Science.gov

Sample records for 19f mas nmr

  1. Conformation analysis and molecular mobility of ethylene and tetrafluoroethylene copolymer using solid-state 19F MAS and 1H --> 19F CP/MAS NMR spectroscopy.

    PubMed

    Aimi, Keitaro; Ando, Shinji

    2004-07-01

    The changes in the conformation and molecular mobility accompanied by a phase transition in the crystalline domain were analyzed for ethylene (E) and tetrafluoroethylene (TFE) copolymer, ETFE, using variable-temperature (VT) solid-state 19F magic angle spinning (MAS) and 1H --> 19F cross-polarization (CP)/MAS NMR spectroscopy. The shifts of the signals for fluorines in TFE units to higher frequency and the continuing decrease and increase in the T1rho(F) values suggest that conformational exchange motions exist in the crystalline domain between 42 and 145 degrees C. Quantum chemical calculations of magnetic shielding constants showed that the high-frequency shift of TFE units should be induced by trans to gauche conformational changes at the CH2-CF2 linkage in the E-TFE unit. Although the 19F signals of the crystalline domain are substantially overlapped with those of the amorphous domain at ambient probe temperature (68 degrees C), they were successfully distinguished by using the dipolar filter and spin-lock pulse sequences at 145 degrees C. The dipolar coupling constants for the crystalline domain, which can be estimated by fitting the dipolar oscillation behaviors in the 1H --> 19F CP curve, showed a significant decrease with increasing temperature from 42 to 145 degrees C. This is due to the averaging of 1H-19F dipolar interactions originating from the molecular motion in the crystalline domain. The increase in molecular mobility in the crystalline domain was clearly shown by VT T1rho(F) and 1H --> 19F CP measurements in the phase transition temperature range. PMID:15181627

  2. Characterization of solid polymer dispersions of active pharmaceutical ingredients by 19F MAS NMR and factor analysis

    NASA Astrophysics Data System (ADS)

    Urbanova, Martina; Brus, Jiri; Sedenkova, Ivana; Policianova, Olivia; Kobera, Libor

    In this contribution the ability of 19F MAS NMR spectroscopy to probe structural variability of poorly water-soluble drugs formulated as solid dispersions in polymer matrices is discussed. The application potentiality of the proposed approach is demonstrated on a moderately sized active pharmaceutical ingredient (API, Atorvastatin) exhibiting extensive polymorphism. In this respect, a range of model systems with the API incorporated in the matrix of polvinylpyrrolidone (PVP) was prepared. The extent of mixing of both components was determined by T1(1H) and T1ρ(1H) relaxation experiments, and it was found that the API forms nanosized domains. Subsequently it was found out that the polymer matrix induces two kinds of changes in 19F MAS NMR spectra. At first, this is a high-frequency shift reaching 2-3 ppm which is independent on molecular structure of the API and which results from the long-range polarization of the electron cloud around 19F nucleus induced by electrostatic fields of the polymer matrix. At second, this is broadening of the signals and formation of shoulders reflecting changes in molecular arrangement of the API. To avoid misleading in the interpretation of the recorded 19F MAS NMR spectra, because both the contributions act simultaneously, we applied chemometric approach based on multivariate analysis. It is demonstrated that factor analysis of the recorded spectra can separate both these spectral contributions, and the subtle structural differences in the molecular arrangement of the API in the nanosized domains can be traced. In this way 19F MAS NMR spectra of both pure APIs and APIs in solid dispersions can be directly compared. The proposed strategy thus provides a powerful tool for the analysis of new formulations of fluorinated pharmaceutical substances in polymer matrices.

  3. CP-MAS 207Pb with 19F decoupling NMR spectroscopy: medium range investigation in fluoride materials.

    PubMed

    Bureau, B; Silly, G; Buzaré, J Y

    1999-11-01

    The isotropic chemical shift of 207Pb is used to perform structural investigations of crystalline fluoride compounds (PbF2, Pb2ZnF6, PbGaF5, Pb3Ga2F12 and Pb9Ga2F24) and transition metal fluoride glasses (TMFG) of the PZG family (PbF2-ZnF2-GaF3). Using 207Pb Cross Polarisation Magic Angle Spinning (CP-MAS) NMR with 19F decoupling, it is shown that the isotropic chemical shift of 207Pb varies on a large scale (1000 ppm) and that the main changes of its value are not due to the nearest neighbour fluorines but may be related to the number of next nearest neighbour (nnn) Pb2+ ions. In this way, it is demonstrated that 207Pb chemical shift is an interesting probe to investigate medium range order in either crystalline or glassy fluoride systems. The 207Pb delta(iso) parameter has been linearly correlated to the number of nnn Pb2+ ions. PMID:10670899

  4. A 19F NMR Study of Enzyme Activity

    NASA Astrophysics Data System (ADS)

    Peterman, Keith E.; Lentz, Kevin; Duncan, Jeffery

    1998-10-01

    This basic enzyme activity laboratory experiment demonstrates how 19F NMR can be used in biochemical studies and presents the advantages of 19F NMR over 1H NMR for studies of this nature. N-Trifluoroacetylglycine was selected as a commercially available model fluorine-tagged substrate that readily undergoes acylase I-catalyzed hydrolysis to produce trifluoroacetic acid and glycine. Progress of the reaction was monitored by following conversion of the trifluoroacetyl moiety peak of N-trifluoroacetylglycine to trifluoroacetic acid. The extent of hydrolysis was determined by comparing integrated ratios of the two 19F NMR peaks. A plot of percent hydrolysis versus enzyme concentration was used to calculate unit activity of the enzyme. This is a viable laboratory experiment for junior/senior-level courses in instrumental analytical chemistry, biochemistry, molecular biology, or spectroscopy.

  5. Homonuclear dipolar recoupling under ultra-fast magic-angle spinning: probing 19F-19F proximities by solid-state NMR.

    PubMed

    Wang, Qiang; Hu, Bingwen; Lafon, Olivier; Trébosc, Julien; Deng, Feng; Amoureux, Jean-Paul

    2010-03-01

    We describe dipolar recoupling methods that accomplish, at high magic-angle spinning (MAS) frequencies, the excitation of double-quantum (DQ) coherences between spin-1/2 nuclei. We employ rotor-synchronized symmetry-based pulse sequences which are either gamma-encoded or non-gamma-encoded. The sensitivity and the robustness to both chemical-shift anisotropy and offset are examined. We also compare different techniques to avoid signal folding in the indirect dimension of two-dimensional double-quantum<-->single-quantum (DQ-SQ) spectra. This comprehensive analysis results in the identification of satisfactory conditions for dipolar (19)F-(19)F recoupling at high magnetic fields and high MAS frequencies. The utility of these recoupling methods is demonstrated with high-resolution DQ-SQ NMR spectra, which allow probing (19)F-(19)F proximities in powered fluoroaluminates. PMID:20044288

  6. Solid-state 19F-NMR analysis of 19F-labeled tryptophan in gramicidin A in oriented membranes.

    PubMed Central

    Grage, Stephan L; Wang, Junfeng; Cross, Timothy A; Ulrich, Anne S

    2002-01-01

    The response of membrane-associated peptides toward the lipid environment or other binding partners can be monitored by solid-state NMR of suitably labeled side chains. Tryptophan is a prominent amino acid in transmembrane helices, and its (19)F-labeled analogues are generally biocompatible and cause little structural perturbation. Hence, we use 5F-Trp as a highly sensitive NMR probe to monitor the conformation and dynamics of the indole ring. To establish this (19)F-NMR strategy, gramicidin A was labeled with 5F-Trp in position 13 or 15, whose chi(1)/chi(2) torsion angles are known from previous (2)H-NMR studies. First, the alignment of the (19)F chemical shift anisotropy tensor within the membrane was deduced by lineshape analysis of oriented samples. Next, the three principal axes of the (19)F chemical shift anisotropy tensor were assigned within the molecular frame of the indole ring. Finally, determination of chi(1)/chi(2) for 5F-Trp in the lipid gel phase showed that the side chain alignment differs by up to 20 degrees from its known conformation in the liquid crystalline state. The sensitivity gain of (19)F-NMR and the reduction in the amount of material was at least 10-fold compared with previous (2)H-NMR studies on the same system and 100-fold compared with (15)N-NMR. PMID:12496101

  7. {sup 19}F NMR spectra and structures of halogenated porphyrins

    SciTech Connect

    Birnbaum, E.R.; Hodge, J.A.; Grinstaff, M.W.

    1995-07-05

    Fluorine-19 NMR spectra of a series of halogenated porphyrins have been used to create a spectral library of different types of fluorine splitting patterns for tetrakis(pentafluorophenyl) porphyrins (TFPP) complexed with diamagnetic and paramagnetic metal ions. The paramagnetic shift, line broadening, and fine structure of the resonances form the peripheral pentafluorophenyl rings are dependent on the symmetry and core environment of the porphyrin macrocycles. In combination with crystal structure data, {sup 19}F NMR helps define the behavior of halogenated porphyrins in solution. Six new crystal structures for TFPP and octahalo-TFPP derivatives are reported: H{sub 2}TFPP in rhombohedral space group R3, a = 20.327(4) {Angstrom}, c = 15.261(2) {Angstrom}, {beta} = 103.87(2){degrees}, V = 2227.6(13) {Angstrom}{sup 3}, Z = 2; CuTFPP in rhombohedral space group R3, a = 20.358(5), c = 14.678(2) {Angstrom}, {alpha} = 88.97(1), {beta}=76.05(1){degrees}, {gamma} = 71.29(1){degrees}, V = 2181.4(6) {Angstrom}{sup 3}, Z = 2; ZnTFPPCl{sub 8} in tetragonal space group P42, c, a = 19.502(20), c = 10.916(8) {Angstrom}, V = 4152(6) {Angstrom}{sup 3}, Z = 2; H{sub 2}TFPPBr{sub 8} in monoclinic space group C2, a = 27.634(6) {Angstrom}, b = 6.926(2) {Angstrom}, c = 14.844(3) {Angstrom}, {beta} = 109.64(2){degrees}, V = 2675.8(11) {Angstrom}{sup 3}, Z = 2.

  8. Ring current shifts in (19)F-NMR of membrane proteins.

    PubMed

    Liu, Dongsheng; Wüthrich, Kurt

    2016-05-01

    Fluorine-19 NMR markers are attractive reporter groups for use in studies of complex biomacromolecular systems, in particular also for studies of function-related conformational equilibria and rate processes in membrane proteins. Advantages of (19)F-NMR probes include high sensitivity of the (19)F chemical shifts to variations in the non-covalent environment. Nonetheless, in studies of G protein-coupled receptors (GPCR) we encountered situations where (19)F chemical shifts were not responsive to conformational changes that had been implicated by other methods. This prompted us to examine possible effects of aromatic ring current fields on the chemical shifts of (19)F-NMR probes used in GPCRs. Analysis of previously reported (19)F-NMR data on the β2-adrenergic receptor and mammalian rhodopsin showed that all (19)F-labeling sites which manifested conformational changes are located near aromatic residues. Although ring current effects are small when compared to other known non-covalent effects on (19)F chemical shifts, there is thus an indication that their contributions are significant when studying activation processes in GPCRs, since the observed activation-related (19)F-NMR chemical shifts are comparable in size to the calculated ring current shifts. Considering the impact of ring current shifts may thus be helpful in identifying promising indigenous or engineered labeling sites for future (19)F-NMR studies of GPCR activation, and novel information may be obtained on the nature of conformational rearrangements near the (19)F-labels. It will then also be interesting to see if the presently indicated role of ring current shifts in membrane protein studies with (19)F-NMR markers can be substantiated by a more extensive data base resulting from future studies. PMID:27240587

  9. A 1H/19F minicoil NMR probe for solid-state NMR: application to 5-fluoroindoles.

    PubMed

    Graether, Steffen P; DeVries, Jeffrey S; McDonald, Robert; Rakovszky, Melissa L; Sykes, Brian D

    2006-01-01

    We show that it is feasible to use a minicoil for solid-state 19F 1H NMR experiments that has short pulse widths, good RF homogeneity, and excellent signal-to-noise for small samples while using low power amplifiers typical to liquid-state NMR. The closely spaced resonant frequencies of 1H and 19F and the ubiquitous use of fluorine in modern plastics and electronic components present two major challenges in the design of a high-sensitivity, high-field 1H/19F probe. Through the selection of specific components, circuit design, and pulse sequence, we were able to build a probe that has low 19F background and excellent separation of 1H and 19F signals. We determine the principle components of the chemical shift anisotropy tensor of 5-fluoroindole-3-acetic acid (5FIAA) and 5-fluorotryptophan. We also solve the crystal structure of 5FIAA, determine the orientation dependence of the chemical shift of a single crystal of 5FIAA, and predict the 19F chemical shift based on the orientation of the fluorine in the crystal. The results show that this 1H/19F probe is suitable for solid-state NMR experiments with low amounts of biological molecules that have been labeled with 19F. PMID:16198131

  10. Prediction of (19)F NMR Chemical Shifts in Labeled Proteins: Computational Protocol and Case Study.

    PubMed

    Isley, William C; Urick, Andrew K; Pomerantz, William C K; Cramer, Christopher J

    2016-07-01

    The structural analysis of ligand complexation in biomolecular systems is important in the design of new medicinal therapeutic agents; however, monitoring subtle structural changes in a protein's microenvironment is a challenging and complex problem. In this regard, the use of protein-based (19)F NMR for screening low-molecular-weight molecules (i.e., fragments) can be an especially powerful tool to aid in drug design. Resonance assignment of the protein's (19)F NMR spectrum is necessary for structural analysis. Here, a quantum chemical method has been developed as an initial approach to facilitate the assignment of a fluorinated protein's (19)F NMR spectrum. The epigenetic "reader" domain of protein Brd4 was taken as a case study to assess the strengths and limitations of the method. The overall modeling protocol predicts chemical shifts for residues in rigid proteins with good accuracy; proper accounting for explicit solvation of fluorinated residues by water is critical. PMID:27218275

  11. Parallel NMR spectroscopy with simultaneous detection of (1) H and (19) F nuclei.

    PubMed

    Kovacs, Helena; Kupče, Ēriks

    2016-07-01

    Recording NMR signals of several nuclear species simultaneously by using parallel receivers provides more information from a single measurement and at the same time increases the measurement sensitivity per unit time. Here we present a comprehensive series of the most frequently used NMR experiments modified for simultaneous direct detection of two of the most sensitive NMR nuclei - (1) H and (19) F. We hope that the presented material will stimulate interest in and further development of this technique. PMID:27021630

  12. Simultaneous detection of distinct ubiquitin chain topologies by 19F NMR.

    PubMed

    Shekhawat, Sujan S; Pham, Grace H; Prabakaran, Jyothiprashanth; Strieter, Eric R

    2014-10-17

    The dynamic interplay between ubiquitin (Ub) chain construction and destruction is critical for the regulation of many cellular pathways. To understand these processes, it would be ideal to simultaneously detect different Ub chains as they are created and destroyed in the cell. This objective cannot be achieved with existing detection strategies. Here, we report on the use of 19F Nuclear Magnetic Resonance (NMR) spectroscopy to detect and characterize conformationally distinct Ub oligomers. By exploiting the environmental sensitivity of the 19F nucleus and the conformational diversity found among Ub chains of different linkage types, we can simultaneously resolve the 19F NMR signals for mono-Ub and three distinct di-Ub oligomers (K6, K48, and K63) in heterogeneous mixtures. The utility of this approach is demonstrated by the ability to interrogate the selectivity of deubiquitinases with multiple Ub substrates in real time. We also demonstrate that 19F NMR can be used to discern Ub linkages that are formed by select E3 ligases found in pathogenic bacteria. Collectively, our results assert the potential of 19F NMR for monitoring Ub signaling in cells to reveal fundamental insights about the associated cellular pathways. PMID:25119846

  13. Simultaneous Detection of Distinct Ubiquitin Chain Topologies by 19F NMR

    PubMed Central

    2015-01-01

    The dynamic interplay between ubiquitin (Ub) chain construction and destruction is critical for the regulation of many cellular pathways. To understand these processes, it would be ideal to simultaneously detect different Ub chains as they are created and destroyed in the cell. This objective cannot be achieved with existing detection strategies. Here, we report on the use of 19F Nuclear Magnetic Resonance (NMR) spectroscopy to detect and characterize conformationally distinct Ub oligomers. By exploiting the environmental sensitivity of the 19F nucleus and the conformational diversity found among Ub chains of different linkage types, we can simultaneously resolve the 19F NMR signals for mono-Ub and three distinct di-Ub oligomers (K6, K48, and K63) in heterogeneous mixtures. The utility of this approach is demonstrated by the ability to interrogate the selectivity of deubiquitinases with multiple Ub substrates in real time. We also demonstrate that 19F NMR can be used to discern Ub linkages that are formed by select E3 ligases found in pathogenic bacteria. Collectively, our results assert the potential of 19F NMR for monitoring Ub signaling in cells to reveal fundamental insights about the associated cellular pathways. PMID:25119846

  14. MAS NMR of HIV-1 protein assemblies

    NASA Astrophysics Data System (ADS)

    Suiter, Christopher L.; Quinn, Caitlin M.; Lu, Manman; Hou, Guangjin; Zhang, Huilan; Polenova, Tatyana

    2015-04-01

    The negative global impact of the AIDS pandemic is well known. In this perspective article, the utility of magic angle spinning (MAS) NMR spectroscopy to answer pressing questions related to the structure and dynamics of HIV-1 protein assemblies is examined. In recent years, MAS NMR has undergone major technological developments enabling studies of large viral assemblies. We discuss some of these evolving methods and technologies and provide a perspective on the current state of MAS NMR as applied to the investigations into structure and dynamics of HIV-1 assemblies of CA capsid protein and of Gag maturation intermediates.

  15. MAS NMR of HIV-1 protein assemblies.

    PubMed

    Suiter, Christopher L; Quinn, Caitlin M; Lu, Manman; Hou, Guangjin; Zhang, Huilan; Polenova, Tatyana

    2015-04-01

    The negative global impact of the AIDS pandemic is well known. In this perspective article, the utility of magic angle spinning (MAS) NMR spectroscopy to answer pressing questions related to the structure and dynamics of HIV-1 protein assemblies is examined. In recent years, MAS NMR has undergone major technological developments enabling studies of large viral assemblies. We discuss some of these evolving methods and technologies and provide a perspective on the current state of MAS NMR as applied to the investigations into structure and dynamics of HIV-1 assemblies of CA capsid protein and of Gag maturation intermediates. PMID:25797001

  16. Applications of (19)F-NMR in Fragment-Based Drug Discovery.

    PubMed

    Norton, Raymond S; Leung, Eleanor W W; Chandrashekaran, Indu R; MacRaild, Christopher A

    2016-01-01

    (19)F-NMR has proved to be a valuable tool in fragment-based drug discovery. Its applications include screening libraries of fluorinated fragments, assessing competition among elaborated fragments and identifying the binding poses of promising hits. By observing fluorine in both the ligand and the target protein, useful information can be obtained on not only the binding pose but also the dynamics of ligand-protein interactions. These applications of (19)F-NMR will be illustrated in this review with studies from our fragment-based drug discovery campaigns against protein targets in parasitic and infectious diseases. PMID:27438818

  17. A mutagenesis-free approach to assignment of (19)F NMR resonances in biosynthetically labeled proteins.

    PubMed

    Kitevski-LeBlanc, Julianne L; Al-Abdul-Wahid, M Sameer; Prosser, R Scott

    2009-02-18

    Solution NMR studies of protein structure and dynamics using fluorinated amino acid probes are a valuable addition to the repertoire of existing (13)C, (15)N, and (1)H experiments. Despite the numerous advantages of the (19)F nucleus in NMR, protein studies are complicated by the dependence of resonance assignments on site-directed mutagenesis methods which are laborious and often problematic. Here we report an NMR-based route to the assignment of fluorine resonances in (13)C,(15)N-3-fluoro-l-tyrosine labeled calmodulin. The assignment begins with the correlation of the fluorine nucleus to the delta proton in the novel (13)C,(15)N-enriched probe which is achieved using a CT-HCCF-COSY experiment. Connection to the backbone is made through two additional solution NMR experiments, namely the (H(beta))C(beta)(C(gamma)C(delta))H(delta) and HNCACB. Assignments are completed using either previously published backbone chemical shift data or obtained experimentally provided uniform (13)C,(15)N labeling procedures are employed during protein expression. Additional benefits of the (13)C,(15)N-3-fluoro-l-tyrosine probe include the reduction of spectral overlap through ((13)C(19)F) CT-HSQCs, as well as the ability to monitor side chain dynamics using (19)F T(1), T(2), and the (13)C-(19)F NOE. PMID:19173647

  18. 19F-NMR Study on the Equilateral Triangular Spin Tube CsCrF4

    NASA Astrophysics Data System (ADS)

    Matsui, Kazuki; Goto, Takayuki; Manaka, Hirotaka; Miura, Yoko

    In order to investigate the hyperfine coupling of three inequivalent 19F sites in the equilateral triangular spin-tube antiferromagnet CsCrF4, we have measured the temperature dependence of 19F-NMR Knight shift in the paramagnetic state above 20K. The hyperfine coupling constants for three F-sites were determined to be -0.170, 0.280 and -0.045 T/μB, and were found to be consistent with the observed spectra at 1.65K, where the system is possibly in the ordered state.

  19. Probing the Pu4 + magnetic moment in PuF4 with 19F NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Capan, Cigdem; Dempsey, Richard J.; Sinkov, Sergey; McNamara, Bruce K.; Cho, Herman

    2016-06-01

    The magnetic fields produced by Pu4 + centers have been measured by 19F NMR spectroscopy to elucidate the Pu-F electronic interactions in polycrystalline PuF4. Spectra acquired at applied fields of 2.35 and 7.05 T reveal a linear scaling of the 19F line shape. A model is presented that treats the line broadening and shifts as due to dipolar fields produced by Pu valence electrons in localized noninteracting orbitals. Alternative explanations for the observed line shape involving covalent Pu-F bonding, superexchange interactions, and electronic configurations with enhanced magnetic moments are considered.

  20. The metabolism of 2-trifluormethylaniline and its acetanilide in the rat by 19F NMR monitored enzyme hydrolysis and 1H/19F HPLC-NMR spectroscopy.

    PubMed

    Tugnait, M; Lenz, E M; Hofmann, M; Spraul, M; Wilson, I D; Lindon, J C; Nicholson, J K

    2003-01-01

    The urinary excretion profile and identity of the metabolites of 2-trifluoromethyl aniline (2-TFMA) and 2-trifluoromethyl acetanilide (2-TFMAc), following i.p. administration to the rat at 50 mg kg(-1), were determined using a combination of 19F NMR monitored enzyme hydrolysis, SPEC-MS and 19F/1H HPLC-NMR. A total recovery of approximately 96.4% of the dose was excreted into the urine as seven metabolites. The major routes of metabolism were N-conjugation (glucuronidation), and ring-hydroxylation followed by sulphation (and to a lesser extent glucuronidation). The major metabolites excreted into the urine for both compounds were a labile N-conjugated metabolite (a postulated N-glucuronide) and a sulphated ring-hydroxylated metabolite (a postulated 4-amino-5-trifluoromethylphenyl sulphate) following dosing of 2-TFMA. These accounted for approximately 53.0 and 31.5% of the dose, respectively. This study identifies problems on sample component instability in the preparation and analysis procedures. PMID:12467928

  1. Simultaneous 19F-1H medium resolution NMR spectroscopy for online reaction monitoring

    NASA Astrophysics Data System (ADS)

    Zientek, Nicolai; Laurain, Clément; Meyer, Klas; Kraume, Matthias; Guthausen, Gisela; Maiwald, Michael

    2014-12-01

    Medium resolution nuclear magnetic resonance (MR-NMR) spectroscopy is currently a fast developing field, which has an enormous potential to become an important analytical tool for reaction monitoring, in hyphenated techniques, and for systematic investigations of complex mixtures. The recent developments of innovative MR-NMR spectrometers are therefore remarkable due to their possible applications in quality control, education, and process monitoring. MR-NMR spectroscopy can beneficially be applied for fast, non-invasive, and volume integrating analyses under rough environmental conditions. Within this study, a simple 1/16″ fluorinated ethylene propylene (FEP) tube with an ID of 0.04″ (1.02 mm) was used as a flow cell in combination with a 5 mm glass Dewar tube inserted into a benchtop MR-NMR spectrometer with a 1H Larmor frequency of 43.32 MHz and 40.68 MHz for 19F. For the first time, quasi-simultaneous proton and fluorine NMR spectra were recorded with a series of alternating 19F and 1H single scan spectra along the reaction time coordinate of a homogeneously catalysed esterification model reaction containing fluorinated compounds. The results were compared to quantitative NMR spectra from a hyphenated 500 MHz online NMR instrument for validation. Automation of handling, pre-processing, and analysis of NMR data becomes increasingly important for process monitoring applications of online NMR spectroscopy and for its technical and practical acceptance. Thus, NMR spectra were automatically baseline corrected and phased using the minimum entropy method. Data analysis schemes were designed such that they are based on simple direct integration or first principle line fitting, with the aim that the analysis directly revealed molar concentrations from the spectra. Finally, the performance of 1/16″ FEP tube set-up with an ID of 1.02 mm was characterised regarding the limit of detection (LOQ (1H) = 0.335 mol L-1 and LOQ (19F) = 0.130 mol L-1 for trifluoroethanol in

  2. Simultaneous (19)F-(1)H medium resolution NMR spectroscopy for online reaction monitoring.

    PubMed

    Zientek, Nicolai; Laurain, Clément; Meyer, Klas; Kraume, Matthias; Guthausen, Gisela; Maiwald, Michael

    2014-10-18

    Medium resolution nuclear magnetic resonance (MR-NMR) spectroscopy is currently a fast developing field, which has an enormous potential to become an important analytical tool for reaction monitoring, in hyphenated techniques, and for systematic investigations of complex mixtures. The recent developments of innovative MR-NMR spectrometers are therefore remarkable due to their possible applications in quality control, education, and process monitoring. MR-NMR spectroscopy can beneficially be applied for fast, non-invasive, and volume integrating analyses under rough environmental conditions. Within this study, a simple 1/16″ fluorinated ethylene propylene (FEP) tube with an ID of 0.04″ (1.02mm) was used as a flow cell in combination with a 5mm glass Dewar tube inserted into a benchtop MR-NMR spectrometer with a (1)H Larmor frequency of 43.32MHz and 40.68MHz for (19)F. For the first time, quasi-simultaneous proton and fluorine NMR spectra were recorded with a series of alternating (19)F and (1)H single scan spectra along the reaction time coordinate of a homogeneously catalysed esterification model reaction containing fluorinated compounds. The results were compared to quantitative NMR spectra from a hyphenated 500MHz online NMR instrument for validation. Automation of handling, pre-processing, and analysis of NMR data becomes increasingly important for process monitoring applications of online NMR spectroscopy and for its technical and practical acceptance. Thus, NMR spectra were automatically baseline corrected and phased using the minimum entropy method. Data analysis schemes were designed such that they are based on simple direct integration or first principle line fitting, with the aim that the analysis directly revealed molar concentrations from the spectra. Finally, the performance of 1/16″ FEP tube set-up with an ID of 1.02mm was characterised regarding the limit of detection (LOQ ((1)H)=0.335molL(-1) and LOQ ((19)F)=0.130molL(-1) for trifluoroethanol

  3. Bulk magnetic susceptibility induced broadening in the 19F NMR of suspended leukemic cells.

    PubMed

    Adebodun, F; Post, J F

    1993-01-01

    The relevance of bulk magnetic susceptibility (BMS) induced broadening to in vivo NMR studies of intact cells has been examined and the significance of the contribution of BMS difference to the resolution of intra- and extracellular resonances was demonstrated. BMS difference between intra- and extracellular compartments was found to limit the resolution of intra- and extracellular 19F resonances of fluoro compounds in leukemic cells. PMID:8499242

  4. Background suppression in MAS NMR

    NASA Astrophysics Data System (ADS)

    White, Jeffery L.; Beck, Larry W.; Ferguson, David B.; Haw, James F.

    Pulse sequences for suppressing background signals from spinning modules used in magic-angle spinning NMR are described. These pulse sequences are based on spatially selective composite 90° pulses originally reported by Bax, which provide for no net excitation of spins outside the homogeneous region of the coil. We have achieved essentially complete suppression of background signals originating from our Vespel spinning module (which uses a free-standing coil) in both 1H and 13C spectra without notable loss in signal intensity. Successful modification of both Bloch decay and cross-polarization pulse sequences to include spatially selective pulses was essential to acquire background-free spectra for weak samples. Background suppression was also found to be particularly valuable for both T1 and T1 ϱ, relaxation measurements.

  5. Fluorinated Boronic Acid-Appended Bipyridinium Salts for Diol Recognition and Discrimination via (19)F NMR Barcodes.

    PubMed

    Axthelm, Jörg; Görls, Helmar; Schubert, Ulrich S; Schiller, Alexander

    2015-12-16

    Fluorinated boronic acid-appended benzyl bipyridinium salts, derived from 4,4'-, 3,4'-, and 3,3'-bipyridines, were synthesized and used to detect and differentiate diol-containing analytes at physiological conditions via (19)F NMR spectroscopy. An array of three water-soluble boronic acid receptors in combination with (19)F NMR spectroscopy discriminates nine diol-containing bioanalytes--catechol, dopamine, fructose, glucose, glucose-1-phosphate, glucose-6-phosphate, galactose, lactose, and sucrose--at low mM concentrations. Characteristic (19)F NMR fingerprints are interpreted as two-dimensional barcodes without the need of multivariate analysis techniques. PMID:26595191

  6. NbF{sub 5} and TaF{sub 5}: Assignment of {sup 19}F NMR resonances and chemical bond analysis from GIPAW calculations

    SciTech Connect

    Biswal, Mamata; Body, Monique; Legein, Christophe; Sadoc, Aymeric; Boucher, Florent

    2013-11-15

    The {sup 19}F isotropic chemical shifts (δ{sub iso}) of two isomorphic compounds, NbF{sub 5} and TaF{sub 5}, which involve six nonequivalent fluorine sites, have been experimentally determined from the reconstruction of 1D {sup 19}F MAS NMR spectra. In parallel, the corresponding {sup 19}F chemical shielding tensors have been calculated using the GIPAW method for both experimental and DFT-optimized structures. Furthermore, the [M{sub 4}F{sub 20}] units of NbF{sub 5} and TaF{sub 5} being held together by van der Waals interactions, the relevance of Grimme corrections to the DFT optimization processes has been evaluated. However, the semi-empirical dispersion correction term introduced by such a method does not show any significant improvement. Nonetheless, a complete and convincing assignment of the {sup 19}F NMR lines of NbF{sub 5} and TaF{sub 5} is obtained, ensured by the linearity between experimental {sup 19}F δ{sub iso} values and calculated {sup 19}F isotropic chemical shielding σ{sub iso} values. The effects of the geometry optimizations have been carefully analyzed, confirming among other matters, the inaccuracy of the experimental structure of NbF{sub 5}. The relationships between the fluorine chemical shifts, the nature of the fluorine atoms (bridging or terminal), the position of the terminal ones (opposite or perpendicular to the bridging ones), the fluorine charges, the ionicity and the length of the M–F bonds have been established. Additionally, for three of the {sup 19}F NMR lines of NbF{sub 5}, distorted multiplets, arising from {sup 1}J-coupling and residual dipolar coupling between the {sup 19}F and {sup 93}Nb nuclei, were simulated yielding to values of {sup 93}Nb–{sup 19}F {sup 1}J-coupling for the corresponding fluorine sites. - Graphical abstract: The complete assignment of the {sup 19}F NMR lines of NbF{sub 5} and TaF{sub 5} allow establishing relationships between the {sup 19}F δ{sub iso} values, the nature of the fluorine atoms

  7. {sup 19}F NMR measurements of NO production in hypertensive ISIAH and OXYS rats

    SciTech Connect

    Bobko, Andrey A. . E-mail: bobko@kinetics.nsc.ru; Sergeeva, Svetlana V.; Bagryanskaya, Elena G.; Markel, Arkadii L.; Khramtsov, Valery V.; Reznikov, Vladimir A.; Kolosova, Nataljya G.

    2005-05-06

    Recently we demonstrated the principal possibility of application of {sup 19}F NMR spin-trapping technique for in vivo {sup {center_dot}}NO detection [Free Radic. Biol. Med. 36 (2004) 248]. In the present study, we employed this method to elucidate the significance of {sup {center_dot}}NO availability in animal models of hypertension. In vivo {sup {center_dot}}NO-induced conversion of the hydroxylamine of the fluorinated nitronyl nitroxide (HNN) to the hydroxylamine of the iminonitroxide (HIN) in hypertensive ISIAH and OXYS rat strains and normotensive Wistar rat strain was measured. Significantly lower HIN/HNN ratios were measured in the blood of the hypertensive rats. The NMR data were found to positively correlate with the levels of nitrite/nitrate evaluated by Griess method and negatively correlate with the blood pressure. In comparison with other traditionally used methods {sup 19}F NMR spectroscopy allows in vivo evaluation of {sup {center_dot}}NO production and provides the basis for in vivo {sup {center_dot}}NO imaging.

  8. Solid-state (19)F-NMR of peptides in native membranes.

    PubMed

    Koch, Katja; Afonin, Sergii; Ieronimo, Marco; Berditsch, Marina; Ulrich, Anne S

    2012-01-01

    To understand how membrane-active peptides (MAPs) function in vivo, it is essential to obtain structural information about them in their membrane-bound state. Most biophysical approaches rely on the use of bilayers prepared from synthetic phospholipids, i.e. artificial model membranes. A particularly successful structural method is solid-state NMR, which makes use of macroscopically oriented lipid bilayers to study selectively isotope-labelled peptides. Native biomembranes, however, have a far more complex lipid composition and a significant non-lipidic content (protein and carbohydrate). Model membranes, therefore, are not really adequate to address questions concerning for example the selectivity of these membranolytic peptides against prokaryotic vs eukaryotic cells, their varying activities against different bacterial strains, or other related biological issues.Here, we discuss a solid-state (19)F-NMR approach that has been developed for structural studies of MAPs in lipid bilayers, and how this can be translated to measurements in native biomembranes. We review the essentials of the methodology and discuss key objectives in the practice of (19)F-labelling of peptides. Furthermore, the preparation of macroscopically oriented biomembranes on solid supports is discussed in the context of other membrane models. Two native biomembrane systems are presented as examples: human erythrocyte ghosts as representatives of eukaryotic cell membranes, and protoplasts from Micrococcus luteus as membranes from Gram-positive bacteria. Based on our latest experimental experience with the antimicrobial peptide gramicidin S, the benefits and some implicit drawbacks of using such supported native membranes in solid-state (19)F-NMR analysis are discussed. PMID:21598096

  9. 19F-decoupling of half-integer spin quadrupolar nuclei in solid-state NMR: application of frequency-swept decoupling methods.

    PubMed

    Chandran, C Vinod; Hempel, Günter; Bräuniger, Thomas

    2011-09-01

    In solid-state NMR studies of minerals and ion conductors, quadrupolar nuclei like (7)Li, (23)Na or (133)Cs are frequently situated in close proximity to fluorine, so that application of (19)F decoupling is beneficial for spectral resolution. Here, we compare the decoupling efficiency of various multi-pulse decoupling sequences by acquiring (19)F-decoupled (23)Na-NMR spectra of cryolite (Na(3)AlF(6)). Whereas the MAS spectrum is only marginally affected by application of (19)F decoupling, the 3Q-filtered (23)Na signal is very sensitive to it, as the de-phasing caused by the dipolar interaction between sodium and fluorine is three-fold magnified. Experimentally, we find that at moderate MAS speeds, the decoupling efficiencies of the frequency-swept decoupling schemes SW(f)-TPPM and SW(f)-SPINAL are significantly better than the conventional TPPM and SPINAL sequences. The frequency-swept sequences are therefore the methods of choice for efficient decoupling of quadrupolar nuclei with half-integer spin from fluorine. PMID:21856132

  10. NMR spectroscopy in studies of light-induced structural changes in mammalian rhodopsin: applicability of solution (19)F NMR.

    PubMed

    Klein-Seetharaman, J; Getmanova, E V; Loewen, M C; Reeves, P J; Khorana, H G

    1999-11-23

    We report high resolution solution (19)F NMR spectra of fluorine-labeled rhodopsin mutants in detergent micelles. Single cysteine substitution mutants in the cytoplasmic face of rhodopsin were labeled by attachment of the trifluoroethylthio (TET), CF(3)-CH(2)-S, group through a disulfide linkage. TET-labeled cysteine mutants at amino acid positions 67, 140, 245, 248, 311, and 316 in rhodopsin were thus prepared. Purified mutant rhodopsins (6-10 mg), in dodecylmaltoside, were analyzed at 20 degrees C by solution (19)F NMR spectroscopy. The spectra recorded in the dark showed the following chemical shifts relative to trifluoroacetate: Cys-67, 9.8 ppm; Cys-140, 10.6 ppm; Cys-245, 9.9 ppm; Cys-248, 9.5 ppm; Cys-311, 9.9 ppm; and Cys-316, 10.0 ppm. Thus, all mutants showed chemical shifts downfield that of free TET (6.5 ppm). On illumination to form metarhodopsin II, upfield changes in chemical shift were observed for (19)F labels at positions 67 (-0.2 ppm) and 140 (-0.4 ppm) and downfield changes for positions 248 (+0.1 ppm) and 316 (+0.1 ppm) whereas little or no change was observed at positions 311 and 245. On decay of metarhodopsin II, the chemical shifts reverted largely to those originally observed in the dark. The results demonstrate the applicability of solution (19)F NMR spectroscopy to studies of the tertiary structures in the cytoplasmic face of intact rhodopsin in the dark and on light activation. PMID:10570143

  11. Dissection of the ion-induced folding of the hammerhead ribozyme using 19F NMR

    PubMed Central

    Hammann, Christian; Norman, David G.; Lilley, David M. J.

    2001-01-01

    We have used 19F NMR to analyze the metal ion-induced folding of the hammerhead ribozyme by selective incorporation of 5fluorouridine. We have studied the chemical shift and linewidths of 19F resonances of 5-fluorouridine at the 4 and 7 positions in the ribozyme core as a function of added Mg2+. The data fit well to a simple two-state model whereby the formation of domain 1 is induced by the noncooperative binding of Mg2+ with an association constant in the range of 100 to 500 M−1, depending on the concentration of monovalent ions present. The results are in excellent agreement with data reporting on changes in the global shape of the ribozyme. However, the NMR experiments exploit reporters located in the center of the RNA sections undergoing the folding transitions, thereby allowing the assignment of specific nucleotides to the separate stages. The results define the folding pathway at high resolution and provide a time scale for the first transition in the millisecond range. PMID:11331743

  12. Resolution of Oligomeric Species during the Aggregation of Aβ1-40 Using 19F NMR

    PubMed Central

    Suzuki, Yuta; Brender, Jeffrey R.; Soper, Molly T.; Krishnamoorthy, Janarthanan; Zhou, Yunlong; Ruotolo, Brandon T.; Kotov, Nicholas A.; Ramamoorthy, Ayyalusamy; Marsh, E. Neil G.

    2013-01-01

    In the commonly used nucleation-dependent model of protein aggregation, aggregation proceeds only after a lag phase in which the concentration of energetically unfavorable nuclei reaches a critical value. The formation of oligomeric species prior to aggregation can be difficult to detect by current spectroscopic techniques. By using real-time 19F NMR along with other techniques, we are able to show that multiple oligomeric species can be detected during the lag phase of Aβ1-40 fiber formation, consistent with a complex mechanism of aggregation. At least 6 types of oligomers can be detected by 19F NMR. These include the reversible formation of large β-sheet oligomer immediately after solubilization at high peptide concentration; a small oligomer that forms transiently during the early stages of the lag phase; and 4 spectroscopically distinct forms of oligomers with molecular weights between ~30–100 kDa that appear during the later stages of aggregation. The ability to resolve individual oligomers and track their formation in real-time should prove fruitful in understanding the aggregation of amyloidogenic proteins and in isolating potentially toxic non-amyloid oligomers. PMID:23445400

  13. Solid-state {sup 19}F and {sup 13}C NMR of room temperature fluorinated graphite and samples thermally treated under fluorine: Low-field and high-resolution studies

    SciTech Connect

    Giraudet, J.; Dubois, M.; Guerin, K.; Pinheiro, J.P.; Hamwi, A.; Stone, W.E.E.; Pirotte, P.; Masin, F. . E-mail: fmasin@ulb.ac.be

    2005-04-15

    Room temperature graphite fluorides consisting of raw material and samples post-treated in pure fluorine atmosphere in the temperature range 100-500 deg. C have been studied by solid-state NMR. Several NMR approaches have been used, both high and low-field {sup 19}F, {sup 19}F MAS and {sup 13}C MAS with {sup 19}F to {sup 13}C cross polarization. The modifications, in the graphitic lattice, of the catalytic iodine fluorides products have been examined. A transformation of the C-F bond character from semi-ionic to covalent has been found to occur at a post-treatment temperature close to 400 deg. C. It is shown that covalency increases with temperature.

  14. Using magnetic coupling to implement 1H, 19F, 13C experiments in routine high resolution NMR probes

    NASA Astrophysics Data System (ADS)

    Bowyer, Paul; Finnigan, Jim; Marsden, Brian; Taber, Bob; Zens, Albert

    2015-12-01

    We report in this paper the design of 1H, 19F, 13C circuitry using magnetic coupling which can do on demand experiments where one of the three nuclei is observed and the other two are decoupled. The implementation of this circuitry in routine NMR probes is compared with capacitive coupling methods where it was found that by using magnetic coupling the performance of the routine NMR probe was not impacted by the addition of this circuitry. It is surmised that using this type of circuitry would be highly desirable for those chemists doing routine 19F NMR.

  15. 19F NMR measurements of the rotational mobility of proteins in vivo.

    PubMed Central

    Williams, S P; Haggie, P M; Brindle, K M

    1997-01-01

    Three glycolytic enzymes, hexokinase, phosphoglycerate kinase, and pyruvate kinase, were fluorine labeled in the yeast Saccharomyces cerevisiae by biosynthetic incorporation of 5-fluorotryptophan. 19F NMR longitudinal relaxation time measurements on the labeled enzymes were used to assess their rotational mobility in the intact cell. Comparison with the results obtained from relaxation time measurements of the purified enzymes in vitro and from theoretical calculations showed that two of the labeled enzymes, phosphoglycerate kinase and hexokinase, were tumbling in a cytoplasm that had a viscosity approximately twice that of water. There were no detectable signals from pyruvate kinase in vivo, although it could be detected in diluted cell extracts, indicating that there was some degree of motional restriction of the enzyme in the intact cell. PMID:8994636

  16. Intracellular free calcium concentration measured with /sup 19/F NMR spectroscopy in intact ferret hearts

    SciTech Connect

    Marban, E.; Kitakaze, M.; Kusuoka, H.; Porterfield, J.K.; Yue, D.T.; Chacko, V.P.

    1987-08-01

    Changes in the intracellular free Ca/sup 2 +/ concentration, (Ca/sup 2 +/)/sub i/, mediate excitation-contraction coupling in the heart and contribute to cellular injury during ischemia and reperfusion. To study these processes directly, the authors measured (Ca/sup 2 +/)/sub i/ in perfused ferret (Mustela putorius furo) hearts using /sup 19/F NMR spectroscopy to detect the 5,5'-difluoro derivative of the Ca/sup 2 +/ chelator, 1,2-bis(o-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid (BAPTA). To load cells, hearts were perfused with the acetoxymethyl ester derivative of 5,5'-F/sub 2/-BAPTA. They measured /sup 19/F NMR spectra and left ventricular pressure simultaneously,at rest and during pacing at various external Ca concentrations ((Ca)/sub 0/). Although contractile force was attenuated by the Ca/sup 2 +/ buffering properties of 5,5'-F/sup 2/-BAPTA, the decrease in pressure could be overcome by raising (Ca)/sub 0/. The mean value of 104 nM for (Ca/sup 2 +/)/sub i/ at rest in the perfused heart agrees well with previous measurements in isolated ventricular muscle. During pacing at 0.6-4 Hz, time-averaged (Ca/sup 2 +/)/sub i/ increased; the effect of pacing was augmented by increasing (Ca)/sub 0/. (Ca/sup 2 +/)/sub i/ more than tripled during 10-20 min of global ischemia, and returned toward control levels upon reperfusion. This approach promises to be particularly useful in investigating the physiology of intact hearts and the pathophysiology of alterations in the coronary circulation

  17. Fragment-Linking Approach Using (19)F NMR Spectroscopy To Obtain Highly Potent and Selective Inhibitors of β-Secretase.

    PubMed

    Jordan, John B; Whittington, Douglas A; Bartberger, Michael D; Sickmier, E Allen; Chen, Kui; Cheng, Yuan; Judd, Ted

    2016-04-28

    Fragment-based drug discovery (FBDD) has become a widely used tool in small-molecule drug discovery efforts. One of the most commonly used biophysical methods in detecting weak binding of fragments is nuclear magnetic resonance (NMR) spectroscopy. In particular, FBDD performed with (19)F NMR-based methods has been shown to provide several advantages over (1)H NMR using traditional magnetization-transfer and/or two-dimensional methods. Here, we demonstrate the utility and power of (19)F-based fragment screening by detailing the identification of a second-site fragment through (19)F NMR screening that binds to a specific pocket of the aspartic acid protease, β-secretase (BACE-1). The identification of this second-site fragment allowed the undertaking of a fragment-linking approach, which ultimately yielded a molecule exhibiting a more than 360-fold increase in potency while maintaining reasonable ligand efficiency and gaining much improved selectivity over cathepsin-D (CatD). X-ray crystallographic studies of the molecules demonstrated that the linked fragments exhibited binding modes consistent with those predicted from the targeted screening approach, through-space NMR data, and molecular modeling. PMID:26978477

  18. 19F Magic angle spinning NMR reporter molecules: empirical measures of surface shielding, polarisability and H-bonding.

    PubMed

    Budarin, Vitaliy L; Clark, James H; Deswarte, Fabien E I; Mueller, Karl T; Tavener, Stewart J

    2007-06-14

    Magic Angle Spinning (MAS) (19)F NMR spectra have been obtained and chemical shifts measured for 37 molecules in the gas phase and adsorbed on the surfaces of six common materials: octadecyl- and octyl-functionalised chromatography silicas, Kieselgel 100 silica, Brockmann neutral alumina, Norit activated charcoal and 3-(1-piperidino)propyl functionalised silica. From these six surfaces, octadecyl-silica is selected as a non-polar reference to which the others are compared. The change in chemical shift of a fluorine nucleus within a molecule on adsorption to a surface from the gas phase, Deltadelta(gas)(surface), is described by the empirical relationship: Deltadelta(gas)(surface) = delta(s) + (alpha(s)+pi(s))/alpha(r) (Deltadelta(gas)(reference) - delta(r)) + delta(HBA) + delta(HBD), where delta(s) and delta(r) are constants that describe the chemical shift induced by the electromagnetic field of the surface under investigation and reference surface, alpha(s) and alpha(r) are the relative surface polarisability for the surface and reference, pi(s) is an additional contribution to the surface polarisabilities due to its ability to interact with aromatic molecules, and delta(HBA) and delta(HBD) are measurements of the hydrogen acceptor and donor properties of the surface. These empirical parameters are measured for the surfaces under study. Silica and alumina are found to undergo specific interactions with aromatic reporter molecules and both accept and donate H-bonds. Activated charcoal was found to have an extreme effect on shielding but no specific interactions with the adsorbed molecules. 3-(1-Piperidino)propyl functionalised silica exhibits H-bond acceptor ability, but does not donate H-bonds. PMID:17487325

  19. (19)F-labeling of the adenine H2-site to study large RNAs by NMR spectroscopy.

    PubMed

    Sochor, F; Silvers, R; Müller, D; Richter, C; Fürtig, B; Schwalbe, H

    2016-01-01

    In comparison to proteins and protein complexes, the size of RNA amenable to NMR studies is limited despite the development of new isotopic labeling strategies including deuteration and ligation of differentially labeled RNAs. Due to the restricted chemical shift dispersion in only four different nucleotides spectral resolution remains limited in larger RNAs. Labeling RNAs with the NMR-active nucleus (19)F has previously been introduced for small RNAs up to 40 nucleotides (nt). In the presented work, we study the natural occurring RNA aptamer domain of the guanine-sensing riboswitch comprising 73 nucleotides from Bacillus subtilis. The work includes protocols for improved in vitro transcription of 2-fluoroadenosine-5'-triphosphat (2F-ATP) using the mutant P266L of the T7 RNA polymerase. Our NMR analysis shows that the secondary and tertiary structure of the riboswitch is fully maintained and that the specific binding of the cognate ligand hypoxanthine is not impaired by the introduction of the (19)F isotope. The thermal stability of the (19)F-labeled riboswitch is not altered compared to the unmodified sequence, but local base pair stabilities, as measured by hydrogen exchange experiments, are modulated. The characteristic change in the chemical shift of the imino resonances detected in a (1)H,(15)N-HSQC allow the identification of Watson-Crick base paired uridine signals and the (19)F resonances can be used as reporters for tertiary and secondary structure transitions, confirming the potential of (19)F-labeling even for sizeable RNAs in the range of 70 nucleotides. PMID:26704707

  20. Fluorinated Amino-Derivatives of the Sesquiterpene Lactone, Parthenolide, as 19F NMR Probes in Deuterium-Free Environments

    PubMed Central

    Woods, James R.; Mo, Huaping; Bieberich, Andrew A.; Alavanja, Tanja; Colby, David A.

    2011-01-01

    The design, synthesis, and biological activity of fluorinated amino-derivatives of the sesquiterpene lactone, parthenolide, are described. A fluorinated aminoparthenolide analogue with biological activity similar to the parent natural product was discovered, and its X-ray structure was obtained. This lead compound was then studied using 19F NMR in the presence and absence of glutathione to obtain additional mechanism of action data, and it was found that the aminoparthenolide eliminates amine faster in the presence of glutathione than in the absence of glutathione. The exact changes in concentrations of fluorinated compound and amine were quantified by a concentration-reference method using 19F NMR; a major benefit of applying this strategy is that no deuterated solvents or internal standards are required to obtain accurate concentrations. These mechanistic data with glutathione may contribute to the conversion of the amino-derivative to parthenolide, the active pharmacological agent, in glutathione-rich cancer cells. PMID:22029741

  1. sup 19 F NMR studies of the D-galactose chemosensory receptor. (1) Sugar binding yields a global structural change

    SciTech Connect

    Luck, L.A.; Falke, J.J. )

    1991-04-30

    The Escherichia coli D-galactose and D-glucose receptor is an aqueous sugar-binding protein and the first component in the distinct chemosensory and transport pathways for these sugars. Activation of the receptor occurs when the sugar binds and induces a conformational change, which in turn enable docking to specific membrane proteins. Only the structure of the activated receptor containing bound D-glucose is known. To investigate the sugar-induced structural change, the authors have used {sup 19}F NMR to probe 12 sites widely distributed in the receptor molecule. Five sites are tryptophan positions probed by incorporation of 5-fluorotryptophan; the resulting {sup 19}F NMR resonances were assigned by site-directed mutagenesis. The other seven sites are phenylalanine positions probed by incorporation of 3-fluorophenylaline. Sugar binding to the substrate binding cleft was observed to trigger a global structural change detected via {sup 19}F NMR frequency shifts at 10 of the 12 labeled sites. The results are consistent with a model in which multiple secondary structural elements, known to extend between the substrate cleft and the protein surface, undergo shifts in their average positions upon sugar binding to the cleft. Such structural coupling provides a mechanism by which sugar binding to the substrate cleft can cause structural changes at one or more docking sites on the receptor surface.

  2. Effects of fluoride on in vitro enamel demineralization analyzed by ¹⁹F MAS-NMR.

    PubMed

    Mohammed, N R; Kent, N W; Lynch, R J M; Karpukhina, N; Hill, R; Anderson, P

    2013-01-01

    The mechanistic action of fluoride on inhibition of enamel demineralization was investigated using (19)F magic angle spinning nuclear magnetic resonance (MAS-NMR). The aim of this study was to monitor the fluoride-mineral phase formed on the enamel as a function of the concentration of fluoride ions [F(-)] in the demineralizing medium. The secondary aim was to investigate fluorapatite formation on enamel in the mechanism of fluoride anti-caries efficacy. Enamel blocks were immersed into demineralization solutions of 0.1 M acetic acid (pH 4) with increasing concentrations of fluoride up to 2,262 ppm. At and below 45 ppm [F(-)] in the solution, (19)F MAS-NMR showed fluoride-substituted apatite formation, and above 45 ppm, calcium fluoride (CaF2) formed in increasing proportions. Further increases in [F(-)] caused no further reduction in demineralization, but increased the proportion of CaF2 formed. Additionally, the combined effect of strontium and fluoride on enamel demineralization was also investigated using (19)F MAS-NMR. The presence of 43 ppm [Sr(2+)] in addition to 45 ppm [F(-)] increases the fraction of fluoride-substituted apatite, but delays formation of CaF2 when compared to the demineralization of enamel in fluoride-only solution. PMID:23712030

  3. A 4-mm Probe for C-13 CP/MAS NMR of Solids at 21.15 T

    SciTech Connect

    Jakobsen, Hans J.; Daugaard, P; Hald, E; Rice, D; Kupce, Eriks; Ellis, Paul D. )

    2002-05-31

    With the recent announcement of a persistent 21.15 Tesla (i.e., 900 MHz for 1H NMR) narrow-bore (54 mm bore) superconducting magnet by Oxford Instruments and the associated Unity INOVA-900 console by Varian Inc. we were challenged with the task of designing a double-resonance broadband solid-state magic-angle spinning (MAS) NMR probe in particular for evaluating the 13C-{1H} cross-polarization (CP) MAS NMR experiment on this magnet and spectrometer system. In this communication we report the successful construction of an efficient X-1H/19F double resonance multinuclear MAS probe for this purpose along with our preliminary results on its performance at the 900 MHz spectrometer.

  4. Automated data evaluation and modelling of simultaneous (19) F-(1) H medium-resolution NMR spectra for online reaction monitoring.

    PubMed

    Zientek, Nicolai; Laurain, Clément; Meyer, Klas; Paul, Andrea; Engel, Dirk; Guthausen, Gisela; Kraume, Matthias; Maiwald, Michael

    2016-06-01

    Medium-resolution nuclear magnetic resonance spectroscopy (MR-NMR) currently develops to an important analytical tool for both quality control and process monitoring. In contrast to high-resolution online NMR (HR-NMR), MR-NMR can be operated under rough environmental conditions. A continuous re-circulating stream of reaction mixture from the reaction vessel to the NMR spectrometer enables a non-invasive, volume integrating online analysis of reactants and products. Here, we investigate the esterification of 2,2,2-trifluoroethanol with acetic acid to 2,2,2-trifluoroethyl acetate both by (1) H HR-NMR (500 MHz) and (1) H and (19) F MR-NMR (43 MHz) as a model system. The parallel online measurement is realised by splitting the flow, which allows the adjustment of quantitative and independent flow rates, both in the HR-NMR probe as well as in the MR-NMR probe, in addition to a fast bypass line back to the reactor. One of the fundamental acceptance criteria for online MR-MNR spectroscopy is a robust data treatment and evaluation strategy with the potential for automation. The MR-NMR spectra are treated by an automated baseline and phase correction using the minimum entropy method. The evaluation strategies comprise (i) direct integration, (ii) automated line fitting, (iii) indirect hard modelling (IHM) and (iv) partial least squares regression (PLS-R). To assess the potential of these evaluation strategies for MR-NMR, prediction results are compared with the line fitting data derived from the quantitative HR-NMR spectroscopy. Although, superior results are obtained from both IHM and PLS-R for (1) H MR-NMR, especially the latter demands for elaborate data pretreatment, whereas IHM models needed no previous alignment. Copyright © 2015 John Wiley & Sons, Ltd. PMID:25854892

  5. Parahydrogen-induced polarization transfer to 19F in perfluorocarbons for 19F NMR spectroscopy and MRI.

    PubMed

    Plaumann, Markus; Bommerich, Ute; Trantzschel, Thomas; Lego, Denise; Dillenberger, Sonja; Sauer, Grit; Bargon, Joachim; Buntkowsky, Gerd; Bernarding, Johannes

    2013-05-10

    Fluorinated substances are important in chemistry, industry, and the life sciences. In a new approach, parahydrogen-induced polarization (PHIP) is applied to enhance (19)F MR signals of (perfluoro-n-hexyl)ethene and (perfluoro-n-hexyl)ethane. Unexpectedly, the end-standing CF3 group exhibits the highest amount of polarization despite the negligible coupling to the added protons. To clarify this non-intuitive distribution of polarization, signal enhancements in deuterated chloroform and acetone were compared and (19)F-(19)F NOESY spectra, as well as (19)F T1 values were measured by NMR spectroscopy. By using the well separated and enhanced signal of the CF3 group, first (19)F MR images of hyperpolarized linear semifluorinated alkenes were recorded. PMID:23526596

  6. Structural biology applications of solid state MAS DNP NMR.

    PubMed

    Akbey, Ümit; Oschkinat, Hartmut

    2016-08-01

    Dynamic Nuclear Polarization (DNP) has long been an aim for increasing sensitivity of nuclear magnetic resonance (NMR) spectroscopy, delivering spectra in shorter experiment times or of smaller sample amounts. In recent years, it has been applied in magic angle spinning (MAS) solid-state NMR to a large range of samples, including biological macromolecules and functional materials. New research directions in structural biology can be envisaged by DNP, facilitating investigations on very large complexes or very heterogeneous samples. Here we present a summary of state of the art DNP MAS NMR spectroscopy and its applications to structural biology, discussing the technical challenges and factors affecting DNP performance. PMID:27095695

  7. Structural biology applications of solid state MAS DNP NMR

    NASA Astrophysics Data System (ADS)

    Akbey, Ümit; Oschkinat, Hartmut

    2016-08-01

    Dynamic Nuclear Polarization (DNP) has long been an aim for increasing sensitivity of nuclear magnetic resonance (NMR) spectroscopy, delivering spectra in shorter experiment times or of smaller sample amounts. In recent years, it has been applied in magic angle spinning (MAS) solid-state NMR to a large range of samples, including biological macromolecules and functional materials. New research directions in structural biology can be envisaged by DNP, facilitating investigations on very large complexes or very heterogeneous samples. Here we present a summary of state of the art DNP MAS NMR spectroscopy and its applications to structural biology, discussing the technical challenges and factors affecting DNP performance.

  8. Magnetism, optical absorbance, and 19F NMR spectra of nafion films with self-assembling paramagnetic networks

    SciTech Connect

    Levin, E. M.; Chen, Q.; Bud'ko, S. L.

    2012-01-15

    Magnetization, optical absorbance, and {sup 19}F NMR spectra of Nafion transparent films as received and doped with Mn{sup 2+}, Co{sup 2+}, Fe{sup 2+}, and Fe{sup 3+} ions with and without treatment in 1H-1,2,4-triazole (trz) have been studied. Doping of Nafion with Fe{sup 2+} and Co{sup 2+} and their bridging to nitrogen of triazole yields a hybrid self-assembling paramagnetic system that exhibits interesting magnetic and optical properties. These include spin crossover phenomena between high-spin (HS) and low-spin (LS) states in Nafion-Fe{sup 2+}-trz and Nafion-Co{sup 2+}-trz accompanied by thermochromic effects in the visible range induced by temperature. A large shift of the magnetization curve induced by a magnetic field in the vicinity of the HS {leftrightarrow} LS, {approx}220 K, observed for Nafion-Fe{sup 2+}-trz has a rate of {approx}6 K/kOe, which is about three orders of magnitude larger than that in bulk spin crossover Fe{sup 2+} materials. Selective response of {sup 19}F NMR signals on doping with paramagnetic ions demonstrates that NMR can be used as spatially resolved method to study Nafion film with paramagnetic network. Both chemical shift and width of {sup 19}F NMR signals show that SO groups of Nafion, Fe or Co ions, and nitrogen of triazole are bonded whereas they form a spin crossover system. Based on a model of nanosize cylinders proposed for Nafion [K. Schmidt-Rohr and Q. Chen, Nat Mater (2008), 75], we suggest that paramagnetic ions are located inside these cylinders, forming self-assembling magnetically and optically active nanoscale networks.

  9. Fragment Screening and Druggability Assessment for the CBP/p300 KIX Domain Via Protein Observed 19F NMR

    PubMed Central

    Gee, Clifford T.; Koleski, Edward J.

    2015-01-01

    19F NMR of labeled proteins is a sensitive method for characterizing structure, conformational dynamics, higher-order assembly, and ligand binding. Fluorination of aromatic side chains has been suggested as a labeling strategy for small molecule ligand discovery for protein-protein interaction interfaces. Using a model transcription factor binding domain of the CREB binding protein (CBP)/p300, KIX, we report the first full small molecule screen using protein-observed 19F NMR. Screening of 508 compounds and validation by 1H-15N HSQC NMR led to the identification of a minimal pharmacaphore for the MLL-KIX interaction site. Hit rate analysis for the CREB-KIX and MLL-KIX sites provided a metric to assess the ligandability or “druggability” of each interface informing future medicinal chemistry efforts. The structural information from the simplified spectra and data collection speed, affords a new screening tool for analysis of protein interfaces and discovery of small molecules. PMID:25651535

  10. MAS PFG NMR Studies of Mixtures in Porous Materials

    NASA Astrophysics Data System (ADS)

    Gratz, Marcel; Hertel, Stefan; Wehring, Markus; Schlayer, Stefan; Stallmach, Frank; Galvosas, Petrik

    2011-03-01

    Pulsed field gradient (PFG) and magic angle spinning (MAS) NMR techniques have been successfully combined for the study of mixture diffusion in porous materials. Using a modular setup of commercially available components, gradient pulses of up to ±2.6 T/m can be applied coinciding with fast sample rotation at the magic angle. Methods for the proper alignment of all components are presented along with protocols for MAS PFG NMR experiments. Finally, first diffusion measurements of n-hexane and benzene being adsorbed together in the metal-organic framework MOF-5 are presented.

  11. (19)F NMR study of ligand dynamics in carboxylate-bridged diiron(II) complexes supported by a macrocyclic ligand.

    PubMed

    Minier, Mikael A; Lippard, Stephen J

    2015-11-01

    A series of asymmetrically carboxylate-bridged diiron(ii) complexes featuring fluorine atoms as NMR spectroscopic probes, [Fe2(PIM)(Ar(4F-Ph)CO2)2] (10), [Fe2(F2PIM)(Ar(Tol)CO2)2] (11), and [Fe2(F2PIM)(Ar(4F-Ph)CO2)2] (12), were prepared and characterized by X-ray crystallography, Mössbauer spectroscopy, and VT (19)F NMR spectroscopy. These complexes are part of a rare family of syn N-donor diiron(ii) compounds, [Fe2(X2PIM)(RCO2)2], that are structurally very similar to the active site of the hydroxylase enzyme component of reduced methane monooxygenase (MMOHred). Solution characterization of these complexes demonstrates that they undergo intramolecular carboxylate rearrangements, or carboxylate shifts, a dynamic feature relevant to the reactivity of the diiron centers in bacterial multicomponent monooxygenases. PMID:26418547

  12. 19F NMR Study of Ligand Dynamics in Carboxylate-Bridged Diiron(II) Complexes Supported by a Macrocyclic Ligand

    PubMed Central

    Minier, Mikael A.; Lippard, Stephen J.

    2015-01-01

    A series of asymmetrically carboxylate-bridged diiron(II) complexes featuring fluorine atoms as NMR spectroscopic probes, [Fe2(PIM)(Ar4F-PhCO2)2] (10), [Fe2(F2PIM)(ArTolCO2)2] (11), and [Fe2(F2PIM)(Ar4F-PhCO2)2] (12), were prepared and characterized by X-ray crystallography, Mössbauer spectroscopy, and VT 19F NMR spectroscopy. These complexes are part of a rare family of syn-N diiron(II) complexes, [Fe2(X2PIM)(RCO2)2], that are structurally very similar to the active site of the hydroxylase enzyme component of reduced methane monooxygenase (MMOHred). Solution characterization of these complexes demonstrates that they undergo intramolecular carboxylate rearrangements, or carboxylate shifts, a dynamic feature relevant to the reactivity of the diiron centers in bacterial multicomponent monooxygenases. PMID:26418547

  13. Phospho-selective mechanisms of arrestin conformations and functions revealed by unnatural amino acid incorporation and 19F-NMR

    PubMed Central

    Yang, Fan; Yu, Xiao; Liu, Chuan; Qu, Chang-Xiu; Gong, Zheng; Liu, Hong-Da; Li, Fa-Hui; Wang, Hong-Mei; He, Dong-Fang; Yi, Fan; Song, Chen; Tian, Chang-Lin; Xiao, Kun-Hong; Wang, Jiang-Yun; Sun, Jin-Peng

    2015-01-01

    Specific arrestin conformations are coupled to distinct downstream effectors, which underlie the functions of many G-protein-coupled receptors (GPCRs). Here, using unnatural amino acid incorporation and fluorine-19 nuclear magnetic resonance (19F-NMR) spectroscopy, we demonstrate that distinct receptor phospho-barcodes are translated to specific β-arrestin-1 conformations and direct selective signalling. With its phosphate-binding concave surface, β-arrestin-1 ‘reads' the message in the receptor phospho-C-tails and distinct phospho-interaction patterns are revealed by 19F-NMR. Whereas all functional phosphopeptides interact with a common phosphate binding site and induce the movements of finger and middle loops, different phospho-interaction patterns induce distinct structural states of β-arrestin-1 that are coupled to distinct arrestin functions. Only clathrin recognizes and stabilizes GRK2-specific β-arrestin-1 conformations. The identified receptor-phospho-selective mechanism for arrestin conformation and the spacing of the multiple phosphate-binding sites in the arrestin enable arrestin to recognize plethora phosphorylation states of numerous GPCRs, contributing to the functional diversity of receptors. PMID:26347956

  14. Intracellular pH of perfused single frog skin: combined 19F- and 31P-NMR analysis.

    PubMed

    Civan, M M; Lin, L E; Peterson-Yantorno, K; Taylor, J; Deutsch, C

    1984-11-01

    Intracellular pH (pHc) has been determined in frog skin by applying two different methods of pH measurement, 19F and 31P nuclear magnetic resonance (NMR) analysis, to the same tissues. Results from both NMR approaches confirm an observation by Lin, Shporer, and Civan [Am. J. Physiol. 248 (Cell Physiol. 17): 1985] that acidification of the extracellular medium reverses the sign of the pH gradient present under baseline conditions. The fluorinated probe, alpha-(difluoromethyl)-alanine methyl ester, was introduced into the epithelial cells by preincubating skins for 4.7-10.4 h at room temperature in Ringer solutions containing 1 mM ester. The free amino acid was subsequently released by intracellular esterase activity, thus providing a high enough probe concentration for NMR analysis to be practicable. From measurements of short-circuit current and transepithelial resistance under base-line and experimental conditions and the appearance of phosphocreatine (PCr) in the 31P spectrum of preloaded tissues, the fluorinated probe appears to be nontoxic to frog skin. Measurement of the chemical shift of methylphosphonate relative to PCr permitted calculation of extracellular pH. Estimation of the intracellular pH was performed both by measurement of the chemical shift of inorganic phosphate (Pi) relative to PCr and by measurement of the central peak spacing of the 19F spectrum. From four direct comparisons of the two techniques in two experiments, the difference in the estimated pH was only 0.03 +/- 0.07 pH units, supporting the concept that 31P-NMR analysis is a valid method of measuring pH in this tissue. PMID:6496729

  15. 19F-NMR reveals metal and operator-induced allostery in MerR.

    PubMed

    Song, Lingyun; Teng, Quincy; Phillips, Robert S; Brewer, John M; Summers, Anne O

    2007-08-01

    Metalloregulators of the MerR family activate transcription upon metal binding by underwinding the operator-promoter DNA to permit open complex formation by pre-bound RNA polymerase. Historically, MerR's allostery has been monitored only indirectly via nuclease sensitivity or by fluorescent nucleotide probes and was very specific for Hg(II), although purified MerR binds several thiophilic metals. To observe directly MerR's ligand-induced behavior we made 2-fluorotyrosine-substituted MerR and found similar, minor changes in (19)F chemical shifts of tyrosine residues in the free protein exposed to Hg(II), Cd(II) or Zn(II). However, DNA binding elicits large chemical shift changes in MerR's tyrosine residues and in DNA-bound MerR Hg(II) provokes changes very distinct from those of Cd(II) or Zn(II). These chemical shift changes and other biophysical and phenotypic properties of wild-type MerR and relevant mutants reveal elements of an allosteric network that enables the coordination state of the metal binding site to direct metal-specific movements in the distant DNA binding site and the DNA-bound state also to affect the metal binding domain. PMID:17560604

  16. Binding mechanism of the tyrosine-kinase inhibitor nilotinib to human serum albumin determined by 1H STD NMR, 19F NMR, and molecular modeling.

    PubMed

    Yan, Jin; Wu, Di; Sun, Pingchuan; Ma, Xiaoli; Wang, Lili; Li, Shanshan; Xu, Kailin; Li, Hui

    2016-05-30

    Drug interaction with albumins significantly affects in vivo drug transport and biological metabolism. To gain insight into the binding mechanisms of tyrosine-kinase inhibitor nilotinib (NIL) to human serum albumin (HSA), an approach combining (1)H saturation-transfer difference (STD) nuclear magnetic resonance (NMR) spectroscopy, (19)F NMR spectroscopy, steady-state fluorescence quenching, and molecular modeling was adopted. (19)F NMR was used to determine the binding constant, and a value of 4.12 × 10(3)M(-1) was obtained. Fluorescence spectroscopy was also used to determine the binding constant, and the value obtained was within the same order of magnitude. The binding process was mainly driven by hydrogen bonds and van der Waals forces. Displacement experiments further showed that NIL mainly bound to the hydrophobic cavity of HSA's subdomain IIA, also called Sudlow's site I. Molecular docking simulation was also used to establish a molecular binding model, and findings were consistent with those of displacement and the (1)H STD NMR experiments. PMID:26922576

  17. Chemical shift referencing in MAS solid state NMR

    NASA Astrophysics Data System (ADS)

    Morcombe, Corey R.; Zilm, Kurt W.

    2003-06-01

    Solid state 13C magic angle spinning (MAS) NMR spectra are typically referenced externally using a probe which does not incorporate a field frequency lock. Solution NMR shifts on the other hand are more often determined with respect to an internal reference and using a deuterium based field frequency lock. Further differences arise in solution NMR of proteins and nucleic acids where both 13C and 1H shifts are referenced by recording the frequency of the 1H resonance of DSS (sodium salt of 2,2-dimethyl-2-silapentane-5-sulphonic acid) instead of TMS (tetramethylsilane). In this note we investigate the difficulties in relating shifts measured relative to TMS and DSS by these various approaches in solution and solids NMR, and calibrate adamantane as an external 13C standard for solids NMR. We find that external chemical shift referencing of magic angle spinning spectra is typically quite reproducible and accurate, with better than ±0.03 ppm accuracy being straight forward to achieve. Solid state and liquid phase NMR shifts obtained by magic angle spinning with external referencing agree with those measured using typical solution NMR hardware with the sample tube aligned with the applied field as long as magnetic susceptibility corrections and solvent shifts are taken into account. The DSS and TMS reference scales for 13C and 1H are related accurately using MAS NMR. Large solvent shifts for the 13C resonance in TMS in either deuterochloroform or methanol are observed, being +0.71 ppm and -0.74 ppm from external TMS, respectively. The ratio of the 13C resonance frequencies for the two carbons in solid adamantane to the 1H resonance of TMS is reported.

  18. Chemical shift referencing in MAS solid state NMR.

    PubMed

    Morcombe, Corey R; Zilm, Kurt W

    2003-06-01

    Solid state 13C magic angle spinning (MAS) NMR spectra are typically referenced externally using a probe which does not incorporate a field frequency lock. Solution NMR shifts on the other hand are more often determined with respect to an internal reference and using a deuterium based field frequency lock. Further differences arise in solution NMR of proteins and nucleic acids where both 13C and 1H shifts are referenced by recording the frequency of the 1H resonance of DSS (sodium salt of 2,2-dimethyl-2-silapentane-5-sulphonic acid) instead of TMS (tetramethylsilane). In this note we investigate the difficulties in relating shifts measured relative to TMS and DSS by these various approaches in solution and solids NMR, and calibrate adamantane as an external 13C standard for solids NMR. We find that external chemical shift referencing of magic angle spinning spectra is typically quite reproducible and accurate, with better than +/-0.03 ppm accuracy being straight forward to achieve. Solid state and liquid phase NMR shifts obtained by magic angle spinning with external referencing agree with those measured using typical solution NMR hardware with the sample tube aligned with the applied field as long as magnetic susceptibility corrections and solvent shifts are taken into account. The DSS and TMS reference scales for 13C and 1H are related accurately using MAS NMR. Large solvent shifts for the 13C resonance in TMS in either deuterochloroform or methanol are observed, being +0.71 ppm and -0.74 ppm from external TMS, respectively. The ratio of the 13C resonance frequencies for the two carbons in solid adamantane to the 1H resonance of TMS is reported. PMID:12810033

  19. Alternate strategies to obtain mass balance without the use of radiolabeled compounds: application of quantitative fluorine (19F) nuclear magnetic resonance (NMR) spectroscopy in metabolism studies.

    PubMed

    Mutlib, Abdul; Espina, Robert; Atherton, James; Wang, Jianyao; Talaat, Rasmy; Scatina, JoAnn; Chandrasekaran, Appavu

    2012-03-19

    Nuclear magnetic resonance (NMR) spectroscopy is playing an increasingly important role in the quantitation of small and large molecules. Recently, we demonstrated that (1)H NMR could be used to quantitate drug metabolites isolated in submilligram quantities from biological sources. It was shown that these metabolites, once quantitated by NMR, were suitable to be used as reference standards in quantitative LC/MS-based assays, hence circumventing the need for radiolabeled material or synthetic standards to obtain plasma exposure estimates in humans and preclinical species. The quantitative capabilities of high-field NMR is further demonstrated in the current study by obtaining the mass balance of fluorinated compounds using (19)F-NMR. Two fluorinated compounds which were radio-labeled with carbon-14 on metabolically stable positions were dosed in rats and urine and feces collected. The mass balance of the compounds was obtained initially by counting the radioactivity present in each sample. Subsequently, the same sets of samples were analyzed by (19)F-NMR, and the concentrations determined by this method were compared with data obtained using radioactivity counting. It was shown that the two methods produced comparable values. To demonstrate the value of this analytical technique in drug discovery, a fluorinated compound was dosed intravenously in dogs and feces and urine collected. Initial profiling of samples showed that this compound was excreted mainly unchanged in feces, and hence, an estimate of mass balance was obtained using (19)F-NMR. The data obtained by this method was confirmed by additional quantitative studies using mass spectrometry. Hence cross-validations of the quantitative (19)F-NMR method by radioactivity counting and mass spectrometric analysis were demonstrated in this study. A strategy outlining the use of fluorinated compounds in conjunction with (19)F-NMR to understand their routes of excretion or mass balance in animals is proposed. These

  20. Modulation of the antioxidant activity of HO* scavengers by albumin binding: a 19F-NMR study.

    PubMed

    Aime, Silvio; Digilio, Giuseppe; Bruno, Erik; Mainero, Valentina; Baroni, Simona; Fasano, Mauro

    2003-08-01

    The interaction between different HO(z.rad;) radical scavengers in a three-component antioxidant system has been investigated by means of 19F-NMR spectroscopy. This system is composed of bovine serum albumin (BSA), trolox, and N-(4-hydroxyphenyl)-trifluoroacetamide (CF(3)PAF). The antioxidant capacity of BSA and trolox has been assessed by measuring the amount of trifluoroacetamide (TFAM) arising from the radical mediated decomposition of CF(3)PAF. When assayed separately, both trolox and BSA behaved as antioxidants, as they were effective to protect CF(3)PAF from HO* radical-mediated decomposition. By contrast, trolox enhanced the production of TFAM in the presence of BSA, thus behaving as a pro-oxidant. Urate, carnosine, glucose, and propylgallate showed antioxidant properties both with or without BSA. CF(3)PAF and trolox were found to bind to BSA with association constants in the order of 5 x 10(3)M(-1) and to compete for the same binding sites. These results have been discussed in terms of BSA-catalysed cross-reactions between trolox-derived secondary radicals and CF(3)PAF. PMID:12878205

  1. 1H and 19F NMR studies on molecular motions and phase transitions in solid triethylammonium tetrafluoroborate

    NASA Astrophysics Data System (ADS)

    Ono, Hiroshi; Seki, Riki; Ikeda, Ryuichi; Ishida, Hiroyuki

    1995-02-01

    Measurements by differential thermal analysis and differential scanning calorimetry and of the spin-lattice relaxation time ( T1), the spin-spin relaxation time ( T2), and the second moment ( M2) of 1H and 19F NMR were carried out in the three solid phases of (CH 3CH 2) 3NHBF 4. X-ray powder patterns were taken in the highest-temperature phase (Phase I) existing above 367 K and the room-temperature phase (Phase II) stable between 220 and 367 K. Phase I formed a NaCl-type cubic structure with a = 11.65(3) Å, Z = 4, V = 1581(13) Å3, and Dx = 0.794 g cm -3, and was expected to be an ionic plastic phase. In this phase, the self-diffusion of anions and the isotropic reorientation of cations were observed. Phase II formed a tetragonal structure with a = 12.47(1) and c = 9.47(3) Å, Z = 4, V = 1473(6) Å3, and Dx = 0.852 g cm -3. From the present DSC and NMR results in this phase, the cations and/or anions were considered to be dynamically disordered states. The C3 reorientation of the cation about the NH bond axis was detected and, in addition, the onset of nutation of the cations and local diffusion of the anions was suggested. In the low-temperature phase (Phase III) stable below 219 K, the C3 reorientations of the three methyl groups of cations and the isotropic reorientation of anions were observed. The motional parameters for these modes were evaluated.

  2. Coherence selection in double CP MAS NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Yang, Jen-Hsien; Chou, Fang-Chieh; Tzou, Der-Lii M.

    2008-11-01

    Applications of double cross-polarization (CP) magic-angle spinning (MAS) NMR spectroscopy, via 1H/ 15N and then 15N/ 13C coherence transfers, for 13C coherence selection are demonstrated on a 15N/ 13C-labeled N-acetyl-glucosamine (GlcNAc) compound. The 15N/ 13C coherence transfer is very sensitive to the settings of the experimental parameters. To resolve explicitly these parameter dependences, we have systematically monitored the 13C{ 15N/ 1H} signal as a function of the rf field strength and the MAS frequency. The data reveal that the zero-quantum coherence transfer, with which the 13C effective rf field is larger than that of the 15N by the spinning frequency, would give better signal sensitivity. We demonstrate in one- and two-dimensional double CP experiments that spectral editing can be achieved by tailoring the experimental parameters, such as the rf field strengths and/or the MAS frequency.

  3. γ-(S)-Trifluoromethyl proline: evaluation as a structural substitute of proline for solid state (19)F-NMR peptide studies.

    PubMed

    Kubyshkin, Vladimir; Afonin, Sergii; Kara, Sezgin; Budisa, Nediljko; Mykhailiuk, Pavel K; Ulrich, Anne S

    2015-03-21

    γ-(4S)-Trifluoromethyl proline was synthesised according to a modified literature protocol with improved yield on a multigram scale. Conformational properties of the amide bond formed by the amino acid were characterised using N-acetyl methyl ester model. The amide populations (s-trans vs. s-cis) and thermodynamic parameters of the isomerization were found to be similar to the corresponding values for intact proline. Therefore, the γ-trifluoromethyl proline was suggested as a structurally low-disturbing proline substitution in peptides for their structural studies by (19)F-NMR. Indeed, the exchange of native proline for γ-trifluoromethyl proline in the peptide antibiotic gramicidin S was shown to preserve the overall amphipathic peptide structure. The utility of the amino acid as a selective (19)F-NMR label was demonstrated by observing the re-alignment of the labelled gramicidin S in oriented lipid bilayers. PMID:25703116

  4. Dynamic effects in MAS and MQMAS NMR spectra of half-integer quadrupolar nuclei: calculations and an application to the double perovskite cryolite.

    PubMed

    Kotecha, Mrignayani; Chaudhuri, Santanu; Grey, Clare P; Frydman, Lucio

    2005-11-30

    Dynamic processes such as chemical exchange or rotations between inequivalent orientations can affect the magic-angle spinning (MAS) and the multiple-quantum (MQ) MAS NMR spectra of half-integer quadrupolar nuclei. The present paper discusses such dynamic multisite MAS and MQMAS effects and applies them to study the dynamic processes that occur in the double perovskite cryolite, Na3AlF6. Dynamic line shape simulations invoking a second-order broadening of the central transition and relying on the semiclassical Bloch-McConnell formalism for chemical exchange were performed for a variety of exchange models possessing different symmetries. Fitting experimental variable-temperature cryolite 23Na NMR data with this formalism revealed that the two inequivalent sodium sites in this mineral undergo an exchange characterized by a broad distribution of rates. To further assess this dynamic process a variety of 27Al and 19F MAS NMR studies were also undertaken; quantitative 27Al-19F dipolar coupling measurements then revealed a dynamic motion of the AlF6 octahedra that were qualitatively consistent with predictions stemming from molecular dynamic simulations on this double perovskite. PMID:16305261

  5. The effect of ethanol on hydroxyl and carbonyl groups in biopolyol produced by hydrothermal liquefaction of loblolly pine: (31)P-NMR and (19)F-NMR analysis.

    PubMed

    Celikbag, Yusuf; Via, Brian K; Adhikari, Sushil; Buschle-Diller, Gisela; Auad, Maria L

    2016-08-01

    The goal of this study was to investigate the role of ethanol and temperature on the hydroxyl and carbonyl groups in biopolyol produced from hydrothermal liquefaction of loblolly pine (Pinus spp.) carried out at 250, 300, 350 and 390°C for 30min. Water and water/ethanol mixture (1/1, wt/wt) were used as liquefying solvent in the HTL experiments. HTL in water and water/ethanol is donated as W-HTL and W/E-HTL, respectively. It was found that 300°C and water/ethanol solvent was the optimum liquefaction temperature and solvent, yielding up to 68.1wt.% bio-oil and 2.4wt.% solid residue. (31)P-NMR analysis showed that biopolyol produced by W-HTL was rich in phenolic OH while W/E-HTL produced more aliphatic OH rich biopolyols. Moreover, biopolyols with higher hydroxyl concentration were produced by W/E-HTL. Carbonyl groups were analyzed by (19)F-NMR, which showed that ethanol reduced the concentration of carbonyl groups. PMID:27126078

  6. NMR shielding and spin–rotation constants of {sup 175}LuX (X = {sup 19}F, {sup 35}Cl, {sup 79}Br, {sup 127}I) molecules

    SciTech Connect

    Demissie, Taye B.

    2015-12-31

    This presentation demonstrates the relativistic effects on the spin-rotation constants, absolute nuclear magnetic resonance (NMR) shielding constants and shielding spans of {sup 175}LuX (X = {sup 19}F, {sup 35}Cl, {sup 79}Br, {sup 127}I) molecules. The results are obtained from calculations performed using density functional theory (non-relativistic and four-component relativistic) and coupled-cluster calculations. The spin-rotation constants are compared with available experimental values. In most of the molecules studied, relativistic effects make an order of magnitude difference on the NMR absolute shielding constants.

  7. NMR shielding and spin-rotation constants of 175LuX (X = 19F, 35Cl, 79Br, 127I) molecules

    NASA Astrophysics Data System (ADS)

    Demissie, Taye B.

    2015-12-01

    This presentation demonstrates the relativistic effects on the spin-rotation constants, absolute nuclear magnetic resonance (NMR) shielding constants and shielding spans of 175LuX (X = 19F, 35Cl, 79Br, 127I) molecules. The results are obtained from calculations performed using density functional theory (non-relativistic and four-component relativistic) and coupled-cluster calculations. The spin-rotation constants are compared with available experimental values. In most of the molecules studied, relativistic effects make an order of magnitude difference on the NMR absolute shielding constants.

  8. Magnetic properties and hyperfine interactions in Cr8, Cr7Cd, and Cr7Ni molecular rings from 19F-NMR

    SciTech Connect

    Bordonali, L; Garlatti, E; Casadei, C M; Furukawa, Y; Lascialfari, A; Carretta, S; Troiani, F; Timco, G; Winpenny, R E; Borsa, F

    2014-04-14

    A detailed experimental investigation of the 19F nuclear magnetic resonance is made on single crystals of the homometallic Cr₈ antiferromagnetic molecular ring and heterometallic Cr₇Cd and Cr₇ Ni rings in the low temperature ground state. Since the F- ion is located midway between neighboring magnetic metal ions in the ring, the 19F-NMR spectra yield information about the local electronic spin density and ¹⁹F hyperfine interactions. In Cr8, where the ground state is a singlet with total spin S T = 0, the ¹⁹F-NMR spectra at 1.7 K and low external magnetic field display a single narrow line, while when the magnetic field is increased towards the first level crossing field, satellite lines appear in the ¹⁹F-NMR spectrum, indicating a progressive increase in the Boltzmann population of the first excited state S T = 1. In the heterometallic rings, Cr₇Cd and Cr₇ Ni, whose ground state is magnetic with S T = 3/2 and S T = 1/2, respectively, the ¹⁹F-NMR spectrum has a complicated structure which depends on the strength and orientation of the magnetic field, due to both isotropic and anisotropic transferred hyperfine interactions and classical dipolar interactions. From the 19F-NMR spectra in single crystals we estimated the transferred hyperfine constants for both the F⁻-Ni2⁺ and the F⁻-Cd2⁺ bonds. The values of the hyperfine constants compare well to the ones known for F⁻-Ni2⁺ in KNiF₃ and NiF₂ and for F⁻-Cr³⁺ in K₂NaCrF₆. The results are discussed in terms of hybridization of the 2s, 2p orbitals of the F⁻ ion and the d orbitals of the magnetic ion. Finally, we discuss the implications of our results for the electron-spin decoherence.

  9. Demystifying fluorine chemical shifts: electronic structure calculations address origins of seemingly anomalous (19)F-NMR spectra of fluorohistidine isomers and analogues.

    PubMed

    Kasireddy, Chandana; Bann, James G; Mitchell-Koch, Katie R

    2015-11-11

    Fluorine NMR spectroscopy is a powerful tool for studying biomolecular structure, dynamics, and ligand binding, yet the origins of (19)F chemical shifts are not well understood. Herein, we use electronic structure calculations to describe the changes in (19)F chemical shifts of 2F- and 4F-histidine/(5-methyl)-imidazole upon acid titration. While the protonation of the 2F species results in a deshielded chemical shift, protonation of the 4F isomer results in an opposite, shielded chemical shift. The deshielding of 2F-histidine/(5-methyl)-imidazole upon protonation can be rationalized by concomitant decreases in charge density on fluorine and a reduced dipole moment. These correlations do not hold for 4F-histidine/(5-methyl)-imidazole, however. Molecular orbital calculations reveal that for the 4F species, there are no lone pair electrons on the fluorine until protonation. Analysis of a series of 4F-imidazole analogues, all with delocalized fluorine electron density, indicates that the deshielding of (19)F chemical shifts through substituent effects correlates with increased C-F bond polarity. In summary, the delocalization of fluorine electrons in the neutral 4F species, with gain of a lone pair upon protonation may help explain the difficulty in developing a predictive framework for fluorine chemical shifts. Ideas debated by chemists over 40 years ago, regarding fluorine's complex electronic effects, are shown to have relevance for understanding and predicting fluorine NMR spectra. PMID:26524669

  10. Synthesis, fine structure of 19F NMR and fluorescence of novel amorphous TPA derivatives having perfluorinated cyclopentenyl and benzo[b]thiophene unit

    NASA Astrophysics Data System (ADS)

    Wu, Bian-Peng; Pang, Mei-Li; Tan, Ting-Feng; Meng, Ji-ben

    2013-04-01

    Three novel triphenylamine (TPA) derivatives having perfluorinated cyclopentenyl and benzo[b]thiophene unit are obtained from 4-bromo-N,N-diphenyl-2-methylbenzo[b]thiophen-5-amine. The new compounds are expected to find their use in thin film devices as charge transport materials and host organic light-emitting materials. It is found that the new compounds show relatively strong fluorescence either in solution or in solid state, and are amorphous due to a special conformation which is elucidated by the fine structure of 19F NMR. Molecular structure and properties of these compounds is characterized by 1H NMR, 13C NMR (broadband decoupled), ESI-HRMS, elemental analysis and thermal analysis (DSC). Fluorescent quantum yield in solution is measured using 9,10-diphenylanthrancene (DPA) as standard fluorescent substance.

  11. Evidence of a structural phase transition in superconducting SmFeAsO1-xFx from 19F NMR

    NASA Astrophysics Data System (ADS)

    Majumder, M.; Ghoshray, K.; Mazumdar, C.; Poddar, A.; Ghoshray, A.; Berardan, D.; Dragoe, N.

    2013-01-01

    We report resistivity, magnetization and 19F NMR results in a polycrystalline sample of SmFeAsO0.86F0.14. The resistivity and magnetization data show a sharp drop at 48 K indicating a superconducting transition. The nuclear spin-lattice rate (1/T1) and spin-spin relaxation rate (1/T2) clearly show the existence of a structural phase transition near 163 K in the sample, which also undergoes a superconducting transition. This finding creates interest in exploring whether this is unique for Sm based systems or is also present in other rare-earth based 1111 superconductors.

  12. Sealed rotors for in situ high temperature high pressure MAS NMR

    DOE PAGESBeta

    Hu, Jian Z.; Hu, Mary Y.; Zhao, Zhenchao; Xu, Souchang; Vjunov, Aleksei; Shi, Hui; Camaioni, Donald M.; Peden, Charles H. F.; Lercher, Johannes A.

    2015-07-06

    Magic angle spinning (MAS) nuclear magnetic resonance (NMR) investigations on heterogeneous samples containing solids, semi-solids, liquid and gases or a mixture of them under non-conventional conditions of a combined high pressure and high temperature, or cold temperature suffer from the unavailability of a perfectly sealed rotor. Here, we report the design of reusable and perfectly-sealed all-zircornia MAS rotors. The rotors are easy to use and are suitable for operation temperatures from below 0 to 250 °C and pressures up to 100 bar. As an example of potential applications we performed in situ MAS NMR investigations of AlPO₄-5 molecular sieve crystallization,more » a kinetic study of the cyclohexanol dehydration reaction using 13C MAS NMR, and an investigation of the metabolomics of intact biological tissue at low temperature using 1H HR-MAS NMR spectroscopy. The in situ MAS NMR experiments performed using the reported rotors allowed reproduction of the results from traditional batch reactions, while offering more detailed quantitative information at the molecular level, as demonstrated for the molecular sieve synthesis and activation energy measurements for cyclohexanol dehydration. The perfectly sealed rotor also shows promising application for metabolomics studies using 1H HR-MAS NMR.« less

  13. Sealed rotors for in situ high temperature high pressure MAS NMR

    SciTech Connect

    Hu, Jian Z.; Hu, Mary Y.; Zhao, Zhenchao; Xu, Souchang; Vjunov, Aleksei; Shi, Hui; Camaioni, Donald M.; Peden, Charles H. F.; Lercher, Johannes A.

    2015-07-06

    Magic angle spinning (MAS) nuclear magnetic resonance (NMR) investigations on heterogeneous samples containing solids, semi-solids, liquid and gases or a mixture of them under non-conventional conditions of a combined high pressure and high temperature, or cold temperature suffer from the unavailability of a perfectly sealed rotor. Here, we report the design of reusable and perfectly-sealed all-zircornia MAS rotors. The rotors are easy to use and are suitable for operation temperatures from below 0 to 250 °C and pressures up to 100 bar. As an example of potential applications we performed in situ MAS NMR investigations of AlPO₄-5 molecular sieve crystallization, a kinetic study of the cyclohexanol dehydration reaction using 13C MAS NMR, and an investigation of the metabolomics of intact biological tissue at low temperature using 1H HR-MAS NMR spectroscopy. The in situ MAS NMR experiments performed using the reported rotors allowed reproduction of the results from traditional batch reactions, while offering more detailed quantitative information at the molecular level, as demonstrated for the molecular sieve synthesis and activation energy measurements for cyclohexanol dehydration. The perfectly sealed rotor also shows promising application for metabolomics studies using 1H HR-MAS NMR.

  14. Using "On/Off" (19)F NMR/Magnetic Resonance Imaging Signals to Sense Tyrosine Kinase/Phosphatase Activity in Vitro and in Cell Lysates.

    PubMed

    Zheng, Zhen; Sun, Hongbin; Hu, Chen; Li, Gongyu; Liu, Xiaomei; Chen, Peiyao; Cui, Yusi; Liu, Jing; Wang, Junfeng; Liang, Gaolin

    2016-03-15

    Tyrosine kinase and phosphatase are two important, antagonistic enzymes in organisms. Development of noninvasive approach for sensing their activity with high spatial and temporal resolution remains challenging. Herein, we rationally designed a hydrogelator Nap-Phe-Phe(CF3)-Glu-Tyr-Ile-OH (1a) whose supramolecular hydrogel (i.e., Gel 1a) can be subjected to tyrosine kinase-directed disassembly, and its phosphate precursor Nap-Phe-Phe(CF3)-Glu-Tyr(H2PO3)-Ile-OH (1b), which can be subjected to alkaline phosphatase (ALP)-instructed self-assembly to form supramolecular hydrogel Gel 1b, respectively. Mechanic properties and internal fibrous networks of the hydrogels were characterized with rheology and cryo transmission electron microscopy (cryo-TEM). Disassembly/self-assembly of their corresponding supramolecular hydrogels conferring respective "On/Off" (19)F NMR/MRI signals were employed to sense the activity of these two important enzymes in vitro and in cell lysates for the first time. We anticipate that our new (19)F NMR/magnetic resonance imaging (MRI) method would facilitate pharmaceutical researchers to screen new inhibitors for these two enzymes without steric hindrance. PMID:26901415

  15. Citron and lemon under the lens of HR-MAS NMR spectroscopy.

    PubMed

    Mucci, Adele; Parenti, Francesca; Righi, Valeria; Schenetti, Luisa

    2013-12-01

    High Resolution Magic Angle Spinning (HR-MAS) is an NMR technique that can be applied to semi-solid samples. Flavedo, albedo, pulp, seeds, and oil gland content of lemon and citron were studied through HR-MAS NMR spectroscopy, which was used directly on intact tissue specimens without any physicochemical manipulation. HR-MAS NMR proved to be a very suitable technique for detecting terpenes, sugars, organic acids, aminoacids and osmolites. It is valuable in observing changes in sugars, principal organic acids (mainly citric and malic) and ethanol contents of pulp specimens and this strongly point to its use to follow fruit ripening, or commercial assessment of fruit maturity. HR-MAS NMR was also used to derive the molar percentage of fatty acid components of lipids in seeds, which can change depending on the Citrus species and varieties. Finally, this technique was employed to elucidate the metabolic profile of mold flavedo. PMID:23871074

  16. A software framework for analysing solid-state MAS NMR data.

    PubMed

    Stevens, Tim J; Fogh, Rasmus H; Boucher, Wayne; Higman, Victoria A; Eisenmenger, Frank; Bardiaux, Benjamin; van Rossum, Barth-Jan; Oschkinat, Hartmut; Laue, Ernest D

    2011-12-01

    Solid-state magic-angle-spinning (MAS) NMR of proteins has undergone many rapid methodological developments in recent years, enabling detailed studies of protein structure, function and dynamics. Software development, however, has not kept pace with these advances and data analysis is mostly performed using tools developed for solution NMR which do not directly address solid-state specific issues. Here we present additions to the CcpNmr Analysis software package which enable easier identification of spinning side bands, straightforward analysis of double quantum spectra, automatic consideration of non-uniform labelling schemes, as well as extension of other existing features to the needs of solid-state MAS data. To underpin this, we have updated and extended the CCPN data model and experiment descriptions to include transfer types and nomenclature appropriate for solid-state NMR experiments, as well as a set of experiment prototypes covering the experiments commonly employed by solid-sate MAS protein NMR spectroscopists. This work not only improves solid-state MAS NMR data analysis but provides a platform for anyone who uses the CCPN data model for programming, data transfer, or data archival involving solid-state MAS NMR data. PMID:21953355

  17. Reaction monitoring in LPOS by 19F NMR. Study of soluble polymer supports with fluorine in spacer or linker components of supports.

    PubMed

    Lakshmipathi, Pandarinathan; Crévisy, Christophe; Grée, Rene

    2002-01-01

    Various soluble polystyrene supports with fluorinated spacer or linker were prepared and studied by (19)F NMR for their use in LPOS reaction monitoring. Among three types of systems studied, the perfluoro Wang linker was found to be most efficient for this purpose. Substrates could be easily anchored to and cleaved from this new support-bound linker. The anchoring of the linker and the substrates on the polymer led to significant changes in the fluorine resonances. Therefore, the progress of these reactions could be both monitored and quantified. On the other hand, the chemical transformations on the anchored substrates led only to moderate changes in the fluorine resonances. Nevertheless, the reaction progress could also be monitored in this case. After cleavage of products, the polymer supports were recovered without loss in loading. Membrane separation technology was used to purify some polymer-bound products as well as to obtain the polymer-free cleaved product. PMID:12425606

  18. Investigation of domain size in polymer membranes using double quantum filtered spin diffusion MAS NMR.

    SciTech Connect

    Fujimoto, Cy H.; Alam, Todd Michael; Cherry, Brian Ray; Cornelius, Christopher James

    2005-02-01

    Solid-state {sup 1}H magic angle spinning (MAS) NMR was used to investigate sulfonated Diels-Alder poly(phenlylene) polymer membranes. Under high spinning speed {sup 1}H MAS conditions, the proton environments of the sulfonic acid and phenylene polymer backbone are resolved. A double-quantum (DQ) filter using the rotor-synchronized back-to-back (BABA) NMR multiple-pulse sequence allowed the selective suppression of the sulfonic proton environment in the {sup 1}H MAS NMR spectra. This DQ filter in conjunction with a spin diffusion NMR experiment was then used to measure the domain size of the sulfonic acid component within the membrane. In addition, the temperature dependence of the sulfonic acid spin-spin relaxation time (T{sub 2}) was determined, providing an estimate of the activation energy for the proton dynamics of the dehydrated membrane.

  19. 29Si and 27Al MAS NMR spectra of mullites from different kaolinites.

    PubMed

    He, Hongping; Guo, Jiugao; Zhu, Jianxi; Yuan, Peng; Hu, Cheng

    2004-04-01

    Mullites synthesized from four kaolinites with different random defect densities have been studied by 27Al and 29Si magic angle spinning nuclear magnetic resonance spectroscopy (MAS NMR) and X-ray diffraction (XRD). All these mullites show the same XRD pattern. However, 29Si and 27Al MAS NMR spectra reveal that the mullites derived from kaolinites with high defect densities, have a sillimanite-type Al/Si ordering scheme and are low in silica, whereas those mullites derived from kaolinites with low defect densities, consist of both sillimanite- and mullite-type Al/Si ordering schemes and are rich in silica. PMID:15084323

  20. Advanced instrumentation for DNP-enhanced MAS NMR for higher magnetic fields and lower temperatures

    NASA Astrophysics Data System (ADS)

    Matsuki, Yoh; Idehara, Toshitaka; Fukazawa, Jun; Fujiwara, Toshimichi

    2016-03-01

    Sensitivity enhancement of MAS NMR using dynamic nuclear polarization (DNP) is gaining importance at moderate fields (B0 < 9 T) and temperatures (T > 90 K) with potential applications in chemistry and material sciences. However, considering the ever-increasing size and complexity of the systems to be studied, it is crucial to establish DNP under higher field conditions, where the spectral resolution and the basic NMR sensitivity tend to improve. In this perspective, we overview our recent efforts on hardware developments, specifically targeted on improving DNP MAS NMR at high fields. It includes the development of gyrotrons that enable continuous frequency tuning and rapid frequency modulation for our 395 GHz-600 MHz and 460 GHz-700 MHz DNP NMR spectrometers. The latter 700 MHz system involves two gyrotrons and a quasi-optical transmission system that combines two independent sub-millimeter waves into a single dichromic wave. We also describe two cryogenic MAS NMR probe systems operating, respectively, at T ∼100 K and ∼30 K. The latter system utilizes a novel closed-loop helium recirculation mechanism, achieving cryogenic MAS without consuming any cryogen. These instruments altogether should promote high-field DNP toward more efficient, reliable and affordable technology. Some experimental DNP results obtained with these instruments are presented.

  1. Advanced instrumentation for DNP-enhanced MAS NMR for higher magnetic fields and lower temperatures.

    PubMed

    Matsuki, Yoh; Idehara, Toshitaka; Fukazawa, Jun; Fujiwara, Toshimichi

    2016-03-01

    Sensitivity enhancement of MAS NMR using dynamic nuclear polarization (DNP) is gaining importance at moderate fields (B0<9T) and temperatures (T>90K) with potential applications in chemistry and material sciences. However, considering the ever-increasing size and complexity of the systems to be studied, it is crucial to establish DNP under higher field conditions, where the spectral resolution and the basic NMR sensitivity tend to improve. In this perspective, we overview our recent efforts on hardware developments, specifically targeted on improving DNP MAS NMR at high fields. It includes the development of gyrotrons that enable continuous frequency tuning and rapid frequency modulation for our 395 GHz-600 MHz and 460 GHz-700 MHz DNP NMR spectrometers. The latter 700 MHz system involves two gyrotrons and a quasi-optical transmission system that combines two independent sub-millimeter waves into a single dichromic wave. We also describe two cryogenic MAS NMR probe systems operating, respectively, at T ∼ 100K and ∼ 30K. The latter system utilizes a novel closed-loop helium recirculation mechanism, achieving cryogenic MAS without consuming any cryogen. These instruments altogether should promote high-field DNP toward more efficient, reliable and affordable technology. Some experimental DNP results obtained with these instruments are presented. PMID:26920836

  2. Targeting the Endocannabinoid System for Neuroprotection: A 19F-NMR Study of a Selective FAAH Inhibitor Binding with an Anandamide Carrier Protein, HSA

    PubMed Central

    Zhuang, Jianqin; Yang, De-Ping; Tian, Xiaoyu; Nikas, Spyros P.; Sharma, Rishi; Guo, Jason Jianxin; Makriyannis, Alexandros

    2013-01-01

    Fatty acid amide hydrolase (FAAH), the enzyme involved in the inactivation of the endocannabinoid anandamide (AEA), is being considered as a therapeutic target for analgesia and neuroprotection. We have developed a brain permeable FAAH inhibitor, AM5206, which has served as a valuable pharmacological tool to explore neuroprotective effects of this class of compounds. In the present work, we characterized the interactions of AM5206 with a representative AEA carrier protein, human serum albumin (HSA), using 19F nuclear magnetic resonance (NMR) spectroscopy. Our data showed that as a drug carrier, albumin can significantly enhance the solubility of AM5206 in aqueous environment. Through a series of titration and competitive binding experiments, we also identified that AM5206 primarily binds to two distinct sites within HSA. Our results may provide insight into the mechanism of HSA-AM5206 interactions. The findings should also help in the development of suitable formulations of the lipophilic AM5206 and its congeners for their effective delivery to specific target sites in the brain. PMID:24533425

  3. Line shapes in CP/MAS NMR spectra of half-integer quadrupolar nuclei

    NASA Astrophysics Data System (ADS)

    Hayashi, Shigenobu; Hayamizu, Kikuko

    1993-02-01

    Cross polarization (CP) from 1H to quadrupolar nuclei with S = 3/2 has been carried out under magic-angle-spinning (MAS) conditions for powder samples of Na 2B 4O 7·10H 2O and H 3BO 3. The line shapes in the CP/MAS NMR spectra are different from those in the spectra measured with the single pulse sequence combined with 1H dipolar decoupling. Furthermore, the line shapes are found to be dependent on the measuring conditions such as the pulse amplitude for the quadrupolar nuclei. The spin-locking experiments demonstrate that line shapes in CP/MAS NMR spectra are largely dependent on the spin-locking efficiency.

  4. Roles of Arginine and Lysine Residues in the Translocation of a Cell-Penetrating Peptide from 13C, 31P and 19F Solid-State NMR

    PubMed Central

    Su, Yongchao; Doherty, Tim; Waring, Alan J.; Ruchala, Piotr; Hong, Mei

    2009-01-01

    Cell-penetrating peptides (CPPs) are small cationic peptides that cross the cell membrane while carrying macromolecular cargoes. We use solid-state NMR to investigate the structure and lipid interaction of two cationic residues, Arg10 and Lys13, in the CPP penetratin. 13C chemical shifts indicate that Arg10 adopts a rigid β-strand conformation in the liquid-crystalline state of anionic lipid membranes. This behavior contrasts with all other residues observed so far in this peptide, which adopt a dynamic β-turn conformation with coil-like chemical shifts at physiological temperature. Low-temperature 13C-31P distances between the peptide and the lipid phosphates indicate that both the Arg10 guanidinium Cζ and the Lys13 Cε lie in close proximity to the lipid 31P (4.0 - 4.2 Å), proving the existence of charge-charge interaction for both Arg10 and Lys13 in the gel-phase membrane. However, since lysine substitution in CPPs are known to reduce their translocation ability, we propose that low temperature stabilizes both lysine and arginine interactions with the phosphates, whereas at high temperature the lysine-phosphate interaction is much weaker than the arginine-phosphate interaction. This is supported by the unusually high rigidity of the Arg10 sidechain and its β-strand conformation at high temperature. The latter is proposed to be important for ion pair formation by allowing close approach of the lipid headgroups to guanidinium sidechains. 19F and 13C spin diffusion experiments indicate that penetratin is oligomerized into β-sheets in gel-phase membranes. These solid-state NMR data indicate that guanidinium-phosphate interactions exist in penetratin, and guanidinium groups play a stronger structural role than ammonium groups in the lipid-assisted translocation of CPPs across liquid-crystalline cell membranes. PMID:19364134

  5. Magnetic properties and hyperfine interactions in Cr{sub 8}, Cr{sub 7}Cd, and Cr{sub 7}Ni molecular rings from {sup 19}F-NMR

    SciTech Connect

    Bordonali, L.; Borsa, F.; Consorzio INSTM, Via Giusti 9, I-50121 Firenze; Department of Physics and Astronomy, Ames Laboratory, Iowa State University, Ames, Iowa 50011 ; Garlatti, E.; Dipartimento di Fisica e Scienze della Terra, Università di Parma, Viale G. P. Usberti 7 Casadei, C. M.; Department of Physics and Astronomy, Ames Laboratory, Iowa State University, Ames, Iowa 50011 ; Furukawa, Y.; Lascialfari, A.; Consorzio INSTM, Via Giusti 9, I-50121 Firenze; Department of Physics, Università degli Studi di Milano, Via Celoria 16, 20133 Milano ; Carretta, S.; Timco, G.; Winpenny, R. E. P.

    2014-04-14

    A detailed experimental investigation of the {sup 19}F nuclear magnetic resonance is made on single crystals of the homometallic Cr{sub 8} antiferromagnetic molecular ring and heterometallic Cr{sub 7}Cd and Cr{sub 7}Ni rings in the low temperature ground state. Since the F{sup −} ion is located midway between neighboring magnetic metal ions in the ring, the {sup 19}F-NMR spectra yield information about the local electronic spin density and {sup 19}F hyperfine interactions. In Cr{sub 8}, where the ground state is a singlet with total spin S{sub T} = 0, the {sup 19}F-NMR spectra at 1.7 K and low external magnetic field display a single narrow line, while when the magnetic field is increased towards the first level crossing field, satellite lines appear in the {sup 19}F-NMR spectrum, indicating a progressive increase in the Boltzmann population of the first excited state S{sub T} = 1. In the heterometallic rings, Cr{sub 7}Cd and Cr{sub 7}Ni, whose ground state is magnetic with S{sub T} = 3/2 and S{sub T} = 1/2, respectively, the {sup 19}F-NMR spectrum has a complicated structure which depends on the strength and orientation of the magnetic field, due to both isotropic and anisotropic transferred hyperfine interactions and classical dipolar interactions. From the {sup 19}F-NMR spectra in single crystals we estimated the transferred hyperfine constants for both the F{sup −}-Ni{sup 2+} and the F{sup −}-Cd{sup 2+} bonds. The values of the hyperfine constants compare well to the ones known for F{sup −}-Ni{sup 2+} in KNiF{sub 3} and NiF{sub 2} and for F{sup −}-Cr{sup 3+} in K{sub 2}NaCrF{sub 6}. The results are discussed in terms of hybridization of the 2s, 2p orbitals of the F{sup −} ion and the d orbitals of the magnetic ion. Finally, we discuss the implications of our results for the electron-spin decoherence.

  6. Optimized multiple quantum MAS lineshape simulations in solid state NMR

    NASA Astrophysics Data System (ADS)

    Brouwer, William J.; Davis, Michael C.; Mueller, Karl T.

    2009-10-01

    /Linux Operating system: UNIX/Linux Has the code been vectorised or parallelized?: Yes RAM: Example: (1597 powder angles) × (200 Samples) × (81 F2 frequency pts) × (31 F1 frequency points) = 3.5M, SMP AMD opteron Classification: 2.3 External routines: OCTAVE ( http://www.gnu.org/software/octave/), GNU Scientific Library ( http://www.gnu.org/software/gsl/), OPENMP ( http://openmp.org/wp/) Nature of problem: The optimal simulation and modeling of multiple quantum magic angle spinning NMR spectra, for general systems, especially those with mild to significant disorder. The approach outlined and implemented in C and OCTAVE also produces model parameter error estimates. Solution method: A model for each distinct chemical site is first proposed, for the individual contribution of crystallite orientations to the spectrum. This model is averaged over all powder angles [1], as well as the (stochastic) parameters; isotropic chemical shift and quadrupole coupling constant. The latter is accomplished via sampling from a bi-variate Gaussian distribution, using the Box-Muller algorithm to transform Sobol (quasi) random numbers [2]. A simulated annealing optimization is performed, and finally the non-linear jackknife [3] is applied in developing model parameter error estimates. Additional comments: The distribution contains a script, mqmasOpt.m, which runs in the OCTAVE language workspace. Running time: Example: (1597 powder angles) × (200 Samples) × (81 F2 frequency pts) × (31 F1 frequency points) = 58.35 seconds, SMP AMD opteron. References:S.K. Zaremba, Annali di Matematica Pura ed Applicata 73 (1966) 293. H. Niederreiter, Random Number Generation and Quasi-Monte Carlo Methods, SIAM, 1992. T. Fox, D. Hinkley, K. Larntz, Technometrics 22 (1980) 29.

  7. Analysis of electron donors in photosystems in oxygenic photosynthesis by photo-CIDNP MAS NMR.

    PubMed

    Najdanova, M; Janssen, G J; de Groot, H J M; Matysik, J; Alia, A

    2015-11-01

    Both photosystem I and photosystem II are considerably similar in molecular architecture but they operate at very different electrochemical potentials. The origin of the different redox properties of these RCs is not yet clear. In recent years, insight was gained into the electronic structure of photosynthetic cofactors through the application of photochemically induced dynamic nuclear polarization (photo-CIDNP) with magic-angle spinning NMR (MAS NMR). Non-Boltzmann populated nuclear spin states of the radical pair lead to strongly enhanced signal intensities that allow one to observe the solid-state photo-CIDNP effect from both photosystem I and II from isolated reaction center of spinach (Spinacia oleracea) and duckweed (Spirodela oligorrhiza) and from the intact cells of the cyanobacterium Synechocystis by (13)C and (15)N MAS NMR. This review provides an overview on the photo-CIDNP MAS NMR studies performed on PSI and PSII that provide important ingredients toward reconstruction of the electronic structures of the donors in PSI and PSII. PMID:26282679

  8. Combined ligand-observe 19F and protein-observe 15N,1H-HSQC NMR suggests phenylalanine as the key Δ-somatostatin residue recognized by human protein disulfide isomerase

    PubMed Central

    Richards, Kirsty L.; Rowe, Michelle L.; Hudson, Paul B.; Williamson, Richard A.; Howard, Mark J.

    2016-01-01

    Human protein disulphide isomerase (hPDI) is an endoplasmic reticulum (ER) based isomerase and folding chaperone. Molecular detail of ligand recognition and specificity of hPDI are poorly understood despite the importance of the hPDI for folding secreted proteins and its implication in diseases including cancer and lateral sclerosis. We report a detailed study of specificity, interaction and dissociation constants (Kd) of the peptide-ligand Δ-somatostatin (AGSKNFFWKTFTSS) binding to hPDI using 19F ligand-observe and 15N,1H-HSQC protein-observe NMR methods. Phe residues in Δ-somatostatin are hypothesised as important for recognition by hPDI therefore, step-wise peptide Phe-to-Ala changes were progressively introduced and shown to raise the Kd from 103 + 47 μM until the point where binding was abolished when all Phe residues were modified to Ala. The largest step-changes in Kd involved the F11A peptide modification which implies the C-terminus of Δ-somatostatin is a prime recognition region. Furthermore, this study also validated the combined use of 19F ligand-observe and complimentary 15N,1H-HSQC titrations to monitor interactions from the protein’s perspective. 19F ligand-observe NMR was ratified as mirroring 15N protein-observe but highlighted the advantage that 19F offers improved Kd precision due to higher spectrum resolution and greater chemical environment sensitivity. PMID:26786784

  9. Quality assessment of fluoxetine and fluvoxamine pharmaceutical formulations purchased in different countries or via the Internet by 19F and 2D DOSY 1H NMR.

    PubMed

    Trefi, Saleh; Gilard, Véronique; Balayssac, Stéphane; Malet-Martino, Myriam; Martino, Robert

    2008-03-13

    A simple and selective (19)F NMR method has been validated for the quantitation of fluoxetine (FLX) and fluvoxamine (FLV) in methanol solutions and in human plasma and urine. The regression equations for FLX and FLV showed a good linearity in the range of 1.4-620 microg mL(-1) (3.3 x 10(-6)-1.8 x 10(-3) mol L(-1)) with a limit of detection of approximately 0.5 microg mL(-1) (1.3 x 10(-6) mol L(-1)) and a limit of quantification of approximately 2 microg mL(-1) (4.6 x 10(-6) mol L(-1)). The precision of the assay depends on the concentrations and is comprised between 1.5 and 9.5% for a range of concentrations between 1.2 x 10(-3) and 3.2 x 10(-6) mol L(-1). The accuracy evaluated through recovery studies ranged from approximately 96 to 103% in methanol solutions and in urine, and from approximately 93 to 104% in plasma, with standard deviations <7.5%. The low sensitivity of the method precludes its use for the assay of these antidepressants in biofluids at least at therapeutic doses as the ranges of FLX and FLV plasma levels are 0.15-0.5 microg mL(-1) and 0.15-0.25 microg mL(-1), respectively. The method was applied successfully to the determination of FLX and FLV contents in pharmaceutical samples (brand-named and generic) purchased in several countries or via the Internet. All the commercial formulations contain the active ingredient in the range 94-103% of stated concentration. A "signature" of the formulations (solid and liquid) was obtained with 2D Diffusion-Ordered SpectroscopY (DOSY) (1)H NMR which allowed the characterisation of the active ingredient and excipients present in the formulations studied. Finally, the DOSY separation of FLX and FLV whose molecular weights are very close was obtained by using beta-cyclodextrin as host-guest complexing agent. PMID:18206329

  10. Deuterium and lithium-6 MAS NMR studies of manganese oxide electrode materials

    NASA Astrophysics Data System (ADS)

    Paik, Younkee

    Electrolytic manganese dioxide (EMD) is used world wide as the cathode materials in both lithium and alkaline primary (non-rechargeable) batteries. We have developed deuterium and lithium MAS NMR techniques to study EMD and related manganese oxides and hydroxides, where diffraction techniques are of limited value due to a highly defective nature of the structures. Deuterons in EMD, manganite, groutite, and deuterium-intercalated pyrolusite and ramsdellite were detected by NMR, for the first time, and their locations and motions in the structures were analyzed by applying variable temperature NMR techniques. Discharge mechanisms of EMD in alkaline (aqueous) electrolytes were studied, in conjunction with step potential electrochemical spectroscopic (SPECS) method, and five distinctive discharge processes were proposed. EMD is usually heat-treated at about 300--400°C to remove water to be used in lithium batteries. Details of the effects of heat-treatment, such as structural and compositional changes as a function of heat-treatment temperature, were studied by a combination of MAS NMR, XRD, and thermogravimetric analysis. Lithium local environments in heat-treated EMD (HEMD) that were discharged in lithium cells, were described in terms of related environments found in model compounds pyrolusite and ramsdellite where specific Li + sites were detected by MAS NMR and the hyperfine shift scale method of Grey et al. Acid-leaching of Li2MnO3 represents an approach for synthesizing new or modified manganese oxide electrode materials for lithium rechargeable batteries. Progressive removal of lithium from specific crystallographic sites, followed by a gradual change of the crystal structure, was monitored by a combination of NMR and XRD techniques.

  11. Decomposition of adsorbed VX on activated carbons studied by {sup 31}P MAS NMR

    SciTech Connect

    Ishay Columbus; Daniel Waysbort; Liora Shmueli; Ido Nir; Doron Kaplan

    2006-06-15

    The fate of the persistent OP nerve agent O-ethyl S-(2-(diisopropylamino)ethyl) methylphosphonothioate (VX) on granular activated carbons that are used for gas filtration was studied by means of 31P magic angle spinning (MAS) NMR spectroscopy. Four types of activated carbon were used, including coal-based BPL. VX as vapor or liquid was adsorbed on carbon granules, and MAS NMR spectra were recorded periodically. The results show that at least 90% of the adsorbed VX decomposes within 20 days or less to the nontoxic ethyl methylphosphonic acid (EMPA) and bis(S-2-diisopropylaminoethane) ((DES){sub 2}). Decomposition occurred irrespective of the phase from which VX was loaded, the presence of metal impregnation on the carbon surface, and the water content of the carbon. Theoretical and practical aspects of the degradation are discussed. 17 refs., 6 figs., 3 tabs.

  12. Decomposition of adsorbed VX on activated carbons studied by 31P MAS NMR.

    PubMed

    Columbus, Ishay; Waysbort, Daniel; Shmueli, Liora; Nir, Ido; Kaplan, Doron

    2006-06-15

    The fate of the persistent OP nerve agent O-ethyl S-[2-(diisopropylamino)ethyl] methylphosphonothioate (VX) on granular activated carbons that are used for gas filtration was studied by means of 31P magic angle spinning (MAS) NMR spectroscopy. VX as vapor or liquid was adsorbed on carbon granules, and MAS NMR spectra were recorded periodically. The results show that at least 90% of the adsorbed VX decomposes within 20 days or less to the nontoxic ethyl methylphosphonic acid (EMPA) and bis(S-2-diisopropylaminoethane) {(DES)2}. Decomposition occurred irrespective of the phase from which VX was loaded, the presence of metal impregnation on the carbon surface, and the water content of the carbon. Theoretical and practical aspects of the degradation are discussed. PMID:16830567

  13. 19F NMR-, ESR-, and vis-NIR-spectroelectrochemical study of the unconventional reduction behaviour of a perfluoroalkylated fullerene: dimerization of the C70(CF3)10– radical anion†

    PubMed Central

    Zalibera, Michal; Machata, Peter; Clikeman, Tyler T.; Rosenkranz, Marco; Strauss, Steven H.; Boltalina, Olga V.; Popov, Alexey A.

    2016-01-01

    The most abundant isomer of C70(CF3)10 (70-10-1) is a rare example of a perfluoroalkylated fullerene exhibiting electrochemically irreversible reduction. We show that electrochemical reversibility at the first reduction step is achieved at scan rates higher than 500 V s-1 Applying ESR-, vis-NIR-, and 19F NMR- spectroelectrochemistry, as well as mass spectrometry and DFT calculations, we show that the (70-10-1)- radical monoanion is in equilibrium with a singly-bonded diamagnetic dimeric dianion. This study is the first example of 19F NMR spectroelectrochemistry, which promises to be an important method for the elucidation of redox mechanisms of fluoroorganic compounds. Additionally, we demonstrate the importance of combining different spectroelectrochemical methods and quantitative analysis of the transferred charge and spin numbers in the determination of the redox mechanism. PMID:26359514

  14. Tetrahedral site ordering in synthetic gallium albite: A 29Si MAS NMR study

    NASA Astrophysics Data System (ADS)

    Sherriff, Barbara L.; Fleet, Michael E.; Burns, Peter C.

    1991-09-01

    The ordering of Si in the tetrahedral sites of gallium albite (NaGaSi 3O 8) has been studied by MAS NMR and Rietveld structure refinement of X-ray powder diffraction data. Low structural state (ordered) material was annealed at about 800°C under a load pressure of 1 kbar, and by Rietveld refinement has tetrahedral-site occupancies for Si of T1O = 0.24(3), T1m = 0.89(2), T2O = 0.98(2), and T2m = 0.89(2), respectively. Corresponding Si occupancies for high structural state (disordered) material are 0.71(2), 0.78(1), 0.76(2), and 0.74(2), respectively. The 29Si MAS NMR spectra of low gallium albite is equivalent to the three-peak spectrum of natural (Amelia) albite, with resonances at -89.6, -96.4, and -104.2 ppm but with relative peak areas of 0.79:1.0:0.77. The tetrahedral-site occupancies derived from the MAS NMR spectrum are in good agreement with those obtained by Rietveld refinement and, in particular, indicate that the -96.4 ppm peak must correspond to Si in T2O. This is the first independent assignment of the 29Si peak at -96 ppm in the spectrum of ordered albite to the T2O site. A peak at -96 ppm is also resolved in the spectrum of high gallium albite. The systematic differences in peak position between the 29Si MAS NMR spectra of low gallium albite and those of Amelia albite cannot be explained simply by the direct replacement of Al by Ga, without a change in angle at the bridging oxygen atoms.

  15. (11)B MAS NMR and First-Principles Study of the [OBO3] Pyramids in Borates.

    PubMed

    Zhou, Bing; Sun, Wei; Zhao, Biao-Chun; Mi, Jin-Xiao; Laskowski, Robert; Terskikh, Victor; Zhang, Xi; Yang, Lingyun; Botis, Sanda M; Sherriff, Barbara L; Pan, Yuanming

    2016-03-01

    Borates are built from the [Bϕ3] planar triangles and the [Bϕ4] tetrahedral groups, where ϕ denotes O or OH. However, the [Bϕ4] groups in some borates are highly distorted to include three normal B-O bonds and one anomalously long B-O bond and, therefore, are best described as the [OBO3] pyramids. Four synthetic borates of the boracite-type structures (Mg3B7O13Br, Cu3B7O13Br, Zn3B7O13Cl, and Mg3B7O13Cl) containing a range of [OBO3] pyramids were investigated by multifield (7.05, 14.1, and 21.1 T) (11)B magic-angle spinning nuclear magnetic resonance (MAS NMR), triple quantum (3Q) MAS NMR experiments, as well as density functional theory calculations. The high-resolution (11)B MAS NMR spectra supported by theoretical predictions show that the [OBO3] pyramids are characterized by isotropic chemical shifts δiso((11)B) from 1.4(1) to 4.9(1) ppm and nuclear quadrupole parameters CQ((11)B) up to 1.3(1) MHz, both significantly different from those of the [BO4] and [BO3] groups in borates. These δiso((11)B) and CQ((11)B) values indicate that the [OBO3] pyramids represent an intermediate state between the [BO4] tetrahedra and [BO3] triangles and demonstrate that the (11)B NMR parameters of four-coordinate boron oxyanions are sensitive to local structural environments. The orientation of the calculated unique electronic field gradient tensor element Vzz of the [OBO3] pyramids is aligned approximately along the direction of the anomalously long B-O bond, corresponding to B-2pz with the lowest electron density. PMID:26914372

  16. Ammonia Vapor Removal by Cu3(BTC)2 and Its Characterization by MAS NMR

    PubMed Central

    Peterson, Gregory W.; Wagner, George W.; Balboa, Alex; Mahle, John; Sewell, Tara; Karwacki, Christopher J.

    2009-01-01

    Adsorption equilibria and NMR experiments were performed to study the adsorption and interactions of ammonia with metal-organic framework (MOF) HKUST-1, or Cu3(BTC)2 (BTC = 1,3,5-benzenetricarboxylate). Ammonia capacities determined from chemical breakthrough measurements show significantly higher uptake capacities than from adsorption alone, suggesting a stronger interaction involving a potential reaction with the Cu3(BTC)2 framework. Indeed, 1H MAS NMR reveals that a major disruption of the relatively simple spectrum of Cu3(BTC)2 occurs to generate a composite spectrum consistent with Cu(OH)2 and (NH4)3BTC species under humid conditions—the anticipated products of a copper(II) carboxylate reacted with limited ammonia. These species are not detected under dry conditions; however, reaction stoichiometry combined with XRD results suggests the partial formation of an indeterminate diammine copper (II) complex with some residual Cu3(BTC)2 structure retained. Cu(II)-induced paramagnetic shifts exhibited by various species in 1H and 13C MAS NMR spectra are consistent with model compounds and previous literature. Although results show extensive ammonia capacity of Cu3(BTC)2, much of the capacity is due to reaction with the structure itself, causing a permanent loss in porosity and structural integrity. PMID:20161144

  17. Investigation of multiaxial molecular dynamics by 2H MAS NMR spectroscopy.

    PubMed

    Kristensen, J H; Hoatson, G L; Vold, R L

    1998-11-01

    The technique of 2H MAS NMR spectroscopy is presented for the investigation of multiaxial molecular dynamics. To evaluate the effects of discrete random reorientation a Lie algebraic formalism based on the stochastic Liouville-von Neumann equation is developed. The solution to the stochastic Liouville-von Neumann equation is obtained both in the presence and absence of rf irradiation. This allows effects of molecular dynamics to be evaluated during rf pulses and extends the applicability of the formalism to arbitrary multiple pulse experiments. Theoretical methods are presented for the description of multiaxial dynamics with particular emphasis on the application of vector parameters to represent molecular rotations. Numerical time and powder integration algorithms are presented that are both efficient and easy to implement computationally. The applicability of 2H MAS NMR spectroscopy for investigating molecular dynamics is evaluated from theoretical spectra. To demonstrate the potential of the technique the dynamics of thiourea-2H4 is investigated experimentally. From a series of variable temperature MAS and quadrupole echo spectra it has been found that the dynamics can be described by composite rotation about the CS and CN bonds. Both experiments are sensitive to the fast CS rotation which is shown to be described by the Arrhenius parameters E(CS) = 46.4 +/- 2.3 kJ mol(-1) and ln(A(CS))= 32.6 +/- 0.9. The MAS experiment represents a significant improvement by simultaneously allowing the dynamics of the slow CN rotation to be fully characterized in terms of E(CN) = 56.3 +/- 3.4 kJ mol(-1) and ln(A(CN)) = 25.3 +/- 1.1. PMID:9875600

  18. Cation disorder determined by MAS {sup 27}Al NMR in high dose neutron irradiated spinel

    SciTech Connect

    Cooper, E.A.; Sickafus, K.E.; Hughes, C.D.; Earl, W.L.; Hollenberg, G.W.; Garner, F.A.; Bradt, R.C.

    1995-12-31

    Spinel (MgAl{sub 2}O{sub 4}) single crystals which had been neutron irradiated to high doses (53-250 dpa) were examined using {sup 27}Al magic angle spinning (MAS) nuclear magnetic resonance (NMR). The sensitivity of this procedure to a specific cation (Al) residing in different crystallographic environments allowed one to determine the distribution of the Al between the two cation sites in the spinel structure. The samples were irradiated at two different temperatures (400 and 750{degrees}C) and various doses. These results indicate that the Al was nearly fully disordered over the two lattice sites after irradiation.

  19. High-resolution multiple quantum MAS NMR spectroscopy of half-integer quadrupolar nuclei

    NASA Astrophysics Data System (ADS)

    Wu, Gang; Rovnyank, David; Sun, Boqin; Griffin, Robert G.

    1996-02-01

    We demonstrate the utility of a two-pulse sequence in obtaining high-resolution solid state NMR spectra of half-integer quadrupolar nuclei with magic-angle-spinning (MAS). The experiment, which utilizes multiple/single-quantum correlation, was first described in a different form by Frydman and Harwood [J. Am. Chem. Soc. 117 (1995) 5367] and yields high-resolution isotropic NMR spectra where shifts are determined by the sum of resonance offset (chemical shift) and second-order quadrupolar effects. The two-pulse sequence described here is shown to provide a higher and more uniform excitation of multiple-quantum coherence than the three-pulse sequence used previously.

  20. Immobilization of soluble protein complexes in MAS solid-state NMR: Sedimentation versus viscosity.

    PubMed

    Sarkar, Riddhiman; Mainz, Andi; Busi, Baptiste; Barbet-Massin, Emeline; Kranz, Maximilian; Hofmann, Thomas; Reif, Bernd

    2016-01-01

    In recent years, MAS solid-state NMR has emerged as a technique for the investigation of soluble protein complexes. It was found that high molecular weight complexes do not need to be crystallized in order to obtain an immobilized sample for solid-state NMR investigations. Sedimentation induced by sample rotation impairs rotational diffusion of proteins and enables efficient dipolar coupling based cross polarization transfers. In addition, viscosity contributes to the immobilization of the molecules in the sample. Natural Deep Eutectic Solvents (NADES) have very high viscosities, and can replace water in living organisms. We observe a considerable amount of cross polarization transfers for NADES solvents, even though their molecular weight is too low to yield significant sedimentation. We discuss how viscosity and sedimentation both affect the quality of the obtained experimental spectra. The FROSTY/sedNMR approach holds the potential to study large protein complexes, which are otherwise not amenable for a structural characterization using NMR. We show that using this method, backbone assignments of the symmetric proteasome activator complex (1.1MDa), and high quality correlation spectra of non-symmetric protein complexes such as the prokaryotic ribosome 50S large subunit binding to trigger factor (1.4MDa) are obtained. PMID:27017576

  1. One- and two-dimensional exchange J-resolved CP-MAS NMR spectrum of adamantane

    NASA Astrophysics Data System (ADS)

    Takegoshi, K.; McDowell, C. A.

    1986-02-01

    A combined technique of 1D and 2D exchange NMR and J-resolved CP-MAS NMR of dilute spins in solids and its application to study a spin exchange process of abundant spins in solids is described, and demonstrated for powdered adamantane. A high-resolution J-resolved NMR spectrum of a 13C nucleus obtained by applying homonuclear decoupling and magic angle sample spinning is employed to label the spin states of 1H spins bonded to the 13C nucleus. Perspective 2D exchange spectra are employed to map out connectivity between the proton spin states, and the rate constants for the 1H spin exchange involved are determined by 1D exchange NMR techniques. Discussions based on the total energy conservation enable us to conclude that the observed spin exchange processes are to be ascribed mainly to the flip-flop motion of 1H spins; the spin-lattice process is negligible. The rate constant for the flip-flop motion of the proton spins is determined to be (7±2)×103 s-1 at room temperature.

  2. 31P MAS-NMR of human erythrocytes: independence of cell volume from angular velocity.

    PubMed

    Kuchel, P W; Bubb, W A; Ramadan, S; Chapman, B E; Philp, D J; Coen, M; Gready, J E; Harvey, P J; McLean, A J; Hook, J

    2004-09-01

    31P magic angle spinning NMR (MAS-NMR) spectra were obtained from suspensions of human red blood cells (RBCs) that contained the cell-volume-sensitive probe molecule, dimethyl methylphosphonate (DMMP). A mathematical representation of the spectral-peak shape, including the separation and width-at-half-height in the 31P NMR spectra, as a function of rotor speed, enabled us to explore the extent to which a change in cell volume would be reflected in the spectra if it occurred. We concluded that a fractional volume change in excess of 3% would have been detected by our experiments. Thus, the experiments indicated that the mean cell volume did not change by this amount even at the highest spinning rate of 7 kHz. The mean cell volume and intracellular 31P line-width were independent of the packing density of the cells and of the initial cell volume. The relationship of these conclusions to other non-NMR studies of pressure effects on cells is noted. PMID:15334588

  3. The effect of biradical concentration on the performance of DNP-MAS-NMR

    NASA Astrophysics Data System (ADS)

    Lange, Sascha; Linden, Arne H.; Akbey, Ümit; Trent Franks, W.; Loening, Nikolaus M.; van Rossum, Barth-Jan; Oschkinat, Hartmut

    2012-03-01

    With the technique of dynamic nuclear polarization (DNP) signal intensity in solid-state MAS-NMR experiments can be enhanced by 2-3 orders of magnitude. DNP relies on the transfer of electron spin polarization from unpaired electrons to nuclear spins. For this reason, stable organic biradicals such as TOTAPOL are commonly added to samples used in DNP experiments. We investigated the effects of biradical concentration on the relaxation, enhancement, and intensity of NMR signals, employing a series of samples with various TOTAPOL concentrations and uniformly 13C, 15N labeled proline. A considerable decrease of the NMR relaxation times (T1, T2∗, and T1ρ) is observed with increasing amounts of biradical due to paramagnetic relaxation enhancement (PRE). For nuclei in close proximity to the radical, decreasing T1ρ reduces cross-polarization efficiency and decreases in T2∗ broaden the signal. Additionally, paramagnetic shifts of 1H signals can cause further line broadening by impairing decoupling. On average, the combination of these paramagnetic effects (PE; relaxation enhancement, paramagnetic shifts) quenches NMR-signals from nuclei closer than 10 Å to the biradical centers. On the other hand, shorter T1 times allow the repetition rate of the experiment to be increased, which can partially compensate for intensity loss. Therefore, it is desirable to optimize the radical concentration to prevent additional line broadening and to maximize the signal-to-noise observed per unit time for the signals of interest.

  4. Molecular orientational dynamics in C70S48: Investigation by 13C MAS NMR

    NASA Astrophysics Data System (ADS)

    Grell, A.-S.; Talyzin, A.; Pirotte, P.; Masin, F.

    2001-11-01

    At room temperature the MAS 13C NMR spectrum of C70S48 is identical to that of pure C70 above 323 K, except that the 13C line is shifted by 1.7 ppm compared to that of pure C70. From these results, we deduce that our system is mainly of the van der Waals type. A simulation of the low speed MAS spectrum shows that C70 molecules in C70S48 undergo a uniaxial rotation as in pure C70. This new result contradicts what had been previously published. The chemical shift of the 13C line does not vary with temperature, however the rotation of C70 slows down as the temperature is decreased and stops at ca. 150 K. Moreover the 13C spin-lattice relaxation time, T1, can be described by a single correlation time that follows an Arrhenius law with a 900 K activation energy. By NMR no phase transition is observed at 245 K contrary to dielectric relaxation measurements.

  5. Structural analysis of molybdo-zinc-phosphate glasses: Neutron scattering, FTIR, Raman scattering, MAS NMR studies

    NASA Astrophysics Data System (ADS)

    Renuka, C.; Shinde, A. B.; Krishna, P. S. R.; Reddy, C. Narayana

    2016-08-01

    Vitreous samples were prepared in the xMoO3-17ZnO-(83-x) NaPO3 with 35 ≥ x ≥ 55 glass forming system by energy efficient microwave heating method. Structural evolution of the vitreous network was monitored as a function of composition by differential scanning calorimetry (DSC), Fourier transform infrared spectroscopy (FTIR), Raman scattering, Magic Angle Spin Nuclear magnetic resonance (MAS NMR) and Neutron scattering. Addition of MoO3 to the ZnO-NaPO3 glass leads to a pronounced increase in glass transition temperature (Tg) suggesting a significant increase in network connectivity and strength. In order to analyze FTIR and Raman scattering, a simple structural model is presented to rationalize the experimental observations. A number of structural units are formed due to network modification, and the resulting glass may be characterized by a network polyhedral with different numbers of unshared corners. 31P MAS NMR confirms a clear distinction between structural species having 3, 2, 1, 0 bridging oxygens (BOs). Further, Neutron scattering studies were used to probe the structure of these glasses. The result suggests that all the investigated glasses have structures based on chains of four coordinated phosphate and six coordinated molybdate units, besides, two different lengths of P-O bonds in tetrahedral phosphate units that are assigned to bonds of the P-atom with terminal and bridging oxygen atoms.

  6. SLOW-MAS NMR METHODS TO STUDY METABOLIC PROCESSES IN VIVO AND IN VITRO

    SciTech Connect

    Wind, Robert A.; Bertram, Hanne Christine; Hu, Jian Zhi

    2005-09-25

    In vitro and in vivo 1H NMR spectroscopy is widely used to measure metabolic profiles in cells, tissues, animals, and humans and to use them, e.g., for diagnosis and therapy response evaluations. However, the spectra often suffer from poor resolution due to variations in the isotropic bulk magnetic susceptibility present in biological objects, resulting in a broadening of the NMR lines. In principle this broadening can be averaged to zero by the technique of magic angle spinning (MAS), where the sample is rotated about an axis making an angle of 54o44’ relative to the external magnetic field. However, a problem is that in a standard MAS experiment spinning speeds of a kHz or more are required in order to avoid the occurrence of spinning sidebands (SSBs) in the spectra, which renders analysis of the spectra difficult again. At these spinning speeds the large centrifugal forces cause severe structural damage in larger biological objects, so that this method cannot be used to study metabolic processes in intact samples. In solid state NMR several methods have been developed where slow MAS is combined with special radio frequency pulse sequences to eliminate spinning side bands or separate them from the isotropic spectrum so that a SSB-free high-resolution isotropic spectrum is obtained. It has been shown recently that two methods, phase-adjusted spinning sidebands (PASS) and phase-corrected magic angle turning (PHORMAT), can successfully be modified for applications in biological materials (1, 2). With PASS MAS speeds as low as 40 Hz can be employed, allowing non or minimally invasive in vitro studies of excised tissues and organs. This method was used, amongst other things, to study post mortem changes in the proton metabolite spectra in excised rabbit muscle tissue (3). With PHORMAT the NMR sensitivity is reduced and longer measuring times are required, but with this methodology the MAS speed can be reduced to ~1 Hz. This makes PHORMAT amenable for in vivo

  7. Identification of 2-[2-nitro-4-(trifluoromethyl)benzoyl]- cyclohexane-1,3-dione metabolites in urine of patients suffering from tyrosinemia type I with the use of 1H and 19F NMR spectroscopy.

    PubMed

    Szczeciński, Przemysław; Lamparska, Diana; Gryff-Keller, Adam; Gradowska, Wanda

    2008-01-01

    Organic extracts of six urine samples from children treated with nitisinone, a medicine against tyrosinemia type I, were investigated by (1)H and (19)F NMR spectroscopy. The presence of unchanged 2-[2-nitro-4-(trifluoromethyl)benzoyl]cyclohexane-1,3-dione (NTBC), 6-hydroxy-2-[2-nitro-4-(trifluoromethyl)benzoyl]cyclohexane-1,3-dione (NTBC-OH) and 2-nitro-4-trifluoromethylbenzoic acid (NTFA) as well as a few other unidentified compounds containing CF(3) group was documented. PMID:19039335

  8. Lipid Bilayer-Bound Conformation of an Integral Membrane Beta Barrel Protein by Multidimensional MAS NMR

    PubMed Central

    Eddy, Matthew T.; Su, Yongchao; Silvers, Robert; Andreas, Loren; Clark, Lindsay; Wagner, Gerhard; Pintacuda, Guido; Emsley, Lyndon; Griffin, Robert G.

    2015-01-01

    The human voltage dependent anion channel 1 (VDAC) is a 32 kDa β-barrel integral membrane protein that controls the transport of ions across the outer mitochondrial membrane. Despite the determination of VDAC solution and diffraction structures, a structural basis for the mechanism of its function is not yet fully understood. Biophysical studies suggest VDAC requires a lipid bilayer to achieve full function, motivating the need for atomic resolution structural information of VDAC in a membrane environment. Here we report an essential step toward that goal: extensive assignments of backbone and side chain resonances for VDAC in DMPC lipid bilayers via magic angle spinning nuclear magnetic resonance (MAS NMR). VDAC reconstituted into DMPC lipid bilayers spontaneously forms 2-dimensional lipid crystals, showing remarkable spectral resolution (0.5–0.3 ppm for 13C line width and less than 0.5 ppm 15N line widths at 750 MHz). In addition to the benefits of working in a lipid bilayer, several distinct advantages are observed with the lipid crystalline preparation. First, the strong signals and sharp line widths facilitated extensive NMR resonance assignments for an integral membrane β-barrel protein in lipid bilayers by MAS NMR. Second, a large number of residues in loop regions were readily observed and assigned, which can be challenging in detergent-solubilized membrane proteins where loop regions are often not detected due to line broadening from conformational exchange. Third, complete backbone and side chain chemical shift assignments could be obtained for the first 25 residues, which comprise the functionally important N-terminus. The reported assignments allow us to compare predicted torsion angles for VDAC prepared in DMPC 2D lipid crystals, DMPC liposomes, and LDAO-solubilized samples to address the possible effects of the membrane mimetic environment on the conformation of the protein. Concluding, we discuss the strengths and weaknesses of the reported

  9. Lipid bilayer-bound conformation of an integral membrane beta barrel protein by multidimensional MAS NMR.

    PubMed

    Eddy, Matthew T; Su, Yongchao; Silvers, Robert; Andreas, Loren; Clark, Lindsay; Wagner, Gerhard; Pintacuda, Guido; Emsley, Lyndon; Griffin, Robert G

    2015-04-01

    The human voltage dependent anion channel 1 (VDAC) is a 32 kDa β-barrel integral membrane protein that controls the transport of ions across the outer mitochondrial membrane. Despite the determination of VDAC solution and diffraction structures, a structural basis for the mechanism of its function is not yet fully understood. Biophysical studies suggest VDAC requires a lipid bilayer to achieve full function, motivating the need for atomic resolution structural information of VDAC in a membrane environment. Here we report an essential step toward that goal: extensive assignments of backbone and side chain resonances for VDAC in DMPC lipid bilayers via magic angle spinning nuclear magnetic resonance (MAS NMR). VDAC reconstituted into DMPC lipid bilayers spontaneously forms two-dimensional lipid crystals, showing remarkable spectral resolution (0.5-0.3 ppm for (13)C line widths and <0.5 ppm (15)N line widths at 750 MHz). In addition to the benefits of working in a lipid bilayer, several distinct advantages are observed with the lipid crystalline preparation. First, the strong signals and sharp line widths facilitated extensive NMR resonance assignments for an integral membrane β-barrel protein in lipid bilayers by MAS NMR. Second, a large number of residues in loop regions were readily observed and assigned, which can be challenging in detergent-solubilized membrane proteins where loop regions are often not detected due to line broadening from conformational exchange. Third, complete backbone and side chain chemical shift assignments could be obtained for the first 25 residues, which comprise the functionally important N-terminus. The reported assignments allow us to compare predicted torsion angles for VDAC prepared in DMPC 2D lipid crystals, DMPC liposomes, and LDAO-solubilized samples to address the possible effects of the membrane mimetic environment on the conformation of the protein. Concluding, we discuss the strengths and weaknesses of the reported

  10. 1H, 13C MAS NMR and GIAO-CPHF calculations of chloramphenicol, thiamphenicol and their pyrrole analogues

    NASA Astrophysics Data System (ADS)

    Żołek, Teresa; Paradowska, Katarzyna; Krajewska, Dorota; Różański, Andrzej; Wawer, Iwona

    2003-02-01

    The 13C CP MAS and 1H MAS NMR and ab initio (GIAO-CPHF) calculations were used to obtain structural information on two known antibiotics: chloramphenicol, and thiamphenicol, and two new analogues: DL- threo-1-(1-methyl-4-nitro-pyrrole-2-yl)-2-dichloroacetamidopropane-1,3-diol and DL- threo-1-(1-methylsulfonylpyrrole-3-yl)-2-dichloroacetamidopropane-1,3-diol.

  11. Assessing the fate and transformation of plant residues in the terrestrial environment using HR-MAS NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Kelleher, Brian P.; Simpson, Myrna J.; Simpson, Andre J.

    2006-08-01

    Plant litter decomposition plays a fundamental role in carbon and nitrogen cycles, provides key nutrients to the soil environment and represents a potentially large positive feedback to atmospheric CO 2. However, the full details of decomposition pathways and products are unknown. Here we present the first application of HR-MAS NMR spectroscopy on 13C and 15N labeled plant materials, and apply this approach in a preliminary study to monitor the environmental degradation of the pine and wheatgrass residues over time. In HR-MAS, is it possible to acquire very high resolution NMR data of plant biomass, and apply the vast array of multidimensional experiments available in conventional solution-state NMR. High levels of isotopic enrichment combined with HR-MAS significantly enhance the detection limits, and provide a wealth of information that is unattainable by any other method. Diffusion edited HR-MAS NMR data reveal the rapid loss of carbohydrate structures, while two-dimensional (2-D) HR-MAS NMR spectra demonstrate the relatively fast loss of both hydrolysable and condensed tannin structures from all plant tissues studied. Aromatic (partially lignin) and aliphatic components (waxes, cuticles) tend to persist, along with a small fraction of carbohydrate, and become highly functionalized over time. While one-dimensional (1-D) 13C HR-MAS NMR spectra of fresh plant tissue reflect compositional differences between pine and grass, these differences become negligible after decomposition suggesting that recalcitrant carbon may be similar despite the plant source. Two-dimensional 1H- 15N HR-MAS NMR analysis of the pine residue suggests that nitrogen from specific peptides is either selectively preserved or used for the synthesis of what appears to be novel structures. The amount of relevant data generated from plant components in situ using HR-MAS NMR is highly encouraging, and demonstrates that complete assignment will yield unprecedented structural knowledge of plant cell

  12. Molecular degradation of ancient documents revealed by 1H HR-MAS NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Corsaro, Carmelo; Mallamace, Domenico; Łojewska, Joanna; Mallamace, Francesco; Pietronero, Luciano; Missori, Mauro

    2013-10-01

    For centuries mankind has stored its knowledge on paper, a remarkable biomaterial made of natural cellulose fibers. However, spontaneous cellulose degradation phenomena weaken and discolorate paper over time. The detailed knowledge of products arising from cellulose degradation is essential in understanding deterioration pathways and in improving durability of cultural heritage. In this study, for the first time, products of cellulose degradation were individually detected in solid paper samples by means of an extremely powerful proton HR-MAS NMR set-up, in combination to a wise use of both ancient and, as reference, artificially aged paper samples. Carboxylic acids, in addition to more complex dicarboxylic and hydroxy-carboxylic acids, were found in all samples studied. Since these products can catalyze further degradation, their knowledge is fundamental to improve conservation strategies of historical documents. Furthermore, the identification of compounds used in ancient production techniques, also suggests for artifacts dating, authentication and provenance.

  13. Higher Order Amyloid Fibril Structure by MAS NMR and DNP Spectroscopy

    PubMed Central

    Debelouchina, Galia T.; Bayro, Marvin J.; Fitzpatrick, Anthony W.; Ladizhansky, Vladimir; Colvin, Michael T.; Caporini, Marc A.; Jaroniec, Christopher P.; Bajaj, Vikram S.; Rosay, Melanie; MacPhee, Cait E.; Vendruscolo, Michele; Maas, Werner E.; Dobson, Christopher M.; Griffin, Robert G.

    2014-01-01

    Protein magic angle spinning (MAS) NMR spectroscopy has generated structural models of several amyloid fibril systems, thus providing valuable information regarding the forces and interactions that confer the extraordinary stability of the amyloid architecture. Despite these advances, however, obtaining atomic resolution information describing the higher levels of structural organization within the fibrils remains a significant challenge. Here, we detail MAS NMR experiments and sample labeling schemes designed specifically to probe such higher order amyloid structure and we have applied them to the fibrils formed by an eleven-residue segment of the amyloidogenic protein transthyretin (TTR(105-115)). These experiments have allowed us to define unambiguously not only the arrangement of the peptide β-strands into β-sheets but also the β-sheet interfaces within each protofilament, and in addition to identify the nature of the protofilament-to-protofilament contacts that lead to the formation of the complete fibril. Our efforts have resulted in 111 quantitative distance and torsion angle restraints (10 per residue) that describe the various levels of structure organization. The experiments benefited extensively from the use of dynamic nuclear polarization (DNP), which in some cases allowed us to shorten the data acquisition time from days to hours and to improve significantly the signal-to-noise ratios of the spectra. The β-sheet interface and protofilament interactions identified here revealed local variations in the structure that result in multiple peaks for the exposed N- and C-termini of the peptide and in inhomogeneous line-broadening for the side-chains buried within the interior of the fibrils. PMID:24304221

  14. Sensitivity enhancement using paramagnetic relaxation in MAS solid-state NMR of perdeuterated proteins

    NASA Astrophysics Data System (ADS)

    Linser, Rasmus; Chevelkov, Veniamin; Diehl, Anne; Reif, Bernd

    2007-12-01

    Previously, Ishii et al., could show that chelated paramagnetic ions can be employed to significantly decrease the recycle delay of a MAS solid-state NMR experiment [N.P. Wickramasinghe, M. Kotecha, A. Samoson, J. Past, Y. Ishii, Sensitivity enhancement in C-13 solid-state NMR of protein microcrystals by use of paramagnetic metal ions for optimizing H-1 T-1 relaxation, J. Magn. Reson. 184 (2007) 350-356]. Application of the method is limited to very robust samples, for which sample stability is not compromised by RF induced heating. In addition, probe integrity might be perturbed in standard MAS PRE experiments due to the use of very short duty cycles. We show that these deleterious effects can be avoided if perdeuterated proteins are employed that have been re-crystallized from D 2O:H 2O = 9:1 containing buffer solutions. The experiments are demonstrated using the SH3 domain of chicken α-spectrin as a model system. The labeling scheme allows to record proton detected 1H, 15N correlation spectra with very high resolution in the absence of heteronuclear dipolar decoupling. Cu-edta as a doping reagent yields a reduction of the recycle delay by up to a factor of 15. In particular, we find that the 1H T1 for the bulk H N magnetization is reduced from 4.4 s to 0.3 s if the Cu-edta concentration is increased from 0 mM to 250 mM. Possible perturbations like chemical shift changes or line broadening due to the paramagnetic chelate complex are minimal. No degradation of our samples was observed in the course of the experiments.

  15. Dynamic Nuclear Polarization Enhanced MAS NMR Spectroscopy for Structural Analysis of HIV-1 Protein Assemblies.

    PubMed

    Gupta, Rupal; Lu, Manman; Hou, Guangjin; Caporini, Marc A; Rosay, Melanie; Maas, Werner; Struppe, Jochem; Suiter, Christopher; Ahn, Jinwoo; Byeon, In-Ja L; Franks, W Trent; Orwick-Rydmark, Marcella; Bertarello, Andrea; Oschkinat, Hartmut; Lesage, Anne; Pintacuda, Guido; Gronenborn, Angela M; Polenova, Tatyana

    2016-01-21

    Mature infectious HIV-1 virions contain conical capsids composed of CA protein, generated by the proteolytic cleavage cascade of the Gag polyprotein, termed maturation. The mechanism of capsid core formation through the maturation process remains poorly understood. We present DNP-enhanced MAS NMR studies of tubular assemblies of CA and Gag CA-SP1 maturation intermediate and report 20-64-fold sensitivity enhancements due to DNP at 14.1 T. These sensitivity enhancements enabled direct observation of spacer peptide 1 (SP1) resonances in CA-SP1 by dipolar-based correlation experiments, unequivocally indicating that the SP1 peptide is unstructured in assembled CA-SP1 at cryogenic temperatures, corroborating our earlier results. Furthermore, the dependence of DNP enhancements and spectral resolution on magnetic field strength (9.4-18.8 T) and temperature (109-180 K) was investigated. Our results suggest that DNP-based measurements could potentially provide residue-specific dynamics information by allowing for the extraction of the temperature dependence of the anisotropic tensorial or relaxation parameters. With DNP, we were able to detect multiple well-resolved isoleucine side-chain conformers; unique intermolecular correlations across two CA molecules; and functionally relevant conformationally disordered states such as the 14-residue SP1 peptide, none of which are visible at ambient temperatures. The detection of isolated conformers and intermolecular correlations can provide crucial constraints for structure determination of these assemblies. Overall, our results establish DNP-based MAS NMR spectroscopy as an excellent tool for the characterization of HIV-1 assemblies. PMID:26709853

  16. Residue specific hydration of primary cell wall potato pectin identified by solid-state 13C single-pulse MAS and CP/MAS NMR spectroscopy.

    PubMed

    Larsen, Flemming H; Byg, Inge; Damager, Iben; Diaz, Jerome; Engelsen, Søren B; Ulvskov, Peter

    2011-05-01

    Hydration of rhamnogalacturonan-I (RG-I) derived from potato cell wall was analyzed by (13)C single-pulse (SP) magic-angle-spinning (MAS) and (13)C cross-polarization (CP) MAS nuclear magnetic resonance (NMR) and supported by (2)H SP/MAS NMR experiments. The study shows that the arabinan side chains hydrate more readily than the galactan side chains and suggests that the overall hydration properties can be controlled by modifying the ratio of these side chains. Enzymatic modification of native (NA) RG-I provided samples with reduced content of arabinan (sample DA), galactan (sample DG), or both side chains (sample DB). Results of these samples suggested that hydration properties were determined by the length and character of the side chains. NA and DA exhibited similar hydration characteristics, whereas DG and DB were difficult to hydrate because of the less hydrophilic properties of the rhamnose-galacturonic acid (Rha-GalA) backbone in RG-I. Potential food ingredient uses of RG-I by tailoring of its structure are discussed. PMID:21462966

  17. Broadband inversion for MAS NMR with single-sideband-selective adiabatic pulses

    NASA Astrophysics Data System (ADS)

    Pell, Andrew J.; Kervern, Gwendal; Emsley, Lyndon; Deschamps, Michaël; Massiot, Dominique; Grandinetti, Philip J.; Pintacuda, Guido

    2011-01-01

    We explain how and under which conditions it is possible to obtain an efficient inversion of an entire sideband family of several hundred kHz using low-power, sideband-selective adiabatic pulses, and we illustrate with some experimental results how this framework opens new avenues in solid-state NMR for manipulating spin systems with wide spinning-sideband (SSB) manifolds. This is achieved through the definition of the criteria of phase and amplitude modulation for designing an adiabatic inversion pulse for rotating solids. In turn, this is based on a framework for representing the Hamiltonian of the spin system in an NMR experiment under magic angle spinning (MAS). Following earlier ideas from Caravatti et al. [J. Magn. Reson. 55, 88 (1983)], the so-called "jolting frame" is used, which is the interaction frame of the anisotropic interaction giving rise to the SSB manifold. In the jolting frame, the shift modulation affecting the nuclear spin is removed, while the Hamiltonian corresponding to the RF field is frequency modulated and acquires a spinning-sideband pattern, specific for each crystallite orientation.

  18. Investigations of Li-containing SiCN(O) ceramics via 7Li MAS NMR.

    PubMed

    Gumann, Sina; Nestle, Nikolaus; Liebau-Kunzmann, Verena; Riedel, Ralf

    2007-04-01

    Lithium-containing silicon (oxy)carbonitride ceramics (SiCN(O):Li) were synthesized via precursor-to-ceramic-transformation of Li-containing (poly)silazanes. The precursors were obtained by lithiation of 2,4,6-trimethyl-2,4,6-trivinylcyclotrisilazane with n-butyllithium and by reaction of a commercial poly(organosilazane) VL20 with metallic lithium. The annealing treatment was carried out at temperatures between 200 and 1400 degrees C in argon (DeltaT=200 degrees C) and yielded Li-containing silicon (oxy)carbonitride. X-ray powder diffraction revealed that the resulting SiCN(O):Li ceramics were basically amorphous up to temperatures of 1000 degrees C and formed LiSi(2)N(3), graphite and silicon carbide as crystalline phases at higher temperatures. (7)Li MAS NMR spectroscopy was carried out to investigate the structure of the Li-containing phases and to study the reaction path of metallic Li with polysilazane. Based on the NMR spectra, there is almost no difference found in the chemical shift of the SiCN(O):Li ceramics obtained at different temperatures. Accordingly, Li is assigned to be mainly coordinated to N and O present as contaminant element. Relaxation time measurements showed that the most mobile Li(+) species seems to be present in the product obtained in the pyrolysis temperature range between 600 and 1000 degrees C. PMID:17418540

  19. Low Temperature 1H MAS NMR Spectroscopy Studies of Proton Motion in Zeolite

    SciTech Connect

    Huo, H.; Peng, L; Grey, C

    2009-01-01

    Low temperature {sup 1}H MAS NMR spectroscopy is used to study protonic motion in zeolite HZSM-5 in both samples that have been dried using procedures that are standard in the literature and samples that have been more carefully dehydrated. A significant enhancement of proton mobility is seen for the ''standard'' dehydrated HZSM-5 sample in comparison to that seen for the much drier sample. This is ascribed to a vehicle-hopping mechanism involving the residual water that is present in these zeolites. A gradual change of the framework structure is observed on cooling to approximately 213 K, as monitored via the change in {sup 1}H chemical shift values of the Broensted acid resonances and by X-ray diffraction. A more sudden change in structure is seen by differential scanning calorimetry and NMR at approximately 220?230 K, which is associated with changes in both the mobility and the modes of binding of the residual water to the Broensted acid sites and the zeolite framework.

  20. Comparison of the 1H NMR analysis of solids by the CRAMPS and MAS-only techniques

    NASA Astrophysics Data System (ADS)

    Dec, Steven F.; Bronnimann, Charles E.; Wind, Robert A.; Maciel, Gary E.

    1H NMR spectra are reported on eight representative solid samples, including pure powdered crystalline samples, synthetic organic polymers, a silica gel, HY zeolite, and a lignite. Spectra were obtained by the following three approaches: (1) single pulse on a static sample, (2) CRAMPS, and (3) single pulse with magic-angle spinning (MAS-only). The MAS-only results were obtained as a function of MAS speed. Although the MAS-only technique is capable of achieving a significant degree of line narrowing, even with modest MAS speeds, MAS-only spectra of the general quality of the apparently undistorted high-resolution 1H spectra obtained by the CRAMPS technique are not obtained at the highest MAS speeds examined (21 kHz for a polymethylmethacrylate sample), unless the 1H- 1H dipolar interactions in the sample are rather weak, as with silica gel or a zeolite. Thus, caution should be exercised in interpreting 1H MAS-only spectra, especially if CRAMPS results are not available as a calibration.

  1. Characterization of cation environments in polycrystalline forsterite by Mg-25 MAS, MQMAS, and QCPMG NMR

    SciTech Connect

    Davis, Michael C.; Brouwer, William J.; Lipton, Andrew S.; Gan, Zhehong; Mueller, Karl T.

    2010-11-01

    Forsterite (Mg2SiO4) is a silicate mineral frequently studied in the Earth sciences as it has a simple crystal structure and fast dissolution kinetics (elemental release rates under typical conditions on the order of 10-7 mol/m2/s1). During the dissolution process, spectroscopic techniques are often utilized to augment solution chemical analysis and to provide data for determining reaction mechanisms. Nuclear magnetic resonance (NMR) is able to interrogate the local bonding arrangement and coordination of a particular nuclide to obtain in structural information. Although previous NMR studies have focused on the silicon and oxygen environments in forsterite, studies focusing on the two nonequivalent magnesium environments in forsterite are limited to a few single-crystal studies. In this study, we present the results of 25Mg MAS, MQMAS, and static QCMG experiments performed on a powdered sample of pure synthetic forsterite. We also present spectral fits obtained from simulation software packages, which directly provide quadrupolar parameters for 25Mg nuclei occupying each of the two nonequivalent magnesium sites in the forsterite structure. These results are compared to calculations of the electric field gradient tenor conducted in previous ab initio studies to make definitive assignments correlating each peak to their respective magnesium site in the forsterite structure. Although previous NMR investigations of forsterite have focused on single-crystal samples, we have focused on powdered forsterite as the increased surface area of powdered samples makes them more amenable to laboratory-scale dissolution studies and, ultimately, the products from chemical weathering may be monitored an quantified.

  2. {207}Pb MAS NMR and conductivity identified anomalous phase transition in nanostructured PbF {2}

    NASA Astrophysics Data System (ADS)

    Thangadurai, P.; Ramasamy, S.; Manoharan, P. T.

    2004-02-01

    Lead fluoride, a superionic conductor was prepared in its nanostructured form by Inert Gas Condensation Technique (IGCT) using an Ultra High Vacuum (UHV) chamber. The average grain size was found to be in the range 9 to 43 nm. The existence of mixed phases (α and β-PbF2) was identified using XRD. Solid state 207Pb MAS NMR was carried to average out the dipolar interaction and the resultant isotropic peaks were assigned to the corresponding phases. At high spinning frequencies, one isotropic peak emerged from the contribution of the grain boundary region. The relative intensity of this peak is reduced as the grain size is increased, independent of the concentration of the phases. This is related to the fact that the volume fraction of grain boundary atoms in nanostructured materials increases with the reduction of grain size. The width of the NMR resonance peak is found to be reduced as the grain size goes down. The structural phase transformations were identified at two different temperature regions. The first phase transformation from β to α phase in the annealing temperature range 573 K to 623 K is attributed to some anomalies related to the material microstructure and this has not been reported in earlier literatures. The second phase transformation from α to β in the temperature range 623 K to 673 K is similar to the already reported transformation. Electrical conductivity σ , of the samples was obtained from the complex impedance spectroscopy studies. Conduction species was identified as F- ion through anion vacancies. The magnitude of the conductivity varied according to the dominant phase available when the grain size is higher. But at lower grain sizes below 20 nm, it shows enhanced conductivity that is attributed to the grain size effect. The NMR and conductivity data have jointly supported the anomalous phase transition at the annealing temperature of 623 K.

  3. Phase transitions and molecular motions in [Cd(H{sub 2}O){sub 6}](BF{sub 4}){sub 2} studied by DSC, {sup 1}H and {sup 19}F NMR and FT-MIR

    SciTech Connect

    Mikuli, E. . E-mail: mikuli@chemia.uj.edu.pl; Grad, B.; Medycki, W.; Holderna-Natkaniec, K.

    2004-10-01

    Two solid phase transitions of [Cd(H{sub 2}O){sub 6}](BF{sub 4}){sub 2} occurring on heating at T{sub C2}=183.3K and T{sub C1}=325.3K, with 2K and 5K hysteresis, respectively, were detected by differential scanning calorimetry (DSC). High value of entropy changes indicated large orientational disorder of the high temperature and intermediate phase. Nuclear magnetic resonance ({sup 1}H NMR and {sup 19}F NMR) relaxation measurements revealed that the phase transitions at T{sub C1} and T{sub C2} were associated with a drastic and small change, respectively, of the both spin-lattice relaxation times: T{sub 1}({sup 1}H) and T{sub 1}({sup 19}F). These relaxation processes were connected with the 'tumbling' motions of the [Cd(H{sub 2}O){sub 6}]{sup 2+}, reorientational motions of the H{sub 2}O ligands, and with the iso- and anisotropic reorientation of the BF{sub 4}{sup -} anions. The cross-relaxation effect was observed in phase III. The line width and the second moment of the {sup 1}H and {sup 19}F NMR line measurements revealed that the H{sub 2}O reorientate in all three phases of the title compound. On heating the onset of the reorientation of 3 H{sub 2}O in the [Cd(H{sub 2}O){sub 6}]{sup +2}, around the three-fold symmetry axis of these octahedron, causes the isotropic reorientation of the whole cation. The BF{sub 4}{sup -} reorientate isotropically in the phases I and II, but in the phase III they perform slow reorientation only about three- or two-fold axes. A small distortion in the structure of BF{sub 4}{sup -} as well as of [Cd(H{sub 2}O){sub 6}]{sup 2+} is postulated. The temperature dependence of the bandwidth of the O-H stretching mode measured by Fourier transform middle infrared spectroscopy (FT-MIR) indicated that the activation energy for the reorientation of the H{sub 2}O did not change much at the T{sub C2} phase transition.

  4. An FTIR Calibration for Structural Hydrogen in Feldspars Using 1H MAS NMR

    NASA Astrophysics Data System (ADS)

    Johnson, E. A.; Rossman, G. R.

    2002-05-01

    It is important to know how to determine the speciation and concentration of H in feldspars because this information could be used to determine primary magmatic water activity or to estimate the degree of hydrothermal alteration in igneous rocks. FTIR spectroscopy is sensitive to changes in speciation of hydrogen, and can be calibrated for quantitative determination of H concentration using 1H MAS (magic-angle spinning) NMR spectroscopy. Three pegmatitic albites, one metamorphic albite, three volcanic plagioclases (albite, andesine, and anorthite) and one pegmatite oligoclase were used in this study to provide a range of plagioclase compositions. Two pegmatitic microclines and one sanidine were also studied. Polarized infrared spectra were obtained in the three principal optical directions for each specimen. Samples were prepared for 1H MAS NMR experiments at 12 kHz spinning speed in a dry box, without the use of a liquid grinding aid. A spectrum from anhydrous synthetic corundum was used as a baseline for feldspar NMR spectra. The pegmatitic and metamorphic albites are transparent, but contain submicroscopic fluid inclusions as evidenced by a broad band at 3400 cm-1 and an asymmetric band at 5200 cm-1 in the IR spectra that shift to bands characteristic of ice upon cooling to 77 K. These albites have a very sharp band at 4.7 ppm (relative to TMS) in their NMR spectra consistent with fluid inclusion water. In addition to the broad fluid inclusion band, the pegmatitic albites have sharp bands in the mid-IR similar the OH bands found in quartz. All other plagioclases have broad, anisotropic bands around 3200 cm-1 in the mid-IR and MOH combination stretch-bend bands near 4500 cm-1 in the near-IR, indicative of structural OH. The NMR spectra of these plagioclases have a broad band at 4.7 to 4.9 ppm TMS. The OH vector in plagioclases is preferentially aligned parallel to the a crystallographic axis. The concentration of structural OH in the plagioclases ranges from 50

  5. Proton chemical shift tensors determined by 3D ultrafast MAS double-quantum NMR spectroscopy

    SciTech Connect

    Zhang, Rongchun; Mroue, Kamal H.; Ramamoorthy, Ayyalusamy

    2015-10-14

    Proton NMR spectroscopy in the solid state has recently attracted much attention owing to the significant enhancement in spectral resolution afforded by the remarkable advances in ultrafast magic angle spinning (MAS) capabilities. In particular, proton chemical shift anisotropy (CSA) has become an important tool for obtaining specific insights into inter/intra-molecular hydrogen bonding. However, even at the highest currently feasible spinning frequencies (110–120 kHz), {sup 1}H MAS NMR spectra of rigid solids still suffer from poor resolution and severe peak overlap caused by the strong {sup 1}H–{sup 1}H homonuclear dipolar couplings and narrow {sup 1}H chemical shift (CS) ranges, which render it difficult to determine the CSA of specific proton sites in the standard CSA/single-quantum (SQ) chemical shift correlation experiment. Herein, we propose a three-dimensional (3D) {sup 1}H double-quantum (DQ) chemical shift/CSA/SQ chemical shift correlation experiment to extract the CS tensors of proton sites whose signals are not well resolved along the single-quantum chemical shift dimension. As extracted from the 3D spectrum, the F1/F3 (DQ/SQ) projection provides valuable information about {sup 1}H–{sup 1}H proximities, which might also reveal the hydrogen-bonding connectivities. In addition, the F2/F3 (CSA/SQ) correlation spectrum, which is similar to the regular 2D CSA/SQ correlation experiment, yields chemical shift anisotropic line shapes at different isotropic chemical shifts. More importantly, since the F2/F1 (CSA/DQ) spectrum correlates the CSA with the DQ signal induced by two neighboring proton sites, the CSA spectrum sliced at a specific DQ chemical shift position contains the CSA information of two neighboring spins indicated by the DQ chemical shift. If these two spins have different CS tensors, both tensors can be extracted by numerical fitting. We believe that this robust and elegant single-channel proton-based 3D experiment provides useful atomistic

  6. Correlated fluorine diffusion and ionic conduction in the nanocrystalline F(-) solid electrolyte Ba(0.6)La(0.4)F(2.4)-(19)F T1(ρ) NMR relaxation vs. conductivity measurements.

    PubMed

    Preishuber-Pflügl, F; Bottke, P; Pregartner, V; Bitschnau, B; Wilkening, M

    2014-05-28

    Chemical reactions induced by mechanical treatment may give access to new compounds whose properties are governed by chemical metastability, defects introduced and the size effects present. Their interplay may lead to nanocrystalline ceramics with enhanced transport properties being useful to act as solid electrolytes. Here, the introduction of large amounts of La into the cubic structure of BaF2 served as such an example. The ion transport properties in terms of dc-conductivity values of the F(-) anion conductor Ba1-xLaxF2+x (here with x = 0.4) considerably exceed those of pure, nanocrystalline BaF2. So far, there is only little knowledge about activation energies and jump rates of the elementary hopping processes. Here, we took advantage of both impedance spectroscopy and (19)F NMR relaxometry to get to the bottom of ion jump diffusion proceeding on short-range and long-range length scales in Ba0.6La0.4F2.4. While macroscopic transport is governed by an activation energy of 0.55 to 0.59 eV, the elementary steps of hopping seen by NMR are characterised by much smaller activation energies. Fortunately, we were able to deduce an F(-) self-diffusion coefficient by the application of spin-locking NMR relaxometry. PMID:24728404

  7. Hydration properties of regioselectively etherified celluloses monitored by 2H and 13C solid-state MAS NMR spectroscopy.

    PubMed

    Larsen, Flemming H; Schöbitz, Michael; Schaller, Jens

    2012-06-20

    The hydration properties of 2,3-O-hydroxypropylcellulose (HPC) and 2,3-O-hydroxyethylcellulose (HEC) were analyzed by multi-nuclear solid-state MAS NMR spectroscopy. By 13C single-pulse (SP) MAS and cross-polarization (CP) MAS NMR, differences between the immobile regions and all parts of the polysaccharides were detected as a function of hydration. Complementary information about the water environments was observed by 2H MAS NMR. By this approach it was demonstrated that side chains in 2,3-O-HPC and 2,3-O-HEC were easier to hydrate than the cellulose backbone. Furthermore the motion of water was more restricted (slower) in 2,3-O-HPC than in 2,3-O-HEC. For both polysaccharides the hydration could be explained by a two-step process: in step one increased ordering of the immobile regions occurs after which the entire polymer is hydrated in step two. PMID:24750769

  8. Structural investigations of borosilicate glasses containing MoO 3 by MAS NMR and Raman spectroscopies

    NASA Astrophysics Data System (ADS)

    Caurant, D.; Majérus, O.; Fadel, E.; Quintas, A.; Gervais, C.; Charpentier, T.; Neuville, D.

    2010-01-01

    High molybdenum concentration in glass compositions may lead to alkali and alkaline-earth molybdates crystallization during melt cooling that must be controlled particularly during the preparation of highly radioactive nuclear glassy waste forms. To understand the effect of molybdenum addition on the structure of a simplified nuclear glass and to know how composition changes can affect molybdates crystallization tendency, the structure of two glass series belonging to the SiO 2-B 2O 3-Na 2O-CaO-MoO 3 system was studied by 29Si, 11B, 23Na MAS NMR and Raman spectroscopies by increasing MoO 3 or B 2O 3 concentrations. Increasing MoO 3 amount induced an increase of the silicate network reticulation but no significant effect was observed on the proportion of BO4- units and on the distribution of Na + cations in glass structure. By increasing B 2O 3 concentration, a strong evolution of the distribution of Na + cations was observed that could explain the evolution of the nature of molybdate crystals (CaMoO 4 or Na 2MoO 4) formed during melt cooling.

  9. Molybdenum modified phosphate glasses studied by 31P MAS NMR and Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Szumera, Magdalena

    2015-02-01

    Glasses have been synthesized in the system P2O5sbnd SiO2sbnd K2Osbnd MgOsbnd CaO modified by addition of MoO3. Glasses were prepared by conventional fusion method from 40 g batches. The influence of Mo-cations on the analysed glass structure was investigated by means of Raman and 31P MAS-NMR techniques. It has been found that molybdate units can form Mo[MoO4/MoO6]sbnd Osbnd P and/or Mo[MoO4/MoO6]sbnd Osbnd Si bonds with non-bridging oxygens atoms of Q2 methaphosphate units, resulting in the transformation of chain methaphosphate structure into pyrophosphate and finally into orthophosphate structure. It has been also found that increasing amount of MoO3 in the structure of investigated glasses causes their gradual depolymerization and molybdenum ions in the analysed glass matrix act as modifying cations.

  10. DNP-Enhanced MAS NMR of Bovine Serum Albumin Sediments and Solutions

    PubMed Central

    2015-01-01

    Protein sedimentation sans cryoprotection is a new approach to magic angle spinning (MAS) and dynamic nuclear polarization (DNP) nuclear magnetic resonance (NMR) spectroscopy of proteins. It increases the sensitivity of the experiments by a factor of ∼4.5 in comparison to the conventional DNP sample preparation and circumvents intense background signals from the cryoprotectant. In this paper, we investigate sedimented samples and concentrated frozen solutions of natural abundance bovine serum albumin (BSA) in the absence of a glycerol-based cryoprotectant. We observe DNP signal enhancements of ε ∼ 66 at 140 GHz in a BSA pellet sedimented from an aqueous solution containing the biradical polarizing agent TOTAPOL and compare this with samples prepared using the conventional protocol (i.e., dissolution of BSA in a glycerol/water cryoprotecting mixture). The dependence of DNP parameters on the radical concentration points to the presence of an interaction between TOTAPOL and BSA, so much so that a frozen solution sans cryoprotectant still gives ε ∼ 50. We have studied the interaction of BSA with another biradical, SPIROPOL, that is more rigid than TOTAPOL and has been reported to give higher enhancements. SPIROPOL was also found to interact with BSA, and to give ε ∼ 26 close to its maximum achievable concentration. Under the same conditions, TOTAPOL gives ε ∼ 31, suggesting a lesser affinity of BSA for SPIROPOL with respect to TOTAPOL. Altogether, these results demonstrate that DNP is feasible in self-cryoprotecting samples. PMID:24460530

  11. Correlation between 19F environment and isotropic chemical shift in barium and calcium fluoroaluminates.

    PubMed

    Body, M; Silly, G; Legein, C; Buzaré, J-Y

    2004-04-19

    High-speed MAS (19)F NMR spectra are recorded and reconstructed for 10 compounds from BaF(2)-AlF(3) and CaF(2)-AlF(3) binary systems which leads to the determination of 77 isotropic (19)F chemical shifts in various environments. A first attribution of NMR lines is performed for 8 compounds using a superposition model as initially proposed by B. Bureau et al. The phenomenological parameters of this model are then refined to improve the NMR line assignment. A satisfactory reliability is reached with a root-mean-square (RMS) deviation between calculated and measured values equal to 6 ppm. The refined parameters are then successfully tested on alpha-BaCaAlF(7) whose structure was recently determined. Finally, the isotropic chemical shift ranges are defined for shared, unshared, and "free" fluorine atoms encountered in the investigated binary systems. So, the fluorine surroundings can be deduced from the NMR line positions in compounds whose structure is unknown. Such an approach can also be applied to fluoride glasses. PMID:15074964

  12. Absolute NMR shielding scales and nuclear spin–rotation constants in {sup 175}LuX and {sup 197}AuX (X = {sup 19}F, {sup 35}Cl, {sup 79}Br and {sup 127}I)

    SciTech Connect

    Demissie, Taye B. Komorovsky, Stanislav; Repisky, Michal; Ruud, Kenneth; Jaszuński, Michał

    2015-10-28

    We present nuclear spin–rotation constants, absolute nuclear magnetic resonance (NMR) shielding constants, and shielding spans of all the nuclei in {sup 175}LuX and {sup 197}AuX (X = {sup 19}F, {sup 35}Cl, {sup 79}Br, {sup 127}I), calculated using coupled-cluster singles-and-doubles with a perturbative triples (CCSD(T)) correction theory, four-component relativistic density functional theory (relativistic DFT), and non-relativistic DFT. The total nuclear spin–rotation constants determined by adding the relativistic corrections obtained from DFT calculations to the CCSD(T) values are in general in agreement with available experimental data, indicating that the computational approach followed in this study allows us to predict reliable results for the unknown spin–rotation constants in these molecules. The total NMR absolute shielding constants are determined for all the nuclei following the same approach as that applied for the nuclear spin–rotation constants. In most of the molecules, relativistic effects significantly change the computed shielding constants, demonstrating that straightforward application of the non-relativistic formula relating the electronic contribution to the nuclear spin–rotation constants and the paramagnetic contribution to the shielding constants does not yield correct results. We also analyze the origin of the unusually large absolute shielding constant and its relativistic correction of gold in AuF compared to the other gold monohalides.

  13. Absolute NMR shielding scales and nuclear spin-rotation constants in (175)LuX and (197)AuX (X = (19)F, (35)Cl, (79)Br and (127)I).

    PubMed

    Demissie, Taye B; Jaszuński, Michał; Komorovsky, Stanislav; Repisky, Michal; Ruud, Kenneth

    2015-10-28

    We present nuclear spin-rotation constants, absolute nuclear magnetic resonance (NMR) shielding constants, and shielding spans of all the nuclei in (175)LuX and (197)AuX (X = (19)F, (35)Cl, (79)Br, (127)I), calculated using coupled-cluster singles-and-doubles with a perturbative triples (CCSD(T)) correction theory, four-component relativistic density functional theory (relativistic DFT), and non-relativistic DFT. The total nuclear spin-rotation constants determined by adding the relativistic corrections obtained from DFT calculations to the CCSD(T) values are in general in agreement with available experimental data, indicating that the computational approach followed in this study allows us to predict reliable results for the unknown spin-rotation constants in these molecules. The total NMR absolute shielding constants are determined for all the nuclei following the same approach as that applied for the nuclear spin-rotation constants. In most of the molecules, relativistic effects significantly change the computed shielding constants, demonstrating that straightforward application of the non-relativistic formula relating the electronic contribution to the nuclear spin-rotation constants and the paramagnetic contribution to the shielding constants does not yield correct results. We also analyze the origin of the unusually large absolute shielding constant and its relativistic correction of gold in AuF compared to the other gold monohalides. PMID:26520517

  14. Absolute NMR shielding scales and nuclear spin-rotation constants in 175LuX and 197AuX (X = 19F, 35Cl, 79Br and 127I)

    NASA Astrophysics Data System (ADS)

    Demissie, Taye B.; Jaszuński, Michał; Komorovsky, Stanislav; Repisky, Michal; Ruud, Kenneth

    2015-10-01

    We present nuclear spin-rotation constants, absolute nuclear magnetic resonance (NMR) shielding constants, and shielding spans of all the nuclei in 175LuX and 197AuX (X = 19F, 35Cl, 79Br, 127I), calculated using coupled-cluster singles-and-doubles with a perturbative triples (CCSD(T)) correction theory, four-component relativistic density functional theory (relativistic DFT), and non-relativistic DFT. The total nuclear spin-rotation constants determined by adding the relativistic corrections obtained from DFT calculations to the CCSD(T) values are in general in agreement with available experimental data, indicating that the computational approach followed in this study allows us to predict reliable results for the unknown spin-rotation constants in these molecules. The total NMR absolute shielding constants are determined for all the nuclei following the same approach as that applied for the nuclear spin-rotation constants. In most of the molecules, relativistic effects significantly change the computed shielding constants, demonstrating that straightforward application of the non-relativistic formula relating the electronic contribution to the nuclear spin-rotation constants and the paramagnetic contribution to the shielding constants does not yield correct results. We also analyze the origin of the unusually large absolute shielding constant and its relativistic correction of gold in AuF compared to the other gold monohalides.

  15. Rapid identification of osmolytes in tropical microalgae and cyanobacteria by (1)H HR-MAS NMR spectroscopy.

    PubMed

    Zea Obando, Claudia; Linossier, Isabelle; Kervarec, Nelly; Zubia, Mayalen; Turquet, Jean; Faÿ, Fabienne; Rehel, Karine

    2016-06-01

    In this study, we report the chemical characterization of 47 tropical microalgae and cyanobacteria by HR-MAS. The generated data confirm the interest of HR-MAS as a rapid screening technique with the major advantage of its easiness. The sample is used as powder of freeze-dried microalgae without any extraction process before acquisition. The spectral fingerprints of strains are then tested as variables for a chemotaxonomy study to discriminate cyanobacteria and dinoflagellates. The individual factor map generated by PCA analysis succeeds in separating the two groups, essentially thanks to the presence of specific carbohydrates. Furthermore, more resolved signals enable to identify many osmolytes. More precisely the characteristics δ of 2-O-alpha-D-glucosylglycerol (GG) are observed in all 21 h-MAS spectra of tropical cyanobacteria. After specific extraction, complementary analysis by 1D and 2D-NMR spectroscopies validates the identification of this osmolyte. PMID:27130130

  16. DRIFT and HR MAS NMR characterization of humic substances from a soil treated with different organic and mineral fertilizers

    NASA Astrophysics Data System (ADS)

    Ferrari, Erika; Francioso, Ornella; Nardi, Serenella; Saladini, Monica; Ferro, Nicola Dal; Morari, Francesco

    2011-07-01

    In this study, using DRIFT and HR MAS NMR, we analyzed the humic substances isolated from a soil treated, over 40 years, with different organic, mineral and organic plus mineral treatments and cultivated with maize as the main crop. As expected, the structure of humic substances was very complex but by combining both techniques (DRIFT and HR MAS NMR) additional information was obtained on aromatic and aliphatic components, the most recalcitrant parts of these macromolecules. In so doing we wanted to investigate the relationship between HS structure and long-term management practices. An elevated content of lignin, aminoacids, peptides and proteins was observed mainly for farmyard manure treatments with respect to mineral or liquid manure amendments; this supports how the different management practices have greatly influenced the humification process of cultivated soils.

  17. Thermal maturity of type II kerogen from the New Albany Shale assessed by13C CP/MAS NMR

    USGS Publications Warehouse

    Werner-Zwanziger, U.; Lis, G.; Mastalerz, Maria; Schimmelmann, A.

    2005-01-01

    Thermal maturity of oil and gas source rocks is typically quantified in terms of vitrinite reflectance, which is based on optical properties of terrestrial woody remains. This study evaluates 13C CP/MAS NMR parameters in kerogen (i.e., the insoluble fraction of organic matter in sediments and sedimentary rocks) as proxies for thermal maturity in marine-derived source rocks where terrestrially derived vitrinite is often absent or sparse. In a suite of samples from the New Albany Shale (Middle Devonian to the Early Mississippian, Illinois Basin) the abundance of aromatic carbon in kerogen determined by 13C CP/MAS NMR correlates linearly well with vitrinite reflectance. ?? 2004 Elsevier Inc. All rights reserved.

  18. Conversion of propan-2-ol on zeolites LaNaY and HY investigated by gas chromatography and in situ MAS NMR spectroscopy under continuous-flow conditions

    SciTech Connect

    Hunger, M.; Horvath, T.

    1997-04-01

    The conversion of propan-2-ol on zeolites HY and LaNaY has been investigated by gas chromatography (GC) and in situ {sup 1}H and {sup 13}C MAS NMR spectroscopy under continuous-flow conditions using a new MAS NMR microreactor with cylindrical catalyst bed. At reaction temperatures of T = 373 K and T = 393 K a propan-2-ol conversion of 50 and 100%, respectively, and the formation of propene, diisopropyl. ether, and small amounts of acetone was determined by GC. Applying in situ {sup 1}H and {sup 13}C MAS NMR spectroscopy, the initial step of the reaction was found to be the physisorption of propan-2-ol on Bronsted acid sites. A formation of isopropoxy species could be excluded by {sup 13}C MAS NMR spectroscopy. {sup 1}H MAS NMR spectroscopy indicated that the Bronsted acid sites of the zeolites LaNaY and HY were hydrated by water molecules in the first part of the induction period. These water molecules were formed in result of the propan-2-ol dehydration. The strong low-field shift of the {sup 1}H MAS NMR signals of the hydrated Bronsted acid sites is due to a partial protonation of adsorbed water molecules. At T = 393 K, a significant {sup 13}C MAS NMR signal of strongly bonded acetone molecules appeared at 220 ppm in the spectra of zeolites LaNaY and HY. As demonstrated by propan-2-ol conversion on a partially dealuminated zeolite HY, this by-reaction is promoted by extra-framework aluminium species. The formation of coke precursors which caused {sup 13}C MAS NMR signals at 10-50 ppm is explained by an oligomerization of propene. In situ {sup 13}C MAS NMR experiments carried out under a continuous flow of propene showed that the above-mentioned coke precursors are also formed on partially rehydrated zeolite HY. 25 refs., 14 figs., 1 tab.

  19. Optimized Spectral Editing of 13C MAS NMR Spectra of Rigid Solids Using Cross-Polarization Methods

    NASA Astrophysics Data System (ADS)

    Sangill, R.; Rastrupandersen, N.; Bildsoe, H.; Jakobsen, H. J.; Nielsen, N. C.

    Combinations of 13C magic-angle spinning (MAS) NMR experiments employing cross polarization (CP), cross polarization-depolarization (CPD), and cross polarization-depolarization-repolarization are analyzed quantitatively to derive simple and general procedures for optimized spectral editing of 13C CP/MAS NMR spectra of rigid solids by separation of the 13C resonances into CH n subspectra ( n = 0, 1, 2, and 3). Special attention is devoted to a differentiation by CPD/MAS of CH and CH 2 resonances since these groups behave quite similarly during spin lock under Hartmann-Hahn match and are therefore generally difficult to distinguish unambiguously. A general procedure for the design of subexperiments and linear combinations of their spectra to provide optimized signal-to-noise ratios for the edited subspectra is described. The technique is illustrated by a series of edited 13C CP/MAS spectra for a number of rigid solids ranging from simple organic compounds (sucrose and l-menthol) to complex pharmaceutical products (calcipotriol monohydrate and vitamin D 3) and polymers (polypropylene, polyvinyl alcohol, polyvinyl chloride, and polystyrene).

  20. Molecular dynamics of spider dragline silk fiber investigated by 2H MAS NMR.

    PubMed

    Shi, Xiangyan; Holland, Gregory P; Yarger, Jeffery L

    2015-03-01

    The molecular dynamics of the proteins that comprise spider dragline silk were investigated with solid-state (2)H magic angle spinning (MAS) NMR line shape and spin-lattice relaxation time (T1) analysis. The experiments were performed on (2)H/(13)C/(15)N-enriched N. clavipes dragline silk fibers. The silk protein side-chain and backbone dynamics were probed for Ala-rich regions (β-sheet and 31-helical domains) in both native (dry) and supercontracted (wet) spider silk. In native (dry) silk fibers, the side chains in all Ala containing regions undergo similar fast methyl rotations (>10(9) s(-1)), while the backbone remains essentially static (<10(2) s(-1)). When the silk is wet and supercontracted, the presence of water initiates fast side-chain and backbone motions for a fraction of the β-sheet region and 31-helicies. β-Sheet subregion 1 ascribed to the poly(Ala) core exhibits slower dynamics, while β-sheet subregion 2 present in the interfacial, primarily poly(Gly-Ala) region that links the β-sheets to disordered 31-helical motifs, exhibits faster motions when the silk is supercontracted. Particularly notable is the observation of microsecond backbone motions for β-sheet subregion 2 and 31-helicies. It is proposed that these microsecond backbone motions lead to hydrogen-bond disruption in β-sheet subregion 2 and helps to explain the decrease in silk stiffness when the silk is wet and supercontracted. In addition, water mobilizes and softens 31-helical motifs, contributing to the increased extensibility observed when the silk is in a supercontracted state. The present study provides critical insight into the supercontraction mechanism and corresponding changes in mechanical properties observed for spider dragline silks. PMID:25619304

  1. MAS-NMR study of lithium zinc silicate glasses and glass-ceramics with various ZnO content

    SciTech Connect

    Goswami, Madhumita; Kothiyal, Govind P.; Montagne, Lionel Delevoye, Laurent

    2008-02-15

    Lithium zinc silicate glasses of composition (mol%): 17.5Li{sub 2}O-(72-x)SiO{sub 2}-xZnO-5.1Na{sub 2}O-1.3P{sub 2}O{sub 5}-4.1B{sub 2}O{sub 3}, 5.5{<=}x{<=}17.7, were prepared by conventional melt-quenched technique and converted to glass-ceramic by controlled crystallization process. {sup 29}Si and {sup 31}P MAS-NMR was used to characterize the structure of both glass and glass-ceramic samples. Despite the complex glass composition, Q{sup 2}, Q{sup 3} and Q{sup 4} sites are identified from {sup 29}Si MAS-NMR, which relative intensities are found to vary with the ZnO content, indicating a network depolymerization by ZnO. Moreover, well separated Q{sup 3} and Q{sup 4} resonances for low ZnO content indicates the occurrence of phase separation. From {sup 31}P MAS-NMR, it is seen that phosphorus is mainly present in the form of ortho-(Q{sup 0}) and pyro-phosphate (Q{sup 1}) structural units and variation of ZnO content did not have much effect on these resonances, which provides an additional evidence for phase separation in the glass. On conversion to glass-ceramics, lithium disilicate (Li{sub 2}Si{sub 2}O{sub 5}), lithium zinc ortho-silicate (Li{sub 3}Zn{sub 0.5}SiO{sub 4}), tridymite (SiO{sub 2}) and cristobalite (SiO{sub 2}) were identified as major silicate crystalline phases. Using {sup 29}Si MAS-NMR, quantification of these silicate crystalline phases is carried out and correlated with the ZnO content in the glass-ceramics samples. In addition, {sup 31}P spectra unambiguously revealed the presence of crystalline Li{sub 3}PO{sub 4} and (Na,Li){sub 3}PO{sub 4} in the glass-ceramics. - Graphical abstract: {sup 29}Si and {sup 31}P MAS-NMR analyses were carried out on multi-component Li{sub 2}O-SiO{sub 2}-ZnO-Na{sub 2}O-P{sub 2}O{sub 5}-B{sub 2}O{sub 3} glasses and glass-ceramics developed for sealing application. Structural data are reported, including phase separation process and quantification of amorphous and crystalline phases.

  2. Transport Properties of Ibuprofen Encapsulated in Cyclodextrin Nanosponge Hydrogels: A Proton HR-MAS NMR Spectroscopy Study.

    PubMed

    Ferro, Monica; Castiglione, Franca; Punta, Carlo; Melone, Lucio; Panzeri, Walter; Rossi, Barbara; Trotta, Francesco; Mele, Andrea

    2016-01-01

    The chemical cross-linking of β-cyclodextrin (β-CD) with ethylenediaminetetraacetic dianhydride (EDTA) led to branched polymers referred to as cyclodextrin nanosponges (CDNSEDTA). Two different preparations are described with 1:4 and 1:8 CD-EDTA molar ratios. The corresponding cross-linked polymers were contacted with 0.27 M aqueous solution of ibuprofen sodium salt (IP) leading to homogeneous, colorless, drug loaded hydrogels. The systems were characterized by high resolution magic angle spinning (HR-MAS) NMR spectroscopy. Pulsed field gradient spin echo (PGSE) NMR spectroscopy was used to determine the mean square displacement (MSD) of IP inside the polymeric gel at different observation times td. The data were further processed in order to study the time dependence of MSD: MSD = f(td). The proposed methodology is useful to characterize the different diffusion regimes that, in principle, the solute may experience inside the hydrogel, namely normal or anomalous diffusion. The full protocols including the polymer preparation and purification, the obtainment of drug-loaded hydrogels, the NMR sample preparation, the measurement of MSD by HR-MAS NMR spectroscopy and the final data processing to achieve the time dependence of MSD are here reported and discussed. The presented experiments represent a paradigmatic case and the data are discussed in terms of innovative approach to the characterization of the transport properties of an encapsulated guest within a polymeric host of potential application for drug delivery. PMID:27585291

  3. Determination of the structural changes by Raman and {sup 13}C CP/MAS NMR spectroscopy on native corn starch with plasticizers

    SciTech Connect

    Cozar, O.; Filip, C.; Tripon, C.; Cioica, N.; Coţa, C.; Nagy, E. M.

    2013-11-13

    The plasticizing - antiplasticizing effect of water and glycerol contents on native corn starch samples is investigated by FT-Raman and {sup 13}C CP/MAS NMR spectroscopy. The presence of both amorphous and crystalline structural phases was evidenced in pure native corn starch and also in the samples containing plasticizers. Among the crystalline starch structures, the A- and V- types were suggested by CP/MAS NMR spectra.

  4. Solid-state dynamics in the closo-carboranes: a (11)B MAS NMR and molecular dynamics study.

    PubMed

    Ahumada, Hernán; Kurkiewicz, Teresa; Thrippleton, Michael J; Wimperis, Stephen

    2015-03-19

    This work explores the dynamic behavior of the three closo-carborane isomers (formula C2B10H12) using modern solid-state magic angle spinning (MAS) NMR techniques and relates the experimental measurements to theoretical results obtained using molecular dynamics simulations. At high temperatures and at B0 = 9.4 T, the (11)B MAS line widths are narrow (40-90 Hz) for the three isomers. The rotational correlation times (τc) calculated by molecular dynamics are on the picosecond time scale, showing a quasi-isotropic rotation at these temperatures, typical for liquid systems. For all three isomers, the values of the (11)B spin-lattice relaxation times (T1) show discontinuities as the temperature is decreased, confirming the phase changes reported in the literature. At low temperatures, the (11)B MAS spectra of all three isomers exhibit much broader lines. The simulations showed that the molecular reorientation was anisotropic around different symmetry axes for each isomer, and this was supported by the values of the reduced quadrupolar parameter PQ(eff) derived from "dynamic shift" measurements using (11)B MQMAS NMR spectroscopy. The behavior of PQ(eff) as a function of temperature for p-carborane suggests that molecular reorientation is about the C5 symmetry axis of the molecule at low temperatures, and this was supported by the molecular dynamics simulations. PMID:25710751

  5. 1H HR-MAS NMR Spectroscopy and the Metabolite Determination of Typical Foods in Mediterranean Diet

    PubMed Central

    Corsaro, Carmelo; Mallamace, Domenico; Vasi, Sebastiano; Ferrantelli, Vincenzo; Dugo, Giacomo; Cicero, Nicola

    2015-01-01

    NMR spectroscopy has become an experimental technique widely used in food science. The experimental procedures that allow precise and quantitative analysis on different foods are relatively simple. For a better sensitivity and resolution, NMR spectroscopy is usually applied to liquid sample by means of extraction procedures that can be addressed to the observation of particular compounds. For the study of semisolid systems such as intact tissues, High-Resolution Magic Angle Spinning (HR-MAS) has received great attention within the biomedical area and beyond. Metabolic profiling and metabolism changes can be investigated both in animal organs and in foods. In this work we present a proton HR-MAS NMR study on the typical vegetable foods of Mediterranean diet such as the Protected Geographical Indication (PGI) cherry tomato of Pachino, the PGI Interdonato lemon of Messina, several Protected Designation of Origin (PDO) extra virgin olive oils from Sicily, and the Traditional Italian Food Product (PAT) red garlic of Nubia. We were able to identify and quantify the main metabolites within the studied systems that can be used for their characterization and authentication. PMID:26495154

  6. Slow motions in microcrystalline proteins as observed by MAS-dependent 15N rotating-frame NMR relaxation

    NASA Astrophysics Data System (ADS)

    Krushelnitsky, Alexey; Zinkevich, Tatiana; Reif, Bernd; Saalwächter, Kay

    2014-11-01

    15N NMR relaxation rate R1ρ measurements reveal that a substantial fraction of residues in the microcrystalline chicken alpha-spectrin SH3 domain protein undergoes dynamics in the μs-ms timescale range. On the basis of a comparison of 2D site-resolved with 1D integrated 15N spectral intensities, we demonstrate that the significant fraction of broad signals in the 2D spectrum exhibits the most pronounced slow mobility. We show that 15N R1ρ's in proton-diluted protein samples are practically free from the coherent spin-spin contribution even at low MAS rates, and thus can be analysed quantitatively. Moderate MAS rates (10-30 kHz) can be more advantageous in comparison with the rates >50-60 kHz when slow dynamics are to be identified and quantified by means of R1ρ experiments.

  7. Slow-MAS NMR: A New Technology for In Vivo Metabolomic Studies

    SciTech Connect

    Wind, Robert A.; Hu, Jian Zhi; Majors, Paul D.

    2005-08-01

    Improvements in the ability to obtain detailed in vivo metabolic information have been identified as key elements of better understanding the efficacy and toxicity of new therapies. A new NMR technology called LOCMAT is discussed that yields substantially increased spectral resolution of spatially localized in vivo 1H NMR metabolite spectra, as illustrated by measurements in the liver and heart of a live mouse. Thus, LOCMAT promises to significantly enhance the utility of NMR spectroscopy for biomedical research.

  8. Analysis of Radiation Induced Degradation in FPC-461 Fluoropolymers by Variable Temperature Multinuclear NMR

    SciTech Connect

    Chinn, S C; Wilson, T S; Maxwell, R S

    2004-10-27

    Solid state nuclear magnetic resonance techniques have been used to investigate aging mechanisms in a vinyl chloride:chlorotrifluoroethylene copolymer, FPC-461, due to exposure to {gamma}-radiation. Solid state {sup 1}H MAS NMR spectra revealed structural changes of the polymer upon irradiation under both air and nitrogen atmospheres. Considerable degradation is seen with {sup 1}H NMR in the vinyl chloride region of the polymer, particularly in the samples irradiated in air. {sup 19}F MAS NMR was used to investigate speciation in the chlorotrifluoroethylene blocks, though negligible changes were seen. {sup 1}H and {sup 19}F NMR at elevated temperature revealed increased segmental mobility and decreased structural heterogeneity within the polymer, yielding significant resolution enhancement over room temperature solid state detection. The effects of multi-site exchange are manifest in both the {sup 1}H and {sup 19}F NMR spectra as a line broadening and change in peak position as a function of temperature.

  9. Residual methyl protonation in perdeuterated proteins for multi-dimensional correlation experiments in MAS solid-state NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Agarwal, Vipin; Reif, Bernd

    2008-09-01

    NMR studies involving perdeuterated proteins focus in general on exchangeable amide protons. However, non-exchangeable sites contain as well a small amount of protons as the employed precursors for protein biosynthesis are not completely proton depleted. The degree of methyl group protonation is in the order of 9% for CD 2H using >97% deuterium enriched glucose. We show in this manuscript that this small amount of residual protonation is sufficient to perform 2D and 3D MAS solid-state NMR experiments. In particular, we suggest a HCCH-TOBSY type experiment which we successfully employ to assign the methyl resonances in aliphatic side chains in a perdeuterated sample of the SH3 domain of chicken α-spectrin.

  10. Study of chemically inequivalent N(CH3)4 ions in [N(CH3)4]2ZnBr4 near the phase transition temperature using 1H MAS NMR, 13C CP/MAS NMR, and 14N NMR

    NASA Astrophysics Data System (ADS)

    Lim, Ae Ran

    2016-02-01

    The temperature dependences of the chemical shifts and intensities of 1H, 13C, and 14N nuclei in tetramethylammonium tetrabromozincate, [N(CH3)4]2ZnBr4, were investigated using single-crystal nuclear magnetic resonance (NMR) and magic angle spinning (MAS) NMR spectroscopy to elucidate the structural geometry near the phase transition temperature. Based on the analysis of the 13C cross-polarization (CP)/MAS NMR and 14N NMR spectra, the two chemically inequivalent N(1) (CH3)4 and N(2) (CH3)4 ions were distinguished. Furthermore, the 14N NMR spectrum at the phase transition temperature indicated the existence of the ferroelastic characteristics of the N(CH3)4 ions.

  11. Sealed rotors for in situ high temperature high pressure MAS NMR.

    PubMed

    Hu, Jian Zhi; Hu, Mary Y; Zhao, Zhenchao; Xu, Suochang; Vjunov, Aleksei; Shi, Hui; Camaioni, Donald M; Peden, Charles H F; Lercher, Johannes A

    2015-09-11

    Here we present the design of reusable and perfectly sealed all-zirconia MAS rotors. The rotors are used to study AlPO4-5 molecular sieve crystallization under hydrothermal conditions, high temperature high pressure cyclohexanol dehydration reaction, and low temperature metabolomics of intact biological tissue. PMID:26171928

  12. Site-resolved 2H relaxation experiments in solid materials by global line-shape analysis of MAS NMR spectra

    NASA Astrophysics Data System (ADS)

    Lindh, E. L.; Stilbs, P.; Furó, I.

    2016-07-01

    We investigate a way one can achieve good spectral resolution in 2H MAS NMR experiments. The goal is to be able to distinguish between and study sites in various deuterated materials with small chemical shift dispersion. We show that the 2H MAS NMR spectra recorded during a spin-relaxation experiment are amenable to spectral decomposition because of the different evolution of spectral components during the relaxation delay. We verify that the results are robust by global least-square fitting of the spectral series both under the assumption of specific line shapes and without such assumptions (COmponent-REsolved spectroscopy, CORE). In addition, we investigate the reliability of the developed protocol by analyzing spectra simulated with different combinations of spectral parameters. The performance is demonstrated in a model material of deuterated poly(methacrylic acid) that contains two 2H spin populations with similar chemical shifts but different quadrupole splittings. In 2H-exchanged cellulose containing two 2H spin populations with very similar chemical shifts and quadrupole splittings, the method provides new site-selective information about the molecular dynamics.

  13. Recognition of Membrane Sterols by Polyene Antifungals Amphotericin B and Natamycin, A 13C MAS NMR Study

    PubMed Central

    Ciesielski, Filip; Griffin, David C.; Loraine, Jessica; Rittig, Michael; Delves-Broughton, Joss; Bonev, Boyan B.

    2016-01-01

    The molecular action of polyene macrolides with antifungal activity, amphotericin B and natamycin, involves recognition of sterols in membranes. Physicochemical and functional studies have contributed details to understanding the interactions between amphotericin B and ergosterol and, to a lesser extent, with cholesterol. Fewer molecular details are available on interactions between natamycin with sterols. We use solid state 13C MAS NMR to characterize the impact of amphotericin B and natamycin on mixed lipid membranes of DOPC/cholesterol or DOPC/ergosterol. In cholesterol-containing membranes, amphotericin B addition resulted in marked increase in both DOPC and cholesterol 13C MAS NMR linewidth, reflecting membrane insertion and cooperative perturbation of the bilayer. By contrast, natamycin affects little either DOPC or cholesterol linewidth but attenuates cholesterol resonance intensity preferentially for sterol core with lesser impact on the chain. Ergosterol resonances, attenuated by amphotericin B, reveal specific interactions in the sterol core and chain base. Natamycin addition selectively augmented ergosterol resonances from sterol core ring one and, at the same time, from the end of the chain. This puts forward an interaction model similar to the head-to-tail model for amphotericin B/ergosterol pairing but with docking on opposite sterol faces. Low toxicity of natamycin is attributed to selective, non-cooperative sterol engagement compared to cooperative membrane perturbation by amphotericin B. PMID:27379235

  14. CaCl 2 -Accelerated Hydration of Tricalcium Silicate: A STXM Study Combined with 29 Si MAS NMR

    DOE PAGESBeta

    Li, Qinfei; Ge, Yong; Geng, Guoqing; Bae, Sungchul; Monteiro, Paulo J. M.

    2015-01-01

    Tmore » he effect of calcium chloride (CaCl 2 ) on tricalcium silicate (C 3 S) hydration was investigated by scanning transmission X-ray microscopy (STXM) with Near Edge X-ray Absorption Fine Structure (NEXAFS) spectra and 29 Si MAS NMR. STXM is demonstrated to be a powerful tool for studying the chemical composition of a cement-based hydration system.he Ca L 3,2 -edge NEXAFS spectra obtained by examining C 3 S hydration in the presence of CaCl 2 showed that this accelerator does not change the coordination of calcium in the calcium silicate hydrate (C-S-H), which is the primary hydration product. O K-edge NEXAFS is also very useful in distinguishing the chemical components in hydrated C 3 S. Based on the Ca L 3,2 -edge spectra and chemical component mapping, we concluded that CaCl 2 prefers to coexist with unhydrated C 3 S instead of C-S-H. In Si K-edge NEXAFS analysis, CaCl 2 increases the degree of silicate polymerization of C-S-H in agreement with the 29 Si CP/MAS NMR results, which show that the presence of CaCl 2 in hydrated C 3 S considerably accelerates the formation of middle groups ( Q 2 ) and branch sites ( Q 3 ) in the silicate chains of C-S-H gel at 1-day hydration.« less

  15. Site-resolved (2)H relaxation experiments in solid materials by global line-shape analysis of MAS NMR spectra.

    PubMed

    Lindh, E L; Stilbs, P; Furó, I

    2016-07-01

    We investigate a way one can achieve good spectral resolution in (2)H MAS NMR experiments. The goal is to be able to distinguish between and study sites in various deuterated materials with small chemical shift dispersion. We show that the (2)H MAS NMR spectra recorded during a spin-relaxation experiment are amenable to spectral decomposition because of the different evolution of spectral components during the relaxation delay. We verify that the results are robust by global least-square fitting of the spectral series both under the assumption of specific line shapes and without such assumptions (COmponent-REsolved spectroscopy, CORE). In addition, we investigate the reliability of the developed protocol by analyzing spectra simulated with different combinations of spectral parameters. The performance is demonstrated in a model material of deuterated poly(methacrylic acid) that contains two (2)H spin populations with similar chemical shifts but different quadrupole splittings. In (2)H-exchanged cellulose containing two (2)H spin populations with very similar chemical shifts and quadrupole splittings, the method provides new site-selective information about the molecular dynamics. PMID:27152833

  16. {sup 29}Si MAS-NMR study of the short-range order in potassium borosilicate glasses

    SciTech Connect

    Martin, S.W.; Bhatnagar, A.; Parameswar, C.; Feller, S.; MacKenzie, J.

    1995-04-01

    Potassium borosilicate glasses were prepared in families having the general formula of RK{sub 2}O{center_dot}B{sub 2}O{sub 3}{center_dot}NSiO{sub 2}, where R is the ratio of potassium oxide to boron oxide and N is the ratio of silicon dioxide to boron oxide. The glasses were prepared for values of R ranging from 0 to 7.0 in the families N = 0.5, 1.0, 2.0, and 4.0. {sup 29}Si MAS-NMR measurements were performed on these glasses to determine the short-range order around the silicon atom. A model of proportional sharing of the added potassium oxide between the silicate and the borate groups was suggested. This model was tested against other suggested models where proportional sharing begins after a minimum amount of potassium oxide, R{sub 0}, and was observed to provide a better fit to the {sup 29}Si chemical shifts obtained. As was observed in the {sup 29}Si MAS-NMR studies of the RLi{sub 2}O{center_dot}B{sub 2}O{sub 3}{center_dot}NSiO{sub 2} glasses, the proportional sharing model with R{sub 0} = 0 is in stark disagreement with that proposed by the {sup 11}B NMR studies of the alkali borosilicate glasses. This problem is as yet not understood. Since K{sub 2}CO{sub 3} was used as the starting material for K{sub 2}O, it was observed that at large R values, R > R{sub CO{sub 2}}, where R{sub CO{sub 2}} = 2.3 for N = 1, R{sub CO{sub 2}} = 4.0 for N = 2, and R{sub CO{sub 2}} = 5.0 for N = 4, CO{sub 2} was retained in the melt in the fashion similar to that observed for other high-alkali borate and silicate glasses. The N = 0.5 family did not exhibit retention at the compositions studied. {sup 29}Si MAS-NMR could be used to determine where CO{sub 2} retention began in composition and the proportion of K{sub 2}O/K{sub 2}CO{sub 3} in the melt (glass).

  17. Polydisperse methyl β-cyclodextrin–epichlorohydrin polymers: variable contact time 13C CP-MAS solid-state NMR characterization

    PubMed Central

    Mallard, Isabelle; Baudelet, Davy; Castiglione, Franca; Ferro, Monica; Panzeri, Walter; Ragg, Enzio

    2015-01-01

    Summary The polymerization of partially methylated β-cyclodextrin (CRYSMEB) with epichlorohydrin was carried out in the presence of a known amount of toluene as imprinting agent. Three different preparations (D1, D2 and D3) of imprinted polymers were obtained and characterized by solid-state 13C NMR spectroscopy under cross-polarization magic angle spinning (CP-MAS) conditions. The polymers were prepared by using the same synthetic conditions but with different molar ratios of imprinting agent/monomer, leading to morphologically equivalent materials but with different absorption properties. The main purpose of the work was to find a suitable spectroscopic descriptor accounting for the different imprinting process in three homogeneous polymeric networks. The polymers were characterized by studying the kinetics of the cross-polarization process. This approach is based on variable contact time CP-MAS spectra, referred to as VCP-MAS. The analysis of the VCP-MAS spectra provided two relaxation parameters: T CH (the CP time constant) and T 1ρ (the proton spin-lattice relaxation time in the rotating frame). The results and the analysis presented in the paper pointed out that T CH is sensitive to the imprinting process, showing variations related to the toluene/cyclodextrin molar ratio used for the preparation of the materials. Conversely, the observed values of T 1ρ did not show dramatic variations with the imprinting protocol, but rather confirmed that the three polymers are morphologically similar. Thus the combined use of T CH and T 1ρ can be helpful for the characterization and fine tuning of imprinted polymeric matrices. PMID:26877800

  18. Polydisperse methyl β-cyclodextrin-epichlorohydrin polymers: variable contact time (13)C CP-MAS solid-state NMR characterization.

    PubMed

    Mallard, Isabelle; Baudelet, Davy; Castiglione, Franca; Ferro, Monica; Panzeri, Walter; Ragg, Enzio; Mele, Andrea

    2015-01-01

    The polymerization of partially methylated β-cyclodextrin (CRYSMEB) with epichlorohydrin was carried out in the presence of a known amount of toluene as imprinting agent. Three different preparations (D1, D2 and D3) of imprinted polymers were obtained and characterized by solid-state (13)C NMR spectroscopy under cross-polarization magic angle spinning (CP-MAS) conditions. The polymers were prepared by using the same synthetic conditions but with different molar ratios of imprinting agent/monomer, leading to morphologically equivalent materials but with different absorption properties. The main purpose of the work was to find a suitable spectroscopic descriptor accounting for the different imprinting process in three homogeneous polymeric networks. The polymers were characterized by studying the kinetics of the cross-polarization process. This approach is based on variable contact time CP-MAS spectra, referred to as VCP-MAS. The analysis of the VCP-MAS spectra provided two relaxation parameters: T CH (the CP time constant) and T 1ρ (the proton spin-lattice relaxation time in the rotating frame). The results and the analysis presented in the paper pointed out that T CH is sensitive to the imprinting process, showing variations related to the toluene/cyclodextrin molar ratio used for the preparation of the materials. Conversely, the observed values of T 1ρ did not show dramatic variations with the imprinting protocol, but rather confirmed that the three polymers are morphologically similar. Thus the combined use of T CH and T 1ρ can be helpful for the characterization and fine tuning of imprinted polymeric matrices. PMID:26877800

  19. Phase Cycling Schemes for finite-pulse-RFDR MAS Solid State NMR Experiments

    PubMed Central

    Zhang, Rongchun; Nishiyama, Yusuke; Sun, Pingchuan; Ramamoorthy, Ayyalusamy

    2015-01-01

    The finite-pulse radio frequency driven dipolar recoupling (fp-RFDR) pulse sequence is used in 2D homonuclear chemical shift correlation experiments under magic angle spinning (MAS). A recent study demonstrated the advantages of using a short phase cycle, XY4, and its super-cycle, XY414, for the fp-RFDR pulse sequence employed in 2D 1H/1H single-quantum/single-quantum correlation experiments under ultrafast MAS conditions. In this study, we report a comprehensive analysis on the dipolar recoupling efficiencies of XY4, XY412, XY413, XY414, and XY814 phase cycles under different spinning speeds ranging from 10 to 100 kHz. The theoretical calculations reveal the presence of second-order terms (T10T2,±2, T1,±1T2,±1, etc.) in the recoupled homonuclear dipolar coupling Hamiltonian only when the basic XY4 phase cycle is utilized, making it advantageous for proton-proton magnetization transfer under ultrafast MAS conditions. It is also found that the recoupling efficiency of fp-RFDR is quite dependent on the duty factor (τ180/τR) as well as on the strength of homonuclear dipolar couplings. The rate of longitudinal magnetization transfer increases linearly with the duty factor of fp-RFDR for all the XY-based phase cycles investigated in this study. Examination of the performances of different phase cycles against chemical shift offset and RF field in homogeneity effects revealed that XY414 is the most tolerant phase cycle, while the shortest phase cycle XY4 suppressed the RF field inhomogeneity effects most efficiently under slow spinning speeds. Our results suggest that the difference in the fp-RFDR recoupling efficiencies decreases with the increasing MAS speed, while ultrafast (>60 kHz) spinning speed is advantageous as it recouples a large amount of homonuclear dipolar couplings and therefore enable fast magnetization exchange. The effects of higher-order terms and cross terms between various interactions in the effective Hamiltonian of fp-RFDR are also analyzed

  20. Acceleration of natural-abundance solid-state MAS NMR measurements on bone by paramagnetic relaxation from gadolinium-DTPA.

    PubMed

    Mroue, Kamal H; Zhang, Rongchun; Zhu, Peizhi; McNerny, Erin; Kohn, David H; Morris, Michael D; Ramamoorthy, Ayyalusamy

    2014-07-01

    Reducing the data collection time without affecting the signal intensity and spectral resolution is one of the major challenges for the widespread application of multidimensional nuclear magnetic resonance (NMR) spectroscopy, especially in experiments conducted on complex heterogeneous biological systems such as bone. In most of these experiments, the NMR data collection time is ultimately governed by the proton spin-lattice relaxation times (T1). For over two decades, gadolinium(III)-DTPA (Gd-DTPA, DTPA=Diethylene triamine pentaacetic acid) has been one of the most widely used contrast-enhancement agents in magnetic resonance imaging (MRI). In this study, we demonstrate that Gd-DTPA can also be effectively used to enhance the longitudinal relaxation rates of protons in solid-state NMR experiments conducted on bone without significant line-broadening and chemical-shift-perturbation side effects. Using bovine cortical bone samples incubated in different concentrations of Gd-DTPA complex, the (1)H T1 values were calculated from data collected by (1)H spin-inversion recovery method detected in natural-abundance (13)C cross-polarization magic angle spinning (CPMAS) NMR experiments. Our results reveal that the (1)H T1 values can be successfully reduced by a factor of 3.5 using as low as 10mM Gd-DTPA without reducing the spectral resolution and thus enabling faster data acquisition of the (13)C CPMAS spectra. These results obtained from (13)C-detected CPMAS experiments were further confirmed using (1)H-detected ultrafast MAS experiments on Gd-DTPA doped bone samples. This approach considerably improves the signal-to-noise ratio per unit time of NMR experiments applied to bone samples by reducing the experimental time required to acquire the same number of scans. PMID:24881032

  1. Acceleration of natural-abundance solid-state MAS NMR measurements on bone by paramagnetic relaxation from gadolinium-DTPA

    NASA Astrophysics Data System (ADS)

    Mroue, Kamal H.; Zhang, Rongchun; Zhu, Peizhi; McNerny, Erin; Kohn, David H.; Morris, Michael D.; Ramamoorthy, Ayyalusamy

    2014-07-01

    Reducing the data collection time without affecting the signal intensity and spectral resolution is one of the major challenges for the widespread application of multidimensional nuclear magnetic resonance (NMR) spectroscopy, especially in experiments conducted on complex heterogeneous biological systems such as bone. In most of these experiments, the NMR data collection time is ultimately governed by the proton spin-lattice relaxation times (T1). For over two decades, gadolinium(III)-DTPA (Gd-DTPA, DTPA = Diethylene triamine pentaacetic acid) has been one of the most widely used contrast-enhancement agents in magnetic resonance imaging (MRI). In this study, we demonstrate that Gd-DTPA can also be effectively used to enhance the longitudinal relaxation rates of protons in solid-state NMR experiments conducted on bone without significant line-broadening and chemical-shift-perturbation side effects. Using bovine cortical bone samples incubated in different concentrations of Gd-DTPA complex, the 1H T1 values were calculated from data collected by 1H spin-inversion recovery method detected in natural-abundance 13C cross-polarization magic angle spinning (CPMAS) NMR experiments. Our results reveal that the 1H T1 values can be successfully reduced by a factor of 3.5 using as low as 10 mM Gd-DTPA without reducing the spectral resolution and thus enabling faster data acquisition of the 13C CPMAS spectra. These results obtained from 13C-detected CPMAS experiments were further confirmed using 1H-detected ultrafast MAS experiments on Gd-DTPA doped bone samples. This approach considerably improves the signal-to-noise ratio per unit time of NMR experiments applied to bone samples by reducing the experimental time required to acquire the same number of scans.

  2. Acceleration of Natural-Abundance Solid-State MAS NMR Measurements on Bone by Paramagnetic Relaxation from Gadolinium-DTPA

    PubMed Central

    Mroue, Kamal H.; Zhang, Rongchun; Zhu, Peizhi; McNerny, Erin; Kohn, David H.; Morris, Michael D.; Ramamoorthy, Ayyalusamy

    2014-01-01

    Reducing the data collection time without affecting the signal intensity and spectral resolution is one of the major challenges for the widespread application of multidimensional nuclear magnetic resonance (NMR) spectroscopy, especially in experiments conducted on complex heterogeneous biological systems such as bone. In most of these experiments, the NMR data collection time is ultimately governed by the proton spin-lattice relaxation times (T1). For over two decades, gadolinium(III)-DTPA (Gd-DTPA, DTPA = Diethylenetriamine pentaacetic acid) has been one of the most widely used contrast-enhancement agents in magnetic resonance imaging (MRI). In this study, we demonstrate that Gd-DTPA can also be effectively used to enhance the longitudinal relaxation rates of protons in solid-state NMR experiments conducted on bone without significant line-broadening and chemical-shift-perturbation side effects. Using bovine cortical bone samples incubated in different concentrations of Gd-DTPA complex, the 1H T1 values were calculated from data collected by 1H spin-inversion recovery method detected in natural-abundance 13C cross-polarization magic angle spinning (CPMAS) NMR experiments. Our results reveal that the 1H T1 values can be successfully reduced by a factor of 3.5 using as low as 10 mM Gd-DTPA without reducing the spectral resolution and thus enabling faster data acquisition of the 13C CPMAS spectra. These results obtained from 13C-detected CPMAS experiments were further confirmed using 1H-detected ultrafast MAS experiments on Gd-DTPA doped bone samples. This approach considerably improves the signal-to-noise ratio per unit time of NMR experiments applied to bone samples by reducing the experimental time required to acquire the same number of scans. PMID:24881032

  3. Magnetic susceptibility effects on 13C MAS NMR spectra of carbon materials and graphite.

    PubMed

    Freita, J C; Emmerich, F G; Cernicchiaro, G R; Sampaio, L C; Bonagamba, T J

    2001-01-01

    13C high-resolution solid-state nuclear magnetic resonance (NMR) was employed to study carbon materials prepared through the thermal decomposition of four different organic precursors (rice hulls, endocarp of babassu coconut, peat, and PVC). For heat treatment temperatures (HTTs) above about 600 C, all materials presented 13C NMR spectra composed of a unique resonance line associated with carbon atoms in aromatic planes. With increasing HTT a continuous broadening of this resonance and a diamagnetic shift in its central frequency were verified for all samples. The evolution of the magnitude and anisotropy of the magnetic susceptibility of the heat-treated carbon samples with HTT explains well these findings. It is shown that these results are better understood when a comparison is made with the features of the 13C NMR spectrum of polycrystalline graphite, for which the magnetic susceptibility effect is also present and is much more pronounced. PMID:11529420

  4. Imaging of the B1 distribution and background signal in a MAS NMR probehead using inhomogeneous B0 and B1 fields.

    PubMed

    Odedra, Smita; Wimperis, Stephen

    2013-06-01

    Several widely used methods for suppressing the "background" signal in (1)H magic angle spinning (MAS) NMR spectroscopy are based on the assumption of a significant difference between the B1 radiofrequency field experienced by the sample (within the MAS rotor) and that felt by static components of the probehead (where the background signal is believed to originate). In this work, a two-dimensional correlation experiment employing inhomogeneous B0 and B1 fields is used to image the B1 distribution in a MAS NMR probehead. The experiment, which can be performed on any spectrometer, allows the distribution of the B1 field to be measured and also correlated with the spatial location of the NMR signal within the probehead. The method can also readily be combined with various "depth pulse" techniques for background suppression, allowing their performances to be more rigorously evaluated. PMID:23644349

  5. Application of (119)Sn CPMG MAS NMR for Fast Characterization of Sn Sites in Zeolites with Natural (119)Sn Isotope Abundance.

    PubMed

    Kolyagin, Yury G; Yakimov, Alexander V; Tolborg, Søren; Vennestrøm, Peter N R; Ivanova, Irina I

    2016-04-01

    (119)Sn CPMG MAS NMR is demonstrated to be a fast and efficient method for characterization of Sn-sites in Sn-containing zeolites. Tuning of the CPMG echo-train sequence decreases the experimental time by a factor of 5-40 in the case of as-synthesized and hydrated Sn-BEA samples and by 3 orders of magnitude in the case of dehydrated Sn-BEA samples as compared to conventional methods. In the latter case, the reconstruction of the quantitative spectrum without the loss of sensitivity is shown to be possible. The method proposed allows obtaining (119)Sn MAS NMR spectra with improved resolution for Sn-BEA zeolites with natural (119)Sn isotope abundance using conventional MAS NMR equipment. PMID:26978430

  6. Real time HR-MAS NMR: application in reaction optimization, mechanism elucidation and kinetic analysis for heterogeneous reagent catalyzed small molecule chemistry.

    PubMed

    Roy, Abhijeet Deb; Jayalakshmi, K; Dasgupta, Somnath; Roy, Raja; Mukhopadhyay, Balaram

    2008-12-01

    A novel application of in situ (1)H high-resolution magic angle spinning (HR-MAS) NMR technique for real-time monitoring of H(2)SO(4)-silica promoted formation of 2, 2-disubstituted quinozolin-4(3H)-ones is reported. The detailed NMR spectroscopic data led to elucidation of the mechanism, reaction optimization, kinetics and quantitative analysis of the product accurately and efficiently. The translation of the optimized parameters obtained by (1)H HR-MAS NMR in the wet laboratory provided similar results. It is proposed that (1)H HR-MAS has a potential utility for optimization of various organic transformations in solid supported catalyzed reactions. PMID:18853391

  7. Incorporation of phosphorus guest ions in the calcium silicate phases of Portland cement from 31P MAS NMR spectroscopy.

    PubMed

    Poulsen, Søren L; Jakobsen, Hans J; Skibsted, Jørgen

    2010-06-21

    Portland cements may contain small quantities of phosphorus (typically below 0.5 wt % P(2)O(5)), originating from either the raw materials or alternative sources of fuel used to heat the cement kilns. This work reports the first (31)P MAS NMR study of anhydrous and hydrated Portland cements that focuses on the phase and site preferences of the (PO(4))(3-) guest ions in the main clinker phases and hydration products. The observed (31)P chemical shifts (10 to -2 ppm), the (31)P chemical shift anisotropy, and the resemblance of the lineshapes in the (31)P and (29)Si MAS NMR spectra strongly suggest that (PO(4))(3-) units are incorporated in the calcium silicate phases, alite (Ca(3)SiO(5)) and belite (Ca(2)SiO(4)), by substitution for (SiO(4))(4-) tetrahedra. This assignment is further supported by a determination of the spin-lattice relaxation times for (31)P in alite and belite, which exhibit the same ratio as observed for the corresponding (29)Si relaxation times. From simulations of the intensities, observed in inversion-recovery spectra for a white Portland cement, it is deduced that 1.3% and 2.1% of the Si sites in alite and belite, respectively, are replaced by phosphorus. Charge balance may potentially be achieved to some extent by a coupled substitution mechanism where Ca(2+) is replaced by Fe(3+) ions, which may account for the interaction of the (31)P spins with paramagnetic Fe(3+) ions as observed for the ordinary Portland cements. A minor fraction of phosphorus may also be present in the separate phase Ca(3)(PO(4))(2), as indicated by the observation of a narrow resonance at delta((31)P) = 3.0 ppm for two of the studied cements. (31)P{(1)H} CP/MAS NMR spectra following the hydration of a white Portland cement show that the resonances from the hydrous phosphate species fall in the same spectral range as observed for (PO(4))(3-) incorporated in alite. This similarity and the absence of a large (31)P chemical shift ansitropy indicate that the hydrous (PO(4

  8. SCAM-STMAS: satellite-transition MAS NMR of quadrupolar nuclei with self-compensation for magic-angle misset

    NASA Astrophysics Data System (ADS)

    Ashbrook, Sharon E.; Wimperis, Stephen

    2003-06-01

    Several methods are available for the acquisition of high-resolution solid-state NMR spectra of quadrupolar nuclei with half-integer spin quantum number. Satellite-transition MAS (STMAS) offers an approach that employs only conventional MAS hardware and can yield substantial signal enhancements over the widely used multiple-quantum MAS (MQMAS) experiment. However, the presence of the first-order quadrupolar interaction in the satellite transitions imposes the requirement of a high degree of accuracy in the setting of the magic angle on the NMR probehead. The first-order quadrupolar interaction is only fully removed if the sample spinning angle, χ, equals cos-1(1/ 3) exactly and rotor synchronization is performed. The required level of accuracy is difficult to achieve experimentally, particularly when the quadrupolar interaction is large. If the magic angle is not set correctly, the first-order splitting is reintroduced and the spectral resolution is severely compromised. Recently, we have demonstrated a novel STMAS method (SCAM-STMAS) that is self-compensated for angle missets of up to ±1° via coherence transfer between the two different satellite transitions ST +( mI=+3/2↔+1/2) and ST -( mI=-1/2↔-3/2) midway through the t1 period. In this work we describe in more detail the implementation of SCAM-STMAS and demonstrate its wider utility through 23Na ( I=3/2), 87Rb ( I=3/2), 27Al ( I=5/2), and 59Co ( I=7/2) NMR. We discuss linewidths in SCAM-STMAS and the limits over which angle-misset compensation is achieved and we demonstrate that SCAM-STMAS is more tolerant of temporary spinning rate fluctuations than STMAS, resulting in less " t1 noise" in the two-dimensional spectrum. In addition, alternative correlation experiments, for example involving the use of double-quantum coherences, that similarly display self-compensation for angle misset are investigated. The use of SCAM-STMAS is also considered in systems where other high-order interactions, such as third

  9. Trifluoroethanol and 19F magic angle spinning nuclear magnetic resonance as a basic surface hydroxyl reactivity probe for zirconium(IV) hydroxide structures.

    PubMed

    DeCoste, Jared B; Glover, T Grant; Mogilevsky, Gregory; Peterson, Gregory W; Wagner, George W

    2011-08-01

    A novel technique for determining the relative accessibility and reactivity of basic surface hydroxyl sites by reacting various zirconium(IV) hydroxide materials with 2,2,2-trifluoroethanol (TFE) and characterizing the resulting material using (19)F magic angle spinning (MAS) nuclear magnetic resonance (NMR) is presented here. Studied here are three zirconium hydroxide samples, two unperturbed commercial materials, and one commercial material that is crushed by a pellet press. Factors, such as the ratio of bridging/terminal hydroxyls, surface area, and pore size distribution, are examined and found to affect the ability of the zirconium(IV) hydroxide to react with TFE. X-ray diffraction, nitrogen isotherms, and (1)H MAS NMR were used to characterize the unperturbed materials, while thermogravitric analysis with gas chromatography and mass spectrometry along with the (19)F MAS NMR were used to characterize the materials that were reacted with TFE. Zirconium hydroxide materials with a high surface area and a low bridging/terminal hydroxyl ratio were found to react TFE in the greatest amounts. PMID:21699226

  10. 13C MAS NMR studies of the effects of hydration on the cell walls of potatoes and Chinese water chestnuts.

    PubMed

    Tang, H; Belton, P S; Ng, A; Ryden, P

    1999-02-01

    13C NMR with magic angle spinning (MAS) has been employed to investigate the cell walls of potatoes and Chinese water chestnuts over a range of hydration levels. Both single-pulse excitation (SPEMAS) and cross-polarization (CPMAS) experiments were carried out. Hydration led to a substantial increase in signal intensities of galactan and galacturonan in the SPEMAS spectra and a decrease in line width, implying mobilization in the backbone and side chains of pectin. In CPMAS spectra of both samples, noncellulose components showed signal loss as hydration increased. However, the signals of some galacturonan in the 3(1) helix configuration remained in the spectra even when the water content was as high as 110%. Cellulose was unaffected. It is concluded that the pectic polysaccharides experience a distribution of molecular conformations and mobility, whereas cellulose remained as typical rigid solid. PMID:10563925

  11. Determination of nuclear distances and chemical-shift anisotropy from 1H MAS NMR sideband patterns of surface OH groups

    NASA Astrophysics Data System (ADS)

    Fenzke, Dieter; Hunger, Michael; Pfeifer, Harry

    A procedure is described which allows a separate determination of the proton-aluminum distance and of the chemical-shift anisotropy for the bridging OH groups of crystalline molecular sieves from their 'H MAS NMR sideband patterns. For the bridging OH groups which point into the 6-rings of the framework (line "c"), the 1H- 27Al distance could be determined to be 0.237 ± 0.004 and 0.234 ± 0.004 nm for molecular sieves of type H-Y and SAPO-5, respectively. In contrast, for the bridging OH groups of the 12-rings (line "b"), the corresponding distances are equal and distinctly larger, 0.248 ± 0.004 nm. Within the limits of error, the values of the chemical-shift anisotropy are equal (about 19 ± 2 ppm) except for line b of SAPO-5, which exhibits a much smaller value of 14.5 ± 2 ppm.

  12. Glycerin-Induced Conformational Changes in Bombyx mori Silk Fibroin Film Monitored by (13)C CP/MAS NMR and ¹H DQMAS NMR.

    PubMed

    Asakura, Tetsuo; Endo, Masanori; Hirayama, Misaki; Arai, Hiroki; Aoki, Akihiro; Tasei, Yugo

    2016-01-01

    In order to improve the stiff and brittle characteristics of pure Bombyx mori (B. mori) silk fibroin (SF) film in the dry state, glycerin (Glyc) has been used as a plasticizer. However, there have been very limited studies on the structural characterization of the Glyc-blended SF film. In this study, (13)C Cross Polarization/Magic Angle Spinning nuclear magnetic resonance (CP/MAS NMR) was used to monitor the conformational changes in the films by changing the Glyc concentration. The presence of only 5 wt % Glyc in the film induced a significant conformational change in SF where Silk I* (repeated type II β-turn and no α-helix) newly appeared. Upon further increase in Glyc concentration, the percentage of Silk I* increased linearly up to 9 wt % Glyc and then tended to be almost constant (30%). This value (30%) was the same as the fraction of Ala residue within the Silk I* form out of all Ala residues of SF present in B. mori mature silkworm. The ¹H DQMAS NMR spectra of Glyc-blended SF films confirmed the appearance of Silk I* in the Glyc-blended SF film. A structural model of Glyc-SF complex including the Silk I* form was proposed with the guidance of the Molecular Dynamics (MD) simulation using ¹H-¹H distance constraints obtained from the ¹H Double-Quantum Magic Angle Spinning (DQMAS) NMR spectra. PMID:27618034

  13. Interfacial enzyme kinetics of a membrane bound kinase analyzed by real-time MAS-NMR.

    PubMed

    Ullrich, Sandra J; Hellmich, Ute A; Ullrich, Stefan; Glaubitz, Clemens

    2011-05-01

    The simultaneous observation of interdependent reactions within different phases as catalyzed by membrane-bound enzymes is still a challenging task. One such enzyme, the Escherichia coli integral membrane protein diacylglycerol kinase (DGK), is a key player in lipid regulation. It catalyzes the generation of phosphatidic acid within the membrane through the transfer of the γ-phosphate from soluble MgATP to membrane-bound diacylglycerol. We demonstrate that time-resolved (31)P magic angle spinning NMR offers a unique opportunity to simultaneously and directly detect both ATP hydrolysis and diacylglycerol phosphorylation. This experiment demonstrates that solid-state NMR provides a general approach for the kinetic analysis of coupled reactions at the membrane interface regardless of their compartmentalization. The enzymatic activity of DGK was probed with different lipid substrates as well as ATP analogs. Our data yield conclusions about intersubunit cooperativity, reaction stoichiometries and phosphoryl transfer mechanism and are discussed in the context of known structural data. PMID:21423170

  14. A Cross-Polarization Based Rotating-Frame Separated-Local-Field NMR Experiment Under Ultrafast MAS Conditions

    PubMed Central

    Zhang, Rongchun; Damron, Joshua; Vosegaard, Thomas

    2014-01-01

    Rotating-frame separated-local-field solid-state NMR experiments measure highly resolved heteronuclear dipolar couplings which, in turn, provide valuable interatomic distances for structural and dynamic studies of molecules in the solid-state. Though many different rotating-frame SLF sequences have been put forth, recent gains in ultrafast MAS technology have considerably simplified pulse sequence requirements due to the suppression of proton-proton dipolar interactions. In this study we revisit a simple two-dimensional 1H-13C dipolar coupling/chemical shift correlation experiment using 13C detected Cross-Polarization with a Variable Contact time (CPVC) and systematically study the conditions for its optimal performance at 60 kHz MAS. In addition, we demonstrate the feasibility of a proton-detected version of the CPVC experiment. The theoretical analysis of the CPVC pulse sequence under different Hartmann-Hahn matching conditions confirms that it performs optimally under the ZQ (w1H-w1C=±wr) condition for polarization transfer. The limits of the cross polarization process are explored and precisely defined as a function of offset and Hartmann-Hahn mismatch via spin dynamics simulation and experiments on a powder sample of uniformly 13C-labeled L-isoleucine. Our results show that the performance of the CPVC sequence and subsequent determination of 1H-13C dipolar couplings are insensitive to 1H/13C frequency offset frequency when high RF fields are used on both RF channels. Conversely, the CPVC sequence is quite sensitive to the Hartmann-Hahn mismatch, particularly for systems with weak heteronuclear dipolar couplings. We demonstrate the use of the CPVC based SLF experiment as a tool to identify different carbon groups, and hope to motivate the exploration of more sophisticated 1H detected avenues for ultrafast MAS. PMID:25486635

  15. Solid-state 109Ag CP/MAS NMR spectroscopy of some diammine silver(I) complexes.

    PubMed

    Bowmaker, Graham A; Harris, Robin K; Assadollahzadeh, Behnam; Apperley, David C; Hodgkinson, Paul; Amornsakchai, Pornsawan

    2004-09-01

    Solid-state cross-polarization magic-angle spinning (CP/MAS) NMR spectra were recorded for the compounds [Ag(NH3)2]2SO4, [Ag(NH3)2]2SeO4 and [Ag(NH3))]NO3, all of which contain the linear or nearly linear two-coordinate [Ag(NH3)2]+ ion. The 109Ag CP/MAS NMR spectra show centrebands and associated spinning sideband manifolds typical for systems with moderately large shielding anisotropy, and splittings due to indirect 1J(109Ag,14N) spin-spin coupling. Spinning sideband analysis was used to determine the 109Ag shielding anisotropy and asymmetry parameters Deltasigma and eta from these spectra, yielding anisotropies in the range 1500-1600 ppm and asymmetry parameters in the range 0-0.3. Spectra were also recorded for 15N and (for the selenate) 77Se. In all cases the number of resonances observed is as expected for the crystallographic asymmetric units. The crystal structure of the selenate is reported for the first time. One-bond (107, 109Ag,15N) coupling constants are found to have magnitudes in the range 60-65 Hz. Density functional calculations of the Ag shielding tensor for model systems yield results that are in good agreement with the experimentally determined shielding parameters, and suggest that in the solid compounds Deltasigma and eta are reduced and increased, respectively, from the values calculated for the free [Ag(NH3)2]+ ion (1920 ppm and 0, respectively), primarily as a result of cation-cation interactions, for which there is evidence from the presence of metal-over-metal stacks of [Ag(NH3)2]+ ions in the solid-state structures of these compounds. PMID:15307067

  16. Sensitivity Gains, Linearity, and Spectral Reproducibility in Nonuniformly Sampled Multidimensional MAS NMR Spectra of High Dynamic Range.

    SciTech Connect

    Suiter, Christopher L.; Paramasivam, Sivakumar; Hou, Guangjin; Sun, Shangjin; Rice, David M.; Hoch, Jeffrey C.; Rovnyak, David S.; Polenova, Tatyana E.

    2014-04-22

    Recently, we have demonstrated that considerable inherent sensitivity gains are attained in MAS NMR spectra acquired by nonuniform sampling (NUS) and introduced maximum entropy interpolation (MINT) processing that assures the linearity of transformation between the time and frequency domains. In this report, we examine the utility of the NUS/MINT approach in multidimensional datasets possessing high dynamic range, such as homonuclear 13C–13C correlation spectra. We demonstrate on model compounds and on 1–73-(U-13C,15N)/74–108-(U-15N) E. coli thioredoxin reassembly, that with appropriately constructed 50 % NUS schedules inherent sensitivity gains of 1.7–2.1-fold are readily reached in such datasets. We show that both linearity and line width are retained under these experimental conditions throughout the entire dynamic range of the signals. Furthermore, we demonstrate that the reproducibility of the peak intensities is excellent in the NUS/MINT approach when experiments are repeated multiple times and identical experimental and processing conditions are employed. Finally, we discuss the principles for design and implementation of random exponentially biased NUS sampling schedules for homonuclear 13C–13C MAS correlation experiments that yield high quality artifact-free datasets.

  17. Structural investigations of Pu{sup III} phosphate by X-ray diffraction, MAS-NMR and XANES spectroscopy

    SciTech Connect

    Popa, Karin; Raison, Philippe E.; Martel, Laura; Martin, Philippe M.; Solari, Pier L.; Bouëxière, Daniel; Konings, Rudy J.M.; Somers, Joseph

    2015-10-15

    PuPO{sub 4} was prepared by a solid state reaction method and its crystal structure at room temperature was solved by powder X-ray diffraction combined with Rietveld refinement. High resolution XANES measurements confirm the +III valence state of plutonium, in agreement with valence bond derivation. The presence of the americium (as β{sup −} decay product of plutonium) in the +III oxidation state was determined based on XANES spectroscopy. High resolution solid state {sup 31}P NMR agrees with the XANES results and the presence of a solid-solution. - Graphical abstract: A full structural analysis of PuPO{sub 4} based on Rietveld analysis of room temperature X-ray diffraction data, XANES and MAS NMR measurements was performed. - Highlights: • The crystal structure of PuPO{sub 4} monazite is solved. • In PuPO{sub 4} plutonium is strictly trivalent. • The presence of a minute amount of Am{sup III} is highlighted. • We propose PuPO{sub 4} as a potential reference material for spectroscopic and microscopic studies.

  18. Acetylation of raw cotton for oil spill cleanup application: an FTIR and 13C MAS NMR spectroscopic investigation.

    PubMed

    Adebajo, Moses O; Frost, Ray L

    2004-08-01

    Fourier transform infrared (FTIR) and 13C MAS NMR spectroscopy have been used to investigate the acetylation of raw cotton samples with acetic anhydride without solvents in the presence of different amounts of 4-dimethylaminopyridine (DMAP) catalyst. This is a continuation of our previous investigation of acetylation of commercial cotton in an effort to develop hydrophobic, biodegradable, cellulosic sorbent materials for cleaning up oil spills. The FTIR data have again provided a clear evidence for successful acetylation. The NMR results further confirm the successful acetylation. The extent of acetylation was quantitatively determined using the weight percent gain (WPG) due to acetylation and by calculating the ratio R between the intensity of the acetyl C=O stretching band at 1740-1745 cm(-1) and the intensity of C-O stretching vibration of the cellulose backbone at about 1020-1040 cm(-1). The FTIR technique was found to be highly sensitive and reliable for the determination of the extent of acetylation. The level of acetylation of the raw cotton samples was found to be much higher than that of cotton fabrics and the previously studied commercial cotton. The variation of the R and WPG with reaction time, amount of DMAP catalyst and different samples of raw cotton is discussed. PMID:15249021

  19. Proton-detected scalar coupling based assignment strategies in MAS solid-state NMR spectroscopy applied to perdeuterated proteins

    NASA Astrophysics Data System (ADS)

    Linser, Rasmus; Fink, Uwe; Reif, Bernd

    2008-07-01

    Assignment of proteins in MAS (magic angle spinning) solid-state NMR relies so far on correlations among heteronuclei. This strategy is based on well dispersed resonances in the 15N dimension. In many complex cases like membrane proteins or amyloid fibrils, an additional frequency dimension is desirable in order to spread the amide resonances. We show here that proton detected HNCO, HNCA, and HNCACB type experiments can successfully be implemented in the solid-state. Coherences are sufficiently long lived to allow pulse schemes of a duration greater than 70 ms before incrementation of the first indirect dimension. The achieved resolution is comparable to the resolution obtained in solution-state NMR experiments. We demonstrate the experiments using a triply labeled sample of the SH3 domain of chicken α-spectrin, which was re-crystallized in H 2O/D 2O using a ratio of 1/9. We employ paramagnetic relaxation enhancement (PRE) using EDTA chelated Cu II to enable rapid data acquisition.

  20. Red coralline algae assessed as marine pH proxies using 11B MAS NMR

    NASA Astrophysics Data System (ADS)

    Cusack, M.; Kamenos, N. A.; Rollion-Bard, C.; Tricot, G.

    2015-02-01

    Reconstructing pH from biogenic carbonates using boron isotopic compositions relies on the assumption that only borate, and no boric acid, is present. Red coralline algae are frequently used in palaeoenvironmental reconstruction due to their widespread distribution and regular banding frequency. Prior to undertaking pH reconstructions using red coralline algae we tested the boron composition of the red coralline alga Lithothamnion glaciale using high field NMR. In bulk analysed samples, thirty percent of boron was present as boric acid. We suggest that prior to reconstructing pH using coralline algae 1) species-specific boron compositions and 2) within-skeleton special distributions of boron are determined for multiple species. This will enable site selective boron analyses to be conducted validating coralline algae as palaeo-pH proxies based on boron isotopic compositions.

  1. Analysis of Hydroperoxides in Solid Polyethylene by MAS (13)C NMR and EPR

    SciTech Connect

    ASSINK,ROGER A.; CELINA,MATHIAS C.; DUNBAR,TIMOTHY D.; ALAM,TODD M.; CLOUGH,ROGER LEE; GILLEN,KENNETH T.

    1999-11-19

    {sup 13}C-enriched polyethylene was subjected to {gamma}-irradiation in the presence of air at 25 and 80 C for total doses ranging from 71 to 355 kGy. Significant quantities of hydroperoxides were detected in the 25 C irradiated sample by {sup 13}C magic angle spinning NMR spectroscopy. This method of detection was performed on the solid polymer and required no chemical derivatization or addition of solvent. The chemical stability and subsequent products of the hydroperoxide species were studied by annealing the irradiated samples in air at temperatures ranging from 22 to 110 C. A time-temperature superposition analysis provided an activation energy of 108 kJ/mol for the hydroperoxide decomposition process. The primary products of hydroperoxide decomposition were ketones and secondary alcohols with lesser amounts of acids and esters. EPR measurements suggest that the reactive hydroperoxide species reside in the amorphous phase of polyethylene, consistent with degradation occurring in the amorphous phase.

  2. Red coralline algae assessed as marine pH proxies using 11B MAS NMR.

    PubMed

    Cusack, M; Kamenos, N A; Rollion-Bard, C; Tricot, G

    2015-01-01

    Reconstructing pH from biogenic carbonates using boron isotopic compositions relies on the assumption that only borate, and no boric acid, is present. Red coralline algae are frequently used in palaeoenvironmental reconstruction due to their widespread distribution and regular banding frequency. Prior to undertaking pH reconstructions using red coralline algae we tested the boron composition of the red coralline alga Lithothamnion glaciale using high field NMR. In bulk analysed samples, thirty percent of boron was present as boric acid. We suggest that prior to reconstructing pH using coralline algae 1) species-specific boron compositions and 2) within-skeleton special distributions of boron are determined for multiple species. This will enable site selective boron analyses to be conducted validating coralline algae as palaeo-pH proxies based on boron isotopic compositions. PMID:25640229

  3. Heteronuclear decoupling in MAS NMR in the intermediate to fast sample spinning regime

    NASA Astrophysics Data System (ADS)

    Equbal, Asif; Bjerring, Morten; Sharma, Kshama; Madhu, P. K.; Nielsen, Niels Chr.

    2016-01-01

    Heteronuclear spin decoupling in solid-state magic-angle spinning NMR is investigated to present methods overcoming interferences between rf irradiation and sample spinning in the intermediate to fast spinning regime. We demonstrate that a recent phase-alternated variant of refocused CW irradiation (rCWApA) provides efficient and robust decoupling in this regime. An extensive experimental and numerical comparison is presented for rCWApA and PISSARRO (phase-inverted supercycled sequence for attenuation of rotary resonance), previously introduced to quench rotary-resonance recoupling effects, under conditions with spinning frequencies between 30 and 60 kHz. Simulations are used to identify the effect of decoupling for various nuclear spin interactions.

  4. Quantitative {sup 29}Si MAS NMR spectroscopy of cement and silica fume containing paramagnetic impurities

    SciTech Connect

    Hilbig, H. . E-mail: hilbig@cbm.bv.tum.de; Koehler, F.H.; Schiessl, P.

    2006-02-15

    The low natural abundance and the long spin lattice relaxation time of {sup 29}Si lead to long measurement times and/or low signal-to-noise ratios using {sup 29}Si magic angle spinning NMR spectroscopy. By contrast, samples containing paramagnetic iron ions have much shorter relaxation times, making measurements up to seven times more efficient, but at the same time making quantitative analysis unreliable. To solve the problem, the spin-lattice relaxation times of ordinary Portland cement (opc) and silica fume with and without iron content has been determined with inversion recovery experiments. The effect of varying the spectrum repetition time on the quantitative analysis is demonstrated for mixtures of opc with silica fume. For opc and silica fume with iron impurities repetition times as short as 5 s has permitted accurate quantitative analysis of the silicates present in these materials.

  5. Red coralline algae assessed as marine pH proxies using 11B MAS NMR

    PubMed Central

    Cusack, M.; Kamenos, N. A.; Rollion-Bard, C.; Tricot, G.

    2015-01-01

    Reconstructing pH from biogenic carbonates using boron isotopic compositions relies on the assumption that only borate, and no boric acid, is present. Red coralline algae are frequently used in palaeoenvironmental reconstruction due to their widespread distribution and regular banding frequency. Prior to undertaking pH reconstructions using red coralline algae we tested the boron composition of the red coralline alga Lithothamnion glaciale using high field NMR. In bulk analysed samples, thirty percent of boron was present as boric acid. We suggest that prior to reconstructing pH using coralline algae 1) species-specific boron compositions and 2) within-skeleton special distributions of boron are determined for multiple species. This will enable site selective boron analyses to be conducted validating coralline algae as palaeo-pH proxies based on boron isotopic compositions. PMID:25640229

  6. Following Solid-Acid-Catalyzed Reactions by MAS NMR Spectroscopy in Liquid Phase -Zeolite-Catalyzed Conversion of Cyclohexanol in Water

    SciTech Connect

    Vjunov, Aleksei; Hu, Mary Y.; Feng, Ju; Camaioni, Donald M.; Mei, Donghai; Hu, Jian Z.; Zhao, Chen; Lercher, Johannes A.

    2014-01-07

    The catalytic conversion of cyclohexanol on zeolite HBEA in hot liquid water leads to dehydration as well as alkylation products. A novel micro autoclave suitable for application in MAS NMR at high temperatures and pressures is developed and successfully applied to obtain new insight into the mechanistic pathway leading to an understanding of the reactions under selected experimental conditions.

  7. High-resolution solid-state 13C CP MAS NMR spectra of some β-cyclodextrin inclusion complexes with nitriles

    NASA Astrophysics Data System (ADS)

    Okazaki, M.; McDowell, C. A.

    1983-11-01

    β-cyclodextrin inclusion complexes of 3-aminobenzonitrile, 4-aminobenzonitrile, and adamantane-1-carbonitrile were studied by means of high-resolution solid-state CP MAS 13C NMR spectroscopy. The interactions between the host and guest molecules are discussed.

  8. Through-space (19) F-(15) N couplings for the assignment of stereochemistry in flubenzimine.

    PubMed

    Ghiviriga, Ion; Rubinski, Miles A; Dolbier, William R

    2016-07-01

    Through-space (19) F-(15) N couplings revealed the configuration of flubenzimine, with the CF3 group on N4 pointing towards the lone pair of N5. The (19) F-(15) N coupling constants were measured at natural abundance using a spin-state selective indirect-detection pulse sequence. As (15) N-labelled proteins are routinely synthesized for NMR studies, through-space (19) F-(15) N couplings have the potential to probe the stereochemistry of these proteins by (19) F labelling of some amino acids or can reveal the site of docking of fluorine-containing drugs. Copyright © 2016 John Wiley & Sons, Ltd. PMID:27059012

  9. Roles of chemically inequivalent N(CH3)4 ions in phase transition temperatures in [N(CH3)4]2CoCl4 by single-crystal NMR and MAS NMR

    NASA Astrophysics Data System (ADS)

    Lim, Ae Ran

    2014-06-01

    The temperature dependences of the 1H and 13C spin-lattice relaxation time in the laboratory frame, T1, and in the rotating frame, T1ρ, in [N(CH3)4]2CoCl4 were measured by static nuclear magnetic resonance (NMR) and magic angle spinning (MAS) NMR. In the ferroelastic phase, 1H T1ρ underwent molecular motion according to the Bloembergen-Purcell-Pound theory. Two inequivalent ions, a-N(CH3)4 and b-N(CH3)4, were identified by 13C cross polarization (CP)/MAS NMR. On the basis of the 13C NMR results, the existence of two chemically inequivalent a-N(CH3)4 and b-N(CH3)4 ions in the ferroelectric phase and the existence of the ferroelastic twin structure of the N(CH3)4 ions in the ferroelastic phase were discussed.

  10. Hydrogen concentration dependence of 1H Knight shift in NbH x studied by 1H MAS NMR

    NASA Astrophysics Data System (ADS)

    Ueda, Takahiro; Hayashi, Shigenobu; Hayamizu, Kikuko

    1993-08-01

    Hydrogen concentration dependence of the Knight shift of protons in NbH x(0.05≤×≤1.05) has been studied by means of 1H MAS (magic angle sample spinning) NMR. In the mixed-phase samples of the α and β phases (0.05<×≤0.7), it is found that the 1H Knight shift of β-NbH x depends on the phase fraction. The shift variation in the β phase can be correlated with the unit cell volume, being explained by the variation of the density of electronic states at the Fermi level N(0) due to the compression of the crystal lattice. On the other hand, in the single β-phase samples (0.7<×≤1.05), the 1H Knight shift becomes smaller as the hydrogen concentration increases. This variation can be explained by increase in the number of electrons in the unit cell with the hydrogen concentration, resulting in the N(0) increase.

  11. N Photo-CIDNP MAS NMR To Reveal Functional Heterogeneity in Electron Donor of Different Plant Organisms.

    PubMed

    Janssen, Geertje J; Roy, Esha; Matysik, Jörg; Alia, A

    2012-02-01

    In plants and cyanobacteria, two light-driven electron pumps, photosystems I and II (PSI, PSII), facilitate electron transfer from water to carbon dioxide with quantum efficiency close to unity. While similar in structure and function, the reaction centers of PSI and PSII operate at widely different potentials with PSI being the strongest reducing agent known in living nature. Photochemically induced dynamic nuclear polarization (photo-CIDNP) in magic-angle spinning (MAS) nuclear magnetic resonance (NMR) measurements provides direct excess to the heart of large photosynthetic complexes (A. Diller, Alia, E. Roy, P. Gast, H.J. van Gorkom, J. Zaanen, H.J.M. de Groot, C. Glaubitz, J. Matysik, Photosynth. Res. 84, 303-308, 2005; Alia, E. Roy, P. Gast, H.J. van Gorkom, H.J.M. de Groot, G. Jeschke, J. Matysik, J. Am. Chem. Soc. 126, 12819-12826, 2004). By combining the dramatic signal increase obtained from the solid-state photo-CIDNP effect with (15)N isotope labeling of PSI, we were able to map the electron spin density in the active cofactors of PSI and study primary charge separation at atomic level. We compare data obtained from two different PSI proteins, one from spinach (Spinacia oleracea) and other from the aquatic plant duckweed (Spirodella oligorrhiza). Results demonstrate a large flexibility of the PSI in terms of its electronic architecture while their electronic ground states are strictly conserved. PMID:22303078

  12. Achievement of 1 H-19 F heteronuclear experiments using the conventional spectrometer with a shared single high band amplifier.

    PubMed

    Sakuma, Chiseko; Kurita, Jun-ichi; Furihata, Kazuo; Tashiro, Mitsuru

    2015-05-01

    The (1)H-(19) F heteronuclear NMR experiments were achieved using the conventional spectrometer equipped with a single high band amplifier and a (1)H/(19)F/(13) C double-tuned probe. Although double high band amplifiers are generally required to perform such experiments, a simple modification of pathway in the conventional spectrometer was capable of acquiring various (1)H-(19)F heteronuclear spectra. The efficiency of the present technique was demonstrated in an application for (19)F{(1)H} and (1)H{(19)F} saturation transfer difference experiments. PMID:25808615

  13. Identification of Li-Ion Battery SEI Compounds through (7)Li and (13)C Solid-State MAS NMR Spectroscopy and MALDI-TOF Mass Spectrometry.

    PubMed

    Huff, Laura A; Tavassol, Hadi; Esbenshade, Jennifer L; Xing, Wenting; Chiang, Yet-Ming; Gewirth, Andrew A

    2016-01-13

    Solid-state (7)Li and (13)C MAS NMR spectra of cycled graphitic Li-ion anodes demonstrate SEI compound formation upon lithiation that is followed by changes in the SEI upon delithiation. Solid-state (13)C DPMAS NMR shows changes in peaks associated with organic solvent compounds (ethylene carbonate and dimethyl carbonate, EC/DMC) upon electrochemical cycling due to the formation of and subsequent changes in the SEI compounds. Solid-state (13)C NMR spin-lattice (T1) relaxation time measurements of lithiated Li-ion anodes and reference poly(ethylene oxide) (PEO) powders, along with MALDI-TOF mass spectrometry results, indicate that large-molecular-weight polymers are formed in the SEI layers of the discharged anodes. MALDI-TOF MS and NMR spectroscopy results additionally indicate that delithiated anodes exhibit a larger number of SEI products than is found in lithiated anodes. PMID:26653886

  14. 1H and 23Na MAS NMR spectroscopy of cationic species in CO2 selective alkaline earth metal porous silicoaluminophosphates prepared via liquid and solid state ion exchange

    NASA Astrophysics Data System (ADS)

    Arévalo-Hidalgo, Ana G.; Dugar, Sneha; Fu, Riqiang; Hernández-Maldonado, Arturo J.

    2012-07-01

    The location of extraframework cations in Sr2+ and Ba2+ ion-exchanged SAPO-34 was estimated by means of 1H and 23Na MAS NMR spectroscopy and spectral deconvolution. Incorporation of the alkaline earth metal cations onto the SAPO framework was achieved via liquid state ion exchange, coupled partial detemplation/solid-state ion exchange, and combination of both techniques. MAS NMR revealed that the level of ion exchange was limited by the presence of protons and sodium cations near hexagonal prisms (site SI), which are relatively difficult to exchange with the alkaline earth metal due to steric and charge repulsion criteria. In addition, the presence of ammonium cations in the supercages facilitated the exchange of otherwise tenacious hydrogen as corroborated by unit cell compositional data as well as enhanced CO2 adsorption at low partial pressures. The extraframework ammonium species were produced from partial detemplation of the structure-directing agent employed for the SAPO-34 synthesis, tetraethylammonium.

  15. The metabolic profile of lemon juice by proton HR-MAS NMR: the case of the PGI Interdonato Lemon of Messina.

    PubMed

    Cicero, Nicola; Corsaro, Carmelo; Salvo, Andrea; Vasi, Sebastiano; Giofré, Salvatore V; Ferrantelli, Vincenzo; Di Stefano, Vita; Mallamace, Domenico; Dugo, Giacomo

    2015-01-01

    We have studied by means of High Resolution Magic Angle Spinning Nuclear Magnetic Resonance (HR-MAS NMR) the metabolic profile of the famous Sicilian lemon known as 'Interdonato Lemon of Messina PGI'. The PGI Interdonato Lemon of Messina possesses high organoleptic and healthy properties and is recognised as one of the most nutrient fruits. In particular, some of its constituents are actively studied for their chemo-preventive and therapeutic properties. In this paper, we have determined by means of HR-MAS NMR spectroscopy the molar concentration of the main metabolites constituent the juice of PGI Interdonato Lemon of Messina in comparison with that of the not-PGI Interdonato Lemon of Turkey. Our aim is to develop an analytical technique, in order to determine a metabolic fingerprint able to reveal commercial frauds in national and international markets. PMID:25702767

  16. CHARACTERIZATION OF TANK 19F SAMPLES

    SciTech Connect

    Oji, L.; Diprete, D.; Click, D.

    2009-12-17

    The Savannah River National Laboratory (SRNL) was asked by Liquid Waste Operations to characterize Tank 19F closure samples. Tank 19F slurry samples analyzed included the liquid and solid fractions derived from the slurry materials along with the floor scrape bottom Tank 19F wet solids. These samples were taken from Tank 19F in April 2009 and made available to SRNL in the same month. Because of limited amounts of solids observed in Tank 19F samples, the samples from the north quadrants of the tank were combined into one Tank 19F North Hemisphere sample and similarly the south quadrant samples were combined into one Tank 19F South Hemisphere sample. These samples were delivered to the SRNL shielded cell. The Tank 19F samples were analyzed for radiological, chemical and elemental components. Where analytical methods yielded additional contaminants other than those requested by the customer, these results were also reported. The target detection limits for isotopes analyzed were based on detection values of 1E-04 {micro}Ci/g for most radionuclides and customer desired detection values of 1E-05 {micro}Ci/g for I-129, Pa-231, Np-237, and Ra-226. While many of the target detection limits, as specified in the technical task request and task technical and quality assurance plans were met for the species characterized for Tank 19F, some were not met. In a number of cases, the relatively high levels of radioactive species of the same element or a chemically similar element precluded the ability to measure some isotopes to low levels. SRNL, in conjunction with the plant customer, reviewed all these cases and determined that the impacts were negligible.

  17. A spectrometer designed for 6.7 and 14.1 T DNP-enhanced solid-state MAS NMR using quasi-optical microwave transmission.

    PubMed

    Pike, Kevin J; Kemp, Thomas F; Takahashi, Hiroki; Day, Robert; Howes, Andrew P; Kryukov, Eugeny V; MacDonald, James F; Collis, Alana E C; Bolton, David R; Wylde, Richard J; Orwick, Marcella; Kosuga, Kosuke; Clark, Andrew J; Idehara, Toshitaka; Watts, Anthony; Smith, Graham M; Newton, Mark E; Dupree, Ray; Smith, Mark E

    2012-02-01

    A Dynamic Nuclear Polarisation (DNP) enhanced solid-state Magic Angle Spinning (MAS) NMR spectrometer operating at 6.7 T is described and demonstrated. The 187 GHz TE(13) fundamental mode of the FU CW VII gyrotron is used as the microwave source for this magnetic field strength and 284 MHz (1)H DNP-NMR. The spectrometer is designed for use with microwave frequencies up to 395 GHz (the TE(16) second-harmonic mode of the gyrotron) for DNP at 14.1T (600 MHz (1)H NMR). The pulsed microwave output from the gyrotron is converted to a quasi-optical Gaussian beam using a Vlasov antenna and transmitted to the NMR probe via an optical bench, with beam splitters for monitoring and adjusting the microwave power, a ferrite rotator to isolate the gyrotron from the reflected power and a Martin-Puplett interferometer for adjusting the polarisation. The Gaussian beam is reflected by curved mirrors inside the DNP-MAS-NMR probe to be incident at the sample along the MAS rotation axis. The beam is focussed to a ~1 mm waist at the top of the rotor and then gradually diverges to give much more efficient coupling throughout the sample than designs using direct waveguide irradiation. The probe can be used in triple channel HXY mode for 600 MHz (1)H and double channel HX mode for 284 MHz (1)H, with MAS sample temperatures ≥85 K. Initial data at 6.7 T and ~1 W pulsed microwave power are presented with (13)C enhancements of 60 for a frozen urea solution ((1)H-(13)C CP), 16 for bacteriorhodopsin in purple membrane ((1)H-(13)C CP) and 22 for (15)N in a frozen glycine solution ((1)H-(15)N CP) being obtained. In comparison with designs which irradiate perpendicular to the rotation axis the approach used here provides a highly efficient use of the incident microwave beam and an NMR-optimised coil design. PMID:22218011

  18. A spectrometer designed for 6.7 and 14.1 T DNP-enhanced solid-state MAS NMR using quasi-optical microwave transmission

    NASA Astrophysics Data System (ADS)

    Pike, Kevin J.; Kemp, Thomas F.; Takahashi, Hiroki; Day, Robert; Howes, Andrew P.; Kryukov, Eugeny V.; MacDonald, James F.; Collis, Alana E. C.; Bolton, David R.; Wylde, Richard J.; Orwick, Marcella; Kosuga, Kosuke; Clark, Andrew J.; Idehara, Toshitaka; Watts, Anthony; Smith, Graham M.; Newton, Mark E.; Dupree, Ray; Smith, Mark E.

    2012-02-01

    A Dynamic Nuclear Polarisation (DNP) enhanced solid-state Magic Angle Spinning (MAS) NMR spectrometer operating at 6.7 T is described and demonstrated. The 187 GHz TE13 fundamental mode of the FU CW VII gyrotron is used as the microwave source for this magnetic field strength and 284 MHz 1H DNP-NMR. The spectrometer is designed for use with microwave frequencies up to 395 GHz (the TE16 second-harmonic mode of the gyrotron) for DNP at 14.1 T (600 MHz 1H NMR). The pulsed microwave output from the gyrotron is converted to a quasi-optical Gaussian beam using a Vlasov antenna and transmitted to the NMR probe via an optical bench, with beam splitters for monitoring and adjusting the microwave power, a ferrite rotator to isolate the gyrotron from the reflected power and a Martin-Puplett interferometer for adjusting the polarisation. The Gaussian beam is reflected by curved mirrors inside the DNP-MAS-NMR probe to be incident at the sample along the MAS rotation axis. The beam is focussed to a ˜1 mm waist at the top of the rotor and then gradually diverges to give much more efficient coupling throughout the sample than designs using direct waveguide irradiation. The probe can be used in triple channel HXY mode for 600 MHz 1H and double channel HX mode for 284 MHz 1H, with MAS sample temperatures ⩾85 K. Initial data at 6.7 T and ˜1 W pulsed microwave power are presented with 13C enhancements of 60 for a frozen urea solution (1H-13C CP), 16 for bacteriorhodopsin in purple membrane (1H-13C CP) and 22 for 15N in a frozen glycine solution (1H-15N CP) being obtained. In comparison with designs which irradiate perpendicular to the rotation axis the approach used here provides a highly efficient use of the incident microwave beam and an NMR-optimised coil design.

  19. (sup 6)Li and (sup 7)MAS NMR and In Situ X-Ray Diffraction Studies of Lithium Manganate Cathode Materials

    SciTech Connect

    Lee, Young Joo; Wang, Francis; Grey, Clare P.; Mukerjee, Sanjeev; McBreen, James

    1998-11-30

    {sup 6}Li MAS NMR spectra of lithium manganese oxides with differing manganese oxidation states (LiMn{sub 2}O{sub 4}, Li{sub 4}Mn{sub 5}O{sub 12}, Li{sub 2}Mn{sub 4}O{sub 9}, and Li{sub 2}Mn{sub 2}O{sub 4}) are presented. Improved understanding of the lithium NMR spectra of these model compounds is used to interpret the local structure of the Li{sub x}Mn{sub 2}O{sub 4} cathode materials following electrochemical Li{sup +} deintercalation to various charging levels. In situ x-ray diffraction patterns of the same material during charging are also reported for comparison. Evidence for two-phase behavior for x <0.4 (Li{sub x}Mn{sub 2}O{sub 4}) is seen by both NMR and diffraction.

  20. Global Fold of Human Cannabinoid Type 2 Receptor Probed by Solid-State 13C-, 15N-MAS NMR and Molecular Dynamics Simulations

    PubMed Central

    Kimura, Tomohiro; Vukoti, Krishna; Lynch, Diane L.; Hurst, Dow P.; Grossfield, Alan; Pitman, Michael C.; Reggio, Patricia H.; Yeliseev, Alexei A.; Gawrisch, Klaus

    2014-01-01

    The global fold of human cannabinoid type 2 (CB2) receptor in the agonist-bound active state in lipid bilayers was investigated by solid-state 13C- and 15N magic-angle spinning (MAS) NMR, in combination with chemical-shift prediction from a structural model of the receptor obtained by microsecond-long molecular dynamics (MD) simulations. Uniformly 13C-, and 15N-labeled CB2 receptor was expressed in milligram quantities by bacterial fermentation, purified, and functionally reconstituted into liposomes. 13C MAS NMR spectra were recorded without sensitivity enhancement for direct comparison of Cα, Cβ, and C=O bands of superimposed resonances with predictions from protein structures generated by MD. The experimental NMR spectra matched the calculated spectra reasonably well indicating agreement of the global fold of the protein between experiment and simulations. In particular, the 13C chemical shift distribution of Cα resonances was shown to be very sensitive to both the primary amino acid sequence and the secondary structure of CB2. Thus the shape of the Cα band can be used as an indicator of CB2 global fold. The prediction from MD simulations indicated that upon receptor activation a rather limited number of amino acid residues, mainly located in the extracellular loop 2 and the second half of intracellular loop 3, change their chemical shifts significantly (≥1.5 ppm for carbons and ≥5.0 ppm for nitrogens). Simulated two-dimensional 13Cα(i)-13C=O(i) and 13C=O(i)-15NH(i+1) dipolar-interaction correlation spectra provide guidance for selective amino-acid labeling and signal assignment schemes to study the molecular mechanism of activation of CB2 by solid-state MAS NMR. PMID:23999926

  1. The guest ordering and dynamics in urea inclusion compounds studied by solid-state 1H and 13C MAS NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Yang, Xiaorong; Müller, Klaus

    2011-12-01

    Urea inclusion compounds with different guest species were studied by 13C CP MAS and 1H MAS NMR spectroscopy. It is possible to arrange the asymmetric guest species in three different ways: head-head, head-tail and tail-tail. 13C CP MAS NMR studies indicate that the preference arrangement is determined by the interaction strength of the end functional groups. 13C relaxation experiments are used to study the dynamic properties of urea inclusion compounds. 13C relaxation studies on urea inclusion compounds with n-alkane or decanoic acid show that the 13C T1 and 13C T1ρ values exhibit the position dependence towards the center of the chain, indicating internal chain mobility. The analysis of variable-temperature 13C T1ρ experiments on urea inclusion compounds with hexadecane and pentadecane, for the first time, suggests that chain fluctuations and lateral motion of n-alkane guests may contribute to the 13C T1ρ relaxation.

  2. Pr 2Sn 2O 7 and Sm 2Sn 2O 7 as High-Temperature Shift Thermometers in Variable-Temperature 119Sn MAS NMR

    NASA Astrophysics Data System (ADS)

    Vanmoorsel, G. J. M. P.; Vaneck, E. R. H.; Grey, C. P.

    Two shift thermometers have been developed in order to determine the exact sample temperature at elevated temperatures in MAS NMR. The probe was calibrated for different temperatures and bearing pressures using the structural phase transition NMR spectra of carbon tetrabromide (319.86 K), DABCO (351.08 K), rubidium nitrate (437 K), and lithium sodium sulfate (791 K). Temperature-dependent 119Sn MAS NMR spectra of Pr 2Sn 2O 7 and Sm 2Sn 2O 7 were then recorded. The temperature dependence is caused by the hyperfine interaction between the paramagnetic electron spin and the 119Sn nucleus. Pr 2Sn 2O 7 proved to be an extremely sensitive linear high-temperature shift thermometer: its sensitivity is 14.1 ppm/K at room temperature and 2.7 ppm/K at 790 K. Sm 2Sn 2O 7 also proved to be very sensitive to temperature, although its dependence was not linear. At room temperature its sensitivity is 1.1 ppm/K. The temperature dependence of the shift can be fitted to an equation derived from the Van Vleck equation, taking into account the ground and the first excited states of Sm 3+.

  3. Obtaining aluminas from the thermal decomposition of their different precursors: An {sup 27}Al MAS NMR and X-ray powder diffraction studies

    SciTech Connect

    Chagas, L.H.; De Carvalho, G.S.G.; San Gil, R.A.S.; Chiaro, S.S.X.; Leitão, A.A.; Diniz, R.

    2014-01-01

    Graphical abstract: - Highlights: • We synthesized three precursors of alumina from different methods. • The calcination of the precursors generated several alumina polymorphs. • XRD and NMR were used for structural investigation of the polymorphs. • The synthesis route determines the structural and textural properties of the solids. - Abstract: A commercial sample of Boehmite was used as precursor of alumina polymorphs. For comparison, three other precursors were synthesized from different methods. Particularly, the use of excess of urea promoted a very crystalline form of basic aluminum carbonate. The characteristics of the four precursors were investigated by thermal, vibrational and X-ray powder diffraction (XRD) analysis. Additionally, the nuclear magnetic resonance, with magic angle spinning ({sup 27}Al MAS NMR), was used to verify the coordination of aluminum cations. Each precursor was calcined at various temperatures generating alumina polymorphs, which were structurally analyzed by XRD and {sup 27}Al MAS NMR. Due to interest in catalysis supports, special attention was given to the γ-Al{sub 2}O{sub 3} phase, which in addition to structural investigation was subjected to textural analysis. The results showed that, from different synthesis procedures and common route of calcination, one can obtain materials with the same composition but with different structural and textural properties, which in turn can significantly influence the performance of a supported catalyst.

  4. Solid state structure by X-ray and 13C CP/MAS NMR of new 5-[2-(N,N-dimethylamino)ethoxy]-4,7-dimethylcoumarins

    NASA Astrophysics Data System (ADS)

    Ostrowska, Kinga; Maciejewska, Dorota; Dobrzycki, Łukasz; Socha, Pawel

    2016-05-01

    5-[2-(N,N-dimethylamino)ethoxy]-4,7-dimethylcoumarin (1) and 6-acetyl-5-[2-(N,N-dimethylamino)ethoxy]-4,7-dimethylcoumarin (2), structurally related, were synthesized using both conventional and microwave-assisted approach. An impact of acetyl groups on the molecular structure of coumarin derivatives has been examined. Crystals of 2 were investigated using single crystal and powder X-ray diffraction techniques. Compound 2 crystallizes forming two polymorphs (denoted as 2_1 and 2_2), both belonging to P21/c space group. Both polymorphs are comparably stable and can be formed simultaneously during crystallization process. The solid state structure was also analysed using the fully resolved 13C CP/MAS NMR. The double signals with the intensity ratio of about 1:1 which were observed in the 13C CP/MAS NMR spectrum of compound 1 must arise due to the presence of two conformers of 1. In contrast, NMR spectrum recorded for powder mixture of two polymorphs of compound 2 displays no signal splitting. This is related to structural similarities of molecules in both polymorphs.

  5. The study of a monocotyledon abscission zone using microscopic, chemical, enzymatic and solid state 13C CP/MAS NMR analyses.

    PubMed

    Henderson, J; Davies, H A; Heyes, S J; Osborne, D J

    2001-01-01

    We have investigated distinguishing features in cells of the abscission zone of a monocotyledon fruit, the oil palm Elaeis guineensis. The cell walls of the abscission zone and the subtending mesocarp and pedicel have been analysed by light and transmission electron microscopy, by chemical methods and by solid state 13C CP/MAS NMR spectroscopy. Results show that these abscission zone cells have specific characteristics which include high levels of unmethylated pectin in the walls and an inducible (x35) polygalacturonase enzyme expression. Together these findings help to explain the localised precision of cell separation events. PMID:11219806

  6. Satellite transitions acquired in real time by magic angle spinning (STARTMAS): ``Ultrafast'' high-resolution MAS NMR spectroscopy of spin I =3/2 nuclei

    NASA Astrophysics Data System (ADS)

    Thrippleton, Michael J.; Ball, Thomas J.; Wimperis, Stephen

    2008-01-01

    The satellite transitions acquired in real time by magic angle spinning (STARTMAS) NMR experiment combines a train of pulses with sample rotation at the magic angle to refocus the first- and second-order quadrupolar broadening of spin I =3/2 nuclei in a series of echoes, while allowing the isotropic chemical and quadrupolar shifts to evolve. The result is real-time isotropic NMR spectra at high spinning rates using conventional MAS equipment. In this paper we describe in detail how STARTMAS data can be acquired and processed with ease on commercial equipment. We also discuss the advantages and limitations of the approach and illustrate the discussion with numerical simulations and experimental data from four different powdered solids.

  7. Bonding Preferences of Non-Bridging Oxygens in Calcium Aluminosilicate Glass: Evidence from O-17 MAS and 3QMAS NMR on Calcium Aluminate Glass

    NASA Astrophysics Data System (ADS)

    Allwardt, J. R.; Lee, S.; Stebbins, J.

    2001-12-01

    Non-bridging oxygens (NBO's) play a significant role in the thermodynamic and transport properties in glasses and silicate melts. Previous oxygen-17 (O-17) triple quantum magic angle spinning (3QMAS NMR) data have shown the presence of NBO's in several calcium aluminosilicate (CAS) glasses on the CaAl2O4-SiO2 join (Stebbins and Xu 1997). The observed chemical shifts of these glasses are similar to those for the NBO in calcium silicate glasses (Stebbins et al. 1997 and Stebbins et al 1999); however, a recent O-17 MAS NMR study of crystalline CaAl2O4 showed that the NBO peak in an associated impurity phase is shifted to a higher frequency by 30 to 40 ppm from that of CAS and Ca-silicate glasses (Stebbins et al. in press). This finding suggests that Si is the preferred network cation for NBO's in aluminosilicate glasses and melts at the glass transition temperature. The preference for Si over that of Al as the network cation host for NBO's has also been suggested by Raman and other spectroscopic techniques (Mysen 1988). To investigate this apparent preference for Si-NBO, O-17 3QMAS and MAS experiments were conducted to examine the location of the NBO peak in the spectra of a calcium aluminate glass. Since the CaAl2O4 glass is difficult to make by conventional cooling methods, the binary eutectic composition (63CaO-37Al2O3) was chosen. The resulting O-17 MAS spectrum shows an intense, relatively narrow peak centered at 72 ppm, which nearly coincides with the peak location and width of the Al-O-Al peak in the crystalline Ca-aluminates (Stebbins et al. in press.) (70 ppm). There is a broader, less intense peak centered at 155 ppm that is assigned to the Al-NBO peak. This peak is in approximately the same location as that for a Ca-aluminate phase reported by Stebbins et al. (in press) (137 ppm). In addition, our 3QMAS data show that the peak maximum of the NBO in the Ca-aluminate (-85 and 150 ppm in isotropic and MAS dimensions, respectively) differs significantly from

  8. {sup 13}C chemical shift anisotropies for carbonate ions in cement minerals and the use of {sup 13}C, {sup 27}Al and {sup 29}Si MAS NMR in studies of Portland cement including limestone additions

    SciTech Connect

    Sevelsted, Tine F.; Herfort, Duncan

    2013-10-15

    {sup 13}C isotropic chemical shifts and chemical shift anisotropy parameters have been determined for a number of inorganic carbonates relevant in cement chemistry from slow-speed {sup 13}C MAS or {sup 13}C({sup 1}H) CP/MAS NMR spectra (9.4 T or 14.1 T) for {sup 13}C in natural abundance. The variation in the {sup 13}C chemical shift parameters is relatively small, raising some doubts that different carbonate species in Portland cement-based materials may not be sufficiently resolved in {sup 13}C MAS NMR spectra. However, it is shown that by combining {sup 13}C MAS and {sup 13}C({sup 1}H) CP/MAS NMR carbonate anions in anhydrous and hydrated phases can be distinguished, thereby providing valuable information about the reactivity of limestone in cement blends. This is illustrated for three cement pastes prepared from an ordinary Portland cement, including 0, 16, and 25 wt.% limestone, and following the hydration for up to one year. For these blends {sup 29}Si MAS NMR reveals that the limestone filler accelerates the hydration for alite and also results in a smaller fraction of tetrahedrally coordinated Al incorporated in the C-S-H phase. The latter result is more clearly observed in {sup 27}Al MAS NMR spectra of the cement–limestone blends and suggests that dissolved aluminate species in the cement–limestone blends readily react with carbonate ions from the limestone filler, forming calcium monocarboaluminate hydrate. -- Highlights: •{sup 13}C chemical shift anisotropies for inorganic carbonates from {sup 13}C MAS NMR. •Narrow {sup 13}C NMR chemical shift range (163–171 ppm) for inorganic carbonates. •Anhydrous and hydrated carbonate species by {sup 13}C MAS and {sup 13}C({sup 1}H) CP/MAS NMR. •Limestone accelerates the hydration for alite in Portland – limestone cements. •Limestone reduces the amount of aluminium incorporated in the C-S-H phase.

  9. Low-power broadband homonuclear dipolar recoupling in MAS NMR by two-fold symmetry pulse schemes for magnetization transfers and double-quantum excitation

    NASA Astrophysics Data System (ADS)

    Teymoori, Gholamhasan; Pahari, Bholanath; Edén, Mattias

    2015-12-01

    We provide an experimental, numerical, and high-order average Hamiltonian evaluation of an open-ended series of homonuclear dipolar recoupling sequences, SR2 2p 1 with p = 1, 2, 3, … . While operating at a very low radio-frequency (rf) power, corresponding to a nutation frequency of 1/2 of the magic-angle spinning (MAS) rate (ωnut =ωr / 2), these recursively generated double-quantum (2Q) dipolar recoupling schemes offer a progressively improved compensation to resonance offsets and rf inhomogeneity for increasing pulse-sequence order p. The excellent recoupling robustness to these experimental obstacles, as well as to CSA, is demonstrated for 2Q filtering (2QF) experiments and for driving magnetization transfers in 2D NMR correlation spectroscopy, where the sequences may provide either double or zero quantum dipolar Hamiltonians during mixing. Experimental and numerical demonstrations, which mostly target conditions of "ultra-fast" MAS (≳50 kHz) and high magnetic fields, are provided for recoupling of 13C across a wide range of isotropic and anisotropic chemical shifts, as well as dipolar coupling constants, encompassing [2,3-13C2 ]alanine, [1,3-13C2 ]alanine, diammonium [1,4-13C2 ]fumarate, and [U-13 C]tyrosine. When compared at equal power levels, a superior performance is observed for the SR2p 1 sequences with p ⩾ 3 relative to existing and well-established 2Q recoupling techniques. At ultra-fast MAS, proton decoupling is redundant during the homonuclear dipolar recoupling of dilute spins in organic solids, which renders the family of SR2p 1 schemes the first efficient 2Q recoupling option for general applications, such as 2Q-1Q correlation NMR and high-order multiple-quantum excitation, under truly low-power rf conditions.

  10. Low-power broadband homonuclear dipolar recoupling in MAS NMR by two-fold symmetry pulse schemes for magnetization transfers and double-quantum excitation.

    PubMed

    Teymoori, Gholamhasan; Pahari, Bholanath; Edén, Mattias

    2015-12-01

    We provide an experimental, numerical, and high-order average Hamiltonian evaluation of an open-ended series of homonuclear dipolar recoupling sequences, SR [Formula: see text] with p=1,2,3,…. While operating at a very low radio-frequency (rf) power, corresponding to a nutation frequency of 1/2 of the magic-angle spinning (MAS) rate (ωnut=ωr/2), these recursively generated double-quantum (2Q) dipolar recoupling schemes offer a progressively improved compensation to resonance offsets and rf inhomogeneity for increasing pulse-sequence order p. The excellent recoupling robustness to these experimental obstacles, as well as to CSA, is demonstrated for 2Q filtering (2QF) experiments and for driving magnetization transfers in 2D NMR correlation spectroscopy, where the sequences may provide either double or zero quantum dipolar Hamiltonians during mixing. Experimental and numerical demonstrations, which mostly target conditions of "ultra-fast" MAS (≳50kHz) and high magnetic fields, are provided for recoupling of (13)C across a wide range of isotropic and anisotropic chemical shifts, as well as dipolar coupling constants, encompassing [2,3-(13)C2]alanine, [1,3-(13)C2]alanine, diammonium [1,4-(13)C2]fumarate, and [U-(13)C]tyrosine. When compared at equal power levels, a superior performance is observed for the SR [Formula: see text] sequences with p⩾3 relative to existing and well-established 2Q recoupling techniques. At ultra-fast MAS, proton decoupling is redundant during the homonuclear dipolar recoupling of dilute spins in organic solids, which renders the family of SR [Formula: see text] schemes the first efficient 2Q recoupling option for general applications, such as 2Q-1Q correlation NMR and high-order multiple-quantum excitation, under truly low-power rf conditions. PMID:26515279

  11. Strategies to enhance signal intensity with paramagnetic fluorine-labelled lanthanide complexes as probes for 19F magnetic resonance.

    PubMed

    Chalmers, Kirsten H; Botta, Mauro; Parker, David

    2011-01-28

    The synthesis and (19)F NMR spectroscopic properties are reported for three series of CF(3)-labelled lanthanide(III) complexes, based on mono- and diamide cyclen ligands. Analyses of variable temperature, pH and field (19)F, (17)O and (1)H NMR spectroscopic experiments are reported and the merits of a triphosphinate mono-amide complex defined by virtue of its favourable isomer distribution and attractive relaxation properties. These lead to an enhanced sensitivity of detection in (19)F magnetic resonance experiments versus a diamagnetic Y(III) analogue, paving the way for future shift and imaging studies. PMID:21127807

  12. Observation of 1H-13C and 1H-1H proximities in a paramagnetic solid by NMR at high magnetic field under ultra-fast MAS.

    PubMed

    Li, Shenhui; Trébosc, Julien; Lafon, Olivier; Zhou, Lei; Shen, Ming; Pourpoint, Frédérique; Amoureux, Jean-Paul; Deng, Feng

    2015-02-01

    The assignment of NMR signals in paramagnetic solids is often challenging since: (i) the large paramagnetic shifts often mask the diamagnetic shifts specific to the local chemical environment, and (ii) the hyperfine interactions with unpaired electrons broaden the NMR spectra and decrease the coherence lifetime, thus reducing the efficiency of usual homo- and hetero-nuclear NMR correlation experiments. Here we show that the assignment of (1)H and (13)C signals in isotopically unmodified paramagnetic compounds with moderate hyperfine interactions can be facilitated by the use of two two-dimensional (2D) experiments: (i) (1)H-(13)C correlations with (1)H detection and (ii) (1)H-(1)H double-quantum↔single-quantum correlations. These methods are experimentally demonstrated on isotopically unmodified copper (II) complex of l-alanine at high magnetic field (18.8 T) and ultra-fast Magic Angle Spinning (MAS) frequency of 62.5 kHz. Compared to (13)C detection, we show that (1)H detection leads to a 3-fold enhancement in sensitivity for (1)H-(13)C 2D correlation experiments. By combining (1)H-(13)C and (1)H-(1)H 2D correlation experiments with the analysis of (13)C longitudinal relaxation times, we have been able to assign the (1)H and (13)C signals of each l-alanine ligand. PMID:25557861

  13. Interactions between Nafion resin and protonated dodecylamine modified montmorillonite: a solid state NMR study.

    PubMed

    Zhang, Limin; Xu, Jun; Hou, Guangjin; Tang, Huiru; Deng, Feng

    2007-07-01

    A series of nanocomposites have been prepared from perfluorosulfonylfluoride copolymer resin (Nafion) and layered montmorillonite (MMT) modified with protonated dodecylamine by conventional sol-gel intercalation. The structure of these nanocomposite materials have been characterized using FT-IR, elemental analysis, XRD and solid state NMR techniques, including 19F magic-angle spinning (MAS) NMR, 19F NMR relaxation time measurements, 29Si MAS, 1H MAS, 1H-13C cross-polarization magic-angle spinning (CPMAS), and 1H-13C heteronuclear correlation (HETCOR) 2D NMR. The results showed that thermal stability of Nafion was improved moderately by the addition of dodecylamine modified MMT without intercalation. FT-IR and 29Si MAS NMR results indicated that dodecylamine modification did not result in obvious changes in the MMT lattice structure. The XRD results showed that the protonated dodecylamine has been embedded and intercalated into the MMT interlayers, whereas Nafion was not. Elemental analysis results also suggested that some dodecylamine was adsorbed on the surface of MMT. 1H-13C HETCOR 2D NMR experiment clearly indicated that strong electrostatic interactions were present between the NH+3 group of dodecylamine and the fluorine-containing groups (CF3, OCF2, and SCF2) of Nafion resin. Such electrostatic interactions are probably the major contributors for the improved thermal stability of the resultant composite materials. PMID:17382953

  14. Constant-time 2D and 3D through-bond correlation NMR spectroscopy of solids under 60 kHz MAS

    NASA Astrophysics Data System (ADS)

    Zhang, Rongchun; Ramamoorthy, Ayyalusamy

    2016-01-01

    Establishing connectivity and proximity of nuclei is an important step in elucidating the structure and dynamics of molecules in solids using magic angle spinning (MAS) NMR spectroscopy. Although recent studies have successfully demonstrated the feasibility of proton-detected multidimensional solid-state NMR experiments under ultrafast-MAS frequencies and obtaining high-resolution spectral lines of protons, assignment of proton resonances is a major challenge. In this study, we first re-visit and demonstrate the feasibility of 2D constant-time uniform-sign cross-peak correlation (CTUC-COSY) NMR experiment on rigid solids under ultrafast-MAS conditions, where the sensitivity of the experiment is enhanced by the reduced spin-spin relaxation rate and the use of low radio-frequency power for heteronuclear decoupling during the evolution intervals of the pulse sequence. In addition, we experimentally demonstrate the performance of a proton-detected pulse sequence to obtain a 3D 1H/13C/1H chemical shift correlation spectrum by incorporating an additional cross-polarization period in the CTUC-COSY pulse sequence to enable proton chemical shift evolution and proton detection in the incrementable t1 and t3 periods, respectively. In addition to through-space and through-bond 13C/1H and 13C/13C chemical shift correlations, the 3D 1H/13C/1H experiment also provides a COSY-type 1H/1H chemical shift correlation spectrum, where only the chemical shifts of those protons, which are bonded to two neighboring carbons, are correlated. By extracting 2D F1/F3 slices (1H/1H chemical shift correlation spectrum) at different 13C chemical shift frequencies from the 3D 1H/13C/1H spectrum, resonances of proton atoms located close to a specific carbon atom can be identified. Overall, the through-bond and through-space homonuclear/heteronuclear proximities determined from the 3D 1H/13C/1H experiment would be useful to study the structure and dynamics of a variety of chemical and biological

  15. Constant-time 2D and 3D through-bond correlation NMR spectroscopy of solids under 60 kHz MAS.

    PubMed

    Zhang, Rongchun; Ramamoorthy, Ayyalusamy

    2016-01-21

    Establishing connectivity and proximity of nuclei is an important step in elucidating the structure and dynamics of molecules in solids using magic angle spinning (MAS) NMR spectroscopy. Although recent studies have successfully demonstrated the feasibility of proton-detected multidimensional solid-state NMR experiments under ultrafast-MAS frequencies and obtaining high-resolution spectral lines of protons, assignment of proton resonances is a major challenge. In this study, we first re-visit and demonstrate the feasibility of 2D constant-time uniform-sign cross-peak correlation (CTUC-COSY) NMR experiment on rigid solids under ultrafast-MAS conditions, where the sensitivity of the experiment is enhanced by the reduced spin-spin relaxation rate and the use of low radio-frequency power for heteronuclear decoupling during the evolution intervals of the pulse sequence. In addition, we experimentally demonstrate the performance of a proton-detected pulse sequence to obtain a 3D (1)H/(13)C/(1)H chemical shift correlation spectrum by incorporating an additional cross-polarization period in the CTUC-COSY pulse sequence to enable proton chemical shift evolution and proton detection in the incrementable t1 and t3 periods, respectively. In addition to through-space and through-bond (13)C/(1)H and (13)C/(13)C chemical shift correlations, the 3D (1)H/(13)C/(1)H experiment also provides a COSY-type (1)H/(1)H chemical shift correlation spectrum, where only the chemical shifts of those protons, which are bonded to two neighboring carbons, are correlated. By extracting 2D F1/F3 slices ((1)H/(1)H chemical shift correlation spectrum) at different (13)C chemical shift frequencies from the 3D (1)H/(13)C/(1)H spectrum, resonances of proton atoms located close to a specific carbon atom can be identified. Overall, the through-bond and through-space homonuclear/heteronuclear proximities determined from the 3D (1)H/(13)C/(1)H experiment would be useful to study the structure and dynamics of

  16. Photoneutron angular distribution of 19F

    NASA Astrophysics Data System (ADS)

    Kuo, P. C.-K.; Jury, J. W.; McNeill, K. G.; Sherman, N. K.; Davidson, W. F.

    1989-07-01

    Photoneutron time-of-flight spectra from the reaction 19F(γ, n 0) 18F were measured between 48° and 139° using 10 m flight paths over the excitation energy range from 15-25 MeV. The measured values of the normalized Legendre a1 and a3 coefficients are very small or close to zero over the energy region studied, indicating dominance of E1 absorption in this region. A simple modeldependent analysis of the a2 coefficient showed that the likely reaction mechanisms are mainly s → p and d → p single-particle transitions of channel spin {1}/{2}. A comparison of the present angleintegrated ground-state cross section with the (γ, n tot) work of Veyssière et al. indicates that decays to excited states in 18F are much preferred (typically by a factor of 5) over the ground-state channel. The 19F(γ, n 0) cross section shows reasonable agreement in structure and magnitude with the 19F(γ, p 0) cross section of Kerkhove et al. as well as with the 18O(γ, n 0) data of Jury et al. (although some discrepancies are seen at 16 MeV and above 23 MeV).

  17. Conformations of solid 2-methyl-4-( p-X-phenylazo)imidazoles by 13C CP MAS NMR spectroscopy and PM3 semi-empirical calculations

    NASA Astrophysics Data System (ADS)

    Maciejewska, Dorota

    1999-03-01

    Solid 2-methyl-4-( p-X-phenylazo)imidazoles form hydrogen bonded chains with N-H⋯N bonds and C-H⋯O or C-H⋯N interaction. Depending on the nature and orientation of the substituents X it was possible to identify one tautomer if XH ( 2), Br ( 3), NO 2 ( 4) and the two, a- and b-tautomers in the crystal unit if XOCH 3 ( 1). The 13C CP MAS NMR spectra of ( 4) indicate the presence of phenyl ring dynamics. A preferred structure present in the solid state is that with different lengths of C1'-N and C4-N bonds and with higher dipole moment.

  18. A study of structure and dynamics of poly(aspartic acid) sodium/poly(vinyl alcohol) blends by 13C CP/MAS NMR

    NASA Astrophysics Data System (ADS)

    Wang, P.; Ando, I.

    1999-09-01

    Solid state 13C CP/MAS NMR measurements have been carried out on poly(aspartic acid) sodium (PAANa)/poly(vinyl alcohol) (PVA) blends over a wide range of temperatures. From these experimental results, it is found that the main-chain conformations of PAANa in PAANa/PVA blends take the α-helix form over a wide range of blend ratios, and, in contrast, the conformation and dynamics of the side chains of PAANa are strongly influenced by the formation of an intermolecular hydrogen bond between the carboxyl group of the side chains and the hydroxyl group of PVA. The behavior of the proton spin-lattice relaxation times in the rotating frame ( T1 ρ(H)) and the laboratory frame ( T1(H)) indicates that when the blend ratio of PAANa and PVA is 1:1, they are miscible.

  19. Resolution and measurement of heteronuclear dipolar couplings of a noncrystalline protein immobilized in a biological supramolecular assembly by proton-detected MAS solid-state NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Park, Sang Ho; Yang, Chen; Opella, Stanley J.; Mueller, Leonard J.

    2013-12-01

    Two-dimensional 15N chemical shift/1H chemical shift and three-dimensional 1H-15N dipolar coupling/15N chemical shift/1H chemical shift MAS solid-state NMR correlation spectra of the filamentous bacteriophage Pf1 major coat protein show single-site resolution in noncrystalline, intact-phage preparations. The high sensitivity and resolution result from 1H detection at 600 MHz under 50 kHz magic angle spinning using ∼0.5 mg of perdeuterated and uniformly 15N-labeled protein in which the exchangeable amide sites are partially or completely back-exchanged (reprotonated). Notably, the heteronuclear 1H-15N dipolar coupling frequency dimension is shown to select among 15N resonances, which will be useful in structural studies of larger proteins where the resonances exhibit a high degree of overlap in multidimensional chemical shift correlation spectra.

  20. Solid state structure of new 5-[2-(N,N-diethylamino)ethoxy]-4,7-dimethylcoumarins by X-ray and 13C CP/MAS NMR

    NASA Astrophysics Data System (ADS)

    Ostrowska, Kinga; Hejchman, Elżbieta; Dobrzycki, Łukasz; Maciejewska, Dorota

    2015-05-01

    5-[2-(N,N-diethylamino)ethoxy]-4,7-dimethylcoumarin (1) and 6-acetyl-5-[2-(N,N-diethylamino)ethoxy]-4,7-dimethylcoumarin (2) were synthesized in a traditional way and microwave-assisted synthesis. Crystals of 2 in form of hydrochloride salt (3) were investigated using single crystal X-ray diffraction technique. In the crystal lattice of 3 there is only one type of strong hydrogen bond present involving protonated amino group and chloride anion. The whole structure is dominated by weak C-H…Cl-, C-H…O contacts. There is also visible aggregation of cations in stacks due to π-π interactions. The solid state structures of 1 and 2 derived from 13C CP/MAS NMR spectra were also proposed.

  1. Selective detection and complete identification of triglycerides in cortical bone by high-resolution (1)H MAS NMR spectroscopy.

    PubMed

    Mroue, Kamal H; Xu, Jiadi; Zhu, Peizhi; Morris, Michael D; Ramamoorthy, Ayyalusamy

    2016-07-28

    Using (1)H-based magic angle spinning solid-state NMR spectroscopy, we report an atomistic-level characterization of triglycerides in compact cortical bone. By suppressing contributions from immobile molecules present in bone, we show that a (1)H-based constant-time uniform-sign cross-peak (CTUC) two-dimensional COSY-type experiment that correlates the chemical shifts of protons can selectively detect a mobile triglyceride layer as the main component of small lipid droplets embedded on the surface of collagen fibrils. High sensitivity and resolution afforded by this NMR approach could be potentially utilized to investigate the origin of triglycerides and their pathological roles associated with bone fractures, diseases, and aging. PMID:27374353

  2. (14)N overtone NMR under MAS: signal enhancement using symmetry-based sequences and novel simulation strategies.

    PubMed

    Haies, Ibraheem M; Jarvis, James A; Bentley, Harry; Heinmaa, Ivo; Kuprov, Ilya; Williamson, Philip T F; Carravetta, Marina

    2015-03-01

    Overtone (14)N NMR spectroscopy is a promising route for the direct detection of (14)N signals with good spectral resolution. Its application is currently limited, however, by the absence of efficient polarization techniques for overtone signal enhancement and the lack of efficient numerical simulation techniques to aid in both the development of new methods and the analysis and interpretation of experimental data. In this paper we report a novel method for the transfer of polarization from (1)H to the (14)N overtone using symmetry-based R-sequences that overcome many of the limitations of adiabatic approaches that have worked successfully on static samples. Refinement of these sequences and the analysis of the resulting spectra have been facilitated through the development of an efficient simulation strategy for (14)N overtone NMR spectroscopy of spinning samples, using effective Hamiltonians on top of Floquet and Fokker-Planck equations. PMID:25662410

  3. Two-dimensional MAS NMR correlation protocols involving double-quantum filtering of quadrupolar spin-pairs.

    PubMed

    Edén, Mattias

    2010-05-01

    Three two-dimensional (2D) NMR homonuclear correlation techniques invoking double-quantum (2Q) filtration of the central transitions of half-integer spins are evaluated numerically and experimentally. They correlate directly detected single-quantum (1Q) coherences in the t(2) domain with either of 1Q, two-spin 2Q or single-spin multiple-quantum coherence-evolutions in the indirect (t(1)) dimension. We employ experimental (23)Na and (27)Al NMR on sodium sulfite and the natural mineral sillimanite (SiAl(2)O(5)), in conjunction with simulated 2D spectra from pairs of dipolar-recoupled spins-3/2 and 5/2 at different external magnetic fields, to compare the correlation strategies from the viewpoints of 2D spectral resolution, signal sensitivity, implementational aspects and their relative merits for establishing internuclear proximities and quadrupolar tensor orientations. PMID:20202872

  4. Composite-180° pulse-based symmetry sequences to recouple proton chemical shift anisotropy tensors under ultrafast MAS solid-state NMR spectroscopy.

    PubMed

    Pandey, Manoj Kumar; Malon, Michal; Ramamoorthy, Ayyalusamy; Nishiyama, Yusuke

    2015-01-01

    There is considerable interest in the measurement of proton ((1)H) chemical shift anisotropy (CSA) tensors to obtain deeper insights into H-bonding interactions which find numerous applications in chemical and biological systems. However, the presence of strong (1)H/(1)H dipolar interaction makes it difficult to determine small size (1)H CSAs from the homogeneously broadened NMR spectra. Previously reported pulse sequences for (1)H CSA recoupling are prone to the effects of radio frequency field (B1) inhomogeneity. In the present work we have carried out a systematic study using both numerical and experimental approaches to evaluate γ-encoded radio frequency (RF) pulse sequences based on R-symmetries that recouple (1)H CSA in the indirect dimension of a 2D (1)H/(1)H anisotropic/isotropic chemical shift correlation experiment under ultrafast magic angle spinning (MAS) frequencies. The spectral resolution and sensitivity can be significantly improved in both frequency dimensions of the 2D (1)H/(1)H correlation spectrum without decoupling (1)H/(1)H dipolar couplings but by using ultrafast MAS rates up to 70 kHz. We successfully demonstrate that with a reasonable RF field requirement (<200 kHz) a set of symmetry-based recoupling sequences, with a series of phase-alternating 270°0-90°180 composite-180° pulses, are more robust in combating B1 inhomogeneity effects. In addition, our results show that the new pulse sequences render remarkable (1)H CSA recoupling efficiency and undistorted CSA lineshapes. Experimental results on citric acid and malonic acid comparing the efficiencies of these newly developed pulse sequences with that of previously reported CSA recoupling pulse sequences are also reported under ultrafast MAS conditions. PMID:25497846

  5. Nucleotide-type chemical shift assignment of the encapsulated 40 kbp dsDNA in intact bacteriophage T7 by MAS solid-state NMR.

    PubMed

    Abramov, Gili; Goldbourt, Amir

    2014-08-01

    The icosahedral bacteriophage T7 is a 50 MDa double-stranded DNA (dsDNA) virus that infects Escherichia coli. Although there is substantial information on the physical and morphological properties of T7, structural information, based mostly on Raman spectroscopy and cryo-electron microscopy, is limited. Here, we apply the magic-angle spinning (MAS) solid-state NMR (SSNMR) technique to study a uniformly (13)C and (15)N labeled wild-type T7 phage. We describe the details of the large-scale preparation and purification of an isotopically enriched phage sample under fully hydrated conditions, and show a complete (13)C and a near-complete (15)N nucleotide-type specific assignment of the sugar and base moieties in the 40 kbp dsDNA of T7 using two-dimensional (13)C-(13)C and (15)N-(13)C correlation experiments. The chemical shifts are interpreted as reporters of a B-form conformation of the encapsulated dsDNA. While MAS SSNMR was found to be extremely useful in determining the structures of proteins in native-like environments, its application to nucleic acids has lagged behind, leaving a missing (13)C and (15)N chemical shift database. This work therefore expands the (13)C and (15)N database of real B-form DNA systems, and opens routes to characterize more complex nucleic acid systems by SSNMR. PMID:24875850

  6. Modified polysaccharides as potential (19)F magnetic resonance contrast agents.

    PubMed

    Krawczyk, Tomasz; Minoshima, Masafumi; Sugihara, Fuminori; Kikuchi, Kazuya

    2016-06-16

    The introduction of 3-aminobenzotrifluoride into partially oxidized alginic acid, dextran, and polygalacturonic acid (10-100 kDa) by means of the imine formation and a subsequent reduction resulted in water-soluble materials containing 1-14% of fluorine. They showed a single or split (19)F NMR signal in a narrow range of -63 to -63.5 ppm. The observed T1 and T2 were approximately 1 and 0.2 s at 400 or 500 MHz instruments, respectively. The samples showed low toxicity and uptake toward the HeLa cells similar to native polysaccharides and were preferentially localized in lysosomes. A tail intravenous injection of 5 mg of modified dextran containing 1% of fluorine revealed that the probe was not trapped in liver, spleen or kidneys, but was quickly cleared with urine. The proposed materials can be used for imaging of the gastrointestinal tract or the genitourinary system and act as a material for more complex (19)F MRI agent synthesis. PMID:27148998

  7. Correlations between 11B NMR parameters and structural characters in borate and borosilicate minerals investigated by high-resolution MAS NMR and ab initio calculations

    NASA Astrophysics Data System (ADS)

    Zhou, Bing; Sun, Zhaohua; Yao, Yefeng; Pan, Yuanming

    2012-05-01

    Borates consisting of diverse fundamental building blocks (FBB) formed from complex polymerization of planar triangular [Bϕ3] groups and tetrahedral [Bϕ4] groups, where ϕ = O and OH, provide an excellent opportunity for investigation of correlations between the NMR parameters and local structures. However, previous studies suggested that the 11B NMR parameters in borates are insensitive to local structural environments other than the B coordination number, in contrast to those documented for 29Si, 23Na and 27Al in silicates, and no correlation between 11B chemical shifts and the sum of bond valences has been established for borate minerals with hydroxyl groups or molecular water in the structures. In this study, high-resolution NMR spectra have been acquired at the ultra high field of 21 T as well as at 14 T for selected borate and borosilicate minerals, and have been used to extract high-precision NMR parameters by using combined ab initio theoretical calculations and spectral simulations. These new NMR parameters reveal subtle correlations with various structural characters, especially the effects of the 11B chemical shifts from the bridging oxygen atom(s), site symmetry, symmetry of FBB, the sum of bond valences, as well as the next-nearest-neighbor cations and hydrogen bonding. Also, these results provide new insights into the shielding mechanism for 11B in borate and borosilicate minerals. In particular, this study demonstrates that the small variation in 11B chemical shifts can still be used to probe the local structural environments and that the established correlations can be used to investigate the structural details in borates and amorphous materials.

  8. Analysis of 31P MAS NMR spectra and transversal relaxation of bacteriophage M13 and tobacco mosaic virus.

    PubMed Central

    Magusin, P C; Hemminga, M A

    1994-01-01

    Phosphorus magic angle spinning nuclear magnetic resonance (NMR) spectra and transversal relaxation of M13 and TMV are analyzed by use of a model, which includes both local backbone motions of the encapsulated nucleic acid molecules and overall rotational diffusion of the rod-shaped virions about their length axis. Backbone motions influence the sideband intensities by causing a fast restricted reorientation of the phosphodiesters. To evaluate their influence on the observed sideband patterns, we extend the model that we used previously to analyze nonspinning 31P NMR lineshapes (Magusin, P.C.M.M., and M. A. Hemminga. 1993a. Biophys. J. 64:1861-1868) to magic angle spinning NMR experiments. Backbone motions also influence the conformation of the phosphodiesters, causing conformational averaging of the isotropic chemical shift, which offers a possible explanation for the various linewidths of the centerband and the sidebands observed for M13 gels under various conditions. The change of the experimental lineshape of M13 as a function of temperature and hydration is interpreted in terms of fast restricted fluctuation of the dihedral angles between the POC and the OCH planes on both sides of the 31P nucleus in the nucleic acid backbone. Backbone motions also seem to be the main cause of transversal relaxation measured at spinning rates of 4 kHz or higher. At spinning rates less than 2 kHz, transversal relaxation is significantly faster. This effect is assigned to slow, overall rotation of the rod-shaped M13 phage about its length axis. Equations are derived to simulate the observed dependence of T2e on the spinning rate. PMID:8038391

  9. Structural investigations of PuIII phosphate by X-ray diffraction, MAS-NMR and XANES spectroscopy

    NASA Astrophysics Data System (ADS)

    Popa, Karin; Raison, Philippe E.; Martel, Laura; Martin, Philippe M.; Prieur, Damien; Solari, Pier L.; Bouëxière, Daniel; Konings, Rudy J. M.; Somers, Joseph

    2015-10-01

    PuPO4 was prepared by a solid state reaction method and its crystal structure at room temperature was solved by powder X-ray diffraction combined with Rietveld refinement. High resolution XANES measurements confirm the +III valence state of plutonium, in agreement with valence bond derivation. The presence of the americium (as β- decay product of plutonium) in the +III oxidation state was determined based on XANES spectroscopy. High resolution solid state 31P NMR agrees with the XANES results and the presence of a solid-solution.

  10. Boron isotopes as pH proxy: A new look at boron speciation in deep-sea corals using 11B MAS NMR and EELS

    NASA Astrophysics Data System (ADS)

    Rollion-Bard, Claire; Blamart, Dominique; Trebosc, Julien; Tricot, Grégory; Mussi, Alexandre; Cuif, Jean-Pierre

    2011-02-01

    Dissolved boron in modern seawater occurs in the form of two species, trigonal boric acid B(OH) 3 and tetrahedral borate ion B(OH)4-. One of the key assumption in the use of boron isotopic compositions of carbonates as pH proxy is that only borate ions, B(OH)4-, are incorporated into the carbonate. Here, we investigate the speciation of boron in deep-sea coral microstructures ( Lophelia pertusa specimen) by using high field magic angle spinning nuclear magnetic resonance ( 11B MAS NMR) and electron energy-loss spectroscopy (EELS). We observe both boron coordination species, but in different proportions depending on the coral microstructure, i.e. centres of calcification versus fibres. These results suggest that careful sampling is necessary before performing boron isotopic measurements in deep-sea corals. By combining the proportions of B(OH) 3 and B(OH)4- determined by NMR and our previous ion microprobe boron isotope measurements, we propose a new equation for the relation between seawater pH and boron isotopic composition in deep-sea corals.

  11. Investigation of the Structure and Active Sites of TiO2 Nanorod Supported VOx Catalysts by High-Field and Fast-Spinning 51V MAS NMR

    SciTech Connect

    Hu, Jian Z.; Xu, Suochang; Li, Weizhen; Hu, Mary Y.; Deng, Xuchu; Dixon, David A.; Vasiliu, Monica; Craciun, Raluca; Wang, Yong; Bao, Xinhe; Peden, Charles HF

    2015-07-02

    Supported VOx/TiO2-Rod catalysts were studied by 51V MAS NMR at high field using a sample spinning rate of 55 kHz. The superior spectral resolution allows for the observation of at least five vanadate species. The assignment of these vanadate species was carried out by quantum mechanical calculations of 51V NMR chemical shifts of model V-surface structures. Methanol oxidative dehydrogenation (ODH) was used to establish the correlation between the reaction rate and the various surface V-sites. It is found that monomeric V-species dominated the catalyst at low vanadium loadings with two peaks observed at about -502 and -529 ppm. V-dimers with two bridged oxygen appeare at about -555 ppm. Vanadate dimers and polyvanadates connected by one bridged oxygen atom between two adjacent V atoms resonate at about -630 ppm. A positive correlation is found between the V-dimers related to the -555 ppm peak and the ODH rate while a better correlation is obtained by including monomeric contributions. This result indicates that surface V-dimers related to the -555 ppm peak are the major active sites for ODH reaction despite mono-V species are more catalytic active but their relative ratios are decreased dramatically at high V-loadings. Furthermore, a portion of the V-species is found invisible. In particular, the level of such invisibility increases with decreased level of V-loading, suggesting the existence of paramagnetic V-species at the surface.

  12. Analysis of mercerization process based on the intensity change of deconvoluted resonances of (13)C CP/MAS NMR: Cellulose mercerized under cooling and non-cooling conditions.

    PubMed

    Miura, Kento; Nakano, Takato

    2015-08-01

    The area intensity change of C1, C4, and C6 in spectrum obtained by (13)C CP/MAS NMR and the mutual relationship between their changes were examined for cellulose samples treated with various concentrations of aqueous NaOH solutions under non-cooling and cooling conditions. The area intensity of C1-up and C6-down changed cooperatively with that of C4-down which corresponds to the crystallinity of samples: "-up" and "-down" are the up- and down- field component in a splitting peak of NMR spectrum, respectively. The intensity change of C1-up starts to decrease with decreasing in that of C4-down after that of C6-down is almost complete. These changes were more clearly observed for samples treated under cooling condition. It can be suggested that their characteristic change relates closely to the change in conformation of cellulose chains by induced decrystallization and the subsequent crystallization of cellulose II, and presumed that their changes at microscopic level relate to the macroscopic morphological changes such as contraction along the length of cellulose chains and recovery along the length. PMID:26042706

  13. Solid state 31P MAS NMR spectroscopy and conductivity measurements on NbOPO4 and H3PO4 composite materials

    NASA Astrophysics Data System (ADS)

    Risskov Sørensen, Daniel; Nielsen, Ulla Gro; Skou, Eivind M.

    2014-11-01

    A systematic study of composite powders of niobium oxide phosphate (NbOPO4) and phosphoric acid (H3PO4) has been performed in order to characterize the material's ability to perform as an electrolyte material in medium temperature fuel cells and electrolyzers. Powders of H3PO4 contents between 13.1 and 74.2 M% were produced and characterized with powder X-ray diffraction, 31P MAS NMR and impedance spectroscopy. NMR revealed that a significant degree of dehydration and vaporization of H3PO4 takes place above 200 °C, and increases with temperature. At 500 °C the NbOPO4 and H3PO4 has reacted to form niobium pyrophosphate (Nb2P4O15). Impedance spectroscopy showed an increase in conductivity with increasing acid concentration, whereas the conductivity decreased slightly with increasing temperature. The highest conductivity measured was 2.5·10-3 S/cm for a sample containing 74.2 M% of H3PO4. Lastly, it was shown that NbOPO4 has no significant conductivity of its own.

  14. Al speciation in tropical podzols of the upper Amazon Basin: A solid-state 27Al MAS and MQMAS NMR study

    NASA Astrophysics Data System (ADS)

    Bardy, Marion; Bonhomme, Christian; Fritsch, Emmanuel; Maquet, Jocelyne; Hajjar, Redouane; Allard, Thierry; Derenne, Sylvie; Calas, Georges

    2007-07-01

    In the upper Amazon Basin, aluminum previously accumulated in lateritic formations is massively remobilised in soils by podzolization and exported in waters. We have investigated the speciation of aluminum in the clay-size fractions of eight horizons of waterlogged podzols lying in a depression of a plateau. The horizons illustrate the main steps involved in the podzolization of laterites. They belong to eluviated topsoil A horizons and illuviated subsoil Bhs, Bh and 2BCs horizons of weakly and better-expressed podzols located at the margin and centre of the depression. For the first time, aluminum speciation is quantitatively assessed in soils by spectroscopic methods, namely FTIR, 27Al magic angle spinning (MAS) and multiple-quantum magic angle spinning (MQMAS), nuclear magnetic resonance (NMR). The results thus obtained are compared to chemical extraction data. Solid-state 27Al MAS NMR spectra enable to distinguish Al bound to organic compounds from that incorporated in secondary mineral phases detected by FTIR. MQMAS experiments additionally show that both chemical shifts and quadrupolar constants are distributed for Al nuclei linked with organic compounds. Similar amounts of chelated Al are obtained from NMR spectra and chemical extractions. The study enables to highlight three major steps in the fate of aluminum. (i) Aluminum is first released by mineral weathering, feeds complexing sites of organic matter and accumulates in subsurface Bhs horizons of weakly expressed podzols (acidocomplexolysis). (ii) Complexes of aluminum with organic matter (Al-OM) then migrate downwards in sandy horizons of better-expressed podzols and accumulate at depth in less permeable 2BCs horizons. (iii) The minor amounts of aluminum present in the 2BCs horizon of the downslope podzol show that aluminum is eventually exported towards the river network, either complexed with organic matter or as Al 3+ ions after desorption from organic compounds, due to decreasing pH or

  15. Proton-detected MAS NMR experiments based on dipolar transfers for backbone assignment of highly deuterated proteins

    NASA Astrophysics Data System (ADS)

    Chevelkov, Veniamin; Habenstein, Birgit; Loquet, Antoine; Giller, Karin; Becker, Stefan; Lange, Adam

    2014-05-01

    Proton-detected solid-state NMR was applied to a highly deuterated insoluble, non-crystalline biological assembly, the Salmonella typhimurium type iii secretion system (T3SS) needle. Spectra of very high resolution and sensitivity were obtained at a low protonation level of 10-20% at exchangeable amide positions. We developed efficient experimental protocols for resonance assignment tailored for this system and the employed experimental conditions. Using exclusively dipolar-based interspin magnetization transfers, we recorded two sets of 3D spectra allowing for an almost complete backbone resonance assignment of the needle subunit PrgI. The additional information provided by the well-resolved proton dimension revealed the presence of two sets of resonances in the N-terminal helix of PrgI, while in previous studies employing 13C detection only a single set of resonances was observed.

  16. High-temperature behavior of NH4H2PO4 studied by single-crystal and MAS NMR

    NASA Astrophysics Data System (ADS)

    Lim, Ae Ran; Lee, Kwang-Sei

    2013-07-01

    To confirm a high-temperature behavior of NH4H2PO4, the temperature dependences of the line-width, resonance frequency, and spin-lattice relaxation times in the laboratory frame, T1, and in the rotating frame, T1ρ, were investigated using a Fourier transform NMR spectrometer. The hydrogen bonds both in O-H-O between two PO4 groups and in N-H-O between NH4 and PO4 were distinguished, and the T1 values of both types of hydrogen-bond proton and 31P ions were described by the Bloembergen-Purcell-Pound theory. In addition, the T1ρ values of both types of hydrogen-bond proton and of 31P ions exhibited strong temperature dependences at high temperature; the changes in T1ρ at high temperature were related to variations in the symmetry.

  17. Hybridizing cross-polarization with NOE or refocused-INEPT enhances the sensitivity of MAS NMR spectroscopy.

    PubMed

    Zhang, Rongchun; Mroue, Kamal H; Ramamoorthy, Ayyalusamy

    2016-05-01

    Heteronuclear cross polarization (CP) has been commonly used to enhance the sensitivity of dilute low-γ nuclei in almost all solid-state NMR experiments. However, CP relies on heteronuclear dipolar couplings, and therefore the magnetization transfer efficiency becomes inefficient when the dipolar couplings are weak, as is often the case for mobile components in solids. Here, we demonstrate methods that combine CP with heteronuclear Overhauser effect (referred to as CP-NOE) or with refocused-INEPT (referred to as CP-RINEPT) to overcome the efficiency limitation of CP and enhance the signal-to-noise ratio (S/N) for mobile components. Our experimental results reveal that, compared to the conventional CP, significant S/N ratio enhancement can be achieved for resonances originating from mobile components, whereas the resonance signals associated with rigid groups are not significantly affected due to their long spin-lattice relaxation times. In fact, the S/N enhancement factor is also dependent on the temperature, CP contact time as well as on the system under investigation. Furthermore, we also demonstrate that CP-RINEPT experiment can be successfully employed to independently detect mobile and rigid signals in a single experiment without affecting the data collection time. However, the resolution of CP spectrum obtained from the CP-RINEPT experiment could be slightly compromised by the mandatory use of continuous wave (CW) decoupling during the acquisition of signals from rigid components. In addition, CP-RINEPT experiment can be used for spectral editing utilizing the difference in dynamics of different regions of a molecule and/or different components present in the sample, and could also be useful for the assignment of resonances from mobile components in poorly resolved spectra. Therefore, we believe that the proposed approaches are beneficial for the structural characterization of multiphase and heterogeneous systems, and could be used as a building block in

  18. Hybridizing cross-polarization with NOE or refocused-INEPT enhances the sensitivity of MAS NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Zhang, Rongchun; Mroue, Kamal H.; Ramamoorthy, Ayyalusamy

    2016-05-01

    Heteronuclear cross polarization (CP) has been commonly used to enhance the sensitivity of dilute low-γ nuclei in almost all solid-state NMR experiments. However, CP relies on heteronuclear dipolar couplings, and therefore the magnetization transfer efficiency becomes inefficient when the dipolar couplings are weak, as is often the case for mobile components in solids. Here, we demonstrate methods that combine CP with heteronuclear Overhauser effect (referred to as CP-NOE) or with refocused-INEPT (referred to as CP-RINEPT) to overcome the efficiency limitation of CP and enhance the signal-to-noise ratio (S/N) for mobile components. Our experimental results reveal that, compared to the conventional CP, significant S/N ratio enhancement can be achieved for resonances originating from mobile components, whereas the resonance signals associated with rigid groups are not significantly affected due to their long spin-lattice relaxation times. In fact, the S/N enhancement factor is also dependent on the temperature, CP contact time as well as on the system under investigation. Furthermore, we also demonstrate that CP-RINEPT experiment can be successfully employed to independently detect mobile and rigid signals in a single experiment without affecting the data collection time. However, the resolution of CP spectrum obtained from the CP-RINEPT experiment could be slightly compromised by the mandatory use of continuous wave (CW) decoupling during the acquisition of signals from rigid components. In addition, CP-RINEPT experiment can be used for spectral editing utilizing the difference in dynamics of different regions of a molecule and/or different components present in the sample, and could also be useful for the assignment of resonances from mobile components in poorly resolved spectra. Therefore, we believe that the proposed approaches are beneficial for the structural characterization of multiphase and heterogeneous systems, and could be used as a building block in

  19. Studies of rare-earth stannates by sup 119 Sn MAS NMR. The use of paramagnetic shift probes in the solid state

    SciTech Connect

    Grey, C.P.; Dobson, C.M.; Cheetham, A.K.; Jakeman, R.J.B. )

    1989-01-18

    {sup 119}Sn MAS NMR spectra have been obtained from members of a series of rare-earth stannates Ln{sub 2}Sn{sub 2}O{sub 7} (Ln = La, Pr, Nd, Sm, Eu, Tm, Yb, Lu, and Y), all of which adopt the pyrochlore structure. Apart from La{sub 2}Sn{sub 2}O{sub 7}, Lu{sub 2}Sn{sub 2}O{sub 7}, and Y{sub 2}Sn{sub 2}O{sub 7}, these compounds are paramagnetic and exhibit a very large variation in {sup 119}Sn chemical shifts (from approximately +5,400 to {minus}4,200 ppm), which can be attributed principally to a Fermi contact shift mechanism. The spectra from the paramagnetic samples have large overall line widths associated with the substantial anisotropy of the shift, but the individual peaks within the spinning sideband manifolds remain sharp. Several tin pyrochlore solid solutions have also been studied (namely Y{sub 2-y}Ln{sub y}Sn{sub 2}O{sub 7} where Ln = Sm, Nd, Pr, and Eu and La{sub 2-y}Nd{sub y}Sn{sub 2}O{sub u}) by {sup 119}Sn MAS NMR. When the short relaxation times of nuclei close to paramagnetic centers were exploited, a series of peaks were observed, associated with the substitution of paramagnetic for diamagnetic lanthanide ions in the local coordination around a tin atom. For Y{sub 2-y}Sm{sub y}Sn{sub 2}O{sub 7} the composition of the solid solution could be determined from the intensities of these peaks. In the solid solutions the {sup 119}Sn nuclei were found to be sensitive not only to neighboring paramagnetic ions but also to paramagnetic ions in the second and third coordination spheres. The shifts induced in these cases arise primarily from a through-space dipolar pseudocontact mechanism and can be interpreted with a model for the site symmetry based on the crystal structure. 30 refs., 8 figs., 3 tabs.

  20. Effect of organic matter application on CP-MAS-13C-NMR spectra of humic acids from a brown soil

    NASA Astrophysics Data System (ADS)

    Dou, S.

    2009-04-01

    The humified SOM or humic substances (HS) composed of humic acid (HA), fulvic acid (FA) and humin (HM) represent the most microbially recalcitrant and stable reservoir of organic carbon in soil (Piccolo et al., 2004). OM applications can influence the amount and structural characteristics of HS(Dou et al., 2008). During the past few decades, there has been much research on HS, but their chemical structure is still not fully understood (Dong, 2006).CP-MAS-13C-NMR spectroscopy was considered as an effective method to study structures of HS without dissolving problem compared with liquid 13C-NMR (Conte et al., 1997; Dou et al., 2008). It can directly measure the carbon framework and reflect the nature of HS transformation after OM application (Spaccini et al., 2000). For that reason, this method was applied in this study. The objective of this paper was to clarify the effect of long term OM application on the changes of structural characteristics in HAs, which provided new information for improving soil fertility by OM application. The experiment was carried out on a brown soil (Paleudalf in USDA Soil Taxonomy) at Shenyang Agricultural University, Liaoning province, China (N41°48'-E123°25'). The experiment included 3 treatments: zero-treatment (CKbr), and two pig manure (PM) treatments (O1 and O2) at the rates of 0.9 t ha-1 and 1.8 t ha-1 of organic carbon, respectively. The samples of the HA fraction were extracted, separated and purified according to the method described by Dou et al. (1991). Elemental composition, Differential thermal analysis (DTA), -lgK value, FT-IR and CP-MAS- 13C-NMR of HAs were performed. Effects on the contents of orgaic carbon and its composition. The contents of TOC were from 8.77 g kg-1 to 12.25 g kg-1. The relative contents in TOC for WSS, HA, and FA were 6.87%, 14.2% and 19.8%. Comparing the CKbr, the contents of WSS, HA and FA for O1 and O2 increased, but relative contents of WSS and FA decreased. The content of the HA increased after

  1. 31P MAS-NMR study of flux-grown rare-earth element orthophosphate (monazite/xenotime) solid solutions: Evidence of random cation distribution from paramagnetically shifted NMR resonances

    SciTech Connect

    Palke, A. C.; Stebbins, J. F.; Boatner, Lynn A

    2013-01-01

    We present 31P magic angle spinning nuclear magnetic resonance (MAS-NMR) spectra of flux-grown solid solutions of La1-xCexPO4 ( x between 0.027 and 0.32) having the monoclinic monazite structure, and of Y1-xMxPO4 (M = Vn+, Ce3+, Nd3+, x between 0.001 and 0.014) having the tetragonal zircon structure. Paramagnetically shifted NMR resonances are observed in all samples due to the presence of paramagnetic Vn+, Ce3+, and Nd3+ in the diamagnetic LaPO4 or YPO4. As a first-order observation, the number and relative intensity of these peaks is related to the symmetry and structure of the diamagnetic host phase. The presence of paramagnetic shifts allows for increased resolution between NMR resonances for distinct atomic species which leads to the observation of low intensity peaks related to PO4 species having more than one paramagnetic neighbor two or four atomic bonds away. Through careful analysis of peak areas and comparison with predictions for simple models, it was determined that solid solutions in the systems examined here are characterized by complete disorder (random distribution) of diamagnetic La3+ or Y3+ with the paramagnetic substitutional species Ce3+ and Nd3+. The increased resolution given by the paramagnetic interactions also leads to the observation of splitting of specific resonances in the 31P NMR spectra that may be caused by local, small-scale distortions from the substitution of ions having dissimilar ionic radii.

  2. Effect of organic matter application on CP-MAS-13C-NMR spectra of humic acids from a brown soil

    NASA Astrophysics Data System (ADS)

    Dou, S.

    2009-04-01

    The humified SOM or humic substances (HS) composed of humic acid (HA), fulvic acid (FA) and humin (HM) represent the most microbially recalcitrant and stable reservoir of organic carbon in soil (Piccolo et al., 2004). OM applications can influence the amount and structural characteristics of HS(Dou et al., 2008). During the past few decades, there has been much research on HS, but their chemical structure is still not fully understood (Dong, 2006).CP-MAS-13C-NMR spectroscopy was considered as an effective method to study structures of HS without dissolving problem compared with liquid 13C-NMR (Conte et al., 1997; Dou et al., 2008). It can directly measure the carbon framework and reflect the nature of HS transformation after OM application (Spaccini et al., 2000). For that reason, this method was applied in this study. The objective of this paper was to clarify the effect of long term OM application on the changes of structural characteristics in HAs, which provided new information for improving soil fertility by OM application. The experiment was carried out on a brown soil (Paleudalf in USDA Soil Taxonomy) at Shenyang Agricultural University, Liaoning province, China (N41°48'-E123°25'). The experiment included 3 treatments: zero-treatment (CKbr), and two pig manure (PM) treatments (O1 and O2) at the rates of 0.9 t ha-1 and 1.8 t ha-1 of organic carbon, respectively. The samples of the HA fraction were extracted, separated and purified according to the method described by Dou et al. (1991). Elemental composition, Differential thermal analysis (DTA), -lgK value, FT-IR and CP-MAS- 13C-NMR of HAs were performed. Effects on the contents of orgaic carbon and its composition. The contents of TOC were from 8.77 g kg-1 to 12.25 g kg-1. The relative contents in TOC for WSS, HA, and FA were 6.87%, 14.2% and 19.8%. Comparing the CKbr, the contents of WSS, HA and FA for O1 and O2 increased, but relative contents of WSS and FA decreased. The content of the HA increased after

  3. 19F MRI for quantitative in vivo cell tracking

    PubMed Central

    Srinivas, Mangala; Heerschap, Arend; Ahrens, Eric T.; Figdor, Carl G.; de Vries, I. Jolanda M.

    2010-01-01

    Cellular therapy, including stem cell transplants and dendritic cell vaccines, is typically monitored for dosage optimization, accurate delivery and localization using non-invasive imaging, of which magnetic resonance imaging (MRI) is a key modality. 19F MRI retains the advantages of MRI as an imaging modality, while allowing direct detection of labelled cells for unambiguous identification and quantification, unlike typical metal-based contrast agents. Recent developments in 19F MRI-based in vivo cell quantification, the existing clinical use of 19F compounds and current explosive interest in cellular therapeutics have brought 19F imaging technology closer to clinical application. We review the application of 19F MRI to cell tracking, discussing intracellular 19F labels, cell labelling and in vivo quantification, as well as the potential clinical use of 19F MRI. PMID:20427096

  4. The relationship between reorientational molecular motions and phase transitions in [Mg(H{sub 2}O){sub 6}](BF{sub 4}){sub 2}, studied with the use of {sup 1}H and {sup 19}F NMR and FT-MIR

    SciTech Connect

    Mikuli, Edward Hetmańczyk, Joanna; Grad, Bartłomiej; Kozak, Asja; Wąsicki, Jan W.; Bilski, Paweł; Hołderna-Natkaniec, Krystyna; Medycki, Wojciech

    2015-02-14

    A {sup 1}H and {sup 19}F nuclear magnetic resonance study of [Mg(H{sub 2}O){sub 6}](BF{sub 4}){sub 2} has confirmed the existence of two phase transitions at T{sub c1} ≈ 257 K and T{sub c2} ≈ 142 K, detected earlier by the DSC method. These transitions were reflected by changes in the temperature dependences of both proton and fluorine of second moments M{sub 2}{sup H} and M{sub 2}{sup F} and of spin-lattice relaxation times T{sub 1}{sup H} and T{sub 1}{sup F}. The study revealed anisotropic reorientations of whole [Mg(H{sub 2}O){sub 6}]{sup 2+} cations, reorientations by 180° jumps of H{sub 2}O ligands, and aniso- and isotropic reorientations of BF{sub 4}{sup −} anions. The activation parameters for these motions were obtained. It was found that the phase transition at T{sub c1} is associated with the reorientation of the cation as a whole unit around the C{sub 3} axis and that at T{sub c2} with isotropic reorientation of the BF{sub 4}{sup −} anions. The temperature dependence of the full width at half maximum value of the infrared band of ρ{sub t}(H{sub 2}O) mode (at ∼596 cm{sup −1}) indicated that in phases I and II, all H{sub 2}O ligands in [Mg(H{sub 2}O){sub 6}]{sup 2+} perform fast reorientational motions (180° jumps) with a mean value of activation energy equal to ca 10 kJ mole{sup −1}, what is fully consistent with NMR results. The phase transition at T{sub c1} is associated with a sudden change of speed of fast (τ{sub R} ≈ 10{sup −12} s) reorientational motions of H{sub 2}O ligands. Below T{sub c2} (in phase III), the reorientations of certain part of the H{sub 2}O ligands significantly slow down, while others continue their fast reorientation with an activation energy of ca 2 kJ mole{sup −1}. This fast reorientation cannot be evidenced in NMR relaxation experiments. Splitting of certain IR bands connected with H{sub 2}O ligands at the observed phase transitions suggests a reduction of the symmetry of the octahedral [Mg(H{sub 2}O

  5. Structures and thermal and hydrothermal stabilities of sulfonated poly(organosiloxanes) by /sup 29/Si and /sup 13/C CP/MAS NMR

    SciTech Connect

    Suzuki, S.; Ono, Y.; Nakata, S.; Asaoka, S.

    1987-03-12

    High-resolution /sup 29/Si and /sup 13/C cross polarization/magic-angle spinning (CP/MAS) NMR spectroscopies have been applied to poly((sulfophenyl)siloxane) and poly((sulfopropyl)siloxane) in order to examine their thermal and hydrothermal stability. The effects of the treatments on the catalytic activity for the alcohol dehydration were also studied. Under nonsteaming conditions, both siloxanes have much higher thermal stability than Amberlyst-15. Thermal stability is in a decreasing order, poly((sulfophenyl)siloxane) (573 K) > poly((sulfopropyl)siloxane) (543 K) > Amberlyst-15 (468 K), while the thermal stability under steaming conditions is in the order of poly((sulfopropyl)siloxane) (543 K) > poly((sulfophenyl)siloxane) = Amberlyst-15 (468 K). The thermal degradation of the poly((sulfophenyl)siloxane) mainly occurs by the rupture of the C-Si bonds between the benzene ring and the siloxane chain. The steam greatly affects the thermal stability of poly((sulfophenyl)siloxane). Thus, under steaming conditions, thermal degradation occurred at much lower temperatures than under nonsteaming conditions. The thermal degradation of the poly((sulfopropyl)siloxane) mainly occurs at the C-C bond in the sulfopropyl groups. Steam does not affect the thermal stability of poly((sulfopropyl)siloxane).

  6. 1H HR-MAS NMR Based Metabolic Profiling of Cells in Response to Treatment with a Hexacationic Ruthenium Metallaprism as Potential Anticancer Drug

    PubMed Central

    Vermathen, Martina; Paul, Lydia E. H.; Diserens, Gaëlle

    2015-01-01

    1H high resolution magic angle spinning (HR-MAS) NMR spectroscopy was applied in combination with multivariate statistical analyses to study the metabolic response of whole cells to the treatment with a hexacationic ruthenium metallaprism [1]6+ as potential anticancer drug. Human ovarian cancer cells (A2780), the corresponding cisplatin resistant cells (A2780cisR), and human embryonic kidney cells (HEK-293) were each incubated for 24 h and 72 h with [1]6+ and compared to untreated cells. Different responses were obtained depending on the cell type and incubation time. Most pronounced changes were found for lipids, choline containing compounds, glutamate and glutathione, nucleotide sugars, lactate, and some amino acids. Possible contributions of these metabolites to physiologic processes are discussed. The time-dependent metabolic response patterns suggest that A2780 cells on one hand and HEK-293 cells and A2780cisR cells on the other hand may follow different cell death pathways and exist in different temporal stages thereof. PMID:26024484

  7. Simultaneous cross polarization to 13C and 15N with 1H detection at 60 kHz MAS solid-state NMR

    NASA Astrophysics Data System (ADS)

    Das, Bibhuti B.; Opella, Stanley J.

    2016-01-01

    We describe high resolution MAS solid-state NMR experiments that utilize 1H detection with 60 kHz magic angle spinning; simultaneous cross-polarization from 1H to 15N and 13C nuclei; bidirectional cross-polarization between 13C and 15N nuclei; detection of both amide nitrogen and aliphatic carbon 1H; and measurement of both 13C and 15N chemical shifts through multi-dimensional correlation experiments. Three-dimensional experiments correlate amide 1H and alpha 1H selectively with 13C or 15N nuclei in a polypeptide chain. Two separate three-dimensional spectra correlating 1Hα/13Cα/1HN and 1HN/15N/1Hα are recorded simultaneously in a single experiment, demonstrating that a twofold savings in experimental time is potentially achievable. Spectral editing using bidirectional coherence transfer pathways enables simultaneous magnetization transfers between 15N, 13Cα(i) and 13C‧(i-1), facilitating intra- and inter-residue correlations for sequential resonance assignment. Non-uniform sampling is integrated into the experiments, further reducing the length of experimental time.

  8. A (1)H HR-MAS NMR-Based Metabolomic Study for Metabolic Characterization of Rice Grain from Various Oryza sativa L. Cultivars.

    PubMed

    Song, Eun-Hye; Kim, Hyun-Ju; Jeong, Jaesik; Chung, Hyun-Jung; Kim, Han-Yong; Bang, Eunjung; Hong, Young-Shick

    2016-04-20

    Rice grain metabolites are important for better understanding of the plant physiology of various rice cultivars and thus for developing rice cultivars aimed at providing diverse processed products. However, the variation of global metabolites in rice grains has rarely been explored. Here, we report the identification of intra- or intercellular metabolites in rice (Oryza sativa L.) grain powder using a (1)H high-resolution magic angle spinning (HR-MAS) NMR-based metabolomic approach. Compared with nonwaxy rice cultivars, marked accumulation of lipid metabolites such as fatty acids, phospholipids, and glycerophosphocholine in the grains of waxy rice cultivars demonstrated the distinct metabolic regulation and adaptation of each cultivar for effective growth during future germination, which may be reflected by high levels of glutamate, aspartate, asparagine, alanine, and sucrose. Therefore, this study provides important insights into the metabolic variations of diverse rice cultivars and their associations with environmental conditions and genetic backgrounds, with the aim of facilitating efficient development and the improvement of rice grain quality through inbreeding with genetic or chemical modification and mutation. PMID:27030107

  9. A sequential assignment procedure for proteins that have intermediate line widths in MAS NMR spectra: amyloid fibrils of human CA150.WW2.

    PubMed

    Becker, Johanna; Ferguson, Neil; Flinders, Jeremy; van Rossum, Barth-Jan; Fersht, Alan R; Oschkinat, Hartmut

    2008-08-11

    The second WW domain (WW2) of CA150, a human transcriptional activator, forms amyloid fibrils in vitro under physiological conditions. Based on experimental constraints from MAS NMR spectroscopy experiments, alanine scanning and electron microscopy, a structural model of CA150.WW2 amyloid fibrils was calculated earlier. Here, the assignment strategy is presented and suggested as a general approach for proteins that show intermediate line width. The (13)C,(13)C correlation experiments were recorded on fully or partially (13)C-labelled fibrils. The earlier (13)C assignment (26 residues) was extended to 34 of the 40 residues by direct (13)C-excitation experiments by using a deuterated sample that showed strongly improved line width. A 3D HNC-TEDOR (transferred-echo double-resonance) experiment with deuterated CA150.WW2 fibrils yielded 14 amide nitrogen and proton resonance assignments. The obtained chemical shifts were compared with the chemical shifts determined with the natively folded WW domain. TALOS (Torsion angle likelihood obtained from shift and sequence similarity) predictions confirmed that, under physiological conditions, the fibrillar form of CA150.WW2 adopts a significantly different beta structure than the native WW-domain fold. PMID:18642254

  10. Amino-acid selective experiments on uniformly 13C and 15N labeled proteins by MAS NMR: Filtering of lysines and arginines

    NASA Astrophysics Data System (ADS)

    Jehle, Stefan; Rehbein, Kristina; Diehl, Anne; van Rossum, Barth-Jan

    2006-12-01

    Amino-acid selective magic-angle spinning (MAS) NMR experiments can aid the assignment of ambiguous cross-peaks in crowded spectra of solid proteins. In particular for larger proteins, data analysis can be hindered by severe resonance overlap. In such cases, filtering techniques may provide a good alternative to site-specific spin-labeling to obtain unambiguous assignments that can serve as starting points in the assignment procedure. In this paper we present a simple pulse sequence that allows selective excitation of arginine and lysine residues. To achieve this, we make use of a combination of specific cross-polarization for selective excitation [M. Baldus, A.T. Petkova, J. Herzfeld, R.G. Griffin, Cross polarization in the tilted frame: assignment and spectral simplification in heteronuclear spin systems, Mol. Phys. 95 (1998) 1197-1207.] and spin diffusion for transfer along the amino-acid side-chain. The selectivity of the filter is demonstrated with the excitation of lysine and arginine side-chain resonances in a uniformly 13C and 15N labeled protein preparation of the α-spectrin SH3 domain. It is shown that the filter can be applied as a building block in a 13C- 13C lysine-only correlation experiment.

  11. Solid state {sup 31}P MAS NMR spectroscopy and conductivity measurements on NbOPO{sub 4} and H{sub 3}PO{sub 4} composite materials

    SciTech Connect

    Risskov Sørensen, Daniel; Nielsen, Ulla Gro; Skou, Eivind M.

    2014-11-15

    A systematic study of composite powders of niobium oxide phosphate (NbOPO{sub 4}) and phosphoric acid (H{sub 3}PO{sub 4}) has been performed in order to characterize the material's ability to perform as an electrolyte material in medium temperature fuel cells and electrolyzers. Powders of H{sub 3}PO{sub 4} contents between 13.1 and 74.2 M% were produced and characterized with powder X-ray diffraction, {sup 31}P MAS NMR and impedance spectroscopy. NMR revealed that a significant degree of dehydration and vaporization of H{sub 3}PO{sub 4} takes place above 200 °C, and increases with temperature. At 500 °C the NbOPO{sub 4} and H{sub 3}PO{sub 4} has reacted to form niobium pyrophosphate (Nb{sub 2}P{sub 4}O{sub 15}). Impedance spectroscopy showed an increase in conductivity with increasing acid concentration, whereas the conductivity decreased slightly with increasing temperature. The highest conductivity measured was 2.5·10{sup −3} S/cm for a sample containing 74.2 M% of H{sub 3}PO{sub 4}. Lastly, it was shown that NbOPO{sub 4} has no significant conductivity of its own. - Graphical abstract: Conductivity of NbOPO{sub 4}/H{sub 3}PO{sub 4} composites as a function of equivalent P{sub 2}O{sub 5} content. The conductivity is insignificant for pure NbOPO{sub 4}. - Highlights: • Composites have been made from NbOPO{sub 4} and H{sub 3}PO{sub 4}. • The composites composition has been investigated with solid state NMR. • The composites have shown clear signs of acid dehydration upon heating. • The conductivity of the composites increases for increasing acid content. • NbOPO{sub 4} has no significant conductivity of its own.

  12. I: Low Frequency NMR and NQR Using a dc SQUID. II: Variable-temperature 13C CP/MAS of Organometallics

    SciTech Connect

    Ziegeweid, M.A.

    1995-11-29

    NMR and NQR at low frequencies are difficult prospects due to small nuclear spin polarization. Furthermore, the sensitivity'of the inductive pickup circuitry of standard spectrometers is reduced as the frequency is lowered. I have used a cw-SQUID (Superconducting QUantum Interference Device) spectrometer, which has no such frequency dependence, to study the local atomic environment of {sup 14}N via the quadrupolar interaction. Because {sup 14}N has spin I = 1 and a 0-6 MHz frequency range, it is not possible to obtain well-resolved spectra in high magnetic fields. I have used a technique to observe {sup 14}N NQR resonances via their effect on neighboring protons mediated by the heteronuclear dipolar interaction to study peptides and narcotics. The sensitivity of the SQUID is not enough to measure low-frequency surface (or other low spin density) systems. The application of spin-polarized xenon has been previously used to enhance polarization in conventional NMR experiments. Because xenon only polarizes spins with which it is in contact, it is surface selective. While differences in chemical shifts between surface and bulk spins are not large, it is expected that the differences in quadrupole coupling constant should be very large due to the drastic change of the electric field gradient surrounding spins at the surface. With this in mind, I have taken preliminary steps to measure SQUID detected polarization transfer from Xe to another spin species at 4.2 K and in small magnetic fields (<50 G). In this regime, the spin-lattice relaxation of xenon is dependent on the applied magnetic field. The results of our efforts to characterize the relaxation of xenon are presented. The final section describes the solid-state variable-temperature (VT) one- and two-dimensional {sup 13}C cross polarization (CP)/magic angle spinning (MAS) NMR of Hf({eta}{sup 5}-C{sub 5}H{sub 5}){sub 2}({eta}{sup 1}-C{sub 5}H{sub 5}){sub 2}, Zr({eta}{sup 5}-C{sub 5}H{sub 5}){sub 3}({eta}{sup 1}-C

  13. Tracking Transitions in Spider Wrapping Silk Conformation and Dynamics by (19)F Nuclear Magnetic Resonance Spectroscopy.

    PubMed

    Sarker, Muzaddid; Orrell, Kathleen E; Xu, Lingling; Tremblay, Marie-Laurence; Bak, Jessi J; Liu, Xiang-Qin; Rainey, Jan K

    2016-05-31

    Aciniform silk protein (AcSp1) is the primary component of wrapping silk, the toughest of the spider silks because of a combination of high tensile strength and extensibility. Argiope trifasciata AcSp1 contains a core repetitive domain with at least 14 homogeneous 200-amino acid units ("W" units). Upon fibrillogenesis, AcSp1 converts from an α-helix-rich soluble state to a mixed α-helical/β-sheet conformation. Solution-state nuclear magnetic resonance (NMR) spectroscopy allowed demonstration of variable local stability within the W unit, but comprehensive characterization was confounded by spectral overlap, which was exacerbated by decreased chemical shift dispersion upon denaturation. Here, (19)F NMR spectroscopy, in the context of a single W unit (W1), is applied to track changes in structure and dynamics. Four strategic positions in the W unit were mutated to tryptophan and biosynthetically labeled with 5-fluorotryptophan (5F-Trp). Simulated annealing-based structure calculations implied that these substitutions should be tolerated, while circular dichroism (CD) spectroscopy and (1)H-(15)N chemical shift displacements indicated minimal structural perturbation in W1 mutants. Fiber formation by W2 concatemers containing 5F-Trp substitutions in both W units demonstrated retention of functionality, a somewhat surprising finding in light of sequence conservation between species. Each 5F-Trp-labeled W1 exhibited a unique (19)F chemical shift, line width, longitudinal relaxation time constant (T1), and solvent isotope shift. Perturbation to (19)F chemical shift and nuclear spin relaxation parameters reflected changes in the conformation and dynamics at each 5F-Trp site upon addition of urea and dodecylphosphocholine (DPC). (19)F NMR spectroscopy allowed unambiguous localized tracking throughout titration with each perturbant, demonstrating distinct behavior for each perturbant not previously revealed by heteronuclear NMR experiments. PMID:27153372

  14. {sup 1}H and {sup 23}Na MAS NMR spectroscopy of cationic species in CO{sub 2} selective alkaline earth metal porous silicoaluminophosphates prepared via liquid and solid state ion exchange

    SciTech Connect

    Arevalo-Hidalgo, Ana G.; Dugar, Sneha; Fu, Riqiang; Hernandez-Maldonado, Arturo J.

    2012-07-15

    The location of extraframework cations in Sr{sup 2+} and Ba{sup 2+} ion-exchanged SAPO-34 was estimated by means of {sup 1}H and {sup 23}Na MAS NMR spectroscopy and spectral deconvolution. Incorporation of the alkaline earth metal cations onto the SAPO framework was achieved via liquid state ion exchange, coupled partial detemplation/solid-state ion exchange, and combination of both techniques. MAS NMR revealed that the level of ion exchange was limited by the presence of protons and sodium cations near hexagonal prisms (site SI), which are relatively difficult to exchange with the alkaline earth metal due to steric and charge repulsion criteria. In addition, the presence of ammonium cations in the supercages facilitated the exchange of otherwise tenacious hydrogen as corroborated by unit cell compositional data as well as enhanced CO{sub 2} adsorption at low partial pressures. The extraframework ammonium species were produced from partial detemplation of the structure-directing agent employed for the SAPO-34 synthesis, tetraethylammonium. - Graphical abstract: MAS NMR was used to elucidate the position the cationic species in alkaline earth metal exchanged silicoaluminophosphates. These species played a significant role during the ion exchange process and, therefore, the materials ultimate CO{sub 2} adsorption performance. Highlights: Black-Right-Pointing-Pointer Location of extraframework Sr{sup 2+} or Ba{sup 2+} cations was estimated by means of {sup 1}H and {sup 23}Na MAS NMR. Black-Right-Pointing-Pointer Level of Sr{sup 2+} or Ba{sup 2+} ion exchange was limited by the presence of protons and sodium cations. Black-Right-Pointing-Pointer Presence of ammonium cations in the supercages facilitated the exchange. Black-Right-Pointing-Pointer Sr{sup 2+} and Ba{sup 2+} ion exchanged SAPOs are outstanding CO{sub 2} adsorbents.

  15. A bisphosphonate for 19F-magnetic resonance imaging

    PubMed Central

    Kenny, Gavin D.; Shaw, Karen P.; Sivachelvam, Saranja; White, Andrew J.P.; Botnar, Rene M.; T.M. de Rosales, Rafael

    2016-01-01

    19F-magnetic resonance imaging (MRI) is a promising technique that may allow us to measure the concentration of exogenous fluorinated imaging probes quantitatively in vivo. Here, we describe the synthesis and characterisation of a novel geminal bisphosphonate (19F-BP) that contains chemically-equivalent fluorine atoms that show a single and narrow 19F resonance and a bisphosphonate group that may be used for labelling inorganic materials based in calcium phosphates and metal oxides. The potential of 19F-BP to provide contrast was analysed in vitro and in vivo using 19F-MRI. In vitro studies demonstrated the potential of 19F-BP as an MRI contrast agent in the millimolar concentration range with signal-to-noise ratios (SNR) comparable to previously reported fluorinated probes. The preliminary in vivo MRI study reported here allowed us to visualise the biodistribution of 19F-BP, showing uptake in the liver and in the bladder/urinary system areas. However, bone uptake was not observed. In addition, 19F-BP showed undesirable toxicity effects in mice that prevent further studies with this compound at the required concentrations for MRI contrast. This study highlights the importance of developing 19F MRI probes with the highest signal intensity achievable. PMID:27110036

  16. Complete fusion of 19F with Al and Si isotopes

    NASA Astrophysics Data System (ADS)

    Chiou, M. S.; Wu, M. W.; Easwar, N.; Maher, J. V.

    1981-12-01

    Complete fusion cross sections have been determined by directly detecting evaporation residuals for the systems 19F + 27Al and 19F + 28,30Si over a 19F laboratory energy range 34-75 MeV. In all cases σfus increases smoothly with energy and eventually saturates at 1200-1250 mb. In the barrier penetration region the cross section for 19F + 28Si is always sufficiently smaller than that for 19F + 30Si to make the reduced barrier radius in a Glas-Mosel parametrization significantly smaller for the former system than for the latter. Three entrance channels are now available for the fused-system 46Ti: Critical angular momentum data from the 16O + 30Si entrance channel approach the statistical yrast line at much lower fused-system excitation energy than do the data from the entrance channels 18O + 28Si and 19F + 27Al. NUCLEAR REACTIONS Measured complete fusion cross sections for the systems 19F + 27Al, 19F + 28Si, 19F + 30Si; E=34-75 MeV. Deduced Glas-Mosel model and statistical yrast model parameters.

  17. Fluorinated Carbohydrates as Lectin Ligands: 19F-Based Direct STD Monitoring for Detection of Anomeric Selectivity

    PubMed Central

    Ribeiro, João P.; Diercks, Tammo; Jiménez-Barbero, Jesús; André, Sabine; Gabius, Hans-Joachim; Cañada, Francisco Javier

    2015-01-01

    The characterization of the binding of reducing carbohydrates present as mixtures of anomers in solution to a sugar recepor (lectin) poses severe difficulties. In this situation, NMR spectroscopy enables the observation of signals for each anomer in the mixture by applying approaches based on ligand observation. Saturation transfer difference (STD) NMR allows fast and efficient screening of compound mixtures for reactivity to a receptor. Owing to the exceptionally favorable properties of 19F in NMR spectroscopy and the often complex 1H spectra of carbohydrates, 19F-containing sugars have the potential to be turned into versatile sensors for recognition. Extending the recently established 1H → 1H STDre19F-NMR technique, we here demonstrate its applicability to measure anomeric selectivity of binding in a model system using the plant lectin concanavalin A (ConA) and 2-deoxy-2-fluoro-d-mannose. Indeed, it is also possible to account for the mutual inhibition between the anomers on binding to the lectin by means of a kinetic model. The monitoring of 19F-NMR signal perturbation disclosed the relative activities of the anomers in solution and thus enabled the calculation of their binding affinity towards ConA. The obtained data show a preference for the α anomer that increases with temperature. This experimental approach can be extended to others systems of biomedical interest by testing human lectins with suitably tailored glycan derivatives. PMID:26580665

  18. Structural investigations of silicate-phosphate glasses containing MoO3 by FTIR, Raman and 31P MAS NMR spectroscopies.

    PubMed

    Szumera, M

    2014-09-15

    Molybdenum is a transition metal (refers to the "d" block of the periodic table) whose atom has an incomplete d sub-shell. It is known that in silicate glasses molybdenum may exist under four oxidation states: Mo6+, Mo5+, Mo4+ and Mo3+, simultaneously molybdenum cations, depending on their content in the glass network, may either be a glass forming component, or act as a modifier. The contemporary literature data show studies conducted mostly on the structure of silicate, phosphate, borate and borosilicate glasses containing molybdenum ions, but not silicate-phosphate glasses. Therefore, the author has undertaken detailed studies using FTIR, Raman and 31P MAS NMR techniques in order to examine the effect of MoO3 addition into the structure of silicate-phosphate glasses from SiO2P2O5K2OCaOMgO system. On the basis of obtained results it was concluded that molybdenum ions in the analysed glasses act as a modifier, which follows from the gradual breakage of oxygen bridges, i.e. POP, SiOSi, and SiOP, and the following formation of connections such as Mo[MoO4]OSi and/or Mo[MoO4]OP. In summary, it is concluded that the increase of MoO3 content (up to 4.4 mol.%) in the structure of glasses of SiO2P2O5K2OMgOCaO system results in weakening of the structure and gradual increase of the degree of silico-oxygen and phosphor-oxygen frameworks depolymerisation. PMID:24759778

  19. Pseudo-symmetry, rotation- and inversion-twinning of a structure with dinuclear and trinuclear Cd complexes. CP-MAS-NMR and IR spectroscopies characterisation

    NASA Astrophysics Data System (ADS)

    Soudani, Sarra; Zeller, Matthias; Wenger, Emmanuel; Jelsch, Christian; Lefebvre, Frédéric; Nasr, Cherif Ben

    2014-10-01

    The structure of the complex [C18H30Cd3Cl6N18S12·2(C18H30Cd2Cl3N18S12)·CdCl4], or [L6Cd3Cl6·2(L6Cd2Cl3)·CdCl4], with L being 2-amino-5-(methylthio)-1,3,4-thiadiazole, C3H5N3S2, crystallizes in the trigonal polar space group R3. The crystal packing features three chemically distinct cadmium complex species with eight crystallographically independent Cd(II) ions distributed over two types of L ligand complexes with two and three Cd(II) centers, respectively, and a tetrachlorocadmate(II) ion. The coordination environment of the cadmium ions in the dinuclear and trinuclear complexes is a distorted octahedron. The tetrachlorocadmate(II) is disordered around a crystallographic threefold rotation axis, which is, in turn, inducing disorder onto the two methyl-thio groups in closest proximity to a CdCl4 anion. The crystal under investigation was found to be twinned by rotational and inversion merohedry. In the higher symmetry setting, the trinuclear complex would feature exact inversion symmetry, and the two binuclear cationic complexes would be inversion counterparts of each other. The R3bar symmetry is broken by a mismatch of less than 1 Å between one pair of ligands L between the dinuclear cations, which feature slightly different rotational angles around the Cd ion in the otherwise symmetry equivalent complexes. This compound is also investigated by FT-IR and solid-state 13CCP-MAS NMR spectroscopies.

  20. Direct observation of ¹⁷O-¹⁸⁵/¹⁸⁷Re ¹J-coupling in perrhenates by solid-state ¹⁷O VT MAS NMR: temperature and self-decoupling effects.

    PubMed

    Jakobsen, Hans J; Bildsøe, Henrik; Brorson, Michael; Gan, Zhehong; Hung, Ivan

    2013-05-01

    (17)O MAS NMR spectra recorded at 14.1T and room temperature (RT) for (17)O-enriched samples of the two perrhenates, KReO4 and NH4ReO4, exhibit very similar overall appearances of the manifold of spinning sidebands (ssbs) for the satellite transitions (STs) and the central transition (CT). These overall appearances of the spectra are easily simulated in terms of the usual quadrupole coupling and chemical shift interaction parameters. However, a detailed inspection of the line shapes for the individual ssbs of the STs and, in particular, for the CT in the spectrum of KReO4 reveals line-shape features, which to our knowledge have not before been observed experimentally in 1D MAS NMR spectra for any quadrupolar nucleus, nor emerged from simulations for any combination of second-order quadrupolar interaction and chemical shift anisotropy. In contrast, such line-shape features are not observed for the corresponding ssbs (STs and CT) in the 14.1T RT (17)O MAS NMR spectrum of NH4ReO4. Considering the additional interaction of a combination of residual heteronuclear (17)O-(185/)(187)Re dipolar and scalar J coupling between this spin pair of two quadrupolar nuclei, spectral simulations for KReO4 show that these interactions are able to account for the observed line shapes, although the expected (1)J((17)O-(185/)(187)Re) six-line spin-spin splittings are not resolved. Low-temperature, high-field (21.1T) (17)O VT MAS NMR spectra of both KReO4 and NH4ReO4 show that full resolution into six-line multiplets for the centerbands are achieved at -90°C and -138°C, respectively. This allows determination of (1)J((17)O-(187)Re)=-268Hz and -278Hz for KReO4 and NH4ReO4, respectively, i.e., an isotropic (1)J coupling and its sign between two quadrupolar nuclei, observed for the first time directly from solid-state one-pulse 1D MAS NMR spectra, without resort to additional 1D or 2D experiments. Determination of T1((187)Re) spin-lattice relaxation times, observed indirectly through a 2D

  1. Investigation of relative metabolic changes in the organs and plasma of rats exposed to X-ray radiation using HR-MAS (1) H NMR and solution (1) H NMR.

    PubMed

    Jang, Won Gyo; Park, Ju Yeon; Lee, Jueun; Bang, Eunjung; Kim, So Ra; Lee, Eun Kyeong; Yun, Hyun Jin; Kang, Chang-Mo; Hwang, Geum-Sook

    2016-04-01

    Excess exposure to ionizing radiation generates reactive oxygen species and increases the cellular inflammatory response by modifying various metabolic pathways. However, an investigation of metabolic perturbations and organ-specific responses based on the amount of radiation during the acute phase has not been conducted. In this study, high-resolution magic-angle-spinning (HR-MAS) NMR and solution NMR-based metabolic profiling were used to investigate dose-dependent metabolic changes in multiple organs and tissues - including the jejunum, spleen, liver, and plasma - of rats exposed to X-ray radiation. The organs, tissues, and blood samples were obtained 24, 48, and 72 h after exposure to low-dose (2 Gy) and high-dose (6 Gy) X-ray radiation and subjected to metabolite profiling and multivariate analyses. The results showed the time course of the metabolic responses, and many significant changes were detected in the high-dose compared with the low-dose group. Metabolites with antioxidant properties showed acute responses in the jejunum and spleen after radiation exposure. The levels of metabolites related to lipid and protein metabolism were decreased in the jejunum. In addition, amino acid levels increased consistently at all post-irradiation time points as a consequence of activated protein breakdown. Consistent with these changes, plasma levels of tricarboxylic acid cycle intermediate metabolites decreased. The liver did not appear to undergo remarkable metabolic changes after radiation exposure. These results may provide insight into the major metabolic perturbations and mechanisms of the biological systems in response to pathophysiological damage caused by X-ray radiation. Copyright © 2016 John Wiley & Sons, Ltd. PMID:26871685

  2. Binding energies and 19F nuclear magnetic deshielding in paramagnetic halogen-bonded complexes of TEMPO with haloperfluorocarbons.

    PubMed

    Cavallotti, Carlo; Metrangolo, Pierangelo; Meyer, Franck; Recupero, Francesco; Resnati, Giuseppe

    2008-10-01

    19F NMR measurements and theoretical calculations were performed to study paramagnetic complexes of iodoperfluorocarbons with stable nitroxide radicals. Contrary to what is usually measured for diamagnetic halogen-bonded complexes involving iodoperfluorocarbons, it was found that the formation of complexes with the 2,2,6,6-tetramethyl(piperidin-1-yloxyl) (TEMPO) radical determines downfield shifts in the 19F NMR spectra. The experimental finding was confirmed by calculating nuclear shielding using density functional theory and correcting the isotropic diamagnetic (19)F chemical shift with contact interactions evaluated from the hyperfine coupling tensor. The computational analysis of the interaction between CF3I and TEMPO, by using DFT and MP2 theories, showed that the occurrence of the halogen bond between the interacting partners is associated with a significant charge transfer to CF3I and that the measured downfield shift is due to the occurring spin transfer. PMID:18795762

  3. Solid-state NMR strategies for the structural characterization of paramagnetic NO adducts of Frustrated Lewis Pairs (FLPs).

    PubMed

    Wiegand, Thomas; Sajid, Muhammad; Kehr, Gerald; Erker, Gerhard; Eckert, Hellmut

    2014-01-01

    By N,N addition of NO to the norbonane annulated borane-phosphane Frustrated Lewis pair (FLP) 1 a five-membered heterocyclic persistent aminoxyl radical 2 and its diamagnetic hydroxylamine reduction product 3 are prepared, and the comprehensive multinuclear solid state NMR characterization ((1)H, (11)B, (19)F, (31)P) of these FLP adducts is reported. Signal quantification experiments using a standard addition method reveal that the (11)B and (31)P NMR signals observed in 2 actually arise from molecular impurities of 3 embedded in the paramagnetic crystal. In contrast analogous quantification experiments reveal that the (1)H and (19)F MAS-NMR spectra originate from spin-carrying molecules. Peak assignments are based on DFT-calculated Mulliken spin densities, which lead to the surprising result that the largest paramagnetic shift affecting a proton NMR resonance in 2 originates from intermolecular interactions. For the (19)F nuclei, experiments and calculations indicate that paramagnetic shift effects are very small. In this case, assignments are based on DFT chemical shift calculations carried out on diamagnetic 3 and (19)F((11)B) Rotational Echo Adiabatic Passage DOuble Resonance (REAPDOR) experiments. The set of experiments described here defines an efficient strategy for the structural analysis of paramagnetic FLP adducts. PMID:24815176

  4. Modification of olefin polymerization catalysts. III. A sup 13 C CP-MAS NMR study of adsorption of silyl ethers on MgCl sub 2 -supported Ziegler-Natta catalysts

    SciTech Connect

    Pakkanen, T.T.; Vaehaesarja, E.; Pakkanen, T.A. ); Iiskola, E.; Sormunen, P. )

    1990-02-01

    A {sup 13}C CP-MAS NMR and elemental analysis study of adsorption and interaction of silyl ethers, RSi(OMe){sub 3} (R = Et, Ph, OMe), as internal and external electron donors with MgCl{sub 2}-supported Ziegler-Natta catalyst has been carried out. A chemical activation of anhydrous MgCl{sub 2} with EtOH and AlEt{sub 3} produces a high-surface-area support stabilized by an organoaluminum compound, AlEt{sub 2}(OEt). In a treatment of the aluminum-modified MgCl{sub 2} support with silyl ether, the aluminum surface complex is retained and silyl ether is almost totally incorporated into the support. {sup 13}C CP-MAS NMR data of the methoxy region indicate that a mobile liquid-like silyl ether species dominates, except in the case of Si(OMe){sub 4}, where a more strongly bound species is also present on the support. TiCl{sub 4} treatment removes the weakly adsorbed silyl ether species, leaving a species which is attributed to an aluminum-bound silyl ether surface complex. No evidence of titanium-bound silyl ether species was found in the solid state or in solution where TiCl{sub 4} undergoes with silyl ethers an exchange reaction forming a yellow solid identified as (TiCl{sub 2}(OMe){sub 2}){sub x}. Activation of the catalyst with AlEt{sub 3} at a high Al:Ti ratio produces a material with a low silyl ether coverage showing a weak methoxy signal in {sup 13}C CP-MAS. The linewidths of the observed signals in {sup 13}C CP-MAS NMR are in the range 5-10 ppm at every stage of preparation of the catalyst, indicating heterogeneity of the coordination sites on the surface of chemically activated MgCl{sub 2}.

  5. Heteronuclear 19F-1H statistical total correlation spectroscopy as a tool in drug metabolism: study of flucloxacillin biotransformation.

    PubMed

    Keun, Hector C; Athersuch, Toby J; Beckonert, Olaf; Wang, Yulan; Saric, Jasmina; Shockcor, John P; Lindon, John C; Wilson, Ian D; Holmes, Elaine; Nicholson, Jeremy K

    2008-02-15

    We present a novel application of the heteronuclear statistical total correlation spectroscopy (HET-STOCSY) approach utilizing statistical correlation between one-dimensional 19F/1H NMR spectroscopic data sets collected in parallel to study drug metabolism. Parallel one-dimensional (1D) 800 MHz 1H and 753 MHz 19F{1H} spectra (n = 21) were obtained on urine samples collected from volunteers (n = 6) at various intervals up to 24 h after oral dosing with 500 mg of flucloxacillin. A variety of statistical relationships between and within the spectroscopic datasets were explored without significant loss of the typically high 1D spectral resolution, generating 1H-1H STOCSY plots, and novel 19F-1H HET-STOCSY, 19F-19F STOCSY, and 19F-edited 1H-1H STOCSY (X-STOCSY) spectroscopic maps, with a resolution of approximately 0.8 Hz/pt for both nuclei. The efficient statistical editing provided by these methods readily allowed the collection of drug metabolic data and assisted structure elucidation. This approach is of general applicability for studying the metabolism of other fluorine-containing drugs, including important anticancer agents such as 5-fluorouracil and flutamide, and is extendable to any drug metabolism study where there is a spin-active X-nucleus (e.g., 13C, 15N, 31P) label present. PMID:18211034

  6. 19F magnetic resonance imaging of endogenous macrophages in inflammation.

    PubMed

    Temme, Sebastian; Bönner, Florian; Schrader, Jürgen; Flögel, Ulrich

    2012-01-01

    In this article, we review the use of (19) F MRI (magnetic resonance imaging) for in vivo tracking of monocytes and macrophages in the course of tissue inflammation. Emulsified perfluorocarbons (PFCs) are preferentially phagocytized by monocytes/macrophages and are readily detected by (19) F MRI. Because of the lack of any (19) F background in the body, observed signals are robust and exhibit an excellent degree of specificity. As a consequence of progressive infiltration of the labeled immunocompetent cells into inflamed areas, foci of inflammation can be localized as hot spots by simultaneous acquisition of morphologically matched proton ((1) H) and fluorine ((19) F) MRI. The identification of inflammation by (19) F MRI--at a time when the inflammatory cascade is initiated--opens the possibility for an early detection and more timely therapeutic intervention. Since signal intensity in the (19) F images reflects the severity of inflammation, this approach is also suitable to monitor the efficacy of pharmaceutical treatment. Because PFCs are biochemically inert and the fluorine nucleus exhibits high magnetic resonance (MR) sensitivity, (19) F MRI may be applicable for clinical inflammation imaging. PMID:22354793

  7. Efficient and facile Ar-Si bond cleavage by montmorillonite KSF: synthetic and mechanistic aspects of solvent-free protodesilylation studied by solution and solid-state MAS NMR.

    PubMed

    Zafrani, Yossi; Gershonov, Eytan; Columbus, Ishay

    2007-08-31

    A facile and efficient method for the cleavage of the Ar-Si bond of various aryl trimethyl silanes is described. When adsorbed on montmorillonite KSF (mont KSF), these arylsilanes readily undergo a solvent-free protodesilylation to the corresponding arenes at room temperature in excellent yields. This approach seems to be superior to the traditional mild methods (i.e., desilylation by TFA, TBAF, CsF), in terms of reaction yield, rate, and environmentally benign conditions. Some mechanistic studies using both solution and solid-state magic-angle spinning (SS MAS) (1)H NMR are also presented. PMID:17676903

  8. Modeling Ti/Ge Distribution in LiTi2-xGex(PO4)3 NASICON Series by (31)P MAS NMR and First-Principles DFT Calculations.

    PubMed

    Diez-Gómez, Virginia; Arbi, Kamel; Sanz, Jesús

    2016-08-01

    Ti/Ge distribution in rhombohedral LiTi2-xGex(PO4)3 NASICON series has been analyzed by (31)P magic-angle spinning nuclear magnetic resonance (MAS NMR) spectroscopy and first-principles density functional theory (DFT) calculations. Nuclear magnetic resonance is an excellent probe to follow Ti/Ge disorder, as it is sensitive to the atomic scale environment without long-range periodicity requirements. In the samples considered here, PO4 units are surrounded by four Ti/Ge octahedra, and then, five different components ascribed to P(OTi)4, P(OTi)3(OGe), P(OTi)2(OGe)2, P(OTi)(OGe)3, and P(OGe)4 environments are expected in (31)P MAS NMR spectra of R3̅c NASICON samples. However, (31)P MAS NMR spectra of analyzed series display a higher number of signals, suggesting that, although the overall symmetry remains R3̅c, partial substitution causes a local decrement in symmetry. With the aid of first-principles DFT calculations, 10 detected (31)P NMR signals have been assigned to different Ti4-nGen arrangements in the R3 subgroup symmetry. In this assignment, the influence of octahedra of the same or different R2(PO4)3 structural units has been considered. The influence of bond distances, angles and atom charges on (31)P NMR chemical shieldings has been discussed. Simulation of the LiTi2-xGex(PO4)3 series suggests that detection of 10 P environments is mainly due to the existence of two oxygen types, O1 and O2, whose charges are differently affected by Ge and Ti occupation of octahedra. From the quantitative analysis of detected components, a random Ti/Ge distribution has been deduced in next nearest neighbor (NNN) sites that surround tetrahedral PO4 units. This random distribution was supported by XRD data displaying Vegard's law. PMID:27373306

  9. /sup 19/F shielding anisotropy in RbCaF/sub 3/

    SciTech Connect

    Kaliaperumal, R.; Sears, R.E.J.; Finch, C.B.

    1987-07-01

    A /sup 19/F NMR multipulse measurement of the chemical shift in a single crystal of cubic RbCaF/sub 3/ gave -47.0 +- 3 ppm as the isotropic value with respect to C/sub 6/F/sub 6/, and 128.7 +- 6 ppm as the anisotropy. The shielding is accounted for by the usual diamagnetic and paramagnetic ionic overlap and covalent terms. As a result, the Ca/sup + +/ -F/sup -/ bond is estimated to be 98% ionic. No significant spectral changes were found when the crystal was cooled below the cubic to tetragonal phase transition temperature. Reasons for this are given.

  10. Single 19F Probe for Simultaneous Detection of Multiple Metal Ions Using miCEST MRI

    PubMed Central

    2015-01-01

    The local presence and concentration of metal ions in biological systems has been extensively studied ex vivo using fluorescent dyes. However, the detection of multiple metal ions in vivo remains a major challenge. We present a magnetic resonance imaging (MRI)-based method for noninvasive detection of specific ions that may be coexisting, using the tetrafluorinated derivative of the BAPTA (TF-BAPTA) chelate as a 19F chelate analogue of existing optical dyes. Taking advantage of the difference in the ion-specific 19F nuclear magnetic resonance (NMR) chemical shift offset (Δω) values between the ion-bound and free TF-BAPTA, we exploited the dynamic exchange between ion-bound and free TF-BAPTA to obtain MRI contrast with multi-ion chemical exchange saturation transfer (miCEST). We demonstrate that TF-BAPTA as a prototype single 19F probe can be used to separately visualize mixed Zn2+ and Fe2+ ions in a specific and simultaneous fashion, without interference from potential competitive ions. PMID:25523816

  11. Amphiphilic Hyperbranched Fluoropolymers as Nanoscopic 19F-Magnetic Resonance Imaging Agent Assemblies

    PubMed Central

    Du, Wenjun; Nyström, Andreas M.; Zhang, Lei; Powell, Kenya T.; Li, Yali; Cheng, Chong; Wickline, Samuel A.; Wooley, Karen L.

    2009-01-01

    Three hyperbranched fluoropolymers were synthesized and their micelles were constructed as potential 19F MRI agents. A hyperbranched star-like core was first synthesized via ATR-SCVCP of 4-chloromethyl styrene (CMS), lauryl acrylate (LA) and 1,1,1-tris(4′-(2″-bromoisobutyryloxy)phenyl)ethane (TBBPE). The polymerization gave a small core with Mn of 5.5 kDa with PDI of 1.6, which served as a macroinitiator. Trifluoroethyl methacrylate (TFEMA) and tert-butyl acrylate (tBA) in different ratio were then “grafted” from the core to give three polymers with Mn of ca. 120 kDa and PDI values of ca. 1.6–1.8. After acidolysis of the tert-butyl ester groups, amphiphilic, hyperbranched star-like polymers with Mn of ca. 100 kDa were obtained. These structures were subjected to micelle formation in aqueous solution to give micelles having TEM-measured diameters ranging from 3–8 nm and DLS-measured hydrodynamic diameters from 20–30 nm. These micelles gave a narrow, single resonance by 19F NMR spectroscopy, with a half width of approximately 130 Hz. The T1/T2 parameters were ca. 500 ms and 50 ms, respectively, and were not significantly affected by the composition and sizes of the micelles. 19F MRI phantom images of these fluorinated micelles were acquired, which demonstrated that these fluorinated micelles maybe useful as novel 19F MRI agents for a variety of biomedical studies. PMID:18795785

  12. MAS-NMR studies of lithium aluminum silicate (LAS) glasses and glass-ceramics having different Li{sub 2}O/Al{sub 2}O{sub 3} ratio

    SciTech Connect

    Ananthanarayanan, A.; Kothiyal, G.P.; Montagne, L.; Revel, B.

    2010-01-15

    Emergence of phases in lithium aluminum silicate (LAS) glasses of composition (wt%) xLi{sub 2}O-71.7SiO{sub 2}-(17.7-x)Al{sub 2}O{sub 3}-4.9K{sub 2}O-3.2B{sub 2}O{sub 3}-2.5P{sub 2}O{sub 5} (5.1<=x<=12.6) upon heat treatment were studied. {sup 29}Si, {sup 27}Al, {sup 31}P and {sup 11}B MAS-NMR were employed for structural characterization of both LAS glasses and glass-ceramics. In glass samples, Al is found in tetrahedral coordination, while P exists mainly in the form of orthophosphate units. B exists as BO{sub 3} and BO{sub 4} units. {sup 27}Al NMR spectra show no change with crystallization, ruling out the presence of any Al containing phase. Contrary to X-ray diffraction studies carried out, {sup 11}B (high field 18.8 T) and {sup 29}Si NMR spectra clearly indicate the unexpected crystallization of a borosilicate phase (Li,K)BSi{sub 2}O{sub 6}, whose structure is similar to the aluminosilicate virgilite. Also, lithium disilicate (Li{sub 2}Si{sub 2}O{sub 5}), lithium metasilicate (Li{sub 2}SiO{sub 3}) and quartz (SiO{sub 2}) were identified in the {sup 29}Si NMR spectra of the glass-ceramics. {sup 31}P NMR spectra of the glass-ceramics revealed the presence of Li{sub 3}PO{sub 4} and a mixed phase (Li,K){sub 3}PO{sub 4} at low alkali concentrations. - Graphical Abstract: The {sup 11}B MAS-NMR spectra of lithium aluminum silicate (LAS) glass-ceramics indicating the formation of Li/KBSiO{sub 6} phase. This phase is isostructural with virgilite and cannot be distinguished in X-ray diffractograms.

  13. Impact of reduction on the properties of metal bisdithiolenes: multinuclear solid-state NMR and structural studies on Pt(tfd)2 and its reduced forms.

    PubMed

    Tang, Joel A; Kogut, Elzbieta; Norton, Danielle; Lough, Alan J; McGarvey, Bruce R; Fekl, Ulrich; Schurko, Robert W

    2009-03-19

    Transition-metal dithiolene complexes have interesting structures and fascinating redox properties, making them promising candidates for a number of applications, including superconductors, photonic devices, chemical sensors, and catalysts. However, not enough is known about the molecular electronic origins of these properties. Multinuclear solid-state NMR spectroscopy and first-principles calculations are used to examine the molecular and electronic structures of the redox series [Pt(tfd)(2)](z-) (tfd = S(2)C(2)(CF(3))(2); z = 0, 1, 2; the anionic species have [NEt(4)](+) countercations). Single-crystal X-ray structures for the neutral (z = 0) and the fully reduced forms (z = 2) were obtained. The two species have very similar structures but differ slightly in their intraligand bond lengths. (19)F-(195)Pt CP/CPMG and (195)Pt magic-angle spinning (MAS) NMR experiments are used to probe the diamagnetic (z = 0, 2) species, revealing large platinum chemical shielding anisotropies (CSA) with distinct CS tensor properties, despite the very similar structural features of these species. Density functional theory (DFT) calculations are used to rationalize the large platinum CSAs and CS tensor orientations of the diamagnetic species using molecular orbital (MO) analysis, and are used to explain their distinct molecular electronic structures in the context of the NMR data. The paramagnetic species (z = 1) is examined using both EPR spectroscopy and (13)C and (19)F MAS NMR spectroscopy. Platinum g-tensor components were determined by using solid-state EPR experiments. The unpaired electron spin densities at (13)C and (19)F nuclei were measured by employing variable-temperature (13)C and (19)F NMR experiments. DFT and ab initio calculations are able to qualitatively reproduce the experimentally measured g-tensor components and spin densities. The combination of experimental and theoretical data confirm localization of unpaired electron density in the pi-system of the

  14. Study of fluorine in silicate glass with 19F nuclear magnetic resonance spectroscopy

    NASA Astrophysics Data System (ADS)

    Duncan, T. M.; Douglass, D. C.; Csencsits, R.; Walker, K. L.

    1986-07-01

    We report an application of nuclear magnetic resonance (NMR) spectroscopy to the study of fluorine-doped silicate glass prepared by the modified chemical vapor deposition process, prior to drawing the rod into fibers. The silica contains 1.03-wt. % fluorine, as determined by the calibrated intensity of the 19F NMR spectrum. The isotropic chemical shift of the 19F spectrum shows that fluorine bonds only to silicon; there is no evidence of oxyfluorides. Analysis of the distribution of nuclear dipolar couplings between fluorine nuclei reveals that the relative populations of silicon monofluoride sites [Si(O-)3F] and species having near-neighbor fluorines, such as silicon difluoride sites [Si(O-)2F2], are nearly statistically random. That is, to a good approximation, the fluorine substitutes randomly into the oxygen sites of the silica network. There is no evidence of local clusters of fluorine sites, silicon trifluoride sites [Si(O-)F3], or silicon tetrafluoride (SiF4).

  15. Structure of (NH4)3GaF6 investigated by multinuclear magic-angle spinning NMR spectroscopy in comparison with rietveld refinement.

    PubMed

    Krahl, Thoralf; Ahrens, Mike; Scholz, Gudrun; Heidemann, Detlef; Kemnitz, Erhard

    2008-01-21

    The structure of ammonium gallium cryolite (NH(4))(3)GaF(6) was investigated by (19)F and (69,71)Ga magic-angle spinning (MAS) NMR in comparison with X-ray powder diffraction followed by Rietveld refinement. In agreement with previous thermodynamic measurements, NMR experiments on (NH(4))(3)GaF(6) support the model of rigid GaF(6) octahedra. At high spinning speeds (30 kHz), the scalar coupling between the six equivalent (19)F nuclei and (69,71)Ga can be directly observed in the powder spectra. The coupling constants are J(19)F(69)Ga = 197 Hz and J(19)F(71)Ga = 264 Hz. To explain the (71)Ga spectra recorded at 3 kHz a small distribution of quadrupolar frequencies has to be included. The spread of the spinning sidebands hints to a largest nu(Q) value of 28 kHz for (71)Ga. This can be explained by the occurrence of highly symmetric GaF(6) octahedra, which are tilted against the surrounding atoms. In addition, the incomplete motional excitation does not average out the quadrupolar effects. NMR findings are in discrepancy to those of Rietveld refinement. As result it appears that X-ray diffraction is not sensitive enough to deliver proper results. PMID:18069821

  16. The Local Structural State of Aluminosilicate Garnet Solid Solutions: An Investigation of Grospydite Garnet from the Roberts Victor Kimberlite Using Paramagnetically Shifted 27Al and 29Si MAS NMR Resonances

    NASA Astrophysics Data System (ADS)

    Geiger, C. A.; Palke, A. C.; Stebbins, J. F.

    2014-12-01

    Most rock-forming silicates are substitutional solid solutions. Over the years extensive research has been done to determine their structural and crystal chemical properties. Here, the distribution of cations, or order-disorder behavior, is of central importance. In the case of aluminosilicate garnet solid solutions (X3Al2Si3O12 with X = Mg, Fe2+, Mn2+ and Ca) it has been shown that both synthetic and natural crystals have random long-range X-cation disorder in space group Ia-3d, as given by X-ray single-crystal diffraction measurements. However, the structural state of natural garnets at the local scale is not known. Garnet from a grospydite xenolith from the Roberts Victor kimberlite, South Africa, was studied by 27Al and 29Si MAS NMR spectroscopy. The research thrust was placed on measuring and analyzing paramagnetically shifted resonances to determine the local (short range) structural state of the X-cations in a grossular-rich ternary aluminosilicate garnet solid solution. The garnet crystals are compositionally homogeneous based on microprobe analysis, showing no measurable zoning, and have the formula Grs46.7Prp30.0Alm23.3. The garnet is cubic with the standard garnet space group Ia-3d. The 27Al MAS NMR spectrum shows a very broad asymmetric resonance located between about 100 and -50 ppm. It consists of a number of individual overlapping paramagnetically shifted resonances, which are difficult to analyze quantitatively. The 29Si MAS NMR spectrum, showing better resolution, has two observable resonances termed S0 and S4. S0 is located between about -60 ppm and -160 ppm and S4 is centered at roughly 95 ppm. Both S0 and S4 are composite resonances in nature containing many overlapping individual peaks. S0 contains information on local cation configurations whereby an isolated SiO4 group in the garnet structure does not have an edge-shared Fe2+-containing dodecahedron. S4 involves local configurations where there is one edge-shared dodecahedron containing Fe2

  17. Probing Oxide-Ion Mobility in the Mixed Ionic-Electronic Conductor La2NiO4+δ by Solid-State (17)O MAS NMR Spectroscopy.

    PubMed

    Halat, David M; Dervişoğlu, Rıza; Kim, Gunwoo; Dunstan, Matthew T; Blanc, Frédéric; Middlemiss, Derek S; Grey, Clare P

    2016-09-14

    While solid-state NMR spectroscopic techniques have helped clarify the local structure and dynamics of ionic conductors, similar studies of mixed ionic-electronic conductors (MIECs) have been hampered by the paramagnetic behavior of these systems. Here we report high-resolution (17)O (I = 5/2) solid-state NMR spectra of the mixed-conducting solid oxide fuel cell (SOFC) cathode material La2NiO4+δ, a paramagnetic transition-metal oxide. Three distinct oxygen environments (equatorial, axial, and interstitial) can be assigned on the basis of hyperfine (Fermi contact) shifts and quadrupolar nutation behavior, aided by results from periodic DFT calculations. Distinct structural distortions among the axial sites, arising from the nonstoichiometric incorporation of interstitial oxygen, can be resolved by advanced magic angle turning and phase-adjusted sideband separation (MATPASS) NMR experiments. Finally, variable-temperature spectra reveal the onset of rapid interstitial oxide motion and exchange with axial sites at ∼130 °C, associated with the reported orthorhombic-to-tetragonal phase transition of La2NiO4+δ. From the variable-temperature spectra, we develop a model of oxide-ion dynamics on the spectral time scale that accounts for motional differences of all distinct oxygen sites. Though we treat La2NiO4+δ as a model system for a combined paramagnetic (17)O NMR and DFT methodology, the approach presented herein should prove applicable to MIECs and other functionally important paramagnetic oxides. PMID:27538437

  18. 13C and 15N—Chemical Shift Anisotropy of Ampicillin and Penicillin-V Studied by 2D-PASS and CP/MAS NMR

    NASA Astrophysics Data System (ADS)

    Antzutkin, Oleg N.; Lee, Young K.; Levitt, Malcolm H.

    1998-11-01

    The principal values of the chemical shift tensors of all13C and15N sites in two antibiotics, ampicillin and penicillin-V, were determined by 2-dimensionalphaseadjustedspinningsideband (2D-PASS) and conventional CP/MAS experiments. The13C and15N chemical shift anisotropies (CSA), and their confidence limits, were evaluated using a Mathematica program. The CSA values suggest a revised assignment of the 2-methyl13C sites in the case of ampicillin. We speculate on a relationship between the chemical shift principal values of many of the13C and15N sites and the β-lactam ring conformation.

  19. Dual 19F/1H MR gene reporter molecules for in vivo detection of β-galactosidase

    PubMed Central

    Yu, Jian-Xin; Kodibagkar, Vikram D.; Hallac, Rami R.; Liu, Li; Mason, Ralph P.

    2012-01-01

    Increased emphasis on personalized medicine and novel therapies require the development of non-invasive strategies for assessing biochemistry in vivo. The detection of enzyme activity and gene expression in vivo is potentially important for the characterization of diseases and gene therapy. Magnetic resonance imaging (MRI) is a particularly promising tool since it is non-invasive, and has no associated radioactivity, yet penetrates deep tissue. We now demonstrate a novel class of dual 1H/19F nuclear magnetic resonance (NMR) lacZ gene reporter molecule to specifically reveal enzyme activity in human tumor xenografts growing in mice. We report the design, synthesis, and characterization of six novel molecules and evaluation of the most effective reporter in mice in vivo. Substrates show a single 19F NMR signal and exposure to β-galactosidase induces a large 19F NMR chemical shift response. In the presence of ferric ions the liberated aglycone generates intense proton MRI T2 contrast. The dual modality approach allows both the detection of substrate and imaging of product enhancing the confidence in enzyme detection. PMID:22352428

  20. A General and Facile Strategy to Fabricate Multifunctional Nanoprobes for Simultaneous (19)F Magnetic Resonance Imaging, Optical/Thermal Imaging, and Photothermal Therapy.

    PubMed

    Hu, Gaofei; Li, Nannan; Tang, Juan; Xu, Suying; Wang, Leyu

    2016-09-01

    (19)F magnetic resonance imaging (MRI), due to its high sensitivity and negligible background, is anticipated to be a powerful noninvasive, sensitive, and accurate molecular imaging technique. However, the major challenge of (19)F MRI is to increase the number of (19)F atoms while maintaining the solubility and molecular mobility of the probe. Here, we successfully developed a facile and general strategy to synthesize the multifunctional (19)F MRI nanoprobes by encapsulating the hydrophobic inorganic nanoparticles (NPs) into a hybrid polymer micelle consisting of hydrolysates of 1H,1H,2H,2H-perfluorodecyltriethoxysilane (PDTES) and oleylamine-functionalized poly(succinimide) (PSIOAm). Due to their good water dispersibility, excellent molecular mobility resulting from the ultrathin coating, and high (19)F atom numbers, these nanoprobes generate a separate sharp singlet of (19)F nuclear magnetic resonance (NMR) signal (at -82.8 ppm) with half peak width of ∼28 Hz, which is highly applicable for (19)F MRI. Significantly, by varying the inorganic core from metals (Au), oxides (Fe3O4), fluorides (NaYF4:Yb(3+)/Er(3+)), and phosphates (YPO4) to semiconductors (Cu7S4 and Ag2S, ZnS:Mn(2+)) NPs, which renders the nanoprobes' multifunctional properties such as photothermal ability (Au, Cu7S4), magnetism (Fe3O4), fluorescence (ZnS:Mn(2+)), near-infrared (NIR) fluorescence (Ag2S), and upconversion (UC) luminescence. Meanwhile, the as-prepared nanoprobes possess relatively small sizes (about 50 nm), which is beneficial for long-time circulation. The proof-of-concept in vitro (19)F NMR and photothermal ablation of ZnS:Mn(2+)@PDTES/PSIOAm and Cu7S4@PDTES/PSIOAm nanoprobes further suggest that these nanoprobes hold wide potentials for multifunctional applications in biomedical fields. PMID:27534896

  1. High-Speed Magic-Angle Spinning 13C MAS NMR Spectra of Adamantane: Self-Decoupling of the Heteronuclear Scalar Interaction and Proton Spin Diffusion

    NASA Astrophysics Data System (ADS)

    Ernst, Matthias; Verhoeven, Aswin; Meier, Beat H.

    1998-02-01

    We have investigated the carbon line shape of solid adamantane under high-speed magic-angle sample spinning (MAS) acquired without proton decoupling. The CH-group shows a spinning-speed-dependent line broadening while the CH2-group consists of a spinning-speed-independent sharp component and a spinning-speed-dependent broader part. These phenomena can be explained by self-decoupling of theJ-interaction due to proton spin diffusion. Such a self-decoupling process can be described by a magnetization exchange process between the multiplet lines. Changing the spin-diffusion rate constant by off-resonance irradiation of the protons allows us to observe the full range from slow exchange to coalescence to fast exchange of the carbon spectra. One of the multiplet components in the CH2-group corresponds to a group spin of the protons of zero and therefore does not couple to the other protons. This gives rise to the sharp central line. The magnetization exchange rate constant between the different multiplet lines can be determined from the spectra and is a measure for the spinning-speed-dependent proton spin-diffusion rate constant. Even at an MAS speed of 30 kHz, proton spin diffusion is still observable despite the relatively weak intermolecular proton dipolar-coupling network in adamantane which results in a static proton line width of only 14 kHz (full width at half height).

  2. Characterization of 19A-like 19F pneumococcal isolates from Papua New Guinea and Fiji

    PubMed Central

    Dunne, E.M.; Tikkanen, L.; Balloch, A.; Gould, K.; Yoannes, M.; Phuanukoonnon, S.; Licciardi, P.V.; Russell, F.M.; Mulholland, E.K.; Satzke, C.; Hinds, J.

    2015-01-01

    Molecular identification of Streptococcus pneumoniae serotype 19F is routinely performed by PCR targeting the wzy gene of the capsular biosynthetic locus. However, 19F isolates with genetic similarity to 19A have been reported in the United States and Brazil. We screened 78 pneumococcal carriage isolates and found six 19F wzy variants that originated from children in Papua New Guinea and Fiji. Isolates were characterized using multilocus sequence typing and opsonophagocytic assays. The 19F wzy variants displayed similar susceptibility to anti-19F IgG antibodies compared to standard 19F isolates. Our findings indicate that these 19F variants may be more common than previously believed. PMID:26339490

  3. Characterization of the wound-induced material in Citrus paradisi fruit peel by carbon-13 CP-MAS solid state NMR spectroscopy.

    PubMed

    Lai, Simona; Lai, Adolfo; Stange, Richard R; McCollum, T Greg; Schirra, Mario

    2003-05-01

    Grapefruit, Citrus paradisi, were injured, inoculated with Penicillium digitatum and incubated under conditions favourable for the accumulation of defence related material. Histochemical examination revealed that tissues adjacent to inoculated injuries contained phloroglucinol-HCl (PG-HCl) reactive material. Solvent washed cell wall preparations of intact and injured-inoculated peel were further purified using a mixture of cell wall degrading enzymes. Samples from injured inoculated tissue contained PG-HCl reactive globular material in addition to the fragments of xylem and cuticle found in controls. The principal chemical moieties of the material that accumulates in grapefruit injuries during wound-healing were studied by solid state 13C cross-polarization magic angle spinning NMR. A complete assignment of the NMR signals was made. From the analysis evidence was found that cellulose and hemicellulose are the biopolymers present in the intact peel samples, in addition, relevant quantities of cutin were found in the residues of enzyme digest. The NMR difference spectrum intact- wounded peels showed resonances which were attributed to all major functional groups of the aromatic-aliphatic suberin polyester of new material produced by the wounds. Information on the latter polyester was obtained by analyzing the T(1)rho (1H) relaxation. PMID:12711139

  4. Interface Induced Growth and Transformation of Polymer-Conjugated Proto-Crystalline Phases in Aluminosilicate Hybrids: A Multiple-Quantum (23)Na-(23)Na MAS NMR Correlation Spectroscopy Study.

    PubMed

    Brus, Jiri; Kobera, Libor; Urbanova, Martina; Doušová, Barbora; Lhotka, Miloslav; Koloušek, David; Kotek, Jiří; Čuba, Pavel; Czernek, Jiri; Dědeček, Jiří

    2016-03-22

    Nanostructured materials typically offer enhanced physicochemical properties because of their large interfacial area. In this contribution, we present a comprehensive structural characterization of aluminosilicate hybrids with polymer-conjugated nanosized zeolites specifically grown at the organic-inorganic interface. The inorganic amorphous Al-O-Si framework is formed by alkali-activated low-temperature transformation of metakaoline, whereas simultaneous copolymerization of organic comonomers creates a secondary epoxide network covalently bound to the aluminosilicate matrix. This secondary epoxide phase not only enhances the mechanical integrity of the resulting hybrids but also introduces additional binding sites accessible for compensating negative charge on the aluminosilicate framework. This way, the polymer network initiates growth and subsequent transformation of protocrystalline short-range ordered zeolite domains that are located at the organic-inorganic interface. By applying an experimental approach based on 2D (23)Na-(23)Na double-quantum (DQ) MAS NMR spectroscopy, we discovered multiple sodium binding sites in these protocrystalline domains, in which immobilized Na(+) ions form pairs or small clusters. It is further demonstrated that these sites, the local geometry of which allows for the pairing of sodium ions, are preferentially occupied by Pb(2+) ions during the ion exchange. The proposed synthesis protocol thus allows for the preparation of a novel type of geopolymer hybrids with polymer-conjugated zeolite phases suitable for capturing and storage of metal cations. The demonstrated (23)Na-(23)Na DQ MAS NMR combined with DFT calculations represents a suitable approach for understanding the role of Na(+) ions in aluminositicate solids and related inorganic-organic hybrids, particularly their specific arrangement and clustering at interfacial areas. PMID:26931131

  5. Carbonation of C–S–H and C–A–S–H samples studied by {sup 13}C, {sup 27}Al and {sup 29}Si MAS NMR spectroscopy

    SciTech Connect

    Sevelsted, Tine F.; Skibsted, Jørgen

    2015-05-15

    Synthesized calcium silicate hydrate (C–S–H) samples with Ca/Si ratios of 0.66, 1.0, and 1.5 have been exposed to atmospheric CO{sub 2} at room temperature and high relative humidity and studied after one to 12 weeks. {sup 29}Si NMR reveals that the decomposition of C–S–H caused by carbonation involves two steps and that the decomposition rate decreases with increasing Ca/Si ratio. The first step is a gradual decalcification of the C–S–H where calcium is removed from the interlayer and defect sites in the silicate chains until Ca/Si = 0.67 is reached, ideally corresponding to infinite silicate chains. In the seconds step, calcium from the principal layers is consumed, resulting in the final decomposition of the C–S–H and the formation of an amorphous silica phase composed of Q{sup 3} and Q{sup 4} silicate tetrahedra. The amount of solid carbonates and of carbonate ions in a hydrous environment increases with increasing Ca/Si ratio for the C–S–H, as shown by {sup 13}C NMR. For C–A–S–H samples with Ca/Si = 1.0 and 1.5, {sup 27}Al NMR demonstrates that all aluminium sites associated with the C–S–H are consumed during the carbonation reactions and incorporated mainly as tetrahedral Al(–OSi){sub 4} units in the amorphous silica phase. A small amount of penta-coordinated Al sites has also been identified in the silica phase.

  6. In vivo 19F MRI and 19F MRS of 19F-labelled boronophenylalanine fructose complex on a C6 rat glioma model to optimize boron neutron capture therapy (BNCT)

    NASA Astrophysics Data System (ADS)

    Porcari, Paola; Capuani, Silvia; D'Amore, Emanuela; Lecce, Mario; La Bella, Angela; Fasano, Fabrizio; Campanella, Renzo; Migneco, Luisa Maria; Saverio Pastore, Francesco; Maraviglia, Bruno

    2008-12-01

    Boron neutron capture therapy (BNCT) is a promising binary modality used to treat malignant brain gliomas. To optimize BNCT effectiveness a non-invasive method is needed to monitor the spatial distribution of BNCT carriers in order to estimate the optimal timing for neutron irradiation. In this study, in vivo spatial distribution mapping and pharmacokinetics evaluation of the 19F-labelled boronophenylalanine (BPA) were performed using 19F magnetic resonance imaging (19F MRI) and 19F magnetic resonance spectroscopy (19F MRS). Characteristic uptake of 19F-BPA in C6 glioma showed a maximum at 2.5 h after compound infusion as confirmed by both 19F images and 19F spectra acquired on blood samples collected at different times after infusion. This study shows the ability of 19F MRI to selectively map the bio-distribution of 19F-BPA in a C6 rat glioma model, as well as providing a useful method to perform pharmacokinetics of BNCT carriers.

  7. Fluorine (19F) MRS and MRI in biomedicine

    PubMed Central

    Ruiz-Cabello, Jesús; Barnett, Brad P.; Bottomley, Paul A.; Bulte, Jeff W.M.

    2011-01-01

    Shortly after the introduction of 1H MRI, fluorinated molecules were tested as MR-detectable tracers or contrast agents. Many fluorinated compounds, which are nontoxic and chemically inert, are now being used in a broad range of biomedical applications, including anesthetics, chemotherapeutic agents, and molecules with high oxygen solubility for respiration and blood substitution. These compounds can be monitored by fluorine (19F) MRI and/or MRS, providing a noninvasive means to interrogate associated functions in biological systems. As a result of the lack of endogenous fluorine in living organisms, 19F MRI of ‘hotspots’ of targeted fluorinated contrast agents has recently opened up new research avenues in molecular and cellular imaging. This includes the specific targeting and imaging of cellular surface epitopes, as well as MRI cell tracking of endogenous macrophages, injected immune cells and stem cell transplants. PMID:20842758

  8. Characterization of the ground X{sub 1} state of {sup 204}Pb{sup 19}F, {sup 206}Pb{sup 19}F, {sup 207}Pb{sup 19}F, and {sup 208}Pb{sup 19}F

    SciTech Connect

    Mawhorter, Richard J.; Murphy, Benjamin S.; Baum, Alexander L.; Sears, Trevor J.; Yang, T.; Rupasinghe, P. M; McRaven, C. P.; Shafer-Ray, N. E.; Alphei, Lukas D.; Grabow, Jens-Uwe

    2011-08-15

    Pure rotational spectra of the ground electronic-vibrational X{sub 1} state of {sup 204}Pb{sup 19}F, {sup 206}Pb{sup 19}F, {sup 207}Pb{sup 19}F, and {sup 208}Pb{sup 19}F are measured with a resonator pulsed supersonic jet Fourier-transform microwave spectrometer. Also reported is a new measurement of the Stark effect on the optical spectra of A(leftarrow)X{sub 1} transitions. These spectra are combined with published high-resolution infrared spectra of X{sub 2}{r_reversible}X{sub 1} transitions in order to create a complete picture of the ground state of lead monofluoride. For the microwave data, molecules are prepared by laser ablation of lead target rods and stabilized in a supersonic jet of neon mixed with sulfur hexafluoride. For the optical Stark spectra, a continuous source of molecules is created in a nozzle heated to 1000 deg. C. The microwave spectra confirm, improve, and extend previously reported constants that describe the rotational, spin-orbit, and hyperfine interactions of the ground electronic state of the PbF molecule. A discrepancy concerning the sign of the hyperfine constant describing the {sup 207}Pb nucleus is discussed. Magnetic-field-dependent microwave spectra are used to characterize the Zeeman interaction in terms of two g factors of the body-fixed electronic wave function. The optical Stark spectra are used to characterize the electric dipole moment of the X{sub 1} and A states.

  9. Direct Observation of Lattice Aluminum Environments in Li Ion Cathodes LiNi1-y-zCoyAlzO2 and Al-Doped LiNixMnyCozO2 via (27)Al MAS NMR Spectroscopy.

    PubMed

    Dogan, Fulya; Vaughey, John T; Iddir, Hakim; Key, Baris

    2016-07-01

    Direct observations of local lattice aluminum environments have been a major challenge for aluminum-bearing Li ion battery materials, such as LiNi1-y-zCoyAlzO2 (NCA) and aluminum-doped LiNixMnyCozO2 (NMC). (27)Al magic angle spinning (MAS) nuclear magnetic resonance (NMR) spectroscopy is the only structural probe currently available that can qualitatively and quantitatively characterize lattice and nonlattice (i.e., surface, coatings, segregation, secondary phase etc.) aluminum coordination and provide information that helps discern its effect in the lattice. In the present study, we use NMR to gain new insights into transition metal (TM)-O-Al coordination and evolution of lattice aluminum sites upon cycling. With the aid of first-principles DFT calculations, we show direct evidence of lattice Al sites, nonpreferential Ni/Co-O-Al ordering in NCA, and the lack of bulk lattice aluminum in aluminum-"doped" NMC. Aluminum coordination of the paramagnetic (lattice) and diamagnetic (nonlattice) nature is investigated for Al-doped NMC and NCA. For the latter, the evolution of the lattice site(s) upon cycling is also studied. A clear reordering of lattice aluminum environments due to nickel migration is observed in NCA upon extended cycling. PMID:27299505

  10. Elemental and structural analysis of silicon forms in herbal drugs using silicon-29 MAS NMR and WD-XRF spectroscopic methods.

    PubMed

    Pajchel, L; Nykiel, P; Kolodziejski, W

    2011-12-01

    The objective of this work was to study concentration of silicon and its structural forms present in herbal drugs. Equisetum arvense and Urtica dioica L. from teapot bags, dietary supplements (tablets and capsules) containing those herbs, dry extract obtained from a teapot bag of E. arvense, and samples of the latter herb harvested in wild habitat over four months were studied using wavelength dispersive X-ray spectroscopy (WD-XRF) and high-resolution solid-state (29)Si NMR. The highest concentration of Si, ca. 27mg/g, was found in the herbal material from the teapot bags containing E. arvense. The Si content in natural E. arvense (whole plants) increased from May to August by ca. 7mg/g, reaching value 26mg/g. Three different silicon forms were detected in the studied herbal samples: Si(OSi)4 (Q(4)), Si(OH)(OSi)3 (Q(3)) and Si(OH)2(OSi)2 (Q(2)). Those sites were populated in E. arvense in the following order: Q(4)≫Q(3)>Q(2). A dramatic, ca. 50-fold decrease of the Si concentration during the infusion process was observed. The infusion process and the subsequent drying procedure augmented population of the Q(4) sites at the cost of the Q(2) sites. The WD-XRF and (29)Si NMR methods occurred useful and complementary in the study of herbal materials. PMID:21813258

  11. Conformation of gramicidin A channel in phospholipid vesicles: a 13C and 19F nuclear magnetic resonance study.

    PubMed Central

    Weinstein, S; Wallace, B A; Blout, E R; Morrow, J S; Veatch, W

    1979-01-01

    We have determined the conformation of the channel-forming polypeptide antibiotic gramicidin A in phosphatidylcholine vesicles by using 13C and 19F NMR spectroscopy. The models previously proposed for the conformation of the dimer channel differ in the surface localization of the NH2 and COOH termini. We have incorporated specific 13C and 19F nuclei at both the NH2, and COOH termini of gramicidin and have used 13C and 19F chemical shifts and spin lattice relaxation time measurements to determine the accessibility of these labels to three paramagnetic NMR probes--two in aqueous solution and one attached to the phosphatidylcholine fatty acid chain9 all of our results indicate that the COOH terminus of gramicidin in the channel is located near the surface of the membrane and the NH2 terminus is buried deep within the lipid bilayer. These findings strongly favor an NH2-terminal to NH2-terminal helical dimer as the major conformation for the gramicidin channel in phosphatidylcholine vesicles. PMID:92025

  12. Correlations between lithium local structure and electrochemistry of layered LiCo(1-2x)Ni(x)Mn(x)O2 oxides: 7Li MAS NMR and EPR studies.

    PubMed

    Stoyanova, Radostina; Ivanova, Svetlana; Zhecheva, Ekaterina; Samoson, Ago; Simova, Svetlana; Tzvetkova, Pavleta; Barra, Anne-Laure

    2014-02-14

    Advanced (7)Li MAS NMR technologies and high frequency EPR are combined to identify structural motifs and their relation to electrochemical properties of layered lithium-cobalt-nickel-manganese oxides LiCo1-2xNixMnxO2 (0 < x ≤ 0.5) used as cathode materials in lithium ion batteries. Structural-chemical shift regularities were established by systematic variation of the ratio of diamagnetic Co(3+) to paramagnetic Ni/Mn ions with variable valences. While EPR allows identifying the oxidation state of transition metal ions inside the layers, (7)Li NMR probes the local structure of Li with respect to transition metal ions located in two adjacent layers. For assignment of the lithium chemical shifts, we examine first magnetically diluted LiCo1-2xNixMnxO2 with x = 0.02, where paramagnetic ions are stabilized only in Mn(4+) and Ni(3+) form. Then the studies are extended towards the intermediate compositions with x = 0.10 and 0.33, containing simultaneously paramagnetic Mn(4+), Ni(3+) and Ni(2+) ions and diamagnetic Co(3+) ions. The benefit of using NMR with ultrafast spinning rates is demonstrated for the end composition LiNi0.5Mn0.5O2 having only paramagnetic Ni(2+) and Mn(2+) ions. The local structure of Li is quantified in respect of the number of Ni(2+) and Mn(4+) neighbors. It has been demonstrated that Ni(2+) and Mn(4+) are non-randomly distributed around Li and their distribution depends on the method of synthesis. The extent of local cationic order and its effect on the electrochemical properties of LiNi0.5Mn0.5O2 are discussed. PMID:24356075

  13. The Amblygonite (LiAlPO{sub 4}F)-Montebrasite (LiAlPO{sub 4}OH) Solid Solution: A Combined powder and single-crystal neutron diffraction and solid-state {sup 6}Li MAS, CP MAS, and REDOR NMR study

    SciTech Connect

    Groat, Lee A.; Chakoumakos, Bryan C.; Brouwer, Darren H.; Hoffman, Christina M.; Fyfe, Colin A.; Morell, Heiko; Schultz, Arthur J.

    2003-01-01

    The amblygonite-montebrasite series of minerals, common constituents of granitic pegmatites and topaz-bearing granites, show complete solid solution with ideal composition LiAlPO{sub 4}(F, OH). These compounds are ideal for studying F {leftrightarrow} OH solid solution in minerals because natural members of the series generally show little deviation from the ideal composition. In this study, we used powder and single-crystal neutron diffraction and solid-state {sup 6}Li MAS, CP MAS, and REDOR NMR techniques to study the effect of F {leftrightarrow} OH substitution on the series. Lattice parameters refined from single-crystal neutron diffraction data show increasing b and decreasing a, c, and V with increasing F/(F + OH). The volume is highest for the OH end-member because of the presence of an additional atom (H). The a and c parameters decrease with increasing F/(F + OH) because the O-H vector is close to the a-c plane and the Al-OH/F vectors are approximately parallel to c. Lattice parameters refined from neutron powder diffraction patterns collected at lower T show that thermal contraction increases with F/(F + OH), presumably because the F anion takes up less space than the OH molecule. The results show that the OH/F position is always fully occupied. The H displacement ellipsoid shows little change with occupancy, which obviously corresponds negatively with increasing F/(F + OH). However, the Li displacement ellipsoid becomes extremely large and anisotropic with increasing F fraction. Most of the distortion is associated with the U{sub 3} eigenvalue, which lies between the c and c* directions. U{sub eq} values corresponding to the Li atom show a greater reduction with decreasing temperature than the other atoms. The temperature dependence of Li is the same regardless of F content. Even when extrapolated to absolute zero the Li displacement ellipsoid is very large, which implies a large static disorder.

  14. MAS NMR Study of the Metastable Solid Solutions Found in the LiFePO4/FePO4 System

    SciTech Connect

    Cabana, Jordi; Shirakawa, Junichi; Chen, Guoying; Richardson, Thomas; Grey, Clare P.

    2009-10-09

    Li and 3IP NMR experiments were conducted on a series of single- or two-phase samples in the LiFePCvFePCM system with different overall lithium contents, and containing the two end-members and/or two metastable solid solution hases, Lio.6FeP04 or Lio.34FeP04. These experiments were carried out at different temperatures in order to search for vacancy/charge ordering and ion/electron mobility in the metastable phases. Evidence for Li+-Fe2+ interactions was bserved for both Lio.6FeP04 and Lio.34FePC>4. The strength of this interaction leads to the formation of LiFePCvlike clusters in the latter, as shown by the room temperature data. Different motional processes are proposed to exist as the temperature is increased and various scenarios are discussed. While concerted lithium-electron hopping and/or correlations explains the data below 125C, evidence for some uncorrelated motion is found at higher temperatures, together with the onset of phase mixing.

  15. Magic angle Lee-Goldburg frequency offset irradiation improves the efficiency and selectivity of SPECIFIC-CP in triple-resonance MAS solid-state NMR

    PubMed Central

    Wu, C.H.; De Angelis, Anna A.; Opella, Stanley J.

    2014-01-01

    The efficiency and selectivity of SPECIFIC-CP, a widely used method for selective double cross-polarization in triple-resonance magic angle spinning solid-state NMR, is improved by performing the tangential-shaped 13C irradiation at an offset frequency that meets the Lee-Goldburg condition (LG-SPECIFIC-CP). This is demonstrated on polycrystalline samples of uniformly 13C, 15N labeled N-acetyl-leucine and N-formyl-Met-Leu-Phe-OH (MLF) at 700 MHz and 900 MHz 1H resonance frequencies, respectively. For the single 13Cα of N-acetyl-leucine, relative to conventional broad band cross-polarization, the SPECIFIC-CP signal has 47% of the intensity. Notably, the LG-SPECIFIC-CP signal has 72% of the intensity, essentially the theoretical maximum. There were no other changes in the experimental parameters. The three 13Cα signals in MLF show some variation in intensities, reflecting the relatively narrow bandwidth of a frequency-offset procedure, and pointing to future developments for this class of experiment. PMID:25051542

  16. Following solid-acid-catalyzed reactions by MAS NMR spectroscopy in liquid phase--zeolite-catalyzed conversion of cyclohexanol in water.

    PubMed

    Vjunov, Aleksei; Hu, Mary Y; Feng, Ju; Camaioni, Donald M; Mei, Donghai; Hu, Jian Z; Zhao, Chen; Lercher, Johannes A

    2014-01-01

    A microautoclave magic angle spinning NMR rotor is developed enabling in situ monitoring of solid-liquid-gas reactions at high temperatures and pressures. It is used in a kinetic and mechanistic study of the reactions of cyclohexanol on zeolite HBEA in 130 °C water. The (13) C spectra show that dehydration of 1-(13) C-cyclohexanol occurs with significant migration of the hydroxy group in cyclohexanol and the double bond in cyclohexene with respect to the (13) C label. A simplified kinetic model shows the E1-type elimination fully accounts for the initial rates of 1-(13) C-cyclohexanol disappearance and the appearance of the differently labeled products, thus suggesting that the cyclohexyl cation undergoes a 1,2-hydride shift competitive with rehydration and deprotonation. Concurrent with the dehydration, trace amounts of dicyclohexyl ether are observed, and in approaching equilibrium, a secondary product, cyclohexyl-1-cyclohexene is formed. Compared to phosphoric acid, HBEA is shown to be a more active catalyst exhibiting a dehydration rate that is 100-fold faster per proton. PMID:24282024

  17. A generalized theoretical framework for the description of spin decoupling in solid-state MAS NMR: Offset effect on decoupling performance.

    PubMed

    Tan, Kong Ooi; Agarwal, Vipin; Meier, Beat H; Ernst, Matthias

    2016-09-01

    We present a generalized theoretical framework that allows the approximate but rapid analysis of residual couplings of arbitrary decoupling sequences in solid-state NMR under magic-angle spinning conditions. It is a generalization of the tri-modal Floquet analysis of TPPM decoupling [Scholz et al., J. Chem. Phys. 130, 114510 (2009)] where three characteristic frequencies are used to describe the pulse sequence. Such an approach can be used to describe arbitrary periodic decoupling sequences that differ only in the magnitude of the Fourier coefficients of the interaction-frame transformation. It allows a ∼100 times faster calculation of second-order residual couplings as a function of pulse sequence parameters than full spin-dynamics simulations. By comparing the theoretical calculations with full numerical simulations, we show the potential of the new approach to examine the performance of decoupling sequences. We exemplify the usefulness of this framework by analyzing the performance of commonly used high-power decoupling sequences and low-power decoupling sequences such as amplitude-modulated XiX (AM-XiX) and its super-cycled variant SC-AM-XiX. In addition, the effect of chemical-shift offset is examined for both high- and low-power decoupling sequences. The results show that the cross-terms between the dipolar couplings are the main contributions to the line broadening when offset is present. We also show that the SC-AM-XIX shows a better offset compensation. PMID:27608994

  18. Voltage Controlled Geometric Phase Rotation in ^{208}Pb^{19}F.

    NASA Astrophysics Data System (ADS)

    Furneaux, J. E.; Shafer-Ray, Neil; Coker, J.; Rupasinghe, P. M.; McRaven, C. P.

    2013-06-01

    Many theoretical publications have investigated the impact of the geometric phase on measurements of the e-EDM. However, there has been surprisingly little quantitative comparison of these models with experiment. Here we create a quantum beat experiment that starts with an optical pump and ends with an optical probe of ^{208}Pb^{19}F. This measurement includes the ability to control a geometric phase variation of the molecular alignment by applying an appropriate bias voltage. These experiments will then used to test the accuracy of our model calculations of geometric phase rotation.

  19. 1H and 19F spin-lattice relaxation and CH3 or CF3 reorientation in molecular solids containing both H and F atoms

    NASA Astrophysics Data System (ADS)

    Beckmann, Peter A.; Rheingold, Arnold L.

    2016-04-01

    The dynamics of methyl (CH3) and fluoromethyl (CF3) groups in organic molecular (van der Waals) solids can be exploited to survey their local environments. We report solid state 1H and 19F spin-lattice relaxation experiments in polycrystalline 3-trifluoromethoxycinnamic acid, along with an X-ray diffraction determination of the molecular and crystal structure, to investigate the intramolecular and intermolecular interactions that determine the properties that characterize the CF3 reorientation. The molecule is of no particular interest; it simply provides a motionless backbone (on the nuclear magnetic resonance (NMR) time scale) to investigate CF3 reorientation occurring on the NMR time scale. The effects of 19F-19F and 19F-1H spin-spin dipolar interactions on the complicated nonexponential NMR relaxation provide independent inputs into determining a model for CF3 reorientation. As such, these experiments provide much more information than when only one spin species (usually 1H) is present. In Sec. IV, which can be read immediately after the Introduction without reading the rest of the paper, we compare the barrier to CH3 and CF3 reorientation in seven organic solids and separate this barrier into intramolecular and intermolecular components.

  20. Pharmaceutical Applications of Relaxation Filter-Selective Signal Excitation Methods for (19)F Solid-State Nuclear Magnetic Resonance: Case Study With Atorvastatin in Dosage Formulation.

    PubMed

    Asada, Mamiko Nasu; Nemoto, Takayuki; Mimura, Hisashi

    2016-03-01

    We recently developed several new relaxation filter-selective signal excitation (RFS) methods for (13)C solid-state nuclear magnetic resonance (NMR) that allow (13)C signal extraction of the target components from pharmaceuticals. These methods were successful in not only qualification but also quantitation over the wide range of 5% to 100%. Here, we aimed to improve the sensitivity of these methods and initially applied them to (19)F solid-state NMR, on the basis that the fluorine atom is one of the most sensitive NMR-active nuclei. For testing, we selected atorvastatin calcium (ATC), an antilipid BCS class II drug that inhibits 3-hydroxy-3-methylglutaryl-coenzyme A reductase and is marketed in crystalline and amorphous forms. Tablets were obtained from 2 generic drug suppliers, and the ATC content occurred mainly as an amorphous form. Using the RFS method with (19)F solid-state NMR, we succeeded in qualifying trace amounts (less than 0.5% w/w level) of crystalline phase (Form I) of ATC in the tablets. RFS methods with (19)F solid-state NMR are practical and time efficient and can contribute not only to the study of pharmaceutical drugs, including those with small amounts of a highly potent active ingredient within a formulated product, but also to the study of fluoropolymers in material sciences. PMID:26886305

  1. (29)Si, (47)Ti, (49)Ti and (195)Pt solid state MAS NMR spectroscopic investigations of ternary silicides TPtSi, germanides TPtGe (T = Ti, Zr, Hf) and stannide TiPtSn.

    PubMed

    Benndorf, Christopher; Eckert, Hellmut; Pöttgen, Rainer

    2016-05-10

    Eight ternary tetrelides TPtX (T = Ti, Zr, Hf; X = Si, Ge, Sn) were synthesized from the elements by arc-melting and subsequent annealing. TiPtSi, ZrPtSi, ZrPtGe, HfPtSi and HfPtGe crystallize with the orthorhombic TiNiSi type structure, in the space group Pnma. The structures of HfPtSi (a = 654.44(9), b = 387.97(6), c = 750.0(1) pm, wR2 = 0.0592, 411 F(2) values, 20 variables) and HfPtGe (a = 660.36(7), b = 395.18(4), c = 763.05(8) pm, wR2 = 0.0495, 430 F(2) values, 20 variables) were refined from single crystal X-ray diffractometer data. TiPtSn adopts the cubic MgAgAs type. TiPtGe is dimorphic with a TiNiSi type high-temperature modification which transforms to cubic LT-TiPtGe (MgAgAs type). All phases were investigated by high resolution (29)Si, (47)Ti, (49)Ti and (195)Pt solid state MAS NMR spectroscopy. In the cubic compounds, the (47/49)Ti NMR signals are easily detected owing to the absence of quadrupolar broadening effects. The (195)Pt resonances of the orthorhombic compounds are characterized by strongly negative isotropic Knight shifts and large Knight shift anisotropies, whereas positive isotropic Knight shifts and no anisotropies are observed for the cubic compounds. These results indicate that the phase transition in TiPtGe is associated with dramatic changes in the electronic properties. Within each group of isotypic compounds the isotropic (29)Si, (47/49)Ti and (195)Pt Knight shifts show systematic dependences on the transition metal or tetrel atomic number, suggesting that the numerical values are influenced by the electronegativities of the metallic (or metalloid) neighbours. PMID:27097719

  2. Investigations of adsorption sites on oxide surfaces using solid-state NMR and TPD-IGC

    NASA Astrophysics Data System (ADS)

    Golombeck, Rebecca A.

    diameters and thermal histories. The bulk structural features in both compositions of glass fibers were identified using high-resolution 29Si, 27Al, and 11B magic-angle spinning (MAS) NMR spectroscopic measurements. In multi-component glasses, the determination of silicon, aluminum, and boron distributions becomes difficult due to the competitive nature of the network-modifying oxides among the network-forming oxides. In pure silicates, 29Si MAS NMR can often resolve resonances arising from silicate tetrahedron having varying numbers of bridging oxygens. In aluminoborosilicate glasses, aluminum is present in four-, five-, and six- coordination with oxygen as neighbors. The speciation of the aluminum can be determined using 27Al MAS NMR. The fraction of tetrahedral boron species in the glass fibers were measured using 11B MAS NMR, which is typically used to study the short-range structure of borate containing glasses such as alkali borate, borosilicate, and aluminoborosilicate glasses. While solid-state NMR is a powerful tool for elucidating bonding environments and coordination changes in the glass structure, it cannot quantitatively probe low to moderate surface area samples due to insufficient spins. Chemical probes either physisorbed or chemisorbed to the fiber's surface can increase the surface selectivity of NMR for analysis of samples with low surface areas and provide information about the local molecular structure of the reactive surface site. Common chemical probe molecules contain NMR active nuclei such as 19F or may be enriched with 13C. A silyating agent, (3,3,3-trifluoropropyl)dimethylchlorosilane (TFS), reacts with reactive surface hydroxyls, which can be quantified by utilizing the NMR active nucleus (19F) contained in the probe molecule. The observed 19F MAS NMR peak area is integrated and compared against a standard of known fluorine spins (concentration), allowing the number of reactive hydroxyl sites to be quantified. IGC is a method used to study the

  3. Examination of the structure in solid state of amino analogs of 4,4‧-[1,5-pentanediylbis(oxy)]bisbenzonitrile by means of X-ray diffraction, 13C CP/MAS NMR, and theoretical calculations

    NASA Astrophysics Data System (ADS)

    Maciejewska, Dorota; Wolska, Irena; Żabiński, Jerzy

    2008-05-01

    A single crystal of X-ray diffraction structures is presented for 4,4'-[1,5-(3-oxapentanediylbis(amino))]bisbenzonitrile 2 and 4,4'-[1,5-( N-methyl-3-azapentane-diylbis(oxy))]bisbenzonitrile 3. The molecular structures of these derivatives differ especially in conformations of the central linker: in 2 this linker adopts a trans/ gauche conformation, whereas in 3 - a fully extended conformation. The N atoms in various positions of the aliphatic linker change dramatically the molecular packing mode of both bisnitriles. But in both cases the nitrile groups take part in intermolecular hydrogen bonds: a type of N sbnd H···N in 2 and of C sbnd H···N in 3. Various conformations of both molecules were reflected in 13C CP/MAS NMR spectra in solid state as single and double resonance patterns for 2 and 3, respectively. A preliminary anticancer assay against 60 cell lines of 3 reveals strong growth inhibition of leukemia, melanoma, and renal cancer cells.

  4. Identification of 2-Fluoro-2-deoxy- D-glucose Metabolites by 19F{ 1H} Hetero-RELAY

    NASA Astrophysics Data System (ADS)

    O'Connell, Thomas M.; London, Robert E.

    1995-12-01

    It has been proposed that in mammalian systems the glucose analog 2-fluoro-2-deoxy-D-glucose (FDG) is phosphoryated and subsequently converted to the corresponding mannose derivative via the action of phosphoglucose isomerase. As is generally true in metabolic studies of fluorinated molecules, the fluorine spectrum alone is suggestive, without providing definitive structural evidence, while the use of1H NMR techniques generally suffers from a lack of adequate selectivity. A1H-19F version of the hetero-RELAY experiment has been applied to this problem. Formation of the corresponding C-6 phosphorylated 2-FDG analog with hexokinase, followed by treatment of the resulting phosphorylated products with phosphoglucose isomerase, resulted in the observation of additional19F resonances consistent with the corresponding 2-fluoro-2-deoxy-D-mannose-6-phosphate metabolite. A more definitive product identification was obtained using the hetero-RELAY experiment, which provides a complete19F-decoupled proton spectrum for each of the fluorinated species.

  5. Comprehensive multiphase NMR spectroscopy: basic experimental approaches to differentiate phases in heterogeneous samples.

    PubMed

    Courtier-Murias, Denis; Farooq, Hashim; Masoom, Hussain; Botana, Adolfo; Soong, Ronald; Longstaffe, James G; Simpson, Myrna J; Maas, Werner E; Fey, Michael; Andrew, Brian; Struppe, Jochem; Hutchins, Howard; Krishnamurthy, Sridevi; Kumar, Rajeev; Monette, Martine; Stronks, Henry J; Hume, Alan; Simpson, André J

    2012-04-01

    Heterogeneous samples, such as soils, sediments, plants, tissues, foods and organisms, often contain liquid-, gel- and solid-like phases and it is the synergism between these phases that determine their environmental and biological properties. Studying each phase separately can perturb the sample, removing important structural information such as chemical interactions at the gel-solid interface, kinetics across boundaries and conformation in the natural state. In order to overcome these limitations a Comprehensive Multiphase-Nuclear Magnetic Resonance (CMP-NMR) probe has been developed, and is introduced here, that permits all bonds in all phases to be studied and differentiated in whole unaltered natural samples. The CMP-NMR probe is built with high power circuitry, Magic Angle Spinning (MAS), is fitted with a lock channel, pulse field gradients, and is fully susceptibility matched. Consequently, this novel NMR probe has to cover all HR-MAS aspects without compromising power handling to permit the full range of solution-, gel- and solid-state experiments available today. Using this technology, both structures and interactions can be studied independently in each phase as well as transfer/interactions between phases within a heterogeneous sample. This paper outlines some basic experimental approaches using a model heterogeneous multiphase sample containing liquid-, gel- and solid-like components in water, yielding separate (1)H and (13)C spectra for the different phases. In addition, (19)F performance is also addressed. To illustrate the capability of (19)F NMR soil samples, containing two different contaminants, are used, demonstrating a preliminary, but real-world application of this technology. This novel NMR approach possesses a great potential for the in situ study of natural samples in their native state. PMID:22425441

  6. Comprehensive multiphase NMR spectroscopy: Basic experimental approaches to differentiate phases in heterogeneous samples

    NASA Astrophysics Data System (ADS)

    Courtier-Murias, Denis; Farooq, Hashim; Masoom, Hussain; Botana, Adolfo; Soong, Ronald; Longstaffe, James G.; Simpson, Myrna J.; Maas, Werner E.; Fey, Michael; Andrew, Brian; Struppe, Jochem; Hutchins, Howard; Krishnamurthy, Sridevi; Kumar, Rajeev; Monette, Martine; Stronks, Henry J.; Hume, Alan; Simpson, André J.

    2012-04-01

    Heterogeneous samples, such as soils, sediments, plants, tissues, foods and organisms, often contain liquid-, gel- and solid-like phases and it is the synergism between these phases that determine their environmental and biological properties. Studying each phase separately can perturb the sample, removing important structural information such as chemical interactions at the gel-solid interface, kinetics across boundaries and conformation in the natural state. In order to overcome these limitations a Comprehensive Multiphase-Nuclear Magnetic Resonance (CMP-NMR) probe has been developed, and is introduced here, that permits all bonds in all phases to be studied and differentiated in whole unaltered natural samples. The CMP-NMR probe is built with high power circuitry, Magic Angle Spinning (MAS), is fitted with a lock channel, pulse field gradients, and is fully susceptibility matched. Consequently, this novel NMR probe has to cover all HR-MAS aspects without compromising power handling to permit the full range of solution-, gel- and solid-state experiments available today. Using this technology, both structures and interactions can be studied independently in each phase as well as transfer/interactions between phases within a heterogeneous sample. This paper outlines some basic experimental approaches using a model heterogeneous multiphase sample containing liquid-, gel- and solid-like components in water, yielding separate 1H and 13C spectra for the different phases. In addition, 19F performance is also addressed. To illustrate the capability of 19F NMR soil samples, containing two different contaminants, are used, demonstrating a preliminary, but real-world application of this technology. This novel NMR approach possesses a great potential for the in situ study of natural samples in their native state.

  7. STATISTICAL ANALYSIS OF TANK 19F FLOOR SAMPLE RESULTS

    SciTech Connect

    Harris, S.

    2010-09-02

    Representative sampling has been completed for characterization of the residual material on the floor of Tank 19F as per the statistical sampling plan developed by Harris and Shine. Samples from eight locations have been obtained from the tank floor and two of the samples were archived as a contingency. Six samples, referred to in this report as the current scrape samples, have been submitted to and analyzed by SRNL. This report contains the statistical analysis of the floor sample analytical results to determine if further data are needed to reduce uncertainty. Included are comparisons with the prior Mantis samples results to determine if they can be pooled with the current scrape samples to estimate the upper 95% confidence limits (UCL95%) for concentration. Statistical analysis revealed that the Mantis and current scrape sample results are not compatible. Therefore, the Mantis sample results were not used to support the quantification of analytes in the residual material. Significant spatial variability among the current scrape sample results was not found. Constituent concentrations were similar between the North and South hemispheres as well as between the inner and outer regions of the tank floor. The current scrape sample results from all six samples fall within their 3-sigma limits. In view of the results from numerous statistical tests, the data were pooled from all six current scrape samples. As such, an adequate sample size was provided for quantification of the residual material on the floor of Tank 19F. The uncertainty is quantified in this report by an UCL95% on each analyte concentration. The uncertainty in analyte concentration was calculated as a function of the number of samples, the average, and the standard deviation of the analytical results. The UCL95% was based entirely on the six current scrape sample results (each averaged across three analytical determinations).

  8. Solid-state NMR in the analysis of drugs and naturally occurring materials.

    PubMed

    Paradowska, Katarzyna; Wawer, Iwona

    2014-05-01

    This article presents some of the solid-state NMR (SSNMR) techniques used in the pharmaceutical and biomedical research. Solid-state magic angle spinning (MAS) NMR provides structural information on powder amorphous solids for which single-crystal diffraction structures cannot be obtained. NMR is non-destructive; the powder sample may be used for further studies. Quantitative results can be obtained, although solid-state NMR spectra are not normally quantitative. As compared with other techniques, MAS NMR is insensitive and requires a significant amount of the powder sample (2-100mg) to fill the 1.3-7 mm ZrO2 rotor. This is its main drawback, since natural compounds isolated from plants, microorganisms or cell cultures are difficult to obtain in quantities higher than a few milligrams. Multinuclear MAS NMR routinely uses (1)H and (13)C nuclei, less frequently (15)N, (19)F, (31)P, (77)Se, (29)Si, (43)Ca or (23)Na. The article focuses on the pharmaceutical applications of SSNMR, the studies were aimed to control over manufacturing processes (e.g. crystallization and milling) investigation of chemical and physical stability of solid forms both as pure drug and in a formulated product. SSNMR is used in combination with some other analytical methods (DSC, XRD, FT-IR) and theoretical calculations of NMR parameters. Biologically active compounds, such as amino acids and small peptides, steroids and flavonoids were studied by SSNMR methods (part 4) providing valuable structural information. The SSNMR experiments performed on biopolymers and large natural products like proteins, cellulose and lipid layers are commented upon briefly in part 5. PMID:24173236

  9. (1)H and (19)F spin-lattice relaxation and CH3 or CF3 reorientation in molecular solids containing both H and F atoms.

    PubMed

    Beckmann, Peter A; Rheingold, Arnold L

    2016-04-21

    The dynamics of methyl (CH3) and fluoromethyl (CF3) groups in organic molecular (van der Waals) solids can be exploited to survey their local environments. We report solid state (1)H and (19)F spin-lattice relaxationexperiments in polycrystalline 3-trifluoromethoxycinnamic acid, along with an X-ray diffraction determination of the molecular and crystal structure, to investigate the intramolecular and intermolecular interactions that determine the properties that characterize the CF3 reorientation. The molecule is of no particular interest; it simply provides a motionless backbone (on the nuclear magnetic resonance(NMR) time scale) to investigate CF3 reorientation occurring on the NMR time scale. The effects of (19)F-(19)F and (19)F-(1)H spin-spin dipolar interactions on the complicated nonexponential NMRrelaxation provide independent inputs into determining a model for CF3 reorientation. As such, these experiments provide much more information than when only one spin species (usually (1)H) is present. In Sec. IV, which can be read immediately after the Introduction without reading the rest of the paper, we compare the barrier to CH3 and CF3 reorientation in seven organic solids and separate this barrier into intramolecular and intermolecular components. PMID:27389221

  10. Aggregation of [Au(CN)4]- anions: examination by crystallography and 15N CP-MAS NMR and the structural factors influencing intermolecular Au···N interactions.

    PubMed

    Geisheimer, Andrew R; Wren, John E C; Michaelis, Vladimir K; Kobayashi, Masayuki; Sakai, Ken; Kroeker, Scott; Leznoff, Daniel B

    2011-02-21

    To investigate the factors influencing the formation of intermolecular Au···NC interactions between [Au(CN)(4)](-) units, a series of [cation](n+)[Au(CN)(4)](n) double salts was synthesized, structurally characterized and probed by IR and (15)N{(1)H} CP-MAS NMR spectroscopy. Thus, [(n)Bu(4)N][Au(CN)(4)], [AsPh(4)][Au(CN)(4)], [N(PPh(3))(2)][Au(CN)(4)], [Co(1,10-phenanthroline)(3)][Au(CN)(4)](2), and [Mn(2,2';6',2''-terpyridine)(2)][Au(CN)(4)](2) show [Au(CN)(4)](-) anions that are well-separated from one another; no Au-Au or Au···NC interactions are present. trans-[Co(1,2-diaminoethane)(2)Cl(2)][Au(CN)(4)] forms a supramolecular structure, where trans-[Co(en)(2)Cl(2)](+) and [Au(CN)(4)](-) ions are found in separate layers connected by Au-CN···H-N hydrogen-bonding; weak Au···NC coordinate bonds complete octahedral Au(III) centers, and support a 2-D (4,4) network motif of [Au(CN)(4)](-)-units. A similar structure-type is formed by [Co(NH(3))(6)][Au(CN)(4)](3)·(H(2)O)(4). In [Ni(1,2-diaminoethane)(3)][Au(CN)(4)](2), intermolecular Au···NC interactions facilitate formation of 1-D chains of [Au(CN)(4)](-) anions in the supramolecular structure, which are separated from one another by [Ni(en)(3)](2+) cations. In [1,4-diazabicyclo[2.2.2]octane-H][Au(CN)(4)], the monoprotonated amine cation forms a hydrogen-bond to the [Au(CN)(4)](-) unit on one side, while coordinating to the axial sites of the gold(III) center through the unprotonated amine on the other, thereby generating a 2-D (4,4) net of cations and anions; an additional, uncoordinated [Au(CN)(4)](-)-unit lies in the central space of each grid. This body of structural data indicates that cations with hydrogen-bonding groups can induce intermolecular Au···NC interactions, while the cationic charge, shape, size, and aromaticity have little effect. While the ν(CN) values are poor indicators of the presence or absence of N-cyano bridging between [Au(CN)(4)](-)-units (partly because of the very low

  11. {sup 27}Al and {sup 23}Na MAS NMR and powder x-ray diffraction studies of sodium aluminate speciation and the mechanistics of aluminum hydroxide precipitation upon acid hydrolysis

    SciTech Connect

    Bradley, S.M.; Hanna, J.V.

    1994-08-24

    {sup 27}Al and {sup 23}Na MAS NMR, powder X-ray diffraction, and infrared spectroscopic investigations of freeze-dried sodium aluminates and aluminum hydroxides formed through acid hydrolysis have been undertaken, with OH/Al hydrolysis ratios between 5.3 and 2.8 being analyzed. Numerous {sup 27}AlNMR resonances were observed, the intensities of which vary as a function of OH/Al ratio, and these have been assigned to four-, five-, and six-coordinate aluminum species constituting a variety of structural moieties. The dominant species at an OH/Al ratio above 4.4 appears to be a Q{sup o}Na[Al(OH);{sub 4}] salt, as indicated by a {sup 27}Al resonance at 86.6 ppm. In addition, a second, broader resonance at 71.3 ppm demonstrates the simultaneous existence of further four-coordinate aluminum species linked thorough oxo bonds to other four-coordinate aluminums (e.g., Q{sup 2} [Al(OH);{sub 2}(OAl){sub 2}];{sup x-}). At an OH/Al ratio between 4.4 and 4.1, a water-soluble phase forms that contains both four- and six-coordinate aluminum. At OH/Al ratios fo 4.0 and below, a water-soluble phase forms that contains both four-and six-coordinate aluminum. AT OH/Al ratios of 4.0 and below, a water-insoluble phase exists possessing four-, five-, and six-coordinate aluminum. At OH/Al{le}3.9 range exhibits {sup 27}Al chemical shifts similar to those reported for transitional aluminas such as {gamma}-, {eta}-, and 0-Al{sub 2}O{sub 3} and an infrared spectrum similar to pseudo-spinel gels, suggesting that a pseudo-spinel intermediate is the first phase involved in the crystallization of gibbsite. The resonance assigned to five-coordinate aluminum probably results from species involved in the transformation of the pseudo-spinal phase to pseudo-boehmite. The formation of gibbssite on the acid hydrolysis of alkaline sodium aluminate solutions thus appears to follow the pathway pseudo-spinel {r_arrow} pseudo-boehmite {r_arrow} bayerite {r_arrow} gibbsite. 82 refs., 7 figs., 3 tabs.

  12. Multinuclear high-resolution NMR study of compounds from the ternary system NaF-CaF2-AlF3: from determination to modeling of NMR parameters.

    PubMed

    Martineau, C; Body, M; Legein, C; Silly, G; Buzaré, J-Y; Fayon, F

    2006-12-11

    27Al and 23Na NMR satellite transition spectroscopy and 3Q magic-angle-spinning spectra are recorded for three compounds from the ternary NaF-CaF2-AlF3 system. The quadrupolar frequency nuQ, asymmetry parameter etaQ, and isotropic chemical shift deltaiso are extracted from the spectrum reconstructions for five aluminum and four sodium sites. The quadrupolar parameters are calculated using the LAPW-based ab initio code WIEN2k. It is necessary to perform a structure optimization of all compounds to ensure a fine agreement between experimental and calculated parameters. By a comparison of experimental and calculated values, an attribution of all of the 27Al and 23Na NMR lines to the crystallographic sites is achieved. High-speed 19F NMR MAS spectra are recorded and reconstructed for the same compounds, leading to the determination of 18 isotropic chemical shifts. The superposition model developed by Bureau et al. is used, allowing a bijective assignment of the 19F NMR lines to the crystallographic sites. PMID:17140229

  13. Experimental (X-ray, (13)C CP/MAS NMR, IR, RS, INS, THz) and Solid-State DFT Study on (1:1) Co-Crystal of Bromanilic Acid and 2,6-Dimethylpyrazine.

    PubMed

    Łuczyńska, Katarzyna; Drużbicki, Kacper; Lyczko, Krzysztof; Dobrowolski, Jan Cz

    2015-06-01

    A combined structural, vibrational spectroscopy, and solid-state DFT study of the hydrogen-bonded complex of bromanilic acid with 2,6-dimethylpyrazine is reported. The crystallographic structure was determined by means of low-temperature single-crystal X-ray diffraction, which reveals the molecular units in their native protonation states, forming one-dimensional infinite nets of moderate-strength O···H-N hydrogen bonds. The nature of the crystallographic forces, stabilizing the studied structure, has been drawn by employing the noncovalent interactions analysis. It was found that, in addition to the hydrogen bonding, the intermolecular forces are dominated by stacking interactions and C-H···O contacts. The thermal and calorimetric analysis was employed to probe stability of the crystal phase. The structural analysis was further supported by a computationally assisted (13)C CP/MAS NMR study, providing a complete assignment of the recorded resonances. The vibrational dynamics was explored by combining the optical (IR, Raman, TDs-THz) and inelastic neutron scattering (INS) spectroscopy techniques with the state-of-the-art solid-state density functional theory (DFT) computations. Despite the quasi-harmonic approximation assumed throughout the study, an excellent agreement between the theoretical and experimental data was achieved over the entire spectral range, allowing for a deep and possibly thorough understanding of the vibrational characteristics of the system. Particularly, the significant influence of the long-range dipole coupling on the IR spectrum has been revealed. On the basis of a wealth of information gathered, the recent implementation of a dispersion-corrected linear-response scheme has been extensively examined. PMID:25961154

  14. (19)F-MRI for monitoring human NK cells in vivo.

    PubMed

    Bouchlaka, Myriam N; Ludwig, Kai D; Gordon, Jeremy W; Kutz, Matthew P; Bednarz, Bryan P; Fain, Sean B; Capitini, Christian M

    2016-05-01

    The availability of clinical-grade cytokines and artificial antigen-presenting cells has accelerated interest in using natural killer (NK) cells as adoptive cellular therapy (ACT) for cancer. One of the technological shortcomings of translating therapies from animal models to clinical application is the inability to effectively and non-invasively track these cells after infusion in patients. We have optimized the nonradioactive isotope fluorine-19 ((19)F) as a means to label and track NK cells in preclinical models using magnetic resonance imaging (MRI). Human NK cells were expanded with interleukin (IL)-2 and labeled in vitro with increasing concentrations of (19)F. Doses as low as 2 mg/mL (19)F were detected by MRI. NK cell viability was only decreased at 8 mg/mL (19)F. No effects on NK cell cytotoxicity against K562 leukemia cells were observed with 2, 4 or 8 mg/mL (19)F. Higher doses of (19)F, 4 mg/mL and 8 mg/mL, led to an improved (19)F signal by MRI with 3 × 10(11) (19)F atoms per NK cell. The 4 mg/mL (19)F labeling had no effect on NK cell function via secretion of granzyme B or interferon gamma (IFNγ), compared to NK cells exposed to vehicle alone. (19)F-labeled NK cells were detectable immediately by MRI after intratumoral injection in NSG mice and up to day 8. When (19)F-labeled NK cells were injected subcutaneously, we observed a loss of signal through time at the site of injection suggesting NK cell migration to distant organs. The (19)F perfluorocarbon is a safe and effective reagent for monitoring the persistence and trafficking of NK cell infusions in vivo, and may have potential for developing novel imaging techniques to monitor ACT for cancer. PMID:27467963

  15. Improved Quantitative 19F MR Molecular Imaging With Flip Angle Calibration and B1-Mapping Compensation

    PubMed Central

    Goette, Matthew J.; Lanza, Gregory M.; Caruthers, Shelton D.; Wickline, Samuel A.

    2014-01-01

    Purpose To improve 19F flip angle calibration and compensate for B1 inhomogeneities in quantitative 19F MRI of sparse molecular epitopes with perfluorocarbon (PFC) nanoparticle (NP) emulsion contrast agents. Materials and Methods Flip angle sweep experiments on PFC-NP point source phantoms with three custom-designed 19F/1H dual-tuned coils revealed a difference in required power settings for 19F and 1H nuclei, which was used to calculate a calibration ratio specific for each coil. An image-based correction technique was developed using B1-field mapping on 1H to correct for 19F and 1H images in two phantom experiments. Results Optimized 19F peak power differed significantly from that of 1H power for each coil (p<0.05). A ratio of 19F/1H power settings yielded a coil-specific and spatially independent calibration value (surface: 1.48±0.06; semi-cylindrical: 1.71±0.02, single-turn-solenoid: 1.92±0.03). 1H-image-based B1 correction equalized the signal intensity of 19F images for two identical 19F PFC-NP samples placed in different parts of the field, which were offset significantly by ~66% (p<0.001) before correction. Conclusion 19F flip angle calibration and B1-mapping compensations to the 19F images employing the more abundant 1H signal as a basis for correction result in a significant change in the quantification of sparse 19F MR signals from targeted PFC NP emulsions. PMID:25425244

  16. USING 19F-NMR SPECTROSCOPY TO DETERMINE TRIFLURALIN BINDING TO SOIL

    EPA Science Inventory

    Trifluralin is a widely used herbicide for the control of broad leaf weeds in a variety of crops. Its binding to soil may result in significant losses in herbicidal activity and a delayed pollution problem. To investigate the nature of soil-bound trifluralin residues, 14

  17. Noninvasive detection of graft rejection by in vivo (19) F MRI in the early stage.

    PubMed

    Flögel, U; Su, S; Kreideweiss, I; Ding, Z; Galbarz, L; Fu, J; Jacoby, C; Witzke, O; Schrader, J

    2011-02-01

    Diagnosis of transplant rejection requires tissue biopsy and entails risks. Here, we describe a new (19) F MRI approach for noninvasive visualization of organ rejection via the macrophage host response. For this, we employed biochemically inert emulsified perfluorocarbons (PFCs), known to be preferentially phagocytized by monocytes and macrophages. Isografts from C57BL/6 or allografts from C57B10.A mice were heterotopically transplanted into C57BL/6 recipients. PFCs were applied intravenously followed by (1) H/(19) F MRI at 9.4 T 24 h after injection. (1) H images showed a similar position and anatomy of the graft in the abdomen for both cases. However, corresponding (19) F signals were only observed in allogenic tissue. (1) H/(19) F MRI enabled us to detect the initial immune response not later than 3 days after surgery, when conventional parameters did not reveal any signs of rejection. In allografts, the observed (19) F signal strongly increased with time and correlated with the extent of rejection. In separate experiments, rapamycin was used to demonstrate the ability of (19) F MRI to monitor immunosuppressive therapy. Thus, PFCs can serve as positive contrast agent for the early detection of transplant rejection by (19) F MRI with high spatial resolution and an excellent degree of specificity due to lack of any (19) F background. PMID:21214858

  18. Gadolinium-modulated 19F signals from Perfluorocarbon Nanoparticles as a New Strategy for Molecular Imaging

    PubMed Central

    Neubauer, Anne M.; Myerson, Jacob; Caruthers, Shelton D.; Hockett, Franklin D.; Winter, Patrick M.; Chen, Junjie; Gaffney, Patrick J.; Robertson, J. David; Lanza, Gregory M.; Wickline, Samuel A.

    2008-01-01

    Recent advances in the design of fluorinated nanoparticles for magnetic resonance molecular imaging have enabled specific detection of 19F nuclei, providing unique and quantifiable spectral signatures. However, a pressing need for signal enhancement exists because the total 19F in imaging voxels is often limited. By directly incorporating a relaxation agent (gadolinium) into the lipid monolayer that surrounds the perfluorocarbon, a marked augmentation of the 19F signal from 200nm nanoparticles was achieved. This design increases the magnetic relaxation rate of the 19F nuclei 4-fold at 1.5 T and effects a 125% increase in signal, an effect which is maintained when they are targeted to human plasma clots. By varying the surface concentration of gadolinium, the relaxation effect can be quantitatively modulated to tailor particle properties. This novel strategy dramatically improves the sensitivity and range of 19F MRI/MRS and forms the basis for designing contrast agents capable of sensing their surface chemistry. PMID:18956457

  19. Visualizing arthritic inflammation and therapeutic response by fluorine-19 magnetic resonance imaging (19F MRI)

    PubMed Central

    2012-01-01

    Background Non-invasive imaging of inflammation to measure the progression of autoimmune diseases, such as rheumatoid arthritis (RA), and to monitor responses to therapy is critically needed. V-Sense, a perfluorocarbon (PFC) contrast agent that preferentially labels inflammatory cells, which are then recruited out of systemic circulation to sites of inflammation, enables detection by 19F MRI. With no 19F background in the host, detection is highly-specific and can act as a proxy biomarker of the degree of inflammation present. Methods Collagen-induced arthritis in rats, a model with many similarities to human RA, was used to study the ability of the PFC contrast agent to reveal the accumulation of inflammation over time using 19F MRI. Disease progression in the rat hind limbs was monitored by caliper measurements and 19F MRI on days 15, 22 and 29, including the height of clinically symptomatic disease. Naïve rats served as controls. The capacity of the PFC contrast agent and 19F MRI to assess the effectiveness of therapy was studied in a cohort of rats administered oral prednisolone on days 14 to 28. Results Quantification of 19F signal measured by MRI in affected limbs was linearly correlated with disease severity. In animals with progressive disease, increases in 19F signal reflected the ongoing recruitment of inflammatory cells to the site, while no increase in 19F signal was observed in animals receiving treatment which resulted in clinical resolution of disease. Conclusion These results indicate that 19F MRI may be used to quantitatively and qualitatively evaluate longitudinal responses to a therapeutic regimen, while additionally revealing the recruitment of monocytic cells involved in the inflammatory process to the anatomical site. This study may support the use of 19F MRI to clinically quantify and monitor the severity of inflammation, and to assess the effectiveness of treatments in RA and other diseases with an inflammatory component. PMID:22721447

  20. Measurement of Long Range 1H-19F Scalar Coupling Constants and their Glycosidic Torsion Dependence in 5-Fluoropyrimidine Substituted RNA

    PubMed Central

    Hennig, Mirko; Munzarová, Markéta L.; Bermel, Wolfgang; Scott, Lincoln G.; Sklenár̂, Vladimír; Williamson, James R.

    2008-01-01

    Long range scalar 5J(H1’,F) couplings were observed in 5-fluoropyrimidine substituted RNA. We developed a novel S3E-19F-α,β-edited NOESY experiment for quantitation of these long range scalar 5J(H1’,F), where the J-couplings can be extracted from inspection of intraresidual (H1’,H6) NOE crosspeaks. Quantum chemical calculations were exploited to investigate the relation between scalar couplings and conformations around the glycosidic bond in oligonucleotides. The theoretical dependence of the observed 5J(H1’,F) couplings on the torsion angle χ can be described by a generalized Karplus relationship. The corresponding density functional theory (DFT) analysis is outlined. Additional NMR experiments facilitating the resonance assignments of 5-fluoropyrimidine substituted RNAs are described and chemical shift changes due to altered shielding in the presence of fluorine-19 (19F) are presented. PMID:16637654

  1. Nuclear relaxation rates study of GTP(gamma F)-tubulin interaction using 19F-nuclear magnetic resonance.

    PubMed

    Monasterio, O

    1989-07-01

    To study the relationship between the exchangeable GTP binding site (E-site) and the high affinity metal binding site we synthesized P3-fluoro P1-5'-guanosine tripaosphate (GTP(gamma F), an analog of GTP. Our results show that this analog binds to the exchangeable GTP binding site of calf brain tubulin. The values of the dissociation constant and the stoichiometry of the GTP(gamma F)-Mn(II) complex as determined by EPR spectroscopy were 1.64 x 10(-4) M and one mole of manganese per mole of nucleotide, respectively. The distance separating the high-affinity binding site for the divalent metal ion and the exchangeable nucleotide binding site was evaluated by using high-resolution 19F-NMR. The 31P- and 19F-NMR spectra of GTP(gamma F) were studied, both the fluorine and the gamma-phosphate were split in a doublet with a coupling constant of 936 Hz. Tubulin purified by the method of Weisenberg (Weisenberg, R.C., and Timashef, S.N. (1970) Biochemistry 9, 4110-4116) was treated with colchicine to stabilize it, GTP(gamma F) was added and the 254.1 MHz 19fluorine relaxation rates measured within the first four hours. Longitudinal and transversal relaxation rates were determined in the presence of colchicine-tubulin-Mn(II), (paramagnetic complex), or the ternary complex with magnesium (diamagnetic complex). The analysis of the temperature-dependent relaxation data indicates that the metal and the exchangeable nucleotide binding sites are separated by a maximal distance of 6 at 35 degrees C, to 8.1 A at 12 degrees C. PMID:2619317

  2. Design principles and theory of paramagnetic fluorine-labelled lanthanide complexes as probes for (19)F magnetic resonance: a proof-of-concept study.

    PubMed

    Chalmers, Kirsten H; De Luca, Elena; Hogg, Naomi H M; Kenwright, Alan M; Kuprov, Ilya; Parker, David; Botta, Mauro; Wilson, J Ian; Blamire, Andrew M

    2010-01-01

    The synthesis and spectroscopic properties of a series of CF(3)-labelled lanthanide(III) complexes (Ln=Gd, Tb, Dy, Ho, Er, Tm) with amide-substituted ligands based on 1,4,7,10-tetraazacyclododecane are described. The theoretical contributions of the (19)F magnetic relaxation processes in these systems are critically assessed and selected volumetric plots are presented. These plots allow an accurate estimation of the increase in the rates of longitudinal and transverse relaxation as a function of the distance between the Ln(III) ion and the fluorine nucleus, the applied magnetic field, and the re-rotational correlation time of the complex, for a given Ln(III) ion. Selected complexes exhibit pH-dependent chemical shift behaviour, and a pK(a) of 7.0 was determined in one example based on the holmium complex of an ortho-cyano DO3A-monoamide ligand, which allowed the pH to be assessed by measuring the difference in chemical shift (varying by over 14 ppm) between two (19)F resonances. Relaxation analyses of variable-temperature and variable-field (19)F, (17)O and (1)H NMR spectroscopy experiments are reported, aided by identification of salient low-energy conformers by using density functional theory. The study of fluorine relaxation rates, over a field range of 4.7 to 16.5 T allowed precise computation of the distance between the Ln(III) ion and the CF(3) reporter group by using global fitting methods. The sensitivity benefits of using such paramagnetic fluorinated probes in (19)F NMR spectroscopic studies are quantified in preliminary spectroscopic and imaging experiments with respect to a diamagnetic yttrium(III) analogue. PMID:19957317

  3. Ultra-low temperature MAS-DNP.

    PubMed

    Lee, Daniel; Bouleau, Eric; Saint-Bonnet, Pierre; Hediger, Sabine; De Paëpe, Gaël

    2016-03-01

    Since the infancy of NMR spectroscopy, sensitivity and resolution have been the limiting factors of the technique. Regular essential developments on this front have led to the widely applicable, versatile, and powerful spectroscopy that we know today. However, the Holy Grail of ultimate sensitivity and resolution is not yet reached, and technical improvements are still ongoing. Hence, high-field dynamic nuclear polarization (DNP) making use of high-frequency, high-power microwave irradiation of electron spins has become very promising in combination with magic angle sample spinning (MAS) solid-state NMR experiments. This is because it leads to a transfer of the much larger polarization of these electron spins under suitable irradiation to surrounding nuclei, greatly increasing NMR sensitivity. Currently, this boom in MAS-DNP is mainly performed at minimum sample temperatures of about 100K, using cold nitrogen gas to pneumatically spin and cool the sample. This Perspective deals with the desire to improve further the sensitivity and resolution by providing "ultra"-low temperatures for MAS-DNP, using cryogenic helium gas. Different designs on how this technological challenge has been overcome are described. It is shown that stable and fast spinning can be attained for sample temperatures down to 30K using a large cryostat developed in our laboratory. Using this cryostat to cool a closed-loop of helium gas brings the additional advantage of sample spinning frequencies that can greatly surpass those achievable with nitrogen gas, due to the differing fluidic properties of these two gases. It is shown that using ultra-low temperatures for MAS-DNP results in substantial experimental sensitivity enhancements and according time-savings. Access to this temperature range is demonstrated to be both viable and highly pertinent. PMID:26920837

  4. Ultra-low temperature MAS-DNP

    NASA Astrophysics Data System (ADS)

    Lee, Daniel; Bouleau, Eric; Saint-Bonnet, Pierre; Hediger, Sabine; De Paëpe, Gaël

    2016-03-01

    Since the infancy of NMR spectroscopy, sensitivity and resolution have been the limiting factors of the technique. Regular essential developments on this front have led to the widely applicable, versatile, and powerful spectroscopy that we know today. However, the Holy Grail of ultimate sensitivity and resolution is not yet reached, and technical improvements are still ongoing. Hence, high-field dynamic nuclear polarization (DNP) making use of high-frequency, high-power microwave irradiation of electron spins has become very promising in combination with magic angle sample spinning (MAS) solid-state NMR experiments. This is because it leads to a transfer of the much larger polarization of these electron spins under suitable irradiation to surrounding nuclei, greatly increasing NMR sensitivity. Currently, this boom in MAS-DNP is mainly performed at minimum sample temperatures of about 100 K, using cold nitrogen gas to pneumatically spin and cool the sample. This Perspective deals with the desire to improve further the sensitivity and resolution by providing "ultra"-low temperatures for MAS-DNP, using cryogenic helium gas. Different designs on how this technological challenge has been overcome are described. It is shown that stable and fast spinning can be attained for sample temperatures down to 30 K using a large cryostat developed in our laboratory. Using this cryostat to cool a closed-loop of helium gas brings the additional advantage of sample spinning frequencies that can greatly surpass those achievable with nitrogen gas, due to the differing fluidic properties of these two gases. It is shown that using ultra-low temperatures for MAS-DNP results in substantial experimental sensitivity enhancements and according time-savings. Access to this temperature range is demonstrated to be both viable and highly pertinent.

  5. Inter- and intramolecular spin transfer in molecular magnetic materials. Solid-state NMR spectroscopy of paramagnetic metallocenium ions.

    PubMed

    Heise, Henrike; Köhler, Frank H; Herker, Martin; Hiller, Wolfgang

    2002-09-11

    To shed light on the interaction in molecule-based magnetic materials, the decamethylmetallocenium hexafluorophosphates, [(C(5)Me(5))(2)M](+) [PF(6)](-) with M = Cr, Mn, Fe, Co, and Ni, as well as the tetracyanoethenides, [(C(5)Me(5))(2)M](+) [TCNE](-) with M = Cr, Mn, Fe, and Co, have been investigated in the solid state by using (1)H, (13)C, (19)F, and (31)P NMR spectroscopy under magic angle spinning (MAS). The isotropic (13)C and (1)H NMR signals cover ranges of about 1300 and 500 ppm, respectively. From the shift anisotropies of the ring carbon signal of the [(C(5)Me(5))(2)M](+) cations, the total unpaired electron spin density in the ligand pi orbitals has been calculated; it amounts up to 36% (M = Ni) and is negative for M = Cr, Mn, and Fe. The radical anion of [(C(5)Me(5))(2)M](+) [TCNE](-) shifts the (13)C NMR signals of all [(C(5)Me(5))(2)M](+) cations to high frequency, which establishes transfer of positive spin density from the anions to the cations. The (19)F and (31)P NMR signals of the paramagnetic salts [(C(5)Me(5))(2)M](+) [PF(6)](-) are shifted up to 13.5 ppm relative to diamagnetic [(C(5)Me(5))(2)Co](+) [PF(6)](-). The signs of these shifts are the same as those of the pi spin density in [(C(5)Me(5))(2)M](+). After consideration of interionic ligand- and metal-centered dipolar shifts, this establishes cation-anion spin delocalization. The mixed crystals [(C(5)Me(5))(2)M(x)Co(1-x)](+)[PF(6)](-) have been prepared for M = Cr and Ni. They are isostructural with [(C(5)Me(5))(2)Co](+) [PF(6)](-) whose single-crystal structure has been determined by X-ray diffraction. The (13)C, (19)F, and (31)P MAS NMR spectra of the mixed crystals show that the respective two closest paramagnetic ions in the lattice delocalize spin density to [(C(5)Me(5))(2)Co](+), [(C(5)Me(5))(2)Ni](+), and [PF(6)](-). In [(C(5)Me(5))(2)M](+), about 10(-4) au per carbon atom are transferred. PMID:12207538

  6. Supramolecular self-organisation and conformational isomerism of a binuclear O,O'-dipropyl dithiophosphate gold(I) complex, [Au2{S2P(OC3H7)2}2]: Synthesis, (13)C and (31)P CP/MAS NMR spectroscopy, single-crystal X-ray diffraction study and thermal behaviour.

    PubMed

    Rodina, Tatyana A; Korneeva, Eugenia V; Antzutkin, Oleg N; Ivanov, Alexander V

    2015-10-01

    Crystalline one-dimensional polymeric catena-poly[bis(μ2-O,O'-dipropyldithiophosphato-S,S')digold(I)] (Au-Au) (1) was prepared and studied using (13)C and (31)P CP/MAS NMR spectroscopy and single-crystal X-ray diffraction. To elucidate the structural function of Dtph ligands in crystalline gold(I) O,O'-dipropyl dithiophosphate, the chemical shift anisotropy parameters (δaniso and η) were calculated from spinning sideband manifolds in (31)P MAS NMR spectra. A novel structure of the gold(I) compound comprises two isomeric, non-centrosymmetric binuclear molecules of [Au2{S2P(OC3H7)2}2] (isomers 'A' and 'B'), whose four Dtph groups display structural inequivalence. In each isomeric binuclear molecule of 1, a pair of μ2-bridging dipropyl Dtph ligands almost symmetrically links two neighbouring gold atoms, forming an extensive eight-membered metallocycle [Au2S4P2], while the intramolecular aurophilic Au⋯Au bond additionally stabilises this central cyclic moiety. At the supramolecular level of complex 1, intermolecular aurophilic Au⋯Au bonds yield almost linear infinite polymeric chains (⋯'A'⋯'B'⋯'A'⋯'B'⋯)n. The thermal behaviour of this compound was studied by the simultaneous thermal analysis (STA) technique (a combination of TG and DSC) under an argon atmosphere. PMID:26004097

  7. A symmetrical fluorous dendron-cyanine dye-conjugated bimodal nanoprobe for quantitative 19F MRI and NIR fluorescence bioimaging.

    PubMed

    Wang, Zhe; Yue, Xuyi; Wang, Yu; Qian, Chunqi; Huang, Peng; Lizak, Marty; Niu, Gang; Wang, Fu; Rong, Pengfei; Kiesewetter, Dale O; Ma, Ying; Chen, Xiaoyuan

    2014-08-01

    (19)F MRI and optical imaging are two powerful noninvasive molecular imaging modalities in biomedical applications. (19)F MRI has great potential for high resolution in vivo imaging, while fluorescent probes enable ultracontrast cellular/tissue imaging with high accuracy and sensitivity. A bimodal nanoprobe is developed, integrating the merits of (19)F MRI and fluorescence imaging into a single synthetic molecule, which is further engineered into nanoprobe, by addressing shortcomings of conventional contrast agents to explore the quantitative (19)F MRI and fluorescence imaging and cell tracking. Results show that this bimodal imaging nanoprobe presents high correlation of (19)F MR signal and NIR fluorescence intensity in vitro and in vivo. Additionally, this nanoprobe enables quantitative (19)F MR analysis, confirmed by a complementary fluorescence analysis. This unique feature can hardly be obtained by traditional (19)F MRI contrast agents. It is envisioned that this nanoprobe can hold great potential for quantitative and sensitive multi-modal molecular imaging. PMID:24789108

  8. Contribution of 19F resonances on 18O( p, α)15N reaction rate

    NASA Astrophysics Data System (ADS)

    Benmeslem, Meriem; Chafa, Azzedine; Barhoumi, Slimane; Tribeche, Mouloud

    2014-08-01

    The 18O( p, α)15N reaction influences the isotopes production such as 19F, 18O, and 15N which can be used to test the models of stellar evolution. 19F is synthesized in both asymptotic giant branch (AGB) and metal-rich Wolf-Rayet (WR) stars. Using R-matrix theory we allow new values of resonances parameters in 19F. We show that the most important contribution to the differential and total cross section at low energies, comes from the levels in 19F situated at resonances energies E R =151, 680 and 840 keV with spin and parity 1/2+. The total width of the 680 keV resonance is badly known. So, we have focused on this broad resonance corresponding to the 8.65 MeV level in 19F. We delimit the temperature range in which each resonance contribution to the total reaction rate occurs by analyzing the ratio ( N A < σν> i / N A < σν>). This allowed us to show that the 680 and 840 keV broad resonances strongly dominate the reaction rate over the stellar temperature range T 9=0.02-0.06 and T 9=0.5-5. Finally, these results were compared to NACRE and Iliadis astrophysical compilations.

  9. Perfluoroalkyl Grignard Reagents: NMR Study of 1-Heptafluoropropylmagnesium Chloride in Solution.

    PubMed

    Guang, Jie; Hopson, Russell; Williard, Paul G; Fujiu, Motohiro; Negishi, Kazuyuki; Mikami, Koichi

    2016-07-15

    We report on the generation of a perfluoroalkyl Grignard reagent ((F)RMgX) by exchange reaction between a perfluoroalkyl iodide ((F)R-I) and a Grignard reagent (RMgX). (19)F NMR was applied to monitor the generation of n-C3F7MgCl. Additional NMR techniques, including (19)F COSY, NOESY, and pulsed gradient spin-echo (PGSE) diffusion NMR, were invoked to assign peaks observed in (19)F spectrum. Schlenk equilibrium was observed and was significantly influenced by solvent, diethyl ether, or THF. PMID:27295419

  10. Protein-Observed Fluorine NMR: A Bioorthogonal Approach for Small Molecule Discovery.

    PubMed

    Arntson, Keith E; Pomerantz, William C K

    2016-06-01

    The (19)F isotope is 100% naturally abundant and is the second most sensitive and stable NMR-active nucleus. Unlike the ubiquitous hydrogen atom, fluorine is nearly absent in biological systems, making it a unique bioorthogonal atom for probing molecular interactions in biology. Over 73 fluorinated proteins have been studied by (19)F NMR since the seminal studies of Hull and Sykes in 1974. With advances in cryoprobe production and fluorinated amino acid incorporation strategies, protein-based (19)F NMR offers opportunities to the medicinal chemist for characterizing and ultimately discovering new small molecule protein ligands. This review will highlight new advances using (19)F NMR for characterizing small molecule interactions with both small and large proteins as well as detailing NMR resonance assignment challenges and amino acid incorporation approaches. PMID:26599421

  11. In Vivo Imaging of Stepwise Vessel Occlusion in Cerebral Photothrombosis of Mice by 19F MRI

    PubMed Central

    Kleinschnitz, Christoph; Kampf, Thomas; Jakob, Peter M.; Stoll, Guido

    2011-01-01

    Background 19F magnetic resonance imaging (MRI) was recently introduced as a promising technique for in vivo cell tracking. In the present study we compared 19F MRI with iron-enhanced MRI in mice with photothrombosis (PT) at 7 Tesla. PT represents a model of focal cerebral ischemia exhibiting acute vessel occlusion and delayed neuroinflammation. Methods/Principal Findings Perfluorocarbons (PFC) or superparamagnetic iron oxide particles (SPIO) were injected intravenously at different time points after photothrombotic infarction. While administration of PFC directly after PT induction led to a strong 19F signal throughout the entire lesion, two hours delayed application resulted in a rim-like 19F signal at the outer edge of the lesion. These findings closely resembled the distribution of signal loss on T2-weighted MRI seen after SPIO injection reflecting intravascular accumulation of iron particles trapped in vessel thrombi as confirmed histologically. By sequential administration of two chemically shifted PFC compounds 0 and 2 hours after illumination the different spatial distribution of the 19F markers (infarct core/rim) could be visualized in the same animal. When PFC were applied at day 6 the fluorine marker was only detected after long acquisition times ex vivo. SPIO-enhanced MRI showed slight signal loss in vivo which was much more prominent ex vivo indicative for neuroinflammation at this late lesion stage. Conclusion Our study shows that vessel occlusion can be followed in vivo by 19F and SPIO-enhanced high-field MRI while in vivo imaging of neuroinflammation remains challenging. The timing of contrast agent application was the major determinant of the underlying processes depicted by both imaging techniques. Importantly, sequential application of different PFC compounds allowed depiction of ongoing vessel occlusion from the core to the margin of the ischemic lesions in a single MRI measurement. PMID:22194810

  12. 19F Nuclear Magnetic Resonance and Crystallographic Studies of 5-Fluorotryptophan-Labeled Anthrax Protective Antigen and Effects of the Receptor on Stability

    PubMed Central

    2015-01-01

    The anthrax protective antigen (PA) is an 83 kDa protein that is one of three protein components of the anthrax toxin, an AB toxin secreted by Bacillus anthracis. PA is capable of undergoing several structural changes, including oligomerization to either a heptameric or octameric structure called the prepore, and at acidic pH a major conformational change to form a membrane-spanning pore. To follow these structural changes at a residue-specific level, we have conducted initial studies in which we have biosynthetically incorporated 5-fluorotryptophan (5-FTrp) into PA, and we have studied the influence of 5-FTrp labeling on the structural stability of PA and on binding to the host receptor capillary morphogenesis protein 2 (CMG2) using 19F nuclear magnetic resonance (NMR). There are seven tryptophans in PA, but of the four domains in PA, only two contain tryptophans: domain 1 (Trp65, -90, -136, -206, and -226) and domain 2 (Trp346 and -477). Trp346 is of particular interest because of its proximity to the CMG2 binding interface, and because it forms part of the membrane-spanning pore. We show that the 19F resonance of Trp346 is sensitive to changes in pH, consistent with crystallographic studies, and that receptor binding significantly stabilizes Trp346 to both pH and temperature. In addition, we provide evidence that suggests that resonances from tryptophans distant from the binding interface are also stabilized by the receptor. Our studies highlight the positive impact of receptor binding on protein stability and the use of 19F NMR in gaining insight into structural changes in a high-molecular weight protein. PMID:24387629

  13. Degradation of 4-fluorobiphenyl by mycorrhizal fungi as determined by {sup 19}F nuclear magnetic resonance spectroscopy and {sup 14}C radiolabelling analysis

    SciTech Connect

    Green, N.A.; Meharg, A.A.; Till, C.; Troke, J.; Nicholson, J.K.

    1999-09-01

    The pathways of biotransformation of 4-fluorobiphenyl (4FBP) by the ectomycorrhizal fungus Tylospora fibrilosa and several other mycorrhizal fungi were investigated by using {sup 19}F nuclear magnetic resonance (NMR) spectroscopy in combination with {sup 14}C radioisotope-detected high-performance liquid chromatography ({sup 14}C-HPLC). Under the conditions used in this study T. fibrillosa and some other species degraded 4FBP. {sup 14}C-HPLC profiles indicated that there were four major biotransformation products, whereas {sup 19}F NMR showed that there were six major fluorine-containing products. The authors confirmed that 4-fluorobiphen-4{prime}-ol and 4-fluorobiphen-3{prime}-ol were two of the major products formed, but no other products were conclusively identified. There was no evidence for the expected biotransformation pathway (namely, meta cleavage of the less halogenated ring), as none of the expected products of this route were found. To the best of their knowledge, this is the first report describing intermediates formed during mycorrhizal degradation of halogenated biphenyls.

  14. Probing spin density and local structure in the Prussian blue analogues CsCd[Fe/Co(CN)6]·0.5H2O and Cd3[Fe/Co(CN)6]2·15H2O with solid-state MAS NMR spectroscopy.

    PubMed

    Flambard, Alexandrine; Köhler, Frank H; Lescouëzec, Rodrigue; Revel, Bertrand

    2011-10-01

    Magic-angle spinning (MAS) NMR spectroscopy is used to study the local structure and spin delocalisation in Prussian blue analogues (PBAs). We selected two common archetypes of PBAs (A(I)M(II)[M(III)(CN)(6)]·xH(2)O and M(II)(3)[M(III)(CN)(6)](2)·xH(2)O, in which A(I) is an alkali ion, and M(II) and M(III) are transition-metal ions) that exhibit similar cubic frameworks but different microscopic structures. Whereas the first type of PBA contains interstitial alkali ions and does not exhibit any [M(III)(CN)(6)](3-) vacancies, the second type of PBA exhibits [M(III)(CN)(6)](3-) vacancies, but does not contain inserted alkali ions. In this study, we selected Cd(II) as a divalent metal in order to use the (113)Cd nuclei (I=1/2) as a probe of the local structure. Here, we present a complete MAS NMR study on two series of PBAs of the formulas Cd(II)(3)[Fe(III)(x)Co(III)(1-x)(CN)(6)](2)·15H(2)O with x=0 (1), 0.25 (2), 0.5 (3), 0.75 (4) and 1 (5), and CsCd(II)[Fe(III)(x)Co(III)(1-x)(CN)(6)]·0.5H(2)O with x=0 (6), 0.25 (7), 0.5 (8), 0.75 (9) and 1 (10). Interestingly, the presence of Fe(III) magnetic centres in the vicinity of the cadmium sites has a magnifying-glass effect on the NMR spectrum: it induces a striking signal spread such that the resolution is notably improved compared to that achieved for the diamagnetic PBAs. By doping the sample with varying amounts of diamagnetic Co(III) and comparing the NMR spectra of both types of PBAs, we have been able to give a view of the structure which is complementary to that usually obtained from X-ray diffraction studies. In particular, this study has shown that the vacancies are not randomly distributed in the mesoporous PBAs. Moreover the cadmium chemical shift, which is a measure of the hyperfine coupling, allows the estimation of the spin density on the cadmium nucleus, and consequently, the elucidation of the spin delocalisation mechanism in these compounds along with its dependency on structural parameters. PMID

  15. 14N overtone NMR under MAS: signal enhancement using symmetry-based sequences and novel simulation strategies† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c4cp03994g Click here for additional data file.

    PubMed Central

    Haies, Ibraheem M.; Jarvis, James A.; Bentley, Harry; Heinmaa, Ivo; Kuprov, Ilya; Williamson, Philip T. F.

    2015-01-01

    Overtone 14N NMR spectroscopy is a promising route for the direct detection of 14N signals with good spectral resolution. Its application is currently limited, however, by the absence of efficient polarization techniques for overtone signal enhancement and the lack of efficient numerical simulation techniques to aid in both the development of new methods and the analysis and interpretation of experimental data. In this paper we report a novel method for the transfer of polarization from 1H to the 14N overtone using symmetry-based R-sequences that overcome many of the limitations of adiabatic approaches that have worked successfully on static samples. Refinement of these sequences and the analysis of the resulting spectra have been facilitated through the development of an efficient simulation strategy for 14N overtone NMR spectroscopy of spinning samples, using effective Hamiltonians on top of Floquet and Fokker–Planck equations. PMID:25662410

  16. Study of fusion-fission dynamics in 19F+238U reaction

    NASA Astrophysics Data System (ADS)

    Dubey, R.; Sugathan, P.; Jhingan, A.; Kaur, Gurpreet; Mukul, Ish; Siwal, Davinder; Saneesh, N.; Banerjee, Tathagata; Yadav, Abhishek; Thakur, Meenu; Mahajan, Ruchi; Chaterjee, M. B.

    2016-05-01

    Mass angle distribution measurements for 19F+238U reaction were carried out around the sub barrier energies. Mass angle correlation has not been observed at above and below the fusion barrier in present reaction. This infer the minimal presence of non compound like events at these bombarding energies range.

  17. Cell Labeling for 19F MRI: New and Improved Approach to Perfluorocarbon Nanoemulsion Design

    PubMed Central

    Patel, Sravan K.; Williams, Jonathan; Janjic, Jelena M.

    2013-01-01

    This report describes novel perfluorocarbon (PFC) nanoemulsions designed to improve ex vivo cell labeling for 19F magnetic resonance imaging (MRI). 19F MRI is a powerful non-invasive technique for monitoring cells of the immune system in vivo, where cells are labeled ex vivo with PFC nanoemulsions in cell culture. The quality of 19F MRI is directly affected by the quality of ex vivo PFC cell labeling. When co-cultured with cells for longer periods of time, nanoemulsions tend to settle due to high specific weight of PFC oils (1.5–2.0 g/mL). This in turn can decrease efficacy of excess nanoemulsion removal and reliability of the cell labeling in vitro. To solve this problem, novel PFC nanoemulsions are reported which demonstrate lack of sedimentation and high stability under cell labeling conditions. They are monodisperse, have small droplet size (~130 nm) and low polydispersity (<0.15), show a single peak in the 19F nuclear magnetic resonance spectrum at −71.4 ppm and possess high fluorine content. The droplet size and polydispersity remained unchanged after 160 days of follow up at three temperatures (4, 25 and 37 °C). Further, stressors such as elevated temperature in the presence of cells, and centrifugation, did not affect the nanoemulsion droplet size and polydispersity. Detailed synthetic methodology and in vitro testing for these new PFC nanoemulsions is presented. PMID:25586263

  18. Comparison between optimized GRE and RARE sequences for 19F MRI studies

    NASA Astrophysics Data System (ADS)

    Soffientini, Chiara D.; Mastropietro, Alfonso; Caffini, Matteo; Cocco, Sara; Zucca, Ileana; Scotti, Alessandro; Baselli, Giuseppe; Bruzzone, Maria Grazia

    2014-03-01

    In 19F-MRI studies limiting factors are the presence of a low signal due to the low concentration of 19F-nuclei, necessary for biological applications, and the inherent low sensitivity of MRI. Hence, acquiring images using the pulse sequence with the best signal to noise ratio (SNR) by optimizing the acquisition parameters specifically to a 19F compound is a core issue. In 19F-MRI, multiple-spin-echo (RARE) and gradient-echo (GRE) are the two most frequently used pulse sequence families; therefore we performed an optimization study of GRE pulse sequences based on numerical simulations and experimental acquisitions on fluorinated compounds. We compared GRE performance to an optimized RARE sequence. Images were acquired on a 7T MRI preclinical scanner on phantoms containing different fluorinated compounds. Actual relaxation times (T1, T2, T2*) were evaluated in order to predict SNR dependence on sequence parameters. Experimental comparisons between spoiled GRE and RARE, obtained at a fixed acquisition time and in steady state condition, showed RARE sequence outperforming the spoiled GRE (up to 406% higher). Conversely, the use of the unbalanced-SSFP showed a significant increase in SNR compared to RARE (up to 28% higher). Moreover, this sequence (as GRE in general) was confirmed to be virtually insensitive to T1 and T2 relaxation times, after proper optimization, thus improving marker independence from the biological environment. These results confirm the efficacy of the proposed optimization tool and foster further investigation addressing in-vivo applicability.

  19. 19F MRI detection of acute allograft rejection with in vivo perfluorocarbon labeling of immune cells.

    PubMed

    Hitchens, T Kevin; Ye, Qing; Eytan, Danielle F; Janjic, Jelena M; Ahrens, Eric T; Ho, Chien

    2011-04-01

    Current diagnosis of organ rejection following transplantation relies on tissue biopsy, which is not ideal due to sampling limitations and risks associated with the invasive procedure.We have previously shown that cellular magnetic resonance imaging (MRI) of iron-oxide labeled immune-cell infiltration can provide a noninvasive measure of rejection status by detecting areas of hypointensity on T 2*-weighted images. In this study, we tested the feasibility of using a fluorine-based cellular tracer agent to detect macrophage accumulation in rodent models of acute allograft rejection by fluorine-19 ((19) F) MRI and magnetic resonance spectroscopy. This study used two rat models of acute rejection, including abdominal heterotopic cardiac transplant and orthotopic kidney transplant models. Following in vivo labeling of monocytes and macrophages with a commercially available agent containing perfluoro-15-crown-5-ether, we observed (19) F-signal intensity in the organs experiencing rejection by (19) F MRI, and conventional (1) H MRI was used for anatomical context. Immunofluorescence and histology confirmed macrophage labeling. These results are consistent with our previous studies and show the complementary nature of the two cellular imaging techniques. With no background signal, (19) F MRI/magnetic resonance spectroscopy can provide unambiguous detection of fluorine labeled cells, and may be a useful technique for detecting and quantifying rejection grade in patients. PMID:21305593

  20. Symmetry-guided design and fluorous synthesis of a stable and rapidly excreted imaging tracer for (19)F MRI.

    PubMed

    Jiang, Zhong-Xing; Liu, Xin; Jeong, Eun-Kee; Yu, Yihua Bruce

    2009-01-01

    Getting FIT: A bispherical (19)F imaging tracer, (19)FIT, was designed and synthesized. (19)FIT is advantageous over perfluorocarbon-based (19)F imaging agents, as it is not retained in the organs and does not require complex formulation procedures. Imaging agents such as (19)FIT can lead to (19)F magnetic resonance imaging (MRI) playing an important role in drug therapy, analogous to the role played by (1)H MRI in disease diagnosis. PMID:19475598

  1. Magic-angle-spinning NMR studies of zeolite SAPO-5

    NASA Astrophysics Data System (ADS)

    Freude, D.; Ernst, H.; Hunger, M.; Pfeifer, H.; Jahn, E.

    1988-01-01

    SAPO-5 was synthesized using triethylamine as template. Magic-angle-spinning (MAS) NMR of 1H, 27Al, 29Si and 31P was used to study the silicon incorporation into the framework and the nature of the Brønsted sites. 1H MAS NMR shows two types of bridging hydroxyl groups. 29Si MAS NMR indicates that silicon substitutes mostly for phosphorus and that there is a small amount of crystalline SiO 2 in the zeolite powder.

  2. Novel electrolytes for use in new and improved batteries: An NMR study

    NASA Astrophysics Data System (ADS)

    Berman, Marc B.

    This thesis focuses on the use of nuclear magnetic resonance (NMR) spectroscopy in order to study materials for use as electrolytes in batteries. The details of four projects are described in this thesis as well as a brief theoretical background of NMR. Structural and dynamics properties were determined using several NMR techniques such as static, MAS, PFG diffusion, and relaxation to understand microscopic and macroscopic properties of the materials described within. Nuclei investigate were 1H, 2H, 7Li, 13C, 19F, 23Na, and 27Al. The first project focuses on an exciting new material to be used as a solid electrolyte membrane. T. The second project focuses on the dynamics of ionic liquid-solvent mixtures and their comparison to molecular dynamics computer simulations. The third project involves a solvent-free film containing NaTFSI salt mixed in to PEO for use in sodium-ion batteries. This final project focuses on a composite electrolyte consisting of a ceramic and solid: LiI:PEO:LiAlO2.

  3. Increasing the quantitative bandwidth of NMR measurements.

    PubMed

    Power, J E; Foroozandeh, M; Adams, R W; Nilsson, M; Coombes, S R; Phillips, A R; Morris, G A

    2016-02-18

    The frequency range of quantitative NMR is increased from tens to hundreds of kHz by a new pulse sequence, CHORUS. It uses chirp pulses to excite uniformly over very large bandwidths, yielding accurate integrals even for nuclei such as (19)F that have very wide spectra. PMID:26789115

  4. Determination of relative orientation between (1)H CSA tensors from a 3D solid-state NMR experiment mediated through (1)H/(1)H RFDR mixing under ultrafast MAS.

    PubMed

    Pandey, Manoj Kumar; Nishiyama, Yusuke

    2015-09-01

    To obtain piercing insights into inter and intramolecular H-bonding, and π-electron interactions measurement of (1)H chemical shift anisotropy (CSA) tensors is gradually becoming an obvious choice. While the magnitude of CSA tensors provides unique information about the local electronic environment surrounding the nucleus, the relative orientation between these tensors can offer further insights into the spatial arrangement of interacting nuclei in their respective three-dimensional (3D) space. In this regard, we present a 3D anisotropic/anisotropic/isotropic proton chemical shift (CSA/CSA/CS) correlation experiment mediated through (1)H/(1)H radio frequency-driven recoupling (RFDR) which enhances spin diffusion through recoupled (1)H-(1)H dipolar couplings under ultrafast magic angle spinning (MAS) frequency (70kHz). Relative orientation between two interacting 1H CSA tensors is obtained by fitting two-interacting (1)H CSA tensors by fitting two-dimensional (2D) (1)H/(1)H CSA/CSA spectral slices through extensive numerical simulations. To recouple (1)H CSAs in the indirect frequency dimensions of a 3D experiment we have employed γ-encoded radio frequency (RF) pulse sequence based on R-symmetry (R188(7)) with a series of phase-alternated 2700(°)-90180(°) composite-180° pulses on citric acid sample. Due to robustness of applied (1)H CSA recoupling sequence towards the presence of RF field inhomogeneity, we have successfully achieved an excellent (1)H/(1)H CSA/CSA cross-correlation efficiency between H-bonded sites of citric acid. PMID:26065628

  5. Impurity effect of the Λ particle on the structure of 18F and Λ19F

    NASA Astrophysics Data System (ADS)

    Tanimura, Y.; Hagino, K.; Sagawa, H.

    2012-10-01

    We perform three-body model calculations for a sd-shell hypernucleus Λ19F (Λ17O+p+n) and its core nucleus 18F (16O+p+n), employing a density-dependent contact interaction between the valence proton and neutron. We find that the B(E2) value from the first excited state (with spin and parity of Iπ=3+) to the ground state (Iπ=1+) is slightly changed by the addition of a Λ particle, which exhibits the so called shrinkage effect of Λ particle. We also show that the excitation energy of the 3+ state is reduced in Λ19F compared to 18F, as is observed in a p-shell nucleus 6Li. We discuss the mechanism of this reduction of the excitation energy, pointing out that it is caused by a different mechanism from that in Λ7Li.

  6. A Study on 19F( n,α) Reaction Cross Section

    NASA Astrophysics Data System (ADS)

    Uğur, F. A.; Tel, E.; Gökçe, A. A.

    2013-06-01

    In this study, cross sections of neutron induced reactions have been investigated for fluorine target nucleus. The calculations have been made on the excitation functions of 19F ( n,α), 19F( n,xα) reactions. Fluorine (F) and its molten salt compounds (LiF) can serve as a coolant which can be used at high temperatures without reaching a high vapor pressure and also the molten salt compounds are also a good neutron moderator. In these calculations, the pre-equilibrium and equilibrium effects have been investigated. The pre-equilibrium calculations involve the full exciton model and the cascade exciton model. The equilibrium effects are calculated according to the Weisskopf-Ewing model. Also in the present work, reaction cross sections have calculated by using evaluated empirical formulas developed by Tel et al. at 14-15 MeV energy. The obtained results have been discussed and compared with the available experimental data.

  7. Fission fragment angular distributions for 11B and 19F+238U systems

    NASA Astrophysics Data System (ADS)

    Karnik, A.; Kailas, S.; Chatterjee, A.; Navin, A.; Shrivastava, A.; Singh, P.; Samant, M. S.

    1995-12-01

    The fission fragment angular distributions were measured at energies above the fusion barrier, for the systems 11B and 19F + 238U. An analysis of the present data along with those already available for the systems 6,7Li, 12C, and 16O + 238U was made in terms of the saddle-point statistical model. While the anisotropies were ``normal'' for 6,7Li, 11B, 12C+238U systems, the ones for 16O and 19F+238U systems were found to be ``anomalous.'' The entrance channel mass asymmetry dependence of the anisotropies as observed here is consistent with the expectations of preequilibrium fission dynamics. This result emphasizes the importance of preequilibrium fission in heavy-ion induced fusion-fission reactions.

  8. Dark matter spin-dependent limits for WIMP interactions on 19F by PICASSO

    NASA Astrophysics Data System (ADS)

    Archambault, S.; Aubin, F.; Auger, M.; Behnke, E.; Beltran, B.; Clark, K.; Dai, X.; Davour, A.; Farine, J.; Faust, R.; Genest, M.-H.; Giroux, G.; Gornea, R.; Krauss, C.; Kumaratunga, S.; Lawson, I.; Leroy, C.; Lessard, L.; Levy, C.; Levine, I.; MacDonald, R.; Martin, J.-P.; Nadeau, P.; Noble, A.; Piro, M.-C.; Pospisil, S.; Shepherd, T.; Starinski, N.; Stekl, I.; Storey, C.; Wichoski, U.; Zacek, V.

    2009-11-01

    The PICASSO experiment at SNOLAB reports new results for spin-dependent WIMP interactions on 19F using the superheated droplet technique. A new generation of detectors and new features which enable background discrimination via the rejection of non-particle induced events are described. First results are presented for a subset of two detectors with target masses of 19F of 65 g and 69 g respectively and a total exposure of 13.75 ± 0.48 kgd. No dark matter signal was found and for WIMP masses around 24 GeV /c2 new limits have been obtained on the spin-dependent cross section on 19F of σF = 13.9 pb (90% C.L.) which can be converted into cross section limits on protons and neutrons of σp = 0.16 pb and σn = 2.60 pb respectively (90% C.L.). The obtained limits on protons restrict recent interpretations of the DAMA/LIBRA annual modulations in terms of spin-dependent interactions.

  9. First evidences for 19F(α, p)22Ne at astrophysical energies

    NASA Astrophysics Data System (ADS)

    D’Agata, G.; Spitaleri, C.; Pizzone, R. G.; Blagus, S.; Figuera, P.; Grassi, L.; Guardo, G. L.; Gulino, M.; Hayakawa, S.; Indelicato, I.; Kshetri, R.; La Cognata, M.; Lamia, L.; Lattuada, M.; Mijatović, T.; Milin, M.; Miljanic, D.; Prepolec, L.; Sergi, M. L.; Skukan, N.; Soic, N.; Tokic, V.; Tumino, A.; Uroic, M.

    2016-04-01

    19F experimental abundances is overestimated in respect to the theoretical one: it is therefore clear that further investigations are needed. We focused on the 19F(α, p) 22 Ne reaction, representing the main destruction channel in He-rich environments. The lowest energy at which this reaction has been studied with direct methods is E C.M. ≈ 0.91 MeV, while the Gamow region is between 0.39 ÷ 0.8 MeV, far below the Coulomb barrier (3.8 MeV). For this reason, an experiment at Rudjer Boskovic Institute (Zagreb) was performed, applying the Trojan Horse Method. Following this method we selected the quasi-free contribution coming from 6Li(19 F,p22 Ne)2 H at Ebeam=6 MeV at kinematically favourable angles, and the cross section at energies 0 < EC.M. < 1.4 MeV was extracted in arbitrary units, covering the astrophysical region of interest.

  10. (19)F Magnetic Resonance Imaging Signals from Peptide Amphiphile Nanostructures Are Strongly Affected by Their Shape.

    PubMed

    Preslar, Adam T; Tantakitti, Faifan; Park, Kitae; Zhang, Shanrong; Stupp, Samuel I; Meade, Thomas J

    2016-08-23

    Magnetic resonance imaging (MRI) is a noninvasive imaging modality that provides excellent spatial and temporal resolution. The most commonly used MR probes face significant challenges originating from the endogenous (1)H background signal of water. In contrast, fluorine MRI ((19)F MRI) allows quantitative probe imaging with zero background signal. Probes with high fluorine content are required for high sensitivity, suggesting nanoscale supramolecular assemblies containing (19)F probes offer a potentially useful strategy for optimum imaging as a result of improved payload. We report here on supramolecular nanostructures formed by fluorinated peptide amphiphiles containing either glutamic acid or lysine residues in their sequence. We identified molecules that form aggregates in water which transition from cylindrical to ribbon-like shape as pH increased from 4.5 to 8.0. Interestingly, we found that ribbon-like nanostructures had reduced magnetic resonance signal, whereas their cylindrical counterparts exhibited strong signals. We attribute this drastic difference to the greater mobility of fluorinated tails in the hydrophobic compartment of cylindrical nanostructures compared to lower mobility in ribbon-like assemblies. This discovery identifies a strategy to design supramolecular, self-assembling contrast agents for (19)F MRI that can spatially map physiologically relevant changes in pH using changes in morphology. PMID:27425636

  11. Impact of structural differences in carcinopreventive agents indole-3-carbinol and 3,3'-diindolylmethane on biological activity. An X-ray, ¹H-¹⁴N NQDR, ¹³C CP/MAS NMR, and periodic hybrid DFT study.

    PubMed

    Latosińska, Jolanta Natalia; Latosińska, Magdalena; Szafrański, Marek; Seliger, Janez; Žagar, Veselko; Burchardt, Dorota V

    2015-09-18

    Three experimental techniques (1)H-(14)N NQDR, (13)C CP/MAS NMR and X-ray and Density Functional Theory (GGA/BLYP with PBC) and Hirshfeld surfaces were applied for the structure-activity oriented studies of two phyto-antioxidants and anticarcinogens: indole-3-carbinol, I3C, and 3,3'-diindolylmethane, DIM, (its bioactive metabolite). One set of (14)N NQR frequencies for DIM (2.310, 2.200 and 0.110 MHz at 295K) and I3C (2.315, 1.985 and 0.330 MHz at 160K) was recorded. The multiplicity of NQR lines recorded at RT revealed high symmetry (chemical and physical equivalence) of both methyl indazole rings of DIM. Carbonyl (13)C CSA tensor components were calculated from the (13)C CP/MAS solid state NMR spectrum of I3C recorded under fast and slow spinning. At room temperature the crystal structure of I3C is orthorhombic: space group Pca21, Z=4, a=5.78922(16), b=15.6434(7) and c=8.4405(2)Å. The I3C molecules are aggregated into ribbons stacked along [001]. The oxygen atomsare disorderedbetween the two sites of different occupancy factors. It implies that the crystal is built of about 70% trans and 30% gauche conformers, and apart from the weak OH⋯O hydrogen bonds (O⋯O=3.106Å) the formation of alternative O'H⋯O bonds (O'⋯O=2.785Å) is possible within the 1D ribbons. The adjacent ribbons are further stabilised by O'H⋯O bonds (O'⋯O=2.951Å). The analysis of spectra and intermolecular interactions pattern by experimental techniques was supported by solid (periodic) DFT calculations. The knowledge of the topology and competition of the interactions in crystalline state shed some light on the preferred conformations of CH2OH in I3C and steric hindrance of methyl indole rings in DIM. A comparison of the local environment in gas phase and solid permitted drawing some conclusions on the nature of the interactions required for effective processes of recognition and binding of a given anticarcinogen to the protein or nucleic acid. PMID:26066413

  12. NMR and protein folding: equilibrium and stopped-flow studies.

    PubMed Central

    Frieden, C.; Hoeltzli, S. D.; Ropson, I. J.

    1993-01-01

    NMR studies are now unraveling the structure of intermediates of protein folding using hydrogen-deuterium exchange methodologies. These studies provide information about the time dependence of formation of secondary structure. They require the ability to assign specific resonances in the NMR spectra to specific amide protons of a protein followed by experiments involving competition between folding and exchange reactions. Another approach is to use 19F-substituted amino acids to follow changes in side-chain environment upon folding. Current techniques of molecular biology allow assignments of 19F resonances to specific amino acids by site-directed mutagenesis. It is possible to follow changes and to analyze results from 19F spectra in real time using a stopped-flow device incorporated into the NMR spectrometer. PMID:8298453

  13. 19F nuclear magnetic resonance measurement of the distance between the E-site GTP and the high-affinity Mg2+ in tubulin.

    PubMed

    Monasterio, O

    1987-09-22

    The distance separating the divalent metal ion high-affinity binding site and the exchangeable nucleotide binding site on tubulin was evaluated by using high-resolution 19F NMR. The 31P and 19F NMR spectra of guanosine 5'-(gamma-fluorotriphosphate) [GTP (gamma F)] were studied. Both the fluorine and the gamma-phosphate were split into a doublet with a coupling constant of 936 Hz. Tubulin purified according to the method of Weisenberg [Weisenberg, R.C., & Timasheff, S.N. (1970) Biochemistry 9, 4110-4116] was incubated with 1 mM Mn2+. After one cycle of assembly, Mn2+ replaced Mg2+ only partially, i.e., 60% at the high-affinity binding site. After colchicine treatment of tubulin to stabilize it, GTP(gamma F) was added, and the 254-MHz fluorine-19 relaxation rates were measured within the first 4 h. Longitudinal and transversal relaxation rates were determined at two concentrations of GTP(gamma F) and variable concentrations of colchicine-tubulin-Mn(II) (paramagnetic complex) or the ternary complex with magnesium (diamagnetic complex). The analysis of the relaxation data indicates that the rate of exchange of GTP(gamma F) from the exchangeable nucleotide site has a lower limit of 8.7 X 10(4) s-1 and the metal and exchangeable nucleotide binding sites are separated by an upper distance between 6 and 8 A. These data confirm that the high-affinity divalent cation site is situated in the same locus as that of the exchangeable nucleotide, forming a metal-nucleotide complex. PMID:3689763

  14. /sup 19/F nuclear magnetic resonance measurement of the distance between the E-site GTP and the high-affinity Mg/sup 2 +/ in tubulin

    SciTech Connect

    Monasterio, O.

    1987-09-22

    The distance separating the divalent metal ion high-affinity binding site and the exchangeable nucleotide binding site on tubulin was evaluated by using high-resolution /sup 19/F NMR. The /sup 31/P and /sup 19/F NMR spectra of guanosine 5'-(..gamma..-fluorotriphosphate) (GTP(..gamma..F)) were studied. Both the fluorine and the ..gamma..-phosphate were split into a doublet with a coupling constant of 936 Hz. Tubulin purified according to the method of Weisenberg was incubated with 1 mM Mn/sup 2 +/. After one cycle of assembly, Mn/sup 2 +/ only partially, i.e., 60% at the high-affinity binding site. After colchicine treatment of tubulin to stabilize it, GTP(..gamma..F) was added, and the 254-MHz fluorine-19 relaxation rates were measured within the first 4 h. Longitudinal and transversal relaxation rates were determined at two concentrations of GTP(..gamma..F) and variable concentrations of colchicine-tubulin-Mn(II) (paramagnetic complex) or the ternary complex with magnesium diamagnetic complex). The analysis of the relaxation data indicates that the rate of exchange of GTP(..gamma..F) from the exchangeable nucleotide site has a lower limit of 8.7 x 10/sup 4/ s/sup -1/ and the metal and exchangeable nucleotide binding sites are separated by an upper distance between 6 and 8 A. These data confirm that the high-affinity divalent cation site is situated in the same locus as that of the exchangeable nucleotide, forming a metal-nucleotide complex.

  15. TANKS 18 AND 19-F EQUIPMENT GROUT FILL MATERIAL EVALUATION AND RECOMMENDATIONS

    SciTech Connect

    Stefanko, D.; Langton, C.

    2011-12-15

    The United States Department of Energy (US DOE) intends to remove Tanks 18-F and 19-F at the Savannah River Site (SRS) from service. The high-level waste (HLW) tanks have been isolated from the F-area Tank Farm (FTF) facilities and will be filled with cementitious grout for the purpose of: (1) physically stabilizing the empty volumes in the tanks, (2) limiting/eliminating vertical pathways from the surface to residual waste on the bottom of the tanks, (3) providing an intruder barrier, and (4) providing an alkaline, chemical reducing environment within the closure boundary to limit solubility of residual radionuclides. Bulk waste and heel waste removal equipment will remain in Tanks 18-F and 19-F when the tanks are closed. This equipment includes: mixer pumps, transfer pumps, transfer jets, equipment support masts, sampling masts and dip tube assemblies. The current Tank 18-F and 19-F closure strategy is to grout the internal void spaces in this equipment to eliminate fast vertical pathways and slow water infiltration to the residual material on the tank floor. This report documents the results of laboratory testing performed to identify a grout formulation for filling the abandoned equipment in Tanks 18-F and 19-F. The objective of this work was to formulate a flowable grout for filling internal voids of equipment that will remain in Tanks 18-F and 19-F during the final closures. This work was requested by V. A. Chander, Tank Farm Closure Engineering, in HLW-TTR-2011-008. The scope for this task is provided in the Task Technical and Quality Assurance Plan (TTQAP), SRNL-RP-2011-00587. The specific objectives of this task were to: (1) Prepare and evaluate the SRR cooling coil grout identified in WSRC-STI-2008-00298 per the TTR for this work. The cooling coil grout is a mixture of BASF MasterFlow{reg_sign} 816 cable grout (67.67 wt. %), Grade 100 ground granulated blast furnace slag (7.52 wt. %) and water (24.81 wt. %); (2) Identify equipment grout placement and

  16. Understanding structure-property relationships in lithium metal phosphates and oxide electrode materials: X-ray/neutron diffraction and lithium-7 MAS-NMR coupled with lithium-ion electrochemistry

    NASA Astrophysics Data System (ADS)

    Yin, Shih-Chieh

    Li-ion rechargeable battery has emerged as one of the most important portable energy carriers in the last decade. While LiCoO2 has been used as the cathode for a decade because of the good capacity and cycle retentions, tremendous efforts have been devoted to search other low cost and environmentally viable materials. Some of the promising materials such as LiFePO4, Li3V2(PO4)3, and LiNi1/3 Mn1/3Co1/3O2 were studied in this thesis. New lithium metal fluorophosphates were also discovered as potential cathode materials. The use of an aqueous solution synthesis route employing nanosized oxidized carbon black particles to inhibit LiFePO4 crystal growth was demonstrated. The resultant particle size of about 100 nm is reduced by 20 times compared to the solution synthesis method alone. Electron diffraction patterns and high resolution images from TEM experiments confirmed the single olivine phase nature of the material and the very small crystallite sizes. The 100 nm crystallites of LiFePO4-OCB showed vastly improved capacity (0.7 Li, 125mAh/g) compared to the 2mum particle. This improvement is due to contributions of decreased Li diffusion paths and improved contact with conductive carbon particles. Electrochemical PITT experiments coupled with ex-situ X-ray diffraction studies revealed the structural similarities of the delithiated monoclinic single phase compositions of LixV2(PO 4)3. (x = 2, 1, 0) From Le Bail refinements of XRD patterns, monoclinic Li3V2(PO4)3 shows only 7% volume variation upon delithiation which demonstrates its excellent intercalation characteristics. Structures of delithiated single phase compositions were further studied by both powder neutron diffraction and 7Li solid state NMR. From the structure solutions, each plateau in the V vs x curve corresponds to a two-phase transition involving the reorganization of electrons and Li ions within the lattice. The existence of charge ordering in Li2V2(PO4)3 demonstrates the electrons are pinned on both

  17. Quantitative Tissue Oxygen Measurement in Multiple Organs Using 19F MRI in a Rat Model

    PubMed Central

    Liu, Siyuan; Shah, Sameer J.; Wilmes, Lisa J.; Feiner, John; Kodibagkar, Vikram D.; Wendland, Michael F.; Mason, Ralph P.; Hylton, Nola; Hopf, Harriet W.; Rollins, Mark D.

    2011-01-01

    Measurement of individual organ tissue oxygen levels can provide information to help evaluate and optimize medical interventions in many areas including wound healing, resuscitation strategies, and cancer therapeutics. Echo planar 19F MRI has previously focused on tumor oxygen measurement at low oxygen levels (pO2) < 30 mmHg. It uses the linear relationship between spin-lattice relaxation rate (R1) of hexafluorobenzene (HFB) and pO2. The feasibility of this technique for a wider range of pO2 values and individual organ tissue pO2 measurement was investigated in a rat model. Spin-lattice relaxation times (T1=1/R1) of HFB were measured using 19F saturation recovery echo planar imaging (EPI). Initial in vitro studies validated the linear relationship between R1 and pO2 from 0 mmHg to 760 mmHg oxygen partial pressure at 25°C, 37°C, and 41°C at 7 Tesla for HFB. In vivo experiments measured rat tissue oxygen (ptO2) levels of brain, kidney, liver, gut, muscle and skin during inhalation of both 30% and 100% oxygen. All organ ptO2 values significantly increased with hyperoxia (p<0.001). This study demonstrates that 19F MRI of HFB offers a feasible tool to measure regional ptO2 in vivo, and that hyperoxia significantly increases ptO2 of multiple organs in a rat model. PMID:21688315

  18. Mise en évidence par RMN du 19F d'une distorsion des octaèdres dans la solution solide CsCaF 3- xH x de type perovskite (0 ≤ x ≤ 1,70)

    NASA Astrophysics Data System (ADS)

    Pezat, M.; Senegas, J.; Villeneuve, G.; Park, H. H.; Tressaud, A.

    1988-12-01

    19F and 1H NMR investigations have been carried out on three powder samples of CsCaF 3- xH x composition (0 ≤ x ≤ 1.70), and on a single crystal of CsCaF 3. It appears that the spectra of 19F are consistent with a distortion of the Ca(F,H) 6 octahedra involving either lower symmetry or a random distribution of a c4-maxis with respect to the crystallographic directions.

  19. Cerebral blood flow in experimental ischemia assessed by sup 19 F magnetic resonance spectroscopy in cats

    SciTech Connect

    Brunetti, A.; Nagashima, G.; Bizzi, A.; DesPres, D.J. )

    1990-10-01

    We evaluated a 19F magnetic resonance spectroscopic technique that detects Freon-23 washout as a means of measuring cerebral blood flow in halothane-anesthetized adult cats during and after transient cerebral ischemia produced by vascular occlusion. The experiments were performed to test the ability of this recently developed method to detect postischemic flow deficits. Results were consistent with postischemic hypoperfusion. The method also proved valuable for measuring small residual flow during vascular occlusion. Our experiments indicate that this method provides simple, rapid, and repeatable flow measurements that can augment magnetic resonance examinations of cerebral metabolic parameters in the study of ischemia.

  20. Measuring 19F(α,n) with VANDLE for Nuclear Safeguards

    NASA Astrophysics Data System (ADS)

    Peters, William; Clement, R. C. C.; Smith, M. S.; Pain, S. D.; Thompson, S.; Cizewski, J. A.; Reingold, C.; Manning, B.; Burcher, S.; Bardayan, D. W.; Tan, W.-P.; Stech, E.; Smith, M. K.; Smith, K.; Avetisyan, R.; Long, A.; Battaglia, A.; Marley, S.; Gyurjinyan, A.; Ilyushkin, S.; O'Malley, P. D.; Madurga, M.; Paulauskas, S. V.; Taylor, S.; Febbraro, M.

    2014-09-01

    UF6 is used in many parts of the Uranium Fuel Cycle, and various techniques are used by nonproliferation agencies to monitor and account for the material. One of the most promising non-destructive assay (NDA) methods consists of measuring gross neutron rates induced by uranium-decay alpha particles reacting with the fluorine and emitting a neutron. This method, however, currently lacks reliable nuclear data on the 19F(α,n) reaction cross section to determine an accurate neutron yield rate for a given sample of UF6. We have used the Versatile Array of Neutron Detectors at Low Energy (VANDLE) to measure the cross section and coincident neutron spectrum over an energy range pertinent to NDA in a two part experiment: First at Notre Dame with a LaF3 target and a pulsed alpha-particle beam, and second at ORNL with a windowless He-gas target and a 19F beam. The motivation for this measurement and preliminary results will be presented. UF6 is used in many parts of the Uranium Fuel Cycle, and various techniques are used by nonproliferation agencies to monitor and account for the material. One of the most promising non-destructive assay (NDA) methods consists of measuring gross neutron rates induced by uranium-decay alpha particles reacting with the fluorine and emitting a neutron. This method, however, currently lacks reliable nuclear data on the 19F(α,n) reaction cross section to determine an accurate neutron yield rate for a given sample of UF6. We have used the Versatile Array of Neutron Detectors at Low Energy (VANDLE) to measure the cross section and coincident neutron spectrum over an energy range pertinent to NDA in a two part experiment: First at Notre Dame with a LaF3 target and a pulsed alpha-particle beam, and second at ORNL with a windowless He-gas target and a 19F beam. The motivation for this measurement and preliminary results will be presented. This work is funded in part by NSF Grant 1068192, DOE Office of Science, and the NNSA Office of Defense Nuclear

  1. Fission fragment angular distributions for the system 19F+232Th

    NASA Astrophysics Data System (ADS)

    Kailas, S.; Navin, A.; Chatterjee, A.; Singh, P.; Choudhury, R. K.; Saxena, A.; Nadkarni, D. M.; Kapoor, S. S.; Ramamurthy, V. S.; Nayak, B. K.; Suryanarayana, S. V.

    1991-03-01

    The fission fragment angular distributions for the system 19F+232Th have been measured at several bombarding energies between 94 and 108 MeV. Even though the anisotropy values measured in the present work are considerably smaller than the ones reported by Zhang et al. for the same system at similar energies, they are still anomalous when compared with the predictions of the standard saddle-point statistical model and fit into the systematics of entrance-channel dependence of fission anisotropies reported by us earlier.

  2. SOLID-STATE 19F NMR INVESTIGATION OF HEXAFLUOROBENZENE SORPTION TO SOIL ORGANIC MATTER. (R825549C058)

    EPA Science Inventory

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  3. A comparative study of 1H and 19F Overhauser DNP in fluorinated benzenes.

    PubMed

    Neudert, Oliver; Mattea, Carlos; Spiess, Hans Wolfgang; Stapf, Siegfried; Münnemann, Kerstin

    2013-12-21

    Hyperpolarization techniques, such as Overhauser dynamic nuclear polarization (DNP), can provide a dramatic increase in the signal obtained from nuclear magnetic resonance experiments and may therefore enable new applications where sensitivity is a limiting factor. In this contribution, studies of the (1)H and (19)F Overhauser dynamic nuclear polarization enhancements at 345 mT are presented for three different aromatic solvents with the TEMPO radical for a range of radical concentrations. Furthermore, nuclear magnetic relaxation dispersion measurements of the same solutions are analyzed, showing contributions from dipolar and scalar coupling modulated by translational diffusion and different coupling efficiency for different solvents and nuclei. Measurements of the electron paramagnetic resonance linewidth are included to support the analysis of the DNP saturation factor for varying radical concentration. The results of our study give an insight into the characteristics of nitroxide radicals as polarizing agents for (19)F Overhauser DNP of aromatic fluorinated solvents. Furthermore, we compare our results with the findings of the extensive research on Overhauser DNP that was conducted in the past for a large variety of other radicals. PMID:24192645

  4. Measurement of the 19F(α,n)22Na Cross Section for Nuclear Safeguards Science

    NASA Astrophysics Data System (ADS)

    Lowe, Marcus; Smith, M. S.; Pain, S.; Febbraro, M.; Pittman, S.; Chipps, K. A.; Thompson, S. J.; Grinder, M.; Grzywacz, R.; Smith, K.; Thornsberry, C.; Thompson, P.; Peters, W. A.; Waddell, D.; Blanchard, R.; Carls, A.; Shadrick, S.; Engelhardt, A.; Hertz-Kintish, D.; Allen, N.; Sims, H.

    2015-10-01

    Enriched uranium is commonly stored in fluoride matrices such as UF6. Alpha decays of uranium in UF6 will create neutrons via the 19F(α,n)22Na reaction. An improved cross section for this reaction will enable improved nondestructive assays of uranium content in storage cylinders at material enrichment facilities. To determine this reaction cross section, we have performed experiments using both forward and inverse kinematic techniques at the University of Notre Dame (forward) and Oak Ridge National Laboratory (inverse). Both experiments utilized the Versatile Array of Neutron Detectors at Low Energy (VANDLE) for neutron detection. The ORNL experiment also used a new ionization chamber for 22Na particle identification. Gating on the 22Na nuclei detected drastically reduced the background counts in the neutron time-of-flight spectra. The latest analysis and results will be presented for 19F beam energies ranging from 20-37 MeV. This work is funded in part by the DOE Office of Nuclear Physics, the National Nuclear Security Administration's Office of Defense Nuclear Nonproliferation R&D, and the NSF.

  5. Dark matter spin-dependent limits for WIMP interactions on 19F by PICASSO

    NASA Astrophysics Data System (ADS)

    Beltran, Berta; Picasso Collaboration

    2010-01-01

    The PICASSO experiment at SNOLAB uses super-heated C4F10 droplets suspended in a gel as a target sensitive to WIMP-proton spin-dependent elastic scattering. The phase II setup has been improved substantially in sensitivity by using an array of 32 detectors with an active mass of ~65 g each and largely reduced background. First results are presented for a subset of two detectors with target masses of 19F of 65 g and 69 g respectively and a total exposure of 13.75 ± 0.48 kgd. No dark matter signal was found and for WIMP masses around 24 GeV/c2 new limits have been obtained on the spin-dependent cross section on 19F of σF = 13.9 pb (90% C.L.) which can be converted into cross section limits on protons and neutrons of σp = 0.15 pb and σn = 2.45 pb respectively (90% C.L). The obtained limits on protons restrict recent interpretations of the DAMA/LIBRA annual modulations in terms of spin-dependent interactions.

  6. TANK 18-F AND 19-F TANK FILL GROUT SCALE UP TEST SUMMARY

    SciTech Connect

    Stefanko, D.; Langton, C.

    2012-01-03

    High-level waste (HLW) tanks 18-F and 19-F have been isolated from FTF facilities. To complete operational closure the tanks will be filled with grout for the purpose of: (1) physically stabilizing the tanks, (2) limiting/eliminating vertical pathways to residual waste, (3) entombing waste removal equipment, (4) discouraging future intrusion, and (5) providing an alkaline, chemical reducing environment within the closure boundary to control speciation and solubility of select radionuclides. This report documents the results of a four cubic yard bulk fill scale up test on the grout formulation recommended for filling Tanks 18-F and 19-F. Details of the scale up test are provided in a Test Plan. The work was authorized under a Technical Task Request (TTR), HLE-TTR-2011-008, and was performed according to Task Technical and Quality Assurance Plan (TTQAP), SRNL-RP-2011-00587. The bulk fill scale up test described in this report was intended to demonstrate proportioning, mixing, and transportation, of material produced in a full scale ready mix concrete batch plant. In addition, the material produced for the scale up test was characterized with respect to fresh properties, thermal properties, and compressive strength as a function of curing time.

  7. Measured 19F(α,n) with VANDLE for Nuclear Safeguards

    NASA Astrophysics Data System (ADS)

    Peters, William; Clement, R. C. C.; Smith, M. S.; Pain, S.; Febbraro, M.; Pittman, S.; Thomspon, S.; Grinder, M.; Cizewski, J. A.; Reingold, C.; Manning, B.; Burcher, S.; Bardayan, D. W.; Tan, W.-P.; Stech, E.; Smith, M. K.; Avetisyan, R.; Gyurjinyan, A.; Lowe, M.; Ilyushkin, S.; Grzywacz, R.; Madurga, M.; Paulauskas, S. V.; Taylor, S. Z.; Smith, K.

    2015-10-01

    One of the most promising non-destructive assay (NDA) methods to monitor UF6 canisters consists of measuring gross neutron rates induced by uranium-decay alpha particles reacting with the fluorine and emitting a neutron. This method currently lacks reliable nuclear data on the 19F(α,n) reaction cross section to determine an accurate neutron yield rate for a given sample of UF6. We have measured the cross section and coincident neutron spectrum for the alpha-decay energy range using the VANDLE system. This experiment had two parts: first at Notre Dame with a LaF3 target and and a pulsed alpha-particle beam, and second at ORNL with a windowless He-gas target and a 19F beam. The motivation for this measurement and cross section results will be presented. This work is funded in part by the DOE Office of Science, the National Nuclear Security Administration SSAA and the Office of Defense Nuclear Nonproliferation R&D, and the NSF.

  8. TANK 18 AND 19-F TIER 1A EQUIPMENT FILL MOCK UP TEST SUMMARY

    SciTech Connect

    Stefanko, D.; Langton, C.

    2011-11-04

    The United States Department of Energy (US DOE) has determined that Tanks 18-F and 19-F have met the F-Tank Farm (FTF) General Closure Plan Requirements and are ready to be permanently closed. The high-level waste (HLW) tanks have been isolated from FTF facilities. To complete operational closure they will be filled with grout for the purpose of: (1) physically stabilizing the tanks, (2) limiting/eliminating vertical pathways to residual waste, (3) discouraging future intrusion, and (4) providing an alkaline, chemical reducing environment within the closure boundary to control speciation and solubility of select radionuclides. Bulk waste removal and heel removal equipment remain in Tanks 18-F and 19-F. This equipment includes the Advance Design Mixer Pump (ADMP), transfer pumps, transfer jets, standard slurry mixer pumps, equipment-support masts, sampling masts, dip tube assemblies and robotic crawlers. The present Tank 18 and 19-F closure strategy is to grout the equipment in place and eliminate vertical pathways by filling voids in the equipment to vertical fast pathways and water infiltration. The mock-up tests described in this report were intended to address placement issues identified for grouting the equipment that will be left in Tank 18-F and Tank 19-F. The Tank 18-F and 19-F closure strategy document states that one of the Performance Assessment (PA) requirements for a closed tank is that equipment remaining in the tank be filled to the extent practical and that vertical flow paths 1 inch and larger be grouted. The specific objectives of the Tier 1A equipment grout mock-up testing include: (1) Identifying the most limiting equipment configurations with respect to internal void space filling; (2) Specifying and constructing initial test geometries and forms that represent scaled boundary conditions; (3) Identifying a target grout rheology for evaluation in the scaled mock-up configurations; (4) Scaling-up production of a grout mix with the target rheology

  9. [Non-invasive analysis of proteins in living cells using NMR spectroscopy].

    PubMed

    Tochio, Hidehito; Murayama, Shuhei; Inomata, Kohsuke; Morimoto, Daichi; Ohno, Ayako; Shirakawa, Masahiro

    2015-01-01

    NMR spectroscopy enables structural analyses of proteins and has been widely used in the structural biology field in recent decades. NMR spectroscopy can be applied to proteins inside living cells, allowing characterization of their structures and dynamics in intracellular environments. The simplest "in-cell NMR" approach employs bacterial cells; in this approach, live Escherichia coli cells overexpressing a specific protein are subjected to NMR. The cells are grown in an NMR active isotope-enriched medium to ensure that the overexpressed proteins are labeled with the stable isotopes. Thus the obtained NMR spectra, which are derived from labeled proteins, contain atomic-level information about the structure and dynamics of the proteins. Recent progress enables us to work with higher eukaryotic cells such as HeLa and HEK293 cells, for which a number of techniques have been developed to achieve isotope labeling of the specific target protein. In this review, we describe successful use of electroporation for in-cell NMR. In addition, (19)F-NMR to characterize protein-ligand interactions in cells is presented. Because (19)F nuclei rarely exist in natural cells, when (19)F-labeled proteins are delivered into cells and (19)F-NMR signals are observed, one can safely ascertain that these signals originate from the delivered proteins and not other molecules. PMID:25759048

  10. Imaging of Intratumoral Inflammation during Oncolytic Virotherapy of Tumors by 19F-Magnetic Resonance Imaging (MRI)

    PubMed Central

    Hess, Michael; Hofmann, Elisabeth; Seubert, Carolin; Langbein-Laugwitz, Johanna; Gentschev, Ivaylo; Sturm, Volker Jörg Friedrich; Ye, Yuxiang; Kampf, Thomas; Jakob, Peter Michael; Szalay, Aladar A.

    2013-01-01

    Background Oncolytic virotherapy of tumors is an up-coming, promising therapeutic modality of cancer therapy. Unfortunately, non-invasive techniques to evaluate the inflammatory host response to treatment are rare. Here, we evaluate 19F magnetic resonance imaging (MRI) which enables the non-invasive visualization of inflammatory processes in pathological conditions by the use of perfluorocarbon nanoemulsions (PFC) for monitoring of oncolytic virotherapy. Methodology/Principal Findings The Vaccinia virus strain GLV-1h68 was used as an oncolytic agent for the treatment of different tumor models. Systemic application of PFC emulsions followed by 1H/19F MRI of mock-infected and GLV-1h68-infected tumor-bearing mice revealed a significant accumulation of the 19F signal in the tumor rim of virus-treated mice. Histological examination of tumors confirmed a similar spatial distribution of the 19F signal hot spots and CD68+-macrophages. Thereby, the CD68+-macrophages encapsulate the GFP-positive viral infection foci. In multiple tumor models, we specifically visualized early inflammatory cell recruitment in Vaccinia virus colonized tumors. Furthermore, we documented that the 19F signal correlated with the extent of viral spreading within tumors. Conclusions/Significance These results suggest 19F MRI as a non-invasive methodology to document the tumor-associated host immune response as well as the extent of intratumoral viral replication. Thus, 19F MRI represents a new platform to non-invasively investigate the role of the host immune response for therapeutic outcome of oncolytic virotherapy and individual patient response. PMID:23441176

  11. Measurement of the 19F(α,n) Cross Section for Nuclear Safeguards Science

    NASA Astrophysics Data System (ADS)

    Reingold, C. S.; Cizewski, J. A.; Peters, W. A.; Clement, R. R. C.; Bardayan, D. W.; Smith, M. S.; Stech, E.; Strauss, S.; Tan, W. P.; Wiescher, M.; Madurga, M.; Vandle Collaboration

    2013-10-01

    A precise measurement of the 19F(α,n) cross section will improve Non Destructive Assays (NDA) of UF6 and other actinide-fluoride samples via neutron detection techniques. We will determine the cross section with two complementary approaches. First, we will bombard a LaF3 target with a pulsed 4He beam from the Notre Dame FN tandem accelerator; second, we will send a fluorine beam from the ORNL tandem through a pure helium gas target. The neutron spectra from both of these reactions will be measured using the Versatile Array of Neutron Detectors at Low Energy (VANDLE), and coincident γ rays with a HPGe detector. We report here on data taken with VANDLE and a HPGe detector on a LaF3 target. My poster outlines the motivation for this experiment, explains the stages of this experiment, the current experimental setup, and preliminary data. This work is supported by the NNSA.

  12. Tanks 18 And 19-F Structural Flowable Grout Fill Material Evaluation And Recommendations

    SciTech Connect

    Langton, C. A.; Stefanko, D. B.

    2013-04-23

    Cementitious grout will be used to close Tanks 18-F and 19-F. The functions of the grout are to: 1) physically stabilize the final landfill by filling the empty volume in the tanks with a non-compressible material; 2) provide a barrier for inadvertent intrusion into the tank; 3) reduce contaminant mobility by a) limiting the hydraulic conductivity of the closed tank and b) reducing contact between the residual waste and infiltrating water; and 4) providing an alkaline, chemically reducing environment in the closed tank to control speciation and solubility of selected radionuclides. The objective of this work was to identify a single (all-in-one) grout to stabilize and isolate the residual radionuclides in the tank, provide structural stability of the closed tank and serve as an inadvertent intruder barrier. This work was requested by V. A. Chander, High Level Waste (HLW) Tank Engineering, in HLW-TTR-2011-008. The complete task scope is provided in the Task Technical and QA Plan, SRNL-RP-2011-00587 Revision 0. The specific objectives of this task were to: 1) Identify new admixtures and dosages for formulating a zero bleed flowable tank fill material selected by HLW Tank Closure Project personnel based on earlier tank fill studies performed in 2007. The chemical admixtures used for adjusting the flow properties needed to be updated because the original admixture products are no longer available. Also, the sources of cement and fly ash have changed, and Portland cements currently available contain up to 5 wt. % limestone (calcium carbonate). 2) Prepare and evaluate the placement, compressive strength, and thermal properties of the selected formulation with new admixture dosages. 3) Identify opportunities for improving the mix selected by HLW Closure Project personnel and prepare and evaluate two potentially improved zero bleed flowable fill design concepts; one based on the reactor fill grout and the other based on a shrinkage compensating flowable fill mix design. 4

  13. Efficient acid-catalyzed (18) F/(19) F fluoride exchange of BODIPY dyes.

    PubMed

    Keliher, Edmund J; Klubnick, Jenna A; Reiner, Thomas; Mazitschek, Ralph; Weissleder, Ralph

    2014-07-01

    Fluorine-containing fluorochromes are important validation agents for positron emission tomography imaging compounds, as they can be readily validated in cells by fluorescence imaging. In particular, the (18) F-labeled BODIPY-FL fluorophore has emerged as an important platform, but little is known about alternative (18) F-labeling strategies or labeling on red-shifted fluorophores. In this study we explore acid-catalyzed (18) F/(19) F exchange on a range of commercially available N-hydroxysuccinimidyl ester and maleimide BODIPY fluorophores. We show this method to be a simple and efficient (18) F-labeling strategy for a diverse span of fluorescent compounds, including a BODIPY-modified PARP-1 inhibitor, and amine- and thiol-reactive BODIPY fluorophores. PMID:24596307

  14. Magnetic Resonance Detection of CD34+ Cells from Umbilical Cord Blood Using a 19F Label

    PubMed Central

    Duinhouwer, Lucia E.; van Rossum, Bernard J. M.; van Tiel, Sandra T.; van der Werf, Ramon M.; Doeswijk, Gabriela N.; Haeck, Joost C.; Rombouts, Elwin W. J. C.; ter Borg, Mariëtte N. D.; Kotek, Gyula; Braakman, Eric; Cornelissen, Jan J.; Bernsen, Monique R.

    2015-01-01

    Impaired homing and delayed recovery upon hematopoietic stem cell transplantation (HSCT) with hematopoietic stem cells (HSC) derived from umbilical cord blood (UCB) is a major problem. Tracking transplanted cells in vivo will be helpful to detect impaired homing at an early stage and allows early interventions to improve engraftment and outcome after transplantation. In this study, we show sufficient intracellular labeling of UCB-derived CD34+ cells, with 19F-containing PLGA nanoparticles which were detectable with both flow cytometry and magnetic resonance spectroscopy (MRS). In addition, labeled CD34+ cells maintain their capacity to proliferate and differentiate, which is pivotal for successful engraftment after transplantation in vivo. These results set the stage for in vivo tracking experiments, through which the homing efficiency of transplanted cells can be studied. PMID:26394043

  15. Full differentiation and assignment of boron species in the electrolytes Li{sub 2}B{sub 6}O{sub 9}F{sub 2} and Li{sub 2}B{sub 3}O{sub 4}F{sub 3} by solid-state {sup 11}B NMR spectroscopy

    SciTech Connect

    Braeuniger, Thomas; Pilz, Thomas; Chandran, C. Vinod; Jansen, Martin

    2012-10-15

    The syntheses of two new fluorooxoborates, Li{sub 2}B{sub 3}O{sub 4}F{sub 3} and Li{sub 2}B{sub 6}O{sub 9}F{sub 2}, which possess considerable ion conductivity at higher temperatures, have been reported recently. Here, we describe the characterisation of these compounds by solid-state {sup 11}B NMR spectroscopy. The complex central-transition MAS spectra, resulting from overlap of sub-spectra contributed by the individual boron species in the crystal structures, could be clearly separated by acquisition and analysis of 3QMAS spectra. By numerical fit of these sub-spectra, the isotropic chemical shift {delta}{sub iso}, the quadrupolar coupling constant {chi}, and the asymmetry {eta} were determined. Using known relations between boron coordination and chemical shift as well as quadrupolar coupling, the individual {sup 11}B NMR resonances have been ascribed to boron species in tetrahedral or trigonal environment. To remove remaining assignment ambiguities, the response of the {sup 11}B resonances to {sup 19}F decoupling was qualitatively analysed. Thus, by using the combined information conveyed by chemical shift, quadrupolar and dipolar interaction, a complete assignment of the complex {sup 11}B line shapes exhibited by the fluorooxoborates has been achieved. - Graphical abstract: Structure and solid-state {sup 11}B NMR spectrum of Li{sub 2}B{sub 3}O{sub 4}F{sub 3}. Highlights: Black-Right-Pointing-Pointer Characterisation of title compounds by solid-state {sup 11}B NMR spectroscopy. Black-Right-Pointing-Pointer Sub-spectra of boron species separated by evaluation of 3QMAS spectra. Black-Right-Pointing-Pointer Isotropic chemical shift and quadrupolar interaction parameters determined. Black-Right-Pointing-Pointer Full boron assignment based on NMR parameters and response to {sup 19}F decoupling.

  16. Measurement of the 19F(α,n) Cross Section for Nuclear Safeguards Science

    NASA Astrophysics Data System (ADS)

    Reingold, C. S.; Cizewski, J. A.; Burcher, S.; Manning, B.; Peters, W. A.; Clement, R. R. C.; Smith, M. S.; Bardayan, D. W.; Stech, E.; Tan, W. P.; Madurga, M.; Ilyushkin, S.; Thompson, S.; Vandle Collaboration

    2014-09-01

    A precise measurement of the 19F(α,n) cross section will improve Non Destructive Assays (NDA) of UF6 and other actinide-fluoride samples via neutron detection techniques. The cross section will be determined with two complementary approaches. We have already bombarded a LaF3 target with a pulsed 4He beam from the Notre Dame FN tandem accelerator; next, we will send a fluorine beam from the ORNL tandem through a pure helium gas target. The neutron spectra from both of these reactions will be measured using the Versatile Array of Neutron Detectors at Low Energy (VANDLE), and coincident γ rays with a HPGe detector. We report here on data taken with VANDLE and a HPGe detector on a LaF3 target. This poster outlines the motivation for this experiment, explains the stages of this experiment, and presents both of our experimental setups and preliminary data. A precise measurement of the 19F(α,n) cross section will improve Non Destructive Assays (NDA) of UF6 and other actinide-fluoride samples via neutron detection techniques. The cross section will be determined with two complementary approaches. We have already bombarded a LaF3 target with a pulsed 4He beam from the Notre Dame FN tandem accelerator; next, we will send a fluorine beam from the ORNL tandem through a pure helium gas target. The neutron spectra from both of these reactions will be measured using the Versatile Array of Neutron Detectors at Low Energy (VANDLE), and coincident γ rays with a HPGe detector. We report here on data taken with VANDLE and a HPGe detector on a LaF3 target. This poster outlines the motivation for this experiment, explains the stages of this experiment, and presents both of our experimental setups and preliminary data. This work is supported by the NNSA, NSF, and DOE.

  17. Balanced UTE-SSFP for 19F MR Imaging of Complex Spectra

    PubMed Central

    Goette, Matthew J.; Keupp, Jochen; Rahmer, Jürgen; Lanza, Gregory M.; Wickline, Samuel A.; Caruthers, Shelton D.

    2015-01-01

    Purpose A novel technique for highly sensitive detection of multi-resonant fluorine imaging agents was designed and tested with the use of dual-frequency 19F/1H ultra-short echo times (UTE) sampled with a balanced steady-state free precession (SSFP) pulse sequence and 3D radial readout. Methods Feasibility of 3D radial balanced UTE-SSFP imaging was demonstrated for a phantom comprising liquid perfluorooctyl bromide (PFOB). Sensitivity of the pulse sequence was measured and compared to other sequences imaging the PFOB (CF2)6 line group including UTE radial gradient-echo (GRE) at α=30°, as well as Cartesian GRE, balanced SSFP, and fast spin-echo (FSE). The PFOB CF3 peak was also sampled with FSE. Results The proposed balanced UTE-SSFP technique exhibited a relative detection sensitivity of 51 μmolPFOB−1min−1/2 (α=30°), at least twice that of other sequence types with either 3D radial (UTE GRE: 20 μmolPFOB−1min−1/2) or Cartesian k-space filling (GRE: 12 μmolPFOB−1min−1/2; FSE: 16 μmolPFOB−1min−1/2 balanced SSFP: 23 μmolPFOB−1min−1/2 In vivo imaging of angiogenesis-targeted PFOB nanoparticles was demonstrated in a rabbit model of cancer on a clinical 3T scanner. Conclusion A new dual 19F/1H balanced UTE-SSFP sequence manifests high SNR, with detection sensitivity more than twofold better than traditional techniques, and alleviates imaging problems caused by dephasing in complex spectra. PMID:25163853

  18. Visualizing brain inflammation with a shingled-leg radio-frequency head probe for 19F/1H MRI.

    PubMed

    Waiczies, Helmar; Lepore, Stefano; Drechsler, Susanne; Qadri, Fatimunnisa; Purfürst, Bettina; Sydow, Karl; Dathe, Margitta; Kühne, André; Lindel, Tomasz; Hoffmann, Werner; Pohlmann, Andreas; Niendorf, Thoralf; Waiczies, Sonia

    2013-01-01

    Magnetic resonance imaging (MRI) provides the opportunity of tracking cells in vivo. Major challenges in dissecting cells from the recipient tissue and signal sensitivity constraints albeit exist. In this study, we aimed to tackle these limitations in order to study inflammation in autoimmune encephalomyelitis. We constructed a very small dual-tunable radio frequency (RF) birdcage probe tailored for (19)F (fluorine) and (1)H (proton) MR mouse neuroimaging. The novel design eliminated the need for extra electrical components on the probe structure and afforded a uniform -field as well as good SNR. We employed fluorescently-tagged (19)F nanoparticles and could study the dynamics of inflammatory cells between CNS and lymphatic system during development of encephalomyelitis, even within regions of the brain that are otherwise not easily visualized by conventional probes. (19)F/(1)H MR Neuroimaging will allow us to study the nature of immune cell infiltration during brain inflammation over an extensive period of time. PMID:23412352

  19. TANKS 18 AND 19-F STRUCTURAL FLOWABLE GROUT FILL MATERIAL EVALUATION AND RECOMMENDATIONS

    SciTech Connect

    Stefanko, D.; Langton, C.

    2011-11-01

    Cementitious grout will be used to close Tanks 18-F and 19-F. The functions of the grout are to: (1) physically stabilize the final landfill by filling the empty volume in the tanks with a non compressible material; (2) provide a barrier for inadvertent intrusion into the tank; (3) reduce contaminant mobility by (a) limiting the hydraulic conductivity of the closed tank and (b) reducing contact between the residual waste and infiltrating water; and (4) providing an alkaline, chemically reducing environment in the closed tank to control speciation and solubility of selected radionuclides. The objective of this work was to identify a single (all-in-one) grout to stabilize and isolate the residual radionuclides in the tank, provide structural stability of the closed tank and serve as an inadvertent intruder barrier. This work was requested by V. A. Chander, High Level Waste (HLW) Tank Engineering, in HLW-TTR-2011-008. The complete task scope is provided in the Task Technical and QA Plan, SRNL-RP-2011-00587 Revision 0. The specific objectives of this task were to: (1) Identify new admixtures and dosages for formulating a zero bleed flowable tank fill material selected by HLW Tank Closure Project personnel based on earlier tank fill studies performed in 2007. The chemical admixtures used for adjusting the flow properties needed to be updated because the original admixture products are no longer available. Also, the sources of cement and fly ash have changed, and Portland cements currently available contain up to 5 wt. % limestone (calcium carbonate). (2) Prepare and evaluate the placement, compressive strength, and thermal properties of the selected formulation with new admixture dosages. (3) Identify opportunities for improving the mix selected by HLW Closure Project personnel and prepare and evaluate two potentially improved zero bleed flowable fill design concepts; one based on the reactor fill grout and the other based on a shrinkage compensating flowable fill mix

  20. Binary channels of the {sup 19}F-on-{sup 12}C reaction at 92 MeV

    SciTech Connect

    Aissaoui, N.; Haas, F.; Freeman, R.M.; Beck, C.; Morsad, A.; Djerroud, B.; Caplar, R.; Hachem, A.

    1997-01-01

    Binary-reaction channels of {sup 19}F+{sup 12}C have been studied at E{sub lab}({sup 19}F)=92 MeV using kinematic coincidence techniques. The results are discussed in the light of previous inclusive measurements performed at the same incident energy and for which the occurrence of an important incomplete fusion mechanism after projectile breakup was proposed. Evidence for strong damped binary, especially quasisymmetric, decay processes is found. {copyright} {ital 1997} {ital The American Physical Society}

  1. An overview of the 19F(p,α0)16 O reaction with direct methods

    NASA Astrophysics Data System (ADS)

    Dell’Aquila, D.; Lombardo, I.

    2016-04-01

    The study of the 19F(p,α)16O reaction at low energy is important both for Nuclear Structure and Astrophysics. Despite of its importance, the S-factor of this reaction is poorly known, especially at astrophysical energies. We present an overview of the 19F(p,α0)16O reaction cross section, as obtained from recent direct measurements and from published works in the literature. We include in the systematic also data from an unpublished work, where several excitation functions and angular distributions for α0 and απ channels are reported.

  2. Constraints on low-mass WIMP interactions on 19F from PICASSO

    NASA Astrophysics Data System (ADS)

    Archambault, S.; Behnke, E.; Bhattacharjee, P.; Bhattacharya, S.; Dai, X.; Das, M.; Davour, A.; Debris, F.; Dhungana, N.; Farine, J.; Gagnebin, S.; Giroux, G.; Grace, E.; Jackson, C. M.; Kamaha, A.; Krauss, C.; Kumaratunga, S.; Lafrenière, M.; Laurin, M.; Lawson, I.; Lessard, L.; Levine, I.; Levy, C.; MacDonald, R. P.; Marlisov, D.; Martin, J.-P.; Mitra, P.; Noble, A. J.; Piro, M.-C.; Podviyanuk, R.; Pospisil, S.; Saha, S.; Scallon, O.; Seth, S.; Starinski, N.; Stekl, I.; Wichoski, U.; Xie, T.; Zacek, V.

    2012-05-01

    Recent results from the PICASSO dark matter search experiment at SNOLAB are reported. These results were obtained using a subset of 10 detectors with a total target mass of 0.72 kg of 19F and an exposure of 114 kgd. The low backgrounds in PICASSO allow recoil energy thresholds as low as 1.7 keV to be obtained which results in an increased sensitivity to interactions from Weakly Interacting Massive Particles (WIMPs) with masses below 10 GeV/c2. No dark matter signal was found. Best exclusion limits in the spin dependent sector were obtained for WIMP masses of 20 GeV/c2 with a cross section on protons of σpSD=0.032 pb (90% C.L.). In the spin independent sector close to the low mass region of 7 GeV/c2 favoured by CoGeNT and DAMA/LIBRA, cross sections larger than σpSI=1.41×10-4 pb (90% C.L.) are excluded.

  3. (19)F(α,n) thick target yield from 3.5 to 10.0 MeV.

    PubMed

    Norman, E B; Chupp, T E; Lesko, K T; Grant, P J; Woodruff, G L

    2015-09-01

    Using a target of PbF2, the thick-target yield from the (19)F(α,n) reaction was measured from E(α)=3.5-10 MeV. From these results, we infer the thick-target neutron yields from targets of F2 and UF6 over this same alpha-particle energy range. PMID:26115205

  4. Mapping phosphorylation rate of fluoro-deoxy-glucose in rat brain by 19F chemical shift imaging

    PubMed Central

    Coman, Daniel; Sanganahalli, Basavaraju G.; Cheng, David; McCarthy, Timothy; Rothman, Douglas L.; Hyder, Fahmeed

    2014-01-01

    19F magnetic resonance spectroscopy (MRS) studies of 2-fluoro-2-deoxy-D-glucose (FDG) and 2-fluoro-2-deoxy-D-glucose-6-phosphate (FDG-6P) can be used for directly assessing total glucose metabolism in vivo. To date, 19F MRS measurements of FDG phosphorylation in the brain have either been achieved ex vivo from extracted tissue or in vivo by unusually long acquisition times. Electrophysiological and functional magnetic resonance imaging (fMRI) measurements indicate that FDG doses up to 500mg/kg can be tolerated with minimal side effects on cerebral physiology and evoked fMRI-BOLD responses to forepaw stimulation. In halothane-anesthetized rats, we report localized in vivo detection and separation of FDG and FDG-6P MRS signals with 19F 2D chemical shift imaging (CSI) at 11.7T. A metabolic model based on reversible transport between plasma and brain tissue, which included a non-saturable plasma to tissue component, was used to calculate spatial distribution of FDG and FDG-6P concentrations in rat brain. In addition, spatial distribution of rate constants and metabolic fluxes of FDG to FDG-6P conversion were estimated. Mapping the rate of FDG to FDG-6P conversion by 19F CSI provides an MR methodology that could impact other in vivo applications such as characterization of tumor pathophysiology. PMID:24581725

  5. Energy dependence of fission fragment angular distributions for 19F, 24Mg and 28Si induced reactions on 208Pb

    NASA Astrophysics Data System (ADS)

    Tsang, M. B.; Utsunomiya, H.; Gelbke, C. K.; Lynch, W. G.; Back, B. B.; Saini, S.; Baisden, P. A.; McMahan, M. A.

    1983-09-01

    The energy dependence of fission fragment angular distributions was measured for reaction induced by 19F, 24Mg, and 28Si on 208Pb over the range of incident energies of {E}/{A} = 5.6-10 MeV. For all three systems the angular distributions are inconsistent with the saddle point deformations of the rotating liquid drop model.

  6. Angular Distribution and Angular Dispersion in Collision of 19F+27Al at 114 MeV

    NASA Astrophysics Data System (ADS)

    Wang, Qi; Dong, Yu-Chuan; Li, Song-Lin; Duan, Li-Min; Xu, Hu-Shan; Xu, Hua-Gen; Chen, Ruo-Fu; Wu, He-Yu; Han, Jian-Long; Li, Zhi-Chang; Lu, Xiu-Qin; Zhao, Kui; Liu, Jian-Cheng; Sergey, Yu-Kun

    2004-10-01

    Angular distributions of fragments B, C, N, O, F, Ne, Na, Mg and Al induced by the collision of 19F+27Al at 114 MeV have been measured. Angular dispersion parameters are extracted from the experimental data and compared with the theoretical ones. The dynamic dispersions for dissipative products depend strongly on the charge number Z of the fragments.

  7. Technical advance: monitoring the trafficking of neutrophil granulocytes and monocytes during the course of tissue inflammation by noninvasive 19F MRI.

    PubMed

    Temme, Sebastian; Jacoby, Christoph; Ding, Zhaoping; Bönner, Florian; Borg, Nadine; Schrader, Jürgen; Flögel, Ulrich

    2014-04-01

    Inflammation results in the recruitment of neutrophils and monocytes, which is crucial for the healing process. In the present study, we used (19)F MRI to monitor in vivo the infiltration of neutrophils and monocytes from the onset of inflammation to the resolution and healing phase. Matrigel, with or without LPS, was s.c.-implanted into C57BL/6 mice. This resulted in a focal inflammation lasting over a period of 20 days, with constantly decreasing LPS levels in doped matrigel plugs. After i.v. administration of (19)F containing contrast agent, (19)F MRI revealed a zonular (19)F signal in the periphery of LPS containing matrigel plugs, which was not observed in control plugs. Analysis of the (19)F signal over the observation period demonstrated the strongest (19)F signal after 24 h, which decreased to nearly zero after 20 days. The (19)F signal was mirrored by the amount of leukocytes in the matrigel, with neutrophils dominating at early time-points and macrophages at later time-points. Both populations were shown to take up the (19)F contrast agent. In conclusion, (19)F MRI, in combination with the matrigel/LPS model, permits the noninvasive analysis of neutrophil and monocyte infiltration over the complete course of inflammation in vivo. PMID:24319285

  8. Impact of Zeolite Transferred from Tank 19F to Tank 18F on DWPF Vitrification of Sludge Batch 3

    SciTech Connect

    Jantzen, C.M.

    2004-01-07

    The Defense Waste Processing Facility (DWPF) is planning to initiate vitrification of Sludge Batch 3 (SB3) in combination with Sludge Batch 2 (SB2) in the spring of 2004. The contents of Sludge Batch 3 will be a mixture of the heel remaining from Sludge Batch 1B, sludge from Tank 7F (containing coal, sand, and sodium oxalate), and sludge materials from Tank 18F. The sludge materials in Tank 18F contain part of a mound of zeolitic material transferred there from Tank 19F. This mound was physically broken up and transfers were made from Tank 19F to Tank 18F for vitrification into SB3. In addition, excess Pu and Am/Cm materials were transferred to Tank 51H to be processed through the DWPF as part of SB3. Additional Pu material and a Np stream from the Canyons are also planned to be added to SB3 before processing of this batch commences at DWPF. The primary objective of this task was to assess the impacts of the excess zeolite mound material in Tank 19F on the predicted glass and processing properties of interest when the zeolite becomes part of SB3. The two potential impacts of the Tank 19F zeolite mound on DWPF processing relates to (1) the samples taken for determination of the acceptability of a macrobatch of DWPF feed and (2) the achievable waste loading. The potential effects of the large size of the zeolite particles found in the Tank 19F solids, as reported in this study, are considered minimal for processing of SB3 in DWPF. Other findings about the zeolite conversion mechanism via a process of Ostwald ripening are discussed in the text and in the conclusions.

  9. 19F nuclear magnetic resonance as a probe of the spatial relationship between the heme iron of cytochrome P-450 and its substrate.

    PubMed

    Crull, G B; Kennington, J W; Garber, A R; Ellis, P D; Dawson, J H

    1989-02-15

    The distance between the heme iron of ferrous cytochrome P-450-CAM and a fluorine label attached to the 9-methyl carbon of its substrate, (1R)-(+)-camphor, has been determined using 19F NMR. This investigation uses the Solomon-Bloembergen equation to measure the distance from a paramagnetic heme iron to a fluorine probe incorporated into a substrate that is not in fast exchange. The structural identity of the substrate analogue, 9-fluorocamphor, has been established using one- and two-dimensional NMR methods and mass spectrometry. The relaxation rate of 9-fluorocamphor bound to high-spin paramagnetic ferrous P-450-CAM has been studied at 188, 282, and 376 MHz, and the correlation time has been directly determined from the frequency dependence of the relaxation rate. When the substrate analogue was bound to the low-spin diamagnetic ferrous-CO derivative of the enzyme, the relaxation rate was found to be 100 times slower and was therefore neglected in the distance calculation. The relaxation data for the paramagnetic system and the correlation time have been used to calculate a distance of 3.8 A between the heme iron and the C-9 fluoride. A fit of the distance and the chemical shift data to the pseudocontact shift equation predicts an angle of approximately 52 degrees between the heme normal and the Fe-F vector. The solution state Fe-F distance is somewhat shorter and the angle between the heme normal and the Fe-F vector slightly larger for the substrate-bound ferrous enzyme reported herein than the analogous values for the substrate-bound ferric enzyme determined in the solid state by x-ray crystallography. These differences may reflect a structural change at the substrate-binding site upon reduction of the iron. PMID:2914926

  10. Self-Assembly of Peptide Amphiphiles Designed as Imaging Probes for 19F and Relaxation-Enhanced 1H imaging

    NASA Astrophysics Data System (ADS)

    Preslar, Adam Truett

    This work incorporates whole-body imaging functionality into peptide amphiphile (PA) nanostructures used for regenerative medicine to facilitate magnetic resonance imaging (MRI). Two strategies were employed: 1. Conjugation of gadolinium chelates to peptide nanostructures to monitor biomaterial degradation in vivo with MRI and inductively-coupled plasma-mass spectroscopy (ICP-MS) 2. Synthesis of perfluorinated moiety-bearing peptide amphiphiles for 19F-MRI. The Gd(III) chelate gadoteridol was conjugated by copper-catalyzed "click" chemistry to a series of PAs known to form cylindrical nanostructures. By fitting nuclear magnetic resonance dispersion (NMRD) profiles to the Solomon-Bloembergen-Morgan (SBM) equations, it was observed that the water exchange parameter (tauM) depended on thermal annealing or calcium ion cross-linking. The sequence C16V 3A3E3G(Gd) exhibited an acceleration of nearly 100 ns after thermal annealing and calcium addition. These gadolinium-labeled PAs were used to track in vivo degradation of gels within the tibialis anterior muscle in a murine model. The half-life of biomaterial degradation was determined to be 13.5 days by inductively coupled plasma mass spectrometry (ICP-MS) of Gd(III). Gel implants could be monitored by MRI for eight days before the signal dispersed due to implant degradation and dilution. Additionally, nanostructures incorporating highly fluorinated domains were investigated for use as MRI contrast agents. Short, perfluoroalkyane tails of seven or eight carbon atoms in length were grafted to PA sequences containing a V2A2 beta-sheet forming sequence. The V2A2 sequence is known to drive 1D nanostructure assembly. It was found that the sequences C7F13V2A 2E2 and C7F13V2A 2K3 formed 1D assemblies in water which transition from ribbon-like to cylindrical shape as pH increases from 4.5 to 8.0. Ribbon-like nanostructures had reduced magnetic resonance signal by T 2 relaxation quenching, whereas their cylindrical counterparts

  11. Characterization of the Tank 19F Closure Grab and Core Samples and the Tank 18F Dip Sample

    SciTech Connect

    Swingle, R.F.

    2002-05-02

    The results of analyses of the Tank 19F closure characterization samples are included herein. The samples analyzed include the two Tank 19F grab samples (FTF-075 and FTF-077) and a Tank 18F dip sample (FTF-076) taken in September 2001 and a Tank 19F core sample (FTF-118) taken in December 2001. The FTF-075 and FTF-077 grab samples were pulled from Tank 19F and the FTF-076 dip sample was pulled from Tank 18F in September 2001 as part of the characterization process for closure of Tank 19F. The samples were delivered to the Savannah River Technology Center (SRTC) Shielded Cells on September 28, 2001 and placed in the Shielded Cells on October 2, 2001. The samples were opened and both grab samples were found to contain plenty of material to allow completion of the analyses. The samples were dark and resembled marsh muck (see Figures 1 and 2). The dip sample was also found to contain plenty of material. The sample looked like muddy water (Figure 4). The FTF-118F core sample was pulled from Tank 19F in December 2001 as part of the characterization process for closure of the tank. The sample was delivered to the SRTC Shielded Cells on December 6, 2001 and placed in the Shielded Cells on December 7, 2001. The sample was opened and found to contain plenty of material to allow completion of the analyses. As evident in Figure 3, the sample resembled a somewhat drier version of the previous grab samples FTF-075 and FTF-077. A group consisting of SRTC Waste Processing Technology (WPT) section personnel and High Level Waste Engineering (HLWE) personnel viewed the sample when it was opened and came to the consensus that the sample appeared to be homogeneous. The decision was made to treat the sample as a single phase and analyze accordingly. Initially, small portions were archived from the top, middle and bottom of the sample in case it is later decided to analyze the levels of the sample separately. The analytical results from the two grab samples and the core sample were all

  12. Angular distributions and cross-sections of projectile-like fragments in the 19F + 159Tb reaction

    NASA Astrophysics Data System (ADS)

    Kumar, Amit; Tripathi, R.; Sodaye, S.; Sudarshan, K.; Pujari, P. K.

    2013-01-01

    The angular distribution of projectile-like fragments (PLFs) in the 19F + 159Tb reaction have been measured at beam energy equal to 98MeV. Angular distributions of PLFs showed a systematic change with increasing mass transfer, starting from the peaking at grazing angle for heavier PLFs to very forward peaked angular distributions for lighter PLFs. Cross-sections of the different PLFs were obtained by integrating their centre-of-mass angular distributions. The PLF cross-sections have been compared with the incomplete fusion cross-sections obtained from the earlier measurement of the evaporation residue cross-section. Reduced cross-sections for lighter PLFs were observed to be higher compared to those observed in 19F + 66Zn reaction at similar values of E cm/ V b. Also, elastic scattering measurements were carried out to get information about the grazing angle and total reaction cross-section.

  13. Probing different perfluorocarbons for in vivo inflammation imaging by 19F MRI: image reconstruction, biological half-lives and sensitivity.

    PubMed

    Jacoby, Christoph; Temme, Sebastian; Mayenfels, Friederike; Benoit, Nicole; Krafft, Marie Pierre; Schubert, Rolf; Schrader, Jürgen; Flögel, Ulrich

    2014-03-01

    Inflammatory processes can reliably be assessed by (19)F MRI using perfluorocarbons (PFCs), which is primarily based on the efficient uptake of emulsified PFCs by circulating cells of the monocyte-macrophage system and subsequent infiltration of the (19)F-labeled cells into affected tissue. An ideal candidate for the sensitive detection of fluorine-loaded cells is the biochemically inert perfluoro-15-crown-5 ether (PFCE), as it contains 20 magnetically equivalent (19)F atoms. However, the biological half-life of PFCE in the liver and spleen is extremely long, and so this substance is not suitable for future clinical applications. In the present study, we investigated alternative, nontoxic PFCs with predicted short biological half-lives and high fluorine content: perfluorooctyl bromide (PFOB), perfluorodecalin (PFD) and trans-bis-perfluorobutyl ethylene (F-44E). Despite the complex spectra of these compounds, we obtained artifact-free images using sine-squared acquisition-weighted three-dimensional chemical shift imaging and dedicated reconstruction accomplished with in-house-developed software. The signal-to-noise ratio of the images was maximized using a Nutall window with only moderate localization error. Using this approach, the retention times of the different PFCs in murine liver and spleen were determined at 9.4 T. The biological half-lives were estimated to be 9 days (PFD), 12 days (PFOB) and 28 days (F-44E), compared with more than 250 days for PFCE. In vivo sensitivity for inflammation imaging was assessed using an ear clip injury model. The alternative PFCs PFOB and F-44E provided 37% and 43%, respectively, of the PFCE intensities, whereas PFD did not show any signal in the ear model. Thus, for in vivo monitoring of inflammatory processes, PFOB emerges as the most promising candidate for possible future translation of (19)F MR inflammation imaging to human applications. PMID:24353148

  14. Novel 19F Activatable Probe for the Detection of Matrix Metalloprotease-2 Activity by MRI/MRS

    PubMed Central

    2015-01-01

    Matrix metalloproteases (MMPs) have been found to be highly expressed in a variety of malignant tumor tissues. Noninvasive visualization of MMP activity may play an important role in the diagnosis of MMP associated diseases. Here we report the design and synthesis of a set of fluorine-19 dendron-based magnetic resonance imaging (MRI) probes for real-time imaging of MMP-2 activity. The probes have the following features: (a) symmetrical fluorine atoms; (b) the number of fluorine atoms can be increased through facile chemical modification; (c) readily accessible peptide sequence as the MMP-2 substrate; (d) activatable 19F signal (off/on mode) via paramagnetic metal ion incorporation. Following optimization for water solubility, one of the probes was selected to evaluate MMP-2 activity by 19F magnetic resonance spectroscopy (MRS). Our results showed that the fluorine signal increased by 8.5-fold in the presence of MMP-2. The specific cleavage site was verified by mass spectrometry. The selected probe was further applied to detect secreted MMP-2 activity of living SCC7 squamous cell carcinoma cells. The fluorine signal was increased by 4.8-fold by MRS analysis after 24 h incubation with SCC7 cells. This type of fluorine probe can be applied to evaluate other enzyme activities by simply tuning the substrate structures. This symmetrical fluorine dendron-based probe design extends the scope of the existing 19F MRI agents and provides a simple but robust method for real-time 19F MRI application. PMID:25271556

  15. Application of solids MAS nuclear magnetic resonance to study of diagenetic processes

    SciTech Connect

    Sommer, S.E.; Woessner, D.E.

    1984-04-01

    Magic angle spinning-nuclear magnetic resonance spectroscopy (MAS-NMR) provides the opportunity to probe composition of and ordering in minerals involved in the formation and alteration of sediments. MAS-NMR has the capability to detect a large number of elements, including aluminum, silicon, boron, oxygen, and magnesium. The chemical state, structural location, and with cross polarization, hydration character and surface proximity can also be determined using this method. Although MAS-NMR is relatively new and quantitative methodology is still being developed, a variety of geologic processes have been clarified through its application. Use of /sup 27/Al NMR allows detailed determination of the smectite-illite transformation by monitoring the movements of aluminum into tetrahedral positions and resultant cation ordering. Because /sup 27/Al is detectable to low ppm levels, clay mineral components can be determined well below XRD detection levels. The /sup 29/Si and /sup 27/Al MAS-NMR have sufficient resolution to discriminate between minerals in a natural assemblage but not with the resolution of XRD. Quadrupolar nuclei such as /sup 27/Al have relatively poor spectral resolution as compared to nonquadrupolar nuclei such as /sup 29/Si. However, modern high field instrumentation can discriminate between most aluminum-containing minerals including aluminum oxides, hydroxides, oxyhydroxides, clays, and feldspars, as well as trace aluminum levels in quartz, cristobalite, and tridymite. The combination of /sup 27/Al and /sup 29/Si NMR (and availability of other nuclei) provide a powerful aid to the resolution of exploration and production problems including determination of minor to trace amorphous components, hydration state of elements in cherts and clays, and formation damage.

  16. Multimodal Perfluorocarbon Nanoemulsions for 19F MRI, Ultrasonography, and Catalysis of MRgFUS-Mediated Drug Delivery

    NASA Astrophysics Data System (ADS)

    Rapoport, N.; Nam, K.-H.; Christensen, D. A.; Kennedy, A. M.; Parker, D. L.; Payne, A. H.; Todd, N.; Shea, J. E.; Scaife, C. L.

    2011-09-01

    Perfluorocarbon nanoemulsions can target lipophilic therapeutic agents to solid tumors and simultaneously provide for monitoring nanocarrier biodistribution via ultrasonography and/or 19F MRI. In the first generation of block copolymer stabilized perfluorocarbon nanoemulsions, perfluoropentane (PFP) was used as the droplet forming compound. Although manifesting excellent therapeutic and ultrasound imaging properties, PFP nanoemulsions were unstable at storage, difficult to handle, and underwent droplet-to-bubble transition upon injection that was hard to control. To solve the above problems, perfluoro-15-crown-5-ether (PFCE) was used as a core forming compound in the second generation of block copolymer stabilized perfluorocarbon nanoemulsions. In the present paper, acoustic, imaging, and therapeutic properties of unloaded and paclitaxel (PTX) loaded PFCE nanoemulsions are reported. The size of paclitaxel-loaded PFCE nanodroplets (300 nm to 500 nm depending on emulsification conditions) favors their passive accumulation in tumor tissue. PFCE nanodroplets manifest both ultrasound and 19F MR contrast properties, which allows the use of multimodal imaging to monitor nanodroplet biodistribution. Ultrasonography and 19F MRI produced consistent results on nanodroplet biodistribution. Sonication with 1-MHz therapeutic ultrasound triggered reversible droplet-to-bubble transition in PFCE nanoemulsions. Microbubbles formed by acoustic vaporization underwent stable cavitation. In a pilot study on ultrasound-mediated therapy of a large breast cancer tumor, paclitaxel-loaded PFCE nanoemulsions combined with 1-MHz ultrasound (MI≥1.75) showed excellent therapeutic properties. Anticipated mechanisms of the observed effects are discussed.

  17. Moving NMR

    NASA Astrophysics Data System (ADS)

    Blümich, Bernhard; Casanova, Federico; Danieli, Ernesto; Gong, Qingxia; Greferath, Marcus; Haber, Agnes; Kolz, Jürgen; Perlo, Juan

    2008-12-01

    Initiated by the use of NMR for well logging, portable NMR instruments are being developed for a variety of novel applications in materials testing and process analysis and control. Open sensors enable non-destructive testing of large objects, and small, cup-size magnets become available for high throughput analysis by NMR relaxation and spectroscopy. Some recent developments of mobile NMR are reviewed which delineate the direction into which portable NMR is moving.

  18. Understanding the symmetric line shape in the 17O MAS spectra for hexagonal ice

    NASA Astrophysics Data System (ADS)

    Yamada, Kazuhiko; Oki, Shinobu; Deguchi, Kenzo; Shimizu, Tadashi

    2016-06-01

    Solid-state 17O Magic-Angle Spinning (MAS) nuclear magnetic resonance (NMR) spectra of 17O-enriched hexagonal ice, [17O]-Ih, between 173 and 253 K were presented. Marked changes in the line shape were clearly observed, indicating water molecular reorientation in the crystal structure. At 173 K, molecular motions were considered to be frozen and analysis of the 1D MAS spectrum yielded the following parameters: quadrupole coupling constant (CQ) = 6.6 ± 0.2 MHz and asymmetry parameter (ηQ) = 0.95 ± 0.05. At 232 K and above, contrary to the conventional explanation, pseudo-symmetric line shapes appeared in the 17O MAS NMR spectra arising from the contribution of second-order quadrupole interactions. As a chemical exchange model to describe these isotropic 17O MAS NMR spectra, a modified Ratcliffe model, which consider the effects of proton disorder, was proposed, and the resulting theoretical spectra could well reproduce the experimental spectra.

  19. High-frequency dynamic nuclear polarization in MAS spectra of membrane and soluble proteins.

    PubMed

    Rosay, Melanie; Lansing, Jonathan C; Haddad, Kristin C; Bachovchin, William W; Herzfeld, Judith; Temkin, Richard J; Griffin, Robert G

    2003-11-12

    One of the principal promises of solid-state NMR (SSNMR) magic angle spinning (MAS) experiments has been the possibility of determining the structures of molecules in states that are not accessible via X-ray or solution NMR experiments-e.g., membrane or amyloid proteins. However, the low sensitivity of SSNMR often restricts structural studies to small-model compounds and precludes many higher-dimensional solid-state MAS experiments on such systems. To address the sensitivity problem, we have developed experiments that utilize dynamic nuclear polarization (DNP) to enhance sensitivity. In this communication, we report the successful application of MAS DNP to samples of cryoprotected soluble and membrane proteins. In particular, we have observed DNP signal enhancements of up to 50 in 15N MAS spectra of bacteriorhodopsin (bR) and alpha-lytic protease (alpha-LP). The spectra were recorded at approximately 90 K where MAS is experimentally straightforward, and the results suggest that the described protocol will be widely applicable. PMID:14599177

  20. Activatable 19F MRI nanoparticle probes for the detection of reducing environments.

    PubMed

    Nakamura, Tatsuya; Matsushita, Hisashi; Sugihara, Fuminori; Yoshioka, Yoshichika; Mizukami, Shin; Kikuchi, Kazuya

    2015-01-12

    (19)F magnetic resonance imaging (MRI) probes that can detect biological phenomena such as cell dynamics, ion concentrations, and enzymatic activity have attracted significant attention. Although perfluorocarbon (PFC) encapsulated nanoparticles are of interest in molecular imaging owing to their high sensitivity, activatable PFC nanoparticles have not been developed. In this study, we showed for the first time that the paramagnetic relaxation enhancement (PRE) effect can efficiently decrease the (19)F NMR/MRI signals of PFCs in silica nanoparticles. On the basis of the PRE effect, we developed a reduction-responsive PFC-encapsulated nanoparticle probe, FLAME-SS-Gd(3+) (FSG). This is the first example of an activatable PFC-encapsulated nanoparticle that can be used for in vivo imaging. Calculations revealed that the ratio of fluorine atoms to Gd(3+) complexes per nanoparticle was more than approximately 5.0×10(2), resulting in the high signal augmentation. PMID:25413833

  1. Multinuclear NMR Imaging of Fluid Phases in Berea Sandstone

    NASA Astrophysics Data System (ADS)

    Sarkar, S. N.; Dechter, J. J.; Komoroski, R. A.

    Multinuclear NMR of 7Li, 19F, and 1H has been investigated as a method for discriminating multiple fluid phases in porous rock. Good 7Li NMR images from LiCl brine in saturated Berea sandstone were obtained within a few hours at 1 × 1 × 5 mm 3 resolution using a low-TE, 3D volume imaging sequence. At 4.7 T, the 7Li T1 was 750 ms, and T2 was 10 ms. High-quality 19F and 1H images of a model fluorinated injectant (trifluorotoluene) in Berea were obtained at 0.4 × 0.4 × 3 mm 3 resolution in a few hours. Fluorine-19 imaging was found to be easier than 1H imaging due to the narrower 19F resonance and comparable T1 and T2 in Berea sandstone. Lithium-7 and 19F imaging offer alternatives for discriminating aqueous and organic phases unambiguously in flooded oil cores, especially where 1H signals for the two phases are unresolved.

  2. Site-specific solvent exposure analysis of a membrane protein using unnatural amino acids and {sup 19}F nuclear magnetic resonance

    SciTech Connect

    Shi, Pan; Li, Dong; Chen, Hongwei; Xiong, Ying; Tian, Changlin

    2011-10-22

    Highlights: {yields} Solvent isotope shift analysis of {sup 19}F-tfmF in different H{sub 2}O/D{sub 2}O molar ratio. {yields} Correlation between solvent isotope shift of {sup 19}F-spins and solvent exposure analysis. {yields} Solvent exposure analysis of membrane proteins. -- Abstract: Membrane proteins play an essential role in cellular metabolism, transportation and signal transduction across cell membranes. The scarcity of membrane protein structures has thus far prevented a full understanding of their molecular mechanisms. Preliminary topology studies and residue solvent exposure analysis have the potential to provide valuable information on membrane proteins of unknown structure. Here, a {sup 19}F-containing unnatural amino acid (trimethylfluoro-phenylalanine, tfmF) was applied to accomplish site-specific {sup 19}F spin incorporation at different sites in diacylglycerol kinase (DAGK, an Escherichia coli membrane protein) for site-specific solvent exposure analysis. Due to isotope effect on {sup 19}F spins, a standard curve for {sup 19}F-tfmF chemical shifts was drawn for varying solvent H{sub 2}O/D{sub 2}O ratios. Further site-specific {sup 19}F solvent isotope shift analysis was conducted for DAGK to distinguish residues in water-soluble loops, interfacial areas or hydrophobic membrane regions. This site-specific solvent exposure analysis method could be applied for further topological analysis of other membrane proteins.

  3. Fluid flow dynamics in MAS systems

    NASA Astrophysics Data System (ADS)

    Wilhelm, Dirk; Purea, Armin; Engelke, Frank

    2015-08-01

    The turbine system and the radial bearing of a high performance magic angle spinning (MAS) probe with 1.3 mm-rotor diameter has been analyzed for spinning rates up to 67 kHz. We focused mainly on the fluid flow properties of the MAS system. Therefore, computational fluid dynamics (CFD) simulations and fluid measurements of the turbine and the radial bearings have been performed. CFD simulation and measurement results of the 1.3 mm-MAS rotor system show relatively low efficiency (about 25%) compared to standard turbo machines outside the realm of MAS. However, in particular, MAS turbines are mainly optimized for speed and stability instead of efficiency. We have compared MAS systems for rotor diameter of 1.3-7 mm converted to dimensionless values with classical turbomachinery systems showing that the operation parameters (rotor diameter, inlet mass flow, spinning rate) are in the favorable range. This dimensionless analysis also supports radial turbines for low speed MAS probes and diagonal turbines for high speed MAS probes. Consequently, a change from Pelton type MAS turbines to diagonal turbines might be worth considering for high speed applications. CFD simulations of the radial bearings have been compared with basic theoretical values proposing considerably smaller frictional loss values. The discrepancies might be due to the simple linear flow profile employed for the theoretical model. Frictional losses generated inside the radial bearings result in undesired heat-up of the rotor. The rotor surface temperature distribution computed by CFD simulations show a large temperature gradient over the rotor.

  4. Fluid flow dynamics in MAS systems.

    PubMed

    Wilhelm, Dirk; Purea, Armin; Engelke, Frank

    2015-08-01

    The turbine system and the radial bearing of a high performance magic angle spinning (MAS) probe with 1.3mm-rotor diameter has been analyzed for spinning rates up to 67kHz. We focused mainly on the fluid flow properties of the MAS system. Therefore, computational fluid dynamics (CFD) simulations and fluid measurements of the turbine and the radial bearings have been performed. CFD simulation and measurement results of the 1.3mm-MAS rotor system show relatively low efficiency (about 25%) compared to standard turbo machines outside the realm of MAS. However, in particular, MAS turbines are mainly optimized for speed and stability instead of efficiency. We have compared MAS systems for rotor diameter of 1.3-7mm converted to dimensionless values with classical turbomachinery systems showing that the operation parameters (rotor diameter, inlet mass flow, spinning rate) are in the favorable range. This dimensionless analysis also supports radial turbines for low speed MAS probes and diagonal turbines for high speed MAS probes. Consequently, a change from Pelton type MAS turbines to diagonal turbines might be worth considering for high speed applications. CFD simulations of the radial bearings have been compared with basic theoretical values proposing considerably smaller frictional loss values. The discrepancies might be due to the simple linear flow profile employed for the theoretical model. Frictional losses generated inside the radial bearings result in undesired heat-up of the rotor. The rotor surface temperature distribution computed by CFD simulations show a large temperature gradient over the rotor. PMID:26073599

  5. Review of NMR characterization of pyrolysis oils

    DOE PAGESBeta

    Hao, Naijia; Ben, Haoxi; Yoo, Chang Geun; Adhikari, Sushil; Ragauskas, Arthur J.

    2016-08-24

    Here, pyrolysis of renewable biomass has been developed as a method to produce green fuels and chemicals in response to energy security concerns as well as to alleviate environmental issues incurred with fossil fuel usage. However, pyrolysis oils still have limited commercial application, mainly because unprocessed oils cannot be readily blended with current petroleum-based transportation fuels. To better understand these challenges, researchers have applied diverse characterization techniques in the development of bio-oil studies. In particular, nuclear magnetic resonance (NMR) is a key spectroscopic characterization method through analysis of bio-oil components. This review highlights the NMR strategies for pyrolysis oil characterizationmore » and critically discusses the applications of 1H, 13C, 31P, 19F, and two-dimensional (2-D NMR) analyses such as heteronuclear single quantum correlation (HSQC) in representative pyrolysis oil studies.« less

  6. Fission fragment angular distribution for the 19F+197Au fusion-fission reaction at near-barrier energies

    NASA Astrophysics Data System (ADS)

    Tripathi, R.; Sudarshan, K.; Sodaye, S.; Reddy, A. V.; Mahata, K.; Goswami, A.

    2005-04-01

    Angular distribution of fission fragments have been measured for 19F+197Au reaction at bombarding energies from 91 to 110 MeV. Fission fragment angular distributions have been calculated by transition state model with the transmission coefficients obtained using the coupled-channels theory. The calculated angular anisotropies are in good agreement with the experimental anisotropies. The experimental fission cross sections have also been reproduced on the basis of the coupled-channels theory. The results of angular distribution measurement do not show any significant contribution from quasifission as was reported in the literature based on the measurement of evaporation residues and mass distribution.

  7. Is solid-state NMR enhanced by dynamic nuclear polarization?

    PubMed

    Lee, Daniel; Hediger, Sabine; De Paëpe, Gaël

    2015-01-01

    The recent trend of high-field (~5-20 T), low-temperature (~100 K) ssNMR combined with dynamic nuclear polarization (DNP) under magic angle spinning (MAS) conditions is analyzed. A brief overview of the current theory of hyperpolarization for so-called MAS-DNP experiments is given, along with various reasons why the DNP-enhancement, the ratio of the NMR signal intensities obtained in the presence and absence of microwave irradiation suitable for hyperpolarization, should not be used alone to gauge the value of performing MAS-DNP experiments relative to conventional ssNMR. This is demonstrated through a dissection of the current conditions required for MAS-DNP with particular attention to resulting absolute sensitivities and spectral resolution. Consequently, sample preparation methods specifically avoiding the surplus of glass-forming solvents so as to improve the absolute sensitivity and resolution are discussed, as are samples that are intrinsically pertinent for MAS-DNP studies (high surface area, amorphous, and porous). Owing to their pertinence, examples of recent applications on these types of samples where chemically-relevant information has been obtained that would have been impossible without the sensitivity increases bestowed by MAS-DNP are also detailed. Additionally, a promising further implementation for MAS-DNP is exampled, whereby the sensitivity improvements shown for (correlation) spectroscopy of nuclei at low natural isotopic abundance, facilitate internuclear distance measurements, especially for long distances (absence of dipolar truncation). Finally, we give some speculative perspectives for MAS-DNP. PMID:25779337

  8. Magic Angle Spinning NMR Spectroscopy: A Versatile Technique for Structural and Dynamic Analysis of Solid-Phase Systems

    PubMed Central

    Polenova, Tatyana; Gupta, Rupal; Goldbourt, Amir

    2016-01-01

    Magic Angle Spinning (MAS) NMR spectroscopy is a powerful method for analysis of a broad range of systems, including inorganic materials, pharmaceuticals, and biomacromolecules. The recent developments in MAS NMR instrumentation and methodologies opened new vistas to atomic-level characterization of a plethora of chemical environments previously inaccessible to analysis, with unprecedented sensitivity and resolution. PMID:25794311

  9. Superfluorinated PEI Derivative Coupled with (99m) Tc for ASGPR Targeted (19) F MRI/SPECT/PA Tri-Modality Imaging.

    PubMed

    Guo, Zhide; Gao, Mengna; Song, Manli; Li, Yesen; Zhang, Deliang; Xu, Duo; You, Linyi; Wang, Liangliang; Zhuang, Rongqiang; Su, Xinhui; Liu, Ting; Du, Jin; Zhang, Xianzhong

    2016-07-01

    Fluorinated polyethylenimine derivative labeled with radionuclide (99m) Tc is developed as a (19) F MRI/SPECT/PA multifunctional imaging agent with good asialoglycoprotein receptors (ASGPR)-targeting ability. This multifunctional agent is safe and suitable for (19) F MRI/SPECT/PA imaging and has the potential to detect hepatic diseases and to assess liver function, which provide powerful support for the development of personalized and precision medicine. PMID:27159903

  10. NMR shielding calculations across the periodic table: diamagnetic uranium compounds. 2. Ligand and metal NMR.

    PubMed

    Schreckenbach, Georg

    2002-12-16

    In this and a previous article (J. Phys. Chem. A 2000, 104, 8244), the range of application for relativistic density functional theory (DFT) is extended to the calculation of nuclear magnetic resonance (NMR) shieldings and chemical shifts in diamagnetic actinide compounds. Two relativistic DFT methods are used, ZORA ("zeroth-order regular approximation") and the quasirelativistic (QR) method. In the given second paper, NMR shieldings and chemical shifts are calculated and discussed for a wide range of compounds. The molecules studied comprise uranyl complexes, [UO(2)L(n)](+/-)(q); UF(6); inorganic UF(6) derivatives, UF(6-n)Cl(n), n = 0-6; and organometallic UF(6) derivatives, UF(6-n)(OCH(3))(n), n = 0-5. Uranyl complexes include [UO(2)F(4)](2-), [UO(2)Cl(4)](2-), [UO(2)(OH)(4)](2-), [UO(2)(CO(3))(3)](4-), and [UO(2)(H(2)O)(5)](2+). For the ligand NMR, moderate (e.g., (19)F NMR chemical shifts in UF(6-n)Cl(n)) to excellent agreement [e.g., (19)F chemical shift tensor in UF(6) or (1)H NMR in UF(6-n)(OCH(3))(n)] has been found between theory and experiment. The methods have been used to calculate the experimentally unknown (235)U NMR chemical shifts. A large chemical shift range of at least 21,000 ppm has been predicted for the (235)U nucleus. ZORA spin-orbit appears to be the most accurate method for predicting actinide metal chemical shifts. Trends in the (235)U NMR chemical shifts of UF(6-n)L(n) molecules are analyzed and explained in terms of the calculated electronic structure. It is argued that the energy separation and interaction between occupied and virtual orbitals with f-character are the determining factors. PMID:12470051

  11. Instrumentation for solid-state dynamic nuclear polarization with magic angle spinning NMR

    NASA Astrophysics Data System (ADS)

    Rosay, Melanie; Blank, Monica; Engelke, Frank

    2016-03-01

    Advances in dynamic nuclear polarization (DNP) instrumentation and methodology have been key factors in the recent growth of solid-state DNP NMR applications. We review the current state of the art of solid-state DNP NMR instrumentation primarily based on available commercial platforms. We start with a general system overview, including options for microwave sources and DNP NMR probes, and then focus on specific developments for DNP at 100 K with magic angle spinning (MAS). Gyrotron microwave sources, passive components to transmit microwaves, the DNP MAS probe, a cooling device for low-temperature MAS, and sample preparation procedures including radicals for DNP are considered.

  12. Instrumentation for solid-state dynamic nuclear polarization with magic angle spinning NMR.

    PubMed

    Rosay, Melanie; Blank, Monica; Engelke, Frank

    2016-03-01

    Advances in dynamic nuclear polarization (DNP) instrumentation and methodology have been key factors in the recent growth of solid-state DNP NMR applications. We review the current state of the art of solid-state DNP NMR instrumentation primarily based on available commercial platforms. We start with a general system overview, including options for microwave sources and DNP NMR probes, and then focus on specific developments for DNP at 100K with magic angle spinning (MAS). Gyrotron microwave sources, passive components to transmit microwaves, the DNP MAS probe, a cooling device for low-temperature MAS, and sample preparation procedures including radicals for DNP are considered. PMID:26920834

  13. (19)F MRSI of capecitabine in the liver at 7 T using broadband transmit-receive antennas and dual-band RF pulses.

    PubMed

    van Gorp, Jetse S; Seevinck, Peter R; Andreychenko, Anna; Raaijmakers, Alexander J E; Luijten, Peter R; Viergever, Max A; Koopman, Miriam; Boer, Vincent O; Klomp, Dennis W J

    2015-11-01

    Capecitabine (Cap) is an often prescribed chemotherapeutic agent, successfully used to cure some patients from cancer or reduce tumor burden for palliative care. However, the efficacy of the drug is limited, it is not known in advance who will respond to the drug and it can come with severe toxicity. (19)F Magnetic Resonance Spectroscopy (MRS) and Magnetic Resonance Spectroscopic Imaging (MRSI) have been used to non-invasively study Cap metabolism in vivo to find a marker for personalized treatment. In vivo detection, however, is hampered by low concentrations and the use of radiofrequency (RF) surface coils limiting spatial coverage. In this work, the use of a 7T MR system with radiative multi-channel transmit-receive antennas was investigated with the aim of maximizing the sensitivity and spatial coverage of (19)F detection protocols. The antennas were broadband optimized to facilitate both the (1)H (298 MHz) and (19)F (280 MHz) frequencies for accurate shimming, imaging and signal combination. B1(+) simulations, phantom and noise measurements showed that more than 90% of the theoretical maximum sensitivity could be obtained when using B1(+) and B1(-) information provided at the (1)H frequency for the optimization of B1(+) and B1(-) at the (19)F frequency. Furthermore, to overcome the limits in maximum available RF power, whilst ensuring simultaneous excitation of all detectable conversion products of Cap, a dual-band RF pulse was designed and evaluated. Finally, (19)F MRS(I) measurements were performed to detect (19)F metabolites in vitro and in vivo. In two patients, at 10 h (patient 1) and 1 h (patient 2) after Cap intake, (19)F metabolites were detected in the liver and the surrounding organs, illustrating the potential of the set-up for in vivo detection of metabolic rates and drug distribution in the body. PMID:26373355

  14. NMR study of the reversible trapping of SF6 by cucurbit[6]uril in aqueous solution.

    PubMed

    Fusaro, Luca; Locci, Emanuela; Lai, Adolfo; Luhmer, Michel

    2008-11-27

    The complexation of sulfur hexafluoride (SF(6)), a highly potent greenhouse gas, by cucurbit[6]uril (CB) was studied at various temperatures in Na(2)SO(4) aqueous solutions by (19)F and (1)H NMR. CB shows a remarkable affinity for SF(6), suggesting that it is a suitable molecular container for the design of materials tailored for SF(6) trapping. At 298 K, the equilibrium constant characterizing the inclusion of SF(6) by CB is 3.1 x 10(4) M(-1) and the residence time of SF(6) within the CB cavity is estimated to be of the order of a few seconds. The enthalpic and entropic contributions to the free energy of encapsulation were determined and are discussed. This work also reports on the interest of SF(6) in the framework of the spin-spy methodology. The advantages and drawbacks of solution-state (19)F NMR of SF(6) with respect to (129)Xe NMR are discussed. SF(6) comes forward as a versatile and informative spin-spy molecule for probing systems in solution because its detection limit by (19)F NMR reaches the micromolar range with standard equipment and because quantitative integral measurements, relaxation time measurements, and demanding experiments, such as translational diffusion coefficient measurements, are easily carried out in addition to chemical shift measurements. Solution-state (19)F NMR of SF(6) emerges as a promising alternative to (129)Xe NMR for probing cavities and for other applications relying on the encapsulation of an NMR active gaseous probe. PMID:18956898

  15. Study of viscosity on the fission dynamics of the excited nuclei 228U produced in 19F + 209Bi reactions

    NASA Astrophysics Data System (ADS)

    Eslamizadeh, H.

    2015-06-01

    A two-dimensional (2D) dynamical model based on Langevin equations was applied to study the fission dynamics of the compound nuclei 228U produced in 19F + 209Bi reactions at intermediate excitation energies. The distance between the centers of masses of the future fission fragments was used as the first dimension and the projection of the total spin of the compound nucleus onto the symmetry axis, K, was considered as the second dimension in Langevin dynamical calculations. The magnitude of post-saddle friction strength was inferred by fitting measured data on the average pre-scission neutron multiplicity for 228U. It was shown that the results of calculations are in good agreement with the experimental data by using values of the post-saddle friction equal to 6-8 × 1021s-1.

  16. Incomplete fusion studies in the 19F+159Tb system at low energies and its correlation with various systematics

    NASA Astrophysics Data System (ADS)

    Shuaib, Mohd.; Sharma, Vijay R.; Yadav, Abhishek; Singh, Pushpendra P.; Sharma, Manoj Kumar; Singh, Devendra P.; Kumar, R.; Singh, R. P.; Muralithar, S.; Singh, B. P.; Prasad, R.

    2016-07-01

    The excitation functions of reaction residues populated via the complete fusion and incomplete fusion process in the interaction of the 19F+159Tb system have been measured at energies ≈4 -6 MeV/nucleon, using off-line γ -ray spectroscopy. The analysis of data was done within the framework of statistical model code pace4 (a compound nucleus model). A significant fraction of incomplete fusion was observed in the production of reaction residues involving α particle(s) in the exit channels, even at energies as low as near the Coulomb barrier. The incomplete fusion strength function was deduced from the experimental excitation functions and the dependence of this strength function on various entrance channel parameters was studied. The present results show a strong dependence on the projectile α -Q value that agrees well with the existing data. To probe the dependence of incomplete fusion on entrance channel mass asymmetry, the present work was compared with the results obtained in the interaction of 12C, 16O, and 19F with nearby targets available in the literature. It was observed that the mass asymmetry linearly increases for each projectile separately and turns out to be a projectile-dependent mass-asymmetry systematics. The deduced incomplete fusion strength functions in the present work are also plotted as a function of ZPZT (Coulomb effect) and compared with the existing literature. A strong dependence of the Coulomb effect on the incomplete fusion fraction was observed. It was found that the fraction of incomplete fusion linearly increases with ZPZT and was found to be more for larger ZPZT values indicating significantly important linear systematics.

  17. Indocyanine green-loaded perfluorocarbon nanoemulsions for bimodal 19F-magnetic resonance/nearinfrared fluorescence imaging and subsequent phototherapy

    PubMed Central

    Wang, Yuan-Guo; Kim, Hyunjin; Mun, Saehun

    2013-01-01

    We have developed an indocyanine green-loaded perfluorocarbon (ICG/PFCE) nanoemulsion as a multifunctional theranostic nanomedicine which enables not only 19F magnetic resonance (MR)/near-infrared fluorescence (NIRF) bimodal imaging but also subsequent photodynamic/photothermal dual therapy of cancer. The hydrodynamic size of ICG/PFCE nanoemulsions was 164.2 nm. The stability of indocyanine green (ICG) in aqueous solution was significantly improved when loaded on perfluorocarbon nanoemulsions. In addition, ICG/PFCE nanoemulsions showed good dispersion stability in aqueous media containing 10% fetal bovine serum, for at least 14 days. 19F-MRI of ICG/PFCE nanoemulsions showed that the signal intensity increased with increasing nanoemulsion concentration with no signal observed from the surrounding background. Using NIRF imaging with perfluorocarbon nanoemulsion alone, without ICG, did not produce NIRF, while clear and bright fluorescent images were obtained with ICG/PFCE nanoemulsions at 10-µM ICG equivalent. The capacity of ICG-loaded nanoemulsions to generate heat following light irradiation by using an 810-nm laser was comparable to that of free ICG, while singlet oxygen generation of ICG-loaded nanoemulsions was significantly better than that of free ICG. In vitro cytotoxicity tests and fluorescence microscopy confirmed biocompatibility of the nanoemulsion. Upon light irradiation, U87MG glioblastoma cells incubated with ICG/PFCE nanoemulsions underwent necrotic cell death. The therapeutic mechanism during light illumination appears to be mainly due to the photodynamic effect at lower ICG concentrations, whilst the photothermal effect became more obvious at increased ICG concentrations, enabling combined photodynamic/photothermal therapy of cancer cells. PMID:23833726

  18. Imaging Neuroinflammation In Vivo in a Neuropathic Pain Rat Model with Near-Infrared Fluorescence and 19F Magnetic Resonance

    PubMed Central

    Vasudeva, Kiran; Andersen, Karl; Zeyzus-Johns, Bree; Hitchens, T. Kevin; Patel, Sravan Kumar; Balducci, Anthony; Janjic, Jelena M.; Pollock, John A.

    2014-01-01

    Chronic neuropathic pain following surgery represents a serious worldwide health problem leading to life-long treatment and the possibility of significant disability. In this study, neuropathic pain was modeled using the chronic constriction injury (CCI). The CCI rats exhibit mechanical hypersensitivity (typical neuropathic pain symptom) to mechanical stimulation of the affected paw 11 days post surgery, at a time when sham surgery animals do not exhibit hypersensitivity. Following a similar time course, TRPV1 gene expression appears to rise with the hypersensitivity to mechanical stimulation. Recent studies have shown that immune cells play a role in the development of neuropathic pain. To further explore the relationship between neuropathic pain and immune cells, we hypothesize that the infiltration of immune cells into the affected sciatic nerve can be monitored in vivo by molecular imaging. To test this hypothesis, an intravenous injection of a novel perfluorocarbon (PFC) nanoemulsion, which is phagocytosed by inflammatory cells (e.g. monocytes and macrophages), was used in a rat CCI model. The nanoemulsion carries two distinct imaging agents, a near-infrared (NIR) lipophilic fluorescence reporter (DiR) and a 19F MRI (magnetic resonance imaging) tracer, PFC. We demonstrate that in live rats, NIR fluorescence is concentrated in the area of the affected sciatic nerve. Furthermore, the 19F MRI signal was observed on the sciatic nerve. Histological examination of the CCI sciatic nerve reveals significant infiltration of CD68 positive macrophages. These results demonstrate that the infiltration of immune cells into the sciatic nerve can be visualized in live animals using these methods. PMID:24587398

  19. Fundamental Science Tools for Geologic Carbon Sequestration and Mineral Carbonation Chemistry: In Situ Magic Angle Spinning (MAS) Nuclear Magnetic Resonance

    NASA Astrophysics Data System (ADS)

    Hoyt, D. W.; Turcu, R. V.; Sears, J. A.; Rosso, K. M.; Burton, S. D.; Kwak, J.; Felmy, A. R.; Hu, J.

    2010-12-01

    GCS is one of the most promising ways of mitigating atmospheric greenhouse gases. Mineral carbonation reactions are potentially important to the long-term sealing effectiveness of caprock but remain poorly predictable, particularly reactions occurring in low-water supercritical CO2(scCO2)-dominated environments where the chemistry has not been adequately explored. In situ probes that provide molecular-level information is desirable for investigating mechanisms and rates of GCS mineral carbonation reactions. MAS-NMR is a powerful tool for obtaining detailed molecular structure and dynamics information of a system regardless whether the system is in a solid, a liquid, a gaseous, or a supercritical state, or a mixture thereof. However, MAS NMR under scCO2 conditions has never been realized due to the tremendous technical difficulties of achieving and maintaining high pressure within a fast spinning MAS rotor. In this work, we report development of a unique high pressure MAS NMR capability, and its application to mineral carbonation chemistry in scCO2 under geologically relevant temperatures and pressures. Our high pressure MAS rotor has successfully maintained scCO2 conditions with minimal leakage over a period of 72 hours. Mineral carbonation reactions of a model magnesium silicate (forsterite) reacted with 96 bars scCO2 containing varying amounts of H2O (both below and above saturation of the scCO2) were investigated at 50○C. Figure 1 shows typical in situ 13C MAS NMR spectra demonstrating that the peaks corresponding to the reactants, intermediates, and the magnesium carbonation products are all observed in a single spectrum. For example, the scCO2 peak is located at 126.1 ppm. Reaction intermediates include the aqueous species HCO3-(160 ppm), partially hydrated/hydroxylated magnesium carbonates(166-168 ppm), and can easily be distinguished from final product magnesite(170 ppm). The new capability and this model mineral carbonation process will be overviewed in

  20. Mas' Making and Pedagogy: Imagined Possibilities

    ERIC Educational Resources Information Center

    Fournillier, Janice B.

    2009-01-01

    In this article I draw on an ethnographic case study that examined mas' makers' perceptions of the learning/teaching practices at work in the production of costumes for Trinidad and Tobago's annual Carnival celebrations. During the 2005 Carnival season I spent four months in the field, my country of birth, and collected data through participant…

  1. Chromatographic NMR in NMR solvents

    NASA Astrophysics Data System (ADS)

    Carrara, Caroline; Viel, Stéphane; Delaurent, Corinne; Ziarelli, Fabio; Excoffier, Grégory; Caldarelli, Stefano

    2008-10-01

    Recently, it was demonstrated that pseudo-chromatographic NMR experiments could be performed using typical chromatographic solids and solvents. This first setup yielded improved separation of the spectral components of the NMR spectra of mixtures using PFG self-diffusion measurements. The method (dubbed Chromatographic NMR) was successively shown to possess, in favorable cases, superior resolving power on non-functionalized silica, compared to its LC counterpart. To further investigate the applicability of the method, we studied here the feasibility of Chromatographic NMR in common deuterated solvents. Two examples are provided, using deuterated chloroform and water, for homologous compounds soluble in these solvents, namely aromatic molecules and alcohols, respectively.

  2. Isomerization of the prenucleation building unit during crystallization of AlPO{sub 4}-CJ2: An MQMAS, CP-MQMAS, and HETCOR NMR study

    SciTech Connect

    Taulelle, F.; Pruski, M.; Amoureux, J.P.

    1999-12-29

    The structure of AlPO{sub 4}-CJ2 aluminophosphate has been reinvestigated by MAS, MQMAS (multiple quantum magic angle spinning), CP-MQMAS (cross polarization-MQMAS), and HETCOR (heteronuclear correlation) NMR spectroscopy. The CP-MQMAS method showed that the sample, when not allowed adequate time for crystallization, included a substantial concentration of amorphous species. The crystalline component was cleanly singled out by this technique. The authors discuss the relative populations and the distributions of F and OH groups within the structural building units (SBUs) and the distribution of various SBUs within the crystalline structure of AlPO{sub 4}-CJ2. For the latter case, a mixture of SBUs is demonstrated from the {sup 19}F {r{underscore}arrow} {sup 31}P HETCOR spectrum. Prenucleation building units (PNBUs) are the principal objects used for efficient crystal formation. They may undergo an isomerization to reach the proper configuration to integrate into the solid network. The isomerization implies formation of a bridge within the PNBU, probably at random with respect to OH or F. As integration in the network is taking place parallel to isomerization, the network forms as domains containing a mixture of the different types of SBUs.

  3. Chiral Recognition Studies of α-(Nonafluoro-tert-butoxy)carboxylic Acids by NMR Spectroscopy.

    PubMed

    Nemes, Anikó; Csóka, Tamás; Béni, Szabolcs; Farkas, Viktor; Rábai, József; Szabó, Dénes

    2015-06-19

    Three chiral α-(nonafluoro-tert-butoxy)carboxylic acids (R)-1, (RS)-2, (R)-3 were synthesized to examine their application as chiral solvating agents with amines. As a model compound, first (S)- and/or (RS)-α-phenylethylamine was used, and their diastereomeric salts were investigated by (1)H and (19)F NMR and ECD spectroscopy. The NMR spectroscopic studies were carried out at room temperature using the slightly polar CDCl3 and apolar C6D6 as solvents in 5 mM and 54 mM concentrations. The difference of the chemical shifts (Δδ) in the diastereomeric complexes is comparable with other, well-known chiral derivatizing and solvating agents (e.g., Mosher's acid, Pirkle's alcohol). Diastereomeric salts of racemic acids (RS)-1 and (RS)-2 with biologically active amines (1R,2S)-ephedrine and (S)-dapoxetine were also investigated by (19)F NMR spectroscopy. PMID:26024423

  4. NMR Spectroscopy for Thin Films by Magnetic Resonance Force Microscopy

    PubMed Central

    Won, Soonho; Saun, Seung-Bo; Lee, Soonchil; Lee, SangGap; Kim, Kiwoong; Han, Yunseok

    2013-01-01

    Nuclear magnetic resonance (NMR) is a fundamental research tool that is widely used in many fields. Despite its powerful applications, unfortunately the low sensitivity of conventional NMR makes it difficult to study thin film or nano-sized samples. In this work, we report the first NMR spectrum obtained from general thin films by using magnetic resonance force microscopy (MRFM). To minimize the amount of imaging information inevitably mixed into the signal when a gradient field is used, we adopted a large magnet with a flat end with a diameter of 336 μm that generates a homogeneous field on the sample plane and a field gradient in a direction perpendicular to the plane. Cyclic adiabatic inversion was used in conjunction with periodic phase inversion of the frequency shift to maximize the SNR. In this way, we obtained the 19F NMR spectrum for a 34 nm-thick CaF2 thin film. PMID:24217000

  5. (19)F(alpha,n)(22)Na, (22)Ne(p,n)(22)Na, and the Role of their Inverses in the Destruction of (22)Na

    NASA Astrophysics Data System (ADS)

    Wrean, Patricia Rose

    The inverses of the 19F(α,n)22Na and 22Ne(p,n)22Na reactions may be important destruction mechanisms for 22Na in neutron-rich, high-temperature or explosive nucleosynthesis. I have measured the cross sections for the 19F(α,n)22Na and 22Ne(p,n)22Na reactions from threshold to 3.1 and 5.4 MeV, respectively. The absolute efficiency of the 4π neutron detector was determined by Monte Carlo calculations and calibrated using two standard sources and two nuclear reactions. Cross sections for the inverse reactions have been calculated using the principle of detailed balance, and reaction rates for both the reactions and their inverses determined for temperatures between 0.01 and 10 GK for 19F(α,n)22Na and between 0.1 and 10 GK for 22Ne(p,n)22Na.

  6. Application of /sup 19/F nuclear magnetic resonance to examine covalent modification reactions of tyrosyl derivatives: a study of calcineurin catalysis

    SciTech Connect

    Martin, B.L.; Graves, D.J.

    1988-04-01

    The hydrolysis of fluorotyrosine phosphate by the calmodulin-activated phosphatase calcineurin has been monitored by /sup 19/F nuclear magnetic resonance spectroscopy. Previous work had established that the /sup 19/F nuclear magnetic resonance shift of the fluorine nucleus was altered after the phosphorylation of the phenolic hydroxyl group. The disappearance of substrate and the appearance of product can be measured simultaneously with this approach. Application of the integrated form of the Michaelis-Menten equation yields estimates of the kinetic parameter, K/sub M/, close to the values obtained by initial rate kinetics. The velocity term, V/sub M/ was also evaluated to be approximately the same value. Calcineurin was determined not to be inactivated over the time period of the reaction. The results demonstrate that /sup 19/F nuclear magnetic resonance spectroscopy can be applied to the examination of enzyme-catalyzed reactions.

  7. Use of [superscript 1]H, [superscript 13]C, and [superscript 19]F-NMR Spectroscopy and Computational Modeling to Explore Chemoselectivity in the Formation of a Grignard Reagent

    ERIC Educational Resources Information Center

    Hein, Sara M.; Kopitzke, Robert W.; Nalli, Thomas W.; Esselman, Brian J.; Hill, Nicholas J.

    2015-01-01

    A discovery-based Grignard experiment for a second-year undergraduate organic chemistry course is described. The exclusive Grignard reagent formed by the reaction of 1-bromo-4-fluorobenzene (1) with Mg is 4-fluorophenylmagnesium bromide (2), which is treated with either benzophenone or CO[subscript 2] to produce the corresponding fluorinated…

  8. Verification of threshold activation detection (TAD) technique in prompt fission neutron detection using scintillators containing 19F

    NASA Astrophysics Data System (ADS)

    Sibczynski, P.; Kownacki, J.; Moszyński, M.; Iwanowska-Hanke, J.; Syntfeld-Każuch, A.; Gójska, A.; Gierlik, M.; Kaźmierczak, Ł.; Jakubowska, E.; Kędzierski, G.; Kujawiński, Ł.; Wojnarowicz, J.; Carrel, F.; Ledieu, M.; Lainé, F.

    2015-09-01

    In the present study ⌀ 5''× 3'' and ⌀ 2''× 2'' EJ-313 liquid fluorocarbon as well as ⌀ 2'' × 3'' BaF2 scintillators were exposed to neutrons from a 252Cf neutron source and a Sodern Genie 16GT deuterium-tritium (D+T) neutron generator. The scintillators responses to β- particles with maximum endpoint energy of 10.4 MeV from the n+19F reactions were studied. Response of a ⌀ 5'' × 3'' BC-408 plastic scintillator was also studied as a reference. The β- particles are the products of interaction of fast neutrons with 19F which is a component of the EJ-313 and BaF2 scintillators. The method of fast neutron detection via fluorine activation is already known as Threshold Activation Detection (TAD) and was proposed for photofission prompt neutron detection from fissionable and Special Nuclear Materials (SNM) in the field of Homeland Security and Border Monitoring. Measurements of the number of counts between 6.0 and 10.5 MeV with a 252Cf source showed that the relative neutron detection efficiency ratio, defined as epsilonBaF2 / epsilonEJ-313-5'', is 32.0% ± 2.3% and 44.6% ± 3.4% for front-on and side-on orientation of the BaF2, respectively. Moreover, the ⌀ 5'' EJ-313 and side-on oriented BaF2 were also exposed to neutrons from the D+T neutron generator, and the relative efficiency epsilonBaF2 / epsilonEJ-313-5'' was estimated to be 39.3%. Measurements of prompt photofission neutrons with the BaF2 detector by means of data acquisition after irradiation (out-of-beam) of nuclear material and between the beam pulses (beam-off) techniques were also conducted on the 9 MeV LINAC of the SAPHIR facility.

  9. Multinucleon transfer in O,1816,19F+208Pb reactions at energies near the fusion barrier

    NASA Astrophysics Data System (ADS)

    Rafferty, D. C.; Dasgupta, M.; Hinde, D. J.; Simenel, C.; Simpson, E. C.; Williams, E.; Carter, I. P.; Cook, K. J.; Luong, D. H.; McNeil, S. D.; Ramachandran, K.; Vo-Phuoc, K.; Wakhle, A.

    2016-08-01

    Background: Nuclear reactions are complex, involving collisions between composite systems where many-body dynamics determines outcomes. Successful models have been developed to explain particular reaction outcomes in distinct energy and mass regimes, but a unifying picture remains elusive. The irreversible transfer of kinetic energy from the relative motion of the collision partners to their internal states, as is known to occur in deep inelastic collisions, has yet to be successfully incorporated explicitly into fully quantal reaction models. The influence of these processes on fusion is not yet quantitatively understood. Purpose: To investigate the population of high excitation energies in transfer reactions at sub-barrier energies, which are precursors to deep inelastic processes, and their dependence on the internuclear separation. Methods: Transfer probabilities and excitation energy spectra have been measured in collisions of O,1816,19F+208Pb , at various energies below and around the fusion barrier, by detecting the backscattered projectile-like fragments in a Δ E -E telescope. Results: The relative yields of different transfer outcomes are strongly driven by Q values, but change with the internuclear separation. In 16O+208Pb , single nucleon transfer dominates, with a strong contribution from -2 p transfer close to the Coulomb barrier, though this channel becomes less significant in relation to the -2 p 2 n transfer channel at larger separations. For 18O+208Pb , the -2 p 2 n channel is the dominant charge transfer mode at all separations. In the reactions with 19F,-3 p 2 n transfer is significant close to the barrier, but falls off rapidly with energy. Multinucleon transfer processes are shown to lead to high excitation energies (up to ˜15 MeV), which is distinct from single nucleon transfer modes which predominantly populate states at low excitation energy. Conclusions: Kinetic energy is transferred into internal excitations following transfer, with this

  10. Study of the metabolism of flucytosine in Aspergillus species by sup 19 F nuclear magnetic resonance spectroscopy

    SciTech Connect

    Chouini-Lalanne, N.; Malet-Martino, M.C.; Martino, R.; Michel, G. )

    1989-11-01

    The metabolism of flucytosine (5FC) in two Aspergillus species (Aspergillus fumigatus and A. niger) was investigated by 19F nuclear magnetic resonance spectroscopy. In intact mycelia, 5FC was found to be deaminated to 5-fluorouracil and then transformed into fluoronucleotides; the catabolite alpha-fluoro-beta-alanine was also detected in A. fumigatus. Neither 5-fluoroorotic acid nor 5-fluoro-2'-deoxyuridine-5'-monophosphate was detected in perchloric acid extracts after any incubation with 5FC. 5FC, 5-fluorouracil, and the classical fluoronucleotides 5-fluorouridine-5'-mono-, di-, and triphosphates were identified in the acid-soluble pool. Two hydrolysis products of 5-fluorouracil incorporated into RNA, 5-fluorouridine-2'-monophosphate and 5-fluorouridine-3'-monophosphate, were found in the acid-insoluble pool. No significant differences in the metabolic transformation of 5FC were noted in the two species of Aspergillus. The main pathway of 5FC metabolism in the two species of Aspergillus studied is thus the biotransformation into ribofluoronucleotides and the subsequent incorporation of 5-fluorouridine-5'-triphosphate into RNA.

  11. A Miniaturized, 1.9F Integrated Optical Fiber and Stone Basket for Use in Thulium Fiber Laser Lithotripsy.

    PubMed

    Wilson, Christopher R; Hutchens, Thomas C; Hardy, Luke A; Irby, Pierce B; Fried, Nathaniel M

    2015-10-01

    The thulium fiber laser (TFL) is being explored as an alternative laser lithotripter to the standard holmium:yttrium-aluminum-garnet laser. The more uniform beam profile of the TFL enables higher power transmission through smaller fibers. In this study, a 100-μm core, 140-μm outer-diameter (OD) silica fiber with 5-mm length hollow steel tip was integrated with 1.3F (0.433-mm OD) nitinol wire basket to form a 1.9F (0.633-mm OD) device. TFL energy of 30 mJ, 500 μs pulse duration, and 500 Hz pulse rate was delivered to human uric acid stones, ex vivo. Stone ablation rates measured 1.5 ± 0.2 mg/s, comparable to 1.7 ± 0.3 mg/s using bare fiber tips separately with stone basket. With further development, this device may minimize stone retropulsion, allowing more efficient TFL lithotripsy at higher pulse rates. It may also provide increased flexibility, higher saline irrigation rates through the ureteroscope working channel, reduce fiber degradation compared with separate fiber and basket manipulation, and reduce laser-induced nitinol wire damage. PMID:26167738

  12. Tumour oxygen dynamics measured simultaneously by near-infrared spectroscopy and 19F magnetic resonance imaging in rats.

    PubMed

    Xia, Mengna; Kodibagkar, Vikram; Liu, Hanli; Mason, Ralph P

    2006-01-01

    Simultaneous near-infrared spectroscopy (NIRS) and magnetic resonance imaging (MRI) were used to investigate the correlation between tumour vascular oxygenation and tissue oxygen tension dynamics in rat breast 13762NF tumours with respect to hyperoxic gas breathing. NIRS directly detected global variations in the oxygenated haemoglobin concentration (Delta[HbO(2)]) within tumours and oxygen tension (pO(2)) maps were achieved using (19)F MRI of the reporter molecule hexafluorobenzene. Multiple correlations were examined between rates and magnitudes of vascular (Delta[HbO(2)]) and tissue (pO(2)) responses. Significant correlations were found between response to oxygen and carbogen breathing using either modality. Comparison of results for the two methods showed a correlation between the vascular perfusion rate ratio and the mean pO(2) values (R(2) > 0.7). The initial rates of increase of Delta[HbO(2)] and the slope of dynamic pO(2) response, d(pO(2))/dt, of well-oxygenated voxels in response to hyperoxic challenge were also correlated. These results demonstrate the feasibility of simultaneous measurements using NIRS and MRI. As expected, the rate of pO(2) response to oxygen is primarily dependent upon the well perfused rather than poorly perfused vasculature. PMID:16357430

  13. Fission-fragment angular distributions for the 19F + 208Pb near- and sub-barrier fusion-fission reaction

    NASA Astrophysics Data System (ADS)

    Huanqiao, Zhang; Zuhua, Liu; Jincheng, Xu; Kan, Xu; Jun, Lu; Ming, Ruan

    1990-06-01

    Fission cross sections and angular distributions have been measured for the 19F + 208Pb reaction at bombarding energies from 83 to 105 MeV. The fission excitation function is well reproduced on the basis of the coupled-channels theory. The fission-fragment angular distributions are calculated in terms of the transition-state theory, with the transmission coefficients extracted from the excitation function calculation. It is found that a discrepancy between the observations and the predictions in angular anisotropy of fission fragments exists at near- and sub-barrier energies, except for lower and higher energy regions where the discrepancy tends to disappear. Moreover, the anisotropies as a function of the center-of-mass energy show a shoulder around 82 MeV. Our results clearly indicate the considerable effects of the coupling on the sub-barrier fusion cross section and on the near-barrier compound-nucleus spin distribution, and confirm the prediction of an approximately constant value for the mean square spin of a compound nucleus produced in a far sub-barrier fusion reaction.

  14. Moderate MAS enhances local 1H spin exchange and spin diffusion

    NASA Astrophysics Data System (ADS)

    Roos, Matthias; Micke, Peter; Saalwächter, Kay; Hempel, Günter

    2015-11-01

    Proton NMR spin-diffusion experiments are often combined with magic-angle spinning (MAS) to achieve higher spectral resolution of solid samples. Here we show that local proton spin diffusion can indeed become faster at low (<10 kHz) spinning rates as compared to static conditions. Spin diffusion under static conditions can thus be slower than the often referred value of 0.8 nm2/ms, which was determined using slow MAS (Clauss et al., 1993). The enhancement of spin diffusion by slow MAS relies on the modulation of the orientation-dependent dipolar couplings during sample rotation and goes along with transient level crossings in combination with dipolar truncation. The experimental finding and its explanation is supported by density matrix simulations, and also emphasizes the sensitivity of spin diffusion to the local coupling topology. The amplification of spin diffusion by slow MAS cannot be explained by any model based on independent spin pairs; at least three spins have to be considered.

  15. (19)F spin-lattice relaxation of perfluoropolyethers: Dependence on temperature and magnetic field strength (7.0-14.1T).

    PubMed

    Kadayakkara, Deepak K; Damodaran, Krishnan; Hitchens, T Kevin; Bulte, Jeff W M; Ahrens, Eric T

    2014-05-01

    Fluorine ((19)F) MRI of perfluorocarbon-labeled cells has become a powerful technique to track the migration and accumulation of cells in living organisms. It is common to label cells for (19)F MRI with nanoemulsions of perfluoropolyethers that contain a large number of chemically equivalent fluorine atoms. Understanding the mechanisms of (19)F nuclear relaxation, and in particular the spin-lattice relaxation of these molecules, is critical to improving experimental sensitivity. To date, the temperature and magnetic field strength dependence of spin-lattice relaxation rate constant (R1) for perfluoropolyethers has not been described in detail. In this study, we evaluated the R1 of linear perfluoropolyether (PFPE) and cyclic perfluoro-15-crown-5 ether (PCE) at three magnetic field strengths (7.0, 9.4, and 14.1T) and at temperatures ranging from 256-323K. Our results show that R1 of perfluoropolyethers is dominated by dipole-dipole interactions and chemical shift anisotropy. R1 increased with magnetic field strength for both PCE and PFPE. In the temperature range studied, PCE was in the fast motion regime (ωτc<1) at all field strengths, but for PFPE, R1 passed through a maximum, from which the rotational correlation time was estimated. The importance of these measurements for the rational design of new (19)F MRI agents and methods is discussed. PMID:24594752

  16. 19F Spin-lattice Relaxation of Perfluoropolyethers: Dependence on Temperature and Magnetic Field Strength (7.0-14.1T)

    PubMed Central

    Kadayakkara, Deepak K.; Damodaran, Krishnan; Hitchens, T. Kevin; Bulte, Jeff W.M.; Ahrens, Eric T.

    2014-01-01

    Fluorine (19F) MRI of perfluorocarbon labeled cells has become a powerful technique to track the migration and accumulation of cells in living organisms. It is common to label cells for 19F MRI with nanoemulsions of perfluoropolyethers that contain a large number of chemically equivalent fluorine atoms. Understanding the mechanisms of 19F nuclear relaxation, and in particular the spin-lattice relaxation of these molecules, is critical to improving experimental sensitivity. To date, the temperature and magnetic field strength dependence of spin-lattice relaxation rate constant (R1) for perfluoropolyethers has not been described in detail. In this study, we evaluated R1 of linear perfluoropolyether (PFPE) and cyclic perfluoro-15-crown-5 ether (PCE) at three magnetic field strengths (7.0, 9.4, and 14.1 T) and at temperatures ranging from 256-323K. Our results show that R1 of perfluoropolyethers is dominated by dipole-dipole interactions and chemical shift anisotropy. R1 increased with magnetic field strength for both PCE and PFPE. In the temperature range studied, PCE was in the fast motion regime (ωτc < 1) at all field strengths, but for PFPE, R1 passed through a maximum, from which the rotational correlation time was estimated. The importance of these measurements for the rational design of new 19F MRI agents and methods is discussed. PMID:24594752

  17. Precision spectroscopy of the {sup 207}Pb{sup 19}F molecule: Implications for measurement of P-odd and T-odd effects

    SciTech Connect

    Alphei, Lukas D.; Grabow, Jens-Uwe; Petrov, A. N.; Mawhorter, Richard; Murphy, Benjamin; Baum, Alexander; Sears, Trevor J.; Yang, T. Zh.; Rupasinghe, P. M.; McRaven, C. P.; Shafer-Ray, N. E.

    2011-04-15

    Here we report precision microwave spectroscopy of pure rotational transitions of the {sup 207}Pb{sup 19}F isotopologue. We use these data to make predictions of the sensitivity of the molecule to P-odd, T-even and P-odd, T-odd effects.

  18. 19F spin-lattice relaxation of perfluoropolyethers: Dependence on temperature and magnetic field strength (7.0-14.1 T)

    NASA Astrophysics Data System (ADS)

    Kadayakkara, Deepak K.; Damodaran, Krishnan; Hitchens, T. Kevin; Bulte, Jeff W. M.; Ahrens, Eric T.

    2014-05-01

    Fluorine (19F) MRI of perfluorocarbon-labeled cells has become a powerful technique to track the migration and accumulation of cells in living organisms. It is common to label cells for 19F MRI with nanoemulsions of perfluoropolyethers that contain a large number of chemically equivalent fluorine atoms. Understanding the mechanisms of 19F nuclear relaxation, and in particular the spin-lattice relaxation of these molecules, is critical to improving experimental sensitivity. To date, the temperature and magnetic field strength dependence of spin-lattice relaxation rate constant (R1) for perfluoropolyethers has not been described in detail. In this study, we evaluated the R1 of linear perfluoropolyether (PFPE) and cyclic perfluoro-15-crown-5 ether (PCE) at three magnetic field strengths (7.0, 9.4, and 14.1 T) and at temperatures ranging from 256-323 K. Our results show that R1 of perfluoropolyethers is dominated by dipole-dipole interactions and chemical shift anisotropy. R1 increased with magnetic field strength for both PCE and PFPE. In the temperature range studied, PCE was in the fast motion regime (ωτc < 1) at all field strengths, but for PFPE, R1 passed through a maximum, from which the rotational correlation time was estimated. The importance of these measurements for the rational design of new 19F MRI agents and methods is discussed.

  19. Direct mapping of 19F in 19FDG-6P in brain tissue at subcellular resolution using soft X-ray fluorescence

    NASA Astrophysics Data System (ADS)

    Poitry-Yamate, C.; Gianoncelli, A.; Kourousias, G.; Kaulich, B.; Lepore, M.; Gruetter, R.; Kiskinova, M.

    2013-10-01

    Low energy x-ray fluorescence (LEXRF) detection was optimized for imaging cerebral glucose metabolism by mapping the fluorine LEXRF signal of 19F in 19FDG, trapped as intracellular 19F-deoxyglucose-6-phosphate (19FDG-6P) at 1μm spatial resolution from 3μm thick brain slices. 19FDG metabolism was evaluated in brain structures closely resembling the general cerebral cytoarchitecture following formalin fixation of brain slices and their inclusion in an epon matrix. 2-dimensional distribution maps of 19FDG-6P were placed in a cytoarchitectural and morphological context by simultaneous LEXRF mapping of N and O, and scanning transmission x-ray (STXM) imaging. A disproportionately high uptake and metabolism of glucose was found in neuropil relative to intracellular domains of the cell body of hypothalamic neurons, showing directly that neurons, like glial cells, also metabolize glucose. As 19F-deoxyglucose-6P is structurally identical to 18F-deoxyglucose-6P, LEXRF of subcellular 19F provides a link to in vivo 18FDG PET, forming a novel basis for understanding the physiological mechanisms underlying the 18FDG PET image, and the contribution of neurons and glia to the PET signal.

  20. Lifetime-parameters for quasi elastic and deep inelastic collisions extracted from complete angular distributions of89Y(19F, x) y reactions

    NASA Astrophysics Data System (ADS)

    Suomijärvi, T.; Lucas, R.; Mermaz, M. C.; Coffin, J.-P.; Guillaume, G.; Heusch, B.; Jundt, F.; Rami, F.

    1985-09-01

    Energy spectra and angular distributions of heavy fragments produced in 19F + 89Y reaction at 140 MeV incident energy have been measured. Two different domains of reaction mechanism are observed at forward and backward angles respectively; the corresponding lifetime parameters are extracted from their angular distributions.

  1. Advanced NMR approaches in the characterization of coal

    SciTech Connect

    Maciel, G.E.

    1992-01-01

    A considerable effort in this project during the past few months has been focussed on the development of [sup 1]H and [sup 13]C NMR imaging techniques to yield spatially-resolved chemical shift (structure) information on coal. In order to yield the chemical shift information, a solid-state NMR imaging technique must include magic-angle spinning, so rotating gradient capabilities are indicated. A [sup 13]C MAS imaging probe and a [sup 1]H MAS imaging probe and the circuitry necessary for rotating gradients have been designed and constructed. The [sup 1]H system has already produced promising preliminary results, which are briefly described in this report.

  2. In situ NMR analysis of fluids contained in sedimentary rock

    PubMed

    de Swiet TM; Tomaselli; Hurlimann; Pines

    1998-08-01

    Limitations of resolution and absorption in standard chemical spectroscopic techniques have made it difficult to study fluids in sedimentary rocks. In this paper, we show that a chemical characterization of pore fluids may be obtained in situ by magic angle spinning (MAS) nuclear magnetic resonance (NMR), which is normally used for solid samples. 1H MAS-NMR spectra of water and crude oil in Berea sandstone show sufficient chemical shift resolution for a straightforward determination of the oil/water ratio. Copyright 1998 Academic Press. PMID:9716484

  3. Fragment based drug discovery: practical implementation based on ¹⁹F NMR spectroscopy.

    PubMed

    Jordan, John B; Poppe, Leszek; Xia, Xiaoyang; Cheng, Alan C; Sun, Yax; Michelsen, Klaus; Eastwood, Heather; Schnier, Paul D; Nixey, Thomas; Zhong, Wenge

    2012-01-26

    Fragment based drug discovery (FBDD) is a widely used tool for discovering novel therapeutics. NMR is a powerful means for implementing FBDD, and several approaches have been proposed utilizing (1)H-(15)N heteronuclear single quantum coherence (HSQC) as well as one-dimensional (1)H and (19)F NMR to screen compound mixtures against a target of interest. While proton-based NMR methods of fragment screening (FBS) have been well documented and are widely used, the use of (19)F detection in FBS has been only recently introduced (Vulpetti et al. J. Am. Chem. Soc.2009, 131 (36), 12949-12959) with the aim of targeting "fluorophilic" sites in proteins. Here, we demonstrate a more general use of (19)F NMR-based fragment screening in several areas: as a key tool for rapid and sensitive detection of fragment hits, as a method for the rapid development of structure-activity relationship (SAR) on the hit-to-lead path using in-house libraries and/or commercially available compounds, and as a quick and efficient means of assessing target druggability. PMID:22165820

  4. Calculation of vibrational branching ratios and hyperfine structure of 24Mg19F and its suitability for laser cooling and magneto-optical trapping

    NASA Astrophysics Data System (ADS)

    Xu, Liang; Yin, Yanning; Wei, Bin; Xia, Yong; Yin, Jianping

    2016-01-01

    More recently, laser cooling of the diatomic radical magnesium monofluoride (24Mg19F ) is being experimentally preformed [Appl. Phys. Express 8, 092701 (2015), 10.7567/APEX.8.092701 and Opt. Express 22, 28645 (2014), 10.1364/OE.22.028645] and was also studied theoretically [Phys. Rev. A 91, 042511 (2015), 10.1103/PhysRevA.91.042511]. However, some important problems still remain unsolved, so, in our paper, we perform further theoretical study for the feasibility of laser cooling and trapping the 24Mg19F molecule. At first, the highly diagonal Franck-Condon factors of the main transitions are verified by the closed-form approximation, Morse approximation, and Rydberg-Klein-Rees inversion methods, respectively. Afterwards, we investigate the lower X 2Σ1/2 + hyperfine manifolds using a quantum effective Hamiltonian approach and obtain the zero-field hyperfine spectrum with an accuracy of less than 30 kHz ˜5 μ K compared with the experimental results, and then find out that one cooling beam and one or two repumping beams with their first-order sidebands are enough to implement an efficient laser slowing and cooling of 24Mg19F . Meanwhile, we also calculate the accurate hyperfine structure magnetic g factors of the rotational state (X 2Σ1/2 +,N =1 ) and briefly discuss the influence of the external fields on the hyperfine structure of 24Mg19F as well as its possibility of preparing three-dimensional magneto-optical trapping. Finally we give an explanation for the difference between the Stark and Zeeman effects from the perspective of parity and time reversal symmetry. Our study shows that, besides appropriate excitation wavelengths, the short lifetime for the first excited state A 2Π1 /2 , and lighter mass, the 24Mg19F radical could be a good candidate molecule amenable to laser cooling and magneto-optical trapping.

  5. 1H NMR relaxation in urea

    NASA Astrophysics Data System (ADS)

    Taylor, R. E.; Bacher, Alfred D.; Dybowski, C.

    2007-11-01

    Proton NMR spin-lattice relaxation times T1 were measured for urea as a function of temperature. An activation energy of 46.3 ± 4.7 kJ/mol was extracted and compared with the range of 38-65 kJ/mol previously reported in the literature as measured by different magnetic resonance techniques. In addition, proton NMR spin-lattice relaxation times in the rotating frame T1 ρ were measured as a function of temperature. These measurements provide acquisition conditions for the 13C and 15N CP/MAS spectra of pure urea in the crystalline phase.

  6. Characterisation and evaluation of paramagnetic fluorine labelled glycol chitosan conjugates for (19)F and (1)H magnetic resonance imaging.

    PubMed

    De Luca, Elena; Harvey, Peter; Chalmers, Kirsten H; Mishra, Anurag; Senanayake, P Kanthi; Wilson, J Ian; Botta, Mauro; Fekete, Marianna; Blamire, Andrew M; Parker, David

    2014-02-01

    Medium molecular weight glycol chitosan conjugates have been prepared, linked by an amide bond to paramagnetic Gd(III), Ho(III) and Dy(III) macrocyclic complexes in which a trifluoromethyl reporter group is located 6.5 Å from the paramagnetic centre. The faster relaxation of the observed nucleus allows modified pulse sequences to be used with shorter acquisition times. The polydisperse materials have been characterised by gel permeation chromatography, revealing an average molecular weight on the order of 13,800 (Gd), 14,600 (Dy) and 16,200 (Ho), consistent with the presence of 8.5, 9.5 and 13 complexes, respectively. The gadolinium conjugate was prepared for both a q = 1 monoamide tricarboxylate conjugate (r1p 11.2 mM(-1) s(-1), 310 K, 1.4 T) and a q = 0 triphosphinate system, and conventional contrast-enhanced proton MRI studies at 7 T were undertaken in mice bearing an HT-29 or an HCT-116 colorectal tumour xenograft (17 μmol/kg). Enhanced contrast was observed following injection in the tail vein in tumour tissue, with uptake also evident in the liver and kidney with a tumour-to-liver ratio of 2:1 at 13 min, and large amounts in the kidney and bladder consistent with predominant renal clearance. Parallel experiments observing the (19)F resonance in the holmium conjugate complex using a surface coil did not succeed owing to its high R2 value (750 Hz, 7 T). However, the fluorine signal in the dysprosium triphosphinate chitosan conjugate [R1/R2 = 0.6 and R1 = 145 Hz (7 T)] was sharper and could be observed in vivo at -65.7 ppm, following intravenous tail vein injection of a dose of 34 μmol/kg. PMID:23955558

  7. Evaluation of tumor ischemia in response to an indole-based vascular disrupting agent using BLI and (19)F MRI.

    PubMed

    Zhou, Heling; Hallac, Rami R; Lopez, Ramona; Denney, Rebecca; MacDonough, Matthew T; Li, Li; Liu, Li; Graves, Edward E; Trawick, Mary Lynn; Pinney, Kevin G; Mason, Ralph P

    2015-01-01

    Vascular disrupting agents (VDAs) have been proposed as an effective broad spectrum approach to cancer therapy, by inducing ischemia leading to hypoxia and cell death. A novel VDA (OXi8007) was recently reported to show rapid acute selective shutdown of tumor vasculature based on color-Doppler ultrasound. We have now expanded investigations to noninvasively assess perfusion and hypoxiation of orthotopic human MDA-MB-231/luc breast tumor xenografts following the administration of OXi8007 based on dynamic bioluminescence imaging (BLI) and magnetic resonance imaging (MRI). BLI showed significantly lower signal four hours after the administration of OXi8007, which was very similar to the response to combretastatin A-4P (CA4P), but the effect lasted considerably longer, with the BLI signal remaining depressed at 72 hrs. Meanwhile, control tumors exhibited minimal change. Oximetry used (19)F MRI of the reporter molecule hexafluorobenzene and FREDOM (Fluorocarbon Relaxometry using Echo Planar Imaging for Dynamic Oxygen Mapping) to assess pO2 distributions during air and oxygen breathing. pO2 decreased significantly upon the administration of OXi8007 during oxygen breathing (from 122 ± 64 to 34 ± 20 Torr), with further decrease upon switching the gas to air (pO2 = 17 ± 9 Torr). pO2 maps indicated intra-tumor heterogeneity in response to OXi8007, though ultimately all tumor regions became hypoxic. Both BLI and FREDOM showed the efficacy of OXi8007. The pO2 changes measured by FREDOM may be crucial for future study of combined therapy. PMID:25973335

  8. Evidence for the importance of 5'-deoxy-5-fluorouridine catabolism in humans from 19F nuclear magnetic resonance spectrometry.

    PubMed

    Malet-Martino, M C; Armand, J P; Lopez, A; Bernadou, J; Béteille, J P; Bon, M; Martino, R

    1986-04-01

    The use of a new methodology, 19F nuclear magnetic resonance, has allowed detection of all the fluorinated metabolites in the biofluids of patients treated with 5'-deoxy-5-fluorouridine (5'-dFUrd) injected i.v. at a dose of 10 g/m2 over 6 h. This technique, which requires no labeled drug, allows a direct study of the biological sample with no need for extraction or derivatization and a simultaneous identification and quantitation of all the different fluorinated metabolites. As well as the already known metabolites, unmetabolized 5'-dFUrd, 5-fluorouracil, and 5,6-dihydro-5-fluorouracil, the presence of alpha-fluoro-beta-ureidopropionic acid, alpha-fluoro-beta-alanine (FBAL), N-carboxy-alpha-fluoro-beta-alanine, and the fluoride anion F- is reported. The catabolic pathway proposed for 5'-dFUrd is analogous to that of 5-fluorouracil, completed with FBAL----F- step, and the plasmatic equilibrium of FBAL with N-carboxy-alpha-fluoro-beta-alanine, its N-carboxy derivative. The quantitative analysis of the different metabolites found in plasma and urine emphasizes the significance of the catabolic pathway. High concentrations of alpha-fluoro-beta ureidopropionic acid and FBAL are recovered in plasma from 3 h after the beginning of the perfusion to 1 h after its end. The global urinary excretion results show that there is a high excretion of 5'-dFUrd and metabolites. Unchanged 5'-dFUrd and FBAL are by far the major excretory products and are at nearly equal rates. The protocol followed in this study produces relatively low but persistent plasmatic concentrations of 5-fluorouracil throughout the perfusion. PMID:2936452

  9. pEffect of MRI tags: SPIO nanoparticles and 19F nanoemulsion on various populations of mouse mesenchymal stem cells

    PubMed Central

    Muhammad, Ghulam; Jablonska, Anna; Rose, Laura; Walczak, Piotr; Janowski, Miroslaw

    2016-01-01

    Transplantation of mesenchymal stem cells (MSCs) has emerged as a promising strategy for the treatment of myriad human disorders, including several neurological diseases. Superparamagnetic iron oxide nanoparticles (SPION) and fluorine nanoemulsion (19F) are characterized by low toxicity and good sensitivity, and, as such, are among the most frequently used cell-labeling agents. However, to date, their impact across the various populations of MSCs has not been comprehensively investigated. Thus, the impact of MRI tags (independent variable) has been set as a primary endpoint. The various populations of mouse MSCs in which the effect of tag was investigated consisted of 1) tissue of cell origin: bone marrow vs. adipose tissue; 2) age of donor: young vs. old; 3) cell culture conditions: hypoxic vs. normal vs. normal +ascorbic acid (AA); 4) exposure to acidosis: yes vs. no. The impact of those populations has been also analyzed and considered as secondary endpoints. The experimental readouts (dependent variables) included: 1) cell viability; 2) cell size; 3) cell doubling time; 4) colony formation; 5) efficiency of labeling; and 6) cell migration. We did not identify any impact of cell labeling for these investigated populations in any of the readouts. In addition, we found that the harsh microenvironment of injured tissue modeled by a culture of cells in a highly acidic environment has a profound effect on all readouts, and both age of donor and cell origin tissue also have a substantial influence on most of the readouts, while oxygen tension in the cell culture conditions has a smaller impact on MSCs. A detailed characterization of the factors that influence the quality of MSCs is vital to the proper pursuit of preclinical and clinical studies. PMID:26232992

  10. Revisiting NMR through-space J(FF) spin-spin coupling constants for getting insight into proximate F---F interactions.

    PubMed

    Contreras, Rubén H; Llorente, Tomás; Ducati, Lucas Colucci; Tormena, Cláudio Francisco

    2014-07-10

    At present times it is usual practice to mark biological compounds replacing an H for an F atom to study, by means of (19)F NMR spectroscopy, aspects such as binding sites and molecular folding features. This interesting methodology could nicely be improved if it is known how proximity interactions on the F atom affect its electronic structure as gauged through high-resolution (19)F NMR spectroscopy. This is the main aim of the present work and, to this end, differently substituted peri-difluoronaphthalenes are chosen as model systems. In such compounds are rationalized some interesting aspects of the diamagnetic and paramagnetic parts of the (19)F nuclear magnetic shielding tensor as well as the transmission mechanisms for the PSO and FC contributions to (4)JF1F8 indirect nuclear spin-spin coupling constants. PMID:24935717

  11. Magic-angle spinning solid-state multinuclear NMR on low-field instrumentation

    NASA Astrophysics Data System (ADS)

    Sørensen, Morten K.; Bakharev, Oleg; Jensen, Ole; Jakobsen, Hans J.; Skibsted, Jørgen; Nielsen, Niels Chr.

    2014-01-01

    Mobile and cost-effective NMR spectroscopy exploiting low-field permanent magnets is a field of tremendous development with obvious applications for arrayed large scale analysis, field work, and industrial screening. So far such demonstrations have concentrated on relaxation measurements and lately high-resolution liquid-state NMR applications. With high-resolution solid-state NMR spectroscopy being increasingly important in a broad variety of applications, we here introduce low-field magic-angle spinning (MAS) solid-state multinuclear NMR based on a commercial ACT 0.45 T 62 mm bore Halbach magnet along with a homebuilt FPGA digital NMR console, amplifiers, and a modified standard 45 mm wide MAS probe for 7 mm rotors. To illustrate the performance of the instrument and address cases where the low magnetic field may offer complementarity to high-field NMR experiments, we demonstrate applications for 23Na MAS NMR with enhanced second-order quadrupolar coupling effects and 31P MAS NMR where reduced influence from chemical shift anisotropy at low field may facilitate determination of heteronuclear dipole-dipole couplings.

  12. Accelerating Nuclear Magnetic Resonance (NMR) Analysis of Soil Organic Matter with Dynamic Nuclear Polarization (DNP) Enhancement

    NASA Astrophysics Data System (ADS)

    Normand, A. E.; Smith, A. N.; Long, J. R.; Reddy, K. R.

    2014-12-01

    13C magic angle spinning (MAS) solid state Nuclear Magnetic Resonance (ssNMR) has become an essential tool for discerning the chemical composition of soil organic matter (SOM). However, the technique is limited due to the inherent insensitivity of NMR resulting in long acquisition times, especially for low carbon (C) soil. The pursuits of higher magnetic fields or concentrating C with hydrofluoric acid are limited solutions for signal improvement. Recent advances in dynamic nuclear polarization (DNP) have addressed the insensitivity of NMR. DNP utilizes the greater polarization of an unpaired electron in a given magnetic field and transfers that polarization to an NMR active nucleus of interest via microwave irradiation. Signal enhancements of up to a few orders of magnitude have been achieved for various DNP experiments. In this novel study, we conduct DNP 13C cross-polarization (CP) MAS ssNMR experiments of SOM varying in soil C content and chemical composition. DNP signal enhancements reduce the experiment run time allowing samples with low C to be analyzed in hours rather than days. We compare 13C CP MAS ssNMR of SOM with multiple magnetic field strengths, hydrofluoric acid treatment, and novel DNP approaches. We also explore DNP surface enhanced NMR Spectroscopy (SENP) to determine the surface chemistry of SOM. The presented results and future DNP MAS ssNMR advances will lead to further understanding of the nature and processes of SOM.

  13. Angular momentum distribution for the formation of evaporation residues in fusion of 19F with 184W near the Coulomb barrier

    NASA Astrophysics Data System (ADS)

    Nath, S.; Gehlot, J.; Prasad, E.; Sadhukhan, Jhilam; Shidling, P. D.; Madhavan, N.; Muralithar, S.; Golda, K. S.; Jhingan, A.; Varughese, T.; Rao, P. V. Madhusudhana; Sinha, A. K.; Pal, Santanu

    2011-01-01

    We present γ-ray multiplicity distributions for the formation of evaporation residues in the fusion reaction 19F + 184W → 20383Bi 120 at beam energies in the range of 90-110 MeV. The measurements were carried out using a 14 element BGO detector array and the Heavy Ion Reaction Analyzer at the Inter University Accelerator Centre. The data have been unfolded to obtain angular momentum distributions with inputs from the statistical model calculation. Comparison with another neighboring system, viz. 19F + 175Lu → 19480Hg 114 with nearly similar entrance-channel mass asymmetry, hints at the depletion of higher angular momenta after crossing of the Z=82 shell in the compound nucleus.

  14. Nondestructive high-resolution solid-state NMR of rotating thin films at the magic-angle.

    PubMed

    Inukai, Munehiro; Noda, Yasuto; Takeda, Kazuyuki

    2011-12-01

    We present a new approach to nondestructive magic-angle spinning (MAS) nuclear magnetic resonance (NMR) for thin films. In this scheme, the sample put on the top of a rotor is spun using the conventional MAS system, and the NMR signals are detected with an additional coil. Stable spinning of disk-shaped samples with diameters of 7 mm and 12 mm at 14.2 and 7 kHz are feasible. We present 7Li MAS NMR experiments of a thin-film sample of LiCoO2 with a thickness of 200 nm. Taking advantage of the nondestructive feature of the experiment, we also demonstrate ex situ experiments, by tracing conformation change upon annealing for various durations. This approach opens the door for in situ MAS NMR of thin-film devices as well. PMID:21958755

  15. Nondestructive high-resolution solid-state NMR of rotating thin films at the magic-angle

    NASA Astrophysics Data System (ADS)

    Inukai, Munehiro; Noda, Yasuto; Takeda, Kazuyuki

    2011-12-01

    We present a new approach to nondestructive magic-angle spinning (MAS) nuclear magnetic resonance (NMR) for thin films. In this scheme, the sample put on the top of a rotor is spun using the conventional MAS system, and the NMR signals are detected with an additional coil. Stable spinning of disk-shaped samples with diameters of 7 mm and 12 mm at 14.2 and 7 kHz are feasible. We present 7Li MAS NMR experiments of a thin-film sample of LiCoO 2 with a thickness of 200 nm. Taking advantage of the nondestructive feature of the experiment, we also demonstrate ex situ experiments, by tracing conformation change upon annealing for various durations. This approach opens the door for in situ MAS NMR of thin-film devices as well.

  16. High-resolution three-dimensional 19F-magnetic resonance imaging of rat lung in situ: evaluation of airway strain in the perfluorocarbon-filled lung.

    PubMed

    Weigel, Julia K; Steinmann, Daniel; Emerich, Philipp; Stahl, Claudius A; v Elverfeldt, Dominik; Guttmann, Josef

    2011-02-01

    Perfluorocarbons (PFC) are biologically and chemically inert fluids with high oxygen and CO(2) carrying capacities. Their use as liquid intrapulmonary gas carriers during liquid ventilation has been investigated. We established a method of high resolution 3D-(19)F-MRI of the totally PFC-filled lung. The goal of this study was to investigate longitudinal and circumferential airway strain in the setting of increasing airway pressures on 3D-(19)F-MR images of the PFC-filled lung. Sixteen female Wistar rats were euthanized and the liquid perfluorocarbon FC-84 instilled into their lungs. 3D-(19)F-MRI was performed at various intrapulmonary pressures. Measurements of bronchial length and cross-sectional area were obtained from transversal 2D images for each pressure range. Changes in bronchial area were used to determine circumferential strain, while longitudinal strain was calculated from changes in bronchial length. Our method of 3D-(19)F-MRI allowed clear visualization of the great bronchi. Longitudinal strain increased significantly up to 31.1 cmH(2)O. The greatest strain could be found in the range of low airway pressures. Circumferential strain increased strongly with the initial pressure rise, but showed no significant changes above 10.4 cmH(2)O. Longitudinal strain was generally higher in distal airways, while circumferential strain showed no difference. Analysis of mechanical characteristics showed that longitudinal and circumferential airway expansion occurred in an anisotropic fashion. Whereas longitudinal strain still increased with higher pressures, circumferential strain quickly reached a 'strain limit'. Longitudinal strain was higher in distal bronchi, as dense PFCs gravitate to dependent, in this case to dorso-basal parts of the lung, acting as liquid positive end expiratory pressure. PMID:21193813

  17. 19F Magnetic Resonance Imaging of Perfluorocarbons for the Evaluation of Response to Antibiotic Therapy in a Staphylococcus aureus Infection Model

    PubMed Central

    Jakob, Peter; Ohlsen, Knut

    2013-01-01

    Background The emergence of antibiotic resistant bacteria in recent decades has highlighted the importance of developing new drugs to treat infections. However, in addition to the design of new drugs, the development of accurate preclinical testing methods is essential. In vivo imaging technologies such as bioluminescence imaging (BLI) or magnetic resonance imaging (MRI) are promising approaches. In a previous study, we showed the effectiveness of 19F MRI using perfluorocarbon (PFC) emulsions for detecting the site of Staphylococcus aureus infection. In the present follow-up study, we investigated the use of this method for in vivo visualization of the effects of antibiotic therapy. Methods/Principal findings Mice were infected with S. aureus Xen29 and treated with 0.9% NaCl solution, vancomycin or linezolid. Mock treatment led to the highest bioluminescence values during infection followed by vancomycin treatment. Counting the number of colony-forming units (cfu) at 7 days post-infection (p.i.) showed the highest bacterial burden for the mock group and the lowest for the linezolid group. Administration of PFCs at day 2 p.i. led to the accumulation of 19F at the rim of the abscess in all mice (in the shape of a hollow sphere), and antibiotic treatment decreased the 19F signal intensity and volume. Linezolid showed the strongest effect. The BLI, cfu, and MRI results were comparable. Conclusions 19F-MRI with PFCs is an effective non-invasive method for assessing the effects of antibiotic therapy in vivo. This method does not depend on pathogen specific markers and can therefore be used to estimate the efficacy of antibacterial therapy against a broad range of clinically relevant pathogens, and to localize sites of infection. PMID:23724049

  18. THE FLUORINE DESTRUCTION IN STARS: FIRST EXPERIMENTAL STUDY OF THE {sup 19}F(p, {alpha}{sub 0}){sup 16}O REACTION AT ASTROPHYSICAL ENERGIES

    SciTech Connect

    La Cognata, M.; Spitaleri, C.; Indelicato, I.; Cherubini, S.; Gulino, M.; Kiss, G. G.; Lamia, L.; Pizzone, R. G.; Puglia, S. M. R.; Rapisarda, G. G.; Romano, S.; Mukhamedzhanov, A. M.; Aliotta, M.; Burjan, V.; Hons, Z.; Kroha, V.; Mrazek, J.; Piskor, S.; Coc, A.

    2011-10-01

    The {sup 19}F(p, {alpha}){sup 16}O reaction is an important fluorine destruction channel in the proton-rich outer layers of asymptotic giant branch (AGB) stars and it might also play a role in hydrogen-deficient post-AGB star nucleosynthesis. So far, available direct measurements do not reach the energy region of astrophysical interest (E {sub cm} {approx}< 300 keV), because of the hindrance effect of the Coulomb barrier. The Trojan Horse (TH) method was thus used to access this energy region, by extracting the quasi-free contribution to the {sup 2}H({sup 19}F, {alpha}{sup 16}O)n and the {sup 19}F({sup 3}He, {alpha}{sup 16}O)d reactions. The TH measurement of the {alpha}{sub 0} channel shows the presence of resonant structures not observed before, which cause an increase of the reaction rate at astrophysical temperatures up to a factor of 1.7, with potential consequences for stellar nucleosynthesis.

  19. Completion of the Operational Closure of Tank 18F and Tank 19F at the Savannah River Site by Grouting - 13236

    SciTech Connect

    Tisler, Andrew J.

    2013-07-01

    Radioactive waste is stored in underground waste tanks at the Savannah River Site (SRS). The low-level fraction of the waste is immobilized in a grout waste form, and the high level fraction is disposed of in a glass waste form. Once the waste is removed, the tanks are prepared for closure. Operational closure of the tanks consists of filling with grout for the purpose of chemically stabilizing residual material, filling the tank void space for long-term structural stability, and discouraging future intrusion. Two of the old-style single-shell tanks at the SRS have received regulatory approval confirming waste removal had been completed, and have been stabilized with grout as part of completing operational closure and removal from service. Consistent with the regulatory framework, two types of grout were used for the filling of Tanks 18F and 19F. Reducing grout was used to fill the entire volume of Tanks 18F and 19F (bulk fill grout) and a more flowable grout was used to fill equipment that was left in the tank (equipment fill grout). The reducing grout was added to the tanks using portable grout pumps filled from concrete trucks, and delivered the grout through slick lines to the center riser of each tank. Filling of the two tanks has been completed, and all equipment has been filled. The final capping of riser penetrations brings the operation closure of Tanks 18F and 19F to completion. (authors)

  20. Theoretical investigation of the 19F(p, p0) differential cross section up to Ep = 2.3 MeV

    NASA Astrophysics Data System (ADS)

    Paneta, V.; Gurbich, A.; Kokkoris, M.

    2016-03-01

    The use of experimental cross-section data on fluorine in analytical EBS studies is quite problematic, because they are indeed inadequate and discrepant (up to ∼30%). The evaluated values on the other hand, being produced by incorporating the available experimental cross sections within a unified theoretical approach, provide the most reliable data to be used and are therefore very important. The present work contributes in this field by reproducing and attempting to extend the corresponding evaluation for 19F(p, p0), which ranges up to 1730 keV, to proton energies up to 2250 keV, using the AZURE code. The performed R-matrix calculations involved the simultaneous analysis of several experimental input datasets, as well as spectroscopic information concerning the formed compound nucleus 20Ne, while valuable feedback information was provided by proton benchmarking spectra on ZnF2 taken at Ep = 1730 and 2250 keV and at several backscattering angles for the fine tuning of the parameters used. The problem of the 19F(p, p‧) and 19F(p, αx) contributions in the obtained thick target yield spectra is also discussed.

  1. NMR studies of bond arrangements in alkali phosphate glasses

    SciTech Connect

    Alam, T.M.; Brow, R.K.

    1998-01-01

    Solid-state magic angle spinning (MAS) nuclear magnetic resonance (NMR) spectroscopy has become a powerful tool for the investigation of local structure and medium range order in glasses. Previous {sup 31}P MAS NMR studies have detailed the local structure for a series of phosphate glasses. Phosphate tetrahedra within the glass network are commonly described using the Q{sup n} notation, where n = 0, 1, 2, 3 and represents the number of bridging oxygens attached to the phosphate. Using {sup 31}P MAS NMR different phosphate environments are readily identified and quantified. In this paper, the authors present a brief description of recent one dimensional (1D) {sup 6}Li, {sup 7}Li and {sup 31}P MAS experiments along with two-dimensional (2D) {sup 31}P exchange NMR experiments for a series of lithium ultraphosphate glasses. From the 2D exchange experiments the connectivities between different Q{sup n} phosphate tetrahedra were directly measured, while the 1D experiments provided a measure of the P-O-P bond angle distribution and lithium coordination number as a function of Li{sub 2}O concentration.

  2. NMR Studies of the Li-Mg-N-H Phases.

    NASA Astrophysics Data System (ADS)

    Bowman, Robert; Reiter, J. W.; Kulleck, J. G.; Hwang, S.-J.; Luo, Weifang

    2007-03-01

    Solid state NMR including magic-angle-spinning (MAS) and cross-polarization (CP) MAS experiments have been used to characterize various amide and imide phases containing Li and/or Mg. MAS-NMR spectra for the ^1H, ^6Li, ^7Li, and ^15N nuclei have been obtained to improve understanding on formation, processing, and degradation behavior. Only limited information could be obtained from the proton and ^7Li MAS-NMR spectra to due large dipolar interactions and small chemical shifts. However, more success was obtained from the ^6Li and ^15N nuclei although their very long spin-lattice relaxation times did impact signal acquisition times. For example, three distinct ^6Li peaks were resolved from LiNH2 phases that were clearly separated from the LiH secondary phase in these samples. While the ^15N spectra for LiNH2 phase in isotopically enriched samples exhibited only a single peak at least three distinct ^15N peaks were observed from the similarly enriched Mg amide samples. These differences will be related to crystal structures. The NMR spectra also revealed very little motion in these hydrides upon to nearly 500 K.

  3. Studies of minute quantities of natural abundance molecules using 2D heteronuclear correlation spectroscopy under 100kHz MAS

    SciTech Connect

    Nishiyama, Y.; Kobayashi, T.; Malon, M.; Singappuli-Arachchige, D.; Slowing, I. I.; Pruski, M.

    2015-02-16

    Two-dimensional 1H{13C} heteronuclear correlation solid-state NMR spectra of naturally abundant solid materials are presented, acquired using the 0.75-mm magic angle spinning (MAS) probe at spinning rates up to 100 kHz. In spite of the miniscule sample volume (290 nL), high-quality HSQC-type spectra of bulk samples as well as surface-bound molecules can be obtained within hours of experimental time. The experiments are compared with those carried out at 40 kHz MAS using a 1.6-mm probe, which offered higher overall sensitivity due to a larger rotor volume. The benefits of ultrafast MAS in such experiments include superior resolution in 1H dimension without resorting to 1H–1H homonuclear RF decoupling, easy optimization, and applicability to mass-limited samples. As a result, the HMQC spectra of surface-bound species can be also acquired under 100 kHz MAS, although the dephasing of transverse magnetization has significant effect on the efficiency transfer under MAS alone.

  4. Studies of minute quantities of natural abundance molecules using 2D heteronuclear correlation spectroscopy under 100kHz MAS

    DOE PAGESBeta

    Nishiyama, Y.; Kobayashi, T.; Malon, M.; Singappuli-Arachchige, D.; Slowing, I. I.; Pruski, M.

    2015-02-16

    Two-dimensional 1H{13C} heteronuclear correlation solid-state NMR spectra of naturally abundant solid materials are presented, acquired using the 0.75-mm magic angle spinning (MAS) probe at spinning rates up to 100 kHz. In spite of the miniscule sample volume (290 nL), high-quality HSQC-type spectra of bulk samples as well as surface-bound molecules can be obtained within hours of experimental time. The experiments are compared with those carried out at 40 kHz MAS using a 1.6-mm probe, which offered higher overall sensitivity due to a larger rotor volume. The benefits of ultrafast MAS in such experiments include superior resolution in 1H dimensionmore » without resorting to 1H–1H homonuclear RF decoupling, easy optimization, and applicability to mass-limited samples. As a result, the HMQC spectra of surface-bound species can be also acquired under 100 kHz MAS, although the dephasing of transverse magnetization has significant effect on the efficiency transfer under MAS alone.« less

  5. Determination of size and sign of hetero-nuclear coupling constants from 2D 19F-13C correlation spectra

    NASA Astrophysics Data System (ADS)

    Ampt, Kirsten A. M.; Aspers, Ruud L. E. G.; Dvortsak, Peter; van der Werf, Ramon M.; Wijmenga, Sybren S.; Jaeger, Martin

    2012-02-01

    Fluorinated organic compounds have become increasingly important within the polymer and the pharmaceutical industry as well as for clinical applications. For the structural elucidation of such compounds, NMR experiments with fluorine detection are of great value due to the favorable NMR properties of the fluorine nucleus. For the investigation of three fluorinated compounds, triple resonance 2D HSQC and HMBC experiments were adopted to fluorine detection with carbon and/or proton decoupling to yield F-C, F-C{H}, F-C{Cacq} and F-C{H,Cacq} variants. Analysis of E.COSY type cross-peak patterns in the F-C correlation spectra led, apart from the chemical shift assignments, to determination of size and signs of the JCH, JCF, and JHF coupling constants. In addition, the fully coupled F-C HMQC spectrum of steroid 1 was interpreted in terms of E.COSY type patterns. This example shows how coupling constants due to different nuclei can be determined together with their relative signs from a single spectrum. The analysis of cross-peak patterns, as presented here, not only provides relatively straightforward routes to the determination of size and sign of hetero-nuclear J-couplings in fluorinated compounds, it also provides new and easy ways for the determination of residual dipolar couplings and thus for structure elucidation. The examples and results presented in this study may contribute to a better interpretation and understanding of various F-C correlation experiments and thereby stimulate their utilization.

  6. Forensic examination of electrical tapes using high resolution magic angle spinning ¹H NMR spectroscopy.

    PubMed

    Schoenberger, Torsten; Simmross, Ulrich; Poppe, Christian

    2016-01-01

    The application of high resolution magic angle spinning (HR-MAS) (1)H NMR spectroscopy is ideally suited for the differentiation of plastics. In addition to the actual material composition, the different types of polymer architectures and tacticity provide characteristic signals in the fingerprint of the (1)H NMR spectra. The method facilitates forensic comparison, as even small amounts of insoluble but swellable plastic particles are utilized. The performance of HR-MAS NMR can be verified against other methods that were recently addressed in various articles about forensic tape comparison. In this study samples of the 90 electrical tapes already referenced by the FBI laboratory were used. The discrimination power of HR-MAS is demonstrated by the fact that more tape groups can be distinguished by NMR spectroscopy than by using the combined evaluation of several commonly used analytical techniques. An additional advantage of this robust and quick method is the very simple sample preparation. PMID:26558760

  7. Nanoscale NMR spectroscopy and imaging of multiple nuclear species

    NASA Astrophysics Data System (ADS)

    Devience, Stephen J.; Pham, Linh M.; Lovchinsky, Igor; Sushkov, Alexander O.; Bar-Gill, Nir; Belthangady, Chinmay; Casola, Francesco; Corbett, Madeleine; Zhang, Huiliang; Lukin, Mikhail; Park, Hongkun; Yacoby, Amir; Walsworth, Ronald L.

    2015-02-01

    Nuclear magnetic resonance (NMR) spectroscopy and magnetic resonance imaging (MRI) provide non-invasive information about multiple nuclear species in bulk matter, with wide-ranging applications from basic physics and chemistry to biomedical imaging. However, the spatial resolution of conventional NMR and MRI is limited to several micrometres even at large magnetic fields (>1 T), which is inadequate for many frontier scientific applications such as single-molecule NMR spectroscopy and in vivo MRI of individual biological cells. A promising approach for nanoscale NMR and MRI exploits optical measurements of nitrogen-vacancy (NV) colour centres in diamond, which provide a combination of magnetic field sensitivity and nanoscale spatial resolution unmatched by any existing technology, while operating under ambient conditions in a robust, solid-state system. Recently, single, shallow NV centres were used to demonstrate NMR of nanoscale ensembles of proton spins, consisting of a statistical polarization equivalent to ˜100-1,000 spins in uniform samples covering the surface of a bulk diamond chip. Here, we realize nanoscale NMR spectroscopy and MRI of multiple nuclear species (1H, 19F, 31P) in non-uniform (spatially structured) samples under ambient conditions and at moderate magnetic fields (˜20 mT) using two complementary sensor modalities.

  8. 48 CFR 538.272 - MAS price reductions.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 48 Federal Acquisition Regulations System 4 2010-10-01 2010-10-01 false MAS price reductions. 538... Schedules 538.272 MAS price reductions. (a) Section 552.238-75, Price Reductions, requires the contractor to maintain during the contract period the negotiated price/discount relationship (and/or term and...

  9. 48 CFR 538.272 - MAS price reductions.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 48 Federal Acquisition Regulations System 4 2013-10-01 2013-10-01 false MAS price reductions. 538... Schedules 538.272 MAS price reductions. (a) Section 552.238-75, Price Reductions, requires the contractor to maintain during the contract period the negotiated price/discount relationship (and/or term and...

  10. 48 CFR 538.272 - MAS price reductions.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 48 Federal Acquisition Regulations System 4 2014-10-01 2014-10-01 false MAS price reductions. 538... Schedules 538.272 MAS price reductions. (a) Section 552.238-75, Price Reductions, requires the contractor to maintain during the contract period the negotiated price/discount relationship (and/or term and...

  11. 48 CFR 538.272 - MAS price reductions.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 48 Federal Acquisition Regulations System 4 2011-10-01 2011-10-01 false MAS price reductions. 538... Schedules 538.272 MAS price reductions. (a) Section 552.238-75, Price Reductions, requires the contractor to maintain during the contract period the negotiated price/discount relationship (and/or term and...

  12. Molecular dynamics in paramagnetic materials as studied by magic-angle spinning 2H NMR spectra.

    PubMed

    Mizuno, Motohiro; Suzuki, You; Endo, Kazunaka; Murakami, Miwa; Tansho, Masataka; Shimizu, Tadashi

    2007-12-20

    A magic-angle spinning (MAS) 2H NMR experiment was applied to study the molecular motion in paramagnetic compounds. The temperature dependences of 2H MAS NMR spectra were measured for paramagnetic [M(H2O)6][SiF6] (M=Ni2+, Mn2+, Co2+) and diamagnetic [Zn(H2O)6][SiF6]. The paramagnetic compounds exhibited an asymmetric line shape in 2H MAS NMR spectra because of the electron-nuclear dipolar coupling. The drastic changes in the shape of spinning sideband patterns and in the line width of spinning sidebands due to the 180 degrees flip of water molecules and the reorientation of [M(H2O)6]2+ about its C3 axis were observed. In the paramagnetic compounds, paramagnetic spin-spin relaxation and anisotropic g-factor result in additional linebroadening of each of the spinning sidebands. The spectral simulation of MAS 2H NMR, including the effects of paramagnetic shift and anisotropic spin-spin relaxation due to electron-nuclear dipolar coupling and anisotropic g-factor, was performed for several molecular motions. Information about molecular motions in the dynamic range of 10(2) s(-1)MAS NMR spectra when these paramagnetic effects are taken into account. PMID:18027914

  13. Updated THM Astrophysical Factor of the 19F(p, α)16O Reaction and Influence of New Direct Data at Astrophysical Energies

    NASA Astrophysics Data System (ADS)

    La Cognata, M.; Palmerini, S.; Spitaleri, C.; Indelicato, I.; Mukhamedzhanov, A. M.; Lombardo, I.; Trippella, O.

    2015-06-01

    Fluorine nucleosynthesis represents one of the most intriguing open questions in nuclear astrophysics. It has triggered new measurements which may modify the presently accepted paradigm of fluorine production and establish fluorine as an accurate probe of the inner layers of asymptotic giant branch (AGB) stars. Both direct and indirect measurements have attempted to improve the recommended extrapolation to astrophysical energies, showing no resonances. In this work, we will demonstrate that the interplay between direct and indirect techniques represents the most suitable approach to attain the required accuracy for the astrophysical factor at low energies, {{E}c.m.}≲ 300 keV, which is of interest for fluorine nucleosynthesis in AGB stars. We will use the recently measured direct 19F{{(p,α )}16}O astrophysical factor in the 600 keV≲ {{E}c.m.}≲ 800 keV energy interval to renormalize the existing Trojan Horse Method (THM) data spanning the astrophysical energies, accounting for all identified sources of uncertainty. This has a twofold impact on nuclear astrophysics. It shows the robustness of the THM approach even in the case of direct data of questionable quality, as normalization is extended over a broad range, minimizing systematic effects. Moreover, it allows us to obtain more accurate resonance data at astrophysical energies, thanks to the improved 19F{{(p,α )}16}O direct data. Finally, the present work strongly calls for more accurate direct data at low energies, so that we can obtain a better fitting of the direct reaction mechanism contributing to the 19F{{(p,α )}16}O astrophysical factor. Indeed, this work points out that the major source of uncertainty affecting the low-energy S(E) factor is the estimate of the non-resonant contribution, as the dominant role of the 113 keV resonance is now well established.

  14. Annual Report FY2013-- A Kinematically Complete, Interdisciplinary, and Co-Institutional Measurement of the 19F(α,n) Cross-section for Nuclear Safeguards Science

    SciTech Connect

    Peters, William A; Smith, Michael Scott; Clement, Ryan; Tan, Wanpeng; Stech, Ed; Cizewski, J A; Febbraro, Michael; Madurga Flores, Miguel

    2013-10-01

    The goal of this proposal is to enable neutron detection for precision Non-Destructive Assays (NDAs) of actinide-fluoride samples. Neutrons are continuously generated from a UFx matrix in a container or sample as a result of the interaction of alpha particles from uranium-decay α particles with fluorine nuclei in the matrix. Neutrons from 19F(α,n)22Na were once considered a poorly characterized background for assays of UFx samples via 238U spontaneous fission neutron detection [SMI2010B]. However, the yield of decay-α-driven neutrons is critical for 234,235U LEU and HEU assays, as it can used to determine both the total amount of uranium and the enrichment [BER2010]. This approach can be extremely valuable in a variety of safeguard applications, such as cylinder monitoring in underground uranium storage facilities, nuclear criticality safety studies, nuclear materials accounting, and other nonproliferation applications. The success of neutron-based assays critically depends on an accurate knowledge of the cross section of the (α,n) reaction that generates the neutrons. The 40% uncertainty in the 19F(α,n)22Na cross section currently limits the precision of such assays, and has been identified as a key factor in preventing accurate enrichment determinations [CRO2003]. The need for higher quality cross section data for (α,n) reactions has been a recurring conclusion in reviews of the nuclear data needs to support safeguards. The overarching goal of this project is to enable neutron detection to be used for precision Non- Destructive Assays (NDAs) of actinide-fluoride samples. This will significantly advance safeguards verification at existing declared facilities, nuclear materials accounting, process control, nuclear criticality safety monitoring, and a variety of other nonproliferation applications. To reach this goal, Idaho National Laboratory (INL), in partnership with Oak Ridge National Laboratory (ORNL), Rutgers University (RU), and the University of Notre

  15. Status of the direct measurements of 18O(p,γ)19F and 23Na(p,γ)24Mg cross sections at astrophysical energies at LUNA

    NASA Astrophysics Data System (ADS)

    Boeltzig, A.; Pantaleo, F. R.; Best, A.; Imbriani, G.; Junker, M.

    2016-04-01

    18O(p, γ)19F and 23Na(p,γ)24Mg are reactions of astrophysical interest for example in AGB star scenarios. The rates of both reactions are potentially influenced by low-energy resonances for whose strengths either exist only values with large uncertainties, upper limits or even contradictory claims. Measurements at the Laboratory for Underground Nuclear Astrophysics (LUNA) aim at a direct observation of these low-energy resonances, and additional cross section measurements to aid a more precise determination of the reaction rates in astrophysical scenarios. We report the experimental setup and the status of the ongoing measurements of the two reactions at LUNA.

  16. In situ assessment of tumor vascularity using fluorine NMR imaging.

    PubMed

    Ceckler, T L; Gibson, S L; Hilf, R; Bryant, R G

    1990-03-01

    In situ fluorine NMR imaging has been used to measure vascularity in subcutaneously implanted mammary tumors. Oxyferol, a perfluorinated blood substitute comprised of an emulsion of 25% w/v perfluorotributylamine, was used as a tracer. Following iv administration, this perfluorocarbon emulsion remains primarily in the vasculature during the image acquisition period. The distribution of the PFTA in the 19F NMR image gives a map of tissue regions with intact vascularity. This technique has been used to demonstrate decreased blood flow in necrotic regions of R3230AC mammary tumors in which vasculature had been damaged either as a result of spontaneous necrosis or by photodynamic therapy (PDT). Damage to tumor vascularity following PDT was observed prior to the development of necrosis. PMID:2325542

  17. Rapid proton-detected NMR assignment for proteins with fast magic angle spinning.

    PubMed

    Barbet-Massin, Emeline; Pell, Andrew J; Retel, Joren S; Andreas, Loren B; Jaudzems, Kristaps; Franks, W Trent; Nieuwkoop, Andrew J; Hiller, Matthias; Higman, Victoria; Guerry, Paul; Bertarello, Andrea; Knight, Michael J; Felletti, Michele; Le Marchand, Tanguy; Kotelovica, Svetlana; Akopjana, Inara; Tars, Kaspars; Stoppini, Monica; Bellotti, Vittorio; Bolognesi, Martino; Ricagno, Stefano; Chou, James J; Griffin, Robert G; Oschkinat, Hartmut; Lesage, Anne; Emsley, Lyndon; Herrmann, Torsten; Pintacuda, Guido

    2014-09-01

    Using a set of six (1)H-detected triple-resonance NMR experiments, we establish a method for sequence-specific backbone resonance assignment of magic angle spinning (MAS) nuclear magnetic resonance (NMR) spectra of 5-30 kDa proteins. The approach relies on perdeuteration, amide (2)H/(1)H exchange, high magnetic fields, and high-spinning frequencies (ωr/2π ≥ 60 kHz) and yields high-quality NMR data, enabling the use of automated analysis. The method is validated with five examples of proteins in different condensed states, including two microcrystalline proteins, a sedimented virus capsid, and two membrane-embedded systems. In comparison to contemporary (13)C/(15)N-based methods, this approach facilitates and accelerates the MAS NMR assignment process, shortening the spectral acquisition times and enabling the use of unsupervised state-of-the-art computational data analysis protocols originally developed for solution NMR. PMID:25102442

  18. Microcoils and microsamples in solid-state NMR.

    PubMed

    Takeda, Kazuyuki

    2012-01-01

    Recent reports on microcoils are reviewed. The first part of the review includes a discussion of how the geometries of the sample and coil affect the NMR signal intensity. In addition to derivation of the well-known result that the signal intensity increases as the coil size decreases, the prediction that dilution of a small sample with magnetically inert matter leads to better sensitivity if a tiny coil is not available is given. The second part of the review focuses on the issues specific to solid-state NMR. They include realization of magic-angle spinning (MAS) using a microcoil and harnessing of such strong pulses that are feasible only with a microcoil. Two strategies for microcoil MAS, the piggyback method and magic-angle coil spinning (MACS), are reviewed. In addition, MAS of flat, disk-shaped samples is discussed in the context of solid-state NMR of small-volume samples. Strong RF irradiation, which has been exploited in wide-line spectral excitation, multiple-quantum MAS (MQMAS), and dipolar decoupling experiments, has been accompanied by new challenges regarding the Bloch-Siegert effect, the minimum time resolution of the spectrometer, and the time scale of pulse transient effects. For a possible solution to the latter problem, recent reports on active compensation of pulse transients are described. PMID:23083521

  19. Analysis of organic matter at the soil-water interface by NMR spectroscopy: Implications for contaminant sorption processes

    NASA Astrophysics Data System (ADS)

    Simpson, M.; Simpson, A.

    2009-05-01

    Contaminant sorption to soil organic matter (OM) is the main fate of nonionic, hydrophobic organic contaminants in terrestrial environments and a number of studies have suggested that both soil OM structure and physical conformation (as regulated by the clay mineral phase) govern contaminant sorption processes. To investigate this further, a number of soil samples were characterized by both solid-state 13 C Cross Polarization Magic Angle Spinning (CPMAS) NMR and 1H High Resolution Magic Angle Spinning (HR- MAS) NMR. HR-MAS NMR is an innovative NMR method that allows one to examine samples that are semi- solid using liquid state NMR methods (ie: observe 1H which is more sensitive than 13C). With HR-MAS NMR, only those structures that are in contact with the solvent are NMR visible thus one can probe different components within a mixture using different solvents. The 1H HR-MAS NMR spectrum of a grassland soil swollen in water (D2O) is dominated by signals from alkyl and O-alkyl structures but signals from aromatic protons are negligible (the peak at ~8.2ppm is attributed to formic acid). When the soil is swollen in DMSO-d6, a solvent which is more penetrating and capable of breaking hydrogen bonds, aromatic signals are visible suggesting that the aromatic structures are buried within the soil matrix and do not exist at the soil-water interface. The 13C solid-state NMR data confirms that aromatic carbon is present in substantial amounts (estimated at ~40% of the total 13C signal) therefore, the lack of 1H aromatic signals in the HR-MAS NMR spectrum indicates that aromatic structures are buried and that the soil-water interface is dominated by aliphatic chains, carbohydrates, and peptides. The NMR data indicates that the mineral component of soils governs the physical conformation of OM at the soil-water interface.

  20. Diamond deposition and defect chemistry studied via solid state NMR

    NASA Astrophysics Data System (ADS)

    Gleason, Karen K.

    1994-06-01

    Diamond defects were quantified by nuclear magnetic resonance (NMR). While maintaining the macroscopic integrity of the films, concentrations between 0.001 and 1.0 at.% H were measured, among the lowest ever reported by solid-state 1H NMR. These concentrations were correlated to infrared absorption in the 8 to 10 micron region and to thermal conductivity. Despite the low concentrations, Multiple Quantum NMR reveals a high degree of hydrogen clustering consistent with grain boundary passivation. Most hydrogen is rigidly held, but some, probably in -OCH3 and -NCH3 defects, undergoes rotation at room temperature. Similar results were obtained for hot-filament, microwave-plasma and DC arc-jet films, suggesting a common surface chemistry, but no hydrogen was detected in an as-deposited combustion film. 13C NMR provided the first quantitative determination of non-diamond bonded carbon defects, providing a benchmark for Raman spectroscopy, the primary characterization method for diamond. Selective 13C labeling demonstrated heterogeneous reactions involving carbon occur at the hot-filament. With high-speed magic-angle-spinning 19F NMR, CFx (x=1-3) functionalities were resolved on the surface of plasma-treated diamond powder. Understanding these defects impacts the understanding of film growth mechanisms and structure-property relationships for CVD diamond.

  1. Free variable selection QSPR study to predict 19F chemical shifts of some fluorinated organic compounds using Random Forest and RBF-PLS methods

    NASA Astrophysics Data System (ADS)

    Goudarzi, Nasser

    2016-04-01

    In this work, two new and powerful chemometrics methods are applied for the modeling and prediction of the 19F chemical shift values of some fluorinated organic compounds. The radial basis function-partial least square (RBF-PLS) and random forest (RF) are employed to construct the models to predict the 19F chemical shifts. In this study, we didn't used from any variable selection method and RF method can be used as variable selection and modeling technique. Effects of the important parameters affecting the ability of the RF prediction power such as the number of trees (nt) and the number of randomly selected variables to split each node (m) were investigated. The root-mean-square errors of prediction (RMSEP) for the training set and the prediction set for the RBF-PLS and RF models were 44.70, 23.86, 29.77, and 23.69, respectively. Also, the correlation coefficients of the prediction set for the RBF-PLS and RF models were 0.8684 and 0.9313, respectively. The results obtained reveal that the RF model can be used as a powerful chemometrics tool for the quantitative structure-property relationship (QSPR) studies.

  2. Analysis of the 19F(p, α0)16O reaction at low energies and the spectroscopy of 20Ne

    NASA Astrophysics Data System (ADS)

    Lombardo, I.; Dell'Aquila, D.; Campajola, L.; Rosato, E.; Spadaccini, G.; Vigilante, M.

    2013-12-01

    The investigation of the 19F(p, α0) reaction at low bombarding energies allows the study of the spectroscopy of the 20Ne compound nucleus in an energy region where the existence of quartet excitations has been suggested in the literature. Moreover, this reaction plays a major role in the fourth branch of the CNO cycle since it is relevant for the correct description of the hydrogen burning of fluorine in stars. For these reasons, we decided to investigate the 19F(p, α0) reaction in the Ep ≃ 0.6-1 MeV energy range. The analysis of angular distributions and excitation functions allows one to improve the 20Ne spectroscopy in an excitation energy region where some ambiguities concerning Jπ assignments exist in the literature. In particular, the present data suggest a Jπ = 0+ assignment to the Ex = 13.642 MeV resonance. For this state, both partial and reduced widths for the α0 channel have been deduced. The trend of the astrophysical factor has been obtained from the integrated cross section. A comparison of the present results with data reported in the literature is also discussed.

  3. The fluorine destruction in stars: First experimental study of the {sup 19}F(p,{alpha}){sup 16}O reaction at astrophysical energies

    SciTech Connect

    La Cognata, M.; Mukhamedzhanov, A.; Spitaleri, C.; Indelicato, I.; Aliotta, M.; Burjan, V.; Cherubini, S.; Coc, A.; Gulino, M.; Hons, Z.; Kiss, G. G.; Kroha, V.; Lamia, L.; Mrazek, J.; Palmerini, S.; Piskor, S.; Pizzone, R. G.; Puglia, S. M. R.; Rapisarda, G. G.; Romano, S.; and others

    2012-11-12

    The {sup 19}F(p,{alpha}){sup 16}O reaction is an important fluorine destruction channel in the proton-rich outer layers of asymptotic giant branch (AGB) stars and it might also play a role in hydrogendeficient post-AGB star nucleosynthesis. So far, available direct measurements do not reach the energy region of astrophysical interest (E{sub cm}{approx} 300 keV), because of the hindrance effect of the Coulomb barrier. The Trojan Horse (TH) method was thus used to access this energy region, by extracting the quasi-free contribution to the {sup 2}H({sup 19}F,{alpha}{sup 16}O)n reaction. The TH measurement of the {alpha}{sub 0} channel, which is the dominant one at such energies, shows the presence of resonant structures not observed before that cause an increase of the reaction rate at astrophysical temperatures up to a factor of 1.7, with potential important consequences for stellar nucleosynthesis.

  4. Deconvolution of Complex 1D NMR Spectra Using Objective Model Selection.

    PubMed

    Hughes, Travis S; Wilson, Henry D; de Vera, Ian Mitchelle S; Kojetin, Douglas J

    2015-01-01

    Fluorine (19F) NMR has emerged as a useful tool for characterization of slow dynamics in 19F-labeled proteins. One-dimensional (1D) 19F NMR spectra of proteins can be broad, irregular and complex, due to exchange of probe nuclei between distinct electrostatic environments; and therefore cannot be deconvoluted and analyzed in an objective way using currently available software. We have developed a Python-based deconvolution program, decon1d, which uses Bayesian information criteria (BIC) to objectively determine which model (number of peaks) would most likely produce the experimentally obtained data. The method also allows for fitting of intermediate exchange spectra, which is not supported by current software in the absence of a specific kinetic model. In current methods, determination of the deconvolution model best supported by the data is done manually through comparison of residual error values, which can be time consuming and requires model selection by the user. In contrast, the BIC method used by decond1d provides a quantitative method for model comparison that penalizes for model complexity helping to prevent over-fitting of the data and allows identification of the most parsimonious model. The decon1d program is freely available as a downloadable Python script at the project website (https://github.com/hughests/decon1d/). PMID:26241959

  5. Multinuclear Solid-State NMR Investigation of Hexaniobate and Hexatantalate Compounds.

    PubMed

    Deblonde, Gauthier J-P; Coelho-Diogo, Cristina; Chagnes, Alexandre; Cote, Gérard; Smith, Mark E; Hanna, John V; Iuga, Dinu; Bonhomme, Christian

    2016-06-20

    This work determines the potential of solid-state NMR techniques to probe proton, alkali, and niobium environments in Lindqvist salts. Na7HNb6O19·15H2O (1), K8Nb6O19·16H2O (2), and Na8Ta6O19·24.5H2O (3) have been studied by solid-state static and magic angle spinning (MAS) NMR at high and ultrahigh magnetic field (16.4 and 19.9 T). (1)H MAS NMR was found to be a convenient and straightforward tool to discriminate between protonated and nonprotonated clusters AxH8-xM6O19·nH2O (A = alkali ion; M = Nb, Ta). (93)Nb MAS NMR studies at different fields and MAS rotation frequencies have been performed on 1. For the first time, the contributions of NbO5Oμ2H sites were clearly distinguished from those assigned to NbO6 sites in the hexaniobate cluster. The strong broadening of the resonances obtained under MAS was interpreted by combining chemical shift anisotropy (CSA) with quadrupolar effects and by using extensive fitting of the line shapes. In order to obtain the highest accuracy for all NMR parameters (CSA and quadrupolar), (93)Nb WURST QCPMG spectra in the static mode were recorded at 16.4 T for sample 1. The (93)Nb NMR spectra were interpreted in connection with the XRD data available in the literature (i.e., fractional occupancies of the NbO5Oμ2H sites). 1D (23)Na MAS and 2D (23)Na 3QMAS NMR studies of 1 revealed several distinct sodium sites. The multiplicity of the sites was again compared to structural details previously obtained by single-crystal X-ray diffraction (XRD) studies. The (23)Na MAS NMR study of 3 confirmed the presence of a much larger distribution of sodium sites in accordance with the 10 sodium sites predicted by XRD. Finally, the effect of Nb/Ta substitutions in 1 was also probed by multinuclear MAS NMR ((1)H, (23)Na, and (93)Nb). PMID:27245403

  6. Friedel's salt formation in sulfoaluminate cements: A combined XRD and {sup 27}Al MAS NMR study

    SciTech Connect

    Paul, G.; Boccaleri, E.; Buzzi, L.; Canonico, F.; Gastaldi, D.

    2015-01-15

    Four different binders based on calcium sulfoaluminate cements have been submitted to accelerated chlorination through ionic exchange on hydrated pastes, in order to investigate their ability to chemically bind chloride ions that might reduce chloride penetration. The composition of hydrated cements before and after the treatment was evaluated by means of an X-Ray Diffraction–{sup 27}Al Magic Angle Spinning Nuclear Magnetic Resonance Spectroscopy combined study, allowing to take into account even partially amorphous phases and to make quantitative assumption on the relative abundance of the different aluminium-containing phases. It was found that low SO{sub 3} Sulfoaluminate–Portland ternary systems are the most effective in binding chloride ions and the active role played by different members of the AFm family in chloride uptake was confirmed. Moreover, a peculiar behavior related to the formation of Friedel's salt in different pH conditions was also established for the different cements.

  7. Structural analysis of a signal peptide inside the ribosome tunnel by DNP MAS NMR.

    PubMed

    Lange, Sascha; Franks, W Trent; Rajagopalan, Nandhakishore; Döring, Kristina; Geiger, Michel A; Linden, Arne; van Rossum, Barth-Jan; Kramer, Günter; Bukau, Bernd; Oschkinat, Hartmut

    2016-08-01

    Proteins are synthesized in cells by ribosomes and, in parallel, prepared for folding or targeting. While ribosomal protein synthesis is progressing, the nascent chain exposes amino-terminal signal sequences or transmembrane domains that mediate interactions with specific interaction partners, such as the signal recognition particle (SRP), the SecA-adenosine triphosphatase, or the trigger factor. These binding events can set the course for folding in the cytoplasm and translocation across or insertion into membranes. A distinction of the respective pathways depends largely on the hydrophobicity of the recognition sequence. Hydrophobic transmembrane domains stabilize SRP binding, whereas less hydrophobic signal sequences, typical for periplasmic and outer membrane proteins, stimulate SecA binding and disfavor SRP interactions. In this context, the formation of helical structures of signal peptides within the ribosome was considered to be an important factor. We applied dynamic nuclear polarization magic-angle spinning nuclear magnetic resonance to investigate the conformational states of the disulfide oxidoreductase A (DsbA) signal peptide stalled within the exit tunnel of the ribosome. Our results suggest that the nascent chain comprising the DsbA signal sequence adopts an extended structure in the ribosome with only minor populations of helical structure. PMID:27551685

  8. Water Adsorption on Pyrogenic Silica Followed by 1H MAS NMR

    PubMed

    d'espinose de la Caillerie JB; Aimeur; Kortobi; Legrand

    1997-10-15

    On the surface of two commercial pyrogenic silicas (Degussa and Cabot), five resonances were identified on the basis of the chemical shift, homonuclear coupling (T2), and spin-lattice relaxation behavior (T1). In accordance with previous studies we observed three different types of silanol groups: (i) weakly coupled (long T2), water inaccessible, isolated "internal" silanols at 1.8 ppm; (ii) weakly coupled, external "free" silanols revealed upon dehydration at 2.5 ppm; and (iii) strongly coupled external hydrogen bound silanols with an unresolved broad resonance between 3 and 7 ppm. The resonance of water, whose position between 2.6 and 4.6 ppm depended on water content, corresponded to two unresolved species of slightly different T1. By equating this resonance to the weighted average of two distinct populations of water, we were able to distinguish the first layer of strongly hydrogen bound water at 2.7 ppm from liquid-like water at 5 ppm. The first layer is complete for water relative humidity as low as 3.6% and corresponds to a