Science.gov

Sample records for 19f nmr analysis

  1. Solid-state 19F-NMR analysis of 19F-labeled tryptophan in gramicidin A in oriented membranes.

    PubMed Central

    Grage, Stephan L; Wang, Junfeng; Cross, Timothy A; Ulrich, Anne S

    2002-01-01

    The response of membrane-associated peptides toward the lipid environment or other binding partners can be monitored by solid-state NMR of suitably labeled side chains. Tryptophan is a prominent amino acid in transmembrane helices, and its (19)F-labeled analogues are generally biocompatible and cause little structural perturbation. Hence, we use 5F-Trp as a highly sensitive NMR probe to monitor the conformation and dynamics of the indole ring. To establish this (19)F-NMR strategy, gramicidin A was labeled with 5F-Trp in position 13 or 15, whose chi(1)/chi(2) torsion angles are known from previous (2)H-NMR studies. First, the alignment of the (19)F chemical shift anisotropy tensor within the membrane was deduced by lineshape analysis of oriented samples. Next, the three principal axes of the (19)F chemical shift anisotropy tensor were assigned within the molecular frame of the indole ring. Finally, determination of chi(1)/chi(2) for 5F-Trp in the lipid gel phase showed that the side chain alignment differs by up to 20 degrees from its known conformation in the liquid crystalline state. The sensitivity gain of (19)F-NMR and the reduction in the amount of material was at least 10-fold compared with previous (2)H-NMR studies on the same system and 100-fold compared with (15)N-NMR. PMID:12496101

  2. Characterization of solid polymer dispersions of active pharmaceutical ingredients by 19F MAS NMR and factor analysis

    NASA Astrophysics Data System (ADS)

    Urbanova, Martina; Brus, Jiri; Sedenkova, Ivana; Policianova, Olivia; Kobera, Libor

    In this contribution the ability of 19F MAS NMR spectroscopy to probe structural variability of poorly water-soluble drugs formulated as solid dispersions in polymer matrices is discussed. The application potentiality of the proposed approach is demonstrated on a moderately sized active pharmaceutical ingredient (API, Atorvastatin) exhibiting extensive polymorphism. In this respect, a range of model systems with the API incorporated in the matrix of polvinylpyrrolidone (PVP) was prepared. The extent of mixing of both components was determined by T1(1H) and T1ρ(1H) relaxation experiments, and it was found that the API forms nanosized domains. Subsequently it was found out that the polymer matrix induces two kinds of changes in 19F MAS NMR spectra. At first, this is a high-frequency shift reaching 2-3 ppm which is independent on molecular structure of the API and which results from the long-range polarization of the electron cloud around 19F nucleus induced by electrostatic fields of the polymer matrix. At second, this is broadening of the signals and formation of shoulders reflecting changes in molecular arrangement of the API. To avoid misleading in the interpretation of the recorded 19F MAS NMR spectra, because both the contributions act simultaneously, we applied chemometric approach based on multivariate analysis. It is demonstrated that factor analysis of the recorded spectra can separate both these spectral contributions, and the subtle structural differences in the molecular arrangement of the API in the nanosized domains can be traced. In this way 19F MAS NMR spectra of both pure APIs and APIs in solid dispersions can be directly compared. The proposed strategy thus provides a powerful tool for the analysis of new formulations of fluorinated pharmaceutical substances in polymer matrices.

  3. Conformation analysis and molecular mobility of ethylene and tetrafluoroethylene copolymer using solid-state 19F MAS and 1H --> 19F CP/MAS NMR spectroscopy.

    PubMed

    Aimi, Keitaro; Ando, Shinji

    2004-07-01

    The changes in the conformation and molecular mobility accompanied by a phase transition in the crystalline domain were analyzed for ethylene (E) and tetrafluoroethylene (TFE) copolymer, ETFE, using variable-temperature (VT) solid-state 19F magic angle spinning (MAS) and 1H --> 19F cross-polarization (CP)/MAS NMR spectroscopy. The shifts of the signals for fluorines in TFE units to higher frequency and the continuing decrease and increase in the T1rho(F) values suggest that conformational exchange motions exist in the crystalline domain between 42 and 145 degrees C. Quantum chemical calculations of magnetic shielding constants showed that the high-frequency shift of TFE units should be induced by trans to gauche conformational changes at the CH2-CF2 linkage in the E-TFE unit. Although the 19F signals of the crystalline domain are substantially overlapped with those of the amorphous domain at ambient probe temperature (68 degrees C), they were successfully distinguished by using the dipolar filter and spin-lock pulse sequences at 145 degrees C. The dipolar coupling constants for the crystalline domain, which can be estimated by fitting the dipolar oscillation behaviors in the 1H --> 19F CP curve, showed a significant decrease with increasing temperature from 42 to 145 degrees C. This is due to the averaging of 1H-19F dipolar interactions originating from the molecular motion in the crystalline domain. The increase in molecular mobility in the crystalline domain was clearly shown by VT T1rho(F) and 1H --> 19F CP measurements in the phase transition temperature range. PMID:15181627

  4. Intracellular pH of perfused single frog skin: combined 19F- and 31P-NMR analysis.

    PubMed

    Civan, M M; Lin, L E; Peterson-Yantorno, K; Taylor, J; Deutsch, C

    1984-11-01

    Intracellular pH (pHc) has been determined in frog skin by applying two different methods of pH measurement, 19F and 31P nuclear magnetic resonance (NMR) analysis, to the same tissues. Results from both NMR approaches confirm an observation by Lin, Shporer, and Civan [Am. J. Physiol. 248 (Cell Physiol. 17): 1985] that acidification of the extracellular medium reverses the sign of the pH gradient present under baseline conditions. The fluorinated probe, alpha-(difluoromethyl)-alanine methyl ester, was introduced into the epithelial cells by preincubating skins for 4.7-10.4 h at room temperature in Ringer solutions containing 1 mM ester. The free amino acid was subsequently released by intracellular esterase activity, thus providing a high enough probe concentration for NMR analysis to be practicable. From measurements of short-circuit current and transepithelial resistance under base-line and experimental conditions and the appearance of phosphocreatine (PCr) in the 31P spectrum of preloaded tissues, the fluorinated probe appears to be nontoxic to frog skin. Measurement of the chemical shift of methylphosphonate relative to PCr permitted calculation of extracellular pH. Estimation of the intracellular pH was performed both by measurement of the chemical shift of inorganic phosphate (Pi) relative to PCr and by measurement of the central peak spacing of the 19F spectrum. From four direct comparisons of the two techniques in two experiments, the difference in the estimated pH was only 0.03 +/- 0.07 pH units, supporting the concept that 31P-NMR analysis is a valid method of measuring pH in this tissue. PMID:6496729

  5. The effect of ethanol on hydroxyl and carbonyl groups in biopolyol produced by hydrothermal liquefaction of loblolly pine: (31)P-NMR and (19)F-NMR analysis.

    PubMed

    Celikbag, Yusuf; Via, Brian K; Adhikari, Sushil; Buschle-Diller, Gisela; Auad, Maria L

    2016-08-01

    The goal of this study was to investigate the role of ethanol and temperature on the hydroxyl and carbonyl groups in biopolyol produced from hydrothermal liquefaction of loblolly pine (Pinus spp.) carried out at 250, 300, 350 and 390°C for 30min. Water and water/ethanol mixture (1/1, wt/wt) were used as liquefying solvent in the HTL experiments. HTL in water and water/ethanol is donated as W-HTL and W/E-HTL, respectively. It was found that 300°C and water/ethanol solvent was the optimum liquefaction temperature and solvent, yielding up to 68.1wt.% bio-oil and 2.4wt.% solid residue. (31)P-NMR analysis showed that biopolyol produced by W-HTL was rich in phenolic OH while W/E-HTL produced more aliphatic OH rich biopolyols. Moreover, biopolyols with higher hydroxyl concentration were produced by W/E-HTL. Carbonyl groups were analyzed by (19)F-NMR, which showed that ethanol reduced the concentration of carbonyl groups. PMID:27126078

  6. Ring current shifts in (19)F-NMR of membrane proteins.

    PubMed

    Liu, Dongsheng; Wüthrich, Kurt

    2016-05-01

    Fluorine-19 NMR markers are attractive reporter groups for use in studies of complex biomacromolecular systems, in particular also for studies of function-related conformational equilibria and rate processes in membrane proteins. Advantages of (19)F-NMR probes include high sensitivity of the (19)F chemical shifts to variations in the non-covalent environment. Nonetheless, in studies of G protein-coupled receptors (GPCR) we encountered situations where (19)F chemical shifts were not responsive to conformational changes that had been implicated by other methods. This prompted us to examine possible effects of aromatic ring current fields on the chemical shifts of (19)F-NMR probes used in GPCRs. Analysis of previously reported (19)F-NMR data on the β2-adrenergic receptor and mammalian rhodopsin showed that all (19)F-labeling sites which manifested conformational changes are located near aromatic residues. Although ring current effects are small when compared to other known non-covalent effects on (19)F chemical shifts, there is thus an indication that their contributions are significant when studying activation processes in GPCRs, since the observed activation-related (19)F-NMR chemical shifts are comparable in size to the calculated ring current shifts. Considering the impact of ring current shifts may thus be helpful in identifying promising indigenous or engineered labeling sites for future (19)F-NMR studies of GPCR activation, and novel information may be obtained on the nature of conformational rearrangements near the (19)F-labels. It will then also be interesting to see if the presently indicated role of ring current shifts in membrane protein studies with (19)F-NMR markers can be substantiated by a more extensive data base resulting from future studies. PMID:27240587

  7. A 19F NMR Study of Enzyme Activity

    NASA Astrophysics Data System (ADS)

    Peterman, Keith E.; Lentz, Kevin; Duncan, Jeffery

    1998-10-01

    This basic enzyme activity laboratory experiment demonstrates how 19F NMR can be used in biochemical studies and presents the advantages of 19F NMR over 1H NMR for studies of this nature. N-Trifluoroacetylglycine was selected as a commercially available model fluorine-tagged substrate that readily undergoes acylase I-catalyzed hydrolysis to produce trifluoroacetic acid and glycine. Progress of the reaction was monitored by following conversion of the trifluoroacetyl moiety peak of N-trifluoroacetylglycine to trifluoroacetic acid. The extent of hydrolysis was determined by comparing integrated ratios of the two 19F NMR peaks. A plot of percent hydrolysis versus enzyme concentration was used to calculate unit activity of the enzyme. This is a viable laboratory experiment for junior/senior-level courses in instrumental analytical chemistry, biochemistry, molecular biology, or spectroscopy.

  8. NbF{sub 5} and TaF{sub 5}: Assignment of {sup 19}F NMR resonances and chemical bond analysis from GIPAW calculations

    SciTech Connect

    Biswal, Mamata; Body, Monique; Legein, Christophe; Sadoc, Aymeric; Boucher, Florent

    2013-11-15

    The {sup 19}F isotropic chemical shifts (δ{sub iso}) of two isomorphic compounds, NbF{sub 5} and TaF{sub 5}, which involve six nonequivalent fluorine sites, have been experimentally determined from the reconstruction of 1D {sup 19}F MAS NMR spectra. In parallel, the corresponding {sup 19}F chemical shielding tensors have been calculated using the GIPAW method for both experimental and DFT-optimized structures. Furthermore, the [M{sub 4}F{sub 20}] units of NbF{sub 5} and TaF{sub 5} being held together by van der Waals interactions, the relevance of Grimme corrections to the DFT optimization processes has been evaluated. However, the semi-empirical dispersion correction term introduced by such a method does not show any significant improvement. Nonetheless, a complete and convincing assignment of the {sup 19}F NMR lines of NbF{sub 5} and TaF{sub 5} is obtained, ensured by the linearity between experimental {sup 19}F δ{sub iso} values and calculated {sup 19}F isotropic chemical shielding σ{sub iso} values. The effects of the geometry optimizations have been carefully analyzed, confirming among other matters, the inaccuracy of the experimental structure of NbF{sub 5}. The relationships between the fluorine chemical shifts, the nature of the fluorine atoms (bridging or terminal), the position of the terminal ones (opposite or perpendicular to the bridging ones), the fluorine charges, the ionicity and the length of the M–F bonds have been established. Additionally, for three of the {sup 19}F NMR lines of NbF{sub 5}, distorted multiplets, arising from {sup 1}J-coupling and residual dipolar coupling between the {sup 19}F and {sup 93}Nb nuclei, were simulated yielding to values of {sup 93}Nb–{sup 19}F {sup 1}J-coupling for the corresponding fluorine sites. - Graphical abstract: The complete assignment of the {sup 19}F NMR lines of NbF{sub 5} and TaF{sub 5} allow establishing relationships between the {sup 19}F δ{sub iso} values, the nature of the fluorine atoms

  9. Prediction of (19)F NMR Chemical Shifts in Labeled Proteins: Computational Protocol and Case Study.

    PubMed

    Isley, William C; Urick, Andrew K; Pomerantz, William C K; Cramer, Christopher J

    2016-07-01

    The structural analysis of ligand complexation in biomolecular systems is important in the design of new medicinal therapeutic agents; however, monitoring subtle structural changes in a protein's microenvironment is a challenging and complex problem. In this regard, the use of protein-based (19)F NMR for screening low-molecular-weight molecules (i.e., fragments) can be an especially powerful tool to aid in drug design. Resonance assignment of the protein's (19)F NMR spectrum is necessary for structural analysis. Here, a quantum chemical method has been developed as an initial approach to facilitate the assignment of a fluorinated protein's (19)F NMR spectrum. The epigenetic "reader" domain of protein Brd4 was taken as a case study to assess the strengths and limitations of the method. The overall modeling protocol predicts chemical shifts for residues in rigid proteins with good accuracy; proper accounting for explicit solvation of fluorinated residues by water is critical. PMID:27218275

  10. Homonuclear dipolar recoupling under ultra-fast magic-angle spinning: probing 19F-19F proximities by solid-state NMR.

    PubMed

    Wang, Qiang; Hu, Bingwen; Lafon, Olivier; Trébosc, Julien; Deng, Feng; Amoureux, Jean-Paul

    2010-03-01

    We describe dipolar recoupling methods that accomplish, at high magic-angle spinning (MAS) frequencies, the excitation of double-quantum (DQ) coherences between spin-1/2 nuclei. We employ rotor-synchronized symmetry-based pulse sequences which are either gamma-encoded or non-gamma-encoded. The sensitivity and the robustness to both chemical-shift anisotropy and offset are examined. We also compare different techniques to avoid signal folding in the indirect dimension of two-dimensional double-quantum<-->single-quantum (DQ-SQ) spectra. This comprehensive analysis results in the identification of satisfactory conditions for dipolar (19)F-(19)F recoupling at high magnetic fields and high MAS frequencies. The utility of these recoupling methods is demonstrated with high-resolution DQ-SQ NMR spectra, which allow probing (19)F-(19)F proximities in powered fluoroaluminates. PMID:20044288

  11. Fluorinated Boronic Acid-Appended Bipyridinium Salts for Diol Recognition and Discrimination via (19)F NMR Barcodes.

    PubMed

    Axthelm, Jörg; Görls, Helmar; Schubert, Ulrich S; Schiller, Alexander

    2015-12-16

    Fluorinated boronic acid-appended benzyl bipyridinium salts, derived from 4,4'-, 3,4'-, and 3,3'-bipyridines, were synthesized and used to detect and differentiate diol-containing analytes at physiological conditions via (19)F NMR spectroscopy. An array of three water-soluble boronic acid receptors in combination with (19)F NMR spectroscopy discriminates nine diol-containing bioanalytes--catechol, dopamine, fructose, glucose, glucose-1-phosphate, glucose-6-phosphate, galactose, lactose, and sucrose--at low mM concentrations. Characteristic (19)F NMR fingerprints are interpreted as two-dimensional barcodes without the need of multivariate analysis techniques. PMID:26595191

  12. {sup 19}F NMR spectra and structures of halogenated porphyrins

    SciTech Connect

    Birnbaum, E.R.; Hodge, J.A.; Grinstaff, M.W.

    1995-07-05

    Fluorine-19 NMR spectra of a series of halogenated porphyrins have been used to create a spectral library of different types of fluorine splitting patterns for tetrakis(pentafluorophenyl) porphyrins (TFPP) complexed with diamagnetic and paramagnetic metal ions. The paramagnetic shift, line broadening, and fine structure of the resonances form the peripheral pentafluorophenyl rings are dependent on the symmetry and core environment of the porphyrin macrocycles. In combination with crystal structure data, {sup 19}F NMR helps define the behavior of halogenated porphyrins in solution. Six new crystal structures for TFPP and octahalo-TFPP derivatives are reported: H{sub 2}TFPP in rhombohedral space group R3, a = 20.327(4) {Angstrom}, c = 15.261(2) {Angstrom}, {beta} = 103.87(2){degrees}, V = 2227.6(13) {Angstrom}{sup 3}, Z = 2; CuTFPP in rhombohedral space group R3, a = 20.358(5), c = 14.678(2) {Angstrom}, {alpha} = 88.97(1), {beta}=76.05(1){degrees}, {gamma} = 71.29(1){degrees}, V = 2181.4(6) {Angstrom}{sup 3}, Z = 2; ZnTFPPCl{sub 8} in tetragonal space group P42, c, a = 19.502(20), c = 10.916(8) {Angstrom}, V = 4152(6) {Angstrom}{sup 3}, Z = 2; H{sub 2}TFPPBr{sub 8} in monoclinic space group C2, a = 27.634(6) {Angstrom}, b = 6.926(2) {Angstrom}, c = 14.844(3) {Angstrom}, {beta} = 109.64(2){degrees}, V = 2675.8(11) {Angstrom}{sup 3}, Z = 2.

  13. Simultaneous 19F-1H medium resolution NMR spectroscopy for online reaction monitoring

    NASA Astrophysics Data System (ADS)

    Zientek, Nicolai; Laurain, Clément; Meyer, Klas; Kraume, Matthias; Guthausen, Gisela; Maiwald, Michael

    2014-12-01

    Medium resolution nuclear magnetic resonance (MR-NMR) spectroscopy is currently a fast developing field, which has an enormous potential to become an important analytical tool for reaction monitoring, in hyphenated techniques, and for systematic investigations of complex mixtures. The recent developments of innovative MR-NMR spectrometers are therefore remarkable due to their possible applications in quality control, education, and process monitoring. MR-NMR spectroscopy can beneficially be applied for fast, non-invasive, and volume integrating analyses under rough environmental conditions. Within this study, a simple 1/16″ fluorinated ethylene propylene (FEP) tube with an ID of 0.04″ (1.02 mm) was used as a flow cell in combination with a 5 mm glass Dewar tube inserted into a benchtop MR-NMR spectrometer with a 1H Larmor frequency of 43.32 MHz and 40.68 MHz for 19F. For the first time, quasi-simultaneous proton and fluorine NMR spectra were recorded with a series of alternating 19F and 1H single scan spectra along the reaction time coordinate of a homogeneously catalysed esterification model reaction containing fluorinated compounds. The results were compared to quantitative NMR spectra from a hyphenated 500 MHz online NMR instrument for validation. Automation of handling, pre-processing, and analysis of NMR data becomes increasingly important for process monitoring applications of online NMR spectroscopy and for its technical and practical acceptance. Thus, NMR spectra were automatically baseline corrected and phased using the minimum entropy method. Data analysis schemes were designed such that they are based on simple direct integration or first principle line fitting, with the aim that the analysis directly revealed molar concentrations from the spectra. Finally, the performance of 1/16″ FEP tube set-up with an ID of 1.02 mm was characterised regarding the limit of detection (LOQ (1H) = 0.335 mol L-1 and LOQ (19F) = 0.130 mol L-1 for trifluoroethanol in

  14. Simultaneous (19)F-(1)H medium resolution NMR spectroscopy for online reaction monitoring.

    PubMed

    Zientek, Nicolai; Laurain, Clément; Meyer, Klas; Kraume, Matthias; Guthausen, Gisela; Maiwald, Michael

    2014-10-18

    Medium resolution nuclear magnetic resonance (MR-NMR) spectroscopy is currently a fast developing field, which has an enormous potential to become an important analytical tool for reaction monitoring, in hyphenated techniques, and for systematic investigations of complex mixtures. The recent developments of innovative MR-NMR spectrometers are therefore remarkable due to their possible applications in quality control, education, and process monitoring. MR-NMR spectroscopy can beneficially be applied for fast, non-invasive, and volume integrating analyses under rough environmental conditions. Within this study, a simple 1/16″ fluorinated ethylene propylene (FEP) tube with an ID of 0.04″ (1.02mm) was used as a flow cell in combination with a 5mm glass Dewar tube inserted into a benchtop MR-NMR spectrometer with a (1)H Larmor frequency of 43.32MHz and 40.68MHz for (19)F. For the first time, quasi-simultaneous proton and fluorine NMR spectra were recorded with a series of alternating (19)F and (1)H single scan spectra along the reaction time coordinate of a homogeneously catalysed esterification model reaction containing fluorinated compounds. The results were compared to quantitative NMR spectra from a hyphenated 500MHz online NMR instrument for validation. Automation of handling, pre-processing, and analysis of NMR data becomes increasingly important for process monitoring applications of online NMR spectroscopy and for its technical and practical acceptance. Thus, NMR spectra were automatically baseline corrected and phased using the minimum entropy method. Data analysis schemes were designed such that they are based on simple direct integration or first principle line fitting, with the aim that the analysis directly revealed molar concentrations from the spectra. Finally, the performance of 1/16″ FEP tube set-up with an ID of 1.02mm was characterised regarding the limit of detection (LOQ ((1)H)=0.335molL(-1) and LOQ ((19)F)=0.130molL(-1) for trifluoroethanol

  15. The metabolism of 2-trifluormethylaniline and its acetanilide in the rat by 19F NMR monitored enzyme hydrolysis and 1H/19F HPLC-NMR spectroscopy.

    PubMed

    Tugnait, M; Lenz, E M; Hofmann, M; Spraul, M; Wilson, I D; Lindon, J C; Nicholson, J K

    2003-01-01

    The urinary excretion profile and identity of the metabolites of 2-trifluoromethyl aniline (2-TFMA) and 2-trifluoromethyl acetanilide (2-TFMAc), following i.p. administration to the rat at 50 mg kg(-1), were determined using a combination of 19F NMR monitored enzyme hydrolysis, SPEC-MS and 19F/1H HPLC-NMR. A total recovery of approximately 96.4% of the dose was excreted into the urine as seven metabolites. The major routes of metabolism were N-conjugation (glucuronidation), and ring-hydroxylation followed by sulphation (and to a lesser extent glucuronidation). The major metabolites excreted into the urine for both compounds were a labile N-conjugated metabolite (a postulated N-glucuronide) and a sulphated ring-hydroxylated metabolite (a postulated 4-amino-5-trifluoromethylphenyl sulphate) following dosing of 2-TFMA. These accounted for approximately 53.0 and 31.5% of the dose, respectively. This study identifies problems on sample component instability in the preparation and analysis procedures. PMID:12467928

  16. Solid-state (19)F-NMR of peptides in native membranes.

    PubMed

    Koch, Katja; Afonin, Sergii; Ieronimo, Marco; Berditsch, Marina; Ulrich, Anne S

    2012-01-01

    To understand how membrane-active peptides (MAPs) function in vivo, it is essential to obtain structural information about them in their membrane-bound state. Most biophysical approaches rely on the use of bilayers prepared from synthetic phospholipids, i.e. artificial model membranes. A particularly successful structural method is solid-state NMR, which makes use of macroscopically oriented lipid bilayers to study selectively isotope-labelled peptides. Native biomembranes, however, have a far more complex lipid composition and a significant non-lipidic content (protein and carbohydrate). Model membranes, therefore, are not really adequate to address questions concerning for example the selectivity of these membranolytic peptides against prokaryotic vs eukaryotic cells, their varying activities against different bacterial strains, or other related biological issues.Here, we discuss a solid-state (19)F-NMR approach that has been developed for structural studies of MAPs in lipid bilayers, and how this can be translated to measurements in native biomembranes. We review the essentials of the methodology and discuss key objectives in the practice of (19)F-labelling of peptides. Furthermore, the preparation of macroscopically oriented biomembranes on solid supports is discussed in the context of other membrane models. Two native biomembrane systems are presented as examples: human erythrocyte ghosts as representatives of eukaryotic cell membranes, and protoplasts from Micrococcus luteus as membranes from Gram-positive bacteria. Based on our latest experimental experience with the antimicrobial peptide gramicidin S, the benefits and some implicit drawbacks of using such supported native membranes in solid-state (19)F-NMR analysis are discussed. PMID:21598096

  17. A 1H/19F minicoil NMR probe for solid-state NMR: application to 5-fluoroindoles.

    PubMed

    Graether, Steffen P; DeVries, Jeffrey S; McDonald, Robert; Rakovszky, Melissa L; Sykes, Brian D

    2006-01-01

    We show that it is feasible to use a minicoil for solid-state 19F 1H NMR experiments that has short pulse widths, good RF homogeneity, and excellent signal-to-noise for small samples while using low power amplifiers typical to liquid-state NMR. The closely spaced resonant frequencies of 1H and 19F and the ubiquitous use of fluorine in modern plastics and electronic components present two major challenges in the design of a high-sensitivity, high-field 1H/19F probe. Through the selection of specific components, circuit design, and pulse sequence, we were able to build a probe that has low 19F background and excellent separation of 1H and 19F signals. We determine the principle components of the chemical shift anisotropy tensor of 5-fluoroindole-3-acetic acid (5FIAA) and 5-fluorotryptophan. We also solve the crystal structure of 5FIAA, determine the orientation dependence of the chemical shift of a single crystal of 5FIAA, and predict the 19F chemical shift based on the orientation of the fluorine in the crystal. The results show that this 1H/19F probe is suitable for solid-state NMR experiments with low amounts of biological molecules that have been labeled with 19F. PMID:16198131

  18. Parallel NMR spectroscopy with simultaneous detection of (1) H and (19) F nuclei.

    PubMed

    Kovacs, Helena; Kupče, Ēriks

    2016-07-01

    Recording NMR signals of several nuclear species simultaneously by using parallel receivers provides more information from a single measurement and at the same time increases the measurement sensitivity per unit time. Here we present a comprehensive series of the most frequently used NMR experiments modified for simultaneous direct detection of two of the most sensitive NMR nuclei - (1) H and (19) F. We hope that the presented material will stimulate interest in and further development of this technique. PMID:27021630

  19. Simultaneous detection of distinct ubiquitin chain topologies by 19F NMR.

    PubMed

    Shekhawat, Sujan S; Pham, Grace H; Prabakaran, Jyothiprashanth; Strieter, Eric R

    2014-10-17

    The dynamic interplay between ubiquitin (Ub) chain construction and destruction is critical for the regulation of many cellular pathways. To understand these processes, it would be ideal to simultaneously detect different Ub chains as they are created and destroyed in the cell. This objective cannot be achieved with existing detection strategies. Here, we report on the use of 19F Nuclear Magnetic Resonance (NMR) spectroscopy to detect and characterize conformationally distinct Ub oligomers. By exploiting the environmental sensitivity of the 19F nucleus and the conformational diversity found among Ub chains of different linkage types, we can simultaneously resolve the 19F NMR signals for mono-Ub and three distinct di-Ub oligomers (K6, K48, and K63) in heterogeneous mixtures. The utility of this approach is demonstrated by the ability to interrogate the selectivity of deubiquitinases with multiple Ub substrates in real time. We also demonstrate that 19F NMR can be used to discern Ub linkages that are formed by select E3 ligases found in pathogenic bacteria. Collectively, our results assert the potential of 19F NMR for monitoring Ub signaling in cells to reveal fundamental insights about the associated cellular pathways. PMID:25119846

  20. Simultaneous Detection of Distinct Ubiquitin Chain Topologies by 19F NMR

    PubMed Central

    2015-01-01

    The dynamic interplay between ubiquitin (Ub) chain construction and destruction is critical for the regulation of many cellular pathways. To understand these processes, it would be ideal to simultaneously detect different Ub chains as they are created and destroyed in the cell. This objective cannot be achieved with existing detection strategies. Here, we report on the use of 19F Nuclear Magnetic Resonance (NMR) spectroscopy to detect and characterize conformationally distinct Ub oligomers. By exploiting the environmental sensitivity of the 19F nucleus and the conformational diversity found among Ub chains of different linkage types, we can simultaneously resolve the 19F NMR signals for mono-Ub and three distinct di-Ub oligomers (K6, K48, and K63) in heterogeneous mixtures. The utility of this approach is demonstrated by the ability to interrogate the selectivity of deubiquitinases with multiple Ub substrates in real time. We also demonstrate that 19F NMR can be used to discern Ub linkages that are formed by select E3 ligases found in pathogenic bacteria. Collectively, our results assert the potential of 19F NMR for monitoring Ub signaling in cells to reveal fundamental insights about the associated cellular pathways. PMID:25119846

  1. Applications of (19)F-NMR in Fragment-Based Drug Discovery.

    PubMed

    Norton, Raymond S; Leung, Eleanor W W; Chandrashekaran, Indu R; MacRaild, Christopher A

    2016-01-01

    (19)F-NMR has proved to be a valuable tool in fragment-based drug discovery. Its applications include screening libraries of fluorinated fragments, assessing competition among elaborated fragments and identifying the binding poses of promising hits. By observing fluorine in both the ligand and the target protein, useful information can be obtained on not only the binding pose but also the dynamics of ligand-protein interactions. These applications of (19)F-NMR will be illustrated in this review with studies from our fragment-based drug discovery campaigns against protein targets in parasitic and infectious diseases. PMID:27438818

  2. A mutagenesis-free approach to assignment of (19)F NMR resonances in biosynthetically labeled proteins.

    PubMed

    Kitevski-LeBlanc, Julianne L; Al-Abdul-Wahid, M Sameer; Prosser, R Scott

    2009-02-18

    Solution NMR studies of protein structure and dynamics using fluorinated amino acid probes are a valuable addition to the repertoire of existing (13)C, (15)N, and (1)H experiments. Despite the numerous advantages of the (19)F nucleus in NMR, protein studies are complicated by the dependence of resonance assignments on site-directed mutagenesis methods which are laborious and often problematic. Here we report an NMR-based route to the assignment of fluorine resonances in (13)C,(15)N-3-fluoro-l-tyrosine labeled calmodulin. The assignment begins with the correlation of the fluorine nucleus to the delta proton in the novel (13)C,(15)N-enriched probe which is achieved using a CT-HCCF-COSY experiment. Connection to the backbone is made through two additional solution NMR experiments, namely the (H(beta))C(beta)(C(gamma)C(delta))H(delta) and HNCACB. Assignments are completed using either previously published backbone chemical shift data or obtained experimentally provided uniform (13)C,(15)N labeling procedures are employed during protein expression. Additional benefits of the (13)C,(15)N-3-fluoro-l-tyrosine probe include the reduction of spectral overlap through ((13)C(19)F) CT-HSQCs, as well as the ability to monitor side chain dynamics using (19)F T(1), T(2), and the (13)C-(19)F NOE. PMID:19173647

  3. 19F-NMR Study on the Equilateral Triangular Spin Tube CsCrF4

    NASA Astrophysics Data System (ADS)

    Matsui, Kazuki; Goto, Takayuki; Manaka, Hirotaka; Miura, Yoko

    In order to investigate the hyperfine coupling of three inequivalent 19F sites in the equilateral triangular spin-tube antiferromagnet CsCrF4, we have measured the temperature dependence of 19F-NMR Knight shift in the paramagnetic state above 20K. The hyperfine coupling constants for three F-sites were determined to be -0.170, 0.280 and -0.045 T/μB, and were found to be consistent with the observed spectra at 1.65K, where the system is possibly in the ordered state.

  4. Probing the Pu4 + magnetic moment in PuF4 with 19F NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Capan, Cigdem; Dempsey, Richard J.; Sinkov, Sergey; McNamara, Bruce K.; Cho, Herman

    2016-06-01

    The magnetic fields produced by Pu4 + centers have been measured by 19F NMR spectroscopy to elucidate the Pu-F electronic interactions in polycrystalline PuF4. Spectra acquired at applied fields of 2.35 and 7.05 T reveal a linear scaling of the 19F line shape. A model is presented that treats the line broadening and shifts as due to dipolar fields produced by Pu valence electrons in localized noninteracting orbitals. Alternative explanations for the observed line shape involving covalent Pu-F bonding, superexchange interactions, and electronic configurations with enhanced magnetic moments are considered.

  5. (19)F-labeling of the adenine H2-site to study large RNAs by NMR spectroscopy.

    PubMed

    Sochor, F; Silvers, R; Müller, D; Richter, C; Fürtig, B; Schwalbe, H

    2016-01-01

    In comparison to proteins and protein complexes, the size of RNA amenable to NMR studies is limited despite the development of new isotopic labeling strategies including deuteration and ligation of differentially labeled RNAs. Due to the restricted chemical shift dispersion in only four different nucleotides spectral resolution remains limited in larger RNAs. Labeling RNAs with the NMR-active nucleus (19)F has previously been introduced for small RNAs up to 40 nucleotides (nt). In the presented work, we study the natural occurring RNA aptamer domain of the guanine-sensing riboswitch comprising 73 nucleotides from Bacillus subtilis. The work includes protocols for improved in vitro transcription of 2-fluoroadenosine-5'-triphosphat (2F-ATP) using the mutant P266L of the T7 RNA polymerase. Our NMR analysis shows that the secondary and tertiary structure of the riboswitch is fully maintained and that the specific binding of the cognate ligand hypoxanthine is not impaired by the introduction of the (19)F isotope. The thermal stability of the (19)F-labeled riboswitch is not altered compared to the unmodified sequence, but local base pair stabilities, as measured by hydrogen exchange experiments, are modulated. The characteristic change in the chemical shift of the imino resonances detected in a (1)H,(15)N-HSQC allow the identification of Watson-Crick base paired uridine signals and the (19)F resonances can be used as reporters for tertiary and secondary structure transitions, confirming the potential of (19)F-labeling even for sizeable RNAs in the range of 70 nucleotides. PMID:26704707

  6. Bulk magnetic susceptibility induced broadening in the 19F NMR of suspended leukemic cells.

    PubMed

    Adebodun, F; Post, J F

    1993-01-01

    The relevance of bulk magnetic susceptibility (BMS) induced broadening to in vivo NMR studies of intact cells has been examined and the significance of the contribution of BMS difference to the resolution of intra- and extracellular resonances was demonstrated. BMS difference between intra- and extracellular compartments was found to limit the resolution of intra- and extracellular 19F resonances of fluoro compounds in leukemic cells. PMID:8499242

  7. Automated data evaluation and modelling of simultaneous (19) F-(1) H medium-resolution NMR spectra for online reaction monitoring.

    PubMed

    Zientek, Nicolai; Laurain, Clément; Meyer, Klas; Paul, Andrea; Engel, Dirk; Guthausen, Gisela; Kraume, Matthias; Maiwald, Michael

    2016-06-01

    Medium-resolution nuclear magnetic resonance spectroscopy (MR-NMR) currently develops to an important analytical tool for both quality control and process monitoring. In contrast to high-resolution online NMR (HR-NMR), MR-NMR can be operated under rough environmental conditions. A continuous re-circulating stream of reaction mixture from the reaction vessel to the NMR spectrometer enables a non-invasive, volume integrating online analysis of reactants and products. Here, we investigate the esterification of 2,2,2-trifluoroethanol with acetic acid to 2,2,2-trifluoroethyl acetate both by (1) H HR-NMR (500 MHz) and (1) H and (19) F MR-NMR (43 MHz) as a model system. The parallel online measurement is realised by splitting the flow, which allows the adjustment of quantitative and independent flow rates, both in the HR-NMR probe as well as in the MR-NMR probe, in addition to a fast bypass line back to the reactor. One of the fundamental acceptance criteria for online MR-MNR spectroscopy is a robust data treatment and evaluation strategy with the potential for automation. The MR-NMR spectra are treated by an automated baseline and phase correction using the minimum entropy method. The evaluation strategies comprise (i) direct integration, (ii) automated line fitting, (iii) indirect hard modelling (IHM) and (iv) partial least squares regression (PLS-R). To assess the potential of these evaluation strategies for MR-NMR, prediction results are compared with the line fitting data derived from the quantitative HR-NMR spectroscopy. Although, superior results are obtained from both IHM and PLS-R for (1) H MR-NMR, especially the latter demands for elaborate data pretreatment, whereas IHM models needed no previous alignment. Copyright © 2015 John Wiley & Sons, Ltd. PMID:25854892

  8. {sup 19}F NMR measurements of NO production in hypertensive ISIAH and OXYS rats

    SciTech Connect

    Bobko, Andrey A. . E-mail: bobko@kinetics.nsc.ru; Sergeeva, Svetlana V.; Bagryanskaya, Elena G.; Markel, Arkadii L.; Khramtsov, Valery V.; Reznikov, Vladimir A.; Kolosova, Nataljya G.

    2005-05-06

    Recently we demonstrated the principal possibility of application of {sup 19}F NMR spin-trapping technique for in vivo {sup {center_dot}}NO detection [Free Radic. Biol. Med. 36 (2004) 248]. In the present study, we employed this method to elucidate the significance of {sup {center_dot}}NO availability in animal models of hypertension. In vivo {sup {center_dot}}NO-induced conversion of the hydroxylamine of the fluorinated nitronyl nitroxide (HNN) to the hydroxylamine of the iminonitroxide (HIN) in hypertensive ISIAH and OXYS rat strains and normotensive Wistar rat strain was measured. Significantly lower HIN/HNN ratios were measured in the blood of the hypertensive rats. The NMR data were found to positively correlate with the levels of nitrite/nitrate evaluated by Griess method and negatively correlate with the blood pressure. In comparison with other traditionally used methods {sup 19}F NMR spectroscopy allows in vivo evaluation of {sup {center_dot}}NO production and provides the basis for in vivo {sup {center_dot}}NO imaging.

  9. Fragment Screening and Druggability Assessment for the CBP/p300 KIX Domain Via Protein Observed 19F NMR

    PubMed Central

    Gee, Clifford T.; Koleski, Edward J.

    2015-01-01

    19F NMR of labeled proteins is a sensitive method for characterizing structure, conformational dynamics, higher-order assembly, and ligand binding. Fluorination of aromatic side chains has been suggested as a labeling strategy for small molecule ligand discovery for protein-protein interaction interfaces. Using a model transcription factor binding domain of the CREB binding protein (CBP)/p300, KIX, we report the first full small molecule screen using protein-observed 19F NMR. Screening of 508 compounds and validation by 1H-15N HSQC NMR led to the identification of a minimal pharmacaphore for the MLL-KIX interaction site. Hit rate analysis for the CREB-KIX and MLL-KIX sites provided a metric to assess the ligandability or “druggability” of each interface informing future medicinal chemistry efforts. The structural information from the simplified spectra and data collection speed, affords a new screening tool for analysis of protein interfaces and discovery of small molecules. PMID:25651535

  10. NMR spectroscopy in studies of light-induced structural changes in mammalian rhodopsin: applicability of solution (19)F NMR.

    PubMed

    Klein-Seetharaman, J; Getmanova, E V; Loewen, M C; Reeves, P J; Khorana, H G

    1999-11-23

    We report high resolution solution (19)F NMR spectra of fluorine-labeled rhodopsin mutants in detergent micelles. Single cysteine substitution mutants in the cytoplasmic face of rhodopsin were labeled by attachment of the trifluoroethylthio (TET), CF(3)-CH(2)-S, group through a disulfide linkage. TET-labeled cysteine mutants at amino acid positions 67, 140, 245, 248, 311, and 316 in rhodopsin were thus prepared. Purified mutant rhodopsins (6-10 mg), in dodecylmaltoside, were analyzed at 20 degrees C by solution (19)F NMR spectroscopy. The spectra recorded in the dark showed the following chemical shifts relative to trifluoroacetate: Cys-67, 9.8 ppm; Cys-140, 10.6 ppm; Cys-245, 9.9 ppm; Cys-248, 9.5 ppm; Cys-311, 9.9 ppm; and Cys-316, 10.0 ppm. Thus, all mutants showed chemical shifts downfield that of free TET (6.5 ppm). On illumination to form metarhodopsin II, upfield changes in chemical shift were observed for (19)F labels at positions 67 (-0.2 ppm) and 140 (-0.4 ppm) and downfield changes for positions 248 (+0.1 ppm) and 316 (+0.1 ppm) whereas little or no change was observed at positions 311 and 245. On decay of metarhodopsin II, the chemical shifts reverted largely to those originally observed in the dark. The results demonstrate the applicability of solution (19)F NMR spectroscopy to studies of the tertiary structures in the cytoplasmic face of intact rhodopsin in the dark and on light activation. PMID:10570143

  11. Dissection of the ion-induced folding of the hammerhead ribozyme using 19F NMR

    PubMed Central

    Hammann, Christian; Norman, David G.; Lilley, David M. J.

    2001-01-01

    We have used 19F NMR to analyze the metal ion-induced folding of the hammerhead ribozyme by selective incorporation of 5fluorouridine. We have studied the chemical shift and linewidths of 19F resonances of 5-fluorouridine at the 4 and 7 positions in the ribozyme core as a function of added Mg2+. The data fit well to a simple two-state model whereby the formation of domain 1 is induced by the noncooperative binding of Mg2+ with an association constant in the range of 100 to 500 M−1, depending on the concentration of monovalent ions present. The results are in excellent agreement with data reporting on changes in the global shape of the ribozyme. However, the NMR experiments exploit reporters located in the center of the RNA sections undergoing the folding transitions, thereby allowing the assignment of specific nucleotides to the separate stages. The results define the folding pathway at high resolution and provide a time scale for the first transition in the millisecond range. PMID:11331743

  12. Resolution of Oligomeric Species during the Aggregation of Aβ1-40 Using 19F NMR

    PubMed Central

    Suzuki, Yuta; Brender, Jeffrey R.; Soper, Molly T.; Krishnamoorthy, Janarthanan; Zhou, Yunlong; Ruotolo, Brandon T.; Kotov, Nicholas A.; Ramamoorthy, Ayyalusamy; Marsh, E. Neil G.

    2013-01-01

    In the commonly used nucleation-dependent model of protein aggregation, aggregation proceeds only after a lag phase in which the concentration of energetically unfavorable nuclei reaches a critical value. The formation of oligomeric species prior to aggregation can be difficult to detect by current spectroscopic techniques. By using real-time 19F NMR along with other techniques, we are able to show that multiple oligomeric species can be detected during the lag phase of Aβ1-40 fiber formation, consistent with a complex mechanism of aggregation. At least 6 types of oligomers can be detected by 19F NMR. These include the reversible formation of large β-sheet oligomer immediately after solubilization at high peptide concentration; a small oligomer that forms transiently during the early stages of the lag phase; and 4 spectroscopically distinct forms of oligomers with molecular weights between ~30–100 kDa that appear during the later stages of aggregation. The ability to resolve individual oligomers and track their formation in real-time should prove fruitful in understanding the aggregation of amyloidogenic proteins and in isolating potentially toxic non-amyloid oligomers. PMID:23445400

  13. Using magnetic coupling to implement 1H, 19F, 13C experiments in routine high resolution NMR probes

    NASA Astrophysics Data System (ADS)

    Bowyer, Paul; Finnigan, Jim; Marsden, Brian; Taber, Bob; Zens, Albert

    2015-12-01

    We report in this paper the design of 1H, 19F, 13C circuitry using magnetic coupling which can do on demand experiments where one of the three nuclei is observed and the other two are decoupled. The implementation of this circuitry in routine NMR probes is compared with capacitive coupling methods where it was found that by using magnetic coupling the performance of the routine NMR probe was not impacted by the addition of this circuitry. It is surmised that using this type of circuitry would be highly desirable for those chemists doing routine 19F NMR.

  14. Alternate strategies to obtain mass balance without the use of radiolabeled compounds: application of quantitative fluorine (19F) nuclear magnetic resonance (NMR) spectroscopy in metabolism studies.

    PubMed

    Mutlib, Abdul; Espina, Robert; Atherton, James; Wang, Jianyao; Talaat, Rasmy; Scatina, JoAnn; Chandrasekaran, Appavu

    2012-03-19

    Nuclear magnetic resonance (NMR) spectroscopy is playing an increasingly important role in the quantitation of small and large molecules. Recently, we demonstrated that (1)H NMR could be used to quantitate drug metabolites isolated in submilligram quantities from biological sources. It was shown that these metabolites, once quantitated by NMR, were suitable to be used as reference standards in quantitative LC/MS-based assays, hence circumventing the need for radiolabeled material or synthetic standards to obtain plasma exposure estimates in humans and preclinical species. The quantitative capabilities of high-field NMR is further demonstrated in the current study by obtaining the mass balance of fluorinated compounds using (19)F-NMR. Two fluorinated compounds which were radio-labeled with carbon-14 on metabolically stable positions were dosed in rats and urine and feces collected. The mass balance of the compounds was obtained initially by counting the radioactivity present in each sample. Subsequently, the same sets of samples were analyzed by (19)F-NMR, and the concentrations determined by this method were compared with data obtained using radioactivity counting. It was shown that the two methods produced comparable values. To demonstrate the value of this analytical technique in drug discovery, a fluorinated compound was dosed intravenously in dogs and feces and urine collected. Initial profiling of samples showed that this compound was excreted mainly unchanged in feces, and hence, an estimate of mass balance was obtained using (19)F-NMR. The data obtained by this method was confirmed by additional quantitative studies using mass spectrometry. Hence cross-validations of the quantitative (19)F-NMR method by radioactivity counting and mass spectrometric analysis were demonstrated in this study. A strategy outlining the use of fluorinated compounds in conjunction with (19)F-NMR to understand their routes of excretion or mass balance in animals is proposed. These

  15. 19F NMR measurements of the rotational mobility of proteins in vivo.

    PubMed Central

    Williams, S P; Haggie, P M; Brindle, K M

    1997-01-01

    Three glycolytic enzymes, hexokinase, phosphoglycerate kinase, and pyruvate kinase, were fluorine labeled in the yeast Saccharomyces cerevisiae by biosynthetic incorporation of 5-fluorotryptophan. 19F NMR longitudinal relaxation time measurements on the labeled enzymes were used to assess their rotational mobility in the intact cell. Comparison with the results obtained from relaxation time measurements of the purified enzymes in vitro and from theoretical calculations showed that two of the labeled enzymes, phosphoglycerate kinase and hexokinase, were tumbling in a cytoplasm that had a viscosity approximately twice that of water. There were no detectable signals from pyruvate kinase in vivo, although it could be detected in diluted cell extracts, indicating that there was some degree of motional restriction of the enzyme in the intact cell. PMID:8994636

  16. Intracellular free calcium concentration measured with /sup 19/F NMR spectroscopy in intact ferret hearts

    SciTech Connect

    Marban, E.; Kitakaze, M.; Kusuoka, H.; Porterfield, J.K.; Yue, D.T.; Chacko, V.P.

    1987-08-01

    Changes in the intracellular free Ca/sup 2 +/ concentration, (Ca/sup 2 +/)/sub i/, mediate excitation-contraction coupling in the heart and contribute to cellular injury during ischemia and reperfusion. To study these processes directly, the authors measured (Ca/sup 2 +/)/sub i/ in perfused ferret (Mustela putorius furo) hearts using /sup 19/F NMR spectroscopy to detect the 5,5'-difluoro derivative of the Ca/sup 2 +/ chelator, 1,2-bis(o-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid (BAPTA). To load cells, hearts were perfused with the acetoxymethyl ester derivative of 5,5'-F/sub 2/-BAPTA. They measured /sup 19/F NMR spectra and left ventricular pressure simultaneously,at rest and during pacing at various external Ca concentrations ((Ca)/sub 0/). Although contractile force was attenuated by the Ca/sup 2 +/ buffering properties of 5,5'-F/sup 2/-BAPTA, the decrease in pressure could be overcome by raising (Ca)/sub 0/. The mean value of 104 nM for (Ca/sup 2 +/)/sub i/ at rest in the perfused heart agrees well with previous measurements in isolated ventricular muscle. During pacing at 0.6-4 Hz, time-averaged (Ca/sup 2 +/)/sub i/ increased; the effect of pacing was augmented by increasing (Ca)/sub 0/. (Ca/sup 2 +/)/sub i/ more than tripled during 10-20 min of global ischemia, and returned toward control levels upon reperfusion. This approach promises to be particularly useful in investigating the physiology of intact hearts and the pathophysiology of alterations in the coronary circulation

  17. STATISTICAL ANALYSIS OF TANK 19F FLOOR SAMPLE RESULTS

    SciTech Connect

    Harris, S.

    2010-09-02

    Representative sampling has been completed for characterization of the residual material on the floor of Tank 19F as per the statistical sampling plan developed by Harris and Shine. Samples from eight locations have been obtained from the tank floor and two of the samples were archived as a contingency. Six samples, referred to in this report as the current scrape samples, have been submitted to and analyzed by SRNL. This report contains the statistical analysis of the floor sample analytical results to determine if further data are needed to reduce uncertainty. Included are comparisons with the prior Mantis samples results to determine if they can be pooled with the current scrape samples to estimate the upper 95% confidence limits (UCL95%) for concentration. Statistical analysis revealed that the Mantis and current scrape sample results are not compatible. Therefore, the Mantis sample results were not used to support the quantification of analytes in the residual material. Significant spatial variability among the current scrape sample results was not found. Constituent concentrations were similar between the North and South hemispheres as well as between the inner and outer regions of the tank floor. The current scrape sample results from all six samples fall within their 3-sigma limits. In view of the results from numerous statistical tests, the data were pooled from all six current scrape samples. As such, an adequate sample size was provided for quantification of the residual material on the floor of Tank 19F. The uncertainty is quantified in this report by an UCL95% on each analyte concentration. The uncertainty in analyte concentration was calculated as a function of the number of samples, the average, and the standard deviation of the analytical results. The UCL95% was based entirely on the six current scrape sample results (each averaged across three analytical determinations).

  18. Fragment-Linking Approach Using (19)F NMR Spectroscopy To Obtain Highly Potent and Selective Inhibitors of β-Secretase.

    PubMed

    Jordan, John B; Whittington, Douglas A; Bartberger, Michael D; Sickmier, E Allen; Chen, Kui; Cheng, Yuan; Judd, Ted

    2016-04-28

    Fragment-based drug discovery (FBDD) has become a widely used tool in small-molecule drug discovery efforts. One of the most commonly used biophysical methods in detecting weak binding of fragments is nuclear magnetic resonance (NMR) spectroscopy. In particular, FBDD performed with (19)F NMR-based methods has been shown to provide several advantages over (1)H NMR using traditional magnetization-transfer and/or two-dimensional methods. Here, we demonstrate the utility and power of (19)F-based fragment screening by detailing the identification of a second-site fragment through (19)F NMR screening that binds to a specific pocket of the aspartic acid protease, β-secretase (BACE-1). The identification of this second-site fragment allowed the undertaking of a fragment-linking approach, which ultimately yielded a molecule exhibiting a more than 360-fold increase in potency while maintaining reasonable ligand efficiency and gaining much improved selectivity over cathepsin-D (CatD). X-ray crystallographic studies of the molecules demonstrated that the linked fragments exhibited binding modes consistent with those predicted from the targeted screening approach, through-space NMR data, and molecular modeling. PMID:26978477

  19. Fluorinated Amino-Derivatives of the Sesquiterpene Lactone, Parthenolide, as 19F NMR Probes in Deuterium-Free Environments

    PubMed Central

    Woods, James R.; Mo, Huaping; Bieberich, Andrew A.; Alavanja, Tanja; Colby, David A.

    2011-01-01

    The design, synthesis, and biological activity of fluorinated amino-derivatives of the sesquiterpene lactone, parthenolide, are described. A fluorinated aminoparthenolide analogue with biological activity similar to the parent natural product was discovered, and its X-ray structure was obtained. This lead compound was then studied using 19F NMR in the presence and absence of glutathione to obtain additional mechanism of action data, and it was found that the aminoparthenolide eliminates amine faster in the presence of glutathione than in the absence of glutathione. The exact changes in concentrations of fluorinated compound and amine were quantified by a concentration-reference method using 19F NMR; a major benefit of applying this strategy is that no deuterated solvents or internal standards are required to obtain accurate concentrations. These mechanistic data with glutathione may contribute to the conversion of the amino-derivative to parthenolide, the active pharmacological agent, in glutathione-rich cancer cells. PMID:22029741

  20. sup 19 F NMR studies of the D-galactose chemosensory receptor. (1) Sugar binding yields a global structural change

    SciTech Connect

    Luck, L.A.; Falke, J.J. )

    1991-04-30

    The Escherichia coli D-galactose and D-glucose receptor is an aqueous sugar-binding protein and the first component in the distinct chemosensory and transport pathways for these sugars. Activation of the receptor occurs when the sugar binds and induces a conformational change, which in turn enable docking to specific membrane proteins. Only the structure of the activated receptor containing bound D-glucose is known. To investigate the sugar-induced structural change, the authors have used {sup 19}F NMR to probe 12 sites widely distributed in the receptor molecule. Five sites are tryptophan positions probed by incorporation of 5-fluorotryptophan; the resulting {sup 19}F NMR resonances were assigned by site-directed mutagenesis. The other seven sites are phenylalanine positions probed by incorporation of 3-fluorophenylaline. Sugar binding to the substrate binding cleft was observed to trigger a global structural change detected via {sup 19}F NMR frequency shifts at 10 of the 12 labeled sites. The results are consistent with a model in which multiple secondary structural elements, known to extend between the substrate cleft and the protein surface, undergo shifts in their average positions upon sugar binding to the cleft. Such structural coupling provides a mechanism by which sugar binding to the substrate cleft can cause structural changes at one or more docking sites on the receptor surface.

  1. Demystifying fluorine chemical shifts: electronic structure calculations address origins of seemingly anomalous (19)F-NMR spectra of fluorohistidine isomers and analogues.

    PubMed

    Kasireddy, Chandana; Bann, James G; Mitchell-Koch, Katie R

    2015-11-11

    Fluorine NMR spectroscopy is a powerful tool for studying biomolecular structure, dynamics, and ligand binding, yet the origins of (19)F chemical shifts are not well understood. Herein, we use electronic structure calculations to describe the changes in (19)F chemical shifts of 2F- and 4F-histidine/(5-methyl)-imidazole upon acid titration. While the protonation of the 2F species results in a deshielded chemical shift, protonation of the 4F isomer results in an opposite, shielded chemical shift. The deshielding of 2F-histidine/(5-methyl)-imidazole upon protonation can be rationalized by concomitant decreases in charge density on fluorine and a reduced dipole moment. These correlations do not hold for 4F-histidine/(5-methyl)-imidazole, however. Molecular orbital calculations reveal that for the 4F species, there are no lone pair electrons on the fluorine until protonation. Analysis of a series of 4F-imidazole analogues, all with delocalized fluorine electron density, indicates that the deshielding of (19)F chemical shifts through substituent effects correlates with increased C-F bond polarity. In summary, the delocalization of fluorine electrons in the neutral 4F species, with gain of a lone pair upon protonation may help explain the difficulty in developing a predictive framework for fluorine chemical shifts. Ideas debated by chemists over 40 years ago, regarding fluorine's complex electronic effects, are shown to have relevance for understanding and predicting fluorine NMR spectra. PMID:26524669

  2. Parahydrogen-induced polarization transfer to 19F in perfluorocarbons for 19F NMR spectroscopy and MRI.

    PubMed

    Plaumann, Markus; Bommerich, Ute; Trantzschel, Thomas; Lego, Denise; Dillenberger, Sonja; Sauer, Grit; Bargon, Joachim; Buntkowsky, Gerd; Bernarding, Johannes

    2013-05-10

    Fluorinated substances are important in chemistry, industry, and the life sciences. In a new approach, parahydrogen-induced polarization (PHIP) is applied to enhance (19)F MR signals of (perfluoro-n-hexyl)ethene and (perfluoro-n-hexyl)ethane. Unexpectedly, the end-standing CF3 group exhibits the highest amount of polarization despite the negligible coupling to the added protons. To clarify this non-intuitive distribution of polarization, signal enhancements in deuterated chloroform and acetone were compared and (19)F-(19)F NOESY spectra, as well as (19)F T1 values were measured by NMR spectroscopy. By using the well separated and enhanced signal of the CF3 group, first (19)F MR images of hyperpolarized linear semifluorinated alkenes were recorded. PMID:23526596

  3. Magnetism, optical absorbance, and 19F NMR spectra of nafion films with self-assembling paramagnetic networks

    SciTech Connect

    Levin, E. M.; Chen, Q.; Bud'ko, S. L.

    2012-01-15

    Magnetization, optical absorbance, and {sup 19}F NMR spectra of Nafion transparent films as received and doped with Mn{sup 2+}, Co{sup 2+}, Fe{sup 2+}, and Fe{sup 3+} ions with and without treatment in 1H-1,2,4-triazole (trz) have been studied. Doping of Nafion with Fe{sup 2+} and Co{sup 2+} and their bridging to nitrogen of triazole yields a hybrid self-assembling paramagnetic system that exhibits interesting magnetic and optical properties. These include spin crossover phenomena between high-spin (HS) and low-spin (LS) states in Nafion-Fe{sup 2+}-trz and Nafion-Co{sup 2+}-trz accompanied by thermochromic effects in the visible range induced by temperature. A large shift of the magnetization curve induced by a magnetic field in the vicinity of the HS {leftrightarrow} LS, {approx}220 K, observed for Nafion-Fe{sup 2+}-trz has a rate of {approx}6 K/kOe, which is about three orders of magnitude larger than that in bulk spin crossover Fe{sup 2+} materials. Selective response of {sup 19}F NMR signals on doping with paramagnetic ions demonstrates that NMR can be used as spatially resolved method to study Nafion film with paramagnetic network. Both chemical shift and width of {sup 19}F NMR signals show that SO groups of Nafion, Fe or Co ions, and nitrogen of triazole are bonded whereas they form a spin crossover system. Based on a model of nanosize cylinders proposed for Nafion [K. Schmidt-Rohr and Q. Chen, Nat Mater (2008), 75], we suggest that paramagnetic ions are located inside these cylinders, forming self-assembling magnetically and optically active nanoscale networks.

  4. 1H and 19F NMR studies on molecular motions and phase transitions in solid triethylammonium tetrafluoroborate

    NASA Astrophysics Data System (ADS)

    Ono, Hiroshi; Seki, Riki; Ikeda, Ryuichi; Ishida, Hiroyuki

    1995-02-01

    Measurements by differential thermal analysis and differential scanning calorimetry and of the spin-lattice relaxation time ( T1), the spin-spin relaxation time ( T2), and the second moment ( M2) of 1H and 19F NMR were carried out in the three solid phases of (CH 3CH 2) 3NHBF 4. X-ray powder patterns were taken in the highest-temperature phase (Phase I) existing above 367 K and the room-temperature phase (Phase II) stable between 220 and 367 K. Phase I formed a NaCl-type cubic structure with a = 11.65(3) Å, Z = 4, V = 1581(13) Å3, and Dx = 0.794 g cm -3, and was expected to be an ionic plastic phase. In this phase, the self-diffusion of anions and the isotropic reorientation of cations were observed. Phase II formed a tetragonal structure with a = 12.47(1) and c = 9.47(3) Å, Z = 4, V = 1473(6) Å3, and Dx = 0.852 g cm -3. From the present DSC and NMR results in this phase, the cations and/or anions were considered to be dynamically disordered states. The C3 reorientation of the cation about the NH bond axis was detected and, in addition, the onset of nutation of the cations and local diffusion of the anions was suggested. In the low-temperature phase (Phase III) stable below 219 K, the C3 reorientations of the three methyl groups of cations and the isotropic reorientation of anions were observed. The motional parameters for these modes were evaluated.

  5. Synthesis, fine structure of 19F NMR and fluorescence of novel amorphous TPA derivatives having perfluorinated cyclopentenyl and benzo[b]thiophene unit

    NASA Astrophysics Data System (ADS)

    Wu, Bian-Peng; Pang, Mei-Li; Tan, Ting-Feng; Meng, Ji-ben

    2013-04-01

    Three novel triphenylamine (TPA) derivatives having perfluorinated cyclopentenyl and benzo[b]thiophene unit are obtained from 4-bromo-N,N-diphenyl-2-methylbenzo[b]thiophen-5-amine. The new compounds are expected to find their use in thin film devices as charge transport materials and host organic light-emitting materials. It is found that the new compounds show relatively strong fluorescence either in solution or in solid state, and are amorphous due to a special conformation which is elucidated by the fine structure of 19F NMR. Molecular structure and properties of these compounds is characterized by 1H NMR, 13C NMR (broadband decoupled), ESI-HRMS, elemental analysis and thermal analysis (DSC). Fluorescent quantum yield in solution is measured using 9,10-diphenylanthrancene (DPA) as standard fluorescent substance.

  6. (19)F NMR study of ligand dynamics in carboxylate-bridged diiron(II) complexes supported by a macrocyclic ligand.

    PubMed

    Minier, Mikael A; Lippard, Stephen J

    2015-11-01

    A series of asymmetrically carboxylate-bridged diiron(ii) complexes featuring fluorine atoms as NMR spectroscopic probes, [Fe2(PIM)(Ar(4F-Ph)CO2)2] (10), [Fe2(F2PIM)(Ar(Tol)CO2)2] (11), and [Fe2(F2PIM)(Ar(4F-Ph)CO2)2] (12), were prepared and characterized by X-ray crystallography, Mössbauer spectroscopy, and VT (19)F NMR spectroscopy. These complexes are part of a rare family of syn N-donor diiron(ii) compounds, [Fe2(X2PIM)(RCO2)2], that are structurally very similar to the active site of the hydroxylase enzyme component of reduced methane monooxygenase (MMOHred). Solution characterization of these complexes demonstrates that they undergo intramolecular carboxylate rearrangements, or carboxylate shifts, a dynamic feature relevant to the reactivity of the diiron centers in bacterial multicomponent monooxygenases. PMID:26418547

  7. 19F NMR Study of Ligand Dynamics in Carboxylate-Bridged Diiron(II) Complexes Supported by a Macrocyclic Ligand

    PubMed Central

    Minier, Mikael A.; Lippard, Stephen J.

    2015-01-01

    A series of asymmetrically carboxylate-bridged diiron(II) complexes featuring fluorine atoms as NMR spectroscopic probes, [Fe2(PIM)(Ar4F-PhCO2)2] (10), [Fe2(F2PIM)(ArTolCO2)2] (11), and [Fe2(F2PIM)(Ar4F-PhCO2)2] (12), were prepared and characterized by X-ray crystallography, Mössbauer spectroscopy, and VT 19F NMR spectroscopy. These complexes are part of a rare family of syn-N diiron(II) complexes, [Fe2(X2PIM)(RCO2)2], that are structurally very similar to the active site of the hydroxylase enzyme component of reduced methane monooxygenase (MMOHred). Solution characterization of these complexes demonstrates that they undergo intramolecular carboxylate rearrangements, or carboxylate shifts, a dynamic feature relevant to the reactivity of the diiron centers in bacterial multicomponent monooxygenases. PMID:26418547

  8. Phospho-selective mechanisms of arrestin conformations and functions revealed by unnatural amino acid incorporation and 19F-NMR

    PubMed Central

    Yang, Fan; Yu, Xiao; Liu, Chuan; Qu, Chang-Xiu; Gong, Zheng; Liu, Hong-Da; Li, Fa-Hui; Wang, Hong-Mei; He, Dong-Fang; Yi, Fan; Song, Chen; Tian, Chang-Lin; Xiao, Kun-Hong; Wang, Jiang-Yun; Sun, Jin-Peng

    2015-01-01

    Specific arrestin conformations are coupled to distinct downstream effectors, which underlie the functions of many G-protein-coupled receptors (GPCRs). Here, using unnatural amino acid incorporation and fluorine-19 nuclear magnetic resonance (19F-NMR) spectroscopy, we demonstrate that distinct receptor phospho-barcodes are translated to specific β-arrestin-1 conformations and direct selective signalling. With its phosphate-binding concave surface, β-arrestin-1 ‘reads' the message in the receptor phospho-C-tails and distinct phospho-interaction patterns are revealed by 19F-NMR. Whereas all functional phosphopeptides interact with a common phosphate binding site and induce the movements of finger and middle loops, different phospho-interaction patterns induce distinct structural states of β-arrestin-1 that are coupled to distinct arrestin functions. Only clathrin recognizes and stabilizes GRK2-specific β-arrestin-1 conformations. The identified receptor-phospho-selective mechanism for arrestin conformation and the spacing of the multiple phosphate-binding sites in the arrestin enable arrestin to recognize plethora phosphorylation states of numerous GPCRs, contributing to the functional diversity of receptors. PMID:26347956

  9. 19F-NMR reveals metal and operator-induced allostery in MerR.

    PubMed

    Song, Lingyun; Teng, Quincy; Phillips, Robert S; Brewer, John M; Summers, Anne O

    2007-08-01

    Metalloregulators of the MerR family activate transcription upon metal binding by underwinding the operator-promoter DNA to permit open complex formation by pre-bound RNA polymerase. Historically, MerR's allostery has been monitored only indirectly via nuclease sensitivity or by fluorescent nucleotide probes and was very specific for Hg(II), although purified MerR binds several thiophilic metals. To observe directly MerR's ligand-induced behavior we made 2-fluorotyrosine-substituted MerR and found similar, minor changes in (19)F chemical shifts of tyrosine residues in the free protein exposed to Hg(II), Cd(II) or Zn(II). However, DNA binding elicits large chemical shift changes in MerR's tyrosine residues and in DNA-bound MerR Hg(II) provokes changes very distinct from those of Cd(II) or Zn(II). These chemical shift changes and other biophysical and phenotypic properties of wild-type MerR and relevant mutants reveal elements of an allosteric network that enables the coordination state of the metal binding site to direct metal-specific movements in the distant DNA binding site and the DNA-bound state also to affect the metal binding domain. PMID:17560604

  10. Binding mechanism of the tyrosine-kinase inhibitor nilotinib to human serum albumin determined by 1H STD NMR, 19F NMR, and molecular modeling.

    PubMed

    Yan, Jin; Wu, Di; Sun, Pingchuan; Ma, Xiaoli; Wang, Lili; Li, Shanshan; Xu, Kailin; Li, Hui

    2016-05-30

    Drug interaction with albumins significantly affects in vivo drug transport and biological metabolism. To gain insight into the binding mechanisms of tyrosine-kinase inhibitor nilotinib (NIL) to human serum albumin (HSA), an approach combining (1)H saturation-transfer difference (STD) nuclear magnetic resonance (NMR) spectroscopy, (19)F NMR spectroscopy, steady-state fluorescence quenching, and molecular modeling was adopted. (19)F NMR was used to determine the binding constant, and a value of 4.12 × 10(3)M(-1) was obtained. Fluorescence spectroscopy was also used to determine the binding constant, and the value obtained was within the same order of magnitude. The binding process was mainly driven by hydrogen bonds and van der Waals forces. Displacement experiments further showed that NIL mainly bound to the hydrophobic cavity of HSA's subdomain IIA, also called Sudlow's site I. Molecular docking simulation was also used to establish a molecular binding model, and findings were consistent with those of displacement and the (1)H STD NMR experiments. PMID:26922576

  11. CP-MAS 207Pb with 19F decoupling NMR spectroscopy: medium range investigation in fluoride materials.

    PubMed

    Bureau, B; Silly, G; Buzaré, J Y

    1999-11-01

    The isotropic chemical shift of 207Pb is used to perform structural investigations of crystalline fluoride compounds (PbF2, Pb2ZnF6, PbGaF5, Pb3Ga2F12 and Pb9Ga2F24) and transition metal fluoride glasses (TMFG) of the PZG family (PbF2-ZnF2-GaF3). Using 207Pb Cross Polarisation Magic Angle Spinning (CP-MAS) NMR with 19F decoupling, it is shown that the isotropic chemical shift of 207Pb varies on a large scale (1000 ppm) and that the main changes of its value are not due to the nearest neighbour fluorines but may be related to the number of next nearest neighbour (nnn) Pb2+ ions. In this way, it is demonstrated that 207Pb chemical shift is an interesting probe to investigate medium range order in either crystalline or glassy fluoride systems. The 207Pb delta(iso) parameter has been linearly correlated to the number of nnn Pb2+ ions. PMID:10670899

  12. Modulation of the antioxidant activity of HO* scavengers by albumin binding: a 19F-NMR study.

    PubMed

    Aime, Silvio; Digilio, Giuseppe; Bruno, Erik; Mainero, Valentina; Baroni, Simona; Fasano, Mauro

    2003-08-01

    The interaction between different HO(z.rad;) radical scavengers in a three-component antioxidant system has been investigated by means of 19F-NMR spectroscopy. This system is composed of bovine serum albumin (BSA), trolox, and N-(4-hydroxyphenyl)-trifluoroacetamide (CF(3)PAF). The antioxidant capacity of BSA and trolox has been assessed by measuring the amount of trifluoroacetamide (TFAM) arising from the radical mediated decomposition of CF(3)PAF. When assayed separately, both trolox and BSA behaved as antioxidants, as they were effective to protect CF(3)PAF from HO* radical-mediated decomposition. By contrast, trolox enhanced the production of TFAM in the presence of BSA, thus behaving as a pro-oxidant. Urate, carnosine, glucose, and propylgallate showed antioxidant properties both with or without BSA. CF(3)PAF and trolox were found to bind to BSA with association constants in the order of 5 x 10(3)M(-1) and to compete for the same binding sites. These results have been discussed in terms of BSA-catalysed cross-reactions between trolox-derived secondary radicals and CF(3)PAF. PMID:12878205

  13. 19F NMR-, ESR-, and vis-NIR-spectroelectrochemical study of the unconventional reduction behaviour of a perfluoroalkylated fullerene: dimerization of the C70(CF3)10– radical anion†

    PubMed Central

    Zalibera, Michal; Machata, Peter; Clikeman, Tyler T.; Rosenkranz, Marco; Strauss, Steven H.; Boltalina, Olga V.; Popov, Alexey A.

    2016-01-01

    The most abundant isomer of C70(CF3)10 (70-10-1) is a rare example of a perfluoroalkylated fullerene exhibiting electrochemically irreversible reduction. We show that electrochemical reversibility at the first reduction step is achieved at scan rates higher than 500 V s-1 Applying ESR-, vis-NIR-, and 19F NMR- spectroelectrochemistry, as well as mass spectrometry and DFT calculations, we show that the (70-10-1)- radical monoanion is in equilibrium with a singly-bonded diamagnetic dimeric dianion. This study is the first example of 19F NMR spectroelectrochemistry, which promises to be an important method for the elucidation of redox mechanisms of fluoroorganic compounds. Additionally, we demonstrate the importance of combining different spectroelectrochemical methods and quantitative analysis of the transferred charge and spin numbers in the determination of the redox mechanism. PMID:26359514

  14. 19F Magic angle spinning NMR reporter molecules: empirical measures of surface shielding, polarisability and H-bonding.

    PubMed

    Budarin, Vitaliy L; Clark, James H; Deswarte, Fabien E I; Mueller, Karl T; Tavener, Stewart J

    2007-06-14

    Magic Angle Spinning (MAS) (19)F NMR spectra have been obtained and chemical shifts measured for 37 molecules in the gas phase and adsorbed on the surfaces of six common materials: octadecyl- and octyl-functionalised chromatography silicas, Kieselgel 100 silica, Brockmann neutral alumina, Norit activated charcoal and 3-(1-piperidino)propyl functionalised silica. From these six surfaces, octadecyl-silica is selected as a non-polar reference to which the others are compared. The change in chemical shift of a fluorine nucleus within a molecule on adsorption to a surface from the gas phase, Deltadelta(gas)(surface), is described by the empirical relationship: Deltadelta(gas)(surface) = delta(s) + (alpha(s)+pi(s))/alpha(r) (Deltadelta(gas)(reference) - delta(r)) + delta(HBA) + delta(HBD), where delta(s) and delta(r) are constants that describe the chemical shift induced by the electromagnetic field of the surface under investigation and reference surface, alpha(s) and alpha(r) are the relative surface polarisability for the surface and reference, pi(s) is an additional contribution to the surface polarisabilities due to its ability to interact with aromatic molecules, and delta(HBA) and delta(HBD) are measurements of the hydrogen acceptor and donor properties of the surface. These empirical parameters are measured for the surfaces under study. Silica and alumina are found to undergo specific interactions with aromatic reporter molecules and both accept and donate H-bonds. Activated charcoal was found to have an extreme effect on shielding but no specific interactions with the adsorbed molecules. 3-(1-Piperidino)propyl functionalised silica exhibits H-bond acceptor ability, but does not donate H-bonds. PMID:17487325

  15. γ-(S)-Trifluoromethyl proline: evaluation as a structural substitute of proline for solid state (19)F-NMR peptide studies.

    PubMed

    Kubyshkin, Vladimir; Afonin, Sergii; Kara, Sezgin; Budisa, Nediljko; Mykhailiuk, Pavel K; Ulrich, Anne S

    2015-03-21

    γ-(4S)-Trifluoromethyl proline was synthesised according to a modified literature protocol with improved yield on a multigram scale. Conformational properties of the amide bond formed by the amino acid were characterised using N-acetyl methyl ester model. The amide populations (s-trans vs. s-cis) and thermodynamic parameters of the isomerization were found to be similar to the corresponding values for intact proline. Therefore, the γ-trifluoromethyl proline was suggested as a structurally low-disturbing proline substitution in peptides for their structural studies by (19)F-NMR. Indeed, the exchange of native proline for γ-trifluoromethyl proline in the peptide antibiotic gramicidin S was shown to preserve the overall amphipathic peptide structure. The utility of the amino acid as a selective (19)F-NMR label was demonstrated by observing the re-alignment of the labelled gramicidin S in oriented lipid bilayers. PMID:25703116

  16. NMR shielding and spin–rotation constants of {sup 175}LuX (X = {sup 19}F, {sup 35}Cl, {sup 79}Br, {sup 127}I) molecules

    SciTech Connect

    Demissie, Taye B.

    2015-12-31

    This presentation demonstrates the relativistic effects on the spin-rotation constants, absolute nuclear magnetic resonance (NMR) shielding constants and shielding spans of {sup 175}LuX (X = {sup 19}F, {sup 35}Cl, {sup 79}Br, {sup 127}I) molecules. The results are obtained from calculations performed using density functional theory (non-relativistic and four-component relativistic) and coupled-cluster calculations. The spin-rotation constants are compared with available experimental values. In most of the molecules studied, relativistic effects make an order of magnitude difference on the NMR absolute shielding constants.

  17. NMR shielding and spin-rotation constants of 175LuX (X = 19F, 35Cl, 79Br, 127I) molecules

    NASA Astrophysics Data System (ADS)

    Demissie, Taye B.

    2015-12-01

    This presentation demonstrates the relativistic effects on the spin-rotation constants, absolute nuclear magnetic resonance (NMR) shielding constants and shielding spans of 175LuX (X = 19F, 35Cl, 79Br, 127I) molecules. The results are obtained from calculations performed using density functional theory (non-relativistic and four-component relativistic) and coupled-cluster calculations. The spin-rotation constants are compared with available experimental values. In most of the molecules studied, relativistic effects make an order of magnitude difference on the NMR absolute shielding constants.

  18. Magnetic properties and hyperfine interactions in Cr8, Cr7Cd, and Cr7Ni molecular rings from 19F-NMR

    SciTech Connect

    Bordonali, L; Garlatti, E; Casadei, C M; Furukawa, Y; Lascialfari, A; Carretta, S; Troiani, F; Timco, G; Winpenny, R E; Borsa, F

    2014-04-14

    A detailed experimental investigation of the 19F nuclear magnetic resonance is made on single crystals of the homometallic Cr₈ antiferromagnetic molecular ring and heterometallic Cr₇Cd and Cr₇ Ni rings in the low temperature ground state. Since the F- ion is located midway between neighboring magnetic metal ions in the ring, the 19F-NMR spectra yield information about the local electronic spin density and ¹⁹F hyperfine interactions. In Cr8, where the ground state is a singlet with total spin S T = 0, the ¹⁹F-NMR spectra at 1.7 K and low external magnetic field display a single narrow line, while when the magnetic field is increased towards the first level crossing field, satellite lines appear in the ¹⁹F-NMR spectrum, indicating a progressive increase in the Boltzmann population of the first excited state S T = 1. In the heterometallic rings, Cr₇Cd and Cr₇ Ni, whose ground state is magnetic with S T = 3/2 and S T = 1/2, respectively, the ¹⁹F-NMR spectrum has a complicated structure which depends on the strength and orientation of the magnetic field, due to both isotropic and anisotropic transferred hyperfine interactions and classical dipolar interactions. From the 19F-NMR spectra in single crystals we estimated the transferred hyperfine constants for both the F⁻-Ni2⁺ and the F⁻-Cd2⁺ bonds. The values of the hyperfine constants compare well to the ones known for F⁻-Ni2⁺ in KNiF₃ and NiF₂ and for F⁻-Cr³⁺ in K₂NaCrF₆. The results are discussed in terms of hybridization of the 2s, 2p orbitals of the F⁻ ion and the d orbitals of the magnetic ion. Finally, we discuss the implications of our results for the electron-spin decoherence.

  19. 19F-decoupling of half-integer spin quadrupolar nuclei in solid-state NMR: application of frequency-swept decoupling methods.

    PubMed

    Chandran, C Vinod; Hempel, Günter; Bräuniger, Thomas

    2011-09-01

    In solid-state NMR studies of minerals and ion conductors, quadrupolar nuclei like (7)Li, (23)Na or (133)Cs are frequently situated in close proximity to fluorine, so that application of (19)F decoupling is beneficial for spectral resolution. Here, we compare the decoupling efficiency of various multi-pulse decoupling sequences by acquiring (19)F-decoupled (23)Na-NMR spectra of cryolite (Na(3)AlF(6)). Whereas the MAS spectrum is only marginally affected by application of (19)F decoupling, the 3Q-filtered (23)Na signal is very sensitive to it, as the de-phasing caused by the dipolar interaction between sodium and fluorine is three-fold magnified. Experimentally, we find that at moderate MAS speeds, the decoupling efficiencies of the frequency-swept decoupling schemes SW(f)-TPPM and SW(f)-SPINAL are significantly better than the conventional TPPM and SPINAL sequences. The frequency-swept sequences are therefore the methods of choice for efficient decoupling of quadrupolar nuclei with half-integer spin from fluorine. PMID:21856132

  20. Evidence of a structural phase transition in superconducting SmFeAsO1-xFx from 19F NMR

    NASA Astrophysics Data System (ADS)

    Majumder, M.; Ghoshray, K.; Mazumdar, C.; Poddar, A.; Ghoshray, A.; Berardan, D.; Dragoe, N.

    2013-01-01

    We report resistivity, magnetization and 19F NMR results in a polycrystalline sample of SmFeAsO0.86F0.14. The resistivity and magnetization data show a sharp drop at 48 K indicating a superconducting transition. The nuclear spin-lattice rate (1/T1) and spin-spin relaxation rate (1/T2) clearly show the existence of a structural phase transition near 163 K in the sample, which also undergoes a superconducting transition. This finding creates interest in exploring whether this is unique for Sm based systems or is also present in other rare-earth based 1111 superconductors.

  1. Using "On/Off" (19)F NMR/Magnetic Resonance Imaging Signals to Sense Tyrosine Kinase/Phosphatase Activity in Vitro and in Cell Lysates.

    PubMed

    Zheng, Zhen; Sun, Hongbin; Hu, Chen; Li, Gongyu; Liu, Xiaomei; Chen, Peiyao; Cui, Yusi; Liu, Jing; Wang, Junfeng; Liang, Gaolin

    2016-03-15

    Tyrosine kinase and phosphatase are two important, antagonistic enzymes in organisms. Development of noninvasive approach for sensing their activity with high spatial and temporal resolution remains challenging. Herein, we rationally designed a hydrogelator Nap-Phe-Phe(CF3)-Glu-Tyr-Ile-OH (1a) whose supramolecular hydrogel (i.e., Gel 1a) can be subjected to tyrosine kinase-directed disassembly, and its phosphate precursor Nap-Phe-Phe(CF3)-Glu-Tyr(H2PO3)-Ile-OH (1b), which can be subjected to alkaline phosphatase (ALP)-instructed self-assembly to form supramolecular hydrogel Gel 1b, respectively. Mechanic properties and internal fibrous networks of the hydrogels were characterized with rheology and cryo transmission electron microscopy (cryo-TEM). Disassembly/self-assembly of their corresponding supramolecular hydrogels conferring respective "On/Off" (19)F NMR/MRI signals were employed to sense the activity of these two important enzymes in vitro and in cell lysates for the first time. We anticipate that our new (19)F NMR/magnetic resonance imaging (MRI) method would facilitate pharmaceutical researchers to screen new inhibitors for these two enzymes without steric hindrance. PMID:26901415

  2. Reaction monitoring in LPOS by 19F NMR. Study of soluble polymer supports with fluorine in spacer or linker components of supports.

    PubMed

    Lakshmipathi, Pandarinathan; Crévisy, Christophe; Grée, Rene

    2002-01-01

    Various soluble polystyrene supports with fluorinated spacer or linker were prepared and studied by (19)F NMR for their use in LPOS reaction monitoring. Among three types of systems studied, the perfluoro Wang linker was found to be most efficient for this purpose. Substrates could be easily anchored to and cleaved from this new support-bound linker. The anchoring of the linker and the substrates on the polymer led to significant changes in the fluorine resonances. Therefore, the progress of these reactions could be both monitored and quantified. On the other hand, the chemical transformations on the anchored substrates led only to moderate changes in the fluorine resonances. Nevertheless, the reaction progress could also be monitored in this case. After cleavage of products, the polymer supports were recovered without loss in loading. Membrane separation technology was used to purify some polymer-bound products as well as to obtain the polymer-free cleaved product. PMID:12425606

  3. Solid-state {sup 19}F and {sup 13}C NMR of room temperature fluorinated graphite and samples thermally treated under fluorine: Low-field and high-resolution studies

    SciTech Connect

    Giraudet, J.; Dubois, M.; Guerin, K.; Pinheiro, J.P.; Hamwi, A.; Stone, W.E.E.; Pirotte, P.; Masin, F. . E-mail: fmasin@ulb.ac.be

    2005-04-15

    Room temperature graphite fluorides consisting of raw material and samples post-treated in pure fluorine atmosphere in the temperature range 100-500 deg. C have been studied by solid-state NMR. Several NMR approaches have been used, both high and low-field {sup 19}F, {sup 19}F MAS and {sup 13}C MAS with {sup 19}F to {sup 13}C cross polarization. The modifications, in the graphitic lattice, of the catalytic iodine fluorides products have been examined. A transformation of the C-F bond character from semi-ionic to covalent has been found to occur at a post-treatment temperature close to 400 deg. C. It is shown that covalency increases with temperature.

  4. Site-specific solvent exposure analysis of a membrane protein using unnatural amino acids and {sup 19}F nuclear magnetic resonance

    SciTech Connect

    Shi, Pan; Li, Dong; Chen, Hongwei; Xiong, Ying; Tian, Changlin

    2011-10-22

    Highlights: {yields} Solvent isotope shift analysis of {sup 19}F-tfmF in different H{sub 2}O/D{sub 2}O molar ratio. {yields} Correlation between solvent isotope shift of {sup 19}F-spins and solvent exposure analysis. {yields} Solvent exposure analysis of membrane proteins. -- Abstract: Membrane proteins play an essential role in cellular metabolism, transportation and signal transduction across cell membranes. The scarcity of membrane protein structures has thus far prevented a full understanding of their molecular mechanisms. Preliminary topology studies and residue solvent exposure analysis have the potential to provide valuable information on membrane proteins of unknown structure. Here, a {sup 19}F-containing unnatural amino acid (trimethylfluoro-phenylalanine, tfmF) was applied to accomplish site-specific {sup 19}F spin incorporation at different sites in diacylglycerol kinase (DAGK, an Escherichia coli membrane protein) for site-specific solvent exposure analysis. Due to isotope effect on {sup 19}F spins, a standard curve for {sup 19}F-tfmF chemical shifts was drawn for varying solvent H{sub 2}O/D{sub 2}O ratios. Further site-specific {sup 19}F solvent isotope shift analysis was conducted for DAGK to distinguish residues in water-soluble loops, interfacial areas or hydrophobic membrane regions. This site-specific solvent exposure analysis method could be applied for further topological analysis of other membrane proteins.

  5. Targeting the Endocannabinoid System for Neuroprotection: A 19F-NMR Study of a Selective FAAH Inhibitor Binding with an Anandamide Carrier Protein, HSA

    PubMed Central

    Zhuang, Jianqin; Yang, De-Ping; Tian, Xiaoyu; Nikas, Spyros P.; Sharma, Rishi; Guo, Jason Jianxin; Makriyannis, Alexandros

    2013-01-01

    Fatty acid amide hydrolase (FAAH), the enzyme involved in the inactivation of the endocannabinoid anandamide (AEA), is being considered as a therapeutic target for analgesia and neuroprotection. We have developed a brain permeable FAAH inhibitor, AM5206, which has served as a valuable pharmacological tool to explore neuroprotective effects of this class of compounds. In the present work, we characterized the interactions of AM5206 with a representative AEA carrier protein, human serum albumin (HSA), using 19F nuclear magnetic resonance (NMR) spectroscopy. Our data showed that as a drug carrier, albumin can significantly enhance the solubility of AM5206 in aqueous environment. Through a series of titration and competitive binding experiments, we also identified that AM5206 primarily binds to two distinct sites within HSA. Our results may provide insight into the mechanism of HSA-AM5206 interactions. The findings should also help in the development of suitable formulations of the lipophilic AM5206 and its congeners for their effective delivery to specific target sites in the brain. PMID:24533425

  6. Roles of Arginine and Lysine Residues in the Translocation of a Cell-Penetrating Peptide from 13C, 31P and 19F Solid-State NMR

    PubMed Central

    Su, Yongchao; Doherty, Tim; Waring, Alan J.; Ruchala, Piotr; Hong, Mei

    2009-01-01

    Cell-penetrating peptides (CPPs) are small cationic peptides that cross the cell membrane while carrying macromolecular cargoes. We use solid-state NMR to investigate the structure and lipid interaction of two cationic residues, Arg10 and Lys13, in the CPP penetratin. 13C chemical shifts indicate that Arg10 adopts a rigid β-strand conformation in the liquid-crystalline state of anionic lipid membranes. This behavior contrasts with all other residues observed so far in this peptide, which adopt a dynamic β-turn conformation with coil-like chemical shifts at physiological temperature. Low-temperature 13C-31P distances between the peptide and the lipid phosphates indicate that both the Arg10 guanidinium Cζ and the Lys13 Cε lie in close proximity to the lipid 31P (4.0 - 4.2 Å), proving the existence of charge-charge interaction for both Arg10 and Lys13 in the gel-phase membrane. However, since lysine substitution in CPPs are known to reduce their translocation ability, we propose that low temperature stabilizes both lysine and arginine interactions with the phosphates, whereas at high temperature the lysine-phosphate interaction is much weaker than the arginine-phosphate interaction. This is supported by the unusually high rigidity of the Arg10 sidechain and its β-strand conformation at high temperature. The latter is proposed to be important for ion pair formation by allowing close approach of the lipid headgroups to guanidinium sidechains. 19F and 13C spin diffusion experiments indicate that penetratin is oligomerized into β-sheets in gel-phase membranes. These solid-state NMR data indicate that guanidinium-phosphate interactions exist in penetratin, and guanidinium groups play a stronger structural role than ammonium groups in the lipid-assisted translocation of CPPs across liquid-crystalline cell membranes. PMID:19364134

  7. Magnetic properties and hyperfine interactions in Cr{sub 8}, Cr{sub 7}Cd, and Cr{sub 7}Ni molecular rings from {sup 19}F-NMR

    SciTech Connect

    Bordonali, L.; Borsa, F.; Consorzio INSTM, Via Giusti 9, I-50121 Firenze; Department of Physics and Astronomy, Ames Laboratory, Iowa State University, Ames, Iowa 50011 ; Garlatti, E.; Dipartimento di Fisica e Scienze della Terra, Università di Parma, Viale G. P. Usberti 7 Casadei, C. M.; Department of Physics and Astronomy, Ames Laboratory, Iowa State University, Ames, Iowa 50011 ; Furukawa, Y.; Lascialfari, A.; Consorzio INSTM, Via Giusti 9, I-50121 Firenze; Department of Physics, Università degli Studi di Milano, Via Celoria 16, 20133 Milano ; Carretta, S.; Timco, G.; Winpenny, R. E. P.

    2014-04-14

    A detailed experimental investigation of the {sup 19}F nuclear magnetic resonance is made on single crystals of the homometallic Cr{sub 8} antiferromagnetic molecular ring and heterometallic Cr{sub 7}Cd and Cr{sub 7}Ni rings in the low temperature ground state. Since the F{sup −} ion is located midway between neighboring magnetic metal ions in the ring, the {sup 19}F-NMR spectra yield information about the local electronic spin density and {sup 19}F hyperfine interactions. In Cr{sub 8}, where the ground state is a singlet with total spin S{sub T} = 0, the {sup 19}F-NMR spectra at 1.7 K and low external magnetic field display a single narrow line, while when the magnetic field is increased towards the first level crossing field, satellite lines appear in the {sup 19}F-NMR spectrum, indicating a progressive increase in the Boltzmann population of the first excited state S{sub T} = 1. In the heterometallic rings, Cr{sub 7}Cd and Cr{sub 7}Ni, whose ground state is magnetic with S{sub T} = 3/2 and S{sub T} = 1/2, respectively, the {sup 19}F-NMR spectrum has a complicated structure which depends on the strength and orientation of the magnetic field, due to both isotropic and anisotropic transferred hyperfine interactions and classical dipolar interactions. From the {sup 19}F-NMR spectra in single crystals we estimated the transferred hyperfine constants for both the F{sup −}-Ni{sup 2+} and the F{sup −}-Cd{sup 2+} bonds. The values of the hyperfine constants compare well to the ones known for F{sup −}-Ni{sup 2+} in KNiF{sub 3} and NiF{sub 2} and for F{sup −}-Cr{sup 3+} in K{sub 2}NaCrF{sub 6}. The results are discussed in terms of hybridization of the 2s, 2p orbitals of the F{sup −} ion and the d orbitals of the magnetic ion. Finally, we discuss the implications of our results for the electron-spin decoherence.

  8. Combined ligand-observe 19F and protein-observe 15N,1H-HSQC NMR suggests phenylalanine as the key Δ-somatostatin residue recognized by human protein disulfide isomerase

    PubMed Central

    Richards, Kirsty L.; Rowe, Michelle L.; Hudson, Paul B.; Williamson, Richard A.; Howard, Mark J.

    2016-01-01

    Human protein disulphide isomerase (hPDI) is an endoplasmic reticulum (ER) based isomerase and folding chaperone. Molecular detail of ligand recognition and specificity of hPDI are poorly understood despite the importance of the hPDI for folding secreted proteins and its implication in diseases including cancer and lateral sclerosis. We report a detailed study of specificity, interaction and dissociation constants (Kd) of the peptide-ligand Δ-somatostatin (AGSKNFFWKTFTSS) binding to hPDI using 19F ligand-observe and 15N,1H-HSQC protein-observe NMR methods. Phe residues in Δ-somatostatin are hypothesised as important for recognition by hPDI therefore, step-wise peptide Phe-to-Ala changes were progressively introduced and shown to raise the Kd from 103 + 47 μM until the point where binding was abolished when all Phe residues were modified to Ala. The largest step-changes in Kd involved the F11A peptide modification which implies the C-terminus of Δ-somatostatin is a prime recognition region. Furthermore, this study also validated the combined use of 19F ligand-observe and complimentary 15N,1H-HSQC titrations to monitor interactions from the protein’s perspective. 19F ligand-observe NMR was ratified as mirroring 15N protein-observe but highlighted the advantage that 19F offers improved Kd precision due to higher spectrum resolution and greater chemical environment sensitivity. PMID:26786784

  9. Quality assessment of fluoxetine and fluvoxamine pharmaceutical formulations purchased in different countries or via the Internet by 19F and 2D DOSY 1H NMR.

    PubMed

    Trefi, Saleh; Gilard, Véronique; Balayssac, Stéphane; Malet-Martino, Myriam; Martino, Robert

    2008-03-13

    A simple and selective (19)F NMR method has been validated for the quantitation of fluoxetine (FLX) and fluvoxamine (FLV) in methanol solutions and in human plasma and urine. The regression equations for FLX and FLV showed a good linearity in the range of 1.4-620 microg mL(-1) (3.3 x 10(-6)-1.8 x 10(-3) mol L(-1)) with a limit of detection of approximately 0.5 microg mL(-1) (1.3 x 10(-6) mol L(-1)) and a limit of quantification of approximately 2 microg mL(-1) (4.6 x 10(-6) mol L(-1)). The precision of the assay depends on the concentrations and is comprised between 1.5 and 9.5% for a range of concentrations between 1.2 x 10(-3) and 3.2 x 10(-6) mol L(-1). The accuracy evaluated through recovery studies ranged from approximately 96 to 103% in methanol solutions and in urine, and from approximately 93 to 104% in plasma, with standard deviations <7.5%. The low sensitivity of the method precludes its use for the assay of these antidepressants in biofluids at least at therapeutic doses as the ranges of FLX and FLV plasma levels are 0.15-0.5 microg mL(-1) and 0.15-0.25 microg mL(-1), respectively. The method was applied successfully to the determination of FLX and FLV contents in pharmaceutical samples (brand-named and generic) purchased in several countries or via the Internet. All the commercial formulations contain the active ingredient in the range 94-103% of stated concentration. A "signature" of the formulations (solid and liquid) was obtained with 2D Diffusion-Ordered SpectroscopY (DOSY) (1)H NMR which allowed the characterisation of the active ingredient and excipients present in the formulations studied. Finally, the DOSY separation of FLX and FLV whose molecular weights are very close was obtained by using beta-cyclodextrin as host-guest complexing agent. PMID:18206329

  10. Identification of 2-[2-nitro-4-(trifluoromethyl)benzoyl]- cyclohexane-1,3-dione metabolites in urine of patients suffering from tyrosinemia type I with the use of 1H and 19F NMR spectroscopy.

    PubMed

    Szczeciński, Przemysław; Lamparska, Diana; Gryff-Keller, Adam; Gradowska, Wanda

    2008-01-01

    Organic extracts of six urine samples from children treated with nitisinone, a medicine against tyrosinemia type I, were investigated by (1)H and (19)F NMR spectroscopy. The presence of unchanged 2-[2-nitro-4-(trifluoromethyl)benzoyl]cyclohexane-1,3-dione (NTBC), 6-hydroxy-2-[2-nitro-4-(trifluoromethyl)benzoyl]cyclohexane-1,3-dione (NTBC-OH) and 2-nitro-4-trifluoromethylbenzoic acid (NTFA) as well as a few other unidentified compounds containing CF(3) group was documented. PMID:19039335

  11. Degradation of 4-fluorobiphenyl by mycorrhizal fungi as determined by {sup 19}F nuclear magnetic resonance spectroscopy and {sup 14}C radiolabelling analysis

    SciTech Connect

    Green, N.A.; Meharg, A.A.; Till, C.; Troke, J.; Nicholson, J.K.

    1999-09-01

    The pathways of biotransformation of 4-fluorobiphenyl (4FBP) by the ectomycorrhizal fungus Tylospora fibrilosa and several other mycorrhizal fungi were investigated by using {sup 19}F nuclear magnetic resonance (NMR) spectroscopy in combination with {sup 14}C radioisotope-detected high-performance liquid chromatography ({sup 14}C-HPLC). Under the conditions used in this study T. fibrillosa and some other species degraded 4FBP. {sup 14}C-HPLC profiles indicated that there were four major biotransformation products, whereas {sup 19}F NMR showed that there were six major fluorine-containing products. The authors confirmed that 4-fluorobiphen-4{prime}-ol and 4-fluorobiphen-3{prime}-ol were two of the major products formed, but no other products were conclusively identified. There was no evidence for the expected biotransformation pathway (namely, meta cleavage of the less halogenated ring), as none of the expected products of this route were found. To the best of their knowledge, this is the first report describing intermediates formed during mycorrhizal degradation of halogenated biphenyls.

  12. Phase transitions and molecular motions in [Cd(H{sub 2}O){sub 6}](BF{sub 4}){sub 2} studied by DSC, {sup 1}H and {sup 19}F NMR and FT-MIR

    SciTech Connect

    Mikuli, E. . E-mail: mikuli@chemia.uj.edu.pl; Grad, B.; Medycki, W.; Holderna-Natkaniec, K.

    2004-10-01

    Two solid phase transitions of [Cd(H{sub 2}O){sub 6}](BF{sub 4}){sub 2} occurring on heating at T{sub C2}=183.3K and T{sub C1}=325.3K, with 2K and 5K hysteresis, respectively, were detected by differential scanning calorimetry (DSC). High value of entropy changes indicated large orientational disorder of the high temperature and intermediate phase. Nuclear magnetic resonance ({sup 1}H NMR and {sup 19}F NMR) relaxation measurements revealed that the phase transitions at T{sub C1} and T{sub C2} were associated with a drastic and small change, respectively, of the both spin-lattice relaxation times: T{sub 1}({sup 1}H) and T{sub 1}({sup 19}F). These relaxation processes were connected with the 'tumbling' motions of the [Cd(H{sub 2}O){sub 6}]{sup 2+}, reorientational motions of the H{sub 2}O ligands, and with the iso- and anisotropic reorientation of the BF{sub 4}{sup -} anions. The cross-relaxation effect was observed in phase III. The line width and the second moment of the {sup 1}H and {sup 19}F NMR line measurements revealed that the H{sub 2}O reorientate in all three phases of the title compound. On heating the onset of the reorientation of 3 H{sub 2}O in the [Cd(H{sub 2}O){sub 6}]{sup +2}, around the three-fold symmetry axis of these octahedron, causes the isotropic reorientation of the whole cation. The BF{sub 4}{sup -} reorientate isotropically in the phases I and II, but in the phase III they perform slow reorientation only about three- or two-fold axes. A small distortion in the structure of BF{sub 4}{sup -} as well as of [Cd(H{sub 2}O){sub 6}]{sup 2+} is postulated. The temperature dependence of the bandwidth of the O-H stretching mode measured by Fourier transform middle infrared spectroscopy (FT-MIR) indicated that the activation energy for the reorientation of the H{sub 2}O did not change much at the T{sub C2} phase transition.

  13. Correlated fluorine diffusion and ionic conduction in the nanocrystalline F(-) solid electrolyte Ba(0.6)La(0.4)F(2.4)-(19)F T1(ρ) NMR relaxation vs. conductivity measurements.

    PubMed

    Preishuber-Pflügl, F; Bottke, P; Pregartner, V; Bitschnau, B; Wilkening, M

    2014-05-28

    Chemical reactions induced by mechanical treatment may give access to new compounds whose properties are governed by chemical metastability, defects introduced and the size effects present. Their interplay may lead to nanocrystalline ceramics with enhanced transport properties being useful to act as solid electrolytes. Here, the introduction of large amounts of La into the cubic structure of BaF2 served as such an example. The ion transport properties in terms of dc-conductivity values of the F(-) anion conductor Ba1-xLaxF2+x (here with x = 0.4) considerably exceed those of pure, nanocrystalline BaF2. So far, there is only little knowledge about activation energies and jump rates of the elementary hopping processes. Here, we took advantage of both impedance spectroscopy and (19)F NMR relaxometry to get to the bottom of ion jump diffusion proceeding on short-range and long-range length scales in Ba0.6La0.4F2.4. While macroscopic transport is governed by an activation energy of 0.55 to 0.59 eV, the elementary steps of hopping seen by NMR are characterised by much smaller activation energies. Fortunately, we were able to deduce an F(-) self-diffusion coefficient by the application of spin-locking NMR relaxometry. PMID:24728404

  14. Absolute NMR shielding scales and nuclear spin–rotation constants in {sup 175}LuX and {sup 197}AuX (X = {sup 19}F, {sup 35}Cl, {sup 79}Br and {sup 127}I)

    SciTech Connect

    Demissie, Taye B. Komorovsky, Stanislav; Repisky, Michal; Ruud, Kenneth; Jaszuński, Michał

    2015-10-28

    We present nuclear spin–rotation constants, absolute nuclear magnetic resonance (NMR) shielding constants, and shielding spans of all the nuclei in {sup 175}LuX and {sup 197}AuX (X = {sup 19}F, {sup 35}Cl, {sup 79}Br, {sup 127}I), calculated using coupled-cluster singles-and-doubles with a perturbative triples (CCSD(T)) correction theory, four-component relativistic density functional theory (relativistic DFT), and non-relativistic DFT. The total nuclear spin–rotation constants determined by adding the relativistic corrections obtained from DFT calculations to the CCSD(T) values are in general in agreement with available experimental data, indicating that the computational approach followed in this study allows us to predict reliable results for the unknown spin–rotation constants in these molecules. The total NMR absolute shielding constants are determined for all the nuclei following the same approach as that applied for the nuclear spin–rotation constants. In most of the molecules, relativistic effects significantly change the computed shielding constants, demonstrating that straightforward application of the non-relativistic formula relating the electronic contribution to the nuclear spin–rotation constants and the paramagnetic contribution to the shielding constants does not yield correct results. We also analyze the origin of the unusually large absolute shielding constant and its relativistic correction of gold in AuF compared to the other gold monohalides.

  15. Absolute NMR shielding scales and nuclear spin-rotation constants in (175)LuX and (197)AuX (X = (19)F, (35)Cl, (79)Br and (127)I).

    PubMed

    Demissie, Taye B; Jaszuński, Michał; Komorovsky, Stanislav; Repisky, Michal; Ruud, Kenneth

    2015-10-28

    We present nuclear spin-rotation constants, absolute nuclear magnetic resonance (NMR) shielding constants, and shielding spans of all the nuclei in (175)LuX and (197)AuX (X = (19)F, (35)Cl, (79)Br, (127)I), calculated using coupled-cluster singles-and-doubles with a perturbative triples (CCSD(T)) correction theory, four-component relativistic density functional theory (relativistic DFT), and non-relativistic DFT. The total nuclear spin-rotation constants determined by adding the relativistic corrections obtained from DFT calculations to the CCSD(T) values are in general in agreement with available experimental data, indicating that the computational approach followed in this study allows us to predict reliable results for the unknown spin-rotation constants in these molecules. The total NMR absolute shielding constants are determined for all the nuclei following the same approach as that applied for the nuclear spin-rotation constants. In most of the molecules, relativistic effects significantly change the computed shielding constants, demonstrating that straightforward application of the non-relativistic formula relating the electronic contribution to the nuclear spin-rotation constants and the paramagnetic contribution to the shielding constants does not yield correct results. We also analyze the origin of the unusually large absolute shielding constant and its relativistic correction of gold in AuF compared to the other gold monohalides. PMID:26520517

  16. Absolute NMR shielding scales and nuclear spin-rotation constants in 175LuX and 197AuX (X = 19F, 35Cl, 79Br and 127I)

    NASA Astrophysics Data System (ADS)

    Demissie, Taye B.; Jaszuński, Michał; Komorovsky, Stanislav; Repisky, Michal; Ruud, Kenneth

    2015-10-01

    We present nuclear spin-rotation constants, absolute nuclear magnetic resonance (NMR) shielding constants, and shielding spans of all the nuclei in 175LuX and 197AuX (X = 19F, 35Cl, 79Br, 127I), calculated using coupled-cluster singles-and-doubles with a perturbative triples (CCSD(T)) correction theory, four-component relativistic density functional theory (relativistic DFT), and non-relativistic DFT. The total nuclear spin-rotation constants determined by adding the relativistic corrections obtained from DFT calculations to the CCSD(T) values are in general in agreement with available experimental data, indicating that the computational approach followed in this study allows us to predict reliable results for the unknown spin-rotation constants in these molecules. The total NMR absolute shielding constants are determined for all the nuclei following the same approach as that applied for the nuclear spin-rotation constants. In most of the molecules, relativistic effects significantly change the computed shielding constants, demonstrating that straightforward application of the non-relativistic formula relating the electronic contribution to the nuclear spin-rotation constants and the paramagnetic contribution to the shielding constants does not yield correct results. We also analyze the origin of the unusually large absolute shielding constant and its relativistic correction of gold in AuF compared to the other gold monohalides.

  17. Analysis of the 19F(p, α0)16O reaction at low energies and the spectroscopy of 20Ne

    NASA Astrophysics Data System (ADS)

    Lombardo, I.; Dell'Aquila, D.; Campajola, L.; Rosato, E.; Spadaccini, G.; Vigilante, M.

    2013-12-01

    The investigation of the 19F(p, α0) reaction at low bombarding energies allows the study of the spectroscopy of the 20Ne compound nucleus in an energy region where the existence of quartet excitations has been suggested in the literature. Moreover, this reaction plays a major role in the fourth branch of the CNO cycle since it is relevant for the correct description of the hydrogen burning of fluorine in stars. For these reasons, we decided to investigate the 19F(p, α0) reaction in the Ep ≃ 0.6-1 MeV energy range. The analysis of angular distributions and excitation functions allows one to improve the 20Ne spectroscopy in an excitation energy region where some ambiguities concerning Jπ assignments exist in the literature. In particular, the present data suggest a Jπ = 0+ assignment to the Ex = 13.642 MeV resonance. For this state, both partial and reduced widths for the α0 channel have been deduced. The trend of the astrophysical factor has been obtained from the integrated cross section. A comparison of the present results with data reported in the literature is also discussed.

  18. Binding energies and 19F nuclear magnetic deshielding in paramagnetic halogen-bonded complexes of TEMPO with haloperfluorocarbons.

    PubMed

    Cavallotti, Carlo; Metrangolo, Pierangelo; Meyer, Franck; Recupero, Francesco; Resnati, Giuseppe

    2008-10-01

    19F NMR measurements and theoretical calculations were performed to study paramagnetic complexes of iodoperfluorocarbons with stable nitroxide radicals. Contrary to what is usually measured for diamagnetic halogen-bonded complexes involving iodoperfluorocarbons, it was found that the formation of complexes with the 2,2,6,6-tetramethyl(piperidin-1-yloxyl) (TEMPO) radical determines downfield shifts in the 19F NMR spectra. The experimental finding was confirmed by calculating nuclear shielding using density functional theory and correcting the isotropic diamagnetic (19)F chemical shift with contact interactions evaluated from the hyperfine coupling tensor. The computational analysis of the interaction between CF3I and TEMPO, by using DFT and MP2 theories, showed that the occurrence of the halogen bond between the interacting partners is associated with a significant charge transfer to CF3I and that the measured downfield shift is due to the occurring spin transfer. PMID:18795762

  19. NMR analysis of biodiesel

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Biodiesel is usually analyzed by the various methods called for in standards such as ASTM D6751 and EN 14214. Nuclear magnetic resonance (NMR) is not one of these methods. However, NMR, with 1H-NMR commonly applied, can be useful in a variety of applications related to biodiesel. These include monit...

  20. Photoneutron angular distribution of 19F

    NASA Astrophysics Data System (ADS)

    Kuo, P. C.-K.; Jury, J. W.; McNeill, K. G.; Sherman, N. K.; Davidson, W. F.

    1989-07-01

    Photoneutron time-of-flight spectra from the reaction 19F(γ, n 0) 18F were measured between 48° and 139° using 10 m flight paths over the excitation energy range from 15-25 MeV. The measured values of the normalized Legendre a1 and a3 coefficients are very small or close to zero over the energy region studied, indicating dominance of E1 absorption in this region. A simple modeldependent analysis of the a2 coefficient showed that the likely reaction mechanisms are mainly s → p and d → p single-particle transitions of channel spin {1}/{2}. A comparison of the present angleintegrated ground-state cross section with the (γ, n tot) work of Veyssière et al. indicates that decays to excited states in 18F are much preferred (typically by a factor of 5) over the ground-state channel. The 19F(γ, n 0) cross section shows reasonable agreement in structure and magnitude with the 19F(γ, p 0) cross section of Kerkhove et al. as well as with the 18O(γ, n 0) data of Jury et al. (although some discrepancies are seen at 16 MeV and above 23 MeV).

  1. Multispectral Analysis of NMR Imagery

    NASA Technical Reports Server (NTRS)

    Butterfield, R. L.; Vannier, M. W. And Associates; Jordan, D.

    1985-01-01

    Conference paper discusses initial efforts to adapt multispectral satellite-image analysis to nuclear magnetic resonance (NMR) scans of human body. Flexibility of these techniques makes it possible to present NMR data in variety of formats, including pseudocolor composite images of pathological internal features. Techniques do not have to be greatly modified from form in which used to produce satellite maps of such Earth features as water, rock, or foliage.

  2. Through-space (19) F-(15) N couplings for the assignment of stereochemistry in flubenzimine.

    PubMed

    Ghiviriga, Ion; Rubinski, Miles A; Dolbier, William R

    2016-07-01

    Through-space (19) F-(15) N couplings revealed the configuration of flubenzimine, with the CF3 group on N4 pointing towards the lone pair of N5. The (19) F-(15) N coupling constants were measured at natural abundance using a spin-state selective indirect-detection pulse sequence. As (15) N-labelled proteins are routinely synthesized for NMR studies, through-space (19) F-(15) N couplings have the potential to probe the stereochemistry of these proteins by (19) F labelling of some amino acids or can reveal the site of docking of fluorine-containing drugs. Copyright © 2016 John Wiley & Sons, Ltd. PMID:27059012

  3. Achievement of 1 H-19 F heteronuclear experiments using the conventional spectrometer with a shared single high band amplifier.

    PubMed

    Sakuma, Chiseko; Kurita, Jun-ichi; Furihata, Kazuo; Tashiro, Mitsuru

    2015-05-01

    The (1)H-(19) F heteronuclear NMR experiments were achieved using the conventional spectrometer equipped with a single high band amplifier and a (1)H/(19)F/(13) C double-tuned probe. Although double high band amplifiers are generally required to perform such experiments, a simple modification of pathway in the conventional spectrometer was capable of acquiring various (1)H-(19)F heteronuclear spectra. The efficiency of the present technique was demonstrated in an application for (19)F{(1)H} and (1)H{(19)F} saturation transfer difference experiments. PMID:25808615

  4. CHARACTERIZATION OF TANK 19F SAMPLES

    SciTech Connect

    Oji, L.; Diprete, D.; Click, D.

    2009-12-17

    The Savannah River National Laboratory (SRNL) was asked by Liquid Waste Operations to characterize Tank 19F closure samples. Tank 19F slurry samples analyzed included the liquid and solid fractions derived from the slurry materials along with the floor scrape bottom Tank 19F wet solids. These samples were taken from Tank 19F in April 2009 and made available to SRNL in the same month. Because of limited amounts of solids observed in Tank 19F samples, the samples from the north quadrants of the tank were combined into one Tank 19F North Hemisphere sample and similarly the south quadrant samples were combined into one Tank 19F South Hemisphere sample. These samples were delivered to the SRNL shielded cell. The Tank 19F samples were analyzed for radiological, chemical and elemental components. Where analytical methods yielded additional contaminants other than those requested by the customer, these results were also reported. The target detection limits for isotopes analyzed were based on detection values of 1E-04 {micro}Ci/g for most radionuclides and customer desired detection values of 1E-05 {micro}Ci/g for I-129, Pa-231, Np-237, and Ra-226. While many of the target detection limits, as specified in the technical task request and task technical and quality assurance plans were met for the species characterized for Tank 19F, some were not met. In a number of cases, the relatively high levels of radioactive species of the same element or a chemically similar element precluded the ability to measure some isotopes to low levels. SRNL, in conjunction with the plant customer, reviewed all these cases and determined that the impacts were negligible.

  5. Study of fluorine in silicate glass with 19F nuclear magnetic resonance spectroscopy

    NASA Astrophysics Data System (ADS)

    Duncan, T. M.; Douglass, D. C.; Csencsits, R.; Walker, K. L.

    1986-07-01

    We report an application of nuclear magnetic resonance (NMR) spectroscopy to the study of fluorine-doped silicate glass prepared by the modified chemical vapor deposition process, prior to drawing the rod into fibers. The silica contains 1.03-wt. % fluorine, as determined by the calibrated intensity of the 19F NMR spectrum. The isotropic chemical shift of the 19F spectrum shows that fluorine bonds only to silicon; there is no evidence of oxyfluorides. Analysis of the distribution of nuclear dipolar couplings between fluorine nuclei reveals that the relative populations of silicon monofluoride sites [Si(O-)3F] and species having near-neighbor fluorines, such as silicon difluoride sites [Si(O-)2F2], are nearly statistically random. That is, to a good approximation, the fluorine substitutes randomly into the oxygen sites of the silica network. There is no evidence of local clusters of fluorine sites, silicon trifluoride sites [Si(O-)F3], or silicon tetrafluoride (SiF4).

  6. Measurement and analysis of energy and angular distributions of thick target neutron yields from 110 MeV {sup 19}F on {sup 27}Al

    SciTech Connect

    Sunil, C.; Nandy, Maitreyee; Sarkar, P. K.

    2008-12-15

    Energy distributions of emitted neutrons were measured for 110 MeV {sup 19}F ions incident on a thick {sup 27}Al target. Measurements were done at 0 deg., 30 deg., 60 deg., 90 deg., and 120 deg. with respect to the projectile direction employing the time-of-flight technique using a proton recoil scintillation detector. Comparison with calculated results from equilibrium nuclear reaction model codes like PACE-2 and EMPIRE 2.18 using various level-density options was carried out. It is observed that the dynamic level-density approach in EMPIRE 2.18 gives the closest approximation to the measured data. In the Fermi-gas level-density approach the best approximation of the level-density parameter is a=A/12.0, where A is the mass number of the composite system. The trend in the angular distribution of emitted neutrons is well reproduced by the projection of the angular momentum on the recoil axis as done in the PACE-2 code.

  7. Strategies to enhance signal intensity with paramagnetic fluorine-labelled lanthanide complexes as probes for 19F magnetic resonance.

    PubMed

    Chalmers, Kirsten H; Botta, Mauro; Parker, David

    2011-01-28

    The synthesis and (19)F NMR spectroscopic properties are reported for three series of CF(3)-labelled lanthanide(III) complexes, based on mono- and diamide cyclen ligands. Analyses of variable temperature, pH and field (19)F, (17)O and (1)H NMR spectroscopic experiments are reported and the merits of a triphosphinate mono-amide complex defined by virtue of its favourable isomer distribution and attractive relaxation properties. These lead to an enhanced sensitivity of detection in (19)F magnetic resonance experiments versus a diamagnetic Y(III) analogue, paving the way for future shift and imaging studies. PMID:21127807

  8. Analysis of Radiation Induced Degradation in FPC-461 Fluoropolymers by Variable Temperature Multinuclear NMR

    SciTech Connect

    Chinn, S C; Wilson, T S; Maxwell, R S

    2004-10-27

    Solid state nuclear magnetic resonance techniques have been used to investigate aging mechanisms in a vinyl chloride:chlorotrifluoroethylene copolymer, FPC-461, due to exposure to {gamma}-radiation. Solid state {sup 1}H MAS NMR spectra revealed structural changes of the polymer upon irradiation under both air and nitrogen atmospheres. Considerable degradation is seen with {sup 1}H NMR in the vinyl chloride region of the polymer, particularly in the samples irradiated in air. {sup 19}F MAS NMR was used to investigate speciation in the chlorotrifluoroethylene blocks, though negligible changes were seen. {sup 1}H and {sup 19}F NMR at elevated temperature revealed increased segmental mobility and decreased structural heterogeneity within the polymer, yielding significant resolution enhancement over room temperature solid state detection. The effects of multi-site exchange are manifest in both the {sup 1}H and {sup 19}F NMR spectra as a line broadening and change in peak position as a function of temperature.

  9. [Non-invasive analysis of proteins in living cells using NMR spectroscopy].

    PubMed

    Tochio, Hidehito; Murayama, Shuhei; Inomata, Kohsuke; Morimoto, Daichi; Ohno, Ayako; Shirakawa, Masahiro

    2015-01-01

    NMR spectroscopy enables structural analyses of proteins and has been widely used in the structural biology field in recent decades. NMR spectroscopy can be applied to proteins inside living cells, allowing characterization of their structures and dynamics in intracellular environments. The simplest "in-cell NMR" approach employs bacterial cells; in this approach, live Escherichia coli cells overexpressing a specific protein are subjected to NMR. The cells are grown in an NMR active isotope-enriched medium to ensure that the overexpressed proteins are labeled with the stable isotopes. Thus the obtained NMR spectra, which are derived from labeled proteins, contain atomic-level information about the structure and dynamics of the proteins. Recent progress enables us to work with higher eukaryotic cells such as HeLa and HEK293 cells, for which a number of techniques have been developed to achieve isotope labeling of the specific target protein. In this review, we describe successful use of electroporation for in-cell NMR. In addition, (19)F-NMR to characterize protein-ligand interactions in cells is presented. Because (19)F nuclei rarely exist in natural cells, when (19)F-labeled proteins are delivered into cells and (19)F-NMR signals are observed, one can safely ascertain that these signals originate from the delivered proteins and not other molecules. PMID:25759048

  10. A symmetrical fluorous dendron-cyanine dye-conjugated bimodal nanoprobe for quantitative 19F MRI and NIR fluorescence bioimaging.

    PubMed

    Wang, Zhe; Yue, Xuyi; Wang, Yu; Qian, Chunqi; Huang, Peng; Lizak, Marty; Niu, Gang; Wang, Fu; Rong, Pengfei; Kiesewetter, Dale O; Ma, Ying; Chen, Xiaoyuan

    2014-08-01

    (19)F MRI and optical imaging are two powerful noninvasive molecular imaging modalities in biomedical applications. (19)F MRI has great potential for high resolution in vivo imaging, while fluorescent probes enable ultracontrast cellular/tissue imaging with high accuracy and sensitivity. A bimodal nanoprobe is developed, integrating the merits of (19)F MRI and fluorescence imaging into a single synthetic molecule, which is further engineered into nanoprobe, by addressing shortcomings of conventional contrast agents to explore the quantitative (19)F MRI and fluorescence imaging and cell tracking. Results show that this bimodal imaging nanoprobe presents high correlation of (19)F MR signal and NIR fluorescence intensity in vitro and in vivo. Additionally, this nanoprobe enables quantitative (19)F MR analysis, confirmed by a complementary fluorescence analysis. This unique feature can hardly be obtained by traditional (19)F MRI contrast agents. It is envisioned that this nanoprobe can hold great potential for quantitative and sensitive multi-modal molecular imaging. PMID:24789108

  11. Modified polysaccharides as potential (19)F magnetic resonance contrast agents.

    PubMed

    Krawczyk, Tomasz; Minoshima, Masafumi; Sugihara, Fuminori; Kikuchi, Kazuya

    2016-06-16

    The introduction of 3-aminobenzotrifluoride into partially oxidized alginic acid, dextran, and polygalacturonic acid (10-100 kDa) by means of the imine formation and a subsequent reduction resulted in water-soluble materials containing 1-14% of fluorine. They showed a single or split (19)F NMR signal in a narrow range of -63 to -63.5 ppm. The observed T1 and T2 were approximately 1 and 0.2 s at 400 or 500 MHz instruments, respectively. The samples showed low toxicity and uptake toward the HeLa cells similar to native polysaccharides and were preferentially localized in lysosomes. A tail intravenous injection of 5 mg of modified dextran containing 1% of fluorine revealed that the probe was not trapped in liver, spleen or kidneys, but was quickly cleared with urine. The proposed materials can be used for imaging of the gastrointestinal tract or the genitourinary system and act as a material for more complex (19)F MRI agent synthesis. PMID:27148998

  12. A New Microcell Technique for NMR Analysis.

    ERIC Educational Resources Information Center

    Yu, Sophia J.

    1987-01-01

    Describes a new laboratory technique for working with small samples of compounds used in nuclear magnetic resonance (NMR) analysis. Demonstrates how microcells can be constructed for each experiment and samples can be recycled. (TW)

  13. Quantitative analysis of NMR spectra with chemometrics

    NASA Astrophysics Data System (ADS)

    Winning, H.; Larsen, F. H.; Bro, R.; Engelsen, S. B.

    2008-01-01

    The number of applications of chemometrics to series of NMR spectra is rapidly increasing due to an emerging interest for quantitative NMR spectroscopy e.g. in the pharmaceutical and food industries. This paper gives an analysis of advantages and limitations of applying the two most common chemometric procedures, Principal Component Analysis (PCA) and Multivariate Curve Resolution (MCR), to a designed set of 231 simple alcohol mixture (propanol, butanol and pentanol) 1H 400 MHz spectra. The study clearly demonstrates that the major advantage of chemometrics is the visualisation of larger data structures which adds a new exploratory dimension to NMR research. While robustness and powerful data visualisation and exploration are the main qualities of the PCA method, the study demonstrates that the bilinear MCR method is an even more powerful method for resolving pure component NMR spectra from mixtures when certain conditions are met.

  14. 13C NMR Metabolomics: INADEQUATE Network Analysis

    PubMed Central

    Clendinen, Chaevien S.; Pasquel, Christian; Ajredini, Ramadan; Edison, Arthur S.

    2015-01-01

    The many advantages of 13C NMR are often overshadowed by its intrinsically low sensitivity. Given that carbon makes up the backbone of most biologically relevant molecules, 13C NMR offers a straightforward measurement of these compounds. Two-dimensional 13C-13C correlation experiments like INADEQUATE (incredible natural abundance double quantum transfer experiment) are ideal for the structural elucidation of natural products and have great but untapped potential for metabolomics analysis. We demonstrate a new and semi-automated approach called INETA (INADEQUATE network analysis) for the untargeted analysis of INADEQUATE datasets using an in silico INADEQUATE database. We demonstrate this approach using isotopically labeled Caenorhabditis elegans mixtures. PMID:25932900

  15. Measurement of Long Range 1H-19F Scalar Coupling Constants and their Glycosidic Torsion Dependence in 5-Fluoropyrimidine Substituted RNA

    PubMed Central

    Hennig, Mirko; Munzarová, Markéta L.; Bermel, Wolfgang; Scott, Lincoln G.; Sklenár̂, Vladimír; Williamson, James R.

    2008-01-01

    Long range scalar 5J(H1’,F) couplings were observed in 5-fluoropyrimidine substituted RNA. We developed a novel S3E-19F-α,β-edited NOESY experiment for quantitation of these long range scalar 5J(H1’,F), where the J-couplings can be extracted from inspection of intraresidual (H1’,H6) NOE crosspeaks. Quantum chemical calculations were exploited to investigate the relation between scalar couplings and conformations around the glycosidic bond in oligonucleotides. The theoretical dependence of the observed 5J(H1’,F) couplings on the torsion angle χ can be described by a generalized Karplus relationship. The corresponding density functional theory (DFT) analysis is outlined. Additional NMR experiments facilitating the resonance assignments of 5-fluoropyrimidine substituted RNAs are described and chemical shift changes due to altered shielding in the presence of fluorine-19 (19F) are presented. PMID:16637654

  16. 19F MRI for quantitative in vivo cell tracking

    PubMed Central

    Srinivas, Mangala; Heerschap, Arend; Ahrens, Eric T.; Figdor, Carl G.; de Vries, I. Jolanda M.

    2010-01-01

    Cellular therapy, including stem cell transplants and dendritic cell vaccines, is typically monitored for dosage optimization, accurate delivery and localization using non-invasive imaging, of which magnetic resonance imaging (MRI) is a key modality. 19F MRI retains the advantages of MRI as an imaging modality, while allowing direct detection of labelled cells for unambiguous identification and quantification, unlike typical metal-based contrast agents. Recent developments in 19F MRI-based in vivo cell quantification, the existing clinical use of 19F compounds and current explosive interest in cellular therapeutics have brought 19F imaging technology closer to clinical application. We review the application of 19F MRI to cell tracking, discussing intracellular 19F labels, cell labelling and in vivo quantification, as well as the potential clinical use of 19F MRI. PMID:20427096

  17. The relationship between reorientational molecular motions and phase transitions in [Mg(H{sub 2}O){sub 6}](BF{sub 4}){sub 2}, studied with the use of {sup 1}H and {sup 19}F NMR and FT-MIR

    SciTech Connect

    Mikuli, Edward Hetmańczyk, Joanna; Grad, Bartłomiej; Kozak, Asja; Wąsicki, Jan W.; Bilski, Paweł; Hołderna-Natkaniec, Krystyna; Medycki, Wojciech

    2015-02-14

    A {sup 1}H and {sup 19}F nuclear magnetic resonance study of [Mg(H{sub 2}O){sub 6}](BF{sub 4}){sub 2} has confirmed the existence of two phase transitions at T{sub c1} ≈ 257 K and T{sub c2} ≈ 142 K, detected earlier by the DSC method. These transitions were reflected by changes in the temperature dependences of both proton and fluorine of second moments M{sub 2}{sup H} and M{sub 2}{sup F} and of spin-lattice relaxation times T{sub 1}{sup H} and T{sub 1}{sup F}. The study revealed anisotropic reorientations of whole [Mg(H{sub 2}O){sub 6}]{sup 2+} cations, reorientations by 180° jumps of H{sub 2}O ligands, and aniso- and isotropic reorientations of BF{sub 4}{sup −} anions. The activation parameters for these motions were obtained. It was found that the phase transition at T{sub c1} is associated with the reorientation of the cation as a whole unit around the C{sub 3} axis and that at T{sub c2} with isotropic reorientation of the BF{sub 4}{sup −} anions. The temperature dependence of the full width at half maximum value of the infrared band of ρ{sub t}(H{sub 2}O) mode (at ∼596 cm{sup −1}) indicated that in phases I and II, all H{sub 2}O ligands in [Mg(H{sub 2}O){sub 6}]{sup 2+} perform fast reorientational motions (180° jumps) with a mean value of activation energy equal to ca 10 kJ mole{sup −1}, what is fully consistent with NMR results. The phase transition at T{sub c1} is associated with a sudden change of speed of fast (τ{sub R} ≈ 10{sup −12} s) reorientational motions of H{sub 2}O ligands. Below T{sub c2} (in phase III), the reorientations of certain part of the H{sub 2}O ligands significantly slow down, while others continue their fast reorientation with an activation energy of ca 2 kJ mole{sup −1}. This fast reorientation cannot be evidenced in NMR relaxation experiments. Splitting of certain IR bands connected with H{sub 2}O ligands at the observed phase transitions suggests a reduction of the symmetry of the octahedral [Mg(H{sub 2}O

  18. Tracking Transitions in Spider Wrapping Silk Conformation and Dynamics by (19)F Nuclear Magnetic Resonance Spectroscopy.

    PubMed

    Sarker, Muzaddid; Orrell, Kathleen E; Xu, Lingling; Tremblay, Marie-Laurence; Bak, Jessi J; Liu, Xiang-Qin; Rainey, Jan K

    2016-05-31

    Aciniform silk protein (AcSp1) is the primary component of wrapping silk, the toughest of the spider silks because of a combination of high tensile strength and extensibility. Argiope trifasciata AcSp1 contains a core repetitive domain with at least 14 homogeneous 200-amino acid units ("W" units). Upon fibrillogenesis, AcSp1 converts from an α-helix-rich soluble state to a mixed α-helical/β-sheet conformation. Solution-state nuclear magnetic resonance (NMR) spectroscopy allowed demonstration of variable local stability within the W unit, but comprehensive characterization was confounded by spectral overlap, which was exacerbated by decreased chemical shift dispersion upon denaturation. Here, (19)F NMR spectroscopy, in the context of a single W unit (W1), is applied to track changes in structure and dynamics. Four strategic positions in the W unit were mutated to tryptophan and biosynthetically labeled with 5-fluorotryptophan (5F-Trp). Simulated annealing-based structure calculations implied that these substitutions should be tolerated, while circular dichroism (CD) spectroscopy and (1)H-(15)N chemical shift displacements indicated minimal structural perturbation in W1 mutants. Fiber formation by W2 concatemers containing 5F-Trp substitutions in both W units demonstrated retention of functionality, a somewhat surprising finding in light of sequence conservation between species. Each 5F-Trp-labeled W1 exhibited a unique (19)F chemical shift, line width, longitudinal relaxation time constant (T1), and solvent isotope shift. Perturbation to (19)F chemical shift and nuclear spin relaxation parameters reflected changes in the conformation and dynamics at each 5F-Trp site upon addition of urea and dodecylphosphocholine (DPC). (19)F NMR spectroscopy allowed unambiguous localized tracking throughout titration with each perturbant, demonstrating distinct behavior for each perturbant not previously revealed by heteronuclear NMR experiments. PMID:27153372

  19. Antimicrobial susceptibility and serotype distribution of Streptococcus pneumoniae isolated from patients with community-acquired pneumonia and molecular analysis of multidrug-resistant serotype 19F and 23F strains in Japan.

    PubMed

    Qin, L; Watanabe, H; Yoshimine, H; Guio, H; Watanabe, K; Kawakami, K; Iwagaki, A; Nagai, H; Goto, H; Kuriyama, T; Fukuchi, Y; Matsushima, T; Kudoh, S; Shimada, K; Matsumoto, K; Nagatake, T; Mizota, T; Oishi, K

    2006-12-01

    A nationwide study was undertaken to determine the susceptibility to penicillin and serotypes of Streptococcus pneumoniae in Japan. S. pneumoniae was isolated from 114 adult patients with community-acquired pneumonia over 22 months at 20 hospitals and medical centres in different regions in Japan. All but five isolates were from sputum. Forty-eight isolates (42.1%) were susceptible, 40 (35.1%) showed intermediate resistance (MIC, 0.12-1.0 microg/ml) and 26 (22.8%) were resistant (MIC, >or=2.0 microg/ml) to penicillin G. All isolates were susceptible to ceftriaxone (breakpoint 1 microg/ml), imipenem (4 microg/ml) and vancomycin (4 microg/ml). Most were resistant to erythromycin, clarithromycin and azithromycin; only two were resistant to levofloxacin. Differences were found in the distribution of serotypes among isolates showing susceptibility to penicillin (predominant types 3, 6B, and 19F), intermediate resistance (6B, 14, 19F, and 23F) and full resistance (19F and 23F). PFGE typing showed that 14 of the 25 strains of serotype 19F had a single DNA profile, pattern A, a pattern closely similar to that of the Taiwan multidrug-resistant 19F clone. Twelve pattern A strains were not susceptible to penicillin but carried the macrolide resistance gene mef(A). The DNA profiles of the 15 strains of 23F were also heterogeneous but six were highly similar (pattern b) yet distinct from the Spanish multidrug-resistant 23F clone although possibly related to the Taiwan multidrug-resistant 23F clone. The pattern b strains were not susceptible to penicillin and also harboured either mef(A) or erm(B). Our results indicate that multidrug-resistant pneumococci are spreading rapidly in Japan. Efforts to prevent the spread of the pandemic multidrug-resistant serotypes should be intensified. PMID:16650327

  20. A bisphosphonate for 19F-magnetic resonance imaging

    PubMed Central

    Kenny, Gavin D.; Shaw, Karen P.; Sivachelvam, Saranja; White, Andrew J.P.; Botnar, Rene M.; T.M. de Rosales, Rafael

    2016-01-01

    19F-magnetic resonance imaging (MRI) is a promising technique that may allow us to measure the concentration of exogenous fluorinated imaging probes quantitatively in vivo. Here, we describe the synthesis and characterisation of a novel geminal bisphosphonate (19F-BP) that contains chemically-equivalent fluorine atoms that show a single and narrow 19F resonance and a bisphosphonate group that may be used for labelling inorganic materials based in calcium phosphates and metal oxides. The potential of 19F-BP to provide contrast was analysed in vitro and in vivo using 19F-MRI. In vitro studies demonstrated the potential of 19F-BP as an MRI contrast agent in the millimolar concentration range with signal-to-noise ratios (SNR) comparable to previously reported fluorinated probes. The preliminary in vivo MRI study reported here allowed us to visualise the biodistribution of 19F-BP, showing uptake in the liver and in the bladder/urinary system areas. However, bone uptake was not observed. In addition, 19F-BP showed undesirable toxicity effects in mice that prevent further studies with this compound at the required concentrations for MRI contrast. This study highlights the importance of developing 19F MRI probes with the highest signal intensity achievable. PMID:27110036

  1. Complete fusion of 19F with Al and Si isotopes

    NASA Astrophysics Data System (ADS)

    Chiou, M. S.; Wu, M. W.; Easwar, N.; Maher, J. V.

    1981-12-01

    Complete fusion cross sections have been determined by directly detecting evaporation residuals for the systems 19F + 27Al and 19F + 28,30Si over a 19F laboratory energy range 34-75 MeV. In all cases σfus increases smoothly with energy and eventually saturates at 1200-1250 mb. In the barrier penetration region the cross section for 19F + 28Si is always sufficiently smaller than that for 19F + 30Si to make the reduced barrier radius in a Glas-Mosel parametrization significantly smaller for the former system than for the latter. Three entrance channels are now available for the fused-system 46Ti: Critical angular momentum data from the 16O + 30Si entrance channel approach the statistical yrast line at much lower fused-system excitation energy than do the data from the entrance channels 18O + 28Si and 19F + 27Al. NUCLEAR REACTIONS Measured complete fusion cross sections for the systems 19F + 27Al, 19F + 28Si, 19F + 30Si; E=34-75 MeV. Deduced Glas-Mosel model and statistical yrast model parameters.

  2. Fluorinated Carbohydrates as Lectin Ligands: 19F-Based Direct STD Monitoring for Detection of Anomeric Selectivity

    PubMed Central

    Ribeiro, João P.; Diercks, Tammo; Jiménez-Barbero, Jesús; André, Sabine; Gabius, Hans-Joachim; Cañada, Francisco Javier

    2015-01-01

    The characterization of the binding of reducing carbohydrates present as mixtures of anomers in solution to a sugar recepor (lectin) poses severe difficulties. In this situation, NMR spectroscopy enables the observation of signals for each anomer in the mixture by applying approaches based on ligand observation. Saturation transfer difference (STD) NMR allows fast and efficient screening of compound mixtures for reactivity to a receptor. Owing to the exceptionally favorable properties of 19F in NMR spectroscopy and the often complex 1H spectra of carbohydrates, 19F-containing sugars have the potential to be turned into versatile sensors for recognition. Extending the recently established 1H → 1H STDre19F-NMR technique, we here demonstrate its applicability to measure anomeric selectivity of binding in a model system using the plant lectin concanavalin A (ConA) and 2-deoxy-2-fluoro-d-mannose. Indeed, it is also possible to account for the mutual inhibition between the anomers on binding to the lectin by means of a kinetic model. The monitoring of 19F-NMR signal perturbation disclosed the relative activities of the anomers in solution and thus enabled the calculation of their binding affinity towards ConA. The obtained data show a preference for the α anomer that increases with temperature. This experimental approach can be extended to others systems of biomedical interest by testing human lectins with suitably tailored glycan derivatives. PMID:26580665

  3. NMR analysis of a fluorocarbon copolymer

    SciTech Connect

    Smith, R.E.; Smith, C.H.

    1987-10-01

    Vinylidene fluoride (VF/sub 2/) can be copolymerized with chlorotrifluoroethylene (CTFE) in an aqueous emulsion using a peroxide chain initiator. The physical properties of the resulting fluorocarbon polymer depend on the ratio of VF/sub 2/ to CTFE and the randomness of the copolymerization. When CTFE and VF are polymerized in an approximately 3:1 mole ratio, the resulting polymer is soluble in acetone (and other solvents) at room temperature. Using proton and fluorine-19 NMR, the mole ratio of CTFE to VF/sub 2/, the emulsifier (perfluorodecanoate) concentration, and the randomness of copolymerization can be determined. A trifluorotoluene internal standard is added to a d/sub 6/-acetone solution of the fluoropolymer. Proton NMR is used to determine the amount of VF/sub 2/. Fluorine-19 NMR is used to measure the amount of emulsifier and the randomness of copolymerization. Each analysis requires about 5 minutes, and is quite precise, with relative standard deviations from 3 to 10% (10 replicates analyzed). In addition, the results from NMR analyses agree well with wet chemical analyses. 4 refs., 3 figs., 3 tabs.

  4. Trifluoroethanol and 19F magic angle spinning nuclear magnetic resonance as a basic surface hydroxyl reactivity probe for zirconium(IV) hydroxide structures.

    PubMed

    DeCoste, Jared B; Glover, T Grant; Mogilevsky, Gregory; Peterson, Gregory W; Wagner, George W

    2011-08-01

    A novel technique for determining the relative accessibility and reactivity of basic surface hydroxyl sites by reacting various zirconium(IV) hydroxide materials with 2,2,2-trifluoroethanol (TFE) and characterizing the resulting material using (19)F magic angle spinning (MAS) nuclear magnetic resonance (NMR) is presented here. Studied here are three zirconium hydroxide samples, two unperturbed commercial materials, and one commercial material that is crushed by a pellet press. Factors, such as the ratio of bridging/terminal hydroxyls, surface area, and pore size distribution, are examined and found to affect the ability of the zirconium(IV) hydroxide to react with TFE. X-ray diffraction, nitrogen isotherms, and (1)H MAS NMR were used to characterize the unperturbed materials, while thermogravitric analysis with gas chromatography and mass spectrometry along with the (19)F MAS NMR were used to characterize the materials that were reacted with TFE. Zirconium hydroxide materials with a high surface area and a low bridging/terminal hydroxyl ratio were found to react TFE in the greatest amounts. PMID:21699226

  5. Heteronuclear 19F-1H statistical total correlation spectroscopy as a tool in drug metabolism: study of flucloxacillin biotransformation.

    PubMed

    Keun, Hector C; Athersuch, Toby J; Beckonert, Olaf; Wang, Yulan; Saric, Jasmina; Shockcor, John P; Lindon, John C; Wilson, Ian D; Holmes, Elaine; Nicholson, Jeremy K

    2008-02-15

    We present a novel application of the heteronuclear statistical total correlation spectroscopy (HET-STOCSY) approach utilizing statistical correlation between one-dimensional 19F/1H NMR spectroscopic data sets collected in parallel to study drug metabolism. Parallel one-dimensional (1D) 800 MHz 1H and 753 MHz 19F{1H} spectra (n = 21) were obtained on urine samples collected from volunteers (n = 6) at various intervals up to 24 h after oral dosing with 500 mg of flucloxacillin. A variety of statistical relationships between and within the spectroscopic datasets were explored without significant loss of the typically high 1D spectral resolution, generating 1H-1H STOCSY plots, and novel 19F-1H HET-STOCSY, 19F-19F STOCSY, and 19F-edited 1H-1H STOCSY (X-STOCSY) spectroscopic maps, with a resolution of approximately 0.8 Hz/pt for both nuclei. The efficient statistical editing provided by these methods readily allowed the collection of drug metabolic data and assisted structure elucidation. This approach is of general applicability for studying the metabolism of other fluorine-containing drugs, including important anticancer agents such as 5-fluorouracil and flutamide, and is extendable to any drug metabolism study where there is a spin-active X-nucleus (e.g., 13C, 15N, 31P) label present. PMID:18211034

  6. 19F magnetic resonance imaging of endogenous macrophages in inflammation.

    PubMed

    Temme, Sebastian; Bönner, Florian; Schrader, Jürgen; Flögel, Ulrich

    2012-01-01

    In this article, we review the use of (19) F MRI (magnetic resonance imaging) for in vivo tracking of monocytes and macrophages in the course of tissue inflammation. Emulsified perfluorocarbons (PFCs) are preferentially phagocytized by monocytes/macrophages and are readily detected by (19) F MRI. Because of the lack of any (19) F background in the body, observed signals are robust and exhibit an excellent degree of specificity. As a consequence of progressive infiltration of the labeled immunocompetent cells into inflamed areas, foci of inflammation can be localized as hot spots by simultaneous acquisition of morphologically matched proton ((1) H) and fluorine ((19) F) MRI. The identification of inflammation by (19) F MRI--at a time when the inflammatory cascade is initiated--opens the possibility for an early detection and more timely therapeutic intervention. Since signal intensity in the (19) F images reflects the severity of inflammation, this approach is also suitable to monitor the efficacy of pharmaceutical treatment. Because PFCs are biochemically inert and the fluorine nucleus exhibits high magnetic resonance (MR) sensitivity, (19) F MRI may be applicable for clinical inflammation imaging. PMID:22354793

  7. Correlation between 19F environment and isotropic chemical shift in barium and calcium fluoroaluminates.

    PubMed

    Body, M; Silly, G; Legein, C; Buzaré, J-Y

    2004-04-19

    High-speed MAS (19)F NMR spectra are recorded and reconstructed for 10 compounds from BaF(2)-AlF(3) and CaF(2)-AlF(3) binary systems which leads to the determination of 77 isotropic (19)F chemical shifts in various environments. A first attribution of NMR lines is performed for 8 compounds using a superposition model as initially proposed by B. Bureau et al. The phenomenological parameters of this model are then refined to improve the NMR line assignment. A satisfactory reliability is reached with a root-mean-square (RMS) deviation between calculated and measured values equal to 6 ppm. The refined parameters are then successfully tested on alpha-BaCaAlF(7) whose structure was recently determined. Finally, the isotropic chemical shift ranges are defined for shared, unshared, and "free" fluorine atoms encountered in the investigated binary systems. So, the fluorine surroundings can be deduced from the NMR line positions in compounds whose structure is unknown. Such an approach can also be applied to fluoride glasses. PMID:15074964

  8. Nuclear relaxation rates study of GTP(gamma F)-tubulin interaction using 19F-nuclear magnetic resonance.

    PubMed

    Monasterio, O

    1989-07-01

    To study the relationship between the exchangeable GTP binding site (E-site) and the high affinity metal binding site we synthesized P3-fluoro P1-5'-guanosine tripaosphate (GTP(gamma F), an analog of GTP. Our results show that this analog binds to the exchangeable GTP binding site of calf brain tubulin. The values of the dissociation constant and the stoichiometry of the GTP(gamma F)-Mn(II) complex as determined by EPR spectroscopy were 1.64 x 10(-4) M and one mole of manganese per mole of nucleotide, respectively. The distance separating the high-affinity binding site for the divalent metal ion and the exchangeable nucleotide binding site was evaluated by using high-resolution 19F-NMR. The 31P- and 19F-NMR spectra of GTP(gamma F) were studied, both the fluorine and the gamma-phosphate were split in a doublet with a coupling constant of 936 Hz. Tubulin purified by the method of Weisenberg (Weisenberg, R.C., and Timashef, S.N. (1970) Biochemistry 9, 4110-4116) was treated with colchicine to stabilize it, GTP(gamma F) was added and the 254.1 MHz 19fluorine relaxation rates measured within the first four hours. Longitudinal and transversal relaxation rates were determined in the presence of colchicine-tubulin-Mn(II), (paramagnetic complex), or the ternary complex with magnesium (diamagnetic complex). The analysis of the temperature-dependent relaxation data indicates that the metal and the exchangeable nucleotide binding sites are separated by a maximal distance of 6 at 35 degrees C, to 8.1 A at 12 degrees C. PMID:2619317

  9. Two-Dimensional NMR Lineshape Analysis

    PubMed Central

    Waudby, Christopher A.; Ramos, Andres; Cabrita, Lisa D.; Christodoulou, John

    2016-01-01

    NMR titration experiments are a rich source of structural, mechanistic, thermodynamic and kinetic information on biomolecular interactions, which can be extracted through the quantitative analysis of resonance lineshapes. However, applications of such analyses are frequently limited by peak overlap inherent to complex biomolecular systems. Moreover, systematic errors may arise due to the analysis of two-dimensional data using theoretical frameworks developed for one-dimensional experiments. Here we introduce a more accurate and convenient method for the analysis of such data, based on the direct quantum mechanical simulation and fitting of entire two-dimensional experiments, which we implement in a new software tool, TITAN (TITration ANalysis). We expect the approach, which we demonstrate for a variety of protein-protein and protein-ligand interactions, to be particularly useful in providing information on multi-step or multi-component interactions. PMID:27109776

  10. Two-Dimensional NMR Lineshape Analysis.

    PubMed

    Waudby, Christopher A; Ramos, Andres; Cabrita, Lisa D; Christodoulou, John

    2016-01-01

    NMR titration experiments are a rich source of structural, mechanistic, thermodynamic and kinetic information on biomolecular interactions, which can be extracted through the quantitative analysis of resonance lineshapes. However, applications of such analyses are frequently limited by peak overlap inherent to complex biomolecular systems. Moreover, systematic errors may arise due to the analysis of two-dimensional data using theoretical frameworks developed for one-dimensional experiments. Here we introduce a more accurate and convenient method for the analysis of such data, based on the direct quantum mechanical simulation and fitting of entire two-dimensional experiments, which we implement in a new software tool, TITAN (TITration ANalysis). We expect the approach, which we demonstrate for a variety of protein-protein and protein-ligand interactions, to be particularly useful in providing information on multi-step or multi-component interactions. PMID:27109776

  11. /sup 19/F shielding anisotropy in RbCaF/sub 3/

    SciTech Connect

    Kaliaperumal, R.; Sears, R.E.J.; Finch, C.B.

    1987-07-01

    A /sup 19/F NMR multipulse measurement of the chemical shift in a single crystal of cubic RbCaF/sub 3/ gave -47.0 +- 3 ppm as the isotropic value with respect to C/sub 6/F/sub 6/, and 128.7 +- 6 ppm as the anisotropy. The shielding is accounted for by the usual diamagnetic and paramagnetic ionic overlap and covalent terms. As a result, the Ca/sup + +/ -F/sup -/ bond is estimated to be 98% ionic. No significant spectral changes were found when the crystal was cooled below the cubic to tetragonal phase transition temperature. Reasons for this are given.

  12. Single 19F Probe for Simultaneous Detection of Multiple Metal Ions Using miCEST MRI

    PubMed Central

    2015-01-01

    The local presence and concentration of metal ions in biological systems has been extensively studied ex vivo using fluorescent dyes. However, the detection of multiple metal ions in vivo remains a major challenge. We present a magnetic resonance imaging (MRI)-based method for noninvasive detection of specific ions that may be coexisting, using the tetrafluorinated derivative of the BAPTA (TF-BAPTA) chelate as a 19F chelate analogue of existing optical dyes. Taking advantage of the difference in the ion-specific 19F nuclear magnetic resonance (NMR) chemical shift offset (Δω) values between the ion-bound and free TF-BAPTA, we exploited the dynamic exchange between ion-bound and free TF-BAPTA to obtain MRI contrast with multi-ion chemical exchange saturation transfer (miCEST). We demonstrate that TF-BAPTA as a prototype single 19F probe can be used to separately visualize mixed Zn2+ and Fe2+ ions in a specific and simultaneous fashion, without interference from potential competitive ions. PMID:25523816

  13. Amphiphilic Hyperbranched Fluoropolymers as Nanoscopic 19F-Magnetic Resonance Imaging Agent Assemblies

    PubMed Central

    Du, Wenjun; Nyström, Andreas M.; Zhang, Lei; Powell, Kenya T.; Li, Yali; Cheng, Chong; Wickline, Samuel A.; Wooley, Karen L.

    2009-01-01

    Three hyperbranched fluoropolymers were synthesized and their micelles were constructed as potential 19F MRI agents. A hyperbranched star-like core was first synthesized via ATR-SCVCP of 4-chloromethyl styrene (CMS), lauryl acrylate (LA) and 1,1,1-tris(4′-(2″-bromoisobutyryloxy)phenyl)ethane (TBBPE). The polymerization gave a small core with Mn of 5.5 kDa with PDI of 1.6, which served as a macroinitiator. Trifluoroethyl methacrylate (TFEMA) and tert-butyl acrylate (tBA) in different ratio were then “grafted” from the core to give three polymers with Mn of ca. 120 kDa and PDI values of ca. 1.6–1.8. After acidolysis of the tert-butyl ester groups, amphiphilic, hyperbranched star-like polymers with Mn of ca. 100 kDa were obtained. These structures were subjected to micelle formation in aqueous solution to give micelles having TEM-measured diameters ranging from 3–8 nm and DLS-measured hydrodynamic diameters from 20–30 nm. These micelles gave a narrow, single resonance by 19F NMR spectroscopy, with a half width of approximately 130 Hz. The T1/T2 parameters were ca. 500 ms and 50 ms, respectively, and were not significantly affected by the composition and sizes of the micelles. 19F MRI phantom images of these fluorinated micelles were acquired, which demonstrated that these fluorinated micelles maybe useful as novel 19F MRI agents for a variety of biomedical studies. PMID:18795785

  14. Technical advance: monitoring the trafficking of neutrophil granulocytes and monocytes during the course of tissue inflammation by noninvasive 19F MRI.

    PubMed

    Temme, Sebastian; Jacoby, Christoph; Ding, Zhaoping; Bönner, Florian; Borg, Nadine; Schrader, Jürgen; Flögel, Ulrich

    2014-04-01

    Inflammation results in the recruitment of neutrophils and monocytes, which is crucial for the healing process. In the present study, we used (19)F MRI to monitor in vivo the infiltration of neutrophils and monocytes from the onset of inflammation to the resolution and healing phase. Matrigel, with or without LPS, was s.c.-implanted into C57BL/6 mice. This resulted in a focal inflammation lasting over a period of 20 days, with constantly decreasing LPS levels in doped matrigel plugs. After i.v. administration of (19)F containing contrast agent, (19)F MRI revealed a zonular (19)F signal in the periphery of LPS containing matrigel plugs, which was not observed in control plugs. Analysis of the (19)F signal over the observation period demonstrated the strongest (19)F signal after 24 h, which decreased to nearly zero after 20 days. The (19)F signal was mirrored by the amount of leukocytes in the matrigel, with neutrophils dominating at early time-points and macrophages at later time-points. Both populations were shown to take up the (19)F contrast agent. In conclusion, (19)F MRI, in combination with the matrigel/LPS model, permits the noninvasive analysis of neutrophil and monocyte infiltration over the complete course of inflammation in vivo. PMID:24319285

  15. Rotational-vibration analysis of the n=0, nν6+ν1-nν6 subband in the hydrogen-bonded system 16O 12C ṡṡṡ 1H 19F

    NASA Astrophysics Data System (ADS)

    Kyrö, E. K.; Shoja-Chaghervand, P.; McMillan, K.; Eliades, M.; Danzeiser, D.; Bevan, J. W.

    1983-07-01

    Thirty-three P(J) branch and 15 R(J) branch transitions associated with the n=0, nν6+ν1-nν6 vibration in 16O 12C ṡṡṡ 1H 19F have been assigned. Rotational constants B, centrifugal distortion constants DJ, rotational-vibrational interaction constant α1, and the frequency of the band origin ν0, have been determined as: B″=0.102 148(14)cm-1; B'=0.104 196(14) cm-1; D″J=3.6(1.8)×10-7 cm-1; D″J=3.8 (1.8)×10-7 cm-1; α1=-61.4(5) MHz; ν0=3844.0294 (50) cm-1. The spectrum is consistent with a linear complex having a hydrogen bond ν6 bending frequency of 75±12 cm-1 and excited state r(CṡṡṡF) distance of 3.012 Å. A lower limit to the excited state lifetime is set at ≥2.8×10-10 s.

  16. A statistical analysis of NMR spectrometer noise.

    PubMed

    Grage, Halfdan; Akke, Mikael

    2003-05-01

    Estimation of NMR spectral parameters, using e.g. maximum likelihood methods, is commonly based on the assumption of white complex Gaussian noise in the signal obtained by quadrature detection. Here we present a statistical analysis with the purpose of discussing and testing the validity of this fundamental assumption. Theoretical expressions are derived for the correlation structure of the noise under various conditions, showing that in general the noise in the sampled signal is not strictly white, even if the thermal noise in the receiver steps prior to digitisation can be characterised as white Gaussian noise. It is shown that the noise correlation properties depend on the ratio between the sampling frequency and the filter cut-off frequency, as well as the filter characteristics. The theoretical analysis identifies conditions that are expected to yield non-white noise in the sampled signal. Extensive statistical characterisation of experimental noise confirms the theoretical predictions. The statistical methods outlined here are also useful for residual analysis in connection with validation of the model and the parameter estimates. PMID:12762994

  17. NMR Constraints Analyser: a web-server for the graphical analysis of NMR experimental constraints.

    PubMed

    Heller, Davide Martin; Giorgetti, Alejandro

    2010-07-01

    Nuclear magnetic resonance (NMR) spectroscopy together with X-ray crystallography, are the main techniques used for the determination of high-resolution 3D structures of biological molecules. The output of an NMR experiment includes a set of lower and upper limits for the distances (constraints) between pairs of atoms. If the number of constraints is high enough, there will be a finite number of possible conformations (models) of the macromolecule satisfying the data. Thus, the more constraints are measured, the better defined these structures will be. The availability of a user-friendly tool able to help in the analysis and interpretation of the number of experimental constraints per residue, is thus of valuable importance when assessing the levels of structure definition of NMR solved biological macromolecules, in particular, when high-quality structures are needed in techniques such as, computational biology approaches, site-directed mutagenesis experiments and/or drug design. Here, we present a free publicly available web-server, i.e. NMR Constraints Analyser, which is aimed at providing an automatic graphical analysis of the NMR experimental constraints atom by atom. The NMR Constraints Analyser server is available from the web-page http://molsim.sci.univr.it/constraint. PMID:20513646

  18. Dual 19F/1H MR gene reporter molecules for in vivo detection of β-galactosidase

    PubMed Central

    Yu, Jian-Xin; Kodibagkar, Vikram D.; Hallac, Rami R.; Liu, Li; Mason, Ralph P.

    2012-01-01

    Increased emphasis on personalized medicine and novel therapies require the development of non-invasive strategies for assessing biochemistry in vivo. The detection of enzyme activity and gene expression in vivo is potentially important for the characterization of diseases and gene therapy. Magnetic resonance imaging (MRI) is a particularly promising tool since it is non-invasive, and has no associated radioactivity, yet penetrates deep tissue. We now demonstrate a novel class of dual 1H/19F nuclear magnetic resonance (NMR) lacZ gene reporter molecule to specifically reveal enzyme activity in human tumor xenografts growing in mice. We report the design, synthesis, and characterization of six novel molecules and evaluation of the most effective reporter in mice in vivo. Substrates show a single 19F NMR signal and exposure to β-galactosidase induces a large 19F NMR chemical shift response. In the presence of ferric ions the liberated aglycone generates intense proton MRI T2 contrast. The dual modality approach allows both the detection of substrate and imaging of product enhancing the confidence in enzyme detection. PMID:22352428

  19. Structure calculation, refinement and validation using CcpNmr Analysis

    PubMed Central

    Skinner, Simon P.; Goult, Benjamin T.; Fogh, Rasmus H.; Boucher, Wayne; Stevens, Tim J.; Laue, Ernest D.; Vuister, Geerten W.

    2015-01-01

    CcpNmr Analysis provides a streamlined pipeline for both NMR chemical shift assignment and structure determination of biological macromolecules. In addition, it encompasses tools to analyse the many additional experiments that make NMR such a pivotal technique for research into complex biological questions. This report describes how CcpNmr Analysis can seamlessly link together all of the tasks in the NMR structure-determination process. It details each of the stages from generating NMR restraints [distance, dihedral, hydrogen bonds and residual dipolar couplings (RDCs)], exporting these to and subsequently re-importing them from structure-calculation software (such as the programs CYANA or ARIA) and analysing and validating the results obtained from the structure calculation to, ultimately, the streamlined deposition of the completed assignments and the refined ensemble of structures into the PDBe repository. Until recently, such solution-structure determination by NMR has been quite a laborious task, requiring multiple stages and programs. However, with the new enhancements to CcpNmr Analysis described here, this process is now much more intuitive and efficient and less error-prone. PMID:25615869

  20. A General and Facile Strategy to Fabricate Multifunctional Nanoprobes for Simultaneous (19)F Magnetic Resonance Imaging, Optical/Thermal Imaging, and Photothermal Therapy.

    PubMed

    Hu, Gaofei; Li, Nannan; Tang, Juan; Xu, Suying; Wang, Leyu

    2016-09-01

    (19)F magnetic resonance imaging (MRI), due to its high sensitivity and negligible background, is anticipated to be a powerful noninvasive, sensitive, and accurate molecular imaging technique. However, the major challenge of (19)F MRI is to increase the number of (19)F atoms while maintaining the solubility and molecular mobility of the probe. Here, we successfully developed a facile and general strategy to synthesize the multifunctional (19)F MRI nanoprobes by encapsulating the hydrophobic inorganic nanoparticles (NPs) into a hybrid polymer micelle consisting of hydrolysates of 1H,1H,2H,2H-perfluorodecyltriethoxysilane (PDTES) and oleylamine-functionalized poly(succinimide) (PSIOAm). Due to their good water dispersibility, excellent molecular mobility resulting from the ultrathin coating, and high (19)F atom numbers, these nanoprobes generate a separate sharp singlet of (19)F nuclear magnetic resonance (NMR) signal (at -82.8 ppm) with half peak width of ∼28 Hz, which is highly applicable for (19)F MRI. Significantly, by varying the inorganic core from metals (Au), oxides (Fe3O4), fluorides (NaYF4:Yb(3+)/Er(3+)), and phosphates (YPO4) to semiconductors (Cu7S4 and Ag2S, ZnS:Mn(2+)) NPs, which renders the nanoprobes' multifunctional properties such as photothermal ability (Au, Cu7S4), magnetism (Fe3O4), fluorescence (ZnS:Mn(2+)), near-infrared (NIR) fluorescence (Ag2S), and upconversion (UC) luminescence. Meanwhile, the as-prepared nanoprobes possess relatively small sizes (about 50 nm), which is beneficial for long-time circulation. The proof-of-concept in vitro (19)F NMR and photothermal ablation of ZnS:Mn(2+)@PDTES/PSIOAm and Cu7S4@PDTES/PSIOAm nanoprobes further suggest that these nanoprobes hold wide potentials for multifunctional applications in biomedical fields. PMID:27534896

  1. Characterization of 19A-like 19F pneumococcal isolates from Papua New Guinea and Fiji

    PubMed Central

    Dunne, E.M.; Tikkanen, L.; Balloch, A.; Gould, K.; Yoannes, M.; Phuanukoonnon, S.; Licciardi, P.V.; Russell, F.M.; Mulholland, E.K.; Satzke, C.; Hinds, J.

    2015-01-01

    Molecular identification of Streptococcus pneumoniae serotype 19F is routinely performed by PCR targeting the wzy gene of the capsular biosynthetic locus. However, 19F isolates with genetic similarity to 19A have been reported in the United States and Brazil. We screened 78 pneumococcal carriage isolates and found six 19F wzy variants that originated from children in Papua New Guinea and Fiji. Isolates were characterized using multilocus sequence typing and opsonophagocytic assays. The 19F wzy variants displayed similar susceptibility to anti-19F IgG antibodies compared to standard 19F isolates. Our findings indicate that these 19F variants may be more common than previously believed. PMID:26339490

  2. Analysis of experimentally shocked minerals by NMR spectroscopy

    SciTech Connect

    Cygan, R.T.; Boslough, M.B.

    1994-10-01

    The shock-loading of natural materials by an impact or explosion can result in the formation of modified and altered phases. In order to characterize the resulting material and to evaluate the extent of shock modification, the authors have used nuclear magnetic resonance (NMR) spectroscopy to examine several experimentally shocked minerals. In three related NMR studies, they have (1) examined shocked clinoptilolite, (2) performed a preliminary analysis of shocked quartz, and (3) reproduced shocked quartz results with detailed spectral deconvolutions, and extended it with NMR analysis of shocked feldspar powders.

  3. In vivo 19F MRI and 19F MRS of 19F-labelled boronophenylalanine fructose complex on a C6 rat glioma model to optimize boron neutron capture therapy (BNCT)

    NASA Astrophysics Data System (ADS)

    Porcari, Paola; Capuani, Silvia; D'Amore, Emanuela; Lecce, Mario; La Bella, Angela; Fasano, Fabrizio; Campanella, Renzo; Migneco, Luisa Maria; Saverio Pastore, Francesco; Maraviglia, Bruno

    2008-12-01

    Boron neutron capture therapy (BNCT) is a promising binary modality used to treat malignant brain gliomas. To optimize BNCT effectiveness a non-invasive method is needed to monitor the spatial distribution of BNCT carriers in order to estimate the optimal timing for neutron irradiation. In this study, in vivo spatial distribution mapping and pharmacokinetics evaluation of the 19F-labelled boronophenylalanine (BPA) were performed using 19F magnetic resonance imaging (19F MRI) and 19F magnetic resonance spectroscopy (19F MRS). Characteristic uptake of 19F-BPA in C6 glioma showed a maximum at 2.5 h after compound infusion as confirmed by both 19F images and 19F spectra acquired on blood samples collected at different times after infusion. This study shows the ability of 19F MRI to selectively map the bio-distribution of 19F-BPA in a C6 rat glioma model, as well as providing a useful method to perform pharmacokinetics of BNCT carriers.

  4. Fluorine (19F) MRS and MRI in biomedicine

    PubMed Central

    Ruiz-Cabello, Jesús; Barnett, Brad P.; Bottomley, Paul A.; Bulte, Jeff W.M.

    2011-01-01

    Shortly after the introduction of 1H MRI, fluorinated molecules were tested as MR-detectable tracers or contrast agents. Many fluorinated compounds, which are nontoxic and chemically inert, are now being used in a broad range of biomedical applications, including anesthetics, chemotherapeutic agents, and molecules with high oxygen solubility for respiration and blood substitution. These compounds can be monitored by fluorine (19F) MRI and/or MRS, providing a noninvasive means to interrogate associated functions in biological systems. As a result of the lack of endogenous fluorine in living organisms, 19F MRI of ‘hotspots’ of targeted fluorinated contrast agents has recently opened up new research avenues in molecular and cellular imaging. This includes the specific targeting and imaging of cellular surface epitopes, as well as MRI cell tracking of endogenous macrophages, injected immune cells and stem cell transplants. PMID:20842758

  5. Characterization of the ground X{sub 1} state of {sup 204}Pb{sup 19}F, {sup 206}Pb{sup 19}F, {sup 207}Pb{sup 19}F, and {sup 208}Pb{sup 19}F

    SciTech Connect

    Mawhorter, Richard J.; Murphy, Benjamin S.; Baum, Alexander L.; Sears, Trevor J.; Yang, T.; Rupasinghe, P. M; McRaven, C. P.; Shafer-Ray, N. E.; Alphei, Lukas D.; Grabow, Jens-Uwe

    2011-08-15

    Pure rotational spectra of the ground electronic-vibrational X{sub 1} state of {sup 204}Pb{sup 19}F, {sup 206}Pb{sup 19}F, {sup 207}Pb{sup 19}F, and {sup 208}Pb{sup 19}F are measured with a resonator pulsed supersonic jet Fourier-transform microwave spectrometer. Also reported is a new measurement of the Stark effect on the optical spectra of A(leftarrow)X{sub 1} transitions. These spectra are combined with published high-resolution infrared spectra of X{sub 2}{r_reversible}X{sub 1} transitions in order to create a complete picture of the ground state of lead monofluoride. For the microwave data, molecules are prepared by laser ablation of lead target rods and stabilized in a supersonic jet of neon mixed with sulfur hexafluoride. For the optical Stark spectra, a continuous source of molecules is created in a nozzle heated to 1000 deg. C. The microwave spectra confirm, improve, and extend previously reported constants that describe the rotational, spin-orbit, and hyperfine interactions of the ground electronic state of the PbF molecule. A discrepancy concerning the sign of the hyperfine constant describing the {sup 207}Pb nucleus is discussed. Magnetic-field-dependent microwave spectra are used to characterize the Zeeman interaction in terms of two g factors of the body-fixed electronic wave function. The optical Stark spectra are used to characterize the electric dipole moment of the X{sub 1} and A states.

  6. Revisiting Protocols for the NMR Analysis of Bacterial Metabolomes

    PubMed Central

    Halouska, Steven; Zhang, Bo; Gaupp, Rosmarie; Lei, Shulei; Snell, Emily; Fenton, Robert J.; Barletta, Raul G.; Somerville, Greg A.; Powers, Robert

    2015-01-01

    Over the past decade, metabolomics has emerged as an important technique for systems biology. Measuring all the metabolites in a biological system provides an invaluable source of information to explore various cellular processes, and to investigate the impact of environmental factors and genetic modifications. Nuclear magnetic resonance (NMR) spectroscopy is an important method routinely employed in metabolomics. NMR provides comprehensive structural and quantitative information useful for metabolomics fingerprinting, chemometric analysis, metabolite identification and metabolic pathway construction. A successful metabolomics study relies on proper experimental protocols for the collection, handling, processing and analysis of metabolomics data. Critically, these protocols should eliminate or avoid biologically-irrelevant changes to the metabolome. We provide a comprehensive description of our NMR-based metabolomics procedures optimized for the analysis of bacterial metabolomes. The technical details described within this manuscript should provide a useful guide to reliably apply our NMR-based metabolomics methodology to systems biology studies. PMID:26078915

  7. NMR Wool Tube: a novel method for NMR solution analysis of derivatized glass surfaces.

    PubMed

    Cholewa, Olivia Maria

    2004-08-13

    Glass wool was placed within an NMR tube as a solid support for the covalent attachment of a molecule to allow for a simple one-dimensional 1H FT NMR solution analysis. This novel procedure avoids the use of expensive sample tubes or platforms, as required for magic angle or fast spinning, exotic pulse sequences, isotopic labeling or the use of a large number of scans to provide the ability to analyze the structure, mobility, ligand binding, and solvent interactions of the surface bound molecule. PMID:15387199

  8. Fission fragment angular distributions for 11B and 19F+238U systems

    NASA Astrophysics Data System (ADS)

    Karnik, A.; Kailas, S.; Chatterjee, A.; Navin, A.; Shrivastava, A.; Singh, P.; Samant, M. S.

    1995-12-01

    The fission fragment angular distributions were measured at energies above the fusion barrier, for the systems 11B and 19F + 238U. An analysis of the present data along with those already available for the systems 6,7Li, 12C, and 16O + 238U was made in terms of the saddle-point statistical model. While the anisotropies were ``normal'' for 6,7Li, 11B, 12C+238U systems, the ones for 16O and 19F+238U systems were found to be ``anomalous.'' The entrance channel mass asymmetry dependence of the anisotropies as observed here is consistent with the expectations of preequilibrium fission dynamics. This result emphasizes the importance of preequilibrium fission in heavy-ion induced fusion-fission reactions.

  9. Conformation of gramicidin A channel in phospholipid vesicles: a 13C and 19F nuclear magnetic resonance study.

    PubMed Central

    Weinstein, S; Wallace, B A; Blout, E R; Morrow, J S; Veatch, W

    1979-01-01

    We have determined the conformation of the channel-forming polypeptide antibiotic gramicidin A in phosphatidylcholine vesicles by using 13C and 19F NMR spectroscopy. The models previously proposed for the conformation of the dimer channel differ in the surface localization of the NH2 and COOH termini. We have incorporated specific 13C and 19F nuclei at both the NH2, and COOH termini of gramicidin and have used 13C and 19F chemical shifts and spin lattice relaxation time measurements to determine the accessibility of these labels to three paramagnetic NMR probes--two in aqueous solution and one attached to the phosphatidylcholine fatty acid chain9 all of our results indicate that the COOH terminus of gramicidin in the channel is located near the surface of the membrane and the NH2 terminus is buried deep within the lipid bilayer. These findings strongly favor an NH2-terminal to NH2-terminal helical dimer as the major conformation for the gramicidin channel in phosphatidylcholine vesicles. PMID:92025

  10. Quantitative NMR Analysis of Partially Substituted Biodiesel Glycerols

    SciTech Connect

    Nagy, M.; Alleman, T. L.; Dyer, T.; Ragauskas, A. J.

    2009-01-01

    Phosphitylation of hydroxyl groups in biodiesel samples with 2-chloro-4,4,5,5-tetramethyl-1,3,2-dioxaphospholane followed by 31P-NMR analysis provides a rapid quantitative analytical technique for the determination of substitution patterns on partially esterified glycerols. The unique 31P-NMR chemical shift data was established with a series mono and di-substituted fatty acid esters of glycerol and then utilized to characterize an industrial sample of partially processed biodiesel.

  11. Deuterium incorporation in biomass cell wall components by NMR analysis

    SciTech Connect

    Foston, Marcus B; McGaughey, Joseph; O'Neill, Hugh Michael; Evans, Barbara R; Ragauskas, Arthur J

    2012-01-01

    A commercially available deuterated kale sample was analyzed for deuterium incorporation by ionic liquid solution 2H and 1H nuclear magnetic resonance (NMR). This protocol was found to effectively measure the percent deuterium incorporation at 33%, comparable to the 31% value determined by combustion. The solution NMR technique also suggested by a qualitative analysis that deuterium is preferentially incorporated into the carbohydrate components of the kale sample.

  12. NMR data visualization, processing, and analysis on mobile devices.

    PubMed

    Cobas, Carlos; Iglesias, Isaac; Seoane, Felipe

    2015-08-01

    Touch-screen computers are emerging as a popular platform for many applications, including those in chemistry and analytical sciences. In this work, we present our implementation of a new NMR 'app' designed for hand-held and portable touch-controlled devices, such as smartphones and tablets. It features a flexible architecture formed by a powerful NMR processing and analysis kernel and an intuitive user interface that makes full use of the smart devices haptic capabilities. Routine 1D and 2D NMR spectra acquired in most NMR instruments can be processed in a fully unattended way. More advanced experiments such as non-uniform sampled NMR spectra are also supported through a very efficient parallelized Modified Iterative Soft Thresholding algorithm. Specific technical development features as well as the overall feasibility of using NMR software apps will also be discussed. All aspects considered the functionalities of the app allowing it to work as a stand-alone tool or as a 'companion' to more advanced desktop applications such as Mnova NMR. PMID:25924947

  13. NMR spectral analysis using prior knowledge

    NASA Astrophysics Data System (ADS)

    Kasai, Takuma; Nagata, Kenji; Okada, Masato; Kigawa, Takanori

    2016-03-01

    Signal assignment is a fundamental step for analyses of protein structure and dynamics with nuclear magnetic resonance (NMR). Main-chain signal assignment is achieved with a sequential assignment method and/or an amino-acid selective stable isotope labeling (AASIL) method. Combinatorial selective labeling (CSL) methods, as well as our labeling strategy, stable isotope encoding (SiCode), were developed to reduce the required number of labeled samples, since one of the drawbacks of AASIL is that many samples are needed. Signal overlapping in NMR spectra interferes with amino-acid determination by CSL and SiCode. Since spectral deconvolution by peak fitting with a gradient method cannot resolve closely overlapped signals, we developed a new method to perform both peak fitting and amino acid determination simultaneously, with a replica exchange Monte Carlo method, incorporating prior knowledge of stable-isotope labeling ratios and the amino-acid sequence of the protein.

  14. 19F nuclear magnetic resonance measurement of the distance between the E-site GTP and the high-affinity Mg2+ in tubulin.

    PubMed

    Monasterio, O

    1987-09-22

    The distance separating the divalent metal ion high-affinity binding site and the exchangeable nucleotide binding site on tubulin was evaluated by using high-resolution 19F NMR. The 31P and 19F NMR spectra of guanosine 5'-(gamma-fluorotriphosphate) [GTP (gamma F)] were studied. Both the fluorine and the gamma-phosphate were split into a doublet with a coupling constant of 936 Hz. Tubulin purified according to the method of Weisenberg [Weisenberg, R.C., & Timasheff, S.N. (1970) Biochemistry 9, 4110-4116] was incubated with 1 mM Mn2+. After one cycle of assembly, Mn2+ replaced Mg2+ only partially, i.e., 60% at the high-affinity binding site. After colchicine treatment of tubulin to stabilize it, GTP(gamma F) was added, and the 254-MHz fluorine-19 relaxation rates were measured within the first 4 h. Longitudinal and transversal relaxation rates were determined at two concentrations of GTP(gamma F) and variable concentrations of colchicine-tubulin-Mn(II) (paramagnetic complex) or the ternary complex with magnesium (diamagnetic complex). The analysis of the relaxation data indicates that the rate of exchange of GTP(gamma F) from the exchangeable nucleotide site has a lower limit of 8.7 X 10(4) s-1 and the metal and exchangeable nucleotide binding sites are separated by an upper distance between 6 and 8 A. These data confirm that the high-affinity divalent cation site is situated in the same locus as that of the exchangeable nucleotide, forming a metal-nucleotide complex. PMID:3689763

  15. /sup 19/F nuclear magnetic resonance measurement of the distance between the E-site GTP and the high-affinity Mg/sup 2 +/ in tubulin

    SciTech Connect

    Monasterio, O.

    1987-09-22

    The distance separating the divalent metal ion high-affinity binding site and the exchangeable nucleotide binding site on tubulin was evaluated by using high-resolution /sup 19/F NMR. The /sup 31/P and /sup 19/F NMR spectra of guanosine 5'-(..gamma..-fluorotriphosphate) (GTP(..gamma..F)) were studied. Both the fluorine and the ..gamma..-phosphate were split into a doublet with a coupling constant of 936 Hz. Tubulin purified according to the method of Weisenberg was incubated with 1 mM Mn/sup 2 +/. After one cycle of assembly, Mn/sup 2 +/ only partially, i.e., 60% at the high-affinity binding site. After colchicine treatment of tubulin to stabilize it, GTP(..gamma..F) was added, and the 254-MHz fluorine-19 relaxation rates were measured within the first 4 h. Longitudinal and transversal relaxation rates were determined at two concentrations of GTP(..gamma..F) and variable concentrations of colchicine-tubulin-Mn(II) (paramagnetic complex) or the ternary complex with magnesium diamagnetic complex). The analysis of the relaxation data indicates that the rate of exchange of GTP(..gamma..F) from the exchangeable nucleotide site has a lower limit of 8.7 x 10/sup 4/ s/sup -1/ and the metal and exchangeable nucleotide binding sites are separated by an upper distance between 6 and 8 A. These data confirm that the high-affinity divalent cation site is situated in the same locus as that of the exchangeable nucleotide, forming a metal-nucleotide complex.

  16. Fast and Efficient Fragment-Based Lead Generation by Fully Automated Processing and Analysis of Ligand-Observed NMR Binding Data.

    PubMed

    Peng, Chen; Frommlet, Alexandra; Perez, Manuel; Cobas, Carlos; Blechschmidt, Anke; Dominguez, Santiago; Lingel, Andreas

    2016-04-14

    NMR binding assays are routinely applied in hit finding and validation during early stages of drug discovery, particularly for fragment-based lead generation. To this end, compound libraries are screened by ligand-observed NMR experiments such as STD, T1ρ, and CPMG to identify molecules interacting with a target. The analysis of a high number of complex spectra is performed largely manually and therefore represents a limiting step in hit generation campaigns. Here we report a novel integrated computational procedure that processes and analyzes ligand-observed proton and fluorine NMR binding data in a fully automated fashion. A performance evaluation comparing automated and manual analysis results on (19)F- and (1)H-detected data sets shows that the program delivers robust, high-confidence hit lists in a fraction of the time needed for manual analysis and greatly facilitates visual inspection of the associated NMR spectra. These features enable considerably higher throughput, the assessment of larger libraries, and shorter turn-around times. PMID:26964888

  17. Discrete analysis of stochastic NMR.II

    NASA Astrophysics Data System (ADS)

    Wong, S. T. S.; Rods, M. S.; Newmark, R. D.; Budinger, T. F.

    Stochastic NMR is an efficient technique for high-field in vivo imaging and spectroscopic studies where the peak RF power required may be prohibitively high for conventional pulsed NMR techniques. A stochastic NMR experiment excites the spin system with a sequence of RF pulses where the flip angles or the phases of the pulses are samples of a discrete stochastic process. In a previous paper the stochastic experiment was analyzed and analytic expressions for the input-output cross-correlations, average signal power, and signal spectral density were obtained for a general stochastic RF excitation. In this paper specific cases of excitation with random phase, fixed flip angle, and excitation with two random components in quadrature are analyzed. The input-output cross-correlation for these two types of excitations is shown to be Lorentzian. Line broadening is the only spectral distortion as the RF excitation power is increased. The systematic noise power is inversely proportional to the number of data points N used in the spectral reconstruction. The use of a complete maximum length sequence (MLS) may improve the signal-to-systematic-noise ratio by 20 dB relative to random binary excitation, but peculiar features in the higher-order autocorrelations of MLS cause noise-like distortion in the reconstructed spectra when the excitation power is high. The amount of noise-like distortion depends on the choice of the MLS generator.

  18. ImatraNMR: novel software for batch integration and analysis of quantitative NMR spectra.

    PubMed

    Mäkelä, A V; Heikkilä, O; Kilpeläinen, I; Heikkinen, S

    2011-08-01

    Quantitative NMR spectroscopy is a useful and important tool for analysis of various mixtures. Recently, in addition of traditional quantitative 1D (1)H and (13)C NMR methods, a variety of pulse sequences aimed for quantitative or semiquantitative analysis have been developed. To obtain actual usable results from quantitative spectra, they must be processed and analyzed with suitable software. Currently, there are many processing packages available from spectrometer manufacturers and third party developers, and most of them are capable of analyzing and integration of quantitative spectra. However, they are mainly aimed for processing single or few spectra, and are slow and difficult to use when large numbers of spectra and signals are being analyzed, even when using pre-saved integration areas or custom scripting features. In this article, we present a novel software, ImatraNMR, designed for batch analysis of quantitative spectra. In addition to capability of analyzing large number of spectra, it provides results in text and CSV formats, allowing further data-analysis using spreadsheet programs or general analysis programs, such as Matlab. The software is written with Java, and thus it should run in any platform capable of providing Java Runtime Environment version 1.6 or newer, however, currently it has only been tested with Windows and Linux (Ubuntu 10.04). The software is free for non-commercial use, and is provided with source code upon request. PMID:21705250

  19. ImatraNMR: Novel software for batch integration and analysis of quantitative NMR spectra

    NASA Astrophysics Data System (ADS)

    Mäkelä, A. V.; Heikkilä, O.; Kilpeläinen, I.; Heikkinen, S.

    2011-08-01

    Quantitative NMR spectroscopy is a useful and important tool for analysis of various mixtures. Recently, in addition of traditional quantitative 1D 1H and 13C NMR methods, a variety of pulse sequences aimed for quantitative or semiquantitative analysis have been developed. To obtain actual usable results from quantitative spectra, they must be processed and analyzed with suitable software. Currently, there are many processing packages available from spectrometer manufacturers and third party developers, and most of them are capable of analyzing and integration of quantitative spectra. However, they are mainly aimed for processing single or few spectra, and are slow and difficult to use when large numbers of spectra and signals are being analyzed, even when using pre-saved integration areas or custom scripting features. In this article, we present a novel software, ImatraNMR, designed for batch analysis of quantitative spectra. In addition to capability of analyzing large number of spectra, it provides results in text and CSV formats, allowing further data-analysis using spreadsheet programs or general analysis programs, such as Matlab. The software is written with Java, and thus it should run in any platform capable of providing Java Runtime Environment version 1.6 or newer, however, currently it has only been tested with Windows and Linux (Ubuntu 10.04). The software is free for non-commercial use, and is provided with source code upon request.

  20. Development and application of proton NMR methodology to lipoprotein analysis

    NASA Astrophysics Data System (ADS)

    Korhonen, Ari Juhani

    1998-11-01

    The present thesis describes the development of 1H NMR spectroscopy and its applications to lipoprotein analysis in vitro, utilizing biochemical prior knowledge and advanced lineshape fitting analysis in the frequency domain. A method for absolute quantification of lipoprotein lipids and proteins directly from the terminal methyl-CH3 resonance region of 1H NMR spectra of human blood plasma is described. Then the use of NMR methodology in time course studies of the oxidation process of LDL particles is presented. The function of the cholesteryl ester transfer protein (CETP) in lipoprotein mixtures was also assessed by 1H NMR, which allows for dynamic follow-up of the lipid transfer reactions between VLDL, LDL, and HDL particles. The results corroborated the suggestion that neutral lipid mass transfer among lipoproteins is not an equimolar heteroexchange. A novel method for studying lipoprotein particle fusion is also demonstrated. It is shown that the progression of proteolytically (α- chymotrypsin) induced fusion of LDL particles can be followed by 1H NMR spectroscopy and, moreover, that fusion can be distinguished from aggregation. In addition, NMR methodology was used to study the changes in HDL3 particles induced by phospholipid transfer protein (PLTP) in HDL3 + PLTP mixtures. The 1H NMR study revealed a gradual production of enlarged HDL particles, which demonstrated that PLTP-mediated remodeling of HDL involves fusion of the HDL particles. These applications demonstrated that the 1H NMR approach offers several advantages both in quantification and in time course studies of lipoprotein-lipoprotein interactions and of enzyme/lipid transfer protein function.

  1. Voltage Controlled Geometric Phase Rotation in ^{208}Pb^{19}F.

    NASA Astrophysics Data System (ADS)

    Furneaux, J. E.; Shafer-Ray, Neil; Coker, J.; Rupasinghe, P. M.; McRaven, C. P.

    2013-06-01

    Many theoretical publications have investigated the impact of the geometric phase on measurements of the e-EDM. However, there has been surprisingly little quantitative comparison of these models with experiment. Here we create a quantum beat experiment that starts with an optical pump and ends with an optical probe of ^{208}Pb^{19}F. This measurement includes the ability to control a geometric phase variation of the molecular alignment by applying an appropriate bias voltage. These experiments will then used to test the accuracy of our model calculations of geometric phase rotation.

  2. 1H and 19F spin-lattice relaxation and CH3 or CF3 reorientation in molecular solids containing both H and F atoms

    NASA Astrophysics Data System (ADS)

    Beckmann, Peter A.; Rheingold, Arnold L.

    2016-04-01

    The dynamics of methyl (CH3) and fluoromethyl (CF3) groups in organic molecular (van der Waals) solids can be exploited to survey their local environments. We report solid state 1H and 19F spin-lattice relaxation experiments in polycrystalline 3-trifluoromethoxycinnamic acid, along with an X-ray diffraction determination of the molecular and crystal structure, to investigate the intramolecular and intermolecular interactions that determine the properties that characterize the CF3 reorientation. The molecule is of no particular interest; it simply provides a motionless backbone (on the nuclear magnetic resonance (NMR) time scale) to investigate CF3 reorientation occurring on the NMR time scale. The effects of 19F-19F and 19F-1H spin-spin dipolar interactions on the complicated nonexponential NMR relaxation provide independent inputs into determining a model for CF3 reorientation. As such, these experiments provide much more information than when only one spin species (usually 1H) is present. In Sec. IV, which can be read immediately after the Introduction without reading the rest of the paper, we compare the barrier to CH3 and CF3 reorientation in seven organic solids and separate this barrier into intramolecular and intermolecular components.

  3. Analysis of multiple pulse NMR in solids

    NASA Technical Reports Server (NTRS)

    Rhim, W.-K.; Elleman, D. D.; Vaughan, R. W.

    1973-01-01

    The general problems associated with the removal of the effects of dipolar broadening from solid-state NMR spectra are analyzed. The effects of finite pulse width and H sub 1 inhomogeneity are shown to have limited the resolution of previous pulse cycles, and a new eight-pulse cycle designed to minimize these problems is discussed. Spectra for F-19 in CaF2 taken with this cycle are presented which show residual linewidth near 10 Hz. The feasibility of measuring proton chemical shift tensors is discussed.

  4. NMR-spectroscopic analysis of mixtures: from structure to function

    PubMed Central

    Forseth, Ry R.; Schroeder, Frank C.

    2010-01-01

    NMR spectroscopy as a particularly information-rich method offers unique opportunities for improving the structural and functional characterization of metabolomes, which will be essential for advancing the understanding of many biological processes. Whereas traditionally NMR spectroscopy was mostly relegated to the characterization of pure compounds, the last few years have seen a surge of interest in using NMR spectroscopic techniques for characterizing complex metabolite mixtures. Development of new methods was motivated partly by the realization that using NMR for the analysis of metabolite mixtures can help identify otherwise inaccessible small molecules, for example compounds that are prone to chemical decomposition and thus cannot be isolated. Furthermore, comparative metabolomics and statistical analyses of NMR-spectra have proven highly effective at identifying novel and known metabolites that correlate with changes in genotype or phenotype. In this review, we provide an overview of the range of NMR spectroscopic techniques recently developed for characterizing metabolite mixtures, including methods used in discovery-oriented natural product chemistry, in the study of metabolite biosynthesis and function, or for comparative analyses of entire metabolomes. PMID:21071261

  5. NMR analysis on microfluidic devices by remote detection

    SciTech Connect

    McDonnell, Erin E.; Han, SongI; Hilty, Christian; Pierce,Kimberly; Pines, Alexander

    2005-08-15

    We present a novel approach to perform high-sensitivity NMR imaging and spectroscopic analysis on microfluidic devices. The application of NMR, the most information rich spectroscopic technique, to microfluidic devices remains a challenge because the inherently low sensitivity of NMR is aggravated by small fluid volumes leading to low NMR signal, and geometric constraints resulting in poor efficiency for inductive detection. We address the latter by physically separating signal detection from encoding of information with remote detection. Thereby, we use a commercial imaging probe with sufficiently large diameter to encompass the entire device, enabling encoding of NMR information at any location on the chip. Because large-diameter coils are too insensitive for detection, we store the encoded information as longitudinal magnetization and flow it into the outlet capillary. There, we detect the signal with optimal sensitivity using a solenoidal microcoil, and reconstruct the information encoded in the fluid. We present a generally applicable design for a detection-only microcoil probe that can be inserted into the bore of a commercial imaging probe. Using hyperpolarized 129Xe gas, we show that this probe enables sensitive reconstruction of NMR spectroscopic information encoded by the large imaging probe while keeping the flexibility of a large coil.

  6. Pharmaceutical Applications of Relaxation Filter-Selective Signal Excitation Methods for (19)F Solid-State Nuclear Magnetic Resonance: Case Study With Atorvastatin in Dosage Formulation.

    PubMed

    Asada, Mamiko Nasu; Nemoto, Takayuki; Mimura, Hisashi

    2016-03-01

    We recently developed several new relaxation filter-selective signal excitation (RFS) methods for (13)C solid-state nuclear magnetic resonance (NMR) that allow (13)C signal extraction of the target components from pharmaceuticals. These methods were successful in not only qualification but also quantitation over the wide range of 5% to 100%. Here, we aimed to improve the sensitivity of these methods and initially applied them to (19)F solid-state NMR, on the basis that the fluorine atom is one of the most sensitive NMR-active nuclei. For testing, we selected atorvastatin calcium (ATC), an antilipid BCS class II drug that inhibits 3-hydroxy-3-methylglutaryl-coenzyme A reductase and is marketed in crystalline and amorphous forms. Tablets were obtained from 2 generic drug suppliers, and the ATC content occurred mainly as an amorphous form. Using the RFS method with (19)F solid-state NMR, we succeeded in qualifying trace amounts (less than 0.5% w/w level) of crystalline phase (Form I) of ATC in the tablets. RFS methods with (19)F solid-state NMR are practical and time efficient and can contribute not only to the study of pharmaceutical drugs, including those with small amounts of a highly potent active ingredient within a formulated product, but also to the study of fluoropolymers in material sciences. PMID:26886305

  7. Identification of 2-Fluoro-2-deoxy- D-glucose Metabolites by 19F{ 1H} Hetero-RELAY

    NASA Astrophysics Data System (ADS)

    O'Connell, Thomas M.; London, Robert E.

    1995-12-01

    It has been proposed that in mammalian systems the glucose analog 2-fluoro-2-deoxy-D-glucose (FDG) is phosphoryated and subsequently converted to the corresponding mannose derivative via the action of phosphoglucose isomerase. As is generally true in metabolic studies of fluorinated molecules, the fluorine spectrum alone is suggestive, without providing definitive structural evidence, while the use of1H NMR techniques generally suffers from a lack of adequate selectivity. A1H-19F version of the hetero-RELAY experiment has been applied to this problem. Formation of the corresponding C-6 phosphorylated 2-FDG analog with hexokinase, followed by treatment of the resulting phosphorylated products with phosphoglucose isomerase, resulted in the observation of additional19F resonances consistent with the corresponding 2-fluoro-2-deoxy-D-mannose-6-phosphate metabolite. A more definitive product identification was obtained using the hetero-RELAY experiment, which provides a complete19F-decoupled proton spectrum for each of the fluorinated species.

  8. Quantitative analysis of protein-ligand interactions by NMR.

    PubMed

    Furukawa, Ayako; Konuma, Tsuyoshi; Yanaka, Saeko; Sugase, Kenji

    2016-08-01

    Protein-ligand interactions have been commonly studied through static structures of the protein-ligand complex. Recently, however, there has been increasing interest in investigating the dynamics of protein-ligand interactions both for fundamental understanding of the underlying mechanisms and for drug development. NMR is a versatile and powerful tool, especially because it provides site-specific quantitative information. NMR has widely been used to determine the dissociation constant (KD), in particular, for relatively weak interactions. The simplest NMR method is a chemical-shift titration experiment, in which the chemical-shift changes of a protein in response to ligand titration are measured. There are other quantitative NMR methods, but they mostly apply only to interactions in the fast-exchange regime. These methods derive the dissociation constant from population-averaged NMR quantities of the free and bound states of a protein or ligand. In contrast, the recent advent of new relaxation-based experiments, including R2 relaxation dispersion and ZZ-exchange, has enabled us to obtain kinetic information on protein-ligand interactions in the intermediate- and slow-exchange regimes. Based on R2 dispersion or ZZ-exchange, methods that can determine the association rate, kon, dissociation rate, koff, and KD have been developed. In these approaches, R2 dispersion or ZZ-exchange curves are measured for multiple samples with different protein and/or ligand concentration ratios, and the relaxation data are fitted to theoretical kinetic models. It is critical to choose an appropriate kinetic model, such as the two- or three-state exchange model, to derive the correct kinetic information. The R2 dispersion and ZZ-exchange methods are suitable for the analysis of protein-ligand interactions with a micromolar or sub-micromolar dissociation constant but not for very weak interactions, which are typical in very fast exchange. This contrasts with the NMR methods that are used

  9. Solid-state NMR strategies for the structural characterization of paramagnetic NO adducts of Frustrated Lewis Pairs (FLPs).

    PubMed

    Wiegand, Thomas; Sajid, Muhammad; Kehr, Gerald; Erker, Gerhard; Eckert, Hellmut

    2014-01-01

    By N,N addition of NO to the norbonane annulated borane-phosphane Frustrated Lewis pair (FLP) 1 a five-membered heterocyclic persistent aminoxyl radical 2 and its diamagnetic hydroxylamine reduction product 3 are prepared, and the comprehensive multinuclear solid state NMR characterization ((1)H, (11)B, (19)F, (31)P) of these FLP adducts is reported. Signal quantification experiments using a standard addition method reveal that the (11)B and (31)P NMR signals observed in 2 actually arise from molecular impurities of 3 embedded in the paramagnetic crystal. In contrast analogous quantification experiments reveal that the (1)H and (19)F MAS-NMR spectra originate from spin-carrying molecules. Peak assignments are based on DFT-calculated Mulliken spin densities, which lead to the surprising result that the largest paramagnetic shift affecting a proton NMR resonance in 2 originates from intermolecular interactions. For the (19)F nuclei, experiments and calculations indicate that paramagnetic shift effects are very small. In this case, assignments are based on DFT chemical shift calculations carried out on diamagnetic 3 and (19)F((11)B) Rotational Echo Adiabatic Passage DOuble Resonance (REAPDOR) experiments. The set of experiments described here defines an efficient strategy for the structural analysis of paramagnetic FLP adducts. PMID:24815176

  10. (1)H and (19)F spin-lattice relaxation and CH3 or CF3 reorientation in molecular solids containing both H and F atoms.

    PubMed

    Beckmann, Peter A; Rheingold, Arnold L

    2016-04-21

    The dynamics of methyl (CH3) and fluoromethyl (CF3) groups in organic molecular (van der Waals) solids can be exploited to survey their local environments. We report solid state (1)H and (19)F spin-lattice relaxationexperiments in polycrystalline 3-trifluoromethoxycinnamic acid, along with an X-ray diffraction determination of the molecular and crystal structure, to investigate the intramolecular and intermolecular interactions that determine the properties that characterize the CF3 reorientation. The molecule is of no particular interest; it simply provides a motionless backbone (on the nuclear magnetic resonance(NMR) time scale) to investigate CF3 reorientation occurring on the NMR time scale. The effects of (19)F-(19)F and (19)F-(1)H spin-spin dipolar interactions on the complicated nonexponential NMRrelaxation provide independent inputs into determining a model for CF3 reorientation. As such, these experiments provide much more information than when only one spin species (usually (1)H) is present. In Sec. IV, which can be read immediately after the Introduction without reading the rest of the paper, we compare the barrier to CH3 and CF3 reorientation in seven organic solids and separate this barrier into intramolecular and intermolecular components. PMID:27389221

  11. Conformational analysis of small molecules: NMR and quantum mechanics calculations.

    PubMed

    Tormena, Cláudio F

    2016-08-01

    This review deals with conformational analysis in small organic molecules, and describes the stereoelectronic interactions responsible for conformational stability. Conformational analysis is usually performed using NMR spectroscopy through measurement of coupling constants at room or low temperature in different solvents to determine the populations of conformers in solution. Quantum mechanical calculations are used to address the interactions responsible for conformer stability. The conformational analysis of a large number of small molecules is described, using coupling constant measurements in different solvents and at low temperature, as well as recent applications of through-space and through-hydrogen bond coupling constants JFH as tools for the conformational analysis of fluorinated molecules. Besides NMR parameters, stereoelectronic interactions such as conjugative, hyperconjugative, steric and intramolecular hydrogen bond interactions involved in conformational preferences are discussed. PMID:27573182

  12. Review of NMR characterization of pyrolysis oils

    DOE PAGESBeta

    Hao, Naijia; Ben, Haoxi; Yoo, Chang Geun; Adhikari, Sushil; Ragauskas, Arthur J.

    2016-08-24

    Here, pyrolysis of renewable biomass has been developed as a method to produce green fuels and chemicals in response to energy security concerns as well as to alleviate environmental issues incurred with fossil fuel usage. However, pyrolysis oils still have limited commercial application, mainly because unprocessed oils cannot be readily blended with current petroleum-based transportation fuels. To better understand these challenges, researchers have applied diverse characterization techniques in the development of bio-oil studies. In particular, nuclear magnetic resonance (NMR) is a key spectroscopic characterization method through analysis of bio-oil components. This review highlights the NMR strategies for pyrolysis oil characterizationmore » and critically discusses the applications of 1H, 13C, 31P, 19F, and two-dimensional (2-D NMR) analyses such as heteronuclear single quantum correlation (HSQC) in representative pyrolysis oil studies.« less

  13. Solid-state NMR in the analysis of drugs and naturally occurring materials.

    PubMed

    Paradowska, Katarzyna; Wawer, Iwona

    2014-05-01

    This article presents some of the solid-state NMR (SSNMR) techniques used in the pharmaceutical and biomedical research. Solid-state magic angle spinning (MAS) NMR provides structural information on powder amorphous solids for which single-crystal diffraction structures cannot be obtained. NMR is non-destructive; the powder sample may be used for further studies. Quantitative results can be obtained, although solid-state NMR spectra are not normally quantitative. As compared with other techniques, MAS NMR is insensitive and requires a significant amount of the powder sample (2-100mg) to fill the 1.3-7 mm ZrO2 rotor. This is its main drawback, since natural compounds isolated from plants, microorganisms or cell cultures are difficult to obtain in quantities higher than a few milligrams. Multinuclear MAS NMR routinely uses (1)H and (13)C nuclei, less frequently (15)N, (19)F, (31)P, (77)Se, (29)Si, (43)Ca or (23)Na. The article focuses on the pharmaceutical applications of SSNMR, the studies were aimed to control over manufacturing processes (e.g. crystallization and milling) investigation of chemical and physical stability of solid forms both as pure drug and in a formulated product. SSNMR is used in combination with some other analytical methods (DSC, XRD, FT-IR) and theoretical calculations of NMR parameters. Biologically active compounds, such as amino acids and small peptides, steroids and flavonoids were studied by SSNMR methods (part 4) providing valuable structural information. The SSNMR experiments performed on biopolymers and large natural products like proteins, cellulose and lipid layers are commented upon briefly in part 5. PMID:24173236

  14. A comparative study of 1H and 19F Overhauser DNP in fluorinated benzenes.

    PubMed

    Neudert, Oliver; Mattea, Carlos; Spiess, Hans Wolfgang; Stapf, Siegfried; Münnemann, Kerstin

    2013-12-21

    Hyperpolarization techniques, such as Overhauser dynamic nuclear polarization (DNP), can provide a dramatic increase in the signal obtained from nuclear magnetic resonance experiments and may therefore enable new applications where sensitivity is a limiting factor. In this contribution, studies of the (1)H and (19)F Overhauser dynamic nuclear polarization enhancements at 345 mT are presented for three different aromatic solvents with the TEMPO radical for a range of radical concentrations. Furthermore, nuclear magnetic relaxation dispersion measurements of the same solutions are analyzed, showing contributions from dipolar and scalar coupling modulated by translational diffusion and different coupling efficiency for different solvents and nuclei. Measurements of the electron paramagnetic resonance linewidth are included to support the analysis of the DNP saturation factor for varying radical concentration. The results of our study give an insight into the characteristics of nitroxide radicals as polarizing agents for (19)F Overhauser DNP of aromatic fluorinated solvents. Furthermore, we compare our results with the findings of the extensive research on Overhauser DNP that was conducted in the past for a large variety of other radicals. PMID:24192645

  15. Measurement of the 19F(α,n)22Na Cross Section for Nuclear Safeguards Science

    NASA Astrophysics Data System (ADS)

    Lowe, Marcus; Smith, M. S.; Pain, S.; Febbraro, M.; Pittman, S.; Chipps, K. A.; Thompson, S. J.; Grinder, M.; Grzywacz, R.; Smith, K.; Thornsberry, C.; Thompson, P.; Peters, W. A.; Waddell, D.; Blanchard, R.; Carls, A.; Shadrick, S.; Engelhardt, A.; Hertz-Kintish, D.; Allen, N.; Sims, H.

    2015-10-01

    Enriched uranium is commonly stored in fluoride matrices such as UF6. Alpha decays of uranium in UF6 will create neutrons via the 19F(α,n)22Na reaction. An improved cross section for this reaction will enable improved nondestructive assays of uranium content in storage cylinders at material enrichment facilities. To determine this reaction cross section, we have performed experiments using both forward and inverse kinematic techniques at the University of Notre Dame (forward) and Oak Ridge National Laboratory (inverse). Both experiments utilized the Versatile Array of Neutron Detectors at Low Energy (VANDLE) for neutron detection. The ORNL experiment also used a new ionization chamber for 22Na particle identification. Gating on the 22Na nuclei detected drastically reduced the background counts in the neutron time-of-flight spectra. The latest analysis and results will be presented for 19F beam energies ranging from 20-37 MeV. This work is funded in part by the DOE Office of Nuclear Physics, the National Nuclear Security Administration's Office of Defense Nuclear Nonproliferation R&D, and the NSF.

  16. (19)F-MRI for monitoring human NK cells in vivo.

    PubMed

    Bouchlaka, Myriam N; Ludwig, Kai D; Gordon, Jeremy W; Kutz, Matthew P; Bednarz, Bryan P; Fain, Sean B; Capitini, Christian M

    2016-05-01

    The availability of clinical-grade cytokines and artificial antigen-presenting cells has accelerated interest in using natural killer (NK) cells as adoptive cellular therapy (ACT) for cancer. One of the technological shortcomings of translating therapies from animal models to clinical application is the inability to effectively and non-invasively track these cells after infusion in patients. We have optimized the nonradioactive isotope fluorine-19 ((19)F) as a means to label and track NK cells in preclinical models using magnetic resonance imaging (MRI). Human NK cells were expanded with interleukin (IL)-2 and labeled in vitro with increasing concentrations of (19)F. Doses as low as 2 mg/mL (19)F were detected by MRI. NK cell viability was only decreased at 8 mg/mL (19)F. No effects on NK cell cytotoxicity against K562 leukemia cells were observed with 2, 4 or 8 mg/mL (19)F. Higher doses of (19)F, 4 mg/mL and 8 mg/mL, led to an improved (19)F signal by MRI with 3 × 10(11) (19)F atoms per NK cell. The 4 mg/mL (19)F labeling had no effect on NK cell function via secretion of granzyme B or interferon gamma (IFNγ), compared to NK cells exposed to vehicle alone. (19)F-labeled NK cells were detectable immediately by MRI after intratumoral injection in NSG mice and up to day 8. When (19)F-labeled NK cells were injected subcutaneously, we observed a loss of signal through time at the site of injection suggesting NK cell migration to distant organs. The (19)F perfluorocarbon is a safe and effective reagent for monitoring the persistence and trafficking of NK cell infusions in vivo, and may have potential for developing novel imaging techniques to monitor ACT for cancer. PMID:27467963

  17. Improved Quantitative 19F MR Molecular Imaging With Flip Angle Calibration and B1-Mapping Compensation

    PubMed Central

    Goette, Matthew J.; Lanza, Gregory M.; Caruthers, Shelton D.; Wickline, Samuel A.

    2014-01-01

    Purpose To improve 19F flip angle calibration and compensate for B1 inhomogeneities in quantitative 19F MRI of sparse molecular epitopes with perfluorocarbon (PFC) nanoparticle (NP) emulsion contrast agents. Materials and Methods Flip angle sweep experiments on PFC-NP point source phantoms with three custom-designed 19F/1H dual-tuned coils revealed a difference in required power settings for 19F and 1H nuclei, which was used to calculate a calibration ratio specific for each coil. An image-based correction technique was developed using B1-field mapping on 1H to correct for 19F and 1H images in two phantom experiments. Results Optimized 19F peak power differed significantly from that of 1H power for each coil (p<0.05). A ratio of 19F/1H power settings yielded a coil-specific and spatially independent calibration value (surface: 1.48±0.06; semi-cylindrical: 1.71±0.02, single-turn-solenoid: 1.92±0.03). 1H-image-based B1 correction equalized the signal intensity of 19F images for two identical 19F PFC-NP samples placed in different parts of the field, which were offset significantly by ~66% (p<0.001) before correction. Conclusion 19F flip angle calibration and B1-mapping compensations to the 19F images employing the more abundant 1H signal as a basis for correction result in a significant change in the quantification of sparse 19F MR signals from targeted PFC NP emulsions. PMID:25425244

  18. Moving NMR

    NASA Astrophysics Data System (ADS)

    Blümich, Bernhard; Casanova, Federico; Danieli, Ernesto; Gong, Qingxia; Greferath, Marcus; Haber, Agnes; Kolz, Jürgen; Perlo, Juan

    2008-12-01

    Initiated by the use of NMR for well logging, portable NMR instruments are being developed for a variety of novel applications in materials testing and process analysis and control. Open sensors enable non-destructive testing of large objects, and small, cup-size magnets become available for high throughput analysis by NMR relaxation and spectroscopy. Some recent developments of mobile NMR are reviewed which delineate the direction into which portable NMR is moving.

  19. Multinuclear NMR analysis of the antitubercular drug ethionamide

    NASA Astrophysics Data System (ADS)

    Vale, Nuno; Correia, Alexandra; Figueiredo, Patrícia; Santos, Hélder A.

    2016-02-01

    Tuberculosis remains as the deadliest bacterial infection in developing countries, a situation that is particularly aggravated by the increasing spread of multidrug resistant mycobacteria (MDR-TB). In this view, not only new anti-tubercular drugs are urgently needed, but also a better understanding of the existing ones may aid in the future design of more efficient derivatives or surrogates. Ethionamide (ETA) is an anti-tubercular pro-drug used as second-line therapy against MDR-TB, being bio-activated by the mycobacterial monooxygenase EtA. ETA has been the focus of several research works, devoted either to the identification of ETA's metabolites or to the development of novel derivatives potentially useful to fight against tuberculosis. In either case, structural analysis of ETA and related structures is of undeniable relevance, while the presence of sulfur in ETA's structure brings about the possibility of including 33S-NMR in the toolbox of structural analysis techniques. In this work, we have engaged into a multinuclear NMR characterization of ETA, through the study of the drug's solubility in seven deuterated solvents, and of the chemical shifts for different nuclei in ETA. Results showed which are the best conditions to study ETA by NMR and provided some important evidence on the low reactivity of the drug's thioamide group, which may be of relevance for future drug derivatization approaches.

  20. NMR apparatus for in situ analysis of fuel cells

    SciTech Connect

    Gerald, II, Rex E; Rathke, Jerome W

    2012-11-13

    The subject apparatus is a fuel cell toroid cavity detector for in situ analysis of samples through the use of nuclear magnetic resonance. The toroid cavity detector comprises a gas-tight housing forming a toroid cavity where the housing is exposed to an externally applied magnetic field B.sub.0 and contains fuel cell component samples to be analyzed. An NMR spectrometer is electrically coupled and applies a radiofrequency excitation signal pulse to the detector to produce a radiofrequency magnetic field B.sub.1 in the samples and in the toroid cavity. Embedded coils modulate the static external magnetic field to provide a means for spatial selection of the recorded NMR signals.

  1. NMR Analysis of Unknowns: An Introduction to 2D NMR Spectroscopy

    ERIC Educational Resources Information Center

    Alonso, David E.; Warren, Steven E.

    2005-01-01

    A study combined 1D (one-dimensional) and 2D (two-dimensional) NMR spectroscopy to solve structural organic problems of three unknowns, which include 2-, 3-, and 4-heptanone. Results showed [to the first power]H NMR and [to the thirteenth power]C NMR signal assignments for 2- and 3-heptanone were more challenging than for 4-heptanone owing to the…

  2. Multivariate analysis relating oil shale geochemical properties to NMR relaxometry

    USGS Publications Warehouse

    Birdwell, Justin E.; Washburn, Kathryn E.

    2015-01-01

    Low-field nuclear magnetic resonance (NMR) relaxometry has been used to provide insight into shale composition by separating relaxation responses from the various hydrogen-bearing phases present in shales in a noninvasive way. Previous low-field NMR work using solid-echo methods provided qualitative information on organic constituents associated with raw and pyrolyzed oil shale samples, but uncertainty in the interpretation of longitudinal-transverse (T1–T2) relaxometry correlation results indicated further study was required. Qualitative confirmation of peaks attributed to kerogen in oil shale was achieved by comparing T1–T2 correlation measurements made on oil shale samples to measurements made on kerogen isolated from those shales. Quantitative relationships between T1–T2 correlation data and organic geochemical properties of raw and pyrolyzed oil shales were determined using partial least-squares regression (PLSR). Relaxometry results were also compared to infrared spectra, and the results not only provided further confidence in the organic matter peak interpretations but also confirmed attribution of T1–T2 peaks to clay hydroxyls. In addition, PLSR analysis was applied to correlate relaxometry data to trace element concentrations with good success. The results of this work show that NMR relaxometry measurements using the solid-echo approach produce T1–T2 peak distributions that correlate well with geochemical properties of raw and pyrolyzed oil shales.

  3. USING 19F-NMR SPECTROSCOPY TO DETERMINE TRIFLURALIN BINDING TO SOIL

    EPA Science Inventory

    Trifluralin is a widely used herbicide for the control of broad leaf weeds in a variety of crops. Its binding to soil may result in significant losses in herbicidal activity and a delayed pollution problem. To investigate the nature of soil-bound trifluralin residues, 14

  4. Noninvasive detection of graft rejection by in vivo (19) F MRI in the early stage.

    PubMed

    Flögel, U; Su, S; Kreideweiss, I; Ding, Z; Galbarz, L; Fu, J; Jacoby, C; Witzke, O; Schrader, J

    2011-02-01

    Diagnosis of transplant rejection requires tissue biopsy and entails risks. Here, we describe a new (19) F MRI approach for noninvasive visualization of organ rejection via the macrophage host response. For this, we employed biochemically inert emulsified perfluorocarbons (PFCs), known to be preferentially phagocytized by monocytes and macrophages. Isografts from C57BL/6 or allografts from C57B10.A mice were heterotopically transplanted into C57BL/6 recipients. PFCs were applied intravenously followed by (1) H/(19) F MRI at 9.4 T 24 h after injection. (1) H images showed a similar position and anatomy of the graft in the abdomen for both cases. However, corresponding (19) F signals were only observed in allogenic tissue. (1) H/(19) F MRI enabled us to detect the initial immune response not later than 3 days after surgery, when conventional parameters did not reveal any signs of rejection. In allografts, the observed (19) F signal strongly increased with time and correlated with the extent of rejection. In separate experiments, rapamycin was used to demonstrate the ability of (19) F MRI to monitor immunosuppressive therapy. Thus, PFCs can serve as positive contrast agent for the early detection of transplant rejection by (19) F MRI with high spatial resolution and an excellent degree of specificity due to lack of any (19) F background. PMID:21214858

  5. High-sensitivity chemical derivatization NMR analysis for condition monitoring of aged elastomers.

    SciTech Connect

    Assink, Roger Alan; Celina, Mathias Christopher; Skutnik, Julie Michelle

    2004-06-01

    An aged polybutadiene-based elastomer was reacted with trifluoroacetic anhydride (TFAA) and subsequently analyzed via 19F NMR spectroscopy. Derivatization between the TFAA and hydroxyl functionalities produced during thermo-oxidative aging was achieved, resulting in the formation of trifluoroester groups on the polymer. Primary and secondary alcohols were confirmed to be the main oxidation products of this material, and the total percent oxidation correlated with data obtained from oxidation rate measurements. The chemical derivatization appears to be highly sensitive and can be used to establish the presence and identity of oxidation products in aged polymeric materials. This methodology represents a novel condition monitoring approach for the detection of chemical changes that are otherwise difficult to analyze.

  6. Gadolinium-modulated 19F signals from Perfluorocarbon Nanoparticles as a New Strategy for Molecular Imaging

    PubMed Central

    Neubauer, Anne M.; Myerson, Jacob; Caruthers, Shelton D.; Hockett, Franklin D.; Winter, Patrick M.; Chen, Junjie; Gaffney, Patrick J.; Robertson, J. David; Lanza, Gregory M.; Wickline, Samuel A.

    2008-01-01

    Recent advances in the design of fluorinated nanoparticles for magnetic resonance molecular imaging have enabled specific detection of 19F nuclei, providing unique and quantifiable spectral signatures. However, a pressing need for signal enhancement exists because the total 19F in imaging voxels is often limited. By directly incorporating a relaxation agent (gadolinium) into the lipid monolayer that surrounds the perfluorocarbon, a marked augmentation of the 19F signal from 200nm nanoparticles was achieved. This design increases the magnetic relaxation rate of the 19F nuclei 4-fold at 1.5 T and effects a 125% increase in signal, an effect which is maintained when they are targeted to human plasma clots. By varying the surface concentration of gadolinium, the relaxation effect can be quantitatively modulated to tailor particle properties. This novel strategy dramatically improves the sensitivity and range of 19F MRI/MRS and forms the basis for designing contrast agents capable of sensing their surface chemistry. PMID:18956457

  7. Visualizing arthritic inflammation and therapeutic response by fluorine-19 magnetic resonance imaging (19F MRI)

    PubMed Central

    2012-01-01

    Background Non-invasive imaging of inflammation to measure the progression of autoimmune diseases, such as rheumatoid arthritis (RA), and to monitor responses to therapy is critically needed. V-Sense, a perfluorocarbon (PFC) contrast agent that preferentially labels inflammatory cells, which are then recruited out of systemic circulation to sites of inflammation, enables detection by 19F MRI. With no 19F background in the host, detection is highly-specific and can act as a proxy biomarker of the degree of inflammation present. Methods Collagen-induced arthritis in rats, a model with many similarities to human RA, was used to study the ability of the PFC contrast agent to reveal the accumulation of inflammation over time using 19F MRI. Disease progression in the rat hind limbs was monitored by caliper measurements and 19F MRI on days 15, 22 and 29, including the height of clinically symptomatic disease. Naïve rats served as controls. The capacity of the PFC contrast agent and 19F MRI to assess the effectiveness of therapy was studied in a cohort of rats administered oral prednisolone on days 14 to 28. Results Quantification of 19F signal measured by MRI in affected limbs was linearly correlated with disease severity. In animals with progressive disease, increases in 19F signal reflected the ongoing recruitment of inflammatory cells to the site, while no increase in 19F signal was observed in animals receiving treatment which resulted in clinical resolution of disease. Conclusion These results indicate that 19F MRI may be used to quantitatively and qualitatively evaluate longitudinal responses to a therapeutic regimen, while additionally revealing the recruitment of monocytic cells involved in the inflammatory process to the anatomical site. This study may support the use of 19F MRI to clinically quantify and monitor the severity of inflammation, and to assess the effectiveness of treatments in RA and other diseases with an inflammatory component. PMID:22721447

  8. A new laboratory approach to shale analysis using NMR relaxometry

    USGS Publications Warehouse

    Washburn, Kathryn E.; Birdwell, Justin E.

    2013-01-01

    kerogen, thermally degraded kerogen, and char. Integrated peak areas from the LF-NMR results representative of kerogen and bitumen were found to be well correlated with S1 and S2 parameters from Rock-Eval programmed pyrolysis. This study demonstrates that LFNMR relaxometry can provide a wide range of information on shales and other reservoir rocks that goes well beyond porosity and pore-fluid analysis.

  9. Interactions between Nafion resin and protonated dodecylamine modified montmorillonite: a solid state NMR study.

    PubMed

    Zhang, Limin; Xu, Jun; Hou, Guangjin; Tang, Huiru; Deng, Feng

    2007-07-01

    A series of nanocomposites have been prepared from perfluorosulfonylfluoride copolymer resin (Nafion) and layered montmorillonite (MMT) modified with protonated dodecylamine by conventional sol-gel intercalation. The structure of these nanocomposite materials have been characterized using FT-IR, elemental analysis, XRD and solid state NMR techniques, including 19F magic-angle spinning (MAS) NMR, 19F NMR relaxation time measurements, 29Si MAS, 1H MAS, 1H-13C cross-polarization magic-angle spinning (CPMAS), and 1H-13C heteronuclear correlation (HETCOR) 2D NMR. The results showed that thermal stability of Nafion was improved moderately by the addition of dodecylamine modified MMT without intercalation. FT-IR and 29Si MAS NMR results indicated that dodecylamine modification did not result in obvious changes in the MMT lattice structure. The XRD results showed that the protonated dodecylamine has been embedded and intercalated into the MMT interlayers, whereas Nafion was not. Elemental analysis results also suggested that some dodecylamine was adsorbed on the surface of MMT. 1H-13C HETCOR 2D NMR experiment clearly indicated that strong electrostatic interactions were present between the NH+3 group of dodecylamine and the fluorine-containing groups (CF3, OCF2, and SCF2) of Nafion resin. Such electrostatic interactions are probably the major contributors for the improved thermal stability of the resultant composite materials. PMID:17382953

  10. Novel 19F Activatable Probe for the Detection of Matrix Metalloprotease-2 Activity by MRI/MRS

    PubMed Central

    2015-01-01

    Matrix metalloproteases (MMPs) have been found to be highly expressed in a variety of malignant tumor tissues. Noninvasive visualization of MMP activity may play an important role in the diagnosis of MMP associated diseases. Here we report the design and synthesis of a set of fluorine-19 dendron-based magnetic resonance imaging (MRI) probes for real-time imaging of MMP-2 activity. The probes have the following features: (a) symmetrical fluorine atoms; (b) the number of fluorine atoms can be increased through facile chemical modification; (c) readily accessible peptide sequence as the MMP-2 substrate; (d) activatable 19F signal (off/on mode) via paramagnetic metal ion incorporation. Following optimization for water solubility, one of the probes was selected to evaluate MMP-2 activity by 19F magnetic resonance spectroscopy (MRS). Our results showed that the fluorine signal increased by 8.5-fold in the presence of MMP-2. The specific cleavage site was verified by mass spectrometry. The selected probe was further applied to detect secreted MMP-2 activity of living SCC7 squamous cell carcinoma cells. The fluorine signal was increased by 4.8-fold by MRS analysis after 24 h incubation with SCC7 cells. This type of fluorine probe can be applied to evaluate other enzyme activities by simply tuning the substrate structures. This symmetrical fluorine dendron-based probe design extends the scope of the existing 19F MRI agents and provides a simple but robust method for real-time 19F MRI application. PMID:25271556

  11. Design principles and theory of paramagnetic fluorine-labelled lanthanide complexes as probes for (19)F magnetic resonance: a proof-of-concept study.

    PubMed

    Chalmers, Kirsten H; De Luca, Elena; Hogg, Naomi H M; Kenwright, Alan M; Kuprov, Ilya; Parker, David; Botta, Mauro; Wilson, J Ian; Blamire, Andrew M

    2010-01-01

    The synthesis and spectroscopic properties of a series of CF(3)-labelled lanthanide(III) complexes (Ln=Gd, Tb, Dy, Ho, Er, Tm) with amide-substituted ligands based on 1,4,7,10-tetraazacyclododecane are described. The theoretical contributions of the (19)F magnetic relaxation processes in these systems are critically assessed and selected volumetric plots are presented. These plots allow an accurate estimation of the increase in the rates of longitudinal and transverse relaxation as a function of the distance between the Ln(III) ion and the fluorine nucleus, the applied magnetic field, and the re-rotational correlation time of the complex, for a given Ln(III) ion. Selected complexes exhibit pH-dependent chemical shift behaviour, and a pK(a) of 7.0 was determined in one example based on the holmium complex of an ortho-cyano DO3A-monoamide ligand, which allowed the pH to be assessed by measuring the difference in chemical shift (varying by over 14 ppm) between two (19)F resonances. Relaxation analyses of variable-temperature and variable-field (19)F, (17)O and (1)H NMR spectroscopy experiments are reported, aided by identification of salient low-energy conformers by using density functional theory. The study of fluorine relaxation rates, over a field range of 4.7 to 16.5 T allowed precise computation of the distance between the Ln(III) ion and the CF(3) reporter group by using global fitting methods. The sensitivity benefits of using such paramagnetic fluorinated probes in (19)F NMR spectroscopic studies are quantified in preliminary spectroscopic and imaging experiments with respect to a diamagnetic yttrium(III) analogue. PMID:19957317

  12. 1H NMR Metabolomics Analysis of Glioblastoma Subtypes

    PubMed Central

    Cuperlovic-Culf, Miroslava; Ferguson, Dean; Culf, Adrian; Morin, Pier; Touaibia, Mohamed

    2012-01-01

    Glioblastoma multiforme (GBM) is the most common form of malignant glioma, characterized by unpredictable clinical behaviors that suggest distinct molecular subtypes. With the tumor metabolic phenotype being one of the hallmarks of cancer, we have set upon to investigate whether GBMs show differences in their metabolic profiles. 1H NMR analysis was performed on metabolite extracts from a selection of nine glioblastoma cell lines. Analysis was performed directly on spectral data and on relative concentrations of metabolites obtained from spectra using a multivariate regression method developed in this work. Both qualitative and quantitative sample clustering have shown that cell lines can be divided into four groups for which the most significantly different metabolites have been determined. Analysis shows that some of the major cancer metabolic markers (such as choline, lactate, and glutamine) have significantly dissimilar concentrations in different GBM groups. The obtained lists of metabolic markers for subgroups were correlated with gene expression data for the same cell lines. Metabolic analysis generally agrees with gene expression measurements, and in several cases, we have shown in detail how the metabolic results can be correlated with the analysis of gene expression. Combined gene expression and metabolomics analysis have shown differential expression of transporters of metabolic markers in these cells as well as some of the major metabolic pathways leading to accumulation of metabolites. Obtained lists of marker metabolites can be leveraged for subtype determination in glioblastomas. PMID:22528487

  13. Analysis of bacterial biofilms using NMR-based metabolomics

    PubMed Central

    Zhang, Bo; Powers, Robert

    2013-01-01

    Infectious diseases can be difficult to cure, especially if the pathogen forms a biofilm. After decades of extensive research into the morphology, physiology and genomics of biofilm formation, attention has recently been directed toward the analysis of the cellular metabolome in order to understand the transformation of a planktonic cell to a biofilm. Metabolomics can play an invaluable role in enhancing our understanding of the underlying biological processes related to the structure, formation and antibiotic resistance of biofilms. A systematic view of metabolic pathways or processes responsible for regulating this ‘social structure’ of microorganisms may provide critical insights into biofilm-related drug resistance and lead to novel treatments. This review will discuss the development of NMR-based metabolomics as a technology to study medically relevant biofilms. Recent advancements from case studies reviewed in this manuscript have shown the potential of metabolomics to shed light on numerous biological problems related to biofilms. PMID:22800371

  14. An Analysis of a Commercial Furniture Refinisher: A Comprehensive Introductory NMR Experiment.

    ERIC Educational Resources Information Center

    Markow, Peter G.; Cramer, John A.

    1983-01-01

    Describes a comprehensive nuclear magnetic resonance (NMR) experiment designed to introduce undergraduate organic chemistry students to measurement/interpretation of NMR parameters. Students investigate chemical shift analysis, spin-spin coupling, peak integrations, effect of deuterium oxide extraction, and comparisons with literature spectra;…

  15. Contribution of 19F resonances on 18O( p, α)15N reaction rate

    NASA Astrophysics Data System (ADS)

    Benmeslem, Meriem; Chafa, Azzedine; Barhoumi, Slimane; Tribeche, Mouloud

    2014-08-01

    The 18O( p, α)15N reaction influences the isotopes production such as 19F, 18O, and 15N which can be used to test the models of stellar evolution. 19F is synthesized in both asymptotic giant branch (AGB) and metal-rich Wolf-Rayet (WR) stars. Using R-matrix theory we allow new values of resonances parameters in 19F. We show that the most important contribution to the differential and total cross section at low energies, comes from the levels in 19F situated at resonances energies E R =151, 680 and 840 keV with spin and parity 1/2+. The total width of the 680 keV resonance is badly known. So, we have focused on this broad resonance corresponding to the 8.65 MeV level in 19F. We delimit the temperature range in which each resonance contribution to the total reaction rate occurs by analyzing the ratio ( N A < σν> i / N A < σν>). This allowed us to show that the 680 and 840 keV broad resonances strongly dominate the reaction rate over the stellar temperature range T 9=0.02-0.06 and T 9=0.5-5. Finally, these results were compared to NACRE and Iliadis astrophysical compilations.

  16. Structural analysis of photo-degradation in thiazole-containing compounds by LC-MS/MS and NMR.

    PubMed

    Wu, Lianming; Hong, Tricia Y; Vogt, Frederick G

    2007-07-27

    The photo-degradation behavior of a pharmaceutical compound previously under development for treatment of overactive bladder was studied. Samples of {4-(4-chloro-3-fluorophenyl)-2-[4-(methyloxy)phenyl]-1,3-thiazol-5-yl} acetic acid were stressed with visible light and were observed to degrade into a single primary photo-degradation product. This unknown product was analyzed by liquid chromatography tandem mass spectrometry (LC-MS/MS) with accurate mass measurement and hydrogen/deuterium exchange to determine its molecular weight and formula, isotope distribution patterns and exchangeable protons, and product ion structures. By comparison of the fragmentation pathways of the protonated and sodiated species, the charge was found to locate in the electron-rich part of the molecule after fragmentation. MS-derived structural information combined with stopped-flow 1H LC-nuclear magnetic resonance (NMR) analysis suggested that the degradation product was 4-chloro-N-(4-methoxybenzoyl)-3-fluorobenzamide. This unique photo-degradation product was subsequently isolated using preparative-scale chromatography, and its structure was confirmed using 1D and 2D NMR techniques involving the 1H, 13C, 15N and 19F nuclei. The structure of this product suggests that {4-(4-chloro-3-fluorophenyl)-2-[4-(methyloxy)phenyl]-1,3-thiazol-5-yl} acetic acid has reacted with singlet oxygen (1Deltag) via a [4+2] Diels-Alder cycloaddition upon photo-irradiation to cause photo-oxygenation in the solid-state (as is common in solution phase), resulting in an unstable endoperoxide that rearranges to the final degradation product structure. Photo-degradation of a structurally related thiazole, 4-(4-Chlorophenyl)thiazol-2-amine, proceeded via a similar process but in a less reactive manner. However, when exposed to the same conditions, sulfathiazole did not degrade, indicating that this photo-degradation process may only occur for thiazole-containing compounds with specific substituents, such as aryl

  17. Perfluoroalkyl Grignard Reagents: NMR Study of 1-Heptafluoropropylmagnesium Chloride in Solution.

    PubMed

    Guang, Jie; Hopson, Russell; Williard, Paul G; Fujiu, Motohiro; Negishi, Kazuyuki; Mikami, Koichi

    2016-07-15

    We report on the generation of a perfluoroalkyl Grignard reagent ((F)RMgX) by exchange reaction between a perfluoroalkyl iodide ((F)R-I) and a Grignard reagent (RMgX). (19)F NMR was applied to monitor the generation of n-C3F7MgCl. Additional NMR techniques, including (19)F COSY, NOESY, and pulsed gradient spin-echo (PGSE) diffusion NMR, were invoked to assign peaks observed in (19)F spectrum. Schlenk equilibrium was observed and was significantly influenced by solvent, diethyl ether, or THF. PMID:27295419

  18. Protein-Observed Fluorine NMR: A Bioorthogonal Approach for Small Molecule Discovery.

    PubMed

    Arntson, Keith E; Pomerantz, William C K

    2016-06-01

    The (19)F isotope is 100% naturally abundant and is the second most sensitive and stable NMR-active nucleus. Unlike the ubiquitous hydrogen atom, fluorine is nearly absent in biological systems, making it a unique bioorthogonal atom for probing molecular interactions in biology. Over 73 fluorinated proteins have been studied by (19)F NMR since the seminal studies of Hull and Sykes in 1974. With advances in cryoprobe production and fluorinated amino acid incorporation strategies, protein-based (19)F NMR offers opportunities to the medicinal chemist for characterizing and ultimately discovering new small molecule protein ligands. This review will highlight new advances using (19)F NMR for characterizing small molecule interactions with both small and large proteins as well as detailing NMR resonance assignment challenges and amino acid incorporation approaches. PMID:26599421

  19. Dual Screening of BPTF and Brd4 Using Protein-Observed Fluorine NMR Uncovers New Bromodomain Probe Molecules.

    PubMed

    Urick, Andrew K; Hawk, Laura M L; Cassel, Melissa K; Mishra, Neeraj K; Liu, Shuai; Adhikari, Neeta; Zhang, Wei; dos Santos, Camila O; Hall, Jennifer L; Pomerantz, William C K

    2015-10-16

    Bromodomain-containing protein dysregulation is linked to cancer, diabetes, and inflammation. Selective inhibition of bromodomain function is a newly proposed therapeutic strategy. We describe a (19)F NMR dual screening method for small molecule discovery using fluorinated tryptophan resonances on two bromodomain-containing proteins. The chemical shift dispersion of (19)F resonances within fluorine-labeled proteins enables the simultaneous analysis of two fluorinated bromodomains by NMR. A library of 229 small molecules was screened against the first bromodomain of Brd4 and the BPTF bromodomain. We report the first small molecule selective for BPTF over Brd4, termed AU1. The Kd = 2.8 μM for AU1, which is active in a cell-based reporter assay. No binding is detected with Brd4. Three new Brd4 inhibitors with submicromolar affinity were also discovered. Brd4 hits were validated in a thermal stability assay and potency determined via fluorescence anisotropy. The speed, ease of interpretation, and low protein concentration needed for protein-observed (19)F NMR experiments in a multiprotein format offers a new method to discover and characterize selective ligands for bromodomain-containing proteins. PMID:26158404

  20. In Vivo Imaging of Stepwise Vessel Occlusion in Cerebral Photothrombosis of Mice by 19F MRI

    PubMed Central

    Kleinschnitz, Christoph; Kampf, Thomas; Jakob, Peter M.; Stoll, Guido

    2011-01-01

    Background 19F magnetic resonance imaging (MRI) was recently introduced as a promising technique for in vivo cell tracking. In the present study we compared 19F MRI with iron-enhanced MRI in mice with photothrombosis (PT) at 7 Tesla. PT represents a model of focal cerebral ischemia exhibiting acute vessel occlusion and delayed neuroinflammation. Methods/Principal Findings Perfluorocarbons (PFC) or superparamagnetic iron oxide particles (SPIO) were injected intravenously at different time points after photothrombotic infarction. While administration of PFC directly after PT induction led to a strong 19F signal throughout the entire lesion, two hours delayed application resulted in a rim-like 19F signal at the outer edge of the lesion. These findings closely resembled the distribution of signal loss on T2-weighted MRI seen after SPIO injection reflecting intravascular accumulation of iron particles trapped in vessel thrombi as confirmed histologically. By sequential administration of two chemically shifted PFC compounds 0 and 2 hours after illumination the different spatial distribution of the 19F markers (infarct core/rim) could be visualized in the same animal. When PFC were applied at day 6 the fluorine marker was only detected after long acquisition times ex vivo. SPIO-enhanced MRI showed slight signal loss in vivo which was much more prominent ex vivo indicative for neuroinflammation at this late lesion stage. Conclusion Our study shows that vessel occlusion can be followed in vivo by 19F and SPIO-enhanced high-field MRI while in vivo imaging of neuroinflammation remains challenging. The timing of contrast agent application was the major determinant of the underlying processes depicted by both imaging techniques. Importantly, sequential application of different PFC compounds allowed depiction of ongoing vessel occlusion from the core to the margin of the ischemic lesions in a single MRI measurement. PMID:22194810

  1. Impact of reduction on the properties of metal bisdithiolenes: multinuclear solid-state NMR and structural studies on Pt(tfd)2 and its reduced forms.

    PubMed

    Tang, Joel A; Kogut, Elzbieta; Norton, Danielle; Lough, Alan J; McGarvey, Bruce R; Fekl, Ulrich; Schurko, Robert W

    2009-03-19

    Transition-metal dithiolene complexes have interesting structures and fascinating redox properties, making them promising candidates for a number of applications, including superconductors, photonic devices, chemical sensors, and catalysts. However, not enough is known about the molecular electronic origins of these properties. Multinuclear solid-state NMR spectroscopy and first-principles calculations are used to examine the molecular and electronic structures of the redox series [Pt(tfd)(2)](z-) (tfd = S(2)C(2)(CF(3))(2); z = 0, 1, 2; the anionic species have [NEt(4)](+) countercations). Single-crystal X-ray structures for the neutral (z = 0) and the fully reduced forms (z = 2) were obtained. The two species have very similar structures but differ slightly in their intraligand bond lengths. (19)F-(195)Pt CP/CPMG and (195)Pt magic-angle spinning (MAS) NMR experiments are used to probe the diamagnetic (z = 0, 2) species, revealing large platinum chemical shielding anisotropies (CSA) with distinct CS tensor properties, despite the very similar structural features of these species. Density functional theory (DFT) calculations are used to rationalize the large platinum CSAs and CS tensor orientations of the diamagnetic species using molecular orbital (MO) analysis, and are used to explain their distinct molecular electronic structures in the context of the NMR data. The paramagnetic species (z = 1) is examined using both EPR spectroscopy and (13)C and (19)F MAS NMR spectroscopy. Platinum g-tensor components were determined by using solid-state EPR experiments. The unpaired electron spin densities at (13)C and (19)F nuclei were measured by employing variable-temperature (13)C and (19)F NMR experiments. DFT and ab initio calculations are able to qualitatively reproduce the experimentally measured g-tensor components and spin densities. The combination of experimental and theoretical data confirm localization of unpaired electron density in the pi-system of the

  2. 19F Nuclear Magnetic Resonance and Crystallographic Studies of 5-Fluorotryptophan-Labeled Anthrax Protective Antigen and Effects of the Receptor on Stability

    PubMed Central

    2015-01-01

    The anthrax protective antigen (PA) is an 83 kDa protein that is one of three protein components of the anthrax toxin, an AB toxin secreted by Bacillus anthracis. PA is capable of undergoing several structural changes, including oligomerization to either a heptameric or octameric structure called the prepore, and at acidic pH a major conformational change to form a membrane-spanning pore. To follow these structural changes at a residue-specific level, we have conducted initial studies in which we have biosynthetically incorporated 5-fluorotryptophan (5-FTrp) into PA, and we have studied the influence of 5-FTrp labeling on the structural stability of PA and on binding to the host receptor capillary morphogenesis protein 2 (CMG2) using 19F nuclear magnetic resonance (NMR). There are seven tryptophans in PA, but of the four domains in PA, only two contain tryptophans: domain 1 (Trp65, -90, -136, -206, and -226) and domain 2 (Trp346 and -477). Trp346 is of particular interest because of its proximity to the CMG2 binding interface, and because it forms part of the membrane-spanning pore. We show that the 19F resonance of Trp346 is sensitive to changes in pH, consistent with crystallographic studies, and that receptor binding significantly stabilizes Trp346 to both pH and temperature. In addition, we provide evidence that suggests that resonances from tryptophans distant from the binding interface are also stabilized by the receptor. Our studies highlight the positive impact of receptor binding on protein stability and the use of 19F NMR in gaining insight into structural changes in a high-molecular weight protein. PMID:24387629

  3. Whole-core analysis by sup 13 C NMR

    SciTech Connect

    Vinegar, H.J.; Tutunjian, P.N. ); Edelstein, W.A.; Roemer, P.B. )

    1991-06-01

    This paper reports on a whole-core nuclear magnetic resonance (NMR) system that was used to obtain natural abundance {sup 13}C spectra. The system enables rapid, nondestructive measurements of bulk volume of movable oil, aliphatic/aromatic ratio, oil viscosity, and organic vs. carbonate carbon. {sup 13}C NMR can be used in cores where the {sup 1}H NMR spectrum is too broad to resolve oil and water resonances separately. A 5 1/4-in. {sup 13}C/{sup 1}H NMR coil was installed on a General Electric (GE) CSI-2T NMR imager/spectrometer. With a 4-in.-OD whole core, good {sup 13}C signal/noise ratio (SNR) is obtained within minutes, while {sup 1}H spectra are obtained in seconds. NMR measurements have been made of the {sup 13}C and {sup 1}H density of crude oils with a wide range of API gravities. For light- and medium-gravity oils, the {sup 13}C and {sup 1}H signal per unit volume is constant within about 3.5%. For heavy crudes, the {sup 13}C and {sup 1}H density measured by NMR is reduced by the shortening of spin-spin relaxation time. {sup 13}C and {sup 1}H NMR spin-lattice relaxation times were measured on a suite of Cannon viscosity standards, crude oils (4 to 60{degrees} API), and alkanes (C{sub 5} through C{sub 16}) with viscosities at 77{degrees}F ranging from 0.5 cp to 2.5 {times} 10{sup 7} cp. The {sup 13}C and {sup 1}H relaxation times show a similar correlation with viscosity from which oil viscosity can be estimated accurately for viscosities up to 100 cp. The {sup 13}C surface relaxation rate for oils on water-wet rocks is very low. Nonproton decoupled {sup 13}C NMR is shown to be insensitive to kerogen; thus, {sup 13}C NMR measures only the movable hydrocarbon content of the cores. In carbonates, the {sup 13}C spectrum also contains a carbonate powder pattern useful in quantifying inorganic carbon and distinguishing organic from carbonate carbon.

  4. 31P NMR analysis of intracellular pH of Swiss Mouse 3T3 cells: effects of extracellular Na+ and K+ and mitogenic stimulation.

    PubMed

    Civan, M M; Williams, S R; Gadian, D G; Rozengurt, E

    1986-01-01

    Swiss mouse 3T3 cells grown on microcarrier beads were superfused with electrolyte solution during continuous NMR analysis. Conventional 31P and 19F probes of intracellular pH (pHc) were found to be impracticable. Cells were therefore superfused with 1 to 4 mM 2-deoxyglucose, producing a large intracellular, pH-sensitive signal of 2-deoxyglucose phosphate (2DGP). The intracellular incorporation of 2DGP inhibited the Embden-Meyerhof pathway. However, intracellular ATP was at least in part retained and the cellular responsivity to changes in extracellular ionic composition and to the application of growth factors proved intact. Transient replacement of external Na+ with choline or K+ reversibly acidified the intracellular fluids. Quiescent cells and mitogenically stimulated cells displayed the same dependence of shifts in pHc on external Na+ concentration (CoNa). PHc also depended on intracellular Na+ concentration (CcNa). Increasing ccNa by withdrawing external K+ (thereby inhibiting the Na,K-pump) caused reversible intracellular acidification; subsequently reducing CoNa produced a larger acid shift in pHc than with external K+ present. Comparison of separate preparations indicated that pHc was higher in stimulated than in quiescent cells. Transient administration of mitogens also reversibly alkalinized quiescent cells studied continuously. This study documents the feasibility of monitoring pHc of Swiss mouse 3T3 cells using 31P NMR analysis of 2DGP. The results support the concept of a Na/H antiport operative in these cells, both in quiescence and after mitogenic stimulation. The data document by an independent technique that cytoplasmic alkalinization is an early event in mitogenesis, and that full activity of the Embden-Meyerhof pathway is not required for the expression of this event. PMID:3543375

  5. NMR-based analysis of the chemical composition of Japanese persimmon aqueous extracts.

    PubMed

    Ryu, Shoraku; Furihata, Kazuo; Koda, Masanori; Wei, Feifei; Miyakawa, Takuya; Tanokura, Masaru

    2016-03-01

    Japanese persimmon (Diospyros kaki L.) is recognized as an outstanding source of biologically active compounds relating to many health benefits. In the present study, NMR spectroscopy provided a comprehensive metabolic overview of Japanese persimmon juice. Detailed signal assignments of Japanese persimmon juice were carried out using various 2D NMR techniques incorporated with broadband water suppression enhanced through T1 effects (BB-WET) or WET sequences, and 26 components, including minor components, were identified. In addition, most components were quantitatively evaluated by the integration of signals using conventional (1) H NMR and BB-WET NMR. This is the first detailed analysis combined with quantitative characterization of chemical components using NMR for Japanese persimmon. Copyright © 2015 John Wiley & Sons, Ltd. PMID:26482562

  6. NMR/MS Translator for the Enhanced Simultaneous Analysis of Metabolomics Mixtures by NMR Spectroscopy and Mass Spectrometry: Application to Human Urine.

    PubMed

    Bingol, Kerem; Brüschweiler, Rafael

    2015-06-01

    A novel metabolite identification strategy is presented for the combined NMR/MS analysis of complex metabolite mixtures. The approach first identifies metabolite candidates from 1D or 2D NMR spectra by NMR database query, which is followed by the determination of the masses (m/z) of their possible ions, adducts, fragments, and characteristic isotope distributions. The expected m/z ratios are then compared with the MS(1) spectrum for the direct assignment of those signals of the mass spectrum that contain information about the same metabolites as the NMR spectra. In this way, the mass spectrum can be assigned with very high confidence, and it provides at the same time validation of the NMR-derived metabolites. The method was first demonstrated on a model mixture, and it was then applied to human urine collected from a pool of healthy individuals. A number of metabolites could be detected that had not been reported previously, further extending the list of known urine metabolites. The new analysis approach, which is termed NMR/MS Translator, is fully automated and takes only a few seconds on a computer workstation. NMR/MS Translator synergistically uses the power of NMR and MS, enhancing the accuracy and efficiency of the identification of those metabolites compiled in databases. PMID:25881480

  7. NMR characterization and conformational analysis of a potent papain-family cathepsin L-like cysteine protease inhibitor with different behaviour in polar and apolar media

    NASA Astrophysics Data System (ADS)

    Rotondo, Archimede; Ettari, Roberta; Zappalà, Maria; De Micheli, Carlo; Rotondo, Enrico

    2014-11-01

    We recently reported the synthesis, of a potent papain-family cathepsin L-like cysteine protease inhibitor, as new lead compound for the development of new drugs that can be used as antiprotozoal agents. The investigation of its conformational profile is crucial for the in-depth understanding of its biological behaviour. Our careful NMR analysis has been based on the complete and total assignment of 1H, 13C, 15N and 19F signals of the molecule in both CDCl3 and CD3OH, which could reproduce in some way a scenario of polar and not polar phases into the biological environment. In this way it has been unveiled a different behaviour of the molecule in polar and apolar media. In CDCl3 it is possible to define stable conformational arrangements on the basis of the detected through space contacts, whereas, in CD3OH a greater conformational freedom is envisaged: (a) by the overlap of any of the CH2 diastereotopic resonances (unable to distinguish asymmetric molecular sides because of the free rotation about the single bonded chains), (b) by the less definite measured vicinities not consistent with just one conformation and (c) by the evident loss or switching of key intramolecular hydrogen interactions.

  8. A combined first principles computational and solid-state NMR study of a molecular crystal: flurbiprofen.

    PubMed

    Yates, Jonathan R; Dobbins, Sara E; Pickard, Chris J; Mauri, Francesco; Ghi, Phuong Y; Harris, Robin K

    2005-04-01

    The 1H, 13C and 19F magic-angle spinning NMR spectra have been recorded for Form 1 of flurbiprofen. In the case of 19F, spinning sideband analysis has produced data for the components of the shielding tensor. The chemical shift of the hydrogen-bonded proton was found to be 14.0 ppm. Shielding parameters for all three nuclei have been calculated using Density Functional Theory (DFT) together with the Gauge Including Projector Augmented Wave (GIPAW) method which takes full allowance for the repetition inherent in crystalline structures. Such computations were made for the reported geometry, for a structure with all the atomic positions relaxed using DFT, and with only the hydrogen positions relaxed. The relationships of the computed shifts to those observed are discussed. In general, the correlations are good. PMID:19787961

  9. Study of fusion-fission dynamics in 19F+238U reaction

    NASA Astrophysics Data System (ADS)

    Dubey, R.; Sugathan, P.; Jhingan, A.; Kaur, Gurpreet; Mukul, Ish; Siwal, Davinder; Saneesh, N.; Banerjee, Tathagata; Yadav, Abhishek; Thakur, Meenu; Mahajan, Ruchi; Chaterjee, M. B.

    2016-05-01

    Mass angle distribution measurements for 19F+238U reaction were carried out around the sub barrier energies. Mass angle correlation has not been observed at above and below the fusion barrier in present reaction. This infer the minimal presence of non compound like events at these bombarding energies range.

  10. Cell Labeling for 19F MRI: New and Improved Approach to Perfluorocarbon Nanoemulsion Design

    PubMed Central

    Patel, Sravan K.; Williams, Jonathan; Janjic, Jelena M.

    2013-01-01

    This report describes novel perfluorocarbon (PFC) nanoemulsions designed to improve ex vivo cell labeling for 19F magnetic resonance imaging (MRI). 19F MRI is a powerful non-invasive technique for monitoring cells of the immune system in vivo, where cells are labeled ex vivo with PFC nanoemulsions in cell culture. The quality of 19F MRI is directly affected by the quality of ex vivo PFC cell labeling. When co-cultured with cells for longer periods of time, nanoemulsions tend to settle due to high specific weight of PFC oils (1.5–2.0 g/mL). This in turn can decrease efficacy of excess nanoemulsion removal and reliability of the cell labeling in vitro. To solve this problem, novel PFC nanoemulsions are reported which demonstrate lack of sedimentation and high stability under cell labeling conditions. They are monodisperse, have small droplet size (~130 nm) and low polydispersity (<0.15), show a single peak in the 19F nuclear magnetic resonance spectrum at −71.4 ppm and possess high fluorine content. The droplet size and polydispersity remained unchanged after 160 days of follow up at three temperatures (4, 25 and 37 °C). Further, stressors such as elevated temperature in the presence of cells, and centrifugation, did not affect the nanoemulsion droplet size and polydispersity. Detailed synthetic methodology and in vitro testing for these new PFC nanoemulsions is presented. PMID:25586263

  11. Comparison between optimized GRE and RARE sequences for 19F MRI studies

    NASA Astrophysics Data System (ADS)

    Soffientini, Chiara D.; Mastropietro, Alfonso; Caffini, Matteo; Cocco, Sara; Zucca, Ileana; Scotti, Alessandro; Baselli, Giuseppe; Bruzzone, Maria Grazia

    2014-03-01

    In 19F-MRI studies limiting factors are the presence of a low signal due to the low concentration of 19F-nuclei, necessary for biological applications, and the inherent low sensitivity of MRI. Hence, acquiring images using the pulse sequence with the best signal to noise ratio (SNR) by optimizing the acquisition parameters specifically to a 19F compound is a core issue. In 19F-MRI, multiple-spin-echo (RARE) and gradient-echo (GRE) are the two most frequently used pulse sequence families; therefore we performed an optimization study of GRE pulse sequences based on numerical simulations and experimental acquisitions on fluorinated compounds. We compared GRE performance to an optimized RARE sequence. Images were acquired on a 7T MRI preclinical scanner on phantoms containing different fluorinated compounds. Actual relaxation times (T1, T2, T2*) were evaluated in order to predict SNR dependence on sequence parameters. Experimental comparisons between spoiled GRE and RARE, obtained at a fixed acquisition time and in steady state condition, showed RARE sequence outperforming the spoiled GRE (up to 406% higher). Conversely, the use of the unbalanced-SSFP showed a significant increase in SNR compared to RARE (up to 28% higher). Moreover, this sequence (as GRE in general) was confirmed to be virtually insensitive to T1 and T2 relaxation times, after proper optimization, thus improving marker independence from the biological environment. These results confirm the efficacy of the proposed optimization tool and foster further investigation addressing in-vivo applicability.

  12. 19F MRI detection of acute allograft rejection with in vivo perfluorocarbon labeling of immune cells.

    PubMed

    Hitchens, T Kevin; Ye, Qing; Eytan, Danielle F; Janjic, Jelena M; Ahrens, Eric T; Ho, Chien

    2011-04-01

    Current diagnosis of organ rejection following transplantation relies on tissue biopsy, which is not ideal due to sampling limitations and risks associated with the invasive procedure.We have previously shown that cellular magnetic resonance imaging (MRI) of iron-oxide labeled immune-cell infiltration can provide a noninvasive measure of rejection status by detecting areas of hypointensity on T 2*-weighted images. In this study, we tested the feasibility of using a fluorine-based cellular tracer agent to detect macrophage accumulation in rodent models of acute allograft rejection by fluorine-19 ((19) F) MRI and magnetic resonance spectroscopy. This study used two rat models of acute rejection, including abdominal heterotopic cardiac transplant and orthotopic kidney transplant models. Following in vivo labeling of monocytes and macrophages with a commercially available agent containing perfluoro-15-crown-5-ether, we observed (19) F-signal intensity in the organs experiencing rejection by (19) F MRI, and conventional (1) H MRI was used for anatomical context. Immunofluorescence and histology confirmed macrophage labeling. These results are consistent with our previous studies and show the complementary nature of the two cellular imaging techniques. With no background signal, (19) F MRI/magnetic resonance spectroscopy can provide unambiguous detection of fluorine labeled cells, and may be a useful technique for detecting and quantifying rejection grade in patients. PMID:21305593

  13. In situ NMR analysis of fluids contained in sedimentary rock

    PubMed

    de Swiet TM; Tomaselli; Hurlimann; Pines

    1998-08-01

    Limitations of resolution and absorption in standard chemical spectroscopic techniques have made it difficult to study fluids in sedimentary rocks. In this paper, we show that a chemical characterization of pore fluids may be obtained in situ by magic angle spinning (MAS) nuclear magnetic resonance (NMR), which is normally used for solid samples. 1H MAS-NMR spectra of water and crude oil in Berea sandstone show sufficient chemical shift resolution for a straightforward determination of the oil/water ratio. Copyright 1998 Academic Press. PMID:9716484

  14. Symmetry-guided design and fluorous synthesis of a stable and rapidly excreted imaging tracer for (19)F MRI.

    PubMed

    Jiang, Zhong-Xing; Liu, Xin; Jeong, Eun-Kee; Yu, Yihua Bruce

    2009-01-01

    Getting FIT: A bispherical (19)F imaging tracer, (19)FIT, was designed and synthesized. (19)FIT is advantageous over perfluorocarbon-based (19)F imaging agents, as it is not retained in the organs and does not require complex formulation procedures. Imaging agents such as (19)FIT can lead to (19)F magnetic resonance imaging (MRI) playing an important role in drug therapy, analogous to the role played by (1)H MRI in disease diagnosis. PMID:19475598

  15. Analysis of amorphous solid dispersions using 2D solid-state NMR and (1)H T(1) relaxation measurements.

    PubMed

    Pham, Tran N; Watson, Simon A; Edwards, Andrew J; Chavda, Manisha; Clawson, Jacalyn S; Strohmeier, Mark; Vogt, Frederick G

    2010-10-01

    Solid-state NMR (SSNMR) can provide detailed structural information about amorphous solid dispersions of pharmaceutical small molecules. In this study, the ability of SSNMR experiments based on dipolar correlation, spin diffusion, and relaxation measurements to characterize the structure of solid dispersions is explored. Observation of spin diffusion effects using the 2D (1)H-(13)C cross-polarization heteronuclear correlation (CP-HETCOR) experiment is shown to be a useful probe of association between the amorphous drug and polymer that is capable of directly proving glass solution formation. Dispersions of acetaminophen and indomethacin in different polymers are examined using this approach, as well as (1)H double-quantum correlation experiments to probe additional structural features. (1)H-(19)F CP-HETCOR serves a similar role for fluorinated drug molecules such as diflunisal in dispersions, providing a rapid means to prove the formation of a glass solution. Phase separation is detected using (13)C, (19)F, and (23)Na-detected (1)H T(1) experiments in crystalline and amorphous solid dispersions that contain small domains. (1)H T(1) measurements of amorphous nanosuspensions of trehalose and dextran illustrate the ability of SSNMR to detect domain size effects in dispersions that are not glass solutions via spin diffusion effects. Two previously unreported amorphous solid dispersions involving up to three components and containing voriconazole and telithromycin are analyzed using these experiments to demonstrate the general applicability of the approach. PMID:20681586

  16. Analysis of the interface variability in NMR structure ensembles of protein-protein complexes.

    PubMed

    Calvanese, Luisa; D'Auria, Gabriella; Vangone, Anna; Falcigno, Lucia; Oliva, Romina

    2016-06-01

    NMR structures consist in ensembles of conformers, all satisfying the experimental restraints, which exhibit a certain degree of structural variability. We analyzed here the interface in NMR ensembles of protein-protein heterodimeric complexes and found it to span a wide range of different conservations. The different exhibited conservations do not simply correlate with the size of the systems/interfaces, and are most probably the result of an interplay between different factors, including the quality of experimental data and the intrinsic complex flexibility. In any case, this information is not to be missed when NMR structures of protein-protein complexes are analyzed; especially considering that, as we also show here, the first NMR conformer is usually not the one which best reflects the overall interface. To quantify the interface conservation and to analyze it, we used an approach originally conceived for the analysis and ranking of ensembles of docking models, which has now been extended to directly deal with NMR ensembles. We propose this approach, based on the conservation of the inter-residue contacts at the interface, both for the analysis of the interface in whole ensembles of NMR complexes and for the possible selection of a single conformer as the best representative of the overall interface. In order to make the analyses automatic and fast, we made the protocol available as a web tool at: https://www.molnac.unisa.it/BioTools/consrank/consrank-nmr.html. PMID:26968364

  17. Statistical models and NMR analysis of polymer microstructure

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Statistical models can be used in conjunction with NMR spectroscopy to study polymer microstructure and polymerization mechanisms. Thus, Bernoullian, Markovian, and enantiomorphic-site models are well known. Many additional models have been formulated over the years for additional situations. Typica...

  18. NMR analysis of the transient complex between membrane photosystem I and soluble cytochrome c6.

    PubMed

    Díaz-Moreno, Irene; Díaz-Quintana, Antonio; Molina-Heredia, Fernando P; Nieto, Pedro M; Hansson, Orjan; De la Rosa, Miguel A; Karlsson, B Göran

    2005-03-01

    A structural analysis of the surface areas of cytochrome c(6), responsible for the transient interaction with photosystem I, was performed by NMR transverse relaxation-optimized spectroscopy. The hemeprotein was titrated by adding increasing amounts of the chlorophyllic photosystem, and the NMR spectra of the free and bound protein were analyzed in a comparative way. The NMR signals of cytochrome c(6) residues located at the hydrophobic and electrostatic patches, which both surround the heme cleft, were specifically modified by binding. The backbones of internal residues close to the hydrophobic patch of cytochrome c(6) were also affected, a fact that is ascribed to the conformational changes taking place inside the hemeprotein when interacting with photosystem I. To the best of our knowledge, this is the first structural analysis by NMR spectroscopy of a transient complex between soluble and membrane proteins. PMID:15611120

  19. Increasing the quantitative bandwidth of NMR measurements.

    PubMed

    Power, J E; Foroozandeh, M; Adams, R W; Nilsson, M; Coombes, S R; Phillips, A R; Morris, G A

    2016-02-18

    The frequency range of quantitative NMR is increased from tens to hundreds of kHz by a new pulse sequence, CHORUS. It uses chirp pulses to excite uniformly over very large bandwidths, yielding accurate integrals even for nuclei such as (19)F that have very wide spectra. PMID:26789115

  20. Computational Analysis of Solvent Effects in NMR Spectroscopy.

    PubMed

    Dračínský, Martin; Bouř, Petr

    2010-01-12

    Solvent modeling became a standard part of first principles computations of molecular properties. However, a universal solvent approach is particularly difficult for the nuclear magnetic resonance (NMR) shielding and spin-spin coupling constants that in part result from collective delocalized properties of the solute and the environment. In this work, bulk and specific solvent effects are discussed on experimental and theoretical model systems comprising solvated alanine zwitterion and chloroform molecules. Density functional theory computations performed on larger clusters indicate that standard dielectric continuum solvent models may not be sufficiently accurate. In some cases, more reasonable NMR parameters were obtained by approximation of the solvent with partial atomic charges. Combined cluster/continuum models yielded the most reasonable values of the spectroscopic parameters, provided that they are dynamically averaged. The roles of solvent polarizability, solvent shell structure, and bulk permeability were investigated. NMR shielding values caused by the macroscopic solvent magnetizability exhibited the slowest convergence with respect to the cluster size. For practical computations, however, inclusion of the first solvation sphere provided satisfactory corrections of the vacuum values. The simulations of chloroform chemical shifts and CH J-coupling constants were found to be very sensitive to the molecular dynamics model used to generate the cluster geometries. The results show that computationally efficient solvent modeling is possible and can reveal fine details of molecular structure, solvation, and dynamics. PMID:26614339

  1. Impurity effect of the Λ particle on the structure of 18F and Λ19F

    NASA Astrophysics Data System (ADS)

    Tanimura, Y.; Hagino, K.; Sagawa, H.

    2012-10-01

    We perform three-body model calculations for a sd-shell hypernucleus Λ19F (Λ17O+p+n) and its core nucleus 18F (16O+p+n), employing a density-dependent contact interaction between the valence proton and neutron. We find that the B(E2) value from the first excited state (with spin and parity of Iπ=3+) to the ground state (Iπ=1+) is slightly changed by the addition of a Λ particle, which exhibits the so called shrinkage effect of Λ particle. We also show that the excitation energy of the 3+ state is reduced in Λ19F compared to 18F, as is observed in a p-shell nucleus 6Li. We discuss the mechanism of this reduction of the excitation energy, pointing out that it is caused by a different mechanism from that in Λ7Li.

  2. A Study on 19F( n,α) Reaction Cross Section

    NASA Astrophysics Data System (ADS)

    Uğur, F. A.; Tel, E.; Gökçe, A. A.

    2013-06-01

    In this study, cross sections of neutron induced reactions have been investigated for fluorine target nucleus. The calculations have been made on the excitation functions of 19F ( n,α), 19F( n,xα) reactions. Fluorine (F) and its molten salt compounds (LiF) can serve as a coolant which can be used at high temperatures without reaching a high vapor pressure and also the molten salt compounds are also a good neutron moderator. In these calculations, the pre-equilibrium and equilibrium effects have been investigated. The pre-equilibrium calculations involve the full exciton model and the cascade exciton model. The equilibrium effects are calculated according to the Weisskopf-Ewing model. Also in the present work, reaction cross sections have calculated by using evaluated empirical formulas developed by Tel et al. at 14-15 MeV energy. The obtained results have been discussed and compared with the available experimental data.

  3. Nmrglue: An Open Source Python Package for the Analysis of Multidimensional NMR Data

    PubMed Central

    Helmus, Jonathan J.; Jaroniec, Christopher P.

    2013-01-01

    Nmrglue, an open source Python package for working with multidimensional NMR data, is described. When used in combination with other Python scientific libraries, nmrglue provides a highly flexible and robust environment for spectral processing, analysis and visualization and includes a number of common utilities such as linear prediction, peak picking and lineshape fitting. The package also enables existing NMR software programs to be readily tied together, currently facilitating the reading, writing and conversion of data stored in Bruker, Agilent/Varian, NMRPipe, Sparky, SIMPSON, and Rowland NMR Toolkit file formats. In addition to standard applications, the versatility offered by nmrglue makes the package particularly suitable for tasks that include manipulating raw spectrometer data files, automated quantitative analysis of multidimensional NMR spectra with irregular lineshapes such as those frequently encountered in the context of biomacromolecular solid-state NMR, and rapid implementation and development of unconventional data processing methods such as covariance NMR and other non-Fourier approaches. Detailed documentation, install files and source code for nmrglue are freely available at http://nmrglue.com. The source code can be redistributed and modified under the New BSD license. PMID:23456039

  4. Dark matter spin-dependent limits for WIMP interactions on 19F by PICASSO

    NASA Astrophysics Data System (ADS)

    Archambault, S.; Aubin, F.; Auger, M.; Behnke, E.; Beltran, B.; Clark, K.; Dai, X.; Davour, A.; Farine, J.; Faust, R.; Genest, M.-H.; Giroux, G.; Gornea, R.; Krauss, C.; Kumaratunga, S.; Lawson, I.; Leroy, C.; Lessard, L.; Levy, C.; Levine, I.; MacDonald, R.; Martin, J.-P.; Nadeau, P.; Noble, A.; Piro, M.-C.; Pospisil, S.; Shepherd, T.; Starinski, N.; Stekl, I.; Storey, C.; Wichoski, U.; Zacek, V.

    2009-11-01

    The PICASSO experiment at SNOLAB reports new results for spin-dependent WIMP interactions on 19F using the superheated droplet technique. A new generation of detectors and new features which enable background discrimination via the rejection of non-particle induced events are described. First results are presented for a subset of two detectors with target masses of 19F of 65 g and 69 g respectively and a total exposure of 13.75 ± 0.48 kgd. No dark matter signal was found and for WIMP masses around 24 GeV /c2 new limits have been obtained on the spin-dependent cross section on 19F of σF = 13.9 pb (90% C.L.) which can be converted into cross section limits on protons and neutrons of σp = 0.16 pb and σn = 2.60 pb respectively (90% C.L.). The obtained limits on protons restrict recent interpretations of the DAMA/LIBRA annual modulations in terms of spin-dependent interactions.

  5. First evidences for 19F(α, p)22Ne at astrophysical energies

    NASA Astrophysics Data System (ADS)

    D’Agata, G.; Spitaleri, C.; Pizzone, R. G.; Blagus, S.; Figuera, P.; Grassi, L.; Guardo, G. L.; Gulino, M.; Hayakawa, S.; Indelicato, I.; Kshetri, R.; La Cognata, M.; Lamia, L.; Lattuada, M.; Mijatović, T.; Milin, M.; Miljanic, D.; Prepolec, L.; Sergi, M. L.; Skukan, N.; Soic, N.; Tokic, V.; Tumino, A.; Uroic, M.

    2016-04-01

    19F experimental abundances is overestimated in respect to the theoretical one: it is therefore clear that further investigations are needed. We focused on the 19F(α, p) 22 Ne reaction, representing the main destruction channel in He-rich environments. The lowest energy at which this reaction has been studied with direct methods is E C.M. ≈ 0.91 MeV, while the Gamow region is between 0.39 ÷ 0.8 MeV, far below the Coulomb barrier (3.8 MeV). For this reason, an experiment at Rudjer Boskovic Institute (Zagreb) was performed, applying the Trojan Horse Method. Following this method we selected the quasi-free contribution coming from 6Li(19 F,p22 Ne)2 H at Ebeam=6 MeV at kinematically favourable angles, and the cross section at energies 0 < EC.M. < 1.4 MeV was extracted in arbitrary units, covering the astrophysical region of interest.

  6. (19)F Magnetic Resonance Imaging Signals from Peptide Amphiphile Nanostructures Are Strongly Affected by Their Shape.

    PubMed

    Preslar, Adam T; Tantakitti, Faifan; Park, Kitae; Zhang, Shanrong; Stupp, Samuel I; Meade, Thomas J

    2016-08-23

    Magnetic resonance imaging (MRI) is a noninvasive imaging modality that provides excellent spatial and temporal resolution. The most commonly used MR probes face significant challenges originating from the endogenous (1)H background signal of water. In contrast, fluorine MRI ((19)F MRI) allows quantitative probe imaging with zero background signal. Probes with high fluorine content are required for high sensitivity, suggesting nanoscale supramolecular assemblies containing (19)F probes offer a potentially useful strategy for optimum imaging as a result of improved payload. We report here on supramolecular nanostructures formed by fluorinated peptide amphiphiles containing either glutamic acid or lysine residues in their sequence. We identified molecules that form aggregates in water which transition from cylindrical to ribbon-like shape as pH increased from 4.5 to 8.0. Interestingly, we found that ribbon-like nanostructures had reduced magnetic resonance signal, whereas their cylindrical counterparts exhibited strong signals. We attribute this drastic difference to the greater mobility of fluorinated tails in the hydrophobic compartment of cylindrical nanostructures compared to lower mobility in ribbon-like assemblies. This discovery identifies a strategy to design supramolecular, self-assembling contrast agents for (19)F MRI that can spatially map physiologically relevant changes in pH using changes in morphology. PMID:27425636

  7. NMR analysis of base-pair opening kinetics in DNA

    PubMed Central

    Szulik, Marta W.; Voehler, Markus; Stone, Michael P.

    2014-01-01

    Base pairing in nucleic acids plays a crucial role in their structure and function. Differences in the base pair opening and closing kinetics of individual double stranded DNA sequences or between chemically modified base pairs provide insight into the recognition of these base pairs by DNA processing enzymes. This unit describes how to quantify the kinetics for localized base pairs by observing changes in the imino proton signals by nuclear magnetic resonance spectroscopy. The determination of all relevant parameters using state of the art techniques and NMR instrumentation, including cryoprobes, is discussed. PMID:25501592

  8. Internal Referencing for ¹³C Position-Specific Isotope Analysis Measured by NMR Spectrometry.

    PubMed

    Bayle, Kevin; Grand, Mathilde; Chaintreau, Alain; Robins, Richard J; Fieber, Wolfgang; Sommer, Horst; Akoka, Serge; Remaud, Gérald S

    2015-08-01

    The intramolecular (13)C composition of a molecule retains evidence relevant to its (bio)synthetic history and can provide valuable information in numerous fields ranging from biochemistry to environmental sciences. Isotope ratio monitoring by (13)C NMR spectrometry (irm-(13)C NMR) is a generic method that offers the potential to conduct (13)C position-specific isotope analysis with a precision better than 1‰. Until now, determining absolute values also required measurement of the global (or bulk) (13)C composition (δ(13)Cg) by mass spectrometry. In a radical new approach, it is shown that an internal isotopic chemical reference for irm-(13)C NMR can be used instead. The strategy uses (1)H NMR to quantify both the number of moles of the reference and of the studied compound present in the NMR tube. Thus, the sample preparation protocol is greatly simplified, bypassing the previous requirement for precise purity and mass determination. The key to accurate results is suppressing the effect of radiation damping in (1)H NMR which produces signal distortion and alters quantification. The methodology, applied to vanillin with dimethylsulfone as an internal standard, has an equivalent accuracy (<1‰) to that of the conventional approach. Hence, it was possible to clearly identify vanillin from different origins based on the (13)C isotopic profiles. PMID:26158226

  9. Analysis of Chain Branch of Polyolefins by a New Proton NMR Approach.

    PubMed

    Jung, Minhwan; Lee, Yura; Kwak, Sooyoung; Park, Heeyong; Kim, Byoungsoo; Kim, Sulhee; Lee, Kwang Hwan; Cho, Hye Sung; Hwang, Kwang Yeon

    2016-02-01

    The crystallinity of polyethylene, which significantly affects the properties of the polymer, is quite sensitive to the concentration of its branches. Thus, it is necessary to estimate branch concentration with reasonable accuracy. Currently, (13)C NMR and gel permeation chromatography-Fourier transform infrared spectroscopy are widely-used analysis methods for the analysis of branch concentration. Despite several advantages, these methods sometimes have limitations. For instance, the preparation of samples for (13)C- NMR is tedious because high-concentration samples are required and the time for analysis is greater than 12 h. To more efficiently estimate the branch concentration of polyethylene, we developed a new high-field (1)H NMR method with an improved peak resolution by employing (1) homonuclear decoupling and (2) 2D heteronuclear correlation. The new method was observed to significantly reduce the experimental time to ∼ 30 min; furthermore, sample preparation was relatively simple because the method did not require high-concentration samples. PMID:26713895

  10. Metabolomic differentiation of Cannabis sativa cultivars using 1H NMR spectroscopy and principal component analysis.

    PubMed

    Choi, Young Hae; Kim, Hye Kyong; Hazekamp, Arno; Erkelens, Cornelis; Lefeber, Alfons W M; Verpoorte, Robert

    2004-06-01

    The metabolomic analysis of 12 Cannabis sativa cultivars was carried out by 1H NMR spectroscopy and multivariate analysis techniques. Principal component analysis (PCA) of the 1H NMR spectra showed a clear discrimination between those samples by principal component 1 (PC1) and principal component 3 (PC3) in cannabinoid fraction. The loading plot of PC value obtained from all 1)H NMR signals shows that Delta9-tetrahydrocannabinolic acid (THCA) and cannabidiolic acid (CBDA) are important metabolites to differentiate the cultivars from each other. The discrimination of the cultivars could also be obtained from a water extract containing carbohydrates and amino acids. The level of sucrose, glucose, asparagine, and glutamic acid are found to be major discriminating metabolites of these cultivars. This method allows an efficient differentiation between cannabis cultivars without any prepurification steps. PMID:15217272

  11. Incomplete fusion studies in the 19F+159Tb system at low energies and its correlation with various systematics

    NASA Astrophysics Data System (ADS)

    Shuaib, Mohd.; Sharma, Vijay R.; Yadav, Abhishek; Singh, Pushpendra P.; Sharma, Manoj Kumar; Singh, Devendra P.; Kumar, R.; Singh, R. P.; Muralithar, S.; Singh, B. P.; Prasad, R.

    2016-07-01

    The excitation functions of reaction residues populated via the complete fusion and incomplete fusion process in the interaction of the 19F+159Tb system have been measured at energies ≈4 -6 MeV/nucleon, using off-line γ -ray spectroscopy. The analysis of data was done within the framework of statistical model code pace4 (a compound nucleus model). A significant fraction of incomplete fusion was observed in the production of reaction residues involving α particle(s) in the exit channels, even at energies as low as near the Coulomb barrier. The incomplete fusion strength function was deduced from the experimental excitation functions and the dependence of this strength function on various entrance channel parameters was studied. The present results show a strong dependence on the projectile α -Q value that agrees well with the existing data. To probe the dependence of incomplete fusion on entrance channel mass asymmetry, the present work was compared with the results obtained in the interaction of 12C, 16O, and 19F with nearby targets available in the literature. It was observed that the mass asymmetry linearly increases for each projectile separately and turns out to be a projectile-dependent mass-asymmetry systematics. The deduced incomplete fusion strength functions in the present work are also plotted as a function of ZPZT (Coulomb effect) and compared with the existing literature. A strong dependence of the Coulomb effect on the incomplete fusion fraction was observed. It was found that the fraction of incomplete fusion linearly increases with ZPZT and was found to be more for larger ZPZT values indicating significantly important linear systematics.

  12. Application of quantitative artificial neural network analysis to 2D NMR spectra of hydrocarbon mixtures.

    PubMed

    Väänänen, Taito; Koskela, Harri; Hiltunen, Yrjö; Ala-Korpela, Mika

    2002-01-01

    Understanding relationships between the structure and composition of molecular mixtures and their chemical properties is a main industrial aim. One central field of research is oil chemistry where the key question is how the molecular characteristics of composite hydrocarbon mixtures can be associated with the macroscopic properties of the oil products. Apparently these relationships are complex and often nonlinear and therefore call for advanced spectroscopic techniques. An informative and an increasingly used approach is two-dimensional nuclear magnetic resonance (2D NMR) spectroscopy. In the case of composite hydrocarbons the application of 2D NMR methodologies in a quantitative manner pose many technical difficulties, and, in any case, the resulting spectra contain many overlapping resonances that challenge the analytical work. Here, we present a general methodology, based on quantitative artificial neural network (ANN) analysis, to resolve overlapping information in 2D NMR spectra and to simultaneously assess the relative importance of multiple spectral variables on the sample properties. The results in a set of 2D NMR spectra of oil samples illustrate, first, that use of ANN analysis for quantitative purposes is feasible also in 2D and, second, that this methodology offers an intrinsic opportunity to assess the complex and nonlinear relationships between the molecular composition and sample properties. The presented ANN methodology is not limited to the analysis of NMR spectra but can also be applied in a manner similar to other (multidimensional) spectroscopic data. PMID:12444730

  13. NMR and protein folding: equilibrium and stopped-flow studies.

    PubMed Central

    Frieden, C.; Hoeltzli, S. D.; Ropson, I. J.

    1993-01-01

    NMR studies are now unraveling the structure of intermediates of protein folding using hydrogen-deuterium exchange methodologies. These studies provide information about the time dependence of formation of secondary structure. They require the ability to assign specific resonances in the NMR spectra to specific amide protons of a protein followed by experiments involving competition between folding and exchange reactions. Another approach is to use 19F-substituted amino acids to follow changes in side-chain environment upon folding. Current techniques of molecular biology allow assignments of 19F resonances to specific amino acids by site-directed mutagenesis. It is possible to follow changes and to analyze results from 19F spectra in real time using a stopped-flow device incorporated into the NMR spectrometer. PMID:8298453

  14. High-resolution three-dimensional 19F-magnetic resonance imaging of rat lung in situ: evaluation of airway strain in the perfluorocarbon-filled lung.

    PubMed

    Weigel, Julia K; Steinmann, Daniel; Emerich, Philipp; Stahl, Claudius A; v Elverfeldt, Dominik; Guttmann, Josef

    2011-02-01

    Perfluorocarbons (PFC) are biologically and chemically inert fluids with high oxygen and CO(2) carrying capacities. Their use as liquid intrapulmonary gas carriers during liquid ventilation has been investigated. We established a method of high resolution 3D-(19)F-MRI of the totally PFC-filled lung. The goal of this study was to investigate longitudinal and circumferential airway strain in the setting of increasing airway pressures on 3D-(19)F-MR images of the PFC-filled lung. Sixteen female Wistar rats were euthanized and the liquid perfluorocarbon FC-84 instilled into their lungs. 3D-(19)F-MRI was performed at various intrapulmonary pressures. Measurements of bronchial length and cross-sectional area were obtained from transversal 2D images for each pressure range. Changes in bronchial area were used to determine circumferential strain, while longitudinal strain was calculated from changes in bronchial length. Our method of 3D-(19)F-MRI allowed clear visualization of the great bronchi. Longitudinal strain increased significantly up to 31.1 cmH(2)O. The greatest strain could be found in the range of low airway pressures. Circumferential strain increased strongly with the initial pressure rise, but showed no significant changes above 10.4 cmH(2)O. Longitudinal strain was generally higher in distal airways, while circumferential strain showed no difference. Analysis of mechanical characteristics showed that longitudinal and circumferential airway expansion occurred in an anisotropic fashion. Whereas longitudinal strain still increased with higher pressures, circumferential strain quickly reached a 'strain limit'. Longitudinal strain was higher in distal bronchi, as dense PFCs gravitate to dependent, in this case to dorso-basal parts of the lung, acting as liquid positive end expiratory pressure. PMID:21193813

  15. Theoretical investigation of the 19F(p, p0) differential cross section up to Ep = 2.3 MeV

    NASA Astrophysics Data System (ADS)

    Paneta, V.; Gurbich, A.; Kokkoris, M.

    2016-03-01

    The use of experimental cross-section data on fluorine in analytical EBS studies is quite problematic, because they are indeed inadequate and discrepant (up to ∼30%). The evaluated values on the other hand, being produced by incorporating the available experimental cross sections within a unified theoretical approach, provide the most reliable data to be used and are therefore very important. The present work contributes in this field by reproducing and attempting to extend the corresponding evaluation for 19F(p, p0), which ranges up to 1730 keV, to proton energies up to 2250 keV, using the AZURE code. The performed R-matrix calculations involved the simultaneous analysis of several experimental input datasets, as well as spectroscopic information concerning the formed compound nucleus 20Ne, while valuable feedback information was provided by proton benchmarking spectra on ZnF2 taken at Ep = 1730 and 2250 keV and at several backscattering angles for the fine tuning of the parameters used. The problem of the 19F(p, p‧) and 19F(p, αx) contributions in the obtained thick target yield spectra is also discussed.

  16. Protein–RNA specificity by high-throughput principal component analysis of NMR spectra

    PubMed Central

    Collins, Katherine M.; Oregioni, Alain; Robertson, Laura E.; Kelly, Geoff; Ramos, Andres

    2015-01-01

    Defining the RNA target selectivity of the proteins regulating mRNA metabolism is a key issue in RNA biology. Here we present a novel use of principal component analysis (PCA) to extract the RNA sequence preference of RNA binding proteins. We show that PCA can be used to compare the changes in the nuclear magnetic resonance (NMR) spectrum of a protein upon binding a set of quasi-degenerate RNAs and define the nucleobase specificity. We couple this application of PCA to an automated NMR spectra recording and processing protocol and obtain an unbiased and high-throughput NMR method for the analysis of nucleobase preference in protein–RNA interactions. We test the method on the RNA binding domains of three important regulators of RNA metabolism. PMID:25586222

  17. Analysis and aging of unsaturated polyester resins in contemporary art installations by NMR spectroscopy.

    PubMed

    Stamatakis, Georgios; Knuutinen, Ulla; Laitinen, Kai; Spyros, Apostolos

    2010-12-01

    Two original art installations constructed from unsaturated polyester resins (UPR) and four different reference UPR products (before and after UVB aging) were analyzed by high-resolution 1D and 2D nuclear magnetic resonance (NMR) spectroscopy. Breaking strain studies were also conducted for the four UPR model products before and after different aging procedures (moisture, UVB exposure, melt/freeze). NMR analysis of the chemical composition of the UPR resin extracts showed they contain several low MW organic compounds and oligomers rich in polar -OH groups that play a significant role in the degradation behavior of the composite UPR materials. Statistical analysis of the NMR compositional data showed that styrene and benzaldehyde contents can be used to differentiate between fresh and aged UPR samples. The phthalate and propylene glycol unit speciation (esterified, primary or secondary -OH) of the extracts provided evidence that UPR resin C was used in the construction of the two art installations, and direct comparison of (1)H and (13)C NMR spectra verified this compositional similarity. UPR resin C was shown by both NMR and breaking strain studies to be the reference UPR most susceptible to degradation by different aging procedures, a characteristic attributed to the lower styrene content of resin C. PMID:20922516

  18. TANKS 18 AND 19-F EQUIPMENT GROUT FILL MATERIAL EVALUATION AND RECOMMENDATIONS

    SciTech Connect

    Stefanko, D.; Langton, C.

    2011-12-15

    The United States Department of Energy (US DOE) intends to remove Tanks 18-F and 19-F at the Savannah River Site (SRS) from service. The high-level waste (HLW) tanks have been isolated from the F-area Tank Farm (FTF) facilities and will be filled with cementitious grout for the purpose of: (1) physically stabilizing the empty volumes in the tanks, (2) limiting/eliminating vertical pathways from the surface to residual waste on the bottom of the tanks, (3) providing an intruder barrier, and (4) providing an alkaline, chemical reducing environment within the closure boundary to limit solubility of residual radionuclides. Bulk waste and heel waste removal equipment will remain in Tanks 18-F and 19-F when the tanks are closed. This equipment includes: mixer pumps, transfer pumps, transfer jets, equipment support masts, sampling masts and dip tube assemblies. The current Tank 18-F and 19-F closure strategy is to grout the internal void spaces in this equipment to eliminate fast vertical pathways and slow water infiltration to the residual material on the tank floor. This report documents the results of laboratory testing performed to identify a grout formulation for filling the abandoned equipment in Tanks 18-F and 19-F. The objective of this work was to formulate a flowable grout for filling internal voids of equipment that will remain in Tanks 18-F and 19-F during the final closures. This work was requested by V. A. Chander, Tank Farm Closure Engineering, in HLW-TTR-2011-008. The scope for this task is provided in the Task Technical and Quality Assurance Plan (TTQAP), SRNL-RP-2011-00587. The specific objectives of this task were to: (1) Prepare and evaluate the SRR cooling coil grout identified in WSRC-STI-2008-00298 per the TTR for this work. The cooling coil grout is a mixture of BASF MasterFlow{reg_sign} 816 cable grout (67.67 wt. %), Grade 100 ground granulated blast furnace slag (7.52 wt. %) and water (24.81 wt. %); (2) Identify equipment grout placement and

  19. Quantitative Tissue Oxygen Measurement in Multiple Organs Using 19F MRI in a Rat Model

    PubMed Central

    Liu, Siyuan; Shah, Sameer J.; Wilmes, Lisa J.; Feiner, John; Kodibagkar, Vikram D.; Wendland, Michael F.; Mason, Ralph P.; Hylton, Nola; Hopf, Harriet W.; Rollins, Mark D.

    2011-01-01

    Measurement of individual organ tissue oxygen levels can provide information to help evaluate and optimize medical interventions in many areas including wound healing, resuscitation strategies, and cancer therapeutics. Echo planar 19F MRI has previously focused on tumor oxygen measurement at low oxygen levels (pO2) < 30 mmHg. It uses the linear relationship between spin-lattice relaxation rate (R1) of hexafluorobenzene (HFB) and pO2. The feasibility of this technique for a wider range of pO2 values and individual organ tissue pO2 measurement was investigated in a rat model. Spin-lattice relaxation times (T1=1/R1) of HFB were measured using 19F saturation recovery echo planar imaging (EPI). Initial in vitro studies validated the linear relationship between R1 and pO2 from 0 mmHg to 760 mmHg oxygen partial pressure at 25°C, 37°C, and 41°C at 7 Tesla for HFB. In vivo experiments measured rat tissue oxygen (ptO2) levels of brain, kidney, liver, gut, muscle and skin during inhalation of both 30% and 100% oxygen. All organ ptO2 values significantly increased with hyperoxia (p<0.001). This study demonstrates that 19F MRI of HFB offers a feasible tool to measure regional ptO2 in vivo, and that hyperoxia significantly increases ptO2 of multiple organs in a rat model. PMID:21688315

  20. Mise en évidence par RMN du 19F d'une distorsion des octaèdres dans la solution solide CsCaF 3- xH x de type perovskite (0 ≤ x ≤ 1,70)

    NASA Astrophysics Data System (ADS)

    Pezat, M.; Senegas, J.; Villeneuve, G.; Park, H. H.; Tressaud, A.

    1988-12-01

    19F and 1H NMR investigations have been carried out on three powder samples of CsCaF 3- xH x composition (0 ≤ x ≤ 1.70), and on a single crystal of CsCaF 3. It appears that the spectra of 19F are consistent with a distortion of the Ca(F,H) 6 octahedra involving either lower symmetry or a random distribution of a c4-maxis with respect to the crystallographic directions.

  1. Cerebral blood flow in experimental ischemia assessed by sup 19 F magnetic resonance spectroscopy in cats

    SciTech Connect

    Brunetti, A.; Nagashima, G.; Bizzi, A.; DesPres, D.J. )

    1990-10-01

    We evaluated a 19F magnetic resonance spectroscopic technique that detects Freon-23 washout as a means of measuring cerebral blood flow in halothane-anesthetized adult cats during and after transient cerebral ischemia produced by vascular occlusion. The experiments were performed to test the ability of this recently developed method to detect postischemic flow deficits. Results were consistent with postischemic hypoperfusion. The method also proved valuable for measuring small residual flow during vascular occlusion. Our experiments indicate that this method provides simple, rapid, and repeatable flow measurements that can augment magnetic resonance examinations of cerebral metabolic parameters in the study of ischemia.

  2. Measuring 19F(α,n) with VANDLE for Nuclear Safeguards

    NASA Astrophysics Data System (ADS)

    Peters, William; Clement, R. C. C.; Smith, M. S.; Pain, S. D.; Thompson, S.; Cizewski, J. A.; Reingold, C.; Manning, B.; Burcher, S.; Bardayan, D. W.; Tan, W.-P.; Stech, E.; Smith, M. K.; Smith, K.; Avetisyan, R.; Long, A.; Battaglia, A.; Marley, S.; Gyurjinyan, A.; Ilyushkin, S.; O'Malley, P. D.; Madurga, M.; Paulauskas, S. V.; Taylor, S.; Febbraro, M.

    2014-09-01

    UF6 is used in many parts of the Uranium Fuel Cycle, and various techniques are used by nonproliferation agencies to monitor and account for the material. One of the most promising non-destructive assay (NDA) methods consists of measuring gross neutron rates induced by uranium-decay alpha particles reacting with the fluorine and emitting a neutron. This method, however, currently lacks reliable nuclear data on the 19F(α,n) reaction cross section to determine an accurate neutron yield rate for a given sample of UF6. We have used the Versatile Array of Neutron Detectors at Low Energy (VANDLE) to measure the cross section and coincident neutron spectrum over an energy range pertinent to NDA in a two part experiment: First at Notre Dame with a LaF3 target and a pulsed alpha-particle beam, and second at ORNL with a windowless He-gas target and a 19F beam. The motivation for this measurement and preliminary results will be presented. UF6 is used in many parts of the Uranium Fuel Cycle, and various techniques are used by nonproliferation agencies to monitor and account for the material. One of the most promising non-destructive assay (NDA) methods consists of measuring gross neutron rates induced by uranium-decay alpha particles reacting with the fluorine and emitting a neutron. This method, however, currently lacks reliable nuclear data on the 19F(α,n) reaction cross section to determine an accurate neutron yield rate for a given sample of UF6. We have used the Versatile Array of Neutron Detectors at Low Energy (VANDLE) to measure the cross section and coincident neutron spectrum over an energy range pertinent to NDA in a two part experiment: First at Notre Dame with a LaF3 target and a pulsed alpha-particle beam, and second at ORNL with a windowless He-gas target and a 19F beam. The motivation for this measurement and preliminary results will be presented. This work is funded in part by NSF Grant 1068192, DOE Office of Science, and the NNSA Office of Defense Nuclear

  3. Fission fragment angular distributions for the system 19F+232Th

    NASA Astrophysics Data System (ADS)

    Kailas, S.; Navin, A.; Chatterjee, A.; Singh, P.; Choudhury, R. K.; Saxena, A.; Nadkarni, D. M.; Kapoor, S. S.; Ramamurthy, V. S.; Nayak, B. K.; Suryanarayana, S. V.

    1991-03-01

    The fission fragment angular distributions for the system 19F+232Th have been measured at several bombarding energies between 94 and 108 MeV. Even though the anisotropy values measured in the present work are considerably smaller than the ones reported by Zhang et al. for the same system at similar energies, they are still anomalous when compared with the predictions of the standard saddle-point statistical model and fit into the systematics of entrance-channel dependence of fission anisotropies reported by us earlier.

  4. Magic Angle Spinning NMR Spectroscopy: A Versatile Technique for Structural and Dynamic Analysis of Solid-Phase Systems

    PubMed Central

    Polenova, Tatyana; Gupta, Rupal; Goldbourt, Amir

    2016-01-01

    Magic Angle Spinning (MAS) NMR spectroscopy is a powerful method for analysis of a broad range of systems, including inorganic materials, pharmaceuticals, and biomacromolecules. The recent developments in MAS NMR instrumentation and methodologies opened new vistas to atomic-level characterization of a plethora of chemical environments previously inaccessible to analysis, with unprecedented sensitivity and resolution. PMID:25794311

  5. Negative impact of noise on the principal component analysis of NMR data

    NASA Astrophysics Data System (ADS)

    Halouska, Steven; Powers, Robert

    2006-01-01

    Principal component analysis (PCA) is routinely applied to the study of NMR based metabolomic data. PCA is used to simplify the examination of complex metabolite mixtures obtained from biological samples that may be composed of hundreds or thousands of chemical components. PCA is primarily used to identify relative changes in the concentration of metabolites to identify trends or characteristics within the NMR data that permits discrimination between various samples that differ in their source or treatment. A common concern with PCA of NMR data is the potential over emphasis of small changes in high concentration metabolites that would over-shadow significant and large changes in low-concentration components that may lead to a skewed or irrelevant clustering of the NMR data. We have identified an additional concern, very small and random fluctuations within the noise of the NMR spectrum can also result in large and irrelevant variations in the PCA clustering. Alleviation of this problem is obtained by simply excluding the noise region from the PCA by a judicious choice of a threshold above the spectral noise.

  6. Quantitative and dynamic analysis of PTEN phosphorylation by NMR.

    PubMed

    Cordier, Florence; Chaffotte, Alain; Wolff, Nicolas

    2015-05-01

    The dual lipid and protein phosphatase PTEN is a tumor suppressor controlling key biological processes, such as cell growth, proliferation and neuro-survival. Its activity and intracellular trafficking is finely regulated notably by multi-site phosphorylation of its C-terminal tail. The reversible and highly dynamic character of these regulatory events confers a temporal dimension to the cell for triggering crucial decisions. In this review, we describe how a recently developed time-resolved NMR spectroscopy approach unveils the dynamic establishment of the phosphorylation events of PTEN C-terminal tail controlled by CK2 and GSK3β kinases. Two cascades of reactions have been identified, in vitro and in extracts of human neuroblastoma cells. They are triggered independently on two nearby clusters of sites (S380-S385 and S361-S370) and occur on different timescales. In each cascade, the reactions follow an ordered model with a distributive kinetic mechanism. The vision of these cascades as two delay timers activating distinct or time-delayed regulatory responses gives a temporal dimension on PTEN regulation and is discussed in relation to the known functional roles of each cluster. PMID:25449899

  7. Extraction, Purification, and NMR Analysis of Terpenes from Brown Algae.

    PubMed

    Gaysinski, Marc; Ortalo-Magné, Annick; Thomas, Olivier P; Culioli, Gérald

    2015-01-01

    Algal terpenes constitute a wide and well-documented group of marine natural products with structures differing from their terrestrial plant biosynthetic analogues. Amongst macroalgae, brown seaweeds are considered as one of the richest source of biologically and ecologically relevant terpenoids. These metabolites, mostly encountered in algae of the class Phaeophyceae, are mainly diterpenes and meroditerpenes (metabolites of mixed biogenesis characterized by a toluquinol or a toluquinone nucleus linked to a diterpene moiety).In this chapter, we describe analytical processes commonly employed for the isolation and structural characterization of the main terpenoid constituents obtained from organic extracts of brown algae. The successive steps include (1) extraction of lipidic content from algal samples; (2) purification of terpenes by column chromatography and semi-preparative high-performance liquid chromatography; and (3) structure elucidation of the isolated terpenes by means of 1D and 2D nuclear magnetic resonance (NMR). More precisely, we propose a representative methodology which allows the isolation and structural determination of the monocyclic meroditerpene methoxybifurcarenone (MBFC) from the Mediterranean brown alga Cystoseira amentacea var. stricta. This methodology has a large field of applications and can then be extended to terpenes isolated from other species of the family Sargassaceae. PMID:26108508

  8. NMR structural analysis of Sleeping Beauty transposase binding to DNA

    PubMed Central

    E Carpentier, Claire; Schreifels, Jeffrey M; Aronovich, Elena L; Carlson, Daniel F; Hackett, Perry B; Nesmelova, Irina V

    2014-01-01

    The Sleeping Beauty (SB) transposon is the most widely used DNA transposon in genetic applications and is the only DNA transposon thus far in clinical trials for human gene therapy. In the absence of atomic level structural information, the development of SB transposon relied primarily on the biochemical and genetic homology data. While these studies were successful and have yielded hyperactive transposases, structural information is needed to gain a mechanistic understanding of transposase activity and guides to further improvement. We have initiated a structural study of SB transposase using Nuclear Magnetic Resonance (NMR) and Circular Dichroism (CD) spectroscopy to investigate the properties of the DNA-binding domain of SB transposase in solution. We show that at physiologic salt concentrations, the SB DNA-binding domain remains mostly unstructured but its N-terminal PAI subdomain forms a compact, three-helical structure with a helix-turn-helix motif at higher concentrations of NaCl. Furthermore, we show that the full-length SB DNA-binding domain associates differently with inner and outer binding sites of the transposon DNA. We also show that the PAI subdomain of SB DNA-binding domain has a dominant role in transposase's attachment to the inverted terminal repeats of the transposon DNA. Overall, our data validate several earlier predictions and provide new insights on how SB transposase recognizes transposon DNA. PMID:24243759

  9. Analysis of human muscle extracts by proton NMR

    SciTech Connect

    Venkatasubramanian, P.N.; Barany, M.; Arus, C.

    1986-03-01

    Perchloric acid extracts were prepared from pooled human muscle biopsies from patients diagnosed with scoliosis (SCOL) and cerebral palsy (CP). After neutralization with KOH and removal of perchlorate, the extracts were concentrated by freeze drying and dissolved in /sup 2/H/sub 2/O to contain 120 O.D. units at 280 nm per 0.5 ml. /sup 1/H NMR spectroscopy was performed with the 5 mm probe of a Varian XL300 instrument. Creatine, lactate, carnosine, and choline were the major resonances in the one-dimensional spectra of both extracts. With creatine as reference, 2.5-fold more lactate was found in SCOL than in CP, and a much smaller difference was also found in their carnosine content. Two-dimensional COSY comparison revealed several differences between the two extracts. Taurine, N-acetyl glutamate, glycerophosphoryl choline (or phosphoryl choline) and an unidentified spot were present only in the extract from SCOL but not in that from CP. On the other hand, aspartate, hydroxy-proline, carnitine and glycerophosphoryl ethanolamine were only present in CP but absent in SCOL. Alanine, cysteine, lysine and arginine appeared in both extracts without an apparent intensity difference.

  10. An analysis of commerical zeolite catalysts by multinuclear NMR

    SciTech Connect

    Flanagan, L.

    1990-09-21

    This work involves studying two commercial hydrocracking catalysts by solid state multinuclear NMR silicon 29 and aluminum 27 with the goal of developing a method of determining the fraction zeolite in the catalysts. The zeolite fraction is known to be one of the faujasite zeolites type X or Y. The clay matrix of the catalyst is assumed to be kaolinite. Fresh, air-exposed commercial hydrocracking catalysts were provided by Phillips Petroleum. Sample 33351-86 was known to be a physical mixture of a Y zeolite and a clay matrix. The other catalyst, 33351-20, was composed of a faujasite zeolite grown within a clay matrix. Both were suspected of being about 20 wt % zeolite. Nothing is known about the state of pretreatment or cation exchange. A portion of each catalyst was calcined in a porcelain crucible in air at 500{degree}C for two hours with a hour heating ramp preceding and a two hour cooling ramp following calcination. 64 refs., 21 figs., 8 tabs.

  11. Small Volume Flow Probe for Automated Direct-Injection NMR Analysis: Design and Performance

    NASA Astrophysics Data System (ADS)

    Haner, Ronald L.; Llanos, William; Mueller, Luciano

    2000-03-01

    A detailed characterization of an NMR flow probe for use in direct-injection sample analysis is presented. A 600-MHz, indirect detection NMR flow probe with a 120-μl active volume is evaluated in two configurations: first as a stand-alone small volume probe for the analysis of static, nonflowing solutions, and second as a component in an integrated liquids-handling system used for high-throughput NMR analysis. In the stand-alone mode, 1H lineshape, sensitivity, radiofrequency (RF) homogeneity, and heat transfer characteristics are measured and compared to conventional-format NMR probes of related design. Commonly used descriptive terminology for the hardware, sample regions, and RF coils are reviewed or defined, and test procedures developed for flow probes are described. The flow probe displayed general performance that is competitive with standard probes. Key advantages of the flow probe include high molar sensitivity, ease of use in an automation setup, and superior reproducibility of magnetic field homogeneity which enables the practical implementation of 1D T2-edited analysis of protein-ligand interactions.

  12. Characterizing biomass fast pyrolysis oils by 13C-NMR and chemometric analysis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Several biomass fast pyrolysis oils were characterized by 13C and DEPT NMR analysis to determine chemical functional group compositions as related to their energy content. Pyrolysis oils were produced from a variety of feedstocks including energy crops, woods, animal wastes and oil seed presscakes,...

  13. NMR analysis of sequence of toxin II from the sea anemone Radianthus paumotensis

    SciTech Connect

    Wemmer, D.E.; Kumar, N.V.; Metrione, R.M.; Lazdunski, M.; Drobny, G.; Kallenbach, N.R.

    1986-11-04

    Toxin II from Radianthus paumotensis (Rp/sub II/) has been investigated by high-resolution NMR and chemical sequencing methods. Resonance assignments have been obtained for this protein by the sequential approach. NMR assignments could not be made consistent with the previously reported primary sequence for this protein, and chemical methods have been used to determine a sequence with which the NMR data are consistent. Analysis of the 2D NOE spectra shows that the protein secondary structure is comprised of two sequences of ..beta..-sheet, probably joined into a distorted continuous sheet, connected by turns and extended loops, without any regular ..cap alpha..-helical segments. The residues previously implicated in activity in this class of proteins, D8 and R13, occur in a loop region.

  14. Functional group analysis during ozonation of sunflower oil methyl esters by FT-IR and NMR.

    PubMed

    Soriano, Nestor U; Migo, Veronica P; Matsumura, Masatoshi

    2003-12-01

    Ozonation of neat sunflower oil (SFO) methyl esters was monitored by FT-IR and 1H and 13C NMR spectroscopy. During the early stage of ozonation, ozone absorption was essentially quantitative. This was accompanied by the formation of 1,2,4-trioxolane. IR and NMR spectra of ozonated samples showed that scission of ozonide to give aldehyde were minimal. 1H NMR analysis revealed that the amount of ozonide relative to aldehyde was more than 90% regardless of the extent of ozonation. Complete ozonation was attained after supplying around 0.20 g O3/ml methyl ester after which ozone absorption suddenly dropped to around 25%. At the latter part of ozonation, ozonide and aldehyde reacted with excess ozone to give carboxylic acid. Reaction products were identified according to Criegee mechanism. PMID:14623448

  15. SOLID-STATE 19F NMR INVESTIGATION OF HEXAFLUOROBENZENE SORPTION TO SOIL ORGANIC MATTER. (R825549C058)

    EPA Science Inventory

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  16. Synergistic effect of the simultaneous chemometric analysis of ¹H NMR spectroscopic and stable isotope (SNIF-NMR, ¹⁸O, ¹³C) data: application to wine analysis.

    PubMed

    Monakhova, Yulia B; Godelmann, Rolf; Hermann, Armin; Kuballa, Thomas; Cannet, Claire; Schäfer, Hartmut; Spraul, Manfred; Rutledge, Douglas N

    2014-06-23

    It is known that (1)H NMR spectroscopy represents a good tool for predicting the grape variety, the geographical origin, and the year of vintage of wine. In the present study we have shown that classification models can be improved when (1)H NMR profiles are fused with stable isotope (SNIF-NMR, (18)O, (13)C) data. Variable selection based on clustering of latent variables was performed on (1)H NMR data. Afterwards, the combined data of 718 wine samples from Germany were analyzed using linear discriminant analysis (LDA), partial least squares-discriminant analysis (PLS-DA), factorial discriminant analysis (FDA) and independent components analysis (ICA). Moreover, several specialized multiblock methods (common components and specific weights analysis (ComDim), consensus PCA and consensus PLS-DA) were applied to the data. The best improvement in comparison with (1)H NMR data was obtained for prediction of the geographical origin (up to 100% for the fused data, whereas stable isotope data resulted only in 60-70% correct prediction and (1)H NMR data alone in 82-89% respectively). Certain enhancement was obtained also for the year of vintage (from 88 to 97% for (1)H NMR to 99% for the fused data), whereas in case of grape varieties improved models were not obtained. The combination of (1)H NMR data with stable isotope data improves efficiency of classification models for geographical origin and vintage of wine and can be potentially used for other food products as well. PMID:24909771

  17. Effects of Phe-to-Trp mutation and fluorotryptophan incorporation on the solution structure of cardiac troponin C, and analysis of its suitability as a potential probe for in situ NMR studies

    PubMed Central

    Wang, Xu; Mercier, Pascal; Letourneau, Paul-Jean; Sykes, Brian D.

    2005-01-01

    19F NMR spectroscopy is potentially a powerful tool for probing protein properties in situ. However, results obtained using this technique are relevant only if the 19F probe offers minimal perturbation to the surrounding environment. In this paper, we examine the effect of 5-fluorotryptophan (5fW) incorporation on the three-dimensional structure of cardiac troponin-C (cTnC), with the intention of developing a 19F-labeled TnC for use in in situ 19FNMR. We find that, in general, 5fW does not perturb the structure of the protein significantly. Replacement of residue Phe 153 with 5fW produces no noticeable change in protein conformation. However, replacement of residue Phe 104 with 5fW produces a folding behavior that is dependent on the Escherichia coli strain used to express the mutant. The orientations of the indole rings in these mutants are such that the Trp residue adopts a χ2 of ~90° in the F104W mutant and ~−100° in the F153W mutant. Using results from 19F-1H heteronuclear NOE experiment, we show the replacement of L-Trp with 5fW at these positions does not change the orientation of the indole ring and the spread of the 5fW side-chain dihedral angles increases moderately for the F104(5fW) mutant and not at all for the F153(5fW) mutant. Based on these structures, we conclude that the substitution of Phe by 5fW at these two positions has minimal effects on the structure of cTnC and that the 5fW indole rings in both mutants have well defined orientation, making the two mutants viable candidates for use in in situ 19F NMR spectroscopy. PMID:16131667

  18. Dark matter spin-dependent limits for WIMP interactions on 19F by PICASSO

    NASA Astrophysics Data System (ADS)

    Beltran, Berta; Picasso Collaboration

    2010-01-01

    The PICASSO experiment at SNOLAB uses super-heated C4F10 droplets suspended in a gel as a target sensitive to WIMP-proton spin-dependent elastic scattering. The phase II setup has been improved substantially in sensitivity by using an array of 32 detectors with an active mass of ~65 g each and largely reduced background. First results are presented for a subset of two detectors with target masses of 19F of 65 g and 69 g respectively and a total exposure of 13.75 ± 0.48 kgd. No dark matter signal was found and for WIMP masses around 24 GeV/c2 new limits have been obtained on the spin-dependent cross section on 19F of σF = 13.9 pb (90% C.L.) which can be converted into cross section limits on protons and neutrons of σp = 0.15 pb and σn = 2.45 pb respectively (90% C.L). The obtained limits on protons restrict recent interpretations of the DAMA/LIBRA annual modulations in terms of spin-dependent interactions.

  19. TANK 18-F AND 19-F TANK FILL GROUT SCALE UP TEST SUMMARY

    SciTech Connect

    Stefanko, D.; Langton, C.

    2012-01-03

    High-level waste (HLW) tanks 18-F and 19-F have been isolated from FTF facilities. To complete operational closure the tanks will be filled with grout for the purpose of: (1) physically stabilizing the tanks, (2) limiting/eliminating vertical pathways to residual waste, (3) entombing waste removal equipment, (4) discouraging future intrusion, and (5) providing an alkaline, chemical reducing environment within the closure boundary to control speciation and solubility of select radionuclides. This report documents the results of a four cubic yard bulk fill scale up test on the grout formulation recommended for filling Tanks 18-F and 19-F. Details of the scale up test are provided in a Test Plan. The work was authorized under a Technical Task Request (TTR), HLE-TTR-2011-008, and was performed according to Task Technical and Quality Assurance Plan (TTQAP), SRNL-RP-2011-00587. The bulk fill scale up test described in this report was intended to demonstrate proportioning, mixing, and transportation, of material produced in a full scale ready mix concrete batch plant. In addition, the material produced for the scale up test was characterized with respect to fresh properties, thermal properties, and compressive strength as a function of curing time.

  20. Measured 19F(α,n) with VANDLE for Nuclear Safeguards

    NASA Astrophysics Data System (ADS)

    Peters, William; Clement, R. C. C.; Smith, M. S.; Pain, S.; Febbraro, M.; Pittman, S.; Thomspon, S.; Grinder, M.; Cizewski, J. A.; Reingold, C.; Manning, B.; Burcher, S.; Bardayan, D. W.; Tan, W.-P.; Stech, E.; Smith, M. K.; Avetisyan, R.; Gyurjinyan, A.; Lowe, M.; Ilyushkin, S.; Grzywacz, R.; Madurga, M.; Paulauskas, S. V.; Taylor, S. Z.; Smith, K.

    2015-10-01

    One of the most promising non-destructive assay (NDA) methods to monitor UF6 canisters consists of measuring gross neutron rates induced by uranium-decay alpha particles reacting with the fluorine and emitting a neutron. This method currently lacks reliable nuclear data on the 19F(α,n) reaction cross section to determine an accurate neutron yield rate for a given sample of UF6. We have measured the cross section and coincident neutron spectrum for the alpha-decay energy range using the VANDLE system. This experiment had two parts: first at Notre Dame with a LaF3 target and and a pulsed alpha-particle beam, and second at ORNL with a windowless He-gas target and a 19F beam. The motivation for this measurement and cross section results will be presented. This work is funded in part by the DOE Office of Science, the National Nuclear Security Administration SSAA and the Office of Defense Nuclear Nonproliferation R&D, and the NSF.

  1. TANK 18 AND 19-F TIER 1A EQUIPMENT FILL MOCK UP TEST SUMMARY

    SciTech Connect

    Stefanko, D.; Langton, C.

    2011-11-04

    The United States Department of Energy (US DOE) has determined that Tanks 18-F and 19-F have met the F-Tank Farm (FTF) General Closure Plan Requirements and are ready to be permanently closed. The high-level waste (HLW) tanks have been isolated from FTF facilities. To complete operational closure they will be filled with grout for the purpose of: (1) physically stabilizing the tanks, (2) limiting/eliminating vertical pathways to residual waste, (3) discouraging future intrusion, and (4) providing an alkaline, chemical reducing environment within the closure boundary to control speciation and solubility of select radionuclides. Bulk waste removal and heel removal equipment remain in Tanks 18-F and 19-F. This equipment includes the Advance Design Mixer Pump (ADMP), transfer pumps, transfer jets, standard slurry mixer pumps, equipment-support masts, sampling masts, dip tube assemblies and robotic crawlers. The present Tank 18 and 19-F closure strategy is to grout the equipment in place and eliminate vertical pathways by filling voids in the equipment to vertical fast pathways and water infiltration. The mock-up tests described in this report were intended to address placement issues identified for grouting the equipment that will be left in Tank 18-F and Tank 19-F. The Tank 18-F and 19-F closure strategy document states that one of the Performance Assessment (PA) requirements for a closed tank is that equipment remaining in the tank be filled to the extent practical and that vertical flow paths 1 inch and larger be grouted. The specific objectives of the Tier 1A equipment grout mock-up testing include: (1) Identifying the most limiting equipment configurations with respect to internal void space filling; (2) Specifying and constructing initial test geometries and forms that represent scaled boundary conditions; (3) Identifying a target grout rheology for evaluation in the scaled mock-up configurations; (4) Scaling-up production of a grout mix with the target rheology

  2. Synthesis and NMR Spectral Analysis of Amine Heterocycles: The Effect of Asymmetry on the [superscript 1]H and [superscript 13]C NMR Spectra of N,O-Acetals

    ERIC Educational Resources Information Center

    Saba, Shahrokh; Ciaccio, James A.; Espinal, Jennifer; Aman, Courtney E.

    2007-01-01

    The stereochemical investigation is conducted to give students the combined experience of chemical synthesis of amines and N-heterocycles and structural stereochemical analysis using NMR spectroscopy. Students are introduced to the concept of topicity-stereochemical relationships between ligands within a molecule by synthesizing N,O-acetals.

  3. Differences in Human Meibum Lipid Composition with Meibomian Gland Dysfunction Using NMR and Principal Component Analysis

    PubMed Central

    Foulks, Gary N.; Yappert, Marta C.; Milliner, Sarah E.

    2012-01-01

    Purpose. Nuclear magnetic resonance (NMR) spectroscopy has been used to quantify lipid wax, cholesterol ester terpenoid and glyceride composition, saturation, oxidation, and CH2 and CH3 moiety distribution. This tool was used to measure changes in human meibum composition with meibomian gland dysfunction (MGD). Methods. 1H-NMR spectra of meibum from 39 donors with meibomian gland dysfunction (Md) were compared to meibum from 33 normal donors (Mn). Results. Principal component analysis (PCA) was applied to the CH2/CH3 regions of a set of training NMR spectra of human meibum. PCA discriminated between Mn and Md with an accuracy of 86%. There was a bias toward more accurately predicting normal samples (92%) compared with predicting MGD samples (78%). When the NMR spectra of Md were compared with those of Mn, three statistically significant decreases were observed in the relative amounts of CH3 moieties at 1.26 ppm, the products of lipid oxidation above 7 ppm, and the ═CH moieties at 5.2 ppm associated with terpenoids. Conclusions. Loss of the terpenoids could be deleterious to meibum since they exhibit a plethora of mostly positive biological functions and could account for the lower level of cholesterol esters observed in Md compared with Mn. All three changes could account for the higher degree of lipid order of Md compared with age-matched Mn. In addition to the power of NMR spectroscopy to detect differences in the composition of meibum, it is promising that NMR can be used as a diagnostic tool. PMID:22131391

  4. MQ NMR and SPME analysis of nonlinearity in the degradation of a filled silicone elastomer

    SciTech Connect

    Chinn, S C; Alviso, C T; Berman, E S; Harvey, C A; Maxwell, R S; Wilson, T S; Cohenour, R; Saalwachter, K; Chasse, W

    2008-10-10

    Radiation induced degradation of polymeric materials occurs via numerous, simultaneous, competing chemical reactions. Though degradation is typically found to be linear in adsorbed dose, some silicone materials exhibit non-linear dose dependence due to dose dependent dominant degradation pathways. We have characterized the effects of radiative and thermal degradation on a model filled-PDMS system, Sylgard 184 (commonly used as an electronic encapsulant and in biomedical applications), using traditional mechanical testing, NMR spectroscopy, and sample headspace analysis using Solid Phase Micro-Extraction (SPME) followed by Gas Chromatography/Mass Spectrometry (GC/MS). The mechanical data and {sup 1}H spin-echo NMR indicated that radiation exposure leads to predominantly crosslinking over the cumulative dose range studies (0 to 250 kGray) with a rate roughly linear with dose. {sup 1}H Multiple Quantum NMR detected a bimodal distribution in the network structure, as expected by the proposed structure of Sylgard 184. The MQ-NMR further indicated that the radiation induced structural changes were not linear in adsorbed dose and competing chain scission mechanisms contribute more largely to the overall degradation process in the range of 50 -100 kGray (though crosslinking still dominates). The SPME-GC/MS data were analyzed using Principal Component Analysis (PCA), which identified subtle changes in the distributions of degradation products (the cyclic siloxanes and other components of the material) as a function of age that provide insight into the dominant degradation pathways at low and high adsorbed dose.

  5. Structural fidelity and NMR relaxation analysis in a prototype RNA hairpin

    PubMed Central

    Giambaşu, George M.; York, Darrin M.; Case, David A.

    2015-01-01

    RNA hairpins are widespread and very stable motifs that contribute decisively to RNA folding and biological function. The GTP1G2C3A4C5U6U7C8G9G10U11G12C13C14 construct (with a central UUCG tetraloop) has been extensively studied by solution NMR, and offers and excellent opportunity to evaluate the structure and dynamical description afforded by molecular dynamics (MD) simulations. Here, we compare average structural parameters and NMR relaxation rates estimated from a series of multiple independent explicit solvent MD simulations using the two most recent RNA AMBER force fields (ff99 and ff10). Predicted overall tumbling times are ∼20% faster than those inferred from analysis of NMR data and follow the same trend when temperature and ionic strength is varied. The Watson–Crick stem and the “canonical” UUCG loop structure are maintained in most simulations including the characteristic syn conformation along the glycosidic bond of G9, although some key hydrogen bonds in the loop are partially disrupted. Our analysis pinpoints G9–G10 backbone conformations as a locus of discrepancies between experiment and simulation. In general the results for the more recent force-field parameters (ff10) are closer to experiment than those for the older ones (ff99). This work provides a comprehensive and detailed comparison of state of the art MD simulations against a wide variety of solution NMR measurements. PMID:25805858

  6. Differential Analysis of 2D NMR Spectra: New Natural Products from a Pilot-Scale Fungal Extract Library

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Using a newly developed protocol for the differential analysis of arrays of 2D NMR spectra, we were able to rapidly identify two previously unreported indole alkaloids from a library of unfractionated fungal extracts. Differential analyses of NMR spectra thus constitute an effective tool for the non...

  7. 1H-NMR METABONOMICS ANALYSIS OF SERA DIFFERENTIATES BETWEEN MAMMARY TUMOR-BEARING MICE AND HEALTHY CONTROLS

    EPA Science Inventory

    Global analysis of 1H-NMR spectra of serum is an appealing approach for the rapid detection of cancer. To evaluate the usefulness of this method in distinguishing between mammary tumor-bearing mice and healthy controls, we conducted 1H-NMR metabonomic analyses on serum samples ob...

  8. Analytical solution of the time-dependent Bloch NMR flow equations: a translational mechanical analysis

    NASA Astrophysics Data System (ADS)

    Awojoyogbe, O. B.

    2004-08-01

    Various biological and physiological properties of living tissue can be studied by means of nuclear magnetic resonance techniques. Unfortunately, the basic physics of extracting the relevant information from the solution of Bloch nuclear magnetic resource (NMR) equations to accurately monitor the clinical state of biological systems is still not yet fully understood. Presently, there are no simple closed solutions known to the Bloch equations for a general RF excitation. Therefore the translational mechanical analysis of the Bloch NMR equations presented in this study, which can be taken as definitions of new functions to be studied in detail may reveal very important information from which various NMR flow parameters can be derived. Fortunately, many of the most important but hidden applications of blood flow parameters can be revealed without too much difficulty if appropriate mathematical techniques are used to solve the equations. In this study we are concerned with a mathematical study of the laws of NMR physics from the point of view of translational mechanical theory. The important contribution of this study is that solutions to the Bloch NMR flow equations do always exist and can be found as accurately as desired. We shall restrict our attention to cases where the radio frequency field can be treated by simple analytical methods. First we shall derive a time dependant second-order non-homogeneous linear differential equation from the Bloch NMR equation in term of the equilibrium magnetization M0, RF B1( t) field, T1 and T2 relaxation times. Then, we would develop a general method of solving the differential equation for the cases when RF B1( t)=0, and when RF B1( t)≠0. This allows us to obtain the intrinsic or natural behavior of the NMR system as well as the response of the system under investigation to a specific influence of external force to the system. Specifically, we consider the case where the RF B1 varies harmonically with time. Here the complete

  9. Imaging of Intratumoral Inflammation during Oncolytic Virotherapy of Tumors by 19F-Magnetic Resonance Imaging (MRI)

    PubMed Central

    Hess, Michael; Hofmann, Elisabeth; Seubert, Carolin; Langbein-Laugwitz, Johanna; Gentschev, Ivaylo; Sturm, Volker Jörg Friedrich; Ye, Yuxiang; Kampf, Thomas; Jakob, Peter Michael; Szalay, Aladar A.

    2013-01-01

    Background Oncolytic virotherapy of tumors is an up-coming, promising therapeutic modality of cancer therapy. Unfortunately, non-invasive techniques to evaluate the inflammatory host response to treatment are rare. Here, we evaluate 19F magnetic resonance imaging (MRI) which enables the non-invasive visualization of inflammatory processes in pathological conditions by the use of perfluorocarbon nanoemulsions (PFC) for monitoring of oncolytic virotherapy. Methodology/Principal Findings The Vaccinia virus strain GLV-1h68 was used as an oncolytic agent for the treatment of different tumor models. Systemic application of PFC emulsions followed by 1H/19F MRI of mock-infected and GLV-1h68-infected tumor-bearing mice revealed a significant accumulation of the 19F signal in the tumor rim of virus-treated mice. Histological examination of tumors confirmed a similar spatial distribution of the 19F signal hot spots and CD68+-macrophages. Thereby, the CD68+-macrophages encapsulate the GFP-positive viral infection foci. In multiple tumor models, we specifically visualized early inflammatory cell recruitment in Vaccinia virus colonized tumors. Furthermore, we documented that the 19F signal correlated with the extent of viral spreading within tumors. Conclusions/Significance These results suggest 19F MRI as a non-invasive methodology to document the tumor-associated host immune response as well as the extent of intratumoral viral replication. Thus, 19F MRI represents a new platform to non-invasively investigate the role of the host immune response for therapeutic outcome of oncolytic virotherapy and individual patient response. PMID:23441176

  10. An integrated workflow for robust alignment and simplified quantitative analysis of NMR spectrometry data

    PubMed Central

    2011-01-01

    Background Nuclear magnetic resonance spectroscopy (NMR) is a powerful technique to reveal and compare quantitative metabolic profiles of biological tissues. However, chemical and physical sample variations make the analysis of the data challenging, and typically require the application of a number of preprocessing steps prior to data interpretation. For example, noise reduction, normalization, baseline correction, peak picking, spectrum alignment and statistical analysis are indispensable components in any NMR analysis pipeline. Results We introduce a novel suite of informatics tools for the quantitative analysis of NMR metabolomic profile data. The core of the processing cascade is a novel peak alignment algorithm, called hierarchical Cluster-based Peak Alignment (CluPA). The algorithm aligns a target spectrum to the reference spectrum in a top-down fashion by building a hierarchical cluster tree from peak lists of reference and target spectra and then dividing the spectra into smaller segments based on the most distant clusters of the tree. To reduce the computational time to estimate the spectral misalignment, the method makes use of Fast Fourier Transformation (FFT) cross-correlation. Since the method returns a high-quality alignment, we can propose a simple methodology to study the variability of the NMR spectra. For each aligned NMR data point the ratio of the between-group and within-group sum of squares (BW-ratio) is calculated to quantify the difference in variability between and within predefined groups of NMR spectra. This differential analysis is related to the calculation of the F-statistic or a one-way ANOVA, but without distributional assumptions. Statistical inference based on the BW-ratio is achieved by bootstrapping the null distribution from the experimental data. Conclusions The workflow performance was evaluated using a previously published dataset. Correlation maps, spectral and grey scale plots show clear improvements in comparison to other

  11. HRMAS-NMR spectroscopy and multivariate analysis meat characterisation.

    PubMed

    Ritota, Mena; Casciani, Lorena; Failla, Sebastiana; Valentini, Massimiliano

    2012-12-01

    ¹H-High resolution magic angle spinning-nuclear magnetic resonance spectroscopy was employed to gain the metabolic profile of longissimus dorsi and semitendinosus muscles of four different breeds: Chianina, Holstein Friesian, Maremmana and Buffalo. Principal component analysis, partial least squares projection to latent structure - discriminant analysis and orthogonal partial least squares projection to latent structure - discriminant analysis were used to build models capable of discriminating the muscle type according to the breed. Data analysis led to an excellent classification for Buffalo and Chianina, while for Holstein Friesian the separation was lower. In the case of Maremmana the use of intelligent bucketing was necessary due to some resonances shifting allowed improvement of the discrimination ability. Finally, by using the Variable Importance in Projection values the metabolites relevant for the classification were identified. PMID:22819725

  12. Measurement of the 19F(α,n) Cross Section for Nuclear Safeguards Science

    NASA Astrophysics Data System (ADS)

    Reingold, C. S.; Cizewski, J. A.; Peters, W. A.; Clement, R. R. C.; Bardayan, D. W.; Smith, M. S.; Stech, E.; Strauss, S.; Tan, W. P.; Wiescher, M.; Madurga, M.; Vandle Collaboration

    2013-10-01

    A precise measurement of the 19F(α,n) cross section will improve Non Destructive Assays (NDA) of UF6 and other actinide-fluoride samples via neutron detection techniques. We will determine the cross section with two complementary approaches. First, we will bombard a LaF3 target with a pulsed 4He beam from the Notre Dame FN tandem accelerator; second, we will send a fluorine beam from the ORNL tandem through a pure helium gas target. The neutron spectra from both of these reactions will be measured using the Versatile Array of Neutron Detectors at Low Energy (VANDLE), and coincident γ rays with a HPGe detector. We report here on data taken with VANDLE and a HPGe detector on a LaF3 target. My poster outlines the motivation for this experiment, explains the stages of this experiment, the current experimental setup, and preliminary data. This work is supported by the NNSA.

  13. Tanks 18 And 19-F Structural Flowable Grout Fill Material Evaluation And Recommendations

    SciTech Connect

    Langton, C. A.; Stefanko, D. B.

    2013-04-23

    Cementitious grout will be used to close Tanks 18-F and 19-F. The functions of the grout are to: 1) physically stabilize the final landfill by filling the empty volume in the tanks with a non-compressible material; 2) provide a barrier for inadvertent intrusion into the tank; 3) reduce contaminant mobility by a) limiting the hydraulic conductivity of the closed tank and b) reducing contact between the residual waste and infiltrating water; and 4) providing an alkaline, chemically reducing environment in the closed tank to control speciation and solubility of selected radionuclides. The objective of this work was to identify a single (all-in-one) grout to stabilize and isolate the residual radionuclides in the tank, provide structural stability of the closed tank and serve as an inadvertent intruder barrier. This work was requested by V. A. Chander, High Level Waste (HLW) Tank Engineering, in HLW-TTR-2011-008. The complete task scope is provided in the Task Technical and QA Plan, SRNL-RP-2011-00587 Revision 0. The specific objectives of this task were to: 1) Identify new admixtures and dosages for formulating a zero bleed flowable tank fill material selected by HLW Tank Closure Project personnel based on earlier tank fill studies performed in 2007. The chemical admixtures used for adjusting the flow properties needed to be updated because the original admixture products are no longer available. Also, the sources of cement and fly ash have changed, and Portland cements currently available contain up to 5 wt. % limestone (calcium carbonate). 2) Prepare and evaluate the placement, compressive strength, and thermal properties of the selected formulation with new admixture dosages. 3) Identify opportunities for improving the mix selected by HLW Closure Project personnel and prepare and evaluate two potentially improved zero bleed flowable fill design concepts; one based on the reactor fill grout and the other based on a shrinkage compensating flowable fill mix design. 4

  14. Efficient acid-catalyzed (18) F/(19) F fluoride exchange of BODIPY dyes.

    PubMed

    Keliher, Edmund J; Klubnick, Jenna A; Reiner, Thomas; Mazitschek, Ralph; Weissleder, Ralph

    2014-07-01

    Fluorine-containing fluorochromes are important validation agents for positron emission tomography imaging compounds, as they can be readily validated in cells by fluorescence imaging. In particular, the (18) F-labeled BODIPY-FL fluorophore has emerged as an important platform, but little is known about alternative (18) F-labeling strategies or labeling on red-shifted fluorophores. In this study we explore acid-catalyzed (18) F/(19) F exchange on a range of commercially available N-hydroxysuccinimidyl ester and maleimide BODIPY fluorophores. We show this method to be a simple and efficient (18) F-labeling strategy for a diverse span of fluorescent compounds, including a BODIPY-modified PARP-1 inhibitor, and amine- and thiol-reactive BODIPY fluorophores. PMID:24596307

  15. Magnetic Resonance Detection of CD34+ Cells from Umbilical Cord Blood Using a 19F Label

    PubMed Central

    Duinhouwer, Lucia E.; van Rossum, Bernard J. M.; van Tiel, Sandra T.; van der Werf, Ramon M.; Doeswijk, Gabriela N.; Haeck, Joost C.; Rombouts, Elwin W. J. C.; ter Borg, Mariëtte N. D.; Kotek, Gyula; Braakman, Eric; Cornelissen, Jan J.; Bernsen, Monique R.

    2015-01-01

    Impaired homing and delayed recovery upon hematopoietic stem cell transplantation (HSCT) with hematopoietic stem cells (HSC) derived from umbilical cord blood (UCB) is a major problem. Tracking transplanted cells in vivo will be helpful to detect impaired homing at an early stage and allows early interventions to improve engraftment and outcome after transplantation. In this study, we show sufficient intracellular labeling of UCB-derived CD34+ cells, with 19F-containing PLGA nanoparticles which were detectable with both flow cytometry and magnetic resonance spectroscopy (MRS). In addition, labeled CD34+ cells maintain their capacity to proliferate and differentiate, which is pivotal for successful engraftment after transplantation in vivo. These results set the stage for in vivo tracking experiments, through which the homing efficiency of transplanted cells can be studied. PMID:26394043

  16. Uniform procedure of (1)H NMR analysis of rat urine and toxicometabonomics Part II: comparison of NMR profiles for classification of hepatotoxicity.

    PubMed

    Schoonen, Willem G E J; Kloks, Cathelijne P A M; Ploemen, Jan-Peter H T M; Smit, Martin J; Zandberg, Pieter; Horbach, G Jean; Mellema, Jan-Remt; Thijssen-Vanzuylen, Carol; Tas, Albert C; van Nesselrooij, Joop H J; Vogels, Jack T W E

    2007-07-01

    A procedure of nuclear magnetic resonance (NMR) urinalysis using pattern recognition is proposed for early detection of toxicity of investigational compounds in rats. The method is applied to detect toxicity upon administration of 13 toxic reference compounds and one nontoxic control compound (mianserine) in rats. The toxic compounds are expected to induce necrosis (bromobenzene, paracetamol, carbon tetrachloride, iproniazid, isoniazid, thioacetamide), cholestasis (alpha-naphthylisothiocyanate (ANIT), chlorpromazine, ethinylestradiol, methyltestosterone, ibuprofen), or steatosis (phenobarbital, tetracycline). Animals were treated daily for 2 or 4 days except for paracetamol and bromobenzene (1 and 2 days) and carbon tetrachloride (1 day only). Urine was collected 24 h after the first and second treatment. The animals were sacrificed 24 h after the last treatment, and NMR data were compared with liver histopathology as well as blood and urine biochemistry. Pathology and biochemistry showed marked toxicity in the liver at high doses of bromobenzene, paracetamol, carbon tetrachloride, ANIT, and ibuprofen. Thioacetamide and chlorpromazine showed less extensive changes, while the influences of iproniazid, isoniazid, phenobarbital, ethinylestradiol, and tetracycline on the toxic parameters were marginal or for methyltestosterone and mianserine negligible. NMR spectroscopy revealed significant changes upon dosing in 88 NMR biomarker signals preselected with the Procrustus Rotation method on principal component discriminant analysis (PCDA) plots. Further evaluation of the specific changes led to the identification of biomarker patterns for the specific types of liver toxicity. Comparison of our rat NMR PCDA data with histopathological changes reported in humans and/or rats suggests that rat NMR urinalysis can be used to predict hepatotoxicity. PMID:17420222

  17. Advanced NMR-based techniques for pore structure analysis of coal

    SciTech Connect

    Smith, D.M.

    1992-01-01

    One of the main problems in coal utilization is the inability to properly characterize its complex pore structure. Coals typically have micro/ultra-micro pores but they also exhibit meso and macroporosity. Conventional pore size techniques (adsorption/condensation, mercury porosimetry) are limited because of this broad pore size range, microporosity, reactive nature of coal, samples must be completely dried, and network/percolation effects. Small angle scattering is limited because it probes both open and closed pores. Although one would not expect any single technique to provide a satisfactory description of a coal's structure, it is apparent that better techniques are necessary. We believe that measurement of the NMR parameters of various gas phase and adsorbed phase NMR active probes can provide the resolution to this problem. We will investigate the dependence of the common NMR parameters such as chemical shifts and relaxation times of several different nuclei and compounds on the pore structure of model microporous solids, carbons, and coals. In particular, we will study the interaction between several small molecules and the pore surfaces in coals. These molecules have been selected for their chemical and physical properties. A special NMR probe will be constructed which will allow the concurrent measurement of NMR properties and adsorption uptake at a variety of temperatures. All samples will be subjected to a suite of conventional'' pore structure analyses. These include nitrogen adsorption at 77 K with BET analysis, CO[sub 2] and CH[sub 4] adsorption at 273 K with D-R (Dubinin-Radushkevich) analysis, helium pycnometry, and small angle X-ray scattering as well as gas diffusion measurements.

  18. Calcium binding of transglutaminases: a 43Ca NMR study combined with surface polarity analysis.

    PubMed

    Ambrus, A; Bányai, I; Weiss, M S; Hilgenfeld, R; Keresztessy, Z; Muszbek, L; Fésüs, L

    2001-08-01

    Transglutaminases (TGases) form cross-links between glutamine and lysine side-chains of polypeptides in a Ca2+-dependent reaction. The structural basis of the Ca2+-effect is poorly defined. 43Ca NMR, surface polarity analysis combined with multiple sequence alignment and the construction of a new homology model of human tissue transglutaminase (tTGase) were used to obtain structural information about Ca2+ binding properties of factor XIII-A2, tTGase and TGase 3 (each of human origin). 43Ca NMR provided higher average dissociation constants titrating on a wide Ca2+-concentration scale than previous studies with equilibrium dialysis performed in shorter ranges. These results suggest the existence of low affinity Ca2+ binding sites on both FXIII-A and tTGase in addition to high affinity ones in accordance with our surface polarity analysis identifying high numbers of negatively charged clusters. Upon increasing the salt concentration or activating with thrombin, FXIII-A2 partially lost its original Ca2+ affinity; the NMR data suggested different mechanisms for the two activation processes. The NMR provided structural evidence of GTP-induced conformational changes on the tTGase molecule diminishing all of its Ca2+ binding sites. NMR data on the Ca2+ binding properties of the TGase 3 are presented here; it binds Ca2+ the most tightly, which is weakened after its proteolytic activation. The investigated TGases seem to have very symmetric Ca2+ binding sites and no EF-hand motifs. PMID:11565852

  19. Quantitative solid state NMR analysis of residues from acid hydrolysis of loblolly pine wood.

    PubMed

    Sievers, Carsten; Marzialetti, Teresita; Hoskins, Travis J C; Valenzuela Olarte, Mariefel B; Agrawal, Pradeep K; Jones, Christopher W

    2009-10-01

    The composition of solid residues from hydrolysis reactions of loblolly pine wood with dilute mineral acids is analyzed by (13)C Cross Polarization Magic Angle Spinning (CP MAS) NMR spectroscopy. Using this method, the carbohydrate and lignin fractions are quantified in less than 3h as compared to over a day using wet chemical methods. In addition to the quantitative information, (13)C CP MAS NMR spectroscopy provides information on the formation of additional extractives and pseudo lignin from the carbohydrates. Being a non-destructive technique, NMR spectroscopy provides unambiguous evidence of the presence of side reactions and products, which is a clear advantage over the wet chemical analytical methods. Quantitative results from NMR spectroscopy and proximate analysis are compared for the residues from hydrolysis of loblolly pine wood under 13 different conditions; samples were treated either at 150 degrees C or 200 degrees C in the presence of various acids (HCl, H(2)SO(4), H(3)PO(4), HNO(3) and TFA) or water. The lignin content determined by both methods differed on averaged by 2.9 wt% resulting in a standard deviation of 3.5 wt%. It is shown that solid degradation products are formed from saccharide precursors under harsh reaction conditions. These degradation reactions limit the total possible yield of monosaccharides from any subsequent reaction. PMID:19477123

  20. Measurement of the 19F(α,n) Cross Section for Nuclear Safeguards Science

    NASA Astrophysics Data System (ADS)

    Reingold, C. S.; Cizewski, J. A.; Burcher, S.; Manning, B.; Peters, W. A.; Clement, R. R. C.; Smith, M. S.; Bardayan, D. W.; Stech, E.; Tan, W. P.; Madurga, M.; Ilyushkin, S.; Thompson, S.; Vandle Collaboration

    2014-09-01

    A precise measurement of the 19F(α,n) cross section will improve Non Destructive Assays (NDA) of UF6 and other actinide-fluoride samples via neutron detection techniques. The cross section will be determined with two complementary approaches. We have already bombarded a LaF3 target with a pulsed 4He beam from the Notre Dame FN tandem accelerator; next, we will send a fluorine beam from the ORNL tandem through a pure helium gas target. The neutron spectra from both of these reactions will be measured using the Versatile Array of Neutron Detectors at Low Energy (VANDLE), and coincident γ rays with a HPGe detector. We report here on data taken with VANDLE and a HPGe detector on a LaF3 target. This poster outlines the motivation for this experiment, explains the stages of this experiment, and presents both of our experimental setups and preliminary data. A precise measurement of the 19F(α,n) cross section will improve Non Destructive Assays (NDA) of UF6 and other actinide-fluoride samples via neutron detection techniques. The cross section will be determined with two complementary approaches. We have already bombarded a LaF3 target with a pulsed 4He beam from the Notre Dame FN tandem accelerator; next, we will send a fluorine beam from the ORNL tandem through a pure helium gas target. The neutron spectra from both of these reactions will be measured using the Versatile Array of Neutron Detectors at Low Energy (VANDLE), and coincident γ rays with a HPGe detector. We report here on data taken with VANDLE and a HPGe detector on a LaF3 target. This poster outlines the motivation for this experiment, explains the stages of this experiment, and presents both of our experimental setups and preliminary data. This work is supported by the NNSA, NSF, and DOE.

  1. Balanced UTE-SSFP for 19F MR Imaging of Complex Spectra

    PubMed Central

    Goette, Matthew J.; Keupp, Jochen; Rahmer, Jürgen; Lanza, Gregory M.; Wickline, Samuel A.; Caruthers, Shelton D.

    2015-01-01

    Purpose A novel technique for highly sensitive detection of multi-resonant fluorine imaging agents was designed and tested with the use of dual-frequency 19F/1H ultra-short echo times (UTE) sampled with a balanced steady-state free precession (SSFP) pulse sequence and 3D radial readout. Methods Feasibility of 3D radial balanced UTE-SSFP imaging was demonstrated for a phantom comprising liquid perfluorooctyl bromide (PFOB). Sensitivity of the pulse sequence was measured and compared to other sequences imaging the PFOB (CF2)6 line group including UTE radial gradient-echo (GRE) at α=30°, as well as Cartesian GRE, balanced SSFP, and fast spin-echo (FSE). The PFOB CF3 peak was also sampled with FSE. Results The proposed balanced UTE-SSFP technique exhibited a relative detection sensitivity of 51 μmolPFOB−1min−1/2 (α=30°), at least twice that of other sequence types with either 3D radial (UTE GRE: 20 μmolPFOB−1min−1/2) or Cartesian k-space filling (GRE: 12 μmolPFOB−1min−1/2; FSE: 16 μmolPFOB−1min−1/2 balanced SSFP: 23 μmolPFOB−1min−1/2 In vivo imaging of angiogenesis-targeted PFOB nanoparticles was demonstrated in a rabbit model of cancer on a clinical 3T scanner. Conclusion A new dual 19F/1H balanced UTE-SSFP sequence manifests high SNR, with detection sensitivity more than twofold better than traditional techniques, and alleviates imaging problems caused by dephasing in complex spectra. PMID:25163853

  2. Polymer Molecular Weight Analysis by [Superscript 1]H NMR Spectroscopy

    ERIC Educational Resources Information Center

    Izunobi, Josephat U.; Higginbotham, Clement L.

    2011-01-01

    The measurement and analysis of molecular weight and molecular weight distribution remain matters of fundamental importance for the characterization and physical properties of polymers. Gel permeation chromatography (GPC) is the most routinely used method for the molecular weight determination of polymers whereas matrix-assisted laser…

  3. Metabolomic differentiation of maca (Lepidium meyenii) accessions cultivated under different conditions using NMR and chemometric analysis.

    PubMed

    Zhao, Jianping; Avula, Bharathi; Chan, Michael; Clément, Céline; Kreuzer, Michael; Khan, Ikhlas A

    2012-01-01

    To gain insights on the effects of color type, cultivation history, and growing site on the composition alterations of maca (Lepidium meyenii Walpers) hypocotyls, NMR profiling combined with chemometric analysis was applied to investigate the metabolite variability in different maca accessions. Maca hypocotyls with different colors (yellow, pink, violet, and lead-colored) cultivated at different geographic sites and different areas were examined for differences in metabolite expression. Differentiations of the maca accessions grown under the different cultivation conditions were determined by principle component analyses (PCAs) which were performed on the datasets derived from their ¹H NMR spectra. A total of 16 metabolites were identified by NMR analysis, and the changes in metabolite levels in relation to the color types and growing conditions of maca hypocotyls were evaluated using univariate statistical analysis. In addition, the changes of the correlation pattern among the metabolites identified in the maca accessions planted at the two different sites were examined. The results from both multivariate and univariate analysis indicated that the planting site was the major determining factor with regards to metabolite variations in maca hypocotyls, while the color of maca accession seems to be of minor importance in this respect. PMID:21858755

  4. Quantitative fluorine NMR to determine carbohydrate density on glyconanomaterials synthesized from perfluorophenyl azide-functionalized silica nanoparticles by click reaction.

    PubMed

    Kong, Na; Zhou, Juan; Park, JaeHyeung; Xie, Sheng; Ramström, Olof; Yan, Mingdi

    2015-09-15

    A quantitative fluorine NMR ((19)F qNMR) method was developed to determine the carbohydrate density on glyconanomaterials. Mannose (Man)- and galactose (Gal)-conjugated silica nanoparticles (SNPs) were synthesized from perfluorophenyl azide (PFPA)-functionalized SNPs and propargylated Man or Gal by copper-catalyzed azide-alkyne cycloaddition (click reaction). After treating PFPA-SNPs or Man-SNPs with hydrofluoric acid followed by lyophilization, the remaining residues were directly subjected to (19)F NMR analysis. The density of PFPA on PFPA-SNP was determined to be 7.7 ± 0.2 × 10(-16) nmol/nm(2) and Man on Man-SNP to be 6.4 ± 0.2 × 10(-16) nmol/nm(2) giving a yield of ∼83% for the click coupling reaction. The apparent dissociation constant (Kd) of Man-SNPs with fluorescein isothiocyanate (FITC)-concanavalin A (Con A) was determined using a fluorescence competition assay to be 0.289 ± 0.003 μM, which represents more than 3 orders of magnitude affinity increase compared to free Man with Con A. PMID:26280598

  5. NMR-Based Metabolomic Analysis of Spatial Variation in Soft Corals

    PubMed Central

    He, Qing; Sun, Ruiqi; Liu, Huijuan; Geng, Zhufeng; Chen, Dawei; Li, Yinping; Han, Jiao; Lin, Wenhan; Du, Shushan; Deng, Zhiwei

    2014-01-01

    Soft corals are common marine organisms that inhabit tropical and subtropical oceans. They are shown to be rich source of secondary metabolites with biological activities. In this work, soft corals from two geographical locations were investigated using 1H-NMR spectroscopy coupled with multivariate statistical analysis at the metabolic level. A partial least-squares discriminant analysis showed clear separation among extracts of soft corals grown in Sanya Bay and Weizhou Island. The specific markers that contributed to discrimination between soft corals in two origins belonged to terpenes, sterols and N-containing compounds. The satisfied precision of classification obtained indicates this approach using combined 1H-NMR and chemometrics is effective to discriminate soft corals collected in different geographical locations. The results revealed that metabolites of soft corals evidently depended on living environmental condition, which would provide valuable information for further relevant coastal marine environment evaluation. PMID:24686560

  6. In situ analysis of copper electrodeposition reaction using unilateral NMR sensor

    NASA Astrophysics Data System (ADS)

    Gomes, B. F.; Nunes, L. M. S.; Lobo, C. M. S.; Carvalho, A. S.; Cabeça, L. F.; Colnago, L. A.

    2015-12-01

    The uses of high-resolution NMR spectroscopy and imaging (MRI) to study electrochemical reactions in situ have greatly increased in the last decade. However, most of these applications are limited to specialized NMR laboratories and not feasible for routine analysis. Recently we have shown that a bench top, time domain NMR spectrometer can be used to monitor in situ copper electrodeposition reaction and the effect of Lorentz force in the reaction rate. However these spectrometers limit the cell size to the magnet gap and cannot be used with standard electrochemical cells. In this paper we are demonstrating that unilateral NMR sensor (UNMR), which does not limit sample size/volume, can be used to monitor electrodeposition of paramagnetic ions in situ. The copper electrodeposition reaction was monitored remotely and in situ, placing the electrochemical cell on top of the UNMR sensor. The Cu2+ concentration was measured during three hours of the electrodeposition reactions, by using the transverse relaxation rate (R2) determined with the Carr-Purcell-Meiboom-Gill pulse sequence. The reaction rate increased fourfold when the reaction was performed in the presence of a magnetic field (in situ), in comparison to the reactions in the absence of the magnetic field (ex situ). The increase of reaction rate, in the presence of the UNMR magnet, was related to the magneto hydrodynamic force (FB) and magnetic field gradient force (F∇B). F∇B was calculated to be one order of magnitude stronger than FB. The UNMR sensor has several advantages for in situ measurements when compared to standard NMR spectrometers. It is a low cost, portable, open system, which does not limit sample size/volume and can be easily be adapted to standard electrochemical cells or large industrial reactors.

  7. In situ analysis of copper electrodeposition reaction using unilateral NMR sensor.

    PubMed

    Gomes, B F; Nunes, L M S; Lobo, C M S; Carvalho, A S; Cabeça, L F; Colnago, L A

    2015-12-01

    The uses of high-resolution NMR spectroscopy and imaging (MRI) to study electrochemical reactions in situ have greatly increased in the last decade. However, most of these applications are limited to specialized NMR laboratories and not feasible for routine analysis. Recently we have shown that a bench top, time domain NMR spectrometer can be used to monitor in situ copper electrodeposition reaction and the effect of Lorentz force in the reaction rate. However these spectrometers limit the cell size to the magnet gap and cannot be used with standard electrochemical cells. In this paper we are demonstrating that unilateral NMR sensor (UNMR), which does not limit sample size/volume, can be used to monitor electrodeposition of paramagnetic ions in situ. The copper electrodeposition reaction was monitored remotely and in situ, placing the electrochemical cell on top of the UNMR sensor. The Cu(2+) concentration was measured during three hours of the electrodeposition reactions, by using the transverse relaxation rate (R2) determined with the Carr-Purcell-Meiboom-Gill pulse sequence. The reaction rate increased fourfold when the reaction was performed in the presence of a magnetic field (in situ), in comparison to the reactions in the absence of the magnetic field (ex situ). The increase of reaction rate, in the presence of the UNMR magnet, was related to the magneto hydrodynamic force (FB) and magnetic field gradient force (F∇B). F∇B was calculated to be one order of magnitude stronger than FB. The UNMR sensor has several advantages for in situ measurements when compared to standard NMR spectrometers. It is a low cost, portable, open system, which does not limit sample size/volume and can be easily be adapted to standard electrochemical cells or large industrial reactors. PMID:26540649

  8. Chemical tagging of chlorinated phenols for their facile detection and analysis by NMR spectroscopy

    SciTech Connect

    Valdez, Carlos A.; Leif, Roald N.

    2015-03-22

    A derivatization method that employs diethyl (bromodifluoromethyl) phosphonate (DBDFP) to efficiently tag the endocrine disruptor pentachlorophenol (PCP) and other chlorinated phenols (CPs) along with their reliable detection and analysis by NMR is presented. The method accomplishes the efficient alkylation of the hydroxyl group in CPs with the difluoromethyl (CF2H) moiety in extremely rapid fashion (5 min), at room temperature and in an environmentally benign manner. The approach proved successful in difluoromethylating a panel of 18 chlorinated phenols, yielding derivatives that displayed unique 1H, 19F NMR spectra allowing for the clear discrimination between isomerically related CPs. Due to its biphasic nature, the derivatization can be applied to both aqueous and organic mixtures where the analysis of CPs is required. Furthermore, the methodology demonstrates that PCP along with other CPs can be selectively derivatized in the presence of other various aliphatic alcohols, underscoring the superiority of the approach over other general derivatization methods that indiscriminately modify all analytes in a given sample. The present work demonstrates the first application of NMR on the qualitative analysis of these highly toxic and environmentally persistent species.

  9. Visualizing brain inflammation with a shingled-leg radio-frequency head probe for 19F/1H MRI.

    PubMed

    Waiczies, Helmar; Lepore, Stefano; Drechsler, Susanne; Qadri, Fatimunnisa; Purfürst, Bettina; Sydow, Karl; Dathe, Margitta; Kühne, André; Lindel, Tomasz; Hoffmann, Werner; Pohlmann, Andreas; Niendorf, Thoralf; Waiczies, Sonia

    2013-01-01

    Magnetic resonance imaging (MRI) provides the opportunity of tracking cells in vivo. Major challenges in dissecting cells from the recipient tissue and signal sensitivity constraints albeit exist. In this study, we aimed to tackle these limitations in order to study inflammation in autoimmune encephalomyelitis. We constructed a very small dual-tunable radio frequency (RF) birdcage probe tailored for (19)F (fluorine) and (1)H (proton) MR mouse neuroimaging. The novel design eliminated the need for extra electrical components on the probe structure and afforded a uniform -field as well as good SNR. We employed fluorescently-tagged (19)F nanoparticles and could study the dynamics of inflammatory cells between CNS and lymphatic system during development of encephalomyelitis, even within regions of the brain that are otherwise not easily visualized by conventional probes. (19)F/(1)H MR Neuroimaging will allow us to study the nature of immune cell infiltration during brain inflammation over an extensive period of time. PMID:23412352

  10. Numerical analysis of boosting scheme for scalable NMR quantum computation

    SciTech Connect

    SaiToh, Akira; Kitagawa, Masahiro

    2005-02-01

    Among initialization schemes for ensemble quantum computation beginning at thermal equilibrium, the scheme proposed by Schulman and Vazirani [in Proceedings of the 31st ACM Symposium on Theory of Computing (STOC'99) (ACM Press, New York, 1999), pp. 322-329] is known for the simple quantum circuit to redistribute the biases (polarizations) of qubits and small time complexity. However, our numerical simulation shows that the number of qubits initialized by the scheme is rather smaller than expected from the von Neumann entropy because of an increase in the sum of the binary entropies of individual qubits, which indicates a growth in the total classical correlation. This result--namely, that there is such a significant growth in the total binary entropy--disagrees with that of their analysis.

  11. Understanding the NMR properties and conformational behavior of indole vs. azaindole group in protoberberines: NICS and NCS analysis

    NASA Astrophysics Data System (ADS)

    Kadam, Shivaji S.; Toušek, Jaromír; Maier, Lukáš; Pipíška, Matej; Sklenář, Vladimír; Marek, Radek

    2012-11-01

    We report here the preparation and the structural investigation into a series of 8-(indol-1-yl)-7,8-dihydroprotoberberine derivatives derived from berberine, palmatine, and coptisine. Structures of these new compounds were characterized mainly by 2D NMR spectroscopy and the conformational behavior was investigated by using methods of density-functional theory (DFT). PBE0/6-311+G** calculated NMR chemical shifts for selected derivatives correlate excellently with the experimental NMR data and support the structural conclusions drawn from the NMR experiments. An interesting role of the nitrogen atom in position N7' of the indole moiety in 8-(7-azaindol-1-yl)-7,8-dihydroprotoberberines as compared to other 8-indolyl derivatives is investigated in detail. The experimentally observed trends in NMR chemical shifts are rationalized by DFT calculations and analysis based on the nucleus-independent chemical shifts (NICS) and natural localized molecular orbitals (NLMOs).

  12. Substrate-driven conformational changes in ClC-ec1 observed by fluorine NMR

    PubMed Central

    Elvington, Shelley M; Liu, Corey W; Maduke, Merritt C

    2009-01-01

    The CLC ‘Cl− channel' family consists of both Cl−/H+ antiporters and Cl− channels. Although CLC channels can undergo large, conformational changes involving cooperativity between the two protein subunits, it has been hypothesized that conformational changes in the antiporters may be limited to small movements localized near the Cl− permeation pathway. However, to date few studies have directly addressed this issue, and therefore little is known about the molecular movements that underlie CLC-mediated antiport. The crystal structure of the Escherichia coli antiporter ClC-ec1 provides an invaluable molecular framework, but this static picture alone cannot depict the protein movements that must occur during ion transport. In this study we use fluorine nuclear magnetic resonance (NMR) to monitor substrate-induced conformational changes in ClC-ec1. Using mutational analysis, we show that substrate-dependent 19F spectral changes reflect functionally relevant protein movement occurring at the ClC-ec1 dimer interface. Our results show that conformational change in CLC antiporters is not restricted to the Cl− permeation pathway and show the usefulness of 19F NMR for studying conformational changes in membrane proteins of known structure. PMID:19745816

  13. Analysis of multiple pulse NMR in solids. III

    NASA Technical Reports Server (NTRS)

    Burum, D. P.; Rhim, W. K.

    1979-01-01

    The paper introduces principles which greatly simplify the process of designing and analyzing compound pulse cycles. These principles are demonstrated by applying them to the design and analysis of several cycles, including a 52-pulse cycle; this pulse cycle combines six different REV-8 cycles and has substantially more resolving power than previously available techniques. Also, a new 24-pulse cycle is introduced which combines three different REV-8 cycles and has a resolving ability equivalent to that of the 52-pulse cycle. The principle of pulse-cycle decoupling provides a method for systematically combining pulse groups into compound cycles in order to achieve enhanced performance. This method is illustrated by a logical development from the two-pulse solid echo sequence to the WAHUHA (Waugh et al., 1968), the REV-8, and the new 24-pulse and 52-pulse cycles, along with the 14-pulse and 12-pulse cycles. Proton chemical shift tensor components for several organic solids, measured by using the 52-pulse cycle, are reported without detailed discussion.

  14. TANKS 18 AND 19-F STRUCTURAL FLOWABLE GROUT FILL MATERIAL EVALUATION AND RECOMMENDATIONS

    SciTech Connect

    Stefanko, D.; Langton, C.

    2011-11-01

    Cementitious grout will be used to close Tanks 18-F and 19-F. The functions of the grout are to: (1) physically stabilize the final landfill by filling the empty volume in the tanks with a non compressible material; (2) provide a barrier for inadvertent intrusion into the tank; (3) reduce contaminant mobility by (a) limiting the hydraulic conductivity of the closed tank and (b) reducing contact between the residual waste and infiltrating water; and (4) providing an alkaline, chemically reducing environment in the closed tank to control speciation and solubility of selected radionuclides. The objective of this work was to identify a single (all-in-one) grout to stabilize and isolate the residual radionuclides in the tank, provide structural stability of the closed tank and serve as an inadvertent intruder barrier. This work was requested by V. A. Chander, High Level Waste (HLW) Tank Engineering, in HLW-TTR-2011-008. The complete task scope is provided in the Task Technical and QA Plan, SRNL-RP-2011-00587 Revision 0. The specific objectives of this task were to: (1) Identify new admixtures and dosages for formulating a zero bleed flowable tank fill material selected by HLW Tank Closure Project personnel based on earlier tank fill studies performed in 2007. The chemical admixtures used for adjusting the flow properties needed to be updated because the original admixture products are no longer available. Also, the sources of cement and fly ash have changed, and Portland cements currently available contain up to 5 wt. % limestone (calcium carbonate). (2) Prepare and evaluate the placement, compressive strength, and thermal properties of the selected formulation with new admixture dosages. (3) Identify opportunities for improving the mix selected by HLW Closure Project personnel and prepare and evaluate two potentially improved zero bleed flowable fill design concepts; one based on the reactor fill grout and the other based on a shrinkage compensating flowable fill mix

  15. Binary channels of the {sup 19}F-on-{sup 12}C reaction at 92 MeV

    SciTech Connect

    Aissaoui, N.; Haas, F.; Freeman, R.M.; Beck, C.; Morsad, A.; Djerroud, B.; Caplar, R.; Hachem, A.

    1997-01-01

    Binary-reaction channels of {sup 19}F+{sup 12}C have been studied at E{sub lab}({sup 19}F)=92 MeV using kinematic coincidence techniques. The results are discussed in the light of previous inclusive measurements performed at the same incident energy and for which the occurrence of an important incomplete fusion mechanism after projectile breakup was proposed. Evidence for strong damped binary, especially quasisymmetric, decay processes is found. {copyright} {ital 1997} {ital The American Physical Society}

  16. An overview of the 19F(p,α0)16 O reaction with direct methods

    NASA Astrophysics Data System (ADS)

    Dell’Aquila, D.; Lombardo, I.

    2016-04-01

    The study of the 19F(p,α)16O reaction at low energy is important both for Nuclear Structure and Astrophysics. Despite of its importance, the S-factor of this reaction is poorly known, especially at astrophysical energies. We present an overview of the 19F(p,α0)16O reaction cross section, as obtained from recent direct measurements and from published works in the literature. We include in the systematic also data from an unpublished work, where several excitation functions and angular distributions for α0 and απ channels are reported.

  17. Field-induced periodic distortions in a nematic liquid crystal: deuterium NMR study and theoretical analysis.

    PubMed

    Sugimura, A; Zakharov, A V

    2011-08-01

    The peculiarities in the dynamic of the director reorientation in a liquid crystal (LC) film under the influence of the electric E field directed at an angle α to the magnetic B field have been investigated both experimentally and theoretically. Time-resolved deuterium NMR spectroscopy is employed to investigate the field-induced director dynamics. Analysis of the experimental results, based on the predictions of hydrodynamic theory including both the director motion and fluid flow, provides an evidence for the appearance of the spatially periodic patterns in 4-n-pentyl-4'-cyanobiphenyl LC film, at the angles α>60∘, in response to the suddenly applied E. These periodic distortions produce a lower effective rotational viscosity. This gives a faster response of the director rotation than for a uniform mode, as observed in our NMR experiment. PMID:21929001

  18. Mathematical Modeling and Data Analysis of NMR Experiments using Hyperpolarized 13C Metabolites

    PubMed Central

    Pagès, Guilhem; Kuchel, Philip W.

    2013-01-01

    Rapid-dissolution dynamic nuclear polarization (DNP) has made significant impact in the characterization and understanding of metabolism that occurs on the sub-minute timescale in several diseases. While significant efforts have been made in developing applications, and in designing rapid-imaging radiofrequency (RF) and magnetic field gradient pulse sequences, very few groups have worked on implementing realistic mathematical/kinetic/relaxation models to fit the emergent data. The critical aspects to consider when modeling DNP experiments depend on both nuclear magnetic resonance (NMR) and (bio)chemical kinetics. The former constraints are due to the relaxation of the NMR signal and the application of ‘read’ RF pulses, while the kinetic constraints include the total amount of each molecular species present. We describe the model-design strategy we have used to fit and interpret our DNP results. To our knowledge, this is the first report on a systematic analysis of DNP data. PMID:25114541

  19. Analysis of the extracts of Isatis tinctoria by new analytical approaches of HPLC, MS and NMR.

    PubMed

    Zhou, Jue; Qu, Fan

    2011-01-01

    The methods of extraction, separation and analysis of alkaloids and indole glucosinolates (GLs) ofIsatis tinctoria were reviewed. Different analytical approaches such as High-pressure Liquid Chromatography (HPLC), Liquid Chromatography with Electrospray Ionization Mass Spectrometry (LC/ESI/MS), Electrospray Ionization Time-Of-Flight Mass Spectrometry (ESI-TOF-MS), and Nuclear Magnetic Resonance (NMR) were used to validate and identity of these constituents. These methods provide rapid separation, identification and quantitative measurements of alkaloids and GLs of Isatis tinctoria. By connection with different detectors to HPLC such as PDA, ELSD, ESI- and APCI-MS in positive and negative ion modes, complicated compounds could be detected with at least two independent detection modes. The molecular formula can be derived in a second step of ESI-TOF-MS data. But for some constituents, UV and MS cannot provide sufficient structure identification. After peak purification, NMR by semi-preparative HPLC can be used as a complementary method. PMID:22754056

  20. NMR bioreactor development for live in-situ microbial functional analysis

    SciTech Connect

    Majors, Paul D.; Mclean, Jeffrey S.; Scholten, Johannes C.

    2008-05-01

    A live in-situ metabolomics capability was developed for prokaryotic cultures under controlled-growth conditions. Toward this goal, a radiofrequency-transparent bioreactor was developed and integrated with a commercial wide-bore nuclear magnetic resonance (NMR) imaging spectrometer and a commercial bioreactor controller. Water suppressed 1H NMR spectroscopy was used to monitor glucose and fructose utilization and byproduct excretion by Eubacterium aggregans (an anaerobic bacterial species relevant for biofuels production) under controlled batch and continuous culture conditions. The resulting metabolite profiles (short chain organic acids and ethanol) and trends are consistent with existing knowledge of its metabolism. However, our study showed the Eubacterium aggregans produces lactate end product in significant concentrations – a result not previously reported. The advantages of live in-situ microbial metabolomics analysis and its complementariness with functional genomics / systems biology methods are discussed.

  1. New direct 11B NMR-based analysis of organoboranes through their potassium borohydrides.

    PubMed

    Medina, Jesus R; Cruz, Gabriel; Cabrera, Carlos R; Soderquist, John A

    2003-06-13

    Representative organoborane mixtures were quantitatively converted to their borohydrides through their reaction with activated KH (KH), permitting their detailed analysis by (11)B NMR. Through the treatment of commercial KH with a THF solution of lithium aluminum hydride (LAH), a dramatic change in the surface morphology results as revealed by scanning electron microscopy (SEM). Energy dispersed spectroscopy (EDS) was employed to reveal that the LAH treatment deposits a significant amount of an unknown aluminum-containing species on the surface of the KH, which imparts a unique reactivity to the KH. Even highly hindered organoboranes are quantitatively converted to their borohydrides by replacing electronegative groups (e.g., OR, halogen) with hydrogen, retaining only the carbon ligation. Through this simple KH treatment, complex organoborane reaction mixtures are converted to the corresponding borohydrides whose (11)B NMR spectra normally exhibit resolved signals for the individual species present. The integration of these signals provides quantitative information on the relative amounts of each component of the mixture. New generalities for the effect of alpha-, beta-, and gamma-substituents have also been determined that provide a new, simple technique for the determination of the isomeric distribution in organoborane mixtures resulting from common organoborane processes (e.g., hydroboration). Moreover, the (1)H-coupled (11)B NMR spectra of these mixtures reveal the extent of alkylation for each species present. Representative organoboranes were examined by this new technique permitting a simple and convenient quantitative analysis of the regio- and diastereomeric composition of a variety of asymmetric organoborane processes. Previously unknown details of pinene-based hydroborations and reductions are revealed for the first time employing the KH (11)B NMR technique. PMID:12790565

  2. GUARDD: user-friendly MATLAB software for rigorous analysis of CPMG RD NMR data.

    PubMed

    Kleckner, Ian R; Foster, Mark P

    2012-01-01

    Molecular dynamics are essential for life, and nuclear magnetic resonance (NMR) spectroscopy has been used extensively to characterize these phenomena since the 1950s. For the past 15 years, the Carr-Purcell Meiboom-Gill relaxation dispersion (CPMG RD) NMR experiment has afforded advanced NMR labs access to kinetic, thermodynamic, and structural details of protein and RNA dynamics in the crucial μs-ms time window. However, analysis of RD data is challenging because datasets are often large and require many non-linear fitting parameters, thereby confounding assessment of accuracy. Moreover, novice CPMG experimentalists face an additional barrier because current software options lack an intuitive user interface and extensive documentation. Hence, we present the open-source software package GUARDD (Graphical User-friendly Analysis of Relaxation Dispersion Data), which is designed to organize, automate, and enhance the analytical procedures which operate on CPMG RD data ( http://code.google.com/p/guardd/). This MATLAB-based program includes a graphical user interface, permits global fitting to multi-field, multi-temperature, multi-coherence data, and implements χ (2)-mapping procedures, via grid-search and Monte Carlo methods, to enhance and assess fitting accuracy. The presentation features allow users to seamlessly traverse the large amount of results, and the RD Simulator feature can help design future experiments as well as serve as a teaching tool for those unfamiliar with RD phenomena. Based on these innovative features, we expect that GUARDD will fill a well-defined gap in service of the RD NMR community. PMID:22160811

  3. Investigations of adsorption sites on oxide surfaces using solid-state NMR and TPD-IGC

    NASA Astrophysics Data System (ADS)

    Golombeck, Rebecca A.

    diameters and thermal histories. The bulk structural features in both compositions of glass fibers were identified using high-resolution 29Si, 27Al, and 11B magic-angle spinning (MAS) NMR spectroscopic measurements. In multi-component glasses, the determination of silicon, aluminum, and boron distributions becomes difficult due to the competitive nature of the network-modifying oxides among the network-forming oxides. In pure silicates, 29Si MAS NMR can often resolve resonances arising from silicate tetrahedron having varying numbers of bridging oxygens. In aluminoborosilicate glasses, aluminum is present in four-, five-, and six- coordination with oxygen as neighbors. The speciation of the aluminum can be determined using 27Al MAS NMR. The fraction of tetrahedral boron species in the glass fibers were measured using 11B MAS NMR, which is typically used to study the short-range structure of borate containing glasses such as alkali borate, borosilicate, and aluminoborosilicate glasses. While solid-state NMR is a powerful tool for elucidating bonding environments and coordination changes in the glass structure, it cannot quantitatively probe low to moderate surface area samples due to insufficient spins. Chemical probes either physisorbed or chemisorbed to the fiber's surface can increase the surface selectivity of NMR for analysis of samples with low surface areas and provide information about the local molecular structure of the reactive surface site. Common chemical probe molecules contain NMR active nuclei such as 19F or may be enriched with 13C. A silyating agent, (3,3,3-trifluoropropyl)dimethylchlorosilane (TFS), reacts with reactive surface hydroxyls, which can be quantified by utilizing the NMR active nucleus (19F) contained in the probe molecule. The observed 19F MAS NMR peak area is integrated and compared against a standard of known fluorine spins (concentration), allowing the number of reactive hydroxyl sites to be quantified. IGC is a method used to study the

  4. Constraints on low-mass WIMP interactions on 19F from PICASSO

    NASA Astrophysics Data System (ADS)

    Archambault, S.; Behnke, E.; Bhattacharjee, P.; Bhattacharya, S.; Dai, X.; Das, M.; Davour, A.; Debris, F.; Dhungana, N.; Farine, J.; Gagnebin, S.; Giroux, G.; Grace, E.; Jackson, C. M.; Kamaha, A.; Krauss, C.; Kumaratunga, S.; Lafrenière, M.; Laurin, M.; Lawson, I.; Lessard, L.; Levine, I.; Levy, C.; MacDonald, R. P.; Marlisov, D.; Martin, J.-P.; Mitra, P.; Noble, A. J.; Piro, M.-C.; Podviyanuk, R.; Pospisil, S.; Saha, S.; Scallon, O.; Seth, S.; Starinski, N.; Stekl, I.; Wichoski, U.; Xie, T.; Zacek, V.

    2012-05-01

    Recent results from the PICASSO dark matter search experiment at SNOLAB are reported. These results were obtained using a subset of 10 detectors with a total target mass of 0.72 kg of 19F and an exposure of 114 kgd. The low backgrounds in PICASSO allow recoil energy thresholds as low as 1.7 keV to be obtained which results in an increased sensitivity to interactions from Weakly Interacting Massive Particles (WIMPs) with masses below 10 GeV/c2. No dark matter signal was found. Best exclusion limits in the spin dependent sector were obtained for WIMP masses of 20 GeV/c2 with a cross section on protons of σpSD=0.032 pb (90% C.L.). In the spin independent sector close to the low mass region of 7 GeV/c2 favoured by CoGeNT and DAMA/LIBRA, cross sections larger than σpSI=1.41×10-4 pb (90% C.L.) are excluded.

  5. High-Resolution Quantitative Metabolome Analysis of Urine by Automated Flow Injection NMR

    PubMed Central

    2013-01-01

    Metabolism is essential to understand human health. To characterize human metabolism, a high-resolution read-out of the metabolic status under various physiological conditions, either in health or disease, is needed. Metabolomics offers an unprecedented approach for generating system-specific biochemical definitions of a human phenotype through the capture of a variety of metabolites in a single measurement. The emergence of large cohorts in clinical studies increases the demand of technologies able to analyze a large number of measurements, in an automated fashion, in the most robust way. NMR is an established metabolomics tool for obtaining metabolic phenotypes. Here, we describe the analysis of NMR-based urinary profiles for metabolic studies, challenged to a large human study (3007 samples). This method includes the acquisition of nuclear Overhauser effect spectroscopy one-dimensional and J-resolved two-dimensional (J-Res-2D) 1H NMR spectra obtained on a 600 MHz spectrometer, equipped with a 120 μL flow probe, coupled to a flow-injection analysis system, in full automation under the control of a sampler manager. Samples were acquired at a throughput of ∼20 (or 40 when J-Res-2D is included) min/sample. The associated technical analysis error over the full series of analysis is 12%, which demonstrates the robustness of the method. With the aim to describe an overall metabolomics workflow, the quantification of 36 metabolites, mainly related to central carbon metabolism and gut microbial host cometabolism, was obtained, as well as multivariate data analysis of the full spectral profiles. The metabolic read-outs generated using our analytical workflow can therefore be considered for further pathway modeling and/or biological interpretation. PMID:23718684

  6. Conformation of succinic acid: its pH dependence by Licry-NMR analysis

    NASA Astrophysics Data System (ADS)

    Chidichimo, G.; Formoso, P.; Golemme, A.; Imbardelli, D.

    The conformations of fully protonated (H2SA), fully deprotonated (SA=) and monoprotonated (HSA-) succinic acid have been investigated by means of nuclear magnetic resonance spectroscopy in liquid crystal mesophases (Licry-NMR). H-H and 13C-H direct dipolar couplings have been determined by measuring 1H-NMR and 13C-NMR spectra from quaternary nematic-lyotropic solutions of myristyltrimethylammonium bromide (MTAB), decanol, deuterated water and succinic acid (in each of its three different protonated forms). Direct dipolar couplings have been used to investigate the conformational equilibrium of the molecule in its three different protonation forms. Data could be interpreted in terms of a single conformation for each of the investigated forms. The dihedral angle between the H3-C5'-C5 and the C5'-C5-H1 planes gradually increases when going from the fully protonated H2SA species to the SA= ions. Our findings are different from those obtained by other authors by analysis of Jij couplings. In that case an equilibrium conformation between the gauche and trans conformers had been obtained.

  7. Fractional order analysis of Sephadex gel structures: NMR measurements reflecting anomalous diffusion

    NASA Astrophysics Data System (ADS)

    Magin, Richard L.; Akpa, Belinda S.; Neuberger, Thomas; Webb, Andrew G.

    2011-12-01

    We report the appearance of anomalous water diffusion in hydrophilic Sephadex gels observed using pulse field gradient (PFG) nuclear magnetic resonance (NMR). The NMR diffusion data was collected using a Varian 14.1 Tesla imaging system with a home-built RF saddle coil. A fractional order analysis of the data was used to characterize heterogeneity in the gels for the dynamics of water diffusion in this restricted environment. Several recent studies of anomalous diffusion have used the stretched exponential function to model the decay of the NMR signal, i.e., exp[-( bD) α], where D is the apparent diffusion constant, b is determined the experimental conditions (gradient pulse separation, durations and strength), and α is a measure of structural complexity. In this work, we consider a different case where the spatial Laplacian in the Bloch-Torrey equation is generalized to a fractional order model of diffusivity via a complexity parameter, β, a space constant, μ, and a diffusion coefficient, D. This treatment reverts to the classical result for the integer order case. The fractional order decay model was fit to the diffusion-weighted signal attenuation for a range of b-values (0 < b < 4000 s mm -2). Throughout this range of b values, the parameters β, μ and D, were found to correlate with the porosity and tortuosity of the gel structure.

  8. Filtering and parameter estimation of surface-NMR data using singular spectrum analysis

    NASA Astrophysics Data System (ADS)

    Ghanati, Reza; Kazem Hafizi, Mohammad; Mahmoudvand, Rahim; Fallahsafari, Mahdi

    2016-07-01

    Ambient electromagnetic interferences at the site of investigation often degrade the signal quality of the Surface-NMR measurements leading to inaccurate estimation of the signal parameters. This paper proposes a new powerful de-noising method based on singular spectrum analysis (SSA), which is a nonparametric method for analyzing time series. SSA is a relatively simple method and can be understood using basic algebra notations. Singular value decomposition (SVD) plays a crucial role in SSA. As the length of recordings increases, the computational time required for computing SVD raises which restricts the usage of SSA in long-term time series. In order to overcome this drawback, we propose a randomized version of the singular value decomposition to accelerate the decomposition step of the algorithm. To evaluate the performance of the proposed strategy, the method is tested on synthetic signals corrupted by both simulated noise (including Gaussian white noise, spiky events and harmonic noise) and real noise recordings obtained from surface-NMR field surveys and a real data set. Our results show that the proposed algorithm can enhance the signal to noise ratio significantly, and gives an improvement in estimation of the surface-NMR signal parameters.

  9. Structural Analysis of Protein-RNA Complexes in Solution Using NMR Paramagnetic Relaxation Enhancements.

    PubMed

    Hennig, Janosch; Warner, Lisa R; Simon, Bernd; Geerlof, Arie; Mackereth, Cameron D; Sattler, Michael

    2015-01-01

    Biological activity in the cell is predominantly mediated by large multiprotein and protein-nucleic acid complexes that act together to ensure functional fidelity. Nuclear magnetic resonance (NMR) spectroscopy is the only method that can provide information for high-resolution three-dimensional structures and the conformational dynamics of these complexes in solution. Mapping of binding interfaces and molecular interactions along with the characterization of conformational dynamics is possible for very large protein complexes. In contrast, de novo structure determination by NMR becomes very time consuming and difficult for protein complexes larger than 30 kDa as data are noisy and sparse. Fortunately, high-resolution structures are often available for individual domains or subunits of a protein complex and thus sparse data can be used to define their arrangement and dynamics within the assembled complex. In these cases, NMR can therefore be efficiently combined with complementary solution techniques, such as small-angle X-ray or neutron scattering, to provide a comprehensive description of the structure and dynamics of protein complexes in solution. Particularly useful are NMR-derived paramagnetic relaxation enhancements (PREs), which provide long-range distance restraints (ca. 20Å) for structural analysis of large complexes and also report on conformational dynamics in solution. Here, we describe the use of PREs from sample production to structure calculation, focusing on protein-RNA complexes. On the basis of recent examples from our own research, we demonstrate the utility, present protocols, and discuss potential pitfalls when using PREs for studying the structure and dynamic features of protein-RNA complexes. PMID:26068746

  10. (19)F(α,n) thick target yield from 3.5 to 10.0 MeV.

    PubMed

    Norman, E B; Chupp, T E; Lesko, K T; Grant, P J; Woodruff, G L

    2015-09-01

    Using a target of PbF2, the thick-target yield from the (19)F(α,n) reaction was measured from E(α)=3.5-10 MeV. From these results, we infer the thick-target neutron yields from targets of F2 and UF6 over this same alpha-particle energy range. PMID:26115205

  11. Mapping phosphorylation rate of fluoro-deoxy-glucose in rat brain by 19F chemical shift imaging

    PubMed Central

    Coman, Daniel; Sanganahalli, Basavaraju G.; Cheng, David; McCarthy, Timothy; Rothman, Douglas L.; Hyder, Fahmeed

    2014-01-01

    19F magnetic resonance spectroscopy (MRS) studies of 2-fluoro-2-deoxy-D-glucose (FDG) and 2-fluoro-2-deoxy-D-glucose-6-phosphate (FDG-6P) can be used for directly assessing total glucose metabolism in vivo. To date, 19F MRS measurements of FDG phosphorylation in the brain have either been achieved ex vivo from extracted tissue or in vivo by unusually long acquisition times. Electrophysiological and functional magnetic resonance imaging (fMRI) measurements indicate that FDG doses up to 500mg/kg can be tolerated with minimal side effects on cerebral physiology and evoked fMRI-BOLD responses to forepaw stimulation. In halothane-anesthetized rats, we report localized in vivo detection and separation of FDG and FDG-6P MRS signals with 19F 2D chemical shift imaging (CSI) at 11.7T. A metabolic model based on reversible transport between plasma and brain tissue, which included a non-saturable plasma to tissue component, was used to calculate spatial distribution of FDG and FDG-6P concentrations in rat brain. In addition, spatial distribution of rate constants and metabolic fluxes of FDG to FDG-6P conversion were estimated. Mapping the rate of FDG to FDG-6P conversion by 19F CSI provides an MR methodology that could impact other in vivo applications such as characterization of tumor pathophysiology. PMID:24581725

  12. Energy dependence of fission fragment angular distributions for 19F, 24Mg and 28Si induced reactions on 208Pb

    NASA Astrophysics Data System (ADS)

    Tsang, M. B.; Utsunomiya, H.; Gelbke, C. K.; Lynch, W. G.; Back, B. B.; Saini, S.; Baisden, P. A.; McMahan, M. A.

    1983-09-01

    The energy dependence of fission fragment angular distributions was measured for reaction induced by 19F, 24Mg, and 28Si on 208Pb over the range of incident energies of {E}/{A} = 5.6-10 MeV. For all three systems the angular distributions are inconsistent with the saddle point deformations of the rotating liquid drop model.

  13. Angular Distribution and Angular Dispersion in Collision of 19F+27Al at 114 MeV

    NASA Astrophysics Data System (ADS)

    Wang, Qi; Dong, Yu-Chuan; Li, Song-Lin; Duan, Li-Min; Xu, Hu-Shan; Xu, Hua-Gen; Chen, Ruo-Fu; Wu, He-Yu; Han, Jian-Long; Li, Zhi-Chang; Lu, Xiu-Qin; Zhao, Kui; Liu, Jian-Cheng; Sergey, Yu-Kun

    2004-10-01

    Angular distributions of fragments B, C, N, O, F, Ne, Na, Mg and Al induced by the collision of 19F+27Al at 114 MeV have been measured. Angular dispersion parameters are extracted from the experimental data and compared with the theoretical ones. The dynamic dispersions for dissipative products depend strongly on the charge number Z of the fragments.

  14. Impact of Zeolite Transferred from Tank 19F to Tank 18F on DWPF Vitrification of Sludge Batch 3

    SciTech Connect

    Jantzen, C.M.

    2004-01-07

    The Defense Waste Processing Facility (DWPF) is planning to initiate vitrification of Sludge Batch 3 (SB3) in combination with Sludge Batch 2 (SB2) in the spring of 2004. The contents of Sludge Batch 3 will be a mixture of the heel remaining from Sludge Batch 1B, sludge from Tank 7F (containing coal, sand, and sodium oxalate), and sludge materials from Tank 18F. The sludge materials in Tank 18F contain part of a mound of zeolitic material transferred there from Tank 19F. This mound was physically broken up and transfers were made from Tank 19F to Tank 18F for vitrification into SB3. In addition, excess Pu and Am/Cm materials were transferred to Tank 51H to be processed through the DWPF as part of SB3. Additional Pu material and a Np stream from the Canyons are also planned to be added to SB3 before processing of this batch commences at DWPF. The primary objective of this task was to assess the impacts of the excess zeolite mound material in Tank 19F on the predicted glass and processing properties of interest when the zeolite becomes part of SB3. The two potential impacts of the Tank 19F zeolite mound on DWPF processing relates to (1) the samples taken for determination of the acceptability of a macrobatch of DWPF feed and (2) the achievable waste loading. The potential effects of the large size of the zeolite particles found in the Tank 19F solids, as reported in this study, are considered minimal for processing of SB3 in DWPF. Other findings about the zeolite conversion mechanism via a process of Ostwald ripening are discussed in the text and in the conclusions.

  15. Evidence for the importance of 5'-deoxy-5-fluorouridine catabolism in humans from 19F nuclear magnetic resonance spectrometry.

    PubMed

    Malet-Martino, M C; Armand, J P; Lopez, A; Bernadou, J; Béteille, J P; Bon, M; Martino, R

    1986-04-01

    The use of a new methodology, 19F nuclear magnetic resonance, has allowed detection of all the fluorinated metabolites in the biofluids of patients treated with 5'-deoxy-5-fluorouridine (5'-dFUrd) injected i.v. at a dose of 10 g/m2 over 6 h. This technique, which requires no labeled drug, allows a direct study of the biological sample with no need for extraction or derivatization and a simultaneous identification and quantitation of all the different fluorinated metabolites. As well as the already known metabolites, unmetabolized 5'-dFUrd, 5-fluorouracil, and 5,6-dihydro-5-fluorouracil, the presence of alpha-fluoro-beta-ureidopropionic acid, alpha-fluoro-beta-alanine (FBAL), N-carboxy-alpha-fluoro-beta-alanine, and the fluoride anion F- is reported. The catabolic pathway proposed for 5'-dFUrd is analogous to that of 5-fluorouracil, completed with FBAL----F- step, and the plasmatic equilibrium of FBAL with N-carboxy-alpha-fluoro-beta-alanine, its N-carboxy derivative. The quantitative analysis of the different metabolites found in plasma and urine emphasizes the significance of the catabolic pathway. High concentrations of alpha-fluoro-beta ureidopropionic acid and FBAL are recovered in plasma from 3 h after the beginning of the perfusion to 1 h after its end. The global urinary excretion results show that there is a high excretion of 5'-dFUrd and metabolites. Unchanged 5'-dFUrd and FBAL are by far the major excretory products and are at nearly equal rates. The protocol followed in this study produces relatively low but persistent plasmatic concentrations of 5-fluorouracil throughout the perfusion. PMID:2936452

  16. DFT molecular modeling and NMR conformational analysis of a new longipinenetriolone diester

    NASA Astrophysics Data System (ADS)

    Cerda-García-Rojas, Carlos M.; Guerra-Ramírez, Diana; Román-Marín, Luisa U.; Hernández-Hernández, Juan D.; Joseph-Nathan, Pedro

    2006-05-01

    The structure and conformational behavior of the new natural compound (4 R,5 S,7 S,8 R,9 S,10 R,11 R)-longipin-2-en-7,8,9-triol-1-one 7-angelate-9-isovalerate (1) isolated from Stevia eupatoria, were studied by molecular modeling and NMR spectroscopy. A Monte Carlo search followed by DFT calculations at the B3LYP/6-31G* level provided the theoretical conformations of the sesquiterpene framework, which were in full agreement with results derived from the 1H- 1H coupling constant analysis.

  17. 19F nuclear magnetic resonance as a probe of the spatial relationship between the heme iron of cytochrome P-450 and its substrate.

    PubMed

    Crull, G B; Kennington, J W; Garber, A R; Ellis, P D; Dawson, J H

    1989-02-15

    The distance between the heme iron of ferrous cytochrome P-450-CAM and a fluorine label attached to the 9-methyl carbon of its substrate, (1R)-(+)-camphor, has been determined using 19F NMR. This investigation uses the Solomon-Bloembergen equation to measure the distance from a paramagnetic heme iron to a fluorine probe incorporated into a substrate that is not in fast exchange. The structural identity of the substrate analogue, 9-fluorocamphor, has been established using one- and two-dimensional NMR methods and mass spectrometry. The relaxation rate of 9-fluorocamphor bound to high-spin paramagnetic ferrous P-450-CAM has been studied at 188, 282, and 376 MHz, and the correlation time has been directly determined from the frequency dependence of the relaxation rate. When the substrate analogue was bound to the low-spin diamagnetic ferrous-CO derivative of the enzyme, the relaxation rate was found to be 100 times slower and was therefore neglected in the distance calculation. The relaxation data for the paramagnetic system and the correlation time have been used to calculate a distance of 3.8 A between the heme iron and the C-9 fluoride. A fit of the distance and the chemical shift data to the pseudocontact shift equation predicts an angle of approximately 52 degrees between the heme normal and the Fe-F vector. The solution state Fe-F distance is somewhat shorter and the angle between the heme normal and the Fe-F vector slightly larger for the substrate-bound ferrous enzyme reported herein than the analogous values for the substrate-bound ferric enzyme determined in the solid state by x-ray crystallography. These differences may reflect a structural change at the substrate-binding site upon reduction of the iron. PMID:2914926

  18. Combined Analysis of Stable Isotope, (1)H NMR, and Fatty Acid To Verify Sesame Oil Authenticity.

    PubMed

    Kim, Jeongeun; Jin, Gyungsu; Lee, Yunhee; Chun, Hyang Sook; Ahn, Sangdoo; Kim, Byung Hee

    2015-10-14

    The aim of this study was to verify the authenticity of sesame oils using combined analysis of stable isotope ratio, (1)H NMR spectroscopy, and fatty acid profiles of the oils. Analytical data were obtained from 35 samples of authentic sesame oils and 29 samples of adulterated sesame oils currently distributed in Korea. The orthogonal projection to latent structure discriminant analysis technique was used to select variables that most effectively verify the sesame oil authenticity. The variables include δ(13)C value, integration values of NMR peaks that signify the CH3 of n-3 fatty acids, CH2 between two C═C, protons from sesamin/sesamolin, and 18:1n-9, 18:3n-3, 18:2t, and 18:3t content values. The authenticity of 65 of 70 blind samples was correctly verified by applying the range of the eight variables found in the authentic sesame oil samples, suggesting that triple analysis is a useful approach to verify sesame oil authenticity. PMID:26395416

  19. Quantitative analysis of polymer mixtures in solution by pulsed field-gradient spin echo NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Van Lokeren, Luk; Ben Sassi, Hanen; Van Assche, Guy; Ribot, François

    2013-06-01

    Pulsed Field-Gradient Spin Echo (PGSE) NMR, which associates to a spectral dimension the measure of diffusion coefficients, is a convenient technique for mixture analysis. Unfortunately, because of relaxation, the quantification of mixtures by PGSE NMR is far from straightforward for mixtures with strong spectral overlap. Antalek (J. Am. Chem. Soc. 128 (2006) 8402-8403) proposed a quantification strategy based on DECRA analysis and extrapolation to zero of the diffusion delay. More recently, Barrère et al. (J. Magn. Reson. 216 (2012) 201-208) presented a new strategy based also on DECRA and on the renormalization of the intensities using estimates of the T1 and T2 relaxation times. Here we report an alternative quantification approach in which the fractions are obtained by analyzing the PGSE attenuation profile with a general Stejskal-Tanner equation that explicitly includes the relaxation effects. The required values of T1 and T2 relaxation times are either independently measured with conventional sequences or determined, along with the fractions and the diffusion coefficients, from the simultaneous analysis of up to 6 PGSE data sets recorded with different diffusion delays. This method yields errors lower than 3% for the fractions, even for complete spectral overlap, as demonstrated on model binary and ternary mixtures of polystyrene in the case of a convection compensating double stimulated echo (DSTE) sequence.

  20. Quantitative analysis of deuterium using the isotopic effect on quaternary (13)C NMR chemical shifts.

    PubMed

    Darwish, Tamim A; Yepuri, Nageshwar Rao; Holden, Peter J; James, Michael

    2016-07-13

    Quantitative analysis of specifically deuterated compounds can be achieved by a number of conventional methods, such as mass spectroscopy, or by quantifying the residual (1)H NMR signals compared to signals from internal standards. However, site specific quantification using these methods becomes challenging when dealing with non-specifically or randomly deuterated compounds that are produced by metal catalyzed hydrothermal reactions in D2O, one of the most convenient deuteration methods. In this study, deuterium-induced NMR isotope shifts of quaternary (13)C resonances neighboring deuterated sites have been utilized to quantify the degree of isotope labeling of molecular sites in non-specifically deuterated molecules. By probing (13)C NMR signals while decoupling both proton and deuterium nuclei, it is possible to resolve (13)C resonances of the different isotopologues based on the isotopic shifts and the degree of deuteration of the carbon atoms. We demonstrate that in different isotopologues, the same quaternary carbon, neighboring partially deuterated carbon atoms, are affected to an equal extent by relaxation. Decoupling both nuclei ((1)H, (2)H) resolves closely separated quaternary (13)C signals of the different isotopologues, and allows their accurate integration and quantification under short relaxation delays (D1 = 1 s) and hence fast accumulative spectral acquisition. We have performed a number of approaches to quantify the deuterium content at different specific sites to demonstrate a convenient and generic analysis method for use in randomly deuterated molecules, or in cases of specifically deuterated molecules where back-exchange processes may take place during work up. PMID:27237841

  1. Self-Assembly of Peptide Amphiphiles Designed as Imaging Probes for 19F and Relaxation-Enhanced 1H imaging

    NASA Astrophysics Data System (ADS)

    Preslar, Adam Truett

    This work incorporates whole-body imaging functionality into peptide amphiphile (PA) nanostructures used for regenerative medicine to facilitate magnetic resonance imaging (MRI). Two strategies were employed: 1. Conjugation of gadolinium chelates to peptide nanostructures to monitor biomaterial degradation in vivo with MRI and inductively-coupled plasma-mass spectroscopy (ICP-MS) 2. Synthesis of perfluorinated moiety-bearing peptide amphiphiles for 19F-MRI. The Gd(III) chelate gadoteridol was conjugated by copper-catalyzed "click" chemistry to a series of PAs known to form cylindrical nanostructures. By fitting nuclear magnetic resonance dispersion (NMRD) profiles to the Solomon-Bloembergen-Morgan (SBM) equations, it was observed that the water exchange parameter (tauM) depended on thermal annealing or calcium ion cross-linking. The sequence C16V 3A3E3G(Gd) exhibited an acceleration of nearly 100 ns after thermal annealing and calcium addition. These gadolinium-labeled PAs were used to track in vivo degradation of gels within the tibialis anterior muscle in a murine model. The half-life of biomaterial degradation was determined to be 13.5 days by inductively coupled plasma mass spectrometry (ICP-MS) of Gd(III). Gel implants could be monitored by MRI for eight days before the signal dispersed due to implant degradation and dilution. Additionally, nanostructures incorporating highly fluorinated domains were investigated for use as MRI contrast agents. Short, perfluoroalkyane tails of seven or eight carbon atoms in length were grafted to PA sequences containing a V2A2 beta-sheet forming sequence. The V2A2 sequence is known to drive 1D nanostructure assembly. It was found that the sequences C7F13V2A 2E2 and C7F13V2A 2K3 formed 1D assemblies in water which transition from ribbon-like to cylindrical shape as pH increases from 4.5 to 8.0. Ribbon-like nanostructures had reduced magnetic resonance signal by T 2 relaxation quenching, whereas their cylindrical counterparts

  2. Characterization of the Tank 19F Closure Grab and Core Samples and the Tank 18F Dip Sample

    SciTech Connect

    Swingle, R.F.

    2002-05-02

    The results of analyses of the Tank 19F closure characterization samples are included herein. The samples analyzed include the two Tank 19F grab samples (FTF-075 and FTF-077) and a Tank 18F dip sample (FTF-076) taken in September 2001 and a Tank 19F core sample (FTF-118) taken in December 2001. The FTF-075 and FTF-077 grab samples were pulled from Tank 19F and the FTF-076 dip sample was pulled from Tank 18F in September 2001 as part of the characterization process for closure of Tank 19F. The samples were delivered to the Savannah River Technology Center (SRTC) Shielded Cells on September 28, 2001 and placed in the Shielded Cells on October 2, 2001. The samples were opened and both grab samples were found to contain plenty of material to allow completion of the analyses. The samples were dark and resembled marsh muck (see Figures 1 and 2). The dip sample was also found to contain plenty of material. The sample looked like muddy water (Figure 4). The FTF-118F core sample was pulled from Tank 19F in December 2001 as part of the characterization process for closure of the tank. The sample was delivered to the SRTC Shielded Cells on December 6, 2001 and placed in the Shielded Cells on December 7, 2001. The sample was opened and found to contain plenty of material to allow completion of the analyses. As evident in Figure 3, the sample resembled a somewhat drier version of the previous grab samples FTF-075 and FTF-077. A group consisting of SRTC Waste Processing Technology (WPT) section personnel and High Level Waste Engineering (HLWE) personnel viewed the sample when it was opened and came to the consensus that the sample appeared to be homogeneous. The decision was made to treat the sample as a single phase and analyze accordingly. Initially, small portions were archived from the top, middle and bottom of the sample in case it is later decided to analyze the levels of the sample separately. The analytical results from the two grab samples and the core sample were all

  3. LC-NMR Technique in the Analysis of Phytosterols in Natural Extracts.

    PubMed

    Horník, Stěpán; Sajfrtová, Marie; Karban, Jindřich; Sýkora, Jan; Březinová, Anna; Wimmer, Zdeněk

    2013-01-01

    The ability of LC-NMR to detect simultaneously free and conjugated phytosterols in natural extracts was tested. The advantages and disadvantages of a gradient HPLC-NMR method were compared to the fast composition screening using SEC-NMR method. Fractions of free and conjugated phytosterols were isolated and analyzed by isocratic HPLC-NMR methods. The results of qualitative and quantitative analyses were in a good agreement with the literature data. PMID:24455424

  4. Angular distributions and cross-sections of projectile-like fragments in the 19F + 159Tb reaction

    NASA Astrophysics Data System (ADS)

    Kumar, Amit; Tripathi, R.; Sodaye, S.; Sudarshan, K.; Pujari, P. K.

    2013-01-01

    The angular distribution of projectile-like fragments (PLFs) in the 19F + 159Tb reaction have been measured at beam energy equal to 98MeV. Angular distributions of PLFs showed a systematic change with increasing mass transfer, starting from the peaking at grazing angle for heavier PLFs to very forward peaked angular distributions for lighter PLFs. Cross-sections of the different PLFs were obtained by integrating their centre-of-mass angular distributions. The PLF cross-sections have been compared with the incomplete fusion cross-sections obtained from the earlier measurement of the evaporation residue cross-section. Reduced cross-sections for lighter PLFs were observed to be higher compared to those observed in 19F + 66Zn reaction at similar values of E cm/ V b. Also, elastic scattering measurements were carried out to get information about the grazing angle and total reaction cross-section.

  5. Probing different perfluorocarbons for in vivo inflammation imaging by 19F MRI: image reconstruction, biological half-lives and sensitivity.

    PubMed

    Jacoby, Christoph; Temme, Sebastian; Mayenfels, Friederike; Benoit, Nicole; Krafft, Marie Pierre; Schubert, Rolf; Schrader, Jürgen; Flögel, Ulrich

    2014-03-01

    Inflammatory processes can reliably be assessed by (19)F MRI using perfluorocarbons (PFCs), which is primarily based on the efficient uptake of emulsified PFCs by circulating cells of the monocyte-macrophage system and subsequent infiltration of the (19)F-labeled cells into affected tissue. An ideal candidate for the sensitive detection of fluorine-loaded cells is the biochemically inert perfluoro-15-crown-5 ether (PFCE), as it contains 20 magnetically equivalent (19)F atoms. However, the biological half-life of PFCE in the liver and spleen is extremely long, and so this substance is not suitable for future clinical applications. In the present study, we investigated alternative, nontoxic PFCs with predicted short biological half-lives and high fluorine content: perfluorooctyl bromide (PFOB), perfluorodecalin (PFD) and trans-bis-perfluorobutyl ethylene (F-44E). Despite the complex spectra of these compounds, we obtained artifact-free images using sine-squared acquisition-weighted three-dimensional chemical shift imaging and dedicated reconstruction accomplished with in-house-developed software. The signal-to-noise ratio of the images was maximized using a Nutall window with only moderate localization error. Using this approach, the retention times of the different PFCs in murine liver and spleen were determined at 9.4 T. The biological half-lives were estimated to be 9 days (PFD), 12 days (PFOB) and 28 days (F-44E), compared with more than 250 days for PFCE. In vivo sensitivity for inflammation imaging was assessed using an ear clip injury model. The alternative PFCs PFOB and F-44E provided 37% and 43%, respectively, of the PFCE intensities, whereas PFD did not show any signal in the ear model. Thus, for in vivo monitoring of inflammatory processes, PFOB emerges as the most promising candidate for possible future translation of (19)F MR inflammation imaging to human applications. PMID:24353148

  6. Extraction and [superscript 1]H NMR Analysis of Fats from Convenience Foods: A Laboratory Experiment for Organic Chemistry

    ERIC Educational Resources Information Center

    Hartel, Aaron M.; Moore, Amy C.

    2014-01-01

    The extraction and analysis of fats from convenience foods (crackers, cookies, chips, candies) has been developed as an experiment for a second-year undergraduate organic chemistry laboratory course. Students gravimetrically determine the fat content per serving and then perform a [superscript 1]H NMR analysis of the recovered fat to determine the…

  7. Regioselective Hydration of an Alkene and Analysis of the Alcohol Product by Remote Access NMR: A Classroom Demonstration

    ERIC Educational Resources Information Center

    Smith, Maureen E.; Johnson, Sara L.; Masterson, Douglas S.

    2013-01-01

    A two-part demonstration was conducted in our first-semester organic chemistry course designed to introduce students to the formation of alcohols, regioselective reactions, and analysis of organic products by NMR analysis. This demonstration utilized the oxymercuration-demercuration sequence to prepare an alcohol from an alkene in a Markovnikov…

  8. Multimodal Perfluorocarbon Nanoemulsions for 19F MRI, Ultrasonography, and Catalysis of MRgFUS-Mediated Drug Delivery

    NASA Astrophysics Data System (ADS)

    Rapoport, N.; Nam, K.-H.; Christensen, D. A.; Kennedy, A. M.; Parker, D. L.; Payne, A. H.; Todd, N.; Shea, J. E.; Scaife, C. L.

    2011-09-01

    Perfluorocarbon nanoemulsions can target lipophilic therapeutic agents to solid tumors and simultaneously provide for monitoring nanocarrier biodistribution via ultrasonography and/or 19F MRI. In the first generation of block copolymer stabilized perfluorocarbon nanoemulsions, perfluoropentane (PFP) was used as the droplet forming compound. Although manifesting excellent therapeutic and ultrasound imaging properties, PFP nanoemulsions were unstable at storage, difficult to handle, and underwent droplet-to-bubble transition upon injection that was hard to control. To solve the above problems, perfluoro-15-crown-5-ether (PFCE) was used as a core forming compound in the second generation of block copolymer stabilized perfluorocarbon nanoemulsions. In the present paper, acoustic, imaging, and therapeutic properties of unloaded and paclitaxel (PTX) loaded PFCE nanoemulsions are reported. The size of paclitaxel-loaded PFCE nanodroplets (300 nm to 500 nm depending on emulsification conditions) favors their passive accumulation in tumor tissue. PFCE nanodroplets manifest both ultrasound and 19F MR contrast properties, which allows the use of multimodal imaging to monitor nanodroplet biodistribution. Ultrasonography and 19F MRI produced consistent results on nanodroplet biodistribution. Sonication with 1-MHz therapeutic ultrasound triggered reversible droplet-to-bubble transition in PFCE nanoemulsions. Microbubbles formed by acoustic vaporization underwent stable cavitation. In a pilot study on ultrasound-mediated therapy of a large breast cancer tumor, paclitaxel-loaded PFCE nanoemulsions combined with 1-MHz ultrasound (MI≥1.75) showed excellent therapeutic properties. Anticipated mechanisms of the observed effects are discussed.

  9. Structural Analysis of N- and O-glycans Using ZIC-HILIC/Dialysis Coupled to NMR Detection

    SciTech Connect

    Qu, Yi; Feng, Ju; Deng, Shuang; Cao, Li; Zhang, Qibin; Zhao, Rui; Zhang, Zhaorui; Jiang, Yuxuan; Zink, Erika M.; Baker, Scott E.; Lipton, Mary S.; Pasa-Tolic, Ljiljana; Hu, Jian Z.; Wu, Si

    2014-11-19

    Protein glycosylation, an important and complex post-translational modification (PTM), is involved in various biological processes including the receptor-ligand and cell-cell interaction, and plays a crucial role in many biological functions. However, little is known about the glycan structures of important biological complex samples, and the conventional glycan enrichment strategy (i.e., size-exclusion column [SEC] separation,) prior to nuclear magnetic resonance (NMR) detection is time-consuming and tedious. In this study, we employed SEC, Zwitterionic hydrophilic interaction liquid chromatography (ZIC-HILIC), and ZIC-HILIC coupled with dialysis strategies to enrich the glycopeptides from the pronase E digests of RNase B, followed by NMR analysis of the glycoconjugate. Our results suggest that the ZIC-HILIC enrichment coupled with dialysis is the most efficient, which was thus applied to the analysis of biological complex sample, the pronase E digest of the secreted proteins from the fungi Aspergillus niger. The NMR spectra revealed that the secreted proteins from A. niger contain both N-linked glycans with a high-mannose core and O-linked glycans bearing mannose and glucose with 1->3 and 1->6 linkages. In all, our study provides compelling evidence that ZIC-HILIC separation coupled to dialysis is superior to the commonly used SEC separation to prepare glycopeptides for the downstream NMR analysis, which could greatly facilitate the future NMR-based glycoproteomics research.

  10. Simultaneous Gaussian and exponential inversion for improved analysis of shales by NMR relaxometry.

    PubMed

    Washburn, Kathryn E; Anderssen, Endre; Vogt, Sarah J; Seymour, Joseph D; Birdwell, Justin E; Kirkland, Catherine M; Codd, Sarah L

    2015-01-01

    Nuclear magnetic resonance (NMR) relaxometry is commonly used to provide lithology-independent porosity and pore-size estimates for petroleum resource evaluation based on fluid-phase signals. However in shales, substantial hydrogen content is associated with solid and fluid signals and both may be detected. Depending on the motional regime, the signal from the solids may be best described using either exponential or Gaussian decay functions. When the inverse Laplace transform, the standard method for analysis of NMR relaxometry results, is applied to data containing Gaussian decays, this can lead to physically unrealistic responses such as signal or porosity overcall and relaxation times that are too short to be determined using the applied instrument settings. We apply a new simultaneous Gaussian-Exponential (SGE) inversion method to simulated data and measured results obtained on a variety of oil shale samples. The SGE inversion produces more physically realistic results than the inverse Laplace transform and displays more consistent relaxation behavior at high magnetic field strengths. Residuals for the SGE inversion are consistently lower than for the inverse Laplace method and signal overcall at short T2 times is mitigated. Beyond geological samples, the method can also be applied in other fields where the sample relaxation consists of both Gaussian and exponential decays, for example in material, medical and food sciences. PMID:25459882

  11. Simultaneous Gaussian and exponential inversion for improved analysis of shales by NMR relaxometry

    NASA Astrophysics Data System (ADS)

    Washburn, Kathryn E.; Anderssen, Endre; Vogt, Sarah J.; Seymour, Joseph D.; Birdwell, Justin E.; Kirkland, Catherine M.; Codd, Sarah L.

    2015-01-01

    Nuclear magnetic resonance (NMR) relaxometry is commonly used to provide lithology-independent porosity and pore-size estimates for petroleum resource evaluation based on fluid-phase signals. However in shales, substantial hydrogen content is associated with solid and fluid signals and both may be detected. Depending on the motional regime, the signal from the solids may be best described using either exponential or Gaussian decay functions. When the inverse Laplace transform, the standard method for analysis of NMR relaxometry results, is applied to data containing Gaussian decays, this can lead to physically unrealistic responses such as signal or porosity overcall and relaxation times that are too short to be determined using the applied instrument settings. We apply a new simultaneous Gaussian-Exponential (SGE) inversion method to simulated data and measured results obtained on a variety of oil shale samples. The SGE inversion produces more physically realistic results than the inverse Laplace transform and displays more consistent relaxation behavior at high magnetic field strengths. Residuals for the SGE inversion are consistently lower than for the inverse Laplace method and signal overcall at short T2 times is mitigated. Beyond geological samples, the method can also be applied in other fields where the sample relaxation consists of both Gaussian and exponential decays, for example in material, medical and food sciences.

  12. Simultaneous Gaussian and exponential inversion for improved analysis of shales by NMR relaxometry

    USGS Publications Warehouse

    Washburn, Kathryn E.; Anderssen, Endre; Vogt, Sarah J.; Seymour, Joseph D.; Birdwell, Justin E.; Kirkland, Catherine M.; Codd, Sarah L.

    2014-01-01

    Nuclear magnetic resonance (NMR) relaxometry is commonly used to provide lithology-independent porosity and pore-size estimates for petroleum resource evaluation based on fluid-phase signals. However in shales, substantial hydrogen content is associated with solid and fluid signals and both may be detected. Depending on the motional regime, the signal from the solids may be best described using either exponential or Gaussian decay functions. When the inverse Laplace transform, the standard method for analysis of NMR relaxometry results, is applied to data containing Gaussian decays, this can lead to physically unrealistic responses such as signal or porosity overcall and relaxation times that are too short to be determined using the applied instrument settings. We apply a new simultaneous Gaussian-Exponential (SGE) inversion method to simulated data and measured results obtained on a variety of oil shale samples. The SGE inversion produces more physically realistic results than the inverse Laplace transform and displays more consistent relaxation behavior at high magnetic field strengths. Residuals for the SGE inversion are consistently lower than for the inverse Laplace method and signal overcall at short T2 times is mitigated. Beyond geological samples, the method can also be applied in other fields where the sample relaxation consists of both Gaussian and exponential decays, for example in material, medical and food sciences.

  13. 2D NMR Barcoding and Differential Analysis of Complex Mixtures for Chemical Identification: The Actaea Triterpenes

    PubMed Central

    2015-01-01

    The interpretation of NMR spectroscopic information for structure elucidation involves decoding of complex resonance patterns that contain valuable molecular information (δ and J), which is not readily accessible otherwise. We introduce a new concept of 2D-NMR barcoding that uses clusters of fingerprint signals and their spatial relationships in the δ−δ coordinate space to facilitate the chemical identification of complex mixtures. Similar to widely used general barcoding technology, the structural information of individual compounds is encoded as a specifics pattern of their C,H correlation signals. Software-based recognition of these patterns enables the structural identification of the compounds and their discrimination in mixtures. Using the triterpenes from various Actaea (syn. Cimicifuga) species as a test case, heteronuclear multiple-bond correlation (HMBC) barcodes were generated on the basis of their structural subtypes from a statistical investigation of their δH and δC data in the literature. These reference barcodes allowed in silico identification of known triterpenes in enriched fractions obtained from an extract of A. racemosa (black cohosh). After dereplication, a differential analysis of heteronuclear single-quantum correlation (HSQC) spectra even allowed for the discovery of a new triterpene. The 2D barcoding concept has potential application in a natural product discovery project, allowing for the rapid dereplication of known compounds and as a tool in the search for structural novelty within compound classes with established barcodes. PMID:24673652

  14. 2D NMR barcoding and differential analysis of complex mixtures for chemical identification: the Actaea triterpenes.

    PubMed

    Qiu, Feng; McAlpine, James B; Lankin, David C; Burton, Ian; Karakach, Tobias; Chen, Shao-Nong; Pauli, Guido F

    2014-04-15

    The interpretation of NMR spectroscopic information for structure elucidation involves decoding of complex resonance patterns that contain valuable molecular information (δ and J), which is not readily accessible otherwise. We introduce a new concept of 2D-NMR barcoding that uses clusters of fingerprint signals and their spatial relationships in the δ-δ coordinate space to facilitate the chemical identification of complex mixtures. Similar to widely used general barcoding technology, the structural information of individual compounds is encoded as a specifics pattern of their C,H correlation signals. Software-based recognition of these patterns enables the structural identification of the compounds and their discrimination in mixtures. Using the triterpenes from various Actaea (syn. Cimicifuga) species as a test case, heteronuclear multiple-bond correlation (HMBC) barcodes were generated on the basis of their structural subtypes from a statistical investigation of their δH and δC data in the literature. These reference barcodes allowed in silico identification of known triterpenes in enriched fractions obtained from an extract of A. racemosa (black cohosh). After dereplication, a differential analysis of heteronuclear single-quantum correlation (HSQC) spectra even allowed for the discovery of a new triterpene. The 2D barcoding concept has potential application in a natural product discovery project, allowing for the rapid dereplication of known compounds and as a tool in the search for structural novelty within compound classes with established barcodes. PMID:24673652

  15. NMR analysis of the human saliva metabolome distinguishes dementia patients from matched controls.

    PubMed

    Figueira, João; Jonsson, Pär; Nordin Adolfsson, Annelie; Adolfsson, Rolf; Nyberg, Lars; Öhman, Anders

    2016-07-19

    Saliva is a biofluid that is sensitive to metabolic changes and is straightforward to collect in a non-invasive manner, but it is seldom used for metabolite analysis when studying neurodegenerative disorders. We present a procedure for both an untargeted and targeted analysis of the saliva metabolome in which nuclear magnetic resonance (NMR) spectroscopy is used in combination with multivariate data analysis. The applicability of this approach is demonstrated on saliva samples selected from the 25 year prospective Betula study, including samples from dementia subjects with either Alzheimer's disease (AD) or vascular dementia at the time of sampling or who developed it by the next sampling/assessment occasion five years later, and age-, gender-, and education-matched control individuals without dementia. Statistically significant multivariate models were obtained that separated patients with dementia from controls and revealed seven discriminatory metabolites. Dementia patients showed significantly increased concentrations of acetic acid (fold change (fc) = 1.25, p = 2 × 10(-5)), histamine (fc = 1.26, p = 0.019), and propionate (fc = 1.35, p = 0.002), while significantly decreased levels were observed for dimethyl sulfone (fc = 0.81, p = 0.005), glycerol (fc = 0.79, p = 0.04), taurine (fc = 0.70, p = 0.007), and succinate (fc = 0.62, p = 0.008). Histamine, succinate, and taurine are known to be important in AD, and acetic acid and glycerol are involved in related pathways. Dimethyl sulfone and propionate originate from the diet and bacterial flora and might reflect poorer periodontal status in the dementia patients. For these seven metabolites, a weak but statistically significant pre-diagnostic value was observed. Taken together, we present a robust and general NMR analysis approach for studying the saliva metabolome that has potential use for screening and early detection of dementia. PMID:27265744

  16. Combining NMR and LC/MS Using Backward Variable Elimination: Metabolomics Analysis of Colorectal Cancer, Polyps, and Healthy Controls.

    PubMed

    Deng, Lingli; Gu, Haiwei; Zhu, Jiangjiang; Nagana Gowda, G A; Djukovic, Danijel; Chiorean, E Gabriela; Raftery, Daniel

    2016-08-16

    Both nuclear magnetic resonance (NMR) spectroscopy and mass spectrometry (MS) play important roles in metabolomics. The complementary features of NMR and MS make their combination very attractive; however, currently the vast majority of metabolomics studies use either NMR or MS separately, and variable selection that combines NMR and MS for biomarker identification and statistical modeling is still not well developed. In this study focused on methodology, we developed a backward variable elimination partial least-squares discriminant analysis algorithm embedded with Monte Carlo cross validation (MCCV-BVE-PLSDA), to combine NMR and targeted liquid chromatography (LC)/MS data. Using the metabolomics analysis of serum for the detection of colorectal cancer (CRC) and polyps as an example, we demonstrate that variable selection is vitally important in combining NMR and MS data. The combined approach was better than using NMR or LC/MS data alone in providing significantly improved predictive accuracy in all the pairwise comparisons among CRC, polyps, and healthy controls. Using this approach, we selected a subset of metabolites responsible for the improved separation for each pairwise comparison, and we achieved a comprehensive profile of altered metabolite levels, including those in glycolysis, the TCA cycle, amino acid metabolism, and other pathways that were related to CRC and polyps. MCCV-BVE-PLSDA is straightforward, easy to implement, and highly useful for studying the contribution of each individual variable to multivariate statistical models. On the basis of these results, we recommend using an appropriate variable selection step, such as MCCV-BVE-PLSDA, when analyzing data from multiple analytical platforms to obtain improved statistical performance and a more accurate biological interpretation, especially for biomarker discovery. Importantly, the approach described here is relatively universal and can be easily expanded for combination with other analytical

  17. Two-dimensional NMR spectroscopy strongly enhances soil organic matter composition analysis

    NASA Astrophysics Data System (ADS)

    Soucemarianadin, Laure; Erhagen, Björn; Öquist, Mats; Nilsson, Mats; Hedenström, Mattias; Schleucher, Jürgen

    2016-04-01

    Soil organic matter (SOM) is the largest terrestrial carbon pool and strongly affects soil properties. With climate change, understanding SOM processes and turnover and how they could be affected by increasing temperatures becomes critical. This is particularly key for organic soils as they represent a huge carbon pool in very sensitive ecosystems, like boreal ecosystems and peatlands. Nevertheless, characterization of SOM molecular composition, which is essential to elucidate soil carbon processes, is not easily achieved, and further advancements in that area are greatly needed. Solid-state one-dimensional (1D) 13C nuclear magnetic resonance (NMR) spectroscopy is often used to characterize its molecular composition, but only provides data on a few major functional groups, which regroup many different molecular fragments. For instance, in the carbohydrates region, signals of all monosaccharides present in many different polymers overlap. This overlap thwarts attempts to identify molecular moieties, resulting in insufficient information to characterize SOM composition. Here we show that two-dimensional (2D) liquid-state 1H-13C NMR spectra provided much richer data on the composition of boreal plant litter and organic surface soil. The 2D spectra indeed resolved overlaps observed in 1D 13C spectra and displayed signals from hundreds of identifiable molecular groups. For example, in the aromatics region, signals from individual lignin units could be recognized. It was hence possible to follow the fate of specific structural moieties in soils. We observed differences between litter and soil samples, and were able to relate them to the decomposition of identifiable moieties. Sample preparation and data acquisition were both simple and fast. Further, using multivariate data analysis, we aimed at linking the detailed chemical fingerprints of SOM to turnover rates in a soil incubation experiment. With the multivariate models, we were able to identify specific molecular

  18. Determination of size and sign of hetero-nuclear coupling constants from 2D 19F-13C correlation spectra

    NASA Astrophysics Data System (ADS)

    Ampt, Kirsten A. M.; Aspers, Ruud L. E. G.; Dvortsak, Peter; van der Werf, Ramon M.; Wijmenga, Sybren S.; Jaeger, Martin

    2012-02-01

    Fluorinated organic compounds have become increasingly important within the polymer and the pharmaceutical industry as well as for clinical applications. For the structural elucidation of such compounds, NMR experiments with fluorine detection are of great value due to the favorable NMR properties of the fluorine nucleus. For the investigation of three fluorinated compounds, triple resonance 2D HSQC and HMBC experiments were adopted to fluorine detection with carbon and/or proton decoupling to yield F-C, F-C{H}, F-C{Cacq} and F-C{H,Cacq} variants. Analysis of E.COSY type cross-peak patterns in the F-C correlation spectra led, apart from the chemical shift assignments, to determination of size and signs of the JCH, JCF, and JHF coupling constants. In addition, the fully coupled F-C HMQC spectrum of steroid 1 was interpreted in terms of E.COSY type patterns. This example shows how coupling constants due to different nuclei can be determined together with their relative signs from a single spectrum. The analysis of cross-peak patterns, as presented here, not only provides relatively straightforward routes to the determination of size and sign of hetero-nuclear J-couplings in fluorinated compounds, it also provides new and easy ways for the determination of residual dipolar couplings and thus for structure elucidation. The examples and results presented in this study may contribute to a better interpretation and understanding of various F-C correlation experiments and thereby stimulate their utilization.

  19. Activatable 19F MRI nanoparticle probes for the detection of reducing environments.

    PubMed

    Nakamura, Tatsuya; Matsushita, Hisashi; Sugihara, Fuminori; Yoshioka, Yoshichika; Mizukami, Shin; Kikuchi, Kazuya

    2015-01-12

    (19)F magnetic resonance imaging (MRI) probes that can detect biological phenomena such as cell dynamics, ion concentrations, and enzymatic activity have attracted significant attention. Although perfluorocarbon (PFC) encapsulated nanoparticles are of interest in molecular imaging owing to their high sensitivity, activatable PFC nanoparticles have not been developed. In this study, we showed for the first time that the paramagnetic relaxation enhancement (PRE) effect can efficiently decrease the (19)F NMR/MRI signals of PFCs in silica nanoparticles. On the basis of the PRE effect, we developed a reduction-responsive PFC-encapsulated nanoparticle probe, FLAME-SS-Gd(3+) (FSG). This is the first example of an activatable PFC-encapsulated nanoparticle that can be used for in vivo imaging. Calculations revealed that the ratio of fluorine atoms to Gd(3+) complexes per nanoparticle was more than approximately 5.0×10(2), resulting in the high signal augmentation. PMID:25413833

  20. Analysis of ZDDP Content and Thermal Decomposition in Motor Oils Using NAA and NMR

    NASA Astrophysics Data System (ADS)

    Ferguson, S.; Johnson, J.; Gonzales, D.; Hobbs, C.; Allen, C.; Williams, S.

    Zinc dialkyldithiophosphates (ZDDPs) are one of the most common anti-wear additives present in commercially-available motor oils. The ZDDP concentrations of motor oils are most commonly determined using inductively coupled plasma atomic emission spectroscopy (ICP-AES). As part of an undergraduate research project, we have determined the Zn concentrations of eight commercially-available motor oils and one oil additive using neutron activation analysis (NAA), which has potential for greater accuracy and less sensitivity to matrix effects as compared to ICP-AES. The 31P nuclear magnetic resonance (31P-NMR) spectra were also obtained for several oil additive samples which have been heated to various temperatures in order to study the thermal decomposition of ZDDPs.

  1. NMR Based Cerebrum Metabonomic Analysis Reveals Simultaneous Interconnected Changes during Chick Embryo Incubation

    PubMed Central

    Feng, Yue; Zhu, Hang; Zhang, Xu; Wang, Xuxia; Xu, Fuqiang; Tang, Huiru; Ye, Chaohui; Liu, Maili

    2015-01-01

    To find out if content changes of the major functional cerebrum metabolites are interconnected and formed a network during the brain development, we obtained high-resolution magic-angle-spinning (HR-MAS) 1H NMR spectra of cerebrum tissues of chick embryo aged from incubation day 10 to 20, and postnatal day 1, and analyzed the data with principal component analysis (PCA). Within the examined time window, 26 biological important molecules were identified and 12 of them changed their relative concentration significantly in a time-dependent manner. These metabolites are generally belonged to three categories, neurotransmitters, nutrition sources, and neuronal or glial markers. The relative concentration changes of the metabolites were interconnected among/between the categories, and, more interestingly, associated with the number and size of Nissl-positive neurons. These results provided valuable biochemical and neurochemical information to understand the development of the embryonic brain. PMID:26485040

  2. Analysis of Hydroperoxides in Solid Polyethylene by MAS (13)C NMR and EPR

    SciTech Connect

    ASSINK,ROGER A.; CELINA,MATHIAS C.; DUNBAR,TIMOTHY D.; ALAM,TODD M.; CLOUGH,ROGER LEE; GILLEN,KENNETH T.

    1999-11-19

    {sup 13}C-enriched polyethylene was subjected to {gamma}-irradiation in the presence of air at 25 and 80 C for total doses ranging from 71 to 355 kGy. Significant quantities of hydroperoxides were detected in the 25 C irradiated sample by {sup 13}C magic angle spinning NMR spectroscopy. This method of detection was performed on the solid polymer and required no chemical derivatization or addition of solvent. The chemical stability and subsequent products of the hydroperoxide species were studied by annealing the irradiated samples in air at temperatures ranging from 22 to 110 C. A time-temperature superposition analysis provided an activation energy of 108 kJ/mol for the hydroperoxide decomposition process. The primary products of hydroperoxide decomposition were ketones and secondary alcohols with lesser amounts of acids and esters. EPR measurements suggest that the reactive hydroperoxide species reside in the amorphous phase of polyethylene, consistent with degradation occurring in the amorphous phase.

  3. Comprehensive triblock copolymer analysis by coupled thermal field-flow fractionation-NMR.

    PubMed

    van Aswegen, Werner; Hiller, Wolf; Hehn, Mathias; Pasch, Harald

    2013-07-12

    Thermal field-flow fractionation (ThFFF) is used as a novel fractionation technique to investigate the molecular heterogeneity of PB-b-PVP-b-PtBMA triblock copolymers. Such copolymers cause major problems in liquid chromatography due to very strong polar interactions with the stationary phase. ThFFF separates the copolymers with regard to size and/or chemical composition based on the normal and thermal diffusion coefficients. The separation mechanism in ThFFF and the chemical composition of the separated species is elucidated by online (1) H NMR. Based on the compositional analysis and a calibration of the system with the respective homopolymers, the samples are quantified regarding their molar masses, chemical compositions, and microstructures providing comprehensive information on the complex structure of these block copolymers. PMID:23722993

  4. Crystallinity and compositional changes in carbonated apatites: Evidence from {sup 31}P solid-state NMR, Raman, and AFM analysis

    SciTech Connect

    McElderry, John-David P.; Zhu, Peizhi; Mroue, Kamal H.; Xu, Jiadi; Pavan, Barbara; Fang, Ming; Zhao, Guisheng; McNerny, Erin; Kohn, David H.; Franceschi, Renny T.; Holl, Mark M.Banaszak; Tecklenburg, Mary M.J.; Ramamoorthy, Ayyalusamy; Morris, Michael D.

    2013-10-15

    Solid-state (magic-angle spinning) NMR spectroscopy is a useful tool for obtaining structural information on bone organic and mineral components and synthetic model minerals at the atomic-level. Raman and {sup 31}P NMR spectral parameters were investigated in a series of synthetic B-type carbonated apatites (CAps). Inverse {sup 31}P NMR linewidth and inverse Raman PO{sub 4}{sup 3−}ν{sub 1} bandwidth were both correlated with powder XRD c-axis crystallinity over the 0.3–10.3 wt% CO{sub 3}{sup 2−} range investigated. Comparison with bone powder crystallinities showed agreement with values predicted by NMR and Raman calibration curves. Carbonate content was divided into two domains by the {sup 31}P NMR chemical shift frequency and the Raman phosphate ν{sub 1} band position. These parameters remain stable except for an abrupt transition at 6.5 wt% carbonate, a composition which corresponds to an average of one carbonate per unit cell. This near-binary distribution of spectroscopic properties was also found in AFM-measured particle sizes and Ca/P molar ratios by elemental analysis. We propose that this transition differentiates between two charge-balancing ion-loss mechanisms as measured by Ca/P ratios. These results define a criterion for spectroscopic characterization of B-type carbonate substitution in apatitic minerals. - Graphical abstract: Carbonated apatite shows an abrupt change in spectral (NMR, Raman) and morphological (AFM) properties at a composition of about one carbonate substitution per unit cell. Display Omitted - Highlights: • Crystallinity (XRD), particle size (AFM) of carbonated apatites and bone mineral. • Linear relationships among crystallinity, {sup 31}P NMR and Raman inverse bandwidths. • Low and high carbonated apatites use different charge-balancing ion-loss mechanism.

  5. Reproducibility of NMR Analysis of Urine Samples: Impact of Sample Preparation, Storage Conditions, and Animal Health Status

    PubMed Central

    Schreier, Christina; Kremer, Werner; Huber, Fritz; Neumann, Sindy; Pagel, Philipp; Lienemann, Kai; Pestel, Sabine

    2013-01-01

    Introduction. Spectroscopic analysis of urine samples from laboratory animals can be used to predict the efficacy and side effects of drugs. This employs methods combining 1H NMR spectroscopy with quantification of biomarkers or with multivariate data analysis. The most critical steps in data evaluation are analytical reproducibility of NMR data (collection, storage, and processing) and the health status of the animals, which may influence urine pH and osmolarity. Methods. We treated rats with a solvent, a diuretic, or a nephrotoxicant and collected urine samples. Samples were titrated to pH 3 to 9, or salt concentrations increased up to 20-fold. The effects of storage conditions and freeze-thaw cycles were monitored. Selected metabolites and multivariate data analysis were evaluated after 1H NMR spectroscopy. Results. We showed that variation of pH from 3 to 9 and increases in osmolarity up to 6-fold had no effect on the quantification of the metabolites or on multivariate data analysis. Storage led to changes after 14 days at 4°C or after 12 months at −20°C, independent of sample composition. Multiple freeze-thaw cycles did not affect data analysis. Conclusion. Reproducibility of NMR measurements is not dependent on sample composition under physiological or pathological conditions. PMID:23865070

  6. Nuclear Magnetic Resonance (NMR) analysis of a Kel-F resin and lacquer

    NASA Astrophysics Data System (ADS)

    Rutenberg, A. C.

    1985-08-01

    Proton, carbon, and fluorine nuclear magnetic resonance (NMR) spectroscopy has been used at the Oak Ridge Y-12 Plant to determine the concentration of various species present in Kel-F 800 resin and its lacquers. Nuclear magnetic resonance (NMR) spectroscopy has been used to characterize Kel-F 800 resin and to measure the various chemical species present in a lacquer based on this resin. Proton NMR spectroscopy was used to measure the ratio of ethyl acetate to xylenes and to estimate the vinylidene fluoride content of the resin. Fluorine NMR spectroscopy was used to determine the water and ethanol content of the lacquer as well as some of its components. Fluorine NMR spectroscopy was also used to estimate the amount of perfluorodecanoate emulsifier present in the Kel-F resin. Carbon-13 NMR spectroscopy was used to determine the isomeric composition of various batches of xylenes and as an alternate method for measuring the vinylidene fluoride content of the resin.

  7. Ultrafast multidimensional Laplace NMR for a rapid and sensitive chemical analysis

    NASA Astrophysics Data System (ADS)

    Ahola, Susanna; Zhivonitko, Vladimir V.; Mankinen, Otto; Zhang, Guannan; Kantola, Anu M.; Chen, Hsueh-Ying; Hilty, Christian; Koptyug, Igor V.; Telkki, Ville-Veikko

    2015-09-01

    Traditional nuclear magnetic resonance (NMR) spectroscopy relies on the versatile chemical information conveyed by spectra. To complement conventional NMR, Laplace NMR explores diffusion and relaxation phenomena to reveal details on molecular motions. Under a broad concept of ultrafast multidimensional Laplace NMR, here we introduce an ultrafast diffusion-relaxation correlation experiment enhancing the resolution and information content of corresponding 1D experiments as well as reducing the experiment time by one to two orders of magnitude or more as compared with its conventional 2D counterpart. We demonstrate that the method allows one to distinguish identical molecules in different physical environments and provides chemical resolution missing in NMR spectra. Although the sensitivity of the new method is reduced due to spatial encoding, the single-scan approach enables one to use hyperpolarized substances to boost the sensitivity by several orders of magnitude, significantly enhancing the overall sensitivity of multidimensional Laplace NMR.

  8. Ultrafast multidimensional Laplace NMR for a rapid and sensitive chemical analysis

    PubMed Central

    Ahola, Susanna; Zhivonitko, Vladimir V; Mankinen, Otto; Zhang, Guannan; Kantola, Anu M.; Chen, Hsueh-Ying; Hilty, Christian; Koptyug, Igor V.; Telkki, Ville-Veikko

    2015-01-01

    Traditional nuclear magnetic resonance (NMR) spectroscopy relies on the versatile chemical information conveyed by spectra. To complement conventional NMR, Laplace NMR explores diffusion and relaxation phenomena to reveal details on molecular motions. Under a broad concept of ultrafast multidimensional Laplace NMR, here we introduce an ultrafast diffusion-relaxation correlation experiment enhancing the resolution and information content of corresponding 1D experiments as well as reducing the experiment time by one to two orders of magnitude or more as compared with its conventional 2D counterpart. We demonstrate that the method allows one to distinguish identical molecules in different physical environments and provides chemical resolution missing in NMR spectra. Although the sensitivity of the new method is reduced due to spatial encoding, the single-scan approach enables one to use hyperpolarized substances to boost the sensitivity by several orders of magnitude, significantly enhancing the overall sensitivity of multidimensional Laplace NMR. PMID:26381101

  9. Multinuclear NMR Imaging of Fluid Phases in Berea Sandstone

    NASA Astrophysics Data System (ADS)

    Sarkar, S. N.; Dechter, J. J.; Komoroski, R. A.

    Multinuclear NMR of 7Li, 19F, and 1H has been investigated as a method for discriminating multiple fluid phases in porous rock. Good 7Li NMR images from LiCl brine in saturated Berea sandstone were obtained within a few hours at 1 × 1 × 5 mm 3 resolution using a low-TE, 3D volume imaging sequence. At 4.7 T, the 7Li T1 was 750 ms, and T2 was 10 ms. High-quality 19F and 1H images of a model fluorinated injectant (trifluorotoluene) in Berea were obtained at 0.4 × 0.4 × 3 mm 3 resolution in a few hours. Fluorine-19 imaging was found to be easier than 1H imaging due to the narrower 19F resonance and comparable T1 and T2 in Berea sandstone. Lithium-7 and 19F imaging offer alternatives for discriminating aqueous and organic phases unambiguously in flooded oil cores, especially where 1H signals for the two phases are unresolved.

  10. Essential Parameters for Structural Analysis and Dereplication by 1H NMR Spectroscopy

    PubMed Central

    2015-01-01

    The present study demonstrates the importance of adequate precision when reporting the δ and J parameters of frequency domain 1H NMR (HNMR) data. Using a variety of structural classes (terpenoids, phenolics, alkaloids) from different taxa (plants, cyanobacteria), this study develops rationales that explain the importance of enhanced precision in NMR spectroscopic analysis and rationalizes the need for reporting Δδ and ΔJ values at the 0.1–1 ppb and 10 mHz level, respectively. Spectral simulations paired with iteration are shown to be essential tools for complete spectral interpretation, adequate precision, and unambiguous HNMR-driven dereplication and metabolomic analysis. The broader applicability of the recommendation relates to the physicochemical properties of hydrogen (1H) and its ubiquity in organic molecules, making HNMR spectra an integral component of structure elucidation and verification. Regardless of origin or molecular weight, the HNMR spectrum of a compound can be very complex and encode a wealth of structural information that is often obscured by limited spectral dispersion and the occurrence of higher order effects. This altogether limits spectral interpretation, confines decoding of the underlying spin parameters, and explains the major challenge associated with the translation of HNMR spectra into tabulated information. On the other hand, the reproducibility of the spectral data set of any (new) chemical entity is essential for its structure elucidation and subsequent dereplication. Handling and documenting HNMR data with adequate precision is critical for establishing unequivocal links between chemical structure, analytical data, metabolomes, and biological activity. Using the full potential of HNMR spectra will facilitate the general reproducibility for future studies of bioactive chemicals, especially of compounds obtained from the diversity of terrestrial and marine organisms. PMID:24895010

  11. Solubility and Thermal Stability Investigation of Titan Tholins: New Insight from NMR Analysis

    NASA Astrophysics Data System (ADS)

    He, Chao; Smith, M. A.

    2012-10-01

    We investigated the solubility and thermal stability of Titan’s aerosol analogs (tholins) to understand the basic property of organics on Titan and the potential for chemical modification upon in situ sampling. The tholin generated by AC discharge in CH4/N2 (5/95) mixture preferentially dissolves in polar solvent to non-polar solvent, totally soluble in DMSO (>21.5 mg/mL), 60% in mass soluble in methanol, 25% in acetone, 27% in acetonitrile and 30% in water while only 1% in benzene and chloroform. The 1H solution-state NMR spectra of respective deuterated solutions exhibit the structural information of the soluble fraction in each solvent, confirming the large percentage of polar species in tholins. The solubility study not only helps us understand the solubility of Titan’s aerosols in possible liquid phase in Titan’s surface/atmosphere, but also provides the basis for the solvent selection and methods development of liquid separation and/or solution based analysis in future Titan missions. These include methods such as NMR and LC/MS, which can be non-destructive providing objective information regarding nascent chemical identification. Thermal stability studies demonstrate the thermal lability of tholins and indicate significant structural changes of when heated beyond 150 oC for even short time periods in inert atmospheres. Dynamic studies at 200 oC demonstrate that several predominant chemical reactions fit first-order reaction kinetics with half-lives between 5 to 141 minutes. This study is critical to ongoing discussion regarding the development of in situ analysis methods and instruments for Titan mission and other outer planet exploration.

  12. Protein dynamics in the solid state from 2H NMR line shape analysis: a consistent perspective.

    PubMed

    Meirovitch, Eva; Liang, Zhichun; Freed, Jack H

    2015-02-19

    Deuterium line shape analysis of CD3 groups has emerged as a particularly useful tool for studying microsecond-millisecond protein motions in the solid state. The models devised so far consist of several independently conceived simple jump-type motions. They are comprised of physical quantities encoded in their simplest form; improvements are only possible by adding yet another simple motion, thereby changing the model. The various treatments developed are case-specific; hence comparison among the different systems is not possible. Here we develop a new methodology for (2)H NMR line shape analysis free of these limitations. It is based on the microscopic-order-macroscopic-disorder (MOMD) approach. In MOMD motions are described by diffusion tensors, spatial restrictions by potentials/ordering tensors, and geometric features by relative tensor orientations. Jump-type motions are recovered in the limit of large orientational potentials. Model improvement is accomplished by monitoring the magnitude, symmetry, and orientation of the various tensors. The generality of MOMD makes possible comparison among different scenarios. CD3 line shapes from the Chicken Villin Headpiece Subdomain and the Streptomyces Subtilisin Inhibitor are used as experimental examples. All of these spectra are reproduced by using rhombic local potentials constrained for simplicity to be given by the L = 2 spherical harmonics, and by axial diffusion tensors. Potential strength and rhombicity are found to be ca. 2-3 k(B)T. The diffusion tensor is tilted at 120° from the C-CD3 axis. The perpendicular (parallel) correlation times for local motion are 0.1-1.0 ms (3.3-30 μs). Activation energies in the 1.1-8.0 kcal/mol range are estimated. Future prospects include extension to the (2)H relaxation limit, application to the (15)N and (13)C NMR nuclei, and accounting for collective motions and anisotropic media. PMID:25594631

  13. Essential parameters for structural analysis and dereplication by (1)H NMR spectroscopy.

    PubMed

    Pauli, Guido F; Chen, Shao-Nong; Lankin, David C; Bisson, Jonathan; Case, Ryan J; Chadwick, Lucas R; Gödecke, Tanja; Inui, Taichi; Krunic, Aleksej; Jaki, Birgit U; McAlpine, James B; Mo, Shunyan; Napolitano, José G; Orjala, Jimmy; Lehtivarjo, Juuso; Korhonen, Samuli-Petrus; Niemitz, Matthias

    2014-06-27

    The present study demonstrates the importance of adequate precision when reporting the δ and J parameters of frequency domain (1)H NMR (HNMR) data. Using a variety of structural classes (terpenoids, phenolics, alkaloids) from different taxa (plants, cyanobacteria), this study develops rationales that explain the importance of enhanced precision in NMR spectroscopic analysis and rationalizes the need for reporting Δδ and ΔJ values at the 0.1-1 ppb and 10 mHz level, respectively. Spectral simulations paired with iteration are shown to be essential tools for complete spectral interpretation, adequate precision, and unambiguous HNMR-driven dereplication and metabolomic analysis. The broader applicability of the recommendation relates to the physicochemical properties of hydrogen ((1)H) and its ubiquity in organic molecules, making HNMR spectra an integral component of structure elucidation and verification. Regardless of origin or molecular weight, the HNMR spectrum of a compound can be very complex and encode a wealth of structural information that is often obscured by limited spectral dispersion and the occurrence of higher order effects. This altogether limits spectral interpretation, confines decoding of the underlying spin parameters, and explains the major challenge associated with the translation of HNMR spectra into tabulated information. On the other hand, the reproducibility of the spectral data set of any (new) chemical entity is essential for its structure elucidation and subsequent dereplication. Handling and documenting HNMR data with adequate precision is critical for establishing unequivocal links between chemical structure, analytical data, metabolomes, and biological activity. Using the full potential of HNMR spectra will facilitate the general reproducibility for future studies of bioactive chemicals, especially of compounds obtained from the diversity of terrestrial and marine organisms. PMID:24895010

  14. Protein Dynamics in the Solid-State from 2H NMR Lineshape Analysis: a Consistent Perspective

    PubMed Central

    Meirovitch, Eva; Liang, Zhichun; Freed, Jack H.

    2015-01-01

    Deuterium lineshape analysis of CD3 groups has emerged as a particularly useful tool for studying μs - ms protein motions in the solid-state. The models devised so far consist of several independently conceived simple jump-type motions. They are comprised of physical quantities encoded in their simplest form; improvements are only possible by adding yet another simple motion, thereby changing the model. The various treatments developed are case-specific; hence comparison amongst the different systems is not possible. Here we develop a new methodology for 2H NMR lineshape analysis free of these limitations. It is based on the microscopic-order-macroscopic-disorder (MOMD) approach. In MOMD motions are described by diffusion tensors, spatial restrictions by potentials/ordering tensors, and geometric features by relative tensor orientations. Jump-type motions are recovered in the limit of large orientational potentials. Model-improvement is accomplished by monitoring the magnitude, symmetry and orientation of the various tensors. The generality of MOMD makes possible comparison amongst different scenarios. CD3 lineshapes from the Chicken Villin Headpiece Subdomain, and the Streptomyces Subtilisin Inhibitor, are used as experimental examples. All of these spectra are reproduced by using rhombic local potentials constrained for simplicity to be given by the L = 2 spherical harmonics, and axial diffusion tensors. Potential strength and rhombicity are found to be ca. 2 − 3 [kBT]. The diffusion tensor is tilted at 120° from the C−CD3 axis. The perpendicular (parallel) correlation times for local motion are 0.1 − 1.0 ms (3.3 − 30 μs). Activation energies in the 1.1 − 8.0 kcal/mol range are estimated. Future prospects include extension to the 2H relaxation limit, application to the 15N and 13C NMR nuclei, and accounting for collective motions and anisotropic media. PMID:25594631

  15. Clonal dissemination of macrolide-resistant and penicillin-susceptible serotype 3 and penicillin-resistant Taiwan 19F-14 and 23F-15 Streptococcus pneumoniae isolates in Japan: a pilot surveillance study.

    PubMed

    Kasahara, Kei; Maeda, Koichi; Mikasa, Keiichi; Uno, Kenji; Takahashi, Ken; Konishi, Mitsuru; Yoshimoto, Eiichiro; Murakawa, Koichi; Kita, Eiji; Kimura, Hiroshi

    2005-04-01

    Large-scale surveillance studies using molecular techniques such as pulsed-field gel electrophoresis (PFGE) have revealed that the spread of antibiotic-resistant pneumococci is due to clonal spread. However, in Japan, surveillance studies using such molecular techniques have never been done. Therefore, we conducted a pilot surveillance study to elucidate the present situation in Japan. Among the 145 isolates examined, the most prevalent serotype was type 19F (20%), for which most isolates were not susceptible to penicillin (86.2%) but were positive for the mef(A)/mef(E) gene (89.7%). The secondmost prevalent was serotype 3 (16.6%), for which most isolates were susceptible to penicillin (87.5%) and positive for the erm(B) gene (91.7%). PFGE analysis showed that both serotypes consisted mainly of clonally identical or related isolates and, in particular, 38% of the type 19F isolates were indistinguishable from or closely related to the Taiwan 19F-14 clone. In addition, some of the Japanese type 23F isolates with the erm(B) gene were indistinguishable from or related to the Taiwan 23F-15 clone as analyzed by PFGE. Based on the results of our pilot study performed in a single institution, it is likely that international antibiotic-resistant clones have already spread in Japan; therefore, a nationwide surveillance study should be urgently conducted. PMID:15814978

  16. Bacterial spore detection and analysis using hyperpolarized 129Xe chemical exchange saturation transfer (Hyper-CEST) NMR

    PubMed Central

    Bai, Yubin; Wang, Yanfei; Goulian, Mark; Driks, Adam

    2014-01-01

    Previously, we reported hyperpolarized 129Xe chemical exchange saturation transfer (Hyper-CEST) NMR techniques for the ultrasensitive (i.e., 1 picomolar) detection of xenon host molecules known as cryptophane. Here, we demonstrate a more general role for Hyper-CEST NMR as a spectroscopic method for probing nanoporous structures, without the requirement for cryptophane or engineered xenon-binding sites. Hyper-CEST 129Xe NMR spectroscopy was employed to detect Bacillus anthracis and Bacillus subtilis spores in solution, and interrogate the layers that comprise their structures. 129Xe-spore samples were selectively irradiated with radiofrequency pulses; the depolarized 129Xe returned to aqueous solution and depleted the 129Xe-water signal, providing measurable contrast. Removal of the outermost spore layers in B. anthracis and B. subtilis (the exosporium and coat, respectively) enhanced 129Xe exchange with the spore interior. Notably, the spores were invisible to hyperpolarized 129Xe NMR direct detection methods, highlighting the lack of high-affinity xenon-binding sites, and the potential for extending Hyper-CEST NMR structural analysis to other biological and synthetic nanoporous structures. PMID:25089181

  17. A Protocol for NMR Analysis of the Enantiomeric Excess of Chiral Diols Using an Achiral Diboronic Acid Template.

    PubMed

    Tickell, David A; Lampard, Emma V; Lowe, John P; James, Tony D; Bull, Steven D

    2016-08-01

    A practically simple derivatization protocol for determining the enantiopurity of chiral diols by (1)H NMR spectroscopic analysis is described. Diols were treated with 0.5 equiv of 1,3-phenyldiboronic acid to afford mixtures of diastereomeric boronate esters whose homochiral/heterochiral ratios are an accurate reflection of the diol's enantiopurity. PMID:27385049

  18. NMR and IR Spectroscopy for the Structural Characterization of Edible Fats and Oils: An Instrumental Analysis Laboratory

    ERIC Educational Resources Information Center

    Crowther, Molly W.

    2008-01-01

    This article describes an upper-level instrumental laboratory for undergraduates that explores the complementary nature of IR and NMR spectroscopy for analysis of several edible fats and oils that are structurally similar but differ in physical properties and health implications. Five different fats and oils are analyzed for average chain length,…

  19. Microscale Synthesis and (super 1)H NMR Analysis of Zn(super II) and Ni(super II) Tetraphenylporphyrins

    ERIC Educational Resources Information Center

    Saucedo, Laura; Mink, Larry M.

    2005-01-01

    A multisection undergraduate laboratory involving the microscale synthesis and spectroscopic analysis of unmetalled porphyrins and their corresponding metalloporphyins is described. The microscale synthesis involving the isolation of the metalloporphyrins as solids and their corresponding (super 1)H NMR spectra are presented.

  20. Complex mixture analysis of organic compounds in green coffee bean extract by two-dimensional NMR spectroscopy.

    PubMed

    Wei, Feifei; Furihata, Kazuo; Hu, Fangyu; Miyakawa, Takuya; Tanokura, Masaru

    2010-11-01

    A complex mixture analysis by one- and two-dimensional nuclear magnetic resonance (NMR) spectroscopy was carried out for the first time for the identification and quantification of organic compounds in green coffee bean extract (GCBE). A combination of (1)H-(1)H DQF-COSY, (1)H-(13)C HSQC, and (1)H-(13)C CT-HMBC two-dimensional sequences was used, and 16 compounds were identified. In particular, three isomers of caffeoylquinic acid were identified in the complex mixture without any separation. In addition, GCBE components were quantified by the integration of carbon signals by use of a relaxation reagent and an inverse-gated decoupling method without a nuclear Overhauser effect. This NMR methodology provides detailed information about the kinds and amounts of GCBE components, and in our study, the chemical makeup of GCBE was clarified by the NMR results. PMID:20818806

  1. Characterising the rheology of non-Newtonian fluids using PFG-NMR and cumulant analysis

    NASA Astrophysics Data System (ADS)

    Blythe, T. W.; Sederman, A. J.; Mitchell, J.; Stitt, E. H.; York, A. P. E.; Gladden, L. F.

    2015-06-01

    Conventional rheological characterisation using nuclear magnetic resonance (NMR) typically utilises spatially-resolved measurements of velocity. We propose a new approach to rheometry using pulsed field gradient (PFG) NMR which readily extends the application of MR rheometry to single-axis gradient hardware. The quantitative use of flow propagators in this application is challenging because of the introduction of artefacts during Fourier transform, which arise when realistic sampling strategies are limited by experimental and hardware constraints and when particular spatial and temporal resolution are required. The method outlined in this paper involves the cumulant analysis of the acquisition data directly, thereby preventing the introduction of artefacts and reducing data acquisition times. A model-dependent approach is developed to enable the pipe-flow characterisation of fluids demonstrating non-Newtonian power-law rheology, involving the use of an analytical expression describing the flow propagator in terms of the flow behaviour index. The sensitivity of this approach was investigated and found to be robust to the signal-to-noise ratio (SNR) and number of acquired data points, enabling an increase in temporal resolution defined by the SNR. Validation of the simulated results was provided by an experimental case study on shear-thinning aqueous xanthan gum solutions, whose rheology could be accurately characterised using a power-law model across the experimental shear rate range of 1-100 s-1. The flow behaviour indices calculated using this approach were observed to be within 8% of those obtained using spatially-resolved velocity imaging and within 5% of conventional rheometry. Furthermore, it was shown that the number of points sampled could be reduced by a factor of 32, when compared to the acquisition of a volume-averaged flow propagator with 128 gradient increments, without negatively influencing the accuracy of the characterisation, reducing the

  2. Characterising the rheology of non-Newtonian fluids using PFG-NMR and cumulant analysis.

    PubMed

    Blythe, T W; Sederman, A J; Mitchell, J; Stitt, E H; York, A P E; Gladden, L F

    2015-06-01

    Conventional rheological characterisation using nuclear magnetic resonance (NMR) typically utilises spatially-resolved measurements of velocity. We propose a new approach to rheometry using pulsed field gradient (PFG) NMR which readily extends the application of MR rheometry to single-axis gradient hardware. The quantitative use of flow propagators in this application is challenging because of the introduction of artefacts during Fourier transform, which arise when realistic sampling strategies are limited by experimental and hardware constraints and when particular spatial and temporal resolution are required. The method outlined in this paper involves the cumulant analysis of the acquisition data directly, thereby preventing the introduction of artefacts and reducing data acquisition times. A model-dependent approach is developed to enable the pipe-flow characterisation of fluids demonstrating non-Newtonian power-law rheology, involving the use of an analytical expression describing the flow propagator in terms of the flow behaviour index. The sensitivity of this approach was investigated and found to be robust to the signal-to-noise ratio (SNR) and number of acquired data points, enabling an increase in temporal resolution defined by the SNR. Validation of the simulated results was provided by an experimental case study on shear-thinning aqueous xanthan gum solutions, whose rheology could be accurately characterised using a power-law model across the experimental shear rate range of 1-100 s(-1). The flow behaviour indices calculated using this approach were observed to be within 8% of those obtained using spatially-resolved velocity imaging and within 5% of conventional rheometry. Furthermore, it was shown that the number of points sampled could be reduced by a factor of 32, when compared to the acquisition of a volume-averaged flow propagator with 128 gradient increments, without negatively influencing the accuracy of the characterisation, reducing the

  3. NMR-based Structural Analysis of the Complete Rough-type Lipopolysaccharide Isolated from Capnocytophaga canimorsus*

    PubMed Central

    Zähringer, Ulrich; Ittig, Simon; Lindner, Buko; Moll, Hermann; Schombel, Ursula; Gisch, Nicolas; Cornelis, Guy R.

    2014-01-01

    We here describe the NMR analysis of an intact lipopolysaccharide (LPS, endotoxin) in water with 1,2-dihexanoyl-sn-glycero-3-phosphocholine as detergent. When HPLC-purified rough-type LPS of Capnocytophaga canimorsus was prepared, 13C,15N labeling could be avoided. The intact LPS was analyzed by homonuclear (1H) and heteronuclear (1H,13C, and 1H,31P) correlated one- and two-dimensional NMR techniques as well as by mass spectrometry. It consists of a penta-acylated lipid A with an α-linked phosphoethanolamine attached to C-1 of GlcN (I) in the hybrid backbone, lacking the 4′-phosphate. The hydrophilic core oligosaccharide was found to be a complex hexasaccharide with two mannose (Man) and one each of 3-deoxy-d-manno-oct-2-ulosonic acid (Kdo), Gal, GalN, and l-rhamnose residues. Position 4 of Kdo is substituted by phosphoethanolamine, also present in position 6 of the branched ManI residue. This rough-type LPS is exceptional in that all three negative phosphate residues are “masked” by positively charged ethanolamine substituents, leading to an overall zero net charge, which has so far not been observed for any other LPS. In biological assays, the corresponding isolated lipid A was found to be endotoxically almost inactive. By contrast, the intact rough-type LPS described here expressed a 20,000-fold increased endotoxicity, indicating that the core oligosaccharide significantly contributes to the endotoxic potency of the whole rough-type C. canimorsus LPS molecule. Based on these findings, the strict view that lipid A alone represents the toxic center of LPS needs to be reassessed. PMID:24993825

  4. Accurate Characterization of Ion Transport Properties in Binary Symmetric Electrolytes Using In Situ NMR Imaging and Inverse Modeling.

    PubMed

    Sethurajan, Athinthra Krishnaswamy; Krachkovskiy, Sergey A; Halalay, Ion C; Goward, Gillian R; Protas, Bartosz

    2015-09-17

    We used NMR imaging (MRI) combined with data analysis based on inverse modeling of the mass transport problem to determine ionic diffusion coefficients and transference numbers in electrolyte solutions of interest for Li-ion batteries. Sensitivity analyses have shown that accurate estimates of these parameters (as a function of concentration) are critical to the reliability of the predictions provided by models of porous electrodes. The inverse modeling (IM) solution was generated with an extension of the Planck-Nernst model for the transport of ionic species in electrolyte solutions. Concentration-dependent diffusion coefficients and transference numbers were derived using concentration profiles obtained from in situ (19)F MRI measurements. Material properties were reconstructed under minimal assumptions using methods of variational optimization to minimize the least-squares deviation between experimental and simulated concentration values with uncertainty of the reconstructions quantified using a Monte Carlo analysis. The diffusion coefficients obtained by pulsed field gradient NMR (PFG-NMR) fall within the 95% confidence bounds for the diffusion coefficient values obtained by the MRI+IM method. The MRI+IM method also yields the concentration dependence of the Li(+) transference number in agreement with trends obtained by electrochemical methods for similar systems and with predictions of theoretical models for concentrated electrolyte solutions, in marked contrast to the salt concentration dependence of transport numbers determined from PFG-NMR data. PMID:26247105

  5. Dipeptide Structural Analysis Using Two-Dimensional NMR for the Undergraduate Advanced Laboratory

    ERIC Educational Resources Information Center

    Gonzalez, Elizabeth; Dolino, Drew; Schwartzenburg, Danielle; Steiger, Michelle A.

    2015-01-01

    A laboratory experiment was developed to introduce students in either an organic chemistry or biochemistry lab course to two-dimensional nuclear magnetic resonance (2D NMR) spectroscopy using simple biomolecules. The goal of this experiment is for students to understand and interpret the information provided by a 2D NMR spectrum. Students are…

  6. A Solid-State NMR Experiment: Analysis of Local Structural Environments in Phosphate Glasses

    ERIC Educational Resources Information Center

    Anderson, Stanley E.; Saiki, David; Eckert, Hellmut; Meise-Gresch, Karin

    2004-01-01

    An experiment that can be used to directly study the local chemical environments of phosphorus in solid amorphous materials is demonstrated. The experiment aims at familiarizing the students of chemistry with the principles of solid-state NMR, by having them synthesize a simple phosphate glass, and making them observe the (super 31)P NMR spectrum,…

  7. Functional group analysis in coal by sup 31 P NMR spectroscopy

    SciTech Connect

    Verkade, J.G.

    1989-05-01

    The purpose of this research is to determine the labile-hydrogen functional group composition of coal and coal-derived materials by the nmr spectroscopy of their derivatives made with reagents containing the nmr-active nuclei {sup 31}P, {sup 119}Sn, or {sup 205}Tl. 7 refs.

  8. Accelerating Nuclear Magnetic Resonance (NMR) Analysis of Soil Organic Matter with Dynamic Nuclear Polarization (DNP) Enhancement

    NASA Astrophysics Data System (ADS)

    Normand, A. E.; Smith, A. N.; Long, J. R.; Reddy, K. R.

    2014-12-01

    13C magic angle spinning (MAS) solid state Nuclear Magnetic Resonance (ssNMR) has become an essential tool for discerning the chemical composition of soil organic matter (SOM). However, the technique is limited due to the inherent insensitivity of NMR resulting in long acquisition times, especially for low carbon (C) soil. The pursuits of higher magnetic fields or concentrating C with hydrofluoric acid are limited solutions for signal improvement. Recent advances in dynamic nuclear polarization (DNP) have addressed the insensitivity of NMR. DNP utilizes the greater polarization of an unpaired electron in a given magnetic field and transfers that polarization to an NMR active nucleus of interest via microwave irradiation. Signal enhancements of up to a few orders of magnitude have been achieved for various DNP experiments. In this novel study, we conduct DNP 13C cross-polarization (CP) MAS ssNMR experiments of SOM varying in soil C content and chemical composition. DNP signal enhancements reduce the experiment run time allowing samples with low C to be analyzed in hours rather than days. We compare 13C CP MAS ssNMR of SOM with multiple magnetic field strengths, hydrofluoric acid treatment, and novel DNP approaches. We also explore DNP surface enhanced NMR Spectroscopy (SENP) to determine the surface chemistry of SOM. The presented results and future DNP MAS ssNMR advances will lead to further understanding of the nature and processes of SOM.

  9. Fission fragment angular distribution for the 19F+197Au fusion-fission reaction at near-barrier energies

    NASA Astrophysics Data System (ADS)

    Tripathi, R.; Sudarshan, K.; Sodaye, S.; Reddy, A. V.; Mahata, K.; Goswami, A.

    2005-04-01

    Angular distribution of fission fragments have been measured for 19F+197Au reaction at bombarding energies from 91 to 110 MeV. Fission fragment angular distributions have been calculated by transition state model with the transmission coefficients obtained using the coupled-channels theory. The calculated angular anisotropies are in good agreement with the experimental anisotropies. The experimental fission cross sections have also been reproduced on the basis of the coupled-channels theory. The results of angular distribution measurement do not show any significant contribution from quasifission as was reported in the literature based on the measurement of evaporation residues and mass distribution.

  10. Extraction of alkaloids for NMR-based profiling: exploratory analysis of an archaic Cinchona bark collection.

    PubMed

    Yilmaz, Ali; Nyberg, Nils T; Jaroszewski, Jerzy W

    2012-11-01

    A museum collection of Cinchonae cortex samples (n = 117), from the period 1850-1950, was extracted with a mixture of chloroform-d1, methanol-d4, water-d2, and perchloric acid in the ratios 5 : 5 : 1 : 1. The extracts were directly analyzed using 1H NMR spectroscopy (600 MHz) and the spectra evaluated using principal component analysis (PCA) and total statistical correlation spectroscopy (STOCSY). A new method called STOCSY-CA, where CA stands for component analysis, is described, and an analysis using this method is presented. It was found that the samples had a rather homogenous content of the well-known cinchona alkaloids quinine, cinchonine, and cinchonidine without any apparent clustering. Signals from analogues were detected but not in substantial amounts. The main variation was related to the absolute amounts of extracted alkaloids, which was attributed to the evolution of the Cinchona tree cultivation during the period in which the samples were collected. PMID:23059630

  11. 1H NMR Spectroscopy and MVA Analysis of Diplodus sargus Eating the Exotic Pest Caulerpa cylindracea

    PubMed Central

    De Pascali, Sandra A.; Del Coco, Laura; Felline, Serena; Mollo, Ernesto; Terlizzi, Antonio; Fanizzi, Francesco P.

    2015-01-01

    The green alga Caulerpa cylindracea is a non-autochthonous and invasive species that is severely affecting the native communities in the Mediterranean Sea. Recent researches show that the native edible fish Diplodus sargus actively feeds on this alga and cellular and physiological alterations have been related to the novel alimentary habits. The complex effects of such a trophic exposure to the invasive pest are still poorly understood. Here we report on the metabolic profiles of plasma from D. sargus individuals exposed to C. cylindracea along the southern Italian coast, using 1H NMR spectroscopy and multivariate analysis (Principal Component Analysis, PCA, Orthogonal Partial Least Square, PLS, and Orthogonal Partial Least Square Discriminant Analysis, OPLS-DA). Fish were sampled in two seasonal periods from three different locations, each characterized by a different degree of algal abundance. The levels of the algal bisindole alkaloid caulerpin, which is accumulated in the fish tissues, was used as an indicator of the trophic exposure to the seaweed and related to the plasma metabolic profiles. The profiles appeared clearly influenced by the sampling period beside the content of caulerpin, while the analyses also supported a moderate alteration of lipid and choline metabolism related to the Caulerpa-based diet. PMID:26058009

  12. 1H NMR Spectroscopy and MVA Analysis of Diplodus sargus Eating the Exotic Pest Caulerpa cylindracea.

    PubMed

    De Pascali, Sandra A; Del Coco, Laura; Felline, Serena; Mollo, Ernesto; Terlizzi, Antonio; Fanizzi, Francesco P

    2015-06-01

    The green alga Caulerpa cylindracea is a non-autochthonous and invasive species that is severely affecting the native communities in the Mediterranean Sea. Recent researches show that the native edible fish Diplodus sargus actively feeds on this alga and cellular and physiological alterations have been related to the novel alimentary habits. The complex effects of such a trophic exposure to the invasive pest are still poorly understood. Here we report on the metabolic profiles of plasma from D. sargus individuals exposed to C. cylindracea along the southern Italian coast, using 1H NMR spectroscopy and multivariate analysis (Principal Component Analysis, PCA, Orthogonal Partial Least Square, PLS, and Orthogonal Partial Least Square Discriminant Analysis, OPLS-DA). Fish were sampled in two seasonal periods from three different locations, each characterized by a different degree of algal abundance. The levels of the algal bisindole alkaloid caulerpin, which is accumulated in the fish tissues, was used as an indicator of the trophic exposure to the seaweed and related to the plasma metabolic profiles. The profiles appeared clearly influenced by the sampling period beside the content of caulerpin, while the analyses also supported a moderate alteration of lipid and choline metabolism related to the Caulerpa-based diet. PMID:26058009

  13. Compositional differences among Chinese soy sauce types studied by (13)C NMR spectroscopy coupled with multivariate statistical analysis.

    PubMed

    Kamal, Ghulam Mustafa; Wang, Xiaohua; Bin Yuan; Wang, Jie; Sun, Peng; Zhang, Xu; Liu, Maili

    2016-09-01

    Soy sauce a well known seasoning all over the world, especially in Asia, is available in global market in a wide range of types based on its purpose and the processing methods. Its composition varies with respect to the fermentation processes and addition of additives, preservatives and flavor enhancers. A comprehensive (1)H NMR based study regarding the metabonomic variations of soy sauce to differentiate among different types of soy sauce available on the global market has been limited due to the complexity of the mixture. In present study, (13)C NMR spectroscopy coupled with multivariate statistical data analysis like principle component analysis (PCA), and orthogonal partial least square-discriminant analysis (OPLS-DA) was applied to investigate metabonomic variations among different types of soy sauce, namely super light, super dark, red cooking and mushroom soy sauce. The main additives in soy sauce like glutamate, sucrose and glucose were easily distinguished and quantified using (13)C NMR spectroscopy which were otherwise difficult to be assigned and quantified due to serious signal overlaps in (1)H NMR spectra. The significantly higher concentration of sucrose in dark, red cooking and mushroom flavored soy sauce can directly be linked to the addition of caramel in soy sauce. Similarly, significantly higher level of glutamate in super light as compared to super dark and mushroom flavored soy sauce may come from the addition of monosodium glutamate. The study highlights the potentiality of (13)C NMR based metabonomics coupled with multivariate statistical data analysis in differentiating between the types of soy sauce on the basis of level of additives, raw materials and fermentation procedures. PMID:27343582

  14. MeRy-B: a web knowledgebase for the storage, visualization, analysis and annotation of plant NMR metabolomic profiles

    PubMed Central

    2011-01-01

    Background Improvements in the techniques for metabolomics analyses and growing interest in metabolomic approaches are resulting in the generation of increasing numbers of metabolomic profiles. Platforms are required for profile management, as a function of experimental design, and for metabolite identification, to facilitate the mining of the corresponding data. Various databases have been created, including organism-specific knowledgebases and analytical technique-specific spectral databases. However, there is currently no platform meeting the requirements for both profile management and metabolite identification for nuclear magnetic resonance (NMR) experiments. Description MeRy-B, the first platform for plant 1H-NMR metabolomic profiles, is designed (i) to provide a knowledgebase of curated plant profiles and metabolites obtained by NMR, together with the corresponding experimental and analytical metadata, (ii) for queries and visualization of the data, (iii) to discriminate between profiles with spectrum visualization tools and statistical analysis, (iv) to facilitate compound identification. It contains lists of plant metabolites and unknown compounds, with information about experimental conditions, the factors studied and metabolite concentrations for several plant species, compiled from more than one thousand annotated NMR profiles for various organs or tissues. Conclusion MeRy-B manages all the data generated by NMR-based plant metabolomics experiments, from description of the biological source to identification of the metabolites and determinations of their concentrations. It is the first database allowing the display and overlay of NMR metabolomic profiles selected through queries on data or metadata. MeRy-B is available from http://www.cbib.u-bordeaux2.fr/MERYB/index.php. PMID:21668943

  15. Superfluorinated PEI Derivative Coupled with (99m) Tc for ASGPR Targeted (19) F MRI/SPECT/PA Tri-Modality Imaging.

    PubMed

    Guo, Zhide; Gao, Mengna; Song, Manli; Li, Yesen; Zhang, Deliang; Xu, Duo; You, Linyi; Wang, Liangliang; Zhuang, Rongqiang; Su, Xinhui; Liu, Ting; Du, Jin; Zhang, Xianzhong

    2016-07-01

    Fluorinated polyethylenimine derivative labeled with radionuclide (99m) Tc is developed as a (19) F MRI/SPECT/PA multifunctional imaging agent with good asialoglycoprotein receptors (ASGPR)-targeting ability. This multifunctional agent is safe and suitable for (19) F MRI/SPECT/PA imaging and has the potential to detect hepatic diseases and to assess liver function, which provide powerful support for the development of personalized and precision medicine. PMID:27159903

  16. Cholesterol orientation and dynamics in dimyristoylphosphatidylcholine bilayers: a solid state deuterium NMR analysis.

    PubMed Central

    Marsan, M P; Muller, I; Ramos, C; Rodriguez, F; Dufourc, E J; Czaplicki, J; Milon, A

    1999-01-01

    Proton decoupled deuterium NMR spectra of oriented bilayers made of DMPC and 30 mol % deuterated cholesterol acquired at 76.8 MHz (30 degreesC) have provided a set of very accurate quadrupolar splitting for eight C-D bonds of cholesterol. Due to the new precision of the experimental data, the original analysis by. Biochemistry. 23:6062-6071) had to be reconsidered. We performed a systematic study of the influence on the precision and uniqueness of the data-fitting procedure of: (i) the coordinates derived from x-ray, neutron scattering, or force field-minimized structures, (ii) internal mobility, (iii) the axial symmetry hypothesis, and (iv) the knowledge of some quadrupolar splitting assignments. Good agreement between experiment and theory could be obtained only with the neutron scattering structure, for which both axial symmetry hypothesis and full order parameter matrix analysis gave satisfactory results. Finally, this work revealed an average orientation of cholesterol slightly different from those previously published and, most importantly, a molecular order parameter equal to 0.95 +/- 0.01, instead of 0.79 +/- 0.03 previously found for the same system at 30 degreesC. Temperature dependence in the 20-50 degreesC range shows a constant average orientation and a monotonous decrease of cholesterol Smol, with a slope of -0.0016 K-1. A molecular order parameter of 0.89 +/- 0.01 at 30 degreesC was determined for a DMPC/16 mol % of cholesterol. PMID:9876147

  17. General order parameter based correlation analysis of protein backbone motions between experimental NMR relaxation measurements and molecular dynamics simulations

    SciTech Connect

    Liu, Qing; Shi, Chaowei; Yu, Lu; Zhang, Longhua; Xiong, Ying; Tian, Changlin

    2015-02-13

    Internal backbone dynamic motions are essential for different protein functions and occur on a wide range of time scales, from femtoseconds to seconds. Molecular dynamic (MD) simulations and nuclear magnetic resonance (NMR) spin relaxation measurements are valuable tools to gain access to fast (nanosecond) internal motions. However, there exist few reports on correlation analysis between MD and NMR relaxation data. Here, backbone relaxation measurements of {sup 15}N-labeled SH3 (Src homology 3) domain proteins in aqueous buffer were used to generate general order parameters (S{sup 2}) using a model-free approach. Simultaneously, 80 ns MD simulations of SH3 domain proteins in a defined hydrated box at neutral pH were conducted and the general order parameters (S{sup 2}) were derived from the MD trajectory. Correlation analysis using the Gromos force field indicated that S{sup 2} values from NMR relaxation measurements and MD simulations were significantly different. MD simulations were performed on models with different charge states for three histidine residues, and with different water models, which were SPC (simple point charge) water model and SPC/E (extended simple point charge) water model. S{sup 2} parameters from MD simulations with charges for all three histidines and with the SPC/E water model correlated well with S{sup 2} calculated from the experimental NMR relaxation measurements, in a site-specific manner. - Highlights: • Correlation analysis between NMR relaxation measurements and MD simulations. • General order parameter (S{sup 2}) as common reference between the two methods. • Different protein dynamics with different Histidine charge states in neutral pH. • Different protein dynamics with different water models.

  18. Combined analysis of C-18 unsaturated fatty acids using natural abundance deuterium 2D NMR spectroscopy in chiral oriented solvents.

    PubMed

    Lesot, Philippe; Baillif, Vincent; Billault, Isabelle

    2008-04-15

    The quantitative determination of isotopic (2H/1H)i ratios at natural abundance using the SNIF-NMR protocol is a well-known method for understanding the enzymatic biosynthesis of metabolites. However, this approach is not always successful for analyzing large solutes and, specifically, is inadequate for prochiral molecules such as complete essential unsaturated fatty acids. To overcome these analytical limitations, we use the natural abundance deuterium 2D NMR (NAD 2D NMR) spectroscopy on solutes embedded in polypeptide chiral liquid crystals. This approach, recently explored for measuring (2H/1H)i ratios of small analytes (Lesot, P.; Aroulanda, C.; Billault, I. Anal. Chem. 2004, 76, 2827-2835), is a powerful way to separate the 2H signals of all nonequivalent enantioisotopomers on the basis both of the 2H quadrupolar interactions and of the 2H chemical shift. Two significant advances over our previous work are presented here and allow the complete isotopic analysis of four mono- and polyunsaturated fatty acid methyl esters: methyl oleate (1), methyl linoleate (2), methyl linolenate (3), and methyl vernoleate (4). The first consists of using NMR spectrometers operating at higher magnetic field strength (14.1 T) and equipped with a selective cryoprobe optimized for deuterium nuclei. The second is the development of Q-COSY Fz 2D NMR experiments able to produce phased 2H 2D maps after a double Fourier transformation. This combination of modern hardware and efficient NMR sequences provides a unique tool to analyze the (2H/1H)i ratios of large prochiral molecules (C-18) dissolved in organic solutions of poly(gamma-benzyl-L-glutamate) and requires smaller amounts of solute than previous study on fatty acids. For each compound (1-4), all 2H quadrupolar doublets visible in the 2D spectra have been assigned on the basis of 2H chemical shifts, isotopic data obtained from isotropic quantitative NAD NMR, and by an interspectral comparison of the anisotropic NAD spectra of four

  19. NMR shielding calculations across the periodic table: diamagnetic uranium compounds. 2. Ligand and metal NMR.

    PubMed

    Schreckenbach, Georg

    2002-12-16

    In this and a previous article (J. Phys. Chem. A 2000, 104, 8244), the range of application for relativistic density functional theory (DFT) is extended to the calculation of nuclear magnetic resonance (NMR) shieldings and chemical shifts in diamagnetic actinide compounds. Two relativistic DFT methods are used, ZORA ("zeroth-order regular approximation") and the quasirelativistic (QR) method. In the given second paper, NMR shieldings and chemical shifts are calculated and discussed for a wide range of compounds. The molecules studied comprise uranyl complexes, [UO(2)L(n)](+/-)(q); UF(6); inorganic UF(6) derivatives, UF(6-n)Cl(n), n = 0-6; and organometallic UF(6) derivatives, UF(6-n)(OCH(3))(n), n = 0-5. Uranyl complexes include [UO(2)F(4)](2-), [UO(2)Cl(4)](2-), [UO(2)(OH)(4)](2-), [UO(2)(CO(3))(3)](4-), and [UO(2)(H(2)O)(5)](2+). For the ligand NMR, moderate (e.g., (19)F NMR chemical shifts in UF(6-n)Cl(n)) to excellent agreement [e.g., (19)F chemical shift tensor in UF(6) or (1)H NMR in UF(6-n)(OCH(3))(n)] has been found between theory and experiment. The methods have been used to calculate the experimentally unknown (235)U NMR chemical shifts. A large chemical shift range of at least 21,000 ppm has been predicted for the (235)U nucleus. ZORA spin-orbit appears to be the most accurate method for predicting actinide metal chemical shifts. Trends in the (235)U NMR chemical shifts of UF(6-n)L(n) molecules are analyzed and explained in terms of the calculated electronic structure. It is argued that the energy separation and interaction between occupied and virtual orbitals with f-character are the determining factors. PMID:12470051

  20. sup 31 P NMR analysis of coal moieties bearing -OH, -NH, and -SH functions

    SciTech Connect

    Verkade, J.G.

    1991-01-01

    The purpose of this research is to develop a convenient, reliable and rapid NMR method for the determination of labile-hydrogen functional groups and organic sulfur compounds which are components of coal and coal-derived materials. For this purpose, the former functional groups, including water molecules, are derivatized with reagents containing NMR-active nuclei such as {sup 31}P or {sup 119}Sn, while sulfur groups are derivatized with {sup 195}Pt NMR tagging reagents. Knowledge of the heteroatom composition of coals is necessary for the development of increasingly sophisticated coal processing technologies.

  1. Metabonomic signature analysis of cervical carcinoma and precancerous lesions in women by (1)H NMR spectroscopy.

    PubMed

    Hasim, Ayshamgul; Ali, Mayinuer; Mamtimin, Batur; Ma, Jun-Qi; Li, Qiao-Zhi; Abudula, Abulizi

    2012-06-01

    (1)H nuclear magnetic resonance (NMR)-based metabonomics has been used to characterize the metabolic profiles of cervical intraepithelial neoplasia (CIN) and cervical squamous cell carcinoma (CSCC). Principal component analysis (PCA) and orthogonal partial least-squares discriminant analysis (OPLS-DA) were used to model the systematic variation related to patients with CIN or CSCC with healthy controls. Potential metabolic biomarkers were identified using database comparisons, and the one-way analysis of variance (ANOVA) test was used to examine the significance of the metabolites. Compared with plasma obtained from the healthy controls, plasma from patients with CIN had higher levels of very-low density lipoprotein (VLDL), acetone, unsaturated lipid and carnitine, together with lower levels of creatine, lactate, isoleucine, leucine, valine, alanine, glutamine, histidine, glycine, acetylcysteine, myo-inositol, choline and glycoprotein. Plasma from patients with CSCC had higher levels of acetate and formate, together with lower levels of creatine, lactate, isoleucine, leucine, valine, alanine, glutamine, histidine and tyrosine compared with the plasma of the healthy controls. In addition, compared with the plasma of patients with CIN, the plasma of CSCC patients had higher levels of acetate, formate, lactate, isoleucine, leucine, valine, alanine, glutamine, histidine, tyrosine, acetylcysteine, myo-inositol, glycoprotein, α-glucose and β-glucose, together with lower levels of acetone, unsaturated lipid and carnitine. Moreover, the profiles showed high feasibility and specificity by statistical analysis with OPLS-DA compared to the Thinprep cytology test (TCT) by setting the histopathological outcome as standard. The metabolic profile obtained for cervical cancer is significant, even for the precancerous disease. This suggests a systemic metabolic response to cancer, which may be used to identify potential early diagnostic biomarkers of the cancer and to establish

  2. Metabonomic signature analysis of cervical carcinoma and precancerous lesions in women by 1H NMR spectroscopy

    PubMed Central

    HASIM, AYSHAMGUL; ALI, MAYINUER; MAMTIMIN, BATUR; MA, JUN-QI; LI, QIAO-ZHI; ABUDULA, ABULIZI

    2012-01-01

    1H nuclear magnetic resonance (NMR)-based metabonomics has been used to characterize the metabolic profiles of cervical intraepithelial neoplasia (CIN) and cervical squamous cell carcinoma (CSCC). Principal component analysis (PCA) and orthogonal partial least-squares discriminant analysis (OPLS-DA) were used to model the systematic variation related to patients with CIN or CSCC with healthy controls. Potential metabolic biomarkers were identified using database comparisons, and the one-way analysis of variance (ANOVA) test was used to examine the significance of the metabolites. Compared with plasma obtained from the healthy controls, plasma from patients with CIN had higher levels of very-low density lipoprotein (VLDL), acetone, unsaturated lipid and carnitine, together with lower levels of creatine, lactate, isoleucine, leucine, valine, alanine, glutamine, histidine, glycine, acetylcysteine, myo-inositol, choline and glycoprotein. Plasma from patients with CSCC had higher levels of acetate and formate, together with lower levels of creatine, lactate, isoleucine, leucine, valine, alanine, glutamine, histidine and tyrosine compared with the plasma of the healthy controls. In addition, compared with the plasma of patients with CIN, the plasma of CSCC patients had higher levels of acetate, formate, lactate, isoleucine, leucine, valine, alanine, glutamine, histidine, tyrosine, acetylcysteine, myo-inositol, glycoprotein, α-glucose and β-glucose, together with lower levels of acetone, unsaturated lipid and carnitine. Moreover, the profiles showed high feasibility and specificity by statistical analysis with OPLS-DA compared to the Thinprep cytology test (TCT) by setting the histopathological outcome as standard. The metabolic profile obtained for cervical cancer is significant, even for the precancerous disease. This suggests a systemic metabolic response to cancer, which may be used to identify potential early diagnostic biomarkers of the cancer and to establish

  3. Characterization and quantification of microstructures of a fluorinated terpolymer by both homonuclear and heteronuclear two-dimensional NMR spectroscopy.

    PubMed

    Ok, Salim

    2015-02-01

    Fluoropolymers are usually insoluble in organic solvents. Insolubility of fluoropolymers limits basic characterization such as microstructural investigations. In the family of fluoropolymers, terpolymer of tetrafluorethylene (TFE), hexafluoropropylene (HFP), and vinylidene fluoride (VDF), named THV is one of the newest members. There are nine grades of THV available. Among the nine grades, THV-221 G is an ideal model polymer for basic characterization purposes. THV-221 G is soluble in solvents such as acetone and ethyl acetate. In the current report, both homonuclear and heteronuclear 2D NMR experiments were employed in solution on THV-221 G. The homonuclear gradient correlation spectroscopy NMR measurement revealed that THV has two adjacent TFE units in addition to TFE-HFP sequence orders. The fraction of the microstructures is quantified by the analysis of 1D solution (19)F NMR spectrum. Further, the gradient heteronuclear single quantum coherence experiment helped with the clarification of chemical environments of the units TFE, HFP, and VDF. The 1D solution (13)C NMR spectrum was helpful in clarifying sequence assignments of VDF. It is concluded that THV is a random polymer with a limited fraction of TFE-TFE and TFE-HFP sequence orders in addition to head-to-tail polymerization of VDF unit. PMID:25327292

  4. 1H NMR Analysis of Cerebrospinal Fluid from Alzheimer's Disease Patients: An Example of a Possible Misinterpretation Due to Non-Adjustment of pH.

    PubMed

    Cruz, Thomas; Balayssac, Stéphane; Gilard, Véronique; Martino, Robert; Vincent, Christian; Pariente, Jérémie; Malet-Martino, Myriam

    2014-01-01

    Two publications from the same research group reporting on the detection of new possible biomarkers for the early diagnosis of Alzheimer's disease (AD), based on the analysis of cerebrospinal fluid samples (CSF) with 1H Nuclear Magnetic Resonance (NMR), are at the origin of the present study. The authors observed significant differences in 1H NMR spectra of CSF from AD patients and healthy controls and, thus, proposed some NMR signals (without attribution) as possible biomarkers. However, this work was carried out in non-standardized pH conditions. Our study aims at warning about a possible misinterpretation that can arise from 1H NMR analyses of CSF samples if pH adjustment is not done before NMR analysis. Indeed, CSF pH increases rapidly after removal and is subject to changes over conservation time. We first identify the NMR signals described by the authors as biomarkers. We then focus on the chemical shift variations of their NMR signals as a function of pH in both standard solutions and CSF samples. Finally, a principal component analysis of 1H NMR data demonstrates that the same CSF samples recorded at pH 8.1 and 10.0 are statistically differentiated. PMID:24958390

  5. PFG-NMR analysis of intercompartment exchange and inner droplet size distribution of W/O/W emulsions.

    PubMed

    Hindmarsh, Jason P; Su, Jiahong; Flanagan, John; Singh, Harjinder

    2005-09-27

    Presented is a novel application of pulsed field gradient (PFG)-NMR to the analysis of intercompartment exchange and the inner compartment droplet size distribution of a W/O/W multiple emulsion. The method involves monitoring the diffusional behavior of different components of the emulsion. Pfeuffer et al. [Pfeuffer, J.; Flogel, U.; Dreher, W.; Leibfritz, D. NMR Biomed. 1998, 11(1), 19-31.](1) and Price et al. [Price, W. S.; Barzykin, A. V.; Hayamizu, K.; Tachiya, M. Biophys. J. 1998, 74(5), 2259-2271.](2) proposed methods to extend Kärger's PFG-NMR model of exchange between two compartments to accommodate spherical inner compartments. Each model enables the prediction of the oil membrane permeability, the inner compartment volume fraction, and a representation of the inner compartment droplet size distribution. The models were fitted to PFG-NMR experimental data of W/O/W emulsions. The Pfeuffer et al. model provided the best description of the observed experimental data. Predicted values of permeability and swelling were consistent with those reported in the literature for W/O/W emulsions. The addition of sorbitol to either the inner or outer water compartment resulted in an increase in the oil membrane permeability. Inner compartment droplet size distribution measurements indicate that swelling, rupture, and coalescence are likely to have occurred during the secondary emulsification and emulsion ripening. In its present form, the method still constitutes a fast, noninvasive (no addition of a tracer), and in situ method for comparative analysis of the permeability, stability, and yield of different formulations of multiple emulsions with a single PFG-NMR experiment. PMID:16171335

  6. Chemometric Analysis of Two Dimensional Decay Data: Application to {sup 17}O NMR Relaxation Matrices

    SciTech Connect

    Alam, M.K.; Alam, T.M.

    1999-03-18

    The use of {sup 17}O NMR spectroscopy as a tool to investigate aging in polymer systems has recently been demonstrated. Because the natural abundance of {sup 17}O is extremely low (0.037%), the use of labeled {sup 17}O{sub 2} during the oxidation of polymers produces {sup 17}O NMR spectra whose signals arise entirely from the degradation species (i.e. signals from the bulk or unaged material are not observed). This selective isotopic labeling eliminates the impact of interference from the unaged material, cause (1) above. As discussed by Alam et al. spectral overlap between different degradation species as well as errors in quantification remains a major difficulty in {sup 17}O NMR spectroscopy. As a demonstration of the DECRA and CTBSA methods, relaxation matrices obtained from {sup 17}O NMR for model alcohol systems are evaluated. The benefits and limitations of these newly developed chemometric techniques are discussed.

  7. Recommendations and Standardization of Biomarker Quantification Using NMR-Based Metabolomics with Particular Focus on Urinary Analysis

    PubMed Central

    2016-01-01

    NMR-based metabolomics has shown considerable promise in disease diagnosis and biomarker discovery because it allows one to nondestructively identify and quantify large numbers of novel metabolite biomarkers in both biofluids and tissues. Precise metabolite quantification is a prerequisite to move any chemical biomarker or biomarker panel from the lab to the clinic. Among the biofluids commonly used for disease diagnosis and prognosis, urine has several advantages. It is abundant, sterile, and easily obtained, needs little sample preparation, and does not require invasive medical procedures for collection. Furthermore, urine captures and concentrates many “unwanted” or “undesirable” compounds throughout the body, providing a rich source of potentially useful disease biomarkers; however, incredible variation in urine chemical concentrations makes analysis of urine and identification of useful urinary biomarkers by NMR challenging. We discuss a number of the most significant issues regarding NMR-based urinary metabolomics with specific emphasis on metabolite quantification for disease biomarker applications and propose data collection and instrumental recommendations regarding NMR pulse sequences, acceptable acquisition parameter ranges, relaxation effects on quantitation, proper handling of instrumental differences, sample preparation, and biomarker assessment. PMID:26745651

  8. Quantitative ¹H NMR analysis of egg yolk, alcohol, and total sugar content in egg liqueurs.

    PubMed

    Hohmann, Monika; Koospal, Verena; Bauer-Christoph, Claudia; Christoph, Norbert; Wachter, Helmut; Diehl, Bernd; Holzgrabe, Ulrike

    2015-04-29

    Analyzing egg liqueurs for compliance with legal requirements means several different time-consuming preparations and analytical processes. In this paper, we describe the approach to use quantitative (1)H NMR spectroscopy as an accurate alternative technique. (1)H NMR analysis comprised two different rapid sample preparations for water-soluble or nonpolar ingredients. Fifteen egg liqueurs were analyzed for alcoholic strength and content of total sugar and egg yolk (estimated by cholesterol as a marker substance) with both classical methods and quantitative (1)H NMR spectroscopy. The results of both methods showed excellent correlations for alcoholic strength (R = 0.996, p < 0.001) and content of total sugar (R = 0.989, p < 0.001) and cholesterol (R = 0.995, p < 0.001). Besides, NMR spectra revealed further information: a signal of phosphatidylcholine at about δ = 3.20 ppm served as a second marker for the egg yolk content, and characteristic signals of lactose at δ = 4.46 ppm and butyric acid at δ = 0.97 ppm indicated the use of milk products, which has to be declared for lactose-intolerant consumers. PMID:25860435

  9. Recommendations and Standardization of Biomarker Quantification Using NMR-Based Metabolomics with Particular Focus on Urinary Analysis.

    PubMed

    Emwas, Abdul-Hamid; Roy, Raja; McKay, Ryan T; Ryan, Danielle; Brennan, Lorraine; Tenori, Leonardo; Luchinat, Claudio; Gao, Xin; Zeri, Ana Carolina; Gowda, G A Nagana; Raftery, Daniel; Steinbeck, Christoph; Salek, Reza M; Wishart, David S

    2016-02-01

    NMR-based metabolomics has shown considerable promise in disease diagnosis and biomarker discovery because it allows one to nondestructively identify and quantify large numbers of novel metabolite biomarkers in both biofluids and tissues. Precise metabolite quantification is a prerequisite to move any chemical biomarker or biomarker panel from the lab to the clinic. Among the biofluids commonly used for disease diagnosis and prognosis, urine has several advantages. It is abundant, sterile, and easily obtained, needs little sample preparation, and does not require invasive medical procedures for collection. Furthermore, urine captures and concentrates many "unwanted" or "undesirable" compounds throughout the body, providing a rich source of potentially useful disease biomarkers; however, incredible variation in urine chemical concentrations makes analysis of urine and identification of useful urinary biomarkers by NMR challenging. We discuss a number of the most significant issues regarding NMR-based urinary metabolomics with specific emphasis on metabolite quantification for disease biomarker applications and propose data collection and instrumental recommendations regarding NMR pulse sequences, acceptable acquisition parameter ranges, relaxation effects on quantitation, proper handling of instrumental differences, sample preparation, and biomarker assessment. PMID:26745651

  10. A (13)C NMR analysis of the effects of electron radiation on graphite/polyetherimide composites

    NASA Technical Reports Server (NTRS)

    Ferguson, Milton W.

    1989-01-01

    Initial investigations have been made into the use of high resolution nuclear magnetic resonance (NMR) for the characterization of radiation effects in graphite and Kevlar fibers, polymers, and the fiber/matrix interface in graphite/polyetherimide composites. Sample preparation techniques were refined. Essential equipment has been procured. A new NMR probe was constructed to increase the proton signal-to-noise ratio. Problem areas have been identified and plans developed to resolve them.

  11. A NMR-Based Carbon-Type Analysis of Diesel Fuel Blends From Various Sources

    SciTech Connect

    Bays, J. Timothy; King, David L.

    2013-05-10

    In collaboration with participants of the Coordinating Research Council (CRC) Advanced Vehicle/Fuels/Lubricants (AVFL) Committee, and project AVFL-19, the characteristics of fuels from advanced and renewable sources were compared to commercial diesel fuels. The main objective of this study was to highlight similarities and differences among the fuel types, i.e. ULSD, renewables, and alternative fuels, and among fuels within the different fuel types. This report summarizes the carbon-type analysis from 1H and 13C{1H} nuclear magnetic resonance spectroscopy (NMR) of 14 diesel fuel samples. The diesel fuel samples come from diverse sources and include four commercial ultra-low sulfur diesel fuels (ULSD), one gas-to-liquid diesel fuel (GTL), six renewable diesel fuels (RD), two shale oil-derived diesel fuels, and one oil sands-derived diesel fuel. Overall, the fuels examined fall into two groups. The two shale oil-derived samples and the oil-sand-derived sample closely resemble the four commercial ultra-low sulfur diesels, with SO1 and SO2 most closely matched with ULSD1, ULSD2, and ULSD4, and OS1 most closely matched with ULSD3. As might be expected, the renewable diesel fuels, with the exception of RD3, do not resemble the ULSD fuels because of their very low aromatic content, but more closely resemble the gas-to-liquid sample (GTL) in this respect. RD3 is significantly different from the other renewable diesel fuels in that the aromatic content more closely resembles the ULSD fuels. Fused-ring aromatics are readily observable in the ULSD, SO, and OS samples, as well as RD3, and are noticeably absent in the remaining RD and GTL fuels. Finally, ULSD3 differs from the other ULSD fuels by having a significantly lower aromatic carbon content and higher cycloparaffinic carbon content. In addition to providing important comparative compositional information regarding the various diesel fuels, this report also provides important information about the capabilities of NMR

  12. Conformational analysis, tautomerization, IR, Raman, and NMR studies of benzyl acetoacetate

    NASA Astrophysics Data System (ADS)

    Tayyari, Sayyed Faramarz; Naghavi, Farnaz; Pojhan, Sahar; McClurg, Ryan W.; Sammelson, Robert E.

    2011-02-01

    A complete conformational analysis of the keto and enol forms of benzyl acetoacetate (BAA), a β-dicarbonyl compound, was carried out by ab initio calculations, at the density functional theory (DFT) level. By inspection of all possible conformers and tautomers, 22 stable cis-enol, 28 stable trans-enol, and five keto conformers were obtained. Among all stable cis-enol forms only six of them are engaged in intramolecular hydrogen bond. The hydrogen bond strength of the most stable conformer of BAA is compared with that of acetylacetone (AA) and dimethyl oxaloacetate (DMOA). Harmonic vibrational frequencies of the most stable enol and keto forms and their deuterated analogues were also calculated and compared with the experimental data. According to the theoretical calculations, the hydrogen bond strength of the most stable enol conformer of BAA is 56.7 kJ/mol (calculated at the B3LYP/6-311++G ∗∗ level), about 10 kJ/mol less than that of AA. This weakening of hydrogen bond is consistent with the spectroscopic results. NMR studies indicate that BAA exists mainly as a keto tautomer in all considered solutions. The Gibbs energies for keto/enol tautomerization were calculated at the B3LYP level, with several basis sets, in both gas phase and CH 3CN solution (using PCM model), for the most stable enol and keto conformers.

  13. NMR investigation of phenanthridine dyes self-association in aqueous solution. Structural and thermodynamical analysis

    NASA Astrophysics Data System (ADS)

    Veselkov, A. N.; Lantushenko, A. O.

    2002-12-01

    Phenanthridine dyes have pronounced mutagenic activity due to their intercalative binding with double-helical DNA. Although the structural significance in the interacalation process of the phenanthridinium chromophore is well established, the role ofits side chains is still under discussion. The comparative analysis of complexation with DNA of phenanthridinium dyes - ethidium bormide (EB) and its two photosensitive analogues: 3-amino-8-azido-5-ethyl-6-phenyl phenanthridinium bormide (EMB) and 3,80diazido-5-ethyl-6-phenyl phenanthridinium chloride (EDC) has shown that they have different affinities of binding with nucleotide sequences in aqueous salt solution. In order to test the role of azido-groups in side chains of EB chromophore on the drug-DNA affinity, the self-association of EB and its two azido-analogues have been studied in this work by one- and two-dimensional 1H-NMR spectrosocpy. Self-association of the aromatic drug molecuels has been studied using concentration and temperature dependences of proton chemical shifts. The equilibrium reaction constants, cooperativity parameters, the limiting values of proton chemical shifts and thermodynamical parameters-enthalpy and entropy of drug self-association have been determined for all the molecular system studied.

  14. Characterization of tautomeric forms of ranitidine hydrochloride: thermal analysis, solid-state NMR, X-ray

    NASA Astrophysics Data System (ADS)

    Mirmehrabi, M.; Rohani, S.; Murthy, K. S. K.; Radatus, B.

    2004-01-01

    The molecular structure of ranitidine hydrochloride (RAN-HCl) has an important influence on the growth of individual crystals and consequently the physical properties such as bulk solid density. This paper suggests that the correct structure of the nitroethenediamine moiety in the Form 2 RAN-HCl is a mixture of enamine and nitronic acid tautomers. Thermal analysis showed that the difference between the two forms is configurational rather than conformational. It also showed explosive type of degradation at the melting point of both forms. Solid-state NMR studies suggest that Form 2 contains molecular disorder whereas Form 1 may be more ordered. A single crystal X-ray study confirms the disorder in Form 2 but a similar study on Form 1 could not be performed and its suspected order can only be inferred. It was found that significant amounts of strongly polar solvents such as methanol and water would favour the production of Form 2; while anhydrous less polar or non-polar solvents will result in the production of Form 1. Chloride ion acts as the bridge between the individual molecules of RAN-HCl in the crystal structure of Form 2.

  15. Independent component analysis (ICA) algorithms for improved spectral deconvolution of overlapped signals in 1H NMR analysis: application to foods and related products.

    PubMed

    Monakhova, Yulia B; Tsikin, Alexey M; Kuballa, Thomas; Lachenmeier, Dirk W; Mushtakova, Svetlana P

    2014-05-01

    The major challenge facing NMR spectroscopic mixture analysis is the overlapping of signals and the arising impossibility to easily recover the structures for identification of the individual components and to integrate separated signals for quantification. In this paper, various independent component analysis (ICA) algorithms [mutual information least dependent component analysis (MILCA); stochastic non-negative ICA (SNICA); joint approximate diagonalization of eigenmatrices (JADE); and robust, accurate, direct ICA algorithm (RADICAL)] as well as deconvolution methods [simple-to-use-interactive self-modeling mixture analysis (SIMPLISMA) and multivariate curve resolution-alternating least squares (MCR-ALS)] are applied for simultaneous (1)H NMR spectroscopic determination of organic substances in complex mixtures. Among others, we studied constituents of the following matrices: honey, soft drinks, and liquids used in electronic cigarettes. Good quality spectral resolution of up to eight-component mixtures was achieved (correlation coefficients between resolved and experimental spectra were not less than 0.90). In general, the relative errors in the recovered concentrations were below 12%. SIMPLISMA and MILCA algorithms were found to be preferable for NMR spectra deconvolution and showed similar performance. The proposed method was used for analysis of authentic samples. The resolved ICA concentrations match well with the results of reference gas chromatography-mass spectrometry as well as the MCR-ALS algorithm used for comparison. ICA deconvolution considerably improves the application range of direct NMR spectroscopy for analysis of complex mixtures. PMID:24604756

  16. (19)F MRSI of capecitabine in the liver at 7 T using broadband transmit-receive antennas and dual-band RF pulses.

    PubMed

    van Gorp, Jetse S; Seevinck, Peter R; Andreychenko, Anna; Raaijmakers, Alexander J E; Luijten, Peter R; Viergever, Max A; Koopman, Miriam; Boer, Vincent O; Klomp, Dennis W J

    2015-11-01

    Capecitabine (Cap) is an often prescribed chemotherapeutic agent, successfully used to cure some patients from cancer or reduce tumor burden for palliative care. However, the efficacy of the drug is limited, it is not known in advance who will respond to the drug and it can come with severe toxicity. (19)F Magnetic Resonance Spectroscopy (MRS) and Magnetic Resonance Spectroscopic Imaging (MRSI) have been used to non-invasively study Cap metabolism in vivo to find a marker for personalized treatment. In vivo detection, however, is hampered by low concentrations and the use of radiofrequency (RF) surface coils limiting spatial coverage. In this work, the use of a 7T MR system with radiative multi-channel transmit-receive antennas was investigated with the aim of maximizing the sensitivity and spatial coverage of (19)F detection protocols. The antennas were broadband optimized to facilitate both the (1)H (298 MHz) and (19)F (280 MHz) frequencies for accurate shimming, imaging and signal combination. B1(+) simulations, phantom and noise measurements showed that more than 90% of the theoretical maximum sensitivity could be obtained when using B1(+) and B1(-) information provided at the (1)H frequency for the optimization of B1(+) and B1(-) at the (19)F frequency. Furthermore, to overcome the limits in maximum available RF power, whilst ensuring simultaneous excitation of all detectable conversion products of Cap, a dual-band RF pulse was designed and evaluated. Finally, (19)F MRS(I) measurements were performed to detect (19)F metabolites in vitro and in vivo. In two patients, at 10 h (patient 1) and 1 h (patient 2) after Cap intake, (19)F metabolites were detected in the liver and the surrounding organs, illustrating the potential of the set-up for in vivo detection of metabolic rates and drug distribution in the body. PMID:26373355

  17. A combined chemometric and quantitative NMR analysis of HIV/AIDS serum discloses metabolic alterations associated with disease status.

    PubMed

    McKnight, Tracy R; Yoshihara, Hikari A I; Sitole, Lungile J; Martin, Jeffery N; Steffens, Francois; Meyer, Debra

    2014-11-01

    Individuals infected with the human immunodeficiency virus (HIV) often suffer from concomitant metabolic complications. Treatment with antiretroviral therapy has also been shown to alter the metabolism of patients. Although chemometric analysis of nuclear magnetic resonance (NMR) spectra of human sera can distinguish normal sera (HIVneg) from HIV-infected sera (HIVpos) and sera from HIV-infected patients on antiretroviral therapy (ART), quantitative analysis of the discriminating metabolites and their relationship to disease status has yet to be determined. The objectives of the study were to analyze NMR spectra of HIVneg, HIVpos, and ART serum samples with a combination of chemometric and quantitative methods and to compare the NMR data with disease status as measured by viral load and CD4 count. High-resolution magic angle spinning (HRMAS) NMR spectroscopy was performed on HIVneg (N = 10), HIVpos (N = 10), and ART (N = 10) serum samples. Chemometric linear discriminant analysis classified the three groups of spectra with 100% accuracy. Concentrations of 12 metabolites were determined with a semi-parametric metabolite quantification method named high-resolution quantum estimation (HR-QUEST). CD4 count was directly associated with alanine (p = 0.008), and inversely correlated with both glutamine (p = 0.017) and glucose (p = 0.022) concentrations. A multivariate linear model using alanine, glutamine and glucose as covariates demonstrated an association with CD4 count (p = 0.038). The combined chemometric and quantitative analysis of the data disclosed previously unknown associations between specific metabolites and disease status. The observed associations with CD4 count are consistent with metabolic disorders that are commonly seen in HIV-infected patients. PMID:25105420

  18. NMR study of the reversible trapping of SF6 by cucurbit[6]uril in aqueous solution.

    PubMed

    Fusaro, Luca; Locci, Emanuela; Lai, Adolfo; Luhmer, Michel

    2008-11-27

    The complexation of sulfur hexafluoride (SF(6)), a highly potent greenhouse gas, by cucurbit[6]uril (CB) was studied at various temperatures in Na(2)SO(4) aqueous solutions by (19)F and (1)H NMR. CB shows a remarkable affinity for SF(6), suggesting that it is a suitable molecular container for the design of materials tailored for SF(6) trapping. At 298 K, the equilibrium constant characterizing the inclusion of SF(6) by CB is 3.1 x 10(4) M(-1) and the residence time of SF(6) within the CB cavity is estimated to be of the order of a few seconds. The enthalpic and entropic contributions to the free energy of encapsulation were determined and are discussed. This work also reports on the interest of SF(6) in the framework of the spin-spy methodology. The advantages and drawbacks of solution-state (19)F NMR of SF(6) with respect to (129)Xe NMR are discussed. SF(6) comes forward as a versatile and informative spin-spy molecule for probing systems in solution because its detection limit by (19)F NMR reaches the micromolar range with standard equipment and because quantitative integral measurements, relaxation time measurements, and demanding experiments, such as translational diffusion coefficient measurements, are easily carried out in addition to chemical shift measurements. Solution-state (19)F NMR of SF(6) emerges as a promising alternative to (129)Xe NMR for probing cavities and for other applications relying on the encapsulation of an NMR active gaseous probe. PMID:18956898

  19. Effect of molecular exchange on water droplet size analysis in W/O emulsions as determined by diffusion NMR.

    PubMed

    Vermeir, Lien; Sabatino, Paolo; Balcaen, Mathieu; Declerck, Arnout; Dewettinck, Koen; Martins, José C; Van der Meeren, Paul

    2016-02-01

    Using NMR diffusometry, the diffusion of water and tetramethylammonium chloride was recorded in order to determine the water droplet size distribution in W/O emulsions. This study aimed at evaluating the effect of extradroplet diffusion of water on the estimated droplet size distribution upon comparison to the real droplet size distribution. The latter originated from the diffusion behavior of the tetramethylammonium cation (TMA+), which is known to have a much lower permeability through the oil phase as compared to water. Whereas both low-resolution and high-resolution pulsed field gradient NMR revealed that the water droplet size overestimation could be reduced selecting either a lower measurement temperature during diffusion analysis, or a smaller diffusion delay value Δ, still comparison to TMA+ diffusion indicated that artefacts were unavoidable even at low Δ and temperature. In order to correct for this extradroplet water diffusion phenomenon, different data analysis methods were evaluated. The previously described Pfeuffer exchange model could only partly compensate for the effect of extradroplet diffusion on the water droplet size determination. On the other hand, accurate water droplet size analysis results were obtained by correcting the experimentally determined diffusion distances based on Einstein's diffusion law. As such, reliable data could be obtained by low resolution NMR based on water diffusion at or even above room temperature. PMID:26520819

  20. Automated evaluation of chemical shift perturbation spectra: New approaches to quantitative analysis of receptor-ligand interaction NMR spectra

    PubMed Central

    Peng, Chen; Unger, Stephen W.; Filipp, Fabian V.; Sattler, Michael; Szalma, Sándor

    2016-01-01

    This paper presents new methods designed for quantitative analysis of chemical shift perturbation NMR spectra. The methods automatically trace the displacements of cross peaks between a perturbed test spectrum and the reference spectrum (or among a series of titration spectra), and measure the changes of chemical shifts, heights, and widths of the altered peaks. The methods are primary aimed at the 1H-15N HSQC spectra of relatively small proteins (<15 kDa) assuming fast exchange between free and ligand-bound states on the chemical shift time scale, or for comparing spectra of free and fully bound states in the slow exchange situation. Using the 1H-15N HSQC spectra from a titration experiment of the 74-residue Pex13p SH3 domain with a Pex14p peptide ligand (14 residues, Kd = ~ 40µM), we demonstrate the scope and limits of our automatic peak tracing (APET) algorithm for efficient scoring of high-throughput SAR by NMR type HSQC spectra, and progressive peak tracing (PROPET) algorithm for detailed analysis of ligand titration spectra. Simulated spectra with low signal-to-noise ratios (S/N ranged from 20 to 1) were used to demonstrate the reliability and reproducibility of the results when dealing with poor quality spectra. These algorithms have been implemented in a new software module, FELIX-Autoscreen, for streamlined processing, analysis and visualization of SAR by NMR and other high-throughput receptor/ligand interaction experiments. PMID:15243180

  1. Study of viscosity on the fission dynamics of the excited nuclei 228U produced in 19F + 209Bi reactions

    NASA Astrophysics Data System (ADS)

    Eslamizadeh, H.

    2015-06-01

    A two-dimensional (2D) dynamical model based on Langevin equations was applied to study the fission dynamics of the compound nuclei 228U produced in 19F + 209Bi reactions at intermediate excitation energies. The distance between the centers of masses of the future fission fragments was used as the first dimension and the projection of the total spin of the compound nucleus onto the symmetry axis, K, was considered as the second dimension in Langevin dynamical calculations. The magnitude of post-saddle friction strength was inferred by fitting measured data on the average pre-scission neutron multiplicity for 228U. It was shown that the results of calculations are in good agreement with the experimental data by using values of the post-saddle friction equal to 6-8 × 1021s-1.

  2. Indocyanine green-loaded perfluorocarbon nanoemulsions for bimodal 19F-magnetic resonance/nearinfrared fluorescence imaging and subsequent phototherapy

    PubMed Central

    Wang, Yuan-Guo; Kim, Hyunjin; Mun, Saehun

    2013-01-01

    We have developed an indocyanine green-loaded perfluorocarbon (ICG/PFCE) nanoemulsion as a multifunctional theranostic nanomedicine which enables not only 19F magnetic resonance (MR)/near-infrared fluorescence (NIRF) bimodal imaging but also subsequent photodynamic/photothermal dual therapy of cancer. The hydrodynamic size of ICG/PFCE nanoemulsions was 164.2 nm. The stability of indocyanine green (ICG) in aqueous solution was significantly improved when loaded on perfluorocarbon nanoemulsions. In addition, ICG/PFCE nanoemulsions showed good dispersion stability in aqueous media containing 10% fetal bovine serum, for at least 14 days. 19F-MRI of ICG/PFCE nanoemulsions showed that the signal intensity increased with increasing nanoemulsion concentration with no signal observed from the surrounding background. Using NIRF imaging with perfluorocarbon nanoemulsion alone, without ICG, did not produce NIRF, while clear and bright fluorescent images were obtained with ICG/PFCE nanoemulsions at 10-µM ICG equivalent. The capacity of ICG-loaded nanoemulsions to generate heat following light irradiation by using an 810-nm laser was comparable to that of free ICG, while singlet oxygen generation of ICG-loaded nanoemulsions was significantly better than that of free ICG. In vitro cytotoxicity tests and fluorescence microscopy confirmed biocompatibility of the nanoemulsion. Upon light irradiation, U87MG glioblastoma cells incubated with ICG/PFCE nanoemulsions underwent necrotic cell death. The therapeutic mechanism during light illumination appears to be mainly due to the photodynamic effect at lower ICG concentrations, whilst the photothermal effect became more obvious at increased ICG concentrations, enabling combined photodynamic/photothermal therapy of cancer cells. PMID:23833726

  3. Imaging Neuroinflammation In Vivo in a Neuropathic Pain Rat Model with Near-Infrared Fluorescence and 19F Magnetic Resonance

    PubMed Central

    Vasudeva, Kiran; Andersen, Karl; Zeyzus-Johns, Bree; Hitchens, T. Kevin; Patel, Sravan Kumar; Balducci, Anthony; Janjic, Jelena M.; Pollock, John A.

    2014-01-01

    Chronic neuropathic pain following surgery represents a serious worldwide health problem leading to life-long treatment and the possibility of significant disability. In this study, neuropathic pain was modeled using the chronic constriction injury (CCI). The CCI rats exhibit mechanical hypersensitivity (typical neuropathic pain symptom) to mechanical stimulation of the affected paw 11 days post surgery, at a time when sham surgery animals do not exhibit hypersensitivity. Following a similar time course, TRPV1 gene expression appears to rise with the hypersensitivity to mechanical stimulation. Recent studies have shown that immune cells play a role in the development of neuropathic pain. To further explore the relationship between neuropathic pain and immune cells, we hypothesize that the infiltration of immune cells into the affected sciatic nerve can be monitored in vivo by molecular imaging. To test this hypothesis, an intravenous injection of a novel perfluorocarbon (PFC) nanoemulsion, which is phagocytosed by inflammatory cells (e.g. monocytes and macrophages), was used in a rat CCI model. The nanoemulsion carries two distinct imaging agents, a near-infrared (NIR) lipophilic fluorescence reporter (DiR) and a 19F MRI (magnetic resonance imaging) tracer, PFC. We demonstrate that in live rats, NIR fluorescence is concentrated in the area of the affected sciatic nerve. Furthermore, the 19F MRI signal was observed on the sciatic nerve. Histological examination of the CCI sciatic nerve reveals significant infiltration of CD68 positive macrophages. These results demonstrate that the infiltration of immune cells into the sciatic nerve can be visualized in live animals using these methods. PMID:24587398

  4. Complex Mixture Analysis of Organic Compounds in Yogurt by NMR Spectroscopy

    PubMed Central

    Lu, Yi; Hu, Fangyu; Miyakawa, Takuya; Tanokura, Masaru

    2016-01-01

    NMR measurements do not require separation and chemical modification of samples and therefore rapidly and directly provide non-targeted information on chemical components in complex mixtures. In this study, one-dimensional (1H, 13C, and 31P) and two-dimensional (1H-13C and 1H-31P) NMR spectroscopy were conducted to analyze yogurt without any pretreatment. 1H, 13C, and 31P NMR signals were assigned to 10 types of compounds. The signals of α/β-lactose and α/β-galactose were separately observed in the 1H NMR spectra. In addition, the signals from the acyl chains of milk fats were also successfully identified but overlapped with many other signals. Quantitative difference spectra were obtained by subtracting the diffusion ordered spectroscopy (DOSY) spectra from the quantitative 1H NMR spectra. This method allowed us to eliminate interference on the overlaps; therefore, the correct intensities of signals overlapped with those from the acyl chains of milk fat could be determined directly without separation. Moreover, the 1H-31P HMBC spectra revealed for the first time that N-acetyl-d-glucosamine-1-phosphate is contained in yogurt. PMID:27322339

  5. Complex Mixture Analysis of Organic Compounds in Yogurt by NMR Spectroscopy.

    PubMed

    Lu, Yi; Hu, Fangyu; Miyakawa, Takuya; Tanokura, Masaru

    2016-01-01

    NMR measurements do not require separation and chemical modification of samples and therefore rapidly and directly provide non-targeted information on chemical components in complex mixtures. In this study, one-dimensional (¹H, (13)C, and (31)P) and two-dimensional (¹H-(13)C and ¹H-(31)P) NMR spectroscopy were conducted to analyze yogurt without any pretreatment. ¹H, (13)C, and (31)P NMR signals were assigned to 10 types of compounds. The signals of α/β-lactose and α/β-galactose were separately observed in the ¹H NMR spectra. In addition, the signals from the acyl chains of milk fats were also successfully identified but overlapped with many other signals. Quantitative difference spectra were obtained by subtracting the diffusion ordered spectroscopy (DOSY) spectra from the quantitative ¹H NMR spectra. This method allowed us to eliminate interference on the overlaps; therefore, the correct intensities of signals overlapped with those from the acyl chains of milk fat could be determined directly without separation. Moreover, the ¹H-(31)P HMBC spectra revealed for the first time that N-acetyl-d-glucosamine-1-phosphate is contained in yogurt. PMID:27322339

  6. Double and zero quantum filtered 2H NMR analysis of D2O in intervertebral disc tissue

    NASA Astrophysics Data System (ADS)

    Ooms, Kristopher J.; Vega, Alexander J.; Polenova, Tatyana; Cannella, Marco; Marcolongo, Michele

    2015-09-01

    The analysis of double and zero quantum filtered 2H NMR spectra obtained from D2O perfused in the nucleus pulposus of human intervertebral disc tissue samples is reported. Fitting the spectra with a three-site model allows for residual quadrupolar couplings and T2 relaxation times to be measured. The analysis reveals changes in both the couplings and relaxation times as the tissue begins to show signs of degradation. The full analysis demonstrates that information about tissue hydration, water collagen interactions, and sample heterogeneity can be obtained and used to better understand the biochemical differences between healthy and degraded tissue.

  7. sup 31 P NMR analysis of coal moieties bearing -OH, -NH, and -SH functions

    SciTech Connect

    Verkade, J.G.

    1991-08-31

    NMR reagents for the speciation and quantitation of labile-hydrogen functional groups and sulfur groups in coal ligands have been synthesized and evaluated. These reagents, which contain the NMR-active nuclei {sup 31}p, {sup 119}Sn or {sup 195}pt, were designed to possess improved chemical shift resolution over reagents reported in the literature. Our efforts were successful in the case of the new {sup 31}p and {sup 119}Sn reagents we developed, but the {sup 195}pt work on sulfur groups was only partially successful in as much as the grant came to a close and was not renewed. Our success with {sup 31}P and {sup 119}Sn NMR reagents came to the attention of Amoco and they have recently expressed interest in further supporting that work. A further measure of the success of our efforts can be seen in the nine publications supported by this grant which are cited in the reference list.

  8. Interaction evaluation of silver and dithizone complexes using DFT calculations and NMR analysis.

    PubMed

    Wasukan, Nootcharin; Srisung, Sujittra; Kuno, Mayuso; Kulthong, Kornphimol; Maniratanachote, Rawiwan

    2015-10-01

    Silver has distinct antibacterial properties and has been used as a component of commercial products with many applications. An increasing number of commercial products cause risks of silver effects for human and environment such as the symptoms of Argyria and the release of silver to the environment. Therefore, the detection of silver in the aquatic environment is important. The colorimetric chemosensor is designed by the basic of ligand interactions with metal ion, leading to the change of signals for the naked-eyes which is very useful method to this application. Dithizone ligand is considered as one of the effective chelating reagents for metal ions due to its high selectivity and sensitivity of a photochromic reaction for silver as well as the linear backbone of dithizone affords the rotation of various isomeric forms. The present study is focused on the conformation and interaction of dithizone with silver using density functional theory (DFT). The interaction parameters were determined in term of binding energy of complexes and the geometry optimization, frequency of the structures and calculation of binding energies using density functional approaches B3LYP and the 6-31G(d,p) basis set. Moreover, the interaction of silver-dithizone complexes was supported by UV-Vis spectroscopy, FT-IR spectrum that were simulated by using B3LYP/6-31G(d,p) and (1)H NMR spectra calculation using B3LYP/6-311+G(2d,p) method compared with the experimental data. The results showed the ion exchange interaction between hydrogen of dithizone and silver atom with minimized binding energies of silver-dithizone interaction. Therefore, the results can be the useful information for determination of complex interaction using the analysis of computer simulations. PMID:26001102

  9. Unified and Isomer-Specific NMR Metabolomics Database for the Accurate Analysis of 13C–1H HSQC Spectra

    PubMed Central

    2015-01-01

    A new metabolomics database and query algorithm for the analysis of 13C–1H HSQC spectra is introduced, which unifies NMR spectroscopic information on 555 metabolites from both the Biological Magnetic Resonance Data Bank (BMRB) and Human Metabolome Database (HMDB). The new database, termed Complex Mixture Analysis by NMR (COLMAR) 13C–1H HSQC database, can be queried via an interactive, easy to use web interface at http://spin.ccic.ohio-state.edu/index.php/hsqc/index. Our new HSQC database separately treats slowly exchanging isomers that belong to the same metabolite, which permits improved query in cases where lowly populated isomers are below the HSQC detection limit. The performance of our new database and query web server compares favorably with the one of existing web servers, especially for spectra of samples of high complexity, including metabolite mixtures from the model organisms Drosophila melanogaster and Escherichia coli. For such samples, our web server has on average a 37% higher accuracy (true positive rate) and a 82% lower false positive rate, which makes it a useful tool for the rapid and accurate identification of metabolites from 13C–1H HSQC spectra at natural abundance. This information can be combined and validated with NMR data from 2D TOCSY-type spectra that provide connectivity information not present in HSQC spectra. PMID:25333826

  10. Metabolic Discrimination of Catharanthus roseus Leaves Infected by Phytoplasma Using 1H-NMR Spectroscopy and Multivariate Data Analysis1

    PubMed Central

    Choi, Young Hae; Tapias, Elisabet Casas; Kim, Hye Kyong; Lefeber, Alfons W.M.; Erkelens, Cornelis; Verhoeven, Jacobus Th.J.; Brzin, Jernej; Zel, Jana; Verpoorte, Robert

    2004-01-01

    A comprehensive metabolomic profiling of Catharanthus roseus L. G. Don infected by 10 types of phytoplasmas was carried out using one-dimensional and two-dimensional NMR spectroscopy followed by principal component analysis (PCA), an unsupervised clustering method requiring no knowledge of the data set and used to reduce the dimensionality of multivariate data while preserving most of the variance within it. With a combination of these techniques, we were able to identify those metabolites that were present in different levels in phytoplasma-infected C. roseus leaves than in healthy ones. The infection by phytoplasma in C. roseus leaves causes an increase of metabolites related to the biosynthetic pathways of phenylpropanoids or terpenoid indole alkaloids: chlorogenic acid, loganic acid, secologanin, and vindoline. Furthermore, higher abundance of Glc, Glu, polyphenols, succinic acid, and Suc were detected in the phytoplasma-infected leaves. The PCA of the 1H-NMR signals of healthy and phytoplasma-infected C. roseus leaves shows that these metabolites are major discriminating factors to characterize the phytoplasma-infected C. roseus leaves from healthy ones. Based on the NMR and PCA analysis, it might be suggested that the biosynthetic pathway of terpenoid indole alkaloids, together with that of phenylpropanoids, is stimulated by the infection of phytoplasma. PMID:15286294

  11. Unified and isomer-specific NMR metabolomics database for the accurate analysis of (13)C-(1)H HSQC spectra.

    PubMed

    Bingol, Kerem; Li, Da-Wei; Bruschweiler-Li, Lei; Cabrera, Oscar A; Megraw, Timothy; Zhang, Fengli; Brüschweiler, Rafael

    2015-02-20

    A new metabolomics database and query algorithm for the analysis of (13)C-(1)H HSQC spectra is introduced, which unifies NMR spectroscopic information on 555 metabolites from both the Biological Magnetic Resonance Data Bank (BMRB) and Human Metabolome Database (HMDB). The new database, termed Complex Mixture Analysis by NMR (COLMAR) (13)C-(1)H HSQC database, can be queried via an interactive, easy to use web interface at http://spin.ccic.ohio-state.edu/index.php/hsqc/index . Our new HSQC database separately treats slowly exchanging isomers that belong to the same metabolite, which permits improved query in cases where lowly populated isomers are below the HSQC detection limit. The performance of our new database and query web server compares favorably with the one of existing web servers, especially for spectra of samples of high complexity, including metabolite mixtures from the model organisms Drosophila melanogaster and Escherichia coli. For such samples, our web server has on average a 37% higher accuracy (true positive rate) and a 82% lower false positive rate, which makes it a useful tool for the rapid and accurate identification of metabolites from (13)C-(1)H HSQC spectra at natural abundance. This information can be combined and validated with NMR data from 2D TOCSY-type spectra that provide connectivity information not present in HSQC spectra. PMID:25333826

  12. Consideration of some sampling problems in the on-line analysis of batch processes by low-field NMR spectrometry.

    PubMed

    Nordon, Alison; Diez-Lazaro, Alvaro; Wong, Chris W L; McGill, Colin A; Littlejohn, David; Weerasinghe, Manori; Mamman, Danladi A; Hitchman, Michael L; Wilkie, Jacqueline

    2008-03-01

    A low-field medium-resolution NMR spectrometer, with an operating frequency of 29 MHz for 1H, has been assessed for on-line process analysis. A flow cell that incorporates a pre-magnetisation region has been developed to minimise the decrease in the signal owing to incomplete polarisation effects. The homogeneous esterification reaction of crotonic acid and 2-butanol was monitored using a simple sampling loop; it was possible to monitor the progression of the reaction through changes in CH signal areas of butanol and butyl crotonate. On-line analysis of heterogeneous water-toluene mixtures proved more challenging and a fast sampling loop system was devised for use with a 5 L reactor. The fast sampling loop operated at a flow rate of 8 L min(-1) and a secondary sampling loop was used to pass a sub-sample through the NMR analyser at a slower (mL min(-1)) rate. It was shown that even with super-isokinetic sampling conditions, unrepresentative sampling could occur owing to inadequate mixing in the reactor. However, it was still possible to relate the 1H NMR signal obtained at a flow rate of 60 mL min(-1) to the composition of the reactor contents. PMID:18299748

  13. Quantification of Human Brain Metabolites from in Vivo1H NMR Magnitude Spectra Using Automated Artificial Neural Network Analysis

    NASA Astrophysics Data System (ADS)

    Hiltunen, Yrjö; Kaartinen, Jouni; Pulkkinen, Juhani; Häkkinen, Anna-Maija; Lundbom, Nina; Kauppinen, Risto A.

    2002-01-01

    Long echo time (TE=270 ms) in vivo proton NMR spectra resembling human brain metabolite patterns were simulated for lineshape fitting (LF) and quantitative artificial neural network (ANN) analyses. A set of experimental in vivo1H NMR spectra were first analyzed by the LF method to match the signal-to-noise ratios and linewidths of simulated spectra to those in the experimental data. The performance of constructed ANNs was compared for the peak area determinations of choline-containing compounds (Cho), total creatine (Cr), and N-acetyl aspartate (NAA) signals using both manually phase-corrected and magnitude spectra as inputs. The peak area data from ANN and LF analyses for simulated spectra yielded high correlation coefficients demonstrating that the peak areas quantified with ANN gave similar results as LF analysis. Thus, a fully automated ANN method based on magnitude spectra has demonstrated potential for quantification of in vivo metabolites from long echo time spectroscopic imaging.

  14. The use of IRMS, (1)H NMR and chemical analysis to characterise Italian and imported Tunisian olive oils.

    PubMed

    Camin, Federica; Pavone, Anita; Bontempo, Luana; Wehrens, Ron; Paolini, Mauro; Faberi, Angelo; Marianella, Rosa Maria; Capitani, Donatella; Vista, Silvia; Mannina, Luisa

    2016-04-01

    Isotope Ratio Mass Spectrometry (IRMS), (1)H Nuclear Magnetic Resonance ((1)H NMR), conventional chemical analysis and chemometric elaboration were used to assess quality and to define and confirm the geographical origin of 177 Italian PDO (Protected Denomination of Origin) olive oils and 86 samples imported from Tunisia. Italian olive oils were richer in squalene and unsaturated fatty acids, whereas Tunisian olive oils showed higher δ(18)O, δ(2)H, linoleic acid, saturated fatty acids β-sitosterol, sn-1 and 3 diglyceride values. Furthermore, all the Tunisian samples imported were of poor quality, with a K232 and/or acidity values above the limits established for extra virgin olive oils. By combining isotopic composition with (1)H NMR data using a multivariate statistical approach, a statistical model able to discriminate olive oil from Italy and those imported from Tunisia was obtained, with an optimal differentiation ability arriving at around 98%. PMID:26593470

  15. A Quantitative NMR Analysis of Phosphorus in Carbonaceous and Ordinary Chondrites

    NASA Technical Reports Server (NTRS)

    Pasek, M. A.; Smith, V. D.; Lauretta, D. S.

    2004-01-01

    Phosphorus is important in a number of biochemical molecules, from DNA to ATP. Early life may have depended on meteorites as a primary source of phosphorus as simple dissolution of crustal apatite may not produce the necessary concentration of phosphate. Phosphorus is found in several mineral phases in meteorites. Apatite and other Ca- and Mg phosphate minerals tend to be the dominant phosphorus reservoir in stony meteorites, whereas in more iron-rich or reduced meteorites, the phosphide minerals schreibersite, (Fe, Ni)3P, and perryite, (Ni, Fe)5(Si, P)2 are dominant. However, in CM chondrites that have experienced significant aqueous alteration, phosphorus has been detected in more exotic molecules. A series of phosphonic acids including methyl-, ethyl-, propyl- and butyl- phosphonic acids were observed by GC-MS in Murchison. Phosphorian sulfides are in Murchison and Murray. NMR spectrometry is capable of detecting multiple substances with one experiment, is non-destructive, and potentially quantitative, as discussed below. Despite these advantages, NMR spectrometry is infrequently applied to meteoritic studies due in large part to a lack of applicability to many compounds and the relatively high limit of detection requirements. Carbon-13 solid-state NMR has been applied to macromolecular carbon in Murchison. P-31 NMR has many advantages over aqueous carbon-13 NMR spectrometry. P-31 is the only isotope of phosphorus, and P-31 gives a signal approximately twice as strong as C-13. These two factors together with the relative abundances of carbon and phosphorus imply that phosphorus should give a signal approximately 20 as strong as carbon in a given sample. A discussion on the preparation of the quantitative standard and NMR studies are presented

  16. a Combined Molecular Dynamics and NMR Spectroscopic Protocol for the Conformational Analysis of Oligosaccharides.

    NASA Astrophysics Data System (ADS)

    Varma, Vikram

    A combined experimental and theoretical protocol for the conformational analysis of oligosaccharides is presented. Three disaccharides, methyl alpha - scD-mannopyranosyl-(1 to 3)-alpha- scD-mannopyranoside, methyl beta- scD-galactopyranosyl-(1 to 4)-beta- scD-glucopyranoside, and propyl beta- scD-2-acetamido -2-deoxy glucopyranosyl-(1 to 3)- alpha- scL-rhamnopyranoside, are used to evaluate a protocol for conformational analysis that makes use of molecular dynamics calculations with the CHARMM force field. Dynamics trajectories computed in vacuo and in water are used to calculate time-averaged NMR parameters such as spin-lattice relaxation times (T_1 ), Nuclear Overhauser Enhancements (NOE), and heteronuclear spin-spin coupling constants (^3J _{rm CH}). The calculated NMR parameters are then compared to experimental values and used to evaluate the computational procedure. The energetically accessible conformations are effectively sampled by the simulations. The method has been extended to the conformational analysis of higher-order oligosaccharides corresponding to the cell-wall polysaccharide of the Streptococcus Group A, and the Shigella flexneri Y O-antigen. The Streptococcus Group A cell-wall polysaccharide is comprised of a backbone of rhamnopyranosyl units connected by alternating alpha- scL-(1 to 3) and alpha- scL -(1 to 2) linkages, to which are attached N-acetyl-beta- scD-glucosamine ( beta- scD-GlcpNAc) residues at the 3 positions of the rhamnose backbone.rm A&rm B^'qquad A^'& rm Bqquad Acr[{-alpha}{-}L{-}Rha {it p}{-}(1to2){-alpha }{-}L{-}Rha{it p} {-}(1to3){-alpha}{ -}L{-}Rha{it p}-(1to2) -alpha-L-Rha{it p}{-}(1 to3){-alpha}{-}L{- }Rha{it p}{-}cr&uparrow(1 to3)&uparrow(1to3)crbeta {-}D{-}&rm Glc{it p }NAcqquadbeta{-}D{-}& rm Glc{it p}NAccr&rm C ^'&rm C] A branched trisaccharide (A^' -(C)B), a tetrasaccharide (A^' -(C)B-A), a pentasaccharide (C^' -B^'-A ^'-(C)B), and two hexasaccharides (C^'-B^ '-A^' -(C)B-A) and (A-(C^')B ^'-A^' -(C)B), have been chosen

  17. Genetic analysis of 16 NMR-lipoprotein fractions in humans, the GOLDN study.

    PubMed

    Kraja, Aldi T; Borecki, Ingrid B; Tsai, Michael Y; Ordovas, Jose M; Hopkins, Paul N; Lai, Chao-Qiang; Frazier-Wood, Alexis C; Straka, Robert J; Hixson, James E; Province, Michael A; Arnett, Donna K

    2013-02-01

    Sixteen nuclear magnetic resonance (NMR) spectroscopy lipoprotein measurements of more than 1,000 subjects of GOLDN study, at fasting and at 3.5 and 6 h after a postprandial fat (PPL) challenge at visits 2 and 4, before and after a 3 weeks Fenofibrate (FF) treatment, were included in 6 time-independent multivariate factor analyses. Their top 1,541 unique SNPs were assessed for association with GOLDN NMR-particles and classical lipids. Several SNPs with -log₁₀ p > 7.3 and MAF ≥ 0.10, mostly intergenic associated with NMR-single traits near genes FAM84B (8q24.21), CRIPT (2p21), ACOXL (2q13), BCL2L11 (2q13), PCDH10 (4q28.3), NXPH1 (7p22), and SLC24A4 (14q32.12) in association with NMR-LDLs; HOMER1 (5q14.2), KIT (4q11-q12), VSNL1 (2p24.3), QPRT (16p11.2), SYNPR (3p14.2), NXPH1 (7p22), NELL1 (11p15.1), and RUNX3 (1p36) with NMR-HDLs; and DOK5-CBLN4-MC3R (20q13), NELL1 (11p15.1), STXBP6 (14q12), APOB (2p24-p23), GPR133 (12q24.33), FAM84B (8q24.21) and NR5A2 (1q32.1) in association with NMR-VLDLs particles. NMR single traits associations produced 75 % of 114 significant candidates, 7 % belonged to classical lipids and 18 % overlapped, and 16 % matched for time of discovery between NMR- and classical traits. Five proxy genes, (ACOXL, FAM84B, NXPH1, STK40 and VAPA) showed pleiotropic effects. While tagged for significant associations in our study and with some extra evidence from the literature, candidates as CBNL4, FAM84B, NXPH1, SLC24A4 remain unclear for their functional relation to lipid metabolism. Although GOLDN study is one of the largest in studying PPL and FF treatment effects, the relatively small samples (over 700-1,000 subjects) in association tests appeals for a replication of such a study. Thus, further investigation is needed. PMID:23192668

  18. Apparatus for preparing a solution of a hyperpolarized noble gas for NMR and MRI analysis

    DOEpatents

    Pines, Alexander; Budinger, Thomas; Navon, Gil; Song, Yi-Qiao; Appelt, Stephan; Bifone, Angelo; Taylor, Rebecca; Goodson, Boyd; Seydoux, Roberto; Room, Toomas; Pietrass, Tanja

    2008-06-10

    The present invention relates generally to nuclear magnetic resonance (NMR) techniques for both spectroscopy and imaging. More particularly, the present invention relates to methods in which hyperpolarized noble gases (e.g., Xe and He) are used to enhance and improve NMR and MRI. Additionally, the hyperpolarized gas solutions of the invention are useful both in vitro and in vivo to study the dynamics or structure of a system. When used with biological systems, either in vivo or in vitro, it is within the scope of the invention to target the hyperpolarized gas and deliver it to specific regions within the system.

  19. Fourier transform C-13 NMR analysis of some free and potassium-ion complexed antibiotics.

    NASA Technical Reports Server (NTRS)

    Ohnishi, M.; Fedarko, M.-C.; Baldeschwieler, J. D.; Johnson, L. F.

    1972-01-01

    Fourier transforms of the noise-decoupled, natural abundance C-13 NMR free induction decays of the cyclic antibiotic valinomycin and its potassium-ion complex have been obtained at 25.2 MHz. Comparisons are made with C-13 NMR spectra taken at 22.6 MHz of the cyclic antibiotic nonactin and the synthetic polyether dicyclohexyl-18-crown-6 and their potassium complexes. The results obtained suggest that conformational rearrangements of the molecule as a whole can compete with direct interactions between carbons and the potassium ion in determining C-13 chemical shift differences between the free and complexed species.

  20. Chromatographic NMR in NMR solvents

    NASA Astrophysics Data System (ADS)

    Carrara, Caroline; Viel, Stéphane; Delaurent, Corinne; Ziarelli, Fabio; Excoffier, Grégory; Caldarelli, Stefano

    2008-10-01

    Recently, it was demonstrated that pseudo-chromatographic NMR experiments could be performed using typical chromatographic solids and solvents. This first setup yielded improved separation of the spectral components of the NMR spectra of mixtures using PFG self-diffusion measurements. The method (dubbed Chromatographic NMR) was successively shown to possess, in favorable cases, superior resolving power on non-functionalized silica, compared to its LC counterpart. To further investigate the applicability of the method, we studied here the feasibility of Chromatographic NMR in common deuterated solvents. Two examples are provided, using deuterated chloroform and water, for homologous compounds soluble in these solvents, namely aromatic molecules and alcohols, respectively.

  1. Chiral Recognition Studies of α-(Nonafluoro-tert-butoxy)carboxylic Acids by NMR Spectroscopy.

    PubMed

    Nemes, Anikó; Csóka, Tamás; Béni, Szabolcs; Farkas, Viktor; Rábai, József; Szabó, Dénes

    2015-06-19

    Three chiral α-(nonafluoro-tert-butoxy)carboxylic acids (R)-1, (RS)-2, (R)-3 were synthesized to examine their application as chiral solvating agents with amines. As a model compound, first (S)- and/or (RS)-α-phenylethylamine was used, and their diastereomeric salts were investigated by (1)H and (19)F NMR and ECD spectroscopy. The NMR spectroscopic studies were carried out at room temperature using the slightly polar CDCl3 and apolar C6D6 as solvents in 5 mM and 54 mM concentrations. The difference of the chemical shifts (Δδ) in the diastereomeric complexes is comparable with other, well-known chiral derivatizing and solvating agents (e.g., Mosher's acid, Pirkle's alcohol). Diastereomeric salts of racemic acids (RS)-1 and (RS)-2 with biologically active amines (1R,2S)-ephedrine and (S)-dapoxetine were also investigated by (19)F NMR spectroscopy. PMID:26024423

  2. Characterization of novel isobenzofuranones by DFT calculations and 2D NMR analysis.

    PubMed

    Teixeira, Milena G; Alvarenga, Elson S

    2016-08-01

    Phthalides are frequently found in naturally occurring substances and exhibit a broad spectrum of biological activities. In the search for compounds with insecticidal activity, phthalides have been used as versatile building blocks for the syntheses of novel potential agrochemicals. In our work, the Diels-Alder reaction between furan-2(5H)-one and cyclopentadiene was used successfully to obtain (3aR,4S,7R,7aS)-3a,4,7,7a-tetrahydro-4,7-methanoisobenzofuran-1(3H)-one and (3aS,4R,7S,7aR)-3a,4,7,7a-tetrahydro-4,7-methanoisobenzofuran-1(3H)-one (2) and (3aS,4S,7R,7aR)-3a,4,7,7a-tetrahydro-4,7-methanoisobenzofuran-1(3H)-one and (3aR,4R,7S,7aS)-3a,4,7,7a-tetrahydro-4,7-methanoisobenzofuran-1(3H)-one (3). The endo adduct (2) was brominated to afford (3aR,4R,5R,7R,7aS,8R)-5,8-dibromohexahydro-4,7-methanoisobenzofuran-1(3H)-one and (3aS,4S,5S,7S,7aR,8S)-5,8-dibromohexahydro-4,7-methanoisobenzofuran-1(3H)-one (4) and (3aS,4R,5R,6S,7S,7aR)-5,6-dibromohexahydro-4,7-methanoisobenzofuran-1(3H)-one and (3aR,4S,5S,6R,7R,7aS)-5,6-dibromohexahydro-4,7-methanoisobenzofuran-1(3H)-one (5). Following the initial analysis of the NMR spectra and the proposed two novel unforeseen products, we have decided to fully analyze the classical and non-classical assay structures with the aid of computational calculations. Computation to predict the (13) C and (1) H chemical shifts for mean absolute error analyses have been carried out by gauge-including atomic orbital method at M06-2X/6-31+G(d,p) and B3LYP/6-311+G(2d,p) levels of theory for all viable conformers. Characterization of the novel unforeseen compounds (4) and (5) were not possible by employing only the experimental NMR data; however, a more conclusive structural identification was performed by comparing the experimental and theoretical (1) H and (13) C chemical shifts by mean absolute error and DP4 probability analyses. Copyright © 2016 John Wiley & Sons, Ltd. PMID:26811211

  3. NMR Spectroscopy for Thin Films by Magnetic Resonance Force Microscopy

    PubMed Central

    Won, Soonho; Saun, Seung-Bo; Lee, Soonchil; Lee, SangGap; Kim, Kiwoong; Han, Yunseok

    2013-01-01

    Nuclear magnetic resonance (NMR) is a fundamental research tool that is widely used in many fields. Despite its powerful applications, unfortunately the low sensitivity of conventional NMR makes it difficult to study thin film or nano-sized samples. In this work, we report the first NMR spectrum obtained from general thin films by using magnetic resonance force microscopy (MRFM). To minimize the amount of imaging information inevitably mixed into the signal when a gradient field is used, we adopted a large magnet with a flat end with a diameter of 336 μm that generates a homogeneous field on the sample plane and a field gradient in a direction perpendicular to the plane. Cyclic adiabatic inversion was used in conjunction with periodic phase inversion of the frequency shift to maximize the SNR. In this way, we obtained the 19F NMR spectrum for a 34 nm-thick CaF2 thin film. PMID:24217000

  4. (19)F(alpha,n)(22)Na, (22)Ne(p,n)(22)Na, and the Role of their Inverses in the Destruction of (22)Na

    NASA Astrophysics Data System (ADS)

    Wrean, Patricia Rose

    The inverses of the 19F(α,n)22Na and 22Ne(p,n)22Na reactions may be important destruction mechanisms for 22Na in neutron-rich, high-temperature or explosive nucleosynthesis. I have measured the cross sections for the 19F(α,n)22Na and 22Ne(p,n)22Na reactions from threshold to 3.1 and 5.4 MeV, respectively. The absolute efficiency of the 4π neutron detector was determined by Monte Carlo calculations and calibrated using two standard sources and two nuclear reactions. Cross sections for the inverse reactions have been calculated using the principle of detailed balance, and reaction rates for both the reactions and their inverses determined for temperatures between 0.01 and 10 GK for 19F(α,n)22Na and between 0.1 and 10 GK for 22Ne(p,n)22Na.

  5. Application of /sup 19/F nuclear magnetic resonance to examine covalent modification reactions of tyrosyl derivatives: a study of calcineurin catalysis

    SciTech Connect

    Martin, B.L.; Graves, D.J.

    1988-04-01

    The hydrolysis of fluorotyrosine phosphate by the calmodulin-activated phosphatase calcineurin has been monitored by /sup 19/F nuclear magnetic resonance spectroscopy. Previous work had established that the /sup 19/F nuclear magnetic resonance shift of the fluorine nucleus was altered after the phosphorylation of the phenolic hydroxyl group. The disappearance of substrate and the appearance of product can be measured simultaneously with this approach. Application of the integrated form of the Michaelis-Menten equation yields estimates of the kinetic parameter, K/sub M/, close to the values obtained by initial rate kinetics. The velocity term, V/sub M/ was also evaluated to be approximately the same value. Calcineurin was determined not to be inactivated over the time period of the reaction. The results demonstrate that /sup 19/F nuclear magnetic resonance spectroscopy can be applied to the examination of enzyme-catalyzed reactions.

  6. ¹³C solid-state NMR analysis of the most common pharmaceutical excipients used in solid drug formulations Part II: CP kinetics and relaxation analysis.

    PubMed

    Pisklak, Dariusz Maciej; Zielińska-Pisklak, Monika; Szeleszczuk, Łukasz; Wawer, Iwona

    2016-04-15

    Excipients used in the solid drug formulations differ in their NMR relaxation and (13)C cross-polarization (CP) kinetics parameters. Therefore, experimental parameters like contact time of cross-polarization and repetition time have a major impact on the registered solid state NMR spectra and in consequence on the results of the NMR analysis. In this work the CP kinetics and relaxation of the most common pharmaceutical excipients: anhydrous α-lactose, α-lactose monohydrate, mannitol, sucrose, sorbitol, sodium starch glycolate type A and B, starch of different origin, microcrystalline cellulose, hypromellose, ethylcellulose, methylcellulose, hydroxyethylcellulose, sodium alginate, magnesium stearate, sodium laurilsulfate and Kollidon(®) were analyzed. The studied excipients differ significantly in their optimum repetition time (from 5 s to 1200 s) and T(1ρ)(I) parameters (from 2 ms to 73 ms). The practical use of those differences in the excipients composition analysis was demonstrated on the example of commercially available tablets containing indapamide as an API. The information presented in this article will help to choose the correct acquisition parameters and also will save the time and effort needed for their optimization in the NMR analysis of the solid drug formulations. PMID:26836362

  7. NMR analysis and tacticity determination of poly(lactic acid) in C5D5N

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In this work tacticity assignments of poly(lactic acid), (PLA), are reported for the NMR peaks from CH carbon and CH3 proton at the tetrad level in deuterated pyridine. The methyl protons are better resolved in pyridine due to solvent effects such as ring current shielding of the aromatic ring and ...

  8. Analysis of electron donors in photosystems in oxygenic photosynthesis by photo-CIDNP MAS NMR.

    PubMed

    Najdanova, M; Janssen, G J; de Groot, H J M; Matysik, J; Alia, A

    2015-11-01

    Both photosystem I and photosystem II are considerably similar in molecular architecture but they operate at very different electrochemical potentials. The origin of the different redox properties of these RCs is not yet clear. In recent years, insight was gained into the electronic structure of photosynthetic cofactors through the application of photochemically induced dynamic nuclear polarization (photo-CIDNP) with magic-angle spinning NMR (MAS NMR). Non-Boltzmann populated nuclear spin states of the radical pair lead to strongly enhanced signal intensities that allow one to observe the solid-state photo-CIDNP effect from both photosystem I and II from isolated reaction center of spinach (Spinacia oleracea) and duckweed (Spirodela oligorrhiza) and from the intact cells of the cyanobacterium Synechocystis by (13)C and (15)N MAS NMR. This review provides an overview on the photo-CIDNP MAS NMR studies performed on PSI and PSII that provide important ingredients toward reconstruction of the electronic structures of the donors in PSI and PSII. PMID:26282679

  9. Genetic analysis of 16 NMR-lipoprotein fractions in humans, the GOLDN study

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sixteen nuclear magnetic resonance (NMR) spectroscopy lipoprotein measurements of more than 1,000 subjects of GOLDN study, at fasting and at 3.5 and 6 h after a postprandial fat (PPL) challenge at visits 2 and 4, before and after a 3 weeks Fenofibrate (FF) treatment, were included in 6 time-independ...

  10. Comparison of phosphorus forms in three extracts of dairy feces by solution 31P NMR analysis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Using solution 31P NMR spectroscopy, we compared three extractants, deionized water, sodium acetate buffer (pH 5.0) with fresh sodium dithionite (NaAc-SD), and 0.25 M NaOH-0.05 M EDTA (NaOH-EDTA), for the profile of P compounds in two dairy fecal samples. Phosphorus extracted was 35% for water, and...

  11. Analysis of atomic scale chemical environments of boron in coal by 11B solid state NMR.

    PubMed

    Takahashi, Takafumi; Kashiwakura, Shunsuke; Kanehashi, Koji; Hayashi, Shunichi; Nagasaka, Tetsuya

    2011-02-01

    Atomic scale chemical environments of boron in coal has been studied by solid state NMR spectroscopy including magic angle spinning (MAS), satellite transition magic angle spinning (STMAS), and cross-polarization magic angle spinning (CPMAS). The (11)B NMR spectra can be briefly classified according to the degree of coalification. On the (11)B NMR spectra of lignite, bituminous, and sub-bituminous coals (carbon content of 70-90mass%), three sites assigned to four-coordinate boron ([4])B with small quadrupolar coupling constants (≤0.9 MHz) are observed. Two of the ([4])B sites in downfield are considered organoboron complexes with aromatic ligands, while the other in the most upper field is considered inorganic tetragonal boron (BO(4)). By contrast, on the (11)B NMR spectra of blind coal (carbon content >90mass%), the ([4])B which substitutes tetrahedral silicon of Illite is observed as a representative species. It has been considered that the organoboron is decomposed and released from the parent phase with the advance of coal maturation, and then the released boron reacts with the inorganic phase to substitute an element of inorganic minerals. Otherwise boron contained originally in inorganic minerals might remain preserved even under the high temperature condition that is generated during coalification. PMID:21175186

  12. Determination of the illicit drug gamma-hydroxybutyrate (GHB) in human saliva and beverages by 1H NMR analysis.

    PubMed

    Grootveld, Martin; Algeo, Deborah; Silwood, Christopher J L; Blackburn, John C; Clark, Anthony D

    2006-01-01

    High resolution 1H NMR spectroscopy has been employed to investigate the detection and quantification of the illicit "date-rape" drug gamma-hydroxybutyrate (GHB) in both human saliva and a commonly-consumed low-alcohol beer product. Data acquired revealed that this multicomponent analytical technique provided unequivocal evidence for the detection of this agent by this technique in both of these matrices, i.e., all three of its resonances [those ascribable to the alpha-CH2 (t, delta=2.25 ppm), beta-CH2 (tt, delta=1.81 ppm) and gamma-CH2 (t, delta=3.61 ppm) group protons] were present in spectra acquired on human saliva, and two of these (the alpha- and beta-CH2 group signals) in the beverage product examined, the latter observation attributable to overlap of the gamma-CH2 1H resonance with those of carbohydrates. Since good linear calibration relationships between the intensities of each of the NMR-visible signals and added GHB concentration (the former normalised to that of an external 3-trimethylsilyl [2,2,3,3-2H4]- propionate standard present in a coaxial NMR tube insert) were observed, this illicit drug is also readily quantifiable in such multicomponent samples. Our data demonstrate the advantages offered by this technique when applied to the analysis of illicit drugs in multicomponent sample matrices such as human biofluids and beverage products. PMID:17012769

  13. Traceability of Italian garlic (Allium sativum L.) by means of HRMAS-NMR spectroscopy and multivariate data analysis.

    PubMed

    Ritota, Mena; Casciani, Lorena; Han, Bei-Zhong; Cozzolino, Sara; Leita, Liviana; Sequi, Paolo; Valentini, Massimiliano

    2012-11-15

    (1)H High Resolution Magic Angle Spinning-Nuclear Magnetic Resonance (HRMAS-NMR) spectroscopy was used to analyse garlic (Allium sativum L.) belonging to red and white varieties and collected in different Italian regions, in order to address the traceability issue. 1D and 2D NMR spectra, performed directly on untreated small pieces of garlic, so without any sample manipulation, allowed the assignment of several compounds: organic acids, sugars, fatty acids, amino acids and the nutritionally important fructo-oligosaccharides and allyl-organosulphur compounds. Application of Partial Least Squares projections to latent structures-Discrimination Analysis provided an excellent model for the discrimination of both the variety and, most important, the place origin, allowing the identification of the metabolites contributing to such classifications. The presence of organosulphurs, allicin and some allyl-organosulphurs found by HRMAS-NMR, was confirmed also by SPME-GC-MS; 11 molecules were identified, containing from one up to three sulphur atoms and with and without allyl moieties. PMID:22868146

  14. Use of [superscript 1]H, [superscript 13]C, and [superscript 19]F-NMR Spectroscopy and Computational Modeling to Explore Chemoselectivity in the Formation of a Grignard Reagent

    ERIC Educational Resources Information Center

    Hein, Sara M.; Kopitzke, Robert W.; Nalli, Thomas W.; Esselman, Brian J.; Hill, Nicholas J.

    2015-01-01

    A discovery-based Grignard experiment for a second-year undergraduate organic chemistry course is described. The exclusive Grignard reagent formed by the reaction of 1-bromo-4-fluorobenzene (1) with Mg is 4-fluorophenylmagnesium bromide (2), which is treated with either benzophenone or CO[subscript 2] to produce the corresponding fluorinated…

  15. NMR-based metabonomic analysis of the hepatotoxicity induced by combined exposure to PCBs and TCDD in rats

    SciTech Connect

    Lu Chunfeng; Wang Yimei; Sheng Zhiguo; Liu Gang; Fu Ze; Zhao Jing; Zhao Jun; Yan Xianzhong; Zhu Benzhan; Peng Shuangqing

    2010-11-01

    A metabonomic approach using {sup 1}H NMR spectroscopy was adopted to investigate the metabonomic pattern of rat urine after oral administration of environmental endocrine disruptors (EDs) polychlorinated biphenyls (PCBs) and 2,3,7,8-tetrachlorodibenzo- p-dioxin (TCDD) alone or in combination and to explore the possible hepatotoxic mechanisms of combined exposure to PCBs and TCDD. {sup 1}H NMR spectra of urines collected 24 h before and after exposure were analyzed via pattern recognition by using principal component analysis (PCA). Serum biochemistry and liver histopathology indicated significant hepatotoxicity in the rats of the combined group. The PCA scores plots of urinary {sup 1}H NMR data showed that all the treatment groups could be easily distinguished from the control group, so could the PCBs or TCDD group and the combined group. The loadings plots of the PCA revealed remarkable increases in the levels of lactate, glucose, taurine, creatine, and 2-hydroxy-isovaleric acid and reductions in the levels of 2-oxoglutarate, citrate, succinate, hippurate, and trimethylamine-N-oxide in rat urine after exposure. These changes were more striking in the combined group. The changed metabolites may be considered possible biomarker for the hepatotoxicity. The present study demonstrates that combined exposure to PCBs and TCDD induced significant hepatotoxicity in rats, and mitochondrial dysfunction and fatty acid metabolism perturbations might contribute to the hepatotoxicity. There was good conformity between changes in the urine metabonomic pattern and those in serum biochemistry and liver histopathology. These results showed that the NMR-based metabonomic approach may provide a promising technique for the evaluation of the combined toxicity of EDs.

  16. Singular spectrum analysis for an automated solvent artifact removal and baseline correction of 1D NMR spectra

    NASA Astrophysics Data System (ADS)

    De Sanctis, Silvia; Malloni, Wilhelm M.; Kremer, Werner; Tomé, Ana M.; Lang, Elmar W.; Neidig, Klaus-Peter.; Kalbitzer, Hans Robert

    2011-06-01

    NMR spectroscopy in biology and medicine is generally performed in aqueous solutions, thus in 1H NMR spectroscopy, the dominant signal often stems from the partly suppressed solvent and can be many orders of magnitude larger than the resonances of interest. Strong solvent signals lead to a disappearance of weak resonances of interest close to the solvent artifact and to base plane variations all over the spectrum. The AUREMOL-SSA/ALS approach for automated solvent artifact removal and baseline correction has been originally developed for multi-dimensional NMR spectroscopy. Here, we describe the necessary adaptations for an automated application to one-dimensional NMR spectra. Its core algorithm is still based on singular spectrum analysis (SSA) applied on time domain signals (FIDs) and it is still combined with an automated baseline correction (ALS) in the frequency domain. However, both steps (SSA and ALS) have been modified in order to achieve optimal results when dealing with one-dimensional spectra. The performance of the method has been tested on one-dimensional synthetic and experimental spectra including the back-calculated spectrum of HPr protein and an experimental spectrum of a human urine sample. The latter has been recorded with the typically used NOESY-type 1D pulse sequence including water pre-saturation. Furthermore, the fully automated AUREMOL-SSA/ALS procedure includes the managing of oversampled, digitally filtered and zero-filled data and the correction of the frequency domain phase shift caused by the group delay time shift from the digital finite response filtering.

  17. Multicomponent analysis of radiolytic products in human body fluids using high field proton nuclear magnetic resonance (NMR) spectroscopy

    NASA Astrophysics Data System (ADS)

    Grootveld, Martin C.; Herz, Herman; Haywood, Rachel; Hawkes, Geoffrey E.; Naughton, Declan; Perera, Anusha; Knappitt, Jacky; Blake, David R.; Claxson, Andrew W. D.

    1994-05-01

    High field proton Hahn spin-echo nuclear magnetic resonance (NMR) spectroscopy has been employed to investigate radiolytic damage to biomolecules present in intact human body fluids. γ-Radiolysis of healthy or rheumatoid human serum (5.00 kGy) in the presence of atmospheric O 2 gave rise to reproducible elevations in the concentration of NMR-detectable acetate which are predominantly ascribable to the prior oxidation of lactate to pyruvate by hydroxyl radical (·OH) followed by oxidative decarboxylation of pyruvate by radiolytically-generated hydrogen peroxide (H 2O 2) and/or further ·OH radical. Increases in the serum levels of non-protein-bound, low-molecular-mass components such as citrate and glutamine were also observed subsequent to γ-radiolysis, an observation which may reflect their mobilisation from protein binding-sites by ·OH radical, superoxide anion and/or H 2O 2. Moreover, substantial radiolytically-mediated elevations in the concentration of serum formate were also detectable. In addition to the above modifications, γ-radiolysis of inflammatory knee-joint synovial fluid (SF) generated a low-molecular-mass oligosaccharide species derived from the radiolytic fragmentation of hyaluronate. The radiolytically-mediated production of acetate in SF samples was markedly greater than that observed in serum samples, a consequence of the much higher levels of ·OH radical-scavenging lactate present. Indeed, increases in SF acetate concentration were detectable at doses as low as 48 Gy. We conclude that high field proton NMR analysis provides much useful information regarding the relative radioprotectant abilities of endogenous components and the nature, status and levels of radiolytic products generated in intact biofluids. We also suggest that NMR-detectable radiolytic products with associated toxicological properties (e.g. formate) may play a role in contributing to the deleterious effects observed following exposure of living organisms to sources of

  18. Verification of threshold activation detection (TAD) technique in prompt fission neutron detection using scintillators containing 19F

    NASA Astrophysics Data System (ADS)

    Sibczynski, P.; Kownacki, J.; Moszyński, M.; Iwanowska-Hanke, J.; Syntfeld-Każuch, A.; Gójska, A.; Gierlik, M.; Kaźmierczak, Ł.; Jakubowska, E.; Kędzierski, G.; Kujawiński, Ł.; Wojnarowicz, J.; Carrel, F.; Ledieu, M.; Lainé, F.

    2015-09-01

    In the present study ⌀ 5''× 3'' and ⌀ 2''× 2'' EJ-313 liquid fluorocarbon as well as ⌀ 2'' × 3'' BaF2 scintillators were exposed to neutrons from a 252Cf neutron source and a Sodern Genie 16GT deuterium-tritium (D+T) neutron generator. The scintillators responses to β- particles with maximum endpoint energy of 10.4 MeV from the n+19F reactions were studied. Response of a ⌀ 5'' × 3'' BC-408 plastic scintillator was also studied as a reference. The β- particles are the products of interaction of fast neutrons with 19F which is a component of the EJ-313 and BaF2 scintillators. The method of fast neutron detection via fluorine activation is already known as Threshold Activation Detection (TAD) and was proposed for photofission prompt neutron detection from fissionable and Special Nuclear Materials (SNM) in the field of Homeland Security and Border Monitoring. Measurements of the number of counts between 6.0 and 10.5 MeV with a 252Cf source showed that the relative neutron detection efficiency ratio, defined as epsilonBaF2 / epsilonEJ-313-5'', is 32.0% ± 2.3% and 44.6% ± 3.4% for front-on and side-on orientation of the BaF2, respectively. Moreover, the ⌀ 5'' EJ-313 and side-on oriented BaF2 were also exposed to neutrons from the D+T neutron generator, and the relative efficiency epsilonBaF2 / epsilonEJ-313-5'' was estimated to be 39.3%. Measurements of prompt photofission neutrons with the BaF2 detector by means of data acquisition after irradiation (out-of-beam) of nuclear material and between the beam pulses (beam-off) techniques were also conducted on the 9 MeV LINAC of the SAPHIR facility.

  19. Multinucleon transfer in O,1816,19F+208Pb reactions at energies near the fusion barrier

    NASA Astrophysics Data System (ADS)

    Rafferty, D. C.; Dasgupta, M.; Hinde, D. J.; Simenel, C.; Simpson, E. C.; Williams, E.; Carter, I. P.; Cook, K. J.; Luong, D. H.; McNeil, S. D.; Ramachandran, K.; Vo-Phuoc, K.; Wakhle, A.

    2016-08-01

    Background: Nuclear reactions are complex, involving collisions between composite systems where many-body dynamics determines outcomes. Successful models have been developed to explain particular reaction outcomes in distinct energy and mass regimes, but a unifying picture remains elusive. The irreversible transfer of kinetic energy from the relative motion of the collision partners to their internal states, as is known to occur in deep inelastic collisions, has yet to be successfully incorporated explicitly into fully quantal reaction models. The influence of these processes on fusion is not yet quantitatively understood. Purpose: To investigate the population of high excitation energies in transfer reactions at sub-barrier energies, which are precursors to deep inelastic processes, and their dependence on the internuclear separation. Methods: Transfer probabilities and excitation energy spectra have been measured in collisions of O,1816,19F+208Pb , at various energies below and around the fusion barrier, by detecting the backscattered projectile-like fragments in a Δ E -E telescope. Results: The relative yields of different transfer outcomes are strongly driven by Q values, but change with the internuclear separation. In 16O+208Pb , single nucleon transfer dominates, with a strong contribution from -2 p transfer close to the Coulomb barrier, though this channel becomes less significant in relation to the -2 p 2 n transfer channel at larger separations. For 18O+208Pb , the -2 p 2 n channel is the dominant charge transfer mode at all separations. In the reactions with 19F,-3 p 2 n transfer is significant close to the barrier, but falls off rapidly with energy. Multinucleon transfer processes are shown to lead to high excitation energies (up to ˜15 MeV), which is distinct from single nucleon transfer modes which predominantly populate states at low excitation energy. Conclusions: Kinetic energy is transferred into internal excitations following transfer, with this

  20. NMR Properties of Platinum --Thallium Bonded Complexes. Analysis of Relativistic Density Functional Theory Results

    SciTech Connect

    LeGuennic, Boris; Matsumoto, Kazuko; Autschbach, Jochen

    2004-08-26

    A portion of the following research was conducted at EMSL. The metal NMR parameters of the complexes [(NC)5Pt–Tl(CN)n]n- (n = 0–3, I–IV) and [(NC)5Pt–Tl–Pt(CN)5]3- (V), as well as [fPt(NO3)(NH3)2L2gTl(NO3)2(MeOH)] (VI) and [fPt(NO3)(NH3)2L2g2Tl]+ (VII) with L =NHCOtBu,were computationally investigated by relativistic density functional theory. Complexes I–V were previously studied by us. We briefly review the main findings here. Their spin–spin coupling constants are analyzed in terms ofmolecular orbital and fragment orbital contributions which demonstrate the various influences of the solvent and of the ligands on the extraordinarily large metal–metal coupling constants. Complexes VI and VII and various model systems were investigated in more detail. It is shown that the same computational model which performs best for I–V yields too large metal–metal coupling constants for VI and VII. The analysis shows that this is likely to be attributable to a strong sensitivity of the coupling constants to the rather small Pt 6s contributions in the occupied metal–metal s-bonding orbitals. Bulk solvent effects on the metal–metal couplings are sizeable and should be considered in the computational model. Both calculated and experimental Pt–Tl coupling constants for VI and VII are substantially larger than those for I–V, thereby representing the largest heteronuclear coupling constants known so far experimentally. Metal chemical shifts for VI and VII were also investigated. The computational results indicate that the choice of the Pt reference is rather problematic. Tl chemical shifts agree much better with experimental data.

  1. Local structural plasticity of the prion protein. Analysis of NMR relaxation dynamics.

    PubMed

    Viles, J H; Donne, D; Kroon, G; Prusiner, S B; Cohen, F E; Dyson, H J; Wright, P E

    2001-03-01

    A template-assisted conformational change of the cellular prion protein (PrP(C)) from a predominantly helical structure to an amyloid-type structure with a higher proportion of beta-sheet is thought to be the causative factor in prion diseases. Since flexibility of the polypeptide is likely to contribute to the ability of PrP(C) to undergo the conformational change that leads to the infective state, we have undertaken a comprehensive examination of the dynamics of two recombinant Syrian hamster PrP fragments, PrP(29-231) and PrP(90-231), using (15)N NMR relaxation measurements. The molecular motions of these PrP fragments have been studied in solution using (15)N longitudinal (T(1)) and transverse relaxation (T(2)) measurements as well as [(1)H]-(15)N nuclear Overhauser effects (NOE). These data have been analyzed using both reduced spectral density mapping and the Lipari-Szabo model free formalism. The relaxation properties of the common regions of PrP(29-231) and PrP(90-231) are very similar; both have a relatively inflexible globular domain (residues 128-227) with a highly flexible and largely unstructured N-terminal domain. Residues 29-89 of PrP(29-231), which include the copper-binding octarepeat sequences, are also highly flexible. Analysis of the spectral densities at each residue indicates that even within the structured core of PrP(C), a markedly diverse range of motions is observed, consistent with the inherent plasticity of the protein. The central portions of helices B and C form a relatively rigid core, which is stabilized by the presence of an interhelix disulfide bond. Of the remainder of the globular domain, the parts that are not in direct contact with the rigid region, including helix A, are more flexible. Most significantly, slow conformational fluctuations on a millisecond to microsecond time scale are observed for the small beta-sheet. These results are consistent with the hypothesis that the infectious, scrapie form of the protein Pr

  2. Operando NMR spectroscopic analysis of proton transfer in heterogeneous photocatalytic reactions

    PubMed Central

    Wang, Xue Lu; Liu, Wenqing; Yu, Yan-Yan; Song, Yanhong; Fang, Wen Qi; Wei, Daxiu; Gong, Xue-Qing; Yao, Ye-Feng; Yang, Hua Gui

    2016-01-01

    Proton transfer (PT) processes in solid–liquid phases play central roles throughout chemistry, biology and materials science. Identification of PT routes deep into the realistic catalytic process is experimentally challenging, thus leaving a gap in our understanding. Here we demonstrate an approach using operando nuclear magnetic resonance (NMR) spectroscopy that allows to quantitatively describe the complex species dynamics of generated H2/HD gases and liquid intermediates in pmol resolution during photocatalytic hydrogen evolution reaction (HER). In this system, the effective protons for HER are mainly from H2O, and CH3OH evidently serves as an outstanding sacrificial agent reacting with holes, further supported by our density functional theory calculations. This results rule out controversy about the complicated proton sources for HER. The operando NMR method provides a direct molecular-level insight with the methodology offering exciting possibilities for the quantitative studies of mechanisms of proton-involved catalytic reactions in solid–liquid phases. PMID:27311326

  3. Operando NMR spectroscopic analysis of proton transfer in heterogeneous photocatalytic reactions.

    PubMed

    Wang, Xue Lu; Liu, Wenqing; Yu, Yan-Yan; Song, Yanhong; Fang, Wen Qi; Wei, Daxiu; Gong, Xue-Qing; Yao, Ye-Feng; Yang, Hua Gui

    2016-01-01

    Proton transfer (PT) processes in solid-liquid phases play central roles throughout chemistry, biology and materials science. Identification of PT routes deep into the realistic catalytic process is experimentally challenging, thus leaving a gap in our understanding. Here we demonstrate an approach using operando nuclear magnetic resonance (NMR) spectroscopy that allows to quantitatively describe the complex species dynamics of generated H2/HD gases and liquid intermediates in pmol resolution during photocatalytic hydrogen evolution reaction (HER). In this system, the effective protons for HER are mainly from H2O, and CH3OH evidently serves as an outstanding sacrificial agent reacting with holes, further supported by our density functional theory calculations. This results rule out controversy about the complicated proton sources for HER. The operando NMR method provides a direct molecular-level insight with the methodology offering exciting possibilities for the quantitative studies of mechanisms of proton-involved catalytic reactions in solid-liquid phases. PMID:27311326

  4. An instrument control and data analysis program for NMR imaging and spectroscopy

    SciTech Connect

    Roos, M.S.; Mushlin, R.A.; Veklerov, E.; Port, J.D.; Ladd, C.; Harrison, C.G.

    1988-01-01

    We describe a software environment created to support real-time instrument control and signal acquisition as well as array-processor based signal and image processing in up to five dimensions. The environment is configured for NMR imaging and in vivo spectroscopy. It is designed to provide flexible tools for implementing novel NMR experiments in the research laboratory. Data acquisition and processing operations are programmed in macros which are loaded in assembled from to minimize instruction overhead. Data arrays are dynamically allocated for efficient use of memory and can be mapped directly into disk files. The command set includes primitives for real-time control of data acquisition, scalar arithmetic, string manipulation, branching, a file system and vector operations carried out by an array processor. 6 figs.

  5. Evaluation Of Automated Low-Field Nuclear Magnetic Resonance (NMR) Relaxometry For Analysis Of Silicone Polymers

    SciTech Connect

    M. H. Wilson

    2009-10-02

    Screening studies and Design of Experiments (DoE) were performed to evaluate measurement variation of a new, non-destructive Nuclear Magnetic Resonance (NMR) test system designed to assess age-induced degradation of Outer Pressure Pads (OPP). The test method and results from 54,275 measurements are described. A reduction in measurement error was obtained after metal support struts were replaced with plastic support struts adjacent to the front position of the test chamber. However, remaining interference and a lack of detecting any age-related degradation prevent the use of the NMR system as a non-destructive surveillance test for OPPs. A cursory evaluation of the system with cellular silicone samples obtained more uniform results with increased error as measurements approached the sample’s edge.

  6. A structural homologue of colipase in black mamba venom revealed by NMR floating disulphide bridge analysis.

    PubMed

    Boisbouvier, J; Albrand, J P; Blackledge, M; Jaquinod, M; Schweitz, H; Lazdunski, M; Marion, D

    1998-01-01

    The solution structure of mamba intestinal toxin 1 (MIT1), isolated from Dendroaspis polylepis polylepis venom, has been determined. This molecule is a cysteine-rich polypeptide exhibiting no recognised family membership. Resistance to MIT1 to classical specific endoproteases produced contradictory NMR and biochemical information concerning disulphide-bridge topology. We have used distance restraints allowing ambiguous partners between S atoms in combination with NMR-derived structural information, to correctly determine the disulphide-bridge topology. The resultant solution structure of MIT1, determined to a resolution of 0.5 A, reveals an unexpectedly similar global fold with respect to colipase, a protein involved in fatty acid digestion. Colipase exhibits an analogous resistance to endoprotease activity, indicating for the first time the possible topological origins of this biochemical property. The biochemical and structural homology permitted us to propose a mechanically related digestive function for MIT1 and provides novel information concerning snake venom protein evolution. PMID:9761684

  7. Advanced NMR-based techniques for pore structure analysis of coal. Final project report

    SciTech Connect

    Smith, D.M.; Hua, D.W.

    1996-02-01

    During the 3 year term of the project, new methods have been developed for characterizing the pore structure of porous materials such as coals, carbons, and amorphous silica gels. In general, these techniques revolve around; (1) combining multiple techniques such as small-angle x-ray scattering (SAXS) and adsorption of contrast-matched adsorbates or {sup 129}Xe NMR and thermoporometry (the change in freezing point with pore size), (2) combining adsorption isotherms over several pressure ranges to obtain a more complete description of pore filling, or (3) applying NMR ({sup 129}Xe, {sup 14}N{sub 2}, {sup 15}N{sub 2}) techniques with well-defined porous solids with pores in the large micropore size range (>1 nm).

  8. Study of the metabolism of flucytosine in Aspergillus species by sup 19 F nuclear magnetic resonance spectroscopy

    SciTech Connect

    Chouini-Lalanne, N.; Malet-Martino, M.C.; Martino, R.; Michel, G. )

    1989-11-01

    The metabolism of flucytosine (5FC) in two Aspergillus species (Aspergillus fumigatus and A. niger) was investigated by 19F nuclear magnetic resonance spectroscopy. In intact mycelia, 5FC was found to be deaminated to 5-fluorouracil and then transformed into fluoronucleotides; the catabolite alpha-fluoro-beta-alanine was also detected in A. fumigatus. Neither 5-fluoroorotic acid nor 5-fluoro-2'-deoxyuridine-5'-monophosphate was detected in perchloric acid extracts after any incubation with 5FC. 5FC, 5-fluorouracil, and the classical fluoronucleotides 5-fluorouridine-5'-mono-, di-, and triphosphates were identified in the acid-soluble pool. Two hydrolysis products of 5-fluorouracil incorporated into RNA, 5-fluorouridine-2'-monophosphate and 5-fluorouridine-3'-monophosphate, were found in the acid-insoluble pool. No significant differences in the metabolic transformation of 5FC were noted in the two species of Aspergillus. The main pathway of 5FC metabolism in the two species of Aspergillus studied is thus the biotransformation into ribofluoronucleotides and the subsequent incorporation of 5-fluorouridine-5'-triphosphate into RNA.

  9. A Miniaturized, 1.9F Integrated Optical Fiber and Stone Basket for Use in Thulium Fiber Laser Lithotripsy.

    PubMed

    Wilson, Christopher R; Hutchens, Thomas C; Hardy, Luke A; Irby, Pierce B; Fried, Nathaniel M

    2015-10-01

    The thulium fiber laser (TFL) is being explored as an alternative laser lithotripter to the standard holmium:yttrium-aluminum-garnet laser. The more uniform beam profile of the TFL enables higher power transmission through smaller fibers. In this study, a 100-μm core, 140-μm outer-diameter (OD) silica fiber with 5-mm length hollow steel tip was integrated with 1.3F (0.433-mm OD) nitinol wire basket to form a 1.9F (0.633-mm OD) device. TFL energy of 30 mJ, 500 μs pulse duration, and 500 Hz pulse rate was delivered to human uric acid stones, ex vivo. Stone ablation rates measured 1.5 ± 0.2 mg/s, comparable to 1.7 ± 0.3 mg/s using bare fiber tips separately with stone basket. With further development, this device may minimize stone retropulsion, allowing more efficient TFL lithotripsy at higher pulse rates. It may also provide increased flexibility, higher saline irrigation rates through the ureteroscope working channel, reduce fiber degradation compared with separate fiber and basket manipulation, and reduce laser-induced nitinol wire damage. PMID:26167738

  10. Tumour oxygen dynamics measured simultaneously by near-infrared spectroscopy and 19F magnetic resonance imaging in rats.

    PubMed

    Xia, Mengna; Kodibagkar, Vikram; Liu, Hanli; Mason, Ralph P

    2006-01-01

    Simultaneous near-infrared spectroscopy (NIRS) and magnetic resonance imaging (MRI) were used to investigate the correlation between tumour vascular oxygenation and tissue oxygen tension dynamics in rat breast 13762NF tumours with respect to hyperoxic gas breathing. NIRS directly detected global variations in the oxygenated haemoglobin concentration (Delta[HbO(2)]) within tumours and oxygen tension (pO(2)) maps were achieved using (19)F MRI of the reporter molecule hexafluorobenzene. Multiple correlations were examined between rates and magnitudes of vascular (Delta[HbO(2)]) and tissue (pO(2)) responses. Significant correlations were found between response to oxygen and carbogen breathing using either modality. Comparison of results for the two methods showed a correlation between the vascular perfusion rate ratio and the mean pO(2) values (R(2) > 0.7). The initial rates of increase of Delta[HbO(2)] and the slope of dynamic pO(2) response, d(pO(2))/dt, of well-oxygenated voxels in response to hyperoxic challenge were also correlated. These results demonstrate the feasibility of simultaneous measurements using NIRS and MRI. As expected, the rate of pO(2) response to oxygen is primarily dependent upon the well perfused rather than poorly perfused vasculature. PMID:16357430

  11. Fission-fragment angular distributions for the 19F + 208Pb near- and sub-barrier fusion-fission reaction

    NASA Astrophysics Data System (ADS)

    Huanqiao, Zhang; Zuhua, Liu; Jincheng, Xu; Kan, Xu; Jun, Lu; Ming, Ruan

    1990-06-01

    Fission cross sections and angular distributions have been measured for the 19F + 208Pb reaction at bombarding energies from 83 to 105 MeV. The fission excitation function is well reproduced on the basis of the coupled-channels theory. The fission-fragment angular distributions are calculated in terms of the transition-state theory, with the transmission coefficients extracted from the excitation function calculation. It is found that a discrepancy between the observations and the predictions in angular anisotropy of fission fragments exists at near- and sub-barrier energies, except for lower and higher energy regions where the discrepancy tends to disappear. Moreover, the anisotropies as a function of the center-of-mass energy show a shoulder around 82 MeV. Our results clearly indicate the considerable effects of the coupling on the sub-barrier fusion cross section and on the near-barrier compound-nucleus spin distribution, and confirm the prediction of an approximately constant value for the mean square spin of a compound nucleus produced in a far sub-barrier fusion reaction.

  12. Pyrolysis temperature affects phosphorus transformation in biochar: Chemical fractionation and (31)P NMR analysis.

    PubMed

    Xu, Gang; Zhang, You; Shao, Hongbo; Sun, Junna

    2016-11-01

    Phosphorus (P) recycling or reuse by pyrolyzing crop residue has recently elicited increased research interest. However, the effects of feedstock and pyrolysis conditions on P species have not been fully understood. Such knowledge is important in identifying the agronomic and environmental uses of biochar. Residues of three main Chinese agricultural crops and the biochars (produced at 300°C-600°C) derived from these crops were used to determine P transformations during pyrolysis. Hedley sequential fractionation and (31)P NMR analyses were used in the investigation. Our results showed that P transformation in biochar was significantly affected by pyrolysis temperature regardless of feedstock (Wheat straw, maize straw and peanut husk). Pyrolysis treatment transformed water soluble P into a labile (NaHCO3-Pi) or semi-labile pool (NaOH-Pi) and into a stable pool (Dil. HCl P and residual-P). At the same time, organic P was transformed into inorganic P fractions which was identified by the rapid decomposition of organic P detected with solution (31)P NMR. The P transformation during pyrolysis process suggested more stable P was formed at a higher pyrolysis temperature. This result was also evidenced by the presence of less soluble or stable P species, such as such as poly-P, crandallite (CaAl3(OH)5(PO4)2) and Wavellite (Al3(OH)3(PO4)2·5H2O), as detected by solid-state (31)P NMR in biochars formed at a higher pyrolysis temperature. Furthermore, a significant proportion of less soluble pyrophosphate was identified by solution (2%-35%) and solid-state (8%-53%) (31)P NMR, which was also responsible for the stable P forms at higher pyrolysis temperature although their solubility or stability requires further investigation. Results suggested that a relatively lower pyrolysis temperature retains P availability regardless of feedstock during pyrolysis process. PMID:27343937

  13. Environmental monitoring based on NMR analysis of the composition of essential oil from Canadian spruce needles

    NASA Astrophysics Data System (ADS)

    Skakovskii, E. D.; Tychinskaya, L. Yu.; Gaidukevich, O. A.; Matveichuk, S. V.; Kiselev, V. P.; Lamotkin, S. A.; Vladykina, D. S.

    2012-07-01

    We have used 1H and 13C NMR spectroscopy to analyze the chemical composition of essential oil from needles of Canadian spruce (Picea glauca (Moench) Voss) grown in different regions of the Republic of Belarus. We consider the change in the composition of the oil depending on the area where the spruce was grown. We suggest using spruce needle essential oil as a biological indicator for environmental conditions in the area.

  14. Mesh size analysis of cellulose nanofibril hydrogels using solute exclusion and PFG-NMR spectroscopy.

    PubMed

    Jowkarderis, Leila; van de Ven, Theo G M

    2015-12-21

    The pore structure of TEMPO-mediated oxidized CNF hydrogels, chemically cross-linked with water-soluble diamines, is studied. A solute exclusion method and pulsed-field-gradient NMR are used to estimate the mesh size distribution in the gel network in its hydrated state. Dextran fractions with the nominal molecular weights in the range of 10-2000 kDa are used as probes. The results show a nonuniform network structure, consisting of a group of large openings that contain ∼50% of water, and regions with a more compact structure and smaller mesh units that restrict the diffusivity of the dextran molecules. A biexponential model is proposed for the NMR echo amplitude decay due to the probe diffusion into the gel network. A typical single exponential model does not fit the experimental data when the probe molecular size is comparable to the network mesh size. The results obtained with NMR, using the proposed biexponential model, are in very good agreement with those determined with solute exclusion. Precise mesh size estimation with solute exclusion using pore models is subject to restrictions, and vary with the assumed pore geometry. The average mesh size obtained using a spherical pore model, ∼35 nm, in the compact regions of the hydrogel, is in good agreement with the theoretical value in a network of rodlike particles. Neglecting the wall effects leads to underestimation of the mesh size with both techniques. PMID:26417984

  15. Advanced NMR-based techniques for pore structure analysis of coal

    SciTech Connect

    Smith, D.M.

    1992-01-01

    One of the main problems in coal utilization is the inability to properly characterize its complex pore structure. Coals typically have micro/ultra-micro pores but they also exhibit meso and macroporosity. Conventional pore size techniques (adsorption/condensation, mercury porosimetry) are limited because of this broad pore size range, microporosity, reactive nature of coal, samples must be completely dried, and network/percolation effects. Small angle scattering is limited because it probes both open and closed pores. Although one would not expect any single technique to provide a satisfactory description of a coal's structure, it is apparent that better techniques are necessary. We believe that measurement of the NMR parameters of various gas phase and adsorbed phase NMR active probes can provide the resolution to this problem. We now have two suites of well-characterized microporous materials including oxides (zeolites and silica gel) and activated carbons from our industrial partner, Air Products in Allentown, PA. Our current work may be divided into three areas: small-angle X-ray scattering (SAXS), adsorption, and NMR.

  16. Ultrafast double-quantum NMR spectroscopy with optimized sensitivity for the analysis of mixtures.

    PubMed

    Rouger, Laetitia; Gouilleux, Boris; Pourchet-Gellez, Mariane; Dumez, Jean-Nicolas; Giraudeau, Patrick

    2016-03-01

    Ultrafast (UF) 2D NMR enables the acquisition of 2D spectra within a single-scan. This methodology has become a powerful analytical tool, used in a large array of applications. However, UF NMR spectroscopy still suffers from the need to compromise between sensitivity, spectral width and resolution. With the commonly used UF-COSY pulse sequence, resolution issues are compounded by the presence of strong auto-correlation signals, particularly in the case of samples with high dynamic ranges. The recently proposed concept of UF Double Quantum Spectroscopy (DQS) allows a better peak separation as it provides a lower spectral peak density. This paper presents the detailed investigation of this new NMR tool in an analytical chemistry context. Theoretical calculations and numerical simulations are used to characterize the modulation of peak intensities as a function of pulse-sequence parameters, and thus enable a significant enhancement of the sensitivity. The analytical comparison of UF-COSY and UF-DQS shows similar performances, however the ultrafast implementation of the DQS approach is found to have some sensitivity advantages over its conventional counterpart. The analytical performance of the pulse sequence is illustrated by the quantification of taurine in complex mixtures (homemade and commercial energy drinks). The results demonstrate the high potential of this experiment, which forms a valuable alternative to UF-COSY spectra when the latter are characterized by strong overlaps and high dynamic ranges. PMID:26865359

  17. Analysis of SNARE complex/synaptotagmin-1 interactions by one-dimensional NMR spectroscopy.

    PubMed

    Zhou, Amy; Brewer, Kyle D; Rizo, Josep

    2013-05-21

    Neurotransmitter release depends critically on the Ca(2+) sensor synaptotagmin-1 and the SNARE proteins syntaxin-1, synaptobrevin, and SNAP-25, which mediate membrane fusion by forming tight SNARE complexes that bridge the synaptic vesicle and plasma membranes. Interactions between the SNARE complex and the two C2 domains of synaptotagmin-1 (the C2A and C2B domains) are believed to play a key role in coupling Ca(2+) sensing to membrane fusion, but the nature of these interactions is unclear, in part because of a paucity of data obtained by quantitative biophysical methods. Here we have analyzed synaptotagmin-1/SNARE complex interactions by monitoring the decrease in the intensities of one-dimensional (13)C-edited (1)H NMR spectra of (13)C-labeled fragments of synaptotagmin-1 upon binding to unlabeled SNARE complex. Our results indicate that there is a primary binding mode between synaptotagmin-1 and the SNARE complex that involves a polybasic region in the C2B domain and has a sub-micromolar affinity. Our NMR data, combined with precipitation assays, show that there are additional SNARE complex/synaptotagmin-1 interactions that lead to aggregation and that involve in part two arginines at the bottom of the C2B domain. Overall, this study shows the importance of disentangling the contributions of different types of interactions to SNARE complex/synaptotagmin-1 binding and illustrates the usefulness of one-dimensional NMR methods to analyze intricate protein interactions. PMID:23617808

  18. Functional group analysis in coal and on coal surfaces by NMR spectroscopy

    SciTech Connect

    Verkade, J.G.

    1990-01-01

    An accurate knowledge of the oxygen-bearing labile hydrogen functional groups (e.g., carboxylic acids, phenols and alcohols) in coal is required for today's increasingly sophisticated coal cleaning and beneficiation processes. Phospholanes (compounds having the general structure -POCH{sub 2}CH{sub 2}O (1)) are being investigated as reagents for the tagging of liable hydrogen functional groups in coal materials with the NMR-active {sup 31}P nucleus. Of twelve such reagents investigated so far, 2 (2-chloro-1,3-dioxaphospholane, ClPOCH{sub 2}CH{sub 2}O) and 8 (2-chloro-1,3-dithiaphospholane, ClPSCH{sub 2}CH{sub 2}S) have been found to be useful in identifying and quantitating, by {sup 31}P NMR spectroscopy, labile hydrogen functional groups in an Illinois No. 6 coal condensate. Reagent 2 has also been used to quantitate moisture in pyridine extracts of Argonne Premium Coal Samples. Preliminary {sup 119}Sn NMR spectroscopic results on model compounds with the new reagent CF{sub 3}C(O)NHSnMe{sub 3} (N-trimethylstannyltrifluoroacetamide, 14) suggest that labile hydrogen functional groups in coal materials may be more precisely identified with 14 than with phospholanes. 14 refs., 2 figs., 2 tabs.

  19. 60 MHz (1)H NMR spectroscopy for the analysis of edible oils.

    PubMed

    Parker, T; Limer, E; Watson, A D; Defernez, M; Williamson, D; Kemsley, E Kate

    2014-05-01

    We report the first results from a new 60 MHz (1)H nuclear magnetic resonance (NMR) bench-top spectrometer, Pulsar, in a study simulating the adulteration of olive oil with hazelnut oil. There were qualitative differences between spectra from the two oil types. A single internal ratio of two isolated groups of peaks could detect hazelnut oil in olive oil at the level of ∼13%w/w, whereas a whole-spectrum chemometric approach brought the limit of detection down to 11.2%w/w for a set of independent test samples. The Pulsar's performance was compared to that of Fourier transform infrared (FTIR) spectroscopy. The Pulsar delivered comparable sensitivity and improved specificity, making it a superior screening tool. We also mapped NMR onto FTIR spectra using a correlation-matrix approach. Interpretation of this heat-map combined with the established annotations of the NMR spectra suggested a hitherto undocumented feature in the IR spectrum at ∼1130 cm(-1), attributable to a double-bond vibration. PMID:24850979

  20. Quantitative H-1 NMR Analysis of Chemical Stabilities in Anion-Exchange Membranes

    SciTech Connect

    Nunez, SA; Hickner, MA

    2013-01-01

    We compared the alkaline stability of three classes of anion exchange membranes that are leading candidates for applications in platinum-free fuel cells. A methodology is presented for the study of chemical stability of anion-exchange polymers in alkaline media that provides clear and quantitative H-1 NMR spectroscopic data of dissolved polymers containing benzyltrimethylammonium functionalities. Recent studies have investigated the stabilities of benzimidazolium- and alkylimidazolium-bearing polymers using periodic H-1 NMR sampling. These studies included varying alkaline concentrations, external heating sources, and excessive processing and contained no internal standard for absolute measurements. Key aspects of our time-resolved H-1 NMR method include in situ heating and sampling within the spectrometer, fixed Stoichiometric relationships between the benzyltrimethylammonium functionalities of each polymer and potassium deuteroxide (KOD), and the incorporation of an internal standard for the absolute measurement of the polymer degradation. In addition, our method permits the identification of the degradation products to find the underlying cause of chemical lability. Our results demonstrate that a styrene-based polymer containing benzyltrimethylammonium functional groups is remarkably stable when exposed to 20 equivalents per cation of KOD at 80 degrees C with a half-life (t(1/2)) of 231 h. Under these standard conditions, functionalized poly(phenylene oxide) and poly(arylene ether sulfone) copolymers, both bearing benzyltrimethylammonium functionalities were found to degrade with a half-lives of 57.8 and 2.7 h, respectively.

  1. (19)F spin-lattice relaxation of perfluoropolyethers: Dependence on temperature and magnetic field strength (7.0-14.1T).

    PubMed

    Kadayakkara, Deepak K; Damodaran, Krishnan; Hitchens, T Kevin; Bulte, Jeff W M; Ahrens, Eric T

    2014-05-01

    Fluorine ((19)F) MRI of perfluorocarbon-labeled cells has become a powerful technique to track the migration and accumulation of cells in living organisms. It is common to label cells for (19)F MRI with nanoemulsions of perfluoropolyethers that contain a large number of chemically equivalent fluorine atoms. Understanding the mechanisms of (19)F nuclear relaxation, and in particular the spin-lattice relaxation of these molecules, is critical to improving experimental sensitivity. To date, the temperature and magnetic field strength dependence of spin-lattice relaxation rate constant (R1) for perfluoropolyethers has not been described in detail. In this study, we evaluated the R1 of linear perfluoropolyether (PFPE) and cyclic perfluoro-15-crown-5 ether (PCE) at three magnetic field strengths (7.0, 9.4, and 14.1T) and at temperatures ranging from 256-323K. Our results show that R1 of perfluoropolyethers is dominated by dipole-dipole interactions and chemical shift anisotropy. R1 increased with magnetic field strength for both PCE and PFPE. In the temperature range studied, PCE was in the fast motion regime (ωτc<1) at all field strengths, but for PFPE, R1 passed through a maximum, from which the rotational correlation time was estimated. The importance of these measurements for the rational design of new (19)F MRI agents and methods is discussed. PMID:24594752

  2. 19F Spin-lattice Relaxation of Perfluoropolyethers: Dependence on Temperature and Magnetic Field Strength (7.0-14.1T)

    PubMed Central

    Kadayakkara, Deepak K.; Damodaran, Krishnan; Hitchens, T. Kevin; Bulte, Jeff W.M.; Ahrens, Eric T.

    2014-01-01

    Fluorine (19F) MRI of perfluorocarbon labeled cells has become a powerful technique to track the migration and accumulation of cells in living organisms. It is common to label cells for 19F MRI with nanoemulsions of perfluoropolyethers that contain a large number of chemically equivalent fluorine atoms. Understanding the mechanisms of 19F nuclear relaxation, and in particular the spin-lattice relaxation of these molecules, is critical to improving experimental sensitivity. To date, the temperature and magnetic field strength dependence of spin-lattice relaxation rate constant (R1) for perfluoropolyethers has not been described in detail. In this study, we evaluated R1 of linear perfluoropolyether (PFPE) and cyclic perfluoro-15-crown-5 ether (PCE) at three magnetic field strengths (7.0, 9.4, and 14.1 T) and at temperatures ranging from 256-323K. Our results show that R1 of perfluoropolyethers is dominated by dipole-dipole interactions and chemical shift anisotropy. R1 increased with magnetic field strength for both PCE and PFPE. In the temperature range studied, PCE was in the fast motion regime (ωτc < 1) at all field strengths, but for PFPE, R1 passed through a maximum, from which the rotational correlation time was estimated. The importance of these measurements for the rational design of new 19F MRI agents and methods is discussed. PMID:24594752

  3. Precision spectroscopy of the {sup 207}Pb{sup 19}F molecule: Implications for measurement of P-odd and T-odd effects

    SciTech Connect

    Alphei, Lukas D.; Grabow, Jens-Uwe; Petrov, A. N.; Mawhorter, Richard; Murphy, Benjamin; Baum, Alexander; Sears, Trevor J.; Yang, T. Zh.; Rupasinghe, P. M.; McRaven, C. P.; Shafer-Ray, N. E.

    2011-04-15

    Here we report precision microwave spectroscopy of pure rotational transitions of the {sup 207}Pb{sup 19}F isotopologue. We use these data to make predictions of the sensitivity of the molecule to P-odd, T-even and P-odd, T-odd effects.

  4. 19F spin-lattice relaxation of perfluoropolyethers: Dependence on temperature and magnetic field strength (7.0-14.1 T)

    NASA Astrophysics Data System (ADS)

    Kadayakkara, Deepak K.; Damodaran, Krishnan; Hitchens, T. Kevin; Bulte, Jeff W. M.; Ahrens, Eric T.

    2014-05-01

    Fluorine (19F) MRI of perfluorocarbon-labeled cells has become a powerful technique to track the migration and accumulation of cells in living organisms. It is common to label cells for 19F MRI with nanoemulsions of perfluoropolyethers that contain a large number of chemically equivalent fluorine atoms. Understanding the mechanisms of 19F nuclear relaxation, and in particular the spin-lattice relaxation of these molecules, is critical to improving experimental sensitivity. To date, the temperature and magnetic field strength dependence of spin-lattice relaxation rate constant (R1) for perfluoropolyethers has not been described in detail. In this study, we evaluated the R1 of linear perfluoropolyether (PFPE) and cyclic perfluoro-15-crown-5 ether (PCE) at three magnetic field strengths (7.0, 9.4, and 14.1 T) and at temperatures ranging from 256-323 K. Our results show that R1 of perfluoropolyethers is dominated by dipole-dipole interactions and chemical shift anisotropy. R1 increased with magnetic field strength for both PCE and PFPE. In the temperature range studied, PCE was in the fast motion regime (ωτc < 1) at all field strengths, but for PFPE, R1 passed through a maximum, from which the rotational correlation time was estimated. The importance of these measurements for the rational design of new 19F MRI agents and methods is discussed.

  5. Direct mapping of 19F in 19FDG-6P in brain tissue at subcellular resolution using soft X-ray fluorescence

    NASA Astrophysics Data System (ADS)

    Poitry-Yamate, C.; Gianoncelli, A.; Kourousias, G.; Kaulich, B.; Lepore, M.; Gruetter, R.; Kiskinova, M.

    2013-10-01

    Low energy x-ray fluorescence (LEXRF) detection was optimized for imaging cerebral glucose metabolism by mapping the fluorine LEXRF signal of 19F in 19FDG, trapped as intracellular 19F-deoxyglucose-6-phosphate (19FDG-6P) at 1μm spatial resolution from 3μm thick brain slices. 19FDG metabolism was evaluated in brain structures closely resembling the general cerebral cytoarchitecture following formalin fixation of brain slices and their inclusion in an epon matrix. 2-dimensional distribution maps of 19FDG-6P were placed in a cytoarchitectural and morphological context by simultaneous LEXRF mapping of N and O, and scanning transmission x-ray (STXM) imaging. A disproportionately high uptake and metabolism of glucose was found in neuropil relative to intracellular domains of the cell body of hypothalamic neurons, showing directly that neurons, like glial cells, also metabolize glucose. As 19F-deoxyglucose-6P is structurally identical to 18F-deoxyglucose-6P, LEXRF of subcellular 19F provides a link to in vivo 18FDG PET, forming a novel basis for understanding the physiological mechanisms underlying the 18FDG PET image, and the contribution of neurons and glia to the PET signal.

  6. Lifetime-parameters for quasi elastic and deep inelastic collisions extracted from complete angular distributions of89Y(19F, x) y reactions

    NASA Astrophysics Data System (ADS)

    Suomijärvi, T.; Lucas, R.; Mermaz, M. C.; Coffin, J.-P.; Guillaume, G.; Heusch, B.; Jundt, F.; Rami, F.

    1985-09-01

    Energy spectra and angular distributions of heavy fragments produced in 19F + 89Y reaction at 140 MeV incident energy have been measured. Two different domains of reaction mechanism are observed at forward and backward angles respectively; the corresponding lifetime parameters are extracted from their angular distributions.

  7. Fragment based drug discovery: practical implementation based on ¹⁹F NMR spectroscopy.

    PubMed

    Jordan, John B; Poppe, Leszek; Xia, Xiaoyang; Cheng, Alan C; Sun, Yax; Michelsen, Klaus; Eastwood, Heather; Schnier, Paul D; Nixey, Thomas; Zhong, Wenge

    2012-01-26

    Fragment based drug discovery (FBDD) is a widely used tool for discovering novel therapeutics. NMR is a powerful means for implementing FBDD, and several approaches have been proposed utilizing (1)H-(15)N heteronuclear single quantum coherence (HSQC) as well as one-dimensional (1)H and (19)F NMR to screen compound mixtures against a target of interest. While proton-based NMR methods of fragment screening (FBS) have been well documented and are widely used, the use of (19)F detection in FBS has been only recently introduced (Vulpetti et al. J. Am. Chem. Soc.2009, 131 (36), 12949-12959) with the aim of targeting "fluorophilic" sites in proteins. Here, we demonstrate a more general use of (19)F NMR-based fragment screening in several areas: as a key tool for rapid and sensitive detection of fragment hits, as a method for the rapid development of structure-activity relationship (SAR) on the hit-to-lead path using in-house libraries and/or commercially available compounds, and as a quick and efficient means of assessing target druggability. PMID:22165820

  8. Full differentiation and assignment of boron species in the electrolytes Li{sub 2}B{sub 6}O{sub 9}F{sub 2} and Li{sub 2}B{sub 3}O{sub 4}F{sub 3} by solid-state {sup 11}B NMR spectroscopy

    SciTech Connect

    Braeuniger, Thomas; Pilz, Thomas; Chandran, C. Vinod; Jansen, Martin

    2012-10-15

    The syntheses of two new fluorooxoborates, Li{sub 2}B{sub 3}O{sub 4}F{sub 3} and Li{sub 2}B{sub 6}O{sub 9}F{sub 2}, which possess considerable ion conductivity at higher temperatures, have been reported recently. Here, we describe the characterisation of these compounds by solid-state {sup 11}B NMR spectroscopy. The complex central-transition MAS spectra, resulting from overlap of sub-spectra contributed by the individual boron species in the crystal structures, could be clearly separated by acquisition and analysis of 3QMAS spectra. By numerical fit of these sub-spectra, the isotropic chemical shift {delta}{sub iso}, the quadrupolar coupling constant {chi}, and the asymmetry {eta} were determined. Using known relations between boron coordination and chemical shift as well as quadrupolar coupling, the individual {sup 11}B NMR resonances have been ascribed to boron species in tetrahedral or trigonal environment. To remove remaining assignment ambiguities, the response of the {sup 11}B resonances to {sup 19}F decoupling was qualitatively analysed. Thus, by using the combined information conveyed by chemical shift, quadrupolar and dipolar interaction, a complete assignment of the complex {sup 11}B line shapes exhibited by the fluorooxoborates has been achieved. - Graphical abstract: Structure and solid-state {sup 11}B NMR spectrum of Li{sub 2}B{sub 3}O{sub 4}F{sub 3}. Highlights: Black-Right-Pointing-Pointer Characterisation of title compounds by solid-state {sup 11}B NMR spectroscopy. Black-Right-Pointing-Pointer Sub-spectra of boron species separated by evaluation of 3QMAS spectra. Black-Right-Pointing-Pointer Isotropic chemical shift and quadrupolar interaction parameters determined. Black-Right-Pointing-Pointer Full boron assignment based on NMR parameters and response to {sup 19}F decoupling.

  9. Calculation of vibrational branching ratios and hyperfine structure of 24Mg19F and its suitability for laser cooling and magneto-optical trapping

    NASA Astrophysics Data System (ADS)

    Xu, Liang; Yin, Yanning; Wei, Bin; Xia, Yong; Yin, Jianping

    2016-01-01

    More recently, laser cooling of the diatomic radical magnesium monofluoride (24Mg19F ) is being experimentally preformed [Appl. Phys. Express 8, 092701 (2015), 10.7567/APEX.8.092701 and Opt. Express 22, 28645 (2014), 10.1364/OE.22.028645] and was also studied theoretically [Phys. Rev. A 91, 042511 (2015), 10.1103/PhysRevA.91.042511]. However, some important problems still remain unsolved, so, in our paper, we perform further theoretical study for the feasibility of laser cooling and trapping the 24Mg19F molecule. At first, the highly diagonal Franck-Condon factors of the main transitions are verified by the closed-form approximation, Morse approximation, and Rydberg-Klein-Rees inversion methods, respectively. Afterwards, we investigate the lower X 2Σ1/2 + hyperfine manifolds using a quantum effective Hamiltonian approach and obtain the zero-field hyperfine spectrum with an accuracy of less than 30 kHz ˜5 μ K compared with the experimental results, and then find out that one cooling beam and one or two repumping beams with their first-order sidebands are enough to implement an efficient laser slowing and cooling of 24Mg19F . Meanwhile, we also calculate the accurate hyperfine structure magnetic g factors of the rotational state (X 2Σ1/2 +,N =1 ) and briefly discuss the influence of the external fields on the hyperfine structure of 24Mg19F as well as its possibility of preparing three-dimensional magneto-optical trapping. Finally we give an explanation for the difference between the Stark and Zeeman effects from the perspective of parity and time reversal symmetry. Our study shows that, besides appropriate excitation wavelengths, the short lifetime for the first excited state A 2Π1 /2 , and lighter mass, the 24Mg19F radical could be a good candidate molecule amenable to laser cooling and magneto-optical trapping.

  10. Correlating high-resolution magic angle spinning NMR spectroscopy and gene analysis in osteoarthritic cartilage.

    PubMed

    Tufts, Lauren; Shet Vishnudas, Keerthi; Fu, Eunice; Kurhanewicz, John; Ries, Michael; Alliston, Tamara; Li, Xiaojuan

    2015-05-01

    Osteoarthritis (OA) is a common multifactorial and heterogeneous degenerative joint disease, and biochemical changes in cartilage matrix occur during the early stages of OA before morphological changes occur. Thus, it is desired to measure regional biochemical changes in the joint. High-resolution magic angle spinning (HRMAS) NMR spectroscopy is a powerful method of observing cartilaginous biochemical changes ex vivo, including the concentrations of alanine and N-acetyl, which are markers of collagen and total proteoglycan content, respectively. Previous studies have observed significant changes in chondrocyte metabolism of OA cartilage via the altered gene expression profiles of ACAN, COL2A1 and MMP13, which encode aggrecan, type II collagen and matrix metalloproteinase 13 (a protein crucial in the degradation of type II collagen), respectively. Employing HRMAS, this study aimed to elucidate potential relationships between N-acetyl and/or alanine and ACAN, COL2A1 and/or MMP13 expression profiles in OA cartilage. Thirty samples from the condyles of five subjects undergoing total knee arthroplasty to treat OA were collected. HRMAS spectra were obtained at 11.7 T for each sample. RNA was subsequently extracted to determine gene expression profiles. A significant negative correlation between N-acetyl metabolite and ACAN gene expression levels was observed; this provides further evidence of N-acetyl as a biomarker of cartilage degeneration. The alanine doublet was distinguished in the spectra of 15 of the 30 specimens of this study. Alanine can only be detected with HRMAS NMR spectroscopy when the collagen framework has been degraded such that alanine is sufficiently mobile to form a distinguished peak in the spectrum. Thus, HRMAS NMR spectroscopy may provide unique localized measurements of collagenous degeneration in OA cartilage. The identification of imaging markers that could provide a link between OA pathology and chondrocyte metabolism will facilitate the

  11. Solid-state NMR analysis of membrane proteins and protein aggregates by proton detected spectroscopy

    PubMed Central

    Nieuwkoop, Andrew J.; Berthold, Deborah A.; Comellas, Gemma; Sperling, Lindsay J.; Tang, Ming; Shah, Gautam J.; Brea, Elliott J.; Lemkau, Luisel R.

    2012-01-01

    Solid-state NMR has emerged as an important tool for structural biology and chemistry, capable of solving atomic-resolution structures for proteins in membrane-bound and aggregated states. Proton detection methods have been recently realized under fast magic-angle spinning conditions, providing large sensitivity enhancements for efficient examination of uniformly labeled proteins. The first and often most challenging step of protein structure determination by NMR is the site-specific resonance assignment. Here we demonstrate resonance assignments based on high-sensitivity proton-detected three-dimensional experiments for samples of different physical states, including a fully-protonated small protein (GB1, 6 kDa), a deuterated microcrystalline protein (DsbA, 21 kDa), a membrane protein (DsbB, 20 kDa) prepared in a lipid environment, and the extended core of a fibrillar protein (α-synuclein, 14 kDa). In our implementation of these experiments, including CONH, CO(CA)NH, CANH, CA(CO)NH, CBCANH, and CBCA(CO)NH, dipolar-based polarization transfer methods have been chosen for optimal efficiency for relatively high protonation levels (full protonation or 100 % amide proton), fast magic-angle spinning conditions (40 kHz) and moderate proton decoupling power levels. Each H–N pair correlates exclusively to either intra- or inter-residue carbons, but not both, to maximize spectral resolution. Experiment time can be reduced by at least a factor of 10 by using proton detection in comparison to carbon detection. These high-sensitivity experiments are especially important for membrane proteins, which often have rather low expression yield. Proton-detection based experiments are expected to play an important role in accelerating protein structure elucidation by solid-state NMR with the improved sensitivity and resolution. PMID:22986689

  12. Cardiac responses to induced lactate oxidation: NMR analysis of metabolic equilibria.

    PubMed

    Lewandowski, E D; Damico, L A; White, L T; Yu, X

    1995-07-01

    The role of lactate as a source of pyruvate oxidation in supporting cardiac work, energetics, and formation of oxidative metabolites was examined in normal myocardium. 13C- and 31P-nuclear magnetic resonance (NMR) spectra were acquired from isolated rabbit hearts supplied 2.5 mM [3-13C]lactate or [3-13C]pyruvate with or without stimulation of pyruvate dehydrogenase (PDH) by dichloroacetate (DCA). Similar workloads determined by rate-pressure products were noted with pyruvate (21,700 +/- 2,400; mean +/- SE) and lactate (18,970 +/- 1,510). Oxygen consumption was similar in all four groups with means between 19.0 and 22.2 mumol.min-1.g dry weight-1 (SE = 1.6-2.0) as was the ratio of phosphocreatine to ATP with means between 1.8 and 2.1 (SE = 0.1-0.6). Intracellular pH, determined from 31P-NMR spectra, was essentially the same with pyruvate (7.06 +/- 0.02) and lactate (7.05 +/- 0.04). 13C enrichment of glutamate was higher with lactate (92%) than with pyruvate (70%). Pyruvate plus DCA induced no change in glutamate content at 9-10 mumol/g, but 13C enrichment increased to 83%, while lactate plus DCA maintained enrichment at 90%. Levels of alpha-ketoglutarate were lower with lactate (1.81 mumol/g) than with pyruvate (2.36 mumol/g). Lactate plus DCA elevated glutamate by 60% with a proportional increase in alpha-ketoglutarate. Thus the balance between glutamate and alpha-ketoglutarate was affected by substrate supply only and not by PDH activation. The results suggest that the equilibrium between alpha-ketoglutarate and glutamate is sensitive to cytosolic redox state, an important consideration for 13C-NMR analyses that rely on glutamate.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7631845

  13. Rapid milk group classification by 1H NMR analysis of Le and H epitopes in human milk oligosaccharide donor samples.

    PubMed

    van Leeuwen, Sander S; Schoemaker, Ruud J W; Gerwig, Gerrit J; van Leusen-van Kan, Ellen J M; Dijkhuizen, Lubbert; Kamerling, Johannis P

    2014-08-01

    Human milk oligosaccharides (HMOs) are a major constituent of human breast milk and play an important role in reducing the risk of infections in infants. The structures of these HMOs show similarities with blood group antigens in protein glycosylation, in particular in relation to fucosylation in Lewis blood group-type epitopes, matching the maternal pattern. Previously, based on the Secretor and Lewis blood group system, four milk groups have been defined, i.e. Lewis-positive Secretors, Lewis-positive non-Secretors, Lewis-negative Secretors and Lewis-negative non-Secretors. Here, a rapid one-dimensional (1)H nuclear magnetic resonance (NMR) analysis method is presented that identifies the presence/absence of (α1-2)-, (α1-3)- and (α1-4)-linked fucose residues in HMO samples, affording the essential information to attribute different HMO samples to a specific milk group. The developed method is based on the NMR structural-reporter-group concept earlier established for glycoprotein glycans. Further evaluation of the data obtained from the analysis of 36 HMO samples shows that within each of the four milk groups the relative levels of the different fucosylation epitopes can greatly vary. The data also allow a separation of the Lewis-positive Secretor milk group into two sub-groups. PMID:24789815

  14. Characterization of tea cultivated at four different altitudes using 1H NMR analysis coupled with multivariate statistics.

    PubMed

    Ohno, Akiko; Oka, Kitaro; Sakuma, Chiseko; Okuda, Haruhiro; Fukuhara, Kiyoshi

    2011-05-25

    The taste of black tea differs according to the different areas in which the tea is grown, even for the same species of tea. A combination of (1)H NMR spectroscopy and partial least-squares discriminate analysis (PLS-DA) was used to assess the quality differences of tea leaves from four cultivation areas with different elevations, RAN > 1800 m, UDA = 1200 m, MEDA = 600 m, and YATA < 300 m, in Sri Lanka. As a result of a statistical analysis, PLS-DA showed a separation between high- and low-quality black teas derived from the four different tea cultivation areas. RAN from the highest elevation showed characteristic trends in the levels of theaflavin and theaflavin 3,3'-digallate that were found only in RAN, and the levels of theanine and caffeine were higher, and the levels of thearubigins, especially thearubigin 3,3'-digallate, were lower in RAN than in UDA, MEDA, and YATA. The structures of these components were determined by 1D and 2D NMR analyses. These results demonstrate that this method can be used to evaluate black tea quality according to the chemical composition or metabolites, which are characteristic of the tea leaves cultivated in four regions with different elevations in Sri Lanka. PMID:21456619

  15. Metabolite profiling of Curcuma species grown in different regions using 1H NMR spectroscopy and multivariate analysis.

    PubMed

    Jung, Youngae; Lee, Jueun; Kim, Ho Kyoung; Moon, Byeong Cheol; Ji, Yunui; Ryu, Do Hyun; Hwang, Geum-Sook

    2012-12-01

    Curcuma is used to treat skin diseases and colic inflammatory disorders, and in insect repellants and antimicrobial and antidiabetic medications. Two Curcuma species (C. aromatica and C. longa) grown in Jeju-do and Jin-do were used in this study. Methanolic extracts were analyzed by (1)H NMR spectroscopy, and metabolite profiling coupled with multivariate analysis was applied to characterize the differences between species or origin. PCA analysis showed significantly greater differences between species than origins, and the metabolites responsible for the differences were identified. The concentrations of sugars (glucose, fructose, and sucrose) and essential oils (eucalyptol, curdione, and germacrone) were significantly different between the two species. However, the samples from Jeju-do and Jin-do were different mainly in their concentrations of organic acids (fumarate, succinate, acetate, and formate) and sugars. This study demonstrates that NMR-based metabolomics is an efficient method for fingerprinting and determining differences between Curcuma species or those grown in different regions. PMID:23066525

  16. Evaluation of Automated Low-Field NMR Relaxometry For Analysis of Polymers

    SciTech Connect

    Wilson, Mark

    2008-12-04

    Screening studies and a Design of Experiment were performed to evaluate measurement variation of a new, non-destructive NMR test system designed to assess age induced degradation of Outer Pressure Pads. The test method and results from 76,746 measurements are described indicating that a metal support strut adjacent to the front position of the test chamber interferes with the measurements and that there is a measurement property gradient from the front to the back of the chamber. Also, obvious compression set areas on a surveillance OPP were not detected, but hidden, internal voids within a newly molded OPP were detected.

  17. Conformational analysis of Ramipril (HOE 498) in a solution by NMR

    NASA Astrophysics Data System (ADS)

    Sakamoto, Yohko; Ishii, Tomoko; Oonishi, Isao; Ohmoto, Taichi

    1991-05-01

    Conformations of Ramipril (Hoe 498, 2-[ N-(S)-1-ethoxycarbonyl-3-phenylpropyl]-L-alanyl-(1S, 3S, 5S)-2-azabicyclo (3,3,0) octane-3-carboxylic acid), a non-sulfhydryl angiotensin I converting enzyme (ACE) inhibitor, were investigated in CD 3OD, to account for their specific biological activity and long-lasting effectiveness. The preferred optimum structures of the cis and trans forms are postulated. The identification of the two conformers is based on NMR measurements and classical energy calculations. The cis conformation should be preferred for biological activity.

  18. Characterisation and evaluation of paramagnetic fluorine labelled glycol chitosan conjugates for (19)F and (1)H magnetic resonance imaging.

    PubMed

    De Luca, Elena; Harvey, Peter; Chalmers, Kirsten H; Mishra, Anurag; Senanayake, P Kanthi; Wilson, J Ian; Botta, Mauro; Fekete, Marianna; Blamire, Andrew M; Parker, David

    2014-02-01

    Medium molecular weight glycol chitosan conjugates have been prepared, linked by an amide bond to paramagnetic Gd(III), Ho(III) and Dy(III) macrocyclic complexes in which a trifluoromethyl reporter group is located 6.5 Å from the paramagnetic centre. The faster relaxation of the observed nucleus allows modified pulse sequences to be used with shorter acquisition times. The polydisperse materials have been characterised by gel permeation chromatography, revealing an average molecular weight on the order of 13,800 (Gd), 14,600 (Dy) and 16,200 (Ho), consistent with the presence of 8.5, 9.5 and 13 complexes, respectively. The gadolinium conjugate was prepared for both a q = 1 monoamide tricarboxylate conjugate (r1p 11.2 mM(-1) s(-1), 310 K, 1.4 T) and a q = 0 triphosphinate system, and conventional contrast-enhanced proton MRI studies at 7 T were undertaken in mice bearing an HT-29 or an HCT-116 colorectal tumour xenograft (17 μmol/kg). Enhanced contrast was observed following injection in the tail vein in tumour tissue, with uptake also evident in the liver and kidney with a tumour-to-liver ratio of 2:1 at 13 min, and large amounts in the kidney and bladder consistent with predominant renal clearance. Parallel experiments observing the (19)F resonance in the holmium conjugate complex using a surface coil did not succeed owing to its high R2 value (750 Hz, 7 T). However, the fluorine signal in the dysprosium triphosphinate chitosan conjugate [R1/R2 = 0.6 and R1 = 145 Hz (7 T)] was sharper and could be observed in vivo at -65.7 ppm, following intravenous tail vein injection of a dose of 34 μmol/kg. PMID:23955558

  19. Evaluation of tumor ischemia in response to an indole-based vascular disrupting agent using BLI and (19)F MRI.

    PubMed

    Zhou, Heling; Hallac, Rami R; Lopez, Ramona; Denney, Rebecca; MacDonough, Matthew T; Li, Li; Liu, Li; Graves, Edward E; Trawick, Mary Lynn; Pinney, Kevin G; Mason, Ralph P

    2015-01-01

    Vascular disrupting agents (VDAs) have been proposed as an effective broad spectrum approach to cancer therapy, by inducing ischemia leading to hypoxia and cell death. A novel VDA (OXi8007) was recently reported to show rapid acute selective shutdown of tumor vasculature based on color-Doppler ultrasound. We have now expanded investigations to noninvasively assess perfusion and hypoxiation of orthotopic human MDA-MB-231/luc breast tumor xenografts following the administration of OXi8007 based on dynamic bioluminescence imaging (BLI) and magnetic resonance imaging (MRI). BLI showed significantly lower signal four hours after the administration of OXi8007, which was very similar to the response to combretastatin A-4P (CA4P), but the effect lasted considerably longer, with the BLI signal remaining depressed at 72 hrs. Meanwhile, control tumors exhibited minimal change. Oximetry used (19)F MRI of the reporter molecule hexafluorobenzene and FREDOM (Fluorocarbon Relaxometry using Echo Planar Imaging for Dynamic Oxygen Mapping) to assess pO2 distributions during air and oxygen breathing. pO2 decreased significantly upon the administration of OXi8007 during oxygen breathing (from 122 ± 64 to 34 ± 20 Torr), with further decrease upon switching the gas to air (pO2 = 17 ± 9 Torr). pO2 maps indicated intra-tumor heterogeneity in response to OXi8007, though ultimately all tumor regions became hypoxic. Both BLI and FREDOM showed the efficacy of OXi8007. The pO2 changes measured by FREDOM may be crucial for future study of combined therapy. PMID:25973335

  20. pEffect of MRI tags: SPIO nanoparticles and 19F nanoemulsion on various populations of mouse mesenchymal stem cells

    PubMed Central

    Muhammad, Ghulam; Jablonska, Anna; Rose, Laura; Walczak, Piotr; Janowski, Miroslaw

    2016-01-01

    Transplantation of mesenchymal stem cells (MSCs) has emerged as a promising strategy for the treatment of myriad human disorders, including several neurological diseases. Superparamagnetic iron oxide nanoparticles (SPION) and fluorine nanoemulsion (19F) are characterized by low toxicity and good sensitivity, and, as such, are among the most frequently used cell-labeling agents. However, to date, their impact across the various populations of MSCs has not been comprehensively investigated. Thus, the impact of MRI tags (independent variable) has been set as a primary endpoint. The various populations of mouse MSCs in which the effect of tag was investigated consisted of 1) tissue of cell origin: bone marrow vs. adipose tissue; 2) age of donor: young vs. old; 3) cell culture conditions: hypoxic vs. normal vs. normal +ascorbic acid (AA); 4) exposure to acidosis: yes vs. no. The impact of those populations has been also analyzed and considered as secondary endpoints. The experimental readouts (dependent variables) included: 1) cell viability; 2) cell size; 3) cell doubling time; 4) colony formation; 5) efficiency of labeling; and 6) cell migration. We did not identify any impact of cell labeling for these investigated populations in any of the readouts. In addition, we found that the harsh microenvironment of injured tissue modeled by a culture of cells in a highly acidic environment has a profound effect on all readouts, and both age of donor and cell origin tissue also have a substantial influence on most of the readouts, while oxygen tension in the cell culture conditions has a smaller impact on MSCs. A detailed characterization of the factors that influence the quality of MSCs is vital to the proper pursuit of preclinical and clinical studies. PMID:26232992

  1. Comparative analysis of essential collective dynamics and NMR-derived flexibility profiles in evolutionarily diverse prion proteins.

    PubMed

    Santo, Kolattukudy P; Berjanskii, Mark; Wishart, David S; Stepanova, Maria

    2011-01-01

    Collective motions on ns-μs time scales are known to have a major impact on protein folding, stability, binding and enzymatic efficiency. It is also believed that these motions may have an important role in the early stages of prion protein misfolding and prion disease. In an effort to accurately characterize these motions and their potential influence on the misfolding and prion disease transmissibility we have conducted a combined analysis of molecular dynamic simulations and NMR-derived flexibility measurements over a diverse range of prion proteins. Using a recently developed numerical formalism, we have analyzed the essential collective dynamics (ECD) for prion proteins from 8 different species including human, cow, elk, cat, hamster, chicken, turtle and frog. We also compared the numerical results with flexibility profiles generated by the random coil index (RCI) from NMR chemical shifts. Prion protein backbone flexibility derived from experimental NMR data and from theoretical computations show strong agreement with each other, demonstrating that it is possible to predict the observed RCI profiles employing the numerical ECD formalism. Interestingly, flexibility differences in the loop between second beta strand (S2) and the second alpha helix (HB) appear to distinguish prion proteins from species that are susceptible to prion disease and those that are resistant. Our results show that the different levels of flexibility in the S2-HB loop in various species are predictable via the ECD method, indicating that ECD may be used to identify disease resistant variants of prion proteins, as well as the influence of prion proteins mutations on disease susceptibility or misfolding propensity. PMID:21869604

  2. Revisiting NMR through-space J(FF) spin-spin coupling constants for getting insight into proximate F---F interactions.

    PubMed

    Contreras, Rubén H; Llorente, Tomás; Ducati, Lucas Colucci; Tormena, Cláudio Francisco

    2014-07-10

    At present times it is usual practice to mark biological compounds replacing an H for an F atom to study, by means of (19)F NMR spectroscopy, aspects such as binding sites and molecular folding features. This interesting methodology could nicely be improved if it is known how proximity interactions on the F atom affect its electronic structure as gauged through high-resolution (19)F NMR spectroscopy. This is the main aim of the present work and, to this end, differently substituted peri-difluoronaphthalenes are chosen as model systems. In such compounds are rationalized some interesting aspects of the diamagnetic and paramagnetic parts of the (19)F nuclear magnetic shielding tensor as well as the transmission mechanisms for the PSO and FC contributions to (4)JF1F8 indirect nuclear spin-spin coupling constants. PMID:24935717

  3. ¹³C solid-state NMR analysis of the most common pharmaceutical excipients used in solid drug formulations, Part I: Chemical shifts assignment.

    PubMed

    Pisklak, Dariusz Maciej; Zielińska-Pisklak, Monika Agnieszka; Szeleszczuk, Łukasz; Wawer, Iwona

    2016-04-15

    Solid-state NMR is an excellent and useful method for analyzing solid-state forms of drugs. In the (13)C CP/MAS NMR spectra of the solid dosage forms many of the signals originate from the excipients and should be distinguished from those of active pharmaceutical ingredient (API). In this work the most common pharmaceutical excipients used in the solid drug formulations: anhydrous α-lactose, α-lactose monohydrate, mannitol, sucrose, sorbitol, sodium starch glycolate type A and B, starch of different origin, microcrystalline cellulose, hypromellose, ethylcellulose, methylcellulose, hydroxyethylcellulose, sodium alginate, magnesium stearate, sodium laurilsulfate and Kollidon(®) were analyzed. Their (13)C CP/MAS NMR spectra were recorded and the signals were assigned, employing the results (R(2): 0.948-0.998) of GIPAW calculations and theoretical chemical shifts. The (13)C ssNMR spectra for some of the studied excipients have not been published before while for the other signals in the spectra they were not properly assigned or the assignments were not correct. The results summarize and complement the data on the (13)C ssNMR analysis of the most common pharmaceutical excipients and are essential for further NMR studies of API-excipient interactions in the pharmaceutical formulations. PMID:26845204

  4. Structural analysis of molybdo-zinc-phosphate glasses: Neutron scattering, FTIR, Raman scattering, MAS NMR studies

    NASA Astrophysics Data System (ADS)

    Renuka, C.; Shinde, A. B.; Krishna, P. S. R.; Reddy, C. Narayana

    2016-08-01

    Vitreous samples were prepared in the xMoO3-17ZnO-(83-x) NaPO3 with 35 ≥ x ≥ 55 glass forming system by energy efficient microwave heating method. Structural evolution of the vitreous network was monitored as a function of composition by differential scanning calorimetry (DSC), Fourier transform infrared spectroscopy (FTIR), Raman scattering, Magic Angle Spin Nuclear magnetic resonance (MAS NMR) and Neutron scattering. Addition of MoO3 to the ZnO-NaPO3 glass leads to a pronounced increase in glass transition temperature (Tg) suggesting a significant increase in network connectivity and strength. In order to analyze FTIR and Raman scattering, a simple structural model is presented to rationalize the experimental observations. A number of structural units are formed due to network modification, and the resulting glass may be characterized by a network polyhedral with different numbers of unshared corners. 31P MAS NMR confirms a clear distinction between structural species having 3, 2, 1, 0 bridging oxygens (BOs). Further, Neutron scattering studies were used to probe the structure of these glasses. The result suggests that all the investigated glasses have structures based on chains of four coordinated phosphate and six coordinated molybdate units, besides, two different lengths of P-O bonds in tetrahedral phosphate units that are assigned to bonds of the P-atom with terminal and bridging oxygen atoms.

  5. Determination of muscle protein synthesis rates in fish using (2)H2O and (2)H NMR analysis of alanine.

    PubMed

    Marques, Cátia; Viegas, Filipa; Rito, João; Jones, John; Viegas, Ivan

    2016-09-15

    Following administration of deuterated water ((2)H2O), the fractional synthetic rate (FSR) of a given endogenous protein can be estimated by (2)H-enrichment quantification of its alanine residues. Currently, this is measured by mass spectrometry following a derivatization procedure. Muscle FSR was measured by (1)H/(2)H NMR analysis of alanine from seabass kept for 6 days in 5% (2)H-enriched saltwater, following acid hydrolysis and amino acid isolation by cation-exchange chromatography of muscle tissue. The analysis is simple and robust, and provides precise measurements of excess alanine (2)H-enrichment in the 0.1-0.4% range from 50 mmol of alanine recovered from muscle protein. PMID:27418547

  6. /sup 31/P NMR analysis of membrane phospholipid organization in viable, reversibly electropermeabilized Chinese hamster ovary cells

    SciTech Connect

    Lopez, A.; Rols, M.P.; Teissie, J.

    1988-02-23

    Chinese hamster ovary (CHO) cells were reversibly permeabilized by submitting them to short, high-intensity, square wave pulses (1.8 kV/cm, 100 ..mu..s). The cells remained in a permeable state without loss of viability for several hours at 4/sup 0/C. A new anisotropic peak with respect to control cells was observed on /sup 31/P NMR spectroscopic analysis of the phospholipid components. This peak is only present when the cells are permeable, and normal anisotropy is recovered after resealing. Taking into account the fusogenicity of electropermeabilized cells, comparative studies were performed on 5% poly(ethylene glycol) treated cells. The /sup 31/P NMR spectra of the phospholipids displayed the same anisotropic peak as in the case of the electropermeabilized cells. In the two cases, this anisotropic peak was located downfield from the main peak associated to the phospholipids when organized in bilayers. The localization of this anisotropic peak is very different from the one of a hexagonal phase. The authors proposed a reorganization of the polar head group region leading to a weakening of the hydration layer to account for these observations. This was also thought to explain the electric field induced fusogenicity of these cells.

  7. Application of on-line HPLC-1H NMR to environmental samples: analysis of groundwater near former ammunition plants.

    PubMed

    Godejohann, M; Preiss, A; Mügge, C; Wünsch, G

    1997-09-15

    Coupling of HPLC to NMR was applied for the first time to the analysis of environmental samples, i.e., water samples from an ammunition hazardous waste site. Using the continuous flow mode at very low flow rates (< or = 0.017 mL/min) and large volume injection (400 microL), the confirmation of many nitroaromatic compounds could be achieved down to the microgram-per-liter level after solid phase extraction of a groundwater sample from a former ammunition production site. At a flow rate of 0.006 mL/min, it is possible to detect less than 29 nmol (5 micrograms) of 1,3-dinitrobenzene injected on a 75 mm x 4 mm reversed phase C-18 column (particle size, 5 microns). The results obtained by HPLC-NMR are compared to those obtained by HPLC-PDA (photodiode array) of the same sample, demonstrating that many more compounds can be identified by the former compared to the latter method as a result of coelution of major and minor components in the HPLC chromatogram. PMID:9302876

  8. The inclusion complex of rosmarinic acid into beta-cyclodextrin: A thermodynamic and structural analysis by NMR and capillary electrophoresis.

    PubMed

    Aksamija, Amra; Polidori, Ange; Plasson, Raphaël; Dangles, Olivier; Tomao, Valérie

    2016-10-01

    This work focuses on the characterization of the rosmarinic acid (RA)-β-cyclodextrin (CD) complex in aqueous solution by (1)H NMR (1D- and 2D-ROESY), completed with studies by capillary electrophoresis (CE). From the (1)H NMR data, the stoichiometry of the complex was determined by a Job's plot and the binding constant was estimated from a linear regression (Scott's method). At pH 2.9, the results showed that RA binds CD with a 1:1 stoichiometry and a binding constant Kb of 445 (±53) M(-1) or 465 (±81) M(-1) depending on the CD protons (H-5 or H-3) selected for the evaluation. The Kb value was also calculated from the CD-induced chemical shifts of each RA proton in order to collect information on the structure of the complex. The pH dependence of Kb revealed that the RA carboxylic form displays the highest affinity for CD. An investigation by capillary electrophoresis fully confirmed these results. 2D ROESY analysis provided detailed structural information on the complex and showed a strong correlation between H-3 and H-5 of CD and most RA protons. In conclusion, RA, an efficient phenolic antioxidant from rosemary with a marketing authorization, spontaneously forms a relatively stable inclusion complex with CD in water. PMID:27132848

  9. Dynamic Nuclear Polarization NMR Enables the Analysis of Sn-Beta Zeolite Prepared with Natural Abundance 119Sn Precursors

    PubMed Central

    2015-01-01

    The catalytic activity of tin-containing zeolites, such as Sn-Beta, is critically dependent on the successful incorporation of the tin metal center into the zeolite framework. However, synchrotron-based techniques or solid-state nuclear magnetic resonance (ssNMR) of samples enriched with 119Sn isotopes are the only reliable methods to verify framework incorporation. This work demonstrates, for the first time, the use of dynamic nuclear polarization (DNP) NMR for characterizing zeolites containing ∼2 wt % of natural abundance Sn without the need for 119Sn isotopic enrichment. The biradicals TOTAPOL, bTbK, bCTbK, and SPIROPOL functioned effectively as polarizing sources, and the solvent enabled proper transfer of spin polarization from the radical’s unpaired electrons to the target nuclei. Using bCTbK led to an enhancement (ε) of 75, allowing the characterization of natural-abundance 119Sn-Beta with excellent signal-to-noise ratios in <24 h. Without DNP, no 119Sn resonances were detected after 10 days of continuous analysis. PMID:24697321

  10. Signal Selection in High-Resolution NMR by Pulsed Field Gradients. I. Geometrical Analysis

    NASA Astrophysics Data System (ADS)

    Mitschang, Lorenz

    1999-03-01

    A geometrical description for the selection of coherence transfer pathways in high resolution NMR by the application of pulsed field gradients along three orthogonal directions in space is presented. The response of the spin system is one point of the three-dimensional Fourier transform of the sample volume affected by a sequence of field gradients. The property that a pathway is retained (or suppressed) when a sequence of field gradients is applied is expressed by the property of vectors, representing the pathway and the sequence, respectively, to be orthogonal (or not orthogonal). Ignoring imperfections of RF pulses, and with the exception of sensitivity enhanced experiments and experiments where the relevant coherence order is zero while field gradients are applied, it is shown that at most only half of the relevant pathways, as compared to a phase cycled experiment, are retained when field gradients are used for signal selection.

  11. NMR signal analysis to characterize solid, aqueous, and lipid phases in baked cakes.

    PubMed

    Le Grand, F; Cambert, M; Mariette, F

    2007-12-26

    Proton mobility was studied in molecular fractions of some model systems and of cake using a 1H nuclear magnetic resonance (NMR) relaxation technique. For cake, five spin-spin relaxation times (T2) were obtained from transverse relaxation curves: T2 (1) approximately 20 micros, T2 (2) approximately 0.2 ms, T2 (3) approximately 3 ms, T2 (4) approximately 50 ms, and T2 (2) approximately 165 ms. The faster component was attributed to the solid phase, components 2 and 3 were associated with the aqueous phase, and the two slowest components were linked to the lipid phase. After cooking, the crust contained more fat but less water than the center part of the cake. The amount of gelatinized starch was lower in the crust, and water was more mobile due to less interaction with macromolecules. This preliminary study revealed different effects of storage on the center and crust. PMID:18044835

  12. NMR-Based Metabolomic Analysis of Huanglongbing-Asymptomatic and -Symptomatic Citrus Trees.

    PubMed

    Freitas, Deisy dos Santos; Carlos, Eduardo Fermino; Gil, Márcia Cristina Soares de Souza; Vieira, Luiz Gonzaga Esteves; Alcantara, Glaucia Braz

    2015-09-01

    Huanglongbing (HLB) is one of the most severe diseases that affects citrus trees worldwide and is associated with the yet uncultured bacteria Candidatus Liberibacter spp. To assess the metabolomic differences between HLB-asymptomatic and -symptomatic tissues, extracts from leaf and root samples taken from a uniform 6-year-old commercial orchard of Valencia trees were subjected to nuclear magnetic resonance (NMR) and chemometrics. The results show that the symptomatic trees had higher sucrose content in their leaves and no variation in their roots. In addition, proline betaine and malate were detected in smaller amounts in the HLB-affected symptomatic leaves. The changes in metabolic processes of the plant in response to HLB are corroborated by the relationship between the bacterial levels and the metabolic profiles. PMID:26285838

  13. NMR-based metabolomic analysis of Haliotis diversicolor exposed to thermal and hypoxic stresses.

    PubMed

    Lu, Jie; Shi, Yanyan; Wang, Shuhong; Chen, Hao; Cai, Shuhui; Feng, Jianghua

    2016-03-01

    Haliotis diversicolor is a commercially important cultured shellfish. It is also an important marine model organism for environmental science. High temperature accompanied with hypoxia frequently induces diseases or even death to abalones. In present study, (1)H NMR spectroscopy together with pattern recognition methods was used to investigate the responses of muscle and gill of H. diversicolor to thermal and hypoxic stresses. It was found that obvious gender-, time- and tissue-specific metabolic responses were induced by thermal and hypoxic stresses. In combination with the changes of H. diversicolor in physiological features, the dual-modal stresses were suggested to mainly cause the disturbance in energy metabolism and osmotic balance in muscle and gill tissues with different mechanisms. Further, the corresponding correlation networks and metabolic pathways derived from the characteristic metabolites were used to assess the major metabolic functions of these characteristic metabolites. These findings shed some lights on the metabolic influences of environmental stresses on marine organisms. PMID:26747992

  14. Advanced NMR-based techniques for pore structure analysis of coal

    SciTech Connect

    Smith, D.M.

    1991-01-01

    One of the main problems in coal utilization is the inability to properly characterize its complex pore structure. We propose to investigate the dependence of the common NMR parameters such as chemical shifts and relaxation times of several different nuclei and compounds on the pore structure of model microporous solids, carbons, and coals. In particular, we will study the interaction between several small molecules ({sup 129}Xe, {sup 3}He, {sup 2}H{sub 2}, {sup 14}N{sub 2}, {sup 14}NH{sub 3}, {sup 15}N{sub 2}, {sup 13}CH{sub 4}, {sup 13}CO{sub 2}) and the pore surfaces in coals. These molecules have been selected for their chemical and physical properties.

  15. Formation of Organic Molecular Nanocrystals under Rigid Confinement with Analysis by Solid State NMR

    PubMed Central

    Yang, X.; Ong, T. C.; Michaelis, V. K.; Heng, S.; Huang, J.; Griffin, R. G.; Myerson, A. S.

    2014-01-01

    Crystallization in rigid confinement is a promising method to obtain organic molecular nanocrystals. However, the crystallization behavior and the related characterization methods are not well studied. Here we present a systematic study of the nucleation of organic molecular nanocrystals in rigid pores. Four different compounds were studied, ibuprofen, fenofibrate, griseofulvin, and indomethacin, which range from simple to complex molecules. Solid-state Nuclear Magnetic Resonance (NMR) was employed to analyse the structure of these compounds inside pores which are difficult to characterize by other analytical methods. We successfully demonstrated the production of nano-crystalline ibuprofen, fenofibrate and griseofulvin in porous silica particles with ~ 40 nm pores. These nanocrystals showed significant enhancement in dissolution rates. These results help advance the fundamental understanding of nucleation under rigid confinement and may lead to potential applications in developing new formulations in the pharmaceutical industry. PMID:25258590

  16. Structural analysis of CXCR4 - Antagonist interactions using saturation-transfer double-difference NMR.

    PubMed

    Cox, Bryan D; Mehta, Anil K; DiRaddo, John O; Liotta, Dennis C; Wilson, Lawrence J; Snyder, James P

    2015-10-01

    CXCR4 is a GPCR involved in leukocyte trafficking. Small molecule antagonists of the receptor may treat inflammatory disease, cancer and HIV. Here we probe the binding of a tetrahydroisoquinoline-based antagonist (TIQ-10) to CXCR4 using saturation transfer double-difference (STDD) NMR. STDD spectra were acquired using extracts from Chinese Hamster Ovary cells expressing membrane-embedded CXCR4. The experiments demonstrate competitive binding between TIQ-10 and established antagonists and provide the TIQ-10 - CXCR4 binding epitope. Molecular modeling of TIQ-10 into the binding pocket provides a pose consistent with STDD-derived interactions. This study paves the way for future investigations of GPCR-ligand interactions in a biological milieu for use in chemical biology, biochemistry, structural biology, and rational drug design. PMID:26301631

  17. Purity analysis of hydrogen cyanide, cyanogen chloride and phosgene by quantitative (13)C NMR spectroscopy.

    PubMed

    Henderson, Terry J; Cullinan, David B

    2007-11-01

    Hydrogen cyanide, cyanogen chloride and phosgene are produced in tremendously large quantities today by the chemical industry. The compounds are also particularly attractive to foreign states and terrorists seeking an inexpensive mass-destruction capability. Along with contemporary warfare agents, therefore, the US Army evaluates protective equipment used by warfighters and domestic emergency responders against the compounds, and requires their certification at > or = 95 carbon atom % before use. We have investigated the (13)C spin-lattice relaxation behavior of the compounds to develop a quantitative NMR method for characterizing chemical lots supplied to the Army. Behavior was assessed at 75 and 126 MHz for temperatures between 5 and 15 degrees C to hold the compounds in their liquid states, dramatically improving detection sensitivity. T(1) values for cyanogen chloride and phosgene were somewhat comparable, ranging between 20 and 31 s. Hydrogen cyanide values were significantly shorter at 10-18 s, most likely because of a (1)H--(13)C dipolar contribution to relaxation not possible for the other compounds. The T(1) measurements were used to derive relaxation delays for collecting the quantitative (13)C data sets. At 126 MHz, only a single data acquisition with a cryogenic probehead gave a signal-to-noise ratio exceeding that necessary for certifying the compounds at > or = 95 carbon atom % and 99% confidence. Data acquired at 75 MHz with a conventional probehead, however, required > or = 5 acquisitions to reach this certifying signal-to-noise ratio for phosgene, and >/= 12 acquisitions were required for the other compounds under these same conditions. In terms of accuracy and execution time, the NMR method rivals typical chromatographic methods. PMID:17924355

  18. NMR imaging and hydrodynamic analysis of neutrally buoyant non-Newtonian slurry flows

    SciTech Connect

    Bouillard, J.X.; Sinton, S.W.

    1995-02-01

    The flow of solids loaded suspension in cylindrical pipes has been the object of intense experimental and theoretical investigations in recent years. These types of flows are of great interest in chemical engineering because of their important use in many industrial manufacturing processes. Such flows are for example encountered in the manufacture of solid-rocket propellants, advanced ceramics, reinforced polymer composites, in heterogenous catalytic reactors, and in the pipeline transport of liquid-solids suspensions. In most cases, the suspension microstructure and the degree of solids dispersion greatly affect the final performance of the manufactured product. For example, solid propellant pellets need to be extremely-well dispersed in gel matrices for use as rocket engine solid fuels. The homogeneity of pellet dispersion is critical to allow good uniformity of the burn rate, which in turn affects the final mechanical performance of the engine. Today`s manufacturing of such fuels uses continuous flow processes rather than batch processes. Unfortunately, the hydrodynamics of such flow processes is poorly understood and is difficult to assess because it requires the simultaneous measurements of liquid/solids phase velocities and volume fractions. Due to the recent development in pulsed Fourier Transform NMR imaging, NMR imaging is now becoming a powerful technique for the non intrusive investigation of multi-phase flows. This paper reports and exposes a state-of-the-art experimental and theoretical methodology that can be used to study such flows. The hydrodynamic model developed for this study is a two-phase flow shear thinning model with standard constitutive fluid/solids interphase drag and solids compaction stresses. this model shows good agreement with experimental data and the limitations of this model are discussed.

  19. Dynamic Nuclear Polarization Enhanced MAS NMR Spectroscopy for Structural Analysis of HIV-1 Protein Assemblies.

    PubMed

    Gupta, Rupal; Lu, Manman; Hou, Guangjin; Caporini, Marc A; Rosay, Melanie; Maas, Werner; Struppe, Jochem; Suiter, Christopher; Ahn, Jinwoo; Byeon, In-Ja L; Franks, W Trent; Orwick-Rydmark, Marcella; Bertarello, Andrea; Oschkinat, Hartmut; Lesage, Anne; Pintacuda, Guido; Gronenborn, Angela M; Polenova, Tatyana

    2016-01-21

    Mature infectious HIV-1 virions contain conical capsids composed of CA protein, generated by the proteolytic cleavage cascade of the Gag polyprotein, termed maturation. The mechanism of capsid core formation through the maturation process remains poorly understood. We present DNP-enhanced MAS NMR studies of tubular assemblies of CA and Gag CA-SP1 maturation intermediate and report 20-64-fold sensitivity enhancements due to DNP at 14.1 T. These sensitivity enhancements enabled direct observation of spacer peptide 1 (SP1) resonances in CA-SP1 by dipolar-based correlation experiments, unequivocally indicating that the SP1 peptide is unstructured in assembled CA-SP1 at cryogenic temperatures, corroborating our earlier results. Furthermore, the dependence of DNP enhancements and spectral resolution on magnetic field strength (9.4-18.8 T) and temperature (109-180 K) was investigated. Our results suggest that DNP-based measurements could potentially provide residue-specific dynamics information by allowing for the extraction of the temperature dependence of the anisotropic tensorial or relaxation parameters. With DNP, we were able to detect multiple well-resolved isoleucine side-chain conformers; unique intermolecular correlations across two CA molecules; and functionally relevant conformationally disordered states such as the 14-residue SP1 peptide, none of which are visible at ambient temperatures. The detection of isolated conformers and intermolecular correlations can provide crucial constraints for structure determination of these assemblies. Overall, our results establish DNP-based MAS NMR spectroscopy as an excellent tool for the characterization of HIV-1 assemblies. PMID:26709853

  20. Enantiodiscrimination by NMR spectroscopy.

    PubMed

    Uccello-Barretta, Gloria; Balzano, Federica; Salvadori, Piero

    2006-01-01

    The analysis of enantiorecognition processes involves the detection of enantiomeric species as well as the study of chiral discrimination mechanisms. In both fields Nuclear Magnetic Resonance (NMR) spectroscopy plays a fundamental role, providing several tools, based on the use of suitable chiral auxiliaries, for observing distinct signals of enantiomers and for investigating the complexation phenomena involved in enantiodiscrimination processes. PMID:17100610

  1. Angular momentum distribution for the formation of evaporation residues in fusion of 19F with 184W near the Coulomb barrier

    NASA Astrophysics Data System (ADS)

    Nath, S.; Gehlot, J.; Prasad, E.; Sadhukhan, Jhilam; Shidling, P. D.; Madhavan, N.; Muralithar, S.; Golda, K. S.; Jhingan, A.; Varughese, T.; Rao, P. V. Madhusudhana; Sinha, A. K.; Pal, Santanu

    2011-01-01

    We present γ-ray multiplicity distributions for the formation of evaporation residues in the fusion reaction 19F + 184W → 20383Bi 120 at beam energies in the range of 90-110 MeV. The measurements were carried out using a 14 element BGO detector array and the Heavy Ion Reaction Analyzer at the Inter University Accelerator Centre. The data have been unfolded to obtain angular momentum distributions with inputs from the statistical model calculation. Comparison with another neighboring system, viz. 19F + 175Lu → 19480Hg 114 with nearly similar entrance-channel mass asymmetry, hints at the depletion of higher angular momenta after crossing of the Z=82 shell in the compound nucleus.

  2. NMR relaxation studies in doped poly-3-methylthiophene

    NASA Astrophysics Data System (ADS)

    Singh, K. Jugeshwar; Clark, W. G.; Gaidos, G.; Reyes, A. P.; Kuhns, P.; Thompson, J. D.; Menon, R.; Ramesh, K. P.

    2015-05-01

    NMR relaxation rates (1 /T1 ), magnetic susceptibility, and electrical conductivity studies in doped poly-3-methylthiophene are reported in this paper. The magnetic susceptibility data show the contributions from both Pauli and Curie spins, with the size of the Pauli term depending strongly on the doping level. Proton and fluorine NMR relaxation rates have been studied as a function of temperature (3-300 K) and field (for protons at 0.9, 9.0, 16.4, and 23.4 T, and for fluorine at 9.0 T). The temperature dependence of T1 is classified into three regimes: (a) For T <(g μBB /2 kB ) , the relaxation mechanism follows a modified Korringa relation due to electron-electron interactions and disorder. 1H - T1 is due to the electron-nuclear dipolar interaction in addition to the contact term. (b) For the intermediate temperature range (g μBB /2 kB ) analysis has been carried out in light of these models depending upon the temperature and frequency range of study. Fluorine relaxation data have been analyzed and attributed to the P F6 reorientation. The cross relaxation among the 1H and 19F nuclei has been observed in the entire temperature range suggesting the role of magnetic dipolar interaction modulated by the reorientation of the symmetric molecular subgroups. The data analysis shows that the enhancement in the Korringa ratio is greater in a less conducting sample. Intra- and interchain hopping of charge carriers is found to be a dominant relaxation mechanism at low temperature. Frequency dependence of T1-1 on temperature shows that at low temperature [T <(g μBB /2 kB ) ] the system shows three dimensions and changes to quasi one dimension at

  3. 19F Magnetic Resonance Imaging of Perfluorocarbons for the Evaluation of Response to Antibiotic Therapy in a Staphylococcus aureus Infection Model

    PubMed Central

    Jakob, Peter; Ohlsen, Knut

    2013-01-01

    Background The emergence of antibiotic resistant bacteria in recent decades has highlighted the importance of developing new drugs to treat infections. However, in addition to the design of new drugs, the development of accurate preclinical testing methods is essential. In vivo imaging technologies such as bioluminescence imaging (BLI) or magnetic resonance imaging (MRI) are promising approaches. In a previous study, we showed the effectiveness of 19F MRI using perfluorocarbon (PFC) emulsions for detecting the site of Staphylococcus aureus infection. In the present follow-up study, we investigated the use of this method for in vivo visualization of the effects of antibiotic therapy. Methods/Principal findings Mice were infected with S. aureus Xen29 and treated with 0.9% NaCl solution, vancomycin or linezolid. Mock treatment led to the highest bioluminescence values during infection followed by vancomycin treatment. Counting the number of colony-forming units (cfu) at 7 days post-infection (p.i.) showed the highest bacterial burden for the mock group and the lowest for the linezolid group. Administration of PFCs at day 2 p.i. led to the accumulation of 19F at the rim of the abscess in all mice (in the shape of a hollow sphere), and antibiotic treatment decreased the 19F signal intensity and volume. Linezolid showed the strongest effect. The BLI, cfu, and MRI results were comparable. Conclusions 19F-MRI with PFCs is an effective non-invasive method for assessing the effects of antibiotic therapy in vivo. This method does not depend on pathogen specific markers and can therefore be used to estimate the efficacy of antibacterial therapy against a broad range of clinically relevant pathogens, and to localize sites of infection. PMID:23724049

  4. THE FLUORINE DESTRUCTION IN STARS: FIRST EXPERIMENTAL STUDY OF THE {sup 19}F(p, {alpha}{sub 0}){sup 16}O REACTION AT ASTROPHYSICAL ENERGIES

    SciTech Connect

    La Cognata, M.; Spitaleri, C.; Indelicato, I.; Cherubini, S.; Gulino, M.; Kiss, G. G.; Lamia, L.; Pizzone, R. G.; Puglia, S. M. R.; Rapisarda, G. G.; Romano, S.; Mukhamedzhanov, A. M.; Aliotta, M.; Burjan, V.; Hons, Z.; Kroha, V.; Mrazek, J.; Piskor, S.; Coc, A.

    2011-10-01

    The {sup 19}F(p, {alpha}){sup 16}O reaction is an important fluorine destruction channel in the proton-rich outer layers of asymptotic giant branch (AGB) stars and it might also play a role in hydrogen-deficient post-AGB star nucleosynthesis. So far, available direct measurements do not reach the energy region of astrophysical interest (E {sub cm} {approx}< 300 keV), because of the hindrance effect of the Coulomb barrier. The Trojan Horse (TH) method was thus used to access this energy region, by extracting the quasi-free contribution to the {sup 2}H({sup 19}F, {alpha}{sup 16}O)n and the {sup 19}F({sup 3}He, {alpha}{sup 16}O)d reactions. The TH measurement of the {alpha}{sub 0} channel shows the presence of resonant structures not observed before, which cause an increase of the reaction rate at astrophysical temperatures up to a factor of 1.7, with potential consequences for stellar nucleosynthesis.

  5. Completion of the Operational Closure of Tank 18F and Tank 19F at the Savannah River Site by Grouting - 13236

    SciTech Connect

    Tisler, Andrew J.

    2013-07-01

    Radioactive waste is stored in underground waste tanks at the Savannah River Site (SRS). The low-level fraction of the waste is immobilized in a grout waste form, and the high level fraction is disposed of in a glass waste form. Once the waste is removed, the tanks are prepared for closure. Operational closure of the tanks consists of filling with grout for the purpose of chemically stabilizing residual material, filling the tank void space for long-term structural stability, and discouraging future intrusion. Two of the old-style single-shell tanks at the SRS have received regulatory approval confirming waste removal had been completed, and have been stabilized with grout as part of completing operational closure and removal from service. Consistent with the regulatory framework, two types of grout were used for the filling of Tanks 18F and 19F. Reducing grout was used to fill the entire volume of Tanks 18F and 19F (bulk fill grout) and a more flowable grout was used to fill equipment that was left in the tank (equipment fill grout). The reducing grout was added to the tanks using portable grout pumps filled from concrete trucks, and delivered the grout through slick lines to the center riser of each tank. Filling of the two tanks has been completed, and all equipment has been filled. The final capping of riser penetrations brings the operation closure of Tanks 18F and 19F to completion. (authors)

  6. Unsupervised principal component analysis of NMR metabolic profiles for the assessment of substantial equivalence of transgenic grapes (Vitis vinifera).

    PubMed

    Picone, Gianfranco; Mezzetti, Bruno; Babini, Elena; Capocasa, Franco; Placucci, Giuseppe; Capozzi, Francesco

    2011-09-14

    Substantial equivalence is a key concept in the evaluation of unintended and potentially harmful metabolic impact consequent to a genetic modification of food. The application of unsupervised multivariate data analysis to the metabolic profiles is expected to improve the effectiveness of such evaluation. The present study uses NMR spectra of hydroalcoholic extracts, as holistic representations of the metabolic profiles of grapes, to evaluate the effect of the insertion of one or three copies of the DefH9-iaaM construct in plants of Silcora and Thompson Seedless cultivars. The comparison of the metabolic profiles of transgenic derivatives with respect to their corresponding natural lines pointed out that the overall metabolic changes occur in the same direction, independent of the host genotype, although the two cultivars are modified to different extents. A higher number of copies not only produces a larger effect but also modifies the whole pattern of perturbed metabolites. PMID:21806070

  7. Selective {sup 2}H and {sup 13}C labeling in NMR analysis of solution protein structure and dynamics

    SciTech Connect

    LeMaster, D.M.

    1994-12-01

    Preparation of samples bearing combined isotope enrichment patterns has played a central role in the recent advances in NMR analysis of proteins in solution. In particular, uniform {sup 13}C, {sup 15}N enrichment has made it possible to apply heteronuclear multidimensional correlation experiments for the mainchain assignments of proteins larger than 30 KDa. In contrast, selective labeling approaches can offer advantages in terms of the directedness of the information provided, such as chirality and residue type assignments, as well as through enhancements in resolution and sensitivity that result from editing the spectral complexity, the relaxation pathways and the scalar coupling networks. In addition, the combination of selective {sup 13}C and {sup 2}H enrichment can greatly facilitate the determination of heteronuclear relaxation behavior.

  8. Conformation analysis of d-glucaric acid in deuterium oxide by NMR based on its JHH and JCH coupling constants.

    PubMed

    Enomoto-Rogers, Yukiko; Masaki, Hisaharu; Ito, Tetsuya; Furihata, Kazuo; Iwata, Tadahisa

    2016-07-01

    d-Glucaric acid (GA) is an aldaric acid and consists of an asymmetric acyclic sugar backbone with a carboxyl group positioned at either end of its structure (i.e., the C1 and C6 positions). The purpose of this study was to conduct a conformation analysis of flexible GA as a solution in deuterium oxide by NMR spectroscopy, based on J-resolved conformation analysis using proton-proton ((3) JHH ) and proton-carbon ((2) JCH and (3) JCH ) coupling constants, as well as nuclear overhauser effect spectroscopy (NOESY). The (2) JCH and (3) JCH coupling constants were measured using the J-resolved heteronuclear multiple bond correlation (HMBC) NMR technique. NOESY correlation experiments indicated that H2 and H5 were in close proximity, despite the fact that these protons were separated by too large distance in the fully extended form of the chain structure to provide a NOESY correlation. The validities of the three possible conformers along the three different bonds (i.e., C2C3, C3C4, and C4C5) were evaluated sequentially based on the J-coupling values and the NOESY correlations. The results of these analyses suggested that there were three dominant conformers of GA, including conformer 1, which was H2H3:gauche, H3H4:anti, and H4H5:gauche; conformer 2, which was H2H3:gauche, H3H4:anti, and H4H5:anti; and conformer 3, which was H2H3:gauche, H3H4: gauche, and H4H5:anti. These results also suggested that all three of these conformers exist in equilibrium with each other. Lastly, the results of the current study suggested that the conformational structures of GA in solution were 'bent' rather than being fully extended. Copyright © 2016 John Wiley & Sons, Ltd. PMID:26749401

  9. Importance of Tensor Asymmetry for the Analysis of 2H-NMR Spectra from Deuterated Aromatic Rings

    PubMed Central

    Pulay, Peter; Scherer, Erin M.; van der Wel, Patrick C. A.; Koeppe, Roger E.

    2008-01-01

    We have used ab initio calculations to compute all of the tensor elements of the electric field gradient for each carbon-deuterium bond in the ring of deuterated 3-methyl-indole. Previous analyses have ignored the smaller tensor elements perpendicular to principal component Vzz which is aligned with the C-2H bond (local bond z-axis). At each ring position, the smallest element Vxx is in the molecular plane and Vyy is normal to the plane of the ring. The asymmetry parameter η = (|Vyy|-|Vxx|)/|Vzz| ranges from 0.07 at C4 to 0.11 at C2. We used the perpendicular (off-bond) tensor elements, in concert with an improved understanding of the indole ring geometry1, to analyze prototype 2H-NMR spectra from well-oriented, hydrated peptide/lipid samples. For each of the 4 tryptophans of membrane-spanning gramicidin A (gA)2 channels, the inclusion of the perpendicular elements changes the deduced ring tilt by nearly 10° and increases the ring principal order parameter Szz for overall ‘wobble’ with respect to the membrane normal (molecular z-axis). With the improved analysis, the magnitude of Szz for the outermost indole rings of Trp13 and Trp15 is indistinguishable from that observed previously for backbone atoms (0.93 ± 0.03). For the Trp9 and Trp11 rings, which are slightly more buried within the membrane, Szz is slightly lower (0.86 ± 0.03). The results show that the perpendicular elements are important for the detailed analysis of 2H-NMR spectra from aromatic ring systems. PMID:16332101

  10. NMR analysis and chemical shift calculations of poly(lactic acid) dimer model compounds with different tacticities

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In this work, PLA dimer model compounds with different tacticities were synthesized and studied in detail by 1H and 13C NMR in three solvents, CDCl3/CCl4 (20/80 v/v), CDCl3 and DMSO-d6. All the peaks in the 1H and 13C NMR spectra were assigned with the help of two-dimensional NMR. Although the solve...

  11. Standardless multicomponent qNMR analysis of compounds with overlapped resonances based on the combination of ICA and PULCON.

    PubMed

    Monakhova, Yulia B; Lachenmeier, Dirk W; Kuballa, Thomas; Mushtakova, Svetlana P

    2015-10-01

    A fast and reliable nuclear magnetic resonance (NMR) method for quantitative analysis of targeted compounds with overlappe