragalactic background light

    NASA Technical Reports Server (NTRS)

    Overduin, J. M.; Wesson, P. S.

    1993-01-01

    We consider the effect of dark matter in the form of multi-eV axions on the extragalactic background light. Our treatment differs from that of other workers in that we assume axions to be clustered in Galactic halos, with nonzero velocity dispersions. We also approach the problem in a fully general relativistic manner, treating the axion halos as luminous elements of a pressure-free perfect fluid in a standard Friedmann-Robertson-Walker universe. We find that the ultraviolet extragalactic background light places a firm upper limit of 9 eV on the axion rest energy, and that this drops to 4 eV for the simplest axion models, all but closing the multi-eV axion window (which begins at 3 eV). These results are close to earlier upper limits of 5 and 8 eV derived from the extragalactic background by Turner and Ressell, respectively. Although our methods differ somewhat from theirs, our findings support their conclusion that axions, if they exist, are likely to have rest energies well below the eV range.

  8. CAST constraints on the axion-electron coupling

    SciTech Connect

    None, None

    2013-05-09

    In non-hadronic axion models, which have a tree-level axion-electron interaction, the Sun produces a strong axion flux by bremsstrahlung, Compton scattering, and axio- recombination, the “BCA processes.” Based on a new calculation of this flux, including for the first time axio-recombination, we derive limits on the axion-electron Yukawa coupling gae and axion-photon interaction strength g using the CAST phase-I data (vacuum phase). For ma ≲ 10 meV/c2 we find gaγ gae < 8.1 × 10–23 GeV–1 at 95% CL. We stress that a next-generation axion helioscope such as the proposed IAXO could push this sensitivity into a range beyond stellar energy-loss limits and test the hypothesis that white-dwarf cooling is dominated by axion emission.

  9. Rapid ionization of the environment of SN 1987A

    NASA Technical Reports Server (NTRS)

    Raga, A. C.

    1987-01-01

    It has been suggested by some authors that IUE observations of the supernova SN 1987A show the presence of a strong component of the interstellar C IV 1550 and Si IV 1393 absorption lines at a velocity that approximately corresponds to the velocity of the LMC. It is possible that this component might come from originally neutral (or at least not very highly ionized) gas which has been photoionized by the initially very strong ionizing radiation field of the supernova. Theoretical considerations of this scenario lead to the study of fast (with velocities of about c) ionization fronts. It is shown that for reasonable model parameters it is possible to obtain considerably large C IV column densities, in agreement with the IUE observations. On the other hand, the models do not so easily predict the large Si IV column densities that are also obtained from the IUE observations. It is found that only models in which the interstellar medium surrounding SN 1987A is initially composed of already ionized hydrogen and helium predict substantial Si IV column densities. This result provides an interesting prediction of the ionization state of the environment of the presupernova star.

  10. Revisiting Supernova 1987A constraints on dark photons

    NASA Astrophysics Data System (ADS)

    Chang, Jae Hyeok; Essig, Rouven; McDermott, Samuel D.

    2017-01-01

    We revisit constraints on dark photons with masses below ˜ 100 MeV from the observations of Supernova 1987A. If dark photons are produced in sufficient quantity, they reduce the amount of energy emitted in the form of neutrinos, in conflict with observations. For the first time, we include the effects of finite temperature and density on the kinetic-mixing parameter, ɛ, in this environment. This causes the constraints on ɛ to weaken with the dark-photon mass below ˜ 15 MeV. For large-enough values of ɛ, it is well known that dark photons can be reabsorbed within the supernova. Since the rates of reabsorption processes decrease as the dark-photon energy increases, we point out that dark photons with energies above the Wien peak can escape without scattering, contributing more to energy loss than is possible assuming a blackbody spectrum. Furthermore, we estimate the systematic uncertainties on the cooling bounds by deriving constraints assuming one analytic and four different simulated temperature and density profiles of the proto-neutron star. Finally, we estimate also the systematic uncertainty on the bound by varying the distance across which dark photons must propagate from their point of production to be able to affect the star. This work clarifies the bounds from SN1987A on the dark-photon parameter space.

  11. SN 1987A: A Unique Laboratory for Shock Physics

    NASA Technical Reports Server (NTRS)

    Sonneborn, George

    2012-01-01

    Supernova 1987 A is the brightest and nearest supernova observed since Kepler's SN1604, and is the only one close enough to resolve and directly observe the temporal growth of the ejecta. Over the past 25 years, intensive observations across the electromagnetic spectrum with observatories on the ground (Australia Telescope Compact Array, Gemini-S, Magellan, VLT) and in space (IUE, KAO, CGRO, Hubble, Chandra, Spitzer, Herschel) have given us an unprecedented view of the evolution of the debris of the supernova and of its shock interaction with circumstellar matter. The outer supernova debris, now expanding with velocities -8000 km/s, encountered the relatively dense circumstellar ring formed by presupernova mass loss starting in 1994. The resulting shock interaction has been manifested by: rapidly brightening UV-optical "hotspots", an expanding X-ray ring. an expanding ring of knotty non-thermal radio emission, and a ring of thermal IR emission from silicate dust. The recent evolution of these emissions reveal new details about the shock interaction, circumstellar material, and the star that exploded. Certain critical problems about SN 1987 A, such as the still undiscovered compact object formed in the explosion and the structure of the central debris, require the capabilities of JWST.

  12. ALMA resolves SN 1987A's dust factory and particle accelerator

    NASA Astrophysics Data System (ADS)

    Indebetouw, Remy; SN1987A ALMA Cycle 0 Team

    2014-01-01

    SN1987A in the Large Magellanic Cloud is the closest supernova to earth to be observed since 1604, making it a unique laboratory to study supernova physics in real time. Among SN87A's remarkable properties are a very large mass of new dust forming in the supernova ejecta. This dust was inferred from Herschel data, but its location not proven since Herschel could not resolve the 1.8" diameter remnant. Another mystery is whether the explosion left behind a neutron star - neither pulsar nor pulsar wind nebula has been detected so far. Excess emission from a PWN should be easiest to detect at millimeter wavelengths, if it can be spatially resolved from the synchrotron-emitting supernova shock. We present the first spatially resolved images of SN1987A at 450um, 870um, and 1.4mm, observed with the Atacama Large Millimeter/Submillimeter Array (ALMA). ALMA resolves emission from the newly formed dust, unambiguously locating it within the ejecta, interior to the reverse shock. The shocked ring is also well-resolved, and separated spatially from the ejecta. The ring shows no spectral break compared to centimeter wavelengths, and no free-free or PWN emission is required to explain the data. We discuss physical properties of the components of the remnant determined from these high resolution ALMA images.

  13. SN 1987A: Chandra Witnesses the End of an Era

    NASA Astrophysics Data System (ADS)

    Frank, Kari A.; Burrows, David N.

    2016-04-01

    Due to its age and close proximity, the remnant of SN 1987A is the only supernova remnant in which we can study the early developmental stages in detail, providing insight into stellar evolution, the mechanisms of the supernova explosion, and the transition from supernova to supernova remnant as the debris begins to interact with the surrounding circumstellar medium (CSM). We present the latest results from 16 years of Chandra ACIS observations of SN 1987A, now covering 4600 - 10500 days after the supernova. At approximately day 7500, the east-west asymmetry of the ring began to reverse, while the spectra and soft X-ray light curve revealed that the increase in soft X-ray emission slowed dramatically. This suggests the average CSM density encountered by the blast wave decreased at this time, likely due to lack of new emission from the densest clumps in the equatorial ring. Since day 9700 the soft X-ray light curve has flattened and remained approximately constant, evidence that the blast wave has now left the dense material of the known equatorial ring and is beginning to probe the unknown territory beyond.

  14. The X-ray evolution of SNR 1987A

    NASA Astrophysics Data System (ADS)

    Burrows, David N.; Frank, Kari A.; Park, Sangwook; McCray, Richard; Zhekov, Svetozar

    2016-06-01

    Due to its age and close proximity, the remnant of SN 1987A is the only supernova remnant in which we can study the early developmental stages in detail, providing insight into stellar evolution, the mechanisms of the supernova explosion, and the transition from supernova to supernova remnant as the debris begins to interact with the surrounding circumstellar medium (CSM). We present the latest results from 16 years of Chandra ACIS observations of SN 1987A, now covering 4600-10600 days after the supernova. At approximately day 7500, the east-west asymmetry of the ring began to reverse, while the soft X-ray light curve switched from an exponential increase to a linear brightening. Since day 9700 the soft X-ray light curve has flattened and remained approximately constant at about 8×10^(12) ergs/cm^2/s, evidence that the blast wave has now left the dense material of the known equatorial ring and is beginning to probe the unknown territory beyond.

  15. Constraints on axions from π0 --> e+e- decay

    NASA Astrophysics Data System (ADS)

    Massó, Eduard

    1986-12-01

    The contribution of axions to π0 --> e+e- decay is considered. It is found that a recently proposed short-lived axion with a mass of 1.8 MeV induces a decay rate inconsistent with experimental observations. More generally, upper limits are placed on the mass of an axion that couples to first-generations fermions. On leave of absence from Department de Física Teòrica, Universitat Autònoma de Barcelona, Bellaterra, Spain.

  16. Dilution of axion dark radiation by thermal inflation

    NASA Astrophysics Data System (ADS)

    Hattori, Hironori; Kobayashi, Tatsuo; Omoto, Naoya; Seto, Osamu

    2015-07-01

    Axions in the Peccei-Quinn (PQ) mechanism provide a promising solution to the strong C P problem in the standard model of particle physics. Coherently generated PQ scalar fields could dominate the energy density in the early Universe and decay into relativistic axions, which would conflict with the current dark radiation constraints. We study the possibility that a thermal inflation driven by a U (1 ) gauged Higgs field dilutes such axions. A well-motivated extra gauged U (1 ) would be the local B -L symmetry. We also discuss the implication for the case of U (1 )B-L and an available baryogenesis mechanism in such cosmology.

  17. Suppressing the QCD axion abundance by hidden monopoles

    NASA Astrophysics Data System (ADS)

    Kawasaki, Masahiro; Takahashi, Fuminobu; Yamada, Masaki

    2016-02-01

    We study the Witten effect of hidden monopoles on the QCD axion dynamics, and show that its abundance as well as isocurvature perturbations can be significantly suppressed if there is a sufficient amount of hidden monopoles. When the hidden monopoles make up a significant fraction of dark matter, the Witten effect suppresses the abundance of axion with the decay constant smaller than 1012GeV. The cosmological domain wall problem of the QCD axion can also be avoided, relaxing the upper bound on the decay constant when the Peccei-Quinn symmetry is spontaneously broken after inflation.

  18. The cern axion solar telescope (CAST): an update

    NASA Astrophysics Data System (ADS)

    Andriamonje, S.; Arsov, V.; Aune, S.; Aune, T.; Avignone, F. T.; Barth, K.; Belov, A.; Beltran, B.; Bräuninger, H.; Carmona, J.; Cebrián, S.; Chesi, E.; Cipolla, G.; Collar, J.; Creswick, R.; Dafni, T.; Davenport, M.; Dedousis, S.; Delattre, M.; Delbart, A.; Deoliveira, R.; Dilella, L.; Eleftheriadis, C.; Engelhauser, J.; Fanourakis, G.; Farach, H.; Ferrer, E.; Fischer, H.; Formenti, F.; Franz, J.; Friedrich, P.; Geralis, T.; Giomataris, I.; Gninenko, S.; Golubev, N.; Hartmann, R.; Hasinoff, M.; Heinsius, F.-H.; Hoffmann, D. H. H.; Irastorza, I.; Jacoby, J.; Joux, J.-N.; Kang, D.; Königsmann, K.; Kotthaus, R.; Krcmar, M.; Kuster, M.; Lakic, B.; Lasseur, C.; Liolios, A.; Lippitsch, A.; Ljubicic, A.; Lutz, G.; Luzon, G.; Morales, A.; Morales, J.; Mutterer, M.; Nikolaidis, A.; de Solorzano, A. Ortiz; Papaevangelou, T.; Placci, A.; Raffelt, G.; Rammos, P.; Robert, J. P.; Ruz, J.; Sarsa, M.; Schill, C.; Serber, W.; Semertzidis, Y.; Vieira, J.; Villar, J.; Vullierme, B.; Walckiers, L.; Zioutas, K.

    2005-01-01

    The CERN Axion Solar Telescope (CAST), a 10 meter long LHC, 9 Tesla, test magnet is mounted on a moving platform that tracks the sun about 1.5 hours during sunrise, again during sunset. It moves ±80 vertically and ±400 horizontally. It has been taking data continuously since July 10, 2003. Data analyzed thus far yield an upper bound on the photon-axion coupling constant, gaγγ ⩽ 3 × 10-10 GeV-1 for axion masses less than 5 × 10-2 eV.

  19. Search for sub-eV mass solar axions by the CERN Axion Solar Telescope with 3He buffer gas.

    PubMed

    Arik, M; Aune, S; Barth, K; Belov, A; Borghi, S; Bräuninger, H; Cantatore, G; Carmona, J M; Cetin, S A; Collar, J I; Dafni, T; Davenport, M; Eleftheriadis, C; Elias, N; Ezer, C; Fanourakis, G; Ferrer-Ribas, E; Friedrich, P; Galán, J; García, J A; Gardikiotis, A; Gazis, E N; Geralis, T; Giomataris, I; Gninenko, S; Gómez, H; Gruber, E; Guthörl, T; Hartmann, R; Haug, F; Hasinoff, M D; Hoffmann, D H H; Iguaz, F J; Irastorza, I G; Jacoby, J; Jakovčić, K; Karuza, M; Königsmann, K; Kotthaus, R; Krčmar, M; Kuster, M; Lakić, B; Laurent, J M; Liolios, A; Ljubičić, A; Lozza, V; Lutz, G; Luzón, G; Morales, J; Niinikoski, T; Nordt, A; Papaevangelou, T; Pivovaroff, M J; Raffelt, G; Rashba, T; Riege, H; Rodríguez, A; Rosu, M; Ruz, J; Savvidis, I; Silva, P S; Solanki, S K; Stewart, L; Tomás, A; Tsagri, M; van Bibber, K; Vafeiadis, T; Villar, J A; Vogel, J K; Yildiz, S C; Zioutas, K

    2011-12-23

    The CERN Axion Solar Telescope (CAST) has extended its search for solar axions by using (3)He as a buffer gas. At T=1.8 K this allows for larger pressure settings and hence sensitivity to higher axion masses than our previous measurements with (4)He. With about 1 h of data taking at each of 252 different pressure settings we have scanned the axion mass range 0.39 eV≲m(a)≲0.64 eV. From the absence of excess x rays when the magnet was pointing to the Sun we set a typical upper limit on the axion-photon coupling of g(aγ)≲2.3×10(-10) GeV(-1) at 95% C.L., the exact value depending on the pressure setting. Kim-Shifman-Vainshtein-Zakharov axions are excluded at the upper end of our mass range, the first time ever for any solar axion search. In the future we will extend our search to m(a)≲1.15 eV, comfortably overlapping with cosmological hot dark matter bounds.

  20. Vacuum statistics and stability in axionic landscapes

    SciTech Connect

    Masoumi, Ali; Vilenkin, Alexander E-mail: vilenkin@cosmos.phy.tufts.edu

    2016-03-01

    We investigate vacuum statistics and stability in random axionic landscapes. For this purpose we developed an algorithm for a quick evaluation of the tunneling action, which in most cases is accurate within 10%. We find that stability of a vacuum is strongly correlated with its energy density, with lifetime rapidly growing as the energy density is decreased. On the other hand, the probability P(B) for a vacuum to have a tunneling action B greater than a given value declines as a slow power law in B. This is in sharp contrast with the studies of random quartic potentials, which found a fast exponential decline of P(B). Our results suggest that the total number of relatively stable vacua (say, with B>100) grows exponentially with the number of fields N and can get extremely large for N∼> 100. The problem with this kind of model is that the stable vacua are concentrated near the absolute minimum of the potential, so the observed value of the cosmological constant cannot be explained without fine-tuning. To address this difficulty, we consider a modification of the model, where the axions acquire a quadratic mass term, due to their mixing with 4-form fields. This results in a larger landscape with a much broader distribution of vacuum energies. The number of relatively stable vacua in such models can still be extremely large.

  1. Dielectric Haloscopes: A New Way to Detect Axion Dark Matter

    NASA Astrophysics Data System (ADS)

    Caldwell, Allen; Dvali, Gia; Majorovits, Béla; Millar, Alexander; Raffelt, Georg; Redondo, Javier; Reimann, Olaf; Simon, Frank; Steffen, Frank; Madmax Working Group

    2017-03-01

    We propose a new strategy to search for dark matter axions in the mass range of 40 - 400 μ eV by introducing dielectric haloscopes, which consist of dielectric disks placed in a magnetic field. The changing dielectric media cause discontinuities in the axion-induced electric field, leading to the generation of propagating electromagnetic waves to satisfy the continuity requirements at the interfaces. Large-area disks with adjustable distances boost the microwave signal (10-100 GHz) to an observable level and allow one to scan over a broad axion mass range. A sensitivity to QCD axion models is conceivable with 80 disks of 1 m2 area contained in a 10 T field.

  2. Periodic signatures for the detection of cosmic axions

    NASA Technical Reports Server (NTRS)

    Turner, Michael S.

    1990-01-01

    In a Sikivie-type cosmic-axion detector, both the width and position of the microwave signal due to axion-photon conversion depend upon the motions of the earth. Due to the orbital and rotational motions of the earth they will be modulated with periods of 1 sidereal day and 1 sidereal year, with amplitudes of about 0.1 percent and 5 percent respectively. Because of the intrinsically-high energy resolution of Sikivie-type detectors such periodic variations should be detectable. Such modulations would not only aid in confirming the detection of cosmic axions, but, if found, would also provide important information about the distribution of axions in the halo.

  3. Constraints on axion inflation from the weak gravity conjecture

    SciTech Connect

    Rudelius, Tom

    2015-09-08

    We derive constraints facing models of axion inflation based on decay constant alignment from a string-theoretic and quantum gravitational perspective. In particular, we investigate the prospects for alignment and ‘anti-alignment’ of C{sub 4} axion decay constants in type IIB string theory, deriving a strict no-go result in the latter case. We discuss the relationship of axion decay constants to the weak gravity conjecture and demonstrate agreement between our string-theoretic constraints and those coming from the ‘generalized’ weak gravity conjecture. Finally, we consider a particular model of decay constant alignment in which the potential of C{sub 4} axions in type IIB compactifications on a Calabi-Yau three-fold is dominated by contributions from D7-branes, pointing out that this model evades some of the challenges derived earlier in our paper but is highly constrained by other geometric considerations.

  4. Constraints on axion inflation from the weak gravity conjecture

    SciTech Connect

    Rudelius, Tom

    2015-09-01

    We derive constraints facing models of axion inflation based on decay constant alignment from a string-theoretic and quantum gravitational perspective. In particular, we investigate the prospects for alignment and 'anti-alignment' of C{sub 4} axion decay constants in type IIB string theory, deriving a strict no-go result in the latter case. We discuss the relationship of axion decay constants to the weak gravity conjecture and demonstrate agreement between our string-theoretic constraints and those coming from the 'generalized' weak gravity conjecture. Finally, we consider a particular model of decay constant alignment in which the potential of C{sub 4} axions in type IIB compactifications on a Calabi-Yau three-fold is dominated by contributions from D7-branes, pointing out that this model evades some of the challenges derived earlier in our paper but is highly constrained by other geometric considerations.

  5. Axion cosmology and the energy scale of inflation

    SciTech Connect

    Hertzberg, Mark P.; Tegmark, Max; Wilczek, Frank

    2008-10-15

    We survey observational constraints on the parameter space of inflation and axions and map out two allowed windows: the classic window and the inflationary anthropic window. The cosmology of the latter is particularly interesting; inflationary axion cosmology predicts the existence of isocurvature fluctuations in the cosmic microwave background, with an amplitude that grows with both the energy scale of inflation and the fraction of dark matter in axions. Statistical arguments favor a substantial value for the latter, and so current bounds on isocurvature fluctuations imply tight constraints on inflation. For example, an axion Peccei-Quinn scale of 10{sup 16} GeV excludes any inflation model with energy scale >3.8x10{sup 14} GeV (r>2x10{sup -9}) at 95% confidence, and so implies negligible gravitational waves from inflation, but suggests appreciable isocurvature fluctuations.

  6. High-scale axions without isocurvature from inflationary dynamics

    DOE PAGES

    Kearney, John; Orlofsky, Nicholas; Pierce, Aaron

    2016-05-31

    Observable primordial tensor modes in the cosmic microwave background (CMB) would point to a high scale of inflation HI. If the scale of Peccei-Quinn (PQ) breaking fa is greater than HI/2π, CMB constraints on isocurvature naively rule out QCD axion dark matter. This assumes the potential of the axion is unmodified during inflation. We revisit models where inflationary dynamics modify the axion potential and discuss how isocurvature bounds can be relaxed. We find that models that rely solely on a larger PQ-breaking scale during inflation fI require either late-time dilution of the axion abundance or highly super-Planckian fI that somehowmore » does not dominate the inflationary energy density. Models that have enhanced explicit breaking of the PQ symmetry during inflation may allow fa close to the Planck scale. Lastly, avoiding disruption of inflationary dynamics provides important limits on the parameter space.« less

  7. Prospects for solar axion searches with crystals via Bragg scattering

    NASA Astrophysics Data System (ADS)

    Irastorza, I. G.; Cebrián, S.; García, E.; González, D.; Morales, A.; Morales, J.; de Solórzano, A. Ortiz; Peruzzi, A.; Puimedón, J.; Sarsa, M. L.; Scopel, S.; Villar, J. A.

    2000-06-01

    A calculation of the expected signal due to Primakov coherent conversion of solar axions into photons via Bragg scattering in several solid-state detectors is presented and compared with present and future experimental sensitivities. The axion window ma >~ 0.03 eV (not accessible at present by other techniques) could be explored in the foreseeable future with crystal detectors to constrain the axion-photon coupling constant gaγγ below the latest bounds coming from helioseismology. On the contrary a positive signal in the sensitivity region of such devices would imply revisiting other more stringent astrophysical limits derived for the same range of the axion mass. The application of this technique to the COSME germanium detector which is taking data at the Canfranc Underground Laboratory leads to a 95% C.L. limit gaγγ <= 2.8 × 10-9 GeV-1

  8. First results from the CERN axion solar telescope.

    PubMed

    Zioutas, K; Andriamonje, S; Arsov, V; Aune, S; Autiero, D; Avignone, F T; Barth, K; Belov, A; Beltrán, B; Bräuninger, H; Carmona, J M; Cebrián, S; Chesi, E; Collar, J I; Creswick, R; Dafni, T; Davenport, M; Di Lella, L; Eleftheriadis, C; Englhauser, J; Fanourakis, G; Farach, H; Ferrer, E; Fischer, H; Franz, J; Friedrich, P; Geralis, T; Giomataris, I; Gninenko, S; Goloubev, N; Hasinoff, M D; Heinsius, F H; Hoffmann, D H H; Irastorza, I G; Jacoby, J; Kang, D; Königsmann, K; Kotthaus, R; Krcmar, M; Kousouris, K; Kuster, M; Lakić, B; Lasseur, C; Liolios, A; Ljubicić, A; Lutz, G; Luzón, G; Miller, D W; Morales, A; Morales, J; Mutterer, M; Nikolaidis, A; Ortiz, A; Papaevangelou, T; Placci, A; Raffelt, G; Ruz, J; Riege, H; Sarsa, M L; Savvidis, I; Serber, W; Serpico, P; Semertzidis, Y; Stewart, L; Vieira, J D; Villar, J; Walckiers, L; Zachariadou, K

    2005-04-01

    Hypothetical axionlike particles with a two-photon interaction would be produced in the sun by the Primakoff process. In a laboratory magnetic field ("axion helioscope"), they would be transformed into x-rays with energies of a few keV. Using a decommissioned Large Hadron Collider test magnet, the CERN Axion Solar Telescope ran for about 6 months during 2003. The first results from the analysis of these data are presented here. No signal above background was observed, implying an upper limit to the axion-photon coupling g(agamma)<1.16x10(-10) GeV-1 at 95% C.L. for m(a) less, similar 0.02 eV. This limit, assumption-free, is comparable to the limit from stellar energy-loss arguments and considerably more restrictive than any previous experiment over a broad range of axion masses.

  9. High-scale axions without isocurvature from inflationary dynamics

    NASA Astrophysics Data System (ADS)

    Kearney, John; Orlofsky, Nicholas; Pierce, Aaron

    2016-05-01

    Observable primordial tensor modes in the cosmic microwave background (CMB) would point to a high scale of inflation HI . If the scale of Peccei-Quinn (PQ) breaking fa is greater than H/I 2 π , CMB constraints on isocurvature naively rule out QCD axion dark matter. This assumes the potential of the axion is unmodified during inflation. We revisit models where inflationary dynamics modify the axion potential and discuss how isocurvature bounds can be relaxed. We find that models that rely solely on a larger PQ-breaking scale during inflation fI require either late-time dilution of the axion abundance or highly super-Planckian fI that somehow does not dominate the inflationary energy density. Models that have enhanced explicit breaking of the PQ symmetry during inflation may allow fa close to the Planck scale. Avoiding disruption of inflationary dynamics provides important limits on the parameter space.

  10. Multiple-cavity detector for axion dark matter search

    NASA Astrophysics Data System (ADS)

    Jeong, Junu; Ahn, Saebyeok; Youn, Sungwoo; Semertzidis, Yannis

    2017-01-01

    Exploring higher frequency regions in axion dark matter searches using microwave cavity detectors requires a smaller size of the cavity as the TM010 frequency scales inversely with the cavity radius. One of the intuitive ways to make a maximal use of a given magnet volume, and thereby to increase the experimental sensitivity, is to bundle multiple cavities together and combine their individual outputs ensuring phase-matching of the coherent axion signal. The Experiment of Axion Search aT CAPP (EAST-C) is a dedicated project to develop multiple-cavity systems at the Centre for Axion and Precision Physics Research (CAPP) of the Institute for Basic Science (IBS). In this poster, the conceptual design of the phase-matching mechanism and experimental feasibility using a quadruple-cavity system will be presented.

  11. Dielectric Haloscopes: A New Way to Detect Axion Dark Matter.

    PubMed

    Caldwell, Allen; Dvali, Gia; Majorovits, Béla; Millar, Alexander; Raffelt, Georg; Redondo, Javier; Reimann, Olaf; Simon, Frank; Steffen, Frank

    2017-03-03

    We propose a new strategy to search for dark matter axions in the mass range of 40-400 μeV by introducing dielectric haloscopes, which consist of dielectric disks placed in a magnetic field. The changing dielectric media cause discontinuities in the axion-induced electric field, leading to the generation of propagating electromagnetic waves to satisfy the continuity requirements at the interfaces. Large-area disks with adjustable distances boost the microwave signal (10-100 GHz) to an observable level and allow one to scan over a broad axion mass range. A sensitivity to QCD axion models is conceivable with 80 disks of 1  m^{2} area contained in a 10 T field.

  12. The spectral index and its running in axionic curvaton

    SciTech Connect

    Takahashi, Fuminobu

    2013-06-01

    We show that a sizable running spectral index suggested by the recent SPT data can be explained in the axionic curvaton model with a potential that consists of two sinusoidal contributions of different height and period. We find that the running spectral index is generically given by dn{sub s}/dln k ∼ 2π/ΔN (n{sub s}−1), where ΔN is the e-folds during one period of modulations. In the string axiverse, axions naturally acquire a mass from multiple contributions, and one of the axions may be responsible for the density perturbations with a sizable running spectral index via the curvaton mechanism. We note that the axionic curvaton model with modulations can also accommodate the red-tilted spectrum with a negligible running, without relying on large-field inflation.

  13. Dielectric haloscopes to search for axion dark matter: theoretical foundations

    NASA Astrophysics Data System (ADS)

    Millar, Alexander J.; Raffelt, Georg G.; Redondo, Javier; Steffen, Frank D.

    2017-01-01

    We study the underlying theory of dielectric haloscopes, a new way to detect dark matter axions. When an interface between different dielectric media is inside a magnetic field, the oscillating axion field acts as a source of electromagnetic waves, which emerge in both directions perpendicular to the surface. The emission rate can be boosted by multiple layers judiciously placed to achieve constructive interference and by a large transverse area. Starting from the axion-modified Maxwell equations, we calculate the efficiency of this new dielectric haloscope approach. This technique could potentially search the unexplored high-frequency range of 10–100 GHz (axion mass 40–400 μeV), where traditional cavity resonators have difficulties reaching the required volume.

  14. SN1987A: The Birth of a Supernova Remnant

    NASA Technical Reports Server (NTRS)

    McCray, Richard

    2003-01-01

    This grant was intended to support the development of theoretical models needed to interpret and understand the observations by the Hubble Space Telescope and the Chandra X-ray telescope of the rapidly developing remnant of Supernova 1987A. In addition, we carried out a few investigations of related topics. The project was spectacularly successful. The models that we developed provide the definitive framework for predicting and interpreting this phenomenon. Following is a list of publications based on our work. Some of these papers include results of both theoretical modeling supported by this project and also analysis of data supported by the Space Telescope Science Institute and the Chandra X-ray Observatory. We first list papers published in refereed journals, then conference proceedings and book chapters, and also an educational web site.

  15. Herschel Detects a Massive Dust Reservoir in Supernova 1987A

    NASA Technical Reports Server (NTRS)

    Matsuura, M.; Dwek, E.; Meixner, M.; Otsuka, M.; Babler, B.; Barlow, M. J.; Roman-Duval, J.; Engelbracht, C.; Sandstrom K.; Lakicevic, M.; vanLoon, J. Th.; Sonneborn, G.; Clayton, G. C.; Long, K. S.; Lundqvist, P.; Nozawa, T.; Gordon, K. D.; Hony, S.; Okumura, K.; Misselt, K. A.; Montiel, E.; Sauvage, M.

    2011-01-01

    We report far-infrared and submillimeter observations of Supernova 1987A, the star that exploded on February 23, 1987 in the Large Magellanic Cloud, a galaxy located 160,000 light years away. The observations reveal the presence of a population of cold dust grains radiating with a temperature of approx.17-23 K at a rate of about 220 stellar luminosity. The intensity and spectral energy distribution of the emission suggests a dust mass of approx.0.4-0.7 stellar mass. The radiation must originate from the SN ejecta and requires the efficient precipitation of all refractory material into dust. Our observations imply that supernovae can produce the large dust masses detected in young galaxies at very high red shifts.

  16. When will a pulsar in supernova 1987a be seen?

    PubMed

    Michel, F C; Kennel, C F; Fowler, W A

    1987-11-13

    The means by which a pulsar might be detected in the remnant of supernova 1987a in the Large Magelanic Cloud is examined. One possibility is that the slower-than-radioactive decay typically seen in the type II light curves is itself the sign of powering by the underlying pulsar, with the decline representing not the spinning down of the pulsar but rather the declining nebular opacity that would allow increasing amounts of the energy to escape as gamma rays. The test of this hypothesis (if the supernova conforms to type II expectations) would be to look for the "missing" energy in the form of those gamma rays that escape from the remnant instead of powering it.

  17. When will a pulsar in supernova 1987a be seen?

    NASA Technical Reports Server (NTRS)

    Michel, F. Curtis; Kennel, C. F.; Fowler, William A.

    1987-01-01

    The means by which a pulsar might be detected in the remnant of supernova 1987a in the Large Magellanic Cloud is examined. One possibility is that the slower-than-radioactive decay typically seen in the type II light curves is itself the sign of powering by the underlying pulsar, with the decline representing not the spinning down of the pulsar but rather the declining nebular opacity that would allow increasing amounts of the energy to escape as gamma rays. The test of this hypothesis (if the supernova conforms to type II expectations) would be to look for the 'missing' energy in the form of those gamma rays that escape from the remnant instead of powering it.

  18. Observing supernova 1987A with the refurbished Hubble Space Telescope.

    PubMed

    France, Kevin; McCray, Richard; Heng, Kevin; Kirshner, Robert P; Challis, Peter; Bouchet, Patrice; Crotts, Arlin; Dwek, Eli; Fransson, Claes; Garnavich, Peter M; Larsson, Josefin; Lawrence, Stephen S; Lundqvist, Peter; Panagia, Nino; Pun, Chun S J; Smith, Nathan; Sollerman, Jesper; Sonneborn, George; Stocke, John T; Wang, Lifan; Wheeler, J Craig

    2010-09-24

    Observations with the Hubble Space Telescope (HST), conducted since 1990, now offer an unprecedented glimpse into fast astrophysical shocks in the young remnant of supernova 1987A. Comparing observations taken in 2010 with the use of the refurbished instruments on HST with data taken in 2004, just before the Space Telescope Imaging Spectrograph failed, we find that the Lyα and Hα lines from shock emission continue to brighten, whereas their maximum velocities continue to decrease. We observe broad, blueshifted Lyα, which we attribute to resonant scattering of photons emitted from hot spots on the equatorial ring. We also detect N v λλ1239, 1243 angstrom line emission, but only to the red of Lyα. The profiles of the N v lines differ markedly from that of Hα, suggesting that the N4+ ions are scattered and accelerated by turbulent electromagnetic fields that isotropize the ions in the collisionless shock.

  19. Herschel detects a massive dust reservoir in supernova 1987A.

    PubMed

    Matsuura, M; Dwek, E; Meixner, M; Otsuka, M; Babler, B; Barlow, M J; Roman-Duval, J; Engelbracht, C; Sandstrom, K; Lakićević, M; van Loon, J Th; Sonneborn, G; Clayton, G C; Long, K S; Lundqvist, P; Nozawa, T; Gordon, K D; Hony, S; Panuzzo, P; Okumura, K; Misselt, K A; Montiel, E; Sauvage, M

    2011-09-02

    We report far-infrared and submillimeter observations of supernova 1987A, the star whose explosion was observed on 23 February 1987 in the Large Magellanic Cloud, a galaxy located 160,000 light years away. The observations reveal the presence of a population of cold dust grains radiating with a temperature of about 17 to 23 kelvin at a rate of about 220 times the luminosity of the Sun. The intensity and spectral energy distribution of the emission suggest a dust mass of about 0.4 to 0.7 times the mass of the Sun. The radiation must originate from the supernova ejecta and requires the efficient precipitation of all refractory material into dust. Our observations imply that supernovae can produce the large dust masses detected in young galaxies at very high redshifts.

  20. Line fluorescence from the ring around supernova 1987A

    NASA Technical Reports Server (NTRS)

    Dwek, Eli; Felten, James E.

    1992-01-01

    Observations in lambda 5007 which reveal an ellipse of line emission around SN 1987A are reviewed. A simple expression for the rate at which the kinematically accessible paraboloid sweeps over the length of a thin uniform circular ring is derived, and a simple integral expression for the light curve F(t) of a fluorescent line in terms of epsilon(t), the local line emissivity, is presented. Many simple examples of the relationship between epsilon(t) and F(t) are graphed, and the results are used to deduce the characteristics of the local emissivity functions which produce the best fit to the observed semiforbidden N III 1750 and N V 1240 light curves. The N III and N V light curves are inverted to find the functions epsilon(t) which give best fits to the observations.

  1. THE DESTRUCTION OF THE CIRCUMSTELLAR RING OF SN 1987A

    SciTech Connect

    Fransson, Claes; Migotto, Katia; Lundqvist, Peter; Taddia, Francesco; Sollerman, Jesper; Larsson, Josefin; Pesce, Dominic; Chevalier, Roger A.; Challis, Peter; Kirshner, Robert P.; France, Kevin; Leibundgut, Bruno; Spyromilio, Jason; McCray, Richard; Jerkstrand, Anders; Mattila, Seppo; Smith, Nathan; Wheeler, J. Craig; Crotts, Arlin; Garnavich, Peter; and others

    2015-06-10

    We present imaging and spectroscopic observations with Hubble Space Telescope and Very Large Telescope of the ring of SN 1987A from 1994 to 2014. After an almost exponential increase of the shocked emission from the hotspots up to day ∼8000 (∼2009), both this and the unshocked emission are now fading. From the radial positions of the hotspots we see an acceleration of these up to 500–1000 km s{sup −1}, consistent with the highest spectroscopic shock velocities from the radiative shocks. In the most recent observations (2013 and 2014), we find several new hotspots outside the inner ring, excited by either X-rays from the shocks or by direct shock interaction. All of these observations indicate that the interaction with the supernova ejecta is now gradually dissolving the hotspots. We predict, based on the observed decay, that the inner ring will be destroyed by ∼2025.

  2. Light echoes - supernovae 1987A and 1986G

    SciTech Connect

    Schaefer, B.E.

    1987-12-01

    The sudden brilliance of a supernova (SN) eruption will be reflected on surrounding dust grains to create a phantom nebula. The paper presents a series of calculations in which the apparent brightness of this light echo is predicted for a variety of situations where the dust is part of the interstellar medium (ISM). It is found that the supernova 1987 A will have a very bright echo off the ISM that may perhaps be visible with binoculars for many years. At a time of 400 days past maximum, the SN 1986G is found to be 2.7 mag brighter than would be predicted by an extrapolation of its light curve. This unique property has an easy explanation as a light echo off the dust in the dust lane of Cen A. 24 references.

  3. The Emission Line Spectrum of SN 1987A

    NASA Astrophysics Data System (ADS)

    Li, Hongwei

    With Supernova 1987A (SN 1987A) we have an unprecedented view of the optical and infrared spectrum of a supernova. Here, we develop the basic theory to describe the emission line spectrum of a supernova in the nebular phase and we apply this theory to three of the most prominent important emission line systems: the (OI) lambda lambda 6300, 6364 doublet; the (Ca II) lambda lambda 7300 and Ca II lambda lambda 8600 system, and the optical and infrared lines of Fe, Co and Ni. As a first example, we analyze the evolution of the (OI) lambda lambda 6300, 6364 doublet. We find that the ratio of the mass of OI to its filling factor, M_{rm O}/f_{rm O} , must be about 11, so that for a reasonable value of M_{rm O} = 1.3 Modot, f _{rm O} ~ 0.12. Second, we analyze the near-infrared emission lines of Ca II. We find that UV pumping is required for t _sp{~}> 350 days to fit the (Ca II) lambda lambda 7300 and Ca II lambda lambda 8600 lines. Moreover, we find that the Ca II lines came from the primordial gas rather than the freshly nucleosynthesised products. Iron, cobalt and nickel lines are extremely important in understanding the physical processes in the envelope of SN 1987A. Radioactive decays of ^{56 }Co, 57Co, 44Ti and ^ {22}Na are the dominant energy sources of radiation of SN 1987A in the nebular phase. We find that the nickel-cobalt-iron clumps must have expanded by a factor ~30 or more during a few weeks after outburst as a result of heating by 56Ni and ^{56 }Co decay. This expansion leads to a large filling factor of iron clumps, f_{ rm Fe}~ 0.5, and a small filling factor, f_{rm H,He}~ 0.1-0.2, for primordial gas, such as H, He, etc. From the conditions of thermal equilibrium and ionization equilibrium we determine the evolution of temperature and ionization of the iron clumps. We can account for the light curves (for 150 days_sp ~> t_sp ~> 2 yr) of almost all the observed emission lines of Fe I, Fe II, Co I, Co II, Ni I and Ni II within the uncertainties in

  4. Supernova 1987A Interpreted through the SLIP Pulsar Model

    NASA Astrophysics Data System (ADS)

    Middleditch, John

    2010-01-01

    The model of pulsar emission through superluminally induced polarization currents (SLIP) predicts that pulsations produced by such currents, induced by a rotating, magnetized body at many light cylinder radii, as would be the case for a neutron star born within any star of >1.5 solar masses, will drive pulsations close to the axis of rotation. Such highly collimated pulsations (<= 1 in 10,000), and the similarly collimated jets of particles which it drove, including 1e-6 solar masses with velocities of up to 0.95 c, were responsible for the features of its very early light curve (days 3 - 20), the "Mystery Spot," observed slightly later (days 30 - 50 and >), and later, in less collimated form, the bipolarity of SN 1987A itself. The pulsations and jet interacted with circumstellar material (CM), to produce features observed in the very early light curve which correspond to: 1) the entry of the pulsed beam into the CM; 2) the entry of the 0.95 c particles into the CM; 3) the exit of the pulsed beam from the CM (with contributions in the B and I bands -- the same as later inferred/observed for its 2.14 ms pulsations); and 4) the exit of the fastest particles from the CM. Because of the energy requirements of the jet in these early stages, the spindown required of its pulsar could exceed 1e-5 Hz/s at a rotation rate of 500 Hz. There is no reason to suggest that this mechanism is not universally applicable to all SNe with gaseous remnants remaining, and thus SN 1987A is the Rosetta Stone for 99% of SNe, gamma-ray bursts, and millisecond pulsars. This work was supported in part by the Department of Energy through the Los Alamos Directed Research Grant DR20080085.

  5. Proposal for Axion Dark Matter Detection Using an LC Circuit

    DOE PAGES

    Sikivie, P.; Sullivan, N.; Tanner, D. B.

    2014-03-01

    Here, we show that dark matter axions cause an oscillating electric current to flow along magnetic field lines. The oscillating current induced in a strong magnetic field B→ 0 produces a small magnetic field B→ a. We propose to amplify and detect B→ a using a cooled LC circuit and a very sensitive magnetometer. This appears to be a suitable approach to searching for axion dark matter in the 10–7 to 10–9 eV mass range.

  6. Dark radiation constraints on mixed Axion/Neutralino dark matter

    SciTech Connect

    Bae, Kyu Jung; Baer, Howard; Lessa, Andre E-mail: baer@nhn.ou.edu

    2013-04-01

    Recent analyses of CMB data combined with the measurement of BAO and H{sub 0} show that dark radiation — parametrized by the apparent number of additional neutrinos ΔN{sub eff} contributing to the cosmic expansion — is bounded from above by about ΔN{sub eff}∼<1.6 at 95% CL. We consider the mixed axion/neutralino cold dark matter scenario which arises in R-parity conserving supersymmetric (SUSY) models wherein the strong CP problem is solved by hadronic axions with a concommitant axion(a)/saxion(s)/axino(ã) supermultiplet. Our new results include improved calculations of thermal axion and saxion production and include effects of saxion decay to axinos and axions. We show that the above bound on ΔN{sub eff} is easily satisfied if saxions are mainly thermally produced and m{sub LSP} < m{sub ã}∼axions. Furthermore we show that scenarios with mixed neutralino/axion dark matter are highly constrained by combined CMB, BBN and Xe-100 constraints. In particular, supersymmetric models with a standard overabundance of neutralino dark matter are excluded for all values of the Peccei-Quinn breaking scale. Next generation WIMP direct detection experiments may be able to discover or exclude mixed axion-neutralino CDM scenarios where s → aa is the dominant saxion decay mode.

  7. Class of Einstein-Maxwell-dilaton-axion space-times

    SciTech Connect

    Matos, Tonatiuh; Miranda, Galaxia; Sanchez-Sanchez, Ruben; Wiederhold, Petra

    2009-06-15

    We use the harmonic maps ansatz to find exact solutions of the Einstein-Maxwell-dilaton-axion (EMDA) equations. The solutions are harmonic maps invariant to the symplectic real group in four dimensions Sp(4,R){approx}O(5). We find solutions of the EMDA field equations for the one- and two-dimensional subspaces of the symplectic group. Specially, for illustration of the method, we find space-times that generalize the Schwarzschild solution with dilaton, axion, and electromagnetic fields.

  8. Supersymmetric axion grand unified theories and their predictions

    NASA Astrophysics Data System (ADS)

    Co, Raymond T.; D'Eramo, Francesco; Hall, Lawrence J.

    2016-10-01

    We introduce a class of unified supersymmetric axion theories with unified and Peccei-Quinn (PQ) symmetries broken by the same set of fields at a scale ˜2 ×1 016 GeV . A typical domain wall number of order 30 leads to an axion decay constant fa of order 1 015 GeV . Inflation generates a large saxion condensate, giving a reheat temperature TR below the QCD scale for supersymmetry breaking of order 1-10 TeV. Axion field oscillations commence in the saxion matter-dominated era near the QCD scale, and recent lattice computations of the temperature dependence of the axion mass in this era allow a controlled calculation of the axion dark matter abundance. The observed abundance can be successfully explained by an initial axion misalignment angle of order unity, θi˜1 . A highly correlated set of predictions is discussed for fa, TR, the supersymmetric Higgs mass parameter μ , the amount of dark radiation Δ Neff, the proton decay rate Γ (p →e+π0), isocurvature density perturbations and the B mode of the cosmic microwave background. The last two are particularly interesting when the energy scale of inflation is also of order 1 016 GeV .

  9. Direct detection of dark matter axions with directional sensitivity

    SciTech Connect

    Irastorza, Igor G.; García, Juan A. E-mail: jagarpas@unizar.es

    2012-10-01

    We study the directional effect of the expected axion dark matter signal in a resonant cavity of an axion haloscope detector, for cavity geometries not satisfying the condition that the axion de Broglie wavelength λ{sub a} is sufficiently larger than the cavity dimensions L for a fully coherent conversion, i.e. λ{sub a}∼>2πL. We focus on long thin cavities immersed in dipole magnets and find, for appropriately chosen cavity lengths, an O(1) modulation of the signal with the cavity orientation with respect the momentum distribution of the relic axion background predicted by the isothermal sphere model for the galactic dark matter halo. This effect can be exploited to design directional axion dark matter detectors, providing an unmistakable signature of the extraterrestrial origin of a possible positive detection. Moreover, the precise shape of the modulation may give information of the galactic halo distribution and, for specific halo models, give extra sensitivity for higher axion masses.

  10. Second-generation dark-matter axion search

    SciTech Connect

    Sikivie, P.; Sullivan, N.S.; Tanner, D.B.

    1996-12-01

    This research project is a collaboration with the axion search experiment at Lawrence Livermore National Laboratory. The axion is a particle that affects two important issues in particle physics and astrophysics: the origin of CP symmetry in the strong interactions, and the composition of the dark-matter of the universe. First predicted in 1978, present laboratory, astrophysical, and cosmological constraints suggest axions have a mass in the 1 {mu}eV-1 meV range. Axions are especially significant as dark matter if their mass is in the range 1-10 {mu}eV. These dark matter axions may be detected by their coupling to photons through the E - B interaction in a tunable high-Q microwave cavity permeated by a strong external magnetic field. The present experiment is the first cavity experiment with the sensitivity to possibly observe cosmic axions. It has recently begun taking data and will operate for the next several years. The University of Florida plans to contribute to the operation of this detector and to the design and prototyping of cavities for the experiment.

  11. Can gravitational instantons really constrain axion inflation?

    NASA Astrophysics Data System (ADS)

    Hebecker, Arthur; Mangat, Patrick; Theisen, Stefan; Witkowski, Lukas T.

    2017-02-01

    Axions play a central role in inflationary model building and other cosmological applications. This is mainly due to their flat potential, which is protected by a global shift symmetry. However, quantum gravity is known to break global symmetries, the crucial effect in the present context being gravitational instantons or Giddings-Strominger wormholes. We attempt to quantify, as model-independently as possible, how large a scalar potential is induced by this general quantum gravity effect. We pay particular attention to the crucial issue which solutions can or cannot be trusted in the presence of a moduli-stabilisation and a Kaluza-Klein scale. An important conclusion is that, due to specific numerical prefactors, the effect is surprisingly small even in UV-completions with the highest possible scale offered by string theory.

  12. GammeV: Fermilab axion-like particle photon regeneration results

    SciTech Connect

    Wester, William; /Fermilab

    2008-09-01

    GammeV is an axion-like particle photon regeneration experiment conducted at Fermilab that employs the light shining through a wall technique. They obtain limits on the coupling of a photon to an axion-like particle that extend previous limits for both scalar and pseudoscalar axion-like particles in the milli-eV mass range. They are able to exclude the axion-like particle interpretation of the anomalous PVLAS 2006 result by more than 5 standard deviations.

  13. Axion dark matter, solitons and the cusp-core problem

    NASA Astrophysics Data System (ADS)

    Marsh, David J. E.; Pop, Ana-Roxana

    2015-08-01

    Self-gravitating bosonic fields can support stable and localized (solitonic) field configurations. Such solitons should be ubiquitous in models of axion dark matter, with their characteristic mass and size depending on some inverse power of the axion mass, ma. Using a scaling symmetry and the uncertainty principle, the soliton core size can be related to the central density and axion mass in a universal way. Solitons have a constant central density due to pressure support, unlike the cuspy profile of cold dark matter (CDM). Consequently, solitons composed of ultralight axions (ULAs) may resolve the `cusp-core' problem of CDM. In dark matter (DM) haloes, thermodynamics will lead to a CDM-like Navarro-Frenk-White (NFW) profile at large radii, with a central soliton core at small radii. Using Monte Carlo techniques to explore the possible density profiles of this form, a fit to stellar kinematical data of dwarf spheroidal galaxies is performed. The data favour cores, and show no preference concerning the NFW part of the halo. In order for ULAs to resolve the cusp-core problem (without recourse to baryon feedback, or other astrophysical effects) the axion mass must satisfy ma < 1.1 × 10-22 eV at 95 per cent C.L. However, ULAs with ma ≲ 1 × 10-22 eV are in some tension with cosmological structure formation. An axion solution to the cusp-core problem thus makes novel predictions for future measurements of the epoch of reionization. On the other hand, improved measurements of structure formation could soon impose a Catch 22 on axion/scalar field DM, similar to the case of warm DM.

  14. CARBON MONOXIDE IN THE COLD DEBRIS OF SUPERNOVA 1987A

    SciTech Connect

    Kamenetzky, J.; McCray, R.; Glenn, J.; Indebetouw, R.; Barlow, M. J.; Matsuura, M.; Baes, M.; Blommaert, J. A. D. L.; Decin, L.; Bolatto, A.; Dunne, L.; Fransson, C.; Gomez, H. L.; Groenewegen, M. A. T.; Hopwood, R.; Kirshner, R. P.; Lakicevic, M.; Marcaide, J.; Meixner, M.; and others

    2013-08-20

    We report spectroscopic and imaging observations of rotational transitions of cold CO and SiO in the ejecta of SN1987A, the first such emission detected in a supernova remnant. In addition to line luminosities for the CO J = 1-0, 2-1, 6-5, and 7-6 transitions, we present upper limits for all other transitions up to J = 13-12, collectively measured from the Atacama Large Millimeter Array, the Atacama Pathfinder EXperiment, and the Herschel Spectral and Photometric Imaging REceiver. Simple models show the lines are emitted from at least 0.01 M{sub Sun} of CO at a temperature >14 K, confined within at most 35% of a spherical volume expanding at {approx}2000 km s{sup -1}. Moreover, we locate the emission within 1'' of the central debris. These observations, along with a partial observation of SiO, confirm the presence of cold molecular gas within supernova remnants and provide insight into the physical conditions and chemical processes in the ejecta. Furthermore, we demonstrate the powerful new window into supernova ejecta offered by submillimeter observations.

  15. Signatures of neutrino cooling in the SN1987A scenario

    NASA Astrophysics Data System (ADS)

    Fraija, N.; Bernal, C. G.; Hidalgo-Gaméz, A. M.

    2014-07-01

    The neutrino signal from SN1987A confirmed the core-collapse scenario and the possible formation of a neutron star. Although this compact object has eluded all observations, theoretical and numerical developments have allowed a glimpse of the fate of it. In particular, a hypercritical accretion model has been proposed to forecast the accretion of ˜0.15 M⊙ in two hours and the subsequent submergence of the magnetic field in the newborn neutron star. In this paper, we revisit Chevalier's model in a numerical framework, focusing on the neutrino cooling effect on the supernova fall-back dynamics. For that, using a customized version of the FLASH code, we carry out numerical simulations of the accretion of matter on to the newborn neutron star in order to estimate the size of the neutrino-sphere, the emissivity and luminosity of neutrinos. As a signature of this phase, we estimate the neutrinos expected on SK neutrino experiment and their flavour ratios. This is academically important because, although currently it was very difficult to detect 1.46 thermal neutrinos and their oscillations, these fingerprints are the only viable and reliable way to confirm the hypercritical phase. Perhaps new techniques for detecting neutrino oscillations will arise in the near future allowing us to confirm our estimates.

  16. SN 1987 A: A Unique Laboratory for Shock Physics

    NASA Technical Reports Server (NTRS)

    Sonneborn, George

    2012-01-01

    Supernova 1987 A has given us an unprecedented view of the evolution of the explosion debris and its interaction with circumstellar matter. The outer supernova debris, now expanding with velocities approx.8000 km/s, encountered the relatively dense circumstellar ring formed by presupernova mass loss in the early 1990s. The shock interaction is manifested by UV-optical "hotspots", an expanding X-ray ring, an expanding ring of knotty non-thermal radio emission, and a ring of thermal IR emission from silicate dust Recent ultraviolet observations of the emissions from the reverse shock and the ring with the HST/COS reveal new details about the shock interaction. Lyman alpha emission from the reverse shock is much stronger than H alpha and they have different emission morphologies, pointing to different emission mechanisms. The reverse shock was detected for the first time in C IV 1550. The N V to C IV brightness ratio indicates the N/C abundance ratio in the expanding debris is about 100X solar, about 3X N/C in the inner ring.

  17. Iron, Cobalt, and Nickel in SN 1987A

    NASA Technical Reports Server (NTRS)

    Li, Hongwei; McCray, Richard; Sunyaev, Rashid A.

    1993-01-01

    During the first several weeks after the explosion of SN 1987A, Fe/Co/Ni clumps, containing approx. 1% of the mass of the supernova envelope, absorbed most of the energy release by Ni-56 and Co-56 decay. As a result, the clumps expanded relative to the substrate, forming a 'nickel bubble' of low-density Fe/Co/Ni. Later the clumps captured approx. 10% of the radioactive luminosity of gamma rays and positrons. Assuming that these elements are not mixed microscopically with other elements, we find that the clumps must occupy approx. greater than 30% of the volume of the emitting region (radial velocity approx. less than 2500 km/s). The result indicates that the emission at late times is dominated by an extra source of heating and ionization, most likely photoionization by two-photon continuum from metastable helium in the gas surrounding the clumps. The resulting 'frothy' structure, consisting of bubbles of low-density Fe surrounded by higher-density filaments of H, He, and other elements, will persist and may be seen in the spectra and structure of supernova remnants.

  18. Co-57 and Ti-44 production in SN 1987A

    NASA Technical Reports Server (NTRS)

    Woosley, S. E.; Hoffman, Robert D.

    1991-01-01

    A survey of parameterized explosive silicon burning is carried out in order to limit the range of allowed masses of Co-57 produced by SN 1987A. The most likely value is between 0.5 and 2.5 times that implied by a solar ratio for Fe-57/Fe-56. Values more than four and less than one-third times the solar ratio would pose very severe problems for the theory of stellar nucleosynthesis, implying, for example, that Fe-56 was not the dominant iron group isotope or that no electron capture occurred during oxygen burning. Though dependent somewhat on the neutron excess, the Fe-57 yield is most sensitive to the occurrence of an alpha-rich freeze-out. An accurate measurement of the Fe-57 yield, as reflected observationally by the current abundance of radioactive Co-57, is thus an important constraint upon the supernova explosion mechanism. The abundance of Ti-44, another nucleus produced exclusively in the alpha-rich freeze-out, cannot be much greater than that implied by the solar ratio of Ca-44/Fe-56.

  19. Supernova SN1987A in the Large Magellanic Cloud

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Glittering stars and wisps of gas create a breathtaking backdrop for the self-destruction of a massive star, called supernova 1987A, in the Large Magellanic Cloud, a nearby galaxy. Astronomers in the Southern hemisphere witnessed the brilliant explosion of this star on Feb. 23, 1987. Shown in this NASA Hubble Space Telescope image, the supernova remnant, surrounded by inner and outer rings of material, is set in a forest of ethereal, diffuse clouds of gas. This three-color image is composed of several pictures of the supernova and its neighboring region taken with the Wide Field and Planetary Camera 2 in Sept. 1994, Feb. 1996 and July 1997. The many bright blue stars nearby the supernova are massive stars, each more than six times heftier than our Sun. They are members of the same generation of stars as the star that went supernova about 12 million years ago. The presence of bright gas clouds is another sign of the youth of this region, which still appears to be a fertile breeding ground for new stars. In a few years the supernova's fast moving material will sweep the inner ring with full force, heating and exciting its gas, and will produce a new series of cosmic fireworks that will offer a striking view for more than a decade.

  20. SN 1987A - The evolution from red to blue

    SciTech Connect

    Tuchman, Y.; Wheeler, J.C. )

    1989-11-01

    Envelope models in thermal and dynamic equilibrium are used to explore the nature of the transition of SK -69 deg 202, the progenitor of SN 1987A, from the Hayashi track to its final blue position in the H-R diagram. Loci of possible thermal equilibrium solutions are presented as a function of Teff and M(C/O), the mass of the carbon/oxygen core interior to the helium burning shell. It is found that uniform helium enrichment of the envelope results in red-blue evolution but that the resulting blue solution is much hotter than SK -69 deg 202. Solutions in which the only change is to redistribute the portion of the envelope enriched in helium during main-sequence convective core contraction into a step function with Y of about 0.5 at a mass cut of about 10 solar masses give a natural transition from red to blue and a final value of Teff in agreement with observations. It is argued that SK -69 deg 202 probably fell on a post-Hayashi track sequence at moderate Teff. The possible connection of this sequence to the step distribution in the H-R diagram of the LMC. 19 refs.

  1. SN1987A IN THE LARGE MAGELLANIC CLOUD

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Glittering stars and wisps of gas create a breathtaking backdrop for the self-destruction of a massive star, called supernova 1987A, in the Large Magellanic Cloud, a nearby galaxy. Astronomers in the Southern hemisphere witnessed the brilliant explosion of this star on Feb. 23, 1987. Shown in this NASA Hubble Space Telescope image, the supernova remnant, surrounded by inner and outer rings of material, is set in a forest of ethereal, diffuse clouds of gas. This three-color image is composed of several pictures of the supernova and its neighboring region taken with the Wide Field and Planetary Camera 2 in Sept. 1994, Feb. 1996 and July 1997. The many bright blue stars nearby the supernova are massive stars, each more than six times heftier than our Sun. With ages of about 12 million years old, they are members of the same generation of stars as the star that went supernova. The presence of bright gas clouds is another sign of the youth of this region, which still appears to be a fertile breeding ground for new stars. In a few years the supernova's fast moving material will sweep the inner ring with full force, heating and exciting its gas, and will produce a new series of cosmic fireworks that will offer a striking view for more than a decade. Credit: Hubble Heritage Team (AURA/STScI/NASA)

  2. Neutrino and axion hot dark matter bounds after WMAP-7

    SciTech Connect

    Hannestad, Steen; Mirizzi, Alessandro; Raffelt, Georg G.; Wong, Yvonne Y.Y. E-mail: alessandro.mirizzi@desy.de E-mail: yvonne.wong@physik.rwth-aachen.de

    2010-08-01

    We update cosmological hot dark matter constraints on neutrinos and hadronic axions. Our most restrictive limits use 7-year data from the Wilkinson Microwave Anisotropy Probe for the cosmic microwave background anisotropies, the halo power spectrum (HPS) from the 7th data release of the Sloan Digital Sky Survey, and the Hubble constant from Hubble Space Telescope observations. We find 95% CL upper limits of Σm{sub ν} < 0.44 eV (no axions), m{sub a} < 0.91 eV (assuming Σm{sub ν} = 0), and Σm{sub ν} < 0.41 eV and m{sub a} < 0.72 eV for two hot dark matter components after marginalising over the respective other mass. CMB data alone yield Σm{sub ν} < 1.19 eV (no axions), while for axions the HPS is crucial for deriving m{sub a} constraints. This difference can be traced to the fact that for a given hot dark matter fraction axions are much more massive than neutrinos.

  3. Hunting for axion dark matter with the ADMX project

    NASA Astrophysics Data System (ADS)

    Carosi, Gianpaolo; ADMX Collaboration

    2016-03-01

    The axion is a hypothetical particle that explains why the strong force is CP invariant and could also account for the cold dark matter in the universe. The Axion Dark Matter eXperiment (ADMX) directly searches for dark-matter axions by looking for their resonant conversion into detectable photons in a microwave cavity permeated by a strong magnetic field. This experiment, currently a ``Generation 2'' DOE Dark Matter Project, is now preparing for operations with enough sensitivity to either detect the ``QCD axion'' or reject that hypothesis at high confidence over a large range of potential axion masses. This talk will give an overview of the ADMX project and technology, its search plan and some of the various R&D projects that are being undertaken to extend its sensitivity. Supported by DOE Grants DE-FG02-97ER41029, DE-FG02-96ER40956, DE-AC52-07NA27344, DE-AC03-76SF00098, and the Livermore LDRD program.

  4. A SQUID-based microwave cavity search for dark-matter axions

    SciTech Connect

    Asztalos, S J; Carosi, G; Hagmann, C; Kinion, D; van Bibber, K; Hotz, M; Rosenberg, L; Rybka, G; Hoskins, J; Hwang, J; Sikivie, P; Tanner, D B; Bradley, R; Clarke, J

    2009-10-21

    Axions in the {mu}eV mass range are a plausible cold dark matter candidate and may be detected by their conversion into microwave photons in a resonant cavity immersed in a static magnetic field. The first result from such an axion search using a superconducting first-stage amplifier (SQUID) is reported. The SQUID amplifier, replacing a conventional GaAs field-effect transistor amplifier, successfully reached axion-photon coupling sensitivity in the band set by present axion models and sets the stage for a definitive axion search utilizing near quantum-limited SQUID amplifiers.

  5. The impact of SN 1987A with its circumstellar ring

    NASA Technical Reports Server (NTRS)

    Luo, Ding; Mccray, Richard; Slavin, Johnathan

    1994-01-01

    The envleope of SN 1987A will strike its circumstellar ring in 12 +/- 3 yr after explosion (A.D. 1999+/-3), the exact time depending weakly on the uncertain density of diffuse gas between the supernova and the ring. The impact will drive a radiative shock into the ring with velocity approximatley 200-400 km s(exp -1). The shocked ring will become a bright optical and ultraviolet emsiison-line source. A bright arc will suddenly appear at the near side of the ring and grow into an entire ring about 11 months later. The luminosities of the brightest lines, H-alpha H-alpha, N v lambda lambda 1238, 1242, and O VI lambda lambda 1032, 1038 will rise rapidly to approxminately 10(exp 36)-10(exp 37) ergs s(exp -1) and remain bright for several years after impact. The emission lines from the shocked ring will have FWHM approximatley 300-600 km s(exp -1) and complex profiles that will depend on position and will be sensitive to the details of the density distribution of gas in the ring. Strong EUV radiation from the shock will photoionize the unshocked ring, causing emission of narrow FWHM equivalent to 15 km s(exp -1) H-alpha, H-beta and (O III) lambda lambda 4959, 5007 lines with luminosities approximatley 10(exp 35) ergs s(exp -1).The EUV radiation will probably cause the nebulosity beyond the ring to become visable again. The EUV radiation may also illuminate the unshocked outer supernova envelope, causing visible emission of broad FWHM equivalent to 10(exp 4) km s(exp -1) H-alpha and H-beta lines.

  6. Searching for galactic axions through magnetized media: The QUAX proposal

    NASA Astrophysics Data System (ADS)

    Barbieri, R.; Braggio, C.; Carugno, G.; Gallo, C. S.; Lombardi, A.; Ortolan, A.; Pengo, R.; Ruoso, G.; Speake, C. C.

    2017-03-01

    We present a proposal to search for QCD axions with mass in the 200 μeV range, assuming that they make a dominant component of dark matter. Due to the axion-electron spin coupling, their effect is equivalent to the application of an oscillating rf field with frequency and amplitude fixed by the axion mass and coupling respectively. This equivalent magnetic field would produce spin flips in a magnetic sample placed inside a static magnetic field, which determines the resonant interaction at the Larmor frequency. Spin flips would subsequently emit radio frequency photons that can be detected by a suitable quantum counter in an ultra-cryogenic environment. This new detection technique is crucial to keep under control the thermal photon background which would otherwise produce a too large noise.

  7. Axion-Assisted Production of Sterile Neutrino Dark Matter

    SciTech Connect

    Berlin, Asher; Hooper, Dan

    2016-10-12

    Sterile neutrinos can be generated in the early universe through oscillations with active neutrinos and represent a popular and well-studied candidate for our universe's dark matter. Stringent constraints from X-ray and gamma-ray line searches, however, have excluded the simplest of such models. In this letter, we propose a novel alternative to the standard scenario in which the mixing angle between the sterile and active neutrinos is a dynamical quantity, induced through interactions with a light axion-like field. As the energy density of the axion-like particles is diluted by Hubble expansion, the degree of mixing is reduced at late times, suppressing the decay rate and easily alleviating any tension with X-ray or gamma-ray constraints. We present a simple model which illustrates the phenomenology of this scenario, and also describe a framework in which the QCD axion is responsible for the production of sterile neutrinos in the early universe.

  8. Gravity Waves and Linear Inflation From Axion Monodromy

    SciTech Connect

    McAllister, Liam; Silverstein, Eva; Westphal, Alexander; /SLAC /Stanford U., Phys. Dept.

    2010-08-26

    Wrapped branes in string compactifications introduce a monodromy that extends the field range of individual closed-string axions to beyond the Planck scale. Furthermore, approximate shift symmetries of the system naturally control corrections to the axion potential. This suggests a general mechanism for chaotic inflation driven by monodromy-extended closed-string axions. We systematically analyze this possibility and show that the mechanism is compatible with moduli stabilization and can be realized in many types of compactifications, including warped Calabi-Yau manifolds and more general Ricci-curved spaces. In this broad class of models, the potential is linear in the canonical inflaton field, predicting a tensor to scalar ratio r {approx} 0.07 accessible to upcoming cosmic microwave background (CMB) observations.

  9. Cosmological bounds on sub-MeV mass axions

    SciTech Connect

    Cadamuro, Davide; Raffelt, Georg; Redondo, Javier; Hannestad, Steen E-mail: sth@phys.au.dk E-mail: redondo@mppmu.mpg.de

    2011-02-01

    Axions with mass m{sub a} ∼> 0.7 eV are excluded by cosmological precision data because they provide too much hot dark matter. While for m{sub a} ∼> 20 eV the a → 2γ lifetime drops below the age of the universe, we show that the cosmological exclusion range can be extended to 0.7eV ∼< m{sub a} ∼< 300 keV, primarily by the cosmic deuterium abundance: axion decays would strongly modify the baryon-to-photon ratio at BBN relative to the one at CMB decoupling. Additional arguments include neutrino dilution relative to photons by axion decays and spectral CMB distortions. Our new cosmological constraints complement stellar-evolution and laboratory bounds.

  10. Couplings between QCD axion and photon from string compactification

    NASA Astrophysics Data System (ADS)

    Kim, Jihn E.; Nam, Soonkeon

    2016-08-01

    The QCD axion couplings of various invisible axion models are presented. In particular, the exact global symmetry U(1)PQ in the superpotential is possible for the anomalous U(1) from string compactification, broken only by the gauge anomalies at one loop level, and is shown to have the resultant invisible axion coupling to photon, caγγ ≥8/3 - caγγch br where caγγch br ≃ 2. However, this bound is not applicable in approximate U(1)PQ models with sufficiently suppressed U(1)PQ-breaking superpotential terms. We also present a simple method to obtain caγγ0 which is the value obtained above the electroweak scale.

  11. On the 3-form formulation of axion potentials from D-brane instantons

    NASA Astrophysics Data System (ADS)

    García-Valdecasas, Eduardo; Uranga, Angel

    2017-02-01

    The study of axion models and quantum corrections to their potential has experienced great progress by phrasing the axion potential in terms of a 3-form field eating up the 2-form field dual to the axion. Such reformulation of the axion potential has been described for axion monodromy models and for axion potentials from non-perturbative gauge dynamics. In this paper we propose a 3-form description of the axion potentials from non-gauge D-brane instantons. Interestingly, the required 3-form field does not arise in the underlying geometry, but rather shows up in the KK compactification in the generalized geometry obtained when the backreaction of the D-brane instanton is taken into account.

  12. COLD TRAPS

    DOEpatents

    Thompson, W.I.

    1958-09-30

    A cold trap is presented for removing a condensable component from a gas mixture by cooling. It consists of a shell, the exterior surface of which is chilled by a refrigerant, and conductive fins welded inside the shell to condense the gas, and distribute the condensate evenly throughout the length of the trap, so that the trap may function until it becomes completely filled with the condensed solid. The contents may then be removed as either a gas or as a liquid by heating the trap. This device has particuinr use as a means for removing uranium hexafluoride from the gaseous diffusion separation process during equipment breakdown and repair periods.

  13. Optical trapping

    PubMed Central

    Neuman, Keir C.; Block, Steven M.

    2006-01-01

    Since their invention just over 20 years ago, optical traps have emerged as a powerful tool with broad-reaching applications in biology and physics. Capabilities have evolved from simple manipulation to the application of calibrated forces on—and the measurement of nanometer-level displacements of—optically trapped objects. We review progress in the development of optical trapping apparatus, including instrument design considerations, position detection schemes and calibration techniques, with an emphasis on recent advances. We conclude with a brief summary of innovative optical trapping configurations and applications. PMID:16878180

  14. Cavity design for high-frequency axion dark matter detectors

    DOE PAGES

    Stern, I.; Chisholm, A. A.; Hoskins, J.; ...

    2015-12-30

    In this paper, in an effort to extend the usefulness of microwave cavity detectors to higher axion masses, above ~8 μeV (~2 GHz), a numerical trade study of cavities was conducted to investigate the merit of using variable periodic post arrays and regulating vane designs for higher-frequency searches. The results show that both designs could be used to develop resonant cavities for high-mass axion searches. Finally, multiple configurations of both methods obtained the scanning sensitivity equivalent to approximately 4 coherently coupled cavities with a single tuning rod.

  15. Recent progress on QCD inputs for axion phenomenology

    NASA Astrophysics Data System (ADS)

    Bonati, Claudio; D'Elia, Massimo; Mariti, Marco; Martinelli, Guido; Mesiti, Michele; Negro, Francesco; Sanfilippo, Francesco; Villadoro, Giovanni

    2017-03-01

    The properties of the QCD axion are strictly related to the dependence of strong interactions on the topological parameter theta. We present a determination of the topological properties of QCD for temperatures up to around 600 MeV, obtained by lattice QCD simulations with 2+1 flavors and physical quark masses. Numerical results for the topological susceptibility, when compared to instanton gas computations, differ both in size and in the temperature dependence. We discuss the implications of such findings for axion phenomenology, also in comparison to similar studies in the literature, and the prospects for future investigations.

  16. Quantized scalar field as DM: the axion's case

    SciTech Connect

    Barranco, J.; Bernal, A.

    2008-12-04

    We derive a rough estimation of the radius and the mass of a self-gravitating system made of axions. The system is a stationary solution of the Einstein-Klein-Gordon equations with a source term given by the vacuum expectation value of the energy-momentum operator constructed from the axion field. We found that such system would have masses of the order of asteroids ({approx}10{sup -10} M{sub {center_dot}}) and radius of the order of few centimeters. Some implications of such type of objects are discussed.

  17. The Three-dimensional Circumstellar Environment of SN 1987A

    NASA Astrophysics Data System (ADS)

    Sugerman, Ben E. K.; Crotts, Arlin P. S.; Kunkel, William E.; Heathcote, Stephen R.; Lawrence, Stephen S.

    2005-07-01

    Surrounding SN 1987A is a three-ring nebula attributed to interacting stellar winds, yet no model has successfully reproduced this system. Fortunately, the progenitor's mass-loss history can be reconstructed using light echoes, in which scattered light from the supernova traces the three-dimensional morphology of its circumstellar dust. In this paper, we construct and analyze the most complete map to date of the progenitor's circumstellar environment, using ground- and space-based imaging from the past 16 years. PSF-matched difference-imaging analyses of data from 1988 through 1997 reveal material between 1 and 28 lt-yr from the SN. Previously known structures, such as an inner hourglass, Napoleon's Hat, and a contact discontinuity, are probed in greater spatial detail than before. Previously unknown features are also discovered, such as a southern counterpart to Napoleon's Hat. Careful analyses of these echoes allows the reconstruction of the probable circumstellar environment, revealing a richly structured bipolar nebula. An outer, double-lobed ``Peanut,'' which is believed to be the contact discontinuity between red supergiant and main-sequence winds, is a prolate shell extending 28 lt-yr along the poles and 11 lt-yr near the equator. Napoleon's Hat, previously believed to be an independent structure, is the waist of this Peanut, which is pinched to a radius of 6 lt-yr. Interior to this is a cylindrical hourglass, 1 lt-yr in radius and 4 lt-yr long, which connects to the Peanut by a thick equatorial disk. The nebulae are inclined 41° south and 8° east of the line of sight, slightly elliptical in cross section, and marginally offset west of the SN. From the hourglass to the large, bipolar lobes, echo fluxes suggest that the gas density drops from 1-3 to >~0.03 cm-3, while the maximum dust-grain size increases from ~0.2 to 2 μm, and the silicate:carbonaceous dust ratio decreases. The nebulae have a total mass of ~1.7 Msolar. The geometry of the three rings is

  18. Large-scale search for dark-matter axions

    SciTech Connect

    Kinion, D; van Bibber, K

    2000-08-30

    We review the status of two ongoing large-scale searches for axions which may constitute the dark matter of our Milky Way halo. The experiments are based on the microwave cavity technique proposed by Sikivie, and marks a ''second-generation'' to the original experiments performed by the Rochester-Brookhaven-Fermilab collaboration, and the University of Florida group.

  19. Axion Induced Oscillating Electric Dipole Moment of the Electron

    SciTech Connect

    Hill, Christopher T.

    2016-01-12

    A cosmic axion, via the electromagnetic anomaly, induces an oscillating electric dipole for the electron of frequency ma and strength ~(few) x 10-32 e-cm, two orders of magnitude above the nucleon, and within a few orders of magnitude of the present standard model constant limit. We give a detailed study of this phenomenon via the interaction of the cosmic axion, through the electromagnetic anomaly, with particular emphasis on the decoupling limit of the axion, ∂ta(t) ∝ mα → 0. The analysis is subtle, and we find the general form of the action involves a local contact interaction and a nonlocal contribution, analogous to the “transverse current” in QED, that enforces the decoupling limit. We carefully derive the effective action in the Pauli-Schroedinger non-relativistic formalism, and in Georgi’s heavy quark formalism adapted to the “heavy electron” (me >> ma). We compute the electric dipole radiation emitted by free electrons, magnets and currents, immersed in the cosmic axion field, and discuss experimental configurations that may yield a detectable signal.

  20. High-scale axions without isocurvature from inflationary dynamics

    SciTech Connect

    Kearney, John; Orlofsky, Nicholas; Pierce, Aaron

    2016-05-31

    Observable primordial tensor modes in the cosmic microwave background (CMB) would point to a high scale of inflation HI. If the scale of Peccei-Quinn (PQ) breaking fa is greater than HI/2π, CMB constraints on isocurvature naively rule out QCD axion dark matter. This assumes the potential of the axion is unmodified during inflation. We revisit models where inflationary dynamics modify the axion potential and discuss how isocurvature bounds can be relaxed. We find that models that rely solely on a larger PQ-breaking scale during inflation fI require either late-time dilution of the axion abundance or highly super-Planckian fI that somehow does not dominate the inflationary energy density. Models that have enhanced explicit breaking of the PQ symmetry during inflation may allow fa close to the Planck scale. Lastly, avoiding disruption of inflationary dynamics provides important limits on the parameter space.

  1. Axion Induced Oscillating Electric Dipole Moment of the Electron

    DOE PAGES

    Hill, Christopher T.

    2016-01-12

    A cosmic axion, via the electromagnetic anomaly, induces an oscillating electric dipole for the electron of frequency ma and strength ~(few) x 10-32 e-cm, two orders of magnitude above the nucleon, and within a few orders of magnitude of the present standard model constant limit. We give a detailed study of this phenomenon via the interaction of the cosmic axion, through the electromagnetic anomaly, with particular emphasis on the decoupling limit of the axion, ∂ta(t) ∝ mα → 0. The analysis is subtle, and we find the general form of the action involves a local contact interaction and a nonlocalmore » contribution, analogous to the “transverse current” in QED, that enforces the decoupling limit. We carefully derive the effective action in the Pauli-Schroedinger non-relativistic formalism, and in Georgi’s heavy quark formalism adapted to the “heavy electron” (me >> ma). We compute the electric dipole radiation emitted by free electrons, magnets and currents, immersed in the cosmic axion field, and discuss experimental configurations that may yield a detectable signal.« less

  2. Minkowski 3-forms, flux string vacua, axion stability and naturalness

    NASA Astrophysics Data System (ADS)

    Bielleman, Sjoerd; Ibáñez, Luis E.; Valenzuela, Irene

    2015-12-01

    We discuss the role of Minkowski 3-forms in flux string vacua. In these vacua all internal closed string fluxes are in one to one correspondence with quantized Minkowski 4-forms. By performing a dimensional reduction of the D = 10 Type II supergravity actions we find that the 4-forms act as auxiliary fields of the Kahler and complex structure moduli in the effective action. We show that all the RR and NS axion dependence of the flux scalar potential appears through the said 4-forms. Gauge invariance of these forms then severely restricts the structure of the axion scalar potentials. Combined with duality symmetries it suggests that all perturbative corrections to the leading axion scalar potential V 0 should appear as an expansion in powers of V 0 itself. These facts could have an important effect e.g. on the inflaton models based on F-term axion monodromy. We also suggest that the involved multi-branched structure of string vacua provides for a new way to maintain interacting scalar masses stable against perturbative corrections.

  3. Oblique corrections in the Dine-Fischler-Srednicki axion model

    NASA Astrophysics Data System (ADS)

    Katanaeva, Alisa; Espriu, Domènec

    2016-11-01

    In the Minimal Standard Model (MSM) there is no degree of freedom for dark matter. There are several extensions of the MSM introducing a new particle - an invisible axion, which can be regarded as a trustworthy candidate at least for a part of the dark matter component. However, as it is extremely weakly coupled, it cannot be directly measured at the LHC. We propose to explore the electroweak sector indirectly by considering a particular model that includes the axion and derive consequences that could be experimentally tested. We discuss the Dine-Fischler-Srednicki (DFS) model, which extends the two-Higgs doublet model with an additional Peccei-Quinn symmetry and leads to a physically acceptable axion. The non-linear parametrization of the DFS model is exploited in the generic case where all scalars except the lightest Higgs and the axion have masses at or beyond the TeV scale. We compute the oblique corrections and use their values from the electroweak experimental fits to put constraints on the mass spectrum of the DFS model.

  4. The Axion Dark Matter eXperiment Cryogenic System

    NASA Astrophysics Data System (ADS)

    Letourneau, Hannah; ADMX Collaboration

    2016-03-01

    The Axion Dark Matter eXperiment (ADMX) searches for dark matter axions by looking for their resonant conversion to photons in a microwave cavity in a high magnetic field. The mass of the axion (unknown) determines the frequency at which the axion couples to the magnetic field, so the cavity is tuned through a wide range of frequencies while measuring the power deposited in it with ultra-sensitive quantum electronics. The dominant systematic noise is from the noise temperature of the electronics; during the last data run they were cooled to 1.5K with a pumped He-4 refrigerator. Currently, we are installing a large dilution refrigerator, which will cool the cavity and first stage amplifiers to ~100 mK. I will discuss our progress, describe some of the challenges we have faced and how we have overcome them, and describe our plans for operation. Supported by DOE Grants DE-FG02-97ER41029, DE-FG02-96ER40956, DE- AC52-07NA27344, DE-AC03-76SF00098, and the Livermore LDRD program.

  5. Hidden axion dark matter decaying through mixing with QCD axion and the 3.5 keV X-ray line

    NASA Astrophysics Data System (ADS)

    Higaki, Tetsutaro; Kitajima, Naoya; Takahashi, Fuminobu

    2014-12-01

    Hidden axions may be coupled to the standard model particles through a kinetic or mass mixing with QCD axion. We study a scenario in which a hidden axion constitutes a part of or the whole of dark matter and decays into photons through the mixing, explaining the 3.5 keV X-ray line signal. Interestingly, the required long lifetime of the hidden axion dark matter can be realized for the QCD axion decay constant at an intermediate scale, if the mixing is sufficiently small. In such a two component dark matter scenario, the primordial density perturbations of the hidden axion can be highly non-Gaussian, leading to a possible dispersion in the X-ray line strength from various galaxy clusters and near-by galaxies. We also discuss how the parallel and orthogonal alignment of two axions affects their couplings to gauge fields. In particular, the QCD axion decay constant can be much larger than the actual Peccei-Quinn symmetry breaking.

  6. A model for halo formation with axion mixed dark matter

    NASA Astrophysics Data System (ADS)

    Marsh, David J. E.; Silk, Joseph

    2014-01-01

    There are several issues to do with dwarf galaxy predictions in the standard Λ cold dark matter (ΛCDM) cosmology that have suscitated much recent debate about the possible modification of the nature of dark matter as providing a solution. We explore a novel solution involving ultralight axions that can potentially resolve the missing satellites problem, the cusp-core problem and the `too big to fail' problem. We discuss approximations to non-linear structure formation in dark matter models containing a component of ultralight axions across four orders of magnitude in mass, 10-24 ≲ ma ≲ 10-20 eV, a range too heavy to be well constrained by linear cosmological probes such as the cosmic microwave background and matter power spectrum, and too light/non-interacting for other astrophysical or terrestrial axion searches. We find that an axion of mass ma ≈ 10-21 eV contributing approximately 85 per cent of the total dark matter can introduce a significant kpc scale core in a typical Milky Way satellite galaxy in sharp contrast to a thermal relic with a transfer function cut off at the same scale, while still allowing such galaxies to form in significant number. Therefore, ultralight axions do not suffer from the Catch 22 that applies to using a warm dark matter as a solution to the small-scale problems of CDM. Our model simultaneously allows formation of enough high-redshift galaxies to allow reconciliation with observational constraints, and also reduces the maximum circular velocities of massive dwarfs so that baryonic feedback may more plausibly resolve the predicted overproduction of massive Milky Way Galaxy dwarf satellites.

  7. Search for solar axions by the CERN axion solar telescope with 3He buffer gas: closing the hot dark matter gap.

    PubMed

    Arik, M; Aune, S; Barth, K; Belov, A; Borghi, S; Bräuninger, H; Cantatore, G; Carmona, J M; Cetin, S A; Collar, J I; Da Riva, E; Dafni, T; Davenport, M; Eleftheriadis, C; Elias, N; Fanourakis, G; Ferrer-Ribas, E; Friedrich, P; Galán, J; García, J A; Gardikiotis, A; Garza, J G; Gazis, E N; Geralis, T; Georgiopoulou, E; Giomataris, I; Gninenko, S; Gómez, H; Gómez Marzoa, M; Gruber, E; Guthörl, T; Hartmann, R; Hauf, S; Haug, F; Hasinoff, M D; Hoffmann, D H H; Iguaz, F J; Irastorza, I G; Jacoby, J; Jakovčić, K; Karuza, M; Königsmann, K; Kotthaus, R; Krčmar, M; Kuster, M; Lakić, B; Lang, P M; Laurent, J M; Liolios, A; Ljubičić, A; Luzón, G; Neff, S; Niinikoski, T; Nordt, A; Papaevangelou, T; Pivovaroff, M J; Raffelt, G; Riege, H; Rodríguez, A; Rosu, M; Ruz, J; Savvidis, I; Shilon, I; Silva, P S; Solanki, S K; Stewart, L; Tomás, A; Tsagri, M; van Bibber, K; Vafeiadis, T; Villar, J; Vogel, J K; Yildiz, S C; Zioutas, K

    2014-03-07

    The CERN Axion Solar Telescope has finished its search for solar axions with (3)He buffer gas, covering the search range 0.64 eV ≲ ma ≲ 1.17 eV. This closes the gap to the cosmological hot dark matter limit and actually overlaps with it. From the absence of excess x rays when the magnet was pointing to the Sun we set a typical upper limit on the axion-photon coupling of gaγ ≲ 3.3 × 10(-10)  GeV(-1) at 95% C.L., with the exact value depending on the pressure setting. Future direct solar axion searches will focus on increasing the sensitivity to smaller values of gaγ, for example by the currently discussed next generation helioscope International AXion Observatory.

  8. The Type II supernovae 2006V and 2006au: two SN 1987A-like events

    NASA Astrophysics Data System (ADS)

    Taddia, F.; Stritzinger, M. D.; Sollerman, J.; Phillips, M. M.; Anderson, J. P.; Ergon, M.; Folatelli, G.; Fransson, C.; Freedman, W.; Hamuy, M.; Morrell, N.; Pastorello, A.; Persson, S. E.; Gonzalez, S.

    2012-01-01

    Context. Supernova 1987A revealed that a blue supergiant (BSG) star can end its life as a core-collapse supernova (SN). SN 1987A and other similar objects exhibit properties that distinguish them from ordinary Type II Plateau (IIP) SNe, whose progenitors are believed to be red supergiants (RSGs). Similarities among 1987A-like events include a long rise to maximum, early luminosity fainter than that of normal Type IIP SNe, and radioactivity acting as the primary source powering the light curves. Aims: We present and analyze two SNe monitored by the Carnegie Supernova Project that are reminiscent of SN 1987A. Methods: Optical and near-infrared (NIR) light curves, and optical spectroscopy of SNe 2006V and 2006au are presented. These observations are compared to those of SN 1987A, and are used to estimate properties of their progenitors. Results: Both objects exhibit a slow rise to maximum and light curve evolution similar to that of SN 1987A. At the earliest epochs, SN 2006au also displays an initial dip which we interpret as the signature of the adiabatic cooling phase that ensues shock break-out. SNe 2006V and 2006au are both found to be bluer, hotter and brighter than SN 1987A. Spectra of SNe 2006V and 2006au are similar to those of SN 1987A and other normal Type II objects, although both consistently exhibit expansion velocities higher than SN 1987A. Semi-analytic models are fit to the UVOIR light curve of each object from which physical properties of the progenitors are estimated. This yields ejecta mass estimates of Mej ≈ 20 M⊙, explosion energies of E ≈ 2-3 × 1051 erg s-1, and progenitor radii of R ≈ 75-100 R⊙ for both SNe. Conclusions: The progenitors of SNe 2006V and 2006au were most likely BSGs with a larger explosion energy as compared to that of SN 1987A. Based on observations collected at the European Organisation for Astronomical Research in the Southern Hemisphere, Chile (ESO Programme 076.A-0156). This paper includes data gathered with the 6

  9. Thermal production of not so invisible axions in the early universe

    SciTech Connect

    Turner, M.S.

    1986-10-01

    We find that for Peccei-Quinn symmetry-breaking scales less than or equal to 2 x 10/sup 8/ GeV (corresponding to axion masses greater than or equal to 3 x 10/sup -2/eV) thermal production of axions in the early Universe (via the Primakoff and photoproduction processes) dominates coherent production by a factor of about 1200 (m/sub a//eV)/sup 2.175/. The photon luminosity from the decays of these relic axions leads to a model-independent upper limit to the axion mass of order 2 to 5eV. If the axion mass saturates this bound, relic axion decays may well be detectable. 14 refs., 3 figs.

  10. QCD axion as a bridge between string theory and flavor physics

    NASA Astrophysics Data System (ADS)

    Ahn, Y. H.

    2016-04-01

    We construct a string-inspired model, motivated by the flavored Peccei-Quinn (PQ) axions, as a useful bridge between flavor physics and string theory. The key feature is two anomalous gauged U (1 ) symmetries, responsible for both the fermion mass hierarchy problem of the standard model and the strong C P problem, that combine string theory with flavor physics and severely constrain the form of the F- and D-term contributions to the potential. In the context of supersymmetric moduli stabilization we stabilize the size moduli with positive masses while leaving two axions massless and one axion massive. We demonstrate that, while the massive gauge bosons eat the two axionic degrees of freedom, two axionic directions survive to low energies as the flavored PQ axions.

  11. Cosmological constraints on neutrino plus axion hot dark matter: update after WMAP-5

    SciTech Connect

    Hannestad, S; Mirizzi, A; Raffelt, G G; Wong, Y Y Y E-mail: amirizzi@mppmu.mpg.de E-mail: ywong@mppmu.mpg.de

    2008-04-15

    We update our previous constraints on two-component hot dark matter (axions and neutrinos), including the recent WMAP five-year data release. Marginalizing over {Sigma}m{sub {nu}} provides m{sub a}<1.02 eV (95% C.L.) for the axion mass. In the absence of axions we find {Sigma}m{sub {nu}}<0.63 eV (95% C.L.)

  12. The GammeV suite of experimental searches for axion-like particles

    SciTech Connect

    Steffen, Jason H.; Upadhye, Amol; /KICP, Chicago /Chicago U., EFI

    2009-08-01

    We report on the design and results of the GammeV search for axion-like particles and for chameleon particles. We also discuss plans for an improved experiment to search for chameleon particles, one which is sensitive to both cosmological and power-law chameleon models. Plans for an improved axion-like particle search using coupled resonant cavities are also presented. This experiment will be more sensitive to axion-like particles than stellar astrophysical models or current helioscope experiments.

  13. Trapped antihydrogen

    NASA Astrophysics Data System (ADS)

    Butler, E.; Andresen, G. B.; Ashkezari, M. D.; Baquero-Ruiz, M.; Bertsche, W.; Bowe, P. D.; Cesar, C. L.; Chapman, S.; Charlton, M.; Deller, A.; Eriksson, S.; Fajans, J.; Friesen, T.; Fujiwara, M. C.; Gill, D. R.; Gutierrez, A.; Hangst, J. S.; Hardy, W. N.; Hayden, M. E.; Humphries, A. J.; Hydomako, R.; Jenkins, M. J.; Jonsell, S.; Jørgensen, L. V.; Kemp, S. L.; Kurchaninov, L.; Madsen, N.; Menary, S.; Nolan, P.; Olchanski, K.; Olin, A.; Povilus, A.; Pusa, P.; Rasmussen, C. Ø.; Robicheaux, F.; Sarid, E.; Seif el Nasr, S.; Silveira, D. M.; So, C.; Storey, J. W.; Thompson, R. I.; van der Werf, D. P.; Wurtele, J. S.; Yamazaki, Y.

    Precision spectroscopic comparison of hydrogen and antihydrogen holds the promise of a sensitive test of the Charge-Parity-Time theorem and matter-antimatter equivalence. The clearest path towards realising this goal is to hold a sample of antihydrogen in an atomic trap for interrogation by electromagnetic radiation. Achieving this poses a huge experimental challenge, as state-of-the-art magnetic-minimum atom traps have well depths of only ˜1 T (˜0.5 K for ground state antihydrogen atoms). The atoms annihilate on contact with matter and must be `born' inside the magnetic trap with low kinetic energies. At the ALPHA experiment, antihydrogen atoms are produced from antiprotons and positrons stored in the form of non-neutral plasmas, where the typical electrostatic potential energy per particle is on the order of electronvolts, more than 104 times the maximum trappable kinetic energy. In November 2010, ALPHA published the observation of 38 antiproton annihilations due to antihydrogen atoms that had been trapped for at least 172 ms and then released—the first instance of a purely antimatter atomic system confined for any length of time (Andresen et al., Nature 468:673, 2010). We present a description of the main components of the ALPHA traps and detectors that were key to realising this result. We discuss how the antihydrogen atoms were identified and how they were discriminated from the background processes. Since the results published in Andresen et al. (Nature 468:673, 2010), refinements in the antihydrogen production technique have allowed many more antihydrogen atoms to be trapped, and held for much longer times. We have identified antihydrogen atoms that have been trapped for at least 1,000 s in the apparatus (Andresen et al., Nature Physics 7:558, 2011). This is more than sufficient time to interrogate the atoms spectroscopically, as well as to ensure that they have relaxed to their ground state.

  14. Trapped antihydrogen

    NASA Astrophysics Data System (ADS)

    Butler, E.; Andresen, G. B.; Ashkezari, M. D.; Baquero-Ruiz, M.; Bertsche, W.; Bowe, P. D.; Cesar, C. L.; Chapman, S.; Charlton, M.; Deller, A.; Eriksson, S.; Fajans, J.; Friesen, T.; Fujiwara, M. C.; Gill, D. R.; Gutierrez, A.; Hangst, J. S.; Hardy, W. N.; Hayden, M. E.; Humphries, A. J.; Hydomako, R.; Jenkins, M. J.; Jonsell, S.; Jørgensen, L. V.; Kemp, S. L.; Kurchaninov, L.; Madsen, N.; Menary, S.; Nolan, P.; Olchanski, K.; Olin, A.; Povilus, A.; Pusa, P.; Rasmussen, C. Ø.; Robicheaux, F.; Sarid, E.; Seif el Nasr, S.; Silveira, D. M.; So, C.; Storey, J. W.; Thompson, R. I.; van der Werf, D. P.; Wurtele, J. S.; Yamazaki, Y.

    2012-12-01

    Precision spectroscopic comparison of hydrogen and antihydrogen holds the promise of a sensitive test of the Charge-Parity-Time theorem and matter-antimatter equivalence. The clearest path towards realising this goal is to hold a sample of antihydrogen in an atomic trap for interrogation by electromagnetic radiation. Achieving this poses a huge experimental challenge, as state-of-the-art magnetic-minimum atom traps have well depths of only ˜1 T (˜0.5 K for ground state antihydrogen atoms). The atoms annihilate on contact with matter and must be `born' inside the magnetic trap with low kinetic energies. At the ALPHA experiment, antihydrogen atoms are produced from antiprotons and positrons stored in the form of non-neutral plasmas, where the typical electrostatic potential energy per particle is on the order of electronvolts, more than 104 times the maximum trappable kinetic energy. In November 2010, ALPHA published the observation of 38 antiproton annihilations due to antihydrogen atoms that had been trapped for at least 172 ms and then released—the first instance of a purely antimatter atomic system confined for any length of time (Andresen et al., Nature 468:673, 2010). We present a description of the main components of the ALPHA traps and detectors that were key to realising this result. We discuss how the antihydrogen atoms were identified and how they were discriminated from the background processes. Since the results published in Andresen et al. (Nature 468:673, 2010), refinements in the antihydrogen production technique have allowed many more antihydrogen atoms to be trapped, and held for much longer times. We have identified antihydrogen atoms that have been trapped for at least 1,000 s in the apparatus (Andresen et al., Nature Physics 7:558, 2011). This is more than sufficient time to interrogate the atoms spectroscopically, as well as to ensure that they have relaxed to their ground state.

  15. SQUID-Based Microwave Cavity Search for Dark-Matter Axions

    SciTech Connect

    Asztalos, S. J.; Carosi, G.; Hagmann, C.; Kinion, D.; Bibber, K. van; Hotz, M.; Rosenberg, L. J; Rybka, G.; Hoskins, J.; Hwang, J.; Sikivie, P.; Tanner, D. B.; Bradley, R.; Clarke, J.

    2010-01-29

    Axions in the mueV mass range are a plausible cold dark-matter candidate and may be detected by their conversion into microwave photons in a resonant cavity immersed in a static magnetic field. We report the first result from such an axion search using a superconducting first-stage amplifier (SQUID) replacing a conventional GaAs field-effect transistor amplifier. This experiment excludes KSVZ dark-matter axions with masses between 3.3 mueV and 3.53 mueV and sets the stage for a definitive axion search utilizing near quantum-limited SQUID amplifiers.

  16. SQUID-Based Microwave Cavity Search for Dark-Matter Axions

    NASA Astrophysics Data System (ADS)

    Asztalos, S. J.; Carosi, G.; Hagmann, C.; Kinion, D.; van Bibber, K.; Hotz, M.; Rosenberg, L. J.; Rybka, G.; Hoskins, J.; Hwang, J.; Sikivie, P.; Tanner, D. B.; Bradley, R.; Clarke, J.; ADMX Collaboration

    2010-01-01

    Axions in the μeV mass range are a plausible cold dark-matter candidate and may be detected by their conversion into microwave photons in a resonant cavity immersed in a static magnetic field. We report the first result from such an axion search using a superconducting first-stage amplifier (SQUID) replacing a conventional GaAs field-effect transistor amplifier. This experiment excludes KSVZ dark-matter axions with masses between 3.3μeV and 3.53μeV and sets the stage for a definitive axion search utilizing near quantum-limited SQUID amplifiers.

  17. Axion-photon conversion in space and in low symmetrical dielectric crystals

    NASA Astrophysics Data System (ADS)

    Gorelik, V. S.

    2016-07-01

    The opportunities of axions detection as the result of axion-photon conversion processes in the space and in low symmetrical dielectric crystals are discussed. In accordance with the modern theory predictions, axions are pseudoscalar vacuum particles having very small (0.001-1.0 meV) rest energy. The possibility of axions conversion into photons and vice-versa processes in vacuum at the presence of outer magnetic field has been analyzed before. Pseudoscalar (axion type) modes are existing in some types of crystals. Polar pseudoscalar lattice and exciton modes in low symmetrical crystals are strongly interacted with axions. In this work, optical excitation of axion-type modes in low symmetrical crystals is proposed for observation of axion - photon conversion processes. Instead of outer magnetic field, the crystalline field of such crystals may be used. The experimental schemes for axion-photon conversion processes observation with recording the secondary emission of luminescence, infrared or Stimulated Raman Scattering in some dielectric crystals are discussed.

  18. Axion decay constants at special points in type II string theory

    NASA Astrophysics Data System (ADS)

    Honda, Masaki; Oikawa, Akane; Otsuka, Hajime

    2017-01-01

    We propose the mechanism to disentangle the decay constant of closed string axion from the string scale in the framework of type II string theory on Calabi-Yau manifold. We find that the quantum and geometrical corrections in the prepotential that arise at some special points in the moduli space widen the window of axion decay constant. In particular, around the small complex structure points, the axion decay constant becomes significantly lower than the string scale. We also discuss the moduli stabilization leading to the phenomenologically attractive low-scale axion decay constant.

  19. The axion dark matter search at CAPP: a comprehensive approach

    NASA Astrophysics Data System (ADS)

    Semertzidis, Yannis

    2017-01-01

    Axions are the result of a dynamic field, similar to Higgs field, invented to solve the so-called Strong CP-problem, i.e., why the electric dipole moment (EDM) of the neutron and proton has not been observed so far even though the theory of QCD predicts values by about ten order of magnitude larger than current experimental limits. Axions as dark matter can be thought of as an oscillatory field interacting extremely weakly with normal matter. The oscillation frequency is unknown, it can be anywhere between f = 200MHz to 200GHz and it's expected to be at a very narrow line, about d f/ f = 10-6. A strong magnetic field can be used to convert part of that field into a very weak electric field oscillating at the same frequency and phase as the axion field. In the coming years we plan to develop our experimental sensitivity to either observe or refute the axions as a viable dark matter candidate in a wide axion mass range. That approach includes the development of ultra strong magnets, high quality resonators in the presence of strong B-fields, new resonator geometries, low noise cryo-amplifiers and new techniques of detecting axions. Another related subject, through the strong CP-problem, is the search for the EDM of the proton, improving the present sensitivity on hadronic EDMs by more than three orders of magnitude to better than 10-29 e-cm. Usually the study of EDM involves the application of strong electric fields and originally neutral systems were thought to be easier to work with. Recently it became clear that charged particles in all-electric storage rings can be used for sensitive EDM searches by using techniques similar to the muon g-2 experiment. The high sensitivity study of the proton EDM is possible due to the high intensity polarized proton beams readily available today, making possible to reach 103 TeV in New Physics scale.

  20. Chaotic inflation with kinetic alignment of axion fields

    NASA Astrophysics Data System (ADS)

    Bachlechner, Thomas C.; Dias, Mafalda; Frazer, Jonathan; McAllister, Liam

    2015-01-01

    N-flation is a radiatively stable scenario for chaotic inflation in which the displacements of N ≫1 axions with decay constants f1≤…≤fNaxion kinetic term generically leads to the phenomenon of kinetic alignment, allowing for effective displacements as large as √{N }fN≥fPy, even if f1,…,fN -1 are arbitrarily small. At the level of kinematics, the necessary alignment occurs with very high probability, because of eigenvector delocalization. We present conditions under which inflation can take place along an aligned direction. Our construction sharply reduces the challenge of realizing N-flation in string theory.

  1. Reply to "Comment on `Axion Induced Oscillating Electric Dipole Moments' "

    SciTech Connect

    Hill, Christopher T.

    2015-10-19

    A recent paper of Flambaum, Roberts and Stadnik, [1], claims there is no induced oscillating electric dipole moment (OEDM), eg, for the electron, arising from the oscillating cosmic axion background via the anomaly. This claim is based upon the assumption that electric dipoles always be defined by their coupling to static (constant in time) electric fields. The relevant Feynman diagram, as computed by [1], then becomes a total divergence, and vanishes in momentum space. However, an OEDM does arise from the anomaly, coupled to time dependent electric fields. It shares the decoupling properties with the anomaly. The full action, in an arbitrary gauge, was computed in [2], [3]. It is nonvanishing with a time dependent outgoing photon, and yields physics, eg, electric dipole radiation of an electron immersed in a cosmic axion field.

  2. Axion monodromy inflation with multi-natural modulations

    SciTech Connect

    Higaki, Tetsutaro; Kobayashi, Tatsuo; Yamaguchi, Yuya; Seto, Osamu E-mail: kobayashi@particle.sci.hokudai.ac.jp E-mail: yy@particle.sci.hokudai.ac.jp

    2014-10-01

    We study parameter space in the axion monodromy inflation corrected by dynamically generated terms involving with the axion. The potential has the linear term with multiple sinusoidal functions, which play a role in generating modulations. We show that this potential leads both to a large tensor-to-scalar ratio r{sub T} ∼ 0.16 and to a large negative running of spectral index α{sub s} ∼ - (0.02 -0.03), ameliorating the tension between the result of the PLANCK and that of the BICEP2. To realize these results, a small hierarchy among dynamical scales is required whereas the decay constants in sinusoidal functions remain sub-Planckian in this model. We discuss also reheating process after the inflation in a bottom-up approach.

  3. Cosmologically Safe QCD Axion without Fine-Tuning.

    PubMed

    Yamada, Masaki; Yanagida, Tsutomu T; Yonekura, Kazuya

    2016-02-05

    Although QCD axion models are widely studied as solutions to the strong CP problem, they generically confront severe fine-tuning problems to guarantee the anomalous Peccei-Quinn (PQ) symmetry. In this Letter, we propose a simple QCD axion model without any fine-tunings. We introduce an extra dimension and a pair of extra quarks living on two branes separately, which is also charged under a bulk Abelian gauge symmetry. We assume a monopole condensation on our brane at an intermediate scale, which implies that the extra quarks develop chiral symmetry breaking and the PQ symmetry is broken. In contrast to Kim's original model, our model explains the origin of the PQ symmetry thanks to the extra dimension and avoids the cosmological domain wall problem because of chiral symmetry breaking in Abelian gauge theory.

  4. Baryogenesis from strong CP violation and the QCD axion.

    PubMed

    Servant, Géraldine

    2014-10-24

    We show that strong CP violation from the QCD axion can be responsible for the matter antimatter asymmetry of the Universe in the context of cold electroweak baryogenesis if the electroweak phase transition is delayed below the GeV scale. This can occur naturally if the Higgs couples to a O(100)  GeV dilaton, as expected in some models where the Higgs is a pseudo-Nambu-Goldstone boson of a new strongly interacting sector at the TeV scale. The existence of such a second scalar resonance with a mass and properties similar to the Higgs boson will soon be tested at the LHC. In this context, the QCD axion would not only solve the strong CP problem, but also the matter antimatter asymmetry and dark matter.

  5. Axion search by laser-based experiment OSQAR

    NASA Astrophysics Data System (ADS)

    Sulc, M.; Pugnat, P.; Ballou, R.; Deferne, G.; Duvillaret, L.; Flekova, L.; Finger, M.; Finger, M.; Hosek, J.; Husek, T.; Jost, R.; Kral, M.; Kunc, S.; Macuchova, K.; Meissner, K. A.; Morville, J.; Romanini, D.; Schott, M.; Siemko, A.; Slunecka, M.; Vitrant, G.; Zicha, J.

    2013-08-01

    Laser-based experiment OSQAR in CERN is aimed to the search of the axions by two methods. The photon regeneration experiment is using two LHC dipole magnets of the length 14.3 m and magnetic field 9.5 T equipped with an optical barrier at the end of the first magnet. It looks as light shining through the wall. No excess of events above the background was detected at this arrangement. Nevertheless, this result extends the exclusion region for the axion mass. The second method wants to measure the ultra-fine vacuum magnetic birefringence for the first time. An optical scheme with electro-optical modulator has been proposed, validated and subsequently improved. Cotton-Mouton constant for air was determined in this experiment setup.

  6. Subleading effects and the field range in axion inflation

    SciTech Connect

    Parameswaran, Susha; Tasinato, Gianmassimo; Zavala, Ivonne E-mail: g.tasinato2208@gmail.com

    2016-04-01

    An attractive candidate for the inflaton is an axion slowly rolling down a flat potential protected by a perturbative shift symmetry. Realisations of this idea within large field, natural and monomial inflation have been disfavoured by observations and are difficult to embed in string theory. We show that subleading, but significant non-perturbative corrections can superimpose sharp cliffs and gentle plateaus into the potential, whose overall effect is to enhance the number of e-folds of inflation. Sufficient e-folds are therefore achieved for smaller field ranges compared to the potential without such corrections. Thus, both single-field natural and monomial inflation in UV complete theories like string theory, can be restored into the favour of current observations, with distinctive signatures. Tensor modes result un-observably small, but there is a large negative running of the spectral index. Remarkably, natural inflation can be achieved with a single field whose axion decay constant is sub-Planckian.

  7. The topological susceptibility in finite temperature QCD and axion cosmology

    NASA Astrophysics Data System (ADS)

    Petreczky, Peter; Schadler, Hans-Peter; Sharma, Sayantan

    2016-11-01

    We study the topological susceptibility in 2 + 1 flavor QCD above the chiral crossover transition temperature using Highly Improved Staggered Quark action and several lattice spacings corresponding to temporal extent of the lattice, Nτ = 6 , 8 , 10 and 12. We observe very distinct temperature dependences of the topological susceptibility in the ranges above and below 250 MeV. While for temperatures above 250 MeV, the dependence is found to be consistent with dilute instanton gas approximation, at lower temperatures the fall-off of topological susceptibility is milder. We discuss the consequence of our results for cosmology wherein we estimate the bounds on the axion decay constant and the oscillation temperature if indeed the QCD axion is a possible dark matter candidate.

  8. Observable dark radiation from a cosmologically safe QCD axion

    NASA Astrophysics Data System (ADS)

    Kawasaki, Masahiro; Yamada, Masaki; Yanagida, Tsutomu T.

    2015-06-01

    We propose a QCD axion model that avoids the cosmological domain wall problem, introducing a global S U (3 )f family symmetry in which we embed the unwanted Peccei-Quinn (PQ) discrete symmetry. The spontaneous breaking of S U (3 )f and PQ symmetry predicts eight NG bosons as well as axion, all of which contribute to the energy density of the Universe as dark radiation. The deviation from the standard model prediction of dark radiation can be observed by future observations of cosmic microwave background fluctuations. Our model also predicts a sizable exotic kaon decay rate, which is marginally consistent with the present collider data and would be tested by future collider experiments.

  9. Cosmologically Safe QCD Axion without Fine-Tuning

    NASA Astrophysics Data System (ADS)

    Yamada, Masaki; Yanagida, Tsutomu T.; Yonekura, Kazuya

    2016-02-01

    Although QCD axion models are widely studied as solutions to the strong C P problem, they generically confront severe fine-tuning problems to guarantee the anomalous Peccei-Quinn (PQ) symmetry. In this Letter, we propose a simple QCD axion model without any fine-tunings. We introduce an extra dimension and a pair of extra quarks living on two branes separately, which is also charged under a bulk Abelian gauge symmetry. We assume a monopole condensation on our brane at an intermediate scale, which implies that the extra quarks develop chiral symmetry breaking and the PQ symmetry is broken. In contrast to Kim's original model, our model explains the origin of the PQ symmetry thanks to the extra dimension and avoids the cosmological domain wall problem because of chiral symmetry breaking in Abelian gauge theory.

  10. Axionic dark matter signatures in various halo models

    NASA Astrophysics Data System (ADS)

    Vergados, J. D.; Semertzidis, Y. K.

    2017-02-01

    In the present work we study possible signatures in the Axion Dark Matter searches. We focus on the dependence of the expected width in resonant cavities for various popular halo models, leading to standard velocity distributions, e.g. Maxwell-Boltzmann, as well as phase-mixed and non-virialized axionic dark matter (flows, caustic rings). We study, in particular, the time dependence of the resonance width (modulation) arising from such models. We find that the difference between the maximum (in June) and the minimum (in December) can vary by about 10% in the case of standard halos. In the case of mixed phase halos the variation is a bit bigger and for caustic rings the maximum is expected to occur a bit later. Experimentally such a modulation is observable with present technology.

  11. Axion Dark Matter Coupling to Resonant Photons via Magnetic Field.

    PubMed

    McAllister, Ben T; Parker, Stephen R; Tobar, Michael E

    2016-04-22

    We show that the magnetic component of the photon field produced by dark matter axions via the two-photon coupling mechanism in a Sikivie haloscope is an important parameter passed over in previous analysis and experiments. The interaction of the produced photons will be resonantly enhanced as long as they couple to the electric or magnetic mode structure of the haloscope cavity. For typical haloscope experiments the electric and magnetic couplings are equal, and this has implicitly been assumed in past sensitivity calculations. However, for future planned searches such as those at high frequency, which synchronize multiple cavities, the sensitivity will be altered due to different magnetic and electric couplings. We define the complete electromagnetic form factor and discuss its implications for current and future dark matter axion searches over a wide range of masses.

  12. Gravitational leptogenesis in axion inflation with SU(2) gauge field

    NASA Astrophysics Data System (ADS)

    Maleknejad, Azadeh

    2016-12-01

    We present an intrinsic leptogenesis mechanism in models of axion inflation with a classical SU(2) gauge field. The gauge field is coupled to the axion with a Chern-Simons interaction and comprises a tiny fraction of the total energy, ρYM/ρtot lesssim epsilon2. However, it has spin-2 fluctuations which breaks the parity and leads to the generation of chiral gravitational waves during inflation. By the gravitational anomaly in SM, it naturally creates a net lepton number density, sufficient to explain the matter asymmetry. We show that this mechanism can generate the observed value of baryon to photon number density in a natural range of parameters and yet has a small chiral tensor power spectrum on large scales.

  13. Solar axion search technique with correlated signals from multiple detectors

    DOE PAGES

    Xu, Wenqin; Elliott, Steven R.

    2017-01-25

    The coherent Bragg scattering of photons converted from solar axions inside crystals would boost the signal for axion-photon coupling enhancing experimental sensitivity for these hypothetical particles. Knowledge of the scattering angle of solar axions with respect to the crystal lattice is required to make theoretical predications of signal strength. Hence, both the lattice axis angle within a crystal and the absolute angle between the crystal and the Sun must be known. In this paper, we examine how the experimental sensitivity changes with respect to various experimental parameters. We also demonstrate that, in a multiple-crystal setup, knowledge of the relative axismore » orientation between multiple crystals can improve the experimental sensitivity, or equivalently, relax the precision on the absolute solar angle measurement. However, if absolute angles of all crystal axes are measured, we find that a precision of 2°–4° will suffice for an energy resolution of σE = 0.04E and a flat background. Lastly, we also show that, given a minimum number of detectors, a signal model averaged over angles can substitute for precise crystal angular measurements, with some loss of sensitivity.« less

  14. Solar axion search technique with correlated signals from multiple detectors

    NASA Astrophysics Data System (ADS)

    Xu, Wenqin; Elliott, Steven R.

    2017-03-01

    The coherent Bragg scattering of photons converted from solar axions inside crystals would boost the signal for axion-photon coupling enhancing experimental sensitivity for these hypothetical particles. Knowledge of the scattering angle of solar axions with respect to the crystal lattice is required to make theoretical predications of signal strength. Hence, both the lattice axis angle within a crystal and the absolute angle between the crystal and the Sun must be known. In this paper, we examine how the experimental sensitivity changes with respect to various experimental parameters. We also demonstrate that, in a multiple-crystal setup, knowledge of the relative axis orientation between multiple crystals can improve the experimental sensitivity, or equivalently, relax the precision on the absolute solar angle measurement. However, if absolute angles of all crystal axes are measured, we find that a precision of 2∘ -4∘ will suffice for an energy resolution of σE = 0.04 E and a flat background. Finally, we also show that, given a minimum number of detectors, a signal model averaged over angles can substitute for precise crystal angular measurements, with some loss of sensitivity.

  15. Oscillations in the CMB from Axion Monodromy Inflation

    SciTech Connect

    Flauger, Raphael; McAllister, Liam; Pajer, Enrico; Westphal, Alexander; Xu, Gang; /Cornell U., Phys. Dept.

    2011-12-01

    We study the CMB observables in axion monodromy inflation. These well-motivated scenarios for inflation in string theory have monomial potentials over super-Planckian field ranges, with superimposed sinusoidal modulations from instanton effects. Such periodic modulations of the potential can drive resonant enhancements of the correlation functions of cosmological perturbations, with characteristic modulations of the amplitude as a function of wavenumber. We give an analytical result for the scalar power spectrum in this class of models, and we determine the limits that present data places on the amplitude and frequency of modulations. Then, incorporating an improved understanding of the realization of axion monodromy inflation in string theory, we perform a careful study of microphysical constraints in this scenario. We find that detectable modulations of the scalar power spectrum are commonplace in well-controlled examples, while resonant contributions to the bispectrum are undetectable in some classes of examples and detectable in others. We conclude that resonant contributions to the spectrum and bispectrum are a characteristic signature of axion monodromy inflation that, in favorable cases, could be detected in near-future experiments.

  16. All extremal instantons in Einstein-Maxwell-dilaton-axion theory

    NASA Astrophysics Data System (ADS)

    Azreg-Aïnou, Mustapha; Clément, Gérard; Gal'Tsov, Dmitri V.

    2011-11-01

    We construct explicitly all extremal instanton solutions to N=4, D=4 supergravity truncated to one vector field (Einstein-Maxwell-dilaton-axion theory). These correspond to null geodesics of the target space of the sigma-model G/H=Sp(4,R)/GL(2,R) obtained by compactification of four-dimensional Euclidean Einstein-Maxwell-dilaton-axion on a circle. They satisfy a no-force condition in terms of the asymptotic charges and part of them (corresponding to nilpotent orbits of the Sp(4,R) U-duality) are presumably supersymmetric. The space of finite action solutions is found to be unexpectedly large and includes, besides the Euclidean versions of known Lorentzian solutions, a number of new asymptotically locally flat instantons endowed with electric, magnetic, dilaton and axion charges. We also describe new classes of charged asymptotically locally Euclidean instantons as well as some exceptional solutions. Our classification scheme is based on the algebraic classification of matrix generators according to their rank, according to the nature of the charge vectors, and according to the number of independent harmonic functions with unequal charges. Besides the nilpotent orbits of G, we find solutions which satisfy the asymptotic no-force condition, but are not supersymmetric. The renormalized on-shell action for instantons is calculated using the method of matched background subtraction.

  17. Gauge-preheating and the end of axion inflation

    SciTech Connect

    Adshead, Peter; Sfakianakis, Evangelos I.; Giblin, John T. Jr.; Scully, Timothy R. E-mail: giblinj@kenyon.edu E-mail: esfaki@illinois.edu

    2015-12-01

    We study the onset of the reheating epoch at the end of axion-driven inflation where the axion is coupled to an Abelian, U(1), gauge field via a Chern-Simons interaction term. We focus primarily on m{sup 2φ2} inflation and explore the possibility that preheating can occur for a range of coupling values consistent with recent observations and bounds on the overproduction of primordial black holes. We find that for a wide range of parameters preheating is efficient. In certain cases the inflaton transfers all of its energy to the gauge fields within a few oscillations. In most cases, we find that the gauge fields on sub-horizon scales end preheating in an unpolarized state due to the existence of strong rescattering between the inflaton and gauge-field modes. We also present a preliminary study of an axion monodromy model coupled to U(1) gauge fields, seeing a similarly efficient preheating behavior as well as indications that the coupling strength has an effect on the creation of oscillons.

  18. An Improved Signal Model for Axion Dark Matter Searches

    NASA Astrophysics Data System (ADS)

    Lentz, Erik; ADMX Collaboration

    2017-01-01

    To date, most direct detection searches for axion dark matter, such as those by the Axion Dark Matter eXperiment (ADMX) microwave cavity search, have assumed a signal shape based on an isothermal spherical model of the Milky Way halo. Such a model is not capable of capturing contributions from realistic infall, nor from a baryonic disk. Modern N-Body simulations of structure formation can produce realistic Milky Way-like halos which include the influences of baryons, infall, and environmental influences. This talk presents an analysis of the Romulus25 N-Body simulation in the context of direct dark matter axion searches. An improved signal shape and an account of the relevant halo dynamics are given. Supported by DOE Grants DE-SC0010280, DE-FG02-96ER40956, DE-AC52-07NA27344, DE-AC03-76SF00098, the Heising-Simons Foundation and the LLNL, FNAL and PNNL LDRD program.

  19. Ti-44 Gamma-Ray Emission Lines from SN1987A Reveal an Asymmetric Explosion

    NASA Technical Reports Server (NTRS)

    Boggs, S. E.; Harrison, F. A.; Miyasaka, H.; Grefenstette, B. W.; Zoglauer, A.; Fryer, C. L.; Reynolds, S. P.; Alexander, D. M.; An, H.; Barret, D.; Christensen, F. E.; Craig, W. W.; Forster, K.; Giommi, P.; Hailey, C. J.; Hornstrup, A.; Kitaguchi, T.; Koglin, J. E.; Madsen, K. K.; Zhang, W. W.

    2015-01-01

    In core-collapse supernovae, titanium-44 (Ti-44) is produced in the innermost ejecta, in the layer of material directly on top of the newly formed compact object. As such, it provides a direct probe of the supernova engine. Observations of supernova 1987A (SN1987A) have resolved the 67.87- and 78.32-kilo-electron volt emission lines from decay of Ti-44 produced in the supernova explosion. These lines are narrow and redshifted with a Doppler velocity of 700 kilometers per second, direct evidence of large-scale asymmetry in the explosion.

  20. Experimental limits on the radiative decay of SN 1987A neutrinos

    NASA Technical Reports Server (NTRS)

    Chupp, Edward L.; Vestrand, W. Thomas; Reppin, Claus

    1989-01-01

    SMM gamma-ray spectrometer data are examined to look for gamma-ray emission coincident with the about-10-s neutrino burst from SN 1987A. The absence of a detectable signal suggests that the energy radiated into MeV gamma rays by neutrino decay (or any other process) is less than 10 to the -10th of that in supernova neutrinos above 9 MeV. The results are used to set a direct limit on the lifetime of any massive neutrino type generated in the core collapse leading to SN 1987A.

  1. Determination of effective axion masses in the helium-3 buffer of CAST

    SciTech Connect

    Ruz, J

    2011-11-18

    The CERN Axion Solar Telescope (CAST) is a ground based experiment located in Geneva (Switzerland) searching for axions coming from the Sun. Axions, hypothetical particles that not only could solve the strong CP problem but also be one of the favored candidates for dark matter, can be produced in the core of the Sun via the Primakoff effect. They can be reconverted into X-ray photons on Earth in the presence of strong electromagnetic fields. In order to look for axions, CAST points a decommissioned LHC prototype dipole magnet with different X-ray detectors installed in both ends of the magnet towards the Sun. The analysis of the data acquired during the first phase of the experiment yielded the most restrictive experimental upper limit on the axion-to-photon coupling constant for axion masses up to about 0.02 eV/c{sup 2}. During the second phase, CAST extends its mass sensitivity by tuning the electron density present in the magnetic field region. Injecting precise amounts of helium gas has enabled CAST to look for axion masses up to 1.2 eV/c{sup 2}. This paper studies the determination of the effective axion masses scanned at CAST during its second phase. The use of a helium gas buffer at temperatures of 1.8 K has required a detailed knowledge of the gas density distribution. Complete sets of computational fluid dynamic simulations validated with experimental data have been crucial to obtain accurate results.

  2. Exploring 0.1–10 eV axions with a new helioscope concept

    SciTech Connect

    Galán, J.; Dafni, T.; Iguaz, F.J. E-mail: Theopisti.Dafni@cern.ch; and others

    2015-12-01

    We explore the possibility to develop a new axion helioscope type, sensitive to the higher axion mass region favored by axion models. We propose to use a low background large volume TPC immersed in an intense magnetic field. Contrary to traditional tracking helioscopes, this detection technique takes advantage of the capability to directly detect the photons converted on the buffer gas which defines the axion mass sensitivity region, and does not require pointing the magnet to the Sun. The operation flexibility of a TPC to be used with different gas mixtures (He, Ne, Xe, etc.) and pressures (from 10 mbar to 10 bar) will allow to enhance sensitivity for axion masses from few meV to several eV. We present different helioscope data taking scenarios, considering detection efficiency and axion absorption probability, and show the sensitivities reachable with this technique to be few × 10{sup −11} GeV{sup −1} for a 5 T, m{sup 3} scale TPC. We show that a few years program taking data with such setup would allow to probe the KSVZ axion model for axion masses above 0∼> 10 meV.

  3. Constraints on axions and axionlike particles from Fermi Large Area Telescope observations of neutron stars

    NASA Astrophysics Data System (ADS)

    Berenji, B.; Gaskins, J.; Meyer, M.

    2016-02-01

    We present constraints on the nature of axions and axionlike particles (ALPs) by analyzing gamma-ray data from neutron stars using the Fermi Large Area Telescope. In addition to axions solving the strong C P problem of particle physics, axions and ALPs are also possible dark matter candidates. We investigate axions and ALPs produced by nucleon-nucleon bremsstrahlung within neutron stars. We derive a phenomenological model for the gamma-ray spectrum arising from subsequent axion decays. By analyzing five years of gamma-ray data (between 60 and 200 MeV) for a sample of four nearby neutron stars, we do not find evidence for an axion or ALP signal; thus we obtain a combined 95% confidence level upper limit on the axion mass of 7.9 ×10-2 eV , which corresponds to a lower limit for the Peccei-Quinn scale fa of 7.6 ×107 GeV . Our constraints are more stringent than previous results probing the same physical process, and are competitive with results probing axions and ALPs by different mechanisms.

  4. The search for axion-like dark matter using magnetic resonance

    NASA Astrophysics Data System (ADS)

    Sushkov, Alexander; Casper Collaboration

    2016-05-01

    The nature of dark matter is one of the most important open problems in modern physics, and it is necessary to develop techniques to search for a wide class of dark-matter candidates. Axions, originally introduced to resolve the strong CP problem in quantum chromodynamics (QCD), and axion-like particles (ALPs) are strongly motivated dark matter candidates. Nuclear spins interacting with axion-like background dark matter experience an energy shift, oscillating at the frequency equal to the axion Compton frequency. The Cosmic Axion Spin Precession Experiments (CASPEr) use precision magnetometry and nuclear magnetic resonance techniques to search for the effects of this interaction. The experimental signature is precession of the nuclear spins under the condition of magnetic resonance: when the bias magnetic field is tuned such that the nuclear spin sublevel splitting is equal to the axion Compton frequency. These experiments have the potential to detect axion-like dark matter in a wide mass range (10-12 eV to 10-6 eV, scanned by changing the bias magnetic field from approximately 1 gauss to 20 tesla) and with coupling strengths many orders of magnitude beyond the current astrophysical and laboratory limits, and all the way down to those corresponding to the QCD axion. Supported by the Heising-Simons Foundation.

  5. Exotic axion cosmology in theories with phase transitions below the QCD scale.

    PubMed

    Kaplan, David B; Zurek, Kathryn M

    2006-02-03

    We show that axion phenomenology may be significantly different than conventionally assumed in theories which exhibit late phase transitions (below the QCD scale). In such theories, one can find multiple pseudoscalars with axionlike couplings to matter, including a string scale axion, whose decay constant far exceeds the conventional cosmological bound. Such theories have several dark matter candidates.

  6. Neutrinos from SN 1987A and cooling of the nascent neutron star

    NASA Technical Reports Server (NTRS)

    Lamb, D. Q.; Loredo, Thomas J.; Melia, Fulvio

    1988-01-01

    The implications of the detection of neutrinos from SN 1987A for the cooling of the nascent neutron star are considered. The nu-bar(e) number N, the apparent temperature, the cooling time scale measured by the Kamioka and IMB detectors, and the inferred neutron star apparent radius and binding energy are all found to provide striking verification of current supernova theory.

  7. ASYMMETRY IN THE OUTBURST OF SN 1987A DETECTED USING LIGHT ECHO SPECTROSCOPY

    SciTech Connect

    Sinnott, B.; Welch, D. L.; Sutherland, P. G.; Rest, A.; Bergmann, M.

    2013-04-10

    We report direct evidence for asymmetry in the early phases of SN 1987A via optical spectroscopy of five fields of its light echo system. The light echoes allow the first few hundred days of the explosion to be reobserved, with different position angles providing different viewing angles to the supernova. Light echo spectroscopy therefore allows a direct spectroscopic comparison of light originating from different regions of the photosphere during the early phases of SN 1987A. Gemini multi-object spectroscopy of the light echo fields shows fine structure in the H{alpha} line as a smooth function of position angle on the near-circular light echo rings. H{alpha} profiles originating from the northern hemisphere of SN 1987A show an excess in redshifted emission and a blue knee, while southern hemisphere profiles show an excess of blueshifted H{alpha} emission and a red knee. This fine structure is reminiscent of the 'Bochum event' originally observed for SN 1987A, but in an exaggerated form. Maximum deviation from symmetry in the H{alpha} line is observed at position angles 16 Degree-Sign and 186 Degree-Sign , consistent with the major axis of the expanding elongated ejecta. The asymmetry signature observed in the H{alpha} line smoothly diminishes as a function of viewing angle away from the poles of the elongated ejecta. We propose an asymmetric two-sided distribution of {sup 56}Ni most dominant in the southern far quadrant of SN 1987A as the most probable explanation of the observed light echo spectra. This is evidence that the asymmetry of high-velocity {sup 56}Ni in the first few hundred days after explosion is correlated to the geometry of the ejecta some 25 years later.

  8. Solar trap

    SciTech Connect

    Lew, H.S.

    1988-02-09

    A solar trap for collecting solar energy at a concentrated level is described comprising: (a) a compound light funnel including a pair of light reflecting substantially planar members arranged into a trough having a substantially V-shaped cross section; (b) a two dimensional Fresnel lens cover covering the opening of the compound light funnel, the opening being the open diverging end of the substantially V-shaped cross section of the compound light funnel; (c) at least one conduit for carrying a heat transfer fluid disposed substantially adjacent and substantially parallel to the apex line of the compound light funnel.

  9. COLD TRAP

    DOEpatents

    Milleron, N.

    1963-03-12

    An improved linear-flow cold trap is designed for highvacuum applications such as mitigating back migration of diffusion pump oil moiecules. A central pot of liquid nitrogen is nested within and supported by a surrounding, vertical, helical coil of metai sheet, all enveloped by a larger, upright, cylindrical, vacuum vessel. The vertical interstices between successive turns of the coil afford lineal, axial, high-vacuum passages between open mouths at top and bottom of said vessel, while the coil, being cold by virtue of thermal contact of its innermost turn with the nitrogen pot, affords expansive proximate condensation surfaces. (AEC)

  10. VACUUM TRAP

    DOEpatents

    Gordon, H.S.

    1959-09-15

    An improved adsorption vacuum trap for use in vacuum systems was designed. The distinguishing feature is the placement of a plurality of torsionally deformed metallic fins within a vacuum jacket extending from the walls to the central axis so that substantially all gas molecules pass through the jacket will impinge upon the fin surfaces. T fins are heated by direct metallic conduction, thereby ol taining a uniform temperature at the adeorbing surfaces so that essentially all of the condensible impurities from the evacuating gas are removed from the vacuum system.

  11. Gamma-ray boxes from axion-mediated dark matter

    SciTech Connect

    Ibarra, Alejandro; Gehler, Sergio López; Pato, Miguel; Lee, Hyun Min; Park, Wan-Il E-mail: hyun.min.lee@cern.ch E-mail: wipark@kias.re.kr

    2013-05-01

    We compute the gamma-ray output of axion-mediated dark matter and derive the corresponding constraints set by recent data. In such scenarios the dark matter candidate is a Dirac fermion that pair-annihilates into axions and/or scalars. Provided that the axion decays (at least partly) into photons, these models naturally give rise to a box-shaped gamma-ray spectrum that may present two distinct phenomenological behaviours: a narrow box, resembling a line at half the dark matter mass, or a wide box, spanning an extensive energy range up to the dark matter mass. Remarkably, we find that in both cases a sizable gamma-ray flux is predicted for a thermal relic without fine-tuning the model parameters nor invoking boost factors. This large output is in line with recent Fermi-LAT observations towards the galactic centre region and is on the verge of being excluded. We then make use of the Fermi-LAT and H.E.S.S. data to derive robust, model-independent upper limits on the dark matter annihilation cross section for the narrow and wide box scenarios. H.E.S.S. constraints, in particular, turn out to match the ones from Fermi-LAT at hundreds of GeV and extend to multi-TeV masses. Future Čerenkov telescopes will likely probe gamma-ray boxes from thermal dark matter relics in the whole multi-TeV range, a region hardly accessible to direct detection, collider searches and other indirect detection strategies.

  12. Systematics of axion inflation in Calabi-Yau hypersurfaces

    NASA Astrophysics Data System (ADS)

    Long, Cody; McAllister, Liam; Stout, John

    2017-02-01

    We initiate a comprehensive survey of axion inflation in compactifications of type IIB string theory on Calabi-Yau hypersurfaces in toric varieties. For every threefold with h 1,1 ≤ 4 in the Kreuzer-Skarke database, we compute the metric on Kähler moduli space, as well as the matrix of four-form axion charges of Euclidean D3-branes on rigid divisors. These charges encode the possibility of enlarging the field range via alignment. We then determine an upper bound on the inflationary field range Δ ϕ that results from the leading instanton potential, in the absence of monodromy. The bound on the field range in this ensemble is Δ ϕ ≲ 0 .3 M pl, in a compactification where the smallest curve volume is (2 π)2 α', and we argue that the sigma model expansion is adequately controlled. The largest increase resulting from alignment is a factor ≈ 2 .6. We also examine a set of threefolds with h 1,1 up to 100 and characterize their axion charge matrices. While we find modest alignment in this ensemble, the maximum field range is ultimately suppressed by the volume of the internal space, which typically grows quickly with h 1,1. Furthermore, we find that many toric divisors are rigid — and the corresponding charge matrices are relatively trivial — at large h 1,1. It is therefore challenging to realize alignment via superpotentials generated only by Euclidean D3-branes, without taking into account the effects of flux, D7-branes, and orientifolding.

  13. Recombination era magnetic fields from axion dark matter

    DOE PAGES

    Banik, Nilanjan; Christopherson, Adam J.

    2016-02-04

    We introduce a new mechanism for generating magnetic fields in the recombination era. This Harrison-like mechanism utilizes vorticity in baryons that is sourced through the Bose-Einstein condensate of axions via gravitational interactions. The magnetic fields generated are on galactic scales ~10 kpc and have a magnitude of the order of B~10–23G today. Lastly, the field has a greater magnitude than those generated from other mechanisms relying on second-order perturbation theory, and is sufficient to provide a seed for battery mechanisms.

  14. Recombination era magnetic fields from axion dark matter

    NASA Astrophysics Data System (ADS)

    Banik, Nilanjan; Christopherson, Adam J.

    2016-02-01

    We introduce a new mechanism for generating magnetic fields in the recombination era. This Harrison-like mechanism utilizes vorticity in baryons that is sourced through the Bose-Einstein condensate of axions via gravitational interactions. The magnetic fields generated are on galactic scales ˜10 kpc and have a magnitude of the order of B ˜1 0-23G today. The field has a greater magnitude than those generated from other mechanisms relying on second-order perturbation theory, and is sufficient to provide a seed for battery mechanisms.

  15. Effective cosmological constant within the expanding axion universe

    NASA Astrophysics Data System (ADS)

    Pierpoint, M. P.; Kusmartsev, F. V.

    2014-09-01

    We show that the value of an effective cosmological constant, Λeff, is influenced by the dimensionality of the space. Results were obtained in the framework of the axion model describing expansion of the inhomogeneous universe. Λeff determines the tension of the space (i.e. elasticity), and is relaxed when extra dimensions are accessible. We demonstrate that the effective value of the cosmological constant may be tuned to be consistent with experimental observation. Inhomogeneities considered are representative of temperature fluctuations observed within the cosmic microwave background radiation.

  16. A Torsion-Balance Search for Axion-Like Particles

    NASA Astrophysics Data System (ADS)

    Fleischer, Frank; Hoedl, Seth; Adelberger, Eric; Heckel, Blayne; Hoyle, C. D.; Shook, David; Swanson, Erik

    2012-03-01

    Axion-like particles can mediate macroscopic parity and time-reversal symmetry violating forces. We will present a search for such a force between polarized electrons and unpolarized atoms using a novel torsion pendulum operating in the unshielded magnetic field of an electromagnet. Laboratory bounds on this force were improved by more than 10 orders of magnitude for pseudoscalars heavier than 1,, and constraints on this force were established over a broad range of astrophysically interesting masses from 10,eV to 10,. Plans for a next generation of this experiment will be discussed.

  17. Improved Constraints on an Axion-Mediated Force

    NASA Astrophysics Data System (ADS)

    Hoedl, S. A.; Fleischer, F.; Adelberger, E. G.; Heckel, B. R.

    2011-01-01

    Low mass pseudoscalars, such as the axion, can mediate macroscopic parity and time-reversal symmetry-violating forces. We searched for such a force between polarized electrons and unpolarized atoms using a novel, magnetically unshielded torsion pendulum. We improved the laboratory bounds on this force by more than 10 orders of magnitude for pseudoscalars heavier than 1 meV and have constrained this force over a broad range of astrophysically interesting masses (10μeV to 10 meV).

  18. Axion-like-particle search with high-intensity lasers

    NASA Astrophysics Data System (ADS)

    Döbrich, Babette; Gies, Holger

    2010-10-01

    We study ALP -photon-conversion within strong inhomogeneous electromagnetic fields as provided by contemporary high-intensity laser systems. We observe that probe photons traversing the focal spot of a superposition of Gaussian beams of a single high-intensity laser at fundamental and frequency-doubled mode can experience a frequency shift due to their intermittent propagation as axion-like-particles. This process is strongly peaked for resonant masses on the order of the involved laser frequencies. Purely laser-based experiments in optical setups are sensitive to ALPs in the eV mass range and can thus complement ALP searches at dipole magnets.

  19. Recombination era magnetic fields from axion dark matter

    SciTech Connect

    Banik, Nilanjan; Christopherson, Adam J.

    2016-02-04

    We introduce a new mechanism for generating magnetic fields in the recombination era. This Harrison-like mechanism utilizes vorticity in baryons that is sourced through the Bose-Einstein condensate of axions via gravitational interactions. The magnetic fields generated are on galactic scales ~10 kpc and have a magnitude of the order of B~10–23G today. Lastly, the field has a greater magnitude than those generated from other mechanisms relying on second-order perturbation theory, and is sufficient to provide a seed for battery mechanisms.

  20. Improved Constraints on an Axion-Mediated Force

    SciTech Connect

    Hoedl, S. A.; Fleischer, F.; Adelberger, E. G.; Heckel, B. R.

    2011-01-28

    Low mass pseudoscalars, such as the axion, can mediate macroscopic parity and time-reversal symmetry-violating forces. We searched for such a force between polarized electrons and unpolarized atoms using a novel, magnetically unshielded torsion pendulum. We improved the laboratory bounds on this force by more than 10 orders of magnitude for pseudoscalars heavier than 1 meV and have constrained this force over a broad range of astrophysically interesting masses (10 {mu}eV to 10 meV).

  1. Wilson fermions and axion electrodynamics in optical lattices.

    PubMed

    Bermudez, A; Mazza, L; Rizzi, M; Goldman, N; Lewenstein, M; Martin-Delgado, M A

    2010-11-05

    We show that ultracold Fermi gases in optical superlattices can be used as quantum simulators of relativistic lattice fermions in 3+1 dimensions. By exploiting laser-assisted tunneling, we find an analogue of the so-called naive Dirac fermions, and thus provide a realization of the fermion doubling problem. Moreover, we show how to implement Wilson fermions, and discuss how their mass can be inverted by tuning the laser intensities. In this regime, our atomic gas corresponds to a phase of matter where Maxwell electrodynamics is replaced by axion electrodynamics: a 3D topological insulator.

  2. Large scale U.S. dark matter Axion search

    SciTech Connect

    Kinion, D

    1998-08-01

    We describe the instrumentation and operations of the microwave cavity axion detector presently taking data at Lawrence Livermore National Laboratory This experiment, in collaboration of LLNL, MIT, Univ of Florida, LBNL, Univ of Chicago, FNAL, and INR/Moscow, has been operating with greater than 90% live time since February 1996 with the objective of exploring the region from 0 5 to 1 9 GHz (2 1 to 7 9 µeV) at greater than KSVZ sensitivitv In a com~&on paper (E Daw) in these proceedings, the data analysis and Iirst results will be described (See also

  3. Preheating and entropy perturbations in axion monodromy inflation

    SciTech Connect

    McDonough, Evan; Moghaddam, Hossein Bazrafshan; Brandenberger, Robert H.

    2016-05-04

    We study the preheating of gauge fields in a simple axion monodromy model and compute the induced entropy perturbations and their effect on the curvature fluctuations. We find that the correction to the spectrum of curvature perturbations has a blue spectrum with index n{sub s}=5/2. Hence, these induced modes are harmless for the observed structure of the universe. Since the spectrum is blue, there is the danger of overproduction of primordial black holes. However, we show that the observational constraints are easily satisfied.

  4. On axionic field ranges, loopholes and the weak gravity conjecture

    DOE PAGES

    Brown, Jon; Cottrell, William; Shiu, Gary; ...

    2016-04-05

    Here, we clarify some aspects of the impact that the Weak Gravity Conjecture has on models of (generalized) natural inflation. In particular we address certain technical and conceptual concerns recently raised regarding the stringent constraints and conclusions found in our previous work. We also point out the difficulties faced by attempts to evade these constraints. Furthermore, these new considerations improve the understanding of the quantum gravity constraints we found and further support the conclusion that it remains challenging for axions to drive natural inflation.

  5. Status of the large-scale dark-matter axion search

    SciTech Connect

    Van Bibber, K.; Hagmann, C.; Stoeffl, W.; Daw, E.; Rosenberg, L.; Sikivie, P.; Sullivan, N.; Tanner, D.; Moltz, D.; Tighe, R.

    1994-09-01

    If axions constitute the dark matter of our galactic halo they can be detected by their conversion into monochromatic microwave photons in a high-Q microwave cavity permeated by a strong magnetic field. A large-scale experiment is under construction at LLNL to search for halo axions in the mass range 1.3 - 13 {mu}eV, where axions may constitute closure density of the universe. The search builds upon two pilot efforts at BNL and the University of Florida in the late 1980`s, and represents a large improvement in power sensitivity ({approximately}50) both due to the increase in magnetic volume (B{sup 2}V = 14 T{sup 2}m{sup 3}), and anticipated total noise temperature (T{sub n} {approximately}3K). This search will also mark the first use of multiple power-combined cavities to extend the mass range accessible by this technique. Data will be analyzed in two parallel streams. In the first, the resolution of the power spectrum will be sufficient to resolve the expected width of the overall axion line, {approximately}{bigcirc} (1kHz). In the second, the resolution will be {bigcirc}(O.01-1 Hz) to look for extremely narrow substructure reflecting the primordial phase-space of the axions during infall. This experiment will be the first to have the required sensitivity to detect axions, for plausible axion models.

  6. Detailed design of a resonantly enhanced axion-photon regeneration experiment

    SciTech Connect

    Mueller, Guido; Sikivie, Pierre; Tanner, D. B.; Bibber, Karl van

    2009-10-01

    A resonantly enhanced photon-regeneration experiment to search for the axion or axionlike particles is described. This experiment is a shining light through walls study, where photons traveling through a strong magnetic field are (in part) converted to axions; the axions can pass through an opaque wall and convert (in part) back to photons in a second region of strong magnetic field. The photon regeneration is enhanced by employing matched Fabry-Perot optical cavities, with one cavity within the axion generation magnet and the second within the photon-regeneration magnet. Compared to simple single-pass photon regeneration, this technique would result in a gain of (F/{pi}){sup 2}, where F is the finesse of each cavity. This gain could feasibly be as high as 10{sup 10}, corresponding to an improvement in the sensitivity to the axion-photon coupling, g{sub a{gamma}}{sub {gamma}}, of order (F/{pi}){sup 1/2}{approx}300. This improvement would enable, for the first time, a purely laboratory experiment to probe axion-photon couplings at a level competitive with, or superior to, limits from stellar evolution or solar axion searches. This report gives a detailed discussion of the scheme for actively controlling the two Fabry-Perot cavities and the laser frequencies, and describes the heterodyne signal detection system, with limits ultimately imposed by shot noise.

  7. 130 GeV gamma-ray line through axion conversion

    NASA Astrophysics Data System (ADS)

    Yamanaka, Masato; Kohri, Kazunori; Ioka, Kunihito; Nojiri, Mihoko M.

    2015-03-01

    We apply the axion-photon conversion mechanism to the 130 GeV γ -ray line observed by the Fermi satellite. Near the Galactic center, some astrophysical sources and/or particle dark matter can produce energetic axions (or axionlike particles), and the axions convert to γ rays in Galactic magnetic fields along their flight to the Earth. Since continuum γ -ray and antiproton productions are sufficiently suppressed in axion production, the scenario fits the 130 GeV γ -ray line without conflicting with cosmic ray measurements. We derive the axion production cross section and the decay rate of dark matter to fit the γ -ray excess as functions of axion parameters. In the scenario, the γ -ray spatial distributions depend on both the dark matter profile and the magnetic field configuration, which will be tested by future γ -ray observations, e.g., H.E.S.S. II, CTA, and GAMMA-400. As an illustrative example, we study realistic supersymmetric axion models, and show the favored parameters that nicely fit the γ -ray excess.

  8. First Results from a Microwave Cavity Axion Search at 24 μ eV

    NASA Astrophysics Data System (ADS)

    Brubaker, B. M.; Zhong, L.; Gurevich, Y. V.; Cahn, S. B.; Lamoreaux, S. K.; Simanovskaia, M.; Root, J. R.; Lewis, S. M.; Al Kenany, S.; Backes, K. M.; Urdinaran, I.; Rapidis, N. M.; Shokair, T. M.; van Bibber, K. A.; Palken, D. A.; Malnou, M.; Kindel, W. F.; Anil, M. A.; Lehnert, K. W.; Carosi, G.

    2017-02-01

    We report on the first results from a new microwave cavity search for dark matter axions with masses above 20 μ eV . We exclude axion models with two-photon coupling ga γ γ≳2 ×10-14 GeV-1 over the range 23.55 axion search.

  9. Finding the Axion: The Search for the Dark Matter of the Universe

    SciTech Connect

    Carosi, G

    2006-11-03

    The nature of dark matter has been a mystery for over 70 years. One plausible candidate is the axion, an extremely light and weakly interacting particle, which results from the Peccei-Quinn solution to the strong CP problem. In this proceedings I will briefly review the evidence for dark matter as well as the motivation for the existence of the axion as a prime dark matter candidate. I will then discuss the experimental methods to search for axion dark matter focusing on a sensitive cavity experiment (ADMX) being run at Lawrence Livermore National Laboratory.

  10. The Einstein-Maxwell-aether-axion theory: Dynamo-optical anomaly in the electromagnetic response

    NASA Astrophysics Data System (ADS)

    Alpin, Timur Yu.; Balakin, Alexander B.

    2016-03-01

    We consider a pp-wave symmetric model in the framework of the Einstein-Maxwell-aether-axion theory. Exact solutions to the equations of axion electrodynamics are obtained for the model, in which pseudoscalar, electric and magnetic fields were constant before the arrival of a gravitational pp-wave. We show that dynamo-optical interactions, i.e. couplings of electromagnetic field to a dynamic unit vector field, attributed to the velocity of a cosmic substratum (aether, vacuum, dark fluid…), provide the response of axionically active electrodynamic system to display anomalous behavior.

  11. Potential solar axion signatures in X-ray observations with the XMM-Newton observatory

    NASA Astrophysics Data System (ADS)

    Fraser, G. W.; Read, A. M.; Sembay, S.; Carter, J. A.; Schyns, E.

    2014-12-01

    The soft X-ray flux produced by solar axions in the Earth's magnetic field is evaluated in the context of the European Space Agency's XMM-Newton observatory. Recent calculations of the scattering of axion-conversion X-rays suggest that the sunward magnetosphere could be an observable source of 0.2-10 keV photons. For XMM-Newton, any conversion X-ray intensity will be seasonally modulated by virtue of the changing visibility of the sunward magnetic field region. A simple model of the geomagnetic field is combined with the ephemeris of XMM-Newton to predict the seasonal variation of the conversion X-ray intensity. This model is compared with stacked XMM-Newton blank sky datasets from which point sources have been systematically removed. Remarkably, a seasonally varying X-ray background signal is observed. The European Photon Imaging Camera count rates are in the ratio of their X-ray grasps, indicating a non-instrumental, external photon origin, with significances of 11σ (pn), 4σ (MOS1) and 5σ (MOS2). After examining the distribution of the constituent observations spatially, temporally and in terms of the accepted representation of the cosmic X-ray background, we conclude that this variable signal is consistent with the conversion of solar axions in the Earth's magnetic field, assuming the resultant photons are not strictly forward-directed, and enter the field of view of XMM-Newton. The spectrum is consistent with a solar axion spectrum dominated by bremsstrahlung- and Compton-like processes, distinct from a Primakoff spectrum, i.e. axion-electron coupling dominates over axion-photon coupling and the peak of the axion spectrum is below 1 keV. A value of 2.2 × 10-22 GeV-1 is derived for the product of the axion-photon and axion-electron coupling constants, for an axion mass in the μeV range. Comparisons, e.g., with limits derived from white dwarf cooling may not be applicable, as these refer to axions in the ˜0.01 eV range. Preliminary results are given of a

  12. Origin of pulsed emission from the young supernova remnant SN 1987A

    NASA Technical Reports Server (NTRS)

    Ruderman, M.; Kluzniak, W.; Shaham, Jacob

    1989-01-01

    To overcome difficulties in understanding the origin of the submillisecond optical pulses from SN 1987A a model similar to that of Kundt and Krotscheck for pulsed synchrotron emission from the Crab was applied. The interaction of the expected ultrarelativistic e(sup + or -) pulsar wind with the pulsar dipole electromagnetic wave reflected from the walls of a pulsar cavity within the SN 1987A nubula can generate pulsed optical emission with efficiency at most eta(sub max) is approximately equal to 10(exp -3). The maximum luminosity of the source is reproduced and other observational constraints can be satisfied for an average wind energy flow is approximately equal to 10(exp 38) erg/(s steradian) and for electron Lorentz factor gamma is approximately equal to 10(exp 5). This model applied to the Crab yields pulsations of much lower luminosity and frequency.

  13. Origin of the Napoleon's hat nebula around SN1987A and implications for the progenitor

    NASA Astrophysics Data System (ADS)

    Podsiadlowski, Ph.; Fabian, A. C.; Stevens, I. R.

    1991-11-01

    A simple geometrical model for the emission nebula around SN1987A, whose morphology has been likened to Napoleon's hat, is presented. The model consists of a ring and a truncated double cone. When the effects of light travel time are included, the model reproduces the important topological structures of the nebula and makes detailed quantitative predictions for its future appearance. In particular, the hat-shaped northern rim is simply explained as the interaction of the light front with the northern cone. To explain the origin of the double cone, it is argued that the progenitor of SN1987A was in a binary system: its strong wind, colliding with a weaker wind from the companion star, created an asymptotic shock surface that was spread out into the required geometry by the rotation of the binary.

  14. Chandra Observations of SN 1987A: The Soft X-Ray Light Curve Revisited

    NASA Technical Reports Server (NTRS)

    Helder, E. A.; Broos, P. S.; Dewey, D.; Dwek, E.; McCray, R.; Park, S.; Racusin, J. L.; Zhekov, S. A.; Burrows, D. N.

    2013-01-01

    We report on the present stage of SN 1987A as observed by the Chandra X-Ray Observatory. We reanalyze published Chandra observations and add three more epochs of Chandra data to get a consistent picture of the evolution of the X-ray fluxes in several energy bands. We discuss the implications of several calibration issues for Chandra data. Using the most recent Chandra calibration files, we find that the 0.5-2.0 keV band fluxes of SN 1987A have increased by approximately 6 x 10(exp-13) erg s(exp-1)cm(exp-2) per year since 2009. This is in contrast with our previous result that the 0.5-2.0 keV light curve showed a sudden flattening in 2009. Based on our new analysis, we conclude that the forward shock is still in full interaction with the equatorial ring.

  15. SUPERNOVA 1987A: A TEMPLATE TO LINK SUPERNOVAE TO THEIR REMNANTS

    SciTech Connect

    Orlando, S.; Miceli, M.; Pumo, M. L.; Bocchino, F.

    2015-09-10

    The emission of supernova remnants (SNRs) reflects the properties of both the progenitor supernovae (SNe) and the surrounding environment. The complex morphology of the remnants, however, hampers the disentanglement of the two contributions. Here, we aim at identifying the imprint of SN 1987A on the X-ray emission of its remnant and at constraining the structure of the environment surrounding the SN. We performed high-resolution hydrodynamic simulations describing SN 1987A soon after the core-collapse and the following three-dimensional expansion of its remnant between days 1 and 15,000 after the SN. We demonstrated that the physical model reproducing the main observables of SN 1987A during the first 250 days of evolution also reproduces the X-ray emission of the subsequent expanding remnant, thus bridging the gap between SNe and SNRs. By comparing model results with observations, we constrained the explosion energy in the range 1.2–1.4 × 10{sup 51} erg and the envelope mass in the range 15–17 M{sub ⊙}. We found that the shape of X-ray lightcurves and spectra at early epochs (<15 years) reflects the structure of outer ejecta: our model reproduces the observations if the outermost ejecta have a post-explosion radial profile of density approximated by a power law with index α = −8. At later epochs, the shapes of X-ray lightcurves and spectra reflect the density structure of the nebula around SN 1987A. This enabled us to ascertain the origin of the multi-thermal X-ray emission, disentangle the imprint of the SN on the remnant emission from the effects of the remnant interaction with the environment, and constrain the pre-supernova structure of the nebula.

  16. Supernova 1987A: a Template to Link Supernovae to Their Remnants

    NASA Astrophysics Data System (ADS)

    Orlando, S.; Miceli, M.; Pumo, M. L.; Bocchino, F.

    2015-09-01

    The emission of supernova remnants (SNRs) reflects the properties of both the progenitor supernovae (SNe) and the surrounding environment. The complex morphology of the remnants, however, hampers the disentanglement of the two contributions. Here, we aim at identifying the imprint of SN 1987A on the X-ray emission of its remnant and at constraining the structure of the environment surrounding the SN. We performed high-resolution hydrodynamic simulations describing SN 1987A soon after the core-collapse and the following three-dimensional expansion of its remnant between days 1 and 15,000 after the SN. We demonstrated that the physical model reproducing the main observables of SN 1987A during the first 250 days of evolution also reproduces the X-ray emission of the subsequent expanding remnant, thus bridging the gap between SNe and SNRs. By comparing model results with observations, we constrained the explosion energy in the range 1.2-1.4 × 1051 erg and the envelope mass in the range 15-17 M ⊙. We found that the shape of X-ray lightcurves and spectra at early epochs (<15 years) reflects the structure of outer ejecta: our model reproduces the observations if the outermost ejecta have a post-explosion radial profile of density approximated by a power law with index α = -8. At later epochs, the shapes of X-ray lightcurves and spectra reflect the density structure of the nebula around SN 1987A. This enabled us to ascertain the origin of the multi-thermal X-ray emission, disentangle the imprint of the SN on the remnant emission from the effects of the remnant interaction with the environment, and constrain the pre-supernova structure of the nebula.

  17. SN Refsdal: Classification as a Luminous and Blue SN 1987A-like Type II Supernova

    NASA Astrophysics Data System (ADS)

    Kelly, P. L.; Brammer, G.; Selsing, J.; Foley, R. J.; Hjorth, J.; Rodney, S. A.; Christensen, L.; Strolger, L.-G.; Filippenko, A. V.; Treu, T.; Steidel, C. C.; Strom, A.; Riess, A. G.; Zitrin, A.; Schmidt, K. B.; Bradač, M.; Jha, S. W.; Graham, M. L.; McCully, C.; Graur, O.; Weiner, B. J.; Silverman, J. M.; Taddia, F.

    2016-11-01

    We have acquired Hubble Space Telescope (HST) and Very Large Telescope near-infrared spectra and images of supernova (SN) Refsdal after its discovery as an Einstein cross in fall 2014. The HST light curve of SN Refsdal has a shape consistent with the distinctive, slowly rising light curves of SN 1987A-like SNe, and we find strong evidence for a broad Hα P-Cygni profile and Na I D absorption in the HST grism spectrum at the redshift (z = 1.49) of the spiral host galaxy. SNe IIn, largely powered by circumstellar interaction, could provide a good match to the light curve of SN Refsdal, but the spectrum of a SN IIn would not show broad and strong Hα and Na I D absorption. From the grism spectrum, we measure an Hα expansion velocity consistent with those of SN 1987A-like SNe at a similar phase. The luminosity, evolution, and Gaussian profile of the Hα emission of the WFC3 and X-shooter spectra, separated by ˜2.5 months in the rest frame, provide additional evidence that supports the SN 1987A-like classification. In comparison with other examples of SN 1987A-like SNe, photometry of SN Refsdal favors bluer B - V and V - R colors and one of the largest luminosities for the assumed range of potential magnifications. The evolution of the light curve at late times will provide additional evidence about the potential existence of any substantial circumstellar material. Using MOSFIRE and X-shooter spectra, we estimate a subsolar host-galaxy metallicity (8.3 ± 0.1 dex and <8.4 dex, respectively) near the explosion site.

  18. The neutrino burst from SN 1987A detected in the Mont Blanc LSD experiment.

    NASA Astrophysics Data System (ADS)

    Aglietta, M.; Badino, G.; Bologna, G.; Castagnoli, C.; Castellina, A.; Dadykin, V. L.; Fulgione, W.; Galeotti, P.; Kalchukov, F. F.; Khalchukov, F. F.; Kortchaguin, V. B.; Korchagin, V. B.; Kortchaguin, P. V.; Korchagin, P. V.; Malguin, A. S.; Mal'Gin, A. S.; Ryassny, V. G.; Ryasnyj, V. G.; Ryazhkaya, O. G.; Saavedra, O.; Talochkin, V. P.; Trinchero, G.; Vernetto, S.; Zatsepin, G. T.; Yakushev, V. F.

    The authors discuss the event, (5 interactions recorded during 7 seconds) detected in the Mont Blanc Underground Neutrino Observatory on February 23, 1987, during the occurrence of supernova SN 1987A. The pulse amplitudes, the background imitation probability, and the energetics connected with the event are reported. It is also shown that some interactions recorded at the same time in other underground experiments, with a lower detection efficiency, are consistent with the Mont Blanc event.

  19. High-Velocity Ly(Alpha) Emission from SMR 1987A

    NASA Technical Reports Server (NTRS)

    Michael, Eli; McCray, Richard; Borkowski, Kazimierz J.; Pun, Chu S. J.; Sonneborn, George

    1998-01-01

    The high-velocity Ly(Alpha) emission from SN 1987A observed with the Space Telescope Imaging Spectrograph (STIS) evidently comes from a reverse shock formed where the outer envelope of SN 1987A strikes ionized gas inside the inner circumstellar ring. The observations can be explained by a simple kinematic model, in which the Ly(Alpha) emission comes from hydrogen atoms with radial velocity approximately 15,000 km s(exp -1) crossing a reverse shock in the shape of a slightly prolate ellipsoid with equatorial radius 4.8 x 10(exp 17) cm or approximately 80% of the distance to the inner surface of the inner ring. N v double Lambda 1239, 1243 emission, if present, has a net luminosity approximately less than 30% times that of the Ly(Alpha) emission. Future STIS observations should enable us to predict the time of impact with the inner ring and to determine unambiguously whether or not N v emission is present. These observations will offer a unique opportunity to probe the structure of SN 1987A's circumstellar environment and the hydrodynamics and kinetics of very fast shocks.

  20. Confirmation of Dust Condensation in the Ejecta of Supernova 1987a

    NASA Astrophysics Data System (ADS)

    Gehrz, R. D.; Ney, E. P.

    1990-06-01

    Shortly after its outburst, we suggested that supernova 1987a might condense a dust shell of substantial visual optical thickness as many classical novae do and predicted that dust might form within a year after the explosion. A critical examination of recent optical and infrared observations reported by others confirms that dust grains had begun to grow at a temperature of 1000 K after 300 days and that the dust shell had become optically thick by day 600. After day 600, the infrared luminosity closely followed the intrinsic luminosity expected for thermalized 56Co γ rays, demonstrating that the luminosity is powered by radioactivity and that the dust is outside the radioactivity zone. The infrared luminosity sets an upper limit to the soft intrinsic bolometric luminosity of a pulsar central engine. This upper limit for the pulsar in supernova 1987a is the same luminosity as the Crab pulsar has today 936 years after its formation. It is unlikely that the rotation rate for a pulsar in supernova 1987a can be much higher than ≈ 30 revolutions per sec. The relatively long time required for the shell to grow to maximum optical depth as compared with the dust in nova shells may be related to the relatively low outflow velocity of the condensible ejecta.

  1. Thirteen years of pummeling the circumstellar ring around SN 1987A

    NASA Astrophysics Data System (ADS)

    Dwek, Eli; Arendt, Richard G.; Bouchet, Patrice; Danziger, John

    2016-06-01

    Since 2003, about 6000 days after the explosion, the radiative energy output from SN 1987A has shifted from being dominated by the release of radioactive energy from the ejecta, to the release of mechanical energy caused by the interaction of the SN blast wave with the circumstellar ring. The energy from the interaction is released at X-ray, UV-optical, and infrared (IR) wavelengths. The 5-35 micron IR spectrum from the ring is dominated by the emission from collisionally-heated silicate dust. The circumstellar ring around SN 1987A therefore provides astronomers with a unique laboratory for studying the physical conditions and gas-dust interaction in dusty astrophysical plasmas. In particular, the X-ray and IR observations can be used to determine the erosion efficiency of dust grains in such hostile astrophysical environment. In this talk I will summarize what we have learned from 12 years of Gemini and Spitzer observations of the ring around SN 1987A.

  2. Confirmation of dust condensation in the ejecta of supernova 1987a.

    PubMed Central

    Gehrz, R D; Ney, E P

    1990-01-01

    Shortly after its outburst, we suggested that supernova 1987a might condense a dust shell of substantial visual optical thickness as many classical novae do and predicted that dust might form within a year after the explosion. A critical examination of recent optical and infrared observations reported by others confirms that dust grains had begun to grow at a temperature of 1000 K after 300 days and that the dust shell had become optically thick by day 600. After day 600, the infrared luminosity closely followed the intrinsic luminosity expected for thermalized 56Co gamma rays, demonstrating that the luminosity is powered by radioactivity and that the dust is outside the radioactivity zone. The infrared luminosity sets an upper limit to the soft intrinsic bolometric luminosity of a pulsar central engine. This upper limit for the pulsar in supernova 1987a is the same luminosity as the Crab pulsar has today 936 years after its formation. It is unlikely that the rotation rate for a pulsar in supernova 1987a can be much higher than approximately 30 revolutions per sec. The relatively long time required for the shell to grow to maximum optical depth as compared with the dust in nova shells may be related to the relatively low outflow velocity of the condensible ejecta. PMID:11607082

  3. Oriented Scintillation Spectrometer Experiment observations of Co-57 in SN 1987A

    NASA Technical Reports Server (NTRS)

    Kurfess, J. D.; Johnson, W. N.; Kinzer, R. L.; Kroeger, R. A.; Strickman, M. S.; Grove, J. E.; Leising, M. D.; Clayton, D. D.; Grabelsky, D. A.; Purcell, W. R.

    1992-01-01

    The Oriented Scintillation Spectrometer Experiment (OSSE) on the Compton Gamma Ray Observatory has observed SN 1987A for two 2 week periods during the first 9 months of the mission. Evidence for gamma-ray line and continuum emission from Co-57 is observed with an intensity of about 10 exp -4 gamma/sq cm/s. This photon flux between 50 and 136 keV is demonstrated by Monte Carlo calculations to be independent of the radial distribution of Co-57 for models of low optical depth, viz., models having photoelectric absorption losses of 122 keV photons no greater than several percent. For such models the observed Co-57 flux indicates that the ratio Ni-57/Ni-56 produced in the explosion was about 1.5 times the solar system ratio of Fe-57/Fe-56. When compared with nearly contemporaneous bolometric estimates of the luminosity for SN 1987A, our observations imply that Co-57 radioactivity does not account for most of the current luminosity of the supernova remnant in low optical depth models. We suggest alternatives, including a large optical depth model that is able to provide the SN 1987A luminosity and is consistent with the OSSE flux. It requires a 57/56 production ratio about twice solar.

  4. Axion monodromy inflation with warped KK-modes

    NASA Astrophysics Data System (ADS)

    Hebecker, Arthur; Moritz, Jakob; Westphal, Alexander; Witkowski, Lukas T.

    2016-03-01

    We present a particularly simple model of axion monodromy inflation: Our axion is the lowest-lying KK-mode of the RR-2-form-potential C2 in the standard Klebanov-Strassler throat. One can think of this inflaton candidate as being defined by the integral of C2 over the S2 cycle of the throat. It obtains an exponentially small mass from the IR-region in which the S2 shrinks to zero size. Crucially, the S2 cycle has to be shared between two throats, such that the second locus where the S2 shrinks is also in a warped region. Well-known problems like the potentially dangerous back-reaction of brane/antibrane pairs and explicit supersymmetry breaking are not present in our scenario. The inflaton back-reaction on the geometry turns out to be controlled by the string coupling gs. We hope that our setting is simple enough for many critical consistency issues of large-field inflation in string theory to be addressed at a quantitative level.

  5. New model of axion monodromy inflation and its cosmological implications

    SciTech Connect

    Cai, Yi-Fu; Chen, Fang; Ferreira, Elisa G.M.; Quintin, Jerome

    2016-06-10

    We propose a new realization of axion monodromy inflation in which axion monodromy arises from torsional cycles in a type IIB compactification. A class of monomial potentials is obtained with specific values for the power index. Moreover, the inflaton mass changes profile due to the couplings between various fields after compactification. Consequently, the potential obtains a step-like profile at some critical scale. We study the cosmological implications of one concrete realization of this model. At the background level, it realizes a sufficiently long inflationary stage, which allows for the violation of the slow-roll conditions for a short period of time when the inflaton is close to the critical scale. Accordingly, the Hubble horizon is perturbed and affects the dynamics of primordial cosmological perturbations. In particular, we analyze the angular power spectrum of B-mode polarization and find a boost on very large scales. We also find that the amplitude of scalar perturbations is suppressed near the critical scale. Thus our model provides an interpretation for the low-ℓ suppression of temperature anisotropies in the CMB power spectrum. We examine these effects and confront the model to observations.

  6. Magnetic catalysis and axionic charge density wave in Weyl semimetals

    NASA Astrophysics Data System (ADS)

    Roy, Bitan; Sau, Jay D.

    2015-09-01

    Three-dimensional Weyl and Dirac semimetals can support a chiral-symmetry-breaking, fully gapped, charge-density-wave order even for sufficiently weak repulsive electron-electron interactions, when placed in strong magnetic fields. In the former systems, due to the natural momentum space separation of Weyl nodes the ordered phase lacks the translational symmetry and represents an axionic phase of matter, while that in a Dirac semimetal (neglecting the Zeeman coupling) is only a trivial insulator. We present the scaling of this spectral gap for a wide range of subcritical (weak) interactions as well as that of the diamagnetic susceptibility with the magnetic field. A similar mechanism for charge-density-wave ordering at weak coupling is shown to be operative in double- and triple-Weyl semimetals, where the dispersion is linear (quadratic and cubic, respectively) for the z (planar) component(s) of the momentum. We here also address the competition between the charge-density-wave and a spin-density-wave orders, both of which breaks the chiral symmetry and leads to gapped spectrum, and show that at least in the weak coupling regime the former is energetically favored. The anomalous surface Hall conductivity, role of topological defects such as axion strings, existence of one-dimensional gapless dispersive modes along the core of such defects, and anomaly cancellation through the Callan-Harvey mechanism are discussed.

  7. Axionic field theory of (3+1)-dimensional Weyl semimetals

    NASA Astrophysics Data System (ADS)

    Goswami, Pallab; Tewari, Sumanta

    2013-12-01

    From a direct calculation of the anomalous Hall conductivity and an effective electromagnetic action obtained via Fujikawa's chiral rotation technique, we conclude that an axionic field theory with a nonquantized coefficient describes the electromagnetic response of the (3+1)-dimensional Weyl semimetal. The coefficient is proportional to the momentum space separation of the Weyl nodes. Akin to the Chern-Simons field theory of quantum Hall effect, the axion field theory violates gauge invariance in the presence of the boundary, which is cured by the chiral anomaly of the surface states via the Callan-Harvey mechanism. This provides a unique solution for the radiatively induced CPT-odd term in the electromagnetic polarization tensor of the Lorentz violating spinor electrodynamics, where the source of the Lorentz violation is a constant axial 4-vector term for the Dirac fermion. A direct linear response calculation also establishes anomalous thermal Hall effect and a Wiedemann-Franz law, but thermal Hall conductivity does not directly follow from the well known formula for the gravitational chiral anomaly.

  8. Core collapse supernovae from blue supergiant progenitors : The evolutionary history of SN 1987A

    NASA Astrophysics Data System (ADS)

    Menon, Athira

    2015-08-01

    SN 1987A is historically one of the most remarkable supernova explosions to be seen from Earth. Due to the proximity of its location in the LMC, it remains the most well-studied object outside the solar system. It was also the only supernova whose progenitor was observed prior to its explosion.SN 1987A however, was a unique and enigmatic core collapse supernova. It was the first Type II supernova to have been observed to have exploded while its progenitor was a blue supergiant (BSG). Until then Type II supernovae were expected to originate from explosions of red supergiants (RSGs). A spectacular triple-ring nebula structure, rich in helium and nitrogen, was observed around the remnant, indicating a recent RSG phase before becoming a BSG. Even today it is not entirely understood what the evolutionary history may have been to cause a BSG to explode. The most commonly accepted hypothesis for its origin is the merger of a massive binary star system.An evolutionary scenario for such a binary system, was proposed by Podsiadlowski (1992) (P92). Through SPH simulations of the merger and the stellar evolution of the post-merger remnant, Ivanova & Podsiadlowski (2002) and (2003) (I&M) could successfully obtain the RSG to BSG transition of the progenitor.The aim of the present work is to produce the evolutionary history of the progenitor of SN 1987A and its explosion. We construct our models based on the results of P92 and I&M. Here, the secondary (less massive) star is accreted on the primary, while being simultaneously mixed in its envelope over a period of 100 years. The merged star is evolved until the onset of core collapse. For this work we use the 1-dimensional, implicit, hydrodynamical stellar evolution code, KEPLER. A large parameter space is explored, consisting of primary (16-20 Ms) and secondary masses (5-8 Ms), mixing boundaries, and accreting timescales. Those models whose end states match the observed properties of the progenitor of SN 1987A are exploded. The

  9. The quest for blue supergiants : The evolution of the progenitor of SN 1987A

    NASA Astrophysics Data System (ADS)

    Menon, Athira; Heger, Alexander

    2015-08-01

    SN 1987A is historically one of the most remarkable supernova explosions to be seen from Earth. Due to the proximity of its location in the LMC, it remains the most well-studied object outside the solar system. It was also the only supernova whose progenitor was observed prior to its explosion.SN 1987A however, was a unique and enigmatic core collapse supernova. It was the first Type II supernova to have been observed to have exploded while its progenitor was a blue supergiant (BSG). Until then Type II supernovae were expected to originate from explosions of red supergiants (RSGs). A spectacular triple-ring nebula structure, rich in helium and nitrogen, was observed around the remnant, indicating a recent RSG phase before becoming a BSG. Even today it is not entirely understood what the evolutionary history may have been to cause a BSG to explode. The most commonly accepted hypothesis for its origin is the merger of a massive binary star system.An evolutionary scenario for such a binary system, was proposed by Podsiadlowski (1992) (P92). Through SPH simulations of the merger and the stellar evolution of the post-merger remnant, Ivanova & Podsiadlowski (2002) and (2003) (I&M) could successfully obtain the RSG to BSG transition of the progenitor.The aim of the present work is to produce the evolutionary history of the progenitor of SN 1987A and its explosion. We construct our models based on the results of P92 and I&M. Here, the secondary (less massive) star is accreted on the primary, while being simultaneously mixed in its envelope over a period of 100 years. The merged star is evolved until the onset of core collapse. For this work we use the 1-dimensional, implicit, hydrodynamical stellar evolution code, KEPLER. A large parameter space is explored, consisting of primary (16-20 Ms) and secondary masses (5-8 Ms), mixing boundaries, and accreting timescales. Those models whose end states match the observed properties of the progenitor of SN 1987A are exploded. The

  10. Supernova 1987A: neutrino-driven explosions in three dimensions and light curves

    NASA Astrophysics Data System (ADS)

    Utrobin, V. P.; Wongwathanarat, A.; Janka, H.-Th.; Müller, E.

    2015-09-01

    Context. The well-observed and well-studied type IIP Supernova 1987A (SN 1987A), produced by the explosion of a blue supergiant in the Large Magellanic Cloud, is a touchstone for the evolution of massive stars, the simulation of neutrino-driven explosions, and the modeling of light curves and spectra. Aims: In the framework of the neutrino-driven explosion mechanism, we study the dependence of explosion properties on the structure of different blue supergiant progenitors and compare the corresponding light curves with observations of SN 1987A. Methods: Three-dimensional (3D) simulations of neutrino-driven explosions are performed with the explicit, finite-volume, Eulerian, multifluid hydrodynamics code Prometheus, using of four available presupernova models as initial data. At a stage of almost homologous expansion, the hydrodynamical and composition variables of the 3D models are mapped to a spherically symmetric configuration, and the simulations are continued with the implicit, Lagrangian radiation-hydrodynamics code Crab to follow the blast-wave evolution into the SN outburst. Results: All of our 3D neutrino-driven explosion models, with explosion energies compatible with SN 1987A, produce 56Ni in rough agreement with the amount deduced from fitting the radioactively powered light-curve tail. Two of our models (based on the same progenitor) yield maximum velocities of around 3000 km s-1 for the bulk of ejected 56Ni, consistent with observational data. In all of our models inward mixing of hydrogen during the 3D evolution leads to minimum velocities of hydrogen-rich matter below 100 km s-1, which is in good agreement with spectral observations. However, the explosion of only one of the considered progenitors reproduces the shape of the broad light curve maximum of SN 1987A fairly well. Conclusions: The considered presupernova models, 3D explosion simulations, and light-curve calculations can explain the basic observational features of SN 1987A, except for those

  11. More on critical collapse of axion-dilaton system in dimension four

    SciTech Connect

    Álvarez-Gaumé, Luis; Hatefi, Ehsan E-mail: ehsan.hatefi@cern.ch

    2013-10-01

    We complete our previous study of critical gravitational collapse in the axion-dilaton system by analysing the hyperbolic and parabolic ansaetze. As could be expected, the corresponding Choptuik exponents in four-dimensions differ from the elliptic case.

  12. Effects of axion-photon mixing on gamma-ray spectra from magnetized astrophysical sources

    SciTech Connect

    Hochmuth, Kathrin A.; Sigl, Guenter

    2007-12-15

    Astrophysical {gamma}-ray sources come in a variety of sizes and magnetizations. We deduce general conditions under which {gamma}-ray spectra from such sources would be significantly affected by axion-photon mixing. We show that, depending on strength and coherence of the magnetic field, axion couplings down to {approx}(10{sup 13}GeV){sup -1} can give rise to significant axion-photon conversions in the environment of accreting massive black holes. Resonances can occur between the axion mass term and the plasma frequency term as well as between the plasma frequency term and the vacuum Cotton-Mouton shift. Both resonances and nonresonant transitions could induce detectable features or even strong suppressions in finite energy intervals of {gamma}-ray spectra from active galactic nuclei. Such effects can occur at keV to TeV energies for couplings that are currently allowed by all experimental constraints.

  13. Bose-Einstein condensation of the classical axion field in cosmology?

    SciTech Connect

    Davidson, Sacha; Elmer, Martin E-mail: m.elmer@ipnl.in2p3.fr

    2013-12-01

    The axion is a motivated cold dark matter candidate, which it would be interesting to distinguish from weakly interacting massive particles. Sikivie has suggested that axions could behave differently during non-linear galaxy evolution, if they form a Bose-Einstein condensate, and argues that ''gravitational thermalisation'' drives them to a Bose-Einstein condensate during the radiation dominated era. Using classical equations of motion during linear structure formation, we explore whether the gravitational interactions of axions can generate enough entropy. At linear order in G{sub N}, we interpret that the principle activities of gravity are to expand the Universe and grow density fluctuations. To quantify the rate of entropy creation we use the anisotropic stress to estimate a short dissipation scale for axions which does not confirm previous estimates of their gravitational thermalisation rate.

  14. First results from a microwave cavity axion search at 25 μeV : Analysis

    NASA Astrophysics Data System (ADS)

    Zhong, Ling; ADMX-HF Collaboration

    2017-01-01

    ADMX-HF searches for dark matter axions via Primakoff conversion into microwave photons in the gigahertz domain. Since 2012, tremendous effort has been made to build an axion detector working in this frequency range. By operating the system in a cryogen-free dilution refrigerator (T = 127 mK) and integrating a Josephson Parametric Amplifier (JPA), we obtain a sufficiently low system noise temperature to exclude axion models with gaγγ > 2 ×10-14GeV-1 over the mass range 23 . 55 μeV axion signals. Supported by NSF Grants PHY-1362305 and PHY-1306729, Heising-Simons Foundation Grant 2014-182, and DOE Grant DE-AC52-07NA27344.

  15. Trapping ions in a segmented ring trap

    NASA Astrophysics Data System (ADS)

    Tabakov, B. P.; Sterk, J. D.; Benito, F.; Haltli, R.; Tigges, C. P.; Stick, D.; Blain, M. G.; Moehring, D. L.

    2012-06-01

    We demonstrate robust trapping in an ion trap which has a ring shaped RF node. Ions are back-side loaded through a small 10 μm diameter loading hole and we have demonstrated thousands of complete circuits around the trap. Each circuit passes through 44 trapping zones; the trap has 89 independent DC control electrodes. Measurements of the tangential secular frequency indicate a weak dependence on the RF and the loading hole. The ion trap is fabricated using four metal layers, allowing for the inner islanded electrodes to be electrically routed underneath the trap with negligible effects on the trapped ions. [4pt] This work was supported by the Intelligence Advanced Research Projects Activity (IARPA). Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the US Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  16. Revisiting the axion bounds from the Galactic white dwarf luminosity function

    SciTech Connect

    Bertolami, M.M. Miller; Melendez, B.E.; Althaus, L.G.

    2014-10-01

    It has been shown that the shape of the luminosity function of white dwarfs (WDLF) is a powerful tool to check for the possible existence of DFSZ-axions, a proposed but not yet detected type of weakly interacting particles. With the aim of deriving new constraints on the axion mass, we compute in this paper new theoretical WDLFs on the basis of WD evolving models that incorporate the feedback of axions on the thermal structure of the white dwarf. We find that the impact of the axion emission into the neutrino emission can not be neglected at high luminosities M{sub  Bol}∼< 8) and that the axion emission needs to be incorporated self-consistently into the evolution of the white dwarfs when dealing with axion masses larger than m{sub a} cos {sup 2}β∼> 5 meV (i.e. axion-electron coupling constant g{sub ae}∼> 1.4× 10{sup -13}). We went beyond previous works by including 5 different derivations of the WDLF in our analysis. Then we have performed χ{sup 2}-tests to have a quantitative measure of the agreement between the theoretical WDLFs — computed under the assumptions of different axion masses and normalization methods --- and the observed WDLFs of the Galactic disk. While all the WDLF studied in this work disfavour axion masses in the range suggested by asteroseismology m{sub a} cos {sup 2}β∼> 10 meV; g{sub ae}∼> 2.8× 10{sup -13}) lower axion masses can not be discarded from our current knowledge of the WDLF of the Galactic Disk. A larger set of completely independent derivations of the WDLF of the galactic disk as well as a detailed study of the uncertainties of the theoretical WDLFs is needed before quantitative constraints on the axion-electron coupling constant can be made.

  17. Probing the eV-Mass Range for Solar Axions with CAST

    SciTech Connect

    Vogel, J K; Pivovaroff, M J; Soufli, R; van Bibber, K; CAST, C

    2010-11-11

    The CERN Axion Solar Telescope (CAST) is searching for solar axions which could be produced in the core of the Sun via the so-called Primakoff effect. Not only would these hypothetical particles solve the strong CP problem, but they are also one of the favored candidates for dark matter. In order to look for axions originating from the Sun, CAST uses a decommissioned LHC prototype magnet. In its 10 m long magnetic field region of 9 Tesla, axions could be reconverted into X-ray photons. Different X-ray detectors are installed on both ends of the magnet, which is mounted on a structure built to follow the Sun during sunrise and sunset for a total of about 3 hours per day. The analysis of the data acquired during the first phase of the experiment with vacuum in the magnetic field region yielded the most restrictive experimental upper limit on the axion-to-photon coupling constant for axion masses up to about 0.02 eV. In order to extend the sensitivity of the experiment to a wider mass range, the CAST experiment continues its search for axions with helium in the magnet bores. In this way it is possible to restore coherence of conversion for larger masses. Changing the pressure of the helium gas enables the experiment to scan different axion masses in the range of up to about 1.2 eV. Especially at high pressures, a precise knowledge of the gas density distribution is crucial to obtain accurate results. In the first part of this second phase of CAST, {sup 4}He was used and the axion mass region was extended up to 0.39 eV, a part of phase space favored by axion models. In CAST's ongoing {sup 3}He phase the studied mass range is now being extended further. In this contribution the final results of CAST's {sup 4}He phase will be presented and the current status of the {sup 3}He run will be given. This includes latest results as well as prospects of future axion experiments.

  18. Micromachined Dust Traps

    NASA Technical Reports Server (NTRS)

    Bearman, Gregory H.; Bradley, James G.

    1993-01-01

    Micromachined traps devised to capture dust particles for analysis without contaminating them. Based on micromachined structures retaining particles, rather than adhesives or greases interfering with scanning-electron-microscope analysis or x-ray imaging. Unlike maze traps and traps enmeshing particles in steel wool or similar materials, micromachined traps do not obscure trapped particles. Internal geometries of traps range from simple cones to U-shapes, all formed by etching silicon.

  19. First axion bounds from a pulsating helium-rich white dwarf star

    NASA Astrophysics Data System (ADS)

    Battich, T.; Córsico, A. H.; Althaus, L. G.; Miller Bertolami, M. M.

    2016-08-01

    The Peccei-Quinn mechanism proposed to solve the CP problem of Quantum Chromodynamics has as consequence the existence of axions, hypothetical weakly interacting particles whose mass is constrained to be on the sub-eV range. If these particles exist and interact with electrons, they would be emitted from the dense interior of white dwarfs, becoming an important energy sink for the star. Due to their well known physics, white dwarfs are good laboratories to study the properties of fundamental particles such as the axions. We study the general effect of axion emission on the evolution of helium-rich white dwarfs and on their pulsational properties. To this aim, we calculate evolutionary helium-rich white dwarf models with axion emission, and assess the pulsational properties of this models. Our results indicate that the rates of change of pulsation periods are significantly affected by the existence of axions. We are able for the first time to independently constrain the mass of the axion from the study of pulsating helium-rich white dwarfs. To do this, we use an estimation of the rate of change of period of the pulsating white dwarf PG 1351+489 corresponding to the dominant pulsation period. From an asteroseismological model of PG 1351+489 we obtain gae < 3.3 × 10-13 for the axion-electron coupling constant, or macos2β lesssim 11.5 meV for the axion mass. This constraint is relaxed to gae < 5.5 × 10-13 (macos2β lesssim 19.5 meV), when no detailed asteroseismological model is adopted for the comparison with observations.

  20. Axion Decay and Anisotropy of Near-IR Extragalactic Background Light

    NASA Astrophysics Data System (ADS)

    Gong, Yan; Cooray, Asantha; Mitchell-Wynne, Ketron; Chen, Xuelei; Zemcov, Michael; Smidt, Joseph

    2016-07-01

    The extragalactic background light (EBL) is composed of the cumulative radiation from all galaxies and active galactic nuclei over cosmic history. In addition to point sources, the EBL also contains information from diffuse sources of radiation. The angular power spectra of the near-infrared intensities could contain additional signals, and a complete understanding of the nature of the infrared (IR) background is still lacking in the literature. Here we explore the constraints that can be placed on particle decays, especially candidate dark matter (DM) models involving axions that trace DM halos of galaxies. Axions with a mass around a few electronvolts will decay via two photons with wavelengths in the near-IR band and will leave a signature in the IR background intensity power spectrum. Using recent power spectra measurements from the Hubble Space Telescope and the Cosmic Infrared Background Experiment, we find that the 0.6-1.6 μm power spectra can be explained by axions with masses around 4 eV. The total axion abundance Ω a ≃ 0.05, and it is comparable to the baryon density of the universe. The suggested mean axion mass and abundance are not ruled out by existing cosmological observations. Interestingly, the axion model with a mass distribution is preferred by the data, which cannot be explained by the standard quantum chromodynamics theory and needs further discussion.

  1. Calculation of the axion mass based on high-temperature lattice quantum chromodynamics.

    PubMed

    Borsanyi, S; Fodor, Z; Guenther, J; Kampert, K-H; Katz, S D; Kawanai, T; Kovacs, T G; Mages, S W; Pasztor, A; Pittler, F; Redondo, J; Ringwald, A; Szabo, K K

    2016-11-03

    Unlike the electroweak sector of the standard model of particle physics, quantum chromodynamics (QCD) is surprisingly symmetric under time reversal. As there is no obvious reason for QCD being so symmetric, this phenomenon poses a theoretical problem, often referred to as the strong CP problem. The most attractive solution for this requires the existence of a new particle, the axion-a promising dark-matter candidate. Here we determine the axion mass using lattice QCD, assuming that these particles are the dominant component of dark matter. The key quantities of the calculation are the equation of state of the Universe and the temperature dependence of the topological susceptibility of QCD, a quantity that is notoriously difficult to calculate, especially in the most relevant high-temperature region (up to several gigaelectronvolts). But by splitting the vacuum into different sectors and re-defining the fermionic determinants, its controlled calculation becomes feasible. Thus, our twofold prediction helps most cosmological calculations to describe the evolution of the early Universe by using the equation of state, and may be decisive for guiding experiments looking for dark-matter axions. In the next couple of years, it should be possible to confirm or rule out post-inflation axions experimentally, depending on whether the axion mass is found to be as predicted here. Alternatively, in a pre-inflation scenario, our calculation determines the universal axionic angle that corresponds to the initial condition of our Universe.

  2. 750 GeV diphoton resonance in a visible heavy QCD axion model

    NASA Astrophysics Data System (ADS)

    Chiang, Cheng-Wei; Fukuda, Hajime; Ibe, Masahiro; Yanagida, Tsutomu T.

    2016-05-01

    In this paper, we revisit a visible heavy QCD axion model in light of the recent reports on the 750 GeV diphoton resonance by the ATLAS and CMS experiments. In this model, the axion is made heavy with the help of the mirror copied sector of the Standard Model, while the successful Peccei-Quinn mechanism is kept intact. We identify the 750 GeV resonance as the scalar boson associated with spontaneous breaking of the Peccei-Quinn symmetry, which mainly decays into a pair of axions. We find that the mixing between the axion and η and η' plays important roles in its decays and the resultant branching ratio into two photons. The axion decay length can be suitable for explaining the diphoton excess by the di-axion production when its decay constant fa≃1 TeV . We also find that our model allows multiple sets of the extra fermions without causing the domain wall problem, which is advantageous to explain the diphoton signal.

  3. New superconducting toroidal magnet system for IAXO, the international AXion observatory

    SciTech Connect

    Shilon, I.; Dudarev, A.; Silva, H.; Wagner, U.; Kate, H. H. J. ten

    2014-01-29

    Axions are hypothetical particles that were postulated to solve one of the puzzles arising in the standard model of particle physics, namely the strong CP (Charge conjugation and Parity) problem. The new International AXion Observatory (IAXO) will incorporate the most promising solar axions detector to date, which is designed to enhance the sensitivity to the axion-photon coupling by one order of magnitude beyond the limits of the current state-of-the-art detector, the CERN Axion Solar Telescope (CAST). The IAXO detector relies on a high-magnetic field distributed over a very large volume to convert solar axions into X-ray photons. Inspired by the successful realization of the ATLAS barrel and end-cap toroids, a very large superconducting toroid is currently designed at CERN to provide the required magnetic field. This toroid will comprise eight, one meter wide and twenty one meter long, racetrack coils. The system is sized 5.2 m in diameter and 25 m in length. Its peak magnetic field is 5.4 T with a stored energy of 500 MJ. The magnetic field optimization process to arrive at maximum detector yield is described. In addition, materials selection and their structure and sizing has been determined by force and stress calculations. Thermal loads are estimated to size the necessary cryogenic power and the concept of a forced flow supercritical helium based cryogenic system is given. A quench simulation confirmed the quench protection scheme.

  4. Axions and saxions from the primordial supersymmetric plasma and extra radiation signatures

    SciTech Connect

    Graf, Peter; Steffen, Frank Daniel E-mail: steffen@mpp.mpg.de

    2013-02-01

    We calculate the rate for thermal production of axions and saxions via scattering of quarks, gluons, squarks, and gluinos in the primordial supersymmetric plasma. Systematic field theoretical methods such as hard thermal loop resummation are applied to obtain a finite result in a gauge-invariant way that is consistent to leading order in the strong gauge coupling. We calculate the thermally produced yield and the decoupling temperature for both axions and saxions. For the generic case in which saxion decays into axions are possible, the emitted axions can constitute extra radiation already prior to big bang nucleosynthesis and well thereafter. We update associated limits imposed by recent studies of the primordial helium-4 abundance and by precision cosmology of the cosmic microwave background and large scale structure. We show that the trend towards extra radiation seen in those studies can be explained by late decays of thermal saxions into axions and that upcoming Planck results will probe supersymmetric axion models with unprecedented sensitivity.

  5. Dark radiation and dark matter in supersymmetric axion models with high reheating temperature

    SciTech Connect

    Graf, Peter; Steffen, Frank Daniel E-mail: steffen@mpp.mpg.de

    2013-12-01

    Recent studies of the cosmic microwave background, large scale structure, and big bang nucleosynthesis (BBN) show trends towards extra radiation. Within the framework of supersymmetric hadronic axion models, we explore two high-reheating-temperature scenarios that can explain consistently extra radiation and cold dark matter (CDM), with the latter residing either in gravitinos or in axions. In the gravitino CDM case, axions from decays of thermal saxions provide extra radiation already prior to BBN and decays of axinos with a cosmologically required TeV-scale mass can produce extra entropy. In the axion CDM case, cosmological constraints are respected with light eV-scale axinos and weak-scale gravitinos that decay into axions and axinos. These decays lead to late extra radiation which can coexist with the early contributions from saxion decays. Recent results of the Planck satellite probe extra radiation at late times and thereby both scenarios. Further tests are the searches for axions at ADMX and for supersymmetric particles at the LHC.

  6. Status and Future of Microwave Cavity Axion Searches

    SciTech Connect

    van Bibber, K; Kinion, D

    1999-12-08

    We review the status of an ongoing large-scale search for axions which may constitute the dark matter of our Milky Way halo. The experiment is based on the microwave cavity technique proposed by Sikivie, and marks a ''second-generation'' to the original experiments performed by the Rochester-Brookhaven-Fermilab collaboration, and the University of Florida group. Sensitivity to galactic asions has been achieved, at least for one important model coupling. A remarkable breakthrough in making near-quantum Limited dc SQUID amplifiers in the several hundred megahertz range has provided the enabling technology for a major upgrade of this effort. By improving the noise temperature by more than an order of magnitude, a much more sensitive search may be carried out, greatly improving the prospects for discovering the asion.

  7. Constraining resonant photon-axion conversions in the early universe

    SciTech Connect

    Mirizzi, Alessandro; Redondo, Javier; Sigl, Günter E-mail: javier.redondo@desy.de

    2009-08-01

    The presence of a primordial magnetic field would have induced resonant conversions between photons and axion-like particles (ALPs) during the thermal history of the Universe. These conversions would have distorted the blackbody spectrum of the cosmic microwave background (CMB). In this context, we derive bounds on the photon-ALP resonant conversions using the high precision CMB spectral data collected by the FIRAS instrument on board of the Cosmic Background Explorer. We obtain upper limits on the product of the photon-ALP coupling constant g times the magnetic field strength B down to gB ∼< 10{sup −13} GeV{sup −1} nG for ALP masses below the eV scale.

  8. Optical gyrotropy from axion electrodynamics in momentum space.

    PubMed

    Zhong, Shudan; Orenstein, Joseph; Moore, Joel E

    2015-09-11

    Several emergent phenomena and phases in solids arise from configurations of the electronic Berry phase in momentum space that are similar to gauge field configurations in real space such as magnetic monopoles. We show that the momentum-space analogue of the "axion electrodynamics" term E·B plays a fundamental role in a unified theory of Berry-phase contributions to optical gyrotropy in time-reversal invariant materials and the chiral magnetic effect. The Berry-phase mechanism predicts that the rotatory power along the optic axes of a crystal must sum to zero, a constraint beyond that stipulated by point-group symmetry, but observed to high accuracy in classic experimental observations on alpha quartz. Furthermore, the Berry mechanism provides a microscopic basis for the surface conductance at the interface between gyrotropic and nongyrotropic media.

  9. Search for O VI Emission from the Shocked Circurmstellar Gas of SN 1987A

    NASA Technical Reports Server (NTRS)

    Sonneborn, G.; Iping, R. C.; Lundqvist, P.; Fransson, C.

    2008-01-01

    The Far Ultraviolet Spectroscopic Explorer (FUSE) was used to search for broad O VI emission from the shock interaction zones produced by the collision of high-velocity supernova ejecta with the dense inner circumstellar ring of SN 1987A. Since the shock interaction with the inner ring began in 1997, broad (FWHM = 300 km/sec) emission from optical coronal lines (e.g. [Fe X], [Fe XI], and [Fe XIV]) has emerged and increased exponentially in strength. O VI 1032-1038 Angstrom emission is expected to track the coronal lines. O VI is also expected to be the primary cooling transition for the million-degree shocked gas. An accurate measurement of the O VI line strength would significantly improve current models of the shock interaction. FUSE observations of SN 1987A in 2000 and 2001 did not detect broad O VI due to spectral contamination fiom two earlytype stars within a few arc seconds of the SN. However, O VI emission was detected with narrow line widths (FWHM less than 35 km/sec) and a heliocentric radial velocity of +280 km/sec. This places the emitting gas at rest relative to the supernova and is interpreted as emission from unshocked circumstellar gas. A new FUSE observation of SN 1987A obtained in May 2007 used a narrow slit (1.25 x 20 arcsec) to significantly reduce the spectral contamination from the two early-type stars. Yet the 2007 spectrum does not reveal any significant O VI emission. The implications of these results are discussed.

  10. Low radio frequency observations and spectral modelling of the remnant of Supernova 1987A

    NASA Astrophysics Data System (ADS)

    Callingham, J. R.; Gaensler, B. M.; Zanardo, G.; Staveley-Smith, L.; Hancock, P. J.; Hurley-Walker, N.; Bell, M. E.; Dwarakanath, K. S.; Franzen, T. M. O.; Hindson, L.; Johnston-Hollitt, M.; Kapińska, A.; For, B.-Q.; Lenc, E.; McKinley, B.; Morgan, J.; Offringa, A. R.; Procopio, P.; Wayth, R. B.; Wu, C.; Zheng, Q.

    2016-10-01

    We present Murchison Widefield Array observations of the supernova remnant (SNR) 1987A between 72 and 230 MHz, representing the lowest frequency observations of the source to date. This large lever arm in frequency space constrains the properties of the circumstellar medium created by the progenitor of SNR 1987A when it was in its red supergiant phase. As of late 2013, the radio spectrum of SNR 1987A between 72 MHz and 8.64 GHz does not show any deviation from a non-thermal power law with a spectral index of -0.74 ± 0.02. This spectral index is consistent with that derived at higher frequencies, beneath 100 GHz, and with a shock in its adiabatic phase. A spectral turnover due to free-free absorption by the circumstellar medium has to occur below 72 MHz, which places upper limits on the optical depth of ≤0.1 at a reference frequency of 72 MHz, emission measure of ≲13 000 cm-6 pc, and an electron density of ≲110 cm-3. This upper limit on the electron density is consistent with the detection of prompt radio emission and models of the X-ray emission from the supernova. The electron density upper limit implies that some hydrodynamic simulations derived a red supergiant mass-loss rate that is too high, or a wind velocity that is too low. The mass-loss rate of ˜5 × 10-6 M⊙ yr-1 and wind velocity of 10 km s-1 obtained from optical observations are consistent with our upper limits, predicting a current turnover frequency due to free-free absorption between 5 and 60 MHz.

  11. The structure of SN 1987A's outer circumstellar envelope as probed by light echoes

    NASA Astrophysics Data System (ADS)

    Crotts, Arlin; Sugerman, Ben; Lawrence, Stephen; Kunkel, William

    2001-05-01

    We present ground-based and HST images processed by image subtraction to highlight transient reflection nebulae or ``light echoes'' of the maximum light pulse of the explosion of SN 1987A from surrounding material. Along with numerous structures already discussed elsewhere, we have found (in multiple epochs of data) a new feature opposite the SN from the mysterious ``Napoleon's Hat'' which indicates a symmetric structure due to shocks internal to the SN's red supergiant wind and probably caused by the pile-up of gas due to differential velocities within the outflow. We also show how echoes betray the ram pressure distribution of the progenitor mass loss flow. .

  12. The triple-ring nebula around SN 1987A: fingerprint of a binary merger.

    PubMed

    Morris, Thomas; Podsiadlowski, Philipp

    2007-02-23

    Supernova 1987A, the first naked-eye supernova observed since Kepler's supernova in 1604, defies a number of theoretical expectations. Its anomalies have long been attributed to a merger between two massive stars that occurred some 20,000 years before the explosion, but so far there has been no conclusive proof that this merger took place. Here, we present three-dimensional hydrodynamical simulations of the mass ejection associated with such a merger and the subsequent evolution of the ejecta, and we show that this accurately reproduces the properties of the triple-ring nebula surrounding the supernova.

  13. Hydrodynamic study of Supernova 1987A: The phase of a wave of cooling and recombination

    NASA Technical Reports Server (NTRS)

    Utrobin, V. P.

    1991-01-01

    The dependence of the bolometric light curve and of the effective temperature on the density distribution in a progenitor, its chemical composition, mass, radius, and explosion energy is studied. It is shown that, just before the supernova 1987 A outburst, the outside layers of the blue supergiant Sk-69.202 deg had a density distribution similar to that of the polytropic model with an index of n equals 3, a chemical composition with a mass fraction of hydrogen of the order of 0.1, and a relative helium abundance of about 0.9.

  14. Neutrino out-blow from supernova 1987A detected in the Mont Blanc observatory

    NASA Astrophysics Data System (ADS)

    Aglietta, M.; Badino, G.; Bologna, G.; Castagnoli, C.; Castellina, A.

    The authors discuss the neutrino outflow connected with the event detected in the Mont Blanc Underground Neutrino Observatory on February 23, 1987, and consisting of 5 interactions recorded during 7 seconds. The measured energies of the 5 pulses, the duration of the burst, and the advance of the detection time in comparison with the first optical observations give evidence that the event can be explained in terms of detection of neutrinos emitted during the stellar collapse in the Large Magellanic Cloud, which originated supernova SN 1987A.

  15. SN 2009mw: a member of the tiny group of 1987A-like supernovae

    NASA Astrophysics Data System (ADS)

    Takats, Katalin; Pignata, Giuliano

    2015-08-01

    SN 1987A was an event that have had a great role in forming our understanding of supernovae (SNe). It was an unusal object, different from type II-P SNe, with a broad light curve that reached the peak about 3 months after the explosion. Even today, there have been only a handful of similar objects studied.We present an event belonging to this elite group. SN 2009mw was discovered by the Chilean Supernova Search project soon after its explosion. We present our observational data of the SN, analyse its nature and compare it to the other similar objects.

  16. Production of high stellar-mass primordial black holes in trapped inflation

    NASA Astrophysics Data System (ADS)

    Cheng, Shu-Lin; Lee, Wolung; Ng, Kin-Wang

    2017-02-01

    Trapped inflation has been proposed to provide a successful inflation with a steep potential. We discuss the formation of primordial black holes in the trapped inflationary scenario. We show that primordial black holes are naturally produced during inflation with a steep trapping potential. In particular, we have given a recipe for an inflaton potential with which particle production can induce large non-Gaussian curvature perturbation that leads to the formation of high stellar-mass primordial black holes. These primordial black holes could be dark matter observed by the LIGO detectors through a binary black-hole merger. At the end, we have given an attempt to realize the required inflaton potential in the axion monodromy inflation, and discussed the gravitational waves sourced by the particle production.

  17. New analysis for the correlation between gravitational wave and neutrino detectors during SN1987A

    NASA Astrophysics Data System (ADS)

    Galeotti, P.; Pizzella, G.

    2016-08-01

    Two major problems, still associated with the SN1987A, are: (a) the signals observed with the gravitational waves detectors, (b) the duration of the collapse. Indeed, (a) the sensitivity of the gravitational wave detectors seems to be small for detecting gravitational waves and, (b) while some experimental data indicate a duration of order of hours, most theories assume that the collapse develops in a few seconds. Since recent data of the X-ray NuSTAR satellite show a clear evidence of an asymmetric collapse, we have revisited the experimental data recorded by the underground and gravitational wave detectors running during the SN1987A. New evidence is shown that confirms previous results, namely that the data recorded by the gravitational wave detectors running in Rome and in Maryland are strongly correlated with the data of both the Mont Blanc and the Kamiokande detectors, and that the correlation extends over a long period of time (1 or 2 h) centered at the Mont Blanc time. This result indicates that also Kamiokande detected neutrinos at the Mont Blanc time, and these interactions were not identified because not grouped in a burst.

  18. The nature of the Napoleon's Hat nebula of SN 1987A

    NASA Astrophysics Data System (ADS)

    Wang, L.; Dyson, J. E.; Kahn, F. D.

    1993-03-01

    The interstellar and circumstellar environment of SN 1987A is modeled. The geometries of Napoleon's Hat nebula and the dark bay suggest that there is relative motion between the SN progenitor and the surrounding ISM. Most of the dark bay can be identified with the bubble produced by the fast blue supergiant (BSG) wind before the red supergiant (RSG) stage. The relative motion between the star and the ISM is the primary reason for the star being at the edge of this bubble. After the first BSG stage, the star evolves to the RSG stage; the wind velocity is now typically 10 km/s and the mass loss rate is around 10 exp -5 solar mass/yr. The star eventually breaks through the bubble produced in the early BSG stage and starts to interact directly with the ISM outside, thus producing Napoleon's Hat. The success of this model is convincing proof of the BSG-RSG-BSG evolutionary model for the SN 1987A progenitors, and shows that is has moved from the site where it was formed.

  19. HIGH RESOLUTION 36 GHz IMAGING OF THE SUPERNOVA REMNANT OF SN 1987A

    SciTech Connect

    Potter, T. M.; Staveley-Smith, L.; Zanardo, G.; Ng, C.-Y.; Gaensler, B. M.; Ball, Lewis; Kesteven, M. J.; Manchester, R. N.; Tzioumis, A. K.

    2009-11-01

    The aftermath of supernova (SN) 1987A continues to provide spectacular insights into the interaction between an SN blastwave and its circumstellar environment. We here present 36 GHz observations from the Australia Telescope Compact Array of the radio remnant of SN 1987A. These new images, taken in 2008 April and 2008 October, substantially extend the frequency range of an ongoing monitoring and imaging program conducted between 1.4 and 20 GHz. Our 36.2 GHz images have a diffraction-limited angular resolution of 0.''3-0.''4, which covers the gap between high resolution, low dynamic range VLBI images of the remnant and low resolution, high dynamic range images at frequencies between 1 and 20 GHz. The radio morphology of the remnant at 36 GHz is an elliptical ring with enhanced emission on the eastern and western sides, similar to that seen previously at lower frequencies. Model fits to the data in the Fourier domain show that the emitting region is consistent with a thick inclined torus of mean radius 0.''85, and a 2008 October flux density of 27 +- 6 mJy at 36.2 GHz. The spectral index for the remnant at this epoch, determined between 1.4 GHz and 36.2 GHz, is alpha = -0.83. There is tentative evidence for an unresolved central source with flatter spectral index.

  20. Dust Production and Particle Acceleration in Supernova 1987A Revealed with ALMA

    NASA Technical Reports Server (NTRS)

    Indebetouw, R.; Matsuura, M.; Dwek, E.; Zanardo, G.; Barlow, M. J.; Baes, M.; Bouchet, P.; Burrows, D. N.; Chevalier, R.; Clayton, G. C.; Fransson, C.; Gaensler, B.; Kirshner, R.; Lakicevic, M.; Long, K. S.; Lundqvist, P.; Marti-Vidal, I.; Marcaide, J.; McCray, R.; Meixner, M.; Ng, C.-Y.; Park, S.; Sonneborn, G.; Staveley-Smith, L.; vanLoon, J.

    2014-01-01

    Supernova (SN) explosions are crucial engines driving the evolution of galaxies by shock heating gas, increasing the metallicity, creating dust, and accelerating energetic particles. In 2012 we used the Atacama Large Millimeter/ Submillimeter Array to observe SN1987A, one of the best-observed supernovae since the invention of the telescope. We present spatially resolved images at 450 µm, 870 µm, 1.4 mm, and 2.8 mm, an important transition wavelength range. Longer wavelength emission is dominated by synchrotron radiation from shock-accelerated particles, shorter wavelengths by emission from the largest mass of dust measured in a supernova remnant (>0.2 Solar Mass). For the first time we show unambiguously that this dust has formed in the inner ejecta (the cold remnants of the exploded star's core). The dust emission is concentrated at the center of the remnant, so the dust has not yet been affected by the shocks. If a significant fraction survives, and if SN 1987A is typical, supernovae are important cosmological dust producers.

  1. Dust Production and Particle Acceleration in Supernova 1987A Revealed with ALMA

    NASA Astrophysics Data System (ADS)

    Indebetouw, R.; Matsuura, M.; Dwek, E.; Zanardo, G.; Barlow, M. J.; Baes, M.; Bouchet, P.; Burrows, D. N.; Chevalier, R.; Clayton, G. C.; Fransson, C.; Gaensler, B.; Kirshner, R.; Lakićević, M.; Long, K. S.; Lundqvist, P.; Martí-Vidal, I.; Marcaide, J.; McCray, R.; Meixner, M.; Ng, C.-Y.; Park, S.; Sonneborn, G.; Staveley-Smith, L.; Vlahakis, C.; van Loon, J.

    2014-02-01

    Supernova (SN) explosions are crucial engines driving the evolution of galaxies by shock heating gas, increasing the metallicity, creating dust, and accelerating energetic particles. In 2012 we used the Atacama Large Millimeter/Submillimeter Array to observe SN 1987A, one of the best-observed supernovae since the invention of the telescope. We present spatially resolved images at 450 μm, 870 μm, 1.4 mm, and 2.8 mm, an important transition wavelength range. Longer wavelength emission is dominated by synchrotron radiation from shock-accelerated particles, shorter wavelengths by emission from the largest mass of dust measured in a supernova remnant (>0.2 M ⊙). For the first time we show unambiguously that this dust has formed in the inner ejecta (the cold remnants of the exploded star's core). The dust emission is concentrated at the center of the remnant, so the dust has not yet been affected by the shocks. If a significant fraction survives, and if SN 1987A is typical, supernovae are important cosmological dust producers.

  2. EXITE/IPC observations of SN1987A and southern targets

    NASA Technical Reports Server (NTRS)

    Grindlay, Jonathan E.

    1991-01-01

    The Energetic X-ray Imaging Telescope Experiment (EXITE) was developed to a flight-ready status and conducted two flights (May 18, 1988, and May 8-10, 1989) from Alice Springs, Australia, as part of the campaigns to observe the supernova SN1987A. The basic operation of the detector and gondola systems in the laboratory was tested on the first flight and found to meet expected performance values. A bizarre 'balloon tape' insulation problem, however, prevented normal telescope pointing on the first flight so no data on SN1987A or other targets were obtained. Following a successful second EXITE flight from Ft. Sumner, NM, in October 1988, the experiment was flown again on a successful 30 hour flight as part of the final 1989 supernova campaign. A second x-ray imaging experiment from MSFC was also flown (piggy-back) for this third flight. Good data were obtained on the supernova and a variety of high priority galactic targets, and final analysis is still in progress. Preliminary results from this flight are presented.

  3. 9500 Nights of Mid-Infrared Observations of SN 1987A: the birth of the remnant

    NASA Astrophysics Data System (ADS)

    Bouchet, Patrice; Danziger, John

    2014-01-01

    The one-in-a-life-time event Supernova SN 1987A, the brightest supernova seen since Kepler's in 1604, has given us a unique opportunity to study the mechanics of a supernova explosion and now to witness the birth of a supernova remnant. A violent encounter is underway between the fastest-moving debris and the circumstellar ring: shocks excite ``hotspots''. ATCA/ANTF, Gemini, VLT, HST, Spitzer, Chandra, and recently ALMA observations have been so far organized to help understanding the several emission mechanisms at work. In the mid-infrared SN 1987A has transformed from a SN with the bulk of its radiation from the ejecta to a SNR whose emission is dominated by the interaction of the blast wave with the surrounding interstellar medium, a process in which kinetic energy is converted into radiative energy. Currently this remnant emission is dominated by material in or near the inner equatorial ring (ER). We give here a brief history of our mid-infrared observations, and present our last data obtained with the SPITZER infrared satellite and the ESO VLT and Gemini telescopes: we show how together with Chandra observations, they contribute to the understanding of this fascinating object. We argue also that our imaging observations suggest that warm dust is still present in the ejecta, and we dispute the presence of huge amount of very cold dust in it, as it has been claimed on the basis of data obtained with the HERSCHELl satellite.

  4. Extra dimensions, SN1987a, and nucleon-nucleon scattering data

    SciTech Connect

    Christoph Hanhart; Daniel R. Phillips; Sanjay Reddy; Martin J. Savage

    2001-02-01

    One of the strongest constraints on the existence of large, compact, ''gravity-only'' dimensions comes from SN1987a. If the rate of energy loss into these putative extra dimensions is too high, then the neutrino pulse from the supernova will differ from that actually seen. The dominant mechanism for the production of Kaluza-Klein gravitons and dilatons in the supernova is via gravistrahlung and dilastrahlung from the nucleon-nucleon system. In this paper we compute the rates for these processes in a model-independent way using low-energy theorems which relate the emissivities to the measured nucleon-nucleon cross section. This is possible because for soft gravitons and dilatons the leading contribution to the energy-loss rate is from graphs in which the gravitational radiation is produced from external nucleon legs. Previous calculations neglected these mechanisms. We re-evaluate the bounds on toroidally-compactified ''gravity-only'' dimensions (GODs), and find that consistency with the observed SN1987a neutrino signal requires that if there are two such dimensions then their radius must be less than 1 micron.

  5. Non-LTE model calculations for SN 1987A and the extragalactic distance scale

    NASA Technical Reports Server (NTRS)

    Schmutz, W.; Abbott, D. C.; Russell, R. S.; Hamann, W.-R.; Wessolowski, U.

    1990-01-01

    This paper presents model atmospheres for the first week of SN 1987A, based on the luminosity and density/velocity structure from hydrodynamic models of Woosley (1988). The models account for line blanketing, expansion, sphericity, and departures from LTE in hydrogen and helium and differ from previously published efforts because they represent ab initio calculations, i.e., they contain essentially no free parameters. The formation of the UV spectrum is dominated by the effects of line blanketing. In the absorption troughs, the Balmer line profiles were fit well by these models, but the observed emissions are significantly stronger than predicted, perhaps due to clumping. The generally good agreement between the present synthetic spectra and observations provides independent support for the overall accuracy of the hydrodynamic models of Woosley. The question of the accuracy of the Baade-Wesselink method is addressed in a detailed discussion of its approximations. While the application of the standard method produces a distance within an uncertainty of 20 percent in the case of SN 1987A, systematic errors up to a factor of 2 are possible, particularly if the precursor was a red supergiant.

  6. DUST PRODUCTION AND PARTICLE ACCELERATION IN SUPERNOVA 1987A REVEALED WITH ALMA

    SciTech Connect

    Indebetouw, R.; Chevalier, R.; Matsuura, M.; Barlow, M. J.; Dwek, E.; Zanardo, G.; Baes, M.; Bouchet, P.; Burrows, D. N.; Clayton, G. C.; Fransson, C.; Lundqvist, P.; Gaensler, B.; Kirshner, R.; Lakićević, M.; Long, K. S.; Meixner, M.; Martí-Vidal, I.; Marcaide, J.; and others

    2014-02-10

    Supernova (SN) explosions are crucial engines driving the evolution of galaxies by shock heating gas, increasing the metallicity, creating dust, and accelerating energetic particles. In 2012 we used the Atacama Large Millimeter/Submillimeter Array to observe SN 1987A, one of the best-observed supernovae since the invention of the telescope. We present spatially resolved images at 450 μm, 870 μm, 1.4 mm, and 2.8 mm, an important transition wavelength range. Longer wavelength emission is dominated by synchrotron radiation from shock-accelerated particles, shorter wavelengths by emission from the largest mass of dust measured in a supernova remnant (>0.2 M {sub ☉}). For the first time we show unambiguously that this dust has formed in the inner ejecta (the cold remnants of the exploded star's core). The dust emission is concentrated at the center of the remnant, so the dust has not yet been affected by the shocks. If a significant fraction survives, and if SN 1987A is typical, supernovae are important cosmological dust producers.

  7. STIS DISCOVERS HIGH-SPEED GAS FROM COLLISION AROUND SUPERNOVA 1987A

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This image from the Hubble's Space Telescope Imaging Spectrograph (STIS) shows a new and unprecedented look at the light-year wide ring of glowing gas around supernova 1987A, the nearest stellar explosion in 400 years, which occurred in February 1987. The STIS long-slit spectrograph viewed the entire ring system, dissecting its light and producing a detailed image of the ring in each of its component colors. This image shows the ring in the optical light of hydrogen (center) flanked by images in nitrogen emission. The arrow points to a streak produced by gas rushing toward us at 200 miles per sec. This is the same place where the bright knot is seen in Hubble's WFPC-2 images. This is the first hint that the collision between the high-speed supernova debris and gases in the glowing ring has begun. Supernova 1987A is located 167,000 light years away from Earth in the Large Magellanic Cloud. Credit: George Sonneborn and Jason Pun (NASA

  8. A STUBBORNLY LARGE MASS OF COLD DUST IN THE EJECTA OF SUPERNOVA 1987A

    SciTech Connect

    Matsuura, M.; Barlow, M. J.; Dwek, E.; Babler, B.; Baes, M.; Fritz, Jacopo; Meixner, M.; Cernicharo, José; Clayton, Geoff C.; Dunne, L.; Fransson, C.; Lundqvist, P.; Gear, Walter; Gomez, H. L.; Groenewegen, M. A. T.; Indebetouw, R.; Ivison, R. J.; Jerkstrand, A.; Lebouteiller, V.; and others

    2015-02-10

    We present new Herschel photometric and spectroscopic observations of Supernova 1987A, carried out in 2012. Our dedicated photometric measurements provide new 70 μm data and improved imaging quality at 100 and 160 μm compared to previous observations in 2010. Our Herschel spectra show only weak CO line emission, and provide an upper limit for the 63 μm [O I] line flux, eliminating the possibility that line contaminations distort the previously estimated dust mass. The far-infrared spectral energy distribution (SED) is well fitted by thermal emission from cold dust. The newly measured 70 μm flux constrains the dust temperature, limiting it to nearly a single temperature. The far-infrared emission can be fitted by 0.5 ± 0.1 M {sub ☉} of amorphous carbon, about a factor of two larger than the current nucleosynthetic mass prediction for carbon. The observation of SiO molecules at early and late phases suggests that silicates may also have formed and we could fit the SED with a combination of 0.3 M {sub ☉} of amorphous carbon and 0.5 M {sub ☉} of silicates, totalling 0.8 M {sub ☉} of dust. Our analysis thus supports the presence of a large dust reservoir in the ejecta of SN 1987A. The inferred dust mass suggests that supernovae can be an important source of dust in the interstellar medium, from local to high-redshift galaxies.

  9. Trapping polar molecules in an ac trap

    SciTech Connect

    Bethlem, Hendrick L.; Veldhoven, Jacqueline van; Schnell, Melanie; Meijer, Gerard

    2006-12-15

    Polar molecules in high-field seeking states cannot be trapped in static traps as Maxwell's equations do not allow a maximum of the electric field in free space. It is possible to generate an electric field that has a saddle point by superposing an inhomogeneous electric field to an homogeneous electric field. In such a field, molecules are focused along one direction, while being defocused along the other. By reversing the direction of the inhomogeneous electric field the focusing and defocusing directions are reversed. When the fields are being switched back and forth at the appropriate rate, this leads to a net focusing force in all directions. We describe possible electrode geometries for creating the desired fields and discuss their merits. Trapping of {sup 15}ND{sub 3} ammonia molecules in a cylindrically symmetric ac trap is demonstrated. We present measurements of the spatial distribution of the trapped cloud as a function of the settings of the trap and compare these to both a simple model assuming a linear force and to full three-dimensional simulations of the experiment. With the optimal settings, molecules within a phase-space volume of 270 mm{sup 3} (m/s){sup 3} remain trapped. This corresponds to a trap depth of about 5 mK and a trap volume of about 20 mm{sup 3}.

  10. Theorem: A Static Magnetic N-pole Becomes an Oscillating Electric N-pole in a Cosmic Axion Field

    SciTech Connect

    Hill, Christopher T.

    2016-06-15

    We show for the classical Maxwell equations, including the axion electromagnetic anomaly source term, that a cosmic axion field induces an oscillating electric N-moment for any static magnetic N-moment. This is a straightforward result, accessible to anyone who has taken a first year graduate course in electrodynamics.

  11. Characterization of nonlinear dielectric films for the tuning of microwave cavities for axion searches

    NASA Astrophysics Data System (ADS)

    Salemi, Chiara; Bowring, Daniel; Sonnenschein, Andrew

    2016-09-01

    The axion is a hypothetical particle that can solve the strong CP problem and that may be the primary component of dark matter in the universe. Experiments such as the Axion Dark Matter eXperiment (ADMX) hope to find the axion through its coupling to photons in the presence of a strong magnetic field. This coupling can be detected using a microwave cavity whose fundamental resonance frequency is matched to that of the photons. By tuning the cavity resonance frequency, the corresponding axion mass range can be scanned. For axion searches above 1GHz, future generations of ADMX may use an array of small cavities locked to the same frequency. These cavities will be coarsely tuned using a tuning rod as is done in the current generation of ADMX, but fine tuning of individual resonators will be necessary for multi-cavity arrays. A candidate fine tuning method uses nonlinear dielectric films inside the cavities. DC-biasing the films changes their dielectric constant, affecting the frequencies of the cavity modes. This method makes frequency-matched resonator arrays more practical by saving space and minimizing heat load inside the cryostat. This poster presents RF design and simulation and preliminary measurements on the coplanar waveguide resonators used to test the films.

  12. Recent progress on the Axion Dark Matter eXperiment (ADMX)

    NASA Astrophysics Data System (ADS)

    Khatiwada, Rakshya; ADMX Collaboration

    2017-01-01

    The Axion Dark Matter eXperiment (ADMX) is one of the three ``Generation-2'' direct dark matter searches and the only one dedicated to finding the axion. It looks for axions that convert into photons through the Primakoff process in the presence of a strong magnetic field. The mass of the axion is unknown but expected to be few to tens of μeV, which corresponds to photons in the GHz range. The expected signal power is of the order 10-24 W, which puts stringent requirements on the system's noise level. ADMX has recently started its Generation-2 data run with the recent upgrades of a dilution refrigerator, which cools the system to sub-K temperature suppressing the thermal background noise and tunable, near quantum noise-limited SQUID amplifiers. This talk will summarize the current status and operation of ADMX experiment as it searches for dark matter axions. Supported by DOE Grants DE-SC0010280, DE-FG02-96ER40956, DE-AC52-07NA27344, DE-AC03-76SF00098, the Heising-Simons Foundation and the LLNL, FNAL and PNNL LDRD program.

  13. Calculation of the axion mass based on high-temperature lattice quantum chromodynamics

    NASA Astrophysics Data System (ADS)

    Borsanyi, S.; Fodor, Z.; Guenther, J.; Kampert, K.-H.; Katz, S. D.; Kawanai, T.; Kovacs, T. G.; Mages, S. W.; Pasztor, A.; Pittler, F.; Redondo, J.; Ringwald, A.; Szabo, K. K.

    2016-11-01

    Unlike the electroweak sector of the standard model of particle physics, quantum chromodynamics (QCD) is surprisingly symmetric under time reversal. As there is no obvious reason for QCD being so symmetric, this phenomenon poses a theoretical problem, often referred to as the strong CP problem. The most attractive solution for this requires the existence of a new particle, the axion—a promising dark-matter candidate. Here we determine the axion mass using lattice QCD, assuming that these particles are the dominant component of dark matter. The key quantities of the calculation are the equation of state of the Universe and the temperature dependence of the topological susceptibility of QCD, a quantity that is notoriously difficult to calculate, especially in the most relevant high-temperature region (up to several gigaelectronvolts). But by splitting the vacuum into different sectors and re-defining the fermionic determinants, its controlled calculation becomes feasible. Thus, our twofold prediction helps most cosmological calculations to describe the evolution of the early Universe by using the equation of state, and may be decisive for guiding experiments looking for dark-matter axions. In the next couple of years, it should be possible to confirm or rule out post-inflation axions experimentally, depending on whether the axion mass is found to be as predicted here. Alternatively, in a pre-inflation scenario, our calculation determines the universal axionic angle that corresponds to the initial condition of our Universe.

  14. A class of invisible axion models with FCNCs at tree level

    NASA Astrophysics Data System (ADS)

    Celis, Alejandro; Fuentes-Martín, Javier; Serôdio, Hugo

    2014-12-01

    We build a class of invisible axion models with tree-level Flavor Changing Neutral Currents completely controlled by the fermion mixing matrices. The scalar sector of these models contains three-Higgs doublets and a complex scalar gauge singlet, with the same fermionic content as in the Standard Model. A horizontal Peccei-Quinn symmetry provides a solution to the strong CP problem and predicts the existence of a very light and weakly coupled pseudo-Goldstone boson, the invisible axion or familon. A phenomenological analysis is performed taking into account familon searches in rare kaon and muon decays, astrophysical considerations and axion searches via axion-photon conversion. Drastic differences are found in the axion properties of different models due to the strong hierarchy of the CKM matrix, making some of the models considered much more constrained than others. We also obtain that a rich variety of these models avoid the domain wall problem. A possible mechanism to protect the solution to the strong CP problem against gravitational effects is also discussed.

  15. Improving axion detection sensitivity in high purity germanium detector based experiments

    NASA Astrophysics Data System (ADS)

    Xu, Wenqin; Elliott, Steven

    2015-04-01

    Thanks to their excellent energy resolution and low energy threshold, high purity germanium (HPGe) crystals are widely used in low background experiments searching for neutrinoless double beta decay, e.g. the MAJORANA DEMONSTRATOR and the GERDA experiments, and low mass dark matter, e.g. the CDMS and the EDELWEISS experiments. A particularly interesting candidate for low mass dark matter is the axion, which arises from the Peccei-Quinn solution to the strong CP problem and has been searched for in many experiments. Due to axion-photon coupling, the postulated solar axions could coherently convert to photons via the Primakeoff effect in periodic crystal lattices, such as those found in HPGe crystals. The conversion rate depends on the angle between axions and crystal lattices, so the knowledge of HPGe crystal axis is important. In this talk, we will present our efforts to improve the HPGe experimental sensitivity to axions by considering the axis orientations in multiple HPGe crystals simultaneously. We acknowledge the support of the U.S. Department of Energy through the LANL/LDRD Program.

  16. Unifying inflation and dark matter with the Peccei-Quinn field: Observable axions and observable tensors

    NASA Astrophysics Data System (ADS)

    Fairbairn, Malcolm; Hogan, Robert; Marsh, David J. E.

    2015-01-01

    A model of high scale inflation is presented where the radial part of the Peccei-Quinn (PQ) field with a non-minimal coupling to gravity plays the role of the inflaton, and the QCD axion is the dark matter. A quantum fluctuation of O (H /2 π ) in the axion field will result in a smaller angular fluctuation if the PQ field is sitting at a larger radius during inflation than in the vacuum. This changes the effective axion decay constant, fa, during inflation and dramatically reduces the production of isocurvature modes. This mechanism opens up a new window in parameter space where an axion decay constant in the range 1 012 GeV ≲fa≲1 015 GeV is compatible with observably large r . The exact range allowed for fa depends on the efficiency of reheating. This model also predicts a minimum possible value of r =1 0-3. The new window can be explored by a measurement of r possible with SPIDER and the proposed CASPEr experiment search for high fa axions.

  17. Mixed axion/gravitino dark matter from SUSY models with heavy axinos

    NASA Astrophysics Data System (ADS)

    Bae, Kyu Jung; Baer, Howard; Chun, Eung Jin; Shin, Chang Sub

    2015-04-01

    We examine dark matter production rates in supersymmetric (SUSY) axion models typified by the mass hierarchy m3 /2≪m (neutralino)≪m (axino) . In such models, one expects the dark matter to be composed of an axion/gravitino admixture. After presenting motivation for how such a mass hierarchy might arise, we examine dark matter production in the SUSY Kim-Shifman-Vainshtein-Zakharov (KSVZ) model, the SUSY Dine-Fischler-Srednicki-Zhitnitsky (DFSZ) model and a hybrid model containing contributions from both KSVZ and DFSZ. Gravitinos can be produced thermally and also nonthermally from axino, saxion or neutralino decay. We obtain upper bounds on TR due to overproduction of gravitinos including both the thermal and nonthermal processes. For TR near the upper bound, dark matter tends to be gravitino dominated, but for TR well below the upper bounds, axion domination is more typical although in many cases we find a comparable mixture of both axions and gravitinos. In this class of models, we ultimately expect detection of relic axions but no weakly interacting massive particle signal, although SUSY should ultimately be discovered at colliders.

  18. Axion mass limit from observations of the neutron star in Cassiopeia A

    SciTech Connect

    Leinson, Lev B.

    2014-08-01

    Direct Chandra observations of a surface temperature of isolated neutron star in Cassiopeia A (Cas A NS) and its cooling scenario which has been recently simultaneously suggested by several scientific teams put stringent constraints on poorly known properties of the superfluid neutron star core. It was found also that the thermal energy losses from Cas A NS are approximately twice more intensive than it can be explained by the neutrino emission. We use these unique data and well-defined cooling scenario to estimate the strength of KSVZ axion interactions with neutrons. We speculate that enlarged energy losses occur owing to emission of axions from superfluid core of the neutron star. If the axion and neutrino losses are comparable we find c{sub n}{sup 2}m{sub a}{sup 2}∼ 5.7× 10{sup -6} eV{sup 2}, where m{sub a} is the axion mass, and c{sub n} is the effective Peccei-Quinn charge of the neutron. (Given the QCD uncertainties of the hadronic axion models, the dimensionless constant c{sub n} could range from -0.05 to  0.14.)

  19. Exploring the hadronic axion window via delayed neutralino decay to axinos at the LHC

    NASA Astrophysics Data System (ADS)

    Redino, C. S.; Wackeroth, D.

    2016-04-01

    The addition of the QCD axion to the minimal supersymmetric standard model (MSSM) not only solves the strong C P problem but also modifies the dark sector with new dark matter candidates. While supersymmetry (SUSY) axion phenomenology is usually restricted to searches for the axion itself or searches for the ordinary SUSY particles, this work focuses on scenarios where the axion's superpartner, the axino, may be detectable at the Large Hadron Collider (LHC) in the decays of neutralinos displaced from the primary vertex. In particular, we focus on the Kim-Shifman-Vainshtein-Zhakharov (KSVZ) axino within the hadronic axion window. The decay length of neutralinos in this scenario easily fits the ATLAS detector for SUSY spectra expected to be testable at the 14 TeV LHC. We compare this signature of displaced decays to axinos to other well motivated scenarios containing a long lived neutralino which decays inside the detector. These alternative scenarios can in some cases very closely mimic the expected axino signature, and the degree to which they are distinguishable is discussed. We also briefly comment on the cosmological viability of such a scenario.

  20. Nickel, argon and cobalt in the infrared spectrum of SN1987A - The core becomes visible

    NASA Technical Reports Server (NTRS)

    Rank, D. M.; Pinto, P. A.; Woosley, S. E.; Bregman, J. D.; Witteborn, F. C.

    1988-01-01

    Infrared spectra of supernova 1987A taken in April and November 1987 are presented, showing two distinctly different stages in the evolution of the expanding gas shell. The optical and infrared spectrum in April originated from the hydrogen envelope and show weak hydrogen lines rising above a 5,000-K photospheric continuum. The November spectrum was dominated by strong emission lines from heavy elements as well as many lines from highly excited levels of hydrogen, with peak flux levels in the lines at or slightly above the level of the continuum in April. It is concluded that the inner regions of the supernova were just becoming visible in early 1988. It is expected that these regions contain heavy elements produced by advanced nuclear burning stages in the progenitor star and in the shock wave that ejected all material external to the iron core.

  1. X-Ray Heating of the Ejecta of Supernova 1987A

    NASA Technical Reports Server (NTRS)

    Sonneborn, George; Larsson, Josefin; Fransson, Claes; Kirshner, Robert; Challis, Peter; McCray, Richard

    2012-01-01

    Analysis of Hubble Space Telescope Band R band images from 1994 to 2009 show that the optical luminosity of SN 1987A has transitioned from being powered by radioactive decay of Ti-44 to energy deposited by X-rays produced as the ejecta interacts with the surrounding material (Larsson et al. 2011, Nature, 474, 484). The B and R band flux from the densest, central parts of the ejecta followed the expected exponential decline until 2001 (about day 5000) when the flux in these bands started increasing, more than doubling by the end of 2009. This increase is the result of heat deposited by X-rays from the shock interaction of the fast-moving outer ejecta with the inner circumstellar ring. In time, the X-rays will penetrate farther into the ejecta, enabling us to analyze the structure and chemistry of the vanished star.

  2. Hydrogen recombination at high optical depth and the spectrum of SN 1987A

    NASA Technical Reports Server (NTRS)

    Xu, Yueming; Mccray, Richard; Oliva, Ernesto; Randich, Sofia

    1992-01-01

    A general theory is presented for hydrogen recombination line formation in an expanding medium in which some of the lines are optically thick. This theory is used to calculate the time evolution of the hydrogen lines of SN 1987A at t equal to or greater than 150 days, assuming that the supernova envelope is a homologously expanding uniform sphere. The theoretical luminosities and ratios of the recombination lines agree remarkably well with the observations. For the first 2 yr, the supernova envelope is optically thick to Balmer continuum. For t equal to or less than 400 days, hydrogen is ionized primarily from the n = 2 level by Balmer continuum photons, which are provided partly by the two-photon decay of the 2s state and partly by emission lines of heavy elements.

  3. The emergence of X-rays and gamma-rays from supernova 1987A

    NASA Technical Reports Server (NTRS)

    Shull, J. Michael; Xu, Yueming

    1988-01-01

    Attempts to arrive at a unified scenario for the optical, X-ray, and gamma-ray emission of SN 1987A are discussed. Theoretical spectra are in reasonable agreement with recent observations of hard X-rays by the Ginga and Mir satellites, but the early turn-on of X-rays suggests that the mantle and envelope may be 'leaky', perhaps as a result of Rayleigh-Taylor instabilities and clumping. The soft X-ray spectrum should be dominated by a 6.4 keV Fe K-alpha fluorescence line. The reported Ginga detection of 4-10 keV X-ray emission is also discussed.

  4. The theory of gamma-ray emergence in supernova 1987A

    NASA Technical Reports Server (NTRS)

    Pinto, Philip A.; Woosley, S. E.

    1988-01-01

    It was anticipated that the decay of Co-56 to Fe-56 in SN1987A would give rise to detectable gamma-ray emission at 847 and 1238 keV with a peak flux of 0.001 photon/sq cm/s about one year after the explosion. Both these lines were detected in August, with a strength within a factor of two of 0.001 photon/sq cm/s, but about six months earlier than predicted. It is shown here that the early emergence of gamma-rays can be accounted for in a 'mixed' model in which an approximately isotropic process destroys chemical segregation with respect to radial mass coordinate and velocity.

  5. Formation of the three-ring structure around supernova 1987A.

    PubMed

    Tanaka, T; Washimi, H

    2002-04-12

    From a magnetohydrodynamic simulation, we reproduce a three-ring structure in the circumstellar space of the supernova (SN) 1987A observed by the Hubble Space Telescope. When a star develops from a red supergiant (RSG) to a blue supergiant (BSG) just before the SN explosion, a wind-wind interaction occurs between the slow stellar wind from the RSG and the subsequent fast stellar wind from the BSG. This process is simulated numerically under an assumption that the density and velocity distributions around the RSG are anisotropic owing to the existence of toroidal magnetic field and coronal holes. The three rings with observed size and position are reproduced by the magnetic pinch effect and amplification of initial density asymmetry through the dynamical interaction.

  6. Far-infrared observations of thermal dust emission from supernova 1987A

    NASA Technical Reports Server (NTRS)

    Moseley, S. H.; Dwek, E.; Glaccum, W.; Graham, J. R.; Loewenstein, R. F.

    1989-01-01

    Observations of SN1987A in the spectral range 18-35 microns taken on November 16 and 23, 1988, 632 and 639 days after core collapse, are reported. A strong and rather flat continuum underlies weak fine-structure lines from heavy elements and declines slowly between 24 and 30 microns. The spectral shape indicates thermal emission from an almost featureless dust component, probably graphite, with silicates contributing less than 20 percent of the emitting dust mass. Some of the emission may be an 'echo' of supernova light reflected from a preexisting dust cloud, but a better explanation which can account for the entirety of emission from infrared to gamma wavelengths, is that dust is being formed in the supernova ejecta. This also accounts more naturally for the inferred dust composition.

  7. Correlation mass method for analysis of neutrinos from supernova 1987A

    NASA Technical Reports Server (NTRS)

    Chiu, Hong-Yee; Chan, Kwing L.; Kondo, Yoji

    1988-01-01

    Application of a time-energy correlation method to the Kamiokande II (KII) observations of neutrinos apparently emitted from supernova 1987A has yielded a neutrino rest mass of 3.6 eV. A Monte Carlo analysis shows a reconfirming probabilty distribution for the neutrino rest mass peaked at 2.8, and dropping to 50 percent of the peak at 1.4 and 4.8 eV. Although the KII data indicate a very short time scale of emission, over an extended period on the order of 10 sec, both data from the Irvine-Michigan-Brookhaven experiment and the KII data show a tendency for the more energetic neutrinos to be emitted earlier at the source, suggesting the possibility of cooling.

  8. Constraints to the decays of Dirac neutrinos from SN 1987A

    NASA Technical Reports Server (NTRS)

    Dodelson, Scott; Frieman, Joshua A.; Turner, Michael S.

    1992-01-01

    The decay mode of a keV-mass Dirac neutrino is addressed with reference to the nineteen neutrino events associated with SN 1987A that were detected by the Kamiokande II and Irvine-Brookhaven-Michigan detectors. A complementary constraint is presented which is based upon a distinctive signal associated with the decay of wrong-helicity neutrinos that was not seen: high-energy (50 MeV and higher) neutrino events. The absence of such events excludes the decay of wrong-helicity neutrinos into proper-helicity neutrinos for a Dirac neutrino of mass between 1 and 300 keV. The constraint also rules out models of the 17-keV neutrino.

  9. An optical and near infrared search for a pulsar in Supernova 1987A

    SciTech Connect

    Sasseen, T.P.

    1990-12-01

    We describe a search for an optical pulsar in the remnant of Supernova 1987A. We have performed over one hundred separate observations of the supernova, covering wavelengths from 3500 angstroms to 1.8 microns, with sensitivity to pulsations as faint as magnitude 22.7. As of September 26, 1990, we have not seen evidence for pulsations due to a pulsar in the supernova. We discuss the implications of this result on predictions of pulsar optical luminosity. We have constructed for the search two photodiode detectors and a data system. We describe their design, calibration and performance. These detectors have allowed us to increase our sensitivity as much as a factor of 5 over standard photomultiplier tubes, and extend this search to near infrared wavelengths. 59 refs., 10 figs., 1 tab.

  10. Balloon-borne measurements of the SN 1987A hard X-ray continuum

    NASA Technical Reports Server (NTRS)

    Pendleton, Geoffrey N.; Paciesas, William S.; Fishman, Gerald J.; Meegan, Charles A.; Wilson, Robert B.

    1995-01-01

    SN 1987A hard X-ray continuum spectra obtained on 1987 October 29, 1988 April 9-10, and 1988 November 11 from balloon-flight measurments are presented. The spectra, spanning the energy range from 25 keV to 300 keV, have been analyzed using a detector response matrix inversion technique that converts the spectra form counts/s/sq cm keV to photons/s/sq cm keV allowing direct comparison with theoretical models. The results indicate that the bulk of the (56)Co is mixed moderately through the inner regions of the supernova envelope but they do not preclude the mixing of a small amount of the (56)Co farther out into the envelope necessary to account for the observed (56)Co line fluxes. The effect of the ratio (57)Co to (56)Co on the 1988 November 11 continuum spectrum is discussed.

  11. Balloon-borne measurements of the SN1987A hard x ray continuum

    NASA Technical Reports Server (NTRS)

    Pendleton, Geoffrey N.; Paciesas, William S.; Fishman, Gerald J.; Meegan, Charles A.; Wilson, Robert B.

    1994-01-01

    SN1987A hard x ray continuum spectra obtained on 29 Oct. 1987, 9-10 Apr. 1988, and 11 Nov. 1988, from balloon flight measurements are presented. The spectra, spanning the energy range from 25 keV to 300 keV, were analyzed using a detector response matrix inversion technique that converts the spectra from counts/sec-sq cm-kev to photons/sec-sq cm-kev allowing direct comparison with theoretical models. The results indicate that the bulk of the Co-56 is mixed moderately through the inner regions of the SN envelope but they do not preclude the mixing of a small amount of the Co-56 further out into the envelope necessary to account for the observed Co-56 line fluxes. The effect of the ratio of Co-57 to Co-56 on the 11 Nov. 1988, continuum spectrum is discussed.

  12. Mapping High-Velocity H-alpha and Lyman-alpha Emission from Supernova 1987A

    NASA Technical Reports Server (NTRS)

    France, Kevin; McCray, Richard; Fransson, Claes; Larsson, Josefin; Frank, Kari A.; Burrows, David N.; Challis, Peter; Kirshner, Robert P.; Chevalier, Roger A.; Garnavich, Peter; Heng, Kevin; Lawrence, Stephen S.; Lundqvist, Peter; Smith, Nathan; Sonneborn, George

    2015-01-01

    We present new Hubble Space Telescope images of high-velocity H-alpha and Lyman-alpha emission in the outer debris of SN 1987A. The H-alpha images are dominated by emission from hydrogen atoms crossing the reverse shock. For the first time we observe emission from the reverse shock surface well above and below the equatorial ring, suggesting a bipolar or conical structure perpendicular to the ring plane. Using the H-alpha imaging, we measure the mass flux of hydrogen atoms crossing the reverse shock front, in the velocity intervals (-7,500 < V(sub obs) < -2,800 km/s) and (1,000 < V(sub obs) < 7,500 km/s), ?M(sub H) = 1.2 × 10(exp -3) M/ y. We also present the first Lyman-alpha imaging of the whole remnant and new Chandra X-ray observations. Comparing the spatial distribution of the Lyman-alpha and X-ray emission, we observe that the majority of the high-velocity Lyman-alpha emission originates interior to the equatorial ring. The observed Lyman-alpha/H-alpha photon ratio, R(L-alpha/H-alpha) approx. = 17, is significantly higher than the theoretically predicted ratio of approx. = 5 for neutral atoms crossing the reverse shock front. We attribute this excess to Lyman-alpha emission produced by X-ray heating of the outer debris. The spatial orientation of the Lyman-alpha and X-ray emission suggests that X-ray heating of the outer debris is the dominant Lyman-alpha production mechanism in SN 1987A at this phase in its evolution.

  13. SN1987A-Neutrino emission from Supernova': in Dynamic universe model of cosmology

    NASA Astrophysics Data System (ADS)

    Naga Parameswara Gupta, Satyavarapu

    SN1987A-Neutrino emission from supernova before the star bursts' is an important discovery, when viewed from `Dynamic universe model of cosmology' point of view. In OMEG05, we have successfully presented the reasons for calculation error called `missing mass' in an inhomoge-neous, anisotropic and multi-body Dynamic universe Model, where this error is not occurring. But there are some new voices that say about generation of some flavors of neutrinos during Bigbang. We find from SN1987A Neutrino generation covers all flavors. Remaining flavors of Neutrinos are generated from sun and stars. This covers the whole spectrum. This paper covers all these aspects. And other earlier results by Dynamic Universe Model 1. Offers Singularity free solutions 2. Non-collapsing Galaxy structures 3. Solving Missing mass in Galaxies, and it finds reason for Galaxy circular velocity curves. . . . 4. Blue shifted and red shifted Galaxies co-existence. . . 5. Explains the force behind expansion of universe. 6. Explains the large voids and non-uniform matter densities. 7. Explains the Pioneer anomaly 8. Predicts the trajectory of New Horizons satellite. 9 Jeans swindle test 10. Existence of large number of blue shifted Galaxies `SITA Simulations' software was developed about 18 years back for Dynamic Universe Model of Cosmology. It is based on Newtonian physics. It is Classical singularity free N-body tensor solution to the old problem announced by King Oscar II and tried by Poincare in year AD1888 for 133 masses, tested extensively for so many years. This was developed on 486 based PC of those days; the same software was used repeatedly for so many years for solving different Physical problems on Different PCs and Laptops. It is based on Dynamic Universe Model's mathematical back ground.

  14. Three-dimensional Distribution of Ejecta in Supernova 1987A at 10,000 Days

    NASA Astrophysics Data System (ADS)

    Larsson, J.; Fransson, C.; Spyromilio, J.; Leibundgut, B.; Challis, P.; Chevalier, R. A.; France, K.; Jerkstrand, A.; Kirshner, R. P.; Lundqvist, P.; Matsuura, M.; McCray, R.; Smith, N.; Sollerman, J.; Garnavich, P.; Heng, K.; Lawrence, S.; Mattila, S.; Migotto, K.; Sonneborn, G.; Taddia, F.; Wheeler, J. C.

    2016-12-01

    Due to its proximity, SN 1987A offers a unique opportunity to directly observe the geometry of a stellar explosion as it unfolds. Here we present spectral and imaging observations of SN 1987A obtained ˜10,000 days after the explosion with HST/STIS and VLT/SINFONI at optical and near-infrared wavelengths. These observations allow us to produce the most detailed 3D map of Hα to date, the first 3D maps for [Ca ii] λ λ 7292,7324, [O i] λ λ 6300,6364, and Mg ii λ λ 9218,9244, as well as new maps for [Si i]+[Fe ii] 1.644 μ {{m}} and He i 2.058 μm. A comparison with previous observations shows that the [Si i]+[Fe ii] flux and morphology have not changed significantly during the past ten years, providing evidence that this line is powered by 44Ti. The time evolution of Hα shows that it is predominantly powered by X-rays from the ring, in agreement with previous findings. All lines that have sufficient signal show a similar large-scale 3D structure, with a north-south asymmetry that resembles a broken dipole. This structure correlates with early observations of asymmetries, showing that there is a global asymmetry that extends from the inner core to the outer envelope. On smaller scales, the two brightest lines, Hα and [Si i]+[Fe ii] 1.644 μm, show substructures at the level of ˜200-1000 km s-1and clear differences in their 3D geometries. We discuss these results in the context of explosion models and the properties of dust in the ejecta.

  15. The Shape of SN 1987A's Circumstellar Nebula (and The Distance to the LMC)

    NASA Astrophysics Data System (ADS)

    Crotts, A. P. S.; Kunkel, W. E.; Heathcote, S. R.; Blanton, E. L.

    1993-12-01

    The circumstellar continuum nebula around SN 1987A, discovered in 1989, disappeared in early 1992 after evolving during the intervening period. We interpret this continuum nebulosity as the light echo from the SN maximum light pulse propagating through reflecting material. In this case the nebula appears consistent with a squat, double-lobed structure with a rotational axis inclined about 45(deg) to the line of sight (and oriented nearly north-south). A least-squares fit, in spherical coordinates, yields R(phi ) = [1 - 0.29phi (2) ](2.47 ly), for -0.45pi < phi < 0.45pi , where phi = 0 along the rotational axis. The equatorial pinch corresponds closely to the position inferred for the small elliptical ring centered on SN 1987A, assuming that it is expanding, and assuming that it is roughly circular. We investigate, by examining the morphology of the diffuse wind beyond this double-lobed nebula, how this non-spherical geometry was created. Presumably this nebula is created at the interface of the inner, blue-supergiant (BSG) wind, and the earlier, denser and slower red-giant (RG) wind. The distribution of this RG wind suggests that the anisotropy of this interface is due both to anisotropic RG wind density and velocity fields. Panagia et al. 1991 suggested that the angular diameter of the inner ring compared to the light-propagation time from its front to back can be used to establish the distance to the SN, therefore the Large Magellanic Cloud (LMC). This idea was further refined by Dwek & Felten 1992 and Gould 1993. A major uncertainty in this determination is the ring's angle of inclination. The double-lobed nebula we have mapped suggests this is close to 45(deg) , indicating a distance to the LMC of about 52 kpc. (We will give a more detailed determination of D_{LMC} in our poster!)

  16. Improving the quality factor of microwave cavities for axion search experiments

    NASA Astrophysics Data System (ADS)

    Ahn, Saebyeok; Jung, Junu; Youn, Sungwoo; Semertzidis, Yannis

    2017-01-01

    In cavity-based axion search experiments, the quality factor (Q) of microwave resonant cavities is an important parameter to be sensitive to faint signal from the axion-to-photon conversion. One of the R&D efforts conducted at the Center for Axion and Precision Physics Research (CAPP) of the Institute for Basic Science (IBS) is to improve the quality factor of resonant cavities by employing two approaches - pure material and heat treatment. Using a 4K cryocooler and liquid helium, we measure the temperature dependence of Q value to find the effect of material purity and an optimal condition of heat treatment. The measurements are performed on Cu and Al cavities and the results are shown in this presentation.

  17. a Next-Generation Cavity Microwave Experiment to Search for Dark-Matter Axions

    NASA Astrophysics Data System (ADS)

    Bibber, K. Van; Stöffl, W.; Anthony, P. L.; Sikivie, P.; Sullivan, N. S.; Tanner, D. B.; Železný, V.; Golubev, N. A.; Kazachenko, O. V.; Kravchuk, L. V.; Kuzmin, V.; Romanov, G. V.; Sekachev, I. V.; Rosenberg, L. J.; Hagmann, C.; Moltz, D. M.; Nezrick, F.; Turner, M. S.; Villa, F.

    We propose a large-scale experimental search for dark-matter axions which may constitute an important fraction of our own galactic halo. As shown by Sikivie,1 dark-matter axions may be detected by their stimulated conversion into monochromatic microwave photons in a tunable high-Q cavity inside a strong magnetic field. The principal improvement in power sensitivity over two earlier pilot experiments (×25) derives from the large-volume high field superconducting magnet (the NASA SUMMA coils). The improvement in mass range (1.5 to 12.6 μeV) will result from the use of several microwave cavity arrays, of 2n cavities each, over the course of the experimental program, rather than a single cavity. We are participating in a joint venture with the Institute for Nuclear Research of the Russian Academy of Sciences to do R&D on metalized precision-formed ceramic microwave cavities for the axion search.

  18. Photon-axion conversion as a mechanism for supernova dimming: Limits from CMB spectral distortion

    SciTech Connect

    Mirizzi, Alessandro; Raffelt, Georg G.; Serpico, Pasquale D.

    2005-07-15

    Axion-photon conversion induced by intergalactic magnetic fields has been proposed as an explanation for the dimming of distant supernovae of type Ia (SNe Ia) without cosmic acceleration. The effect depends on the intergalactic electron density n{sub e} as well as the B-field strength and domain size. We show that for n{sub e} < or approx. 10{sup -9} cm{sup -3} the same mechanism would cause excessive spectral distortion of the cosmic microwave background (CMB). This small-n{sub e} parameter region had been left open by the most restrictive previous constraints based on the dispersion of quasar (QSO) spectra. The combination of CMB and QSO limits suggests that the photon-axion conversion mechanism can only play a subleading role for SN Ia dimming. A combined analysis of all the observables affected by the photon-axion oscillations would be required to give a final verdict on the viability of this model.

  19. Effective aligned 2HDM with a DFSZ-like invisible axion

    NASA Astrophysics Data System (ADS)

    Celis, Alejandro; Fuentes-Martín, Javier; Serôdio, Hugo

    2014-10-01

    We discuss the possibility of having a non-minimal scalar sector at the weak scale within the framework of invisible axion models. To frame our discussion we consider an extension of the Dine-Fischler-Srednicki-Zhitnitsky invisible axion model with two additional Higgs doublets blind under the Peccei-Quinn symmetry. Due to mixing effects among the scalar fields, it is possible to obtain a rich scalar sector at the weak scale in certain decoupling limits of the theory. In particular, this framework provides an ultraviolet completion of the so-called aligned two-Higgs-doublet model and solves the strong CP problem. The axion properties and the smallness of active neutrino masses are also discussed.

  20. About the isocurvature tension between axion and high scale inflationary models

    NASA Astrophysics Data System (ADS)

    Estevez, M.; Santillán, O.

    2016-07-01

    The present work suggests that the isocurvature tension between axion and high energy inflationary scenarios may be avoided by considering a double field inflationary model involving the hidden Peccei-Quinn Higgs and the Standard Model one. Some terms in the lagrangian we propose explicitly violate the Peccei-Quinn symmetry but, at the present era, their effect is completely negligible. The resulting mechanism allows for a large value for the axion constant, of the order f_a˜ M_p, thus the axion isocurvature fluctuations are suppressed even when the scale of inflation H_{inf} is very high, of the order of H_{inf}˜ M_{gut}. This numerical value is typical in Higgs inflationary models. An analysis about topological defect formation in this scenario is also performed, and it is suggested that, under certain assumptions, their effect is not catastrophic from the cosmological point of view.

  1. First Results from a Microwave Cavity Axion Search at 24  μeV.

    PubMed

    Brubaker, B M; Zhong, L; Gurevich, Y V; Cahn, S B; Lamoreaux, S K; Simanovskaia, M; Root, J R; Lewis, S M; Al Kenany, S; Backes, K M; Urdinaran, I; Rapidis, N M; Shokair, T M; van Bibber, K A; Palken, D A; Malnou, M; Kindel, W F; Anil, M A; Lehnert, K W; Carosi, G

    2017-02-10

    We report on the first results from a new microwave cavity search for dark matter axions with masses above 20  μeV. We exclude axion models with two-photon coupling g_{aγγ}≳2×10^{-14}  GeV^{-1} over the range 23.55axion search.

  2. Supernovae. ⁴⁴Ti gamma-ray emission lines from SN1987A reveal an asymmetric explosion.

    PubMed

    Boggs, S E; Harrison, F A; Miyasaka, H; Grefenstette, B W; Zoglauer, A; Fryer, C L; Reynolds, S P; Alexander, D M; An, H; Barret, D; Christensen, F E; Craig, W W; Forster, K; Giommi, P; Hailey, C J; Hornstrup, A; Kitaguchi, T; Koglin, J E; Madsen, K K; Mao, P H; Mori, K; Perri, M; Pivovaroff, M J; Puccetti, S; Rana, V; Stern, D; Westergaard, N J; Zhang, W W

    2015-05-08

    In core-collapse supernovae, titanium-44 ((44)Ti) is produced in the innermost ejecta, in the layer of material directly on top of the newly formed compact object. As such, it provides a direct probe of the supernova engine. Observations of supernova 1987A (SN1987A) have resolved the 67.87- and 78.32-kilo-electron volt emission lines from decay of (44)Ti produced in the supernova explosion. These lines are narrow and redshifted with a Doppler velocity of ~700 kilometers per second, direct evidence of large-scale asymmetry in the explosion.

  3. Surface theorem for the Chern-Simons axion coupling

    NASA Astrophysics Data System (ADS)

    Olsen, Thomas; Taherinejad, Maryam; Vanderbilt, David; Souza, Ivo

    2017-02-01

    The Chern-Simons axion coupling of a bulk insulator is only defined modulo a quantum of e2/h . The quantized part of the coupling is uniquely defined for a bounded insulating sample, but it depends on the specific surface termination. Working in a slab geometry and representing the valence bands in terms of hybrid Wannier functions, we show how to determine that quantized part from the excess Chern number of the hybrid Wannier sheets located near the surface of the slab. The procedure is illustrated for a tight-binding model consisting of coupled quantum anomalous Hall layers. By slowly modulating the model parameters it is possible to transfer one unit of Chern number from the bottom to the top surface over the course of a cyclic evolution of the bulk Hamiltonian, changing the surface anomalous Hall conductivity by a quantum of conductance e2/h . When the evolution of the surface Hamiltonian is also cyclic, the Chern pumping is obstructed by chiral touchings between valence and conduction surface bands.

  4. Signatures of Planck corrections in a spiralling axion inflation model

    SciTech Connect

    McDonald, John

    2015-05-08

    The minimal sub-Planckian axion inflation model accounts for a large scalar-to-tensor ratio via a spiralling trajectory in the field space of a complex field Φ. Here we consider how the predictions of the model are modified by Planck scale-suppressed corrections. In the absence of Planck corrections the model is equivalent to a ϕ{sup 4/3} chaotic inflation model. Planck corrections become important when the dimensionless coupling ξ of |Φ|{sup 2} to the topological charge density of the strongly-coupled gauge sector FF{sup ~} satisfies ξ∼1. For values of |Φ| which allow the Planck corrections to be understood via an expansion in powers of |Φ|{sup 2}/M{sub Pl}{sup 2}, we show that their effect is to produce a significant modification of the tensor-to-scalar ratio from its ϕ{sup 4/3} chaotic inflation value without strongly modifying the spectral index. In addition, to leading order in |Φ|{sup 2}/M{sub Pl}{sup 2}, the Planck modifications of n{sub s} and r satisfy a consistency relation, Δn{sub s}=−Δr/16. Observation of these modifications and their correlation would allow the model to be distinguished from a simple ϕ{sup 4/3} chaotic inflation model and would also provide a signature for the influence of leading-order Planck corrections.

  5. Signatures of Planck corrections in a spiralling axion inflation model

    SciTech Connect

    McDonald, John

    2015-05-01

    The minimal sub-Planckian axion inflation model accounts for a large scalar-to-tensor ratio via a spiralling trajectory in the field space of a complex field Φ. Here we consider how the predictions of the model are modified by Planck scale-suppressed corrections. In the absence of Planck corrections the model is equivalent to a φ{sup 4/3} chaotic inflation model. Planck corrections become important when the dimensionless coupling ξ of |Φ|{sup 2} to the topological charge density of the strongly-coupled gauge sector F  F-tilde satisfies ξ ∼ 1. For values of |Φ| which allow the Planck corrections to be understood via an expansion in powers of |Φ|{sup 2}/M{sub Pl}{sup 2}, we show that their effect is to produce a significant modification of the tensor-to-scalar ratio from its φ{sup 4/3} chaotic inflation value without strongly modifying the spectral index. In addition, to leading order in |Φ|{sup 2}/M{sub Pl}{sup 2}, the Planck modifications of n{sub s} and r satisfy a consistency relation, Δ n{sub s} = −Δr/16. Observation of these modifications and their correlation would allow the model to be distinguished from a simple φ{sup 4/3} chaotic inflation model and would also provide a signature for the influence of leading-order Planck corrections.

  6. Observational constraints on gauge field production in axion inflation

    SciTech Connect

    Meerburg, P.D.; Pajer, E. E-mail: enrico.pajer@gmail.com

    2013-02-01

    Models of axion inflation are particularly interesting since they provide a natural justification for the flatness of the potential over a super-Planckian distance, namely the approximate shift-symmetry of the inflaton. In addition, most of the observational consequences are directly related to this symmetry and hence are correlated. Large tensor modes can be accompanied by the observable effects of a the shift-symmetric coupling φF F-tilde to a gauge field. During inflation this coupling leads to a copious production of gauge quanta and consequently a very distinct modification of the primordial curvature perturbations. In this work we compare these predictions with observations. We find that the leading constraint on the model comes from the CMB power spectrum when considering both WMAP 7-year and ACT data. The bispectrum generated by the non-Gaussian inverse-decay of the gauge field leads to a comparable but slightly weaker constraint. There is also a constraint from μ-distortion using TRIS plus COBE/FIRAS data, but it is much weaker. Finally we comment on a generalization of the model to massive gauge fields. When the mass is generated by some light Higgs field, observably large local non-Gaussianity can be produced.

  7. Axion-Like particles from extragalactic High Energy sources

    NASA Astrophysics Data System (ADS)

    Conrad, J.; Meyer, M.; Montanino, D.

    2016-05-01

    Background radiation fields (such as Extragalactic Background Light, EBL, or Cosmic Microwave Background, CMB) pervade the Universe. Above a certain energy any gamma ray flux emitted by an extragalactic source should be attenuated by the process γ+ γ(bgk) → e + + e - pair production. We have considered a scenario in which the photons are partly converted into light Axion Like Particles (ALPs) in the local magnetic field of an (extragalactic) source. Then, while the unconverted fraction of photons undergo absorption, the ALP component travel to our galaxy where is converted back to photons by the galactic magnetic field resulting in a sort of cosmic light shining through wall effect. In particular, we have considered two scenarios: 1) conversion in the turbulent magnetic field inside a galaxy cluster; and 2) conversion of photons in the coherent magnetic field at parsec scales in a Blazar jet. Afterwards, we have also analyzed mock data coming from a hypothetical Imaging Air Cherenkov Telescopes (IACT) array with characteristics similar to the Cherenkov Telescope Array (CTA) and we have investigated the dependence of the sensitivity to detect a gamma ray excess on the magnetic field parameters.

  8. Primordial gravitational waves from axion-gauge fields dynamics

    NASA Astrophysics Data System (ADS)

    Dimastrogiovanni, Emanuela; Fasiello, Matteo; Fujita, Tomohiro

    2017-01-01

    Inspired by the chromo-natural inflation model of Adshead&Wyman, we reshape its scalar content to relax the tension with current observational bounds. Besides an inflaton, the setup includes a spectator sector in which an axion and SU(2) gauge fields are coupled via a Chern-Simons-type term. The result is a viable theory endowed with an alternative production mechanism for gravitational waves during inflation. The gravitational wave signal sourced by the spectator fields can be much larger than the contribution from standard vacuum fluctuations, it is distinguishable from the latter on the basis of its chirality and, depending on the theory parameters values, also its tilt. This production process breaks the well-known relation between the tensor-to-scalar ratio and the energy scale of inflation. As a result, even if the Hubble rate is itself too small for the vacuum to generate a tensor amplitude detectable by upcoming experiments, this model still supports observable gravitational waves.

  9. Z2 massive axions, domain walls and inflation

    NASA Astrophysics Data System (ADS)

    Assyyaee, Shahrokh; Riazi, Nematollah

    2017-01-01

    We have analyzed a U(1) model which is broken explicitly to a Z2 model. The proposal results in generating two types of stable domain walls, in contrast with the more common NDW = 1 version which is already used to explain axion invisibility for the UPQ(1) model. We have tried to take into account any possible relation with previous studies. We have studied some of the domain properties, proposing an approximate solution which satisfies boundary conditions and the static virial theorem, simultaneously. Invoking the mentioned approximation, we have been able to obtain an analytical insight about the effect of parameters on the domain wall features, particularly on their surface energy density which is of great importance in cosmological studies when one tries to avoid domain wall energy domination problem. Next, we have mainly focused on the likely inflationary scenarios resulting from the model, including saddle point inflation, again insisting on analytical discussions to be able to follow the role of parameters. We have tried to relate inflationary scenarios to the known categories to take advantage of the previous detailed studies under the inflationary topic over the decades. We have concluded that any successful inflationary scenario requires large fields within the present model. Calculations are mainly done analytically, although numerical results are also obtained to reinforce the analytical results.

  10. SU(3) family gauge symmetry and the axion

    SciTech Connect

    Appelquist, Thomas; Bai Yang; Piai, Maurizio

    2007-04-01

    We analyze the structure of a recently proposed effective field theory (EFT) for the generation of quark and lepton mass ratios and mixing angles, based on the spontaneous breaking of an SU(3) family gauge symmetry at a high scale F. We classify the Yukawa operators necessary to seed the masses, making use of the continuous global symmetries that they preserve. One global U(1), in addition to baryon number and electroweak hypercharge, remains unbroken after the inclusion of all operators required by standard model fermion phenomenology. An associated vacuum symmetry insures the vanishing of the first-family quark and charged-lepton masses in the absence of the family gauge interaction. If this U(1) symmetry is taken to be exact in the EFT, broken explicitly by only the QCD-induced anomaly, and if the breaking scale F is taken to lie in the range 10{sup 9}-10{sup 12} GeV, then the associated Nambu-Goldstone boson is a potential QCD axion.

  11. Sorption vacuum trap

    NASA Technical Reports Server (NTRS)

    Barrington, A. E.; Caruso, A. J.

    1970-01-01

    Modified sorption trap for use in high vacuum systems contains provisions for online regeneration of sorbent material. Trap is so constructed that it has a number of encapsulated resistance heaters and a valving and pumping device for removing gases from heated sorbing material. Excessive downtime is eliminated with this trap.

  12. Ion trap simulation tools.

    SciTech Connect

    Hamlet, Benjamin Roger

    2009-02-01

    Ion traps present a potential architecture for future quantum computers. These computers are of interest due to their increased power over classical computers stemming from the superposition of states and the resulting capability to simultaneously perform many computations. This paper describes a software application used to prepare and visualize simulations of trapping and maneuvering ions in ion traps.

  13. An axion-induced SM/MSSM Higgs landscape and the Weak Gravity Conjecture

    NASA Astrophysics Data System (ADS)

    Herráez, Alvaro; Ibáñez, Luis E.

    2017-02-01

    We construct models in which the SM Higgs mass scans in a landscape. This is achieved by coupling the SM to a monodromy axion field through Minkowski 3-forms. The Higgs mass scans with steps given by δm H 2 ≃ ημf, where μ and f are the axion mass and periodicity respectively, and η measures the coupling of the Higgs to the associated 3-form. The observed Higgs mass scale could then be selected on anthropic grounds. The monodromy axion may have a mass μ in a very wide range depending on the value of η, and the axion periodity f . For η ≃ 1 and f ≃ 1010 GeV , one has 10-3 eV ≲ μ ≲ 103 eV, but ultralight axions with e.g. μ ≃ 10-17 eV are also possible. In a different realization we consider landscape models coupled to the MSSM. In the context of SUSY, 4-forms appear as being part of the auxiliary fields of SUSY multiplets. The scanning in the 4-forms thus translate into a landscape of vevs for the N = 1 auxiliary fields and hence as a landscape for the soft terms. This could provide a rationale for the MSSM fine-tuning suggested by LHC data. In all these models there are 3-forms coupling to membranes which induce transitions between different vacua through bubble nucleation. The Weak Gravity Conjecture (WGC) set limits on the tension of these membranes and implies new physics thresholds well below the Planck scale. More generaly, we argue that in the case of string SUSY vacua in which the Goldstino multiplet contains a monodromy axion the WGC suggests a lower bound on the SUSY breaking scale m 3/2 ≳ M s 2 / M p .

  14. Soft X-ray excess in the Coma cluster from a Cosmic Axion Background

    SciTech Connect

    Angus, Stephen; Conlon, Joseph P.; Marsh, M.C. David; Powell, Andrew J.; Witkowski, Lukas T. E-mail: j.conlon1@physics.ox.ac.uk E-mail: andrew.powell2@physics.ox.ac.uk

    2014-09-01

    We show that the soft X-ray excess in the Coma cluster can be explained by a cosmic background of relativistic axion-like particles (ALPs) converting into photons in the cluster magnetic field. We provide a detailed self-contained review of the cluster soft X-ray excess, the proposed astrophysical explanations and the problems they face, and explain how a 0.1- 1 keV axion background naturally arises at reheating in many string theory models of the early universe. We study the morphology of the soft excess by numerically propagating axions through stochastic, multi-scale magnetic field models that are consistent with observations of Faraday rotation measures from Coma. By comparing to ROSAT observations of the 0.2- 0.4 keV soft excess, we find that the overall excess luminosity is easily reproduced for g{sub aγγ} ∼ 2 × 10{sup -13} Ge {sup -1}. The resulting morphology is highly sensitive to the magnetic field power spectrum. For Gaussian magnetic field models, the observed soft excess morphology prefers magnetic field spectra with most power in coherence lengths on O(3 kpc) scales over those with most power on O(12 kpc) scales. Within this scenario, we bound the mean energy of the axion background to 50 eV∼< ( E{sub a} ) ∼< 250 eV, the axion mass to m{sub a} ∼< 10{sup -12} eV, and derive a lower bound on the axion-photon coupling g{sub aγγ} ∼> √(0.5/Δ N{sub eff}) 1.4 × 10{sup -13} Ge {sup -1}.

  15. Bounds on galactic cold dark matter particle candidates and solar axions from a Ge-spectrometer

    SciTech Connect

    Gelmini, G.

    1986-11-01

    The ultralow background Ge spectrometer developed by the USC/PNL group is used as a detector of cold dark matter candidates from the halo of our galaxy and of solar axions (and other light bosons), yielding interesting bounds. Some of them are: heavy standard Dirac neutrinos with mass 20 GeV less than or equal to m less than or equal to 1 TeV are excluded as main components of the halo of our galaxy; Dine-Fischler-Srednicki axion models with F/2x/sub e/' less than or equal to 0.5 x 10/sup 7/ GeV are excluded. 22 refs., 7 figs.

  16. Trapping in TITANs Cooler Penning Trap

    NASA Astrophysics Data System (ADS)

    Kootte, Brian; Lascar, Daniel; Paul, Stefan; Gwinner, Gerald; Dilling, Jens; Titan Collaboration

    2016-09-01

    Penning trap mass spectrometry provides an excellent means of determining the masses of nuclei to high precision. Highly Charged Ions (HCIs) have been successfully used at TRIUMFs Ion Trap for Atomic and Nuclear science (TITAN) to enhance the precision of mass measurements for short-lived species. The gain in precision can theoretically scale with the charge state of the ion, but recent measurements of beam properties have shown that the process of charge breeding ions to higher charge states increases the energy spread of the ion bunch sent to the Penning trap. This reduces the gain from using HCIs. In order to maximize the precision of mass measurements, we are currently performing offline commissioning of a Cooler PEnning Trap (CPET) with the purpose of sympathetically cooling HCI bunches to an energy of 1 eV/q using a plasma of electrons. This will require implementing a nested potential configuration to trap the ions and electrons in the same region so they can interact via coulomb scattering. Recent progress in testing the trapping of electrons and singly charged ions in CPET, leading towards the cooling of HCIs prior to mass measurements in TITANs will be discussed.

  17. Possible explanation of the correlations between events recorded by underground detectors during the Supernova 1987A explosion

    SciTech Connect

    Alexeyev, E. N.

    2010-02-15

    A possible explanation of the time correlations between the data from underground detectors (Baksan telescope, LSD, IMB, Kamiokande II) and from the Rome and Maryland gravitational-wave antennas obtained during the Supernova 1987A explosion is proposed. It is shown that the synchronization of the events recorded by various underground facilities could be produced by gravitational radiation from the Supernova.

  18. The Death of a Star: Supernova 1987a. NASA Educational Briefs for the Upper Elementary-Level Classroom.

    ERIC Educational Resources Information Center

    National Aeronautics and Space Administration, Washington, DC.

    This material discusses supernova, the violent death of a massive star, at a level appropriate for upper elementary students. Background information on Supernova 1987a is presented. Observation techniques using visible light, ultraviolet waves, radio waves, neutrinos, X-rays, and gamma-rays are described. A vocabulary list, 11 questions, and 6…

  19. A Model for Axions Producing Extended gamma-ray Emission from Neutron Star J0108-1431

    NASA Astrophysics Data System (ADS)

    Berenji, Bijan; Fermi LAT Collaboration

    2017-01-01

    Axions are hypothetical particles proposed to solve the strong CP problem in QCD and may constitute a significant fraction of the dark matter in the Universe. Axions are expected to be produced in neutron stars and subsequently decay, producing gamma-rays detectable by the Fermi Large Area Telescope (Fermi-LAT). Considering that light axions may travel a long range before they decay into gamma rays, neutron stars may appear as a spatially-extended source of gamma rays. We extend our previous search for gamma rays from axions, based on a point source model, to consider the neutron star as an extended source of gamma rays.We investigate the spatial emission of gamma rays using phenomenological models. We present models including the fundamental astrophysics and relativistic, extended gamma-ray emission from axions around neutron stars. A Monte Carlo simulation of the LAT gives us an expectation for the extended angular profile and spectrum. We predict a mean angular spread of 0.8 degrees with energies in the range 30-200 MeV. We consider projected sensitivities for mass limits on axions from J0108-1431, a neutron star at a distance of 240 pc. We demonstrate the feasibility of setting more stringent limits for axions in this mass range, excluding a range not probed by observations before. Based on the extended angular profile of the source, the expected sensitivity of the 95% CL upper limit on the axion mass from J0108-1431 is >10 meV. We also consider observational strategies in the search for axions from J0108-1431 with the Fermi-LAT.

  20. Three-dimensional hydrodynamic modeling of SN 1987A from the supernova explosion till the Athena era

    NASA Astrophysics Data System (ADS)

    Orlando, Salvatore

    2016-06-01

    The proximity of SN 1987A and the wealth of observations collected at all wavelenght bands since its outburst allow us to study in details the evolution of a supernova remnant (SNR) from the immediate aftermath of the SN explosion till its expansion through the highly inhomogeneous circumstellar medium (CSM). We investigate the interaction between SN 1987A and the surrounding CSM through three-dimensional hydrodynamic modeling. The aim is to determine the contribution of shocked ejecta and shocked CSM to the detected X-ray flux and to derive the density structure of the inhomogeneous CSM and clues on the early structure of ejecta. We show that the physical model reproducing the main observables of SN 1987A reproduces also the X-ray emission of the subsequent expanding remnant, thus bridging the gap between supernovae and supernova remnants. By comparing model results with observations, we constrain the explosion energy in the range 1.2 - 1.4 × 10^(51) erg and the envelope mass in the range 15 - 17 M_{⊙}) . We find that the shape of X-ray lightcurves and spectra at early epochs (< 15 years) reflect the structure of outer ejecta. At later epochs, the shape of X-ray lightcurves and spectra reflect the density structure of the nebula around SN 1987A. This enabled us to ascertain the origin of the multi-thermal X-ray emission, to disentangle the imprint of the supernova on the remnant emission from the effects of the remnant interaction with the environment, and to constrain the pre-supernova structure of the nebula. Finally the remnant evolution is followed for 40 years, providing predictions on the future of SN 1987A until the adventof Athena.

  1. Leptogenesis scenarios for natural SUSY with mixed axion-higgsino dark matter

    SciTech Connect

    Bae, Kyu Jung; Baer, Howard; Serce, Hasan; Zhang, Yi-Fan

    2016-01-07

    Supersymmetric models with radiatively-driven electroweak naturalness require light higgsinos of mass ∼100–300 GeV. Naturalness in the QCD sector is invoked via the Peccei-Quinn (PQ) axion leading to mixed axion-higgsino dark matter. The SUSY DFSZ axion model provides a solution to the SUSY μ problem and the Little Hierarchy μ≪m{sub 3/2} may emerge as a consequence of a mismatch between PQ and hidden sector mass scales. The traditional gravitino problem is now augmented by the axino and saxion problems, since these latter particles can also contribute to overproduction of WIMPs or dark radiation, or violation of BBN constraints. We compute regions of the T{sub R} vs. m{sub 3/2} plane allowed by BBN, dark matter and dark radiation constraints for various PQ scale choices f{sub a}. These regions are compared to the values needed for thermal leptogenesis, non-thermal leptogenesis, oscillating sneutrino leptogenesis and Affleck-Dine leptogenesis. The latter three are allowed in wide regions of parameter space for PQ scale f{sub a}∼10{sup 10}–10{sup 12} GeV which is also favored by naturalness: f{sub a}∼√(μM{sub P}/λ{sub μ})∼10{sup 10}–10{sup 12} GeV. These f{sub a} values correspond to axion masses somewhat above the projected ADMX search regions.

  2. Unifying Inflation with the Axion, Dark Matter, Baryogenesis, and the Seesaw Mechanism.

    PubMed

    Ballesteros, Guillermo; Redondo, Javier; Ringwald, Andreas; Tamarit, Carlos

    2017-02-17

    A minimal extension of the standard model (SM) with a single new mass scale and providing a complete and consistent picture of particle physics and cosmology up to the Planck scale is presented. We add to the SM three right-handed SM-singlet neutrinos, a new vectorlike color triplet fermion, and a complex SM-singlet scalar σ that stabilizes the Higgs potential and whose vacuum expectation value at ∼10^{11}  GeV breaks lepton number and a Peccei-Quinn symmetry simultaneously. Primordial inflation is produced by a combination of σ (nonminimally coupled to the scalar curvature) and the SM Higgs boson. Baryogenesis proceeds via thermal leptogenesis. At low energies, the model reduces to the SM, augmented by seesaw-generated neutrino masses, plus the axion, which solves the strong CP problem and accounts for the dark matter in the Universe. The model predicts a minimum value of the tensor-to-scalar ratio r≃0.004, running of the scalar spectral index α≃-7×10^{-4}, the axion mass m_{A}∼100  μeV, and cosmic axion background radiation corresponding to an increase of the effective number of relativistic neutrinos of ∼0.03. It can be probed decisively by the next generation of cosmic microwave background and axion dark matter experiments.

  3. New axion and hidden photon constraints from a solar data global fit

    SciTech Connect

    Vinyoles, N.; Serenelli, A.; Isern, J.; Villante, F.L.; Basu, S.; Redondo, J. E-mail: aldos@ice.csic.es E-mail: sarbani.basu@yale.edu E-mail: isern@ice.csic.es

    2015-10-01

    We present a new statistical analysis that combines helioseismology (sound speed, surface helium and convective radius) and solar neutrino observations (the {sup 8}B and {sup 7}Be fluxes) to place upper limits to the properties of non standard weakly interacting particles. Our analysis includes theoretical and observational errors, accounts for tensions between input parameters of solar models and can be easily extended to include other observational constraints. We present two applications to test the method: the well studied case of axions and axion-like particles and the more novel case of low mass hidden photons. For axions we obtain an upper limit at 3σ for the axion-photon coupling constant of g{sub aγ} < 4.1 · 10{sup −10} GeV{sup −1}. For hidden photons we obtain the most restrictive upper limit available accross a wide range of masses for the product of the kinetic mixing and mass of χ m < 1.8 ⋅ 10{sup −12} eV at 3σ. Both cases improve the previous solar constraints based on the Standard Solar Models showing the power of using a global statistical approach.

  4. On the validity of the perturbative description of axions during inflation

    NASA Astrophysics Data System (ADS)

    Ferreira, Ricardo Z.; Ganc, Jonathan; Noreña, Jorge; Sloth, Martin S.

    2016-04-01

    Axions play a central role in many realizations of large field models of inflation and in recent alternative mechanisms for generating primordial tensor modes in small field models. If these axions couple to gauge fields, the coupling produces a tachyonic instability that leads to an exponential enhancement of the gauge fields, which in turn can decay into observable scalar or tensor curvature perturbations. Thus, a fully self-consistent treatment of axions during inflation is important, and in this work we discuss the perturbative constraints on axions coupled to gauge fields. We show how the recent proposal of generating tensor modes through these alternative mechanisms is in tension with perturbation theory in the in-in formalism. Interestingly, we point out that the constraints are parametrically weaker than one would estimate based on naive power counting of propagators of the gauge field. In the case of non-Abelian gauge fields, we derive new constraints on the size of the gauge coupling, which apply also in certain models of natural large field inflation, such as alignment mechanisms.

  5. Leptogenesis scenarios for natural SUSY with mixed axion-higgsino dark matter

    NASA Astrophysics Data System (ADS)

    Bae, Kyu Jung; Baer, Howard; Serce, Hasan; Zhang, Yi-Fan

    2016-01-01

    Supersymmetric models with radiatively-driven electroweak naturalness require light higgsinos of mass ~ 100-300 GeV . Naturalness in the QCD sector is invoked via the Peccei-Quinn (PQ) axion leading to mixed axion-higgsino dark matter. The SUSY DFSZ axion model provides a solution to the SUSY μ problem and the Little Hierarchy μll m3/2 may emerge as a consequence of a mismatch between PQ and hidden sector mass scales. The traditional gravitino problem is now augmented by the axino and saxion problems, since these latter particles can also contribute to overproduction of WIMPs or dark radiation, or violation of BBN constraints. We compute regions of the TR vs. m3/2 plane allowed by BBN, dark matter and dark radiation constraints for various PQ scale choices fa. These regions are compared to the values needed for thermal leptogenesis, non-thermal leptogenesis, oscillating sneutrino leptogenesis and Affleck-Dine leptogenesis. The latter three are allowed in wide regions of parameter space for PQ scale fa~ 1010-1012 GeV which is also favored by naturalness: fa ~ √μMP/λμ ~ 1010-1012 GeV . These fa values correspond to axion masses somewhat above the projected ADMX search regions.

  6. Topological defects and nano-Hz gravitational waves in aligned axion models

    NASA Astrophysics Data System (ADS)

    Higaki, Tetsutaro; Jeong, Kwang Sik; Kitajima, Naoya; Sekiguchi, Toyokazu; Takahashi, Fuminobu

    2016-08-01

    We study the formation and evolution of topological defects in an aligned axion model with multiple Peccei-Quinn scalars, where the QCD axion is realized by a certain combination of the axions with decay constants much smaller than the conventional Peccei-Quinn breaking scale. When the underlying U(1) symmetries are spontaneously broken, the aligned structure in the axion field space exhibits itself as a complicated string-wall network in the real space. We find that the string-wall network likely survives until the QCD phase transition if the number of the Peccei-Quinn scalars is greater than two. The string-wall system collapses during the QCD phase transition, producing a significant amount of gravitational waves in the nano-Hz range at present. The typical decay constant is constrained to be below O(100) TeV by the pulsar timing observations, and the constraint will be improved by a factor of 2 in the future SKA observations.

  7. Axion-Higgs interplay in the two-Higgs-doublet model

    NASA Astrophysics Data System (ADS)

    Espriu, Domènec; Mescia, Federico; Renau, Albert

    2015-11-01

    The Zhitnitsky and Dine, Fischler and Srednicki (DFSZ) model is a natural extension of the two-Higgs-doublet model containing an additional singlet, endowed with a Peccei-Quinn symmetry, and leading to a physically acceptable axion. In this paper we reexamine this model in the light of some new developments. For generic couplings the model reproduces the minimal Standard Model showing only tiny deviations (extreme decoupling scenario) and all additional degrees of freedom (with the exception of the axion) are very heavy. Recently it has been remarked that the limit where the coupling between the singlet and the two doublets becomes very small is technically natural. Combining this limit with the requirement of exact or approximate custodial symmetry, we may obtain an additional 0+ Higgs at the weak scale, accompanied by relatively light charged and neutral pseudoscalars. The mass spectrum would then resemble that of a generic two-Higgs-doublet model, with naturally adjustable masses in spite of the large scale that the axion introduces. However, the couplings are nongeneric in this model. We use the recent constraints derived from the Higgs-W W coupling together with oblique corrections to constrain the model as much as possible. As an additional result, we work out the nonlinear parametrization of the DFSZ model in the generic case where all scalars except the lightest Higgs and the axion have masses at or beyond the TeV scale.

  8. Unifying Inflation with the Axion, Dark Matter, Baryogenesis, and the Seesaw Mechanism

    NASA Astrophysics Data System (ADS)

    Ballesteros, Guillermo; Redondo, Javier; Ringwald, Andreas; Tamarit, Carlos

    2017-02-01

    A minimal extension of the standard model (SM) with a single new mass scale and providing a complete and consistent picture of particle physics and cosmology up to the Planck scale is presented. We add to the SM three right-handed SM-singlet neutrinos, a new vectorlike color triplet fermion, and a complex SM-singlet scalar σ that stabilizes the Higgs potential and whose vacuum expectation value at ˜1 011 GeV breaks lepton number and a Peccei-Quinn symmetry simultaneously. Primordial inflation is produced by a combination of σ (nonminimally coupled to the scalar curvature) and the SM Higgs boson. Baryogenesis proceeds via thermal leptogenesis. At low energies, the model reduces to the SM, augmented by seesaw-generated neutrino masses, plus the axion, which solves the strong C P problem and accounts for the dark matter in the Universe. The model predicts a minimum value of the tensor-to-scalar ratio r ≃0.004 , running of the scalar spectral index α ≃-7 × 10-4, the axion mass mA˜100 μ eV , and cosmic axion background radiation corresponding to an increase of the effective number of relativistic neutrinos of ˜0.03 . It can be probed decisively by the next generation of cosmic microwave background and axion dark matter experiments.

  9. First results from a microwave cavity axion search at 25 μeV : Overview

    NASA Astrophysics Data System (ADS)

    Brubaker, Benjamin; ADMX-HF Collaboration

    2017-01-01

    The axion is a well-motivated cold dark matter candidate first postulated to explain the absence of CP violation in strong interactions. Dark matter axions may be detected via their resonant conversion into photons in a high- Q microwave cavity permeated by a strong magnetic field. In this talk I will present an overview of a newly operational cavity detector at Yale, which is the first such detector to incorporate a dilution refrigerator and Josephson parametric amplifier and thereby approach quantum-limited noise performance. I will discuss the first results from this experiment, which has excluded axion models with two-photon coupling gaγγ > 2 ×10-14GeV-1 , a factor of = 2 . 3 above the benchmark KSVZ model, over the mass range 23 . 55 μeV axion model band in the 10 μeV mass decade. Supported by NSF Grants PHY-1362305 and PHY-1306729, Heising-Simons Foundation Grant 2014-182, and DOE Grant DE-AC52-07NA27344.

  10. Trap style influences wild pig behavior and trapping success

    USGS Publications Warehouse

    Williams, B.L.; Holtfreter, R.W.; Ditchkoff, S.S.; Grand, J.B.

    2011-01-01

    Despite the efforts of many natural resource professionals, wild pig (Sus scrofa) populations are expanding in many areas of the world. Although many creative techniques for controlling pig populations are being explored, trapping has been and still is themost commonly usedmethod of population control formany public and private land managers. We conducted an observational study to examine the efficiency of 2 frequently used trap styles: a small, portable box-style trap and a larger, semi-permanent, corral-style trap.We used game cameras to examine patterns of trap entry by wild pigs around each style of trap, and we conducted a trapping session to compare trapping success between trap styles. Adult female and juvenile wild pigs entered both styles of trap more readily than did adult males, and adult males seemed particularly averse to entering box traps. Less than 10% of adult male visits to box traps resulted in entries, easily the least percentage of any class at any style of trap. Adult females entered corral traps approximately 2.2 times more often per visit than box traps and re-entered corral traps >2 times more frequently. Juveniles entered and reentered both box and corral traps at similar rates. Overall (all-class) entry-per-visit rates at corral traps (0.71) were nearly double that of box traps (0.37). Subsequent trapping data supported these preliminary entry data; the capture rate for corral traps was >4 times that of box traps. Our data suggest that corral traps are temporally and economically superior to box traps with respect to efficiency; that is, corral traps effectively trap more pigs per trap night at a lower cost per pig than do box traps. ?? 2011 The Wildlife Society.

  11. X-Ray Illumination of the Ejecta of Supernova 1987A

    NASA Technical Reports Server (NTRS)

    Larsson, J.; Fransson, C.; Oestlin, G.; Groeningsson, P.; Jerkstrand, A.; Kozma, C.; Sollerman, J.; Challis, P.; Kirshner, R. P.; Chevalier, R. A.; Heng, K.; McCray, R.; Suntzeff, N. B.; Bouchet, P.; Crotts, A.; Danziger, J.; Dwek, E.; France, K.; Garnavich, P. M.; Lawrence, S. S.; Leibundgut, B.; Lundqvist, P.; Panagia, N.; Pun, C. S. J.; Sonneborn, G.

    2011-01-01

    When a massive star explodes as a supernova, substantial amounts of radioactive elements-primarily Ni-56, Ni-57 and Ti-44 are produced. After the initial from shock heating, the light emitted by the supernova is due to the decay of these elements. However, after decades, the energy powering a supernova remnant comes from the shock interaction between the ejecta and the surrounding medium. The transition to this phase has hitherto not been observed: supernovae occur too infrequently in the Milky Way to provide a young example, and extragalactic supernovae are generally too faint and too small. Here we report observations that show this transition in the supernova SN 1987A in the Large Magellan Cloud. From 1994 to 200l, the ejecta faded owing to radioactive decay of Ti-44 as predicted. Then the flux started to increase, more than doubling by the end of 2009. We show that this increase is the result of heat deposited by X-rays produced as the ejecta interacts with the surrounding material. In time, the X-rays will penetrate farther into the ejects, enabling us to analyse the structure and chemistry of the vanished star.

  12. X-ray illumination of the ejecta of supernova 1987A.

    PubMed

    Larsson, J; Fransson, C; Ostlin, G; Gröningsson, P; Jerkstrand, A; Kozma, C; Sollerman, J; Challis, P; Kirshner, R P; Chevalier, R A; Heng, K; McCray, R; Suntzeff, N B; Bouchet, P; Crotts, A; Danziger, J; Dwek, E; France, K; Garnavich, P M; Lawrence, S S; Leibundgut, B; Lundqvist, P; Panagia, N; Pun, C S J; Smith, N; Sonneborn, G; Wang, L; Wheeler, J C

    2011-06-08

    When a massive star explodes as a supernova, substantial amounts of radioactive elements--primarily (56)Ni, (57)Ni and (44)Ti--are produced. After the initial flash of light from shock heating, the fading light emitted by the supernova is due to the decay of these elements. However, after decades, the energy powering a supernova remnant comes from the shock interaction between the ejecta and the surrounding medium. The transition to this phase has hitherto not been observed: supernovae occur too infrequently in the Milky Way to provide a young example, and extragalactic supernovae are generally too faint and too small. Here we report observations that show this transition in the supernova SN 1987A in the Large Magellanic Cloud. From 1994 to 2001, the ejecta faded owing to radioactive decay of (44)Ti as predicted. Then the flux started to increase, more than doubling by the end of 2009. We show that this increase is the result of heat deposited by X-rays produced as the ejecta interacts with the surrounding material. In time, the X-rays will penetrate farther into the ejecta, enabling us to analyse the structure and chemistry of the vanished star.

  13. Mystery spot in supernova 1987A - Reflection or fluorescence by an interstellar cloud?

    NASA Technical Reports Server (NTRS)

    Felten, James E.; Dwek, Eli; Viegas-Aldrovandi, Sueli M.

    1989-01-01

    This paper explores fluorescence and reflection models of the companion to SN 1987A obseved by speckle interferometry, recalling a 1901 precedent. The apparent small angular size of the companion is a severe constraint. A fluorescence model cannot reach the observed brightness unless the ultraviolet burst from the supernova contained as many as 2 x 10 to the 58th ionizing photons. This is about 25 times stronger than generous current models. Even then, the expected line ratios and widths do not fit the observations. The absence of narrow H-alpha and H-beta lines in the supernova spectrum, the ratio of fluxes of the companion in H-alpha and forbidden N II line filters, the invisibility of the companion at 4861 (H-beta), and its detection at 5330 fail to agree with theory. A dust-reflection model is more promising, and the color can be reddened by the evaporation of small grains, but the model still falls more than about 1 mag short in brightness. Furthermore, a dust reflection should have increased in relative brightness in May-June 1987, rather than disappearing as the mystery spot did. If all the observations are correct, neither model is likely to work.

  14. Production and Collimation of Astrophysical Jets or Accretion: M87 and SN 1987A Scenarios

    NASA Astrophysics Data System (ADS)

    Bernal, C. G.; Page, D.

    2006-06-01

    Jets and outflows of various degrees of collimation and energetics are an ubiquitous phenomenon in astrophysics. They are present at all length scales, ranging from those found in young stellar objects (YSOs, Reipurth & Bally1991) and the galactic microquasars (Mirabel & Rodriguez 1994, Fender & Belloni 2004), to kpc-scale relativistic jets in AGNs. In many cases these appear to be symmetrical, with two oppositely directed lines of flow, and almost always they seem to be directly connected with accretion onto a central object at the base of the collimated outflow. The energy in the outflow itself ultimately comes from the gravitational potential well created by the central object. The structure and evolution of jet-like structures under a variety of physical conditions is a problem that generally requires numerical modelling. However, in certain cases valuable insight can be gained from purely hydrodynamical analytical solutions which exhibit outflows (or accretion) of varying characteristics. We show here several solutions of this type, applicable to various accretion scenarios. Assuming that our solutions are Jets, we applied the model to M87 scenario and to SN1987A scenario, assuming that our solutions are like accretion.

  15. Analysis of the SN 1987A neutrinos with a flexible spectral shape

    SciTech Connect

    Mirizzi, Alessandro; Raffelt, Georg G.

    2005-09-15

    We analyze the neutrino events from the supernova (SN) 1987A detected by the Kamiokande-II (KII) and Irvine-Michigan-Brookhaven (IMB) experiments. For the time-integrated flux we assume a quasithermal spectrum of the form (E/E{sub 0}){sup {alpha}}e{sup -({alpha}{sup +1})E/E{sub 0}} where {alpha} plays the role of a spectral index. This simple representation not only allows one to fit the total energy E{sub tot} emitted in {nu}{sub e} and the average energy , but also accommodates a wide range of shapes, notably antipinched spectra that are broader than a thermal distribution. We find that the pile-up of low-energy events near threshold in KII forces the best-fit value for {alpha} to the lowest value of any assumed prior range. This applies to the KII events alone as well as to a common analysis of the two data sets. The preference of the data for an 'unphysical' spectral shape implies that one can extract meaningful values for and E{sub tot} only if one fixes a prior value for {alpha}. The tension between the KII and IMB data sets and theoretical expectations for is not resolved by an antipinched spectrum.

  16. On the Possibility of Dust Condensation in the Ejecta of Supernova 1987a

    NASA Astrophysics Data System (ADS)

    Gehrz, R. D.; Ney, E. P.

    1987-10-01

    We suggest that supernova 1987a may condense dust of substantial visual optical thickness as do many novae. The dust will act as a calorimeter of the photon luminosity of any central engine that is dominant at the time of dust formation. Observations of novae suggest that dust formation may occur when the expanding ejecta reach a temperature of 1000 K. The early luminosity of the supernova may be dominated by radioactivity that is unrelated to the central engine that determines the energy balance for the long-term development of the supernova. We discuss the possibility that a constant luminosity central power source such as a pulsar dominates the luminosity of the supernova ejecta by the time that dust can condense and argue that, if a shell mass of more than a few tenths of one solar mass was ejected, emission from dust may be observable in the thermal infrared spectral region. Maximum dust optical depth should occur by late 1987 or early 1988. If the dust becomes optically thick, the visual light from the supernova may drop precipitously. The characteristics of an optically thick dust shell as a calorimeter of the luminosity of the central engine are discussed and are related to previous observations of dust formation in type II supernovae. It is suggested that dust of several chemical compositions may form at different epochs.

  17. Explosive nucleosynthesis in SN 1987A. II - Composition, radioactivities, and the neutron star mass

    NASA Technical Reports Server (NTRS)

    Thielemann, Friedrich-Karl; Hashimoto, Masa-Aki; Nomoto, Ken'ichi

    1990-01-01

    The 20 solar mass model of Nomoto and Hashimoto (1988) is utilized with a 6 solar mass. He core is used to perform explosive nucleosynthesis calculations. The employed explosion energy of 10 to the 51st ergs lies within the uncertainty range inferred from the bolometric light curve. The nucleosynthesis processes and their burning products are discussed in detail. The results are compared with abundances from IR observations of SN 1987A and the average nucleosynthesis expected for Type II supernovae in Galactic chemical evolution. The abundances of long-lived radioactive nuclei and their importance for the late light curve and gamma-ray observations are predicted. The position of the mass cut between the neutron star and the ejecta is deduced from the total amount of ejected Ni-56. This requires a neutron star with a baryonic mass of 1.6 + or - 0.045 solar mass, which corresponds to a gravitational mass of 1.43 + or - 0.05 solar mass after subtracting the binding energy of a nonrotating neutron star.

  18. INFRARED CONTINUUM AND LINE EVOLUTION OF THE EQUATORIAL RING AROUND SN 1987A

    SciTech Connect

    Arendt, Richard G.; Frank, Kari A.; Gehrz, Robert D.; Woodward, Charles E.; Park, Sangwook

    2016-03-15

    Spitzer observations of SN 1987A have now spanned more than a decade. Since day ∼4000, mid-infrared (mid-IR) emission has been dominated by that from shock-heated dust in the equatorial ring (ER). From 6000 to 8000 days after the explosion, Spitzer observations included broadband photometry at 3.6–24 μm, and low and moderate resolution spectroscopy at 5–35 μm. Here we present later Spitzer observations, through day 10,377, which include only the broadband measurements at 3.6 and 4.5 μm. These data show that the 3.6 and 4.5 μm brightness has clearly begun to fade after day ∼8500, and no longer tracks the X-ray emission as well as it did at earlier epochs. This can be explained by the destruction of the dust in the ER on timescales shorter than the cooling time for the shocked gas. We find that the evolution of the late time IR emission is also similar to the now fading optical emission. We provide the complete record of the IR emission lines, as seen by Spitzer prior to day 8000. The past evolution of the gas as seen by the IR emission lines seems largely consistent with the optical emission, although the IR [Fe ii] and [Si ii] lines show different, peculiar velocity structures.

  19. RE-EXAMINATION OF THE EXPECTED GAMMA-RAY EMISSION OF SUPERNOVA REMNANT SN 1987A

    SciTech Connect

    Berezhko, E. G.; Ksenofontov, L. T.; Völk, H. J.

    2015-09-01

    A nonlinear kinetic theory, combining cosmic-ray (CR) acceleration in supernova remnants (SNRs) with their gas dynamics, is used to re-examine the nonthermal properties of the remnant of SN 1987A for an extended evolutionary period of 5–50 year. This spherically symmetric model is approximately applied to the different features of the SNR, consisting of (i) a blue supergiant wind and bubble, and (ii) of the swept-up red supergiant (RSG) wind structures in the form of an H ii region, an equatorial ring (ER), and an hourglass region. The RSG wind involves a mass loss rate that decreases significantly with elevation above and below the equatorial plane. The model adapts recent three-dimensional hydrodynamical simulations by Potter et al. in 2014 that use a significantlysmaller ionized mass of the ER than assumed in the earlier studies by the present authors. The SNR shock recently swept up the ER, which is the densest region in the immediate circumstellar environment. Therefore, the expected gamma-ray energy flux density at TeV energies in the current epoch has already reached its maximal value of ∼10{sup −13} erg cm{sup −2} s{sup −1}. This flux should decrease by a factor of about two over the next 10 years.

  20. Infrared Continuum and Line Evolution of the Equatorial Ring around SN 1987A

    NASA Astrophysics Data System (ADS)

    Arendt, Richard G.; Dwek, Eli; Bouchet, Patrice; Danziger, I. John; Frank, Kari A.; Gehrz, Robert D.; Park, Sangwook; Woodward, Charles E.

    2016-03-01

    Spitzer observations of SN 1987A have now spanned more than a decade. Since day ˜4000, mid-infrared (mid-IR) emission has been dominated by that from shock-heated dust in the equatorial ring (ER). From 6000 to 8000 days after the explosion, Spitzer observations included broadband photometry at 3.6-24 μm, and low and moderate resolution spectroscopy at 5-35 μm. Here we present later Spitzer observations, through day 10,377, which include only the broadband measurements at 3.6 and 4.5 μm. These data show that the 3.6 and 4.5 μm brightness has clearly begun to fade after day ˜8500, and no longer tracks the X-ray emission as well as it did at earlier epochs. This can be explained by the destruction of the dust in the ER on timescales shorter than the cooling time for the shocked gas. We find that the evolution of the late time IR emission is also similar to the now fading optical emission. We provide the complete record of the IR emission lines, as seen by Spitzer prior to day 8000. The past evolution of the gas as seen by the IR emission lines seems largely consistent with the optical emission, although the IR [Fe ii] and [Si ii] lines show different, peculiar velocity structures.

  1. Infrared Continuum and Line Evolution of the Equatorial Ring Around SN 1987A

    NASA Technical Reports Server (NTRS)

    Arendt, Richard G.; Dwek, Eli; Bouchet, Patrice; Danziger, I. John; Frank, Kari A.; Gehrz, Robert D.; Park, Sangwook; Woodward, Charles E.

    2017-01-01

    Spitzer observations of SN 1987A have now spanned more than a decade. Since day approximately 4000, mid-infrared (mid-IR) emission has been dominated by that from shock-heated dust in the equatorial ring (ER). From 6000 to 8000 days after the explosion, Spitzer observations included broadband photometry at 3.6-24 micrometer, and low and moderate resolution spectroscopy at 5-35 micrometer. Here we present later Spitzer observations, through day 10,377, which include only the broadband measurements at 3.6 and 4.5 micrometer. These data show that the 3.6 and 4.5 micrometer brightness has clearly begun to fade after day approximately 8500, and no longer tracks the X-ray emission as well as it did at earlier epochs. This can be explained by the destruction of the dust in the ER on timescales shorter than the cooling time for the shocked gas. We find that the evolution of the late time IR emission is also similar to the now fading optical emission. We provide the complete record of the IR emission lines, as seen by Spitzer prior to day 8000. The past evolution of the gas as seen by the IR emission lines seems largely consistent with the optical emission, although the IR [Fe(II)]and [Si(II)]lines show different, peculiar velocity structures.

  2. A 2.14 ms candidate optical pulsar in SN1987A: Ten years after

    SciTech Connect

    Middleditch, J.; Kristian, J.A.; Kunkel, W.E.; Hill, K.M.; Watson, R.D.

    1997-09-01

    We have monitored Supernova 1987A in optical/near-infrared bands from a few weeks following its birth until the present time in order to search for a pulsar remnant. We have found an apparent pattern of emission near the frequency of 467.5 Hz - a 2.14 ms pulsar candidate, first detected in data taken on the remnant at the Las Campanas Observatory (LCO) 2.5-m Dupont telescope during 14-16 Feb. 1992 UT. We detected further signals near the 2.14 ms period on numerous occasions over the next four years in data taken with a variety of telescopes, data systems and detectors, at a number of ground- and space-based observatories. The sequence of detections of this signal from Feb. `92 through August `93, prior to its apparent subsequent fading, is highly improbable (< 10{sup -10} for any noise source). We also find evidence for modulation of the 2.14 ms period with a {approx}1,000 s period which, when taken with the high spindown of the source (2-3 x 10{sup -10} Hz/s), is consistent with precession and spindown via gravitational radiation of a neutron star with a non- axisymmetric oblateness of {approx}10{sup -6}, and an implied gravitational luminosity exceeding that of the Crab Nebula pulsar by an order of magnitude.

  3. Re-examination of the Expected Gamma-Ray Emission of Supernova Remnant SN 1987A

    NASA Astrophysics Data System (ADS)

    Berezhko, E. G.; Ksenofontov, L. T.; Völk, H. J.

    2015-09-01

    A nonlinear kinetic theory, combining cosmic-ray (CR) acceleration in supernova remnants (SNRs) with their gas dynamics, is used to re-examine the nonthermal properties of the remnant of SN 1987A for an extended evolutionary period of 5-50 year. This spherically symmetric model is approximately applied to the different features of the SNR, consisting of (i) a blue supergiant wind and bubble, and (ii) of the swept-up red supergiant (RSG) wind structures in the form of an H ii region, an equatorial ring (ER), and an hourglass region. The RSG wind involves a mass loss rate that decreases significantly with elevation above and below the equatorial plane. The model adapts recent three-dimensional hydrodynamical simulations by Potter et al. in 2014 that use a significantlysmaller ionized mass of the ER than assumed in the earlier studies by the present authors. The SNR shock recently swept up the ER, which is the densest region in the immediate circumstellar environment. Therefore, the expected gamma-ray energy flux density at TeV energies in the current epoch has already reached its maximal value of ˜10-13 erg cm-2 s-1. This flux should decrease by a factor of about two over the next 10 years.

  4. Far-infrared spectrophotometry of SN 1987A - Days 265 and 267

    NASA Technical Reports Server (NTRS)

    Moseley, S. H.; Dwek, E.; Silverberg, R. F.; Glaccum, W.; Graham, J. R.; Loewenstein, R. F.

    1989-01-01

    The paper presents 16-66-micron spectra of SN 1987A taken on days 266 and 268 after core collapse. The spectrum consists of a nearly flat continuum, strong emission lines of hydrogen, and fine-structure lines of Fe II, Fe III, Co II, S I, and possibly Fe I, Ni II, and S III. From the relative strength of three lines which arise from transitions within the ground and excited states of Fe II, the temperature and a lower limit on the density of the line-emitting region are derived. From the line strengths, the abundances of Fe and S I, the end products of explosive nucleosynthesis in the supernova are estimated. An upper limit is also set to the amount of Co II remaining in the mantle. The low measured mass of Fe suggests that the ejecta are clumpy. The flat continuum is most likely free-free emission from the expanding supernova ejecta. About 35 percent of this emission arises from the ionized metals in the mantle; the rest arises from ionized hydrogen. At the time of these observations, there is no evidence for any emission from dust that may have formed in the supernova ejecta or from preexisting dust in the surrounding medium.

  5. On the possibility of dust condensation in the ejecta of supernova 1987a

    PubMed Central

    Gehrz, R. D.; Ney, E. P.

    1987-01-01

    We suggest that supernova 1987a may condense dust of substantial visual optical thickness as do many novae. The dust will act as a calorimeter of the photon luminosity of any central engine that is dominant at the time of dust formation. Observations of novae suggest that dust formation may occur when the expanding ejecta reach a temperature of 1000 K. The early luminosity of the supernova may be dominated by radioactivity that is unrelated to the central engine that determines the energy balance for the long-term development of the supernova. We discuss the possibility that a constant luminosity central power source such as a pulsar dominates the luminosity of the supernova ejecta by the time that dust can condense and argue that, if a shell mass of more than a few tenths of one solar mass was ejected, emission from dust may be observable in the thermal infrared spectral region. Maximum dust optical depth should occur by late 1987 or early 1988. If the dust becomes optically thick, the visual light from the supernova may drop precipitously. The characteristics of an optically thick dust shell as a calorimeter of the luminosity of the central engine are discussed and are related to previous observations of dust formation in type II supernovae. It is suggested that dust of several chemical compositions may form at different epochs. PMID:16593876

  6. Far-infrared spectrophotometry of SN 1987A - Days 265 and 267

    SciTech Connect

    Moseley, S.H.; Dwek, E.; Silverberg, R.F.; Glaccum, W.; Graham, J.R.; Loewenstein, R.F. Applied Research Corp., Landover, MD California Institute of Technology, Pasadena Yerkes Observatory, Williams Bay, WI )

    1989-12-01

    The paper presents 16-66-micron spectra of SN 1987A taken on days 266 and 268 after core collapse. The spectrum consists of a nearly flat continuum, strong emission lines of hydrogen, and fine-structure lines of Fe II, Fe III, Co II, S I, and possibly Fe I, Ni II, and S III. From the relative strength of three lines which arise from transitions within the ground and excited states of Fe II, the temperature and a lower limit on the density of the line-emitting region are derived. From the line strengths, the abundances of Fe and S I, the end products of explosive nucleosynthesis in the supernova are estimated. An upper limit is also set to the amount of Co II remaining in the mantle. The low measured mass of Fe suggests that the ejecta are clumpy. The flat continuum is most likely free-free emission from the expanding supernova ejecta. About 35 percent of this emission arises from the ionized metals in the mantle; the rest arises from ionized hydrogen. At the time of these observations, there is no evidence for any emission from dust that may have formed in the supernova ejecta or from preexisting dust in the surrounding medium. 53 refs.

  7. Neutrino properties from SN 1987A and from future observations of GSC.

    NASA Astrophysics Data System (ADS)

    Dar, A.

    The early neutrino signal reported by the Mont Blanc group on Feb 23, 1987 was not produced by a neutrino burst from SN 1987A. The second neutrino burst that was reported by the KAMIOKANDE II, the IMB and the Baksan groups is consistent with the general theoretical picture of supernovae explosions, but it also has unexpected features. Analysis of the neutrino burst yields new limits on the lifetime, mass, mixing, and electric charge of the νe, and new limits on the magnetic moment and the radiative lifetime of light neutrinos. These limits imply that neither decay, nor mixing, nor electric charge, nor magnetic moment of the νe are responsible for the solar neutrino problem. Similar limits on the properties of the νμ and the ντ require the observation of a gravitational stellar collapse in the Galaxy with more advanced neutrino telescopes which are under construction. Such limits, when obtained, will resolve the question whether relic neutrinos from the big bang can close the universe.

  8. Ecological and evolutionary traps

    USGS Publications Warehouse

    Schlaepfer, Martin A.; Runge, M.C.; Sherman, P.W.

    2002-01-01

    Organisms often rely on environmental cues to make behavioral and life-history decisions. However, in environments that have been altered suddenly by humans, formerly reliable cues might no longer be associated with adaptive outcomes. In such cases, organisms can become 'trapped' by their evolutionary responses to the cues and experience reduced survival or reproduction. Ecological traps occur when organisms make poor habitat choices based on cues that correlated formerly with habitat quality. Ecological traps are part of a broader phenomenon, evolutionary traps, involving a dissociation between cues that organisms use to make any behavioral or life-history decision and outcomes normally associated with that decision. A trap can lead to extinction if a population falls below a critical size threshold before adaptation to the novel environment occurs. Conservation and management protocols must be designed in light of, rather than in spite of, the behavioral mechanisms and evolutionary history of populations and species to avoid 'trapping' them.

  9. Microfabricated ion trap array

    DOEpatents

    Blain, Matthew G.; Fleming, James G.

    2006-12-26

    A microfabricated ion trap array, comprising a plurality of ion traps having an inner radius of order one micron, can be fabricated using surface micromachining techniques and materials known to the integrated circuits manufacturing and microelectromechanical systems industries. Micromachining methods enable batch fabrication, reduced manufacturing costs, dimensional and positional precision, and monolithic integration of massive arrays of ion traps with microscale ion generation and detection devices. Massive arraying enables the microscale ion traps to retain the resolution, sensitivity, and mass range advantages necessary for high chemical selectivity. The reduced electrode voltage enables integration of the microfabricated ion trap array with on-chip circuit-based rf operation and detection electronics (i.e., cell phone electronics). Therefore, the full performance advantages of the microfabricated ion trap array can be realized in truly field portable, handheld microanalysis systems.

  10. Neutral atom traps.

    SciTech Connect

    Pack, Michael Vern

    2008-12-01

    This report describes progress in designing a neutral atom trap capable of trapping sub millikelvin atom in a magnetic trap and shuttling the atoms across the atom chip from a collection area to an optical cavity. The numerical simulation and atom chip design are discussed. Also, discussed are preliminary calculations of quantum noise sources in Kerr nonlinear optics measurements based on electromagnetically induced transparency. These types of measurements may be important for quantum nondemolition measurements at the few photon limit.

  11. Evaluating steam trap performance

    SciTech Connect

    Fuller, N.Y.

    1985-08-08

    This paper presents a method for evaluating the performance level of steam traps by preparing an economic analysis of several types to determine the equivalent uniform annual cost. A series of tests on steam traps supplied by six manufacturers provided data for determining the relative efficiencies of each unit. The comparison was made using a program developed for the Texas Instruments T1-59 programmable calculator to evaluate overall steam trap economics.

  12. Cosmological magnetic fields as string dynamo seeds and axion fields in torsioned spacetime

    SciTech Connect

    De Andrade, L.C. Garcia

    2014-08-01

    In this paper two examples of the generation cosmological magnetic fields (CMF) are given. The first is the string dynamo seed cosmological magnetic field estimated as B{sub seed}∼10{sup -24} Gauss from a static spin polarised cylinder in Einstein-Cartan-Maxwell spacetime. The string dynamo seeds from a static spin polarised cylinder is given by B∼σ{sup 2}R{sup 2} where σ is the spin-torsion density while R is the string radius. The B-field value above is able to seed galactic dynamo. In the BBN the magnetic fields around 10{sup 12} Gauss give rise to a string radius as small as 10{sup 17}l{sub P} where l{sub P} is the Planck length. The second is the CMF from axionic torsion field which is given by B{sub seed}∼10{sup -27} Gauss which is stronger than the primordial magnetic field B{sub BICEP2}∼10{sup -30} Gauss from the BICEP2 recent experiment on primordial gravitational waves and cosmological inflation to axionic torsion. The interaction Lagrangean between axionic torsion scalar φ and magnetic fields used in this last example is given by f{sup 2}(φ)F{sub μν}F{sup μν}. A similar lagrangean has been used by K. Bamba et al. [JCAP 10 (2012) 058] so generate magnetic fields without dynamo action. Since axionic torsion can be associated with axionic domain walls both examples discussed here could be consider as topological defects examples of the generation of primordial magnetic fields in universes endowed with spacetime torsion.

  13. Steam Trap Users’ Guide,

    DTIC Science & Technology

    1985-04-01

    traps do not work well in a system where the condensate can back against the operating mechanism of the trap and open it when there is no condensate flow ...a flow through the trap. h. Float and thermostatic traps are widely used in low pressure heating 0 systems . If they are properly installed below the... system or trap problem. * Blowdown strainer. SOUND CHECK HOT TRAPS: • Listen to trap operate. * Check for continuous flow : - low pitch condensate flow

  14. A proposed search for dark-matter axions in the 0.6-16 micro-eV range

    NASA Technical Reports Server (NTRS)

    Vanbibber, Karl; Sikivie, P.; Sullivan, N. S.; Tanner, D. B.; Turner, Michael S.; Moltz, D. M.

    1991-01-01

    A proposed experiment is described to search for dark matter axions in the mass range 0.6 to 16 micro-eV. The method is based on the Primakoff conversion of axions into monochromatic microwave photons inside a tunable microwave cavity in a large volume high field magnet, as described by Sikivie. This proposal capitalizes on the availability of two Axicell magnets from the decommissioned Mirror Fusion Test Facility (MFTF-B) fusion machine at LLNL. Assuming a local dark matter density in axions of rho = 0.3 GeV/cu cm, the axion would be found or ruled out at the 97 pct. c.l. in the above mass range in 48 months.

  15. SN 1987A after 18 Years: Mid-Infrared GEMINI and SPITZER Observations of the Remnant

    NASA Technical Reports Server (NTRS)

    Bouchet, Patrice; Dwek, Eli; Danziger, John; Arendt, Richard G.; DeBuizer, James M.; Park, Sangwook; Suntzeff, Nicholas B.; Kirshner, Robert P.; Challis, Peter

    2007-01-01

    We present high resolution 11.7 and 18.3 micron mid-IR images of SN 1987A obtained on day 6526 since the explosion with the Thermal-Region Camera and Spectrograph (T-ReCS) attached to the Gemini South 8m telescope. The 11.7 micron flux has increased significantly since our last observations on day 6067. The images clearly show that all the emission arises from the equatorial ring (ER). Nearly contemporaneous spectra obtained on day 6184 with the MIPS at 24 micron, on day 6130 with the IRAC in 3.6- 8 micron region, and on day 6190 with the IRS in the 12-37 micron instruments on board the Spitzer Space Telescope's show that the emission consists of thermal emission from silicate dust that condensed out in the red giant wind of the progenitor star. The dust temperature is 1662(sup +18) (sub -12) K, and the emitting dust mass is (2.6(sup +2.0 (sub -1.4)) x 10 (exp -6) M(solar). Lines of [Ne II] 12.82 micron and [Ne III] 15.56 pm are clearly present in the Spitzer spectrum, as well as a weak [Si II] 3 34.8 micron line. We also detect two lines near 26 micron which we tentatively ascribe to [Fe II] 25.99 pm and [0 IV] 25.91 micron. Comparison of the mid-IR Gemini 11.7 micron image with X-ray images obtained by Chandra, UV-optical images obtained by HST, and radio synchrotron images obtained by the ATCA show generally good correlation of the images across all wavelengths. Because of the limited resolution of the mid-IR images we cannot uniquely determine the location. or heating mechanism of the dust giving rise to the emission. The dust could be collisionally heated by the X-ray emitting plasma, providing a unique diagnostic of plasma conditions. Alternatively, the dust could be radiatively heated in the dense UV-optical knots that are overrun by the advancing supernova blast wave. In either case the dust-to-gas mass ratio in the circumstellar medium around the supernova is significantly lower than that in the general interstellar medium of the LMC, suggesting either a

  16. q -deformed statistics and the role of light fermionic dark matter in SN1987A cooling

    NASA Astrophysics Data System (ADS)

    Guha, Atanu; J, Selvaganapathy; Das, Prasanta Kumar

    2017-01-01

    The light dark matter (≃1 - 30 MeV ) particles pair produced in electron-positron annihilation e-e+→ γ χ χ ¯ inside the supernova core can take away the energy released in the supernova SN1987A explosion. Working within the formalism of q -deformed statistics [with the average value of the supernovae core temperature (fluctuating) being TS N=30 MeV ] and using the Raffelt's criterion on the emissivity for any new channel ɛ ˙ (e+e-→χ χ ¯ )≤1 019 erg g-1 s-1 , we find that as the deformation parameter q changes from 1.0 (undeformed scenario) to 1.1 (deformed scenario), the lower bound on the scale Λ of the dark matter effective theory varies from 3.3 ×1 06 TeV to 3.2 ×1 07 TeV for a dark matter fermion of mass mχ=30 MeV . Using the optical depth criteria on the free streaming of the dark matter fermion, we find the lower bound on Λ ˜1 08 TeV for mχ=30 MeV . In a scenario, where the dark matter fermions are pair produced in the outermost sector of the supernova core [with radius 0.9 Rc≤r ≤Rc , Rc(=10 km ) being the supernova core radius or the radius of protoneutron star], we find that the bound on Λ (˜3 ×1 07 TeV ) obtained from SN cooling criteria (Raffelt's criteria) is comparable with the bound obtained from free streaming (optical depth criterion) for light fermion dark matter of mass mχ=10 - 30 MeV .

  17. Tsallis Statistics and the Role of a Stabilized Radion in the Supernovae SN1987A Cooling

    NASA Astrophysics Data System (ADS)

    Das, Prasanta Kumar; Selvaganapathy, J.; Sharma, Chandradew; Jha, Tarun Kumar; Kumar, V. Sunil

    2013-11-01

    The radion in the two-brane Randall-Sundrum model is required to stabilize the size of the fifth (extra) spatial dimension. It can be copiously produced inside the supernova core due to electron-positron annihilation (e+e-→ϕ), plasmon-plasmon annihilation (γP+γP→ϕ) and nucleon-nucleon bremsstrahlung and can take away the energy released in SN1987A explosion. Working within the q-deformed statistics (Tsallis statistics) and using the "Raffelt criterion" on the supernovae cooling rate ˙ {ǎrepsilon}<= 1019 ergs g-1 s-1, we find that in Case I (cooling due to e+e-→ϕ channel): for q = 1.22, as the radion mass mϕ changes from 20 GeV to 150 GeV, the lower bound <ϕ> changes from 7 TeV to 1.5 TeV and in Case II (cooling due to γP+γP→ϕ channel): for q = 1.11, as mϕ ranges from 20 GeV to 150 GeV, the lower bound <ϕ> changes from 201 TeV to 3.3 TeV. We investigate the dependence of <ϕ> on q and found that in Case I: mϕ = 50(100) GeV, <ϕ> changes from 0.5(0.2) TeV (for q = 1.18) to 5.5(4.8) TeV (for q = 1.30) and in Case II: for mϕ = 50(100) GeV, <ϕ> changes from 0.8( 0.1) TeV (for q = 1.09) to 569(216) TeV (for q = 1.13). We also verified that the normal Fermi-Dirac and Bose-Einstein statistics get recovered from the Tsallis statistics in the q→1 limit.

  18. Multi-dimensional simulations of the expanding supernova remnant of SN 1987A

    SciTech Connect

    Potter, T. M.; Staveley-Smith, L.; Reville, B.; Ng, C.-Y.; Bicknell, G. V.; Sutherland, R. S.; Wagner, A. Y.

    2014-10-20

    The expanding remnant from SN 1987A is an excellent laboratory for investigating the physics of supernovae explosions. There is still a large number of outstanding questions, such as the reason for the asymmetric radio morphology, the structure of the pre-supernova environment, and the efficiency of particle acceleration at the supernova shock. We explore these questions using three-dimensional simulations of the expanding remnant between days 820 and 10,000 after the supernova. We combine a hydrodynamical simulation with semi-analytic treatments of diffusive shock acceleration and magnetic field amplification to derive radio emission as part of an inverse problem. Simulations show that an asymmetric explosion, combined with magnetic field amplification at the expanding shock, is able to replicate the persistent one-sided radio morphology of the remnant. We use an asymmetric Truelove and McKee progenitor with an envelope mass of 10 M {sub ☉} and an energy of 1.5 × 10{sup 44} J. A termination shock in the progenitor's stellar wind at a distance of 0.''43-0.''51 provides a good fit to the turn on of radio emission around day 1200. For the H II region, a minimum distance of 0.''63 ± 0.''01 and maximum particle number density of (7.11 ± 1.78) × 10{sup 7} m{sup –3} produces a good fit to the evolving average radius and velocity of the expanding shocks from day 2000 to day 7000 after explosion. The model predicts a noticeable reduction, and possibly a temporary reversal, in the asymmetric radio morphology of the remnant after day 7000, when the forward shock left the eastern lobe of the equatorial ring.

  19. Spectral and morphological analysis of the remnant of supernova 1987A with ALMA and ATCA

    SciTech Connect

    Zanardo, Giovanna; Staveley-Smith, Lister; Indebetouw, Remy; Chevalier, Roger A.; Matsuura, Mikako; Barlow, Michael J.; Gaensler, Bryan M.; Fransson, Claes; Lundqvist, Peter; Manchester, Richard N.; Baes, Maarten; Kamenetzky, Julia R.; Lakićević, Maša; Marcaide, Jon M.; Meixner, Margaret; Ng, C.-Y.; Park, Sangwook; and others

    2014-12-01

    We present a comprehensive spectral and morphological analysis of the remnant of supernova (SN) 1987A with the Australia Telescope Compact Array (ATCA) and the Atacama Large Millimeter/submillimeter Array (ALMA). The non-thermal and thermal components of the radio emission are investigated in images from 94 to 672 GHz (λ 3.2 mm to 450 μm), with the assistance of a high-resolution 44 GHz synchrotron template from the ATCA, and a dust template from ALMA observations at 672 GHz. An analysis of the emission distribution over the equatorial ring in images from 44 to 345 GHz highlights a gradual decrease of the east-to-west asymmetry ratio with frequency. We attribute this to the shorter synchrotron lifetime at high frequencies. Across the transition from radio to far infrared, both the synchrotron/dust-subtracted images and the spectral energy distribution (SED) suggest additional emission beside the main synchrotron component (S {sub ν}∝ν{sup –0.73}) and the thermal component originating from dust grains at T ∼ 22 K. This excess could be due to free-free flux or emission from grains of colder dust. However, a second flat-spectrum synchrotron component appears to better fit the SED, implying that the emission could be attributed to a pulsar wind nebula (PWN). The residual emission is mainly localized west of the SN site, as the spectral analysis yields –0.4 ≲ α ≲ –0.1 across the western regions, with α ∼ 0 around the central region. If there is a PWN in the remnant interior, these data suggest that the pulsar may be offset westward from the SN position.

  20. Multi-dimensional Simulations of the Expanding Supernova Remnant of SN 1987A

    NASA Astrophysics Data System (ADS)

    Potter, T. M.; Staveley-Smith, L.; Reville, B.; Ng, C.-Y.; Bicknell, G. V.; Sutherland, R. S.; Wagner, A. Y.

    2014-10-01

    The expanding remnant from SN 1987A is an excellent laboratory for investigating the physics of supernovae explosions. There is still a large number of outstanding questions, such as the reason for the asymmetric radio morphology, the structure of the pre-supernova environment, and the efficiency of particle acceleration at the supernova shock. We explore these questions using three-dimensional simulations of the expanding remnant between days 820 and 10,000 after the supernova. We combine a hydrodynamical simulation with semi-analytic treatments of diffusive shock acceleration and magnetic field amplification to derive radio emission as part of an inverse problem. Simulations show that an asymmetric explosion, combined with magnetic field amplification at the expanding shock, is able to replicate the persistent one-sided radio morphology of the remnant. We use an asymmetric Truelove & McKee progenitor with an envelope mass of 10 M ⊙ and an energy of 1.5 × 1044 J. A termination shock in the progenitor's stellar wind at a distance of 0.''43-0.''51 provides a good fit to the turn on of radio emission around day 1200. For the H II region, a minimum distance of 0.''63 ± 0.''01 and maximum particle number density of (7.11 ± 1.78) × 107 m-3 produces a good fit to the evolving average radius and velocity of the expanding shocks from day 2000 to day 7000 after explosion. The model predicts a noticeable reduction, and possibly a temporary reversal, in the asymmetric radio morphology of the remnant after day 7000, when the forward shock left the eastern lobe of the equatorial ring.

  1. The Evolution of Dust Mass in the Ejecta of SN1987A

    NASA Astrophysics Data System (ADS)

    Dwek, Eli; Arendt, Richard G.

    2015-09-01

    We present a new analysis of the infrared (IR) emission from the ejecta of SN 1987A covering days 615, 775, 1144, 8515, and 9090 after the explosion. We show that the observations are consistent with the rapid formation of about 0.4 {M}⊙ of dust, consisting of mostly silicates (MgSiO3), near day 615, and evolving to about 0.45 {M}⊙ of composite dust grains consisting of ˜0.4 {M}⊙ of silicates and ˜0.05 {M}⊙ of amorphous carbon after day ˜8500. The proposed scenario challenges previous claims that dust in supernova (SN) ejecta is predominantly carbon, and that it grew from an initial mass of ˜10-3 {M}⊙ , to over 0.5 {M}⊙ by cold accretion. It alleviates several problems with previous interpretations of the data: (1) it reconciles the abundances of silicon, magnesium, and carbon with the upper limits imposed by nucleosynthesis calculations, (2) it eliminates the requirement that most of the dust observed around day 9000 grew by cold accretion onto the ˜10-3 {M}⊙ of dust previously inferred for days 615 and 775 after the explosion, and (3) establishes the dominance of silicate over carbon dust in the SN ejecta. At early epochs, the IR luminosity of the dust is powered by the radioactive decay of 56Co, and at late times by at least (1.3-1.6) × 10-4 {M}⊙ of 44Ti.

  2. EVOLUTION OF THE RADIO REMNANT OF SUPERNOVA 1987A: MORPHOLOGICAL CHANGES FROM DAY 7000

    SciTech Connect

    Ng, C.-Y.; Zanardo, G.; Potter, T. M.; Staveley-Smith, L.; Gaensler, B. M.; Manchester, R. N.; Tzioumis, A. K.

    2013-11-10

    We present radio imaging observations of supernova remnant 1987A at 9 GHz, taken with the Australia Telescope Compact Array over 21 years from 1992 to 2013. By employing a Fourier modeling technique to fit the visibility data, we show that the remnant structure has evolved significantly since day 7000 (mid-2006): the emission latitude has gradually decreased such that the overall geometry has become more similar to a ring structure. Around the same time, we find a decreasing trend in the east-west asymmetry of the surface emissivity. These results could reflect the increasing interaction of the forward shock with material around the circumstellar ring, and the relative weakening of the interaction with the lower-density material at higher latitudes. The morphological evolution caused an apparent break in the remnant expansion measured with a torus model, from a velocity of 4600{sup +150}{sub -}200 km s{sup –1} between day 4000 and 7000 to 2400{sup +100}{sub -200} km s{sup –1} after day 7000. However, we emphasize that there is no conclusive evidence for a physical slowing of the shock at any given latitude in the expanding remnant, and that a change of radio morphology alone appears to dominate the evolution. This is supported by our ring-only fits which show a constant expansion of 3890 ± 50 km s{sup –1} without deceleration between days 4000 and 9000. We suggest that once the emission latitude no longer decreases, the expansion velocity obtained from the torus model should return to the same value as that measured with the ring model.

  3. Optical trapping of nanoparticles.

    PubMed

    Bergeron, Jarrah; Zehtabi-Oskuie, Ana; Ghaffari, Saeedeh; Pang, Yuanjie; Gordon, Reuven

    2013-01-15

    Optical trapping is a technique for immobilizing and manipulating small objects in a gentle way using light, and it has been widely applied in trapping and manipulating small biological particles. Ashkin and co-workers first demonstrated optical tweezers using a single focused beam. The single beam trap can be described accurately using the perturbative gradient force formulation in the case of small Rayleigh regime particles. In the perturbative regime, the optical power required for trapping a particle scales as the inverse fourth power of the particle size. High optical powers can damage dielectric particles and cause heating. For instance, trapped latex spheres of 109 nm in diameter were destroyed by a 15 mW beam in 25 sec, which has serious implications for biological matter. A self-induced back-action (SIBA) optical trapping was proposed to trap 50 nm polystyrene spheres in the non-perturbative regime. In a non-perturbative regime, even a small particle with little permittivity contrast to the background can influence significantly the ambient electromagnetic field and induce a large optical force. As a particle enters an illuminated aperture, light transmission increases dramatically because of dielectric loading. If the particle attempts to leave the aperture, decreased transmission causes a change in momentum outwards from the hole and, by Newton's Third Law, results in a force on the particle inwards into the hole, trapping the particle. The light transmission can be monitored; hence, the trap can become a sensor. The SIBA trapping technique can be further improved by using a double-nanohole structure. The double-nanohole structure has been shown to give a strong local field enhancement. Between the two sharp tips of the double-nanohole, a small particle can cause a large change in optical transmission, thereby inducing a large optical force. As a result, smaller nanoparticles can be trapped, such as 12 nm silicate spheres and 3.4 nm hydrodynamic radius

  4. Nonlinear integrable ion traps

    SciTech Connect

    Nagaitsev, S.; Danilov, V.; /SNS Project, Oak Ridge

    2011-10-01

    Quadrupole ion traps can be transformed into nonlinear traps with integrable motion by adding special electrostatic potentials. This can be done with both stationary potentials (electrostatic plus a uniform magnetic field) and with time-dependent electric potentials. These potentials are chosen such that the single particle Hamilton-Jacobi equations of motion are separable in some coordinate systems. The electrostatic potentials have several free adjustable parameters allowing for a quadrupole trap to be transformed into, for example, a double-well or a toroidal-well system. The particle motion remains regular, non-chaotic, integrable in quadratures, and stable for a wide range of parameters. We present two examples of how to realize such a system in case of a time-independent (the Penning trap) as well as a time-dependent (the Paul trap) configuration.

  5. The late behavior of supernova 1987A. I - The light curve. II - Gamma-ray transparency of the ejecta

    NASA Technical Reports Server (NTRS)

    Arnett, W. David; Fu, Albert

    1989-01-01

    Observations of the late (t = 20-1500 days) bolometric light curve and the gamma-lines and X-rays from supernova 1987A are compared to theoretical models. It is found that 0.073 + or - 0.015 solar masses of freshly synthesized Ni-56 must be present to fit the bolometric light curve. The results place limits on the luminosity and presumed period of the newly formed pulsar/neutron star. In the second half of the paper, the problem of computing the luminosities in gamma-ray lines and in X-rays from supernova 1987A is addressed. High-energy observations suggest the development of large-scale clumping and bubbling of radioactive material in the ejecta. A model is proposed with a hydrogen envelope mass of about 7 solar masses, homologous scale expansion velocities of about 3000 km/s, and an approximately uniform mass distribution.

  6. Coincidences among Mont Blanc, Kamiokande, Baksan, IMB, Frejus, Homestake and Plateau Rosa detectors during SN1987A.

    NASA Astrophysics Data System (ADS)

    Aglietta, M.; Badino, G.; Bologna, G.; Castagnoli, C.; Castellina, A.; Fulgione, W.; Galeotti, P.; Saavedra, O.; Trinchero, G.; Vernetto, S.

    Correlation analysis has been performed among the events recorded during the occurrence of SN1987A by the underground detectors of Mont Blanc, Kamiokande, Baksan, IMB, Frejus, Homestake and the EAS array of Plateau Rosa. A significative excess of coincidence exists between low energy events of Mont Blanc and IMB muons, in the time interval from 1:45 to 3:45 UT on Feb. 23, 1987.

  7. Quadrupole ion traps.

    PubMed

    March, Raymond E

    2009-01-01

    The extraordinary story of the three-dimensional radiofrequency quadrupole ion trap, accompanied by a seemingly unintelligible theoretical treatment, is told in some detail because of the quite considerable degree of commercial success that quadrupole technology has achieved. The quadrupole ion trap, often used in conjunction with a quadrupole mass filter, remained a laboratory curiosity until 1979 when, at the American Society for Mass Spectrometry Conference in Seattle, George Stafford, Jr., of Finnigan Corp., learned of the Masters' study of Allison Armitage of a combined quadrupole ion trap/quadrupole mass filter instrument for the observation of electron impact and chemical ionization mass spectra of simple compounds eluting from a gas chromatograph. Stafford developed subsequently the mass-selective axial instability method for obtaining mass spectra from the quadrupole ion trap alone and, in 1983, Finnigan Corp. announced the first commercial quadrupole ion trap instrument as a detector for a gas chromatograph. In 1987, confinement of ions generated externally to the ion trap was demonstrated and, soon after, the new technique of electrospray ionization was shown to be compatible with the ion trap.

  8. Stratigraphic traps 2

    SciTech Connect

    Not Available

    1991-01-01

    This volume contains studies of fields with traps that are mainly stratigraphic in nature. Structure plays a role in the traps of several fields, but overall, it is clear that the main trapping features with the group of fields in this volume are stratigraphic. The first six fields in this volume, Alabama Ferry, Rospo Mare, Walker Creek, Bindley, Lexington, and Newburg/South Westhope, have carbonate reservoirs. The latter two of these, Lexington and Newburg/South Westhope, also have sandstone reservoirs. The remaining fields, East Texas, East Clinton, Stockholm Southwest, Sorrento, Port Acres, and Lagoa Parda, have only sandstone reservoirs.

  9. A New View of the Circumstellar Environment of SN 1987A

    NASA Astrophysics Data System (ADS)

    Sugerman, Ben E. K.; Crotts, Arlin P. S.; Kunkel, William E.; Heathcote, Stephen R.; Lawrence, Stephen S.

    2005-07-01

    We summarize the analysis of a uniform set of both previously known and newly discovered scattered-light echoes, detected within 30" of SN 1987A in 10 years of optical imaging, and with which we have constructed the most complete three-dimensional model of the progenitor's circumstellar environment. Surrounding the SN is a richly structured bipolar nebula. An outer, double-lobed ``peanut,'' which we believe is the contact discontinuity between the red supergiant and main-sequence winds, is a prolate shell extending 28 lt-yr along the poles and 11 lt-yr near the equator. Napoleon's Hat, previously believed to be an independent structure, is the waist of this peanut, which is pinched to a radius of 6 lt-yr. Interior, the innermost circumstellar material lies along a cylindrical hourglass, 1 lt-yr in radius and 4 lt-yr long, which connects to the peanut by a thick equatorial disk. The nebulae are inclined 41° south and 8° east of the line of sight, slightly elliptical in cross section, and marginally offset west of the SN. The three-dimensional geometry of the three circumstellar rings is studied, suggesting the northern and southern rings are located 1.3 and 1.0 lt-yr from the SN, while the equatorial ring is elliptical (b/a<~0.98) and spatially offset in the same direction as the hourglass. Dust-scattering models of the observed echo fluxes suggest that between the hourglass and bipolar lobes: the gas density drops from 1 to 3 cm-3 to >~0.03 cm-3 the maximum dust-grain size increases from ~0.2 to 2 μm and the silicate:carbonaceous dust ratio decreases. The nebulae have a total mass of ~1.7 Msolar, yielding a red-supergiant mass loss around 5×10-6 Msolar yr-1. We compare these results to current formation models and find that no model has successfully reproduced this system. However, our results suggest a heuristic evolutionary sequence in which the progenitor evolves through two ``blue loops,'' perhaps accompanied by a close binary companion.

  10. The light curve of SN 1987A revisited: constraining production masses of radioactive nuclides

    SciTech Connect

    Seitenzahl, Ivo R.; Timmes, F. X.; Magkotsios, Georgios

    2014-09-01

    We revisit the evidence for the contribution of the long-lived radioactive nuclides {sup 44}Ti, {sup 55}Fe, {sup 56}Co, {sup 57}Co, and {sup 60}Co to the UVOIR light curve of SN 1987A. We show that the V-band luminosity constitutes a roughly constant fraction of the bolometric luminosity between 900 and 1900 days, and we obtain an approximate bolometric light curve out to 4334 days by scaling the late time V-band data by a constant factor where no bolometric light curve data is available. Considering the five most relevant decay chains starting at {sup 44}Ti, {sup 55}Co, {sup 56}Ni, {sup 57}Ni, and {sup 60}Co, we perform a least squares fit to the constructed composite bolometric light curve. For the nickel isotopes, we obtain best fit values of M({sup 56}Ni) = (7.1 ± 0.3) × 10{sup –2} M {sub ☉} and M({sup 57}Ni) = (4.1 ± 1.8) × 10{sup –3} M {sub ☉}. Our best fit {sup 44}Ti mass is M({sup 44}Ti) = (0.55 ± 0.17) × 10{sup –4} M {sub ☉}, which is in disagreement with the much higher (3.1 ± 0.8) × 10{sup –4} M {sub ☉} recently derived from INTEGRAL observations. The associated uncertainties far exceed the best fit values for {sup 55}Co and {sup 60}Co and, as a result, we only give upper limits on the production masses of M({sup 55}Co) < 7.2 × 10{sup –3} M {sub ☉} and M({sup 60}Co) < 1.7 × 10{sup –4} M {sub ☉}. Furthermore, we find that the leptonic channels in the decay of {sup 57}Co (internal conversion and Auger electrons) are a significant contribution and constitute up to 15.5% of the total luminosity. Consideration of the kinetic energy of these electrons is essential in lowering our best fit nickel isotope production ratio to [{sup 57}Ni/{sup 56}Ni] = 2.5 ± 1.1, which is still somewhat high but is in agreement with gamma-ray observations and model predictions.

  11. The Light Curve of SN 1987A Revisited: Constraining Production Masses of Radioactive Nuclides

    NASA Astrophysics Data System (ADS)

    Seitenzahl, Ivo R.; Timmes, F. X.; Magkotsios, Georgios

    2014-09-01

    We revisit the evidence for the contribution of the long-lived radioactive nuclides 44Ti, 55Fe, 56Co, 57Co, and 60Co to the UVOIR light curve of SN 1987A. We show that the V-band luminosity constitutes a roughly constant fraction of the bolometric luminosity between 900 and 1900 days, and we obtain an approximate bolometric light curve out to 4334 days by scaling the late time V-band data by a constant factor where no bolometric light curve data is available. Considering the five most relevant decay chains starting at 44Ti, 55Co, 56Ni, 57Ni, and 60Co, we perform a least squares fit to the constructed composite bolometric light curve. For the nickel isotopes, we obtain best fit values of M(56Ni) = (7.1 ± 0.3) × 10-2 M ⊙ and M(57Ni) = (4.1 ± 1.8) × 10-3 M ⊙. Our best fit 44Ti mass is M(44Ti) = (0.55 ± 0.17) × 10-4 M ⊙, which is in disagreement with the much higher (3.1 ± 0.8) × 10-4 M ⊙ recently derived from INTEGRAL observations. The associated uncertainties far exceed the best fit values for 55Co and 60Co and, as a result, we only give upper limits on the production masses of M(55Co) < 7.2 × 10-3 M ⊙ and M(60Co) < 1.7 × 10-4 M ⊙. Furthermore, we find that the leptonic channels in the decay of 57Co (internal conversion and Auger electrons) are a significant contribution and constitute up to 15.5% of the total luminosity. Consideration of the kinetic energy of these electrons is essential in lowering our best fit nickel isotope production ratio to [57Ni/56Ni] = 2.5 ± 1.1, which is still somewhat high but is in agreement with gamma-ray observations and model predictions.

  12. Two-field axion-monodromy hybrid inflation model: Dante's Waterfall

    NASA Astrophysics Data System (ADS)

    Carone, Christopher D.; Erlich, Joshua; Sensharma, Anuraag; Wang, Zhen

    2015-02-01

    We describe a hybrid axion-monodromy inflation model motivated by the Dante's Inferno scenario. In Dante's Inferno, a two-field potential features a stable trench along which a linear combination of the two fields slowly rolls, rendering the dynamics essentially identical to that of single-field chaotic inflation. A shift symmetry allows for the Lyth bound to be effectively evaded as in other axion-monodromy models. In our proposal, the potential is concave downward near the origin and the inflaton trajectory is a gradual downward spiral, ending at a point where the trench becomes unstable. There, the fields begin falling rapidly towards the minimum of the potential and inflation terminates as in a hybrid model. We find parameter choices that reproduce observed features of the cosmic microwave background, and discuss our model in light of recent results from the BICEP2 and Planck experiments.

  13. Supersymmetry and dark matter post LHC8: Why we may expect both axion and WIMP detection

    SciTech Connect

    Baer, Howard

    2014-01-01

    In the post-LHC8 era, it is perceived that what is left of SUSY model parameter space is highly finetuned in the EW sector (EWFT). We discuss how conventional measures overestimate EWFT in SUSY theory. Radiatively-driven natural SUSY (RNS) models maintain the SUSY GUT paradigm with low EWFT at 10% level, but are characterized by light higgsinos ~100–300 GeV and a thermal underabundance of WIMP dark matter. Implementing the SUSY DFSZ solution to the strong CP problem explains the small μ parameter but indicates dark matter should be comprised mainly of axions with a small admixture of higgsino-like WIMPs. While RNS might escape LHC14 searches, we would expect ultimately direct detection of both WIMPs and axions. An e⁺e⁻ collider with √(s)~500–600 GeV should provide a thorough search for the predicted light higgsinos.

  14. Cosmological particle-in-cell simulations with ultralight axion dark matter

    NASA Astrophysics Data System (ADS)

    Veltmaat, Jan; Niemeyer, Jens C.

    2016-12-01

    We study cosmological structure formation with ultralight axion dark matter, or "fuzzy dark matter" (FDM), using a particle-mesh scheme to account for the quantum pressure arising in the Madelung formulation of the Schrödinger-Poisson equations. Subpercent-level energy conservation and correct linear behavior are demonstrated. Whereas the code gives rise to the same core-halo profiles as direct simulations of the Schrödinger equation, it does not reproduce the detailed interference patterns. In cosmological simulations with FDM initial conditions, we find a maximum relative difference of O(10%) in the power spectrum near the quantum Jeans length compared to using a standard N -body code with identical initial conditions. This shows that the effect of quantum pressure during nonlinear structure formation cannot be neglected for precision constraints on a dark matter component consisting of ultralight axions.

  15. Note on the stability of axionic D-term s-strings

    SciTech Connect

    Achucarro, Ana; Sousa, Kepa

    2006-10-15

    We investigate the stability of a new class of BPS cosmic strings in N=1 supergravity with D-terms recently proposed by Blanco-Pillado, Dvali and Redi. These have been conjectured to be the low energy manifestation of D-strings that might form from tachyon condensation after D- anti-D-brane annihilation in type IIB superstring theory. There are three one-parameter families of cylindrically symmetric one-vortex solutions to the BPS equations (tachyonic, axionic and hybrid). We find evidence that the zero mode in the axionic case, or s-strings, can be excited. Its evolution leads to the decompactification of four-dimensional spacetime at late times, with a rate that decreases with decreasing brane tension.

  16. Core-halo mass relation of ultralight axion dark matter from merger history

    NASA Astrophysics Data System (ADS)

    Du, Xiaolong; Behrens, Christoph; Niemeyer, Jens C.; Schwabe, Bodo

    2017-02-01

    In the context of structure formation with ultralight axion dark matter, we offer an alternative explanation for the mass relation of solitonic cores and their host halos observed in numerical simulations. Our argument is based entirely on the mass gain that occurs during major mergers of binary cores and largely independent of the initial core-halo mass relation assigned to hosts that have just collapsed. We find a relation between the halo mass Mh and corresponding core mass Mc, Mc∝Mh2 β -1, where (1 -β ) is the core mass loss fraction. Following the evolution of core masses in stochastic merger trees, we find empirical evidence for our model. Our results are useful for statistically modeling the effects of dark matter cores on the properties of galaxies and their substructures in axion dark matter cosmologies.

  17. Mixed Axion/Axino Dark Matter in mSUGRA and Yukawa-unified SUSY

    SciTech Connect

    Ann Summy, Heaya

    2010-02-10

    Axion/axino dark matter (DM) is explored in the minimal supergravity (mSUGRA) and Yukawa-unified supersymmetric grand-unified theory (SUSY GUT) models with surprising results. For this type of scenario, relic DM abundance has three components: i.) cold axions, ii.) warm axinos from neutralino decay, and iii.) cold or warm thermally produced axinos. Reheat temperatures T{sub R} exceeding 10{sup 6} GeV are required in order to solve the gravitino/Big Bang Nucleosynthesis (BBN) problem while also allowing for baryogensis via non-thermal leptogenesis. In order to attain high enough reheat temperatures, we also need high values of the Peccei-Quinn (PQ) breaking scale f{sub a} on the order 10{sup 11}-10{sup 12} GeV.

  18. Trapping and Probing Antihydrogen

    SciTech Connect

    Wurtele, Jonathan

    2013-03-27

    Precision spectroscopy of antihydrogen is a promising path to sensitive tests of CPT symmetry. The most direct route to achieve this goal is to create and probe antihydrogen in a magnetic minimum trap. Antihydrogen has been synthesized and trapped for 1000s at CERN by the ALPHA Collaboration. Some of the challenges associated with achieving these milestones will be discussed, including mixing cryogenic positron and antiproton plasmas to synthesize antihydrogen with kinetic energy less than the trap potential of .5K. Recent experiments in which hyperfine transitions were resonantly induced with microwaves will be presented. The opportunity for gravitational measurements in traps based on detailed studies of antihydrogen dynamics will be described. The talk will conclude with a discussion future antihydrogen research that will use a new experimental apparatus, ALPHA-I.

  19. Versatile electrostatic trap

    SciTech Connect

    Veldhoven, Jacqueline van; Bethlem, Hendrick L.; Schnell, Melanie; Meijer, Gerard

    2006-06-15

    A four electrode electrostatic trap geometry is demonstrated that can be used to combine a dipole, quadrupole, and hexapole field. A cold packet of {sup 15}ND{sub 3} molecules is confined in both a purely quadrupolar and hexapolar trapping field and additionally, a dipole field is added to a hexapole field to create either a double-well or a donut-shaped trapping field. The profile of the {sup 15}ND{sub 3} packet in each of these four trapping potentials is measured, and the dependence of the well-separation and barrier height of the double-well and donut potential on the hexapole and dipole term are discussed.

  20. Steam trap monitor

    DOEpatents

    Ryan, M.J.

    1987-05-04

    A steam trap monitor positioned downstream of a steam trap in a closed steam system includes a first sensor (a hot finger) for measuring the energy of condensate and a second sensor (a cold finger) for measuring the total energy of condensate and steam in the line. The hot finger includes one or more thermocouples for detecting condensate level and energy, while the cold finger contains a liquid with a lower boiling temperature than that of water. Vapor pressure from the liquid is used to do work such as displacing a piston or bellow in providing an indication of total energy (steam + condensate) of the system. Processing means coupled to and responsive to outputs from the hot and cold fingers subtracts the former from the latter to provide an indication of the presence of steam downstream from the trap indicating that the steam trap is malfunctioning. 2 figs.