Science.gov

Sample records for 1992-1993 collider run

  1. Search for top quark at Fermilab Collider

    SciTech Connect

    Sliwa, K.; The CDF Collaboration

    1991-10-01

    The status of a search for the top quark with Collider Detector at Fermilab (CDF), based on a data sample recorded during the 1988--1989 run is presented. The plans for the next Fermilab Collider run in 1992--1993 and the prospects of discovering the top quark are discussed. 19 refs., 4 figs., 2 tabs.

  2. 1987 DOE review: First collider run operation

    SciTech Connect

    Childress, S.; Crawford, J.; Dugan, G.; Edwards, H.; Finley, D.A.; Fowler, W.B.; Harrison, M.; Holmes, S.; Makara, J.N.; Malamud, E.

    1987-05-01

    This review covers the operations of the first run of the 1.8 TeV superconducting super collider. The papers enclosed cover: PBAR source status, fixed target operation, Tevatron cryogenic reliability and capacity upgrade, Tevatron Energy upgrade progress and plans, status of the D0 low beta insertion, 1.8 K and 4.7 K refrigeration for low-..beta.. quadrupoles, progress and plans for the LINAC and booster, near term and long term and long term performance improvements.

  3. Run scenarios for the linear collider

    SciTech Connect

    M. Battaglia et al.

    2002-12-23

    We have examined how a Linear Collider program of 1000 fb{sup -1} could be constructed in the case that a very rich program of new physics is accessible at {radical}s {le} 500 GeV. We have examined possible run plans that would allow the measurement of the parameters of a 120 GeV Higgs boson, the top quark, and could give information on the sparticle masses in SUSY scenarios in which many states are accessible. We find that the construction of the run plan (the specific energies for collider operation, the mix of initial state electron polarization states, and the use of special e{sup -}e{sup -} runs) will depend quite sensitively on the specifics of the supersymmetry model, as the decay channels open to particular sparticles vary drastically and discontinuously as the underlying SUSY model parameters are varied. We have explored this dependence somewhat by considering two rather closely related SUSY model points. We have called for operation at a high energy to study kinematic end points, followed by runs in the vicinity of several two body production thresholds once their location is determined by the end point studies. For our benchmarks, the end point runs are capable of disentangling most sparticle states through the use of specific final states and beam polarizations. The estimated sparticle mass precisions, combined from end point and scan data, are given in Table VIII and the corresponding estimates for the mSUGRA parameters are in Table IX. The precision for the Higgs boson mass, width, cross-sections, branching ratios and couplings are given in Table X. The errors on the top quark mass and width are expected to be dominated by the systematic limits imposed by QCD non-perturbative effects. The run plan devotes at least two thirds of the accumulated luminosity near the maximum LC energy, so that the program would be sensitive to unexpected new phenomena at high mass scales. We conclude that with a 1 ab{sup -1} program, expected to take the first 6-7 years

  4. AGS experiments -- 1991, 1992, 1993. Tenth edition

    SciTech Connect

    Depken, J.C.

    1994-04-01

    This report contains: (1) FY 1993 AGS schedule as run; (2) FY 1994--95 AGS schedule; (3) AGS experiments {ge} FY 1993 (as of 30 March 1994); (4) AGS beams 1993; (5) AGS experimental area FY 1991 physics program; (6) AGS experimental area FY 1992 physics program; (7) AGS experimental area FY 1993 physics program; (8) AGS experimental area FY 1994 physics program (planned); (9) a listing of experiments by number; (10) two-page summaries of each experiment; (11) listing of publications of AGS experiments; and (12) listing of AGS experiments.

  5. Progress at LAMPF, 1992--1993

    SciTech Connect

    Hoffman, C.M.

    1994-07-25

    This Progress Report describes the operation of the Los Alamos Meson Physics Facility (LAMPF) and the research programs carried out there for the years 1992 and 1993. The accelerator operated for over 100 days in 1992, providing beams of H{sup +}, H{sup {minus}}, and polarized H{sup {minus}} for a rich and varied research program in nuclear physics. The accelerator had only fair beam availability in 1992 (for example, the average H{sup +} beam availability was 72%), caused largely by problems in the 201-MHz rf system. A major effort was expended to address these problems before the 1993 run. These efforts were rewarded by good beam availability in 1993 and few problems with the 201-MHz system. LAMPF operated remarkably smoothly during 1993, in the midst of a period of great uncertainty in the future of the facility and the downsizing of MP Division, which led to the loss of a large number of key people to positions elsewhere in the Laboratory. The H{sup +} intensity had to be held to no more than {approximately} 800{mu}A because of a vacuum leak in the A2 target. Nevertheless, the accelerator operated very.reliably and the summer run in 1993 proved to be extremely productive. This report discusses the research conducted on: Nuclear and particle physics; atomic physics; radiation effects; materials science; astrophysics; and theoretical physics.

  6. 1992--1993 low-temperature geothermal assessment program, Colorada

    SciTech Connect

    Cappa, J.A.; Hemborg, H.T.

    1995-01-01

    Previous assessments of Colorado`s low-temperature geothermal resources were completed by the Colorado Geological Survey in 1920 and in the mid- to late-1970s. The purpose of the 1992--1993 low-temperature geothermal resource assessment is to update the earlier physical, geochemical, and utilization data and compile computerized databases of the location, chemistry, and general information of the low-temperature geothermal resources in Colorado. The main sources of the data included published data from the Colorado Geological Survey, the US Geological Survey WATSTOR database, and the files of the State Division of Water Resources. The staff of the Colorado Geological Survey in 1992 and 1993 visited most of the known geothermal sources that were recorded as having temperatures greater than 30{degrees}C. Physical measurements of the conductivity, pH, temperature, flow rate, and notes on the current geothermal source utilization were taken. Ten new geochemical analyses were completed on selected geothermal sites. The results of the compilation and field investigations are compiled into the four enclosed Quattro Pro 4 databases. For the purposes of this report a geothermal area is defined as a broad area, usually less than 3 sq mi in size, that may have several wells or springs. A geothermal site is an individual well or spring within a geothermal area. The 1992-1993 assessment reports that there are 93 geothermal areas in the Colorado, up from the 56 reported in 1978; there are 157 geothermal sites up from the 125 reported in 1978; and a total of 382 geochemical analyses are compiled, up from the 236 reported in 1978. Six geothermal areas are recommended for further investigation: Trimble Hot Springs, Orvis Hot Springs, an area southeast of Pagosa Springs, the eastern San Luis Valley, Rico and Dunton area, and Cottonwood Hot Springs.

  7. The future collider physics program at Fermilab: Run II and TeV33

    SciTech Connect

    Signore, K.D.

    1998-07-01

    High luminosity collider running at Fermilab is scheduled to occur during the period 2000-2005. Requisite collider detector upgrades are underway. An outline of the physics that can be realized with the upgraded Tevatron and CDF/D0 detectors is presented.

  8. Summaries of theses for the degree of diploma engineer 1992-1993

    NASA Astrophysics Data System (ADS)

    Kiiras, J.

    1994-08-01

    This publication contains the summaries of the diploma theses made in the Department of Structural Engineering during the years 1992-1993 in Helsinki University of Technology, Faculty of Civil Engineering and Surveying.

  9. RHIC Performance as a 100 GeV Polarized Proton Collider in Run-9

    SciTech Connect

    Montag, C.; Ahrens, L.; Bai, M.; Beebe-Wang, J.; Blaskiewicz, M.; Brennan, J.M.; Brown, K.A.; Bruno, D.; Connolly, R.; DOttavio, T.; Drees, A.; Fedotov, A.V.; Fischer, W.; Ganetis, G.; Gardner, C.; Glenn, J.; Hahn, H.; Harvey, M.; Hayes, T.; Huang, H.; Ingrassia, P.; Jamilkowski, J.; Kayran, D.; Kewisch, J.; Lee, R.C.; Luccio, A.U.; Luo, Y.; MacKay, W.W.; Makdisi, Y.; Malitsky, N.; Marr, G.; Marusic, A.; Menga, P.M.; Michnoff, R.; Minty, M.; Morris, J.; Oerter, B.; Pilat, F.; Pile, P.; Pozdeyev, E.; Ptitsyn, V.; Robert-Demolaize, G.; Roser, T.; Russo, T.; Satogata, T.; Schoefer, V.; Schultheiss, C.; Severino, F.; Sivertz, M.; Smith, K.; Tepikian, S.; Thieberger, P.; Trbojevic, D.; Tsoupas, N.; Tuozzolo, J.; Zaltsman, A.; Zelenski, A.; Zeno, K.; Zhang, S.Y.

    2010-05-23

    During the second half of Run-9, the Relativisitc Heavy Ion Collider (RHIC) provided polarized proton collisions at two interaction points. The spin orientation of both beams at these collision points was controlled by helical spin rotators, and physics data were taken with different orientations of the beam polarization. Recent developments and improvements will be presented, as well as luminosity and polarization performance achieved during Run-9.

  10. Chemical Depletion of Lower Stratospheric Ozone in the 1992-1993 Northern Winter Vortex

    NASA Technical Reports Server (NTRS)

    Manney, G. L.; Froidevaux, L.; Waters, J. W.; Zurek, R. W.; Read, W. G.; Elson, L. S.; Kumer, J. B.; Mergenthaler, J. L.; Roche, A. E.; O'Neill, A.; Harwood, R. S.; MacKenzie, I.; Swinbank, R.

    1994-01-01

    Satellite observations of ozone and chlorine monoxide in the Arctic lower stratosphere during winter 1992-1993 are compared with observations during other winters, observations of long-lived tracers and the evolution of the polar vortex. Chlorine in the lower stratospheric vortex during February 1993 was mostly in chemically reactive forms.

  11. AGS experiments: 1992, 1993, 1994. Revision December 1994

    SciTech Connect

    Depken, J.C.

    1995-03-01

    This document contains listings and two page summaries for experiments run at the GAS for 1992--1994. Listings are also given for publications and experimenters. A working copy of the 1995--1996 experiment schedule is also included.

  12. Tevatron Collider Run II status and novel technologies for luminosity upgrades

    SciTech Connect

    Vladimir Shiltsev

    2004-07-20

    Over the past 2 years the Tevatron peak luminosity steadily progressed and reached the level of 92e30 cm-2s-1 which exceeds the original Run IIa goal. Over 0.57fb-1 have being delivered to each CDF and D0 experiments since the beginning of the Run II. In parallel to the Collider operation, we have started a project of the luminosity upgrade which should lead to peak luminosities of about 270e30 and total integrated luminosity of 4.4-8.5 fb-1 through FY2009. In this paper we describe the status of the Tevatron Collider complex, essence of the upgrades and novel accelerator technologies to be employed.

  13. Harvard University High Energy Physics. [Annual report, 1992--1993

    SciTech Connect

    Not Available

    1993-11-01

    The mainly experimental research program in high energy physics at Harvard is summarized in a descriptive fashion according to the following outline: Proton{endash}antiproton colliding beam program at Fermilab -- CDF (forward/backward electromagnetic calorimeters -- FEM, central muon extension -- CMX, gas calorimetry and electronics development, front-end electronics upgrades, software development, physics analysis, timetable), electron -- positron collisions in the upsilon region -- CLEO (the hardware projects including CLEO II barrel TOF system and silicon drift detector R&D, physics analysis), search for {nu}{sub {mu}} to {nu}{sub {tau}} oscillations with the NOMAD experiment at CERN, the solenoidal detector collaboration at the SSC, muon scattering at FNAL -- E665, the L3 experiment, and phenomenological analysis of high-energy {bar p}p cross sections. 149 refs.

  14. State of hadron collider physics

    SciTech Connect

    Grannis, P.D. |

    1993-12-01

    The 9th Topical Workshop on Proton-Antiproton Collider Physics in Tsukuba Japan demonstrated clearly the enormous breadth of physics accessible in hadron cowders. Although no significant chinks were reported in the armor of the Standard Model, new results presented in this meeting have expanded our knowledge of the electroweak and strong interactions and have extended the searches for non-standard phenomena significantly. Much of the new data reported came from the CDF and D0 experiments at the Fermilab cowder. Superb operation of the Tevatron during the 1992-1993 Run and significant advances on the detector fronts -- in particular, the emergence of the new D0 detector as a productive physics instrument in its first outing and the addition of the CDF silicon vertex detector -- enabled much of this advance. It is noteworthy however that physics from the CERN collider experiments UA1 and UA4 continued to make a large impact at this meeting. In addition, very interesting summary talks were given on new results from HERA, cosmic ray experiments, on super-hadron collider physics, and on e{sup +}e{sup {minus}} experiments at LEP and TRISTAN. These summaries are reported in elsewhere in this volume.

  15. Water chemistry and biological sampling program in support of a watershed liming pilot study in western Maryland. Year 3 (1992-1993)

    SciTech Connect

    Morgan, R.P.; Gates, D.M.

    1993-11-01

    To test the efficiency of watershed liming in western Maryland to mitigate acidification, Alexander Run (a small, first-order Garrett County stream draining into the North Branch of the Casselman River) was selected. The effect of limestone application on water chemistry and the macroinvertebrate and fish community of Alexander Run was monitored from 1990. Pelletized limestone was applied to the watershed between 21 - 23 October 1991. Biological data collected from Little Bear Creek (macroinvertebrate and fishes), an unnamed tributary to Herrington Creek (macroinvertebrates), and Big Run (fishes) were employed to assess changes in stream biota in two Alexander Run stations (upper and lower). The objective of year three (1992-1993) was to continue post-liming monitoring through July 1993 in order to assess long-term effectiveness of watershed liming.

  16. An investigation of air transportation technology at the Massachusetts Institute of Technology, 1992-1993

    NASA Technical Reports Server (NTRS)

    Simpson, Robert W.

    1994-01-01

    An investigation of air transportation technology at MIT during 1992 - 1993 is presented. One completed project and two continuing research activities are under the sponsorship of the FAA/NASA Joint University Program. The completed project was on tracking aircraft around a turn with wind effects. Active research projects are on ASLOTS - an interactive adaptive system of automated approach spacing of aircraft and alerting in automated and datalink capable cockpits.

  17. US Department of Energy 1992--1993 Reactor Sharing Program. Final report

    SciTech Connect

    Vernetson, W.G.

    1994-04-01

    The University of Florida Training Reactor serves as a host institution to support various educational institutions which are located primarily within the state of Florida. All users and uses were carefully screened to assure the usage was for educational institutions eligible for participation in the Reactor Sharing Program. Three tables are included that provide basic information about the 1992--1993 program and utilization of the reactor facilities by user institutions.

  18. GO, an exec for running the programs: CELL, COLLIDER, MAGIC, PATRICIA, PETROS, TRANSPORT and TURTLE

    SciTech Connect

    Shoaee, H.

    1982-05-01

    An exec has been written and placed on the PEP group's public disk (PUBRL 192) to facilitate the use of several PEP related computer programs available on VM. The exec's program list currently includes: CELL, COLLIDER, MAGIC, PATRICIA, PETROS, TRANSPORT, and TURTLE. In addition, provisions have been made to allow addition of new programs to this list as they become available. The GO exec is directly callable from inside the Wylbur editor (in fact, currently this is the only way to use the GO exec.) It provides the option of running any of the above programs in either interactive or batch mode. In the batch mode, the GO exec sends the data in the Wylbur active file along with the information required to run the job to the batch monitor (BMON, a virtual machine that schedules and controls execution of batch jobs). This enables the user to proceed with other VM activities at his/her terminal while the job executes, thus making it of particular interest to the users with jobs requiring much CPU time to execute and/or those wishing to run multiple jobs independently. In the interactive mode, useful for small jobs requiring less CPU time, the job is executed by the user's own Virtual Machine using the data in the active file as input. At the termination of an interactive job, the GO exec facilitates examination of the output by placing it in the Wylbur active file.

  19. The upgraded Pixel Detector of the ATLAS Experiment for Run 2 at the Large Hadron Collider

    NASA Astrophysics Data System (ADS)

    Backhaus, M.

    2016-09-01

    During Run 1 of the Large Hadron Collider (LHC), the ATLAS Pixel Detector has shown excellent performance. The ATLAS collaboration took advantage of the first long shutdown of the LHC during 2013 and 2014 and extracted the ATLAS Pixel Detector from the experiment, brought it to surface and maintained the services. This included the installation of new service quarter panels, the repair of cables, and the installation of the new Diamond Beam Monitor (DBM). Additionally, a completely new innermost pixel detector layer, the Insertable B-Layer (IBL), was constructed and installed in May 2014 between a new smaller beam pipe and the existing Pixel Detector. With a radius of 3.3 cm the IBL is located extremely close to the interaction point. Therefore, a new readout chip and two new sensor technologies (planar and 3D) are used in the IBL. In order to achieve best possible physics performance the material budget was improved with respect to the existing Pixel Detector. This is realized using lightweight staves for mechanical support and a CO2 based cooling system. This paper describes the improvements achieved during the maintenance of the existing Pixel Detector as well as the performance of the IBL during the construction and commissioning phase. Additionally, first results obtained during the LHC Run 2 demonstrating the distinguished tracking performance of the new Four Layer ATLAS Pixel Detector are presented.

  20. FAA/NASA Joint University Program for Air Transportation Research, 1992-1993

    NASA Technical Reports Server (NTRS)

    Morrell, Frederick R. (Compiler)

    1994-01-01

    The research conducted during the academic year 1992-1993 under the FAA/NASA sponsored Joint University Program for Air Transportation Research is summarized. The year end review was held at Ohio University, Athens, Ohio, 17-18 June 1993. The Joint University Program is a coordinated set of three grants sponsored by the Federal Aviation Administration and NASA Langley Research Center, one each with the Massachusetts Institute of Technology, Ohio University, and Princeton University. Completed works, status reports, and annotated bibliographies are presented for research topics, which include navigation, guidance, and control theory and practice, aircraft performance, human factors and air traffic management. An overview of the year's activities for each university is also presented.

  1. Correlates to survival of juvenile sea otters in Prince William Sound, Alaska, 1992-1993

    USGS Publications Warehouse

    Ballachey, B.E.; Bodkin, J.L.; Howlin, S.; Doroff, A.M.; Rebar, A.H.

    2003-01-01

    We estimated survival of sea otters (Enhydra lutris) for 1 year post weaning during 1992-1993 in Prince William Sound (PWS), location of the 1989 Exxon Valdez oil spill. We sampled 38 pups in eastern PWS (EPWS), an unoiled area occupied by sea otters for 25 years. We compared survival between areas, sexes, and condition groups. We also examined the relation of blood parameters to survival. Survival was estimated at 0.74 in EPWS and 0.52 in WPWS. Female survival was 0.86 in EPWS and 0.64 in WPWS, whereas male survival was lower, 0.61 in EPWS and 0.44 in WPWS. Sea otters from EPWS were in better condition (mass/length) than WPWS sea otters. Pups in better condition had higher survival in EPWS but not in WPWS. Foraging success was greater in EPWS than in WPWS, consistent with either an effect of length of occupation or the effects of oil on the prey base or a combination of these effects. Area differences in blood parameters suggested liver damage in WPWS sea otters, perhaps resulting from continued exposure to oil. Thus, both length of occupation and oiling history likely influenced juvenile survival in PWS.

  2. Preliminary survey of separations technology applicable to the pretreatment of Hanford tank waste (1992--1993)

    SciTech Connect

    Lawrence, W.E.; Kurath, D.E.

    1994-04-01

    The US Department of Energy has established the Tank Waste Remediation System (TWRS) to manage and dispose of radioactive wastes stored at the Hanford Site. Within this program are evaluations of pretreatment system alternatives through literature reviews. The information in this report was collected as part of this project at Pacific Northwest Laboratory. A preliminary survey of literature on separations recently entered into the Hanford electronic databases (1992--1993) that have the potential for pretreatment of Hanford tank waste was conducted. Separation processes that can assist in the removal of actinides (uranium, plutonium, americium), lanthanides, barium, {sup 137}Cs, {sup 90}Sr,{sup 129 }I, {sup 63}Ni, and {sup 99}Tc were evaluated. Separation processes of interest were identified through literature searches, journal reviews, and participation in separation technology conferences. This report contains brief descriptions of the potential separation processes, the extent and/or selectivity of the separation, the experimental conditions, and observations. Information was collected on both national and international separation studies to provide a global perspective on recent research efforts.

  3. Nanosecond-Timescale Intra-Bunch-Train Feedback for the Linear Collider: Results of the FONT2 Run

    SciTech Connect

    Barlow, R.; Dufau, M.; Kalinin, A.; Myatt, G.; Perry, C.; Burrows, P.N.; Hartin, T.; Hussain, S.M.; Molloy, S.; White, G.R.; Adolphsen, C.; Frisch, J.C.; Hendrickson, L.; Jobe, R.K.; Markiewicz, T.; McCormick, D.J.; Nelson, J.; Ross, M.C.; Smith, S.; Smith, T.J.; /SLAC

    2005-05-11

    We report on experimental results from the December 2003/January 2004 data run of the Feedback On Nanosecond Timescales (FONT) experiment at the Next Linear Collider Test Accelerator at SLAC. We built a second-generation prototype intra-train beam-based feedback system incorporating beam position monitors, fast analogue signal processors, a feedback circuit, fast-risetime amplifiers and stripline kickers. We applied a novel real-time charge-normalization scheme to account for beam current variations along the train. We used the system to correct the position of the 170-nanosecond-long bunchtrain at NLCTA. We achieved a latency of 53 nanoseconds, representing a significant improvement on FONT1 (2002), and providing a demonstration of intra-train feedback for the Linear Collider.

  4. Transient State Machine Enabled from the Colliding and Coalescence of a Swarm of Autonomously Running Liquid Metal Motors.

    PubMed

    Sheng, Lei; He, Zhizhu; Yao, Youyou; Liu, Jing

    2015-10-21

    Internally triggered motion of an object owns important potential in diverse application areas ranging from micromachines, actuator or sensor, to self-assembly of superstructures. A new conceptual liquid metal machine style has been presented here: the transient state machine that can work as either a large size robot, partial running elements, or just divide spontaneously running swarm of tiny motors. According to need, the discrete droplet machines as quickly generated through injecting the stream of a large liquid metal machine can combine back again to the original one. Over the process, each tiny machine just keeps its running, colliding, bouncing, or adhesion states until finally assembling into a single machine. Unlike the commonly encountered rigid machines, such transient state system can be reversible in working shapes. Depending on their surface tension, the autonomously traveling droplet motors can experience bouncing and colliding before undergoing total coalescence, arrested coalescence, or total bounce. This finding would help mold unconventional robot in the sense of transient state machine that could automatically transform among different geometries such as a single or swarm, small or large size, assembling and interaction, etc. It refreshes people's basic understandings on machines, liquid metal materials, fluid mechanics, and micromotors.

  5. Transient State Machine Enabled from the Colliding and Coalescence of a Swarm of Autonomously Running Liquid Metal Motors.

    PubMed

    Sheng, Lei; He, Zhizhu; Yao, Youyou; Liu, Jing

    2015-10-21

    Internally triggered motion of an object owns important potential in diverse application areas ranging from micromachines, actuator or sensor, to self-assembly of superstructures. A new conceptual liquid metal machine style has been presented here: the transient state machine that can work as either a large size robot, partial running elements, or just divide spontaneously running swarm of tiny motors. According to need, the discrete droplet machines as quickly generated through injecting the stream of a large liquid metal machine can combine back again to the original one. Over the process, each tiny machine just keeps its running, colliding, bouncing, or adhesion states until finally assembling into a single machine. Unlike the commonly encountered rigid machines, such transient state system can be reversible in working shapes. Depending on their surface tension, the autonomously traveling droplet motors can experience bouncing and colliding before undergoing total coalescence, arrested coalescence, or total bounce. This finding would help mold unconventional robot in the sense of transient state machine that could automatically transform among different geometries such as a single or swarm, small or large size, assembling and interaction, etc. It refreshes people's basic understandings on machines, liquid metal materials, fluid mechanics, and micromotors. PMID:26280352

  6. Dengue fever in U.S. troops during Operation Restore Hope, Somalia, 1992-1993.

    PubMed

    Sharp, T W; Wallace, M R; Hayes, C G; Sanchez, J L; DeFraites, R F; Arthur, R R; Thornton, S A; Batchelor, R A; Rozmajzl, P J; Hanson, R K

    1995-07-01

    Dengue fever (DF) was considered to be a potential cause of febrile illness in U.S. troops deployed to Somalia during Operation Restore Hope in 1992-1993. A prospective study of hospitalized troops with fever and a seroepidemiologic survey of 530 troops were conducted. Among 289 febrile troops hospitalized, 129 (45%) did not have an identified cause of their fever. Dengue (DEN) virus was recovered from 41 (43%) of 96 of these patients by inoculation of admission sera into C6/36 cell cultures. Thirty-nine (41%) of the isolates were identified as DEN-2 and two (2%) as DEN-3 by an indirect immunofluorescent antibody assay. An additional 18 (49%) of 37 culture-negative cases were shown by immunoglobulin M (IgM) antibody capture enzyme-linked immunosorbent assay to have anti-DEN virus antibody. All identified DF cases recovered within 1-2 weeks; no case of dengue hemorrhagic fever or shock syndrome was observed. A seroepidemiologic survey of a unit (n = 494) with 17 culture or serologically identified DF cases and a 13% attack rate of unidentified febrile illness revealed a 7.7% prevalence of anti-DEN virus IgM antibody. Failure to use bed nets was the only identified risk factor for DEN infection (adjusted odds ratio = 2.2, 95% confidence interval = 1.4-3.0). These data indicate that DF was an important cause of febrile illness among US troops in Somalia, and demonstrate the difficulties in preventing DEN infection in troops operating in field conditions.

  7. SDA-based diagnostic and analysis tools for Collider Run II

    SciTech Connect

    Bolshakov, T.B.; Lebrun, P.; Panacek, S.; Papadimitriou, V.; Slaughter, J.; Xiao, A.; /Fermilab

    2005-05-01

    Operating and improving the understanding of the Fermilab Accelerator Complex for the colliding beam experiments requires advanced software methods and tools. The Shot Data Analysis (SDA) has been developed to fulfill this need. Data from the Fermilab Accelerator Complex is stored in a relational database, and is served to programs and users via Web-based tools. Summary tables are systematically generated during and after a store. These tables (the Supertable, the Recomputed Emittances, the Recomputed Intensities and other tables) are discussed here.

  8. Search for chargino and neutralino at Run II of the Tevatron Collider

    SciTech Connect

    Canepa, Anadi

    2006-08-01

    In this dissertation we present a search for the associated production of charginos and neutralinos, the supersymmetric partners of the Standard Model bosons. We analyze a data sample representing 745 pb-1 of integrated luminosity collected by the CDF experiment at the p$\\bar{p}$ Tevatron collider. We compare the Standard Model predictions with the observed data selecting events with three leptons and missing transverse energy. Finding no excess, we combine the results of our search with similar analyses carried out at CDF and set an upper limit on the chargino mass in SUSY scenarios.

  9. Population size and trends for nesting ospreys in northwestern Mexico: Region-wide surveys, 1977, 1992/1993 and 2006

    USGS Publications Warehouse

    Henny, Charles J.; Anderson, Daniel W.; Vera, Aradit Castellanos; Carton, Jean-Luc E.

    2007-01-01

    We used a double-sampling technique (air plus ground survey) in 2006, with partial double coverage, to estimate the present size of the osprey (Pandion haliaetus) nesting population in northwestern Mexico. With the exception of Natividad, Cedros, and San Benito Islands along the Pacific Coast of Baja California, all three excluded from our coverage in 2006 due to fog, this survey was a repeat of previous surveys conducted by us with the same protocol in 1977 and 1992/1993 (Baja California surveyed in 1992, Sonora and Sinaloa 1993), allowing for estimates of regional population trends. Population estimates at the 'time of aerial survey' include those nesting, but missed from the air. The population estimate for our coverage area in 2006 was 1,343 nesting pairs, or an 81% increase since 1977, but only a 3% increase since 1992/1993. The population on the Gulf side of Baja California generally remained stable during the three surveys (255, 236 and 252 pairs, respectively). The overall Midriff Islands population remained similar from 1992/1993 (308 pairs) to 2006 (289 pairs), but with notable population changes on the largest two islands (Isla Angel de la Guarda: 45 to 105 pairs [+ 60 pairs]; Isla Tiburon: 164 to 109 pairs [- 55 pairs, or -34%]). The estimated osprey population on the Sonora mainland decreased in a manner similar to adjacent Isla Tiburon, i.e., by 26%, from 214 pairs in 1993 to 158 pairs in 2006. In contrast, the population in Sinaloa, which had increased by 150% between 1977 and 1993, grew again by 58% between 1993 and 2006, from 180 to 285 pairs. Our survey confirmed previously described patterns of rapid population changes at a local level, coupled with apparent shifts in spatial distribution. The large ground nesting population that until recently nested on two islands in San Ignacio Lagoon was no longer present on the islands in 2006, but an equivalent number of pairs were found to the north and south of the lagoon, nesting in small towns and along

  10. Data acquisition and analysis for the Fermilab Collider RunII

    SciTech Connect

    Paul L. G. Lebrun et al.

    2004-07-07

    Operating and improving the understanding of the Fermilab Accelerator Complex for the colliding beam experiments requires advanced software methods and tools. The Shot Data Acquisition and Analysis (SDA) has been developed to fulfill this need. The SDA takes a standard set of critical data at relevant stages during the complex series of beam manipulations leading to {radical}(s) {approx} 2 TeV collisions. Data is stored in a relational database, and is served to programs and users via Web based tools. Summary tables are systematically generated during and after a store. Written entirely in Java, SDA supports both interactive tools and application interfaces used for in-depth analysis. In this talk, we present the architecture and described some of our analysis tools. We also present some results on the recent Tevatron performance as illustrations of the capabilities of SDA.

  11. Particle multiplicities in lead-lead collisions at the CERN large hadron collider from nonlinear evolution with running coupling corrections.

    PubMed

    Albacete, Javier L

    2007-12-31

    We present predictions for the pseudorapidity density of charged particles produced in central Pb-Pb collisions at the LHC. Particle production in such collisions is calculated in the framework of k(t) factorization. The nuclear unintegrated gluon distributions at LHC energies are determined from numerical solutions of the Balitsky-Kovchegov equation including recently calculated running coupling corrections. The initial conditions for the evolution are fixed by fitting Relativistic Heavy Ion Collider data at collision energies square root[sNN]=130 and 200 GeV per nucleon. We obtain dNch(Pb-Pb)/deta(square root[sNN]=5.5 TeV)/eta=0 approximately 1290-1480.

  12. The Pixel Detector of the ATLAS experiment for Run 2 of the Large Hadron Collider

    NASA Astrophysics Data System (ADS)

    Oide, H.

    2014-12-01

    The Pixel Detector of the ATLAS experiment has shown excellent performance during the whole Run 1 of the LHC. Taking advantage of the long shutdown, the detector was extracted from the experiment and brought to surface in order to equip it with new service quarter panels, to repair modules, and to ease installation of the Insertable B-Layer (IBL). The IBL is the fourth layer of the Run 2 Pixel Detector, and it was installed at a radius of 3.3 cm in May 2014 between the existing Pixel Detector and the new smaller-radius beam pipe. To cope with the high radiation and pixel occupancy due to the proximity to the interaction point, a new read-out chip and two different silicon sensor technologies (planar and 3D) have been developed. Furthermore, the physics performance is expected to improve through the reduction of pixel size. As well, targeting for a low material budget, a new mechanical support using lightweight staves and a CO2 based cooling system were adopted. An overview of the IBL project as well as the experience in its construction is presented, focusing on adopted technologies, module and staves production, qualification of assembly procedure, integration of staves around the beam pipe, and commissioning of the detector.

  13. Indiana University High Energy Physics, Task A. Technical progress report, 1992--1993

    SciTech Connect

    Brabson, B.; Crittenden, R.; Dzierba, A.

    1993-10-01

    This report discusses research at Indians University on the following high energy physics experiments: A search for mesons with unusual quantum numbers; hadronic states produced in association with high-mass dimuons; FNAL E740 (D0); superconducting super collider; and OPAL experiment at CERN.

  14. Polar Stratospheric Descent of NO(y) and CO and Arctic Denitrification During Winter 1992-1993

    NASA Technical Reports Server (NTRS)

    Rinsland, C. P.; Salawitch, R. J.; Gunson, M. R.; Solomon, S.; Zander, R.; Mahieu, E.; Goldman, A.; Newchurch, M. J.; Irion, F. W.; Chang, A. Y.

    1999-01-01

    Observations inside the November 1994 Antarctic stratospheric vortex and inside the April 1993 remnant Arctic stratospheric vortex by the Atmospheric Trace Molecule Spectroscopy (ATMOS) Fourier transform spectrometer are reported. In both instances, elevated volume mixing ratios (VMRS) of carbon monoxide (CO) were measured. A peak Antarctic CO VMR of 60 ppbv (where 1 ppbv = 10(exp -9) per unit Volume) was measured at a potential temperature of 710 K (about 27 km), about 1 km below the altitude of a pocket of elevated NO(y) (total reactive nitrogen) at a deep minimum in N2O (<5 ppbv). The Arctic observations also show a region of elevated vortex CO with a peak VMR of 90 ppbv it 630-670 K (-25 km) but no corresponding enhancement in NO(sub y) perhaps because of stronger dynamical activity in the northern hemisphere polar winter and/or interannual variability in the production of mesospheric or lower thermospheric NO. By comparing vortex and extravortex observations of NO(y) obtained at the same N2O VMR, Arctic vortex denitrification of 5 +/- 2 ppbv at 470 K (at approximately 18 km) is inferred. We show that our conclusion of substantial Arctic winter 1992-1993 denitrification is robust by comparing our extravortex observations with previous polar measurements obtained over a wide range of winter conditions. Correlations of NO(y) with N2O measured at the same potential temperature by ATMOS in the Arctic vortex and at midlatitudes on board the ER-2 aircraft several weeks later lie along the same mixing line. The result demonstrates the consistency of the two data sets and confirms that the ER-2 sampled fragments of the denitrified Arctic vortex following its breakup. An analysis of the ATMOS Arctic measurements of total hydrogen shows no evidence for significant dehydration inside the vortex.

  15. Ion colliders

    SciTech Connect

    Fischer, W.

    2011-12-01

    Ion colliders are research tools for high-energy nuclear physics, and are used to test the theory of Quantum Chromo Dynamics (QCD). The collisions of fully stripped high-energy ions create matter of a temperature and density that existed only microseconds after the Big Bang. Ion colliders can reach higher densities and temperatures than fixed target experiments although at a much lower luminosity. The first ion collider was the CERN Intersecting Storage Ring (ISR), which collided light ions [77Asb1, 81Bou1]. The BNL Relativistic Heavy Ion Collider (RHIC) is in operation since 2000 and has collided a number of species at numerous energies. The CERN Large Hadron Collider (LHC) started the heavy ion program in 2010. Table 1 shows all previous and the currently planned running modes for ISR, RHIC, and LHC. All three machines also collide protons, which are spin-polarized in RHIC. Ion colliders differ from proton or antiproton colliders in a number of ways: the preparation of the ions in the source and the pre-injector chain is limited by other effects than for protons; frequent changes in the collision energy and particle species, including asymmetric species, are typical; and the interaction of ions with each other and accelerator components is different from protons, which has implications for collision products, collimation, the beam dump, and intercepting instrumentation devices such a profile monitors. In the preparation for the collider use the charge state Z of the ions is successively increased to minimize the effects of space charge, intrabeam scattering (IBS), charge change effects (electron capture and stripping), and ion-impact desorption after beam loss. Low charge states reduce space charge, intrabeam scattering, and electron capture effects. High charge states reduce electron stripping, and make bending and acceleration more effective. Electron stripping at higher energies is generally more efficient. Table 2 shows the charge states and energies in the

  16. Electroweak and b-physics at the Tevatron collider

    SciTech Connect

    Hara, K.

    1994-04-01

    The CDF and D0 experiments have collected integrated luminosities of 21 pb{sup {minus}1} and 16 pb{sup {minus}1}, respectively, in the 1992--1993 run (Run Ia) at the Fermilab Tevatron. Preliminary results on electroweak physics are reported from both experiments: the W mass, the leptonic branching ratios {Tau}(W {yields} {ell}{nu}), the total W width, gauge boson couplings, W decay asymmetry and W{prime}/Z{prime} search. Preliminary new results on b physics are presented: B{sup o} {minus} {bar B}{sup o} mixing from D0, and masses and lifetimes of B{minus}mesons from CDF.

  17. ATLAS Run 1 searches for direct pair production of third-generation squarks at the Large Hadron Collider

    NASA Astrophysics Data System (ADS)

    Aad, G.; Abbott, B.; Abdallah, J.; Abdinov, O.; Aben, R.; Abolins, M.; AbouZeid, O. S.; Abramowicz, H.; Abreu, H.; Abreu, R.; Abulaiti, Y.; Acharya, B. S.; Adamczyk, L.; Adams, D. L.; Adelman, J.; Adomeit, S.; Adye, T.; Affolder, A. A.; Agatonovic-Jovin, T.; Agricola, J.; Aguilar-Saavedra, J. A.; Ahlen, S. P.; Ahmadov, F.; Aielli, G.; Akerstedt, H.; Åkesson, T. P. A.; Akimov, A. V.; Alberghi, G. L.; Albert, J.; Albrand, S.; Alconada Verzini, M. J.; Aleksa, M.; Aleksandrov, I. N.; Alexa, C.; Alexander, G.; Alexopoulos, T.; Alhroob, M.; Alimonti, G.; Alio, L.; Alison, J.; Alkire, S. P.; Allbrooke, B. M. M.; Allport, P. P.; Aloisio, A.; Alonso, A.; Alonso, F.; Alpigiani, C.; Altheimer, A.; Alvarez Gonzalez, B.; Álvarez Piqueras, D.; Alviggi, M. G.; Amadio, B. T.; Amako, K.; Amaral Coutinho, Y.; Amelung, C.; Amidei, D.; Amor Dos Santos, S. P.; Amorim, A.; Amoroso, S.; Amram, N.; Amundsen, G.; Anastopoulos, C.; Ancu, L. S.; Andari, N.; Andeen, T.; Anders, C. F.; Anders, G.; Anders, J. K.; Anderson, K. J.; Andreazza, A.; Andrei, V.; Angelidakis, S.; Angelozzi, I.; Anger, P.; Angerami, A.; Anghinolfi, F.; Anisenkov, A. V.; Anjos, N.; Annovi, A.; Antonelli, M.; Antonov, A.; Antos, J.; Anulli, F.; Aoki, M.; Aperio Bella, L.; Arabidze, G.; Arai, Y.; Araque, J. P.; Arce, A. T. H.; Arduh, F. A.; Arguin, J.-F.; Argyropoulos, S.; Arik, M.; Armbruster, A. J.; Arnaez, O.; Arnal, V.; Arnold, H.; Arratia, M.; Arslan, O.; Artamonov, A.; Artoni, G.; Asai, S.; Asbah, N.; Ashkenazi, A.; Åsman, B.; Asquith, L.; Assamagan, K.; Astalos, R.; Atkinson, M.; Atlay, N. B.; Auerbach, B.; Augsten, K.; Aurousseau, M.; Avolio, G.; Axen, B.; Ayoub, M. K.; Azuelos, G.; Baak, M. A.; Baas, A. E.; Baca, M. J.; Bacci, C.; Bachacou, H.; Bachas, K.; Backes, M.; Backhaus, M.; Bagiacchi, P.; Bagnaia, P.; Bai, Y.; Bain, T.; Baines, J. T.; Baker, O. K.; Baldin, E. M.; Balek, P.; Balestri, T.; Balli, F.; Banas, E.; Banerjee, Sw.; Bannoura, A. A. E.; Bansil, H. S.; Barak, L.; Barberio, E. L.; Barberis, D.; Barbero, M.; Barillari, T.; Barisonzi, M.; Barklow, T.; Barlow, N.; Barnes, S. L.; Barnett, B. M.; Barnett, R. M.; Barnovska, Z.; Baroncelli, A.; Barone, G.; Barr, A. J.; Barreiro, F.; Barreiro Guimarães da Costa, J.; Bartoldus, R.; Barton, A. E.; Bartos, P.; Basalaev, A.; Bassalat, A.; Basye, A.; Bates, R. L.; Batista, S. J.; Batley, J. R.; Battaglia, M.; Bauce, M.; Bauer, F.; Bawa, H. S.; Beacham, J. B.; Beattie, M. D.; Beau, T.; Beauchemin, P. H.; Beccherle, R.; Bechtle, P.; Beck, H. P.; Becker, K.; Becker, M.; Becker, S.; Beckingham, M.; Becot, C.; Beddall, A. J.; Beddall, A.; Bednyakov, V. A.; Bee, C. P.; Beemster, L. J.; Beermann, T. A.; Begel, M.; Behr, J. K.; Belanger-Champagne, C.; Bell, W. H.; Bella, G.; Bellagamba, L.; Bellerive, A.; Bellomo, M.; Belotskiy, K.; Beltramello, O.; Benary, O.; Benchekroun, D.; Bender, M.; Bendtz, K.; Benekos, N.; Benhammou, Y.; Benhar Noccioli, E.; Benitez Garcia, J. A.; Benjamin, D. P.; Bensinger, J. R.; Bentvelsen, S.; Beresford, L.; Beretta, M.; Berge, D.; Bergeaas Kuutmann, E.; Berger, N.; Berghaus, F.; Beringer, J.; Bernard, C.; Bernard, N. R.; Bernius, C.; Bernlochner, F. U.; Berry, T.; Berta, P.; Bertella, C.; Bertoli, G.; Bertolucci, F.; Bertsche, C.; Bertsche, D.; Besana, M. I.; Besjes, G. J.; Bessidskaia Bylund, O.; Bessner, M.; Besson, N.; Betancourt, C.; Bethke, S.; Bevan, A. J.; Bhimji, W.; Bianchi, R. M.; Bianchini, L.; Bianco, M.; Biebel, O.; Biedermann, D.; Bieniek, S. P.; Biglietti, M.; Bilbao De Mendizabal, J.; Bilokon, H.; Bindi, M.; Binet, S.; Bingul, A.; Bini, C.; Biondi, S.; Black, C. W.; Black, J. E.; Black, K. M.; Blackburn, D.; Blair, R. E.; Blanchard, J.-B.; Blanco, J. E.; Blazek, T.; Bloch, I.; Blocker, C.; Blum, W.; Blumenschein, U.; Bobbink, G. J.; Bobrovnikov, V. S.; Bocchetta, S. S.; Bocci, A.; Bock, C.; Boehler, M.; Bogaerts, J. A.; Bogavac, D.; Bogdanchikov, A. G.; Bohm, C.; Boisvert, V.; Bold, T.; Boldea, V.; Boldyrev, A. S.; Bomben, M.; Bona, M.; Boonekamp, M.; Borisov, A.; Borissov, G.; Borroni, S.; Bortfeldt, J.; Bortolotto, V.; Bos, K.; Boscherini, D.; Bosman, M.; Boudreau, J.; Bouffard, J.; Bouhova-Thacker, E. V.; Boumediene, D.; Bourdarios, C.; Bousson, N.; Boveia, A.; Boyd, J.; Boyko, I. R.; Bozic, I.; Bracinik, J.; Brandt, A.; Brandt, G.; Brandt, O.; Bratzler, U.; Brau, B.; Brau, J. E.; Braun, H. M.; Brazzale, S. F.; Breaden Madden, W. D.; Brendlinger, K.; Brennan, A. J.; Brenner, L.; Brenner, R.; Bressler, S.; Bristow, K.; Bristow, T. M.; Britton, D.; Britzger, D.; Brochu, F. M.; Brock, I.; Brock, R.; Bronner, J.; Brooijmans, G.; Brooks, T.; Brooks, W. K.; Brosamer, J.; Brost, E.; Brown, J.; Bruckman de Renstrom, P. A.; Bruncko, D.; Bruneliere, R.; Bruni, A.; Bruni, G.; Bruschi, M.; Bruscino, N.; Bryngemark, L.; Buanes, T.; Buat, Q.; Buchholz, P.; Buckley, A. G.; Buda, S. I.; Budagov, I. A.; Buehrer, F.; Bugge, L.; Bugge, M. K.; Bulekov, O.; Bullock, D.; Burckhart, H.; Burdin, S.; Burghgrave, B.; Burke, S.; Burmeister, I.; Busato, E.; Büscher, D.; Büscher, V.; Bussey, P.; Butler, J. M.; Butt, A. I.; Buttar, C. M.; Butterworth, J. M.; Butti, P.; Buttinger, W.; Buzatu, A.; Buzykaev, A. R.; Cabrera Urbán, S.; Caforio, D.; Cairo, V. M.; Cakir, O.; Calace, N.; Calafiura, P.; Calandri, A.; Calderini, G.; Calfayan, P.; Caloba, L. P.; Calvet, D.; Calvet, S.; Camacho Toro, R.; Camarda, S.; Camarri, P.; Cameron, D.; Caminal Armadans, R.; Campana, S.; Campanelli, M.; Campoverde, A.; Canale, V.; Canepa, A.; Cano Bret, M.; Cantero, J.; Cantrill, R.; Cao, T.; Capeans Garrido, M. D. M.; Caprini, I.; Caprini, M.; Capua, M.; Caputo, R.; Cardarelli, R.; Cardillo, F.; Carli, T.; Carlino, G.; Carminati, L.; Caron, S.; Carquin, E.; Carrillo-Montoya, G. D.; Carter, J. R.; Carvalho, J.; Casadei, D.; Casado, M. P.; Casolino, M.; Castaneda-Miranda, E.; Castelli, A.; Castillo Gimenez, V.; Castro, N. F.; Catastini, P.; Catinaccio, A.; Catmore, J. R.; Cattai, A.; Caudron, J.; Cavaliere, V.; Cavalli, D.; Cavalli-Sforza, M.; Cavasinni, V.; Ceradini, F.; Cerio, B. C.; Cerny, K.; Cerqueira, A. S.; Cerri, A.; Cerrito, L.; Cerutti, F.; Cerv, M.; Cervelli, A.; Cetin, S. A.; Chafaq, A.; Chakraborty, D.; Chalupkova, I.; Chang, P.; Chapman, J. D.; Charlton, D. G.; Chau, C. C.; Chavez Barajas, C. A.; Cheatham, S.; Chegwidden, A.; Chekanov, S.; Chekulaev, S. V.; Chelkov, G. A.; Chelstowska, M. A.; Chen, C.; Chen, H.; Chen, K.; Chen, L.; Chen, S.; Chen, X.; Chen, Y.; Cheng, H. C.; Cheng, Y.; Cheplakov, A.; Cheremushkina, E.; Cherkaoui El Moursli, R.; Chernyatin, V.; Cheu, E.; Chevalier, L.; Chiarella, V.; Chiarelli, G.; Childers, J. T.; Chiodini, G.; Chisholm, A. S.; Chislett, R. T.; Chitan, A.; Chizhov, M. V.; Choi, K.; Chouridou, S.; Chow, B. K. B.; Christodoulou, V.; Chromek-Burckhart, D.; Chudoba, J.; Chuinard, A. J.; Chwastowski, J. J.; Chytka, L.; Ciapetti, G.; Ciftci, A. K.; Cinca, D.; Cindro, V.; Cioara, I. A.; Ciocio, A.; Citron, Z. H.; Ciubancan, M.; Clark, A.; Clark, B. L.; Clark, P. J.; Clarke, R. N.; Cleland, W.; Clement, C.; Coadou, Y.; Cobal, M.; Coccaro, A.; Cochran, J.; Coffey, L.; Cogan, J. G.; Colasurdo, L.; Cole, B.; Cole, S.; Colijn, A. P.; Collot, J.; Colombo, T.; Compostella, G.; Conde Muiño, P.; Coniavitis, E.; Connell, S. H.; Connelly, I. A.; Consonni, S. M.; Consorti, V.; Constantinescu, S.; Conta, C.; Conti, G.; Conventi, F.; Cooke, M.; Cooper, B. D.; Cooper-Sarkar, A. M.; Cornelissen, T.; Corradi, M.; Corriveau, F.; Corso-Radu, A.; Cortes-Gonzalez, A.; Cortiana, G.; Costa, G.; Costa, M. J.; Costanzo, D.; Côté, D.; Cottin, G.; Cowan, G.; Cox, B. E.; Cranmer, K.; Cree, G.; Crépé-Renaudin, S.; Crescioli, F.; Cribbs, W. A.; Crispin Ortuzar, M.; Cristinziani, M.; Croft, V.; Crosetti, G.; Cuhadar Donszelmann, T.; Cummings, J.; Curatolo, M.; Cuthbert, C.; Czirr, H.; Czodrowski, P.; D'Auria, S.; D'Onofrio, M.; Da Cunha Sargedas De Sousa, M. J.; Da Via, C.; Dabrowski, W.; Dafinca, A.; Dai, T.; Dale, O.; Dallaire, F.; Dallapiccola, C.; Dam, M.; Dandoy, J. R.; Dang, N. P.; Daniells, A. C.; Danninger, M.; Dano Hoffmann, M.; Dao, V.; Darbo, G.; Darmora, S.; Dassoulas, J.; Dattagupta, A.; Davey, W.; David, C.; Davidek, T.; Davies, E.; Davies, M.; Davison, P.; Davygora, Y.; Dawe, E.; Dawson, I.; Daya-Ishmukhametova, R. K.; De, K.; de Asmundis, R.; De Benedetti, A.; De Castro, S.; De Cecco, S.; De Groot, N.; de Jong, P.; De la Torre, H.; De Lorenzi, F.; De Nooij, L.; De Pedis, D.; De Salvo, A.; De Sanctis, U.; De Santo, A.; De Vivie De Regie, J. B.; Dearnaley, W. J.; Debbe, R.; Debenedetti, C.; Dedovich, D. V.; Deigaard, I.; Del Peso, J.; Del Prete, T.; Delgove, D.; Deliot, F.; Delitzsch, C. M.; Deliyergiyev, M.; Dell'Acqua, A.; Dell'Asta, L.; Dell'Orso, M.; Della Pietra, M.; della Volpe, D.; Delmastro, M.; Delsart, P. A.; Deluca, C.; DeMarco, D. A.; Demers, S.; Demichev, M.; Demilly, A.; Denisov, S. P.; Derendarz, D.; Derkaoui, J. E.; Derue, F.; Dervan, P.; Desch, K.; Deterre, C.; Deviveiros, P. O.; Dewhurst, A.; Dhaliwal, S.; Di Ciaccio, A.; Di Ciaccio, L.; Di Domenico, A.; Di Donato, C.; Di Girolamo, A.; Di Girolamo, B.; Di Mattia, A.; Di Micco, B.; Di Nardo, R.; Di Simone, A.; Di Sipio, R.; Di Valentino, D.; Diaconu, C.; Diamond, M.; Dias, F. A.; Diaz, M. A.; Diehl, E. B.; Dietrich, J.; Diglio, S.; Dimitrievska, A.; Dingfelder, J.; Dita, P.; Dita, S.; Dittus, F.; Djama, F.; Djobava, T.; Djuvsland, J. I.; do Vale, M. A. B.; Dobos, D.; Dobre, M.; Doglioni, C.; Dohmae, T.; Dolejsi, J.; Dolezal, Z.; Dolgoshein, B. A.; Donadelli, M.; Donati, S.; Dondero, P.; Donini, J.; Dopke, J.; Doria, A.; Dova, M. T.; Doyle, A. T.; Drechsler, E.; Dris, M.; Dubreuil, E.; Duchovni, E.; Duckeck, G.; Ducu, O. A.; Duda, D.; Dudarev, A.; Duflot, L.; Duguid, L.; Dührssen, M.; Dunford, M.; Duran Yildiz, H.; Düren, M.; Durglishvili, A.; Duschinger, D.; Dyndal, M.; Eckardt, C.; Ecker, K. M.; Edgar, R. C.; Edson, W.; Edwards, N. C.; Ehrenfeld, W.; Eifert, T.; Eigen, G.; Einsweiler, K.; Ekelof, T.; El Kacimi, M.; Ellert, M.; Elles, S.; Ellinghaus, F.; Elliot, A. A.; Ellis, N.; Elmsheuser, J.; Elsing, M.; Emeliyanov, D.; Enari, Y.; Endner, O. C.; Endo, M.; Erdmann, J.; Ereditato, A.; Ernis, G.; Ernst, J.; Ernst, M.; Errede, S.; Ertel, E.; Escalier, M.; Esch, H.; Escobar, C.; Esposito, B.; Etienvre, A. I.; Etzion, E.; Evans, H.; Ezhilov, A.; Fabbri, L.; Facini, G.; Fakhrutdinov, R. M.; Falciano, S.; Falla, R. J.; Faltova, J.; Fang, Y.; Fanti, M.; Farbin, A.; Farilla, A.; Farooque, T.; Farrell, S.; Farrington, S. M.; Farthouat, P.; Fassi, F.; Fassnacht, P.; Fassouliotis, D.; Faucci Giannelli, M.; Favareto, A.; Fayard, L.; Federic, P.; Fedin, O. L.; Fedorko, W.; Feigl, S.; Feligioni, L.; Feng, C.; Feng, E. J.; Feng, H.; Fenyuk, A. B.; Feremenga, L.; Fernandez Martinez, P.; Fernandez Perez, S.; Ferrando, J.; Ferrari, A.; Ferrari, P.; Ferrari, R.; Ferreira de Lima, D. E.; Ferrer, A.; Ferrere, D.; Ferretti, C.; Ferretto Parodi, A.; Fiascaris, M.; Fiedler, F.; Filipčič, A.; Filipuzzi, M.; Filthaut, F.; Fincke-Keeler, M.; Finelli, K. D.; Fiolhais, M. C. N.; Fiorini, L.; Firan, A.; Fischer, A.; Fischer, C.; Fischer, J.; Fisher, W. C.; Fitzgerald, E. A.; Flaschel, N.; Fleck, I.; Fleischmann, P.; Fleischmann, S.; Fletcher, G. T.; Fletcher, G.; Fletcher, R. R. M.; Flick, T.; Floderus, A.; Flores Castillo, L. R.; Flowerdew, M. J.; Formica, A.; Forti, A.; Fournier, D.; Fox, H.; Fracchia, S.; Francavilla, P.; Franchini, M.; Francis, D.; Franconi, L.; Franklin, M.; Frate, M.; Fraternali, M.; Freeborn, D.; French, S. T.; Friedrich, F.; Froidevaux, D.; Frost, J. A.; Fukunaga, C.; Fullana Torregrosa, E.; Fulsom, B. G.; Fusayasu, T.; Fuster, J.; Gabaldon, C.; Gabizon, O.; Gabrielli, A.; Gabrielli, A.; Gach, G. P.; Gadatsch, S.; Gadomski, S.; Gagliardi, G.; Gagnon, P.; Galea, C.; Galhardo, B.; Gallas, E. J.; Gallop, B. J.; Gallus, P.; Galster, G.; Gan, K. K.; Gao, J.; Gao, Y.; Gao, Y. S.; Garay Walls, F. M.; Garberson, F.; García, C.; García Navarro, J. E.; Garcia-Sciveres, M.; Gardner, R. W.; Garelli, N.; Garonne, V.; Gatti, C.; Gaudiello, A.; Gaudio, G.; Gaur, B.; Gauthier, L.; Gauzzi, P.; Gavrilenko, I. L.; Gay, C.; Gaycken, G.; Gazis, E. N.; Ge, P.; Gecse, Z.; Gee, C. N. P.; Geerts, D. A. A.; Geich-Gimbel, Ch.; Geisler, M. P.; Gemme, C.; Genest, M. H.; Gentile, S.; George, M.; George, S.; Gerbaudo, D.; Gershon, A.; Ghasemi, S.; Ghazlane, H.; Giacobbe, B.; Giagu, S.; Giangiobbe, V.; Giannetti, P.; Gibbard, B.; Gibson, S. M.; Gilchriese, M.; Gillam, T. P. S.; Gillberg, D.; Gilles, G.; Gingrich, D. M.; Giokaris, N.; Giordani, M. P.; Giorgi, F. M.; Giorgi, F. M.; Giraud, P. F.; Giromini, P.; Giugni, D.; Giuliani, C.; Giulini, M.; Gjelsten, B. K.; Gkaitatzis, S.; Gkialas, I.; Gkougkousis, E. L.; Gladilin, L. K.; Glasman, C.; Glatzer, J.; Glaysher, P. C. F.; Glazov, A.; Goblirsch-Kolb, M.; Goddard, J. R.; Godlewski, J.; Goldfarb, S.; Golling, T.; Golubkov, D.; Gomes, A.; Gonçalo, R.; Goncalves Pinto Firmino Da Costa, J.; Gonella, L.; González de la Hoz, S.; Gonzalez Parra, G.; Gonzalez-Sevilla, S.; Goossens, L.; Gorbounov, P. A.; Gordon, H. A.; Gorelov, I.; Gorini, B.; Gorini, E.; Gorišek, A.; Gornicki, E.; Goshaw, A. T.; Gössling, C.; Gostkin, M. I.; Goujdami, D.; Goussiou, A. G.; Govender, N.; Gozani, E.; Grabas, H. M. X.; Graber, L.; Grabowska-Bold, I.; Gradin, P. O. J.; Grafström, P.; Grahn, K.-J.; Gramling, J.; Gramstad, E.; Grancagnolo, S.; Grassi, V.; Gratchev, V.; Gray, H. M.; Graziani, E.; Greenwood, Z. D.; Gregersen, K.; Gregor, I. M.; Grenier, P.; Griffiths, J.; Grillo, A. A.; Grimm, K.; Grinstein, S.; Gris, Ph.; Grivaz, J.-F.; Grohs, J. P.; Grohsjean, A.; Gross, E.; Grosse-Knetter, J.; Grossi, G. C.; Grout, Z. J.; Guan, L.; Guenther, J.; Guescini, F.; Guest, D.; Gueta, O.; Guido, E.; Guillemin, T.; Guindon, S.; Gul, U.; Gumpert, C.; Guo, J.; Guo, Y.; Gupta, S.; Gustavino, G.; Gutierrez, P.; Gutierrez Ortiz, N. G.; Gutschow, C.; Guyot, C.; Gwenlan, C.; Gwilliam, C. B.; Haas, A.; Haber, C.; Hadavand, H. K.; Haddad, N.; Haefner, P.; Hageböck, S.; Hajduk, Z.; Hakobyan, H.; Haleem, M.; Haley, J.; Hall, D.; Halladjian, G.; Hallewell, G. D.; Hamacher, K.; Hamal, P.; Hamano, K.; Hamer, M.; Hamilton, A.; Hamity, G. N.; Hamnett, P. G.; Han, L.; Hanagaki, K.; Hanawa, K.; Hance, M.; Hanke, P.; Hanna, R.; Hansen, J. B.; Hansen, J. D.; Hansen, M. C.; Hansen, P. H.; Hara, K.; Hard, A. S.; Harenberg, T.; Hariri, F.; Harkusha, S.; Harrington, R. D.; Harrison, P. F.; Hartjes, F.; Hasegawa, M.; Hasegawa, S.; Hasegawa, Y.; Hasib, A.; Hassani, S.; Haug, S.; Hauser, R.; Hauswald, L.; Havranek, M.; Hawkes, C. M.; Hawkings, R. J.; Hawkins, A. D.; Hayashi, T.; Hayden, D.; Hays, C. P.; Hays, J. M.; Hayward, H. S.; Haywood, S. J.; Head, S. J.; Heck, T.; Hedberg, V.; Heelan, L.; Heim, S.; Heim, T.; Heinemann, B.; Heinrich, L.; Hejbal, J.; Helary, L.; Hellman, S.; Hellmich, D.; Helsens, C.; Henderson, J.; Henderson, R. C. W.; Heng, Y.; Hengler, C.; Henrichs, A.; Henriques Correia, A. M.; Henrot-Versille, S.; Herbert, G. H.; Hernández Jiménez, Y.; Herrberg-Schubert, R.; Herten, G.; Hertenberger, R.; Hervas, L.; Hesketh, G. G.; Hessey, N. P.; Hetherly, J. W.; Hickling, R.; Higón-Rodriguez, E.; Hill, E.; Hill, J. C.; Hiller, K. H.; Hillier, S. J.; Hinchliffe, I.; Hines, E.; Hinman, R. R.; Hirose, M.; Hirschbuehl, D.; Hobbs, J.; Hod, N.; Hodgkinson, M. C.; Hodgson, P.; Hoecker, A.; Hoeferkamp, M. R.; Hoenig, F.; Hohlfeld, M.; Hohn, D.; Holmes, T. R.; Homann, M.; Hong, T. M.; Hooft van Huysduynen, L.; Hopkins, W. H.; Horii, Y.; Horton, A. J.; Hostachy, J.-Y.; Hou, S.; Hoummada, A.; Howard, J.; Howarth, J.; Hrabovsky, M.; Hristova, I.; Hrivnac, J.; Hryn'ova, T.; Hrynevich, A.; Hsu, C.; Hsu, P. J.; Hsu, S.-C.; Hu, D.; Hu, Q.; Hu, X.; Huang, Y.; Hubacek, Z.; Hubaut, F.; Huegging, F.; Huffman, T. B.; Hughes, E. W.; Hughes, G.; Huhtinen, M.; Hülsing, T. A.; Huseynov, N.; Huston, J.; Huth, J.; Iacobucci, G.; Iakovidis, G.; Ibragimov, I.; Iconomidou-Fayard, L.; Ideal, E.; Idrissi, Z.; Iengo, P.; Igonkina, O.; Iizawa, T.; Ikegami, Y.; Ikematsu, K.; Ikeno, M.; Ilchenko, Y.; Iliadis, D.; Ilic, N.; Ince, T.; Introzzi, G.; Ioannou, P.; Iodice, M.; Iordanidou, K.; Ippolito, V.; Irles Quiles, A.; Isaksson, C.; Ishino, M.; Ishitsuka, M.; Ishmukhametov, R.; Issever, C.; Istin, S.; Iturbe Ponce, J. M.; Iuppa, R.; Ivarsson, J.; Iwanski, W.; Iwasaki, H.; Izen, J. M.; Izzo, V.; Jabbar, S.; Jackson, B.; Jackson, M.; Jackson, P.; Jaekel, M. R.; Jain, V.; Jakobs, K.; Jakobsen, S.; Jakoubek, T.; Jakubek, J.; Jamin, D. O.; Jana, D. K.; Jansen, E.; Jansky, R.; Janssen, J.; Janus, M.; Jarlskog, G.; Javadov, N.; Javůrek, T.; Jeanty, L.; Jejelava, J.; Jeng, G.-Y.; Jennens, D.; Jenni, P.; Jentzsch, J.; Jeske, C.; Jézéquel, S.; Ji, H.; Jia, J.; Jiang, Y.; Jiggins, S.; Jimenez Pena, J.; Jin, S.; Jinaru, A.; Jinnouchi, O.; Joergensen, M. D.; Johansson, P.; Johns, K. A.; Jon-And, K.; Jones, G.; Jones, R. W. L.; Jones, T. J.; Jongmanns, J.; Jorge, P. M.; Joshi, K. D.; Jovicevic, J.; Ju, X.; Jung, C. A.; Jussel, P.; Juste Rozas, A.; Kaci, M.; Kaczmarska, A.; Kado, M.; Kagan, H.; Kagan, M.; Kahn, S. J.; Kajomovitz, E.; Kalderon, C. W.; Kama, S.; Kamenshchikov, A.; Kanaya, N.; Kaneti, S.; Kantserov, V. A.; Kanzaki, J.; Kaplan, B.; Kaplan, L. S.; Kapliy, A.; Kar, D.; Karakostas, K.; Karamaoun, A.; Karastathis, N.; Kareem, M. J.; Karentzos, E.; Karnevskiy, M.; Karpov, S. N.; Karpova, Z. M.; Karthik, K.; Kartvelishvili, V.; Karyukhin, A. N.; Kashif, L.; Kass, R. D.; Kastanas, A.; Kataoka, Y.; Katre, A.; Katzy, J.; Kawagoe, K.; Kawamoto, T.; Kawamura, G.; Kazama, S.; Kazanin, V. F.; Keeler, R.; Kehoe, R.; Keller, J. S.; Kempster, J. J.; Keoshkerian, H.; Kepka, O.; Kerševan, B. P.; Kersten, S.; Keyes, R. A.; Khalil-zada, F.; Khandanyan, H.; Khanov, A.; Kharlamov, A. G.; Khoo, T. J.; Khovanskiy, V.; Khramov, E.; Khubua, J.; Kim, H. Y.; Kim, H.; Kim, S. H.; Kim, Y.; Kimura, N.; Kind, O. M.; King, B. T.; King, M.; King, S. B.; Kirk, J.; Kiryunin, A. E.; Kishimoto, T.; Kisielewska, D.; Kiss, F.; Kiuchi, K.; Kivernyk, O.; Kladiva, E.; Klein, M. H.; Klein, M.; Klein, U.; Kleinknecht, K.; Klimek, P.; Klimentov, A.; Klingenberg, R.; Klinger, J. A.; Klioutchnikova, T.; Kluge, E.-E.; Kluit, P.; Kluth, S.; Knapik, J.; Kneringer, E.; Knoops, E. B. F. G.; Knue, A.; Kobayashi, A.; Kobayashi, D.; Kobayashi, T.; Kobel, M.; Kocian, M.; Kodys, P.; Koffas, T.; Koffeman, E.; Kogan, L. A.; Kohlmann, S.; Kohout, Z.; Kohriki, T.; Koi, T.; Kolanoski, H.; Koletsou, I.; Komar, A. A.; Komori, Y.; Kondo, T.; Kondrashova, N.; Köneke, K.; König, A. C.; Kono, T.; Konoplich, R.; Konstantinidis, N.; Kopeliansky, R.; Koperny, S.; Köpke, L.; Kopp, A. K.; Korcyl, K.; Kordas, K.; Korn, A.; Korol, A. A.; Korolkov, I.; Korolkova, E. V.; Kortner, O.; Kortner, S.; Kosek, T.; Kostyukhin, V. V.; Kotov, V. M.; Kotwal, A.; Kourkoumeli-Charalampidi, A.; Kourkoumelis, C.; Kouskoura, V.; Koutsman, A.; Kowalewski, R.; Kowalski, T. Z.; Kozanecki, W.; Kozhin, A. S.; Kramarenko, V. A.; Kramberger, G.; Krasnopevtsev, D.; Krasny, M. W.; Krasznahorkay, A.; Kraus, J. K.; Kravchenko, A.; Kreiss, S.; Kretz, M.; Kretzschmar, J.; Kreutzfeldt, K.; Krieger, P.; Krizka, K.; Kroeninger, K.; Kroha, H.; Kroll, J.; Kroseberg, J.; Krstic, J.; Kruchonak, U.; Krüger, H.; Krumnack, N.; Kruse, A.; Kruse, M. C.; Kruskal, M.; Kubota, T.; Kucuk, H.; Kuday, S.; Kuehn, S.; Kugel, A.; Kuger, F.; Kuhl, A.; Kuhl, T.; Kukhtin, V.; Kulchitsky, Y.; Kuleshov, S.; Kuna, M.; Kunigo, T.; Kupco, A.; Kurashige, H.; Kurochkin, Y. A.; Kus, V.; Kuwertz, E. S.; Kuze, M.; Kvita, J.; Kwan, T.; Kyriazopoulos, D.; La Rosa, A.; La Rosa Navarro, J. L.; La Rotonda, L.; Lacasta, C.; Lacava, F.; Lacey, J.; Lacker, H.; Lacour, D.; Lacuesta, V. R.; Ladygin, E.; Lafaye, R.; Laforge, B.; Lagouri, T.; Lai, S.; Lambourne, L.; Lammers, S.; Lampen, C. L.; Lampl, W.; Lançon, E.; Landgraf, U.; Landon, M. P. J.; Lang, V. S.; Lange, J. C.; Lankford, A. J.; Lanni, F.; Lantzsch, K.; Lanza, A.; Laplace, S.; Lapoire, C.; Laporte, J. F.; Lari, T.; Lasagni Manghi, F.; Lassnig, M.; Laurelli, P.; Lavrijsen, W.; Law, A. T.; Laycock, P.; Lazovich, T.; Le Dortz, O.; Le Guirriec, E.; Le Menedeu, E.; LeBlanc, M.; LeCompte, T.; Ledroit-Guillon, F.; Lee, C. A.; Lee, S. C.; Lee, L.; Lefebvre, G.; Lefebvre, M.; Legger, F.; Leggett, C.; Lehan, A.; Lehmann Miotto, G.; Lei, X.; Leight, W. A.; Leisos, A.; Leister, A. G.; Leite, M. A. L.; Leitner, R.; Lellouch, D.; Lemmer, B.; Leney, K. J. C.; Lenz, T.; Lenzi, B.; Leone, R.; Leone, S.; Leonidopoulos, C.; Leontsinis, S.; Lerner, G.; Leroy, C.; Lester, C. G.; Levchenko, M.; Levêque, J.; Levin, D.; Levinson, L. J.; Levy, M.; Lewis, A.; Leyko, A. M.; Leyton, M.; Li, B.; Li, H.; Li, H. L.; Li, L.; Li, L.; Li, S.; Li, Y.; Liang, Z.; Liao, H.; Liberti, B.; Liblong, A.; Lichard, P.; Lie, K.; Liebal, J.; Liebig, W.; Limbach, C.; Limosani, A.; Lin, S. C.; Lin, T. H.; Linde, F.; Lindquist, B. E.; Linnemann, J. T.; Lipeles, E.; Lipniacka, A.; Lisovyi, M.; Liss, T. M.; Lissauer, D.; Lister, A.; Litke, A. M.; Liu, B.; Liu, D.; Liu, H.; Liu, J.; Liu, J. B.; Liu, K.; Liu, L.; Liu, M.; Liu, M.; Liu, Y.; Livan, M.; Lleres, A.; Llorente Merino, J.; Lloyd, S. L.; Lo Sterzo, F.; Lobodzinska, E.; Loch, P.; Lockman, W. S.; Loebinger, F. K.; Loevschall-Jensen, A. E.; Loginov, A.; Lohse, T.; Lohwasser, K.; Lokajicek, M.; Long, B. A.; Long, J. D.; Long, R. E.; Looper, K. A.; Lopes, L.; Lopez Mateos, D.; Lopez Paredes, B.; Lopez Paz, I.; Lorenz, J.; Lorenzo Martinez, N.; Losada, M.; Loscutoff, P.; Lösel, P. J.; Lou, X.; Lounis, A.; Love, J.; Love, P. A.; Lu, N.; Lubatti, H. J.; Luci, C.; Lucotte, A.; Luehring, F.; Lukas, W.; Luminari, L.; Lundberg, O.; Lund-Jensen, B.; Lynn, D.; Lysak, R.; Lytken, E.; Ma, H.; Ma, L. L.; Maccarrone, G.; Macchiolo, A.; Macdonald, C. M.; Machado Miguens, J.; Macina, D.; Madaffari, D.; Madar, R.; Maddocks, H. J.; Mader, W. F.; Madsen, A.; Maeland, S.; Maeno, T.; Maevskiy, A.; Magradze, E.; Mahboubi, K.; Mahlstedt, J.; Maiani, C.; Maidantchik, C.; Maier, A. A.; Maier, T.; Maio, A.; Majewski, S.; Makida, Y.; Makovec, N.; Malaescu, B.; Malecki, Pa.; Maleev, V. P.; Malek, F.; Mallik, U.; Malon, D.; Malone, C.; Maltezos, S.; Malyshev, V. M.; Malyukov, S.; Mamuzic, J.; Mancini, G.; Mandelli, B.; Mandelli, L.; Mandić, I.; Mandrysch, R.; Maneira, J.; Manfredini, A.; Manhaes de Andrade Filho, L.; Manjarres Ramos, J.; Mann, A.; Manning, P. M.; Manousakis-Katsikakis, A.; Mansoulie, B.; Mantifel, R.; Mantoani, M.; Mapelli, L.; March, L.; Marchiori, G.; Marcisovsky, M.; Marino, C. P.; Marjanovic, M.; Marley, D. E.; Marroquim, F.; Marsden, S. P.; Marshall, Z.; Marti, L. F.; Marti-Garcia, S.; Martin, B.; Martin, T. A.; Martin, V. J.; Martin dit Latour, B.; Martinez, M.; Martin-Haugh, S.; Martoiu, V. S.; Martyniuk, A. C.; Marx, M.; Marzano, F.; Marzin, A.; Masetti, L.; Mashimo, T.; Mashinistov, R.; Masik, J.; Maslennikov, A. L.; Massa, I.; Massa, L.; Massol, N.; Mastrandrea, P.; Mastroberardino, A.; Masubuchi, T.; Mättig, P.; Mattmann, J.; Maurer, J.; Maxfield, S. J.; Maximov, D. A.; Mazini, R.; Mazza, S. M.; Mazzaferro, L.; Mc Goldrick, G.; Mc Kee, S. P.; McCarn, A.; McCarthy, R. L.; McCarthy, T. G.; McCubbin, N. A.; McFarlane, K. W.; Mcfayden, J. A.; Mchedlidze, G.; McMahon, S. J.; McPherson, R. A.; Medinnis, M.; Meehan, S.; Mehlhase, S.; Mehta, A.; Meier, K.; Meineck, C.; Meirose, B.; Mellado Garcia, B. R.; Meloni, F.; Mengarelli, A.; Menke, S.; Meoni, E.; Mercurio, K. M.; Mergelmeyer, S.; Mermod, P.; Merola, L.; Meroni, C.; Merritt, F. S.; Messina, A.; Metcalfe, J.; Mete, A. S.; Meyer, C.; Meyer, C.; Meyer, J.-P.; Meyer, J.; Middleton, R. P.; Miglioranzi, S.; Mijović, L.; Mikenberg, G.; Mikestikova, M.; Mikuž, M.; Milesi, M.; Milic, A.; Miller, D. W.; Mills, C.; Milov, A.; Milstead, D. A.; Minaenko, A. A.; Minami, Y.; Minashvili, I. A.; Mincer, A. I.; Mindur, B.; Mineev, M.; Ming, Y.; Mir, L. M.; Mitani, T.; Mitrevski, J.; Mitsou, V. A.; Miucci, A.; Miyagawa, P. S.; Mjörnmark, J. U.; Moa, T.; Mochizuki, K.; Mohapatra, S.; Mohr, W.; Molander, S.; Moles-Valls, R.; Mönig, K.; Monini, C.; Monk, J.; Monnier, E.; Montejo Berlingen, J.; Monticelli, F.; Monzani, S.; Moore, R. W.; Morange, N.; Moreno, D.; Moreno Llácer, M.; Morettini, P.; Morgenstern, M.; Mori, D.; Morii, M.; Morinaga, M.; Morisbak, V.; Moritz, S.; Morley, A. K.; Mornacchi, G.; Morris, J. D.; Mortensen, S. S.; Morton, A.; Morvaj, L.; Mosidze, M.; Moss, J.; Motohashi, K.; Mount, R.; Mountricha, E.; Mouraviev, S. V.; Moyse, E. J. W.; Muanza, S.; Mudd, R. D.; Mueller, F.; Mueller, J.; Mueller, R. S. P.; Mueller, T.; Muenstermann, D.; Mullen, P.; Mullier, G. A.; Murillo Quijada, J. A.; Murray, W. J.; Musheghyan, H.; Musto, E.; Myagkov, A. G.; Myska, M.; Nachman, B. P.; Nackenhorst, O.; Nadal, J.; Nagai, K.; Nagai, R.; Nagai, Y.; Nagano, K.; Nagarkar, A.; Nagasaka, Y.; Nagata, K.; Nagel, M.; Nagy, E.; Nairz, A. M.; Nakahama, Y.; Nakamura, K.; Nakamura, T.; Nakano, I.; Namasivayam, H.; Naranjo Garcia, R. F.; Narayan, R.; Naumann, T.; Navarro, G.; Nayyar, R.; Neal, H. A.; Nechaeva, P. Yu.; Neep, T. J.; Nef, P. D.; Negri, A.; Negrini, M.; Nektarijevic, S.; Nellist, C.; Nelson, A.; Nemecek, S.; Nemethy, P.; Nepomuceno, A. A.; Nessi, M.; Neubauer, M. S.; Neumann, M.; Neves, R. M.; Nevski, P.; Newman, P. R.; Nguyen, D. H.; Nickerson, R. B.; Nicolaidou, R.; Nicquevert, B.; Nielsen, J.; Nikiforou, N.; Nikiforov, A.; Nikolaenko, V.; Nikolic-Audit, I.; Nikolopoulos, K.; Nilsen, J. K.; Nilsson, P.; Ninomiya, Y.; Nisati, A.; Nisius, R.; Nobe, T.; Nomachi, M.; Nomidis, I.; Nooney, T.; Norberg, S.; Nordberg, M.; Novgorodova, O.; Nowak, S.; Nozaki, M.; Nozka, L.; Ntekas, K.; Nunes Hanninger, G.; Nunnemann, T.; Nurse, E.; Nuti, F.; O'Brien, B. J.; O'grady, F.; O'Neil, D. C.; O'Shea, V.; Oakham, F. G.; Oberlack, H.; Obermann, T.; Ocariz, J.; Ochi, A.; Ochoa, I.; Ochoa-Ricoux, J. P.; Oda, S.; Odaka, S.; Ogren, H.; Oh, A.; Oh, S. H.; Ohm, C. C.; Ohman, H.; Oide, H.; Okamura, W.; Okawa, H.; Okumura, Y.; Okuyama, T.; Olariu, A.; Olivares Pino, S. A.; Oliveira Damazio, D.; Oliver Garcia, E.; Olszewski, A.; Olszowska, J.; Onofre, A.; Onyisi, P. U. E.; Oram, C. J.; Oreglia, M. J.; Oren, Y.; Orestano, D.; Orlando, N.; Oropeza Barrera, C.; Orr, R. S.; Osculati, B.; Ospanov, R.; Otero y Garzon, G.; Otono, H.; Ouchrif, M.; Ouellette, E. A.; Ould-Saada, F.; Ouraou, A.; Oussoren, K. P.; Ouyang, Q.; Ovcharova, A.; Owen, M.; Owen, R. E.; Ozcan, V. E.; Ozturk, N.; Pachal, K.; Pacheco Pages, A.; Padilla Aranda, C.; Pagáčová, M.; Pagan Griso, S.; Paganis, E.; Paige, F.; Pais, P.; Pajchel, K.; Palacino, G.; Palestini, S.; Palka, M.; Pallin, D.; Palma, A.; Pan, Y. B.; Panagiotopoulou, E.; Pandini, C. E.; Panduro Vazquez, J. G.; Pani, P.; Panitkin, S.; Pantea, D.; Paolozzi, L.; Papadopoulou, Th. D.; Papageorgiou, K.; Paramonov, A.; Paredes Hernandez, D.; Parker, M. A.; Parker, K. A.; Parodi, F.; Parsons, J. A.; Parzefall, U.; Pasqualucci, E.; Passaggio, S.; Pastore, F.; Pastore, Fr.; Pásztor, G.; Pataraia, S.; Patel, N. D.; Pater, J. R.; Pauly, T.; Pearce, J.; Pearson, B.; Pedersen, L. E.; Pedersen, M.; Pedraza Lopez, S.; Pedro, R.; Peleganchuk, S. V.; Pelikan, D.; Penc, O.; Peng, C.; Peng, H.; Penning, B.; Penwell, J.; Perepelitsa, D. V.; Perez Codina, E.; Pérez García-Estañ, M. T.; Perini, L.; Pernegger, H.; Perrella, S.; Peschke, R.; Peshekhonov, V. D.; Peters, K.; Peters, R. F. Y.; Petersen, B. A.; Petersen, T. C.; Petit, E.; Petridis, A.; Petridou, C.; Petroff, P.; Petrolo, E.; Petrucci, F.; Pettersson, N. E.; Pezoa, R.; Phillips, P. W.; Piacquadio, G.; Pianori, E.; Picazio, A.; Piccaro, E.; Piccinini, M.; Pickering, M. A.; Piegaia, R.; Pignotti, D. T.; Pilcher, J. E.; Pilkington, A. D.; Pina, J.; Pinamonti, M.; Pinfold, J. L.; Pingel, A.; Pinto, B.; Pires, S.; Pirumov, H.; Pitt, M.; Pizio, C.; Plazak, L.; Pleier, M.-A.; Pleskot, V.; Plotnikova, E.; Plucinski, P.; Pluth, D.; Poettgen, R.; Poggioli, L.; Pohl, D.; Polesello, G.; Poley, A.; Policicchio, A.; Polifka, R.; Polini, A.; Pollard, C. S.; Polychronakos, V.; Pommès, K.; Pontecorvo, L.; Pope, B. G.; Popeneciu, G. A.; Popovic, D. S.; Poppleton, A.; Pospisil, S.; Potamianos, K.; Potrap, I. N.; Potter, C. J.; Potter, C. T.; Poulard, G.; Poveda, J.; Pozdnyakov, V.; Pralavorio, P.; Pranko, A.; Prasad, S.; Prell, S.; Price, D.; Price, L. E.; Primavera, M.; Prince, S.; Proissl, M.; Prokofiev, K.; Prokoshin, F.; Protopapadaki, E.; Protopopescu, S.; Proudfoot, J.; Przybycien, M.; Ptacek, E.; Puddu, D.; Pueschel, E.; Puldon, D.; Purohit, M.; Puzo, P.; Qian, J.; Qin, G.; Qin, Y.; Quadt, A.; Quarrie, D. R.; Quayle, W. B.; Queitsch-Maitland, M.; Quilty, D.; Raddum, S.; Radeka, V.; Radescu, V.; Radhakrishnan, S. K.; Radloff, P.; Rados, P.; Ragusa, F.; Rahal, G.; Rajagopalan, S.; Rammensee, M.; Rangel-Smith, C.; Rauscher, F.; Rave, S.; Ravenscroft, T.; Raymond, M.; Read, A. L.; Readioff, N. P.; Rebuzzi, D. M.; Redelbach, A.; Redlinger, G.; Reece, R.; Reeves, K.; Rehnisch, L.; Reichert, J.; Reisin, H.; Relich, M.; Rembser, C.; Ren, H.; Renaud, A.; Rescigno, M.; Resconi, S.; Rezanova, O. L.; Reznicek, P.; Rezvani, R.; Richter, R.; Richter, S.; Richter-Was, E.; Ricken, O.; Ridel, M.; Rieck, P.; Riegel, C. J.; Rieger, J.; Rijssenbeek, M.; Rimoldi, A.; Rinaldi, L.; Ristić, B.; Ritsch, E.; Riu, I.; Rizatdinova, F.; Rizvi, E.; Robertson, S. H.; Robichaud-Veronneau, A.; Robinson, D.; Robinson, J. E. M.; Robson, A.; Roda, C.; Roe, S.; Røhne, O.; Rolli, S.; Romaniouk, A.; Romano, M.; Romano Saez, S. M.; Romero Adam, E.; Rompotis, N.; Ronzani, M.; Roos, L.; Ros, E.; Rosati, S.; Rosbach, K.; Rose, P.; Rosendahl, P. L.; Rosenthal, O.; Rossetti, V.; Rossi, E.; Rossi, L. P.; Rosten, R.; Rotaru, M.; Roth, I.; Rothberg, J.; Rousseau, D.; Royon, C. R.; Rozanov, A.; Rozen, Y.; Ruan, X.; Rubbo, F.; Rubinskiy, I.; Rud, V. I.; Rudolph, C.; Rudolph, M. S.; Rühr, F.; Ruiz-Martinez, A.; Rurikova, Z.; Rusakovich, N. A.; Ruschke, A.; Russell, H. L.; Rutherfoord, J. P.; Ruthmann, N.; Ryabov, Y. F.; Rybar, M.; Rybkin, G.; Ryder, N. C.; Saavedra, A. F.; Sabato, G.; Sacerdoti, S.; Saddique, A.; Sadrozinski, H. F.-W.; Sadykov, R.; Safai Tehrani, F.; Saimpert, M.; Saito, T.; Sakamoto, H.; Sakurai, Y.; Salamanna, G.; Salamon, A.; Saleem, M.; Salek, D.; Sales De Bruin, P. H.; Salihagic, D.; Salnikov, A.; Salt, J.; Salvatore, D.; Salvatore, F.; Salvucci, A.; Salzburger, A.; Sammel, D.; Sampsonidis, D.; Sanchez, A.; Sánchez, J.; Sanchez Martinez, V.; Sandaker, H.; Sandbach, R. L.; Sander, H. G.; Sanders, M. P.; Sandhoff, M.; Sandoval, C.; Sandstroem, R.; Sankey, D. P. C.; Sannino, M.; Sansoni, A.; Santoni, C.; Santonico, R.; Santos, H.; Santoyo Castillo, I.; Sapp, K.; Sapronov, A.; Saraiva, J. G.; Sarrazin, B.; Sasaki, O.; Sasaki, Y.; Sato, K.; Sauvage, G.; Sauvan, E.; Savage, G.; Savard, P.; Sawyer, C.; Sawyer, L.; Saxon, J.; Sbarra, C.; Sbrizzi, A.; Scanlon, T.; Scannicchio, D. A.; Scarcella, M.; Scarfone, V.; Schaarschmidt, J.; Schacht, P.; Schaefer, D.; Schaefer, R.; Schaeffer, J.; Schaepe, S.; Schaetzel, S.; Schäfer, U.; Schaffer, A. C.; Schaile, D.; Schamberger, R. D.; Scharf, V.; Schegelsky, V. A.; Scheirich, D.; Schernau, M.; Schiavi, C.; Schillo, C.; Schioppa, M.; Schlenker, S.; Schmidt, E.; Schmieden, K.; Schmitt, C.; Schmitt, S.; Schmitt, S.; Schneider, B.; Schnellbach, Y. J.; Schnoor, U.; Schoeffel, L.; Schoening, A.; Schoenrock, B. D.; Schopf, E.; Schorlemmer, A. L. S.; Schott, M.; Schouten, D.; Schovancova, J.; Schramm, S.; Schreyer, M.; Schroeder, C.; Schuh, N.; Schultens, M. J.; Schultz-Coulon, H.-C.; Schulz, H.; Schumacher, M.; Schumm, B. A.; Schune, Ph.; Schwanenberger, C.; Schwartzman, A.; Schwarz, T. A.; Schwegler, Ph.; Schweiger, H.; Schwemling, Ph.; Schwienhorst, R.; Schwindling, J.; Schwindt, T.; Sciacca, F. G.; Scifo, E.; Sciolla, G.; Scuri, F.; Scutti, F.; Searcy, J.; Sedov, G.; Sedykh, E.; Seema, P.; Seidel, S. C.; Seiden, A.; Seifert, F.; Seixas, J. M.; Sekhniaidze, G.; Sekhon, K.; Sekula, S. J.; Seliverstov, D. M.; Semprini-Cesari, N.; Serfon, C.; Serin, L.; Serkin, L.; Serre, T.; Sessa, M.; Seuster, R.; Severini, H.; Sfiligoj, T.; Sforza, F.; Sfyrla, A.; Shabalina, E.; Shamim, M.; Shan, L. Y.; Shang, R.; Shank, J. T.; Shapiro, M.; Shatalov, P. B.; Shaw, K.; Shaw, S. M.; Shcherbakova, A.; Shehu, C. Y.; Sherwood, P.; Shi, L.; Shimizu, S.; Shimmin, C. O.; Shimojima, M.; Shiyakova, M.; Shmeleva, A.; Shoaleh Saadi, D.; Shochet, M. J.; Shojaii, S.; Shrestha, S.; Shulga, E.; Shupe, M. A.; Shushkevich, S.; Sicho, P.; Sidebo, P. E.; Sidiropoulou, O.; Sidorov, D.; Sidoti, A.; Siegert, F.; Sijacki, Dj.; Silva, J.; Silver, Y.; Silverstein, S. B.; Simak, V.; Simard, O.; Simic, Lj.; Simion, S.; Simioni, E.; Simmons, B.; Simon, D.; Simoniello, R.; Sinervo, P.; Sinev, N. B.; Sioli, M.; Siragusa, G.; Sisakyan, A. N.; Sivoklokov, S. Yu.; Sjölin, J.; Sjursen, T. B.; Skinner, M. B.; Skottowe, H. P.; Skubic, P.; Slater, M.; Slavicek, T.; Slawinska, M.; Sliwa, K.; Smakhtin, V.; Smart, B. H.; Smestad, L.; Smirnov, S. Yu.; Smirnov, Y.; Smirnova, L. N.; Smirnova, O.; Smith, M. N. K.; Smith, R. W.; Smizanska, M.; Smolek, K.; Snesarev, A. A.; Snidero, G.; Snyder, S.; Sobie, R.; Socher, F.; Soffer, A.; Soh, D. A.; Solans, C. A.; Solar, M.; Solc, J.; Soldatov, E. Yu.; Soldevila, U.; Solodkov, A. A.; Soloshenko, A.; Solovyanov, O. V.; Solovyev, V.; Sommer, P.; Song, H. Y.; Soni, N.; Sood, A.; Sopczak, A.; Sopko, B.; Sopko, V.; Sorin, V.; Sosa, D.; Sosebee, M.; Sotiropoulou, C. L.; Soualah, R.; Soukharev, A. M.; South, D.; Sowden, B. C.; Spagnolo, S.; Spalla, M.; Spanò, F.; Spearman, W. R.; Sperlich, D.; Spettel, F.; Spighi, R.; Spigo, G.; Spiller, L. A.; Spousta, M.; Spreitzer, T.; St. Denis, R. D.; Staerz, S.; Stahlman, J.; Stamen, R.; Stamm, S.; Stanecka, E.; Stanescu, C.; Stanescu-Bellu, M.; Stanitzki, M. M.; Stapnes, S.; Starchenko, E. A.; Stark, J.; Staroba, P.; Starovoitov, P.; Staszewski, R.; Stavina, P.; Steinberg, P.; Stelzer, B.; Stelzer, H. J.; Stelzer-Chilton, O.; Stenzel, H.; Stewart, G. A.; Stillings, J. A.; Stockton, M. C.; Stoebe, M.; Stoicea, G.; Stolte, P.; Stonjek, S.; Stradling, A. R.; Straessner, A.; Stramaglia, M. E.; Strandberg, J.; Strandberg, S.; Strandlie, A.; Strauss, E.; Strauss, M.; Strizenec, P.; Ströhmer, R.; Strom, D. M.; Stroynowski, R.; Strubig, A.; Stucci, S. A.; Stugu, B.; Styles, N. A.; Su, D.; Su, J.; Subramaniam, R.; Succurro, A.; Sugaya, Y.; Suhr, C.; Suk, M.; Sulin, V. V.; Sultansoy, S.; Sumida, T.; Sun, S.; Sun, X.; Sundermann, J. E.; Suruliz, K.; Susinno, G.; Sutton, M. R.; Suzuki, S.; Svatos, M.; Swedish, S.; Swiatlowski, M.; Sykora, I.; Sykora, T.; Ta, D.; Taccini, C.; Tackmann, K.; Taenzer, J.; Taffard, A.; Tafirout, R.; Taiblum, N.; Takai, H.; Takashima, R.; Takeda, H.; Takeshita, T.; Takubo, Y.; Talby, M.; Talyshev, A. A.; Tam, J. Y. C.; Tan, K. G.; Tanaka, J.; Tanaka, R.; Tanaka, S.; Tannenwald, B. B.; Tannoury, N.; Tapprogge, S.; Tarem, S.; Tarrade, F.; Tartarelli, G. F.; Tas, P.; Tasevsky, M.; Tashiro, T.; Tassi, E.; Tavares Delgado, A.; Tayalati, Y.; Taylor, F. E.; Taylor, G. N.; Taylor, W.; Teischinger, F. A.; Teixeira Dias Castanheira, M.; Teixeira-Dias, P.; Temming, K. K.; Ten Kate, H.; Teng, P. K.; Teoh, J. J.; Tepel, F.; Terada, S.; Terashi, K.; Terron, J.; Terzo, S.; Testa, M.; Teuscher, R. J.; Theveneaux-Pelzer, T.; Thomas, J. P.; Thomas-Wilsker, J.; Thompson, E. N.; Thompson, P. D.; Thompson, R. J.; Thompson, A. S.; Thomsen, L. A.; Thomson, E.; Thomson, M.; Thun, R. P.; Tibbetts, M. J.; Ticse Torres, R. E.; Tikhomirov, V. O.; Tikhonov, Yu. A.; Timoshenko, S.; Tiouchichine, E.; Tipton, P.; Tisserant, S.; Todome, K.; Todorov, T.; Todorova-Nova, S.; Tojo, J.; Tokár, S.; Tokushuku, K.; Tollefson, K.; Tolley, E.; Tomlinson, L.; Tomoto, M.; Tompkins, L.; Toms, K.; Torrence, E.; Torres, H.; Torró Pastor, E.; Toth, J.; Touchard, F.; Tovey, D. R.; Trefzger, T.; Tremblet, L.; Tricoli, A.; Trigger, I. M.; Trincaz-Duvoid, S.; Tripiana, M. F.; Trischuk, W.; Trocmé, B.; Troncon, C.; Trottier-McDonald, M.; Trovatelli, M.; True, P.; Truong, L.; Trzebinski, M.; Trzupek, A.; Tsarouchas, C.; Tseng, J. C.-L.; Tsiareshka, P. V.; Tsionou, D.; Tsipolitis, G.; Tsirintanis, N.; Tsiskaridze, S.; Tsiskaridze, V.; Tskhadadze, E. G.; Tsukerman, I. I.; Tsulaia, V.; Tsuno, S.; Tsybychev, D.; Tudorache, A.; Tudorache, V.; Tuna, A. N.; Tupputi, S. A.; Turchikhin, S.; Turecek, D.; Turra, R.; Turvey, A. J.; Tuts, P. M.; Tykhonov, A.; Tylmad, M.; Tyndel, M.; Ueda, I.; Ueno, R.; Ughetto, M.; Ugland, M.; Uhlenbrock, M.; Ukegawa, F.; Unal, G.; Undrus, A.; Unel, G.; Ungaro, F. C.; Unno, Y.; Unverdorben, C.; Urban, J.; Urquijo, P.; Urrejola, P.; Usai, G.; Usanova, A.; Vacavant, L.; Vacek, V.; Vachon, B.; Valderanis, C.; Valencic, N.; Valentinetti, S.; Valero, A.; Valery, L.; Valkar, S.; Valladolid Gallego, E.; Vallecorsa, S.; Valls Ferrer, J. A.; Van Den Wollenberg, W.; Van Der Deijl, P. C.; van der Geer, R.; van der Graaf, H.; Van Der Leeuw, R.; van Eldik, N.; van Gemmeren, P.; Van Nieuwkoop, J.; van Vulpen, I.; van Woerden, M. C.; Vanadia, M.; Vandelli, W.; Vanguri, R.; Vaniachine, A.; Vannucci, F.; Vardanyan, G.; Vari, R.; Varnes, E. W.; Varol, T.; Varouchas, D.; Vartapetian, A.; Varvell, K. E.; Vazeille, F.; Vazquez Schroeder, T.; Veatch, J.; Veloce, L. M.; Veloso, F.; Velz, T.; Veneziano, S.; Ventura, A.; Ventura, D.; Venturi, M.; Venturi, N.; Venturini, A.; Vercesi, V.; Verducci, M.; Verkerke, W.; Vermeulen, J. C.; Vest, A.; Vetterli, M. C.; Viazlo, O.; Vichou, I.; Vickey, T.; Vickey Boeriu, O. E.; Viehhauser, G. H. A.; Viel, S.; Vigne, R.; Villa, M.; Villaplana Perez, M.; Vilucchi, E.; Vincter, M. G.; Vinogradov, V. B.; Vivarelli, I.; Vives Vaque, F.; Vlachos, S.; Vladoiu, D.; Vlasak, M.; Vogel, M.; Vokac, P.; Volpi, G.; Volpi, M.; von der Schmitt, H.; von Radziewski, H.; von Toerne, E.; Vorobel, V.; Vorobev, K.; Vos, M.; Voss, R.; Vossebeld, J. H.; Vranjes, N.; Vranjes Milosavljevic, M.; Vrba, V.; Vreeswijk, M.; Vuillermet, R.; Vukotic, I.; Vykydal, Z.; Wagner, P.; Wagner, W.; Wahlberg, H.; Wahrmund, S.; Wakabayashi, J.; Walder, J.; Walker, R.; Walkowiak, W.; Wang, C.; Wang, F.; Wang, H.; Wang, H.; Wang, J.; Wang, J.; Wang, K.; Wang, R.; Wang, S. M.; Wang, T.; Wang, T.; Wang, X.; Wanotayaroj, C.; Warburton, A.; Ward, C. P.; Wardrope, D. R.; Warsinsky, M.; Washbrook, A.; Wasicki, C.; Watkins, P. M.; Watson, A. T.; Watson, I. J.; Watson, M. F.; Watts, G.; Watts, S.; Waugh, B. M.; Webb, S.; Weber, M. S.; Weber, S. W.; Webster, J. S.; Weidberg, A. R.; Weinert, B.; Weingarten, J.; Weiser, C.; Weits, H.; Wells, P. S.; Wenaus, T.; Wengler, T.; Wenig, S.; Wermes, N.; Werner, M.; Werner, P.; Wessels, M.; Wetter, J.; Whalen, K.; Wharton, A. M.; White, A.; White, M. J.; White, R.; White, S.; Whiteson, D.; Wickens, F. J.; Wiedenmann, W.; Wielers, M.; Wienemann, P.; Wiglesworth, C.; Wiik-Fuchs, L. A. M.; Wildauer, A.; Wilkens, H. G.; Williams, H. H.; Williams, S.; Willis, C.; Willocq, S.; Wilson, A.; Wilson, J. A.; Wingerter-Seez, I.; Winklmeier, F.; Winter, B. T.; Wittgen, M.; Wittkowski, J.; Wollstadt, S. J.; Wolter, M. W.; Wolters, H.; Wosiek, B. K.; Wotschack, J.; Woudstra, M. J.; Wozniak, K. W.; Wu, M.; Wu, M.; Wu, S. L.; Wu, X.; Wu, Y.; Wyatt, T. R.; Wynne, B. M.; Xella, S.; Xu, D.; Xu, L.; Yabsley, B.; Yacoob, S.; Yakabe, R.; Yamada, M.; Yamaguchi, Y.; Yamamoto, A.; Yamamoto, S.; Yamanaka, T.; Yamauchi, K.; Yamazaki, Y.; Yan, Z.; Yang, H.; Yang, H.; Yang, Y.; Yao, W.-M.; Yasu, Y.; Yatsenko, E.; Yau Wong, K. H.; Ye, J.; Ye, S.; Yeletskikh, I.; Yen, A. L.; Yildirim, E.; Yorita, K.; Yoshida, R.; Yoshihara, K.; Young, C.; Young, C. J. S.; Youssef, S.; Yu, D. R.; Yu, J.; Yu, J. M.; Yu, J.; Yuan, L.; Yuen, S. P. Y.; Yurkewicz, A.; Yusuff, I.; Zabinski, B.; Zaidan, R.; Zaitsev, A. M.; Zalieckas, J.; Zaman, A.; Zambito, S.; Zanello, L.; Zanzi, D.; Zeitnitz, C.; Zeman, M.; Zemla, A.; Zengel, K.; Zenin, O.; Ženiš, T.; Zerwas, D.; Zhang, D.; Zhang, F.; Zhang, H.; Zhang, J.; Zhang, L.; Zhang, R.; Zhang, X.; Zhang, Z.; Zhao, X.; Zhao, Y.; Zhao, Z.; Zhemchugov, A.; Zhong, J.; Zhou, B.; Zhou, C.; Zhou, L.; Zhou, L.; Zhou, N.; Zhu, C. G.; Zhu, H.; Zhu, J.; Zhu, Y.; Zhuang, X.; Zhukov, K.; Zibell, A.; Zieminska, D.; Zimine, N. I.; Zimmermann, C.; Zimmermann, S.; Zinonos, Z.; Zinser, M.; Ziolkowski, M.; Živković, L.; Zobernig, G.; Zoccoli, A.; zur Nedden, M.; Zurzolo, G.; Zwalinski, L.

    2015-10-01

    This paper reviews and extends searches for the direct pair production of the scalar supersymmetric partners of the top and bottom quarks in proton-proton collisions collected by the ATLAS collaboration during the LHC Run 1. Most of the analyses use 20 {fb^{-1}} of collisions at a centre-of-mass energy of √{s} = 8 TeV, although in some case an additional 4.7 {fb^{-1}} of collision data at √{s}= 7 TeV are used. New analyses are introduced to improve the sensitivity to specific regions of the model parameter space. Since no evidence of third-generation squarks is found, exclusion limits are derived by combining several analyses and are presented in both a simplified model framework, assuming simple decay chains, as well as within the context of more elaborate phenomenological supersymmetric models.

  18. Electronics and electrical engineering laboratory technical publication announcements covering laboratory programs, April to June 1992, with 1992/1993 EEEL events calendar

    NASA Astrophysics Data System (ADS)

    Walters, E. J.

    1992-12-01

    The document is the thirty-third issue of a quarterly publication providing information on the technical work of the National Institute of Standards and Technology Electronics and Electrical Engineering Laboratory (EEEL). This issue of the EEEL Technical Publication Announcements covers the second quarter of calendar year 1992. It contains citations and abstracts for Laboratory publications published in the quarter. Entries are arranged by technical topic and alphabetically by first author within each topic. Major topics include: Fundamental Electrical Measurements; Semiconductor Microelectronics; Signal Acquisition, Processing, and Transmission; Electrical Systems; Electromagnetic Interference. Following each abstract is the name and telephone number of the individual to contact for more information on the topic. The issue also includes a calendar of Laboratory conferences and workshops planned for calendar year 1992/1993 and a list of sponsors of the work.

  19. Hawaii Annual Performance Report for Vocational Education: 1992-1993 for the Vocational Education State-Administered Program under the Carl D. Perkins Vocational and Applied Technology Education Act of 1990.

    ERIC Educational Resources Information Center

    Hawaii State Board for Vocational Education, Honolulu.

    During the 1992-1993 school year, vocational/occupational education in Hawaii took place primarily at 39 secondary schools, 7 community colleges, and the Employment Training Center. Training was provided in the following generic skill areas: agriculture/aquaculture, business, construction, electrical/electronic, technical/graphic, mechanical, and…

  20. Methodology for developing Version 2.0 of the MECcheck{trademark} materials for the 1992, 1993, and 1995 Model Energy Codes

    SciTech Connect

    Connell, L.M.; Lucas, R.G.; Taylor, Z.T.

    1996-06-01

    To help builders comply with the Council of American Building Officials (CABO) Model Energy Code (MEC), and to help code officials enforce the MEC requirements, the US Department of Energy (DOE) directed Pacific Northwest National Laboratory (PNNL) to develop the MECcheck{trademark} compliance materials. The materials include a compliance and enforcement manual for all the MEC requirements, prescriptive packages, software, and a trade-off worksheet (included in the compliance manual) to help comply with the thermal envelope requirements. The materials can be used for single-family and low- rise multifamily dwellings. The materials allow building energy efficiency measures (such as insulation levels) to be ``traded off`` against each other, allowing a wide variety of building designs to comply with the MEC. The materials were developed to provide compliance methods that are easy to use and understand. MECcheck compliance materials have been developed for three different editions of the MEC: the 1992, 1993, and 1995 editions. Although some requirements contained in the 1992, 1993, and 1995 MEC changed, the methodology used to develop the MECcheck materials for these three editions is essentially identical. This document explains the methodology used to produce the three MECcheck compliance approaches for meeting the MEC`s thermal envelope requirements--the prescriptive package approach, the software approach, and the trade-off approach. The MECcheck material are largely oriented to assisting the builder in meeting the most complicated part of the MEC--the building envelope U{sub o}-, U-, and R-value requirements in Section 502 of the MEC. This document details the calculations and assumptions underlying the treatment of the MEC requirements in MECcheck, with a major emphasis on the building envelope requirements.

  1. The Insertable B-Layer of the ATLAS experiment for the Run-2 at the Large Hadron Collider

    NASA Astrophysics Data System (ADS)

    Guescini, Francesco

    2015-10-01

    The Pixel Detector of the ATLAS experiment has shown excellent performance during the whole Run-1 of LHC. Taking advantage of the long shutdown, the detector was extracted from the experiment and brought to surface, to equip it with new Service Quarter Panels, to repair modules and to ease installation of the Insertable B-Layer (IBL). IBL is a fourth layer of pixel detectors and has been installed in May 2014 between the existing Pixel Detector and a new smaller radius beam pipe at a radial distance of 3.3 cm from the beam axis. The realization of the IBL required the development of several new technologies and solutions in order to overcome the challenges introduced by the extreme environment and working conditions, such as the high radiation levels, the high pixel occupancy and the need of an exceptionally low material budget. Two silicon sensor technologies have been adopted for the IBL modules: planar and 3D. Both of these are connected via bump-bonding to the new FE-I4 front-end read-out chip. Furthermore, the physics performance will be improved through the reduction of pixel size while, targeting for a low material budget, a new mechanical support using lightweight staves and a CO2 based cooling system have been adopted. An overview of the IBL project as well as the experience in its construction is presented, focusing on adopted technologies, modules and staves production, qualification of assembly procedure, integration of staves around the beam pipe and commissioning of the detector.

  2. Collider physics

    SciTech Connect

    Not Available

    1991-01-01

    This past year our group participated in both the D0 experiment at Fermilab and the SDC experiment at the SSC. Most of our effort was concentrated on the D0 project, where we contributed as much manpower as possible to the commissioning of the detector in preparation for the coming collider run. Our SDC work consisted of the investigation of one of the candidate technologies for the forward calorimeter. On the D0 experiment, our primary responsibilities have been in the areas of electronics commissioning and in the establishment of triggers for the coming collider run. We have also actively participated in the physics studies and have contributed to the upgrade effort as much as time has permitted. Our group has also participated in the cosmic ray run and in the D0 test beam. In view of our contributions, James White was selected as a member of the D0 Trigger board, and Jay Wightman is being trained as one of the global experts'' who are responsible for keeping the detector operational during the run. In addition, Amber Boehnlein has played a major role in the Level-2 trigger commissioning. A more detailed description of these activities is given in this paper.

  3. OATYC Journal, 1992-1993.

    ERIC Educational Resources Information Center

    Fullen, Jim, Ed.

    1993-01-01

    The OATYC Journal provides the two-year colleges of Ohio with a medium for discussing problems and sharing concepts, methods, and findings relevant to the two-year college classroom. The fall 1992 and spring 1993 issues contain: "What We Are Doing Right: Can We Do It All?," by Linda Houston; "Campus Profile: A Walk through Shawnee State…

  4. PETRA Yearbook 1992-1993.

    ERIC Educational Resources Information Center

    Commission of the European Communities, Brussels (Belgium).

    This yearbook of PETRA, the European Community's program for providing youths with vocational training and preparing them for adulthood and work, contains 14 articles: "PETRA's Added Value" (Welbers); "Beyond the Fallen Wall" (Hanf); "Project Report: A Flyweight Becomes a Bricklayer"; "PETRA's Southern Tip" (Kourkouta, Chatzipanagiotou);…

  5. Exotic colliders

    SciTech Connect

    Chattopadhyay, S.

    1994-11-01

    The motivation, feasibility and potential for two unconventional collider concepts - the Gamma-Gamma Collider and the Muon Collider - are described. The importance of the development of associated technologies such as high average power, high repetition rate lasers and ultrafast phase-space techniques are outlined.

  6. Linear Colliders

    NASA Astrophysics Data System (ADS)

    Yamamoto, Akira; Yokoya, Kaoru

    2015-02-01

    An overview of linear collider programs is given. The history and technical challenges are described and the pioneering electron-positron linear collider, the SLC, is first introduced. For future energy frontier linear collider projects, the International Linear Collider (ILC) and the Compact Linear Collider (CLIC) are introduced and their technical features are discussed. The ILC is based on superconducting RF technology and the CLIC is based on two-beam acceleration technology. The ILC collaboration completed the Technical Design Report in 2013, and has come to the stage of "Design to Reality." The CLIC collaboration published the Conceptual Design Report in 2012, and the key technology demonstration is in progress. The prospects for further advanced acceleration technology are briefly discussed for possible long-term future linear colliders.

  7. Linear Colliders

    NASA Astrophysics Data System (ADS)

    Yamamoto, Akira; Yokoya, Kaoru

    An overview of linear collider programs is given. The history and technical challenges are described and the pioneering electron-positron linear collider, the SLC, is first introduced. For future energy frontier linear collider projects, the International Linear Collider (ILC) and the Compact Linear Collider (CLIC) are introduced and their technical features are discussed. The ILC is based on superconducting RF technology and the CLIC is based on two-beam acceleration technology. The ILC collaboration completed the Technical Design Report in 2013, and has come to the stage of "Design to Reality." The CLIC collaboration published the Conceptual Design Report in 2012, and the key technology demonstration is in progress. The prospects for further advanced acceleration technology are briefly discussed for possible long-term future linear colliders.

  8. Muon colliders

    SciTech Connect

    Palmer, R.B. |; Sessler, A.; Skrinsky, A.

    1996-01-01

    Muon Colliders have unique technical and physics advantages and disadvantages when compared with both hadron and electron machines. They should thus be regarded as complementary. Parameters are given of 4 TeV and 0.5 TeV high luminosity {micro}{sup +}{micro}{sup {minus}}colliders, and of a 0.5 TeV lower luminosity demonstration machine. We discuss the various systems in such muon colliders, starting from the proton accelerator needed to generate the muons and proceeding through muon cooling, acceleration and storage in a collider ring. Problems of detector background are also discussed.

  9. Measurement of σ(p$\\bar{p}$ -> t$\\bar{t}$) in the τ + jets channel by the D0 experiment at Run II of the Tevatron Collider

    SciTech Connect

    Arov, Mikhail

    2008-07-01

    The top quark is the heaviest and most mysterious of the known elementary particles. Therefore, careful study of its production rate and other properties is of utmost importance for modern particle physics. The Tevatron is the only facility currently capable of studying top quark properties by on-shell production. Measurement of the top quark pair production cross section is one of the major goals of the Tevatron Run II physics program. It provides an excellent test of QCD at energies exceeding 100 GeV. We report on a new measurement of p$\\bar{p}$ → t$\\bar{t}$ production at √s = 1.96 TeV using 350 pb-1 of data collected with the D0 detector between 2002 and 2005. We focus on the final state where a W boson from one of the top quarks decays into a τ lepton and its associated neutrino, while the other decays into a quark-antiquark pair. We aim to select those events in which the τ lepton subsequently decays to one or three charged hadrons, zero or more neutral hadrons and a tau neutrino (the charge conjugate processes are implied in all of the above). The observable signature thus consists of a narrow calorimeter shower with associated track(s) characteristic of a hadronic tau decay, four or more jets, of which two are initiated by b quarks accompanying the W's in the top quark decays, and a large net missing momentum in the transverse plane due to the energetic neutrino-antineutrino pair that leave no trace in the detector media. The preliminary result for the measured cross section is: σ(t$\\bar{t}$) = 5.1$+4.3\\atop{-3.5}$(stat) $+0.7\\atop{-0.7}$(syst) ± 0.3 (lumi.) pb.

  10. Muon Collider

    SciTech Connect

    Palmer, R.

    2009-10-19

    Parameters are given of muon colliders with center of mass energies of 1.5 and 3 TeV. Pion production is from protons on a mercury target. Capture, decay, and phase rotation yields bunch trains of both muon signs. Six dimensional cooling reduces the emittances until the trains are merged into single bunches, one of each sign. Further cooling in 6 dimensions is then applied, followed by final transverse cooling in 50 T solenoids. After acceleration the muons enter the collider ring. Ongoing R&D is discussed.

  11. Collider Physics an Experimental Introduction

    NASA Astrophysics Data System (ADS)

    Elvezio Pagliarone, Carmine

    2011-04-01

    This paper reviews shortly a small part of the contents of a set of lectures, presented at the XIV International School of Particles and Fields in Morelia, state of Michoacán, Mexico, during November 2010. The main goal of those lectures was to introduce students to some of the basic ideas and tools required for experimental and phenomenological analysis of collider data. In particular, after an introduction to the scientific motivations, that drives the construction of powerful accelerator complexes, and the need of reaching high center of mass energies and luminosities, some basic concept about collider particle detectors will be discussed. A status about the present running colliders and collider experiments as well as future plans and research and development is also given.

  12. Quantum-beamsstrahlung laser collider

    SciTech Connect

    Tajima, T.; Chattopadyay, S.; Xie, M.

    1997-11-01

    An e{sup +}e{sup {minus}} linear collider at energies beyond a TeV runs into a problem of severe beamsstrahlung, characterized by {Upsilon} on the order of unity (and beyond). In the regime of extremely high {Upsilon} the beamsstrahlung may be largely suppressed due to the quantum effect. In the design of an e{sup +}e{sup {minus}} collider there are two ways to satisfy the collider physics constraints. One is to decrease the number of particles per bunch (and thus to increase the repetition rate) and the other is to decrease the longitudinal bunch length. The former approach can limit {Upsilon}, while the latter boosts it. (It may be useful to reevaluate the future collider parameters in view of this.) The laser wakefield driver for a collider in comparison with the microwave driver naturally offers a very short bunch length, which is appropriate for the latter collider option. The authors show that this choice of collider design with a short bunch length and high {Upsilon} has advantages and provide sample design parameters at 5 TeV. Such sample design parameters challenge them in a number of fronts, such as the preservation of high quality bunches, efficient high repetition rate lasers, etc. The collision point physics simulated by the CAIN code shows a surprisingly well preserved luminosity spectrum.

  13. Tevatron Collider Status and Prospects

    SciTech Connect

    Moore, Ronald S.

    2009-10-01

    The Tevatron proton-antiproton collider at Fermilab continues operation as the world's highest energy particle accelerator by delivering luminosity at a center-of-mass energy of 1.96 TeV. We review recent performance and plans for the remainder of Run 2.

  14. Coordinating the 2009 RHIC Run

    ScienceCinema

    Brookhaven Lab - Mei Bai

    2016-07-12

    Physicists working at the Brookhaven National Lab's Relativistic Heavy Ion Collider (RHIC) are exploring the puzzle of proton spin as they begin taking data during the 2009 RHIC run. For the first time, RHIC is running at a record energy of 500 giga-elect

  15. Coordinating the 2009 RHIC Run

    SciTech Connect

    Brookhaven Lab - Mei Bai

    2009-04-13

    Physicists working at the Brookhaven National Lab's Relativistic Heavy Ion Collider (RHIC) are exploring the puzzle of proton spin as they begin taking data during the 2009 RHIC run. For the first time, RHIC is running at a record energy of 500 giga-elect

  16. Run II luminosity progress

    SciTech Connect

    Gollwitzer, K.; /Fermilab

    2007-06-01

    The Fermilab Tevatron Collider Run II program continues at the energy and luminosity frontier of high energy particle physics. To the collider experiments CDF and D0, over 3 fb{sup -1} of integrated luminosity has been delivered to each. Upgrades and improvements in the Antiproton Source of the production and collection of antiprotons have led to increased number of particles stored in the Recycler. Electron cooling and associated improvements have help make a brighter antiproton beam at collisions. Tevatron improvements to handle the increased number of particles and the beam lifetimes have resulted in an increase in luminosity.

  17. Tevatron instrumentation: boosting collider performance

    SciTech Connect

    Shiltsev, Vladimir; Jansson, Andreas; Moore, Ronald; /Fermilab

    2006-05-01

    The Tevatron in Collider Run II (2001-present) is operating with six times more bunches, many times higher beam intensities and luminosities than in Run I (1992-1995). Beam diagnostics were crucial for the machine start-up and the never-ending luminosity upgrade campaign. We present the overall picture of the Tevatron diagnostics development for Run II, outline machine needs for new instrumentation, present several notable examples that led to Tevatron performance improvements, and discuss the lessons for the next big machines--LHC and ILC.

  18. Fermilab Collider: Performance and plans

    SciTech Connect

    Finley, D.A.

    1993-12-01

    The Fermilab collider program has completed its first physics run with two major detectors, CDF and DO. Recent performance of the Fermilab accelerator complex during Run Ia is presented, along with plans to improve the luminosity of the collider. The beam-beam tune shift limitations of previous runs have been avoided by the successful implementation of electrostatic separators in the Tevatron. The simultaneous operation of two high luminosity sections is provided by two matched low beta inserts. The Antiproton Source has increased its performance over the previous run as measured by stack size and stacking rate. The Linac will be upgraded from 200 MeV to 400 MeV in order to lessen the space charge tune shift upon injection into the Booster and provide proton beams with increased intensity with the same emittance. Higher luminosity requires more bunches in the Tevatron to again avoid the limitation due to the beam-beam interaction. Until it is replaced with the Main Injector, the Main Ring will remain as the most significant bottleneck on the performance of the collider.

  19. Running Away

    MedlinePlus

    ... Got Homework? Here's Help White House Lunch Recipes Running Away KidsHealth > For Kids > Running Away Print A ... life on the streets. continue The Reality of Running Away When you think about running away, you ...

  20. Beam instrumentation for the Tevatron Collider

    SciTech Connect

    Moore, Ronald S.; Jansson, Andreas; Shiltsev, Vladimir; /Fermilab

    2009-10-01

    The Tevatron in Collider Run II (2001-present) is operating with six times more bunches and many times higher beam intensities and luminosities than in Run I (1992-1995). Beam diagnostics were crucial for the machine start-up and the never-ending luminosity upgrade campaign. We present the overall picture of the Tevatron diagnostics development for Run II, outline machine needs for new instrumentation, present several notable examples that led to Tevatron performance improvements, and discuss the lessons for future colliders.

  1. Report on 1992/1993 activities

    SciTech Connect

    Russell, T.P.

    1996-07-01

    Over the past several years, at least four different techniques have been developed for probing the behavior of homopolymers and block copolymers at surfaces and interfaces. These include neutron reflectivity, grazing incidence x-ray scattering, dynamic secondan, ion mass spectrometry and electron microscopy. In the upcoming year It is proposed to make key uses of these developments to gain a quantitative understanding of the Interfacial behavior of homopolymers and block copolymers. In addition, the newly discovered lower disorder to order phase transition will be investigated further, is the role a surface or an interface plays in influencing the structure and segmental distribution of polymers in the vicinity of an interface. These areas are outlined below.

  2. National Strategic Research Plan 1991, 1992, 1993.

    ERIC Educational Resources Information Center

    National Inst. on Deafness and Other Communications Disorders, Bethesda, MD.

    This report updates the National Strategic Research Plan of the National Institute on Deafness and Other Communication Disorders (NIDCD) and reports progress made from 1991 through 1993 as required by the National Deafness and Other Communication Disorders Act of 1988 (Public Law 100-553) which established the Institute. An executive summary…

  3. Rf-driver linear colliders

    SciTech Connect

    Wilson, P.B.

    1987-05-01

    The next generation of linear collider after the SLC (Stanford Linear Collider) will probably have an energy in the range 300 GeV-1 TeV per linac. A number of exotic accelerating schemes, such as laser and plasma acceleration, have been proposed for linear colliders of the far future. However, the technology which is most mature and which could lead to a collider in the above energy range in the relatively near future is the rf-driven linac, in which externally produced rf is fed into a more or less conventional metallic accelerating structure. Two basic technologies have been proposed for producing the required high peak rf power: discrete microwave power sources, and various two-beam acceleration schemes in which the rf is produced by a high current driving beam running parallel to the main accelerator. The current status of experimental and analytic work on both the discrete source and the two-beam methods for producing rf is discussed. The implications of beam-beam related effects (luminosity, disruption and beamstrahlung) for the design of rf-driven colliders are also considered.

  4. Positrons for linear colliders

    SciTech Connect

    Ecklund, S.

    1987-11-01

    The requirements of a positron source for a linear collider are briefly reviewed, followed by methods of positron production and production of photons by electromagnetic cascade showers. Cross sections for the electromagnetic cascade shower processes of positron-electron pair production and Compton scattering are compared. A program used for Monte Carlo analysis of electromagnetic cascades is briefly discussed, and positron distributions obtained from several runs of the program are discussed. Photons from synchrotron radiation and from channeling are also mentioned briefly, as well as positron collection, transverse focusing techniques, and longitudinal capture. Computer ray tracing is then briefly discussed, followed by space-charge effects and thermal heating and stress due to showers. (LEW)

  5. High Energy Colliders

    NASA Astrophysics Data System (ADS)

    Palmer, R. B.; Gallardo, J. C.

    INTRODUCTION PHYSICS CONSIDERATIONS GENERAL REQUIRED LUMINOSITY FOR LEPTON COLLIDERS THE EFFECTIVE PHYSICS ENERGIES OF HADRON COLLIDERS HADRON-HADRON MACHINES LUMINOSITY SIZE AND COST CIRCULAR e^{+}e^- MACHINES LUMINOSITY SIZE AND COST e^{+}e^- LINEAR COLLIDERS LUMINOSITY CONVENTIONAL RF SUPERCONDUCTING RF AT HIGHER ENERGIES γ - γ COLLIDERS μ ^{+} μ^- COLLIDERS ADVANTAGES AND DISADVANTAGES DESIGN STUDIES STATUS AND REQUIRED R AND D COMPARISION OF MACHINES CONCLUSIONS DISCUSSION

  6. Feedback Systems for Linear Colliders

    SciTech Connect

    1999-04-12

    Feedback systems are essential for stable operation of a linear collider, providing a cost-effective method for relaxing tight tolerances. In the Stanford Linear Collider (SLC), feedback controls beam parameters such as trajectory, energy, and intensity throughout the accelerator. A novel dithering optimization system which adjusts final focus parameters to maximize luminosity contributed to achieving record performance in the 1997-98 run. Performance limitations of the steering feedback have been investigated, and improvements have been made. For the Next Linear Collider (NLC), extensive feedback systems are planned as an integral part of the design. Feedback requirements for JLC (the Japanese Linear Collider) are essentially identical to NLC; some of the TESLA requirements are similar but there are significant differences. For NLC, algorithms which incorporate improvements upon the SLC implementation are being prototyped. Specialized systems for the damping rings, rf and interaction point will operate at high bandwidth and fast response. To correct for the motion of individual bunches within a train, both feedforward and feedback systems are planned. SLC experience has shown that feedback systems are an invaluable operational tool for decoupling systems, allowing precision tuning, and providing pulse-to-pulse diagnostics. Feedback systems for the NLC will incorporate the key SLC features and the benefits of advancing technologies.

  7. Disformal dark energy at colliders

    NASA Astrophysics Data System (ADS)

    Brax, Philippe; Burrage, Clare; Englert, Christoph

    2015-08-01

    Disformally coupled, light scalar fields arise in many of the theories of dark energy and modified gravity that attempt to explain the accelerated expansion of the Universe. They have proved difficult to constrain with precision tests of gravity because they do not give rise to fifth forces around static nonrelativistic sources. However, because the scalar field couples derivatively to standard model matter, measurements at high-energy particle colliders offer an effective way to constrain and potentially detect a disformally coupled scalar field. Here we derive new constraints on the strength of the disformal coupling from LHC run 1 data and provide a forecast for the improvement of these constraints from run 2. We additionally comment on the running of disformal and standard model couplings in this scenario under the renormalization group flow.

  8. Setup and performance of RHIC for the 2008 run with deuteron-gold collisions.

    SciTech Connect

    Gardner,C.; Abreu, N.P.; Ahren, L.; Alessi, J.; Bai, M.; et al.

    2008-06-23

    This year (2008) deuterons and gold ions were collided in the Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory (BNL) for the first time since 2003. The setup and performance of the collider for the 2008 run is reviewed with a focus on improvements that have led to an order of magnitude increase in luminosity over that achieved in the 2003 run.

  9. Collider and detector protection at beam accidents

    SciTech Connect

    I. L. Rakhno; N. V. Mokhov; A. I. Drozhdin

    2003-12-10

    Dealing with beam loss due to abort kicker prefire is considered for hadron colliders. The prefires occurred at Tevatron (Fermilab) during Run I and Run II are analyzed and a protection system implemented is described. The effect of accidental beam loss in the Large Hadron Collider (LHC) at CERN on machine and detector components is studied via realistic Monte Carlo calculations. The simulations show that beam loss at an unsynchronized beam abort would result in severe heating of conventional and superconducting magnets and possible damage to the collider detector elements. A proposed set of collimators would reduce energy deposition effects to acceptable levels. Special attention is paid to reducing peak temperature rise within the septum magnet and minimizing quench region length downstream of the LHC beam abort straight section.

  10. Photon collider Higgs factories

    NASA Astrophysics Data System (ADS)

    Telnov, V. I.

    2014-09-01

    The discovery of the Higgs boson (and still nothing else) have triggered appearance of many proposals of Higgs factories for precision measurement of the Higgs properties. Among them there are several projects of photon colliders (PC) without e+e- in addition to PLC based on e+e- linear colliders ILC and CLIC. In this paper, following a brief discussion of Higgs factories physics program I give an overview of photon colliders based on linear colliders ILC and CLIC, and of the recently proposed photon-collider Higgs factories with no e+e- collision option based on recirculation linacs in ring tunnels.

  11. Gamma-gamma colliders

    SciTech Connect

    Kim, K.J.; Sessler, A.

    1996-06-01

    Gamma-gamma colliders make intense beams of gamma rays and have them collide so as to make elementary particles. The authors show, in this article, that constructing a gamma-gamma collider as an add-on to an electron-positron linear collider is possible with present technology and that it does not require much additional cost. Furthermore, they show that the resulting capability is very interesting from a particle physics point of view. An overview of a linear collider, with a second interaction region devoted to {gamma}{gamma} collisions is shown.

  12. First Run II results from CDF

    SciTech Connect

    S. Donati

    2002-06-04

    In this paper we report on the first run II results from the CDF experiment. A brief description of the Tevatron collider and CDF detector upgrades and performance achieved in the first part of run II is followed by the CDF expectations in the fields of beauty, top, electroweak and Higgs physics.

  13. The Large Hadron Collider

    NASA Astrophysics Data System (ADS)

    Myers, Stephen

    The Large Hadron Collider (LHC) was first suggested (in a documented way) in 1983 [1] as a possible future hadron collider to be installed in the 27 km "LEP" tunnel. More than thirty years later the collider has been operated successfully with beam for three years with spectacular performance and has discovered the long-sought-after Higgs boson. The LHC is the world's largest and most energetic particle collider. It took many years to plan and build this large complex machine which promises exciting, new physics results for many years to come...

  14. The development of colliders

    SciTech Connect

    Sessler, A.M.

    1997-03-01

    During the period of the 50`s and the 60`s colliders were developed. Prior to that time there were no colliders, and by 1965 a number of small devices had worked, good understanding had been achieved, and one could speculate, as Gersh Budker did, that in a few years 20% of high energy physics would come from colliders. His estimate was an under-estimate, for now essentially all of high energy physics comes from colliders. The author presents a brief review of that history: sketching the development of the concepts, the experiments, and the technological advances which made it all possible.

  15. SLAC Linear Collider

    SciTech Connect

    Richter, B.

    1985-12-01

    A report is given on the goals and progress of the SLAC Linear Collider. The status of the machine and the detectors are discussed and an overview is given of the physics which can be done at this new facility. Some ideas on how (and why) large linear colliders of the future should be built are given.

  16. Towards future circular colliders

    NASA Astrophysics Data System (ADS)

    Benedikt, Michael; Zimmermann, Frank

    2016-09-01

    The Large Hadron Collider (LHC) at the European Organization for Nuclear Research (CERN) presently provides proton-proton collisions at a center-of-mass (c.m.) energy of 13 TeV. The LHC design was started more than 30 years ago, and its physics program will extend through the second half of the 2030's. The global Future Circular Collider (FCC) study is now preparing for a post-LHC project. The FCC study focuses on the design of a 100-TeV hadron collider (FCC-hh) in a new ˜100 km tunnel. It also includes the design of a high-luminosity electron-positron collider (FCCee) as a potential intermediate step, and a lepton-hadron collider option (FCC-he). The scope of the FCC study comprises accelerators, technology, infrastructure, detectors, physics, concepts for worldwide data services, international governance models, and implementation scenarios. Among the FCC core technologies figure 16-T dipole magnets, based on Nb3 S n superconductor, for the FCC-hh hadron collider, and a highly-efficient superconducting radiofrequency system for the FCC-ee lepton collider. Following the FCC concept, the Institute of High Energy Physics (IHEP) in Beijing has initiated a parallel design study for an e + e - Higgs factory in China (CEPC), which is to be succeeded by a high-energy hadron collider (SPPC). At present a tunnel circumference of 54 km and a hadron collider c.m. energy of about 70 TeV are being considered. After a brief look at the LHC, this article reports the motivation and the present status of the FCC study, some of the primary design challenges and R&D subjects, as well as the emerging global collaboration.

  17. Linear collider: a preview

    SciTech Connect

    Wiedemann, H.

    1981-11-01

    Since no linear colliders have been built yet it is difficult to know at what energy the linear cost scaling of linear colliders drops below the quadratic scaling of storage rings. There is, however, no doubt that a linear collider facility for a center of mass energy above say 500 GeV is significantly cheaper than an equivalent storage ring. In order to make the linear collider principle feasible at very high energies a number of problems have to be solved. There are two kinds of problems: one which is related to the feasibility of the principle and the other kind of problems is associated with minimizing the cost of constructing and operating such a facility. This lecture series describes the problems and possible solutions. Since the real test of a principle requires the construction of a prototype I will in the last chapter describe the SLC project at the Stanford Linear Accelerator Center.

  18. Barefoot Running

    PubMed Central

    Mullen, Scott; Cotton, Jon; Bechtold, Megan; Toby, E. Bruce

    2014-01-01

    Background: It has been proposed that running barefoot can lead to improved strength and proprioception. However, the duration that a runner must train barefoot to observe these changes is unknown. Hypothesis: Runners participating in a barefoot running program will have improved proprioception, increased lower extremity strength, and an increase in the volume or size of the intrinsic musculature of the feet. Study Design: Randomized controlled trial; Level of evidence, 2. Methods: In this 8-week study, 29 runners with a mean age of 36.34 years were randomized into either a control group (n = 10) who completed training in their regular running shoes or to an experimental barefoot group (n = 14). Pretraining tests consisted of a volumetric measurement of the foot followed by a strength and dynamic balance assessment. Five subjects completed the pretests but did not complete the study for reasons not related to study outcomes. Participants then completed 8 weeks of training runs. They repeated the strength and dynamic balance assessment after 8 weeks. Results: Significant changes from baseline to 8 weeks were observed within the barefoot group for single-leg hop (right, P = .0121; left, P = .0430) and reach and balance (right, P = .0029) and within the control group for single–left leg hop (P = .0286) and reach and balance (right, P = .0096; left, P = .0014). However, when comparing the differences in changes from baseline to 8 weeks between the barefoot and control groups, the improvements were not significant at the .05 level for all measures. Conclusion: Although statistically significant changes were not observed between the pre- and posttest evaluations in strength and proprioception with the 8-week low-intensity barefoot running regimen, this does not necessarily mean that these changes do not occur. It is possible that it may take months or years to observe these changes, and a short course such as this trial is insufficient. PMID:26535308

  19. Hadron hadron collider group

    SciTech Connect

    Palmer, R.; Peoples, J.; Ankenbrandt, C.

    1982-01-01

    The objective of this group was to make a rough assessment of the characteristics of a hadron-hadron collider which could make it possible to study the 1 TeV mass scale. Since there is very little theoretical guidance for the type of experimental measurements which could illuminate this mass scale, we chose to extend the types of experiments which have been done at the ISR, and which are in progress at the SPS collider to these higher energies.

  20. PERFORMANCE LIMITATIONS IN HIGH-ENERGY ION COLLIDERS

    SciTech Connect

    FISCHER, W.

    2005-05-16

    High-energy ion colliders (hadron colliders operating with ions other than protons) are premier research tools for nuclear physics. The collision energy and high luminosity are important design and operations considerations. The experiments also expect flexibility with frequent changes in the collision energy, detector fields, and ion species, including asymmetric collisions. For the creation, acceleration, and storage of bright intense ion beams limits are set by space charge, charge exchange, and intrabeam scattering effects. The latter leads to luminosity lifetimes of only a few hours for intense heavy ions beams. Currently, the Relativistic Heavy Ion Collider (RHIC) at BNL is the only operating high-energy ion collider. Later this decade the Large Hadron Collider (LHC), under construction at CERN, will also run with heavy ions.

  1. Photon collider at TESLA

    NASA Astrophysics Data System (ADS)

    Telnov, Valery

    2001-10-01

    High energy photon colliders ( γγ, γe) based on backward Compton scattering of laser light is a very natural addition to e +e - linear colliders. In this report, we consider this option for the TESLA project. Recent study has shown that the horizontal emittance in the TESLA damping ring can be further decreased by a factor of four. In this case, the γγ luminosity in the high energy part of spectrum can reach about (1/3) Le +e -. Typical cross-sections of interesting processes in γγ collisions are higher than those in e +e - collisions by about one order of magnitude, so the number of events in γγ collisions will be more than that in e +e - collisions. Photon colliders can, certainly, give additional information and they are the best for the study of many phenomena. The main question is now the technical feasibility. The key new element in photon colliders is a very powerful laser system. An external optical cavity is a promising approach for the TESLA project. A free electron laser is another option. However, a more straightforward solution is "an optical storage ring (optical trap)" with a diode pumped solid state laser injector which is today technically feasible. This paper briefly reviews the status of a photon collider based on the linear collider TESLA, its possible parameters and existing problems.

  2. RHIC Polarized proton performance in run-8

    SciTech Connect

    Montag,C.; Bai, M.; MacKay, W.W.; Roser, T.; Abreu, N.; Ahrens, L.; Barton, D.; Beebe-Wang, J.; Blaskiewicz, M.; Brennan, J.M.; Brown, K.A.; Bruno, D.; Bunce, G.; Calaga, R.; Cameron, P.; Connolly, R.; D'Ottavio, T.; Drees, A.; Fedotov, A.V.; Fischer, W.; Ganetis, G.; Gardner, C.; Glenn, J.; Hayes, T.; Huang, H.; Ingrassia, P.; Kayran, D.A.; Kewisch, J.; Lee, R.C.; Lin, F.; Litvinenko, V.N.; Luccio, A.U.; Luo, Y.; Makdisi, Y.; Malitsky, N.; Marr, G.; Marusic, A.; Michnoff, R.; Morris, J.; Oerter, B.; Pilat, F.; Pile, P.; Robert-Demolaize, G.; Russo, T.; Satogata, T.; Schultheiss, C.; Sivertz, M.; Smith, K.; Tepikian, S.; D. Trbojevic, D.; Tsoupas, N.; Tuozzolo, J.; Zaltsman, A.; Zelenski, A.; Zeno, K.; Zhang, S.Y.

    2008-10-06

    During Run-8, the Relativistic Heavy Ion Collider (RHIC) provided collisions of spin-polarized proton beams at two interaction regions. Physics data were taken with vertical orientation of the beam polarization, which in the 'Yellow' RHIC ring was significantly lower than in previous years. We present recent developments and improvements as well as the luminosity and polarization performance achieved during Run-8, and we discuss possible causes of the not as high as previously achieved polarization performance of the 'Yellow' ring.

  3. The Ssart of Run II at CDF

    SciTech Connect

    Marco Rescigno

    2002-10-29

    After a hiatus of almost 6 years and an extensive upgrade, Tevatron, the world largest proton-antiproton collider, has resumed the operation for the so called RUN II. In this paper we give a brief overview of the many new features of the Tevatron complex and of the upgraded CDF experiment, and show the presently achieved detector performances as well as highlights of the RUN II physics program in the beauty and electroweak sector.

  4. RHIC polarized proton performance in run-8.

    SciTech Connect

    Montag,C.; Abreu, N.; Ahrens, L.; Bai, M.; Barton, D.; et al.

    2008-06-23

    During Run-8, the Relativistic Heavy Ion Collider (RHIC) provided collisions of spin-polarized proton beams at two interaction regions. Helical spin rotators at these two interaction regions were used to control the spin orientation of both beams at the collision points. Physics data were taken with different orientations of the beam polarization. We present recent developments and improvements as well as the luminosity and polarization performance achieved during Run-8.

  5. Photon-photon colliders

    SciTech Connect

    Sessler, Andrew M.

    1996-01-01

    Since the seminal work by Ginsburg, et al., the subject of giving the Next Linear Collider photon-photon capability, as well as electron-positron capability, has drawn much attention [1]. A 1990 article by V.I. Telnov describes the situation at that time [2]. In March 1994, the first workshop on this subject was held [3]. This report briefly reviews the physics that can be achieved through the photon-photon channel and then focuses on the means of achieving such a collider. Also reviewed is the spectrum of backscattered Compton photons—the best way of obtaining photons. We emphasize the spectrum actually obtained in a collider with both polarized electrons and photons (peaked at high energy and very different from a Compton spectrum). Luminosity is estimated for the presently considered colliders, and interaction and conversion-point geometries are described. Also specified are laser requirements (such as wavelength, peak power, and average power) and the lasers that might be employed. These include conventional and free-electron lasers. Finally, we describe the R&D necessary to make either of these approaches viable and explore the use of the SLC as a test bed for a photon-photon collider of very high energy.

  6. Photon-photon colliders

    SciTech Connect

    Sessler, A.M.

    1995-04-01

    Since the seminal work by Ginsburg, et at., the subject of giving the Next Linear Collider photon-photon capability, as well as electron-positron capability, has drawn much attention. A 1990 article by V.I. Teinov describes the situation at that time. In March 1994, the first workshop on this subject was held. This report briefly reviews the physics that can be achieved through the photon-photon channel and then focuses on the means of achieving such a collider. Also reviewed is the spectrum of backscattered Compton photons -- the best way of obtaining photons. We emphasize the spectrum actually obtained in a collider with both polarized electrons and photons (peaked at high energy and very different from a Compton spectrum). Luminosity is estimated for the presently considered colliders, and interaction and conversion-point geometries are described. Also specified are laser requirements (such as wavelength, peak power, and average power) and the lasers that might be employed. These include conventional and free-electron lasers. Finally, we describe the R&D necessary to make either of these approaches viable and explore the use of the SLC as a test bed for a photon-photon collider of very high energy.

  7. The Large Hadron Collider.

    PubMed

    Evans, Lyndon

    2012-02-28

    The construction of the Large Hadron Collider (LHC) has been a massive endeavour spanning almost 30 years from conception to commissioning. Building the machine with the highest possible energy (7 TeV) in the existing large electron-positron (LEP) collider tunnel of 27 km circumference and with a tunnel diameter of only 3.8 m has required considerable innovation. The first was the development of a two-in-one magnet, where the two rings are integrated into a single magnetic structure. This compact two-in-one structure was essential for the LHC owing to the limited space available in the existing LEP collider tunnel and the cost. The second was a bold move to the use of superfluid helium cooling on a massive scale, which was imposed by the need to achieve a high (8.3 T) magnetic field using an affordable Nb-Ti superconductor.

  8. Collider physics. Progress report, FY 1991

    SciTech Connect

    Not Available

    1991-12-31

    This past year our group participated in both the D0 experiment at Fermilab and the SDC experiment at the SSC. Most of our effort was concentrated on the D0 project, where we contributed as much manpower as possible to the commissioning of the detector in preparation for the coming collider run. Our SDC work consisted of the investigation of one of the candidate technologies for the forward calorimeter. On the D0 experiment, our primary responsibilities have been in the areas of electronics commissioning and in the establishment of triggers for the coming collider run. We have also actively participated in the physics studies and have contributed to the upgrade effort as much as time has permitted. Our group has also participated in the cosmic ray run and in the D0 test beam. In view of our contributions, James White was selected as a member of the D0 Trigger board, and Jay Wightman is being trained as one of the ``global experts`` who are responsible for keeping the detector operational during the run. In addition, Amber Boehnlein has played a major role in the Level-2 trigger commissioning. A more detailed description of these activities is given in this paper.

  9. The Muon Collider

    SciTech Connect

    Zisman, Michael S

    2010-05-17

    We describe the scientific motivation for a new type of accelerator, the muon collider. This accelerator would permit an energy-frontier scientific program and yet would fit on the site of an existing laboratory. Such a device is quite challenging, and requires a substantial R&D program. After describing the ingredients of the facility, the ongoing R&D activities of the Muon Accelerator Program are discussed. A possible U.S. scenario that could lead to a muon collider at Fermilab is briefly mentioned.

  10. The Muon Collider

    SciTech Connect

    Zisman, Michael S.

    2011-01-05

    We describe the scientific motivation for a new type of accelerator, the muon collider. This accelerator would permit an energy-frontier scientific program and yet would fit on the site of an existing laboratory. Such a device is quite challenging, and requires a substantial R&D program. After describing the ingredients of the facility, the ongoing R&D activities of the Muon Accelerator Program are discussed. A possible U.S. scenario that could lead to a muon collider at Fermilab is briefly mentioned.

  11. The large hadron collider

    NASA Astrophysics Data System (ADS)

    Brüning, O.; Burkhardt, H.; Myers, S.

    2012-07-01

    The Large Hadron Collider (LHC) is the world’s largest and most energetic particle collider. It took many years to plan and build this large complex machine which promises exciting, new physics results for many years to come. We describe and review the machine design and parameters, with emphasis on subjects like luminosity and beam conditions which are relevant for the large community of physicists involved in the experiments at the LHC. First collisions in the LHC were achieved at the end of 2009 and followed by a period of a rapid performance increase. We discuss what has been learned so far and what can be expected for the future.

  12. Muon collider design

    SciTech Connect

    Palmer, R. |; Sessler, A.; Skrinsky, A.

    1996-03-01

    The possibility of muon colliders was introduced by Skrinsky et al., Neuffer, and others. More recently, several workshops and collaboration meetings have greatly increased the level of discussion. In this paper we present scenarios for 4 TeV and 0.5 TeV colliders based on an optimally designed proton source, and for a lower luminosity 0.5 TeV demonstration based on an upgraded version of the AGS. It is assumed that a demonstration version based on upgrades of the FERMILAB machines would also be possible. 53 refs., 25 figs., 8 tabs.

  13. From the LHC to future colliders

    SciTech Connect

    De Roeck, A.; Assamagan, K.; Ellis, J.; Grojean, C.; Heinemeyer, S.; Jakobs, K.; Weiglien, G.; Well, J.; Azuelos, G.; Dawson, S.; Gripaios, B.; Han, T.; Hewett, J.; Lancaster, M.; Mariotti, C.; Moortgat, F.; Moortgat-Pick, G.; Polesello, G.; Riemann, S.; Schumacher, M.; Bechtle, P.; Carena, M.; Chachamis, G.; Chen, K.F.; De Curtis, S.; Desch, K.; Dittmar, M.; Dreiner, H.; Duhrssen, M.; Foster, B.; Frandsen, M.T.; Giammanco, A.; Godbole, R.; Gopalakrishna, S.; Govoni, P.; Gunion, J.; Hollik, W.; Hou, W.S.; Isidori, G.; Juste, A.; Kalinowski, J.; Korytov, A.; Kou, E.; Kraml, S.; Krawczyk, M.; Martin, A.; Milstead, D.; Morton-Thurtle, V.; Moenig, K.; Mele, B.; Ozcan, E.; Pieri, M.; Plehn, T.; Reina, L.; Richter-Was, E.; Rizzo, T.; Rolbiecki, K.; Sannino, F.; Schram, M.; Smillie, J.; Sultansoy, S.; Tattersall, J.; Uwer, P., Webber, B.; and Wienemann, P.

    2010-03-02

    Discoveries at the LHC will soon set the physics agenda for future colliders. This report of a CERN Theory Institute includes the summaries of Working Groups that reviewed the physics goals and prospects of LHC running with 10 to 300 fb{sup -1} of integrated luminosity, of the proposed sLHC luminosity upgrade, of the ILC, of CLIC, of the LHeC and of a muon collider. The four Working Groups considered possible scenarios for the first 10 fb{sup -1} of data at the LHC in which (i) a state with properties that are compatible with a Higgs boson is discovered, (ii) no such state is discovered either because the Higgs properties are such that it is difficult to detect or because no Higgs boson exists, (iii) a missing-energy signal beyond the Standard Model is discovered as in some supersymmetric models, and (iv) some other exotic signature of new physics is discovered. In the contexts of these scenarios, the Working Groups reviewed the capabilities of the future colliders to study in more detail whatever new physics may be discovered by the LHC. Their reports provide the particle physics community with some tools for reviewing the scientific priorities for future colliders after the LHC produces its first harvest of new physics from multi-TeV collisions.

  14. From the LHC to Future Colliders

    SciTech Connect

    De Roeck, A.; Ellis, J.; Grojean, C.; Heinemeyer, S.; Jakobs, K.; Weiglein, G.; Azuelos, G.; Dawson, S.; Gripaios, B.; Han, T.; Hewett, J.; Lancaster, M.; Mariotti, C.; Moortgat, F.; Moortgat-Pick, G.; Polesello, G.; Riemann, S.; Assamagan, K.; Bechtle, P.; Carena, M.; Chachamis, G.; /more authors..

    2010-06-11

    Discoveries at the LHC will soon set the physics agenda for future colliders. This report of a CERN Theory Institute includes the summaries of Working Groups that reviewed the physics goals and prospects of LHC running with 10 to 300 fb{sup -1} of integrated luminosity, of the proposed sLHC luminosity upgrade, of the ILC, of CLIC, of the LHeC and of a muon collider. The four Working Groups considered possible scenarios for the first 10 fb{sup -1} of data at the LHC in which (i) a state with properties that are compatible with a Higgs boson is discovered, (ii) no such state is discovered either because the Higgs properties are such that it is difficult to detect or because no Higgs boson exists, (iii) a missing-energy signal beyond the Standard Model is discovered as in some supersymmetric models, and (iv) some other exotic signature of new physics is discovered. In the contexts of these scenarios, theWorking Groups reviewed the capabilities of the future colliders to study in more detail whatever new physics may be discovered by the LHC. Their reports provide the particle physics community with some tools for reviewing the scientific priorities for future colliders after the LHC produces its first harvest of new physics from multi-TeV collisions.

  15. The Stanford Linear Collider

    SciTech Connect

    Rees, J.R.

    1989-10-01

    April, 1989, the first Z zero particle was observed at the Stanford Linear Collider (SLC). The SLC collides high-energy beams of electrons and positrons into each other. In break with tradition the SLC aims two linear beams at each other. Strong motives impelled the Stanford team to choose the route of innovation. One reason being that linear colliders promise to be less expensive to build and operate than storage ring colliders. An equally powerful motive was the desire to build an Z zero factory, a facility at which the Z zero particle can be studied in detail. More than 200 Z zero particles have been detected at the SLC and more continue to be churned out regularly. It is in measuring the properties of the Z zero that the SLC has a seminal contribution to make. One of the primary goals of the SLC experimental program is to determine the mass of the Z zero as precisely as possible.In the end, the SLC's greatest significance will be in having proved a new accelerator technology. 7 figs.

  16. High energy colliders

    SciTech Connect

    Palmer, R.B.; Gallardo, J.C.

    1997-02-01

    The authors consider the high energy physics advantages, disadvantages and luminosity requirements of hadron (pp, p{anti p}), lepton (e{sup +}e{sup {minus}}, {mu}{sup +}{mu}{sup {minus}}) and photon-photon colliders. Technical problems in obtaining increased energy in each type of machine are presented. The machines relative size are also discussed.

  17. High luminosity muon collider design

    SciTech Connect

    Palmer, R.; Gallardo, J.

    1996-10-01

    Muon Colliders have unique technical and physics advantages and disadvantages when compared with both hadron and electron machines. They should be regarded as complementary. Parameters are given of 4 TeV high luminosity {mu}{sup +}{mu}{sup {minus}} collider, and of a 0.5 TeV lower luminosity demonstration machine. We discuss the various systems in such muon colliders.

  18. Tracking at CDF: algorithms and experience from Run I and Run II

    SciTech Connect

    Snider, F.D.; /Fermilab

    2005-10-01

    The authors describe the tracking algorithms used during Run I and Run II by CDF at the Fermilab Tevatron Collider, covering the time from about 1992 through the present, and discuss the performance of the algorithms at high luminosity. By tracing the evolution of the detectors and algorithms, they reveal some of the successful strategies used by CDF to address the problems of tracking at high luminosities.

  19. Bouncing and Colliding Branes

    SciTech Connect

    Lehners, Jean-Luc

    2007-11-20

    In a braneworld description of our universe, we must allow for the possibility of having dynamical branes around the time of the big bang. Some properties of such domain walls in motion are discussed here, for example the ability of negative-tension domain walls to bounce off spacetime singularities and the consequences for cosmological perturbations. In this context, we will also review a colliding branes solution of heterotic M-theory that has been proposed as a model for early universe cosmology.

  20. Muon Collider Progress: Accelerators

    SciTech Connect

    Zisman, Michael S.

    2011-09-10

    A muon collider would be a powerful tool for exploring the energy-frontier with leptons, and would complement the studies now under way at the LHC. Such a device would offer several important benefits. Muons, like electrons, are point particles so the full center-of-mass energy is available for particle production. Moreover, on account of their higher mass, muons give rise to very little synchrotron radiation and produce very little beamstrahlung. The first feature permits the use of a circular collider that can make efficient use of the expensive rf system and whose footprint is compatible with an existing laboratory site. The second feature leads to a relatively narrow energy spread at the collision point. Designing an accelerator complex for a muon collider is a challenging task. Firstly, the muons are produced as a tertiary beam, so a high-power proton beam and a target that can withstand it are needed to provide the required luminosity of ~1 × 10{sup 34} cm{sup –2}s{sup –1}. Secondly, the beam is initially produced with a large 6D phase space, which necessitates a scheme for reducing the muon beam emittance (“cooling”). Finally, the muon has a short lifetime so all beam manipulations must be done very rapidly. The Muon Accelerator Program, led by Fermilab and including a number of U.S. national laboratories and universities, has undertaken design and R&D activities aimed toward the eventual construction of a muon collider. Design features of such a facility and the supporting R&D program are described.

  1. Depolarization in the SLC Collider Arcs

    SciTech Connect

    Emma, P.; Limberg, T.; Rossmanith, R.

    1994-06-01

    In the 1993 running cycle of the Stanford Linear Collider, electron spin polarization measurements with a Moller polarimeter at the end of the linac and a Compton polarimeter near the interaction point (IP) indicated a relative polarization loss of up to 20% across the arc. The authors present calculations of the depolarizing effects where variations in energy, energy spread and transverse emittance as well as changes in orbit and initial spin orientation are taken into account. They compare their results with measurements and conclude that, in standard operating conditions, the relative polarization loss is only 3{+-}2%.

  2. The super collider revisited

    SciTech Connect

    Hussein, M.S.; Pato, M.P. )

    1992-05-20

    In this paper, the authors suggest a revised version of the Superconducting Super Collider (SSC) that employs the planned SSC first stage machine as an injector of 0.5 TeV protons into a power laser accelerator. The recently developed Non-linear Amplification of Inverse Bremsstrahlung Acceleration (NAIBA) concept dictates the scenario of the next stage of acceleration. Post Star Wars lasers, available at several laboratories, can be used for the purpose. The 40 TeV CM energy, a target of the SSC, can be obtained with a new machine which can be 20 times smaller than the planned SSC.

  3. Hadron-hadron colliders

    SciTech Connect

    Month, M.; Weng, W.T.

    1983-06-21

    The objective is to investigate whether existing technology might be extrapolated to provide the conceptual framework for a major hadron-hadron collider facility for high energy physics experimentation for the remainder of this century. One contribution to this large effort is to formalize the methods and mathematical tools necessary. In this report, the main purpose is to introduce the student to basic design procedures. From these follow the fundamental characteristics of the facility: its performance capability, its size, and the nature and operating requirements on the accelerator components, and with this knowledge, we can determine the technology and resources needed to build the new facility.

  4. Muon Colliders and Neutrino Factories *

    NASA Astrophysics Data System (ADS)

    Geer, Steve

    2009-11-01

    Over the past decade, there has been significant progress in developing the concepts and technologies needed to produce, capture, and accelerate O(1021) muons per year. These developments have paved the way for a new type of neutrino source (neutrino factory) and a new type of very high energy lepton-antilepton collider (muon collider). This article reviews the motivation, design, and research and development for future neutrino factories and muon colliders.

  5. Muon Colliders and Neutrino Factories

    SciTech Connect

    Geer, Steve; /Fermilab

    2009-11-01

    Over the past decade, there has been significant progress in developing the concepts and technologies needed to produce, capture, and accelerate {Omicron}(10{sup 21}) muons per year. These developments have paved the way for a new type of neutrino source (neutrino factory) and a new type of very high energy lepton-antilepton collider (muon collider). This article reviews the motivation, design, and research and development for future neutrino factories and muon colliders.

  6. Muon colliders and neutrino factories

    SciTech Connect

    Geer, S.; /Fermilab

    2010-09-01

    Over the last decade there has been significant progress in developing the concepts and technologies needed to produce, capture and accelerate {Omicron}(10{sup 21}) muons/year. This development prepares the way for a new type of neutrino source (Neutrino Factory) and a new type of very high energy lepton-antilepton collider (Muon Collider). This article reviews the motivation, design and R&D for Neutrino Factories and Muon Colliders.

  7. Linear collider development at SLAC

    SciTech Connect

    Irwin, J.

    1993-08-01

    Linear collider R&D at SLAC comprises work on the present Stanford Linear Collider (SLC) and work toward the next linear collider (NLC). Recent SLC developments are summarized. NLC studies are divided into hardware-based and theoretical. We report on the status of the NLC Test Accelerator (NLCTA) and the final focus test beam (FFTB), describe plans for ASSET, an installation to measure accelerator structure wakefields, and mention IR design developments. Finally we review recent NLC theoretical studies, ending with the author`s view of next linear collider parameter sets.

  8. Problems in particle theory. Technical report, 1992--1993

    SciTech Connect

    Adler, S.L.; Wilczek, F.

    1993-11-01

    Areas of emphasis include acceleration algorithms for the Monte Carlo analysis of lattice field and gauge theories, quaternionic generalizations of complex quantum mechanics and field theory, application of the renormalization group to the QCD phase transition, the quantum Hall effect, and black holes. Other work involved string theory, statistical properties of energy levels in integrable quantum systems, baryon asymmetry and the electroweak phase transition, anisotropies of the cosmic microwave background, and theory of superconductors.

  9. The 1992-1993 NASA Space Biology Accomplishments

    NASA Technical Reports Server (NTRS)

    Halstead, Thora W. (Editor)

    1994-01-01

    This report consists of individual technical summaries of research projects of NASA's Space Biology Program, for research conducted during the calendar years of 1992 and 1993. This program includes both plant and animal research, and is dedicated to understanding the role of gravity and the effects of microgravity on biological processes; determining the effects of the interaction of gravity and other environmental factors on biological systems; and using the microgravity of the space environment as a tool to advance fundamental scientific knowledge in the biological sciences to improve the quality of life on Earth and contribute to NASA's goal of manned exploration of space. The summaries for each project include a description of the research, a list of the accomplishments, an explanation of the significance of the accomplishments, and a list of publications.

  10. U.S. Council for Energy Awareness 1992-1993

    SciTech Connect

    Not Available

    1995-02-01

    This report of the US Council for Energy Awareness covers the following main topics. (1) Electricity and Economic growth: growth of these has been roughly parallel. New electric generating capacity will be needed if the US is to sustain economic growth. All resources - coal, oil, natural gas, renewables, energy efficiency, and nuclear energy - have a role to play. (2) Nuclear Energy and the Environment: Nuclear energy is one of the cleanest sources of electric power. (3) Nuclear Power and Energy Independence: Nuclear energy is partly responsible for the dramatic reduction in oil use by electric utilities over the past 20 years. (4) Nuclear Energy: Insurance for the future: As US utilities plan to meet the growing need for electric power, they face major uncertainties (increased competion; the extent that demand-side management and efficiency can reduce need; future price and supply of natural gas; impact of the 1990 Clean Air Act amendments; possibility of increased fossil fuel restrictions) Nuclear energy represents prudent, strategic planning against these uncertainties.

  11. Umatilla Hatchery Monitoring and Evaluation, 1992-1993 Annual Report.

    SciTech Connect

    Keefe, MaryLouise; Hayes, Michael C.; Groberg, Jr., Warren J.

    1994-06-01

    The Umatilla Hatchery is the foundation for rehabilitating chinook salmon and enhancing summer steelhead in the Umatilla River and expected to contribute significantly to the Northwest Power Planning Council`s goal of doubling salmonid production in the Columbia Basin. This report covers the second year of comprehensive monitoring and evaluation of the Umatilla Hatchery. As both the hatchery and the evaluation study are in the early stages of implementation, much of the information contained in this report is preliminary.

  12. Continual improvement: A bibliography with indexes, 1992-1993

    NASA Technical Reports Server (NTRS)

    1994-01-01

    This bibliography lists 606 references to reports and journal articles entered into the NASA Scientific and Technical Information Database during 1992 to 1993. Topics cover the philosophy and history of Continual Improvement (CI), basic approaches and strategies for implementation, and lessons learned from public and private sector models. Entries are arranged according to the following categories: Leadership for Quality, Information and Analysis, Strategic Planning for CI, Human Resources Utilization, Management of Process Quality, Supplier Quality, Assessing Results, Customer Focus and Satisfaction, TQM Tools and Philosophies, and Applications. Indexes include subject, personal author, corporate source, contract number, report number, and accession number.

  13. Flathead River Creel Report, 1992-1993. Final Report.

    SciTech Connect

    Hanzel, Delano

    1995-09-01

    A roving creel survey was conducted on the Flathead River system, May 1992 through May 1993, as part of Hungry Horse Dam Fisheries Mitigation, funded by Bonneville Power Administration. The Flathead River system is a tributary to the Clarks Fork of the Columbia River originating in northwest Montana and southern British Columbia. The river creel survey was conducted in conjunction with a Flathead Lake creel survey. This document summarizes the creel survey on the river system. The purpose of these creel surveys was to quantify fishery status prior to mitigation efforts and provide replicative survey methodology to measure success of future mitigation activities. 4 figs., 21 tabs.

  14. Hungry Horse Dam Fisheries Mitigation, 1992-1993 Progress Report.

    SciTech Connect

    DosSantos, Joe; Vashro, Jim; Lockard, Larry

    1994-06-01

    In February of 1900, over forty agency representatives and interested citizens began development of the 1991 Mitigation Plan. This effort culminated in the 1993 Implementation Plan for mitigation of fish losses attributable to the construction and operation of Hungry Horse Dam. The primary purpose of this biennial report is to inform the public of the status of ongoing mitigation activities resulting from those planning efforts. A habitat improvement project is underway to benefit bull trout in Big Creek in the North Fork drainage of the Flathead River and work is planned in Hay Creek, another North Fork tributary. Bull trout redd counts have been expanded and experimental programs involving genetic evaluation, outmigrant monitoring, and hatchery studies have been initiated, Cutthroat mitigation efforts have focused on habitat improvements in Elliott Creek and Taylor`s Outflow and improvements have been followed by imprint plants of hatchery fish and/or eyed eggs in those streams. Rogers Lake west of Kalispell and Lion Lake, near Hungry Horse, were chemically rehabilitated. Cool and warm water fish habitat has been improved in Halfmoon Lake and Echo Lake. Public education and public interest is important to the future success of mitigation activities. As part of the mitigation team`s public awareness responsibility we have worked with numerous volunteer groups, public agencies, and private landowners to stimulate interest and awareness of mitigation activities and the aquatic ecosystem. The purpose of this biennial report is to foster public awareness of, and support for, mitigation activities as we move forward in implementing the Hungry Horse Dam Fisheries Mitigation Implementation Plan.

  15. Water Science and Technology Board. Annual report 1992-1993

    SciTech Connect

    Not Available

    1995-01-01

    This report summarizes the activities of the Water Science and Technology Board during 1992. The WSTB is intended to be a dynamic forum, a mechanism by which the broad community of water science, technology, and policy professionals can help assure high-quality national water programs. The principal products of WSTB studies are written reports which cover a wide range of water resources issues of current national concern. A few recent examples are: Managing wastewater in coastal urban areas; Ground water vulnerability assessment; Water transfers in the West - efficiency, equity and the environment; and Opportunities in the hydrologic sciences. Projects completed, ongoing studies and published reports are described in detail in their respective sections of this report.

  16. Status of Teacher Personnel in Utah 1992-1993.

    ERIC Educational Resources Information Center

    Utah State Office of Education, Salt Lake City.

    This report provides data regarding the supply of and the demand for teachers as well as the status of currently active teachers in Utah. Statistical data assembled in this report have been divided into five color-coded sections according to the classification of information. The first section, "Total Professional Personnel," covers total number…

  17. Cat-scratch disease--Connecticut, 1992-1993.

    PubMed

    Hamilton, D H; Zangwill, K M; Hadler, J L; Cartter, M L

    1995-08-01

    A prospective population-based surveillance system was established to characterize the epidemiology of cat-scratch disease (CSD) among residents of Connecticut who were reported to the state health department with a diagnosis of suspected CSD. During 1992 and 1993, 246 persons met the case definition, for an average statewide annual incidence of 3.7/100,000 persons. The median age of patients with CSD was 14 years (range, 1-64), and 52% were female. The age-specific attack rate was highest among persons < 10 years of age (9.3/100,000) and decreased with increasing age. Symptoms in addition to adenopathy were noted by 74% of case-patients. Eleven percent of all case-patients were hospitalized. There were no deaths. Most patients with clinically diagnosed CSD developed an immunologic response to Bartonella species. Our data suggest that although CSD is primarily a disease of younger persons, the age spectrum is wider than was commonly appreciated.

  18. National Literacy Grants Program, 1992-1993. Final Report.

    ERIC Educational Resources Information Center

    National Inst. for Literacy, Washington, DC.

    This booklet presents summaries of the 35 projects funded by the National Institute for Literacy in 1992. Each summary provides the project's purpose, findings, products, and contact person with address and telephone number. These projects are included: Adult Literacy in the United States; Cognitive Skills-Based Instruction and Assessment; Hmong…

  19. PETC Review. Issue 7, Winter 1992--1993

    SciTech Connect

    Santore, R.R.; Blaustein, B.D.; Friedman, S.; Reiss, J.; Brown, J.; Price, M.M.

    1993-02-01

    This issue of the PETC Review is devoted to explaining how the private sector can do business with DOE-and with PETC in particular-and how DOE works with academia, industry, and state and local groups to accomplish objectives of mutual interest. Over the past several years, the notion of ``cost-sharing`` has been receiving increased attention. Indeed, cost-shared RD&D is becoming the norm, not only within DOE but also among other government agencies, including the Department of Defense. It may surprise some of our readership to learn that RD&D cost-sharing is not a new government policy. In fact, it has been part of the DOE Acquisition Regulations from their inception in 1977. In lay terms, cost participation, a general kind of cost-sharing, is required for RD&D efforts in which the non-Federal participant`s goal is commercialization or in situations for which it is reasonable to expect that economic benefits will accrue to the participant as a result of the work. The policy is quite flexible and states that the degree of non-DOEcost participation depends on a number of factors, including the nature of the work performed and the extent of the project risk. As competition for RD&D funds increases, it is to be expected that cost-sharing requirements for development, and even for basic research, will increase. Nevertheless, we think that Federal support of RD&D will continue to be necessary to maintain this country`s leadership in science, technology, industry, and living standards.

  20. Spectrophotometry of Mars during the 1992-1993 Visibility Period

    NASA Astrophysics Data System (ADS)

    Vdovichenko, V. D.; Nosova, T. P.; Kirienko, G. A.

    The results of photoelectric spectral observations of the parts of the Martian surface corresponding to the whole central meridian of the planet in the 320-1100-nm wavelength region are presented for a wide range of the planet's longitudes. The effect of the phase angle on the albedo is examined as a function of the wavelength. The presence of fine absorption features in the 350-800-nm range is established, as well as their identity over the entire range of longitudes. A `pyroxenic' absorption band is recorded reliably in all spectra in the 800-1100-nm range, whose intensity exhibits a slight longitudinal dependence. The results of observations are compared with the data of other researchers on the basis of the analysis of the literary material available.

  1. Youth Work Skills. 1992-1993 Annual Report.

    ERIC Educational Resources Information Center

    Bennett, Barbara K.; And Others

    The Youth Work Skills (YWS) program was developed to help economically disadvantaged, out-of-school, high school-aged youth with reading abilities at or below the fifth-grade level become job ready. In 1992-93, YWS served 236 participants at 7 sites throughout New York (two sites each in Brooklyn and Buffalo and sites in the Bronx, Rochester, and…

  2. NCAA Division 1 Graduation-Rates Summary, 1992-1993.

    ERIC Educational Resources Information Center

    Benson, Martin T., Ed.

    This publication is comprised entirely of statistical reports that summarize graduation-rate data collected from National Collegiate Athletic Association (NCAA) Division 1 member institutions. The reports reflect the graduation rates of: (1) students and student-athletes entering college in the 1985-86 academic year, and (2) the average graduation…

  3. Polysaccharides and bacterial plugging. Final report, 1992--1993

    SciTech Connect

    Fogler, H.S.

    1995-02-01

    In situ core plugging experiments and transport experiments, using the model bacteria Leuconostoc m., have been conducted. Results demonstrated that cellular polysaccharide production increases cell distribution in porous media and caused an overall decrease in media permeability. Further, a parallel core plugging experiment was conducted and showed the feasibility of this system to divert injection fluid from high permeability zones into low permeability zones within porous media as is needed for profile modification. To implement this type of application, however, controlled placement of cells and rates of polymer production are needed. Therefore, kinetic studies were performed. A kinetic model was subsequently developed for Leuconostoc m. bacteria. This model is based on data generated from batch growth experiments and allows for the prediction of saccharide utilization, cell generation, and dextran production. These predictions can be used to develop injection strategies for field implementation. Transport and in situ growth micromodel experiments have shown how dextran allow cells to remain as clusters after cell division which enhanced cell capture and retention in porous media. Additional Damkohler experiments have been performed to determine the effects of the nutrient injection rate and nutrient concentration on the rate of porous media plugging. As shown experimentally and as predicted by a model for in situ growth, an increase in nutrient concentration and/or its injection rate will result in a faster rate of porous media plugging. Through continuum model simulations, it has been shown that the initial cell profiles play a key role on the core plugging rate. Controlling the location of the inoculating cells is thus another key factor in using bacteria for profile modification.

  4. Collider Detector at Fermilab (CDF): Data from B Hadrons Research

    DOE Data Explorer

    The Collider Detector at Fermilab (CDF) is a Tevatron experiment at Fermilab. The Tevatron, a powerful particle accelerator, accelerates protons and antiprotons close to the speed of light, and then makes them collide head-on inside the CDF detector. The CDF detector is used to study the products of such collisions. The CDF Physics Group is organized into six working groups, each with a specific focus. The Bottom group studies the production and decay of B hadrons. Their public web page makes data and numerous figures available from both CDF Runs I and II.

  5. High Energy Colliders as Tools to Understand the Early Universe

    SciTech Connect

    Tait, Tim

    2008-08-16

    Cosmological observations have reached a new era of precision, and reveal many interesting and puzzling features of the Universe. I will briefly review two of the most exciting mysteries: the nature of the dark components of the Universe, and the origin of the asymmetry between matter and anti-matter. I will argue that our best hope of unraveling these questions will need to combine information from the heavens with measurements in the lab at high energy particle accelerators. The end of run II of the Tevatron, the up-coming Large Hadron Collider and proposed International Linear Collider all have great potential to help us answer these questions in the near future.

  6. Results from hadron colliders

    SciTech Connect

    Pondrom, L.G. )

    1990-12-14

    The present status of hadron collider physics is reviewed. The total cross section for {bar p} + p has been measured at 1.8 TeV: {sigma}{sub tot} = 72.1 {plus minus} 3.3 mb. New data confirm the UA2 observation of W/Z {yields} {bar q}q. Precision measurements of M{sub W} by UA2 and CDF give an average value M{sub W} = 80.13 {plus minus} 0.30 GeV/c{sup 2}. When combined with measurements of M{sub Z} from LEP and SLC this number gives sin{sup 2}{theta}{sub W} = 0.227 {plus minus} 0.006, or m{sub top} = 130{sub {minus}60}{sup +40} GeV/c{sup 2} from the EWK radiative correction term {Delta}r. Evidence for hadron colliders as practical sources of b quarks has been strengthened, while searches for t quarks have pushed the mass above M{sub W}: m{sub top} > 89 GeV/c{sup 2} 95% cl (CDF Preliminary). Searches beyond the standard model based on the missing E{sub T} signature have not yet produced any positive results. Future prospects for the discovery of the top quark in the range m{sub top} < 200 GeV/c{sup 2} look promising. 80 refs., 35 figs., 7 tabs.

  7. CDF - Run II Status and Prospects

    SciTech Connect

    Manfred Paulini

    2003-03-17

    After a five year upgrade period, the CDF detector located at the Fermilab Tevatron Collider is back in operation taking high quality data with all subsystems functional. We report on the status of the CDF experiment in Run II and discuss the start-up of the Tevatron accelerator. First physics results from CDF are presented. We also discuss the prospects for B physics in RunII, in particular the measurements of B{sub S}{sup 0} flavour oscillations and CP violation in B decays.

  8. Collider Signal I :. Resonance

    NASA Astrophysics Data System (ADS)

    Tait, Tim M. P.

    2010-08-01

    These TASI lectures were part of the summer school in 2008 and cover the collider signal associated with resonances in models of physics beyond the Standard Model. I begin with a review of the Z boson, one of the best-studied resonances in particle physics, and review how the Breit-Wigner form of the propagator emerges in perturbation theory and discuss the narrow width approximation. I review how the LEP and SLAC experiments could use the kinematics of Z events to learn about fermion couplings to the Z. I then make a brief survey of models of physics beyond the Standard Model which predict resonances, and discuss some of the LHC observables which we can use to discover and identify the nature of the BSM physics. I finish up with a discussion of the linear moose that one can use for an effective theory description of a massive color octet vector particle.

  9. ALPs at colliders

    NASA Astrophysics Data System (ADS)

    Mimasu, Ken; Sanz, Verónica

    2015-06-01

    New pseudo-scalars, often called axion-like particles (ALPs), abound in model-building and are often associated with the breaking of a new symmetry. Traditional searches and indirect bounds are limited to light axions, typically in or below the KeV range for ALPs coupled to photons. We present collider bounds on ALPs from mono-γ, tri-γ and mono-jet searches in a model independent fashion, as well as the prospects for the LHC and future machines. We find that they are complementary to existing searches, as they are sensitive to heavier ALPs and have the capability to cover an otherwise inaccessible region of parameter space. We also show that, assuming certain model dependent correlations between the ALP coupling to photons and gluons as well as considering the validity of the effective description of ALP interactions, mono-jet searches are in fact more suitable and effective in indirectly constraining ALP scenarios.

  10. Muon Collider design status

    SciTech Connect

    Alexahin, Y.; /Fermilab

    2010-09-01

    Muon Collider (MC) - proposed by G.I. Budker and A.N. Skrinsky a few decades ago - is now considered as the most exciting option for the energy frontier machine in the post-LHC era. A national Muon Accelerator Program (MAP) is being formed in the USA with the ultimate goal of building a MC at the Fermilab site with c.o.m. energy in the range 1.5-3 TeV and luminosity of {approx} 1.5 {center_dot} 10{sup 34} cm{sup -2} s{sup -1}. As the first step on the way to MC it envisages construction of a Neutrino Factory (NF) for high-precision neutrino experiments. The baseline scheme of the NF-MC complex is presented and possible options for its main components are discussed.

  11. Hadron collider physics at UCR

    SciTech Connect

    Kernan, A.; Shen, B.C.

    1997-07-01

    This paper describes the research work in high energy physics by the group at the University of California, Riverside. Work has been divided between hadron collider physics and e{sup +}-e{sup {minus}} collider physics, and theoretical work. The hadron effort has been heavily involved in the startup activities of the D-Zero detector, commissioning and ongoing redesign. The lepton collider work has included work on TPC/2{gamma} at PEP and the OPAL detector at LEP, as well as efforts on hadron machines.

  12. Vanilla technicolor at linear colliders

    NASA Astrophysics Data System (ADS)

    Frandsen, Mads T.; Järvinen, Matti; Sannino, Francesco

    2011-08-01

    We analyze the reach of linear colliders for models of dynamical electroweak symmetry breaking. We show that linear colliders can efficiently test the compositeness scale, identified with the mass of the new spin-one resonances, until the maximum energy in the center of mass of the colliding leptons. In particular we analyze the Drell-Yan processes involving spin-one intermediate heavy bosons decaying either leptonically or into two standard model gauge bosons. We also analyze the light Higgs production in association with a standard model gauge boson stemming also from an intermediate spin-one heavy vector.

  13. A 233 km tunnel for lepton and hadron colliders

    SciTech Connect

    Summers, D. J.; Cremaldi, L. M.; Datta, A.; Duraisamy, M.; Luo, T.; Lyons, G. T.

    2012-12-21

    A decade ago, a cost analysis was conducted to bore a 233 km circumference Very Large Hadron Collider (VLHC) tunnel passing through Fermilab. Here we outline implementations of e{sup +}e{sup -}, pp-bar , and {mu}{sup +}{mu}{sup -} collider rings in this tunnel using recent technological innovations. The 240 and 500 GeV e{sup +}e{sup -} colliders employ Crab Waist Crossings, ultra low emittance damped bunches, short vertical IP focal lengths, superconducting RF, and low coercivity, grain oriented silicon steel/concrete dipoles. Some details are also provided for a high luminosity 240 GeV e{sup +}e{sup -} collider and 1.75 TeV muon accelerator in a Fermilab site filler tunnel. The 40 TeV pp-bar collider uses the high intensity Fermilab p-bar source, exploits high cross sections for pp-bar production of high mass states, and uses 2 Tesla ultra low carbon steel/YBCO superconducting magnets run with liquid neon. The 35 TeV muon ring ramps the 2 Tesla superconducting magnets at 9 Hz every 0.4 seconds, uses 250 GV of superconducting RF to accelerate muons from 1.75 to 17.5 TeV in 63 orbits with 71% survival, and mitigates neutrino radiation with phase shifting, roller coaster motion in a FODO lattice.

  14. Activities at Fermilab related to collider present and future

    NASA Astrophysics Data System (ADS)

    Goderre, G. P.; Holt, J.

    1992-11-01

    The long-range Fermilab program requires fully capitalizing on the world's highest energy accelerator, the Tevatron, throughout the decade of the 90's. The program calls for increasing the collider luminosity with each successive run until peak luminosities of ≳5×1031 cm-2 s-1 and integrated luminosities of ≳100 pb-1 per run are achieved, effectively doubling the mass range accessible for discovery. If the quark lies at the upper range of the mass of the Tevatron, then increasing the energy of the collider operation could prove to be a crucial factor in the future program as well. In order to achieve these goals, we present a highly challenging upgrade of the present accelerator complex, called Fermilab III. In order to increase this performance level by a factor of 50, many changes are needed. Such a plan, of necessity, has modifications in almost all areas of the accelerator as the present system is reasonably optimized. (AIP)

  15. When Black Holes Collide

    NASA Technical Reports Server (NTRS)

    Baker, John

    2010-01-01

    Among the fascinating phenomena predicted by General Relativity, Einstein's theory of gravity, black holes and gravitational waves, are particularly important in astronomy. Though once viewed as a mathematical oddity, black holes are now recognized as the central engines of many of astronomy's most energetic cataclysms. Gravitational waves, though weakly interacting with ordinary matter, may be observed with new gravitational wave telescopes, opening a new window to the universe. These observations promise a direct view of the strong gravitational dynamics involving dense, often dark objects, such as black holes. The most powerful of these events may be merger of two colliding black holes. Though dark, these mergers may briefly release more energy that all the stars in the visible universe, in gravitational waves. General relativity makes precise predictions for the gravitational-wave signatures of these events, predictions which we can now calculate with the aid of supercomputer simulations. These results provide a foundation for interpreting expect observations in the emerging field of gravitational wave astronomy.

  16. Dr. Sheehan on Running.

    ERIC Educational Resources Information Center

    Sheehan, George A.

    This book is both a personal and technical account of the experience of running by a heart specialist who began a running program at the age of 45. In its seventeen chapters, there is information presented on the spiritual, psychological, and physiological results of running; treatment of athletic injuries resulting from running; effects of diet…

  17. Beam collimation at hadron colliders

    SciTech Connect

    Nikolai V. Mokhov

    2003-08-12

    Operational and accidental beam losses in hadron colliders can have a serious impact on machine and detector performance, resulting in effects ranging from minor to catastrophic. Principles and realization are described for a reliable beam collimation system required to sustain favorable background conditions in the collider detectors, provide quench stability of superconducting magnets, minimize irradiation of accelerator equipment, maintain operational reliability over the life of the machine, and reduce the impact of radiation on personnel and the environment. Based on detailed Monte-Carlo simulations, such a system has been designed and incorporated in the Tevatron collider. Its performance, comparison to measurements and possible ways to further improve the collimation efficiency are described in detail. Specifics of the collimation systems designed for the SSC, LHC, VLHC, and HERA colliders are discussed.

  18. Beam Rounders for Circular Colliders

    SciTech Connect

    A. Burov; S. Nagaitsev; Ya. Derbenev

    2001-07-01

    By means of linear optics, an arbitrary uncoupled beam can be locally transformed into a round (rotation-invariant) state and then back. This provides an efficient way to round beams in the interaction region of circular colliders.

  19. Beam rounders for circular colliders

    SciTech Connect

    A. Burov and S. Nagaitsev

    2002-12-10

    By means of linear optics, an arbitrary uncoupled beam can be locally transformed into a round (rotation-invariant) state and then back. This provides an efficient way to round beams in the interaction region of circular colliders.

  20. Physicists dream of supersized collider

    NASA Astrophysics Data System (ADS)

    Hao, Cindy

    2015-12-01

    Particle physicists in China are hopeful that the Chinese government will allocate 1 billion yuan (about £104m) to design what would be the world's largest particle accelerator - the Circular Electron Positron Collider (CEPC).

  1. Mass reach scaling for future hadron colliders

    NASA Astrophysics Data System (ADS)

    Rizzo, Thomas G.

    2015-04-01

    The primary goal of any future hadron collider is to discover new physics (NP) associated with a high mass scale, , beyond the range of the LHC. In order to maintain the same relative mass reach for rate-limited NP, , as increases, Richter recently reminded us that the required integrated luminosity obtainable at future hadron colliders (FHC) must grow rapidly, , in the limit of naive scaling. This would imply, e.g., a 50-fold increase in the required integrated luminosity when going from the 14 TeV LHC to a FHC with TeV, an increase that would prove quite challenging on many different fronts. In this paper we point out, due to the scaling violations associated with the evolution of the parton density functions (PDFs) and the running of the strong coupling, , that the actual luminosity necessary in order to maintain any fixed value of the relative mass reach is somewhat greater than this scaling result indicates. However, the actual values of the required luminosity scaling are found to be dependent upon the detailed nature of the NP being considered. Here we elucidate this point explicitly by employing several specific benchmark examples of possible NP scenarios and briefly discuss the (relatively weak) search impact in each case if these luminosity goals are not met.

  2. Polarized Electrons for Linear Colliders

    NASA Astrophysics Data System (ADS)

    Clendenin, J. E.; Brachmann, A.; Garwin, E. L.; Kirby, R. E.; Luh, D.-A.; Maruyama, T.; Prescott, C. Y.; Sheppard, J. C.; Turner, J.; Prepost, R.

    2005-08-01

    Future electron-positron linear colliders require a highly polarized electron beam with a pulse structure that depends primarily on whether the acceleration utilizes warm or superconducting RF structures. The International Linear Collider (ILC) will use cold structures for the main linac. It is shown that a DC-biased polarized photoelectron source such as successfully used for the SLC can meet the charge requirements for the ILC micropulse with a polarization approaching 90%.

  3. Polarized Electrons for Linear Colliders

    SciTech Connect

    Clendenin, J.

    2004-11-19

    Future electron-positron linear colliders require a highly polarized electron beam with a pulse structure that depends primarily on whether the acceleration utilizes warm or superconducting rf structures. The International Linear Collider (ILC) will use cold structures for the main linac. It is shown that a dc-biased polarized photoelectron source such as successfully used for the SLC can meet the charge requirements for the ILC micropulse with a polarization approaching 90%.

  4. Physics at Future Circular Colliders

    NASA Astrophysics Data System (ADS)

    Kotwal, Ashutosh

    2016-03-01

    The Large Hadron Collider has been a grand success with the discovery of the Higgs boson, with bright prospects for additional discoveries since the recent increase in collider energy and the anticipated large datasets. Big open questions such as the nature of dark matter, the origin of the matter-antimatter asymmetry in the Universe, and the theoretical puzzle of the finely-tuned parameters in the Higgs sector, demand new physics principles that extend the established Standard Model paradigm. Future circular colliders in a substantially larger tunnel can house both a high luminosity electron-positron collider for precision measurements of Higgs and electroweak parameters, as well as a very high energy proton-proton collider which can directly manifest particles associated with these new physics principles. We discuss the physics goals of these future circular colliders, and the prospects for elucidating fundamental new laws of nature that will significantly extend our understanding of the Universe. Detailed studies of the discovery potential in specific benchmark models will be presented, with implications for detector design.

  5. Muon muon collider: Feasibility study

    SciTech Connect

    1996-06-18

    A feasibility study is presented of a 2 + 2 TeV muon collider with a luminosity of L = 10{sup 35} cm{sup {minus}2} s{sup {minus}1}. The resulting design is not optimized for performance, and certainly not for cost; however, it does suffice--the authors believe--to allow them to make a credible case, that a muon collider is a serious possibility for particle physics and, therefore, worthy of R and D support so that the reality of, and interest in, a muon collider can be better assayed. The goal of this support would be to completely assess the physics potential and to evaluate the cost and development of the necessary technology. The muon collider complex consists of components which first produce copious pions, then capture the pions and the resulting muons from their decay; this is followed by an ionization cooling channel to reduce the longitudinal and transverse emittance of the muon beam. The next stage is to accelerate the muons and, finally, inject them into a collider ring which has a small beta function at the colliding point. This is the first attempt at a point design and it will require further study and optimization. Experimental work will be needed to verify the validity of diverse crucial elements in the design.

  6. String resonances at hadron colliders

    NASA Astrophysics Data System (ADS)

    Anchordoqui, Luis A.; Antoniadis, Ignatios; Dai, De-Chang; Feng, Wan-Zhe; Goldberg, Haim; Huang, Xing; Lüst, Dieter; Stojkovic, Dejan; Taylor, Tomasz R.

    2014-09-01

    We consider extensions of the standard model based on open strings ending on D-branes, with gauge bosons due to strings attached to stacks of D-branes and chiral matter due to strings stretching between intersecting D-branes. Assuming that the fundamental string mass scale Ms is in the TeV range and that the theory is weakly coupled, we discuss possible signals of string physics at the upcoming HL-LHC run (integrated luminosity =3000 fb-1) with a center-of-mass energy of √s =14 TeV and at potential future pp colliders, HE-LHC and VLHC, operating at √s =33 and 100 TeV, respectively (with the same integrated luminosity). In such D-brane constructions, the dominant contributions to full-fledged string amplitudes for all the common QCD parton subprocesses leading to dijets and γ +jet are completely independent of the details of compactification and can be evaluated in a parameter-free manner. We make use of these amplitudes evaluated near the first (n=1) and second (n=2) resonant poles to determine the discovery potential for Regge excitations of the quark, the gluon, and the color singlet living on the QCD stack. We show that for string scales as large as 7.1 TeV (6.1 TeV) lowest massive Regge excitations are open to discovery at the ≥5σ in dijet (γ +jet) HL-LHC data. We also show that for n=1 the dijet discovery potential at HE-LHC and VLHC exceedingly improves: up to 15 TeV and 41 TeV, respectively. To compute the signal-to-noise ratio for n=2 resonances, we first carry out a complete calculation of all relevant decay widths of the second massive level string states (including decays into massless particles and a massive n=1 and a massless particle), where we rely on factorization and conformal field theory techniques. Helicity wave functions of arbitrary higher spin massive bosons are also constructed. We demonstrate that for string scales Ms≲10.5 TeV (Ms≲28 TeV) detection of n =2 Regge recurrences at HE-LHC (VLHC) would become the smoking gun for D

  7. A Photon Collider Experiment based on SLC

    SciTech Connect

    Gronberg, J

    2003-11-01

    Technology for a photon collider experiment at a future TeV-scale linear collider has been under development for many years. The laser and optics technology has reached the point where a GeV-scale photon collider experiment is now feasible. We report on the photon-photon luminosities that would be achievable at a photon collider experiment based on a refurbished Stanford Linear Collider.

  8. On Running and Psychotherapy.

    ERIC Educational Resources Information Center

    Dukes, Denzel; And Others

    1980-01-01

    Frederic Leer's article "Running as an Adjunct to Psychotherapy" (January 1980 issue of this journal) is criticized by three authors. They focus on the psychological and social effects of running and its usefulness as a treatment for depressed adults. (LAB)

  9. Challenges in future linear colliders

    SciTech Connect

    Swapan Chattopadhyay; Kaoru Yokoya

    2002-09-02

    For decades, electron-positron colliders have been complementing proton-proton colliders. But the circular LEP, the largest e-e+ collider, represented an energy limit beyond which energy losses to synchrotron radiation necessitate moving to e-e+ linear colliders (LCs), thereby raising new challenges for accelerator builders. Japanese-American, German, and European collaborations have presented options for the Future Linear Collider (FLC). Key accelerator issues for any FLC option are the achievement of high enough energy and luminosity. Damping rings, taking advantage of the phenomenon of synchrotron radiation, have been developed as the means for decreasing beam size, which is crucial for ensuring a sufficiently high rate of particle-particle collisions. Related challenges are alignment and stability in an environment where even minute ground motion can disrupt performance, and the ability to monitor beam size. The technical challenges exist within a wider context of socioeconomic and political challenges, likely necessitating continued development of international collaboration among parties involved in accelerator-based physics.

  10. Biomechanics of Distance Running.

    ERIC Educational Resources Information Center

    Cavanagh, Peter R., Ed.

    Contributions from researchers in the field of running mechanics are included in the 13 chapters of this book. The following topics are covered: (1) "The Mechanics of Distance Running: A Historical Perspective" (Peter Cavanagh); (2) "Stride Length in Distance Running: Velocity, Body Dimensions, and Added Mass Effects" (Peter Cavanagh, Rodger…

  11. Particle Physics after the Higgs-Boson Discovery: Opportunities for the Large Hadron Collider

    DOE PAGES

    Quigg, Chris

    2015-08-24

    The first run of the Large Hadron Collider at CERN brought the discovery of the Higgs boson, an apparently elementary scalar particle with a mass of 125 GeV, the avatar of the mechanism that hides the electroweak symmetry. Then, a new round of experimentation is beginning, with the energy of the proton–proton colliding beams raised to 6.5 TeV per beam, from 4 TeV at the end of the first run. I summarize what we have learned about the Higgs boson, and calls attention to some issues that will be among our central concerns in the near future.

  12. Running and osteoarthritis.

    PubMed

    Willick, Stuart E; Hansen, Pamela A

    2010-07-01

    The overall health benefits of cardiovascular exercise, such as running, are well established. However, it is also well established that in certain circumstances running can lead to overload injuries of muscle, tendon, and bone. In contrast, it has not been established that running leads to degeneration of articular cartilage, which is the hallmark of osteoarthritis. This article reviews the available literature on the association between running and osteoarthritis, with a focus on clinical epidemiologic studies. The preponderance of clinical reports refutes an association between running and osteoarthritis.

  13. Muon Collider Task Force Report

    SciTech Connect

    Ankenbrandt, C.; Alexahin, Y.; Balbekov, V.; Barzi, E.; Bhat, C.; Broemmelsiek, D.; Bross, A.; Burov, A.; Drozhdin, A.; Finley, D.; Geer, S.; /Fermilab /Argonne /Brookhaven /Jefferson Lab /LBL, Berkeley /MUONS Inc., Batavia /UCLA /UC, Riverside /Mississippi U.

    2007-12-01

    Muon Colliders offer a possible long term path to lepton-lepton collisions at center-of-mass energies {radical}s {ge} 1 TeV. In October 2006 the Muon Collider Task Force (MCTF) proposed a program of advanced accelerator R&D aimed at developing the Muon Collider concept. The proposed R&D program was motivated by progress on Muon Collider design in general, and in particular, by new ideas that have emerged on muon cooling channel design. The scope of the proposed MCTF R&D program includes muon collider design studies, helical cooling channel design and simulation, high temperature superconducting solenoid studies, an experimental program using beams to test cooling channel RF cavities and a 6D cooling demonstration channel. The first year of MCTF activities are summarized in this report together with a brief description of the anticipated FY08 R&D activities. In its first year the MCTF has made progress on (1) Muon Collider ring studies, (2) 6D cooling channel design and simulation studies with an emphasis on the HCC scheme, (3) beam preparations for the first HPRF cavity beam test, (4) preparations for an HCC four-coil test, (5) further development of the MANX experiment ideas and studies of the muon beam possibilities at Fermilab, (6) studies of how to integrate RF into an HCC in preparation for a component development program, and (7) HTS conductor and magnet studies to prepare for an evaluation of the prospects for of an HTS high-field solenoid build for a muon cooling channel.

  14. Recent results from hadron colliders

    SciTech Connect

    Frisch, H.J. )

    1990-12-10

    This is a summary of some of the many recent results from the CERN and Fermilab colliders, presented for an audience of nuclear, medium-energy, and elementary particle physicists. The topics are jets and QCD at very high energies, precision measurements of electroweak parameters, the remarkably heavy top quark, and new results on the detection of the large flux of B mesons produced at these machines. A summary and some comments on the bright prospects for the future of hadron colliders conclude the talk. 39 refs., 44 figs., 3 tabs.

  15. Tevatron End-of-Run Beam Physics Experiments

    SciTech Connect

    Valishev, A.; Gu, X.; Miyamoto, R.; White, S.; Schmidt, F.; Qiang, J.; /LBNL

    2012-05-01

    Before the Tevatron Collider Run II ended in September of 2011, a number of specialized beam study periods were dedicated to the experiments on various accelerator physics concepts and effects during the last year of the machine operation. The study topics included collimation with bent crystals and hollow electron beams, diffusion measurements and various aspects of beam-beam interactions. In this report we concentrate on the subject of beam-beam interactions, summarizing the results of beam experiments. The covered topics include offset collisions, coherent beam stability, effect of the bunch-length-to-beta-function ratio, and operation of AC dipole with colliding beams.

  16. Muon Muon Collider: Feasibility Study

    SciTech Connect

    Gallardo, J.C.; Palmer, R.B.; Tollestrup, A.V.; Sessler, A.M.; Skrinsky, A.N.; Ankenbrandt, C.; Geer, S.; Griffin, J.; Johnstone, C.; Lebrun, P.; McInturff, A.; Mills, Frederick E.; Mokhov, N.; Moretti, A.; Neuffer, D.; Ng, K.Y.; Noble, R.; Novitski, I.; Popovic, M.; Qian, C.; Van Ginneken, A. /Fermilab /Brookhaven /Wisconsin U., Madison /Tel Aviv U. /Indiana U. /UCLA /LBL, Berkeley /SLAC /Argonne /Sobolev IM, Novosibirsk /UC, Davis /Munich, Tech. U. /Virginia U. /KEK, Tsukuba /DESY /Novosibirsk, IYF /Jefferson Lab /Mississippi U. /SUNY, Stony Brook /MIT /Columbia U. /Fairfield U. /UC, Berkeley

    2012-04-05

    A feasibility study is presented of a 2 + 2 TeV muon collider with a luminosity of L = 10{sup 35} cm{sup -2}s{sup -1}. The resulting design is not optimized for performance, and certainly not for cost; however, it does suffice - we believe - to allow us to make a credible case, that a muon collider is a serious possibility for particle physics and, therefore, worthy of R and D support so that the reality of, and interest in, a muon collider can be better assayed. The goal of this support would be to completely assess the physics potential and to evaluate the cost and development of the necessary technology. The muon collider complex consists of components which first produce copious pions, then capture the pions and the resulting muons from their decay; this is followed by an ionization cooling channel to reduce the longitudinal and transverse emittance of the muon beam. The next stage is to accelerate the muons and, finally, inject them into a collider ring wich has a small beta function at the colliding point. This is the first attempt at a point design and it will require further study and optimization. Experimental work will be needed to verify the validity of diverse crucial elements in the design. Muons because of their large mass compared to an electron, do not produce significant synchrotron radiation. As a result there is negligible beamstrahlung and high energy collisions are not limited by this phenomena. In addition, muons can be accelerated in circular devices which will be considerably smaller than two full-energy linacs as required in an e{sup +} - e{sup -} collider. A hadron collider would require a CM energy 5 to 10 times higher than 4 TeV to have an equivalent energy reach. Since the accelerator size is limited by the strength of bending magnets, the hadron collider for the same physics reach would have to be much larger than the muon collider. In addition, muon collisions should be cleaner than hadron collisions. There are many detailed particle

  17. CERN's Large Hadron Collider project

    NASA Astrophysics Data System (ADS)

    Fearnley, Tom A.

    1997-03-01

    The paper gives a brief overview of CERN's Large Hadron Collider (LHC) project. After an outline of the physics motivation, we describe the LHC machine, interaction rates, experimental challenges, and some important physics channels to be studied. Finally we discuss the four experiments planned at the LHC: ATLAS, CMS, ALICE and LHC-B.

  18. B physics at hadron colliders

    SciTech Connect

    Butler, J.N.; /Fermilab

    2005-09-01

    This paper discusses the physics opportunity and challenges for doing high precision B physics experiments at hadron colliders. It describes how these challenges have been addressed by the two currently operating experiments, CDF and D0, and how they are addressed by three experiments, ATLAS, CMS, and LHCb, at the LHC.

  19. Muon Colliders: The Next Frontier

    ScienceCinema

    Tourun, Yagmur [Illinois Institute of Technology, Chicago, Illinois, United States

    2016-07-12

    Muon Colliders provide a path to the energy frontier in particle physics but have been regarded to be "at least 20 years away" for 20 years. I will review recent progress in design studies and hardware R&D and show that a Muon Collider can be established as a real option for the post-LHC era if the current vigorous R&D effort revitalized by the Muon Collider Task Force at Fermilab can be supported to its conclusion. All critical technologies are being addressed and no show-stoppers have emerged. Detector backgrounds have been studied in detail and appear to be manageable and the physics can be done with existing detector technology. A muon facility can be built through a staged scenario starting from a low-energy muon source with unprecedented intensity for exquisite reach for rare processes, followed by a Neutrino Factory with ultrapure neutrino beams with unparalleled sensitivity for disentangling neutrino mixing, leading to an energy frontier Muon Collider with excellent energy resolution.

  20. Muon Colliders: The Next Frontier

    SciTech Connect

    Tourun, Yagmur

    2009-07-29

    Muon Colliders provide a path to the energy frontier in particle physics but have been regarded to be 'at least 20 years away' for 20 years. I will review recent progress in design studies and hardware R&D and show that a Muon Collider can be established as a real option for the post-LHC era if the current vigorous R&D effort revitalized by the Muon Collider Task Force at Fermilab can be supported to its conclusion. All critical technologies are being addressed and no show-stoppers have emerged. Detector backgrounds have been studied in detail and appear to be manageable and the physics can be done with existing detector technology. A muon facility can be built through a staged scenario starting from a low-energy muon source with unprecedented intensity for exquisite reach for rare processes, followed by a Neutrino Factory with ultrapure neutrino beams with unparalleled sensitivity for disentangling neutrino mixing, leading to an energy frontier Muon Collider with excellent energy resolution.

  1. Muon Colliders: The Next Frontier

    SciTech Connect

    Tourun, Yagmur

    2009-07-29

    Muon Colliders provide a path to the energy frontier in particle physics but have been regarded to be "at least 20 years away" for 20 years. I will review recent progress in design studies and hardware R&D and show that a Muon Collider can be established as a real option for the post-LHC era if the current vigorous R&D effort revitalized by the Muon Collider Task Force at Fermilab can be supported to its conclusion. All critical technologies are being addressed and no show-stoppers have emerged. Detector backgrounds have been studied in detail and appear to be manageable and the physics can be done with existing detector technology. A muon facility can be built through a staged scenario starting from a low-energy muon source with unprecedented intensity for exquisite reach for rare processes, followed by a Neutrino Factory with ultrapure neutrino beams with unparalleled sensitivity for disentangling neutrino mixing, leading to an energy frontier Muon Collider with excellent energy resolution.

  2. Physics at hadron colliders: Experimental view

    SciTech Connect

    Siegrist, J.L.

    1987-08-01

    The physics of the hadron-hadron collider experiment is considered from an experimental point of view. The problems encountered in determination of how well the standard model describes collider results are discussed. 53 refs., 58 figs.

  3. The MICE Run Control System

    NASA Astrophysics Data System (ADS)

    Hanlet, Pierrick; Mice Collaboration

    2014-06-01

    The Muon Ionization Cooling Experiment (MICE) is a demonstration experiment to prove the feasibility of cooling a beam of muons for use in a Neutrino Factory and/or Muon Collider. The MICE cooling channel is a section of a modified Study II cooling channel which will provide a 10% reduction in beam emittance. In order to ensure a reliable measurement, MICE will measure the beam emittance before and after the cooling channel at the level of 1%, or a relative measurement of 0.001. This renders MICE a precision experiment which requires strict controls and monitoring of all experimental parameters in order to control systematic errors. The MICE Controls and Monitoring system is based on EPICS and integrates with the DAQ, Data monitoring systems, and a configuration database. The new MICE Run Control has been developed to ensure proper sequencing of equipment and use of system resources to protect data quality. A description of this system, its implementation, and performance during recent muon beam data collection will be discussed.

  4. The technical challenges of the Large Hadron Collider.

    PubMed

    Collier, Paul

    2015-01-13

    The Large Hadron Collider (LHC) is a 27km circumference hadron collider, built at CERN to explore the energy frontier of particle physics. Approved in 1994, it was commissioned and began operation for data taking in 2009. The design and construction of the LHC presented many design, engineering and logistical challenges which involved pushing a number of technologies well beyond their level at the time. Since the start-up of the machine, there has been a very successful 3-year run with an impressive amount of data delivered to the LHC experiments. With an increasingly large stored energy in the beam, the operation of the machine itself presented many challenges and some of these will be discussed. Finally, the planning for the next 20 years has been outlined with progressive upgrades of the machine, first to nominal energy, then to progressively higher collision rates. At each stage the technical challenges are illustrated with a few examples. PMID:26949802

  5. The technical challenges of the Large Hadron Collider.

    PubMed

    Collier, Paul

    2015-01-13

    The Large Hadron Collider (LHC) is a 27km circumference hadron collider, built at CERN to explore the energy frontier of particle physics. Approved in 1994, it was commissioned and began operation for data taking in 2009. The design and construction of the LHC presented many design, engineering and logistical challenges which involved pushing a number of technologies well beyond their level at the time. Since the start-up of the machine, there has been a very successful 3-year run with an impressive amount of data delivered to the LHC experiments. With an increasingly large stored energy in the beam, the operation of the machine itself presented many challenges and some of these will be discussed. Finally, the planning for the next 20 years has been outlined with progressive upgrades of the machine, first to nominal energy, then to progressively higher collision rates. At each stage the technical challenges are illustrated with a few examples.

  6. Towards resolving strongly-interacting dark sectors at colliders

    NASA Astrophysics Data System (ADS)

    Englert, Christoph; Nordström, Karl; Spannowsky, Michael

    2016-09-01

    Dark sectors with strong interactions have received considerable interest. Assuming the existence of a minimally coupled dark sector which runs to strong interactions in the infrared, we address the question whether the scaling behavior of this dark sector can be observed in missing energy signatures at present and future hadron colliders. We compare these findings to the concrete case of self-interacting dark matter and demonstrate that the energy dependence of high-momentum transfer final states can in principle be used to gain information about the UV structure of hidden sectors at future hadron colliders, subject to large improvements in systematic uncertainties, which could complement proof-of-principle lattice investigations. We also comment on the case of dark Abelian U (1 ) theories.

  7. P{bar P} collider physics

    SciTech Connect

    Demarteau, M.

    1992-04-01

    A brief introduction to {bar p}p collider physics is given. Selected results from the collider experiments at the CERN S{bar p}pS and the Tevatron collider are described. The emphasis is on experimental aspects of {bar p}p collisions. Minimum bias physics and the production of jets, Intermediate Vector Bosons and heavy flavors is reviewed. The outlook for physics at hadron colliders for the near future is briefly discussed.

  8. From Neutrino Factory to Muon Collider

    SciTech Connect

    Geer, S.; /Fermilab

    2010-01-01

    Both Muon Colliders and Neutrino Factories require a muon source capable of producing and capturing {Omicron}(10{sup 21}) muons/year. This paper reviews the similarities and differences between Neutrino Factory and Muon Collider accelerator complexes, the ongoing R&D needed for a Muon Collider that goes beyond Neutrino Factory R&D, and some thoughts about how a Neutrino Factory on the CERN site might eventually be upgraded to a Muon Collider.

  9. Triathlon: running injuries.

    PubMed

    Spiker, Andrea M; Dixit, Sameer; Cosgarea, Andrew J

    2012-12-01

    The running portion of the triathlon represents the final leg of the competition and, by some reports, the most important part in determining a triathlete's overall success. Although most triathletes spend most of their training time on cycling, running injuries are the most common injuries encountered. Common causes of running injuries include overuse, lack of rest, and activities that aggravate biomechanical predisposers of specific injuries. We discuss the running-associated injuries in the hip, knee, lower leg, ankle, and foot of the triathlete, and the causes, presentation, evaluation, and treatment of each.

  10. HIGH ENERGY PHYSICS POTENTIAL AT MUON COLLIDERS

    SciTech Connect

    PARSA,Z.

    2000-04-07

    In this paper, high energy physics possibilities and future colliders are discussed. The {mu}{sup +} {mu}{sup {minus}} collider and experiments with high intensity muon beams as the stepping phase towards building Higher Energy Muon Colliders (HEMC) are briefly reviewed and encouraged.

  11. Time evolution of the luminosity of colliding heavy-ion beams in BNL Relativistic Heavy Ion Collider and CERN Large Hadron Collider

    NASA Astrophysics Data System (ADS)

    Bruce, R.; Jowett, J. M.; Blaskiewicz, M.; Fischer, W.

    2010-09-01

    We have studied the time evolution of the heavy-ion luminosity and bunch intensities in the Relativistic Heavy Ion Collider (RHIC) at BNL, and in the Large Hadron Collider (LHC) at CERN. First, we present measurements from a large number of RHIC stores (from run-7), colliding 100GeV/nucleon Au79+197 beams without stochastic cooling. These are compared with two different calculation methods. The first is a simulation based on multiparticle tracking taking into account collisions, intrabeam scattering, radiation damping, and synchrotron and betatron motion. In the second, faster, method, a system of ordinary differential equations with terms describing the corresponding effects on emittances and bunch populations is solved numerically. Results of the tracking method agree very well with the RHIC data. With the faster method, significant discrepancies are found since the losses of particles diffusing out of the rf bucket due to intrabeam scattering are not modeled accurately enough. Finally, we use both methods to make predictions of the time evolution of the future Pb82+208 beams in the LHC at injection and collision energy. For this machine, the two methods agree well.

  12. Time evolution of the luminosity of colliding heavy-ion beams in BNL Relativistic Heavy Ion Collider and CERN Large Hadron Collider

    SciTech Connect

    Bruce, R.; Blaskiewicz, M.; Jowett, J.M.; Fischer, W.

    2010-09-07

    We have studied the time evolution of the heavy ion luminosity and bunch intensities in the Relativistic Heavy Ion Collider (RHIC), at BNL, and in the Large Hadron Collider (LHC), at CERN. First, we present measurements from a large number of RHIC stores (from Run 7), colliding 100 GeV/nucleon {sup 197}Au{sup 79}+ beams without stochastic cooling. These are compared with two different calculation methods. The first is a simulation based on multi-particle tracking taking into account collisions, intrabeam scattering, radiation damping, and synchrotron and betatron motion. In the second, faster, method, a system of ordinary differential equations with terms describing the corresponding effects on emittances and bunch populations is solved numerically. Results of the tracking method agree very well with the RHIC data. With the faster method, significant discrepancies are found since the losses of particles diffusing out of the RF bucket due to intrabeam scattering are not modeled accurately enough. Finally, we use both methods to make predictions of the time evolution of the future {sup 208}Pb+{sup 82+} beams in the LHC at injection and collision energy. For this machine, the two methods agree well.

  13. Proposal for Research and Development: Vertexing, Tracking, and Data Acquisition for the Bottom Collider Detector

    SciTech Connect

    Castro, H.; Gomez, B.; Rivera, F.; Sanabria, J.-C.; Yager, P.; Barsotti, E.; Bowden, M.; Childress, S.; Lebrun, P.; Morfin, J.; Roberts, L.A.; /Fermilab /Florida U. /Houston U. /IIT /Iowa U. /Northeastern U. /Northern Illinois U. /Ohio State U. /Oklahoma U. /Pennsylvania U.

    1989-01-01

    The authors propose a program of research and development into the detector systems needed for a B-physics experiment at the Fermilab p-{bar p} Collider. The initial emphasis is on the critical issues of vertexting, tracking, and data acquisition in the high-multiplicity, high-rate collider environment. R and D for the particle-identification systems (RICH counters, TRD's, and EM calorimeter) will be covered in a subsequent proposal. To help focus their efforts in a timely manner, they propose the first phase of the R and D should culminate in a system test at the C0 collider intersect during the 1990-1991 run: a small fraction of the eventual vertex detector would be used to demonstrate that secondary-decay vertices can be found at a hadron collider. The proposed budget for the r and D program is $800k in 1989, $1.5M in 1990, and $1.6M in 1991.

  14. Future Electron-Hadron Colliders

    SciTech Connect

    Litvinenko, V.

    2010-05-23

    Outstanding research potential of electron-hadron colliders (EHC) was clearly demonstrated by first - and the only - electron-proton collider HERA (DESY, Germany). Physics data from HERA revealed new previously unknown facets of Quantum Chromo-Dynamics (QCD). EHC is an ultimate microscope probing QCD in its natural environment, i.e. inside the hadrons. In contrast with hadrons, electrons are elementary particles with known initial state. Hence, scattering electrons from hadrons provides a clearest pass to their secrets. It turns EHC into an ultimate machine for high precision QCD studies and opens access to rich physics with a great discovery potential: solving proton spin puzzle, observing gluon saturation or physics beyond standard model. Access to this physics requires high-energy high-luminosity EHCs and a wide reach in the center-of-mass (CM) energies. This paper gives a brief overview of four proposed electron-hadron colliders: ENC at GSI (Darmstadt, Germany), ELIC/MEIC at TJNAF (Newport News, VA, USA), eRHIC at BNL (Upton, NY, USA) and LHeC at CERN (Geneva, Switzerland). Future electron-hadron colliders promise to deliver very rich physics not only in the quantity but also in the precision. They are aiming at very high luminosity two-to-four orders of magnitude beyond the luminosity demonstrated by the very successful HERA. While ENC and LHeC are on opposite side of the energy spectrum, eRHIC and ELIC are competing for becoming an electron-ion collider (EIC) in the U.S. Administrations of BNL and Jlab, in concert with US DoE office of Nuclear Physics, work on the strategy for down-selecting between eRHIC and ELIC. The ENC, EIC and LHeC QCD physics programs to a large degree are complimentary to each other and to the LHC physics. In last decade, an Electron Ion Collider (EIC) collaboration held about 25 collaboration meetings to develop physics program for EIC with CM energy {approx}100 GeV. One of these meetings was held at GSI, where ENC topic was in the

  15. Who Runs Our Universities?

    ERIC Educational Resources Information Center

    Watson, David

    2012-01-01

    Inside the academy there is a cultural perspective that it should run itself, in the sense that "business as usual" should be done with no one's hands obviously on the levers. This theory reaches its high point in the "self-government" of Oxford and Cambridge colleges. In this article, the author explores the question, "who runs our…

  16. Measurement of the Top Quark Mass with the Collider Detector at Fermilab

    SciTech Connect

    Sato, Koji

    2005-02-01

    We present a measurement of the top quark mass using tt pair creation events decaying into the lepton+jets channel in pp collisions at √s = 1.96 TeV. The data sample used in this analysis was collected with the Collider Detector at Fermilab (CDF) in Tevatron Run II during the period from March 2002 through August 2003.

  17. Scaling behavior of circular colliders dominated by synchrotron radiation

    NASA Astrophysics Data System (ADS)

    Talman, Richard

    2015-08-01

    The scaling formulas in this paper — many of which involve approximation — apply primarily to electron colliders like CEPC or FCC-ee. The more abstract “radiation dominated” phrase in the title is intended to encourage use of the formulas — though admittedly less precisely — to proton colliders like SPPC, for which synchrotron radiation begins to dominate the design in spite of the large proton mass. Optimizing a facility having an electron-positron Higgs factory, followed decades later by a p, p collider in the same tunnel, is a formidable task. The CEPC design study constitutes an initial “constrained parameter” collider design. Here the constrained parameters include tunnel circumference, cell lengths, phase advance per cell, etc. This approach is valuable, if the constrained parameters are self-consistent and close to optimal. Jumping directly to detailed design makes it possible to develop reliable, objective cost estimates on a rapid time scale. A scaling law formulation is intended to contribute to a “ground-up” stage in the design of future circular colliders. In this more abstract approach, scaling formulas can be used to investigate ways in which the design can be better optimized. Equally important, by solving the lattice matching equations in closed form, as contrasted with running computer programs such as MAD, one can obtain better intuition concerning the fundamental parametric dependencies. The ground-up approach is made especially appropriate by the seemingly impossible task of simultaneous optimization of tunnel circumference for both electrons and protons. The fact that both colliders will be radiation dominated actually simplifies the simultaneous optimization task. All GeV scale electron accelerators are “synchrotron radiation dominated”, meaning that all beam distributions evolve within a fraction of a second to an equilibrium state in which “heating” due to radiation fluctuations is canceled by the “cooling” in

  18. Crab Cavities for Linear Colliders

    SciTech Connect

    Burt, G.; Ambattu, P.; Carter, R.; Dexter, A.; Tahir, I.; Beard, C.; Dykes, M.; Goudket, P.; Kalinin, A.; Ma, L.; McIntosh, P.; Shulte, D.; Jones, Roger M.; Bellantoni, L.; Chase, B.; Church, M.; Khabouline, T.; Latina, A.; Adolphsen, C.; Li, Z.; Seryi, Andrei; /SLAC

    2011-11-08

    Crab cavities have been proposed for a wide number of accelerators and interest in crab cavities has recently increased after the successful operation of a pair of crab cavities in KEK-B. In particular crab cavities are required for both the ILC and CLIC linear colliders for bunch alignment. Consideration of bunch structure and size constraints favour a 3.9 GHz superconducting, multi-cell cavity as the solution for ILC, whilst bunch structure and beam-loading considerations suggest an X-band copper travelling wave structure for CLIC. These two cavity solutions are very different in design but share complex design issues. Phase stabilisation, beam loading, wakefields and mode damping are fundamental issues for these crab cavities. Requirements and potential design solutions will be discussed for both colliders.

  19. COLLIDE: Collisions into Dust Experiment

    NASA Technical Reports Server (NTRS)

    Colwell, Joshua E.

    1999-01-01

    The Collisions Into Dust Experiment (COLLIDE) was completed and flew on STS-90 in April and May of 1998. After the experiment was returned to Earth, the data and experiment were analyzed. Some anomalies occurred during the flight which prevented a complete set of data from being obtained. However, the experiment did meet its criteria for scientific success and returned surprising results on the outcomes of very low energy collisions into powder. The attached publication, "Low Velocity Microgravity Impact Experiments into Simulated Regolith," describes in detail the scientific background, engineering, and scientific results of COLLIDE. Our scientific conclusions, along with a summary of the anomalies which occurred during flight, are contained in that publication. We offer it as our final report on this grant.

  20. SLC: The first linear collider

    NASA Astrophysics Data System (ADS)

    Phinney, Nan

    The Stanford Linear Collider (SLC) was built in the 1980s at the Stanford Linear Accelerator Center (SLAC) in California. Like LEP, it was designed to study the properties of the Z boson at a center-of-mass energy of about 91 GeV. The SLC was also a prototype for an entirely new approach to electron-positron colliders. The development of a new technology was motivated by the fact that in an electron storage ring, the electrons radiate synchrotron radiation as they are bent around the ring. To avoid excessive energy loss from this radiation, the circumference of the ring has to increase as the square of the desired energy, making very high energy rings prohibitively large and expensive. With a linear accelerator, the electrons do not need to bend and the tunnel length only grows linearly with energy...

  1. Luminosity limitations for Electron-Ion Collider

    SciTech Connect

    Valeri Lebedev

    2000-09-01

    The major limitations on reaching the maximum luminosity for an electron ion collider are discussed in application to the ring-ring and linac-ring colliders. It is shown that with intensive electron cooling the luminosity of 10{sup 33} cm{sup -2} s{sup -1} is feasible for both schemes for the center-of-mass collider energy above approximately 15 GeV. Each scheme has its own pros and cons. The ring-ring collider is better supported by the current accelerator technology while the linac-ring collider suggests unique features for spin manipulations of the electron beam. The article addresses a general approach to a choice of collider scheme and parameters leaving details for other conference publications dedicated to particular aspects of the ring-ring and linac-ring colliders.

  2. Run Anyone?... Everyone!

    PubMed Central

    McInnis, W. P.

    1974-01-01

    Fitness and health have become bywords in the past decade, signifying increased emphasis on these factors as necessary for good psychological and physical health. Reasons are given why we should run and how to do it. There is a discussion of the technique of running, and equipment. Brief mention is made of complications. An attempt is made to interest the individual in the benefits of running as a sport as well as the best method for the average person to achieve fitness and health. PMID:20469054

  3. A large hadron electron collider at CERN

    DOE PAGES

    Abelleira Fernandez, J. L.

    2015-04-06

    This document provides a brief overview of the recently published report on the design of the Large Hadron Electron Collider (LHeC), which comprises its physics programme, accelerator physics, technology and main detector concepts. The LHeC exploits and develops challenging, though principally existing, accelerator and detector technologies. This summary is complemented by brief illustrations of some of the highlights of the physics programme, which relies on a vastly extended kinematic range, luminosity and unprecedented precision in deep inelastic scattering. Illustrations are provided regarding high precision QCD, new physics (Higgs, SUSY) and eletron-ion physics. The LHeC is designed to run synchronously withmore » the LHC in the twenties and to achieve an integrated luminosity of O(100)fb–1. It will become the cleanest high resolution microscope of mankind and will substantially extend as well as complement the investigation of the physics of the TeV energy scale, which has been enabled by the LHC.« less

  4. A large hadron electron collider at CERN

    SciTech Connect

    Abelleira Fernandez, J. L.

    2015-04-06

    This document provides a brief overview of the recently published report on the design of the Large Hadron Electron Collider (LHeC), which comprises its physics programme, accelerator physics, technology and main detector concepts. The LHeC exploits and develops challenging, though principally existing, accelerator and detector technologies. This summary is complemented by brief illustrations of some of the highlights of the physics programme, which relies on a vastly extended kinematic range, luminosity and unprecedented precision in deep inelastic scattering. Illustrations are provided regarding high precision QCD, new physics (Higgs, SUSY) and eletron-ion physics. The LHeC is designed to run synchronously with the LHC in the twenties and to achieve an integrated luminosity of O(100)fb–1. It will become the cleanest high resolution microscope of mankind and will substantially extend as well as complement the investigation of the physics of the TeV energy scale, which has been enabled by the LHC.

  5. Accelerator physics highlights in the 1997/98 SLC run

    SciTech Connect

    Assmann, R.W.; Bane, K.L.F.; Barkow, T.

    1998-03-01

    The authors report various accelerator physics studies and improvements from the 1997/98 run at the Stanford Linear Collider (SLC). In particular, the authors discuss damping-ring lattice diagnostics, changes to the linac set up, fast control for linac rf phase stability, new emittance tuning strategies, wakefield reduction, modifications of the final-focus optics, longitudinal bunch shaping, and a novel spot-size control at the interaction point (IP).

  6. Running for Your Health.

    ERIC Educational Resources Information Center

    Adams, George M.

    1979-01-01

    One way of coping with stress is through regular exercise. The author suggests jogging, or running, and presents some basic rules and suggestions for anyone who is about to take up this method of exercise. (KC)

  7. The LHCb Run Control

    NASA Astrophysics Data System (ADS)

    Alessio, F.; Barandela, M. C.; Callot, O.; Duval, P.-Y.; Franek, B.; Frank, M.; Galli, D.; Gaspar, C.; Herwijnen, E. v.; Jacobsson, R.; Jost, B.; Neufeld, N.; Sambade, A.; Schwemmer, R.; Somogyi, P.

    2010-04-01

    LHCb has designed and implemented an integrated Experiment Control System. The Control System uses the same concepts and the same tools to control and monitor all parts of the experiment: the Data Acquisition System, the Timing and the Trigger Systems, the High Level Trigger Farm, the Detector Control System, the Experiment's Infrastructure and the interaction with the CERN Technical Services and the Accelerator. LHCb's Run Control, the main interface used by the experiment's operator, provides access in a hierarchical, coherent and homogeneous manner to all areas of the experiment and to all its sub-detectors. It allows for automated (or manual) configuration and control, including error recovery, of the full experiment in its different running modes. Different instances of the same Run Control interface are used by the various sub-detectors for their stand-alone activities: test runs, calibration runs, etc. The architecture and the tools used to build the control system, the guidelines and components provided to the developers, as well as the first experience with the usage of the Run Control will be presented

  8. Fast Bunch Integrators at Fermilab During Run II

    SciTech Connect

    Meyer, Thomas; Briegel, Charles; Fellenz, Brian; Vogel, Greg; /Fermilab

    2011-07-13

    The Fast Bunch Integrator is a bunch intensity monitor designed around the measurements made from Resistive Wall Current Monitors. During the Run II period these were used in both Tevatron and Main Injector for single and multiple bunch intensity measurements. This paper presents an overview of the design and use of these systems during this period. During the Run II era the Fast Bunch integrators have found a multitude of uses. From antiproton transfers to muti-bunch beam coalescing, Main Injector transfers to halo scraping and lifetime measurements, the Fast Bunch Integrators have proved invaluable in the creation and maintenance of Colliding Beams stores at Fermilab.

  9. The muon system of the Run II DØ detector

    NASA Astrophysics Data System (ADS)

    Abazov, V. M.; Acharya, B. S.; Alexeev, G. D.; Alkhazov, G.; Anosov, V. A.; Baldin, B.; Banerjee, S.; Bardon, O.; Bartlett, J. F.; Baturitsky, M. A.; Beutel, D.; Bezzubov, V. A.; Bodyagin, V.; Butler, J. M.; Cease, H.; Chi, E.; Denisov, D.; Denisov, S. P.; Diehl, H. T.; Doulas, S.; Dugad, S. R.; Dvornikov, O. V.; Dyshkant, A.; Eads, M.; Evdokimov, A.; Evdokimov, V. N.; Fitzpatrick, T.; Fortner, M.; Gavrilov, V.; Gershtein, Y.; Golovtsov, V.; Gómez, B.; Goodwin, R.; Gornushkin, Yu. A.; Green, D. R.; Gupta, A.; Gurzhiev, S. N.; Gutierrez, G.; Haggerty, H.; Hanlet, P.; Hansen, S.; Hazen, E.; Hedin, D.; Hoeneisen, B.; Ito, A. S.; Jayanti, R.; Johns, K.; Jouravlev, N.; Kalinin, A. M.; Kalmani, S. D.; Kharzheev, Y. N.; Kirsch, N.; Komissarov, E. V.; Korablev, V. M.; Kostritsky, A.; Kozelov, A. V.; Kozlovsky, M.; Kravchuk, N. P.; Krishnaswamy, M. R.; Kuchinsky, N. A.; Kuleshov, S.; Kupco, A.; Larwill, M.; Leitner, R.; Lipaev, V. V.; Lobodenko, A.; Lokajicek, M.; Lubatti, H. J.; Machado, E.; Maity, M.; Malyshev, V. L.; Mao, H. S.; Marcus, M.; Marshall, T.; Mayorov, A. A.; McCroskey, R.; Merekov, Y. P.; Mikhailov, V. A.; Mokhov, N.; Mondal, N. K.; Nagaraj, P.; Narasimham, V. S.; Narayanan, A.; Negret, J. P.; Neustroev, P.; Nozdrin, A. A.; Oshinowo, B.; Parashar, N.; Parua, N.; Podstavkov, V. M.; Polozov, P.; Porokhovoi, S. Y.; Prokhorov, I. K.; Rao, M. V. S.; Raskowski, J.; Reddy, L. V.; Regan, T.; Rotolo, C.; Russakovich, N. A.; Sabirov, B. M.; Satyanarayana, B.; Scheglov, Y.; Schukin, A. A.; Shankar, H. C.; Shishkin, A. A.; Shpakov, D.; Shupe, M.; Simak, V.; Sirotenko, V.; Smith, G.; Smolek, K.; Soustruznik, K.; Stefanik, A.; Steinberg, J.; Stolin, V.; Stoyanova, D. A.; Stutte, L.; Temple, J.; Terentyev, N.; Teterin, V. V.; Tokmenin, V. V.; Tompkins, D.; Uvarov, L.; Uvarov, S.; Vasilyev, I. A.; Vertogradov, L. S.; Vishwanath, P. R.; Vorobyov, A.; Vysotsky, V. B.; Willutzki, H.; Wobisch, M.; Wood, D. R.; Yamada, R.; Yatsunenko, Y. A.; Yoffe, F.; Zanabria, M.; Zhao, T.; Zieminska, D.; Zieminski, A.; Zvyagintsev, S. A.

    2005-11-01

    We describe the design, construction, and performance of the upgraded DØ muon system for Run II of the Fermilab Tevatron collider. Significant improvements have been made to the major subsystems of the DØ muon detector: trigger scintillation counters, tracking detectors, and electronics. The Run II central muon detector has a new scintillation counter system inside the iron toroid and an improved scintillation counter system outside the iron toroid. In the forward region, new scintillation counter and tracking systems have been installed. Extensive shielding has been added in the forward region. A large fraction of the muon system electronics is also new.

  10. Analysis of failed ramps during the RHIC FY09 run

    SciTech Connect

    Minty, M.

    2014-08-15

    The Relativistic Heavy Ion Collider (RHIC) is a versatile accelerator that supports operation with polarized protons of up to 250 GeV and ions with up to 100 GeV/nucleon. During any running period, various operating scenarios with different particle species, beam energies or accelerator optics are commissioned. In this report the beam commissioning periods for establishing full energy beams (ramp development periods) from the FY09 run are summarized and, for the purpose of motivating further developments, we analyze the reasons for all failed ramps.

  11. The Muon system of the run II D0 detector

    SciTech Connect

    Abazov, V.M.; Acharya, B.S.; Alexeev, G.D.; Alkhazov, G.; Anosov, V.A.; Baldin, B.; Banerjee, S.; Bardon, O.; Bartlett, J.F.; Baturitsky, M.A.; Beutel, D.; Bezzubov, V.A.; Bodyagin, V.; Butler, J.M.; Cease, H.; Chi, E.; Denisov, D.; Denisov, S.P.; Diehl, H.T.; Doulas, S.; Dugad, S.R.; /Beijing, Inst. High Energy Phys. /Charles U. /Prague, Tech. U. /Prague, Inst. Phys. /San Francisco de Quito U. /Tata Inst. /Dubna, JINR /Moscow, ITEP /Moscow State U. /Serpukhov, IHEP /St. Petersburg, INP /Arizona U. /Florida State U. /Fermilab /Northern Illinois U. /Indiana U. /Boston U. /Northeastern U. /Brookhaven /Washington U., Seattle /Minsk, Inst. Nucl. Problems

    2005-03-01

    The authors describe the design, construction and performance of the upgraded D0 muon system for Run II of the Fermilab Tevatron collider. Significant improvements have been made to the major subsystems of the D0 muon detector: trigger scintillation counters, tracking detectors, and electronics. The Run II central muon detector has a new scintillation counter system inside the iron toroid and an improved scintillation counter system outside the iron toroid. In the forward region, new scintillation counter and tracking systems have been installed. Extensive shielding has been added in the forward region. A large fraction of the muon system electronics is also new.

  12. LHC: The Large Hadron Collider

    SciTech Connect

    Lincoln, Don

    2015-03-04

    The Large Hadron Collider (or LHC) is the world’s most powerful particle accelerator. In 2012, scientists used data taken by it to discover the Higgs boson, before pausing operations for upgrades and improvements. In the spring of 2015, the LHC will return to operations with 163% the energy it had before and with three times as many collisions per second. It’s essentially a new and improved version of itself. In this video, Fermilab’s Dr. Don Lincoln explains both some of the absolutely amazing scientific and engineering properties of this modern scientific wonder.

  13. Colliding-beam-accelerator lattice

    SciTech Connect

    Claus, J.; Cornacchia, M.; Courant, E.D.; Parzen, G.

    1983-01-01

    We describe the lattice of the Colliding Beam Accelerator, a 400 x 400 GeV pp facility proposed for construction at Brookhaven National Laboratory. The structure adopted is very versatile, in part in consequence of its desirable behavior as function of momentum deviation and as function of the betatron tunes. Each of the six insertions can be arranged to meet specific requirements at the crossing points as illustrated by a discussion of the tuneable low-beta insertions. The luminosity in these low-beta insertions (2 x 10/sup 33/ cm/sup -2/ sec/sup -1/) would be an order of magnitude larger than the standard insertions.

  14. LHC: The Large Hadron Collider

    ScienceCinema

    Lincoln, Don

    2016-07-12

    The Large Hadron Collider (or LHC) is the world’s most powerful particle accelerator. In 2012, scientists used data taken by it to discover the Higgs boson, before pausing operations for upgrades and improvements. In the spring of 2015, the LHC will return to operations with 163% the energy it had before and with three times as many collisions per second. It’s essentially a new and improved version of itself. In this video, Fermilab’s Dr. Don Lincoln explains both some of the absolutely amazing scientific and engineering properties of this modern scientific wonder.

  15. Muon Colliders and Neutrino Factories

    SciTech Connect

    Kaplan, Daniel M.

    2015-05-29

    Muon colliders and neutrino factories are attractive options for future facilities aimed at achieving the highest lepton-antilepton collision energies and precision measurements of Higgs boson and neutrino mixing matrix parameters. The facility performance and cost depend on how well a beam of muons can be cooled. Recent progress in muon cooling design studies and prototype tests nourishes the hope that such facilities could be built starting in the coming decade. The status of the key technologies and their various demonstration experiments is summarized. Prospects "post-P5" are also discussed.

  16. Fast feedback for linear colliders

    SciTech Connect

    Hendrickson, L.; Adolphsen, C.; Allison, S.; Gromme, T.; Grossberg, P.; Himel, T.; Krauter, K.; MacKenzie, R.; Minty, M.; Sass, R.

    1995-05-01

    A fast feedback system provides beam stabilization for the SLC. As the SLC is in some sense a prototype for future linear colliders, this system may be a prototype for future feedbacks. The SLC provides a good base of experience for feedback requirements and capabilities as well as a testing ground for performance characteristics. The feedback system controls a wide variety of machine parameters throughout the SLC and associated experiments, including regulation of beam position, angle, energy, intensity and timing parameters. The design and applications of the system are described, in addition to results of recent performance studies.

  17. Colliders and brane vector phenomenology

    SciTech Connect

    Clark, T. E.; Love, S. T.; Xiong, C.; Nitta, Muneto; Veldhuis, T. ter

    2008-12-01

    Brane world oscillations manifest themselves as massive vector gauge fields. Their coupling to the standard model is deduced using the method of nonlinear realizations of the spontaneously broken higher dimensional space-time symmetries. Brane vectors are stable and weakly interacting and therefore escape particle detectors unnoticed. LEP and Tevatron data on the production of a single photon in conjunction with missing energy are used to delineate experimentally excluded regions of brane vector parameter space. The additional region of parameter space accessible to the LHC as well as a future lepton linear collider is also determined by means of this process.

  18. Colliding with a crunching bubble

    SciTech Connect

    Freivogel, Ben; Freivogel, Ben; Horowitz, Gary T.; Shenker, Stephen

    2007-03-26

    In the context of eternal inflation we discuss the fate of Lambda = 0 bubbles when they collide with Lambda< 0 crunching bubbles. When the Lambda = 0 bubble is supersymmetric, it is not completely destroyed by collisions. If the domain wall separating the bubbles has higher tension than the BPS bound, it is expelled from the Lambda = 0 bubble and does not alter its long time behavior. If the domain wall saturates the BPS bound, then it stays inside the Lambda = 0 bubble and removes a finite fraction of future infinity. In this case, the crunch singularity is hidden behind the horizon of a stable hyperbolic black hole.

  19. Tevatron collider operations and plans

    SciTech Connect

    Peter H. Garbincius

    2004-06-17

    Fermilab's Tevatron is a proton-antiproton collider with center of mass energy of 1.96 TeV. The antiprotons are produced by 125 GeV protons from the Main Injector striking a stainless steel target. The 8 GeV antiprotons are collected and cooled in the Debuncher and Accumulator rings of the Antiproton Source and, just recently, in the Recycler ring before acceleration by the Main Injector and the Tevatron. In addition to energy, a vital parameter for generating physics data is the Luminosity delivered to the experiments given by a formula that is listed in detail in the paper.

  20. Governance of the International Linear Collider Project

    SciTech Connect

    Foster, B.; Barish, B.; Delahaye, J.P.; Dosselli, U.; Elsen, E.; Harrison, M.; Mnich, J.; Paterson, J.M.; Richard, F.; Stapnes, S.; Suzuki, A.; Wormser, G.; Yamada, S.; /KEK, Tsukuba

    2012-05-31

    Governance models for the International Linear Collider Project are examined in the light of experience from similar international projects around the world. Recommendations for one path which could be followed to realize the ILC successfully are outlined. The International Linear Collider (ILC) is a unique endeavour in particle physics; fully international from the outset, it has no 'host laboratory' to provide infrastructure and support. The realization of this project therefore presents unique challenges, in scientific, technical and political arenas. This document outlines the main questions that need to be answered if the ILC is to become a reality. It describes the methodology used to harness the wisdom displayed and lessons learned from current and previous large international projects. From this basis, it suggests both general principles and outlines a specific model to realize the ILC. It recognizes that there is no unique model for such a laboratory and that there are often several solutions to a particular problem. Nevertheless it proposes concrete solutions that the authors believe are currently the best choices in order to stimulate discussion and catalyze proposals as to how to bring the ILC project to fruition. The ILC Laboratory would be set up by international treaty and be governed by a strong Council to whom a Director General and an associated Directorate would report. Council would empower the Director General to give strong management to the project. It would take its decisions in a timely manner, giving appropriate weight to the financial contributions of the member states. The ILC Laboratory would be set up for a fixed term, capable of extension by agreement of all the partners. The construction of the machine would be based on a Work Breakdown Structure and value engineering and would have a common cash fund sufficiently large to allow the management flexibility to optimize the project's construction. Appropriate contingency, clearly

  1. Estimates of Fermilab Tevatron collider performance

    SciTech Connect

    Dugan, G.

    1991-09-01

    This paper describes a model which has been used to estimate the average luminosity performance of the Tevatron collider. In the model, the average luminosity is related quantitatively to various performance parameters of the Fermilab Tevatron collider complex. The model is useful in allowing estimates to be developed for the improvements in average collider luminosity to be expected from changes in the fundamental performance parameters as a result of upgrades to various parts of the accelerator complex.

  2. FUTURE LEPTON COLLIDERS AND LASER ACCELERATION

    SciTech Connect

    PARSA,Z.

    2000-05-30

    Future high energy colliders along with their physics potential, and relationship to new laser technology are discussed. Experimental approaches and requirements for New Physics exploration are also described.

  3. SLAC-Linac-Collider (SLC) Project

    SciTech Connect

    Wiedemann, H.

    1981-02-01

    The proposed SLAC Linear Collider Project (SLC) and its features are described in this paper. In times of ever increasing costs for energy the electron storage ring principle is about to reach its practical limit. A new class of colliding beam beam facilities, the Linear Colliders, are getting more and more attractive and affordable at very high center-of-mass energies. The SLC is designed to be a poineer of this new class of colliding beam facilities and at the same time will serve as a valuable tool to explore the high energy physics at the level of 100 GeV in the center-of-mass system.

  4. Collider Detector at Fermilab (CDF): Data from the Top Group's Top Quark Research

    DOE Data Explorer

    The Collider Detector at Fermilab (CDF) is a Tevatron experiment at Fermilab. The Tevatron, a powerful particle accelerator, accelerates protons and antiprotons close to the speed of light, and then makes them collide head-on inside the CDF detector. The CDF detector is used to study the products of such collisions. The CDF Physics Group at Fermilab is organized into six working groups, each with a specific focus. The Top group studies the properties of the top quark, the heaviest known fundamental particle. Their public web page makes data and numerous figures available from both CDF Runs I and II.

  5. Collider Detector at Fermilab (CDF): Data from Supersymmetry, New Phenomena Research of the CDF Exotics Group

    DOE Data Explorer

    The Collider Detector at Fermilab (CDF) is a Tevatron experiment at Fermilab. The Tevatron, a powerful particle accelerator, accelerates protons and antiprotons close to the speed of light, and then makes them collide head-on inside the CDF detector. The CDF detector is used to study the products of such collisions. The CDF Physics Group at Fermilab is organized into six working groups, each with a specific focus. The Exotics group searches for Supersymmetry and other New Phenomena. Their public web page makes data and numerous figures available from both CDF Runs I and II.

  6. Hadron colliders (SSC/LHC)

    SciTech Connect

    Chao, A.W.; Palmer, R.B. |; Evans, L.; Gareyte, J.; Siemann, R.H.

    1992-12-31

    The nominal SSC and LHC designs should operate conservatively at luminosities up to 10{sup 33} cm{sup {minus}2} s{sup {minus}1}. This luminosity is dictated by the event rates that can be handled by the detectors. However, this limit is event dependent (e.g. it does not take much of a detector to detect the event pp {yields} elephant; all one needs is extremely high luminosity). As such, it is useful to explore the possibility of going beyond the 10{sup 33} cm{sup {minus}2} s{sup {minus}1} level. Such exploration will also improve the accelerator physics understanding of pp collider designs. If the detector limitations are removed, the first accelerator limits occur when the luminosity is at the level of 10{sup 34} cm{sup {minus}2}s{sup {minus}1}. These accelerator limits will first be reviewed. The authors will then continue on to explore even higher luminosity as the ultimate limit of pp colliders. Accelerator technologies needed to achieve this ultimate luminosity as well as the R and D needed to reach it are discussed.

  7. Very large hadron collider (VLHC)

    SciTech Connect

    1998-09-01

    A VLHC informal study group started to come together at Fermilab in the fall of 1995 and at the 1996 Snowmass Study the parameters of this machine took form. The VLHC as now conceived would be a 100 TeV hadron collider. It would use the Fermilab Main Injector (now nearing completion) to inject protons at 150 GeV into a new 3 TeV Booster and then into a superconducting pp collider ring producing 100 TeV c.m. interactions. A luminosity of {approximately}10{sup 34} cm{sup -2}s{sup -1} is planned. Our plans were presented to the Subpanel on the Planning for the Future of US High- Energy Physics (the successor to the Drell committee) and in February 1998 their report stated ``The Subpanel recommends an expanded program of R&D on cost reduction strategies, enabling technologies, and accelerator physics issues for a VLHC. These efforts should be coordinated across laboratory and university groups with the aim of identifying design concepts for an economically and technically viable facility`` The coordination has been started with the inclusion of physicists from Brookhaven National Laboratory (BNL), Lawrence Berkeley National Laboratory (LBNL), and Cornell University. Clearly, this collaboration must expanded internationally as well as nationally. The phrase ``economically and technically viable facility`` presents the real challenge.

  8. RF sources for future colliders

    NASA Astrophysics Data System (ADS)

    Phillips, Robert M.

    1997-02-01

    As we push particle colliders to 1-TeV center-of-mass collision energy and beyond, we require much more from our RF energy sources, both in terms of the RF performance and the number required for a given machine. In order to conserve real estate, the operating frequency of future colliders is apt to be higher than the S-band used for the SLAC SLC. It is this inevitable trend toward higher frequencies which presents the source designer with the greatest challenge. This paper is about that challenge. For reasons which will become clear, as we go to frequencies substantially above X-band, we will require sources other than klystrons, probably of the type referred to as "fast-wave devices," such as FEL or gyro-based amplifiers, or two-beam accelerators. Because these are discussed elsewhere in this conference, I will stick to the klystron as my model in describing the challenges to be overcome, as well as the criteria which must be met by alternative sources for new accelerators.

  9. From Walking to Running

    NASA Astrophysics Data System (ADS)

    Rummel, Juergen; Blum, Yvonne; Seyfarth, Andre

    The implementation of bipedal gaits in legged robots is still a challenge in state-of-the-art engineering. Human gaits could be realized by imitating human leg dynamics where a spring-like leg behavior is found as represented in the bipedal spring-mass model. In this study we explore the gap between walking and running by investigating periodic gait patterns. We found an almost continuous morphing of gait patterns between walking and running. The technical feasibility of this transition is, however, restricted by the duration of swing phase. In practice, this requires an abrupt gait transition between both gaits, while a change of speed is not necessary.

  10. Fermilab DART run control

    SciTech Connect

    Oleynik, G.; Engelfried, J.; Mengel, L.

    1995-05-01

    DART is the high speed, Unix based data acquisition system being developed by Fermilab in collaboration with seven High Energy Physics Experiments. This paper describes DART run control, which has been developed over the past year and is a flexible, distributed, extensible system for the, control and monitoring of the data acquisition systems. We discuss the unique and interesting concepts of the run control and some of our experiences in developing it. We also give a brief update and status of the whole DART system.

  11. Hit-and-run planetary collisions.

    PubMed

    Asphaug, Erik; Agnor, Craig B; Williams, Quentin

    2006-01-12

    Terrestrial planet formation is believed to have concluded in our Solar System with about 10 million to 100 million years of giant impacts, where hundreds of Moon- to Mars-sized planetary embryos acquired random velocities through gravitational encounters and resonances with one another and with Jupiter. This led to planet-crossing orbits and collisions that produced the four terrestrial planets, the Moon and asteroids. But here we show that colliding planets do not simply merge, as is commonly assumed. In many cases, the smaller planet escapes from the collision highly deformed, spun up, depressurized from equilibrium, stripped of its outer layers, and sometimes pulled apart into a chain of diverse objects. Remnants of these 'hit-and-run' collisions are predicted to be common among remnant planet-forming populations, and thus to be relevant to asteroid formation and meteorite petrogenesis.

  12. Computing and data handling requirements for SSC (Superconducting Super Collider) and LHC (Large Hadron Collider) experiments

    SciTech Connect

    Lankford, A.J.

    1990-05-01

    A number of issues for computing and data handling in the online in environment at future high-luminosity, high-energy colliders, such as the Superconducting Super Collider (SSC) and Large Hadron Collider (LHC), are outlined. Requirements for trigger processing, data acquisition, and online processing are discussed. Some aspects of possible solutions are sketched. 6 refs., 3 figs.

  13. The Art of Running

    ERIC Educational Resources Information Center

    Brown, Jill Harris

    2007-01-01

    Every year, the Parent-Teacher Association of Ferndale Elementary School in Atlanta, Georgia sponsors a fun road race for the students, teachers, families, and community. This annual event has inspired the author to develop the Running and Art project to show off her students' art and squeeze in a little art history, too. In this article, the…

  14. Running Wheel for Earthworms.

    PubMed

    Wilson, W Jeffrey; Johnson, Brandon A

    2016-01-01

    We describe the construction and use of a running wheel responsive to the movement of the earthworm. The wheel employs readily available, inexpensive components and is easily constructed. Movement of the wheel can be monitored visually or via standard behavioral laboratory computer interfaces. Examples of data are presented, and possibilities for use in the teaching classroom are discussed.

  15. Running Wheel for Earthworms.

    PubMed

    Wilson, W Jeffrey; Johnson, Brandon A

    2016-01-01

    We describe the construction and use of a running wheel responsive to the movement of the earthworm. The wheel employs readily available, inexpensive components and is easily constructed. Movement of the wheel can be monitored visually or via standard behavioral laboratory computer interfaces. Examples of data are presented, and possibilities for use in the teaching classroom are discussed. PMID:27385934

  16. Running Wheel for Earthworms

    PubMed Central

    Wilson, W. Jeffrey; Johnson, Brandon A.

    2016-01-01

    We describe the construction and use of a running wheel responsive to the movement of the earthworm. The wheel employs readily available, inexpensive components and is easily constructed. Movement of the wheel can be monitored visually or via standard behavioral laboratory computer interfaces. Examples of data are presented, and possibilities for use in the teaching classroom are discussed. PMID:27385934

  17. Research and Development of Future Muon Collider

    SciTech Connect

    Yonehara, K.; /Fermilab

    2012-05-01

    Muon collider is a considerable candidate of the next generation high-energy lepton collider machine. A novel accelerator technology must be developed to overcome several intrinsic issues of muon acceleration. Recent research and development of critical beam elements for a muon accelerator, especially muon beam phase space ionization cooling channel, are reviewed in this paper.

  18. Polarization Effects at a Muon Collider

    SciTech Connect

    Parsa, Z.

    1998-11-01

    For Muon Colliders, Polarization will be a useful tool if high polarization is achievable with little luminosity loss. Formulation and effects of beam polarization and luminosity including polarization effects in Higgs resonance studies are discussed for improving precision measurements and Higgs resonance ''discovery'' capability e.g. at the First Muon Collider (FMC).

  19. Hadron collider potential for excited bosons search

    NASA Astrophysics Data System (ADS)

    Chizhov, M. V.; Boyko, I. R.; Bednyakov, V. A.; Budagov, J. A.

    2014-05-01

    The e + e - and μ+μ- dilepton final states are the most clear channels for a new heavy neutral resonance search. Their advantage is that usually in the region of expected heavy-mass resonance peak the main irreducible background, from the Standard Model Drell-Yan process, contributes two orders of magnitude smaller than the signal. In this paper we consider the future prospects for search for the excited neutral Z*-bosons. The bosons can be observed as a Breit-Wigner resonance peak in the dilepton invariant mass distributions in the same way as the well-known extra gauge Z' bosons. However, the Z* bosons have unique signatures in transverse momentum, angular and pseudorapidity distributions of the final leptons, which allow to distinguish them from the other heavy neutral resonances. At present only the ATLAS Collaboration has looked for such new excitations at the Large Hadron Collider and has published its results for 7 TeV collision energy. After successful comparison of our evaluation with these official results we present our estimations for the discovery potential and the exclusion limits on the Z*-boson search in pp collisions at higher centre-of-mass energies and different luminosities. In particular, LHC Run 2 can discover Z*-boson with its mass up to 5.3 TeV, while the High Luminosity LHC can extend that reach to 6.2 TeV. The High Energy LHC (with collision energy of 33 TeV) will be able to probe two times heavier resonance masses at the same integrated luminosities.

  20. Bilepton production at hadron colliders

    NASA Astrophysics Data System (ADS)

    Dion, B.; Grégoire, T.; London, D.; Marleau, L.; Nadeau, H.

    1999-04-01

    We examine, as model-independently as possible, the production of bileptons at hadron colliders. When a particular model is necessary or useful, we choose the 3-3-1 model. We consider a variety of processes: qq¯-->Y++Y--, ud¯-->Y++Y-, ūd-->Y+Y--, qq¯-->Y++e-e-, qq¯-->φ++φ--, ud¯-->φ++φ-, and ūd-->φ+φ--, where Y and φ are vector and scalar bileptons, respectively. Given the present low-energy constraints, we find that, at the Fermilab Tevatron, vector bileptons are unobservable, while light scalar bileptons (Mφ<~300 GeV) are just barely observable. At the CERN LHC, the reach is extended considerably: vector bileptons of mass MY<~1 TeV are observable, as are scalar bileptons of mass Mφ<~850 GeV.

  1. XXth Hadron Collider Physics Symposium

    NASA Astrophysics Data System (ADS)

    In 2009, the Hadron Collider Physics Symposium took place in Evian (France), on the shore of the Geneva Lake, from 16-20 November. It was jointly organised by CERN and the French HEP community (CNRS-IN2P3 and CEA-IRFU). This year's symposium come at an important time for both the Tevatron and LHC communities. It stimulated the completion of analyses for a significant Tevatron data sample, and it allowed an in-depth review of the readiness of the LHC and its detectors just before first collisions. The programme includes sessions on top-quark and electro-weak physics, QCD, B physics, new phenomena, electro-weak symmetry breaking, heavy ions, and the status and commissioning of the LHC machine and its experiments. Conference website : http://hcp2009.in2p3.fr/

  2. Collider searches for extra dimensions

    SciTech Connect

    Landsberg, Greg; /Brown U.

    2004-12-01

    Searches for extra spatial dimensions remain among the most popular new directions in our quest for physics beyond the Standard Model. High-energy collider experiments of the current decade should be able to find an ultimate answer to the question of their existence in a variety of models. Until the start of the LHC in a few years, the Tevatron will remain the key player in this quest. In this paper, we review the most recent results from the Tevatron on searches for large, TeV{sup -1}-size, and Randall-Sundrum extra spatial dimensions, which have reached a new level of sensitivity and currently probe the parameter space beyond the existing constraints. While no evidence for the existence of extra dimensions has been found so far, an exciting discovery might be just steps away.

  3. Collider Detector at Fermilab (CDF)

    SciTech Connect

    Jensen, H.B.

    1985-10-01

    A description of the Collider Detector at Fermilab (CDF) is given. It is a calorimetric detector, which covers almost the complete solid angle around the interaction region with segmented calorimeter ''towers''. A 1.5 Tesla superconducting solenoid, 3m in diameter and 5m long, provides a uniform magnetic field in the central region for magnetic analysis of charged particles. The magnetic field volume is filled with a large cylindrical drift chamber and a set of Time Projection Chambers. Muon detection is accomplished with drift chambers outside the calorimeters in the central region and with large magnetized steel toroids and associated drift chambers in the forward-backward regions. The electronics has a large dynamic range to allow measurement of both high energy clusters and small energy depositions made by penetrating muons. Interesting events are identified by a trigger system which, together with the rest of the data acquisition system, is FASTBUS based.

  4. Mutual colliding impact fast ignition

    SciTech Connect

    Winterberg, Friedwardt

    2014-09-15

    It is proposed to apply the well established colliding beam technology of high energy physics to the fast hot spot ignition of a highly compressed DT (deuterium-tritium) target igniting a larger D (deuterium) burn, by accelerating a small amount of solid deuterium, and likewise a small amount of tritium, making a head-on collision in the center of the target, projecting them through conical ducts situated at the opposite side of the target and converging in its center. In their head-on collision, the relative collision velocity is 5/3 times larger compared to the collision velocity of a stationary target. The two pieces have for this reason to be accelerated to a smaller velocity than would otherwise be needed to reach upon impact the same temperature. Since the velocity distribution of the two head-on colliding projectiles is with its two velocity peaks non-Maxwellian, the maximum cross section velocity product turns out to be substantially larger than the maximum if averaged over a Maxwellian. The D and T projectiles would have to be accelerated with two sabots driven by powerful particle or laser beams, permitting a rather large acceleration length. With the substantially larger cross section-velocity product by virtue of the non-Maxwellian velocity distribution, a further advantage is that the head-on collision produces a large magnetic field by the thermomagnetic Nernst effect, enhancing propagating burn. With this concept, the ignition of the neutron-less hydrogen-boron (HB{sup 11}) reaction might even be possible in a heterogeneous assembly of the hydrogen and the boron to reduce the bremsstrahlung-losses, resembling the heterogeneous assembly in a graphite-natural uranium reactor, there to reduce the neutron losses.

  5. Does running strengthen bone?

    PubMed

    Boudenot, Arnaud; Achiou, Zahra; Portier, Hugues

    2015-12-01

    Bone is a living tissue needing mechanical stress to maintain strength. Traditional endurance exercises offer only modest effects on bone. Walking and running produce low impact but lead to bone fatigue. This article is specifically addressed to therapists and explains the mechanisms involved for the effects of exercise on bone. Intermittent exercise limits bone fatigue, and downhill exercises increase ground impact forces and involve eccentric muscle contractions, which are particularly osteogenic. PMID:26562001

  6. The CDF Run IIb Silicon Detector: Design, preproduction, and performance

    NASA Astrophysics Data System (ADS)

    Akimoto, T.; Aoki, M.; Azzi, P.; Bacchetta, N.; Behari, S.; Benjamin, D.; Bisello, D.; Bolla, G.; Bortoletto, D.; Burghard, A.; Busetto, G.; Cabrera, S.; Canepa, A.; Cardoso, G.; Chertok, M.; Ciobanu, C. I.; Derylo, G.; Fang, I.; Feng, E. J.; Fernandez, J. P.; Flaugher, B.; Freeman, J.; Galtieri, L.; Galyardt, J.; Garcia-Sciveres, M.; Giurgiu, G.; Gorelov, I.; Haber, C.; Hale, D.; Hara, K.; Harr, R.; Hill, C.; Hoeferkamp, M.; Hoff, J.; Holbrook, B.; Hong, S. C.; Hrycyk, M.; Hsiung, T. H.; Incandela, J.; Jeon, E. J.; Joo, K. K.; Junk, T.; Kahkola, H.; Karjalainen, S.; Kim, S.; Kobayashi, K.; Kong, D. J.; Krieger, B.; Kruse, M.; Kuznetsova, N.; Kyre, S.; Lander, R.; Landry, T.; Lauhakangas, R.; Lee, J.; Lu, R.-S.; Lujan, P.; Lukens, P.; Mandelli, E.; Manea, C.; Maksimovic, P.; Merkel, P.; Min, S. N.; Moccia, S.; Nakano, I.; Naoumov, D.; Nelson, T.; Nord, B.; Novak, J.; Okusawa, T.; Orava, R.; Orlov, Y.; Osterberg, K.; Pantano, D.; Pavlicek, V.; Pellett, D.; Pursley, J.; Riipinen, P.; Schuyler, B.; Seidel, S.; Shenai, A.; Soha, A.; Stuart, D.; Tanaka, R.; Tavi, M.; Von der Lippe, H.; Walder, J.-P.; Wang, Z.; Watje, P.; Weber, Marc; Wester, W.; Yamamoto, K.; Yang, Y. C.; Yao, W.; Yao, W.; Yarema, R.; Yun, J. C.; Zetti, F.; Zimmerman, T.; Zimmermann, S.; Zucchelli, S.

    2006-01-01

    A new silicon microstrip detector was designed by the CDF collaboration for the proposed high-luminosity operation of the Tevatron pp¯ collider (Run IIb). The detector is radiation-tolerant and will still be functional after exposure to particle fluences of 1014 1-MeV equivalent neutrons/cm2 and radiation doses of 20 MRad. The detector will maintain or exceed the performance of the current CDF silicon detector throughout Run IIb. It is based on an innovative silicon "supermodule" design. Critical detector components like the custom radiation-hard SVX4 readout chip, the beryllia hybrids and mini-port (repeater) cards, and the silicon sensors fulfill their specifications and were produced with high yields. The design goals and solutions of the CDF Run IIb silicon detector are described, and the performance of preproduction modules is presented in detail. Results relevant for the development of future silicon systems are emphasized.

  7. Report of Snowmass 2001 working group E2: Electron - positron colliders from the phi to the Z

    SciTech Connect

    Zhen-guo Zhao et al.

    2002-12-23

    We report on the status and plans of experiments now running or proposed for electron-positron colliders at energies between the {phi} and the Z. The e{sup +}e{sup -}B and charm factories we considered were PEP-II/BABAR, KEKB/Belle, superKEK, SuperBABAR, and CESR-c/CLEO-c. We reviewed the programs at the {phi} factory at Frascati and the proposed PEP-N facility at Stanford Linear Accelerator Center. We studied the prospects for B physics with a dedicated linear collider Z factory, associated with the TESLA high energy linear collider. In all cases, we compared the physics reach of these facilities with that of alternative experiments at hadron colliders or fixed target facilities.

  8. The PDF4LHC report on PDFs and LHC data: Results from Run I and preparation for Run II

    DOE PAGES

    Rojo, Juan; Accardi, Alberto; Ball, Richard D.; Cooper-Sarkar, Amanda; Roeck, Albert de; Farry, Stephen; Ferrando, James; Forte, Stefano; Gao, Jun; Harland-Lang, Lucian; et al

    2015-09-16

    The accurate determination of the Parton Distribution Functions (PDFs) of the proton is an essential ingredient of the Large Hadron Collider (LHC) program. PDF uncertainties impact a wide range of processes, from Higgs boson characterisation and precision Standard Model measurements to New Physics searches. A major recent development in modern PDF analyses has been to exploit the wealth of new information contained in precision measurements from the LHC Run I, as well as progress in tools and methods to include these data in PDF fits. In this report we summarise the information that PDF-sensitive measurements at the LHC have providedmore » so far, and review the prospects for further constraining PDFs with data from the recently started Run II. Lastly, this document aims to provide useful input to the LHC collaborations to prioritise their PDF-sensitive measurements at Run II, as well as a comprehensive reference for the PDF-fitting collaborations.« less

  9. The PDF4LHC report on PDFs and LHC data: Results from Run I and preparation for Run II

    SciTech Connect

    Rojo, Juan; Accardi, Alberto; Ball, Richard D.; Cooper-Sarkar, Amanda; de Roeck, Albert; Farry, Stephen; Ferrando, James; Forte, Stefano; Gao, Jun; Harland-Lang, Lucian; Huston, Joey; Glazov, Alexander; Gouzevitch, Maxime; Gwenlan, Claire; Lipka, Katerina; Lisovyi, Mykhailo; Mangano, Michelangelo; Nadolsky, Pavel; Perrozzi, Luca; Plačakytė, Ringaile; Radescu, Voica; Salam, Gavin P.; Thorne, Robert

    2015-09-16

    The accurate determination of Parton Distribution Functions (PDFs) of the proton is an essential ingredient of the Large Hadron Collider (LHC) program. PDF uncertainties impact a wide range of processes, from Higgs boson characterization and precision Standard Model measurements to New Physics searches. A major recent development in modern PDF analyses has been to exploit the wealth of new information contained in precision measurements from the LHC Run I, as well as progress in tools and methods to include these data in PDF fits. In this report we summarize the information that PDF-sensitive measurements at the LHC have provided so far, and review the prospects for further constraining PDFs with data from the recently started Run II. As a result, this document aims to provide useful input to the LHC collaborations to prioritize their PDF-sensitive measurements at Run II, as well as a comprehensive reference for the PDF-fitting collaborations.

  10. The PDF4LHC report on PDFs and LHC data: Results from Run I and preparation for Run II

    DOE PAGES

    Rojo, Juan; Accardi, Alberto; Ball, Richard D.; Cooper-Sarkar, Amanda; de Roeck, Albert; Farry, Stephen; Ferrando, James; Forte, Stefano; Gao, Jun; Harland-Lang, Lucian; et al

    2015-09-16

    The accurate determination of Parton Distribution Functions (PDFs) of the proton is an essential ingredient of the Large Hadron Collider (LHC) program. PDF uncertainties impact a wide range of processes, from Higgs boson characterization and precision Standard Model measurements to New Physics searches. A major recent development in modern PDF analyses has been to exploit the wealth of new information contained in precision measurements from the LHC Run I, as well as progress in tools and methods to include these data in PDF fits. In this report we summarize the information that PDF-sensitive measurements at the LHC have provided somore » far, and review the prospects for further constraining PDFs with data from the recently started Run II. As a result, this document aims to provide useful input to the LHC collaborations to prioritize their PDF-sensitive measurements at Run II, as well as a comprehensive reference for the PDF-fitting collaborations.« less

  11. SLAC linear collider conceptual design report

    SciTech Connect

    Not Available

    1980-06-01

    The linear collider system is described in detail, including the transport system, the collider lattice, final focusing system, positron production, beam damping and compression, high current electron source, instrumentation and control, and the beam luminosity. The experimental facilities and the experimental uses are discussed along with the construction schedule and estimated costs. Appendices include a discussion of space charge effects in the linear accelerator, emittance growth in the collider, the final focus system, beam-beam instabilities and pinch effects, and detector backgrounds. (GHT)

  12. The principles and construction of linear colliders

    SciTech Connect

    Rees, J.

    1986-09-01

    The problems posed to the designers and builders of high-energy linear colliders are discussed. Scaling laws of linear colliders are considered. The problem of attainment of small interaction areas is addressed. The physics of damping rings, which are designed to condense beam bunches in phase space, is discussed. The effect of wake fields on a particle bunch in a linac, particularly the conventional disk-loaded microwave linac structures, are discussed, as well as ways of dealing with those effects. Finally, the SLAC Linear Collider is described. 18 refs., 17 figs. (LEW)

  13. On the Future High Energy Colliders

    SciTech Connect

    Shiltsev, Vladimir

    2015-09-28

    High energy particle colliders have been in the forefront of particle physics for more than three decades. At present the near term US, European and international strategies of the particle physics community are centered on full exploitation of the physics potential of the Large Hadron Collider (LHC) through its high-luminosity upgrade (HL-LHC). A number of the next generation collider facilities have been proposed and are currently under consideration for the medium and far-future of accelerator-based high energy physics. In this paper we offer a uniform approach to evaluation of various accelerators based on the feasibility of their energy reach, performance potential and cost range.

  14. International Workshop on Linear Colliders 2010

    ScienceCinema

    None

    2016-07-12

    IWLC2010 International Workshop on Linear Colliders 2010ECFA-CLIC-ILC joint meeting: Monday 18 October - Friday 22 October 2010Venue: CERN and CICG (International Conference Centre Geneva, Switzerland) This year, the International Workshop on Linear Colliders organized by the European Committee for Future Accelerators (ECFA) will study the physics, detectors and accelerator complex of a linear collider covering both CLIC and ILC options.Contact Workshop Secretariat  IWLC2010 is hosted by CERN

  15. Compensatable muon collider calorimeter with manageable backgrounds

    DOEpatents

    Raja, Rajendran

    2015-02-17

    A method and system for reducing background noise in a particle collider, comprises identifying an interaction point among a plurality of particles within a particle collider associated with a detector element, defining a trigger start time for each of the pixels as the time taken for light to travel from the interaction point to the pixel and a trigger stop time as a selected time after the trigger start time, and collecting only detections that occur between the start trigger time and the stop trigger time in order to thereafter compensate the result from the particle collider to reduce unwanted background detection.

  16. Beamstrahlung spectra in next generation linear colliders

    SciTech Connect

    Barklow, T.; Chen, P. ); Kozanecki, W. )

    1992-04-01

    For the next generation of linear colliders, the energy loss due to beamstrahlung during the collision of the e{sup +}e{sup {minus}} beams is expected to substantially influence the effective center-of-mass energy distribution of the colliding particles. In this paper, we first derive analytical formulae for the electron and photon energy spectra under multiple beamstrahlung processes, and for the e{sup +}e{sup {minus}} and {gamma}{gamma} differential luminosities. We then apply our formulation to various classes of 500 GeV e{sup +}e{sup {minus}} linear collider designs currently under study.

  17. SPICE: Simulation Package for Including Flavor in Collider Events

    NASA Astrophysics Data System (ADS)

    Engelhard, Guy; Feng, Jonathan L.; Galon, Iftah; Sanford, David; Yu, Felix

    2010-01-01

    supersymmetric particles in theories with lepton flavor violation. The inputs are the parameters of any of several standard flavor-conserving supersymmetric models, supplemented by flavor-violating parameters determined, for example, by horizontal flavor symmetries. The output are files that may be used for detailed simulation of supersymmetric events at particle colliders. Solution method: Simpson's rule integrator, basic algebraic computation. Additional comments: SPICE interfaces with SOFTSUSY and SUSYHIT to produce the low energy sparticle spectrum. Flavor mixing for sleptons and sneutrinos is fully implemented; flavor mixing for squarks is not included. Running time: <1 minute. Running time is dominated by calculating the possible and relevant three-body flavor-violating decays of sleptons, which is usually 10-15 seconds per slepton. References:B.C. Allanach, Comput. Phys. Commun. 143 (2002) 305, arXiv:hep-ph/0104145. B.C. Allanach, M.A. Bernhardt, arXiv:0903.1805 [hep-ph]. A. Djouadi, M.M. Muhlleitner, M. Spira, Acta Phys. Pol. B 38 (2007) 635, arXiv:hep-ph/0609292.

  18. Hints from Run 1 and prospects from Run 2 at ATLAS

    NASA Astrophysics Data System (ADS)

    Bernius, Catrin

    2016-06-01

    The Large Hadron Collider at CERN has allowed the ATLAS experiment to collect a large amount of proton-proton collision data at 7 TeV and 8 TeV centre-of-mass energies throughout Run 1. This dataset was used to discover a Higgs boson with Standard Model-like properties at a mass of about 125 GeV. Furthermore, an impressive number of searches for deviations from the Standard Model expectations have been carried out. To date, no evidence for new physics beyond the SM has been found. However, a few hints in form of 2-3 σ deviations have been observed. After an 18-month shutdown, in which the ATLAS detector has undergone various upgrades, the LHC has again started to deliver collision data at an increased centre-of-mass energy of 13 TeV, providing a much improved sensitivity for various searches, in particular for high mass particles. Some representative hints at the LHC Run 1 are presented, a brief overview of ATLAS upgrades and prospects for SUSY searches with early Run 2 data are given.

  19. Proton-antiproton collider physics

    SciTech Connect

    Shochet, M.J.

    1995-07-01

    The 9th {anti p}p Workshop was held in Tsukuba, Japan in October, 1993. A number of important issues remained after that meeting: Does QCD adequately describe the large cross section observed by CDF for {gamma} production below 30 GeV? Do the CDF and D0 b-production cross sections agree? Will the Tevatron live up to its billing as a world-class b-physics facility? How small will the uncertainty in the W mass be? Is there anything beyond the Minimal Standard Model? And finally, where is the top quark? Presentations at this workshop addressed all of these issues. Most of them are now resolved, but new questions have arisen. This summary focuses on the experimental results presented at the meeting by CDF and D0 physicists. Reviews of LEP and HERA results, future plans for hadron colliders and their experiments, as well as important theoretical presentations are summarized elsewhere in this volume. Section 1 reviews physics beyond the Minimal Standard Model. Issues in b and c physics are addressed in section 3. Section 4 focuses on the top quark. Electroweak physics is reviewed in section 5, followed by QCD studies in section 6. Conclusions are drawn in section 7.

  20. Flavourful production at hadron colliders

    NASA Astrophysics Data System (ADS)

    Giudice, Gian Francesco; Gripaios, Ben; Sundrum, Raman

    2011-08-01

    We ask what new states may lie at or below the TeV scale, with sizable flavour-dependent couplings to light quarks, putting them within reach of hadron colliders via resonant production, or in association with Standard Model states. In particular, we focus on the compatibility of such states with stringent flavour-changing neutral current and electric-dipole moment constraints. We argue that the broadest and most theoretically plausible flavour structure of the new couplings is that they are hierarchical, as are Standard Model Yukawa couplings, although the hierarchical pattern may well be different. We point out that, without the need for any more elaborate or restrictive structure, new scalars with "diquark" couplings to standard quarks are particularly immune to existing constraints, and that such scalars may arise within a variety of theoretical paradigms. In particular, there can be substantial couplings to a pair of light quarks or to one light and one heavy quark. For example, the latter possibility may provide a flavour-safe interpretation of the asymmetry in top quark production observed at the Tevatron. We thereby motivate searches for diquark scalars at the Tevatron and LHC, and argue that their discovery represents one of our best chances for new insight into the Flavour Puzzle of the Standard Model.

  1. The Relativistic Heavy Ion Collider

    NASA Astrophysics Data System (ADS)

    Fischer, Wolfram

    The Relativistic Heavy Ion Collider (RHIC), shown in Fig. 1, was build to study the interactions of quarks and gluons at high energies [Harrison, Ludlam and Ozaki (2003)]. The theory of Quantum Chromodynamics (QCD) describes these interactions. One of the main goals for the RHIC experiments was the creation and study of the Quark-Gluon Plasma (QGP), which was expected to be formed after the collision of heavy ions at a temperature of approximately 2 trillion kelvin (or equivalently an energy of 150 MeV). The QGP is the substance which existed only a few microseconds after the Big Bang. The QGP was anticipated to be weakly interacting like a gas but turned out to be strongly interacting and more like a liquid. Among its unusual properties is its extremely low viscosity [Auerbach and Schlomo (2009)], which makes the QGP the substance closest to a perfect liquid known to date. The QGP is opaque to moderate energy quarks and gluons leading to a phenomenon called jet quenching, where of a jet and its recoil jet only one is observable and the other suppressed after traversing and interacting with the QGP [Jacak and Müller (2012)]...

  2. Nonglobal correlations in collider physics

    DOE PAGES

    Moult, Ian; Larkoski, Andrew J.

    2016-01-13

    Despite their importance for precision QCD calculations, correlations between in- and out-of-jet regions of phase space have never directly been observed. These so-called non-global effects are present generically whenever a collider physics measurement is not explicitly dependent on radiation throughout the entire phase space. In this paper, we introduce a novel procedure based on mutual information, which allows us to isolate these non-global correlations between measurements made in different regions of phase space. We study this procedure both analytically and in Monte Carlo simulations in the context of observables measured on hadronic final states produced in e+e- collisions, though itmore » is more widely applicable.The procedure exploits the sensitivity of soft radiation at large angles to non-global correlations, and we calculate these correlations through next-to-leading logarithmic accuracy. The bulk of these non-global correlations are found to be described in Monte Carlo simulation. They increase by the inclusion of non-perturbative effects, which we show can be incorporated in our calculation through the use of a model shape function. As a result, this procedure illuminates the source of non-global correlations and has connections more broadly to fundamental quantities in quantum field theory.« less

  3. Color coherent radiation in multijet events from pp collisions at sqrt(s)=1.8 TeV

    NASA Astrophysics Data System (ADS)

    DØ Collaboration; Abbott, B.; Abolins, M.; Acharya, B. S.; Adam, I.; Adams, D. L.; Adams, M.; Ahn, S.; Aihara, H.; Alves, G. A.; Amidi, E.; Amos, N.; Anderson, E. W.; Astur, R.; Baarmand, M. M.; Baden, A.; Balamurali, V.; Balderston, J.; Baldin, B.; Banerjee, S.; Bantly, J.; Bartlett, J. F.; Bazizi, K.; Belyaev, A.; Beri, S. B.; Bertram, I.; Bezzubov, V. A.; Bhat, P. C.; Bhatnagar, V.; Bhattacharjee, M.; Biswas, N.; Blazey, G.; Blessing, S.; Bloom, P.; Boehnlein, A.; Bojko, N. I.; Borcherding, F.; Boswell, C.; Brandt, A.; Brock, R.; Bross, A.; Buchholz, D.; Burtovoi, V. S.; Butler, J. M.; Carvalho, W.; Casey, D.; Casilum, Z.; Castilla-Valdez, H.; Chakraborty, D.; Chang, S.-M.; Chekulaev, S. V.; Chen, L.-P.; Chen, W.; Choi, S.; Chopra, S.; Choudhary, B. C.; Christenson, J. H.; Chung, M.; Claes, D.; Clark, A. R.; Cobau, W. G.; Cochran, J.; Cooper, W. E.; Cretsinger, C.; Cullen-Vidal, D.; Cummings, M. A. C.; Cutts, D.; Dahl, O. I.; Davis, K.; de, K.; del Signore, K.; Demarteau, M.; Denisov, D.; Denisov, S. P.; Diehl, H. T.; Diesburg, M.; di Loreto, G.; Draper, P.; Ducros, Y.; Dudko, L. V.; Dugad, S. R.; Edmunds, D.; Ellison, J.; Elvira, V. D.; Engelmann, R.; Eno, S.; Eppley, G.; Ermolov, P.; Eroshin, O. V.; Evdokimov, V. N.; Fahland, T.; Fatyga, M.; Fatyga, M. K.; Feher, S.; Fein, D.; Ferbel, T.; Finocchiaro, G.; Fisk, H. E.; Fisyak, Y.; Flattum, E.; Forden, G. E.; Fortner, M.; Frame, K. C.; Fuess, S.; Gallas, E.; Galyaev, A. N.; Gartung, P.; Geld, T. L.; Genik, R. J., II; Genser, K.; Gerber, C. E.; Gibbard, B.; Glenn, S.; Gobbi, B.; Goforth, M.; Goldschmidt, A.; Gómez, B.; Gómez, G.; Goncharov, P. I.; González Solís, J. L.; Gordon, H.; Goss, L. T.; Gounder, K.; Goussiou, A.; Graf, N.; Grannis, P. D.; Green, D. R.; Green, J.; Greenlee, H.; Grim, G.; Grinstein, S.; Grossman, N.; Grudberg, P.; Grünendahl, S.; Guglielmo, G.; Guida, J. A.; Guida, J. M.; Gupta, A.; Gurzhiev, S. N.; Gutierrez, P.; Gutnikov, Y. E.; Hadley, N. J.; Haggerty, H.; Hagopian, S.; Hagopian, V.; Hahn, K. S.; Hall, R. E.; Hanlet, P.; Hansen, S.; Hauptman, J. M.; Hedin, D.; Heinson, A. P.; Heintz, U.; Hernández-Montoya, R.; Heuring, T.; Hirosky, R.; Hobbs, J. D.; Hoeneisen, B.; Hoftun, J. S.; Hsieh, F.; Hu, Ting; Hu, Tong; Huehn, T.; Ito, A. S.; James, E.; Jaques, J.; Jerger, S. A.; Jesik, R.; Jiang, J. Z.-Y.; Joffe-Minor, T.; Johns, K.; Johnson, M.; Jonckheere, A.; Jones, M.; Jöstlein, H.; Jun, S. Y.; Jung, C. K.; Kahn, S.; Kalbfleisch, G.; Kang, J. S.; Karmgard, D.; Kehoe, R.; Kelly, M. L.; Kim, C. L.; Kim, S. K.; Klatchko, A.; Klima, B.; Klopfenstein, C.; Klyukhin, V. I.; Kochetkov, V. I.; Kohli, J. M.; Koltick, D.; Kostritskiy, A. V.; Kotcher, J.; Kotwal, A. V.; Kourlas, J.; Kozelov, A. V.; Kozlovski, E. A.; Krane, J.; Krishnaswamy, M. R.; Krzywdzinski, S.; Kunori, S.; Lami, S.; Lan, H.; Lander, R.; Landry, F.; Landsberg, G.; Lauer, B.; Leflat, A.; Li, H.; Li, J.; Li-Demarteau, Q. Z.; Lima, J. G. R.; Lincoln, D.; Linn, S. L.; Linnemann, J.; Lipton, R.; Liu, Y. C.; Lobkowicz, F.; Loken, S. C.; Lökös, S.; Lueking, L.; Lyon, A. L.; Maciel, A. K. A.; Madaras, R. J.; Madden, R.; Magaña-Mendoza, L.; Mani, S.; Mao, H. S.; Markeloff, R.; Marshall, T.; Martin, M. I.; Mauritz, K. M.; May, B.; Mayorov, A. A.; McCarthy, R.; McDonald, J.; McKibben, T.; McKinley, J.; McMahon, T.; Melanson, H. L.; Merkin, M.; Merritt, K. W.; Miettinen, H.; Mincer, A.; Mishra, C. S.; Mokhov, N.; Mondal, N. K.; Montgomery, H. E.; Mooney, P.; Motta, H. Da; Murphy, C.; Nang, F.; Narain, M.; Narasimham, V. S.; Narayanan, A.; Neal, H. A.; Negret, J. P.; Nemethy, P.; Nicola, M.; Norman, D.; Oesch, L.; Oguri, V.; Oltman, E.; Oshima, N.; Owen, D.; Padley, P.; Pang, M.; Para, A.; Park, Y. M.; Partridge, R.; Parua, N.; Paterno, M.; Perkins, J.; Peters, M.; Piegaia, R.; Piekarz, H.; Pischalnikov, Y.; Podstavkov, V. M.; Pope, B. G.; Prosper, H. B.; Protopopescu, S.; Qian, J.; Quintas, P. Z.; Raja, R.; Rajagopalan, S.; Ramirez, O.; Rasmussen, L.; Reucroft, S.; Rijssenbeek, M.; Rockwell, T.; Roe, N. A.; Rubinov, P.; Ruchti, R.; Rutherfoord, J.; Sánchez-Hernández, A.; Santoro, A.; Sawyer, L.; Schamberger, R. D.; Schellman, H.; Sculli, J.; Shabalina, E.; Shaffer, C.; Shankar, H. C.; Shivpuri, R. K.; Shupe, M.; Singh, H.; Singh, J. B.; Sirotenko, V.; Smart, W.; Smith, R. P.; Snihur, R.; Snow, G. R.; Snow, J.; Snyder, S.; Solomon, J.; Sood, P. M.; Sosebee, M.; Sotnikova, N.; Souza, M.; Spadafora, A. L.; Stephens, R. W.; Stevenson, M. L.; Stewart, D.; Stichelbaut, F.; Stoianova, D. A.; Stoker, D.; Strauss, M.; Streets, K.; Strovink, M.; Sznajder, A.; Tamburello, P.; Tarazi, J.; Tartaglia, M.; Thomas, T. L. T.; Thompson, J.; Trippe, T. G.; Tuts, P. M.; Varelas, N.; Varnes, E. W.; Vititoe, D.; Volkov, A. A.; Vorobiev, A. P.; Wahl, H. D.; Wang, G.; Warchol, J.; Watts, G.; Wayne, M.; Weerts, H.; White, A.; White, J. T.; Wightman, J. A.; Willis, S.; Wimpenny, S. J.; Wirjawan, J. V. D.; Womersley, J.; Won, E.; Wood, D. R.; Xu, H.; Yamada, R.; Yamin, P.; Yang, J.; Yasuda, T.; Yepes, P.; Yoshikawa, C.; Youssef, S.; Yu, J.; Yu, Y.; Zhu, Z. H.; Zieminska, D.; Zieminski, A.; Zverev, E. G.; Zylberstejn, A.

    1997-11-01

    We report on a study of color coherence effects in ppoverline collisions at a center of mass energy sqrt(s)=1.8 TeV. The data were collected with the DØ detector during the 1992-1993 run of the Fermilab Tevatron Collider. We observe the presence of initial-to-final state color interference with the spatial correlations between soft and hard jets in multijet events in the central and in forward pseudorapidity regions. The results are compared to Monte Carlo simulations with different color coherence implementations and to the predictions of ≀(αs3) QCD calculations.

  4. Photon Collider Physics with Real Photon Beams

    SciTech Connect

    Gronberg, J; Asztalos, S

    2005-11-03

    Photon-photon interactions have been an important probe into fundamental particle physics. Until recently, the only way to produce photon-photon collisions was parasitically in the collision of charged particles. Recent advances in short-pulse laser technology have made it possible to consider producing high intensity, tightly focused beams of real photons through Compton scattering. A linear e{sup +}e{sup -} collider could thus be transformed into a photon-photon collider with the addition of high power lasers. In this paper they show that it is possible to make a competitive photon-photon collider experiment using the currently mothballed Stanford Linear Collider. This would produce photon-photon collisions in the GeV energy range which would allow the discovery and study of exotic heavy mesons with spin states of zero and two.

  5. The Status of the International Linear Collider

    NASA Astrophysics Data System (ADS)

    Harrison, Michael

    2016-03-01

    The International Linear Collider is under consideration in Japan as the next major global high energy physics facility. In this talk we shall describe the site and accelerator footprint together with the latest technical information on the superconducting RF technology.

  6. Test facilities for future linear colliders

    SciTech Connect

    Ruth, R.D.

    1995-12-01

    During the past several years there has been a tremendous amount of progress on Linear Collider technology world wide. This research has led to the construction of the test facilities described in this report. Some of the facilities will be complete as early as the end of 1996, while others will be finishing up around the end 1997. Even now there are extensive tests ongoing for the enabling technologies for all of the test facilities. At the same time the Linear Collider designs are quite mature now and the SLC is providing the key experience base that can only come from a working collider. All this taken together indicates that the technology and accelerator physics will be ready for a future Linear Collider project to begin in the last half of the 1990s.

  7. Magnet R&D for future colliders

    SciTech Connect

    Sabbi, Gian Luca

    2001-06-14

    High-energy colliders complementing and expanding the physics reach of LHC are presently under study in the United States, Europe and Japan. The magnet system is a major cost driver for hadron colliders at the energy frontier, and critical to the successful operation of muon colliders. Under most scenarios, magnet design as well as vacuum and cryogenic systems are complicated by high radiation loads. Magnet R&D programs are underway worldwide to take advantage of new developments in superconducting materials, achieve higher efficiency and simplify fabrication while preserving accelerator-class field quality. A review of recent progress in magnet technology for future colliders is presented, with emphasis on the most innovative design concepts and fabrication techniques.

  8. vh@nnlo-Higgs Strahlung at hadron colliders

    NASA Astrophysics Data System (ADS)

    Brein, Oliver; Harlander, Robert V.; Zirke, Tom J. E.

    2013-03-01

    A numerical program for the evaluation of the inclusive cross section for associated Higgs production with a massive weak gauge boson at hadron colliders is described, σ(pp/pp¯→HV), V∈{W,Z}. The calculation is performed in the framework of the Standard Model and includes next-to-next-to-leading order QCD as well as next-to-leading order electro-weak effects. Catalogue identifier: AEOF_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEOF_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 32835 No. of bytes in distributed program, including test data, etc.: 206496 Distribution format: tar.gz Programming language: Fortran 77, C++. Computer: Personal computer. Operating system: Unix/Linux, Mac OS. RAM: A few 100 MB Classification: 11.1. External routines: LHAPDF (http://lhapdf.hepforge.org/), CUBA (http://www.feynarts.de/cuba/) Nature of problem: Calculation of the inclusive total cross section for associated Higgs- and W- or Z- boson production at hadron colliders through next-to-next-to-leading order QCD. Solution method: Numerical Monte Carlo integration. Running time: A few seconds for a single set of parameters.

  9. Invisible Higgs decay at the Large Hadron-Electron Collider

    NASA Astrophysics Data System (ADS)

    Tang, Yi-Lei; Zhang, Chen; Zhu, Shou-hua

    2016-07-01

    The possibility that the 125 GeV Higgs boson may decay into invisible non-standard-model (non-SM) particles is theoretically and phenomenologically intriguing. In this paper, we investigate the sensitivity of the Large Hadron Electron Collider (LHeC) to an invisibly decaying Higgs, in its proposed high-luminosity running mode. We focus on the neutral current Higgs production channel which offers more kinematical handles than its charged current counterpart. The signal contains one electron, one jet, and large missing energy. With a cut-based parton-level analysis, we estimate that if the h Z Z coupling is at its standard model (SM) value, then assuming an integrated luminosity of 1 ab-1 , the LHeC with the proposed 60 GeV electron beam (with -0.9 polarization) and 7 TeV proton beam is capable of probing Br (h →TE)=6 % at 2 σ level. Good lepton veto performance (especially hadronic τ veto) in the forward region is crucial to the suppression of the dominant W j e background. We also explicitly point out the important role that may be played by the LHeC in probing a wide class of exotic Higgs decay processes and emphasize the general function of lepton-hadron colliders in the precision study of new resonances after their discovery in hadron-hadron collisions.

  10. Accelerator considerations of large circular colliders

    NASA Astrophysics Data System (ADS)

    Chao, Alex

    2016-07-01

    As we consider the tremendous physics reaches of the big future circular electron-positron and proton-proton colliders, it might be advisable to keep a close track of what accelerator challenges they face. Good progresses are being made, and yet it is reported here that substantial investments in funding, manpower, as well as a long sustained time to the R&D efforts will be required in preparation to realize these dream colliders.

  11. RF pulse compression for future linear colliders

    SciTech Connect

    Wilson, P.B.

    1995-05-01

    Future (nonsuperconducting) linear colliders will require very high values of peak rf power per meter of accelerating structure. The role of rf pulse compression in producing this power is examined within the context of overall rf system design for three future colliders at energies of 1.0--1.5 TeV, 5 TeV and 25 TeV. In order keep the average AC input power and the length of the accelerator within reasonable limits, a collider in the 1.0--1.5 TeV energy range will probably be built at an x-band rf frequency, and will require a peak power on the order of 150--200 MW per meter of accelerating structure. A 5 TeV collider at 34 GHz with a reasonable length (35 km) and AC input power (225 MW) would require about 550 MW per meter of structure. Two-beam accelerators can achieve peak powers of this order by applying dc pulse compression techniques (induction linac modules) to produce the drive beam. Klystron-driven colliders achieve high peak power by a combination of dc pulse compression (modulators) and rf pulse compression, with about the same overall rf system efficiency (30--40%) as a two-beam collider. A high gain (6.8) three-stage binary pulse compression system with high efficiency (80%) is described, which (compared to a SLED-11 system) can be used to reduce the klystron peak power by about a factor of two, or alternately, to cut the number of klystrons in half for a 1.0--1.5 TeV x-band collider. For a 5 TeV klystron-driven collider, a high gain, high efficiency rf pulse compression system is essential.

  12. World lays groundwork for future linear collider

    SciTech Connect

    Feder, Toni

    2010-07-15

    With the Large Hadron Collider at CERN finally working, the particle-physics community can now afford to divide its attention between achieving LHC results and preparing for the next machine on its wish list, an electron-positron linear collider. The preparations involve developing and deciding on the technology for such a machine, the mode of its governance, and how to balance regional and global particle- and accelerator-physics programs.

  13. RF pulse compression for future linear colliders

    NASA Astrophysics Data System (ADS)

    Wilson, Perry B.

    1995-07-01

    Future (nonsuperconducting) linear colliders will require very high values of peak rf power per meter of accelerating structure. The role of rf pulse compression in producing this power is examined within the context of overall rf system design for three future colliders at energies of 1.0-1.5 TeV, 5 TeV, and 25 TeV. In order to keep the average AC input power and the length of the accelerator within reasonable limits, a collider in the 1.0-1.5 TeV energy range will probably be built at an x-band rf frequency, and will require a peak power on the order of 150-200 MW per meter of accelerating structure. A 5 TeV collider at 34 GHz with a reasonable length (35 km) and AC input power (225 MW) would require about 550 MW per meter of structure. Two-beam accelerators can achieve peak powers of this order by applying dc pulse compression techniques (induction linac modules) to produce the drive beam. Klystron-driven colliders achieve high peak power by a combination of dc pulse compression (modulators) and rf pulse compression, with about the same overall rf system efficiency (30-40%) as a two-beam collider. A high gain (6.8) three-stage binary pulse compression system with high efficiency (80%) is described, which (compared to a SLED-II system) can be used to reduce the klystron peak power by about a factor of two, or alternatively, to cut the number of klystrons in half for a 1.0-1.5 TeV x-band collider. For a 5 TeV klystron-driven collider, a high gain, high efficiency rf pulse compression system is essential.

  14. Direct measurement of the top quark charge at hadron colliders

    NASA Astrophysics Data System (ADS)

    Baur, U.; Buice, M.; Orr, Lynne H.

    2001-11-01

    We consider photon radiation in t¯t events at the upgraded Fermilab Tevatron and the CERN Large Hadron Collider (LHC) as a tool to measure the electric charge of the top quark. We analyze the contributions of t¯tγ production and radiative top quark decays to pp(-)-->γl+/-νb¯bjj, assuming that both b quarks are tagged. With 20 fb-1 at the Tevatron, the possibility that the ``top quark'' discovered in run I is actually an exotic charge -4/3 quark can be ruled out at the ~95% confidence level. At the CERN LHC, it will be possible to determine the charge of the top quark with an accuracy of about 10%.

  15. Beam-beam observations in the Relativistic Heavy Ion Collider

    SciTech Connect

    Luo, Y.; Fischer, W.; White, S.

    2015-06-24

    The Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory has been operating since 2000. Over the past decade, thanks to the continuously increased bunch intensity and reduced β*s at the interaction points, the maximum peak luminosity in the polarized proton operation has been increased by more than two orders of magnitude. In this article, we first present the beam-beam observations in the previous RHIC polarized proton runs. Then we analyze the mechanisms for the beam loss and emittance growth in the presence of beam-beam interaction. The operational challenges and limitations imposed by beam-beam interaction and their remedies are also presented. In the end, we briefly introduce head-on beam-beam compensation with electron lenses in RHIC.

  16. Proton Polarimetry at the Relativistic Heavy Ion Collider

    SciTech Connect

    Makdisi, Y.; Aschenauer, E.; Atoian, G.; Bazilevsky, A.; Bunce, G.; Gill, R.; Huang, H.; Morozov, B.; Rescia, S.; Sivertz, M.; Yip, K.; Zelenski, A.; Lee, S.K.; Li, X.; Alekseev, I.; Svirida, D.

    2009-09-07

    The RHIC polarized proton collider employs polarimeters in each of the Blue and Yellow rings that utilize the analyzing power in p-Carbon elastic scattering in the Coulomb Nuclear Interference region to measure the absolute beam polarization. These are calibrated by the polarized Hydrogen Jet Target that measures the absolute beam polarization in pp elastic scattering in the CNI region. This paper describes the status and performance of these polarimeters in the FY09 run which included both a 250 GeV/c and 100 GeV/c physics data taking periods. We will describe some of the difficulties encountered and the efforts underway to improve the performance in better energy resolution, rate handling capability, and reduced systematic uncertainties.

  17. Does Addiction Run in Families?

    MedlinePlus

    ... runs in some families. Addiction runs in ours." Matt's family has a history of addiction. He realizes ... may be more likely to become addicted. Read Matt's story About the National Institute on Drug Abuse ( ...

  18. SAVAGE RUN WILDERNESS, WYOMING.

    USGS Publications Warehouse

    McCallum, M.E.; Kluender, Steven E.

    1984-01-01

    Mineral evaluation and related surveys were conducted in the Savage Run Wilderness in Wyoming and results of these studies indicate probable mineral-resource potential in four areas. Gold and (or) silver mineralization in veins associated with faults was found in two areas; all known occurrences inside the wilderness are very small in size. Slightly anomalous values of platinum, palladium, and nickel were recorded from rock-chip and stream- sediment samples from the southeast portion of the wilderness where layered mafic rocks predominate, and a probable resource potential exists for platinum, palladium, and nickel. An area of sheared rocks in the northeastern corner of the wilderness has a probable resource potential for copper. The nature of the geologic terrane precludes the occurrence of organic fuels.

  19. The Running Athlete

    PubMed Central

    Henning, P. Troy

    2014-01-01

    Context: Pelvic stress fractures, osteitis pubis, and snapping hip syndrome account for a portion of the overuse injuries that can occur in the running athlete. Evidence Acquisition: PubMed searches were performed for each entity using the following keywords: snapping hip syndrome, coxa sultans, pelvic stress fracture, and osteitis pubis from 2008 to 2013. Topic reviews, case reports, case series, and randomized trials were included for review. Study Design: Clinical review. Level of Evidence: Level 4. Results: Collectively, 188 articles were identified. Of these, 58 were included in this review. Conclusion: Based on the available evidence, the majority of these overuse injuries can be managed non-operatively. Primary treatment should include removal from offending activity, normalizing regional muscle strength/length imbalances and nutritional deficiencies, and mitigating training errors through proper education of the athlete and training staff. Strength of Recommendation Taxonomy: C PMID:24587861

  20. The collider phenomenology of supersymmetric models

    NASA Astrophysics Data System (ADS)

    Muller, David J.

    Scope and method of study. The purpose of this study is to investigate the phenomenology of various supersymmetric models. First, the Minimal Supersymmetric Standard Model (MSSM) is investigated. This model contains an extended Higgs sector that includes a charged boson. The effect that this charged Higgs boson has on the signatures for top quark pair production at the Tevatron is investigated. The rest of the work is devoted to the phenomenology of models with gauge mediated supersymmetry breaking (GMSB). In GMSB models, the lighter stau can be the next to lightest supersymmetric particle. The signals at hadronic colliders for GMSB models with minimal visible sector content are explored for this case. A GMSB model with non-minimal visible sector content is also explored. This is the left-right symmetric GMSB model which contains doubly charged bosons and fermions that could be light enough in mass to be produced at Run II of the Tevatron. Findings and conclusions. The presence of a charged Higgs boson that is lighter than the top quark is found to have a significant impact on the expected signatures for top quark pair production at the Tevatron. This is marked by an overall decrease in high pT electrons and muons in the final states. In addition, for tan beta less than about one, the three-body decay H+→bbW leads to final states that are not present in the Standard Model. For GMSB models with the lighter stau as the next to lightest supersymmetric particle, the signature at the Tevatron typically involves two or three tau-jets plus large missing transverse energy. This tau-jet signature can be even more pronounced in left-right symmetric GMSB models due to the production of light doubly charged fermions that may couple preferentially to the third generation of leptons. The left-right models can be distinguished from GMSB models with minimal visible sector content by the distribution in angle between the highest ET tau-jets when they come from same sign tau

  1. Why Does My Nose Run?

    MedlinePlus

    ... Homework? Here's Help White House Lunch Recipes Why Does My Nose Run? KidsHealth > For Kids > Why Does My Nose Run? Print A A A Text ... smell, you must be upside down! But why does your nose run? Read on to find out ...

  2. Status of the Future Circular Collider Study

    NASA Astrophysics Data System (ADS)

    Benedikt, Michael

    2016-03-01

    Following the 2013 update of the European Strategy for Particle Physics, the international Future Circular Collider (FCC) Study has been launched by CERN as host institute, to design an energy frontier hadron collider (FCC-hh) in a new 80-100 km tunnel with a centre-of-mass energy of about 100 TeV, an order of magnitude beyond the LHC's, as a long-term goal. The FCC study also includes the design of a 90-350 GeV high-luminosity lepton collider (FCC-ee) installed in the same tunnel, serving as Higgs, top and Z factory, as a potential intermediate step, as well as an electron-proton collider option (FCC-he). The physics cases for such machines will be assessed and concepts for experiments will be developed in time for the next update of the European Strategy for Particle Physics by the end of 2018. The presentation will summarize the status of machine designs and parameters and discuss the essential technical components to be developed in the frame of the FCC study. Key elements are superconducting accelerator-dipole magnets with a field of 16 T for the hadron collider and high-power, high-efficiency RF systems for the lepton collider. In addition the unprecedented beam power presents special challenges for the hadron collider for all aspects of beam handling and machine protection. First conclusions of geological investigations and implementation studies will be presented. The status of the FCC collaboration and the further planning for the study will be outlined.

  3. PROSPECTS FOR COLLIDERS AND COLLIDER PHYSICS TO THE 1 PEV ENERGY SCALE

    SciTech Connect

    KING,B.J.

    2000-05-05

    A review is given of the prospects for future colliders and collider physics at the energy frontier. A proof-of-plausibility scenario is presented for maximizing the authors progress in elementary particle physics by extending the energy reach of hadron and lepton colliders as quickly and economically as might be technically and financially feasible. The scenario comprises 5 colliders beyond the LHC--one each of e{sup +}e{sup {minus}} and hadron colliders and three {mu}{sup +}{mu}{sup {minus}} colliders--and is able to hold to the historical rate of progress in the log-energy reach of hadron and lepton colliders, reaching the 1 PeV constituent mass scale by the early 2040's. The technical and fiscal requirements for the feasibility of the scenario are assessed and relevant long-term R and D projects are identified. Considerations of both cost and logistics seem to strongly favor housing most or all of the colliders in the scenario in a new world high energy physics laboratory.

  4. Backward running or absence of running from Creutz ratios

    SciTech Connect

    Giedt, Joel; Weinberg, Evan

    2011-10-01

    We extract the running coupling based on Creutz ratios in SU(2) lattice gauge theory with two Dirac fermions in the adjoint representation. Depending on how the extrapolation to zero fermion mass is performed, either backward running or an absence of running is observed at strong bare coupling. This behavior is consistent with other findings which indicate that this theory has an infrared fixed point.

  5. The QCD running coupling

    DOE PAGES

    Deur, Alexandre; Brodsky, Stanley J.; de Téramond, Guy F.

    2016-05-09

    Here, we review present knowledge onmore » $$\\alpha_{s}$$, the Quantum Chromodynamics (QCD) running coupling. The dependence of $$\\alpha_s(Q^2)$$ on momentum transfer $Q$ encodes the underlying dynamics of hadron physics --from color confinement in the infrared domain to asymptotic freedom at short distances. We will survey our present theoretical and empirical knowledge of $$\\alpha_s(Q^2)$$, including constraints at high $Q^2$ predicted by perturbative QCD, and constraints at small $Q^2$ based on models of nonperturbative dynamics. In the first, introductory, part of this review, we explain the phenomenological meaning of the coupling, the reason for its running, and the challenges facing a complete understanding of its analytic behavior in the infrared domain. In the second, more technical, part of the review, we discuss $$\\alpha_s(Q^2)$$ in the high momentum transfer domain of QCD. We review how $$\\alpha_s$$ is defined, including its renormalization scheme dependence, the definition of its renormalization scale, the utility of effective charges, as well as `` Commensurate Scale Relations" which connect the various definitions of the QCD coupling without renormalization scale ambiguity. We also report recent important experimental measurements and advanced theoretical analyses which have led to precise QCD predictions at high energy. As an example of an important optimization procedure, we discuss the ``Principle of Maximum Conformality" which enhances QCD's predictive power by removing the dependence of the predictions for physical observables on the choice of the gauge and renormalization scheme. In last part of the review, we discuss $$\\alpha_s(Q^2)$$ in the low momentum transfer domain, where there has been no consensus on how to define $$\\alpha_s(Q^2)$$ or its analytic behavior. We will discuss the various approaches used for low energy calculations. Among them, we will discuss the light-front holographic approach to QCD in the strongly coupled

  6. Collider Detector at Fermilab (CDF): Data from the QCD Group's Research into Properties of the Strong Interaction

    DOE Data Explorer

    ,

    The Collider Detector at Fermilab (CDF) is a Tevatron experiment at Fermilab. The Tevatron, a powerful particle accelerator, accelerates protons and antiprotons close to the speed of light, and then makes them collide head-on inside the CDF detector. The CDF detector is used to study the products of such collisions. The CDF Physics Group at Fermilab is organized into six working groups, each with a specific focus. The QCD group studies the properties of the strong interaction. Their public web page makes data and numerous figures available from both CDF Runs I and II.

  7. Collider Detector at Fermilab (CDF): Data from Standard Model and Supersymmetric Higgs Bosons Research of the Higgs Group

    DOE Data Explorer

    The Collider Detector at Fermilab (CDF) is a Tevatron experiment at Fermilab. The Tevatron, a powerful particle accelerator, accelerates protons and antiprotons close to the speed of light, and then makes them collide head-on inside the CDF detector. The CDF detector is used to study the products of such collisions. The CDF Physics Group at Fermilab is organized into six working groups, each with a specific focus. The Higgs group searches for Standard Model and Supersymmetric Higgs bosons. Their public web page makes data and numerous figures available from both CDF Runs I and II.

  8. Lattice of the NICA Collider Rings

    SciTech Connect

    Sidorin, Anatoly; Kozlov, Oleg; Meshkov, Igor; Mikhaylov, Vladimir; Trubnikov, Grigoriy; Lebedev, Valeri Nagaitsev, Sergei; Senichev, Yurij; /Julich, Forschungszentrum

    2010-05-01

    The Nuclotron-based Ion Collider fAcility (NICA) is a new accelerator complex being constructed at JINR. It is designed for collider experiments with ions and protons and has to provide ion-ion (Au{sup 79+}) and ion-proton collisions in the energy range 1 {divided_by} 4.5 GeV/n and collisions of polarized proton-proton and deuteron-deuteron beams. Collider conceptions with constant {gamma}{sub tr} and with possibility of its variation are considered. The ring has the racetrack shape with two arcs and two long straight sections. Its circumference is about 450m. The straight sections are optimized to have {beta}* {approx} 35cm in two IPs and a possibility of final betatron tune adjustment.

  9. Seismic studies for Fermilab future collider projects

    SciTech Connect

    Lauh, J.; Shiltsev, V.

    1997-11-01

    Ground motion can cause significant beam emittance growth and orbit oscillations in large hadron colliders due to a vibration of numerous focusing magnets. Larger accelerator ring circumference leads to smaller revolution frequency and, e.g. for the Fermilab Very Large Hadron Collider(VLHC) 50-150 Hz vibrations are of particular interest as they are resonant with the beam betatron frequency. Seismic measurements at an existing large accelerator under operation can help to estimate the vibrations generated by the technical systems in future machines. Comparison of noisy and quiet microseismic conditions might be useful for proper choice of technical solutions for future colliders. This article presents results of wide-band seismic measurements at the Fermilab site, namely, in the tunnel of the Tevatron and on the surface nearby, and in two deep tunnels in the Illinois dolomite which is though to be a possible geological environment of the future accelerators.

  10. The Tevatron Hadron Collider: A short history

    SciTech Connect

    Tollestrup, A.V.

    1994-11-01

    The subject of this presentation was intended to cover the history of hadron colliders. However this broad topic is probably better left to historians. I will cover a much smaller portion of this subject and specialize my subject to the history of the Tevatron. As we will see, the Tevatron project is tightly entwined with the progress in collider technology. It occupies a unique place among accelerators in that it was the first to make use of superconducting magnets and indeed the basic design now forms a template for all machines using this technology. It was spawned in an incredibly productive era when new ideas were being generated almost monthly and it has matured into our highest energy collider complete with two large detectors that provide the major facility in the US for probing high Pt physics for the coming decade.

  11. The Superconducting Super Collider: A status report

    SciTech Connect

    Schwitters, R.F.

    1993-04-01

    The design of the Superconducting Super Collider (SSC) is briefly reviewed, including its key machine parameters. The scientific objectives are twofold: (1) investigation of high-mass, low-rate, rare phenomena beyond the standard model; and (2) investigation of processes within the domain of the standard model. Machine luminosity, a key parameter, is a function of beam brightness and current, and it must be preserved through the injector chain. Features of the various injectors are discussed. The superconducting magnet system is reviewed in terms of model magnet performance, including the highly successful Accelerator System String Test Various magnet design modifications are noted, reflecting minor changes in the collider arcs and improved installation procedures. The paper concludes with construction scenarios and priority issues for ensuring the earliest collider commissioning.

  12. The Large Hadron Collider: Redefining High Energy

    SciTech Connect

    Demers, Sarah

    2007-06-19

    Particle physicists have a description of the forces of nature known as the Standard Model that has successfully withstood decades of testing at laboratories around the world. Though the Standard Model is powerful, it is not complete. Important details like the masses of particles are not explained well, and realities as fundamental as gravity, dark matter, and dark energy are left out altogether. I will discuss gaps in the model and why there is hope that some puzzles will be solved by probing high energies with the Large Hadron Collider. Beginning next year, this machine will accelerate protons to record energies, hurling them around a 27 kilometer ring before colliding them 40 million times per second. Detectors the size of five-story buildings will record the debris of these collisions. The new energy frontier made accessible by the Large Hadron Collider will allow thousands of physicists to explore nature's fundamental forces and particles from a fantastic vantage point.

  13. Voluntary Wheel Running in Mice.

    PubMed

    Goh, Jorming; Ladiges, Warren

    2015-12-02

    Voluntary wheel running in the mouse is used to assess physical performance and endurance and to model exercise training as a way to enhance health. Wheel running is a voluntary activity in contrast to other experimental exercise models in mice, which rely on aversive stimuli to force active movement. This protocol consists of allowing mice to run freely on the open surface of a slanted, plastic saucer-shaped wheel placed inside a standard mouse cage. Rotations are electronically transmitted to a USB hub so that frequency and rate of running can be captured via a software program for data storage and analysis for variable time periods. Mice are individually housed so that accurate recordings can be made for each animal. Factors such as mouse strain, gender, age, and individual motivation, which affect running activity, must be considered in the design of experiments using voluntary wheel running.

  14. Progress report on the SLAC Linear Collider

    SciTech Connect

    Kozanecki, W.

    1987-11-01

    In this paper we report on the status of the SLAC Linear Collider (SLC), the prototype of a new generation of colliding beam accelerators. This novel type of machine holds the potential of extending electron-positron colliding beam studies to center-of-mass (c.m.) energies far in excess of what is economically achievable with colliding beam storage rings. If the technical challenges posed by linear colliders are solvable at a reasonable cost, this new approach would provide an attractive alternative to electron-positron rings, where, because of rapidly rising synchrotron radiation losses, the cost and size of the ring increases with the square of the c.m. energy. In addition to its role as a test vehicle for the linear collider principle, the SLC aims at providing an abundant source of Z/sup 0/ decays to high energy physics experiments. Accordingly, two major detectors, the upgraded Mark II, now installed on the SLC beam line, and the state-of-the-art SLD, currently under construction, are preparing to probe the Standard Model at the Z/sup 0/ pole. The SLC project was originally funded in 1983. Since the completion of construction, we have been commissioning the machine to bring it up to a performance level adequate for starting the high energy physics program. In the remainder of this paper, we will discuss the status, problems and performance of the major subsystems of the SLC. We will conclude with a brief outline of the physics program, and of the planned enhancements to the capabilities of the machine. 26 refs., 7 figs.

  15. International linear collider reference design report

    SciTech Connect

    Aarons, G.

    2007-06-22

    The International Linear Collider will give physicists a new cosmic doorway to explore energy regimes beyond the reach of today's accelerators. A proposed electron-positron collider, the ILC will complement the Large Hadron Collider, a proton-proton collider at the European Center for Nuclear Research (CERN) in Geneva, Switzerland, together unlocking some of the deepest mysteries in the universe. With LHC discoveries pointing the way, the ILC -- a true precision machine -- will provide the missing pieces of the puzzle. Consisting of two linear accelerators that face each other, the ILC will hurl some 10 billion electrons and their anti-particles, positrons, toward each other at nearly the speed of light. Superconducting accelerator cavities operating at temperatures near absolute zero give the particles more and more energy until they smash in a blazing crossfire at the centre of the machine. Stretching approximately 35 kilometres in length, the beams collide 14,000 times every second at extremely high energies -- 500 billion-electron-volts (GeV). Each spectacular collision creates an array of new particles that could answer some of the most fundamental questions of all time. The current baseline design allows for an upgrade to a 50-kilometre, 1 trillion-electron-volt (TeV) machine during the second stage of the project. This reference design provides the first detailed technical snapshot of the proposed future electron-positron collider, defining in detail the technical parameters and components that make up each section of the 31-kilometer long accelerator. The report will guide the development of the worldwide R&D program, motivate international industrial studies and serve as the basis for the final engineering design needed to make an official project proposal later this decade.

  16. The Next Linear Collider: NLC2001

    SciTech Connect

    D. Burke et al.

    2002-01-14

    Recent studies in elementary particle physics have made the need for an e{sup +}e{sup -} linear collider able to reach energies of 500 GeV and above with high luminosity more compelling than ever [1]. Observations and measurements completed in the last five years at the SLC (SLAC), LEP (CERN), and the Tevatron (FNAL) can be explained only by the existence of at least one particle or interaction that has not yet been directly observed in experiment. The Higgs boson of the Standard Model could be that particle. The data point strongly to a mass for the Higgs boson that is just beyond the reach of existing colliders. This brings great urgency and excitement to the potential for discovery at the upgraded Tevatron early in this decade, and almost assures that later experiments at the LHC will find new physics. But the next generation of experiments to be mounted by the world-wide particle physics community must not only find this new physics, they must find out what it is. These experiments must also define the next important threshold in energy. The need is to understand physics at the TeV energy scale as well as the physics at the 100-GeV energy scale is now understood. This will require both the LHC and a companion linear electron-positron collider. A first Zeroth-Order Design Report (ZDR) [2] for a second-generation electron-positron linear collider, the Next Linear Collider (NLC), was published five years ago. The NLC design is based on a high-frequency room-temperature rf accelerator. Its goal is exploration of elementary particle physics at the TeV center-of-mass energy, while learning how to design and build colliders at still higher energies. Many advances in accelerator technologies and improvements in the design of the NLC have been made since 1996. This Report is a brief update of the ZDR.

  17. Top quark studies at hadron colliders

    SciTech Connect

    Sinervo, P.K.; CDF Collaboration

    1996-08-01

    The techniques used to study top quarks at hadron colliders are presented. The analyses that discovered the top quark are described, with emphasis on the techniques used to tag {ital b} quark jets in candidate events. The most recent measurements of top quark properties by the CDF and D{null} collaborations are reviewed, including the top quark cross section, mass, branching fractions and production properties. Future top quark studies at hadron colliders are discussed, and predictions for event yields and uncertainties in the measurements of top quark properties are presented.

  18. Suppressing Electron Cloud in Future Linear Colliders

    SciTech Connect

    Pivi, M; Kirby, R.E.; Raubenheimer, T.O.; Le Pimpec, F.; /PSI, Villigen

    2005-05-27

    Any accelerator circulating positively charged beams can suffer from a build-up of an electron cloud (EC) in the beam pipe. The cloud develops through ionization of residual gases, synchrotron radiation and secondary electron emission and, when severe, can cause instability, emittance blow-up or loss of the circulating beam. The electron cloud is potentially a luminosity limiting effect for both the Large Hadron Collider (LHC) and the International Linear Collider (ILC). For the ILC positron damping ring, the development of the electron cloud must be suppressed. This paper discusses the state-of-the-art of the ongoing SLAC and international R&D program to study potential remedies.

  19. FFAG Designs for Muon Collider Acceleration

    SciTech Connect

    Berg, J. Scott

    2014-01-13

    I estimate FFAG parameters for a muon collider with a 70mm longitudinal emittance. I do not discuss the lower emittance beam for a Higgs factory. I produce some example designs, giving only parameters relevant to estimating cost and performance. The designs would not track well, but the parameters of a good design will be close to those described. I compare these cost estimates to those for a fast-ramping synchrotron and a recirculating linear accelerator. I conclude that FFAGs do not appear to be cost-effective for the large longitudinal emittance in a high-energy muon collider.

  20. Top quark studies at hadron colliders

    SciTech Connect

    Sinervo, P.K.

    1997-01-01

    The techniques used to study top quarks at hadron colliders are presented. The analyses that discovered the top quark are described, with emphasis on the techniques used to tag b quark jets in candidate events. The most recent measurements of top quark properties by the CDF and DO Collaborations are reviewed, including the top quark cross section, mass, branching fractions, and production properties. Future top quark studies at hadron colliders are discussed, and predictions for event yields and uncertainties in the measurements of top quark properties are presented.

  1. From the LHC to future colliders. CERN Theory Institute summary report

    NASA Astrophysics Data System (ADS)

    de Roeck, A.; Ellis, J.; Grojean, C.; Heinemeyer, S.; Jakobs, K.; Weiglein, G.; Wells, J.; Azuelos, G.; Dawson, S.; Gripaios, B.; Han, T.; Hewett, J.; Lancaster, M.; Mariotti, C.; Moortgat, F.; Moortgat-Pick, G.; Polesello, G.; Riemann, S.; Schumacher, M.; Assamagan, K.; Bechtle, P.; Carena, M.; Chachamis, G.; Chen, K. F.; de Curtis, S.; Desch, K.; Dittmar, M.; Dreiner, H.; Dührssen, M.; Foster, B.; Frandsen, M. T.; Giammanco, A.; Godbole, R.; Gopalakrishna, S.; Govoni, P.; Gunion, J.; Hollik, W.; Hou, W. S.; Isidori, G.; Juste, A.; Kalinowski, J.; Korytov, A.; Kou, E.; Kraml, S.; Krawczyk, M.; Martin, A.; Milstead, D.; Morton-Thurtle, V.; Moenig, K.; Mele, B.; Ozcan, E.; Pieri, M.; Plehn, T.; Reina, L.; Richter-Was, E.; Rizzo, T.; Rolbiecki, K.; Sannino, F.; Schram, M.; Smillie, J.; Sultansoy, S.; Tattersall, J.; Uwer, P.; Webber, B.; Wienemann, P.

    2010-04-01

    Discoveries at the LHC will soon set the physics agenda for future colliders. This report of a CERN Theory Institute includes the summaries of Working Groups that reviewed the physics goals and prospects of LHC running with 10 to 300 fb-1 of integrated luminosity, of the proposed sLHC luminosity upgrade, of the ILC, of CLIC, of the LHeC and of a muon collider. The four Working Groups considered possible scenarios for the first 10 fb-1 of data at the LHC in which (i) a state with properties that are compatible with a Higgs boson is discovered, (ii) no such state is discovered either because the Higgs properties are such that it is difficult to detect or because no Higgs boson exists, (iii) a missing-energy signal beyond the Standard Model is discovered as in some supersymmetric models, and (iv) some other exotic signature of new physics is discovered. In the contexts of these scenarios, the Working Groups reviewed the capabilities of the future colliders to study in more detail whatever new physics may be discovered by the LHC. Their reports provide the particle physics community with some tools for reviewing the scientific priorities for future colliders after the LHC produces its first harvest of new physics from multi-TeV collisions.

  2. The QCD running coupling

    NASA Astrophysics Data System (ADS)

    Deur, Alexandre; Brodsky, Stanley J.; de Téramond, Guy F.

    2016-09-01

    We review the present theoretical and empirical knowledge for αs, the fundamental coupling underlying the interactions of quarks and gluons in Quantum Chromodynamics (QCD). The dependence of αs(Q2) on momentum transfer Q encodes the underlying dynamics of hadron physics-from color confinement in the infrared domain to asymptotic freedom at short distances. We review constraints on αs(Q2) at high Q2, as predicted by perturbative QCD, and its analytic behavior at small Q2, based on models of nonperturbative dynamics. In the introductory part of this review, we explain the phenomenological meaning of the coupling, the reason for its running, and the challenges facing a complete understanding of its analytic behavior in the infrared domain. In the second, more technical, part of the review, we discuss the behavior of αs(Q2) in the high momentum transfer domain of QCD. We review how αs is defined, including its renormalization scheme dependence, the definition of its renormalization scale, the utility of effective charges, as well as "Commensurate Scale Relations" which connect the various definitions of the QCD coupling without renormalization-scale ambiguity. We also report recent significant measurements and advanced theoretical analyses which have led to precise QCD predictions at high energy. As an example of an important optimization procedure, we discuss the "Principle of Maximum Conformality", which enhances QCD's predictive power by removing the dependence of the predictions for physical observables on the choice of theoretical conventions such as the renormalization scheme. In the last part of the review, we discuss the challenge of understanding the analytic behavior αs(Q2) in the low momentum transfer domain. We survey various theoretical models for the nonperturbative strongly coupled regime, such as the light-front holographic approach to QCD. This new framework predicts the form of the quark-confinement potential underlying hadron spectroscopy and

  3. Biodiversity conservation in running waters

    SciTech Connect

    Allan, J.D. ); Flecker, A.S. )

    1993-01-01

    In the concerns about biodiversity conservation, fresh waters have received less attention than tropical forests and oceans. However, running waters harbor a diverse panoply of species, habitats, and ecosystems, including some of the most threatened and many having great value to human society. An overview of the biological diversity of running waters and the state of imperilment is presented. Six major factors that threaten destruction of running water species and ecosystems are discussed: habitat loss and degradation; species invasions; overharvesting; secondary extinctions; chemical and organic pollution; global climate change. General measures for recovery and restoration of running waters conclude the article.

  4. A Running Start: Resource Guide for Youth Running Programs

    ERIC Educational Resources Information Center

    Jenny, Seth; Becker, Andrew; Armstrong, Tess

    2016-01-01

    The lack of physical activity is an epidemic problem among American youth today. In order to combat this, many schools are incorporating youth running programs as a part of their comprehensive school physical activity programs. These youth running programs are being implemented before or after school, at school during recess at the elementary…

  5. Overview of the CDF Run II data handling system

    NASA Astrophysics Data System (ADS)

    Buckley-Geer, L.; Lammel, S.; Leininger, M.; Watts, T.

    2001-10-01

    The Collider Detector at Fermilab (CDF) collaboration records and analyses proton-anti-proton interactions with a center-of-mass energy of 2 TeV at the Tevatron. During the next collider run the experiment expects to record about 1 PetaByte of data, an increase by more than an order of magnitude in data volume compared to the existing data of the experiment. This paper gives an overview of the new data handling system. The design builds upon successful strategies used in the past but eliminates shortcomings encountered with the old system. The core of the central analysis system will be a pool of over 20 TBytes of data disks. Logically behind this disk pool will be an automated tape library with a storage capacity to hold the full 1 PByte of Run II data. Multi-processor compute systems will be located around this storage pool to provide the required analysis power of over 3000 SPECint95. Desktop systems will be integrated into the analysis system via a shared login area and user authentication. The data handling software falls into four categories: software to manage computing resources, software for the data disks and for the mass storage subsystem, software to organize and manage the meta-data information, and the I/O modules in the analysis framework for accessing data.

  6. LHCb Vertex Locator: Performance and radiation damage in LHC Run 1 and preparation for Run 2

    NASA Astrophysics Data System (ADS)

    Szumlak, T.; Obła˛kowska-Mucha, A.

    2016-07-01

    LHCb is a dedicated experiment to study New Physics in the decays of heavy hadrons at the Large Hadron Collider (LHC) at CERN. Heavy hadrons are identified through their flight distance in the Vertex Locator (VELO). The VELO comprises 42 modules made of two n+-on-n 300 μm thick half-disc silicon sensors with R- and Φ-measuring micro-strips. In order to allow retracting the detector, the VELO is installed as two movable halves containing 21 modules each. The detectors are operated in a secondary vacuum and are cooled by a bi-phase CO2 cooling system. During data taking in LHC Run 1 the LHCb VELO has operated with an extremely high efficiency and excellent performance. The track finding efficiency is typically greater than 98%. An impact parameter resolution of less than 35 μm is achieved for particles with transverse momentum greater than 1 GeV/c. An overview of all important performance parameters will be given. The VELO sensors have received a large and non-uniform radiation dose of up to 1.2 ×1014 1 MeV neutron equivalent cm-2 during the first LHC run. Silicon type-inversion has been observed in regions close to the interaction point. The preparations for LHC Run 2 are well under way and the VELO has already recorded tracks from injection line tests. The current status and plans for new operational procedures addressing the non-uniform radiation damage are shortly discussed.

  7. Study of the Polarization Deterioration During Physics Stores in RHIC Polarized Proton Runs

    NASA Astrophysics Data System (ADS)

    Duan, Z.; Qin, Q.; Bai, M.; Roser, T.

    2016-02-01

    As the only high energy polarized proton collider in the world, the Relativistic Heavy Ion Collider (RHIC) has achieved a great success in colliding polarized proton beams up to 255GeV per beam energy with over 50% average store polarizations for spin physics studies. With the help of Siberian snakes as well as outstanding beam control during the acceleration, polarization loss during acceleration up to 100 GeV is negligible. However, about 10% polarization loss was observed between acceleration from 100 GeV to 255 GeV. In addition, a mild polarization deterioration during long store for physics data taking was also observed. In this paper, studies in understanding the store depolarizing mechanism is reported, including the analysis of polarization deterioration data based on the past couple of RHIC polarized proton runs.

  8. Proton-proton colliding beam facility ISABELLE

    SciTech Connect

    Hahn, H

    1980-01-01

    This paper attempts to present the status of the ISABELLE construction project, which has the objective of building a 400 + 400 GeV proton colliding beam facility. The major technical features of the superconducting accelerators with their projected performance are described. Progress made so far, difficulties encountered, and the program until completion in 1986 is briefly reviewed.

  9. Black Holes and the Large Hadron Collider

    ERIC Educational Resources Information Center

    Roy, Arunava

    2011-01-01

    The European Center for Nuclear Research or CERN's Large Hadron Collider (LHC) has caught our attention partly due to the film "Angels and Demons." In the movie, an antimatter bomb attack on the Vatican is foiled by the protagonist. Perhaps just as controversial is the formation of mini black holes (BHs). Recently, the American Physical Society…

  10. Recent results from proton-antiproton colliders

    SciTech Connect

    Geer, S. . High Energy Physics Lab.)

    1990-03-01

    New results from the CERN and Fermilab proton-antiproton colliders are summarised. The areas covered are jet physics, direct photon production, W and Z production and decay, heavy flavor production, the search for the top quark, and the search for more exotic phenomena. 46 refs., 20 figs., 4 tabs.

  11. Experiment and Radiation Safety at Colliders

    NASA Astrophysics Data System (ADS)

    Pugatch, V.

    The emphasis is made on the novel radiation monitoring systems at colliders based on the Metal Foil Detector technology. The radiation monitoring systems for the HERA-B experiment (DESY, Hamburg) as well as for the Silicon Tracker of the LHCb experiment (CERN, Geneva) are described. The micro-strip Metal Foil Detector used for the beam profile monitoring is briefly presented.

  12. QCD parton model at collider energies

    SciTech Connect

    Ellis, R.K.

    1984-09-01

    Using the example of vector boson production, the application of the QCD improved parton model at collider energies is reviewed. The reliability of the extrapolation to SSC energies is assessed. Predictions at ..sqrt..S = 0.54 TeV are compared with data. 21 references.

  13. Beam dynamics issues for linear colliders

    SciTech Connect

    Ruth, R.D.

    1987-09-01

    In this paper we discuss various beam dynamics issues for linear colliders. The emphasis is to explore beam dynamics effects which lead to an effective dilution of the emittance of the beam and thus to a loss of luminosity. These considerations lead to various tolerances which are evaluated for a particular parameter set.

  14. Future Accelerators, Muon Colliders, and Neutrino Factories

    SciTech Connect

    Richard A Carrigan, Jr.

    2001-12-19

    Particle physics is driven by five great topics. Neutrino oscillations and masses are now at the fore. The standard model with extensions to supersymmetry and a Higgs to generate mass explains much of the field. The origins of CP violation are not understood. The possibility of extra dimensions has raised tantalizing new questions. A fifth topic lurking in the background is the possibility of something totally different. Many of the questions raised by these topics require powerful new accelerators. It is not an overstatement to say that for some of the issues, the accelerator is almost the experiment. Indeed some of the questions require machines beyond our present capability. As this volume attests, there are parts of the particle physics program that have been significantly advanced without the use of accelerators such as the subject of neutrino oscillations and many aspects of the particle-cosmology interface. At this stage in the development of physics, both approaches are needed and important. This chapter first reviews the status of the great accelerator facilities now in operation or coming on within the decade. Next, midrange possibilities are discussed including linear colliders with the adjunct possibility of gamma-gamma colliders, muon colliders, with precursor neutrino factories, and very large hadron colliders. Finally visionary possibilities are considered including plasma and laser accelerators.

  15. Linear Collider Accelerator Physics Issues Regarding Alignment

    SciTech Connect

    Seeman, J.T.; /SLAC

    2005-08-12

    The next generation of linear colliders will require more stringent alignment tolerances than those for the SLC with regard to the accelerating structures, quadrupoles, and beam position monitors. New techniques must be developed to achieve these tolerances. A combination of mechanical-electrical and beam-based methods will likely be needed.

  16. Physics Case for the International Linear Collider

    SciTech Connect

    Fujii, Keisuke; Grojean, Christophe; Peskin, Michael E.; Barklow, Tim; Gao, Yuanning; Kanemura, Shinya; Kim, Hyungdo; List, Jenny; Nojiri, Mihoko; Perelstein, Maxim; Poeschl, Roman; Reuter, Juergen; Simon, Frank; Tanabe, Tomohiko; Yu, Jaehoon; Wells, James D.; Murayama, Hitoshi; Yamamoto, Hitoshi; /Tohoku U.

    2015-06-23

    We summarize the physics case for the International Linear Collider (ILC). We review the key motivations for the ILC presented in the literature, updating the projected measurement uncertainties for the ILC experiments in accord with the expected schedule of operation of the accelerator and the results of the most recent simulation studies.

  17. Progress in the Next Linear Collider Design

    NASA Astrophysics Data System (ADS)

    Raubenheimer, T. O.

    2001-07-01

    An electron/positron linear collider with a center-of-mass energy between 0.5 and 1 TeV would be an important complement to the physics program of the LHC. The Next Linear Collider (NLC) is being designed by a US collaboration (FNAL, LBNL, LLNL, and SLAC) which is working closely with the Japanese collaboration that is designing the Japanese Linear Collider (JLC). The NLC main linacs are based on normal conducting 11 GHz rf. This paper will discuss the technical difficulties encountered as well as the many changes that have been made to the NLC design over the last year. These changes include improvements to the X-band rf system as well as modifications to the injector and the beam delivery system. They are based on new conceptual solutions as well as results from the R&D programs which have exceeded initial specifications. The net effect has been to reduce the length of the collider from about 32 km to 25 km and to reduce the number of klystrons and modulators by a factor of two. Together these lead to significant cost savings.

  18. Difficult Decisions: The Superconducting Super Collider.

    ERIC Educational Resources Information Center

    Newton, David E.; Slesnick, Irwin L.

    1990-01-01

    The fundamental principles of the superconducting super collider are presented. Arguments for the construction of this apparatus and policy issues surrounding its construction are discussed. Charts of the fundamental atomic particles and forces and the history of particle accelerators are provided. An activity for discussing this controversial…

  19. Obtaining slow beam spills at the SSC collider

    SciTech Connect

    Ritson, D.

    1993-08-01

    There is substantial interest in providing slow-spill external proton beams in parallel with ``interaction running`` at the 20 TeV SSC collider. The proposal is to cause a flux of particles to impinge on a target consisting of a bent crystal extraction channel. Additionally, a slow spill onto a conventional internal target could be used as a source of secondary beams for physics or test purposes and might also be used for B-physics as proposed for HERA. The ``natural`` beam loss rates from elastic and diffractive beam gas scattering and IP collisions are not sufficient to provide suitably intense external proton beams. To prevent loss of luminosity, the rf excitation is non-linear and preferentially blows up the halo of the beam. The ``target`` is to be located at a region of high dispersion forcing particles at the edge of the momentum space onto the target. T. Lohse in this workshop has described a proposed internal target to be used at HERA that will not employ rf excitation but will use the finite loss rates observed at the HERA machine. The Hera losses are caused by a variety of sources in addition to beam gas scattering or IP interactions. Initially, the beam lifetime at HERA was too short to obtain satisfactory integrated luminosities. Subsequently, through careful attention to detail, the beam lifetime was increased to > 20 hours. Even with these changes, present loss rates provide the required intensity onto an internal target. The Tevatron and SPS proton anti-proton colliders have had similar experiences with their investigations of loss rates and also find that beam lifetimes may be substantially shorter than expected solely from beam gas and IP interactions. This paper proposes deliberately introducing controlled errors li

  20. Tau physics at p{bar p} colliders

    SciTech Connect

    Konigsberg, J.

    1993-01-01

    Tau detection techniques in hadron colliders are discussed together with the measurements and searches performed so far. We also underline the importance tau physics has in present and future collider experiments.

  1. Run II of the LHC: The Accelerator Science

    NASA Astrophysics Data System (ADS)

    Redaelli, Stefano

    2015-04-01

    In 2015 the Large Hadron Collider (LHC) at the European Organization for Nuclear Research (CERN) starts its Run II operation. After the successful Run I at 3.5 TeV and 4 TeV in the 2010-2013 period, a first long shutdown (LS1) was mainly dedicated to the consolidation of the LHC magnet interconnections, to allow the LHC to operate at its design beam energy of 7 TeV. Other key accelerator systems have also been improved to optimize the performance reach at higher beam energies. After a review of the LS1 activities, the status of the LHC start-up progress is reported, addressing in particular the status of the LHC hardware commissioning and of the training campaign of superconducting magnets that will determine the operation beam energy in 2015. Then, the plans for the Run II operation are reviewed in detail, covering choice of initial machine parameters and strategy to improve the Run II performance. Future prospects of the LHC and its upgrade plans are also presented.

  2. Linear Collider Physics Resource Book Snowmass 2001

    SciTech Connect

    Ronan , M.T.

    2001-06-01

    The American particle physics community can look forward to a well-conceived and vital program of experimentation for the next ten years, using both colliders and fixed target beams to study a wide variety of pressing questions. Beyond 2010, these programs will be reaching the end of their expected lives. The CERN LHC will provide an experimental program of the first importance. But beyond the LHC, the American community needs a coherent plan. The Snowmass 2001 Workshop and the deliberations of the HEPAP subpanel offer a rare opportunity to engage the full community in planning our future for the next decade or more. A major accelerator project requires a decade from the beginning of an engineering design to the receipt of the first data. So it is now time to decide whether to begin a new accelerator project that will operate in the years soon after 2010. We believe that the world high-energy physics community needs such a project. With the great promise of discovery in physics at the next energy scale, and with the opportunity for the uncovering of profound insights, we cannot allow our field to contract to a single experimental program at a single laboratory in the world. We believe that an e{sup +}e{sup -} linear collider is an excellent choice for the next major project in high-energy physics. Applying experimental techniques very different from those used at hadron colliders, an e{sup +}e{sup -} linear collider will allow us to build on the discoveries made at the Tevatron and the LHC, and to add a level of precision and clarity that will be necessary to understand the physics of the next energy scale. It is not necessary to anticipate specific results from the hadron collider programs to argue for constructing an e{sup +}e{sup -} linear collider; in any scenario that is now discussed, physics will benefit from the new information that e{sup +}e{sup -} experiments can provide. This last point merits further emphasis. If a new accelerator could be designed and

  3. Towards a Future Linear Collider and The Linear Collider Studies at CERN

    ScienceCinema

    None

    2016-07-12

    During the week 18-22 October, more than 400 physicists will meet at CERN and in the CICG (International Conference Centre Geneva) to review the global progress towards a future linear collider. The 2010 International Workshop on Linear Colliders will study the physics, detectors and accelerator complex of a linear collider covering both the CLIC and ILC options. Among the topics presented and discussed will be the progress towards the CLIC Conceptual Design Report in 2011, the ILC Technical Design Report in 2012, physics and detector studies linked to these reports, and an increasing numbers of common working group activities. The seminar will give an overview of these topics and also CERN’s linear collider studies, focusing on current activities and initial plans for the period 2011-16. n.b: The Council Chamber is also reserved for this colloquium with a live transmission from the Main Auditorium.

  4. High-brightness injectors for hadron colliders

    SciTech Connect

    Wangler, T.P.

    1990-01-01

    The counterrotating beams in collider rings consist of trains of beam bunches with N{sub B} particles per bunch, spaced a distance S{sub B} apart. When the bunches collide, the interaction rate is determined by the luminosity, which is defined as the interaction rate per unit cross section. For head-on collisions between cylindrical Gaussian beams moving at speed {beta}c, the luminosity is given by L = N{sub B}{sup 2}{beta}c/4{pi}{sigma}{sup 2}S{sub B}, where {sigma} is the rms beam size projected onto a transverse plane (the two transverse planes are assumed identical) at the interaction point. This beam size depends on the rms emittance of the beam and the focusing strength, which is a measure of the 2-D phase-space area in each transverse plane, and is defined in terms of the second moments of the beam distribution. Our convention is to use the rms normalized emittance, without factors of 4 or 6 that are sometimes used. The quantity {tilde {beta}} is the Courant-Synder betatron amplitude function at the interaction point, a characteristic of the focusing lattice and {gamma} is the relativistic Lorentz factor. Achieving high luminosity at a given energy, and at practical values of {tilde {beta}} and S{sub B}, requires a large value for the ratio N{sub B}{sup 2}/{var epsilon}{sub n}, which implies high intensity and small emittance. Thus, specification of the luminosity sets the requirements for beam intensity and emittance, and establishes the requirements on the performance of the injector to the collider ring. In general, for fixed N{sub B}, the luminosity can be increased if {var epsilon}{sub n} can be reduced. The minimum emittance of the collider is limited by the performance of the injector; consequently the design of the injector is of great importance for the ultimate performance of the collider.

  5. Dark Matter Benchmark Models for Early LHC Run-2 Searches. Report of the ATLAS/CMS Dark Matter Forum

    SciTech Connect

    Abercrombie, Daniel

    2015-07-06

    One of the guiding principles of this report is to channel the efforts of the ATLAS and CMS collaborations towards a minimal basis of dark matter models that should influence the design of the early Run-2 searches. At the same time, a thorough survey of realistic collider signals of Dark Matter is a crucial input to the overall design of the search program.

  6. MADANALYSIS 5, a user-friendly framework for collider phenomenology

    NASA Astrophysics Data System (ADS)

    Conte, Eric; Fuks, Benjamin; Serret, Guillaume

    2013-01-01

    We present MADANALYSIS 5, a new framework for phenomenological investigations at particle colliders. Based on a C++ kernel, this program allows us to efficiently perform, in a straightforward and user-friendly fashion, sophisticated physics analyses of event files such as those generated by a large class of Monte Carlo event generators. MADANALYSIS 5 comes with two modes of running. The first one, easier to handle, uses the strengths of a powerful PYTHON interface in order to implement physics analyses by means of a set of intuitive commands. The second one requires one to implement the analyses in the C++ programming language, directly within the core of the analysis framework. This opens unlimited possibilities concerning the level of complexity which can be reached, being only limited by the programming skills and the originality of the user. Program summaryProgram title: MadAnalysis 5 Catalogue identifier: AENO_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AENO_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Permission to use, copy, modify and distribute this program is granted under the terms of the GNU General Public License. No. of lines in distributed program, including test data, etc.: 31087 No. of bytes in distributed program, including test data, etc.: 399105 Distribution format: tar.gz Programming language: PYTHON, C++. Computer: All platforms on which Python version 2.7, Root version 5.27 and the g++ compiler are available. Compatibility with newer versions of these programs is also ensured. However, the Python version must be below version 3.0. Operating system: Unix, Linux and Mac OS operating systems on which the above-mentioned versions of Python and Root, as well as g++, are available. Classification: 11.1. External routines: ROOT (http://root.cern.ch/drupal/) Nature of problem: Implementing sophisticated phenomenological analyses in high-energy physics through a

  7. An Afterburner at the ILC: The Collider Viewpoint

    SciTech Connect

    Raubenheimer, Tor O.

    2004-12-07

    The concept of a high-gradient plasma wakefield accelerator is considered as an upgrade path for the International Linear Collider, a future linear collider. Basic parameters are presented based on those developed for the SLC 'Afterburner'. Basic layout considerations are described and the primary concerns related to the collider operation are discussed.

  8. An Afterburner at the ILC: The Collider Viewpoint

    SciTech Connect

    Raubenheimer, T

    2004-09-01

    The concept of a high-gradient plasma wakefield accelerator is considered as an upgrade path for the International Linear Collider, a future linear collider. Basic parameters are presented based on those developed for the SLC ''Afterburner.'' Basic layout considerations are described and the primary concerns related to the collider operation are discussed.

  9. Wheel running in the wild.

    PubMed

    Meijer, Johanna H; Robbers, Yuri

    2014-07-01

    The importance of exercise for health and neurogenesis is becoming increasingly clear. Wheel running is often used in the laboratory for triggering enhanced activity levels, despite the common objection that this behaviour is an artefact of captivity and merely signifies neurosis or stereotypy. If wheel running is indeed caused by captive housing, wild mice are not expected to use a running wheel in nature. This however, to our knowledge, has never been tested. Here, we show that when running wheels are placed in nature, they are frequently used by wild mice, also when no extrinsic reward is provided. Bout lengths of running wheel behaviour in the wild match those for captive mice. This finding falsifies one criterion for stereotypic behaviour, and suggests that running wheel activity is an elective behaviour. In a time when lifestyle in general and lack of exercise in particular are a major cause of disease in the modern world, research into physical activity is of utmost importance. Our findings may help alleviate the main concern regarding the use of running wheels in research on exercise.

  10. APS runControl library

    SciTech Connect

    Saunders, C.; Borland, M.

    1995-10-25

    This document serves as a User`s Manual and Reference for the runControl library. This library is designed to be used by closed- loop EPICS control applications which are generally run in the background on the controls workstations. It permits an application to `register` itself with an EPICS record, thereby preventing additional instances of the same application from being run. In addition, the executing application may in turn be suspended or aborted via an MEDM control screen or other standard channel access client.

  11. Piketty in the long run.

    PubMed

    Cowell, Frank A

    2014-12-01

    I examine the idea of 'the long run' in Piketty (2014) and related works. In contrast to simplistic interpretations of long-run models of income- and wealth-distribution Piketty (2014) draws on a rich economic analysis that models the intra- and inter-generational processes that underly the development of the wealth distribution. These processes inevitably involve both market and non-market mechanisms. To understand this approach, and to isolate the impact of different social and economic factors on inequality in the long run, we use the concept of an equilibrium distribution. However the long-run analysis of policy should not presume that there is an inherent tendency for the wealth distribution to approach equilibrium. PMID:25516348

  12. Initial operation of the Tevatron collider

    SciTech Connect

    Johnson, R.

    1987-03-01

    The Tevatron is now the highest energy proton synchrotron and the only accelerator made with superconducting magnets. Operating since 1983 as a fixed-target machine at energies up to 800 GeV, it has now been modified to operate as a 900 GeV antiproton-proton collider. This paper describes the initial operation of the machine in this mode. The new features of the Fermilab complex, including the antiproton source and the Main Ring injector with its two overpasses and new rf requirements, are discussed. Beam characteristics in the Tevatron (including lifetimes, emittances, luminosity, beam-beam tune shifts, backgrounds, and low beta complications), the coordination of the steps in the accelerator chain, and the commissioning history are also discussed. Finally, some plans for the improvement of the collider are presented.

  13. New DIS and collider results on PDFs

    SciTech Connect

    Rizvi, E.

    2015-05-15

    The HERA ep collider experiments have measured the proton structure functions over a wide kinematic range. New data from the H1 experiment now extend the range to higher 4-momentum transfer (√(Q{sup 2})) over which a precision of ∼ 2% is achieved in the neutral current channel. A factor of two reduction in the systematic uncertainties over previous measurement is attained. The charged current structure function measurements are also significantly improved in precision. These data, when used in QCD analyses of the parton density functions (PDFs) reduce the PDF uncertainties particularly at high momentum fractions x which is relevant to low energy neutrino scattering cross sections. New data from the LHC pp collider experiments may also offer significant high x PDF improvements as the experimental uncertainties improve.

  14. Future high energy colliders symposium. Summary report

    SciTech Connect

    Parsa, Z. |

    1996-12-31

    A `Future High Energy Colliders` Symposium was held October 21-25, 1996 at the Institute for Theoretical Physics (ITP) in Santa Barbara. This was one of the 3 symposia hosted by the ITP and supported by its sponsor, the National Science Foundation, as part of a 5 month program on `New Ideas for Particle Accelerators`. The long term program and symposia were organized and coordinated by Dr. Zohreh Parsa of Brookhaven National Laboratory/ITP. The purpose of the symposium was to discuss the future direction of high energy physics by bringing together leaders from the theoretical, experimental and accelerator physics communities. Their talks provided personal perspectives on the physics objectives and the technology demands of future high energy colliders. Collectively, they formed a vision for where the field should be heading and how it might best reach its objectives.

  15. Reverse Emittance Exchange for Muon Colliders

    SciTech Connect

    V. Ivanov, A. Afanasev, C.M. Ankenbrandt, R.P. Johnson, G.M. Wang, S.A. Bogacz, Y.S. Derbenev

    2009-05-01

    Muon collider luminosity depends on the number of muons in the storage ring and on the transverse size of the beams in collision. Ionization cooling as it is currently envisioned will not cool the beam sizes sufficiently well to provide adequate luminosity without large muon intensities. Six-dimensional cooling schemes will reduce the longitudinal emittance of a muon beam so that smaller high frequency RF cavities can be used for later stages of cooling and for acceleration. However, the bunch length at collision energy is then shorter than needed to match the interaction region beta function. New ideas to shrink transverse beam dimensions by lengthening each bunch will help achieve high luminosity in muon colliders. Analytic expressions for the reverse emittance exchange mechanism were derived, including a new resonant method of beam focusing.

  16. Low-energy run of Fermilab Electron Cooler's beam generation system

    SciTech Connect

    Prost, Lionel; Shemyakin, Alexander; Fedotov, Alexei; Kewisch, Jorg; /Brookhaven

    2010-08-01

    As a part of a feasibility study of using the Fermilab Electron Cooler for a low-energy Relativistic Heavy Ion Collider (RHIC) run at Brookhaven National Laboratory (BNL), the cooler operation at 1.6 MeV electron beam energy was tested in a short beam line configuration. The main result of the study is that the cooler beam generation system is suitable for BNL needs. In a striking difference with running 4.3 MeV beam, no unprovoked beam recirculation interruptions were observed.

  17. Pacific Northwest Laboratory facilities radionuclide inventory assessment CY 1992-1993

    SciTech Connect

    Sula, M.J.; Jette, S.J.

    1994-09-01

    Assessments for evaluating compliance with airborne radionuclide emission monitoring requirements in the National Emission Standards for Hazardous Air Pollutants (NESHAPs - U.S. Code of Federal Regulations, Title 40 Part 61, Subparts H and I) were performed for 33 buildings at the U.S. Department of Energy`s (DOE) Pacific Northwest Laboratory on the Hanford Site, and for five buildings owned and operated by Battelle, Pacific Northwest Laboratories in Richland, Washington. The assessments were performed using building radionuclide inventory data obtained in 1992 and 1993. Results of the assessments are summarized in Table S.1 for DOE-PNL buildings and in Table S.2 for Battelle-owned buildings. Based on the radionuclide inventory assessments, four DOE-PNL buildings (one with two emission points) require continuous sampling for radionuclides per 40 CFR 61. None of the Battelle-owned buildings require continuous emission sampling.

  18. Columbia River Coordinated Information System (CIS), 1992-1993 Annual Report.

    SciTech Connect

    Rowe, Mike; Roger, Phillip B.; O'Connor, Dick

    1993-11-01

    The purposes of this report are to: (1) describe the project to date; (2) to document the work and accomplishments of the (CIS) project for Fiscal Year 1993; and (3) to provide a glimpse of future project direction. The concept of a Coordinated Information System (CIS) as an approach to meeting the growing needs for regionally standardized anadromous fish information.

  19. The transformation of organic amines by transition metal cluster compounds. Progress report, 1992--1993

    SciTech Connect

    Adams, R.D.

    1993-01-01

    The paper reports results on the following five studies: (1) The activation of tertiary amines by osmium cluster complexes; (2) Nucleophilic ring opening of thietane ligand in metal carbonyl cluster complexes; (3) Ring opening of a nitrogen containing strained ring heterocycle by an osmium cluster complex; (4) Insertion of an alkynes into a metal-metal bond -- evidence for an intramolecular insertion with a trans-stereochemistry; and (5) Cyclobutyne -- the ligand. Plans for future research are also briefly discussed. Two studies are planned: (1) studies of the synthesis and reactivity of strained ring ligands in metal cluster compounds; and (2) studies of the reactivity of dimetallic complexes with alkynes.

  20. Investigation of air transportation technology at Princeton University, 1992-1993

    NASA Technical Reports Server (NTRS)

    Stengel, Robert F.

    1994-01-01

    The Air Transportation Research Program at Princeton University proceeded along five avenues during the past year: (1) Flight Control System Robustness; (2) Microburst Hazards to Aircraft; (3) Wind Rotor Hazards to Aircraft; (4) Intelligent Aircraft/Airspace Systems; and (5) Aerospace Optical Communications. This research resulted in a number of publications, including theses, archival papers, and conference papers. An annotated bibliography of publications that appeared between June 1992 and June 1993 is included. The research that these papers describe was supported in whole or in part by the Joint University Program, including work that was completed prior to the reporting period.

  1. Research and Clinical Center for Child Development Annual Report, 1992-1993, No. 16.

    ERIC Educational Resources Information Center

    Wakai, Kunio, Ed.

    A variety of topics on human development is covered in this annual report. The 11 articles are: (1) "Young Children's Personifying and Vitalistic Biology" (Kayoko Inagaki and Giyoo Hatano); (2) "Acoustic Analysis of Natural Maternal Speech to Preschool Language Impaired and Normal Children" (Debora L. Scheffel and Murray Alpert); (3)…

  2. Pacific Northwest and Alaska Bioenergy Program Year Book; 1992-1993 Yearbook with 1994 Activities.

    SciTech Connect

    Pacific Northwest and Alaska Bioenergy Program; United States. Bonneville Power Administration.

    1994-04-01

    The U.S. Department of Energy administers five Regional Bioenergy Programs to encourage regionally specific application of biomass and municipal waste-to-energy technologies to local needs, opportunities and potentials. The Pacific Northwest and Alaska region has taken up a number of applied research and technology projects, and supported and guided its five participating state energy programs. This report describes the Pacific Northwest and Alaska Regional Bioenergy Program, and related projects of the state energy agencies, and summarizes the results of technical studies. It also considers future efforts of this regional program to meet its challenging assignment.

  3. Rural migration in Nevada: Lincoln County. Phase 1, 1992--1993

    SciTech Connect

    Soden, D.L.; Carns, D.E.; Mosser, D.; Conary, J.S.; Ansell, J.P.

    1993-12-31

    The principal objective of this project was to develop insight into the scope of migration of working age Nevadans out of their county of birth; including the collection of data on their skill levels, desire to out or in-migrate, interactions between families of migratory persons, and the impact that the proposed high-level nuclear waste repository at Yucca mountain might have on their individual, and collective, decisions to migrate and return. The initial phase of this project reported here was conducted in 1992 and 1993 in Lincoln County, Nevada, one of the counties designated as ``affected`` by the proposed repository program. The findings suggest that a serious out-migration problem exists in Lincoln County, and that the Yucca mountain project will likely affect decisions relating to migration patterns in the future.

  4. Helping Learning Disabled Adults through Special Tutorial Techniques. Final Report. 1992-1993.

    ERIC Educational Resources Information Center

    Reading Area Community Coll., PA.

    A project offered special training to instructors and volunteer tutors for adult basic education classes in recognizing and helping adults who are enrolled in adult education programs with learning disabilities. These instructors and tutors were taught the necessary skills through a series of three 3-hour inservice sessions. The regular…

  5. World Resources: A guide to the Global Environment, 1992-1993

    SciTech Connect

    Not Available

    1993-01-01

    This book, produced in collaboration with the U.N., is a basic information source on the impact humans have had on the earth's environment, with a theme of sustainable development. Part I is an essay on sustainable development, examined in the contest of industrial, industrializing, and non-industrial countries. Part II is a description of the environmental devastation in central Europe. Part III examines global environmental conditions and trends, and part IV consists of tables, each with an interductory text and citations, including such topics as population, development, land cover, food, forests, wildlife, habitats, energy, water, atmosphere, and climate.

  6. Ground-water recharge in Fortymile Wash near Yucca Mountain, Nevada, 1992--1993

    SciTech Connect

    Savard, C.S.

    1994-12-31

    Quantification of the ground-water recharge from streamflow in the Fortymile Wash watershed will contribute to regional ground-water studies. Regional ground-water studies are an important component in the studies evaluating the ground-water flow system as a barrier to the potential migration of radionuclides from the potential underground high-level nuclear waste repository. Knowledge gained in understanding the ground-water recharge mechanisms and pathways in the Pah Canyon area, which is 10 km to the northeast of Yucca Mountain, may transfer to Yucca site specific studies. The current data collection network in Fortymile Canyon does not permit quantification of ground-water recharge, however a qualitative understanding of ground-water recharge was developed from these data.

  7. Regression models of herbicide concentrations in outflow from reservoirs in the midwestern USA, 1992-1993

    USGS Publications Warehouse

    Battaglin, W.A.; Goolsby, D.A.

    1998-01-01

    Reservoirs are used to store water for public water supply, flood control, irrigation, recreation, hydropower, and wildlife habitat, but also often store undesirable substances such as herbicides. The outflow from 76 reservoirs in the midwestern USA, was sampled four times in 1992 and four times in 1993. At least one herbicide was detected in 82.6 percent of all samples, and atrazine was detected in 82.1 percent of all samples. Herbicide properties; topography, land use, herbicide use, and soil type in the contributing drainage area; residence time of water in reservoirs; and timing of inflow, release, and rainfall all can affect the concentration of herbicides in reservoirs. A GIS was used to quantify characteristics of land use, agricultural chemical use, climatic conditions, topographic character, and soil type by reservoir drainage basins. Multiple linear and logistic regression equations were used to model mean herbicide concentrations in reservoir outflow as a function of these characteristics. Results demonstrate a strong association between mean herbicide concentrations in reservoir outflow and herbicide use rates within associated drainage basins. Results also demonstrate the importance of including soils and basin hydrologic characteristics in models used to estimate mean herbicide concentrations.

  8. The Lesson Plan of the Month, 1992-1993. 10 Lesson Series.

    ERIC Educational Resources Information Center

    Phi Alpha Delta Law Fraternity International, Washington, DC.

    As part of a series of lesson plans compiled by Phi Alpha Delta, this collection presents a lesson plan on current issues for each month of the school year. Intended for high school and middle school with adaptations for elementary school, the lessons cover the Americans with Disabilities Act in relation to accommodations for students with…

  9. A solid oxide fuel cell power system: 1992--1993 field operation

    SciTech Connect

    Veyo, S.E.; Kusunoki, A.; Takeuchi, S.; Kaneko, S.; Yokoyama, H.

    1994-05-01

    Westinghouse has deployed fully integrated, automatically controlled, packaged solid oxide fuel cell (SOFC) power generation systems in order to obtain useful customer feedback. Recently, Westinghouse has deployed 20 kW class natural gas fueled SOFC generator modules integrated into two 25 kW SOFC systems, the first with The UTILITIES, a Japanese consortium. The UTILITIES 25 kW SOFC system is the focus of this paper. The unit was shipped to the Rokko Island Test Center for Advanced Energy Systems (near Kobe, Japan) operated by Kansai Electric Power Co.; testing was initiated February 1992. Module A operated for 2601 hours at an ave output 16.6 kW dc; final shutdown was induced by current stability problems with dissipator (restart not possible because of damaged cells). Module B operated for 1579 hours at ave output 17.8 kWdc. The unit was damaged by operation at excessively high fuel utilization > 91%. It was rebuilt and returned to Rokko Island. This module B2 operated for 1843 hours on PNG; shutdown was cuased by air supply failure. After a new blower and motor were installed July 1993, the system was restarted August 5, 1993 and operated continuously until November 10, 1993, when an automatic shutdown was induced as part of a MITI licensing inspection. After restart, the unit passed 6000 hours of operation on desulfurized PNG on January 25, 1994. Westinghouse`s future plans are outlined.

  10. Modeling chemical interactions in anaerobic biofilm systems. Report for 1992-1993

    SciTech Connect

    Flora, J.R.V.; Suidan, M.T.; Biswas, P.; Sayles, G.D.

    1993-01-01

    Rigorous steady-state models of acetate- and methanol-utilizing methanogenic biofilms are developed taking into account the mass transfer of neutral and ionic species, pH changes within the biofilm, pH-dependent Monod kinetics, chemical equilibrium, electroneutrality, gas production within the biofilm, and the presence of a concentration boundary layer (CBL). The study shows that significant differences can exist between the flux predictions using the traditional models and when pH changes within the biofilm are taken into account. The biofilm models are coupled to a model of a completely-stirred tank reactor (CSTR) and strategies for the optimization of biofilm reactor performance are examined. (Copyright (c) 1993 Water Environment Federation.)

  11. High efficiency filter systems -- General observations, 1992--1993. Status report

    SciTech Connect

    Mauzy, A.; Mokler, B.V.; Scripsick, R.C.

    1994-05-01

    Reviews of air emission control systems have been conducted at selected facilities supported by the Department of Energy (DOE) Office of Nuclear Energy (NE). Large High efficiency particulate air (HEPA) filtration systems and their testing received particular emphasis. Although significant differences between the sites were found, there were also several common issues. These are discussed under four general topic areas: policy development, testing multiple state systems, guidance on in-place filter testing and system supervision, and uncertainty in in-place filter testing results. Two principal conclusions have emerged from these reviews. First, there is an immediate need to develop information on how filter mechanical integrity decreases with time and use this to establish limits on filter service life. Second, there is a general need to ensure the validity of in-place filter testing results and improve testing practices. A mathematical framework for describing the effects of nonideal system features on testing results is proposed as an aid in understanding the uncertainty in in-place filter testing results.

  12. Waste-Management Education and Research Consortium (WERC) annual progress report, 1992--1993

    SciTech Connect

    Not Available

    1993-02-15

    In February, 1990, The Secretary of Energy, James Watkins, approved a grant for a waste (management) education and research consortium program proposed by New Mexico State University (NMSU) to the US Department of Energy (DOE). This program known by the acronym, ``WERC`` includes as its founding members NMSU, the University of New Mexico (UNM), the New Mexico Institute of Mining and Technology the Los Alamos National Laboratory, and the Sandia National Laboratories. The Navajo Community College joined the program later in 1991. The program has the mission of expanding the nation`s capability to address the issues related to management of all types of waste. The program is unique and innovative in many aspects. It provides an integrated approach to this national need, and includes: (1) Education in waste management at the educational institutions resulting in graduate, undergraduate, and associate degrees with concentration in environmental management. (2) Professional development via teleconference for industry and government. (3) Technology development programs at the leading edge, providing hands-on training at the leading edge to students and information feeding into the education programs. (4) Education by technology development at the campuses, as well as from four field sites. (5) Ties with other multidisciplinary university facilities. (6) Ties with two National Laboratories (Los Alamos & Sandia) located in New Mexico and with the Oak Ridge Associated Universities and others. (7) Technology transfer and education via an existing fiber optic network, a satellite link, and an existing state-wide extension program. (8) Outreach programs of special interest to precollege students, communities and business and government leaders throughout the United States. This report summarizes the accomplishments and status at the end of the third year.

  13. Waste-Management Education and Research Consortium (WERC) annual progress report, 1992--1993

    SciTech Connect

    Not Available

    1993-02-15

    In February, 1990, The Secretary of Energy, James Watkins, approved a grant for a waste (management) education and research consortium program proposed by New Mexico State University (NMSU) to the US Department of Energy (DOE). This program known by the acronym, WERC'' includes as its founding members NMSU, the University of New Mexico (UNM), the New Mexico Institute of Mining and Technology the Los Alamos National Laboratory, and the Sandia National Laboratories. The Navajo Community College joined the program later in 1991. The program has the mission of expanding the nation's capability to address the issues related to management of all types of waste. The program is unique and innovative in many aspects. It provides an integrated approach to this national need, and includes: (1) Education in waste management at the educational institutions resulting in graduate, undergraduate, and associate degrees with concentration in environmental management. (2) Professional development via teleconference for industry and government. (3) Technology development programs at the leading edge, providing hands-on training at the leading edge to students and information feeding into the education programs. (4) Education by technology development at the campuses, as well as from four field sites. (5) Ties with other multidisciplinary university facilities. (6) Ties with two National Laboratories (Los Alamos Sandia) located in New Mexico and with the Oak Ridge Associated Universities and others. (7) Technology transfer and education via an existing fiber optic network, a satellite link, and an existing state-wide extension program. (8) Outreach programs of special interest to precollege students, communities and business and government leaders throughout the United States. This report summarizes the accomplishments and status at the end of the third year.

  14. ARL: A Bimonthly Newsletter of Research Library Issues and Actions, 1992-1993.

    ERIC Educational Resources Information Center

    ARL, 1993

    1993-01-01

    This document consists of 12 issues (2 years) of a newsletter devoted to information and reports on issues and actions of interest to research libraries. Each of the 12 newsletters in the collection is divided into six topic areas: (1) current issues, which offers articles on topics such as library catalogs in the 21st century, libraries and…

  15. Umatilla Basin Natural Production Monitoring and Evaluation; 1992-1993 Annual Report.

    SciTech Connect

    Confederated Tribes of the Umatilla Indian Reservation,

    1994-09-01

    This report summarizes the activities of the Umatilla Basin Natural Production Monitoring and Evaluation Project from September 30, 1992 to September 29, 1993. Examinations of historical flow and water temperature records and current physical habitat, indicate that the streams in the Umatilla River Basin vary in condition from extremely poor to good. Reduced flows and high water temperatures prevented salmonid production in the lower Umatilla River below river mile 75 during the summer and early fall. This was also true in the lower reaches of many tributaries. Isolated springs provided limited refuges in the mid Umatilla River and lower Meacham Creek. Suitable habitat for salmonids was found in the upper reaches of the mainstem and tributaries.

  16. Biography Today: Profiles of People of Interest to Young Readers, 1992-1993.

    ERIC Educational Resources Information Center

    Harris, Laurie Lanzen, Ed.

    1992-01-01

    This publication presents biographical profiles of people of interest to young readers. The concept is unique in that the subjects profiled are not necessarily people of great or lasting stature. Many are noted writers or public figures who have made important contributions to the current world, but a goodly number of entries are biographies of…

  17. DOE Hydropower Program biennial report 1992--1993 (with an updated annotated bibliography)

    SciTech Connect

    Cada, G.F.; Sale, M.J.; Francfort, J.E.; Rinehart, B.N.; Sommers, G.L.

    1993-07-01

    This report, the latest in a series of annual/biennial Hydropower Program reports sponsored by the US Department of Energy, summarizes the research and development and technology transfer activities of fiscal years 1992 and 1993. The report discusses the activities in the four areas of the hydropower program: Environmental research; resource assessment; research coat shared with industry; and technology transfer. The report also offers an annotated bibliography of reports pertinent to hydropower, written by persons in Federal and state agencies, cities, metropolitan water districts, irrigation companies, and public and independent utilities. Most reports are available from the National Technical Information Service.

  18. Speak Out for Children. Winter 1992/1993 through Summer/Fall 1994.

    ERIC Educational Resources Information Center

    Levy, David L., Ed.; Diamond, Elliott H., Ed.

    1993-01-01

    "Speak Out for Children" is the quarterly newsletter of the Children's Rights Council (CRC), which is concerned with the healthy development of children of divorced and separated parents. The newsletter consists of feature articles and regular sections and columns. Feature articles of Volume 8, Number 1 are: "The Controversial Truth: Two-Parent…

  19. [Diffusion/dispersion transport of chemically reacting species]. Progress report, FY 1992--1993

    SciTech Connect

    Helgeson, H.C.

    1993-07-01

    Progress is reported on the following: calculation of activity coefficients for aqueous silica in alkali metal chloride solutions; calculation of degrees of formation of polyatomic clusters of Al in alkali chloride solutions; bulk composition-pH diagrams for arkosic sediments; and chemical interaction of petroleum, oil field brines, and authigenic mineral assemblages. Plans for future research are given.

  20. Surfactant-enhanced alkaline flooding for light oil recovery. Annual report, 1992--1993

    SciTech Connect

    Wasan, D.T.

    1994-08-01

    In this report, the authors present the results of experimental and theoretical studies in surfactant-enhanced alkaline flooding for light oil recovery. The overall objective of this work is to develop a very cost-effective method for formulating a successful surfactant-enhanced alkaline flood by appropriately choosing mixed alkalis which form inexpensive buffers to obtain the desired pH (between 8.5 and 12.0) for ultimate spontaneous emulsification and ultralow interfacial tension. In addition, the authors have (1) developed a theoretical interfacial activity model for determining equilibrium interfacial tension, (2) investigated the mechanisms for spontaneous emulsification, (3) developed a technique to monitor low water content in oil, and (4) developed a technique to study water-in-oil emulsion film properties.

  1. Waste-Management Education and Research Consortium (WERC) annual progress report, 1992--1993

    SciTech Connect

    Eiceman, Gary A.; King, J. Phillip; Smith, Geoffrey B.; Park, Su-Moon; Munson-McGee, Stuart H.; Rajtar, Jerzy; Chen, Z.; Johnson, James E.; Heger, A. Sharif; Martin, David W.; Wilks, Maureen E.; Schreyer, H. L.; Thomson, Bruce M.; Samani, Zohrab A.; Hanson, Adrian; Cadena, Fernando; Gopalan, Aravamudan; Barton, Larry L.; Sillerud, Laurel O.; Fekete, Frank A.; Rogers, Terry; Lindemann, William C.; Pigg, C. Joanne; Blake, Robert; Kieft, Thomas L.; Ross, Timothy J.; LaPointe, Joe L.; Khandan, Nirmala; Bedell, Glenn W.; Rayson, Gary D.; Leslie, Ian H.; Ondrias, Mark R.; Starr, Gregory P.; Colbaugh, Richard; Niemczyk, Thomas M.; Campbell, Andrew; Phillips, Fred; Wilson, John L.; Gutjahr, Allan; Sammis, T. W.; Steinberg, Stanly; Nuttall, H. E.; Genin, Joseph; Conley, Edgar; Aimone-Martin, Catherine T.; Wang, Ming L.; Chua, Koon Meng; Smith, Phillip; Skowland, Chris T.; McGuckin, Tom; Harrison, Glenn; Jenkins-Smith, Hank C.; Kelsey, Charles A.

    1993-02-15

    This report contains the following appendices: Appendix A - Requirements for Undergraduate Level; Appendix B - Requirements for Graduate Level; Appendix C - Graduate Degree In Environmental Engineeringat New Mexico State University; Appendix D - Non-degree Certificate program; Appendix E - Curriculum for Associate Degree Program in Radioactive Hazardous Waste Materials; Appendix F - Curriculum for NCC Program in Earth Environmental Sciences; Appendix G - Brochure of 1992 Teleconference Series; Appendix H - Sites for Hazardous/Radioactive Waste Management Series; Appendix I - WERC Interactive Television Courses; Appendix J - WERC Research Seminar Series Brochures; Appendix K - Summary of Technology Development of the Third Year; Appendix L - List of Major Publications Resulting From WERC; Appendix M - Types of Equipment at WERC Laboratories; and Appendix N - WERC Newsletter Examples.

  2. Waste-Management Education and Research Consortium (WERC) annual progress report, 1992--1993. Appendices

    SciTech Connect

    Not Available

    1993-02-15

    This report contains the following appendices: Appendix A - Requirements for Undergraduate Level; Appendix B - Requirements for Graduate Level; Appendix C - Graduate Degree In Environmental Engineeringat New Mexico State University; Appendix D - Non-degree Certificate program; Appendix E - Curriculum for Associate Degree Program in Radioactive & Hazardous Waste Materials; Appendix F - Curriculum for NCC Program in Earth & Environmental Sciences; Appendix G - Brochure of 1992 Teleconference Series; Appendix H - Sites for Hazardous/Radioactive Waste Management Series; Appendix I - WERC Interactive Television Courses; Appendix J - WERC Research Seminar Series Brochures; Appendix K - Summary of Technology Development of the Third Year; Appendix L - List of Major Publications Resulting From WERC; Appendix M - Types of Equipment at WERC Laboratories; and Appendix N - WERC Newsletter Examples.

  3. [Ionization in liquids: Request for 1992--1993 funding and 1991--1992 progress report

    SciTech Connect

    Not Available

    1992-12-31

    Studies of the influence of solvent composition on electron mobility, {mu}{sub e}, which we reported for mixtures of neopentane (NP) and tetramethysilane (TMS) were extended to mixtures of TMS with isooctane (i-octane) or cyclohexane (c-hexane). Whereas our initial TMS /NP study focused on an electron transport regime in which {mu}{sub e} varied only from 67 cm{sup 2}/Vs in NP to 100 cm{sup 2}/Vs in TMS, the more recent studies extended to values of {mu}{sub e} of 7.5 and 0.22 cm{sup 2}/Vs in i-octane and c-hexane, respectively. Whereas a linear dependence of log {mu}{sub e} on solvent composition had been found in earlier studies of electron transport in mixtures, a negative deviation from this dependence was found in TMS/NP mixtures. In contrast, a positive deviation from linearity was observed in TMS/c-hexane mixtures. Despite the markedly different dependences of {mu}{sub e} on solvent composition for these mixtures, the observed dependences are consistent with the percolation model of electron transport that Schiller has developed.

  4. Carbon monoxide levels during indoor sporting events -- Cincinnati, 1992--1993

    SciTech Connect

    Not Available

    1994-11-01

    Carbon monoxide (CO) produced by internal combustion engines is an indoor health hazard. High CO levels can occur during indoor sporting events--such as tractor pulls--that involve vehicles modified to achieve high horsepower. In January and March 1992 and January 1993, the Cincinnati Health Department evaluated CO levels during tractor pulls, monster-truck jumps, and a mud race event held in an indoor arena with a seating capacity of approximately 16,000 persons. This report summarizes findings from the evaluations.

  5. 1992-1993 Bonneville Appliance Efficiency Program: Showerhead evaluation. Volume I - report

    SciTech Connect

    Warwick, W.M.

    1995-01-01

    The Bonneville Power Administration (Bonneville) provides wholesale electric power to over 100 retail distribution utilities in the Pacific Northwest. Bonneville is faced with meeting growing loads from these utilities. It acquires conservation as one means of meeting this load growth. Bonneville has offered a variety of conservation programs since 1980. Efficient showerheads have been a feature in residential conservation programs ever since. Bonneville launched the Residential Appliance Efficiency Program to focus on water-heater energy conservation opportunities in 1992. The Residential Appliance Efficiency Program consists of two parts, a water-heater efficiency program, and a hot-water efficiency program. This report evaluates the savings and costs of the first two years of the showerhead portion of the Residential Appliance Efficiency Program (the showerhead program). Although it is not a formal evaluation of the program limited to implementation or a {open_quotes}process{close_quotes} evaluation, observations about program design and implementation are included as appropriate. Results of this evaluation are limited to program participants within the Bonneville service territory.

  6. Center for Volcanic and Tectonic Studies: 1992--1993 annual report

    SciTech Connect

    1994-12-31

    The annual report of the Center for Volcanic Studies (CVTS) contains a series of papers, reprints and a Master of Science thesis that review the progress made by the CVTS between October 1, 1992 and February 1, 1994. During this period CVTS staff focused on several topics that have direct relevance to volcanic hazards related to the proposed high-level nuclear waste repository at Yucca Mountain, Nevada. These topics include: (1) polygenetic/polycyclic volcanism in Crater Flat, Nevada; (2) the role of the mantle during crustal extension; (3) the detailed geology of Crater Flat, Nevada; (4) Pliocene volcanoes in the Reveille Range, south-central Nevada; (5) estimating the probability of disruption of the proposed repository by volcanic eruptions. This topic is being studied by Dr. C.H. Ho at UNLV. The report contains copies of these individual papers as they were presented in various conference proceedings.

  7. LOLA: Lunar Optical Long-baseline Array. 1992-1993 space design

    NASA Technical Reports Server (NTRS)

    Bronte, Daniel; Chaney, Joanne; Curran, Christine; Ferguson, Keith; Flint, Eric; Giunta, Tony; Knill, Duane; Levesque, Daniel; Lyon, Donald; Murphy, Sean

    1993-01-01

    In the fall of 1992, the design and analysis of a lunar-based optical interferometer telescope array was initiated by a group of students in the Department of Aerospace Engineering at Virginia Tech. This project was undertaken at the suggestion of the Space Exploration Initiative Office at the NASA Langley Research Center. The original array design requirements, listed below, centered on the primary objective of resolving earth-type planets about stars out to a distance of ten parsecs: spectrum coverage spanning wavelengths from five nm to five mm, with a primary operating mode in the visible spectrum; a total collecting area providing a signal-to-noise ratio (SNR) of no less than 10.0 for a median wavelength of 500 nm; the individual array elements must be identical and have a maximum optical diameter of 2.0 m; and lunar site selection is limited to ten degrees north and south of the lunar equator on the lunar far side while not closer than 15 degrees to either near-side limb. Following construction by astronaut crews, array operation will be conducted from earth and astronomical observations will not be conducted during the lunar day. The entire system is designed for minimum achievable mass. The majority of the original design requirements for the telescope array were met.

  8. Massachusetts Institute of Technology Plasma Fusion Center 1992--1993 report to the President

    SciTech Connect

    Not Available

    1993-07-01

    This report discusses research being conducted at MIT`s plasma fusion center. Some of the areas covered are: plasma diagnostics; rf plasma heating; gyrotron research; treatment of solid waste by arc plasma; divertor experiments; tokamak studies; and plasma and fusion theory.

  9. First recorded outbreak of yellow fever in Kenya, 1992-1993. II. Entomologic investigations.

    PubMed

    Reiter, P; Cordellier, R; Ouma, J O; Cropp, C B; Savage, H M; Sanders, E J; Marfin, A A; Tukei, P M; Agata, N N; Gitau, L G; Rapuoda, B A; Gubler, D J

    1998-10-01

    The first recorded outbreak of yellow fever in Kenya occurred from mid-1992 through March 1993 in the south Kerio Valley, Rift Valley Province. We conducted entomologic studies in February-March 1993 to identify the likely vectors and determine the potential for transmission in the surrounding rural and urban areas. Mosquitoes were collected by landing capture and processed for virus isolation. Container surveys were conducted around human habitation. Transmission was mainly in woodland of varying density, at altitudes of 1,300-1,800 m. The abundance of Aedes africanus in this biotope, and two isolations of virus from pools of this species, suggest that it was the principal vector in the main period of the outbreak. A third isolate was made from a pool of Ae. keniensis, a little-known species that was collected in the same biotope. Other known yellow fever vectors that were collected in the arid parts of the valley may have been involved at an earlier stage of the epidemic. Vervet monkeys and baboons were present in the outbreak area. Peridomestic mosquito species were absent but abundant at urban sites outside the outbreak area. The entomologic and epidemiologic evidence indicate that this was a sylvatic outbreak in which human cases were directly linked to the epizootic and were independent of other human cases. The region of the Kerio Valley is probably subject to recurrent wandering epizootics of yellow fever, although previous episodes of scattered human infection have gone unrecorded. The risk that the disease could emerge as an urban problem in Kenya should not be ignored.

  10. Science is Elementary, A Science Teaching Resource Publication, 1992-1993.

    ERIC Educational Resources Information Center

    Science is Elementary, 1993

    1993-01-01

    These resource magazines for K-6 educators are published to promote the teaching of science, mathematics, and technology through participatory, inquiry-based methods. Each issue provides resources and hands-on activities for educators that focus on one theme. Issues in volume 5 cover the themes of geology, math and science integration, tropical…

  11. New Mexicans` images and perceptions of Los Alamos National Laboratory. Winter, 1992--1993

    SciTech Connect

    1993-01-01

    This report uses survey data to profile New Mexico residents` images and perceptions of Los Alamos National Laboratory (LANL). The survey results are the responses of a representative, stratified random sample of 992 New Mexico households to a set of questions asked in October, 1992. The data allow statistical inference to the general population`s responses to the same set of questions at the time the survey was administered. The results provide an overview of New Mexico residents` current images and perceptions of the Laboratory. The sample margin of error is plus or minus 3.5% at the 95% confidence level.

  12. Influence of roofing shingles on asphalt concrete mixture properties. Final report, 1992-1993

    SciTech Connect

    Newcomb, D.; Stroup-Gardiner, M.; Weikle, B.; Drescher, A.

    1993-06-01

    The objective of the study was to evaluate the use of waste shingles from manufacturing and roof reconstruction projects in hot mix asphalt concrete mixtures. In dense-graded asphalt mixtures, it was hypothesized that the waste material might serve as an extender for the new asphalt in the mix as well as a fiber reinforcement. In the stone mastic asphalt (SMA), it could serve as the binder stiffener typically used to prevent the asphalt from draining out of these types of mixtures.

  13. LOLA: Lunar Optical Long-baseline Array. 1992-1993 space design

    NASA Astrophysics Data System (ADS)

    Bronte, Daniel; Chaney, Joanne; Curran, Christine; Ferguson, Keith; Flint, Eric; Giunta, Tony; Knill, Duane; Levesque, Daniel; Lyon, Donald; Murphy, Sean

    1993-06-01

    In the fall of 1992, the design and analysis of a lunar-based optical interferometer telescope array was initiated by a group of students in the Department of Aerospace Engineering at Virginia Tech. This project was undertaken at the suggestion of the Space Exploration Initiative Office at the NASA Langley Research Center. The original array design requirements, listed below, centered on the primary objective of resolving earth-type planets about stars out to a distance of ten parsecs: spectrum coverage spanning wavelengths from five nm to five mm, with a primary operating mode in the visible spectrum; a total collecting area providing a signal-to-noise ratio (SNR) of no less than 10.0 for a median wavelength of 500 nm; the individual array elements must be identical and have a maximum optical diameter of 2.0 m; and lunar site selection is limited to ten degrees north and south of the lunar equator on the lunar far side while not closer than 15 degrees to either near-side limb. Following construction by astronaut crews, array operation will be conducted from earth and astronomical observations will not be conducted during the lunar day. The entire system is designed for minimum achievable mass. The majority of the original design requirements for the telescope array were met.

  14. The Secretary`s annual report to Congress: 1992--1993

    SciTech Connect

    1993-12-31

    This report covers the years 1992 and 1993. Activities of all elements of the Department are described herein except those of the independent Federal Energy Regulatory Commission, which issues its own report. The report is divided into the following areas: energy efficiency; renewable energy; fossil energy; nuclear energy; civilian radioactive waste management; energy information; power marketing and energy production; defense programs; nonproliferation and national security; environmental management; general science and research; science education and technical information; laboratory management; technology transfer; human resources and administration; financial operations; public and consumer affairs; congressional and intergovernmental affairs; environmental, safety, and health; policy, planning, and program evaluation; general counsel; hearings and appeals; inspector general; field management; and economic impact and diversity.

  15. Literacy across the Curriculum: Connecting Literacy in the Schools, Community and Workplace, 1992-1993.

    ERIC Educational Resources Information Center

    Literacy across the Curriculum, 1992

    1992-01-01

    The first of four issues in this volume consists of these articles: "The Fourth 'R'--Relating"; "On Baseball Cards and Literacy"; "On Literacy and Success"; "National Assessments: What They Can and Cannot Do"; and "In the Classroom: The Integrated Journal." It also contains two book reviews and a list of resources on adolescent literacy, at-risk…

  16. Brine Sampling and Evaluation Program 1992--1993 report and summary of BSEP data since 1982

    SciTech Connect

    Deal, D.E.; Abitz, R.J.; Belski, D.S.

    1995-04-01

    This report is the last one that is currently scheduled in the sequence of reports of new data, and therefore, also includes summary comments referencing important data obtained by BSEP since 1983. These BSEP activities document and investigate the origins, hydraulic characteristics, extent, and composition of brine occurrences in the Permian Salado Formation and seepage of that brine into the excavations at the (WIPP) Waste Isolation Pilot Plant. A project concern is that enough brine might be present after sealing and closure to generate large quantities of hydrogen gas by corroding the metal in the waste drums and waste inventory. This report describes progress made during the calendar years 1992 and 1993 and focuses on four major areas: (1) monitoring of brine inflow, e.g., measuring brines recovered from holes drilled downward from the underground drifts (downholes), upward from the underground drifts (upholes), and from subhorizontal holes from the underground drifts; (2) observations of weeps in the Air Intake Shaft (AIS); (3) further characterization of brine geochemistry; and (4) additional characterization of the hydrologic conditions in the fractured zone beneath the excavations.

  17. Partners for Change. The Ounce of Prevention Fund Annual Report 1992-1993.

    ERIC Educational Resources Information Center

    Ounce of Prevention Fund.

    This report describes the activities of the Ounce of Prevention Fund, founded in 1982 as a public-private partnership to promote the well-being of Illinois children and families through various health and education programs. The Fund focuses its efforts on communities with limited resources, mainly in the Chicago metropolitan area. Among the…

  18. Transition metal catalysis in the generation of petroleum and natural gas. Progress report, [1992--1993

    SciTech Connect

    Mango, F.

    1993-08-01

    A new hypothesis is introduced for the generation of petroleum and natural gas. The transition metals, activated under the reducing conditions of diagenesis, are proposed as catalysts in the generation of light hydrocarbons. The objective of this proposal is to test that hypothesis. Transition metals (Ni, V, Ti, Co, Fe), in kerogen, porphyrins, and as pure compounds, will be tested under catagenic conditions for catalytic activity in the conversion of normal paraffins and hydrogen into light hydrocarbons. If the hypothesis is correct, kerogenous transition metals should become catalytically active under the reducing conditions of diagenesis and catalyze the conversion of paraffins into the light hydrocarbons seen in petroleum. Moreover, the C{sub 1}-C{sub 4} hydrocarbons generated catalytically should be similar in molecular and isotopic compositions to natural gas.

  19. COMMISSIONING OF THE RELATIVISTIC HEAVY ION COLLIDER.

    SciTech Connect

    TRBOJEVIC,D.; AHRENS,L.; BLASKIEWICZ,M.; BRENNAN,M.; BAI,M.; CAMERON,P.; CARDONA,J.; CONNOLLY,R.; ET AL; TSOUPAS,N.; VAN ZEIJTS,J.

    2001-06-18

    This report describes in detail steps performed in bringing the Relativistic Heavy Ion Collider (RHIC) from the commissioning into the operational stage when collisions between 60 bunches of fully striped gold ions, were routinely provided. Corrections of the few power supplies connections by the beam measurements are described. Beam lifetime improvements at injection, along the acceleration are shown. The beam diagnostic results; like Schottky detector, beam profile monitor, beam position monitors, tune meter and others, are shown [1].

  20. Electroweak results from the Tevatron Collider

    SciTech Connect

    Dorage, T., Padova University and I.N.F.N.

    1998-08-01

    We present the latest results on electroweak physics obtained from the analysis of p{anti p} collisions at {radical}s=1.8 TeV. The large data samples collected with the CDF and D0 detectors at the Tevatron collider allow measurements of the top quark mass to a 3% accuracy and of the W boson to a 0.1% accuracy. Many precision measurements that test the Standard Model and probe its possible extensions are also described.

  1. Really large hadron collider working group summary

    SciTech Connect

    Dugan, G.; Limon, P.; Syphers, M.

    1996-12-01

    A summary is presented of preliminary studies of three 100 TeV center-of-mass hadron colliders made with magnets of different field strengths, 1.8T, 9.5T and 12.6T. Descriptions of the machines, and some of the major and most challenging subsystems, are presented, along with parameter lists and the major issues for future study.

  2. Top physics at the Tevatron Collider

    SciTech Connect

    Margaroli, Fabrizio; /Purdue U.

    2007-10-01

    The top quark has been discovered in 1995 at the CDF and DO experiments located in the Tevatron ring at the Fermilab laboratory. After more than a decade the Tevatron collider, with its center-of-mass energy collisions of 1.96 TeV, is still the only machine capable of producing such exceptionally heavy particle. Here I present a selection of the most recent CDF and DO measurements performed analyzing {approx} 1 fb{sup -1} of integrated luminosity.

  3. Large Hadron Collider commissioning and first operation.

    PubMed

    Myers, S

    2012-02-28

    A history of the commissioning and the very successful early operation of the Large Hadron Collider (LHC) is described. The accident that interrupted the first commissioning, its repair and the enhanced protection system put in place are fully described. The LHC beam commissioning and operational performance are reviewed for the period from 2010 to mid-2011. Preliminary plans for operation and future upgrades for the LHC are given for the short and medium term.

  4. Progress report on the SLAC Linear Collider

    SciTech Connect

    Rees, J.

    1986-06-01

    The SLAC Linear Collider project (SLC) is reported as being near completion. The performance specifications are tabulated both for the initial form and for eventual goals. Various parts of the SLC are described and the status of their construction is reported, including the front end electron gun and booster, the linac, damping ring, positron source, SLC arcs, and conventional facilities. 5 refs., 12 figs. (LEW)

  5. Longitudinal damping in the Tevatron collider

    SciTech Connect

    Kerns, Q.A.; Jackson, G.; Kerns, C.R.; Miller, H.; Reid, J.; Siemann, R.; Wildman, D.

    1989-03-01

    This paper describes the damper design for 6 proton on 6 pbar bunches in the Tevatron collider. Signal pickup, transient phase detection, derivative networks, and phase correction via the high-level rf are covered. Each rf station is controlled by a slow feedback loop. In addition, global feedback loops control each set of four cavities, one set for protons and one set for antiprotons. Operational experience with these systems is discussed. 7 refs., 9 figs.

  6. CDF (Collider Detector at Fermilab) calorimetry

    SciTech Connect

    Jensen, H.B.

    1987-03-01

    The Collider Detector at Fermilab (CDF) is a large detector built to study 2 TeV anti p p collisions at the Fermilab Tevatron. The calorimetry, which has polar angle coverage from 2 to 178, and complete azimuthal coverage within this region, forms the subject of this paper. It consists of both electromagnetic shower counters (EM calorimeters) and hadron calorimeters, and is segmented into about 5000 ''towers'' or solid angle elements.

  7. Running of the running and entropy perturbations during inflation

    NASA Astrophysics Data System (ADS)

    van de Bruck, Carsten; Longden, Chris

    2016-07-01

    In single field slow-roll inflation, one expects that the spectral index ns-1 is first order in slow-roll parameters. Similarly, its running αs=d ns/d log k and the running of the running βs=d αs/d log k are second and third order and therefore expected to be progressively smaller, and usually negative. Hence, such models of inflation are in considerable tension with a recent analysis hinting that βs may actually be positive, and larger than αs. Motivated by this, in this work we ask the question of what kinds of inflationary models may be useful in achieving such a hierarchy of runnings, particularly focusing on two-field models of inflation in which the late-time transfer of power from isocurvature to curvature modes allows for a much more diverse range of phenomenology. We calculate the runnings due to this effect and briefly apply our results to assess the feasibility of finding |βs|≳|αs| in some specific models.

  8. Structure and Dynamics of Colliding Plasma Jets

    NASA Astrophysics Data System (ADS)

    Li, C. K.; Ryutov, D. D.; Hu, S. X.; Rosenberg, M. J.; Zylstra, A. B.; Séguin, F. H.; Frenje, J. A.; Casey, D. T.; Gatu Johnson, M.; Manuel, M. J.-E.; Rinderknecht, H. G.; Petrasso, R. D.; Amendt, P. A.; Park, H. S.; Remington, B. A.; Wilks, S. C.; Betti, R.; Froula, D. H.; Knauer, J. P.; Meyerhofer, D. D.; Drake, R. P.; Kuranz, C. C.; Young, R.; Koenig, M.

    2013-12-01

    Monoenergetic-proton radiographs of laser-generated, high-Mach-number plasma jets colliding at various angles shed light on the structures and dynamics of these collisions. The observations compare favorably with results from 2D hydrodynamic simulations of multistream plasma jets, and also with results from an analytic treatment of electron flow and magnetic field advection. In collisions of two noncollinear jets, the observed flow structure is similar to the analytic model’s prediction of a characteristic feature with a narrow structure pointing in one direction and a much thicker one pointing in the opposite direction. Spontaneous magnetic fields, largely azimuthal around the colliding jets and generated by the well-known ∇Te×∇ne Biermann battery effect near the periphery of the laser spots, are demonstrated to be “frozen in” the plasma (due to high magnetic Reynolds number ReM˜5×104) and advected along the jet streamlines of the electron flow. These studies provide novel insight into the interactions and dynamics of colliding plasma jets.

  9. The Relativistic Heavy Ion Collider at Brookhaven

    SciTech Connect

    Hahn, H.

    1988-01-01

    The conceptual design of a Relativistic Heavy Ion Collider (RACK) to be constructed in the existing 3.8 km tunnel at Brookhaven has been developed. The collider has been designed to provide collisions of gold ions at six intersection points with a luminosity of about 5 /times/ 10/sup 26/cm/sup /minus/2/sec/sup /minus/1/ at an energy of 100 GeV/u in each beam. Collisions with different ion species, including protons, will be possible. The collider consists of two interlaced, but otherwise separate, superconducting magnet rings. The 9.7 m long dipoles will operate at 3.5 T. Their 8 cm aperture was determined by the dimensions of gold ion beams taking into account diffusion due to intrabeam scattering. Heavy ion beams will be available from the Tandem Van de Graaff/Booster/AGS complex. The salient design features and the reasons for major design choices of the proposed machine are discussed in this paper. 24 refs., 7 figs., 2 tabs.

  10. Muon Collider Machine-Detector Interface

    SciTech Connect

    Mokhov, Nikolai V.; /Fermilab

    2011-08-01

    In order to realize the high physics potential of a Muon Collider (MC) a high luminosity of {mu}{sup +}{mu}{sup -}-collisions at the Interaction Point (IP) in the TeV range must be achieved ({approx}10{sup 34} cm{sup -2}s{sup -1}). To reach this goal, a number of demanding requirements on the collider optics and the IR hardware - arising from the short muon lifetime and from relatively large values of the transverse emittance and momentum spread in muon beams that can realistically be obtained with ionization cooling should be satisfied. These requirements are aggravated by limitations on the quadrupole gradients as well as by the necessity to protect superconducting magnets and collider detectors from muon decay products. The overall detector performance in this domain is strongly dependent on the background particle rates in various sub-detectors. The deleterious effects of the background and radiation environment produced by the beam in the ring are very important issues in the Interaction Region (IR), detector and Machine-Detector Interface (MDI) designs. This report is based on studies presented very recently.

  11. COLLIDE-2: Collisions Into Dust Experiment-2

    NASA Technical Reports Server (NTRS)

    Colwell, Joshua E.

    2002-01-01

    The Collisions Into Dust Experimental (COLLIDE-2) was the second flight of the COLLIDE payload. The payload performs six low-velocity impact experiments to study the collisions that are prevalent in planetary ring systems and in the early stages of planet formation. Each impact experiment is into a target of granular material, and the impacts occur at speeds between 1 and 100 cm/s in microgravity and in a vacuum. The experiments are recorded on digital videotape which is later analyzed. During the period of performance a plan was developed to address some of the technical issues that prevented the first flight of COLLIDE from being a complete success, and also to maximize the scientific return based on the science results from the first flight. The experiment was modified following a series of reviews of the design plan, and underwent extensive testing. The data from the experiment show that the primary goal of identifying transition regimes for low-velocity impacts based on cratering versus accretion was achieved. Following a brief period of storage, the experiment flew regimes for low-velocity impacts based on cratering versus accretion was achieved. as a Hitchhiker payload on the MACH-1 Hitchhiker bridge on STS-108 in December 2001. These data have been analyzed and submitted for publication. That manuscript is attached to this report. The experiment was retrieved in January 2002, and all six impact experiments functioned nominally. Preliminary results were reported at the Lunar and Planetary Science Conference.

  12. Structure and Dynamics of Colliding Plasma Jets

    SciTech Connect

    Li, C.; Ryutov, D.; Hu, S.; Rosenberg, M.; Zylstra, A.; Seguin, F.; Frenje, J.; Casey, D.; Gatu Johnson, M.; Manuel, M.; Rinderknecht, H.; Petrasso, R.; Amendt, P.; Park, H.; Remington, B.; Wilks, S.; Betti, R.; Froula, D.; Knauer, J.; Meyerhofer, D.; Drake, R.; Kuranz, C.; Young, R.; Koenig, M.

    2013-12-01

    Monoenergetic-proton radiographs of laser-generated, high-Mach-number plasma jets colliding at various angles shed light on the structures and dynamics of these collisions. The observations compare favorably with results from 2D hydrodynamic simulations of multistream plasma jets, and also with results from an analytic treatment of electron flow and magnetic field advection. In collisions of two noncollinear jets, the observed flow structure is similar to the analytic model’s prediction of a characteristic feature with a narrow structure pointing in one direction and a much thicker one pointing in the opposite direction. Spontaneous magnetic fields, largely azimuthal around the colliding jets and generated by the well-known ∇Te ×∇ne Biermann battery effect near the periphery of the laser spots, are demonstrated to be “frozen in” the plasma (due to high magnetic Reynolds number RM ~5×10⁴) and advected along the jet streamlines of the electron flow. These studies provide novel insight into the interactions and dynamics of colliding plasma jets.

  13. Structure and Dynamics of Colliding Plasma Jets

    DOE PAGES

    Li, C.; Ryutov, D.; Hu, S.; Rosenberg, M.; Zylstra, A.; Seguin, F.; Frenje, J.; Casey, D.; Gatu Johnson, M.; Manuel, M.; et al

    2013-12-01

    Monoenergetic-proton radiographs of laser-generated, high-Mach-number plasma jets colliding at various angles shed light on the structures and dynamics of these collisions. The observations compare favorably with results from 2D hydrodynamic simulations of multistream plasma jets, and also with results from an analytic treatment of electron flow and magnetic field advection. In collisions of two noncollinear jets, the observed flow structure is similar to the analytic model’s prediction of a characteristic feature with a narrow structure pointing in one direction and a much thicker one pointing in the opposite direction. Spontaneous magnetic fields, largely azimuthal around the colliding jets and generatedmore » by the well-known ∇Te ×∇ne Biermann battery effect near the periphery of the laser spots, are demonstrated to be “frozen in” the plasma (due to high magnetic Reynolds number RM ~5×10⁴) and advected along the jet streamlines of the electron flow. These studies provide novel insight into the interactions and dynamics of colliding plasma jets.« less

  14. Linear collider IR and final focus introduction

    SciTech Connect

    Irwin, J.; Burke, D.

    1991-09-01

    The Linear Collider subgroup of the Accelerator Physics working group concerned itself with all aspects of the Next Linear Collider (NLC) design from the end of the accelerating structure to and through the interaction region. Within this region are: (1) a collimation section, (2) muon protection (of the detector from the collimator), (3) final focus system, (4) interaction point physics, and (5) detector masking from synchrotron radiation and beam-beam pair production. These areas of study are indicated schematically in Fig. 1. The parameters for the Next Linear Collider are still in motion, but attention has settled on a handful of parameter sets. Energies under consideration vary from 0.5 to 1.5 TeV in the center of mass, and luminosities vary from 10{sup 33} to 10{sup 34} cm{sup {minus}2}s{sup {minus}1}. To be concrete we chose as a guide for our studies the parameter sets labeled F and G, Table 1 from Palmer. These cover large and small crossing angle cases and 0.4 m to 1.8 m of free length at the interaction point.

  15. 2001 Report on the Next Linear Collider

    SciTech Connect

    Gronnberg, J; Breidenbach; Burke, D; Corlett, J; Dombeck, T; Markiewicz, T

    2001-08-28

    Recent studies in elementary particle physics have made the need for an e{sup +}e{sup -} linear collider able to reach energies of 500 GeV and above with high luminosity more compelling than ever [1]. Observations and measurements completed in the last five years at the SLC (SLAC), LEP (CERN), and the Tevatron (FNAL) can be explained only by the existence of at least one particle or interaction that has not yet been directly observed in experiment. The Higgs boson of the Standard Model could be that particle. The data point strongly to a mass for the Higgs boson that is just beyond the reach of existing colliders. This brings great urgency and excitement to the potential for discovery at the upgraded Tevatron early in this decade, and almost assures that later experiments at the LHC will find new physics. But the next generation of experiments to be mounted by the world-wide particle physics community must not only find this new physics, they must find out what it is. These experiments must also define the next important threshold in energy. The need is to understand physics at the TeV energy scale as well as the physics at the 100-GeV energy scale is now understood. This will require both the LHC and a companion linear electron-positron collider.

  16. Neutrino Factory and Muon Collider Fellow

    SciTech Connect

    Hanson, Gail G.; Snopak, Pavel; Bao, Yu

    2015-03-20

    Muons are fundamental particles like electrons but much more massive. Muon accelerators can provide physics opportunities similar to those of electron accelerators, but because of the larger mass muons lose less energy to radiation, allowing more compact facilities with lower operating costs. The way muon beams are produced makes them too large to fit into the vacuum chamber of a cost-effective accelerator, and the short muon lifetime means that the beams must be reduced in size rather quickly, without losing too many of the muons. This reduction in size is called "cooling." Ionization cooling is a new technique that can accomplish such cooling. Intense muon beams can then be accelerated and injected into a storage ring, where they can be used to produce neutrino beams through their decays or collided with muons of the opposite charge to produce a muon collider, similar to an electron-positron collider. We report on the research carried out at the University of California, Riverside, towards producing such muon accelerators, as part of the Muon Accelerator Program based at Fermilab. Since this research was carried out in a university environment, we were able to involve both undergraduate and graduate students.

  17. Advanced Concepts for Electron-Ion Collider

    SciTech Connect

    Yaroslav Derbenev

    2002-08-01

    A superconducting energy recovery linac (ERL) of 5 to 10 GeV was proposed earlier as an alternative to electron storage rings to deliver polarized electron beam for electron-ion collider (EIC). To enhance the utilization efficiency of electron beam from a polarized source, it is proposed to complement the ERL by circulator ring (CR) wherein the injected electrons undergo up to 100 revolutions colliding with the ion beam. In this way, electron injector and linac operate in pulsed current (beam energy recovery) regime of a relatively low average current, while the polarization is still easily delivered and preserved. To make it also easier delivering and manipulating the proton and light ion polarization, twisted (figure 8) synchrotrons are proposed for heavy particle booster and collider ring. Same type of beam orbit can be used then for electron circulator. Electron cooling (EC) of the ion beam is considered an inevitable component of high luminosity EIC (1033/s. cm2 or above). It is recognized that EC also gives a possibility to obtain very short ion bunches, that allows much stronger final focusing. At the same time, short bunches make feasible the crab crossing (and traveling focus for ion beam) at collision points, hence, allow maximizing the collision rate. As a result, one can anticipate the luminosity increase by one or two orders of magnitude.

  18. An Electron-Ion Collider at CEBAF

    SciTech Connect

    Kees de Jager; Lia Merminga; Ya. Derbenev

    2002-10-01

    Electron-ion colliders with a center of mass energy between 15 and 100 GeV, a luminosity of at least 10{sup 33}cm{sup -1}s{sup -1}, and a polarization of both beams at or above 80% have been proposed for future studies of hadronic structure. The scheme proposed here would accelerate the electron beam using the CEBAF recirculating linac with energy recovery. If all accelerating structures presently installed in the CEBAF tunnel are replaced by ones with a {approx}20 MV/m gradient, then a single recirculation results in an electron beam energy of about 5 GeV. After colliding with protons/light ions circulating in a figure-of-eight storage ring (for flexibility of spin manipulation) at an energy of up to 100 GeV, the electrons are re-injected into the CEBAF accelerator for deceleration and energy recovery. In this report several lay-out options and their respective feasibilities will be presented and discussed, together with parameters which would provide a luminosity of up to 1 x 10{sup 35} cm{sup -2}s{sup -1}. The feasibility of combining such a collider at a center-of-mass energy [sq rt] s of up to 43 GeV with a fixed target facility of 25 GeV is also explored.

  19. Interpenetration and stagnation in colliding laser plasmas

    SciTech Connect

    Al-Shboul, K. F.; Harilal, S. S. Hassan, S. M.; Hassanein, A.; Costello, J. T.; Yabuuchi, T.; Tanaka, K. A.; Hirooka, Y.

    2014-01-15

    We have investigated plasma stagnation and interaction effects in colliding laser-produced plasmas. For generating colliding plasmas, two split laser beams were line-focused onto a hemi-circular target and the seed plasmas so produced were allowed to expand in mutually orthogonal directions. This experimental setup forced the expanding seed plasmas to come to a focus at the center of the chamber. The interpenetration and stagnation of plasmas of candidate fusion wall materials, viz., carbon and tungsten, and other materials, viz., aluminum, and molybdenum were investigated in this study. Fast-gated imaging, Faraday cup ion analysis, and optical emission spectroscopy were used for diagnosing seed and colliding plasma plumes. Our results show that high-Z target (W, Mo) plasma ions interpenetrate each other, while low-Z (C, Al) plasmas stagnate at the collision plane. For carbon seed plasmas, an intense stagnation was observed resulting in longer plasma lifetime; in addition, the stagnation layer was found to be rich with C{sub 2} dimers.

  20. Gaugino physics of split supersymmetry spectra at the LHC and future proton colliders

    NASA Astrophysics Data System (ADS)

    Jung, Sunghoon; Wells, James D.

    2014-04-01

    Discovery of the Higgs boson and lack of discovery of superpartners in the first run at the LHC are both predictions of split supersymmetry with thermal dark matter. We discuss what it would take to find gluinos at hadron supercolliders, including the LHC at 14 TeV center-of-mass energy, and future pp colliders at 100 TeV and 200 TeV. We generalize the discussion by reexpressing the search capacity in terms of the gluino to lightest superpartner mass ratio and apply results to other scenarios, such as gauge mediation and mirage mediation.

  1. Physics opportunities of a 100 TeV proton-proton collider

    NASA Astrophysics Data System (ADS)

    Arkani-Hamed, Nima; Han, Tao; Mangano, Michelangelo; Wang, Lian-Tao

    2016-10-01

    The discovery of the Higgs boson at the LHC exposes some of the most profound mysteries fundamental physics has encountered in decades, opening the door to the next phase of experimental exploration. More than ever, this will necessitate new machines to push us deeper into the energy frontier. In this article, we discuss the physics motivation and present the physics potential of a proton-proton collider running at an energy significantly beyond that of the LHC and a luminosity comparable to that of the LHC. 100 TeV is used as a benchmark of the center of mass energy, with integrated luminosities of 3ab-1- 30ab-1.

  2. Operating Procedure Changes to Improve Antiproton Production at the Fermilab Tevatron Collider

    SciTech Connect

    Drendel, B.; Morgan, J.P.; Vander Meulen, D.; /Fermilab

    2009-04-01

    Since the start of Fermilab Collider Run II in 2001, the maximum weekly antiproton accumulation rate has increased from 400 x 10{sup 10} Pbars/week to approximately 3,700 x 10{sup 10} Pbars/week. There are many factors contributing to this increase, one of which involves changes to operational procedures that have streamlined and automated Antiproton Source production. Automation has been added to the beam line orbit control, stochastic cooling power level management, and RF settings. In addition, daily tuning efforts have been streamlined by implementing sequencer driven tuning software.

  3. Measurement of B(t --> Wb)/B(t--> Wq) at the collider detector at fermilab.

    PubMed

    Acosta, D; Adelman, J; Affolder, T; Akimoto, T; Albrow, M G; Ambrose, D; Amerio, S; Amidei, D; Anastassov, A; Anikeev, K; Annovi, A; Antos, J; Aoki, M; Apollinari, G; Arisawa, T; Arguin, J-F; Artikov, A; Ashmanskas, W; Attal, A; Azfar, F; Azzi-Bacchetta, P; Bacchetta, N; Bachacou, H; Badgett, W; Barbaro-Galtieri, A; Barker, G J; Barnes, V E; Barnett, B A; Baroiant, S; Bauer, G; Bedeschi, F; Behari, S; Belforte, S; Bellettini, G; Bellinger, J; Belloni, A; Ben-Haim, E; Benjamin, D; Beretvas, A; Berry, T; Bhatti, A; Binkley, M; Bisello, D; Bishai, M; Blair, R E; Blocker, C; Bloom, K; Blumenfeld, B; Bocci, A; Bodek, A; Bolla, G; Bolshov, A; Bortoletto, D; Boudreau, J; Bourov, S; Brau, B; Bromberg, C; Brubaker, E; Budagov, J; Budd, H S; Burkett, K; Busetto, G; Bussey, P; Byrum, K L; Cabrera, S; Campanelli, M; Campbell, M; Canelli, F; Canepa, A; Casarsa, M; Carlsmith, D; Carosi, R; Carron, S; Cavalli-Sforza, M; Castro, A; Catastini, P; Cauz, D; Cerri, A; Cerrito, L; Chapman, J; Chen, Y C; Chertok, M; Chiarelli, G; Chlachidze, G; Chlebana, F; Cho, I; Cho, K; Chokheli, D; Chou, J P; Chuang, S; Chung, K; Chung, W-H; Chung, Y S; Cijliak, M; Ciobanu, C I; Ciocci, M A; Clark, A G; Clark, D; Coca, M; Connolly, A; Convery, M; Conway, J; Cooper, B; Copic, K; Cordelli, M; Cortiana, G; Cranshaw, J; Cuevas, J; Cruz, A; Culbertson, R; Currat, C; Cyr, D; Dagenhart, D; Da Ronco, S; D'Auria, S; de Barbaro, P; De Cecco, S; Deisher, A; De Lentdecker, G; Dell'Orso, M; Demers, S; Demortier, L; Deninno, M; de Pedis, D; Derwent, P F; Dionisi, C; Dittmann, J R; DiTuro, P; Dörr, C; Dominguez, A; Donati, S; Donega, M; Donini, J; D'Onofrio, M; Dorigo, T; Ebina, K; Efron, J; Ehlers, J; Erbacher, R; Erdmann, M; Errede, D; Errede, S; Eusebi, R; Fang, H-C; Farrington, S; Fedorko, I; Fedorko, W T; Feild, R G; Feindt, M; Fernandez, J P; Field, R D; Flanagan, G; Flores-Castillo, L R; Foland, A; Forrester, S; Foster, G W; Franklin, M; Freeman, J C; Fujii, Y; Furic, I; Gajjar, A; Gallinaro, M; Galyardt, J; Garcia-Sciveres, M; Garfinkel, A F; Gay, C; Gerberich, H; Gerdes, D W; Gerchtein, E; Giagu, S; Giannetti, P; Gibson, A; Gibson, K; Ginsburg, C; Giolo, K; Giordani, M; Giunta, M; Giurgiu, G; Glagolev, V; Glenzinski, D; Gold, M; Goldschmidt, N; Goldstein, D; Goldstein, J; Gomez, G; Gomez-Ceballos, G; Goncharov, M; González, O; Gorelov, I; Goshaw, A T; Gotra, Y; Goulianos, K; Gresele, A; Griffiths, M; Grosso-Pilcher, C; Grundler, U; da Costa, J Guimaraes; Haber, C; Hahn, K; Hahn, S R; Halkiadakis, E; Hamilton, A; Han, B-Y; Handler, R; Happacher, F; Hara, K; Hare, M; Harr, R F; Harris, R M; Hartmann, F; Hatakeyama, K; Hauser, J; Hays, C; Hayward, H; Heinemann, B; Heinrich, J; Hennecke, M; Herndon, M; Hill, C; Hirschbuehl, D; Hocker, A; Hoffman, K D; Holloway, A; Hou, S; Houlden, M A; Huffman, B T; Huang, Y; Hughes, R E; Huston, J; Ikado, K; Incandela, J; Introzzi, G; Iori, M; Ishizawa, Y; Issever, C; Ivanov, A; Iwata, Y; Iyutin, B; James, E; Jang, D; Jayatilaka, B; Jeans, D; Jensen, H; Jeon, E J; Jones, M; Joo, K K; Jun, S Y; Junk, T; Kamon, T; Kang, J; Unel, M Karagoz; Karchin, P E; Kato, Y; Kemp, Y; Kephart, R; Kerzel, U; Khotilovich, V; Kilminster, B; Kim, D H; Kim, H S; Kim, J E; Kim, M J; Kim, M S; Kim, S B; Kim, S H; Kim, Y K; Kirby, M; Kirsch, L; Klimenko, S; Klute, M; Knuteson, B; Ko, B R; Kobayashi, H; Kong, D J; Kondo, K; Konigsberg, J; Kordas, K; Korn, A; Korytov, A; Kotwal, A V; Kovalev, A; Kraus, J; Kravchenko, I; Kreymer, A; Kroll, J; Kruse, M; Krutelyov, V; Kuhlmann, S E; Kwang, S; Laasanen, A T; Lai, S; Lami, S; Lammel, S; Lancaster, M; Lander, R; Lannon, K; Lath, A; Latino, G; Lazzizzera, I; Lecci, C; Lecompte, T; Lee, J; Lee, J; Lee, S W; Lefèvre, R; Leonardo, N; Leone, S; Levy, S; Lewis, J D; Li, K; Lin, C; Lin, C S; Lindgren, M; Lipeles, E; Liss, T M; Lister, A; Litvintsev, D O; Liu, T; Liu, Y; Lockyer, N S; Loginov, A; Loreti, M; Loverre, P; Lu, R-S; Lucchesi, D; Lujan, P; Lukens, P; Lungu, G; Lyons, L; Lys, J; Lysak, R; Lytken, E; MacQueen, D; Madrak, R; Maeshima, K; Maksimovic, P; Manca, G; Margaroli, F; Marginean, R; Marino, C; Martin, A; Martin, M; Martin, V; Martínez, M; Maruyama, T; Matsunaga, H; Mattson, M; Mazzanti, P; McFarland, K S; McGivern, D; McIntyre, P M; McNamara, P; McNulty, R; Mehta, A; Menzemer, S; Menzione, A; Merkel, P; Mesropian, C; Messina, A; Miao, T; Miladinovic, N; Miles, J; Miller, L; Miller, R; Miller, J S; Mills, C; Miquel, R; Miscetti, S; Mitselmakher, G; Miyamoto, A; Moggi, N; Mohr, B; Moore, R; Morello, M; Fernandez, P A Movilla; Muelmenstaedt, J; Mukherjee, A; Mulhearn, M; Muller, T; Mumford, R; Munar, A; Murat, P; Nachtman, J; Nahn, S; Nakano, I; Napier, A; Napora, R; Naumov, D; Necula, V; Nelson, T; Neu, C; Neubauer, M S; Nielsen, J; Nigmanov, T; Nodulman, L; Norniella, O; Ogawa, T; Oh, S H; Oh, Y D; Ohsugi, T; Okusawa, T; Oldeman, R; Orava, R; Orejudos, W; Osterberg, K; Pagliarone, C; Palencia, E; Paoletti, R; Papadimitriou, V; Paramonov, A A; Pashapour, S; Patrick, J; Pauletta, G; Paulini, M; Paus, C; Pellett, D; Penzo, A; Phillips, T J; Piacentino, G; Piedra, J; Pitts, K T; Plager, C; Pondrom, L; Pope, G; Portell, X; Poukhov, O; Pounder, N; Prakoshyn, F; Pronko, A; Proudfoot, J; Ptohos, F; Punzi, G; Rademacker, J; Rahaman, M A; Rakitine, A; Rappoccio, S; Ratnikov, F; Ray, H; Reisert, B; Rekovic, V; Renton, P; Rescigno, M; Rimondi, F; Rinnert, K; Ristori, L; Robertson, W J; Robson, A; Rodrigo, T; Rolli, S; Roser, R; Rossin, R; Rott, C; Russ, J; Rusu, V; Ruiz, A; Ryan, D; Saarikko, H; Sabik, S; Safonov, A; St Denis, R; Sakumoto, W K; Salamanna, G; Saltzberg, D; Sanchez, C; Santi, L; Sarkar, S; Sato, K; Savard, P; Savoy-Navarro, A; Schlabach, P; Schmidt, E E; Schmidt, M P; Schmitt, M; Schwarz, T; Scodellaro, L; Scott, A L; Scribano, A; Scuri, F; Sedov, A; Seidel, S; Seiya, Y; Semenov, A; Semeria, F; Sexton-Kennedy, L; Sfiligoi, I; Shapiro, M D; Shears, T; Shepard, P F; Sherman, D; Shimojima, M; Shochet, M; Shon, Y; Shreyber, I; Sidoti, A; Sill, A; Sinervo, P; Sisakyan, A; Sjolin, J; Skiba, A; Slaughter, A J; Sliwa, K; Smirnov, D; Smith, J R; Snider, F D; Snihur, R; Soderberg, M; Soha, A; Somalwar, S V; Spalding, J; Spezziga, M; Spinella, F; Squillacioti, P; Stadie, H; Stanitzki, M; Stelzer, B; Stelzer-Chilton, O; Stentz, D; Strologas, J; Stuart, D; Suh, J S; Sukhanov, A; Sumorok, K; Sun, H; Suzuki, T; Taffard, A; Tafirout, R; Takano, H; Takashima, R; Takeuchi, Y; Takikawa, K; Tanaka, M; Tanaka, R; Tanimoto, N; Tecchio, M; Teng, P K; Terashi, K; Tesarek, R J; Tether, S; Thom, J; Thompson, A S; Thomson, E; Tipton, P; Tiwari, V; Tkaczyk, S; Toback, D; Tollefson, K; Tomura, T; Tonelli, D; Tönnesmann, M; Torre, S; Torretta, D; Tourneur, S; Trischuk, W; Tsuchiya, R; Tsuno, S; Tsybychev, D; Turini, N; Ukegawa, F; Unverhau, T; Uozumi, S; Usynin, D; Vacavant, L; Vaiciulis, A; Varganov, A; Vejcik, S; Velev, G; Veszpremi, V; Veramendi, G; Vickey, T; Vidal, R; Vila, I; Vilar, R; Vollrath, I; Volobouev, I; von der Mey, M; Wagner, P; Wagner, R G; Wagner, R L; Wagner, W; Wallny, R; Walter, T; Wan, Z; Wang, M J; Wang, S M; Warburton, A; Ward, B; Waschke, S; Waters, D; Watts, T; Weber, M; Wester, W C; Whitehouse, B; Whiteson, D; Wicklund, A B; Wicklund, E; Williams, H H; Wilson, P; Winer, B L; Wittich, P; Wolbers, S; Wolfe, C; Wolter, M; Worcester, M; Worm, S; Wright, T; Wu, X; Würthwein, F; Wyatt, A; Yagil, A; Yamashita, T; Yamamoto, K; Yamaoka, J; Yang, C; Yang, U K; Yao, W; Yeh, G P; Yoh, J; Yorita, K; Yoshida, T; Yu, I; Yu, S; Yun, J C; Zanello, L; Zanetti, A; Zaw, I; Zetti, F; Zhou, J; Zucchelli, S

    2005-09-01

    We present a measurement of the ratio of top-quark branching fractions R = B(t --> Wb)/B(t --> Wq), where q can be a b, s, or a d quark, using lepton-plus-jets and dilepton data sets with an integrated luminosity of approximately 162 pb(-1) collected with the Collider Detector at Fermilab during Run II of the Tevatron. The measurement is derived from the relative numbers of tt events with different multiplicity of identified secondary vertices. We set a lower limit of R > 0.61 at 95% confidence level.

  4. Measurement of B(t --> Wb)/B(t--> Wq) at the collider detector at fermilab.

    PubMed

    Acosta, D; Adelman, J; Affolder, T; Akimoto, T; Albrow, M G; Ambrose, D; Amerio, S; Amidei, D; Anastassov, A; Anikeev, K; Annovi, A; Antos, J; Aoki, M; Apollinari, G; Arisawa, T; Arguin, J-F; Artikov, A; Ashmanskas, W; Attal, A; Azfar, F; Azzi-Bacchetta, P; Bacchetta, N; Bachacou, H; Badgett, W; Barbaro-Galtieri, A; Barker, G J; Barnes, V E; Barnett, B A; Baroiant, S; Bauer, G; Bedeschi, F; Behari, S; Belforte, S; Bellettini, G; Bellinger, J; Belloni, A; Ben-Haim, E; Benjamin, D; Beretvas, A; Berry, T; Bhatti, A; Binkley, M; Bisello, D; Bishai, M; Blair, R E; Blocker, C; Bloom, K; Blumenfeld, B; Bocci, A; Bodek, A; Bolla, G; Bolshov, A; Bortoletto, D; Boudreau, J; Bourov, S; Brau, B; Bromberg, C; Brubaker, E; Budagov, J; Budd, H S; Burkett, K; Busetto, G; Bussey, P; Byrum, K L; Cabrera, S; Campanelli, M; Campbell, M; Canelli, F; Canepa, A; Casarsa, M; Carlsmith, D; Carosi, R; Carron, S; Cavalli-Sforza, M; Castro, A; Catastini, P; Cauz, D; Cerri, A; Cerrito, L; Chapman, J; Chen, Y C; Chertok, M; Chiarelli, G; Chlachidze, G; Chlebana, F; Cho, I; Cho, K; Chokheli, D; Chou, J P; Chuang, S; Chung, K; Chung, W-H; Chung, Y S; Cijliak, M; Ciobanu, C I; Ciocci, M A; Clark, A G; Clark, D; Coca, M; Connolly, A; Convery, M; Conway, J; Cooper, B; Copic, K; Cordelli, M; Cortiana, G; Cranshaw, J; Cuevas, J; Cruz, A; Culbertson, R; Currat, C; Cyr, D; Dagenhart, D; Da Ronco, S; D'Auria, S; de Barbaro, P; De Cecco, S; Deisher, A; De Lentdecker, G; Dell'Orso, M; Demers, S; Demortier, L; Deninno, M; de Pedis, D; Derwent, P F; Dionisi, C; Dittmann, J R; DiTuro, P; Dörr, C; Dominguez, A; Donati, S; Donega, M; Donini, J; D'Onofrio, M; Dorigo, T; Ebina, K; Efron, J; Ehlers, J; Erbacher, R; Erdmann, M; Errede, D; Errede, S; Eusebi, R; Fang, H-C; Farrington, S; Fedorko, I; Fedorko, W T; Feild, R G; Feindt, M; Fernandez, J P; Field, R D; Flanagan, G; Flores-Castillo, L R; Foland, A; Forrester, S; Foster, G W; Franklin, M; Freeman, J C; Fujii, Y; Furic, I; Gajjar, A; Gallinaro, M; Galyardt, J; Garcia-Sciveres, M; Garfinkel, A F; Gay, C; Gerberich, H; Gerdes, D W; Gerchtein, E; Giagu, S; Giannetti, P; Gibson, A; Gibson, K; Ginsburg, C; Giolo, K; Giordani, M; Giunta, M; Giurgiu, G; Glagolev, V; Glenzinski, D; Gold, M; Goldschmidt, N; Goldstein, D; Goldstein, J; Gomez, G; Gomez-Ceballos, G; Goncharov, M; González, O; Gorelov, I; Goshaw, A T; Gotra, Y; Goulianos, K; Gresele, A; Griffiths, M; Grosso-Pilcher, C; Grundler, U; da Costa, J Guimaraes; Haber, C; Hahn, K; Hahn, S R; Halkiadakis, E; Hamilton, A; Han, B-Y; Handler, R; Happacher, F; Hara, K; Hare, M; Harr, R F; Harris, R M; Hartmann, F; Hatakeyama, K; Hauser, J; Hays, C; Hayward, H; Heinemann, B; Heinrich, J; Hennecke, M; Herndon, M; Hill, C; Hirschbuehl, D; Hocker, A; Hoffman, K D; Holloway, A; Hou, S; Houlden, M A; Huffman, B T; Huang, Y; Hughes, R E; Huston, J; Ikado, K; Incandela, J; Introzzi, G; Iori, M; Ishizawa, Y; Issever, C; Ivanov, A; Iwata, Y; Iyutin, B; James, E; Jang, D; Jayatilaka, B; Jeans, D; Jensen, H; Jeon, E J; Jones, M; Joo, K K; Jun, S Y; Junk, T; Kamon, T; Kang, J; Unel, M Karagoz; Karchin, P E; Kato, Y; Kemp, Y; Kephart, R; Kerzel, U; Khotilovich, V; Kilminster, B; Kim, D H; Kim, H S; Kim, J E; Kim, M J; Kim, M S; Kim, S B; Kim, S H; Kim, Y K; Kirby, M; Kirsch, L; Klimenko, S; Klute, M; Knuteson, B; Ko, B R; Kobayashi, H; Kong, D J; Kondo, K; Konigsberg, J; Kordas, K; Korn, A; Korytov, A; Kotwal, A V; Kovalev, A; Kraus, J; Kravchenko, I; Kreymer, A; Kroll, J; Kruse, M; Krutelyov, V; Kuhlmann, S E; Kwang, S; Laasanen, A T; Lai, S; Lami, S; Lammel, S; Lancaster, M; Lander, R; Lannon, K; Lath, A; Latino, G; Lazzizzera, I; Lecci, C; Lecompte, T; Lee, J; Lee, J; Lee, S W; Lefèvre, R; Leonardo, N; Leone, S; Levy, S; Lewis, J D; Li, K; Lin, C; Lin, C S; Lindgren, M; Lipeles, E; Liss, T M; Lister, A; Litvintsev, D O; Liu, T; Liu, Y; Lockyer, N S; Loginov, A; Loreti, M; Loverre, P; Lu, R-S; Lucchesi, D; Lujan, P; Lukens, P; Lungu, G; Lyons, L; Lys, J; Lysak, R; Lytken, E; MacQueen, D; Madrak, R; Maeshima, K; Maksimovic, P; Manca, G; Margaroli, F; Marginean, R; Marino, C; Martin, A; Martin, M; Martin, V; Martínez, M; Maruyama, T; Matsunaga, H; Mattson, M; Mazzanti, P; McFarland, K S; McGivern, D; McIntyre, P M; McNamara, P; McNulty, R; Mehta, A; Menzemer, S; Menzione, A; Merkel, P; Mesropian, C; Messina, A; Miao, T; Miladinovic, N; Miles, J; Miller, L; Miller, R; Miller, J S; Mills, C; Miquel, R; Miscetti, S; Mitselmakher, G; Miyamoto, A; Moggi, N; Mohr, B; Moore, R; Morello, M; Fernandez, P A Movilla; Muelmenstaedt, J; Mukherjee, A; Mulhearn, M; Muller, T; Mumford, R; Munar, A; Murat, P; Nachtman, J; Nahn, S; Nakano, I; Napier, A; Napora, R; Naumov, D; Necula, V; Nelson, T; Neu, C; Neubauer, M S; Nielsen, J; Nigmanov, T; Nodulman, L; Norniella, O; Ogawa, T; Oh, S H; Oh, Y D; Ohsugi, T; Okusawa, T; Oldeman, R; Orava, R; Orejudos, W; Osterberg, K; Pagliarone, C; Palencia, E; Paoletti, R; Papadimitriou, V; Paramonov, A A; Pashapour, S; Patrick, J; Pauletta, G; Paulini, M; Paus, C; Pellett, D; Penzo, A; Phillips, T J; Piacentino, G; Piedra, J; Pitts, K T; Plager, C; Pondrom, L; Pope, G; Portell, X; Poukhov, O; Pounder, N; Prakoshyn, F; Pronko, A; Proudfoot, J; Ptohos, F; Punzi, G; Rademacker, J; Rahaman, M A; Rakitine, A; Rappoccio, S; Ratnikov, F; Ray, H; Reisert, B; Rekovic, V; Renton, P; Rescigno, M; Rimondi, F; Rinnert, K; Ristori, L; Robertson, W J; Robson, A; Rodrigo, T; Rolli, S; Roser, R; Rossin, R; Rott, C; Russ, J; Rusu, V; Ruiz, A; Ryan, D; Saarikko, H; Sabik, S; Safonov, A; St Denis, R; Sakumoto, W K; Salamanna, G; Saltzberg, D; Sanchez, C; Santi, L; Sarkar, S; Sato, K; Savard, P; Savoy-Navarro, A; Schlabach, P; Schmidt, E E; Schmidt, M P; Schmitt, M; Schwarz, T; Scodellaro, L; Scott, A L; Scribano, A; Scuri, F; Sedov, A; Seidel, S; Seiya, Y; Semenov, A; Semeria, F; Sexton-Kennedy, L; Sfiligoi, I; Shapiro, M D; Shears, T; Shepard, P F; Sherman, D; Shimojima, M; Shochet, M; Shon, Y; Shreyber, I; Sidoti, A; Sill, A; Sinervo, P; Sisakyan, A; Sjolin, J; Skiba, A; Slaughter, A J; Sliwa, K; Smirnov, D; Smith, J R; Snider, F D; Snihur, R; Soderberg, M; Soha, A; Somalwar, S V; Spalding, J; Spezziga, M; Spinella, F; Squillacioti, P; Stadie, H; Stanitzki, M; Stelzer, B; Stelzer-Chilton, O; Stentz, D; Strologas, J; Stuart, D; Suh, J S; Sukhanov, A; Sumorok, K; Sun, H; Suzuki, T; Taffard, A; Tafirout, R; Takano, H; Takashima, R; Takeuchi, Y; Takikawa, K; Tanaka, M; Tanaka, R; Tanimoto, N; Tecchio, M; Teng, P K; Terashi, K; Tesarek, R J; Tether, S; Thom, J; Thompson, A S; Thomson, E; Tipton, P; Tiwari, V; Tkaczyk, S; Toback, D; Tollefson, K; Tomura, T; Tonelli, D; Tönnesmann, M; Torre, S; Torretta, D; Tourneur, S; Trischuk, W; Tsuchiya, R; Tsuno, S; Tsybychev, D; Turini, N; Ukegawa, F; Unverhau, T; Uozumi, S; Usynin, D; Vacavant, L; Vaiciulis, A; Varganov, A; Vejcik, S; Velev, G; Veszpremi, V; Veramendi, G; Vickey, T; Vidal, R; Vila, I; Vilar, R; Vollrath, I; Volobouev, I; von der Mey, M; Wagner, P; Wagner, R G; Wagner, R L; Wagner, W; Wallny, R; Walter, T; Wan, Z; Wang, M J; Wang, S M; Warburton, A; Ward, B; Waschke, S; Waters, D; Watts, T; Weber, M; Wester, W C; Whitehouse, B; Whiteson, D; Wicklund, A B; Wicklund, E; Williams, H H; Wilson, P; Winer, B L; Wittich, P; Wolbers, S; Wolfe, C; Wolter, M; Worcester, M; Worm, S; Wright, T; Wu, X; Würthwein, F; Wyatt, A; Yagil, A; Yamashita, T; Yamamoto, K; Yamaoka, J; Yang, C; Yang, U K; Yao, W; Yeh, G P; Yoh, J; Yorita, K; Yoshida, T; Yu, I; Yu, S; Yun, J C; Zanello, L; Zanetti, A; Zaw, I; Zetti, F; Zhou, J; Zucchelli, S

    2005-09-01

    We present a measurement of the ratio of top-quark branching fractions R = B(t --> Wb)/B(t --> Wq), where q can be a b, s, or a d quark, using lepton-plus-jets and dilepton data sets with an integrated luminosity of approximately 162 pb(-1) collected with the Collider Detector at Fermilab during Run II of the Tevatron. The measurement is derived from the relative numbers of tt events with different multiplicity of identified secondary vertices. We set a lower limit of R > 0.61 at 95% confidence level. PMID:16196920

  5. Walking and running at resonance.

    PubMed

    Ahlborn, Boye K; Blake, Robert W

    2002-01-01

    Humans and other animals can temporarily store mechanical energy in elastic oscillations, f(el), of body parts and in pendulum oscillations, f(p) = const sq.rt (g/L), of legs, length L, or other appendages, and thereby reduce the energy consumption of locomotion. However, energy saving only occurs if these oscillations are tuned to the leg propagation frequency f. It has long been known that f is tuned to the pendulum frequency of the free-swinging leg of walkers. During running the leg frequency increases to some new value f = f(r). We propose that in order to maintain resonance the animal, mass M, actively increases its leg pendulum frequency to the new value f(p,r) =const sq.rt (a(y)/L)=f(r), by giving its hips a vertical acceleration a(y)= F(y)/M. The pendulum frequency is increased if the impact force F(y) of the stance foot is larger than Mg, explaining the observation by Alexander and Bennet-Clark (1976) that F(v) becomes larger than Mg when animals start to run. Our model predictions of the running velocity U(r) as function of L, F(v), are in agreement with measurements of these quantities (Farley et al. 1993). The leg's longitudinal elastic oscillation frequency scales as f(el) = const sq.rt (k/M). Experiments by Ferris et al., (1998) show that runners adjust their leg's stiffness, k, when running on surfaces of different elasticity so that the total stiffness k remains constant. Our analysis of their data suggests that the longitudinal oscillations of the stance leg are indeed kept in tune with the running frequency. Therefore we conclude that humans, and by extension all animals, maintain resonance during running. Our model also predicts the Froude number of walking-running transitions, Fr = U(2)/gL approximately 0.5 in good agreement with measurements.

  6. [Calorimeter based detectors for high energy hadron colliders]. [Progress report

    SciTech Connect

    Not Available

    1992-08-04

    This document provides a progress report on research that has been conducted under DOE Grant DEFG0292ER40697 for the past year, and describes proposed work for the second year of this 8 year grant starting November 15, 1992. Personnel supported by the contract include 4 faculty, 1 research faculty, 4 postdocs, and 9 graduate students. The work under this grant has in the past been directed in two complementary directions -- DO at Fermilab, and the second SSC detector GEM. A major effort has been towards the construction and commissioning of the new Fermilab Collider detector DO, including design, construction, testing, the commissioning of the central tracking and the central calorimeters. The first DO run is now underway, with data taking and analysis of the first events. Trigger algorithms, data acquisition, calibration of tracking and calorimetry, data scanning and analysis, and planning for future upgrades of the DO detector with the advent of the FNAL Main Injector are all involved. The other effort supported by this grant has been towards the design of GEM, a large and general-purpose SSC detector with special emphasis on accurate muon measurement over a large solid angle. This effort will culminate this year in the presentation to the SSC laboratory of the GEM Technical Design Report. Contributions are being made to the detector design, coordination, and physics simulation studies with special emphasis on muon final states. Collaboration with the RD5 group at CERN to study muon punch through and to test cathode strip chamber prototypes was begun.

  7. RHIC Au beam in Run 2014

    SciTech Connect

    Zhang, S. Y.

    2014-09-15

    Au beam at the RHIC ramp in run 2014 is reviewed together with the run 2011 and run 2012. Observed bunch length and longitudinal emittance are compared with the IBS simulations. The IBS growth rate of the longitudinal emittance in run 2014 is similar to run 2011, and both are larger than run 2012. This is explained by the large transverse emittance at high intensity observed in run 2012, but not in run 2014. The big improvement of the AGS ramping in run 2014 might be related to this change. The importance of the injector intensity improvement in run 2014 is emphasized, which gives rise to the initial luminosity improvement of 50% in run 2014, compared with the previous Au-Au run 2011. In addition, a modified IBS model, which is calibrated using the RHIC Au runs from 9.8 GeV/n to 100 GeV/n, is presented and used in the study.

  8. CDF Run IIb Silicon Vertex Detector DAQ Upgrade

    SciTech Connect

    S. Behari et al.

    2003-12-18

    The CDF particle detector operates in the beamline of the Tevatron proton-antiproton collider at Fermilab, Batavia, IL. The Tevatron is expected to undergo luminosity upgrades (Run IIb) in the future, resulting in a higher number of interactions per beam crossing. To operate in this dense radiation environment, an upgrade of CDF's silicon vertex detector (SVX) subsystem and a corresponding upgrade of its VME-based DAQ system has been explored. Prototypes of all the Run IIb SVX DAQ components have been constructed, assembled into a test stand and operated successfully using an adapted version of CDF's network-capable DAQ software. In addition, a PCI-based DAQ system has been developed as a fast and inexpensive tool for silicon detector and DAQ component testing in the production phase. In this paper they present an overview of the Run IIb silicon DAQ upgrade, emphasizing the new features and improvements incorporated into the constituent VME boards, and discuss a PCI-based DAQ system developed to facilitate production tests.

  9. ATLAS Metadata Infrastructure Evolution for Run 2 and Beyond

    NASA Astrophysics Data System (ADS)

    van Gemmeren, P.; Cranshaw, J.; Malon, D.; Vaniachine, A.

    2015-12-01

    ATLAS developed and employed for Run 1 of the Large Hadron Collider a sophisticated infrastructure for metadata handling in event processing jobs. This infrastructure profits from a rich feature set provided by the ATLAS execution control framework, including standardized interfaces and invocation mechanisms for tools and services, segregation of transient data stores with concomitant object lifetime management, and mechanisms for handling occurrences asynchronous to the control framework's state machine transitions. This metadata infrastructure is evolving and being extended for Run 2 to allow its use and reuse in downstream physics analyses, analyses that may or may not utilize the ATLAS control framework. At the same time, multiprocessing versions of the control framework and the requirements of future multithreaded frameworks are leading to redesign of components that use an incident-handling approach to asynchrony. The increased use of scatter-gather architectures, both local and distributed, requires further enhancement of metadata infrastructure in order to ensure semantic coherence and robust bookkeeping. This paper describes the evolution of ATLAS metadata infrastructure for Run 2 and beyond, including the transition to dual-use tools—tools that can operate inside or outside the ATLAS control framework—and the implications thereof. It further examines how the design of this infrastructure is changing to accommodate the requirements of future frameworks and emerging event processing architectures.

  10. How Fast Can a Human Run? - Bipedal vs. Quadrupedal Running.

    PubMed

    Kinugasa, Ryuta; Usami, Yoshiyuki

    2016-01-01

    Usain Bolt holds the current world record in the 100-m run, with a running time of 9.58 s, and has been described as the best human sprinter in history. However, this raises questions concerning the maximum human running speed, such as "Can the world's fastest men become faster still?" The correct answer is likely "Yes." We plotted the historical world records for bipedal and quadrupedal 100-m sprint times according to competition year. These historical records were plotted using several curve-fitting procedures. We found that the projected speeds intersected in 2048, when for the first time, the winning quadrupedal 100-m sprint time could be lower, at 9.276 s, than the winning bipedal time of 9.383 s. Video analysis revealed that in quadrupedal running, humans employed a transverse gallop with a small angular excursion. These results suggest that in the future, the fastest human on the planet might be a quadrupedal runner at the 2048 Olympics. This may be achieved by shifting up to the rotary gallop and taking longer strides with wide sagittal trunk motion. PMID:27446911

  11. How Fast Can a Human Run? - Bipedal vs. Quadrupedal Running.

    PubMed

    Kinugasa, Ryuta; Usami, Yoshiyuki

    2016-01-01

    Usain Bolt holds the current world record in the 100-m run, with a running time of 9.58 s, and has been described as the best human sprinter in history. However, this raises questions concerning the maximum human running speed, such as "Can the world's fastest men become faster still?" The correct answer is likely "Yes." We plotted the historical world records for bipedal and quadrupedal 100-m sprint times according to competition year. These historical records were plotted using several curve-fitting procedures. We found that the projected speeds intersected in 2048, when for the first time, the winning quadrupedal 100-m sprint time could be lower, at 9.276 s, than the winning bipedal time of 9.383 s. Video analysis revealed that in quadrupedal running, humans employed a transverse gallop with a small angular excursion. These results suggest that in the future, the fastest human on the planet might be a quadrupedal runner at the 2048 Olympics. This may be achieved by shifting up to the rotary gallop and taking longer strides with wide sagittal trunk motion.

  12. Energetics of bipedal running. II. Limb design and running mechanics.

    PubMed

    Roberts, T J; Chen, M S; Taylor, C R

    1998-10-01

    Compared with quadrupeds, bipedal runners of the same weight have longer legs, take longer steps and can presumably use slower, more economical muscle fibers. One might predict that bipedal running is less expensive, but it is not. We hypothesized that bipeds recruit a larger volume of muscle to support their weight, eliminating the potential economy of longer legs and slower steps. To test our hypothesis, we calculated the relative volume of muscle needed to support body weight over a stride in small dogs (Canis familiaris) and wild turkeys (Meleagris gallopavo) of the same weight. First, we confirmed that turkeys and dogs use approximately the same amount of energy to run at the same speed, and found that turkeys take 1. 8-fold longer steps. Higher muscle forces and/or longer muscle fibers would require a greater volume of active muscle, since muscle volume is proportional to the product of force and fascicle length. We measured both mean fascicle length and mean mechanical advantage for limb extensor muscles. Turkeys generated approximately the same total muscle force to support their weight during running and used muscle fascicles that are on average 2.1 times as long as in dogs, thus requiring a 2.5-fold greater active muscle volume. The greater volume appears to offset the economy of slower rates of force generation, supporting our hypothesis and providing a simple explanation for why it costs the same to run on two and four legs.

  13. Production of doubly heavy-flavored hadrons at e+e- colliders

    NASA Astrophysics Data System (ADS)

    Zheng, Xu-Chang; Chang, Chao-Hsi; Pan, Zan

    2016-02-01

    Production of the doubly heavy-flavored hadrons (Bc meson, doubly heavy baryons Ξc c , Ξb c , Ξb b , their excited states, and antiparticles of them as well) at e+e- colliders is investigated under two different approaches: LO (leading-order QCD complete calculation) and LL (leading-logarithm fragmentation calculation). The results for the production obtained by the LO and LL approaches, including the angle distributions of the produced hadrons with unpolarized and polarized incoming beams, the behaviors on the energy fraction of the produced doubly heavy-flavored hadron, and comparisons of results between the two approaches, are presented in tables and figures. Thus, characteristics of the production and uncertainties of the approaches are shown precisely, and it is concluded that only if the colliders run at the energies around the Z pole (which may be called the Z factories) and the luminosity of the colliders is as high as possible is the study of the doubly heavy-flavored hadrons completely accessible.

  14. Searches for the Standard Model Higgs boson at the LEP collider

    NASA Astrophysics Data System (ADS)

    Igo-Kemenes, Peter; Read, Alexander L.

    2016-10-01

    The Large Electron Positron (LEP) collider installed at CERN provided unprecedented possibilities for studying the properties of elementary particles during the years 1989-2000. The four detectors associated to the collider, run by the ALEPH, DELPHI, L3, and OPAL Collaborations, were based on the latest available technologies. The conjunction of high collision energies, precise instrumentation and data analysis techniques allowed the Standard Model (SM) of elementary particles to be tested at the level of quantum corrections. The search for new particles, in particular the long-sought Higgs boson, was one of the primary research subjects. During the twelve years of LEP, data samples of the highest quality and statistical weight were analysed. Concerning the search for the SM Higgs boson, the domain extending from zero mass to the kinematic limit imposed by the collider energy was scrutinised. The spirit of scientific competition gradually gave way to a collaborative effort, allowing the final results of LEP to be optimised. The methodology of Higgs boson searches is summarised in this paper together with the statistical methods adopted to combine the data of the four collaborations.

  15. Children's Fitness. Managing a Running Program.

    ERIC Educational Resources Information Center

    Hinkle, J. Scott; Tuckman, Bruce W.

    1987-01-01

    A running program to increase the cardiovascular fitness levels of fourth-, fifth-, and sixth-grade children is described. Discussed are the running environment, implementation of a running program, feedback, and reinforcement. (MT)

  16. Electron Cloud Effect in the Linear Colliders

    SciTech Connect

    Pivi, M

    2004-09-13

    Beam induced multipacting, driven by the electric field of successive positively charged bunches, may arise from a resonant motion of electrons, generated by secondary emission, bouncing back and forth between opposite walls of the vacuum chamber. The electron-cloud effect (ECE) has been observed or is expected at many storage rings [1]. In the beam pipe of the Damping Ring (DR) of a linear collider, an electron cloud is produced initially by ionization of the residual gas and photoelectrons from the synchrotron radiation. The cloud is then sustained by secondary electron emission. This electron cloud can reach equilibrium after the passage of only a few bunches. The electron-cloud effect may be responsible for collective effects as fast coupled-bunch and single-bunch instability, emittance blow-up or incoherent tune shift when the bunch current exceeds a certain threshold, accompanied by a large number of electrons in the vacuum chamber. The ECE was identified as one of the most important R&D topics in the International Linear Collider Report [2]. Systematic studies on the possible electron-cloud effect have been initiated at SLAC for the GLC/NLC and TESLA linear colliders, with particular attention to the effect in the positron main damping ring (MDR) and the positron Low Emittance Transport which includes the bunch compressor system (BCS), the main linac, and the beam delivery system (BDS). We present recent computer simulation results for the main features of the electron cloud generation in both machine designs. Thus, single and coupled-bunch instability thresholds are estimated for the GLC/NLC design.

  17. The dark penguin shines light at colliders

    NASA Astrophysics Data System (ADS)

    Primulando, Reinard; Salvioni, Ennio; Tsai, Yuhsin

    2015-07-01

    Collider experiments are one of the most promising ways to constrain Dark Matter (DM) interactions. For several types of DM-Standard Model couplings, a meaningful interpretation of the results requires to go beyond effective field theory, considering simplified models with light mediators. This is especially important in the case of loop-mediated interactions. In this paper we perform the first simplified model study of the magnetic dipole interacting DM, by including the one-loop momentum-dependent form factors that mediate the coupling — given by the Dark Penguin — in collider processes. We compute bounds from the monojet, monophoton, and diphoton searches at the 8 and 14 TeV LHC, and compare the results to those of direct and indirect detection experiments. Future searches at the 100 TeV hadron collider and at the ILC are also addressed. We find that the optimal search strategy requires loose cuts on the missing transverse energy, to capture the enhancement of the form factors near the threshold for on-shell production of the mediators. We consider both minimal models and models where an additional state beyond the DM is accessible. In the latter case, under the assumption of anarchic flavor structure in the dark sector, the LHC monophoton and diphoton searches will be able to set much stronger bounds than in the minimal scenario. A determination of the mass of the heavier dark fermion might be feasible using the M T2 variable. In addition, if the Dark Penguin flavor structure is almost aligned with that of the DM mass, a displaced signal from the decay of the heavier dark fermion into the DM and photon can be observed. This allows us to set constraints on the mixings and couplings of the model from an existing search for non-pointing photons.

  18. Chromaticity correction for a muon collider optics

    SciTech Connect

    Alexahin, Y.; Gianfelice-Wendt, E.; Kapin, V.; /Fermilab

    2011-03-01

    Muon Collider (MC) is a promising candidate for the next energy frontier machine. However, in order to obtain peak luminosity in the 10{sup 34} cm{sup 2}s{sup -1} range the collider lattice designmust satisfy a number of stringent requirements. In particular the expected large momentum spread of the muon beam and the very small {beta}* call for a careful correction of the chromatic effects. Here we present a particular solution for the interaction region (IR) optics whose distinctive feature is a three-sextupole local chromatic correction scheme. The scheme may be applied to other future machines where chromatic effects are expected to be large. The expected large muon energy spread requires the optics to be stable over a wide range of momenta whereas the required luminosity calls for {beta}* in the mm range. To avoid luminosity degradation due to hour-glass effect, the bunch length must be comparatively small. To keep the needed RF voltage within feasible limits the momentum compaction factor must be small over the wide range of momenta. A low {beta}* means high sensitivity to alignment and field errors of the Interaction Region (IR) quadrupoles and large chromatic effects which limit the momentum range of optics stability and require strong correction sextupoles, which eventually limit the Dynamic Aperture (DA). Finally, the ring circumference should be as small as possible, luminosity being inversely proportional to the collider length. A promising solution for a 1.5 TeV center of mass energy MC with {beta}* = 1 m in both planes has been proposed. This {beta}* value has been chosen as a compromise between luminosity and feasibility based on the magnet design and energy deposition considerations. The proposed solution for the IR optics together with a new flexible momentum compaction arc cell design allows to satisfy all requirements and is relatively insensitive to the beam-beam effect.

  19. Accelerator R&D toward Muon Collider and Neutrino Factory

    NASA Astrophysics Data System (ADS)

    Shiltsev, V.

    2010-12-01

    Over the last decade there has been significant progress in developing the concepts and technologies needed to produce, capture, accelerate and collide high intensity beams of muons. At present, a high-luminosity multi-TeV muon collider presents a viable option for the next generation lepton-lepton collider, which is believed to be needed to fully explore high energy physics in the era following LHC discoveries. Such a collider can offer superb energy resolution, smaller size, and potentially cost and power consumption compared to multi-TeV e + e - linear colliders. This article briefly reviews the motivation, design and status of accelerator R&D for Muon Collider and Neutrino Factory.

  20. Accelerator R&D toward Muon Collider and Neutrino Factory

    SciTech Connect

    Shiltsev, Vladimir; /Fermilab

    2009-10-01

    Over the last decade there has been significant progress in developing the concepts and technologies needed to produce, capture, accelerate and collide high intensity beams of muons. At present, a high-luminosity multi-TeV muon collider presents a viable option for the next generation lepton-lepton collider, which is believed to be needed to fully explore high energy physics in the era following LHC discoveries. Such a collider can offer superb energy resolution, smaller size, and potentially cost and power consumption compared to multi-TeV e{sup +}e{sup -} linear colliders. This article briefly reviews the motivation, design and status of accelerator R&D for Muon Collider and Neutrino Factory.

  1. Running and Breathing in Mammals

    NASA Astrophysics Data System (ADS)

    Bramble, Dennis M.; Carrier, David R.

    1983-01-01

    Mechanical constraints appear to require that locomotion and breathing be synchronized in running mammals. Phase locking of limb and respiratory frequency has now been recorded during treadmill running in jackrabbits and during locomotion on solid ground in dogs, horses, and humans. Quadrupedal species normally synchronize the locomotor and respiratory cycles at a constant ratio of 1:1 (strides per breath) in both the trot and gallop. Human runners differ from quadrupeds in that while running they employ several phase-locked patterns (4:1, 3:1, 2:1, 1:1, 5:2, and 3:2), although a 2:1 coupling ratio appears to be favored. Even though the evolution of bipedal gait has reduced the mechanical constraints on respiration in man, thereby permitting greater flexibility in breathing pattern, it has seemingly not eliminated the need for the synchronization of respiration and body motion during sustained running. Flying birds have independently achieved phase-locked locomotor and respiratory cycles. This hints that strict locomotor-respiratory coupling may be a vital factor in the sustained aerobic exercise of endothermic vertebrates, especially those in which the stresses of locomotion tend to deform the thoracic complex.

  2. Teaching Bank Runs through Films

    ERIC Educational Resources Information Center

    Flynn, David T.

    2009-01-01

    The author advocates the use of films to supplement textbook treatments of bank runs and panics in money and banking or general banking classes. Modern students, particularly those in developed countries, tend to be unfamiliar with potential fragilities of financial systems such as a lack of deposit insurance or other safety net mechanisms. Films…

  3. Broader Impacts of the International Linear Collider

    SciTech Connect

    Bardeen, M.; Ruchti, R.

    2005-08-01

    Large-scale scientific endeavors such as the International Linear Collider Project can have a lasting impact on education and outreach to our society. The ILC will provide a discovery platform for frontier physical science and it will also provide a discovery platform for broader impacts and social science. The importance of Broader Impacts of Science in general and the ILC in particular are described. Additionally, a synopsis of education and outreach activities carried out as an integral part of the Snowmass ILC Workshop is provided.

  4. Next linear collider test accelerator injector upgrade

    SciTech Connect

    Yeremian, A.D.; Miller, R.H.

    1995-12-31

    The Next Linear Collider Test Accelerator (NLCTA) is being constructed at SLAC to demonstrate multibunch beam loading compensation, suppression of higher order deflecting modes and measure transverse components of the accelerating fields in X-band accelerating structures. Currently a simple injector which provides the average current necessary for the beam loading compensations studies is under construction. An injector upgrade is planned to produce bunch trains similar to that of the NLC with microbunch intensity, separation and energy spread, identical to that of NLC. We discuss the design of the NLCTA injector upgrade.

  5. Nonlinear resonant collimation for future linear colliders

    NASA Astrophysics Data System (ADS)

    Emma, P.; Helm, R.; Nosochkov, Y.; Pitthan, R.; Raubenheimer, T.; Thompson, K.; Zimmermann, F.

    1999-04-01

    We present a scheme for collimating large amplitude particles in the main linacs of a linear collider, by adding octupoles to the FODO lattice of the linac. With this scheme the requirements on downstream collimation can be greatly reduced or perhaps even eliminated. An analytic estimate of the amplitude at which particles are lost is made by calculating the separatrix of the fourth order resonance, and is in good agreement with the results of simulations. Simulations of particle distributions in the beam core and halo are presented, as well as alignment tolerances for the octupoles.

  6. Relativistic klystron research for linear colliders

    SciTech Connect

    Allen, M.A.; Callin, R.S.; Deruyter, H.; Eppley, K.R.; Fant, K.S.; Fowkes, W.R.; Herrmannsfeldt, W.B.; Higo, T.; Hoag, H.A.; Koontz, R.F.

    1988-09-01

    Relativistic klystrons are being developed as a power source for high gradient accelerator applications which include large linear electron-positron colliders, compact accelerators, and FEL sources. We have attained 200 MW peak power at 11.4 GHz from a relativistic klystron, and 140 MV/m longitudinal gradient in a short 11.4 GHz accelerator section. We report here on the design of our relativistic klystrons, the results of our experiments so far, and some of our plans for the near future. 5 refs., 9 figs., 1 tab.

  7. Colliding droplets: a short film presentation

    SciTech Connect

    Hendricks, C.D.

    1981-12-22

    A series of experiments were performed in which liquid droplets were caused to collide. Impact velocities to several meters per second and droplet diameters up to 600 micrometers were used. The impact parameters in the collisions vary from zero to greater than the sum of the droplet radii. Photographs of the collisions were taken with a high speed framing camera in order to study the impacts and subsequent behavior of the droplets. The experiments will be discussed and a short movie film presentation of some of the impacts will be shown.

  8. Current Correlations from a Mesoscopic Anyon Collider.

    PubMed

    Rosenow, Bernd; Levkivskyi, Ivan P; Halperin, Bertrand I

    2016-04-15

    Fermions and bosons are fundamental realizations of exchange statistics, which governs the probability for two particles being close to each other spatially. Anyons in the fractional quantum Hall effect are an example for exchange statistics intermediate between bosons and fermions. We analyze a mesoscopic setup in which two dilute beams of anyons collide with each other, and relate the correlations of current fluctuations to the probability of particles excluding each other spatially. While current correlations for fermions vanish, negative correlations for anyons are a clear signature of a reduced spatial exclusion as compared to fermions.

  9. Drell-Yan production at collider energies

    SciTech Connect

    Neerven, W.L. Van

    1995-07-01

    We present some results of the Drell-Yan cross sections d{sigma}/dm and {sigma}{sub tot} which includes the O ({alpha}{sub s}{sup 2}) contribution to the coefficient function. In particular we study the total cross section {sigma}{sub tot} for vector boson production and d{sigma}/dm for low invariant masses m of the lepton pairs at large hadron collider energies. This study includes a detailed discussion of the dependence of the cross sections on the chosen scheme ({bar M}S versus DIS) and the factorization scale.

  10. Black holes at the Large Hadron Collider.

    PubMed

    Dimopoulos, S; Landsberg, G

    2001-10-15

    If the scale of quantum gravity is near TeV, the CERN Large Hadron Collider will be producing one black hole (BH) about every second. The decays of the BHs into the final states with prompt, hard photons, electrons, or muons provide a clean signature with low background. The correlation between the BH mass and its temperature, deduced from the energy spectrum of the decay products, can test Hawking's evaporation law and determine the number of large new dimensions and the scale of quantum gravity.

  11. Black Holes and the Large Hadron Collider

    NASA Astrophysics Data System (ADS)

    Roy, Arunava

    2011-12-01

    The European Center for Nuclear Research or CERN's Large Hadron Collider (LHC) has caught our attention partly due to the film ``Angels and Demons.'' In the movie, an antimatter bomb attack on the Vatican is foiled by the protagonist. Perhaps just as controversial is the formation of mini black holes (BHs). Recently, the American Physical Society1 website featured an article on BH formation at the LHC.2 This article examines some aspects of mini BHs and explores the possibility of their detection at the LHC.

  12. Rf power sources for linear colliders

    SciTech Connect

    Allen, M.A.; Callin, R.S.; Caryotakis, G.; Deruyter, H.; Eppley, K.R.; Fant, K.S.; Farkas, Z.D.; Fowkes, W.R.; Hoag, H.A.; Feinstein, J.; Ko, K.; Koontz, R.F.; Kroll, N.M.; Lavine, T.L.; Lee, T.G.; Loew, G.A.; Miller, R.H.; Nelson, E.M.; Ruth, R.D.; Vlieks, A.E.; Wang, J.W.; Wilson, P.B. ); Boyd, J.K.; Houk, T.; Ryne, R.D.; Westenskow, G.A.; Yu, S.S. (Lawrence Live

    1990-06-01

    The next generation of linear colliders requires peak power sources of over 200 MW per meter at frequencies above 10 GHz at pulse widths of less than 100 nsec. Several power sources are under active development, including a conventional klystron with rf pulse compression, a relativistic klystron (RK) and a crossed-field amplifier. Power from one of these has energized a 0.5 meter two- section High Gradient Accelerator (HGA) and accelerated a beam at over 80 MeV meter. Results of tests with these experimental devices are presented here.

  13. Far Future Colliders and Required R&D Program

    SciTech Connect

    Shiltsev, V.; /Fermilab

    2012-06-01

    Particle colliders for high energy physics have been in the forefront of scientific discoveries for more than half a century. The accelerator technology of the collider has progressed immensely, while the beam energy, luminosity, facility size and the cost have grown by several orders of magnitude. The method of colliding beams has not fully exhausted its potential but its pace of progress has greatly slowed down. In this paper we very briefly review the R&D toward near future colliders and make an attempt to look beyond the current horizon and outline the changes in the paradigm required for the next breakthroughs.

  14. Numerical calculation of ion polarization in the NICA collider

    NASA Astrophysics Data System (ADS)

    Kovalenko, A. D.; Butenko, A. V.; Kekelidze, V. D.; Mikhaylov, V. A.; Kondratenko, M. A.; Kondratenko, A. M.; Filatov, Yu N.

    2016-02-01

    The NICA Collider with two solenoid Siberian snakes is “transparent” to the spin. The collider transparent to the spin provides a unique capability to control any polarization direction of protons and deuterons using additional weak solenoids without affecting orbital parameters of the beam. The spin tune induced by the control solenoids must significantly exceed the strength of the zero-integer spin resonance, which contains a coherent part associated with errors in the collider's magnetic structure and an incoherent part associated with the beam emittances. We present calculations of the coherent part of the resonance strength in the NICA collider for proton and deuteron beams.

  15. Klystron switching power supplies for the Internation Linear Collider

    SciTech Connect

    Fraioli, Andrea; /Cassino U. /INFN, Pisa

    2009-12-01

    The International Linear Collider is a majestic High Energy Physics particle accelerator that will give physicists a new cosmic doorway to explore energy regimes beyond the reach of today's accelerators. ILC will complement the Large Hadron Collider (LHC), a proton-proton collider at the European Center for Nuclear Research (CERN) in Geneva, Switzerland, by producing electron-positron collisions at center of mass energy of about 500 GeV. In particular, the subject of this dissertation is the R&D for a solid state Marx Modulator and relative switching power supply for the International Linear Collider Main LINAC Radio Frequency stations.

  16. Linear collider approach to a B anti B factory

    SciTech Connect

    Wilson, P.B.

    1987-06-01

    In this paper we consider the basic design expression and principal design constraints for a linear collider suitable for a B anti-B factory: Energy approx. =10 GeV, luminosity 10/sup 33/-10/sup 34/ cm/sup -2/s/sup -1/, energy resolution approx. =10/sup -2/. The design of room temperature linear colliders for a B factory is discussed. In such colliders, the rf energy stored in the linac structure is thrown away after each linac pulse. Linear colliders using superconducting rf cavities are considered. Some brief conclusions are presented.

  17. Running free: embracing a healthy lifestyle through distance running.

    PubMed

    Shipway, Richard; Holloway, Immy

    2010-11-01

    Sport and leisure activity contribute to both health and quality of life. There is a dearth of qualitative studies on the lived experiences of active people, so the aim of this paper is to develop a deeper understanding of the experiences of one particular group of active leisure participants, distance runners, and to highlight the associated health and well-being benefits that result from participating in this increasingly popular form of active leisure. In doing so, this paper will briefly explore the potential opportunities and implications for sport and leisure policy and provision, and highlight examples of how distance running could positively contribute towards government objectives linked to tackling obesity levels, healthy living and physical well-being. It is suggested that similar benefits also exist across other forms of physical activity, exercise and sport. Qualitative methods of enquiry were adopted to understand the nature of the social world of long distance runners through interviews and observations, which were thematically analyzed. One of the key themes emerging from the data was the desire to embrace a healthy lifestyle, which then led to the emergence of four main sub-themes. The first was linked to the importance of seeking self-esteem and confirmation through running; second, an investigation of a selection of negative aspects associated with exercise addiction; third, the need to exercise among sport and leisure participants; and finally, an understanding of the concept of the 'running body'. Cautionary notes also identified negative aspects associated with exercise and physical activity. The findings highlight the potential role that distance running can play as an easily accessible and enjoyable leisure activity, one that can help facilitate increased participation in exercise and physical activity as an integral part of an active and healthy lifestyle.

  18. Searches for the Standard Model Higgs boson at the Tevatron collider

    NASA Astrophysics Data System (ADS)

    Fisher, Wade C.; Junk, Thomas R.

    2016-10-01

    During Run II of the Tevatron collider, which took place from 2001 until 2011, the CDF and D0 detectors each collected approximately 10 fb -1 of poverline p collision data at a center-of-mass energy of √ s = 1.96 TeV. This dataset allowed for tests for the presence of the SM Higgs boson in the mass range 90-200 GeV in the production modes gg → H, W/ZH, vector-boson fusion, and toverline tH, with H decay modes H → boverline b, H → W+W-, H → τ+τ-, H → γγ, and H → ZZ. This chapter summarizes the search methods and the results of the Higgs boson search at the Tevatron. The increased sophistication of the analysis techniques as the collider run progressed is discussed, covering the strategies used over time to improve the sensitivity and breadth of the analyses. Using the full Tevatron data sample for both experiments, the combined Higgs search in all channels observes an excess consistent with the predicted SM Higgs boson signal with mass of 125 GeV, with a significance of 3.0 standard deviations above the background prediction.

  19. ATLAS LAr calorimeter performance and LHC Run-2 commissioning

    NASA Astrophysics Data System (ADS)

    Spettel, Fabian

    2016-07-01

    The ATLAS detector was built to study proton-proton collisions produced by the Large Hadron Collider (LHC) at a center of mass energy of up to 14 TeV. The Liquid Argon (LAr) calorimeters are used for all electromagnetic calorimetry as well as the hadronic calorimetry in the endcap and forward regions. They have shown excellent performance during the first LHC data taking campaign, from 2010 to 2012, so-called Run 1, at a peak luminosity of 8 ×1033cm-2s-1. During the next run, peak luminosities of 1.5 ×1034cm-2s-1 and even higher are expected at a 25 ns bunch spacing. Such a high collision rate may have an impact on the quality of the energy reconstruction which is attempted to be maintained at a high level using a calibration procedure described in this contribution. It also poses major challenges to the first level of the trigger system which is constrained to a maximal rate of 100 kHz. For Run-3, scheduled to start in 2019, instantaneous luminosity as high as 3 ×1034cm-2s-1 are foreseen imposing an upgrade of the LAr trigger system to maintain its performance. A demonstrator containing prototypes of the upgraded trigger electronic architecture has been installed on one of the barrel electromagnetic calorimeter readout front end crates to test it during the Run-2 campaign. The new architecture and its benefits for data taking will be discussed below as well as the results from first beam splash events.

  20. Collider Detector at Fermilab (CDF): Data from W, Z bosons and Drell Yan lepton pairs research of the CDF Electroweak Group

    DOE Data Explorer

    The Collider Detector at Fermilab (CDF) is a Tevatron experiment at Fermilab. The Tevatron, a powerful particle accelerator, accelerates protons and antiprotons close to the speed of light, and then makes them collide head-on inside the CDF detector. The CDF detector is used to study the products of such collisions. The CDF Physics Group at Fermilab is organized into six working groups, each with a specific focus. The Electroweak group studies production and properties of W, Z bosons and Drell Yan lepton pairs. Their public web page makes data and numerous figures available from both CDF Runs I and II.

  1. Dark Matter: Collider vs. direct searches

    NASA Astrophysics Data System (ADS)

    Jacques, T.

    2016-07-01

    Effective Field Theories (EFTs) are a useful tool across a wide range of DM searches, including LHC searches and direct detection. Given the current lack of indications about the nature of the DM particle and its interactions, a model independent interpretation of the collider bounds appears mandatory, especially in complementarity with the reinterpretation of the exclusion limits within a choice of simplified models, which cannot exhaust the set of possible completions of an effective Lagrangian. However EFTs must be used with caution at LHC energies, where the energy scale of the interaction is at a scale where the EFT approximation can no longer be assumed to be valid. Here we introduce some tools that allow the validity of the EFT approximation to be quantified, and provide case studies for two operators. We also show a technique that allows EFT constraints from collider searches to be made substantially more robust, even at large center-of-mass energies. This allows EFT constraints from different classes of experiment to be compared in a much more robust manner.

  2. ICOOL: A TOOL FOR MUON COLLIDER SIMULATIONS.

    SciTech Connect

    FERNOW,R.C.

    2001-09-28

    Current ideas for designing neutrino factories [ 1,2] and muon colliders [3] require unique configurations of fields and materials to prepare the muon beam for acceleration. This so-called front end system must accomplish the goals of phase rotation, bunching and cooling. We have continued the development of a 3-D tracking code, ICOOL [4], for examining possible muon collider front end configurations. A system is described in terms of a series of longitudinal regions with associated material and field properties. The tracking takes place in a coordinate system that follows a reference orbit through the system. The code takes into account decays and interactions of {approx}50-500 MeV/c muons in matter. Material geometry regions include cylinders and wedges. A number of analytic models are provided for describing the field configurations. Simple diagnostics are built into the code, including calculation of emittances and correlations, longitudinal traces, histograms and scatter plots. A number of auxiliary codes can be used for pre-processing, post-processing and optimization.

  3. Light-gravitino production at hadron colliders

    SciTech Connect

    Kim, J.; Nanopoulos, D.V.; Rangarajan, R.; Lopez, J.L.; Nanopoulos, D.V.; Zichichi, A.

    1998-01-01

    We consider the production of gravitinos ({tilde G}) in association with gluinos ({tilde g}) or squarks ({tilde q}) at hadron colliders, including the three main subprocesses: q{bar q}{r_arrow}{tilde g}{tilde G}, and qg{r_arrow}{tilde q}{tilde G}, and gg{r_arrow}{tilde g}{tilde G}. These channels become enhanced to the point of being observable for sufficiently light gravitino masses (m{sub {tilde G}}{lt}10{sup {minus}4}eV), as motivated by some supersymmetric explanations of the Collider Detector at Fermilab ee{gamma}{gamma}+E{sub T,miss} event. The characteristic signal of such events would be monojets, as opposed to dijets obtained in the more traditional supersymmetric process p{bar p}{r_arrow}{tilde g}{tilde g}. Searches for such events at the Fermilab Tevatron can impose lower limits on the gravitino mass. In the appendixes, we provide a complete set of Feynman rules for the gravitino interactions used in our calculation. {copyright} {ital 1997} {ital The American Physical Society}

  4. Frequency scaling of linear super-colliders

    SciTech Connect

    Mondelli, A.; Chernin, D.; Drobot, A.; Reiser, M.; Granatstein, V.

    1986-06-01

    The development of electron-positron linear colliders in the TeV energy range will be facilitated by the development of high-power rf sources at frequencies above 2856 MHz. Present S-band technology, represented by the SLC, would require a length in excess of 50 km per linac to accelerate particles to energies above 1 TeV. By raising the rf driving frequency, the rf breakdown limit is increased, thereby allowing the length of the accelerators to be reduced. Currently available rf power sources set the realizable gradient limit in an rf linac at frequencies above S-band. This paper presents a model for the frequency scaling of linear colliders, with luminosity scaled in proportion to the square of the center-of-mass energy. Since wakefield effects are the dominant deleterious effect, a separate single-bunch simulation model is described which calculates the evolution of the beam bunch with specified wakefields, including the effects of using programmed phase positioning and Landau damping. The results presented here have been obtained for a SLAC structure, scaled in proportion to wavelength.

  5. Cooling of electronics in collider experiments

    SciTech Connect

    Richard P. Stanek et al.

    2003-11-07

    Proper cooling of detector electronics is critical to the successful operation of high-energy physics experiments. Collider experiments offer unique challenges based on their physical layouts and hermetic design. Cooling systems can be categorized by the type of detector with which they are associated, their primary mode of heat transfer, the choice of active cooling fluid, their heat removal capacity and the minimum temperature required. One of the more critical detector subsystems to require cooling is the silicon vertex detector, either pixel or strip sensors. A general design philosophy is presented along with a review of the important steps to include in the design process. Factors affecting the detector and cooling system design are categorized. A brief review of some existing and proposed cooling systems for silicon detectors is presented to help set the scale for the range of system designs. Fermilab operates two collider experiments, CDF & D0, both of which have silicon systems embedded in their detectors. A review of the existing silicon cooling system designs and operating experience is presented along with a list of lessons learned.

  6. D-Zero results on W boson properties

    SciTech Connect

    Abbott, B.

    1997-10-01

    The D0 experiment collected {approx} 15 pb{sup -1} in run 1A (1992- 1993) and {approx} 89 pb{sup -1} in run 1B (1994-1995) of the Fermilab Tevatron Collider using p{anti p} collisions at {radical}s = 1.8 TeV. Results from analyses of events with W and Z bosons are presented for the run 1B data samples. From W {yields} e{nu}, {mu}{nu} and Z {yields} ee, {mu}{mu} decays, the W and Z production cross sections and the W width are determined. Events with W {yields} {tau}{nu} decays are used to determine the ratio of the electroweak gauge coupling constants as a measure of lepton universality. Using W {yields} e{nu} and Z {yields} ee decays, the W boson mass is measured.

  7. D0 results on W boson properties

    SciTech Connect

    Streets, K.

    1997-06-01

    The D0 experiment collected {approx} 15 pb{sup -1} in run 1A (1992- 1993) and {approx}89 pb{sup -1} in run 1B (1994-1995) of the Fermilab Tevatron Collider using p{anti p} collisions at {radical}s = 1.8 TeV. Results from analyses of events with W and Z bosons are presented for the run 1B data samples. From W {yields} e{nu}, {mu}{nu} and Z {yields} ee, {mu}{mu} decays, the W and Z production cross sections and the W width are determined. Events with W {yields} {tau}{nu} decays are used to determine the ratio of the electroweak gauge coupling constants as a measure of lepton universality. Using W {yields} e{nu} and Z {yields} ee decays, the W boson mass is measured.

  8. Muon colliders: New prospects for precision physics and the high energy frontier

    SciTech Connect

    King, B.J.

    1998-06-01

    An overview is given of muon collider technology and of the current status of the muon collider research program. The exciting potential of muon colliders for both neutrino physics and collider physics studies is then described and illustrated using self-consistent collider parameter sets at 0.1 TeV to 100 TeV center-of-mass energies.

  9. STAR FORMATION IN TURBULENT MOLECULAR CLOUDS WITH COLLIDING FLOW

    SciTech Connect

    Matsumoto, Tomoaki; Dobashi, Kazuhito; Shimoikura, Tomomi

    2015-03-10

    Using self-gravitational hydrodynamical numerical simulations, we investigated the evolution of high-density turbulent molecular clouds swept by a colliding flow. The interaction of shock waves due to turbulence produces networks of thin filamentary clouds with a sub-parsec width. The colliding flow accumulates the filamentary clouds into a sheet cloud and promotes active star formation for initially high-density clouds. Clouds with a colliding flow exhibit a finer filamentary network than clouds without a colliding flow. The probability distribution functions (PDFs) for the density and column density can be fitted by lognormal functions for clouds without colliding flow. When the initial turbulence is weak, the column density PDF has a power-law wing at high column densities. The colliding flow considerably deforms the PDF, such that the PDF exhibits a double peak. The stellar mass distributions reproduced here are consistent with the classical initial mass function with a power-law index of –1.35 when the initial clouds have a high density. The distribution of stellar velocities agrees with the gas velocity distribution, which can be fitted by Gaussian functions for clouds without colliding flow. For clouds with colliding flow, the velocity dispersion of gas tends to be larger than the stellar velocity dispersion. The signatures of colliding flows and turbulence appear in channel maps reconstructed from the simulation data. Clouds without colliding flow exhibit a cloud-scale velocity shear due to the turbulence. In contrast, clouds with colliding flow show a prominent anti-correlated distribution of thin filaments between the different velocity channels, suggesting collisions between the filamentary clouds.

  10. What Keeps Us on the Run?

    ERIC Educational Resources Information Center

    McCutcheon, Lynn

    Running is a popular form of exercise which people do for different reasons. Competitive runners (N=99) and noncompetitive runners (N=28) responded to a survey of 10 reasons for running by choosing their most important reasons for running. Subjects also indicated their age, sex, how long they had been running, their average weekly mileage, how…

  11. Physiologic Responses to Treadmill and Water Running.

    ERIC Educational Resources Information Center

    Bishop, Phillip A.; And Others

    1989-01-01

    Presents results of a study of the physiological responses of uninjured runners to running on a treadmill and in water. Water running may lessen an injured athlete's rate of deconditioning, but indications are that the metabolic cost of water running is not significantly greater than that of treadmill running. (SM)

  12. Preventing Running Injuries through Barefoot Activity

    ERIC Educational Resources Information Center

    Hart, Priscilla M.; Smith, Darla R.

    2008-01-01

    Running has become a very popular lifetime physical activity even though there are numerous reports of running injuries. Although common theories have pointed to impact forces and overpronation as the main contributors to chronic running injuries, the increased use of cushioning and orthotics has done little to decrease running injuries. A new…

  13. GASIFICATION TEST RUN TC06

    SciTech Connect

    Southern Company Services, Inc.

    2003-08-01

    This report discusses test campaign TC06 of the Kellogg Brown & Root, Inc. (KBR) Transport Reactor train with a Siemens Westinghouse Power Corporation (Siemens Westinghouse) particle filter system at the Power Systems Development Facility (PSDF) located in Wilsonville, Alabama. The Transport Reactor is an advanced circulating fluidized-bed reactor designed to operate as either a combustor or a gasifier using a particulate control device (PCD). The Transport Reactor was operated as a pressurized gasifier during TC06. Test run TC06 was started on July 4, 2001, and completed on September 24, 2001, with an interruption in service between July 25, 2001, and August 19, 2001, due to a filter element failure in the PCD caused by abnormal operating conditions while tuning the main air compressor. The reactor temperature was varied between 1,725 and 1,825 F at pressures from 190 to 230 psig. In TC06, 1,214 hours of solid circulation and 1,025 hours of coal feed were attained with 797 hours of coal feed after the filter element failure. Both reactor and PCD operations were stable during the test run with a stable baseline pressure drop. Due to its length and stability, the TC06 test run provided valuable data necessary to analyze long-term reactor operations and to identify necessary modifications to improve equipment and process performance as well as progressing the goal of many thousands of hours of filter element exposure.

  14. Running Jobs in the Vacuum

    NASA Astrophysics Data System (ADS)

    McNab, A.; Stagni, F.; Ubeda Garcia, M.

    2014-06-01

    We present a model for the operation of computing nodes at a site using Virtual Machines (VMs), in which VMs are created and contextualized for experiments by the site itself. For the experiment, these VMs appear to be produced spontaneously "in the vacuum" rather having to ask the site to create each one. This model takes advantage of the existing pilot job frameworks adopted by many experiments. In the Vacuum model, the contextualization process starts a job agent within the VM and real jobs are fetched from the central task queue as normal. An implementation of the Vacuum scheme, Vac, is presented in which a VM factory runs on each physical worker node to create and contextualize its set of VMs. With this system, each node's VM factory can decide which experiments' VMs to run, based on site-wide target shares and on a peer-to-peer protocol in which the site's VM factories query each other to discover which VM types they are running. A property of this system is that there is no gate keeper service, head node, or batch system accepting and then directing jobs to particular worker nodes, avoiding several central points of failure. Finally, we describe tests of the Vac system using jobs from the central LHCb task queue, using the same contextualization procedure for VMs developed by LHCb for Clouds.

  15. A search for first generation scalar leptoquarks at {radical}s = 1.8 TeV with the D0 detector

    SciTech Connect

    Norman, D.M.

    1993-12-31

    A search for first generation scalar leptoquarks was done at the DO detector at Fermi National Accelerator Laboratory from 15 pb{minus}1 of data taken during the 1992--1993 colder run. At Fermilab`s p{bar p} collider with a center-of-mass energy of 1.8 TeV, leptoquarks are produced mostly by the strong force in pairs. Leptoquarks carry fractional charge, color, and also lepton and baryon quantum numbers. First generation leptoquarks couple exclusively to the electron, electron neutrino, and the u and d quarks; such a leptoquark would decay into, for example, an electron plus a quark. Signatures for leptoquarks at p{bar p} colliders that have been investigated at DO are two electrons plus two jets and one electron plus missing energy (from an electron neutrino) plus two jets.

  16. Running: Improving Form to Reduce Injuries.

    PubMed

    2015-08-01

    Running is often perceived as a good option for "getting into shape," with little thought given to the form, or mechanics, of running. However, as many as 79% of all runners will sustain a running-related injury during any given year. If you are a runner-casual or serious-you should be aware that poor running mechanics may contribute to these injuries. A study published in the August 2015 issue of JOSPT reviewed the existing research to determine whether running mechanics could be improved, which could be important in treating running-related injuries and helping injured runners return to pain-free running.

  17. Development work for a superconducting linear collider

    NASA Technical Reports Server (NTRS)

    Matheisen, Axel

    1995-01-01

    For future linear e(+)e(-) colliders in the TeV range several alternatives are under discussion. The TESLA approach is based on the advantages of superconductivity. High Q values of the accelerator structures give high efficiency for converting RF power into beam power. A low resonance frequency for the RF structures can be chosen to obtain a large number of electrons (positrons) per bunch. For a given luminosity the beam dimensions can be chosen conservatively which leads to relaxed beam emittance and tolerances at the final focus. Each individual superconducting accelerator component (resonator cavity) of this linear collider has to deliver an energy gain of 25 MeV/m to the beam. Today s.c. resonators are in use at CEBAF/USA, at DESY/Germany, Darmstadt/Germany KEK/Japan and CERN/Geneva. They show acceleration gradients between 5 MV/m and 10 MV/m. Encouraging experiments at CEA Saclay and Cornell University showed acceleration gradients of 20 MV/m and 25 MV/m in single and multicell structures. In an activity centered at DESY in Hamburg/Germany the TESLA collaboration is constructing a 500 MeV superconducting accelerator test facility (TTF) to demonstrate that a linear collider based on this technique can be built in a cost effective manner and that the necessary acceleration gradients of more than 15 MeV/m can be reached reproducibly. The test facility built at DESY covers an area of 3.000 m2 and is divided into 3 major activity areas: (1) The testlinac, where the performance ofthe modular components with an electron beam passing the 40 m long acceleration section can be demonstrated. (2) The test area, where all individual resonators are tested before installation into a module. (3) The preparation and assembly area, where assembly of cavities and modules take place. We report here on the design work to reach a reduction of costs compared to actual existing superconducting accelerator structures and on the facility set up to reach high acceleration gradients in

  18. Design considerations for a laser-plasma linear collider

    SciTech Connect

    Schroeder, C. B.; Esarey, E.; Geddes, C. G. R.; Toth, Cs.; Leemans, W. P.

    2009-01-22

    Design considerations for a next-generation electron-positron linear collider based on laser-plasma-accelerators are discussed. Several of the advantages and challenges of laser-plasma-based accelerator technology are addressed. An example of the parameters for a 1 TeV laser-plasma-based collider is presented.

  19. The Threshold of Embedded M Collider Bias and Confounding Bias

    ERIC Educational Resources Information Center

    Kelcey, Benjamin; Carlisle, Joanne

    2011-01-01

    Of particular import to this study, is collider bias originating from stratification on retreatment variables forming an embedded M or bowtie structural design. That is, rather than assume an M structural design which suggests that "X" is a collider but not a confounder, the authors adopt what they consider to be a more reasonable position and…

  20. Detectors for Neutrino Physics at the First Muon Collider

    SciTech Connect

    Harris, D.A.; McFarland, K.S.

    1998-04-01

    We consider possible detector designs for short-baseline neutrino experiments using neutrino beams produced at the First Muon Collider complex. The high fluxes available at the muon collider make possible high statistics deep-inelastic scattering neutrino experiments with a low-mass target. A design of a low-energy neutrino oscillation experiment on the ``tabletop`` scale is also discussed.

  1. Physics prospects: Why do we want a linear collider?

    SciTech Connect

    Murayama, Hitoshi |

    1995-12-01

    The need to understand physics of electroweak symmetry breaking is reviewed. An electron positron linear collider will play crucial roles in that respect. It is discussed how the LHC and a linear collider need each other to understand symmetry breaking mechanism unambiguously. Two popular scenarios, supersymmetry and technicolor- like models, are used to demonstrate this point.

  2. Ground motion data for International Collider models

    SciTech Connect

    Volk, J.T.; LeBrun, P.; Shiltsev, V.; Singatulin, S.; /Fermilab

    2007-11-01

    The proposed location for the International Linear Collider (ILC) in the Americas region is Fermilab in Batavia Illinois. If built at this location the tunnels would be located in the Galena Platteville shale at a depth of 100 or more meters below the surface. Studies using hydro static water levels and seismometers have been conducted in the MINOS hall and the LaFrange Mine in North Aurora Illinois to determine the level of ground motion. Both these locations are in the Galena Platteville shale and indicate the typical ground motion to be expected for the ILC. The data contains both natural and cultural noise. Coefficients for the ALT law are determined. Seismic measurements at the surface and 100 meters below the surface are presented.

  3. QCD and jets at hadron colliders

    NASA Astrophysics Data System (ADS)

    Sapeta, Sebastian

    2016-07-01

    We review various aspects of jet physics in the context of hadron colliders. We start by discussing the definitions and properties of jets and recent development in this area. We then consider the question of factorization for processes with jets, in particular for cases in which jets are produced in special configurations, like for example in the region of forward rapidities. We review numerous perturbative methods for calculating predictions for jet processes, including the fixed-order calculations as well as various matching and merging techniques. We also discuss the questions related to non-perturbative effects and the role they play in precision jet studies. We describe the status of calculations for processes with jet vetoes and we also elaborate on production of jets in forward direction. Throughout the article, we present selected comparisons between state-of-the-art theoretical predictions and the data from the LHC.

  4. Galaxies Collide to Create Hot, Huge Galaxy

    NASA Technical Reports Server (NTRS)

    2009-01-01

    This image of a pair of colliding galaxies called NGC 6240 shows them in a rare, short-lived phase of their evolution just before they merge into a single, larger galaxy. The prolonged, violent collision has drastically altered the appearance of both galaxies and created huge amounts of heat turning NGC 6240 into an 'infrared luminous' active galaxy.

    A rich variety of active galaxies, with different shapes, luminosities and radiation profiles exist. These galaxies may be related astronomers have suspected that they may represent an evolutionary sequence. By catching different galaxies in different stages of merging, a story emerges as one type of active galaxy changes into another. NGC 6240 provides an important 'missing link' in this process.

    This image was created from combined data from the infrared array camera of NASA's Spitzer Space Telescope at 3.6 and 8.0 microns (red) and visible light from NASA's Hubble Space Telescope (green and blue).

  5. The Structure of Jets at Hadron Colliders

    SciTech Connect

    Larkoski, Andrew James

    2012-08-01

    Particle physics seeks to understand the interactions and properties of the fundamental particles. To gain understanding, there is an interplay between theory and experiment. Models are proposed to explain how particles behave and interact. These models make precise predictions that can be tested. Experiments are built and executed to measure the properties of these particles, providing necessary tests for the theories that attempt to explain the realm of fundamental particles. However, there is also another level of interaction between theory and experiment; the development of new experiments demands the study of how particles will behave with respect to the measured observables toward the goal of understanding the details and idiosyncrasies of the measurements very well. Only once these are well-modeled and understood can one be con dent that the data that are measured is trustworthy. The modeling and interpretation of the physics of a proton collider, such as the LHC, is the main topic of this thesis.

  6. Small air showers and collider physics

    NASA Technical Reports Server (NTRS)

    Capdevielle, J. N.; Gawin, J.; Grochalska, B.

    1985-01-01

    At energies lower than 2.5 X 10 to the 5 GeV (in Lab. system), more accurate information on nucleon-nucleon collision (p-p collider and on primary composition now exist. The behavior of those both basic elements in cosmic ray phenomenology from ISR energy suggests some tendencies for reasonable extrapolation in the next decade 2.0x10 to the 5 to 2.0x10 to the 6 GeV. Small showers in altitude, recorded in the decade 2 X 10 to the 4 to 2 X 10 to the 5 GeV offers a good tool to testify the validity of all the Monte-Carlo simulation analysis and appreciate how nucleon-air collision are different from nucleon-nucleon collisions.

  7. Illuminating new electroweak states at hadron colliders

    NASA Astrophysics Data System (ADS)

    Ismail, Ahmed; Izaguirre, Eder; Shuve, Brian

    2016-07-01

    In this paper, we propose a novel powerful strategy to perform searches for new electroweak states. Uncolored electroweak states appear in generic extensions of the Standard Model (SM) and yet are challenging to discover at hadron colliders. This problem is particularly acute when the lightest state in the electroweak multiplet is neutral and all multiplet components are approximately degenerate. In this scenario, production of the charged fields of the multiplet is followed by decay into nearly invisible states; if this decay occurs promptly, the only way to infer the presence of the reaction is through its missing energy signature. Our proposal relies on emission of photon radiation from the new charged states as a means of discriminating the signal from SM backgrounds. We demonstrate its broad applicability by studying two examples: a pure Higgsino doublet and an electroweak quintuplet field.

  8. Tracking study of hadron collider boosters

    SciTech Connect

    Machida, S.; Bourianoff, G.; Huang, Y.; Mahale, N.

    1992-07-01

    A simulation code SIMPSONS (previously called 6D-TEASE T) of single- and multi-particle tracking has been developed for proton synchrotrons. The 6D phase space coordinates are calculated each time step including acceleration with an arbitrary ramping curve by integration of the rf phase. Space-charge effects are modelled by means of the Particle In Cell (PIC) method. We observed the transverse emittance growth around the injection energy of the Low Energy Booster (LEB) of the Superconducting Super Collider (SSC) with and without second harmonic rf cavities which reduce peak line density. We also employed the code to see the possible transverse emittance deterioration around the transition energy in the Medium Energy Booster (MEB) and to estimate the emittance dilution due to an injection error of the MEB.

  9. The Superconducting Super Collider Low Energy Booster

    SciTech Connect

    York, R.C.; Funk, W.; Garren, A.; Machida, S.; Mahale, N.K.; Peterson, J.; Pilat, F.; Wu, X. ); Wienands, U. )

    1991-05-01

    In collider fill mode, the Low Energy Booster (LEB) will accelerate 10{sup 12} protons in 114 bunches from an injection momentum of 1.22 GeV/c to a final momentum of 12 Gev/c, cycling at a frequency of 10 Hz. The most significant extension of present fast-cycling synchrotron technology arises from the requirement that the normalized transverse emittance (rms) of the beam be {le}0.6 {pi} {mu}m. In an alternative mode, the LEB will accelerate five times this current with a normalized transverse emittance {le} 4 {pi} {mu}m. A general overview of the design is presented. 7 refs., 2 figs., 4 tabs.

  10. Beam Dynamics Considerations in Electron Ion Colliders

    NASA Astrophysics Data System (ADS)

    Krafft, Geoffrey

    2015-04-01

    The nuclear physics community is converging on the idea that the next large project after FRIB should be an electron-ion collider. Both Brookhaven National Lab and Thomas Jefferson National Accelerator Facility have developed accelerator designs, both of which need novel solutions to accelerator physics problems. In this talk we discuss some of the problems that must be solved and their solutions. Examples in novel beam optics systems, beam cooling, and beam polarization control will be presented. Authored by Jefferson Science Associates, LLC under U.S. DOE Contract No. DE-AC05-06OR23177. The U.S. Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce this manuscript for U.S. Government purposes.

  11. Big Science and the Large Hadron Collider

    NASA Astrophysics Data System (ADS)

    Giudice, Gian Francesco

    2012-03-01

    The Large Hadron Collider (LHC), the particle accelerator operating at CERN, is probably the most complex and ambitious scientific project ever accomplished by humanity. The sheer size of the enterprise, in terms of financial and human resources, naturally raises the question whether society should support such costly basic-research programs. I address this question by first reviewing the process that led to the emergence of Big Science and the role of large projects in the development of science and technology. I then compare the methodologies of Small and Big Science, emphasizing their mutual linkage. Finally, after examining the cost of Big Science projects, I highlight several general aspects of their beneficial implications for society.

  12. Genesis of the Large Hadron Collider.

    PubMed

    Smith, Chris Llewellyn

    2015-01-13

    This paper describes the scientific, technical and political genesis of the Large Hadron Collider (LHC). It begins with an outline of the early history of the LHC, from first thoughts and accelerator and detector developments that underwrote the project, through the first studies of the LHC and its scientific potential and the genesis of the experimental programme, to the presentation of the proposal to build the LHC to the CERN Council in December 1993. The events that led to the proposal to build the LHC in two stages, which was approved in December 1994, are then described. Next, the role of non-Member State contributions and of the agreement that CERN could take loans, which allowed single stage construction to be approved in December 1996, despite a cut in the Members' contributions, are explained. The paper concludes by identifying points of potential relevance for the approval of possible future large particle physics projects.

  13. Colliding Beam Fusion Reactor Space Propulsion System

    NASA Astrophysics Data System (ADS)

    Cheung, A.; Binderbauer, M.; Liu, F.; Qerushi, A.; Rostoker, N.; Wessel, F. J.

    2004-02-01

    The Colliding Beam Fusion Reactor Space Propulsion System, CBFR-SPS, is an aneutronic, magnetic-field-reversed configuration, fueled by an energetic-ion mixture of hydrogen and boron11 (H-B11). Particle confinement and transport in the CBFR-SPS are classical, hence the system is scaleable. Fusion products are helium ions, α-particles, expelled axially out of the system. α-particles flowing in one direction are decelerated and their energy recovered to ``power'' the system; particles expelled in the opposite direction provide thrust. Since the fusion products are charged particles, the system does not require the use of a massive-radiation shield. This paper describes a 100 MW CBFR-SPS design, including estimates for the propulsion-system parameters and masses. Specific emphasis is placed on the design of a closed-cycle, Brayton-heat engine, consisting of heat-exchangers, turbo-alternator, compressor, and finned radiators.

  14. The future of the Large Hadron Collider and CERN.

    PubMed

    Heuer, Rolf-Dieter

    2012-02-28

    This paper presents the Large Hadron Collider (LHC) and its current scientific programme and outlines options for high-energy colliders at the energy frontier for the years to come. The immediate plans include the exploitation of the LHC at its design luminosity and energy, as well as upgrades to the LHC and its injectors. This may be followed by a linear electron-positron collider, based on the technology being developed by the Compact Linear Collider and the International Linear Collider collaborations, or by a high-energy electron-proton machine. This contribution describes the past, present and future directions, all of which have a unique value to add to experimental particle physics, and concludes by outlining key messages for the way forward.

  15. Time resolved diagnostics of ions in colliding carbon plasmas

    SciTech Connect

    Singh, Ravi Pratap; Gupta, Shyam L.; Thareja, Raj K.

    2014-11-14

    We report a comparative study of the dynamic behaviour of ions at different pressures in laser ablated colliding and single plasma plumes using 2D imaging, optical emission spectroscopy (OES) and a retarding field analyser (RFA). 2D imaging shows the splitting of plasma plumes due to different velocities of various plasma species. OES shows enhancement in abundance of ionic species with their presence for a longer time in colliding plume. C{sub 2} molecular formation is seen at later time in colliding plume compared to single plume and is attributed to dominating collisional processes in the colliding region of the plumes. The time of flight distribution of ions traced by the RFA shows the variation with change in fluence as well as ambient pressure for both colliding and single plume. Time of flight analysis of ions also shows the appearance of a fast peak in ion signal due to acceleration of ions at larger fluence.

  16. Run and tumble, run and reverse, or run reverse and flick - who wins the chemotaxis race?

    NASA Astrophysics Data System (ADS)

    Zaburdaev, Vasily; Denisov, Sergey; Weitz, David

    2012-02-01

    Run and tumble of E.coli bacteria is a well understood example of the stochastic cell motion that is alternated in the presence of signaling chemicals. By regulating the tumbling frequency bacteria are able to navigate toward the food sources. Another bacteria that use twitching to move on a surface, M. xanthus, utilize a different strategy - at the end of the run they completely reverse the direction of motion and continue moving in the opposite direction. The frequency of reversals was shown to be connected to the chemotactic response of the cell. Recently yet another pattern was discovered in marine bacteria V. alginolyticus which alternate sharp reversals with flicks -- making a turn to an angle with a broad distribution and centered around 90 degrees. In this work we are presenting a theoretical framework that describes all above motion patterns. As a highlight of the developed approach we find the exact analytical expressions for the mean squared displacement of moving cells for arbitrary distribution of run times. That allows us to quantitatively compare the performance of bacteria exploring the environment with and without signaling chemicals and, therefore, to find the winner of the chemotactic race.

  17. The Relativistic Heavy Ion Collider control system

    SciTech Connect

    Clifford, T.S.; Barton, D.S.; Oerter, B.R.

    1997-12-01

    The Relativistic Heavy Ion Collider control system has been used in the commissioning of the AGS to RHIC transfer line and in the first RHIC sextant test. Much of the controls infrastructure for networks and links has been installed throughout the collider. All of the controls hardware modules needed to be built for early RHIC operations have been designed and tested. Many of these VME modules are already being used in normal AGS operations. Over 150 VME based front end computers and device controllers will be installed by the Summer of 1998 in order to be ready for Fall of 1998. A few features are being added to the front end computer core software. The bulk of the Accelerator Device Objects (ADOs) which are instantiated in the FECs, have been written and tested in the early commissioning. A configuration database has been designed. Generic control and display of ADO parameters via a spreadsheet like program on the console level computers was provided early on in the control system development. User interface tools that were developed for the AGS control system have been used in RHIC applications. Some of the basic operations programs, like alarm display and save/restore, that are used in the AGS operations have been or will be expanded to support RHIC operations. A model for application programs which involves a console level manager servicing ADOs have been verified with a few RHIC applications. More applications need to be written for the Fall of 1998 commissioning effort. A sequencer for automatic control of the fill is being written with the expectation that it will be useful in early commissioning.

  18. Detectors for Linear Colliders: Calorimetry at a Future Electron-Positron Collider (3/4)

    ScienceCinema

    None

    2016-07-12

    Calorimetry will play a central role in determining the physics reach at a future e+e- collider. The requirements for calorimetry place the emphasis on achieving an excellent jet energy resolution. The currently favoured option for calorimetry at a future e+e- collider is the concept of high granularity particle flow calorimetry. Here granularity and a high pattern recognition capability is more important than the single particle calorimetric response. In this lecture I will describe the recent progress in understanding the reach of high granularity particle flow calorimetry and the related R&D; efforts which concentrate on test beam demonstrations of the technological options for highly granular calorimeters. I will also discuss alternatives to particle flow, for example the technique of dual readout calorimetry.

  19. Detectors for Linear Colliders: Calorimetry at a Future Electron-Positron Collider (3/4)

    SciTech Connect

    2010-02-17

    Calorimetry will play a central role in determining the physics reach at a future e+e- collider. The requirements for calorimetry place the emphasis on achieving an excellent jet energy resolution. The currently favoured option for calorimetry at a future e+e- collider is the concept of high granularity particle flow calorimetry. Here granularity and a high pattern recognition capability is more important than the single particle calorimetric response. In this lecture I will describe the recent progress in understanding the reach of high granularity particle flow calorimetry and the related R&D; efforts which concentrate on test beam demonstrations of the technological options for highly granular calorimeters. I will also discuss alternatives to particle flow, for example the technique of dual readout calorimetry.

  20. Status and future directions for advanced accelerator research - conventional and non-conventional collider concepts

    SciTech Connect

    Siemann, R.H.

    1997-01-01

    The relationship between advanced accelerator research and future directions for particle physics is discussed. Comments are made about accelerator research trends in hadron colliders, muon colliders, and e{sup +}3{sup {minus}} linear colliders.

  1. Collider Phenomenology with Split-UED

    SciTech Connect

    Kong, Kyoungchul; Park, Seong Chan; Rizzo, Thomas G.; /SLAC

    2011-12-15

    We investigate the collider implications of Split Universal Extra Dimensions. The non-vanishing fermion mass in the bulk, which is consistent with the KK-parity, largely modifies the phenomenology of Minimal Universal Extra Dimensions. We scrutinize the behavior of couplings and study the discovery reach of the Tevatron and the LHC for level-2 Kaluza-Klein modes in the dilepton channel, which would indicates the presence of the extra dimensions. Observation of large event rates for dilepton resonances can result from a nontrivial fermion mass profile along the extra dimensions, which, in turn, may corroborate extra dimensional explanation for the observation of the positron excess in cosmic rays. The Minimal Universal Extra Dimensions scenario has received great attention. Recently non-vanishing bulk fermion masses have been introduced without spoiling the virtue of KK-parity. The fermion profiles are no longer simple sine/cosine functions and depend upon the specific values of bulk parameters. The profiles of fermions are split along the extra dimensions while the wave functions of the bosons remain the same as in UED. A simple introduction of a KK-parity conserving bulk fermion mass has significant influences on collider aspects as well as astrophysical implications of UED. For instance, the DM annihilation fraction into certain SM fermion pairs is either enhanced or reduced (compared to the MUED case) so that one can perhaps explain the PAMELA positron excess while suppressing the anti-proton flux. In this paper, we have concentrated on collider phenomenology of Split Universal Extra Dimensions. We have revisited the KK decomposition in detail and analyzed wave function overlaps to compute relevant couplings for collider studies. We have discussed general collider implication for level-1 KK modes and level-2 KK with non-zero bulk mass and have computed LHC reach for the EW level-2 KK bosons, {gamma}{sub 2} and Z{sub 2}, in the dilepton channel. The LHC should

  2. Variable Joint Elasticities in Running

    NASA Astrophysics Data System (ADS)

    Peter, Stephan; Grimmer, Sten; Lipfert, Susanne W.; Seyfarth, Andre

    In this paper we investigate how spring-like leg behavior in human running is represented at joint level. We assume linear torsion springs in the joints and between the knee and the ankle joint. Using experimental data of the leg dynamics we compute how the spring parameters (stiffness and rest angles) change during gait cycle. We found that during contact the joints reveal elasticity with strongly changing parameters and compare the changes of different parameters for different spring arrangements. The results may help to design and improve biologically inspired spring mechanisms with adjustable parameters.

  3. Supersymmetric QCD one-loop effects in (un)polarized top-pair production at hadron colliders

    SciTech Connect

    Berge, Stefan; Hollik, Wolfgang; Mosle, Wolf M.; Wackeroth, Doreen

    2007-08-01

    We study the effects of O({alpha}{sub s}) supersymmetric QCD (SQCD) corrections on the total production rate and kinematic distributions of polarized and unpolarized top-pair production in pp and pp collisions. At the Fermilab Tevatron pp collider, top-quark pairs are mainly produced via quark-antiquark annihilation, qq{yields}tt, while at the CERN LHC pp collider gluon-gluon scattering, gg{yields}tt, dominates. We compute the complete set of O({alpha}{sub s}) SQCD corrections to both production channels and study their dependence on the parameters of the minimal supersymmetric standard model. In particular, we discuss the prospects for observing strong, loop-induced SUSY effects in top-pair production at the Tevatron run II and the LHC.

  4. Fatigue associated with prolonged graded running.

    PubMed

    Giandolini, Marlene; Vernillo, Gianluca; Samozino, Pierre; Horvais, Nicolas; Edwards, W Brent; Morin, Jean-Benoît; Millet, Guillaume Y

    2016-10-01

    Scientific experiments on running mainly consider level running. However, the magnitude and etiology of fatigue depend on the exercise under consideration, particularly the predominant type of contraction, which differs between level, uphill, and downhill running. The purpose of this review is to comprehensively summarize the neurophysiological and biomechanical changes due to fatigue in graded running. When comparing prolonged hilly running (i.e., a combination of uphill and downhill running) to level running, it is found that (1) the general shape of the neuromuscular fatigue-exercise duration curve as well as the etiology of fatigue in knee extensor and plantar flexor muscles are similar and (2) the biomechanical consequences are also relatively comparable, suggesting that duration rather than elevation changes affects neuromuscular function and running patterns. However, 'pure' uphill or downhill running has several fatigue-related intrinsic features compared with the level running. Downhill running induces severe lower limb tissue damage, indirectly evidenced by massive increases in plasma creatine kinase/myoglobin concentration or inflammatory markers. In addition, low-frequency fatigue (i.e., excitation-contraction coupling failure) is systematically observed after downhill running, although it has also been found in high-intensity uphill running for different reasons. Indeed, low-frequency fatigue in downhill running is attributed to mechanical stress at the interface sarcoplasmic reticulum/T-tubule, while the inorganic phosphate accumulation probably plays a central role in intense uphill running. Other fatigue-related specificities of graded running such as strategies to minimize the deleterious effects of downhill running on muscle function, the difference of energy cost versus heat storage or muscle activity changes in downhill, level, and uphill running are also discussed. PMID:27456477

  5. Design and construction of vacuum systems for large colliders using superconducting magnets

    SciTech Connect

    Halama, H.J.

    1983-01-01

    Vacuum system requirements for proton accelerators and colliders with superconducting megnets are discussed. The vacuum systems for the colliding beam accelerator and the Tevatron are described. (WHK)

  6. Effect of Minimalist Footwear on Running Efficiency

    PubMed Central

    Gillinov, Stephen M.; Laux, Sara; Kuivila, Thomas; Hass, Daniel; Joy, Susan M.

    2015-01-01

    Background: Although minimalist footwear is increasingly popular among runners, claims that minimalist footwear enhances running biomechanics and efficiency are controversial. Hypothesis: Minimalist and barefoot conditions improve running efficiency when compared with traditional running shoes. Study Design: Randomized crossover trial. Level of Evidence: Level 3. Methods: Fifteen experienced runners each completed three 90-second running trials on a treadmill, each trial performed in a different type of footwear: traditional running shoes with a heavily cushioned heel, minimalist running shoes with minimal heel cushioning, and barefoot (socked). High-speed photography was used to determine foot strike, ground contact time, knee angle, and stride cadence with each footwear type. Results: Runners had more rearfoot strikes in traditional shoes (87%) compared with minimalist shoes (67%) and socked (40%) (P = 0.03). Ground contact time was longest in traditional shoes (265.9 ± 10.9 ms) when compared with minimalist shoes (253.4 ± 11.2 ms) and socked (250.6 ± 16.2 ms) (P = 0.005). There was no difference between groups with respect to knee angle (P = 0.37) or stride cadence (P = 0.20). When comparing running socked to running with minimalist running shoes, there were no differences in measures of running efficiency. Conclusion: When compared with running in traditional, cushioned shoes, both barefoot (socked) running and minimalist running shoes produce greater running efficiency in some experienced runners, with a greater tendency toward a midfoot or forefoot strike and a shorter ground contact time. Minimalist shoes closely approximate socked running in the 4 measurements performed. Clinical Relevance: With regard to running efficiency and biomechanics, in some runners, barefoot (socked) and minimalist footwear are preferable to traditional running shoes. PMID:26131304

  7. First measurement and correction of nonlinear errors in the experimental insertions of the CERN Large Hadron Collider

    NASA Astrophysics Data System (ADS)

    Maclean, E. H.; Tomás, R.; Giovannozzi, M.; Persson, T. H. B.

    2015-12-01

    Nonlinear magnetic errors in low-β insertions can contribute significantly to detuning with amplitude, linear and nonlinear chromaticity, and lead to degradation of dynamic aperture and beam lifetime. As such, the correction of nonlinear errors in the experimental insertions of colliders can be of critical significance for successful operation. This is expected to be of particular relevance to the LHC's second run and its high luminosity upgrade, as well as to future colliders such as the Future Circular Collider. Current correction strategies envisioned for these colliders assume it will be possible to calculate optimized local corrections through the insertions, using a magnetic model of the errors. This paper shows however, that reliance purely upon magnetic measurements of the nonlinear errors of insertion elements is insufficient to guarantee a good correction quality in the relevant low-β* regime. It is possible to perform beam-based examination of nonlinear magnetic errors via the feed-down to readily observed beam properties upon application of closed orbit bumps, and methods based upon feed-down to tune have been utilized at RHIC, SIS18, and SPS. This paper demonstrates the extension of such methodology to include direct observation of feed-down to linear coupling in the LHC. It is further shown that such beam-based studies can be used to complement magnetic measurements performed during LHC construction, in order to validate and refine the magnetic model of the collider. Results from first attempts of the measurement and correction of nonlinear errors in the LHC experimental insertions are presented. Several discrepancies of beam-based studies with respect to the LHC magnetic model are reported.

  8. Running as an Adjunct to Psychotherapy.

    ERIC Educational Resources Information Center

    Leer, Frederic

    1980-01-01

    Physical benefits of running have been highly publicized. Explores the equally valuable psychological benefits to be derived from running and examines how mastering a physical skill can be generalized to mastery in other areas of life. (Author)

  9. Running Parallel Discrete Event Simulators on Sierra

    SciTech Connect

    Barnes, P. D.; Jefferson, D. R.

    2015-12-03

    In this proposal we consider porting the ROSS/Charm++ simulator and the discrete event models that run under its control so that they run on the Sierra architecture and make efficient use of the Volta GPUs.

  10. Diphoton excess and running couplings

    NASA Astrophysics Data System (ADS)

    Bae, Kyu Jung; Endo, Motoi; Hamaguchi, Koichi; Moroi, Takeo

    2016-06-01

    The recently observed diphoton excess at the LHC may suggest the existence of a singlet (pseudo-)scalar particle with a mass of 750 GeV which couples to gluons and photons. Assuming that the couplings to gluons and photons originate from loops of fermions and/or scalars charged under the Standard Model gauge groups, we show that there is a model-independent upper bound on the cross section σ (pp → S → γγ) as a function of the cutoff scale Λ and masses of the fermions and scalars in the loop. Such a bound comes from the fact that the contribution of each particle to the diphoton event amplitude is proportional to its contribution to the one-loop β functions of the gauge couplings. We also investigate the perturbativity of running Yukawa couplings in models with fermion loops, and show the upper bounds on σ (pp → S → γγ) for explicit models.

  11. Laser cooling of electron beams for linear colliders

    SciTech Connect

    Telnov, V.

    1996-10-01

    A novel method of electron beam cooling is considered which can be used for linear colliders. The electron beam is cooled during collision with focused powerful laser pulse. With reasonable laser parameters (laser flash energy about 10 J) one can decrease transverse beam emittances by a factor about 10 per one stage. The ultimate transverse emittances are much below that given by other methods. Depolarization of a beam during the cooling is about 5--15% for one stage. This method is especially useful for photon colliders and open new possibilities for e{sup +}e{sup {minus}} colliders and x-ray FEL based on high energy linacs.

  12. TOP AND HIGGS PHYSICS AT THE HADRON COLLIDERS

    SciTech Connect

    Jabeen, Shabnam

    2013-10-20

    This review summarizes the recent results for top quark and Higgs boson measurements from experiments at Tevatron, a proton–antiproton collider at a center-of-mass energy of √ s =1 . 96 TeV, and the Large Hadron Collider, a proton–proton collider at a center- of-mass energy of √ s = 7 TeV. These results include the discovery of a Higgs-like boson and measurement of its various properties, and measurements in the top quark sector, e.g. top quark mass, spin, charge asymmetry and production of single top quark.

  13. Beamstrahlung spectra in next generation linear colliders. Revision

    SciTech Connect

    Barklow, T.; Chen, P.; Kozanecki, W.

    1992-04-01

    For the next generation of linear colliders, the energy loss due to beamstrahlung during the collision of the e{sup +}e{sup {minus}} beams is expected to substantially influence the effective center-of-mass energy distribution of the colliding particles. In this paper, we first derive analytical formulae for the electron and photon energy spectra under multiple beamstrahlung processes, and for the e{sup +}e{sup {minus}} and {gamma}{gamma} differential luminosities. We then apply our formulation to various classes of 500 GeV e{sup +}e{sup {minus}} linear collider designs currently under study.

  14. Prospects for heavy flavor physics at hadron colliders

    SciTech Connect

    Butler, J.N.

    1997-09-01

    The role of hadron colliders in the observation and study of CP violation in B decays is discussed. We show that hadron collider experiments can play a significant role in the early studies of these phenomena and will play an increasingly dominant role as the effort turns towards difficult to measure decays, especially those of the B{sub s} meson, and sensitive searches for rare decays and subtle deviations from Standard Model predictions. We conclude with a discussion of the relative merits of hadron collider detectors with `forward` vs `central` rapidity coverage.

  15. Heavy flavor production and top quark search at hadron colliders

    SciTech Connect

    Baer, H.A.

    1991-01-01

    We review heavy flavor production at hadron colliders, with an eye towards the physics of the top quark. Motivation for existence of top, and current status of top search are reviewed. The physics of event simulation at hadron colliders is reviewed. We discuss characteristics of top quark events at p{bar p} colliders that may aid in distinguishing the top quark signal from Standard Model backgrounds, and illustrate various cuts which may be useful for top discovery. Top physics at hadron supercolliders is commented upon, as well as top quark mass measurement techniques. 22 refs., 5 figs.

  16. Proton-Proton and Proton-Antiproton Colliders

    NASA Astrophysics Data System (ADS)

    Scandale, Walter

    2015-02-01

    In the last five decades, proton-proton and proton-antiproton colliders have been the most powerful tools for high energy physics investigations. They have also deeply catalyzed innovation in accelerator physics and technology. Among the large number of proposed colliders, only four have really succeeded in becoming operational: the ISR, the SppbarS, the Tevatron and the LHC. Another hadron collider, RHIC, originally conceived for ion-ion collisions, has also been operated part-time with polarized protons. Although a vast literature documenting them is available, this paper is intended to provide a quick synthesis of their main features and key performance.

  17. Tissue vibration in prolonged running.

    PubMed

    Friesenbichler, Bernd; Stirling, Lisa M; Federolf, Peter; Nigg, Benno M

    2011-01-01

    The impact force in heel-toe running initiates vibrations of soft-tissue compartments of the leg that are heavily dampened by muscle activity. This study investigated if the damping and frequency of these soft-tissue vibrations are affected by fatigue, which was categorized by the time into an exhaustive exercise. The hypotheses were tested that (H1) the vibration intensity of the triceps surae increases with increasing fatigue and (H2) the vibration frequency of the triceps surae decreases with increasing fatigue. Tissue vibrations of the triceps surae were measured with tri-axial accelerometers in 10 subjects during a run towards exhaustion. The frequency content was quantified with power spectra and wavelet analysis. Maxima of local vibration intensities were compared between the non-fatigued and fatigued states of all subjects. In axial (i.e. parallel to the tibia) and medio-lateral direction, most local maxima increased with fatigue (supporting the first hypothesis). In anterior-posterior direction no systematic changes were found. Vibration frequency was minimally affected by fatigue and frequency changes did not occur systematically, which requires the rejection of the second hypothesis. Relative to heel-strike, the maximum vibration intensity occurred significantly later in the fatigued condition in all three directions. With fatigue, the soft tissue of the triceps surae oscillated for an extended duration at increased vibration magnitudes, possibly due to the effects of fatigue on type II muscle fibers. Thus, the protective mechanism of muscle tuning seems to be reduced in a fatigued muscle and the risk of potential harm to the tissue may increase. PMID:20846656

  18. An Epidemiologic Perspective. Does Running Cause Osteoarthritis?

    ERIC Educational Resources Information Center

    Eichner, Edward R.

    1989-01-01

    A review of literature on exercise and arthritis considers relevant epidemiologic and experimental studies of animals and humans, focusing on the relationship between running and osteoarthritis. No conclusive evidence exists that running causes osteoarthritis; research trends suggest that running may slow the functional aspects of musculoskeletal…

  19. Running Patterns of Highly Skilled Distance Runners.

    ERIC Educational Resources Information Center

    Dunetts, Michael J.; Dillman, Charles J.

    The biomechanical elements inherent in the running styles of Olympic-level athletes were examined in order to obtain a range of parameter values for specific running velocities. Forty-eight athletes participated in middle and long distance running events that were filmed and later analyzed to determine the relationship between the physical…

  20. SETUP AND PERFORMANCE OF THE RHIC INJECTOR ACCELERATORS FOR THE 2007 RUN WITH GOLD IONS

    SciTech Connect

    GARDNER,C.; AHRENS, L.; ALESSI, J.; BENJAMIN, J.; BLASKIEWICZ, M.; ET AL.

    2007-06-25

    Gold ions for the 2007 run of the Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory (BNL) are accelerated in the Tandem, Booster and AGS prior to injection into RHIC. The setup and performance of this chain of accelerators is reviewed with a focus on improvements in the quality of beam delivered to RHIC. In particular, more uniform stripping foils between Booster and AGS7 and a new bunch merging scheme in AGS have provided beam bunches with reduced longitudinal emittance for RHIC.

  1. New Methods of Particle Collimation in Colliders

    SciTech Connect

    Stancari, Giulio; /Fermilab

    2011-10-01

    The collimation system is an essential part of the design of any high-power accelerator. Its functions include protection of components from accidental and intentional energy deposition, reduction of backgrounds, and beam diagnostics. Conventional multi-stage systems based on scatterers and absorbers offer robust shielding and efficient collection of losses. Two complementary concepts have been proposed to address some of the limitations of conventional systems: channeling and volume reflection in bent crystals and collimation with hollow electron beams. The main focus of this paper is the hollow electron beam collimator, a novel concept based on the interaction of the circulating beam with a 5-keV, magnetically confined, pulsed hollow electron beam in a 2-m-long section of the ring. The electrons enclose the circulating beam, kicking halo particles transversely and leaving the beam core unperturbed. By acting as a tunable diffusion enhancer and not as a hard aperture limitation, the hollow electron beam collimator extends conventional collimation systems beyond the intensity limits imposed by tolerable losses. The concept was tested experimentally at the Fermilab Tevatron proton-antiproton collider. Results on the collimation of 980-GeV antiprotons are presented, together with prospects for the future.

  2. Collider tests of (composite) diphoton resonances

    NASA Astrophysics Data System (ADS)

    Molinaro, Emiliano; Sannino, Francesco; Vignaroli, Natascia

    2016-10-01

    We analyze the Large Hadron Collider sensitivity to new pseudoscalar resonances decaying into diphoton with masses up to scales of few TeVs. We focus on minimal scenarios where the production mechanisms involve either photon or top-mediated gluon fusion, partially motivated by the tantalizing excess around 750 GeV reported by ATLAS and CMS. The two scenarios lead respectively to a narrow and a wide resonance. We first provide a model-independent analysis via effective operators and then introduce minimal models of composite dynamics where the diphoton channel is characterized by their topological sector. The relevant state here is the pseudoscalar associated with the axial anomaly of the new composite dynamics. If the Standard Model top mass is generated via four-fermion operators the coupling of this state to the top remarkably explains the wide-width resonance reported by ATLAS. Beyond the excess, our analysis paves the way to test dynamical electroweak symmetry breaking via topological sectors.

  3. A feedback microprocessor for hadron colliders

    SciTech Connect

    Herrup, D.A.; Chapman, L.; Franck, A.; Groves, T.; Lublinsky, B. )

    1995-02-01

    A feedback microprocessor has been built for the Tevatron. It has been constructed to be applicable to hadron colliders in general. Its inputs are realtime accelerator measurements, data describing the state of the Tevatron, and ramp tables. The microprocessor software includes a finite-state machine. Each state corresponds to a specific Tevatron operation and has a state-specific Tevatron model. Transitions between states are initiated by the global Tevatron clock. Each state includes a cyclic routine, which is called periodically and where all calculations are performed. The output corrections are inserted onto a fast Tevatron-wide link from which the power supplies will read the real time corrections. We also store all of the input data and output corrections in a set of buffers that can easily be retrieved for diagnostic analysis. In this paper we describe this device and its use to control the Tevatron tunes as well as other possible applications. [copyright] 1995 [ital American] [ital Institute] [ital of] [ital Physics

  4. Multimegawatt rf power sources for linear colliders

    SciTech Connect

    Caryotakis, G.

    1991-04-01

    Conceptual designs for a future linear collider operating at 11.4 GHz call for peak rf power as high as 240 MW per meter, with an accelerator length of 14 km. This is an extremely high total power, which results in requirements for microwave sources that cannot be met with existing microwave tubes. While some new tube concepts are being considered, work is proceeding at several laboratories in the US and abroad on conventional 100 MW klystrons for this application. The electron beam necessary for this power to be generated, unless carefully controlled, can easily cause intrapulse melting at the klystron output circuit. This, coupled to the need for good efficiency, high production yield, and long life, poses some difficult problems to the klystron designer. Experimental klystrons at SLAC and other laboratories are approaching the goal of 100 MW in 800 nsec pulses, but much work remains to be done before a design is available which is suitable for manufacturing thousands of these tubes. 4 figs., 1 tab.

  5. Cryostat design for the Superconducting Super Collider

    SciTech Connect

    Nicol, T.H.

    1990-09-01

    The cryostat of an SSC dipole magnet consists of all magnet components except the cold mass assembly. It serves to support the cold mass accurately and reliably within the vacuum vessel, provide all required cryogenic piping, and to insulate the cold mass from heat radiated and conducted from the environment. It must function reliably during storage, shipping and handling, normal magnet operation, quenches, and seismic excitations and must be manufacturable at low cost. The major components of the cryostat are the vacuum vessel, thermal shields, multilayer insulation (MLI) system, cryogenic piping, interconnections, and suspension system. The overall design of a cryostat for superconducting accelerator magnets requires consideration of fluid flow, proper selection of materials for their thermal and structural performance at both ambient and operating temperature, and knowledge of the environment to which the magnets will be subjected over the course their 25 year expected life. This paper describes the design of the current SSC collider dipole magnet cryostat and includes discussions on the thermal, structural, and dynamic considerations involved in the development of each of the major systems. 7 refs., 4 figs.

  6. SSC 50 mm collider dipole cryostat design

    SciTech Connect

    Nicol, T.H.

    1992-04-01

    The cryostat of a Superconducting Super Collider (SSC) dipole magnet consists of all magnet components except the magnet assembly itself. It serves to support the magnet accurately and reliably within the vacuum vessel, provide all required cryogenic piping, and to insulate the cold mass from heat radiated and conducted from the environment. It must function reliably during storage, shipping and handling, normal magnet operation, quenches, and seismic excitations, and must be manufacturable at low cost. The major components of the cryostat are the vacuum vessel, thermal shields, multilayer insulation system, cryogenic piping, interconnections, and suspension system. The overall design of a cryostat for superconducting accelerator magnets requires consideration of fluid flow, proper selection of materials for their thermal and structural performance at both ambient and operating temperature, and knowledge of the environment to which the magnets will be subjected over the course of their expected operating life. This paper describes the design of the current SSC dipole magnet cryostat and includes discussions on the structural and thermal considerations involved in the development of each of the major systems.

  7. The next linear collider damping ring complex

    SciTech Connect

    Corlett,J.; Atkinson,D.; De Santis,S.; Hartman, N.; Kennedy, K.; Li, D.; Marks, S.; Minamihara, Y.; Nishimura, H.; Pivi, M.; Reavill, D.; Rimmer, R.; Schlueter, R.; Wolski, A.; Anderson,S.; McKee,B.; Raubenheimer, T.; Ross, M.; Sheppard, J.C.

    2001-06-12

    We report progress on the design of the Next Linear Collider (NLC) Damping Rings complexes. The purpose of the damping rings is to provide low emittance electron and positron bunch trains to the NLC linacs, at a rate of 120 Hz. As an option to operate at the higher rate of 180 Hz, two 1.98 GeV main damping rings per beam are proposed, and one positron pre-damping ring. The main damping rings store up to 0.8 amp in 3 trains of 190 bunches each and have normalized extracted beam emittances {gamma}{var_epsilon}x = 3 mm-mrad and {gamma}{var_epsilon}y = 0.02 mm-mrad. The optical designs, based on a theoretical minimum emittance lattice (TME), are described, with an analysis of dynamic aperture and non-linear effects. Key subsystems and components are described, including the wiggler, the vacuum systems and photon stop design, and the higher-order-mode damped RF cavities. Impedance and instabilities are discussed.

  8. Electron Lenses for the Large Hadron Collider

    SciTech Connect

    Stancari, Giulio; Valishev, Alexander; Bruce, Roderik; Redaelli, Stefano; Rossi, Adriana; Salvachua, Belen

    2014-07-01

    Electron lenses are pulsed, magnetically confined electron beams whose current-density profile is shaped to obtain the desired effect on the circulating beam. Electron lenses were used in the Fermilab Tevatron collider for bunch-by-bunch compensation of long-range beam-beam tune shifts, for removal of uncaptured particles in the abort gap, for preliminary experiments on head-on beam-beam compensation, and for the demonstration of halo scraping with hollow electron beams. Electron lenses for beam-beam compensation are being commissioned in RHIC at BNL. Within the US LHC Accelerator Research Program and the European HiLumi LHC Design Study, hollow electron beam collimation was studied as an option to complement the collimation system for the LHC upgrades. This project is moving towards a technical design in 2014, with the goal to build the devices in 2015-2017, after resuming LHC operations and re-assessing needs and requirements at 6.5 TeV. Because of their electric charge and the absence of materials close to the proton beam, electron lenses may also provide an alternative to wires for long-range beam-beam compensation in LHC luminosity upgrade scenarios with small crossing angles.

  9. A new micro-strip tracker for the new generation of experiments at hadron colliders

    SciTech Connect

    Dinardo, Mauro E.

    2005-12-01

    This thesis concerns the development and characterization of a prototype Silicon micro-strip detector that can be used in the forward (high rapidity) region of a hadron collider. These detectors must operate in a high radiation environment without any important degradation of their performance. The innovative feature of these detectors is the readout electronics, which, being completely data-driven, allows for the direct use of the detector information at the lowest level of the trigger. All the particle hits on the detector can be readout in real-time without any external trigger and any particular limitation due to dead-time. In this way, all the detector information is available to elaborate a very selective trigger decision based on a fast reconstruction of tracks and vertex topology. These detectors, together with the new approach to the trigger, have been developed in the context of the BTeV R&D program; our aim was to define the features and the design parameters of an optimal experiment for heavy flavour physics at hadron colliders. Application of these detectors goes well beyond the BTeV project and, in particular, involves the future upgrades of experiments at hadron colliders, such as Atlas, CMS and LHCb. These experiments, indeed, are already considering for their future high-intensity runs a new trigger strategy a la BTeV. Their aim is to select directly at trigger level events containing Bhadrons, which, on several cases, come from the decay of Higgs bosons, Zo's or W±'s; the track information can also help on improving the performance of the electron and muon selection at the trigger level. For this reason, they are going to develop new detectors with practically the same characteristics as those of BTeV. To this extent, the work accomplished in this thesis could serve as guide-line for those upgrades.

  10. Accelerator physics of the Stanford Linear Collider and SLC accelerator experiments towards the Next Linear Collider

    SciTech Connect

    Seeman, J.T.

    1992-06-01

    The Stanford Linear Collider (SLC) was built to collide single bunches of electrons and positrons head-on at a single interaction point with single beam energies up to 55 GeV. The small beam sizes and high currents required for high luminosity operation have significantly pushed traditional beam quality limits. The Polarized Electron Source produces about 8 {times} 10{sup 10} electrons in each of two bunches with up to 28% polarization,. The Damping Rings provide coupled invariant emittances of 1.8 {times} 10{sup {minus}5} r-m with 4.5 {times} 10{sup 10} particles per bunch. The 57 GeV Linac has successfully accelerated over 3 {times} 10{sup 10} particles with design invariant emittances of 3 {times} 10{sup {minus}5} r-m. Both longitudinal and transverse wakefields affect strongly the trajectory and emittance corrections used for operations. The Arc systems routinely transport decoupled and betatron matched beams. In the Final Focus, the beams are chromatically corrected and demagnified producing spot sizes of 2 to 3 {mu}m at the focal point. Spot sizes below 2 {mu}m have been made during special tests. Instrumentation and feedback systems are well advanced, providing continuous beam monitoring and pulse-by-pulse control. A luminosity of 1.6 {times} 10{sup 29} cm{sup {minus}2}sec{sup {minus}1} has been produced. Several experimental tests for a Next Linear Collider (NLC) are being planned or constructed using the SLC accelerator as a test facility. The Final Focus Test Beam will demagnify a flat 50 GeV electron beam to dimensions near 60 nm vertically and 900 nm horizontally. A potential Emittance Dynamics Test Area has the capability to test the acceleration and transport of very low emittance beams, the compression of bunch lengths to 50 {mu}m, the acceleration and control of multiple bunches, and the properties of wakefields in the very short bunch length regime.

  11. High Energy Accelerator and Colliding Beam User Group

    SciTech Connect

    Snow, G.A.; Skuja, A.

    1992-05-01

    This report discusses research in the following areas: the study of e{sup +}e{sup {minus}} interactions; Hadron collider physics at Fermilab; fixed target physics and particle physics of general interest; and, the solenoidal detector collaboration at SSCL.

  12. Status of the MEIC ion collider ring design

    SciTech Connect

    None, None

    2015-07-14

    We present an update on the design of the ion collider ring of the Medium-energy Electron-Ion Collider (MEIC) proposed by Jefferson Lab. The design is based on the use of super-ferric magnets. It provides the necessary momentum range of 8 to 100 GeV/c for protons and ions, matches the electron collider ring design using PEP-II components, fits readily on the JLab site, offers a straightforward path for a future full-energy upgrade by replacing the magnets with higher-field ones in the same tunnel, and is more cost effective than using presently available current-dominated super-conducting magnets. We describe complete ion collider optics including an independently-designed modular detector region.

  13. Higgs boson production at hadron colliders: Signal and background processes

    SciTech Connect

    David Rainwater; Michael Spira; Dieter Zeppenfeld

    2004-01-12

    We review the theoretical status of signal and background calculations for Higgs boson production at hadron colliders. Particular emphasis is given to missing NLO results, which will play a crucial role for the Tevatron and the LHC.

  14. The ATLAS Experiment at the CERN Large Hadron Collider

    NASA Astrophysics Data System (ADS)

    ATLAS Collaboration; Aad, G.; Abat, E.; Abdallah, J.; Abdelalim, A. A.; Abdesselam, A.; Abdinov, O.; Abi, B. A.; Abolins, M.; Abramowicz, H.; Acerbi, E.; Acharya, B. S.; Achenbach, R.; Ackers, M.; Adams, D. L.; Adamyan, F.; Addy, T. N.; Aderholz, M.; Adorisio, C.; Adragna, P.; Aharrouche, M.; Ahlen, S. P.; Ahles, F.; Ahmad, A.; Ahmed, H.; Aielli, G.; Åkesson, P. F.; Åkesson, T. P. A.; Akimov, A. V.; Alam, S. M.; Albert, J.; Albrand, S.; Aleksa, M.; Aleksandrov, I. N.; Aleppo, M.; Alessandria, F.; Alexa, C.; Alexander, G.; Alexopoulos, T.; Alimonti, G.; Aliyev, M.; Allport, P. P.; Allwood-Spiers, S. E.; Aloisio, A.; Alonso, J.; Alves, R.; Alviggi, M. G.; Amako, K.; Amaral, P.; Amaral, S. P.; Ambrosini, G.; Ambrosio, G.; Amelung, C.; Ammosov, V. V.; Amorim, A.; Amram, N.; Anastopoulos, C.; Anderson, B.; Anderson, K. J.; Anderssen, E. C.; Andreazza, A.; Andrei, V.; Andricek, L.; Andrieux, M.-L.; Anduaga, X. S.; Anghinolfi, F.; Antonaki, A.; Antonelli, M.; Antonelli, S.; Apsimon, R.; Arabidze, G.; Aracena, I.; Arai, Y.; Arce, A. T. H.; Archambault, J. P.; Arguin, J.-F.; Arik, E.; Arik, M.; Arms, K. E.; Armstrong, S. R.; Arnaud, M.; Arnault, C.; Artamonov, A.; Asai, S.; Ask, S.; Åsman, B.; Asner, D.; Asquith, L.; Assamagan, K.; Astbury, A.; Athar, B.; Atkinson, T.; Aubert, B.; Auerbach, B.; Auge, E.; Augsten, K.; Aulchenko, V. M.; Austin, N.; Avolio, G.; Avramidou, R.; Axen, A.; Ay, C.; Azuelos, G.; Baccaglioni, G.; Bacci, C.; Bachacou, H.; Bachas, K.; Bachy, G.; Badescu, E.; Bagnaia, P.; Bailey, D. C.; Baines, J. T.; Baker, O. K.; Ballester, F.; Baltasar Dos Santos Pedrosa, F.; Banas, E.; Banfi, D.; Bangert, A.; Bansal, V.; Baranov, S. P.; Baranov, S.; Barashkou, A.; Barberio, E. L.; Barberis, D.; Barbier, G.; Barclay, P.; Bardin, D. Y.; Bargassa, P.; Barillari, T.; Barisonzi, M.; Barnett, B. M.; Barnett, R. M.; Baron, S.; Baroncelli, A.; Barone, M.; Barr, A. J.; Barreiro, F.; Barreiro Guimarães da Costa, J.; Barrillon, P.; Barriuso Poy, A.; Barros, N.; Bartheld, V.; Bartko, H.; Bartoldus, R.; Basiladze, S.; Bastos, J.; Batchelor, L. E.; Bates, R. L.; Batley, J. R.; Batraneanu, S.; Battistin, M.; Battistoni, G.; Batusov, V.; Bauer, F.; Bauss, B.; Baynham, D. E.; Bazalova, M.; Bazan, A.; Beauchemin, P. H.; Beaugiraud, B.; Beccherle, R. B.; Beck, G. A.; Beck, H. P.; Becks, K. H.; Bedajanek, I.; Beddall, A. J.; Beddall, A.; Bednár, P.; Bednyakov, V. A.; Bee, C.; Behar Harpaz, S.; Belanger, G. A. N.; Belanger-Champagne, C.; Belhorma, B.; Bell, P. J.; Bell, W. H.; Bella, G.; Bellachia, F.; Bellagamba, L.; Bellina, F.; Bellomo, G.; Bellomo, M.; Beltramello, O.; Belymam, A.; Ben Ami, S.; Ben Moshe, M.; Benary, O.; Benchekroun, D.; Benchouk, C.; Bendel, M.; Benedict, B. H.; Benekos, N.; Benes, J.; Benhammou, Y.; Benincasa, G. P.; Benjamin, D. P.; Bensinger, J. R.; Benslama, K.; Bentvelsen, S.; Beretta, M.; Berge, D.; Bergeaas, E.; Berger, N.; Berghaus, F.; Berglund, S.; Bergsma, F.; Beringer, J.; Bernabéu, J.; Bernardet, K.; Berriaud, C.; Berry, T.; Bertelsen, H.; Bertin, A.; Bertinelli, F.; Bertolucci, S.; Besson, N.; Beteille, A.; Bethke, S.; Bialas, W.; Bianchi, R. M.; Bianco, M.; Biebel, O.; Bieri, M.; Biglietti, M.; Bilokon, H.; Binder, M.; Binet, S.; Bingefors, N.; Bingul, A.; Bini, C.; Biscarat, C.; Bischof, R.; Bischofberger, M.; Bitadze, A.; Bizzell, J. P.; Black, K. M.; Blair, R. E.; Blaising, J. J.; Blanch, O.; Blanchot, G.; Blocker, C.; Blocki, J.; Blondel, A.; Blum, W.; Blumenschein, U.; Boaretto, C.; Bobbink, G. J.; Bocci, A.; Bocian, D.; Bock, R.; Boehm, M.; Boek, J.; Bogaerts, J. A.; Bogouch, A.; Bohm, C.; Bohm, J.; Boisvert, V.; Bold, T.; Boldea, V.; Bondarenko, V. G.; Bonino, R.; Bonis, J.; Bonivento, W.; Bonneau, P.; Boonekamp, M.; Boorman, G.; Boosten, M.; Booth, C. N.; Booth, P. S. L.; Booth, P.; Booth, J. R. A.; Borer, K.; Borisov, A.; Borjanovic, I.; Bos, K.; Boscherini, D.; Bosi, F.; Bosman, M.; Bosteels, M.; Botchev, B.; Boterenbrood, H.; Botterill, D.; Boudreau, J.; Bouhova-Thacker, E. V.; Boulahouache, C.; Bourdarios, C.; Boutemeur, M.; Bouzakis, K.; Boyd, G. R.; Boyd, J.; Boyer, B. H.; Boyko, I. R.; Bozhko, N. I.; Braccini, S.; Braem, A.; Branchini, P.; Brandenburg, G. W.; Brandt, A.; Brandt, O.; Bratzler, U.; Braun, H. M.; Bravo, S.; Brawn, I. P.; Brelier, B.; Bremer, J.; Brenner, R.; Bressler, S.; Breton, D.; Brett, N. D.; Breugnon, P.; Bright-Thomas, P. G.; Brochu, F. M.; Brock, I.; Brock, R.; Brodbeck, T. J.; Brodet, E.; Broggi, F.; Broklova, Z.; Bromberg, C.; Brooijmans, G.; Brouwer, G.; Broz, J.; Brubaker, E.; Bruckman de Renstrom, P. A.; Bruncko, D.; Bruni, A.; Bruni, G.; Bruschi, M.; Buanes, T.; Buchanan, N. J.; Buchholz, P.; Budagov, I. A.; Büscher, V.; Bugge, L.; Buira-Clark, D.; Buis, E. J.; Bujor, F.; Buran, T.; Burckhart, H.; Burckhart-Chromek, D.; Burdin, S.; Burns, R.; Busato, E.; Buskop, J. J. F.; Buszello, K. P.; Butin, F.; Butler, J. M.; Buttar, C. M.; Butterworth, J.; Butterworth, J. M.; Byatt, T.; Cabrera Urbán, S.; Cabruja Casas, E.; Caccia, M.; Caforio, D.; Cakir, O.; Calafiura, P.; Calderini, G.; Calderón Terol, D.; Callahan, J.; Caloba, L. P.; Caloi, R.; Calvet, D.; Camard, A.; Camarena, F.; Camarri, P.; Cambiaghi, M.; Cameron, D.; Cammin, J.; Campabadal Segura, F.; Campana, S.; Canale, V.; Cantero, J.; Capeans Garrido, M. D. M.; Caprini, I.; Caprini, M.; Caprio, M.; Caracinha, D.; Caramarcu, C.; Carcagno, Y.; Cardarelli, R.; Cardeira, C.; Cardiel Sas, L.; Cardini, A.; Carli, T.; Carlino, G.; Carminati, L.; Caron, B.; Caron, S.; Carpentieri, C.; Carr, F. S.; Carter, A. A.; Carter, J. R.; Carvalho, J.; Casadei, D.; Casado, M. P.; Cascella, M.; Caso, C.; Castelo, J.; Castillo Gimenez, V.; Castro, N.; Castrovillari, F.; Cataldi, G.; Cataneo, F.; Catinaccio, A.; Catmore, J. R.; Cattai, A.; Caughron, S.; Cauz, D.; Cavallari, A.; Cavalleri, P.; Cavalli, D.; Cavalli-Sforza, M.; Cavasinni, V.; Ceradini, F.; Cerna, C.; Cernoch, C.; Cerqueira, A. S.; Cerri, A.; Cerutti, F.; Cervetto, M.; Cetin, S. A.; Cevenini, F.; Chalifour, M.; Chamizo llatas, M.; Chan, A.; Chapman, J. W.; Charlton, D. G.; Charron, S.; Chekulaev, S. V.; Chelkov, G. A.; Chen, H.; Chen, L.; Chen, T.; Chen, X.; Cheng, S.; Cheng, T. L.; Cheplakov, A.; Chepurnov, V. F.; Cherkaoui El Moursli, R.; Chesneanu, D.; Cheu, E.; Chevalier, L.; Chevalley, J. L.; Chevallier, F.; Chiarella, V.; Chiefari, G.; Chikovani, L.; Chilingarov, A.; Chiodini, G.; Chouridou, S.; Chren, D.; Christiansen, T.; Christidi, I. A.; Christov, A.; Chu, M. L.; Chudoba, J.; Chuguev, A. G.; Ciapetti, G.; Cicalini, E.; Ciftci, A. K.; Cindro, V.; Ciobotaru, M. D.; Ciocio, A.; Cirilli, M.; Citterio, M.; Ciubancan, M.; Civera, J. V.; Clark, A.; Cleland, W.; Clemens, J. C.; Clement, B. C.; Clément, C.; Clements, D.; Clifft, R. W.; Cobal, M.; Coccaro, A.; Cochran, J.; Coco, R.; Coe, P.; Coelli, S.; Cogneras, E.; Cojocaru, C. D.; Colas, J.; Colijn, A. P.; Collard, C.; Collins-Tooth, C.; Collot, J.; Coluccia, R.; Comune, G.; Conde Muiño, P.; Coniavitis, E.; Consonni, M.; Constantinescu, S.; Conta, C.; Conventi, F. A.; Cook, J.; Cooke, M.; Cooper-Smith, N. J.; Cornelissen, T.; Corradi, M.; Correard, S.; Corso-Radu, A.; Coss, J.; Costa, G.; Costa, M. J.; Costanzo, D.; Costin, T.; Coura Torres, R.; Courneyea, L.; Couyoumtzelis, C.; Cowan, G.; Cox, B. E.; Cox, J.; Cragg, D. A.; Cranmer, K.; Cranshaw, J.; Cristinziani, M.; Crosetti, G.; Cuenca Almenar, C.; Cuneo, S.; Cunha, A.; Curatolo, M.; Curtis, C. J.; Cwetanski, P.; Czyczula, Z.; D'Auria, S.; D'Onofrio, M.; Da Rocha Gesualdi Mello, A.; Da Silva, P. V. M.; Da Silva, R.; Dabrowski, W.; Dael, A.; Dahlhoff, A.; Dai, T.; Dallapiccola, C.; Dallison, S. J.; Dalmau, J.; Daly, C. H.; Dam, M.; Damazio, D.; Dameri, M.; Danielsen, K. M.; Danielsson, H. O.; Dankers, R.; Dannheim, D.; Darbo, G.; Dargent, P.; Daum, C.; Dauvergne, J. P.; David, M.; Davidek, T.; Davidson, N.; Davidson, R.; Dawson, I.; Dawson, J. W.; Daya, R. K.; De, K.; de Asmundis, R.; de Boer, R.; DeCastro, S.; DeGroot, N.; de Jong, P.; de La Broise, X.; DeLa Cruz-Burelo, E.; DeLa Taille, C.; DeLotto, B.; DeOliveira Branco, M.; DePedis, D.; de Saintignon, P.; DeSalvo, A.; DeSanctis, U.; DeSanto, A.; DeVivie DeRegie, J. B.; DeZorzi, G.; Dean, S.; Dedes, G.; Dedovich, D. V.; Defay, P. O.; Degele, R.; Dehchar, M.; Deile, M.; DelPapa, C.; DelPeso, J.; DelPrete, T.; Delagnes, E.; Delebecque, P.; Dell'Acqua, A.; Della Pietra, M.; della Volpe, D.; Delmastro, M.; Delpierre, P.; Delruelle, N.; Delsart, P. A.; Deluca Silberberg, C.; Demers, S.; Demichev, M.; Demierre, P.; Demirköz, B.; Deng, W.; Denisov, S. P.; Dennis, C.; Densham, C. J.; Dentan, M.; Derkaoui, J. E.; Derue, F.; Dervan, P.; Desch, K. K.; Dewhurst, A.; Di Ciaccio, A.; Di Ciaccio, L.; Di Domenico, A.; Di Girolamo, A.; Di Girolamo, B.; Di Luise, S.; Di Mattia, A.; Di Simone, A.; Diaz Gomez, M. M.; Diehl, E. B.; Dietl, H.; Dietrich, J.; Dietsche, W.; Diglio, S.; Dima, M.; Dindar, K.; Dinkespiler, B.; Dionisi, C.; Dipanjan, R.; Dita, P.; Dita, S.; Dittus, F.; Dixon, S. D.; Djama, F.; Djilkibaev, R.; Djobava, T.; do Vale, M. A. B.; Dobbs, M.; Dobinson, R.; Dobos, D.; Dobson, E.; Dobson, M.; Dodd, J.; Dogan, O. B.; Doherty, T.; Doi, Y.; Dolejsi, J.; Dolenc, I.; Dolezal, Z.; Dolgoshein, B. A.; Domingo, E.; Donega, M.; Dopke, J.; Dorfan, D. E.; Dorholt, O.; Doria, A.; Dos Anjos, A.; Dosil, M.; Dotti, A.; Dova, M. T.; Dowell, J. D.; Doyle, A. T.; Drake, G.; Drakoulakos, D.; Drasal, Z.; Drees, J.; Dressnandt, N.; Drevermann, H.; Driouichi, C.; Dris, M.; Drohan, J. G.; Dubbert, J.; Dubbs, T.; Duchovni, E.; Duckeck, G.; Dudarev, A.; Dührssen, M.; Dür, H.; Duerdoth, I. P.; Duffin, S.; Duflot, L.; Dufour, M.-A.; Dumont Dayot, N.; Duran Yildiz, H.; Durand, D.; Dushkin, A.; Duxfield, R.; Dwuznik, M.; Dydak, F.; Dzahini, D.; Díez Cornell, S.; Düren, M.; Ebenstein, W. L.; Eckert, S.; Eckweiler, S.; Eerola, P.; Efthymiopoulos, I.; Egede, U.; Egorov, K.; Ehrenfeld, W.; Eifert, T.; Eigen, G.; Einsweiler, K.; Eisenhandler, E.; Ekelof, T.; Eklund, L. M.; El Kacimi, M.; Ellert, M.; Elles, S.; Ellis, N.; Elmsheuser, J.; Elsing, M.; Ely, R.; Emeliyanov, D.; Engelmann, R.; Engström, M.; Ennes, P.; Epp, B.; Eppig, A.; Epshteyn, V. S.; Ereditato, A.; Eremin, V.; Eriksson, D.; Ermoline, I.; Ernwein, J.; Errede, D.; Errede, S.; Escalier, M.; Escobar, C.; Espinal Curull, X.; Esposito, B.; Esteves, F.; Etienne, F.; Etienvre, A. I.; Etzion, E.; Evans, H.; Evdokimov, V. N.; Evtoukhovitch, P.; Eyring, A.; Fabbri, L.; Fabjan, C. W.; Fabre, C.; Faccioli, P.; Facius, K.; Fadeyev, V.; Fakhrutdinov, R. M.; Falciano, S.; Falleau, I.; Falou, A. C.; Fang, Y.; Fanti, M.; Farbin, A.; Farilla, A.; Farrell, J.; Farthouat, P.; Fasching, D.; Fassi, F.; Fassnacht, P.; Fassouliotis, D.; Fawzi, F.; Fayard, L.; Fayette, F.; Febbraro, R.; Fedin, O. L.; Fedorko, I.; Feld, L.; Feldman, G.; Feligioni, L.; Feng, C.; Feng, E. J.; Fent, J.; Fenyuk, A. B.; Ferencei, J.; Ferguson, D.; Ferland, J.; Fernando, W.; Ferrag, S.; Ferrari, A.; Ferrari, P.; Ferrari, R.; Ferrer, A.; Ferrer, M. L.; Ferrere, D.; Ferretti, C.; Ferro, F.; Fiascaris, M.; Fichet, S.; Fiedler, F.; Filimonov, V.; Filipčič, A.; Filippas, A.; Filthaut, F.; Fincke-Keeler, M.; Finocchiaro, G.; Fiorini, L.; Firan, A.; Fischer, P.; Fisher, M. J.; Fisher, S. M.; Flaminio, V.; Flammer, J.; Flechl, M.; Fleck, I.; Flegel, W.; Fleischmann, P.; Fleischmann, S.; Fleta Corral, C. M.; Fleuret, F.; Flick, T.; Flix, J.; Flores Castillo, L. R.; Flowerdew, M. J.; Föhlisch, F.; Fokitis, M.; Fonseca Martin, T. M.; Fopma, J.; Forbush, D. A.; Formica, A.; Foster, J. M.; Fournier, D.; Foussat, A.; Fowler, A. J.; Fox, H.; Francavilla, P.; Francis, D.; Franz, S.; Fraser, J. T.; Fraternali, M.; Fratianni, S.; Freestone, J.; French, R. S.; Fritsch, K.; Froidevaux, D.; Frost, J. A.; Fukunaga, C.; Fulachier, J.; Fullana Torregrosa, E.; Fuster, J.; Gabaldon, C.; Gadomski, S.; Gagliardi, G.; Gagnon, P.; Gallas, E. J.; Gallas, M. V.; Gallop, B. J.; Gan, K. K.; Gannaway, F. C.; Gao, Y. S.; Gapienko, V. A.; Gaponenko, A.; Garciá, C.; Garcia-Sciveres, M.; Garcìa Navarro, J. E.; Garde, V.; Gardner, R. W.; Garelli, N.; Garitaonandia, H.; Garonne, V. G.; Garvey, J.; Gatti, C.; Gaudio, G.; Gaumer, O.; Gautard, V.; Gauzzi, P.; Gavrilenko, I. L.; Gay, C.; Gayde, J.-C.; Gazis, E. N.; Gazo, E.; Gee, C. N. P.; Geich-Gimbel, C.; Gellerstedt, K.; Gemme, C.; Genest, M. H.; Gentile, S.; George, M. A.; George, S.; Gerlach, P.; Gernizky, Y.; Geweniger, C.; Ghazlane, H.; Ghete, V. M.; Ghez, P.; Ghodbane, N.; Giacobbe, B.; Giagu, S.; Giakoumopoulou, V.; Giangiobbe, V.; Gianotti, F.; Gibbard, B.; Gibson, A.; Gibson, M. D.; Gibson, S. M.; Gieraltowski, G. F.; Gil Botella, I.; Gilbert, L. M.; Gilchriese, M.; Gildemeister, O.; Gilewsky, V.; Gillman, A. R.; Gingrich, D. M.; Ginzburg, J.; Giokaris, N.; Giordani, M. P.; Girard, C. G.; Giraud, P. F.; Girtler, P.; Giugni, D.; Giusti, P.; Gjelsten, B. K.; Glasman, C.; Glazov, A.; Glitza, K. W.; Glonti, G. L.; Gnanvo, K. G.; Godlewski, J.; Göpfert, T.; Gössling, C.; Göttfert, T.; Goldfarb, S.; Goldin, D.; Goldschmidt, N.; Golling, T.; Gollub, N. P.; Golonka, P. J.; Golovnia, S. N.; Gomes, A.; Gomes, J.; Gonçalo, R.; Gongadze, A.; Gonidec, A.; Gonzalez, S.; González de la Hoz, S.; González Millán, V.; Gonzalez Silva, M. L.; Gonzalez-Pineiro, B.; González-Sevilla, S.; Goodrick, M. J.; Goodson, J. J.; Goossens, L.; Gorbounov, P. A.; Gordeev, A.; Gordon, H.; Gorelov, I.; Gorfine, G.; Gorini, B.; Gorini, E.; Gorišek, A.; Gornicki, E.; Gorokhov, S. A.; Gorski, B. T.; Goryachev, S. V.; Goryachev, V. N.; Gosselink, M.; Gostkin, M. I.; Gouanère, M.; Gough Eschrich, I.; Goujdami, D.; Goulette, M.; Gousakov, I.; Gouveia, J.; Gowdy, S.; Goy, C.; Grabowska-Bold, I.; Grabski, V.; Grafström, P.; Grah, C.; Grahn, K.-J.; Grancagnolo, F.; Grancagnolo, S.; Grassmann, H.; Gratchev, V.; Gray, H. M.; Graziani, E.; Green, B.; Greenall, A.; Greenfield, D.; Greenwood, D.; Gregor, I. M.; Grewal, A.; Griesmayer, E.; Grigalashvili, N.; Grigson, C.; Grillo, A. A.; Grimaldi, F.; Grimm, K.; Gris, P. L. Y.; Grishkevich, Y.; Groenstege, H.; Groer, L. S.; Grognuz, J.; Groh, M.; Gross, E.; Grosse-Knetter, J.; Grothe, M. E. M.; Grudzinski, J.; Gruse, C.; Gruwe, M.; Grybel, K.; Grybos, P.; Gschwendtner, E. M.; Guarino, V. J.; Guicheney, C. J.; Guilhem, G.; Guillemin, T.; Gunther, J.; Guo, B.; Gupta, A.; Gurriana, L.; Gushchin, V. N.; Gutierrez, P.; Guy, L.; Guyot, C.; Gwenlan, C.; Gwilliam, C. B.; Haas, A.; Haas, S.; Haber, C.; Haboubi, G.; Hackenburg, R.; Hadash, E.; Hadavand, H. K.; Haeberli, C.; Härtel, R.; Haggerty, R.; Hahn, F.; Haider, S.; Hajduk, Z.; Hakimi, M.; Hakobyan, H.; Hakobyan, H.; Haller, J.; Hallewell, G. D.; Hallgren, B.; Hamacher, K.; Hamilton, A.; Han, H.; Han, L.; Hanagaki, K.; Hance, M.; Hanke, P.; Hansen, C. J.; Hansen, F. H.; Hansen, J. R.; Hansen, J. B.; Hansen, J. D.; Hansen, P. H.; Hansl-Kozanecka, T.; Hanson, G.; Hansson, P.; Hara, K.; Harder, S.; Harel, A.; Harenberg, T.; Harper, R.; Hart, J. C.; Hart, R. G. G.; Hartjes, F.; Hartman, N.; Haruyama, T.; Harvey, A.; Hasegawa, Y.; Hashemi, K.; Hassani, S.; Hatch, M.; Hatley, R. W.; Haubold, T. G.; Hauff, D.; Haug, F.; Haug, S.; Hauschild, M.; Hauser, R.; Hauviller, C.; Havranek, M.; Hawes, B. M.; Hawkings, R. J.; Hawkins, D.; Hayler, T.; Hayward, H. S.; Haywood, S. J.; Hazen, E.; He, M.; He, Y. P.; Head, S. J.; Hedberg, V.; Heelan, L.; Heinemann, F. E. W.; Heldmann, M.; Hellman, S.; Helsens, C.; Henderson, R. C. W.; Hendriks, P. J.; Henriques Correia, A. M.; Henrot-Versille, S.; Henry-Couannier, F.; Henß, T.; Herten, G.; Hertenberger, R.; Hervas, L.; Hess, M.; Hessey, N. P.; Hicheur, A.; Hidvegi, A.; Higón-Rodriguez, E.; Hill, D.; Hill, J.; Hill, J. C.; Hill, N.; Hillier, S. J.; Hinchliffe, I.; Hindson, D.; Hinkelbein, C.; Hodges, T. A.; Hodgkinson, M. C.; Hodgson, P.; Hoecker, A.; Hoeferkamp, M. R.; Hoffman, J.; Hoffmann, A. E.; Hoffmann, D.; Hoffmann, H. F.; Holder, M.; Hollins, T. I.; Hollyman, G.; Holmes, A.; Holmgren, S. O.; Holt, R.; Holtom, E.; Holy, T.; Homer, R. J.; Homma, Y.; Homola, P.; Honerbach, W.; Honma, A.; Hooton, I.; Horazdovsky, T.; Horn, C.; Horvat, S.; Hostachy, J.-Y.; Hott, T.; Hou, S.; Houlden, M. A.; Hoummada, A.; Hover, J.; Howell, D. F.; Hrivnac, J.; Hruska, I.; Hryn'ova, T.; Huang, G. S.; Hubacek, Z.; Hubaut, F.; Huegging, F.; Huffman, B. T.; Hughes, E.; Hughes, G.; Hughes-Jones, R. E.; Hulsbergen, W.; Hurst, P.; Hurwitz, M.; Huse, T.; Huseynov, N.; Huston, J.; Huth, J.; Iacobucci, G.; Ibbotson, M.; Ibragimov, I.; Ichimiya, R.; Iconomidou-Fayard, L.; Idarraga, J.; Idzik, M.; Iengo, P.; Iglesias Escudero, M. C.; Igonkina, O.; Ikegami, Y.; Ikeno, M.; Ilchenko, Y.; Ilyushenka, Y.; Imbault, D.; Imbert, P.; Imhaeuser, M.; Imori, M.; Ince, T.; Inigo-Golfin, J.; Inoue, K.; Ioannou, P.; Iodice, M.; Ionescu, G.; Ishii, K.; Ishino, M.; Ishizawa, Y.; Ishmukhametov, R.; Issever, C.; Ito, H.; Ivashin, A. V.; Iwanski, W.; Iwasaki, H.; Izen, J. M.; Izzo, V.; Jackson, J.; Jackson, J. N.; Jaekel, M.; Jagielski, S.; Jahoda, M.; Jain, V.; Jakobs, K.; Jakubek, J.; Jansen, E.; Jansweijer, P. P. M.; Jared, R. C.; Jarlskog, G.; Jarp, S.; Jarron, P.; Jelen, K.; Jen-La Plante, I.; Jenni, P.; Jeremie, A.; Jez, P.; Jézéquel, S.; Jiang, Y.; Jin, G.; Jin, S.; Jinnouchi, O.; Joffe, D.; Johansen, L. G.; Johansen, M.; Johansson, K. E.; Johansson, P.; Johns, K. A.; Jon-And, K.; Jones, M.; Jones, R.; Jones, R. W. L.; Jones, T. W.; Jones, T. J.; Jones, A.; Jonsson, O.; Joo, K. K.; Joos, D.; Joos, M.; Joram, C.; Jorgensen, S.; Joseph, J.; Jovanovic, P.; Junnarkar, S. S.; Juranek, V.; Jussel, P.; Kabachenko, V. V.; Kabana, S.; Kaci, M.; Kaczmarska, A.; Kado, M.; Kagan, H.; Kagawa, S.; Kaiser, S.; Kajomovitz, E.; Kakurin, S.; Kalinovskaya, L. V.; Kama, S.; Kambara, H.; Kanaya, N.; Kandasamy, A.; Kandasamy, S.; Kaneda, M.; Kantserov, V. A.; Kanzaki, J.; Kaplan, B.; Kapliy, A.; Kaplon, J.; Karagounis, M.; Karagoz Unel, M.; Karr, K.; Karst, P.; Kartvelishvili, V.; Karyukhin, A. N.; Kashif, L.; Kasmi, A.; Kass, R. D.; Kastanas, A.; Kataoka, M.; Kataoka, Y.; Katsoufis, E.; Katunin, S.; Kawagoe, K.; Kawai, M.; Kawamoto, T.; Kayumov, F.; Kazanin, V. A.; Kazarinov, M. Y.; Kazarov, A.; Kazi, S. I.; Keates, J. R.; Keeler, R.; Keener, P. T.; Kehoe, R.; Keil, M.; Kekelidze, G. D.; Kelly, M.; Kennedy, J.; Kenyon, M.; Kepka, O.; Kerschen, N.; Kerševan, B. P.; Kersten, S.; Ketterer, C.; Khakzad, M.; Khalilzade, F.; Khandanyan, H.; Khanov, A.; Kharchenko, D.; Khodinov, A.; Kholodenko, A. G.; Khomich, A.; Khomutnikov, V. P.; Khoriauli, G.; Khovanskiy, N.; Khovanskiy, V.; Khramov, E.; Khubua, J.; Kieft, G.; Kierstead, J. A.; Kilvington, G.; Kim, H.; Kim, H.; Kim, S. H.; Kind, P.; King, B. T.; Kirk, J.; Kirsch, G. P.; Kirsch, L. E.; Kiryunin, A. E.; Kisielewska, D.; Kisielewski, B.; Kittelmann, T.; Kiver, A. M.; Kiyamura, H.; Kladiva, E.; Klaiber-Lodewigs, J.; Kleinknecht, K.; Klier, A.; Klimentov, A.; Kline, C. R.; Klingenberg, R.; Klinkby, E. B.; Klioutchnikova, T.; Klok, P. F.; Klous, S.; Kluge, E.-E.; Kluit, P.; Klute, M.; Kluth, S.; Knecht, N. K.; Kneringer, E.; Knezo, E.; Knobloch, J.; Ko, B. R.; Kobayashi, T.; Kobel, M.; Kodys, P.; König, A. C.; König, S.; Köpke, L.; Koetsveld, F.; Koffas, T.; Koffeman, E.; Kohout, Z.; Kohriki, T.; Kokott, T.; Kolachev, G. M.; Kolanoski, H.; Kolesnikov, V.; Koletsou, I.; Kollefrath, M.; Kolos, S.; Kolya, S. D.; Komar, A. A.; Komaragiri, J. R.; Kondo, T.; Kondo, Y.; Kondratyeva, N. V.; Kono, T.; Kononov, A. I.; Konoplich, R.; Konovalov, S. P.; Konstantinidis, N.; Kootz, A.; Koperny, S.; Kopikov, S. V.; Korcyl, K.; Kordas, K.; Koreshev, V.; Korn, A.; Korolkov, I.; Korotkov, V. A.; Korsmo, H.; Kortner, O.; Kostrikov, M. E.; Kostyukhin, V. V.; Kotamäki, M. J.; Kotchetkov, D.; Kotov, S.; Kotov, V. M.; Kotov, K. Y.; Kourkoumelis, C.; Koutsman, A.; Kovalenko, S.; Kowalewski, R.; Kowalski, H.; Kowalski, T. Z.; Kozanecki, W.; Kozhin, A. S.; Kral, V.; Kramarenko, V.; Kramberger, G.; Kramer, A.; Krasel, O.; Krasny, M. W.; Krasznahorkay, A.; Krepouri, A.; Krieger, P.; Krivkova, P.; Krobath, G.; Kroha, H.; Krstic, J.; Kruchonak, U.; Krüger, H.; Kruger, K.; Krumshteyn, Z. V.; Kubik, P.; Kubischta, W.; Kubota, T.; Kudin, L. G.; Kudlaty, J.; Kugel, A.; Kuhl, T.; Kuhn, D.; Kukhtin, V.; Kulchitsky, Y.; Kundu, N.; Kupco, A.; Kupper, M.; Kurashige, H.; Kurchaninov, L. L.; Kurochkin, Y. A.; Kus, V.; Kuykendall, W.; Kuzhir, P.; Kuznetsova, E. K.; Kvasnicka, O.; Kwee, R.; La Marra, D.; La Rosa, M.; La Rotonda, L.; Labarga, L.; Labbe, J. A.; Lacasta, C.; Lacava, F.; Lacker, H.; Lacour, D.; Lacuesta, V. R.; Ladygin, E.; Lafaye, R.; Laforge, B.; Lagouri, T.; Lai, S.; Lamanna, E.; Lambacher, M.; Lambert, F.; Lampl, W.; Lancon, E.; Landgraf, U.; Landon, M. P. J.; Landsman, H.; Langstaff, R. R.; Lankford, A. J.; Lanni, F.; Lantzsch, K.; Lanza, A.; Lapin, V. V.; Laplace, S.; Laporte, J. F.; Lara, V.; Lari, T.; Larionov, A. V.; Lasseur, C.; Lau, W.; Laurelli, P.; Lavorato, A.; Lavrijsen, W.; Lazarev, A. B.; LeBihan, A.-C.; LeDortz, O.; LeManer, C.; LeVine, M.; Leahu, L.; Leahu, M.; Lebel, C.; Lechowski, M.; LeCompte, T.; Ledroit-Guillon, F.; Lee, H.; Lee, J. S. H.; Lee, S. C.; Lefebvre, M.; Lefevre, R. P.; Legendre, M.; Leger, A.; LeGeyt, B. C.; Leggett, C.; Lehmacher, M.; Lehmann Miotto, G.; Lehto, M.; Leitner, R.; Lelas, D.; Lellouch, D.; Leltchouk, M.; Lendermann, V.; Leney, K. J. C.; Lenz, T.; Lenzen, G.; Lepidis, J.; Leroy, C.; Lessard, J.-R.; Lesser, J.; Lester, C. G.; Letheren, M.; Fook Cheong, A. Leung; Levêque, J.; Levin, D.; Levinson, L. J.; Levitski, M. S.; Lewandowska, M.; Leyton, M.; Li, J.; Li, W.; Liabline, M.; Liang, Z.; Liang, Z.; Liberti, B.; Lichard, P.; Liebig, W.; Lifshitz, R.; Liko, D.; Lim, H.; Limper, M.; Lin, S. C.; Lindahl, A.; Linde, F.; Lindquist, L.; Lindsay, S. W.; Linhart, V.; Lintern, A. J.; Liolios, A.; Lipniacka, A.; Liss, T. M.; Lissauer, A.; List, J.; Litke, A. M.; Liu, S.; Liu, T.; Liu, Y.; Livan, M.; Lleres, A.; Llosá Llácer, G.; Lloyd, S. L.; Lobkowicz, F.; Loch, P.; Lockman, W. S.; Loddenkoetter, T.; Loebinger, F. K.; Loginov, A.; Loh, C. W.; Lohse, T.; Lohwasser, K.; Lokajicek, M.; Loken, J.; Lokwitz, S.; Long, M. C.; Lopes, L.; Lopez Mateos, D.; Losty, M. J.; Lou, X.; Loureiro, K. F.; Lovas, L.; Love, J.; Lowe, A.; Lozano Fantoba, M.; Lu, F.; Lu, J.; Lu, L.; Lubatti, H. J.; Lucas, S.; Luci, C.; Lucotte, A.; Ludwig, A.; Ludwig, I.; Ludwig, J.; Luehring, F.; Lüke, D.; Luijckx, G.; Luisa, L.; Lumb, D.; Luminari, L.; Lund, E.; Lund-Jensen, B.; Lundberg, B.; Lundquist, J.; Lupi, A.; Lupu, N.; Lutz, G.; Lynn, D.; Lynn, J.; Lys, J.; Lysan, V.; Lytken, E.; López-Amengual, J. M.; Ma, H.; Ma, L. L.; Maaß en, M.; Maccarrone, G.; Mace, G. G. R.; Macina, D.; Mackeprang, R.; Macpherson, A.; MacQueen, D.; Macwaters, C.; Madaras, R. J.; Mader, W. F.; Maenner, R.; Maeno, T.; Mättig, P.; Mättig, S.; Magrath, C. A.; Mahalalel, Y.; Mahboubi, K.; Mahout, G.; Maidantchik, C.; Maio, A.; Mair, G. M.; Mair, K.; Makida, Y.; Makowiecki, D.; Malecki, P.; Maleev, V. P.; Malek, F.; Malon, D.; Maltezos, S.; Malychev, V.; Malyukov, S.; Mambelli, M.; Mameghani, R.; Mamuzic, J.; Manabe, A.; Manara, A.; Manca, G.; Mandelli, L.; Mandić, I.; Mandl, M.; Maneira, J.; Maneira, M.; Mangeard, P. S.; Mangin-Brinet, M.; Manjavidze, I. D.; Mann, W. A.; Manolopoulos, S.; Manousakis-Katsikakis, A.; Mansoulie, B.; Manz, A.; Mapelli, A.; Mapelli, L.; March, L.; Marchand, J. F.; Marchesotti, M.; Marcisovsky, M.; Marin, A.; Marques, C. N.; Marroquim, F.; Marshall, R.; Marshall, Z.; Martens, F. K.; Garcia, S. Marti i.; Martin, A. J.; Martin, B.; Martin, B.; Martin, F. F.; Martin, J. P.; Martin, Ph; Martinez, G.; Martínez Lacambra, C.; Martinez Outschoorn, V.; Martini, A.; Martins, J.; Maruyama, T.; Marzano, F.; Mashimo, T.; Mashinistov, R.; Masik, J.; Maslennikov, A. L.; Maß, M.; Massa, I.; Massaro, G.; Massol, N.; Mathes, M.; Matheson, J.; Matricon, P.; Matsumoto, H.; Matsunaga, H.; Maugain, J. M.; Maxfield, S. J.; May, E. N.; Mayer, J. K.; Mayri, C.; Mazini, R.; Mazzanti, M.; Mazzanti, P.; Mazzoni, E.; Mazzucato, F.; McKee, S. P.; McCarthy, R. L.; McCormick, C.; McCubbin, N. A.; McDonald, J.; McFarlane, K. W.; McGarvie, S.; McGlone, H.; McLaren, R. A.; McMahon, S. J.; McMahon, T. R.; McMahon, T. J.; McPherson, R. A.; Mechtel, M.; Meder-Marouelli, D.; Medinnis, M.; Meera-Lebbai, R.; Meessen, C.; Mehdiyev, R.; Mehta, A.; Meier, K.; Meinhard, H.; Meinhardt, J.; Meirosu, C.; Meisel, F.; Melamed-Katz, A.; Mellado Garcia, B. R.; Mendes Jorge, P.; Mendez, P.; Menke, S.; Menot, C.; Meoni, E.; Merkl, D.; Merola, L.; Meroni, C.; Merritt, F. S.; Messmer, I.; Metcalfe, J.; Meuser, S.; Meyer, J.-P.; Meyer, T. C.; Meyer, W. T.; Mialkovski, V.; Michelotto, M.; Micu, L.; Middleton, R.; Miele, P.; Migliaccio, A.; Mijović, L.; Mikenberg, G.; Mikestikova, M.; Mikestikova, M.; Mikulec, B.; Mikuž, M.; Miller, D. W.; Miller, R. J.; Miller, W.; Milosavljevic, M.; Milstead, D. A.; Mima, S.; Minaenko, A. A.; Minano, M.; Minashvili, I. A.; Mincer, A. I.; Mindur, B.; Mineev, M.; Mir, L. M.; Mirabelli, G.; Miralles Verge, L.; Misawa, S.; Miscetti, S.; Misiejuk, A.; Mitra, A.; Mitrofanov, G. Y.; Mitsou, V. A.; Miyagawa, P. S.; Miyazaki, Y.; Mjörnmark, J. U.; Mkrtchyan, S.; Mladenov, D.; Moa, T.; Moch, M.; Mochizuki, A.; Mockett, P.; Modesto, P.; Moed, S.; Mönig, K.; Möser, N.; Mohn, B.; Mohr, W.; Mohrdieck-Möck, S.; Moisseev, A. M.; Moles Valls, R. M.; Molina-Perez, J.; Moll, A.; Moloney, G.; Mommsen, R.; Moneta, L.; Monnier, E.; Montarou, G.; Montesano, S.; Monticelli, F.; Moore, R. W.; Moore, T. B.; Moorhead, G. F.; Moraes, A.; Morel, J.; Moreno, A.; Moreno, D.; Morettini, P.; Morgan, D.; Morii, M.; Morin, J.; Morley, A. K.; Mornacchi, G.; Morone, M.-C.; Morozov, S. V.; Morris, E. J.; Morris, J.; Morrissey, M. C.; Moser, H. G.; Mosidze, M.; Moszczynski, A.; Mouraviev, S. V.; Mouthuy, T.; Moye, T. H.; Moyse, E. J. W.; Mueller, J.; Müller, M.; Muijs, A.; Muller, T. R.; Munar, A.; Munday, D. J.; Murakami, K.; Murillo Garcia, R.; Murray, W. J.; Myagkov, A. G.; Myska, M.; Nagai, K.; Nagai, Y.; Nagano, K.; Nagasaka, Y.; Nairz, A. M.; Naito, D.; Nakamura, K.; Nakamura, Y.; Nakano, I.; Nanava, G.; Napier, A.; Nassiakou, M.; Nasteva, I.; Nation, N. R.; Naumann, T.; Nauyock, F.; Nderitu, S. K.; Neal, H. A.; Nebot, E.; Nechaeva, P.; Neganov, A.; Negri, A.; Negroni, S.; Nelson, C.; Nemecek, S.; Nemethy, P.; Nepomuceno, A. A.; Nessi, M.; Nesterov, S. Y.; Neukermans, L.; Nevski, P.; Newcomer, F. M.; Nichols, A.; Nicholson, C.; Nicholson, R.; Nickerson, R. B.; Nicolaidou, R.; Nicoletti, G.; Nicquevert, B.; Niculescu, M.; Nielsen, J.; Niinikoski, T.; Niinimaki, M. J.; Nikitin, N.; Nikolaev, K.; Nikolic-Audit, I.; Nikolopoulos, K.; Nilsen, H.; Nilsson, B. S.; Nilsson, P.; Nisati, A.; Nisius, R.; Nodulman, L. J.; Nomachi, M.; Nomoto, H.; Noppe, J.-M.; Nordberg, M.; Norniella Francisco, O.; Norton, P. R.; Novakova, J.; Nowak, M.; Nozaki, M.; Nunes, R.; Nunes Hanninger, G.; Nunnemann, T.; Nyman, T.; O'Connor, P.; O'Neale, S. W.; O'Neil, D. C.; O'Neill, M.; O'Shea, V.; Oakham, F. G.; Oberlack, H.; Obermaier, M.; Oberson, P.; Ochi, A.; Ockenfels, W.; Odaka, S.; Odenthal, I.; Odino, G. A.; Ogren, H.; Oh, S. H.; Ohshima, T.; Ohshita, H.; Okawa, H.; Olcese, M.; Olchevski, A. G.; Oliver, C.; Oliver, J.; Olivo Gomez, M.; Olszewski, A.; Olszowska, J.; Omachi, C.; Onea, A.; Onofre, A.; Oram, C. J.; Ordonez, G.; Oreglia, M. J.; Orellana, F.; Oren, Y.; Orestano, D.; Orlov, I. O.; Orr, R. S.; Orsini, F.; Osborne, L. S.; Osculati, B.; Osuna, C.; Otec, R.; Othegraven, R.; Ottewell, B.; Ould-Saada, F.; Ouraou, A.; Ouyang, Q.; Øye, O. K.; Ozcan, V. E.; Ozone, K.; Ozturk, N.; Pacheco Pages, A.; Padhi, S.; Padilla Aranda, C.; Paganis, E.; Paige, F.; Pailler, P. M.; Pajchel, K.; Palestini, S.; Palla, J.; Pallin, D.; Palmer, M. J.; Pan, Y. B.; Panikashvili, N.; Panin, V. N.; Panitkin, S.; Pantea, D.; Panuskova, M.; Paolone, V.; Paoloni, A.; Papadopoulos, I.; Papadopoulou, T.; Park, I.; Park, W.; Parker, M. A.; Parker, S.; Parkman, C.; Parodi, F.; Parsons, J. A.; Parzefall, U.; Pasqualucci, E.; Passardi, G.; Passeri, A.; Passmore, M. S.; Pastore, F.; Pastore, Fr; Pataraia, S.; Pate, D.; Pater, J. R.; Patricelli, S.; Pauly, T.; Pauna, E.; Peak, L. S.; Peeters, S. J. M.; Peez, M.; Pei, E.; Peleganchuk, S. V.; Pellegrini, G.; Pengo, R.; Pequenao, J.; Perantoni, M.; Perazzo, A.; Pereira, A.; Perepelkin, E.; Perera, V. J. O.; Perez Codina, E.; Perez Reale, V.; Peric, I.; Perini, L.; Pernegger, H.; Perrin, E.; Perrino, R.; Perrodo, P.; Perrot, G.; Perus, P.; Peshekhonov, V. D.; Petereit, E.; Petersen, J.; Petersen, T. C.; Petit, P. J. F.; Petridou, C.; Petrolo, E.; Petrucci, F.; Petti, R.; Pezzetti, M.; Pfeifer, B.; Phan, A.; Phillips, A. W.; Phillips, P. W.; Piacquadio, G.; Piccinini, M.; Pickford, A.; Piegaia, R.; Pier, S.; Pilcher, J. E.; Pilkington, A. D.; Pimenta Dos Santos, M. A.; Pina, J.; Pinfold, J. L.; Ping, J.; Pinhão, J.; Pinto, B.; Pirotte, O.; Placakyte, R.; Placci, A.; Plamondon, M.; Plano, W. G.; Pleier, M.-A.; Pleskach, A. V.; Podkladkin, S.; Podlyski, F.; Poffenberger, P.; Poggioli, L.; Pohl, M.; Polak, I.; Polesello, G.; Policicchio, A.; Polini, A.; Polychronakos, V.; Pomarede, D. M.; Pommès, K.; Ponsot, P.; Pontecorvo, L.; Pope, B. G.; Popescu, R.; Popovic, D. S.; Poppleton, A.; Popule, J.; Portell Bueso, X.; Posch, C.; Pospelov, G. E.; Pospichal, P.; Pospisil, S.; Postranecky, M.; Potrap, I. N.; Potter, C. J.; Poulard, G.; Pousada, A.; Poveda, J.; Prabhu, R.; Pralavorio, P.; Prasad, S.; Prast, J.; Prat, S.; Prata, M.; Pravahan, R.; Preda, T.; Pretzl, K.; Pribyl, L.; Price, D.; Price, L. E.; Price, M. J.; Prichard, P. M.; Prieur, D.; Primavera, M.; Primor, D.; Prokofiev, K.; Prosso, E.; Proudfoot, J.; Przysiezniak, H.; Puigdengoles, C.; Purdham, J.; Purohit, M.; Puzo, P.; Pylaev, A. N.; Pylypchenko, Y.; Qi, M.; Qian, J.; Qian, W.; Qian, Z.; Qing, D.; Quadt, A.; Quarrie, D. R.; Quayle, W. B.; Rabbers, J. J.; Radeka, V.; Rafi, J. M.; Ragusa, F.; Rahimi, A. M.; Rahm, D.; Raine, C.; Raith, B.; Rajagopalan, S.; Rajek, S.; Rammer, H.; Ramstedt, M.; Rangod, S.; Ratoff, P. N.; Raufer, T.; Rauscher, F.; Rauter, E.; Raymond, M.; Reads, A. L.; Rebuzzi, D.; Redlinger, G. R.; Reeves, K.; Rehak, M.; Reichold, A.; Reinherz-Aronis, E.; Reisinger, I.; Reljic, D.; Rembser, C.; Ren, Z.; Renaudin-Crepe, S. R. C.; Renkel, P.; Rensch, B.; Rescia, S.; Rescigno, M.; Resconi, S.; Resende, B.; Rewiersma, P.; Rey, J.; Rey-Campagnolle, M.; Rezaie, E.; Reznicek, P.; Richards, R. A.; Richer, J.-P.; Richter, R. H.; Richter, R.; Richter-Was, E.; Ridel, M.; Riegler, W.; Rieke, S.; Rijpstra, M.; Rijssenbeek, M.; Rimoldi, A.; Rios, R. R.; Riu Dachs, I.; Rivline, M.; Rivoltella, G.; Rizatdinova, F.; Robertson, S. H.; Robichaud-Veronneau, A.; Robins, S.; Robinson, D.; Robson, A.; Rochford, J. H.; Roda, C.; Rodier, S.; Roe, S.; Røhne, O.; Rohrbach, F.; Roldán, J.; Rolli, S.; Romance, J. B.; Romaniouk, A.; Romanov, V. M.; Romeo, G.; Roos, L.; Ros, E.; Rosati, S.; Rosenbaum, F.; Rosenbaum, G. A.; Rosenberg, E. I.; Rosselet, L.; Rossi, L. P.; Rossi, L.; Rotaru, M.; Rothberg, J.; Rottländer, I.; Rousseau, D.; Rozanov, A.; Rozen, Y.; Ruber, R.; Ruckert, B.; Rudolph, G.; Rühr, F.; Ruggieri, F.; Ruggiero, G.; Ruiz, H.; Ruiz-Martinez, A.; Rulikowska-Zarebska, E.; Rumiantsev, V.; Rumyantsev, L.; Runge, K.; Runolfsson, O.; Rusakovich, N. A.; Rust, D. R.; Rutherfoord, J. P.; Ruwiedel, C.; Ryabov, Y. F.; Ryadovikov, V.; Ryan, P.; Rybkine, G.; da Costa, J. Sá; Saavedra, A. F.; Saboumazrag, S.; F-W Sadrozinski, H.; Sadykov, R.; Sakamoto, H.; Sala, P.; Salamon, A.; Saleem, M.; Salihagic, D.; Salt, J.; Saltó Bauza, O.; Salvachúa Ferrando, B. M.; Salvatore, D.; Salzburger, A.; Sampsonidis, D.; Samset, B. H.; Sánchez Sánchez, C. A.; Sanchis Lozano, M. A.; Sanchis Peris, E.; Sandaker, H.; Sander, H. G.; Sandhoff, M.; Sandvoss, S.; Sankey, D. P. C.; Sanny, B.; Sansone, S.; Sansoni, A.; Santamarina Rios, C.; Santander, J.; Santi, L.; Santoni, C.; Santonico, R.; Santos, J.; Sapinski, M.; Saraiva, J. G.; Sarri, F.; Sasaki, O.; Sasaki, T.; Sasao, N.; Satsounkevitch, I.; Sauvage, D.; Sauvage, G.; Savard, P.; Savine, A. Y.; Savinov, V.; Savoy-Navarro, A.; Savva, P.; Saxon, D. H.; Says, L. P.; Sbarra, C.; Sbrissa, E.; Sbrizzi, A.; Scannicchio, D. A.; Schaarschmidt, J.; Schacht, P.; Schäfer, U.; Schaffer, A. C.; Schaile, D.; Schaller, M.; Schamov, A. G.; Schegelsky, V. A.; Scheirich, D.; Schernau, M.; Scherzer, M. I.; Schiavi, C.; Schick, H.; Schieck, J.; Schieferdecker, P.; Schioppa, M.; Schlager, G.; Schlenker, S.; Schlereth, J. L.; Schmid, P.; Schmidt, M. P.; Schmitt, C.; Schmitt, K.; Schmitz, M.; Schmücker, H.; Schoerner, T.; Scholte, R. C.; Schott, M.; Schouten, D.; Schram, M.; Schricker, A.; Schroff, D.; Schuh, S.; Schuijlenburg, H. W.; Schuler, G.; Schultes, J.; Schultz-Coulon, H.-C.; Schumacher, J.; Schumacher, M.; Schune, Ph; Schwartzman, A.; Schweiger, D.; Schwemling, Ph; Schwick, C.; Schwienhorst, R.; Schwierz, R.; Schwindling, J.; Scott, W. G.; Secker, H.; Sedykh, E.; Seguin-Moreau, N.; Segura, E.; Seidel, S. C.; Seiden, A.; Seixas, J. M.; Sekhniaidze, G.; Seliverstov, D. M.; Selldén, B.; Seman, M.; Semprini-Cesari, N.; Serfon, C.; Serin, L.; Seuster, R.; Severini, H.; Sevior, M. E.; Sexton, K. A.; Sfyrla, A.; Shah, T. P.; Shan, L.; Shank, J. T.; Shapiro, M.; Shatalov, P. B.; Shaver, L.; Shaw, C.; Shears, T. G.; Sherwood, P.; Shibata, A.; Shield, P.; Shilov, S.; Shimojima, M.; Shin, T.; Shiyakova, M.; Shmeleva, A.; Shoa, M.; Shochet, M. J.; Shupe, M. A.; Sicho, P.; Sidoti, A.; Siebel, A.; Siebel, M.; Siegrist, J.; Sijacki, D.; Silva, J.; Silverstein, S. B.; Simak, V.; Simic, Lj; Simion, S.; Simmons, B.; Simonyan, M.; Sinervo, P.; Sipica, V.; Siragusa, G.; Sisakyan, A. N.; Sivoklokov, S.; Sjölin, J.; Skubic, P.; Skvorodnev, N.; Slattery, P.; Slavicek, T.; Sliwa, K.; Sloan, T. J.; Sloper, J.; Smakhtin, V.; Small, A.; Smirnov, S. Yu; Smirnov, Y.; Smirnova, L.; Smirnova, O.; Smith, N. A.; Smith, B. C.; Smith, D. S.; Smith, J.; Smith, K. M.; Smith, B.; Smizanska, M.; Smolek, K.; Snesarev, A. A.; Snow, S. W.; Snow, J.; Snuverink, J.; Snyder, S.; Soares, M.; Soares, S.; Sobie, R.; Sodomka, J.; Söderberg, M.; Soffer, A.; Solans, C. A.; Solar, M.; Sole, D.; Solfaroli Camillocci, E.; Solodkov, A. A.; Solov'yanov, O. V.; Soloviev, I.; Soluk, R.; Sondericker, J.; Sopko, V.; Sopko, B.; Sorbi, M.; Soret Medel, J.; Sosebee, M.; Sosnovtsev, V. V.; Sospedra Suay, L.; Soukharev, A.; Soukup, J.; Spagnolo, S.; Spano, F.; Speckmayer, P.; Spegel, M.; Spencer, E.; Spighi, R.; Spigo, G.; Spila, F.; Spiriti, E.; Spiwoks, R.; Spogli, L.; Spousta, M.; Sprachmann, G.; Spurlock, B.; St. Denis, R. D.; Stahl, T.; Staley, R. J.; Stamen, R.; Stancu, S. N.; Stanecka, E.; Stanek, R. W.; Stanescu, C.; Stapnes, S.; Starchenko, E. A.; Staroba, P.; Stastny, J.; Staude, A.; Stavina, P.; Stavrianakou, M.; Stavropoulos, G.; Stefanidis, E.; Steffens, J. L.; Stekl, I.; Stelzer, H. J.; Stenzel, H.; Stewart, G.; Stewart, T. D.; Stiller, W.; Stockmanns, T.; Stodulski, M.; Stonjek, S.; Stradling, A.; Straessner, A.; Strandberg, J.; Strandlie, A.; Strauss, M.; Strickland, V.; Striegel, D.; Strizenec, P.; Ströhmer, R.; Strom, D. M.; Strong, J. A.; Stroynowski, R.; Stugu, B.; Stumer, I.; Su, D.; Subramania, S.; Suchkov, S. I.; Sugaya, Y.; Sugimoto, T.; Suk, M.; Sulin, V. V.; Sultanov, S.; Sun, Z.; Sundal, B.; Sushkov, S.; Susinno, G.; Sutcliffe, P.; Sutton, M. R.; Sviridov, Yu M.; Sykora, I.; Szczygiel, R. R.; Szeless, B.; Szymocha, T.; Sánchez, J.; Ta, D.; Taboada Gameiro, S.; Tadel, M.; Tafirout, R.; Taga, A.; Takai, H.; Takashima, R.; Takeda, H.; Takeshita, T.; Talby, M.; Talyshev, A.; Tamsett, M. C.; Tanaka, J.; Tanaka, K.; Tanaka, R.; Tanaka, S.; Tanaka, S.; Tanaka, Y.; Tappern, G. P.; Tapprogge, S.; Tarem, S.; Tarrade, F.; Tarrant, J.; Tartarelli, G.; Tas, P.; Tasevsky, M.; Tayalati, Y.; Taylor, F. E.; Taylor, G.; Taylor, G. N.; Taylor, R. P.; Tcherniatine, V.; Tegenfeldt, F.; Teixeira-Dias, P.; Ten Kate, H.; Teng, P. K.; Ter-Antonyan, R.; Terada, S.; Terron, J.; Terwort, M.; Teuscher, R. J.; Tevlin, C. M.; Thadome, J.; Thion, J.; Thioye, M.; Thomas, A.; Thomas, J. P.; Thomas, T. L.; Thomas, E.; Thompson, R. J.; Thompson, A. S.; Thun, R. P.; Tic, T.; Tikhomirov, V. O.; Tikhonov, Y. A.; Timm, S.; Timmermans, C. J. W. P.; Tipton, P.; Tique Aires Viegas, F. J.; Tisserant, S.; Titov, M.; Tobias, J.; Tocut, V. M.; Toczek, B.; Todorova-Nova, S.; Tojo, J.; Tokár, S.; Tokushuku, K.; Tomasek, L.; Tomasek, M.; Tomasz, F.; Tomoto, M.; Tompkins, D.; Tompkins, L.; Toms, K.; Tonazzo, A.; Tong, G.; Tonoyan, A.; Topfel, C.; Topilin, N. D.; Torrence, E.; Torres Pais, J. G.; Toth, J.; Touchard, F.; Tovey, D. R.; Tovey, S. N.; Towndrow, E. F.; Trefzger, T.; Treichel, M.; Treis, J.; Tremblet, L.; Tribanek, W.; Tricoli, A.; Trigger, I. M.; Trilling, G.; Trincaz-Duvoid, S.; Tripiana, M. F.; Trischuk, W.; Trka, Z.; Trocmé, B.; Troncon, C.; C-L Tseng, J.; Tsiafis, I.; Tsiareshka, P. V.; Tsipolitis, G.; Tskhadadze, E. G.; Tsukerman, I. I.; Tsulaia, V.; Tsuno, S.; Turala, M.; Turk Cakir, I.; Turlay, E.; Tuts, P. M.; Twomey, M. S.; Tyndel, M.; Typaldos, D.; Tyrvainen, H.; Tzamarioudaki, E.; Tzanakos, G.; Ueda, I.; Uhrmacher, M.; Ukegawa, F.; Ullán Comes, M.; Unal, G.; Underwood, D. G.; Undrus, A.; Unel, G.; Unno, Y.; Urkovsky, E.; Usai, G.; Usov, Y.; Vacavant, L.; Vacek, V.; Vachon, B.; Vahsen, S.; Valderanis, C.; Valenta, J.; Valente, P.; Valero, A.; Valkar, S.; Valls Ferrer, J. A.; Van der Bij, H.; van der Graaf, H.; van der Kraaij, E.; Van Eijk, B.; van Eldik, N.; van Gemmeren, P.; van Kesteren, Z.; van Vulpen, I.; Van Berg, R.; Vandelli, W.; Vandoni, G.; Vaniachine, A.; Vannucci, F.; Varanda, M.; Varela Rodriguez, F.; Vari, R.; Varnes, E. W.; Varouchas, D.; Vartapetian, A.; Varvell, K. E.; Vassilakopoulos, V. I.; Vassilieva, L.; Vataga, E.; Vaz, L.; Vazeille, F.; Vedrine, P.; Vegni, G.; Veillet, J. J.; Vellidis, C.; Veloso, F.; Veness, R.; Veneziano, S.; Ventura, A.; Ventura, S.; Vercesi, V.; Verducci, M.; Verkerke, W.; Vermeulen, J. C.; Vertogardov, L.; Vetterli, M. C.; Vichou, I.; Vickey, T.; Viehhauser, G. H. A.; Vigeolas, E.; Villa, M.; Villani, E. G.; Villate, J.; Villella, I.; Vilucchi, E.; Vincent, P.; Vincke, H.; Vincter, M. G.; Vinogradov, V. B.; Virchaux, M.; Viret, S.; Virzi, J.; Vitale, A.; Vivarelli, I.; Vives, R.; Vives Vaques, F.; Vlachos, S.; Vogt, H.; Vokac, P.; Vollmer, C. F.; Volpi, M.; Volpini, G.; von Boehn-Buchholz, R.; von der Schmitt, H.; von Toerne, E.; Vorobel, V.; Vorobiev, A. P.; Vorozhtsov, A. S.; Vorozhtsov, S. B.; Vos, M.; Voss, K. C.; Voss, R.; Vossebeld, J. H.; Vovenko, A. S.; Vranjes, N.; Vrba, V.; Vreeswijk, M.; Anh, T. Vu; Vuaridel, B.; Vudragovic, M.; Vuillemin, V.; Vuillermet, R.; Wänanen, A.; Wahlen, H.; Walbersloh, J.; Walker, R.; Walkowiak, W.; Wall, R.; Wallny, R. S.; Walsh, S.; Wang, C.; Wang, J. C.; Wappler, F.; Warburton, A.; Ward, C. P.; Warner, G. P.; Warren, M.; Warsinsky, M.; Wastie, R.; Watkins, P. M.; Watson, A. T.; Watts, G.; Waugh, A. T.; Waugh, B. M.; Weaverdyck, C.; Webel, M.; Weber, G.; Weber, J.; Weber, M.; Weber, P.; Weidberg, A. R.; Weilhammer, P. M.; Weingarten, J.; Weiser, C.; Wellenstein, H.; Wellisch, H. P.; Wells, P. S.; Wemans, A.; Wen, M.; Wenaus, T.; Wendler, S.; Wengler, T.; Wenig, S.; Wermes, N.; Werneke, P.; Werner, P.; Werthenbach, U.; Wheeler-Ellis, S. J.; Whitaker, S. P.; White, A.; White, M. J.; White, S.; Whittington, D.; Wicek, F.; Wicke, D.; Wickens, F. J.; Wiedenmann, W.; Wielers, M.; Wienemann, P.; Wiesmann, M.; Wiesmann, M.; Wijnen, T.; Wildauer, A.; Wilhelm, I.; Wilkens, H. G.; Williams, H. H.; Willis, W.; Willocq, S.; Wilmut, I.; Wilson, J. A.; Wilson, A.; Wingerter-Seez, I.; Winton, L.; Witzeling, W.; Wlodek, T.; Woehrling, E.; Wolter, M. W.; Wolters, H.; Wosiek, B.; Wotschack, J.; Woudstra, M. J.; Wright, C.; Wu, S. L.; Wu, X.; Wuestenfeld, J.; Wunstorf, R.; Xella-Hansen, S.; Xiang, A.; Xie, S.; Xie, Y.; Xu, G.; Xu, N.; Yamamoto, A.; Yamamoto, S.; Yamaoka, H.; Yamazaki, Y.; Yan, Z.; Yang, H.; Yang, J. C.; Yang, S.; Yang, U. K.; Yang, Y.; Yang, Z.; Yao, W.-M.; Yao, Y.; Yarradoddi, K.; Yasu, Y.; Ye, J.; Yilmaz, M.; Yoosoofmiya, R.; Yorita, K.; Yoshida, H.; Yoshida, R.; Young, C.; Youssef, S. P.; Yu, D.; Yu, J.; Yu, M.; Yu, X.; Yuan, J.; Yurkewicz, A.; Zaets, V. G.; Zaidan, R.; Zaitsev, A. M.; Zajac, J.; Zajacova, Z.; Zalite, A. Yu; Zalite, Yo K.; Zanello, L.; Zarzhitsky, P.; Zaytsev, A.; Zdrazil, M.; Zeitnitz, C.; Zeller, M.; Zema, P. F.; Zendler, C.; Zenin, A. V.; Zenis, T.; Zenonos, Z.; Zenz, S.; Zerwas, D.; Zhang, H.; Zhang, J.; Zheng, W.; Zhang, X.; Zhao, L.; Zhao, T.; Zhao, X.; Zhao, Z.; Zhelezko, A.; Zhemchugov, A.; Zheng, S.; Zhichao, L.; Zhou, B.; Zhou, N.; Zhou, S.; Zhou, Y.; Zhu, C. G.; Zhu, H. Z.; Zhuang, X. A.; Zhuravlov, V.; Zilka, B.; Zimin, N. I.; Zimmermann, S.; Ziolkowski, M.; Zitoun, R.; Zivkovic, L.; Zmouchko, V. V.; Zobernig, G.; Zoccoli, A.; Zoeller, M. M.; Zolnierowski, Y.; Zsenei, A.; zur Nedden, M.; Zychacek, V.

    2008-08-01

    The ATLAS detector as installed in its experimental cavern at point 1 at CERN is described in this paper. A brief overview of the expected performance of the detector when the Large Hadron Collider begins operation is also presented.

  15. Status of the MEIC ion collider ring design

    SciTech Connect

    Morozov, Vasiliy; Derbenev, Yaroslav; Harwood, Leigh; Hutton, Andrew; Lin, Fanglei; Pilat, Fulvia; Zhang, Yuhong; Cai, Yunhai; Nosochkov, Y. M.; Sullivan, Michael; Wang, M.-H.; Wienands, Uli; Gerity, James; Mann, Thomas; McIntyre, Peter; Pogue, Nathaniel; Sattarov, Akhdiyor

    2015-09-01

    We present an update on the design of the ion collider ring of the Medium-energy Electron-Ion Collider (MEIC) proposed by Jefferson Lab. The design is based on the use of super-ferric magnets. It provides the necessary momentum range of 8 to 100 GeV/c for protons and ions, matches the electron collider ring design using PEP-II components, fits readily on the JLab site, offers a straightforward path for a future full-energy upgrade by replacing the magnets with higher-field ones in the same tunnel, and is more cost effective than using presently available current-dominated super-conducting magnets. We describe complete ion collider optics including an independently-designed modular detector region.

  16. Pion production for neutrino factories and muon colliders

    SciTech Connect

    Mokhov, N.V.; Guidman, K.K.; Strait, J.B.; Striganov, S.I.; /Fermilab

    2009-12-01

    Optimization of pion and muon production/collection for neutrino factories and muon colliders is described along with recent developments of the MARS15 code event generators and effects influencing the choice of the optimal beam energy.

  17. Heaviest bound baryons production at the Large Hadron Collider

    NASA Astrophysics Data System (ADS)

    Wu, Su-Zhi; Li, You-Wei; Rashidin, Reyima

    2012-12-01

    We calculate the hadronic production of three heaviest bound baryons Ωbbb, Ωbbc*, and Ωbbc at hadron colliders at tree level. We present the integrated cross section and differential cross section distributions in this paper.

  18. Superconducting Super Collider: The presidential transition heightens uncertainty

    SciTech Connect

    Taubes, G.

    1993-02-05

    Funding for the Superconducting Super Collider remains uncertain with the election of Bill Clinton. As a result, the Japanese are delaying their decision on whether or not to supply approximately $1 billion. The costs of delay or termination are discussed.

  19. Collider-independent tt forward-backward asymmetries.

    PubMed

    Aguilar-Saavedra, J A; Juste, A

    2012-11-21

    We introduce the forward-backward asymmetries A(u), A(d) corresponding to uū, dd → tt production, respectively, at hadron colliders. These are collider and center-of-mass independent observables, directly related to the forward-backward and charge asymmetries measured at the Tevatron and the LHC, respectively. We discuss how to extract these asymmetries from data. Because these asymmetries are collider independent, their measurement at these two colliders could elucidate the nature of the anomalous forward-backward asymmetry measured at the Tevatron. Our framework also shows in a model independent fashion that a positive Tevatron asymmetry exceeding the standard model expectation is compatible with the small asymmetry measured at the LHC.

  20. Signatures of doubly-charged Higgsinos at colliders

    SciTech Connect

    Demir, D. A.; Frank, M.; Turan, I.; Huitu, K.; Rai, S. K.

    2008-11-23

    Several supersymmetric models with extended gauge structures predict light doubly-charged Higgsinos. Their distinctive signature at the large hadron collider is highlighted by studying its production and decay characteristics.