Science.gov

Sample records for 19f nmr spectra

  1. {sup 19}F NMR spectra and structures of halogenated porphyrins

    SciTech Connect

    Birnbaum, E.R.; Hodge, J.A.; Grinstaff, M.W.

    1995-07-05

    Fluorine-19 NMR spectra of a series of halogenated porphyrins have been used to create a spectral library of different types of fluorine splitting patterns for tetrakis(pentafluorophenyl) porphyrins (TFPP) complexed with diamagnetic and paramagnetic metal ions. The paramagnetic shift, line broadening, and fine structure of the resonances form the peripheral pentafluorophenyl rings are dependent on the symmetry and core environment of the porphyrin macrocycles. In combination with crystal structure data, {sup 19}F NMR helps define the behavior of halogenated porphyrins in solution. Six new crystal structures for TFPP and octahalo-TFPP derivatives are reported: H{sub 2}TFPP in rhombohedral space group R3, a = 20.327(4) {Angstrom}, c = 15.261(2) {Angstrom}, {beta} = 103.87(2){degrees}, V = 2227.6(13) {Angstrom}{sup 3}, Z = 2; CuTFPP in rhombohedral space group R3, a = 20.358(5), c = 14.678(2) {Angstrom}, {alpha} = 88.97(1), {beta}=76.05(1){degrees}, {gamma} = 71.29(1){degrees}, V = 2181.4(6) {Angstrom}{sup 3}, Z = 2; ZnTFPPCl{sub 8} in tetragonal space group P42, c, a = 19.502(20), c = 10.916(8) {Angstrom}, V = 4152(6) {Angstrom}{sup 3}, Z = 2; H{sub 2}TFPPBr{sub 8} in monoclinic space group C2, a = 27.634(6) {Angstrom}, b = 6.926(2) {Angstrom}, c = 14.844(3) {Angstrom}, {beta} = 109.64(2){degrees}, V = 2675.8(11) {Angstrom}{sup 3}, Z = 2.

  2. Automated data evaluation and modelling of simultaneous (19) F-(1) H medium-resolution NMR spectra for online reaction monitoring.

    PubMed

    Zientek, Nicolai; Laurain, Clément; Meyer, Klas; Paul, Andrea; Engel, Dirk; Guthausen, Gisela; Kraume, Matthias; Maiwald, Michael

    2016-06-01

    Medium-resolution nuclear magnetic resonance spectroscopy (MR-NMR) currently develops to an important analytical tool for both quality control and process monitoring. In contrast to high-resolution online NMR (HR-NMR), MR-NMR can be operated under rough environmental conditions. A continuous re-circulating stream of reaction mixture from the reaction vessel to the NMR spectrometer enables a non-invasive, volume integrating online analysis of reactants and products. Here, we investigate the esterification of 2,2,2-trifluoroethanol with acetic acid to 2,2,2-trifluoroethyl acetate both by (1) H HR-NMR (500 MHz) and (1) H and (19) F MR-NMR (43 MHz) as a model system. The parallel online measurement is realised by splitting the flow, which allows the adjustment of quantitative and independent flow rates, both in the HR-NMR probe as well as in the MR-NMR probe, in addition to a fast bypass line back to the reactor. One of the fundamental acceptance criteria for online MR-MNR spectroscopy is a robust data treatment and evaluation strategy with the potential for automation. The MR-NMR spectra are treated by an automated baseline and phase correction using the minimum entropy method. The evaluation strategies comprise (i) direct integration, (ii) automated line fitting, (iii) indirect hard modelling (IHM) and (iv) partial least squares regression (PLS-R). To assess the potential of these evaluation strategies for MR-NMR, prediction results are compared with the line fitting data derived from the quantitative HR-NMR spectroscopy. Although, superior results are obtained from both IHM and PLS-R for (1) H MR-NMR, especially the latter demands for elaborate data pretreatment, whereas IHM models needed no previous alignment. Copyright © 2015 John Wiley & Sons, Ltd. PMID:25854892

  3. Magnetism, optical absorbance, and 19F NMR spectra of nafion films with self-assembling paramagnetic networks

    SciTech Connect

    Levin, E. M.; Chen, Q.; Bud'ko, S. L.

    2012-01-15

    Magnetization, optical absorbance, and {sup 19}F NMR spectra of Nafion transparent films as received and doped with Mn{sup 2+}, Co{sup 2+}, Fe{sup 2+}, and Fe{sup 3+} ions with and without treatment in 1H-1,2,4-triazole (trz) have been studied. Doping of Nafion with Fe{sup 2+} and Co{sup 2+} and their bridging to nitrogen of triazole yields a hybrid self-assembling paramagnetic system that exhibits interesting magnetic and optical properties. These include spin crossover phenomena between high-spin (HS) and low-spin (LS) states in Nafion-Fe{sup 2+}-trz and Nafion-Co{sup 2+}-trz accompanied by thermochromic effects in the visible range induced by temperature. A large shift of the magnetization curve induced by a magnetic field in the vicinity of the HS {leftrightarrow} LS, {approx}220 K, observed for Nafion-Fe{sup 2+}-trz has a rate of {approx}6 K/kOe, which is about three orders of magnitude larger than that in bulk spin crossover Fe{sup 2+} materials. Selective response of {sup 19}F NMR signals on doping with paramagnetic ions demonstrates that NMR can be used as spatially resolved method to study Nafion film with paramagnetic network. Both chemical shift and width of {sup 19}F NMR signals show that SO groups of Nafion, Fe or Co ions, and nitrogen of triazole are bonded whereas they form a spin crossover system. Based on a model of nanosize cylinders proposed for Nafion [K. Schmidt-Rohr and Q. Chen, Nat Mater (2008), 75], we suggest that paramagnetic ions are located inside these cylinders, forming self-assembling magnetically and optically active nanoscale networks.

  4. Demystifying fluorine chemical shifts: electronic structure calculations address origins of seemingly anomalous (19)F-NMR spectra of fluorohistidine isomers and analogues.

    PubMed

    Kasireddy, Chandana; Bann, James G; Mitchell-Koch, Katie R

    2015-11-11

    Fluorine NMR spectroscopy is a powerful tool for studying biomolecular structure, dynamics, and ligand binding, yet the origins of (19)F chemical shifts are not well understood. Herein, we use electronic structure calculations to describe the changes in (19)F chemical shifts of 2F- and 4F-histidine/(5-methyl)-imidazole upon acid titration. While the protonation of the 2F species results in a deshielded chemical shift, protonation of the 4F isomer results in an opposite, shielded chemical shift. The deshielding of 2F-histidine/(5-methyl)-imidazole upon protonation can be rationalized by concomitant decreases in charge density on fluorine and a reduced dipole moment. These correlations do not hold for 4F-histidine/(5-methyl)-imidazole, however. Molecular orbital calculations reveal that for the 4F species, there are no lone pair electrons on the fluorine until protonation. Analysis of a series of 4F-imidazole analogues, all with delocalized fluorine electron density, indicates that the deshielding of (19)F chemical shifts through substituent effects correlates with increased C-F bond polarity. In summary, the delocalization of fluorine electrons in the neutral 4F species, with gain of a lone pair upon protonation may help explain the difficulty in developing a predictive framework for fluorine chemical shifts. Ideas debated by chemists over 40 years ago, regarding fluorine's complex electronic effects, are shown to have relevance for understanding and predicting fluorine NMR spectra. PMID:26524669

  5. A 19F NMR Study of Enzyme Activity

    NASA Astrophysics Data System (ADS)

    Peterman, Keith E.; Lentz, Kevin; Duncan, Jeffery

    1998-10-01

    This basic enzyme activity laboratory experiment demonstrates how 19F NMR can be used in biochemical studies and presents the advantages of 19F NMR over 1H NMR for studies of this nature. N-Trifluoroacetylglycine was selected as a commercially available model fluorine-tagged substrate that readily undergoes acylase I-catalyzed hydrolysis to produce trifluoroacetic acid and glycine. Progress of the reaction was monitored by following conversion of the trifluoroacetyl moiety peak of N-trifluoroacetylglycine to trifluoroacetic acid. The extent of hydrolysis was determined by comparing integrated ratios of the two 19F NMR peaks. A plot of percent hydrolysis versus enzyme concentration was used to calculate unit activity of the enzyme. This is a viable laboratory experiment for junior/senior-level courses in instrumental analytical chemistry, biochemistry, molecular biology, or spectroscopy.

  6. Homonuclear dipolar recoupling under ultra-fast magic-angle spinning: probing 19F-19F proximities by solid-state NMR.

    PubMed

    Wang, Qiang; Hu, Bingwen; Lafon, Olivier; Trébosc, Julien; Deng, Feng; Amoureux, Jean-Paul

    2010-03-01

    We describe dipolar recoupling methods that accomplish, at high magic-angle spinning (MAS) frequencies, the excitation of double-quantum (DQ) coherences between spin-1/2 nuclei. We employ rotor-synchronized symmetry-based pulse sequences which are either gamma-encoded or non-gamma-encoded. The sensitivity and the robustness to both chemical-shift anisotropy and offset are examined. We also compare different techniques to avoid signal folding in the indirect dimension of two-dimensional double-quantum<-->single-quantum (DQ-SQ) spectra. This comprehensive analysis results in the identification of satisfactory conditions for dipolar (19)F-(19)F recoupling at high magnetic fields and high MAS frequencies. The utility of these recoupling methods is demonstrated with high-resolution DQ-SQ NMR spectra, which allow probing (19)F-(19)F proximities in powered fluoroaluminates. PMID:20044288

  7. Solid-state 19F-NMR analysis of 19F-labeled tryptophan in gramicidin A in oriented membranes.

    PubMed Central

    Grage, Stephan L; Wang, Junfeng; Cross, Timothy A; Ulrich, Anne S

    2002-01-01

    The response of membrane-associated peptides toward the lipid environment or other binding partners can be monitored by solid-state NMR of suitably labeled side chains. Tryptophan is a prominent amino acid in transmembrane helices, and its (19)F-labeled analogues are generally biocompatible and cause little structural perturbation. Hence, we use 5F-Trp as a highly sensitive NMR probe to monitor the conformation and dynamics of the indole ring. To establish this (19)F-NMR strategy, gramicidin A was labeled with 5F-Trp in position 13 or 15, whose chi(1)/chi(2) torsion angles are known from previous (2)H-NMR studies. First, the alignment of the (19)F chemical shift anisotropy tensor within the membrane was deduced by lineshape analysis of oriented samples. Next, the three principal axes of the (19)F chemical shift anisotropy tensor were assigned within the molecular frame of the indole ring. Finally, determination of chi(1)/chi(2) for 5F-Trp in the lipid gel phase showed that the side chain alignment differs by up to 20 degrees from its known conformation in the liquid crystalline state. The sensitivity gain of (19)F-NMR and the reduction in the amount of material was at least 10-fold compared with previous (2)H-NMR studies on the same system and 100-fold compared with (15)N-NMR. PMID:12496101

  8. 19F-NMR Study on the Equilateral Triangular Spin Tube CsCrF4

    NASA Astrophysics Data System (ADS)

    Matsui, Kazuki; Goto, Takayuki; Manaka, Hirotaka; Miura, Yoko

    In order to investigate the hyperfine coupling of three inequivalent 19F sites in the equilateral triangular spin-tube antiferromagnet CsCrF4, we have measured the temperature dependence of 19F-NMR Knight shift in the paramagnetic state above 20K. The hyperfine coupling constants for three F-sites were determined to be -0.170, 0.280 and -0.045 T/μB, and were found to be consistent with the observed spectra at 1.65K, where the system is possibly in the ordered state.

  9. Probing the Pu4 + magnetic moment in PuF4 with 19F NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Capan, Cigdem; Dempsey, Richard J.; Sinkov, Sergey; McNamara, Bruce K.; Cho, Herman

    2016-06-01

    The magnetic fields produced by Pu4 + centers have been measured by 19F NMR spectroscopy to elucidate the Pu-F electronic interactions in polycrystalline PuF4. Spectra acquired at applied fields of 2.35 and 7.05 T reveal a linear scaling of the 19F line shape. A model is presented that treats the line broadening and shifts as due to dipolar fields produced by Pu valence electrons in localized noninteracting orbitals. Alternative explanations for the observed line shape involving covalent Pu-F bonding, superexchange interactions, and electronic configurations with enhanced magnetic moments are considered.

  10. Simultaneous 19F-1H medium resolution NMR spectroscopy for online reaction monitoring

    NASA Astrophysics Data System (ADS)

    Zientek, Nicolai; Laurain, Clément; Meyer, Klas; Kraume, Matthias; Guthausen, Gisela; Maiwald, Michael

    2014-12-01

    Medium resolution nuclear magnetic resonance (MR-NMR) spectroscopy is currently a fast developing field, which has an enormous potential to become an important analytical tool for reaction monitoring, in hyphenated techniques, and for systematic investigations of complex mixtures. The recent developments of innovative MR-NMR spectrometers are therefore remarkable due to their possible applications in quality control, education, and process monitoring. MR-NMR spectroscopy can beneficially be applied for fast, non-invasive, and volume integrating analyses under rough environmental conditions. Within this study, a simple 1/16″ fluorinated ethylene propylene (FEP) tube with an ID of 0.04″ (1.02 mm) was used as a flow cell in combination with a 5 mm glass Dewar tube inserted into a benchtop MR-NMR spectrometer with a 1H Larmor frequency of 43.32 MHz and 40.68 MHz for 19F. For the first time, quasi-simultaneous proton and fluorine NMR spectra were recorded with a series of alternating 19F and 1H single scan spectra along the reaction time coordinate of a homogeneously catalysed esterification model reaction containing fluorinated compounds. The results were compared to quantitative NMR spectra from a hyphenated 500 MHz online NMR instrument for validation. Automation of handling, pre-processing, and analysis of NMR data becomes increasingly important for process monitoring applications of online NMR spectroscopy and for its technical and practical acceptance. Thus, NMR spectra were automatically baseline corrected and phased using the minimum entropy method. Data analysis schemes were designed such that they are based on simple direct integration or first principle line fitting, with the aim that the analysis directly revealed molar concentrations from the spectra. Finally, the performance of 1/16″ FEP tube set-up with an ID of 1.02 mm was characterised regarding the limit of detection (LOQ (1H) = 0.335 mol L-1 and LOQ (19F) = 0.130 mol L-1 for trifluoroethanol in

  11. Simultaneous (19)F-(1)H medium resolution NMR spectroscopy for online reaction monitoring.

    PubMed

    Zientek, Nicolai; Laurain, Clément; Meyer, Klas; Kraume, Matthias; Guthausen, Gisela; Maiwald, Michael

    2014-10-18

    Medium resolution nuclear magnetic resonance (MR-NMR) spectroscopy is currently a fast developing field, which has an enormous potential to become an important analytical tool for reaction monitoring, in hyphenated techniques, and for systematic investigations of complex mixtures. The recent developments of innovative MR-NMR spectrometers are therefore remarkable due to their possible applications in quality control, education, and process monitoring. MR-NMR spectroscopy can beneficially be applied for fast, non-invasive, and volume integrating analyses under rough environmental conditions. Within this study, a simple 1/16″ fluorinated ethylene propylene (FEP) tube with an ID of 0.04″ (1.02mm) was used as a flow cell in combination with a 5mm glass Dewar tube inserted into a benchtop MR-NMR spectrometer with a (1)H Larmor frequency of 43.32MHz and 40.68MHz for (19)F. For the first time, quasi-simultaneous proton and fluorine NMR spectra were recorded with a series of alternating (19)F and (1)H single scan spectra along the reaction time coordinate of a homogeneously catalysed esterification model reaction containing fluorinated compounds. The results were compared to quantitative NMR spectra from a hyphenated 500MHz online NMR instrument for validation. Automation of handling, pre-processing, and analysis of NMR data becomes increasingly important for process monitoring applications of online NMR spectroscopy and for its technical and practical acceptance. Thus, NMR spectra were automatically baseline corrected and phased using the minimum entropy method. Data analysis schemes were designed such that they are based on simple direct integration or first principle line fitting, with the aim that the analysis directly revealed molar concentrations from the spectra. Finally, the performance of 1/16″ FEP tube set-up with an ID of 1.02mm was characterised regarding the limit of detection (LOQ ((1)H)=0.335molL(-1) and LOQ ((19)F)=0.130molL(-1) for trifluoroethanol

  12. Ring current shifts in (19)F-NMR of membrane proteins.

    PubMed

    Liu, Dongsheng; Wüthrich, Kurt

    2016-05-01

    Fluorine-19 NMR markers are attractive reporter groups for use in studies of complex biomacromolecular systems, in particular also for studies of function-related conformational equilibria and rate processes in membrane proteins. Advantages of (19)F-NMR probes include high sensitivity of the (19)F chemical shifts to variations in the non-covalent environment. Nonetheless, in studies of G protein-coupled receptors (GPCR) we encountered situations where (19)F chemical shifts were not responsive to conformational changes that had been implicated by other methods. This prompted us to examine possible effects of aromatic ring current fields on the chemical shifts of (19)F-NMR probes used in GPCRs. Analysis of previously reported (19)F-NMR data on the β2-adrenergic receptor and mammalian rhodopsin showed that all (19)F-labeling sites which manifested conformational changes are located near aromatic residues. Although ring current effects are small when compared to other known non-covalent effects on (19)F chemical shifts, there is thus an indication that their contributions are significant when studying activation processes in GPCRs, since the observed activation-related (19)F-NMR chemical shifts are comparable in size to the calculated ring current shifts. Considering the impact of ring current shifts may thus be helpful in identifying promising indigenous or engineered labeling sites for future (19)F-NMR studies of GPCR activation, and novel information may be obtained on the nature of conformational rearrangements near the (19)F-labels. It will then also be interesting to see if the presently indicated role of ring current shifts in membrane protein studies with (19)F-NMR markers can be substantiated by a more extensive data base resulting from future studies. PMID:27240587

  13. NMR spectroscopy in studies of light-induced structural changes in mammalian rhodopsin: applicability of solution (19)F NMR.

    PubMed

    Klein-Seetharaman, J; Getmanova, E V; Loewen, M C; Reeves, P J; Khorana, H G

    1999-11-23

    We report high resolution solution (19)F NMR spectra of fluorine-labeled rhodopsin mutants in detergent micelles. Single cysteine substitution mutants in the cytoplasmic face of rhodopsin were labeled by attachment of the trifluoroethylthio (TET), CF(3)-CH(2)-S, group through a disulfide linkage. TET-labeled cysteine mutants at amino acid positions 67, 140, 245, 248, 311, and 316 in rhodopsin were thus prepared. Purified mutant rhodopsins (6-10 mg), in dodecylmaltoside, were analyzed at 20 degrees C by solution (19)F NMR spectroscopy. The spectra recorded in the dark showed the following chemical shifts relative to trifluoroacetate: Cys-67, 9.8 ppm; Cys-140, 10.6 ppm; Cys-245, 9.9 ppm; Cys-248, 9.5 ppm; Cys-311, 9.9 ppm; and Cys-316, 10.0 ppm. Thus, all mutants showed chemical shifts downfield that of free TET (6.5 ppm). On illumination to form metarhodopsin II, upfield changes in chemical shift were observed for (19)F labels at positions 67 (-0.2 ppm) and 140 (-0.4 ppm) and downfield changes for positions 248 (+0.1 ppm) and 316 (+0.1 ppm) whereas little or no change was observed at positions 311 and 245. On decay of metarhodopsin II, the chemical shifts reverted largely to those originally observed in the dark. The results demonstrate the applicability of solution (19)F NMR spectroscopy to studies of the tertiary structures in the cytoplasmic face of intact rhodopsin in the dark and on light activation. PMID:10570143

  14. Characterization of solid polymer dispersions of active pharmaceutical ingredients by 19F MAS NMR and factor analysis

    NASA Astrophysics Data System (ADS)

    Urbanova, Martina; Brus, Jiri; Sedenkova, Ivana; Policianova, Olivia; Kobera, Libor

    In this contribution the ability of 19F MAS NMR spectroscopy to probe structural variability of poorly water-soluble drugs formulated as solid dispersions in polymer matrices is discussed. The application potentiality of the proposed approach is demonstrated on a moderately sized active pharmaceutical ingredient (API, Atorvastatin) exhibiting extensive polymorphism. In this respect, a range of model systems with the API incorporated in the matrix of polvinylpyrrolidone (PVP) was prepared. The extent of mixing of both components was determined by T1(1H) and T1ρ(1H) relaxation experiments, and it was found that the API forms nanosized domains. Subsequently it was found out that the polymer matrix induces two kinds of changes in 19F MAS NMR spectra. At first, this is a high-frequency shift reaching 2-3 ppm which is independent on molecular structure of the API and which results from the long-range polarization of the electron cloud around 19F nucleus induced by electrostatic fields of the polymer matrix. At second, this is broadening of the signals and formation of shoulders reflecting changes in molecular arrangement of the API. To avoid misleading in the interpretation of the recorded 19F MAS NMR spectra, because both the contributions act simultaneously, we applied chemometric approach based on multivariate analysis. It is demonstrated that factor analysis of the recorded spectra can separate both these spectral contributions, and the subtle structural differences in the molecular arrangement of the API in the nanosized domains can be traced. In this way 19F MAS NMR spectra of both pure APIs and APIs in solid dispersions can be directly compared. The proposed strategy thus provides a powerful tool for the analysis of new formulations of fluorinated pharmaceutical substances in polymer matrices.

  15. A 1H/19F minicoil NMR probe for solid-state NMR: application to 5-fluoroindoles.

    PubMed

    Graether, Steffen P; DeVries, Jeffrey S; McDonald, Robert; Rakovszky, Melissa L; Sykes, Brian D

    2006-01-01

    We show that it is feasible to use a minicoil for solid-state 19F 1H NMR experiments that has short pulse widths, good RF homogeneity, and excellent signal-to-noise for small samples while using low power amplifiers typical to liquid-state NMR. The closely spaced resonant frequencies of 1H and 19F and the ubiquitous use of fluorine in modern plastics and electronic components present two major challenges in the design of a high-sensitivity, high-field 1H/19F probe. Through the selection of specific components, circuit design, and pulse sequence, we were able to build a probe that has low 19F background and excellent separation of 1H and 19F signals. We determine the principle components of the chemical shift anisotropy tensor of 5-fluoroindole-3-acetic acid (5FIAA) and 5-fluorotryptophan. We also solve the crystal structure of 5FIAA, determine the orientation dependence of the chemical shift of a single crystal of 5FIAA, and predict the 19F chemical shift based on the orientation of the fluorine in the crystal. The results show that this 1H/19F probe is suitable for solid-state NMR experiments with low amounts of biological molecules that have been labeled with 19F. PMID:16198131

  16. Prediction of (19)F NMR Chemical Shifts in Labeled Proteins: Computational Protocol and Case Study.

    PubMed

    Isley, William C; Urick, Andrew K; Pomerantz, William C K; Cramer, Christopher J

    2016-07-01

    The structural analysis of ligand complexation in biomolecular systems is important in the design of new medicinal therapeutic agents; however, monitoring subtle structural changes in a protein's microenvironment is a challenging and complex problem. In this regard, the use of protein-based (19)F NMR for screening low-molecular-weight molecules (i.e., fragments) can be an especially powerful tool to aid in drug design. Resonance assignment of the protein's (19)F NMR spectrum is necessary for structural analysis. Here, a quantum chemical method has been developed as an initial approach to facilitate the assignment of a fluorinated protein's (19)F NMR spectrum. The epigenetic "reader" domain of protein Brd4 was taken as a case study to assess the strengths and limitations of the method. The overall modeling protocol predicts chemical shifts for residues in rigid proteins with good accuracy; proper accounting for explicit solvation of fluorinated residues by water is critical. PMID:27218275

  17. Parallel NMR spectroscopy with simultaneous detection of (1) H and (19) F nuclei.

    PubMed

    Kovacs, Helena; Kupče, Ēriks

    2016-07-01

    Recording NMR signals of several nuclear species simultaneously by using parallel receivers provides more information from a single measurement and at the same time increases the measurement sensitivity per unit time. Here we present a comprehensive series of the most frequently used NMR experiments modified for simultaneous direct detection of two of the most sensitive NMR nuclei - (1) H and (19) F. We hope that the presented material will stimulate interest in and further development of this technique. PMID:27021630

  18. Simultaneous detection of distinct ubiquitin chain topologies by 19F NMR.

    PubMed

    Shekhawat, Sujan S; Pham, Grace H; Prabakaran, Jyothiprashanth; Strieter, Eric R

    2014-10-17

    The dynamic interplay between ubiquitin (Ub) chain construction and destruction is critical for the regulation of many cellular pathways. To understand these processes, it would be ideal to simultaneously detect different Ub chains as they are created and destroyed in the cell. This objective cannot be achieved with existing detection strategies. Here, we report on the use of 19F Nuclear Magnetic Resonance (NMR) spectroscopy to detect and characterize conformationally distinct Ub oligomers. By exploiting the environmental sensitivity of the 19F nucleus and the conformational diversity found among Ub chains of different linkage types, we can simultaneously resolve the 19F NMR signals for mono-Ub and three distinct di-Ub oligomers (K6, K48, and K63) in heterogeneous mixtures. The utility of this approach is demonstrated by the ability to interrogate the selectivity of deubiquitinases with multiple Ub substrates in real time. We also demonstrate that 19F NMR can be used to discern Ub linkages that are formed by select E3 ligases found in pathogenic bacteria. Collectively, our results assert the potential of 19F NMR for monitoring Ub signaling in cells to reveal fundamental insights about the associated cellular pathways. PMID:25119846

  19. Simultaneous Detection of Distinct Ubiquitin Chain Topologies by 19F NMR

    PubMed Central

    2015-01-01

    The dynamic interplay between ubiquitin (Ub) chain construction and destruction is critical for the regulation of many cellular pathways. To understand these processes, it would be ideal to simultaneously detect different Ub chains as they are created and destroyed in the cell. This objective cannot be achieved with existing detection strategies. Here, we report on the use of 19F Nuclear Magnetic Resonance (NMR) spectroscopy to detect and characterize conformationally distinct Ub oligomers. By exploiting the environmental sensitivity of the 19F nucleus and the conformational diversity found among Ub chains of different linkage types, we can simultaneously resolve the 19F NMR signals for mono-Ub and three distinct di-Ub oligomers (K6, K48, and K63) in heterogeneous mixtures. The utility of this approach is demonstrated by the ability to interrogate the selectivity of deubiquitinases with multiple Ub substrates in real time. We also demonstrate that 19F NMR can be used to discern Ub linkages that are formed by select E3 ligases found in pathogenic bacteria. Collectively, our results assert the potential of 19F NMR for monitoring Ub signaling in cells to reveal fundamental insights about the associated cellular pathways. PMID:25119846

  20. Intracellular free calcium concentration measured with /sup 19/F NMR spectroscopy in intact ferret hearts

    SciTech Connect

    Marban, E.; Kitakaze, M.; Kusuoka, H.; Porterfield, J.K.; Yue, D.T.; Chacko, V.P.

    1987-08-01

    Changes in the intracellular free Ca/sup 2 +/ concentration, (Ca/sup 2 +/)/sub i/, mediate excitation-contraction coupling in the heart and contribute to cellular injury during ischemia and reperfusion. To study these processes directly, the authors measured (Ca/sup 2 +/)/sub i/ in perfused ferret (Mustela putorius furo) hearts using /sup 19/F NMR spectroscopy to detect the 5,5'-difluoro derivative of the Ca/sup 2 +/ chelator, 1,2-bis(o-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid (BAPTA). To load cells, hearts were perfused with the acetoxymethyl ester derivative of 5,5'-F/sub 2/-BAPTA. They measured /sup 19/F NMR spectra and left ventricular pressure simultaneously,at rest and during pacing at various external Ca concentrations ((Ca)/sub 0/). Although contractile force was attenuated by the Ca/sup 2 +/ buffering properties of 5,5'-F/sup 2/-BAPTA, the decrease in pressure could be overcome by raising (Ca)/sub 0/. The mean value of 104 nM for (Ca/sup 2 +/)/sub i/ at rest in the perfused heart agrees well with previous measurements in isolated ventricular muscle. During pacing at 0.6-4 Hz, time-averaged (Ca/sup 2 +/)/sub i/ increased; the effect of pacing was augmented by increasing (Ca)/sub 0/. (Ca/sup 2 +/)/sub i/ more than tripled during 10-20 min of global ischemia, and returned toward control levels upon reperfusion. This approach promises to be particularly useful in investigating the physiology of intact hearts and the pathophysiology of alterations in the coronary circulation

  1. Applications of (19)F-NMR in Fragment-Based Drug Discovery.

    PubMed

    Norton, Raymond S; Leung, Eleanor W W; Chandrashekaran, Indu R; MacRaild, Christopher A

    2016-01-01

    (19)F-NMR has proved to be a valuable tool in fragment-based drug discovery. Its applications include screening libraries of fluorinated fragments, assessing competition among elaborated fragments and identifying the binding poses of promising hits. By observing fluorine in both the ligand and the target protein, useful information can be obtained on not only the binding pose but also the dynamics of ligand-protein interactions. These applications of (19)F-NMR will be illustrated in this review with studies from our fragment-based drug discovery campaigns against protein targets in parasitic and infectious diseases. PMID:27438818

  2. A mutagenesis-free approach to assignment of (19)F NMR resonances in biosynthetically labeled proteins.

    PubMed

    Kitevski-LeBlanc, Julianne L; Al-Abdul-Wahid, M Sameer; Prosser, R Scott

    2009-02-18

    Solution NMR studies of protein structure and dynamics using fluorinated amino acid probes are a valuable addition to the repertoire of existing (13)C, (15)N, and (1)H experiments. Despite the numerous advantages of the (19)F nucleus in NMR, protein studies are complicated by the dependence of resonance assignments on site-directed mutagenesis methods which are laborious and often problematic. Here we report an NMR-based route to the assignment of fluorine resonances in (13)C,(15)N-3-fluoro-l-tyrosine labeled calmodulin. The assignment begins with the correlation of the fluorine nucleus to the delta proton in the novel (13)C,(15)N-enriched probe which is achieved using a CT-HCCF-COSY experiment. Connection to the backbone is made through two additional solution NMR experiments, namely the (H(beta))C(beta)(C(gamma)C(delta))H(delta) and HNCACB. Assignments are completed using either previously published backbone chemical shift data or obtained experimentally provided uniform (13)C,(15)N labeling procedures are employed during protein expression. Additional benefits of the (13)C,(15)N-3-fluoro-l-tyrosine probe include the reduction of spectral overlap through ((13)C(19)F) CT-HSQCs, as well as the ability to monitor side chain dynamics using (19)F T(1), T(2), and the (13)C-(19)F NOE. PMID:19173647

  3. The metabolism of 2-trifluormethylaniline and its acetanilide in the rat by 19F NMR monitored enzyme hydrolysis and 1H/19F HPLC-NMR spectroscopy.

    PubMed

    Tugnait, M; Lenz, E M; Hofmann, M; Spraul, M; Wilson, I D; Lindon, J C; Nicholson, J K

    2003-01-01

    The urinary excretion profile and identity of the metabolites of 2-trifluoromethyl aniline (2-TFMA) and 2-trifluoromethyl acetanilide (2-TFMAc), following i.p. administration to the rat at 50 mg kg(-1), were determined using a combination of 19F NMR monitored enzyme hydrolysis, SPEC-MS and 19F/1H HPLC-NMR. A total recovery of approximately 96.4% of the dose was excreted into the urine as seven metabolites. The major routes of metabolism were N-conjugation (glucuronidation), and ring-hydroxylation followed by sulphation (and to a lesser extent glucuronidation). The major metabolites excreted into the urine for both compounds were a labile N-conjugated metabolite (a postulated N-glucuronide) and a sulphated ring-hydroxylated metabolite (a postulated 4-amino-5-trifluoromethylphenyl sulphate) following dosing of 2-TFMA. These accounted for approximately 53.0 and 31.5% of the dose, respectively. This study identifies problems on sample component instability in the preparation and analysis procedures. PMID:12467928

  4. Parahydrogen-induced polarization transfer to 19F in perfluorocarbons for 19F NMR spectroscopy and MRI.

    PubMed

    Plaumann, Markus; Bommerich, Ute; Trantzschel, Thomas; Lego, Denise; Dillenberger, Sonja; Sauer, Grit; Bargon, Joachim; Buntkowsky, Gerd; Bernarding, Johannes

    2013-05-10

    Fluorinated substances are important in chemistry, industry, and the life sciences. In a new approach, parahydrogen-induced polarization (PHIP) is applied to enhance (19)F MR signals of (perfluoro-n-hexyl)ethene and (perfluoro-n-hexyl)ethane. Unexpectedly, the end-standing CF3 group exhibits the highest amount of polarization despite the negligible coupling to the added protons. To clarify this non-intuitive distribution of polarization, signal enhancements in deuterated chloroform and acetone were compared and (19)F-(19)F NOESY spectra, as well as (19)F T1 values were measured by NMR spectroscopy. By using the well separated and enhanced signal of the CF3 group, first (19)F MR images of hyperpolarized linear semifluorinated alkenes were recorded. PMID:23526596

  5. Bulk magnetic susceptibility induced broadening in the 19F NMR of suspended leukemic cells.

    PubMed

    Adebodun, F; Post, J F

    1993-01-01

    The relevance of bulk magnetic susceptibility (BMS) induced broadening to in vivo NMR studies of intact cells has been examined and the significance of the contribution of BMS difference to the resolution of intra- and extracellular resonances was demonstrated. BMS difference between intra- and extracellular compartments was found to limit the resolution of intra- and extracellular 19F resonances of fluoro compounds in leukemic cells. PMID:8499242

  6. Fluorinated Boronic Acid-Appended Bipyridinium Salts for Diol Recognition and Discrimination via (19)F NMR Barcodes.

    PubMed

    Axthelm, Jörg; Görls, Helmar; Schubert, Ulrich S; Schiller, Alexander

    2015-12-16

    Fluorinated boronic acid-appended benzyl bipyridinium salts, derived from 4,4'-, 3,4'-, and 3,3'-bipyridines, were synthesized and used to detect and differentiate diol-containing analytes at physiological conditions via (19)F NMR spectroscopy. An array of three water-soluble boronic acid receptors in combination with (19)F NMR spectroscopy discriminates nine diol-containing bioanalytes--catechol, dopamine, fructose, glucose, glucose-1-phosphate, glucose-6-phosphate, galactose, lactose, and sucrose--at low mM concentrations. Characteristic (19)F NMR fingerprints are interpreted as two-dimensional barcodes without the need of multivariate analysis techniques. PMID:26595191

  7. Fragment Screening and Druggability Assessment for the CBP/p300 KIX Domain Via Protein Observed 19F NMR

    PubMed Central

    Gee, Clifford T.; Koleski, Edward J.

    2015-01-01

    19F NMR of labeled proteins is a sensitive method for characterizing structure, conformational dynamics, higher-order assembly, and ligand binding. Fluorination of aromatic side chains has been suggested as a labeling strategy for small molecule ligand discovery for protein-protein interaction interfaces. Using a model transcription factor binding domain of the CREB binding protein (CBP)/p300, KIX, we report the first full small molecule screen using protein-observed 19F NMR. Screening of 508 compounds and validation by 1H-15N HSQC NMR led to the identification of a minimal pharmacaphore for the MLL-KIX interaction site. Hit rate analysis for the CREB-KIX and MLL-KIX sites provided a metric to assess the ligandability or “druggability” of each interface informing future medicinal chemistry efforts. The structural information from the simplified spectra and data collection speed, affords a new screening tool for analysis of protein interfaces and discovery of small molecules. PMID:25651535

  8. Conformation analysis and molecular mobility of ethylene and tetrafluoroethylene copolymer using solid-state 19F MAS and 1H --> 19F CP/MAS NMR spectroscopy.

    PubMed

    Aimi, Keitaro; Ando, Shinji

    2004-07-01

    The changes in the conformation and molecular mobility accompanied by a phase transition in the crystalline domain were analyzed for ethylene (E) and tetrafluoroethylene (TFE) copolymer, ETFE, using variable-temperature (VT) solid-state 19F magic angle spinning (MAS) and 1H --> 19F cross-polarization (CP)/MAS NMR spectroscopy. The shifts of the signals for fluorines in TFE units to higher frequency and the continuing decrease and increase in the T1rho(F) values suggest that conformational exchange motions exist in the crystalline domain between 42 and 145 degrees C. Quantum chemical calculations of magnetic shielding constants showed that the high-frequency shift of TFE units should be induced by trans to gauche conformational changes at the CH2-CF2 linkage in the E-TFE unit. Although the 19F signals of the crystalline domain are substantially overlapped with those of the amorphous domain at ambient probe temperature (68 degrees C), they were successfully distinguished by using the dipolar filter and spin-lock pulse sequences at 145 degrees C. The dipolar coupling constants for the crystalline domain, which can be estimated by fitting the dipolar oscillation behaviors in the 1H --> 19F CP curve, showed a significant decrease with increasing temperature from 42 to 145 degrees C. This is due to the averaging of 1H-19F dipolar interactions originating from the molecular motion in the crystalline domain. The increase in molecular mobility in the crystalline domain was clearly shown by VT T1rho(F) and 1H --> 19F CP measurements in the phase transition temperature range. PMID:15181627

  9. {sup 19}F NMR measurements of NO production in hypertensive ISIAH and OXYS rats

    SciTech Connect

    Bobko, Andrey A. . E-mail: bobko@kinetics.nsc.ru; Sergeeva, Svetlana V.; Bagryanskaya, Elena G.; Markel, Arkadii L.; Khramtsov, Valery V.; Reznikov, Vladimir A.; Kolosova, Nataljya G.

    2005-05-06

    Recently we demonstrated the principal possibility of application of {sup 19}F NMR spin-trapping technique for in vivo {sup {center_dot}}NO detection [Free Radic. Biol. Med. 36 (2004) 248]. In the present study, we employed this method to elucidate the significance of {sup {center_dot}}NO availability in animal models of hypertension. In vivo {sup {center_dot}}NO-induced conversion of the hydroxylamine of the fluorinated nitronyl nitroxide (HNN) to the hydroxylamine of the iminonitroxide (HIN) in hypertensive ISIAH and OXYS rat strains and normotensive Wistar rat strain was measured. Significantly lower HIN/HNN ratios were measured in the blood of the hypertensive rats. The NMR data were found to positively correlate with the levels of nitrite/nitrate evaluated by Griess method and negatively correlate with the blood pressure. In comparison with other traditionally used methods {sup 19}F NMR spectroscopy allows in vivo evaluation of {sup {center_dot}}NO production and provides the basis for in vivo {sup {center_dot}}NO imaging.

  10. Solid-state (19)F-NMR of peptides in native membranes.

    PubMed

    Koch, Katja; Afonin, Sergii; Ieronimo, Marco; Berditsch, Marina; Ulrich, Anne S

    2012-01-01

    To understand how membrane-active peptides (MAPs) function in vivo, it is essential to obtain structural information about them in their membrane-bound state. Most biophysical approaches rely on the use of bilayers prepared from synthetic phospholipids, i.e. artificial model membranes. A particularly successful structural method is solid-state NMR, which makes use of macroscopically oriented lipid bilayers to study selectively isotope-labelled peptides. Native biomembranes, however, have a far more complex lipid composition and a significant non-lipidic content (protein and carbohydrate). Model membranes, therefore, are not really adequate to address questions concerning for example the selectivity of these membranolytic peptides against prokaryotic vs eukaryotic cells, their varying activities against different bacterial strains, or other related biological issues.Here, we discuss a solid-state (19)F-NMR approach that has been developed for structural studies of MAPs in lipid bilayers, and how this can be translated to measurements in native biomembranes. We review the essentials of the methodology and discuss key objectives in the practice of (19)F-labelling of peptides. Furthermore, the preparation of macroscopically oriented biomembranes on solid supports is discussed in the context of other membrane models. Two native biomembrane systems are presented as examples: human erythrocyte ghosts as representatives of eukaryotic cell membranes, and protoplasts from Micrococcus luteus as membranes from Gram-positive bacteria. Based on our latest experimental experience with the antimicrobial peptide gramicidin S, the benefits and some implicit drawbacks of using such supported native membranes in solid-state (19)F-NMR analysis are discussed. PMID:21598096

  11. Dissection of the ion-induced folding of the hammerhead ribozyme using 19F NMR

    PubMed Central

    Hammann, Christian; Norman, David G.; Lilley, David M. J.

    2001-01-01

    We have used 19F NMR to analyze the metal ion-induced folding of the hammerhead ribozyme by selective incorporation of 5fluorouridine. We have studied the chemical shift and linewidths of 19F resonances of 5-fluorouridine at the 4 and 7 positions in the ribozyme core as a function of added Mg2+. The data fit well to a simple two-state model whereby the formation of domain 1 is induced by the noncooperative binding of Mg2+ with an association constant in the range of 100 to 500 M−1, depending on the concentration of monovalent ions present. The results are in excellent agreement with data reporting on changes in the global shape of the ribozyme. However, the NMR experiments exploit reporters located in the center of the RNA sections undergoing the folding transitions, thereby allowing the assignment of specific nucleotides to the separate stages. The results define the folding pathway at high resolution and provide a time scale for the first transition in the millisecond range. PMID:11331743

  12. Resolution of Oligomeric Species during the Aggregation of Aβ1-40 Using 19F NMR

    PubMed Central

    Suzuki, Yuta; Brender, Jeffrey R.; Soper, Molly T.; Krishnamoorthy, Janarthanan; Zhou, Yunlong; Ruotolo, Brandon T.; Kotov, Nicholas A.; Ramamoorthy, Ayyalusamy; Marsh, E. Neil G.

    2013-01-01

    In the commonly used nucleation-dependent model of protein aggregation, aggregation proceeds only after a lag phase in which the concentration of energetically unfavorable nuclei reaches a critical value. The formation of oligomeric species prior to aggregation can be difficult to detect by current spectroscopic techniques. By using real-time 19F NMR along with other techniques, we are able to show that multiple oligomeric species can be detected during the lag phase of Aβ1-40 fiber formation, consistent with a complex mechanism of aggregation. At least 6 types of oligomers can be detected by 19F NMR. These include the reversible formation of large β-sheet oligomer immediately after solubilization at high peptide concentration; a small oligomer that forms transiently during the early stages of the lag phase; and 4 spectroscopically distinct forms of oligomers with molecular weights between ~30–100 kDa that appear during the later stages of aggregation. The ability to resolve individual oligomers and track their formation in real-time should prove fruitful in understanding the aggregation of amyloidogenic proteins and in isolating potentially toxic non-amyloid oligomers. PMID:23445400

  13. NbF{sub 5} and TaF{sub 5}: Assignment of {sup 19}F NMR resonances and chemical bond analysis from GIPAW calculations

    SciTech Connect

    Biswal, Mamata; Body, Monique; Legein, Christophe; Sadoc, Aymeric; Boucher, Florent

    2013-11-15

    The {sup 19}F isotropic chemical shifts (δ{sub iso}) of two isomorphic compounds, NbF{sub 5} and TaF{sub 5}, which involve six nonequivalent fluorine sites, have been experimentally determined from the reconstruction of 1D {sup 19}F MAS NMR spectra. In parallel, the corresponding {sup 19}F chemical shielding tensors have been calculated using the GIPAW method for both experimental and DFT-optimized structures. Furthermore, the [M{sub 4}F{sub 20}] units of NbF{sub 5} and TaF{sub 5} being held together by van der Waals interactions, the relevance of Grimme corrections to the DFT optimization processes has been evaluated. However, the semi-empirical dispersion correction term introduced by such a method does not show any significant improvement. Nonetheless, a complete and convincing assignment of the {sup 19}F NMR lines of NbF{sub 5} and TaF{sub 5} is obtained, ensured by the linearity between experimental {sup 19}F δ{sub iso} values and calculated {sup 19}F isotropic chemical shielding σ{sub iso} values. The effects of the geometry optimizations have been carefully analyzed, confirming among other matters, the inaccuracy of the experimental structure of NbF{sub 5}. The relationships between the fluorine chemical shifts, the nature of the fluorine atoms (bridging or terminal), the position of the terminal ones (opposite or perpendicular to the bridging ones), the fluorine charges, the ionicity and the length of the M–F bonds have been established. Additionally, for three of the {sup 19}F NMR lines of NbF{sub 5}, distorted multiplets, arising from {sup 1}J-coupling and residual dipolar coupling between the {sup 19}F and {sup 93}Nb nuclei, were simulated yielding to values of {sup 93}Nb–{sup 19}F {sup 1}J-coupling for the corresponding fluorine sites. - Graphical abstract: The complete assignment of the {sup 19}F NMR lines of NbF{sub 5} and TaF{sub 5} allow establishing relationships between the {sup 19}F δ{sub iso} values, the nature of the fluorine atoms

  14. Using magnetic coupling to implement 1H, 19F, 13C experiments in routine high resolution NMR probes

    NASA Astrophysics Data System (ADS)

    Bowyer, Paul; Finnigan, Jim; Marsden, Brian; Taber, Bob; Zens, Albert

    2015-12-01

    We report in this paper the design of 1H, 19F, 13C circuitry using magnetic coupling which can do on demand experiments where one of the three nuclei is observed and the other two are decoupled. The implementation of this circuitry in routine NMR probes is compared with capacitive coupling methods where it was found that by using magnetic coupling the performance of the routine NMR probe was not impacted by the addition of this circuitry. It is surmised that using this type of circuitry would be highly desirable for those chemists doing routine 19F NMR.

  15. 19F NMR measurements of the rotational mobility of proteins in vivo.

    PubMed Central

    Williams, S P; Haggie, P M; Brindle, K M

    1997-01-01

    Three glycolytic enzymes, hexokinase, phosphoglycerate kinase, and pyruvate kinase, were fluorine labeled in the yeast Saccharomyces cerevisiae by biosynthetic incorporation of 5-fluorotryptophan. 19F NMR longitudinal relaxation time measurements on the labeled enzymes were used to assess their rotational mobility in the intact cell. Comparison with the results obtained from relaxation time measurements of the purified enzymes in vitro and from theoretical calculations showed that two of the labeled enzymes, phosphoglycerate kinase and hexokinase, were tumbling in a cytoplasm that had a viscosity approximately twice that of water. There were no detectable signals from pyruvate kinase in vivo, although it could be detected in diluted cell extracts, indicating that there was some degree of motional restriction of the enzyme in the intact cell. PMID:8994636

  16. Magnetic properties and hyperfine interactions in Cr8, Cr7Cd, and Cr7Ni molecular rings from 19F-NMR

    SciTech Connect

    Bordonali, L; Garlatti, E; Casadei, C M; Furukawa, Y; Lascialfari, A; Carretta, S; Troiani, F; Timco, G; Winpenny, R E; Borsa, F

    2014-04-14

    A detailed experimental investigation of the 19F nuclear magnetic resonance is made on single crystals of the homometallic Cr₈ antiferromagnetic molecular ring and heterometallic Cr₇Cd and Cr₇ Ni rings in the low temperature ground state. Since the F- ion is located midway between neighboring magnetic metal ions in the ring, the 19F-NMR spectra yield information about the local electronic spin density and ¹⁹F hyperfine interactions. In Cr8, where the ground state is a singlet with total spin S T = 0, the ¹⁹F-NMR spectra at 1.7 K and low external magnetic field display a single narrow line, while when the magnetic field is increased towards the first level crossing field, satellite lines appear in the ¹⁹F-NMR spectrum, indicating a progressive increase in the Boltzmann population of the first excited state S T = 1. In the heterometallic rings, Cr₇Cd and Cr₇ Ni, whose ground state is magnetic with S T = 3/2 and S T = 1/2, respectively, the ¹⁹F-NMR spectrum has a complicated structure which depends on the strength and orientation of the magnetic field, due to both isotropic and anisotropic transferred hyperfine interactions and classical dipolar interactions. From the 19F-NMR spectra in single crystals we estimated the transferred hyperfine constants for both the F⁻-Ni2⁺ and the F⁻-Cd2⁺ bonds. The values of the hyperfine constants compare well to the ones known for F⁻-Ni2⁺ in KNiF₃ and NiF₂ and for F⁻-Cr³⁺ in K₂NaCrF₆. The results are discussed in terms of hybridization of the 2s, 2p orbitals of the F⁻ ion and the d orbitals of the magnetic ion. Finally, we discuss the implications of our results for the electron-spin decoherence.

  17. Fragment-Linking Approach Using (19)F NMR Spectroscopy To Obtain Highly Potent and Selective Inhibitors of β-Secretase.

    PubMed

    Jordan, John B; Whittington, Douglas A; Bartberger, Michael D; Sickmier, E Allen; Chen, Kui; Cheng, Yuan; Judd, Ted

    2016-04-28

    Fragment-based drug discovery (FBDD) has become a widely used tool in small-molecule drug discovery efforts. One of the most commonly used biophysical methods in detecting weak binding of fragments is nuclear magnetic resonance (NMR) spectroscopy. In particular, FBDD performed with (19)F NMR-based methods has been shown to provide several advantages over (1)H NMR using traditional magnetization-transfer and/or two-dimensional methods. Here, we demonstrate the utility and power of (19)F-based fragment screening by detailing the identification of a second-site fragment through (19)F NMR screening that binds to a specific pocket of the aspartic acid protease, β-secretase (BACE-1). The identification of this second-site fragment allowed the undertaking of a fragment-linking approach, which ultimately yielded a molecule exhibiting a more than 360-fold increase in potency while maintaining reasonable ligand efficiency and gaining much improved selectivity over cathepsin-D (CatD). X-ray crystallographic studies of the molecules demonstrated that the linked fragments exhibited binding modes consistent with those predicted from the targeted screening approach, through-space NMR data, and molecular modeling. PMID:26978477

  18. 19F-decoupling of half-integer spin quadrupolar nuclei in solid-state NMR: application of frequency-swept decoupling methods.

    PubMed

    Chandran, C Vinod; Hempel, Günter; Bräuniger, Thomas

    2011-09-01

    In solid-state NMR studies of minerals and ion conductors, quadrupolar nuclei like (7)Li, (23)Na or (133)Cs are frequently situated in close proximity to fluorine, so that application of (19)F decoupling is beneficial for spectral resolution. Here, we compare the decoupling efficiency of various multi-pulse decoupling sequences by acquiring (19)F-decoupled (23)Na-NMR spectra of cryolite (Na(3)AlF(6)). Whereas the MAS spectrum is only marginally affected by application of (19)F decoupling, the 3Q-filtered (23)Na signal is very sensitive to it, as the de-phasing caused by the dipolar interaction between sodium and fluorine is three-fold magnified. Experimentally, we find that at moderate MAS speeds, the decoupling efficiencies of the frequency-swept decoupling schemes SW(f)-TPPM and SW(f)-SPINAL are significantly better than the conventional TPPM and SPINAL sequences. The frequency-swept sequences are therefore the methods of choice for efficient decoupling of quadrupolar nuclei with half-integer spin from fluorine. PMID:21856132

  19. (19)F-labeling of the adenine H2-site to study large RNAs by NMR spectroscopy.

    PubMed

    Sochor, F; Silvers, R; Müller, D; Richter, C; Fürtig, B; Schwalbe, H

    2016-01-01

    In comparison to proteins and protein complexes, the size of RNA amenable to NMR studies is limited despite the development of new isotopic labeling strategies including deuteration and ligation of differentially labeled RNAs. Due to the restricted chemical shift dispersion in only four different nucleotides spectral resolution remains limited in larger RNAs. Labeling RNAs with the NMR-active nucleus (19)F has previously been introduced for small RNAs up to 40 nucleotides (nt). In the presented work, we study the natural occurring RNA aptamer domain of the guanine-sensing riboswitch comprising 73 nucleotides from Bacillus subtilis. The work includes protocols for improved in vitro transcription of 2-fluoroadenosine-5'-triphosphat (2F-ATP) using the mutant P266L of the T7 RNA polymerase. Our NMR analysis shows that the secondary and tertiary structure of the riboswitch is fully maintained and that the specific binding of the cognate ligand hypoxanthine is not impaired by the introduction of the (19)F isotope. The thermal stability of the (19)F-labeled riboswitch is not altered compared to the unmodified sequence, but local base pair stabilities, as measured by hydrogen exchange experiments, are modulated. The characteristic change in the chemical shift of the imino resonances detected in a (1)H,(15)N-HSQC allow the identification of Watson-Crick base paired uridine signals and the (19)F resonances can be used as reporters for tertiary and secondary structure transitions, confirming the potential of (19)F-labeling even for sizeable RNAs in the range of 70 nucleotides. PMID:26704707

  20. Balanced UTE-SSFP for 19F MR Imaging of Complex Spectra

    PubMed Central

    Goette, Matthew J.; Keupp, Jochen; Rahmer, Jürgen; Lanza, Gregory M.; Wickline, Samuel A.; Caruthers, Shelton D.

    2015-01-01

    Purpose A novel technique for highly sensitive detection of multi-resonant fluorine imaging agents was designed and tested with the use of dual-frequency 19F/1H ultra-short echo times (UTE) sampled with a balanced steady-state free precession (SSFP) pulse sequence and 3D radial readout. Methods Feasibility of 3D radial balanced UTE-SSFP imaging was demonstrated for a phantom comprising liquid perfluorooctyl bromide (PFOB). Sensitivity of the pulse sequence was measured and compared to other sequences imaging the PFOB (CF2)6 line group including UTE radial gradient-echo (GRE) at α=30°, as well as Cartesian GRE, balanced SSFP, and fast spin-echo (FSE). The PFOB CF3 peak was also sampled with FSE. Results The proposed balanced UTE-SSFP technique exhibited a relative detection sensitivity of 51 μmolPFOB−1min−1/2 (α=30°), at least twice that of other sequence types with either 3D radial (UTE GRE: 20 μmolPFOB−1min−1/2) or Cartesian k-space filling (GRE: 12 μmolPFOB−1min−1/2; FSE: 16 μmolPFOB−1min−1/2 balanced SSFP: 23 μmolPFOB−1min−1/2 In vivo imaging of angiogenesis-targeted PFOB nanoparticles was demonstrated in a rabbit model of cancer on a clinical 3T scanner. Conclusion A new dual 19F/1H balanced UTE-SSFP sequence manifests high SNR, with detection sensitivity more than twofold better than traditional techniques, and alleviates imaging problems caused by dephasing in complex spectra. PMID:25163853

  1. Fluorinated Amino-Derivatives of the Sesquiterpene Lactone, Parthenolide, as 19F NMR Probes in Deuterium-Free Environments

    PubMed Central

    Woods, James R.; Mo, Huaping; Bieberich, Andrew A.; Alavanja, Tanja; Colby, David A.

    2011-01-01

    The design, synthesis, and biological activity of fluorinated amino-derivatives of the sesquiterpene lactone, parthenolide, are described. A fluorinated aminoparthenolide analogue with biological activity similar to the parent natural product was discovered, and its X-ray structure was obtained. This lead compound was then studied using 19F NMR in the presence and absence of glutathione to obtain additional mechanism of action data, and it was found that the aminoparthenolide eliminates amine faster in the presence of glutathione than in the absence of glutathione. The exact changes in concentrations of fluorinated compound and amine were quantified by a concentration-reference method using 19F NMR; a major benefit of applying this strategy is that no deuterated solvents or internal standards are required to obtain accurate concentrations. These mechanistic data with glutathione may contribute to the conversion of the amino-derivative to parthenolide, the active pharmacological agent, in glutathione-rich cancer cells. PMID:22029741

  2. sup 19 F NMR studies of the D-galactose chemosensory receptor. (1) Sugar binding yields a global structural change

    SciTech Connect

    Luck, L.A.; Falke, J.J. )

    1991-04-30

    The Escherichia coli D-galactose and D-glucose receptor is an aqueous sugar-binding protein and the first component in the distinct chemosensory and transport pathways for these sugars. Activation of the receptor occurs when the sugar binds and induces a conformational change, which in turn enable docking to specific membrane proteins. Only the structure of the activated receptor containing bound D-glucose is known. To investigate the sugar-induced structural change, the authors have used {sup 19}F NMR to probe 12 sites widely distributed in the receptor molecule. Five sites are tryptophan positions probed by incorporation of 5-fluorotryptophan; the resulting {sup 19}F NMR resonances were assigned by site-directed mutagenesis. The other seven sites are phenylalanine positions probed by incorporation of 3-fluorophenylaline. Sugar binding to the substrate binding cleft was observed to trigger a global structural change detected via {sup 19}F NMR frequency shifts at 10 of the 12 labeled sites. The results are consistent with a model in which multiple secondary structural elements, known to extend between the substrate cleft and the protein surface, undergo shifts in their average positions upon sugar binding to the cleft. Such structural coupling provides a mechanism by which sugar binding to the substrate cleft can cause structural changes at one or more docking sites on the receptor surface.

  3. 19F Magic angle spinning NMR reporter molecules: empirical measures of surface shielding, polarisability and H-bonding.

    PubMed

    Budarin, Vitaliy L; Clark, James H; Deswarte, Fabien E I; Mueller, Karl T; Tavener, Stewart J

    2007-06-14

    Magic Angle Spinning (MAS) (19)F NMR spectra have been obtained and chemical shifts measured for 37 molecules in the gas phase and adsorbed on the surfaces of six common materials: octadecyl- and octyl-functionalised chromatography silicas, Kieselgel 100 silica, Brockmann neutral alumina, Norit activated charcoal and 3-(1-piperidino)propyl functionalised silica. From these six surfaces, octadecyl-silica is selected as a non-polar reference to which the others are compared. The change in chemical shift of a fluorine nucleus within a molecule on adsorption to a surface from the gas phase, Deltadelta(gas)(surface), is described by the empirical relationship: Deltadelta(gas)(surface) = delta(s) + (alpha(s)+pi(s))/alpha(r) (Deltadelta(gas)(reference) - delta(r)) + delta(HBA) + delta(HBD), where delta(s) and delta(r) are constants that describe the chemical shift induced by the electromagnetic field of the surface under investigation and reference surface, alpha(s) and alpha(r) are the relative surface polarisability for the surface and reference, pi(s) is an additional contribution to the surface polarisabilities due to its ability to interact with aromatic molecules, and delta(HBA) and delta(HBD) are measurements of the hydrogen acceptor and donor properties of the surface. These empirical parameters are measured for the surfaces under study. Silica and alumina are found to undergo specific interactions with aromatic reporter molecules and both accept and donate H-bonds. Activated charcoal was found to have an extreme effect on shielding but no specific interactions with the adsorbed molecules. 3-(1-Piperidino)propyl functionalised silica exhibits H-bond acceptor ability, but does not donate H-bonds. PMID:17487325

  4. (19)F NMR study of ligand dynamics in carboxylate-bridged diiron(II) complexes supported by a macrocyclic ligand.

    PubMed

    Minier, Mikael A; Lippard, Stephen J

    2015-11-01

    A series of asymmetrically carboxylate-bridged diiron(ii) complexes featuring fluorine atoms as NMR spectroscopic probes, [Fe2(PIM)(Ar(4F-Ph)CO2)2] (10), [Fe2(F2PIM)(Ar(Tol)CO2)2] (11), and [Fe2(F2PIM)(Ar(4F-Ph)CO2)2] (12), were prepared and characterized by X-ray crystallography, Mössbauer spectroscopy, and VT (19)F NMR spectroscopy. These complexes are part of a rare family of syn N-donor diiron(ii) compounds, [Fe2(X2PIM)(RCO2)2], that are structurally very similar to the active site of the hydroxylase enzyme component of reduced methane monooxygenase (MMOHred). Solution characterization of these complexes demonstrates that they undergo intramolecular carboxylate rearrangements, or carboxylate shifts, a dynamic feature relevant to the reactivity of the diiron centers in bacterial multicomponent monooxygenases. PMID:26418547

  5. 19F NMR Study of Ligand Dynamics in Carboxylate-Bridged Diiron(II) Complexes Supported by a Macrocyclic Ligand

    PubMed Central

    Minier, Mikael A.; Lippard, Stephen J.

    2015-01-01

    A series of asymmetrically carboxylate-bridged diiron(II) complexes featuring fluorine atoms as NMR spectroscopic probes, [Fe2(PIM)(Ar4F-PhCO2)2] (10), [Fe2(F2PIM)(ArTolCO2)2] (11), and [Fe2(F2PIM)(Ar4F-PhCO2)2] (12), were prepared and characterized by X-ray crystallography, Mössbauer spectroscopy, and VT 19F NMR spectroscopy. These complexes are part of a rare family of syn-N diiron(II) complexes, [Fe2(X2PIM)(RCO2)2], that are structurally very similar to the active site of the hydroxylase enzyme component of reduced methane monooxygenase (MMOHred). Solution characterization of these complexes demonstrates that they undergo intramolecular carboxylate rearrangements, or carboxylate shifts, a dynamic feature relevant to the reactivity of the diiron centers in bacterial multicomponent monooxygenases. PMID:26418547

  6. Phospho-selective mechanisms of arrestin conformations and functions revealed by unnatural amino acid incorporation and 19F-NMR

    PubMed Central

    Yang, Fan; Yu, Xiao; Liu, Chuan; Qu, Chang-Xiu; Gong, Zheng; Liu, Hong-Da; Li, Fa-Hui; Wang, Hong-Mei; He, Dong-Fang; Yi, Fan; Song, Chen; Tian, Chang-Lin; Xiao, Kun-Hong; Wang, Jiang-Yun; Sun, Jin-Peng

    2015-01-01

    Specific arrestin conformations are coupled to distinct downstream effectors, which underlie the functions of many G-protein-coupled receptors (GPCRs). Here, using unnatural amino acid incorporation and fluorine-19 nuclear magnetic resonance (19F-NMR) spectroscopy, we demonstrate that distinct receptor phospho-barcodes are translated to specific β-arrestin-1 conformations and direct selective signalling. With its phosphate-binding concave surface, β-arrestin-1 ‘reads' the message in the receptor phospho-C-tails and distinct phospho-interaction patterns are revealed by 19F-NMR. Whereas all functional phosphopeptides interact with a common phosphate binding site and induce the movements of finger and middle loops, different phospho-interaction patterns induce distinct structural states of β-arrestin-1 that are coupled to distinct arrestin functions. Only clathrin recognizes and stabilizes GRK2-specific β-arrestin-1 conformations. The identified receptor-phospho-selective mechanism for arrestin conformation and the spacing of the multiple phosphate-binding sites in the arrestin enable arrestin to recognize plethora phosphorylation states of numerous GPCRs, contributing to the functional diversity of receptors. PMID:26347956

  7. Intracellular pH of perfused single frog skin: combined 19F- and 31P-NMR analysis.

    PubMed

    Civan, M M; Lin, L E; Peterson-Yantorno, K; Taylor, J; Deutsch, C

    1984-11-01

    Intracellular pH (pHc) has been determined in frog skin by applying two different methods of pH measurement, 19F and 31P nuclear magnetic resonance (NMR) analysis, to the same tissues. Results from both NMR approaches confirm an observation by Lin, Shporer, and Civan [Am. J. Physiol. 248 (Cell Physiol. 17): 1985] that acidification of the extracellular medium reverses the sign of the pH gradient present under baseline conditions. The fluorinated probe, alpha-(difluoromethyl)-alanine methyl ester, was introduced into the epithelial cells by preincubating skins for 4.7-10.4 h at room temperature in Ringer solutions containing 1 mM ester. The free amino acid was subsequently released by intracellular esterase activity, thus providing a high enough probe concentration for NMR analysis to be practicable. From measurements of short-circuit current and transepithelial resistance under base-line and experimental conditions and the appearance of phosphocreatine (PCr) in the 31P spectrum of preloaded tissues, the fluorinated probe appears to be nontoxic to frog skin. Measurement of the chemical shift of methylphosphonate relative to PCr permitted calculation of extracellular pH. Estimation of the intracellular pH was performed both by measurement of the chemical shift of inorganic phosphate (Pi) relative to PCr and by measurement of the central peak spacing of the 19F spectrum. From four direct comparisons of the two techniques in two experiments, the difference in the estimated pH was only 0.03 +/- 0.07 pH units, supporting the concept that 31P-NMR analysis is a valid method of measuring pH in this tissue. PMID:6496729

  8. Magnetic properties and hyperfine interactions in Cr{sub 8}, Cr{sub 7}Cd, and Cr{sub 7}Ni molecular rings from {sup 19}F-NMR

    SciTech Connect

    Bordonali, L.; Borsa, F.; Consorzio INSTM, Via Giusti 9, I-50121 Firenze; Department of Physics and Astronomy, Ames Laboratory, Iowa State University, Ames, Iowa 50011 ; Garlatti, E.; Dipartimento di Fisica e Scienze della Terra, Università di Parma, Viale G. P. Usberti 7 Casadei, C. M.; Department of Physics and Astronomy, Ames Laboratory, Iowa State University, Ames, Iowa 50011 ; Furukawa, Y.; Lascialfari, A.; Consorzio INSTM, Via Giusti 9, I-50121 Firenze; Department of Physics, Università degli Studi di Milano, Via Celoria 16, 20133 Milano ; Carretta, S.; Timco, G.; Winpenny, R. E. P.

    2014-04-14

    A detailed experimental investigation of the {sup 19}F nuclear magnetic resonance is made on single crystals of the homometallic Cr{sub 8} antiferromagnetic molecular ring and heterometallic Cr{sub 7}Cd and Cr{sub 7}Ni rings in the low temperature ground state. Since the F{sup −} ion is located midway between neighboring magnetic metal ions in the ring, the {sup 19}F-NMR spectra yield information about the local electronic spin density and {sup 19}F hyperfine interactions. In Cr{sub 8}, where the ground state is a singlet with total spin S{sub T} = 0, the {sup 19}F-NMR spectra at 1.7 K and low external magnetic field display a single narrow line, while when the magnetic field is increased towards the first level crossing field, satellite lines appear in the {sup 19}F-NMR spectrum, indicating a progressive increase in the Boltzmann population of the first excited state S{sub T} = 1. In the heterometallic rings, Cr{sub 7}Cd and Cr{sub 7}Ni, whose ground state is magnetic with S{sub T} = 3/2 and S{sub T} = 1/2, respectively, the {sup 19}F-NMR spectrum has a complicated structure which depends on the strength and orientation of the magnetic field, due to both isotropic and anisotropic transferred hyperfine interactions and classical dipolar interactions. From the {sup 19}F-NMR spectra in single crystals we estimated the transferred hyperfine constants for both the F{sup −}-Ni{sup 2+} and the F{sup −}-Cd{sup 2+} bonds. The values of the hyperfine constants compare well to the ones known for F{sup −}-Ni{sup 2+} in KNiF{sub 3} and NiF{sub 2} and for F{sup −}-Cr{sup 3+} in K{sub 2}NaCrF{sub 6}. The results are discussed in terms of hybridization of the 2s, 2p orbitals of the F{sup −} ion and the d orbitals of the magnetic ion. Finally, we discuss the implications of our results for the electron-spin decoherence.

  9. 19F-NMR reveals metal and operator-induced allostery in MerR.

    PubMed

    Song, Lingyun; Teng, Quincy; Phillips, Robert S; Brewer, John M; Summers, Anne O

    2007-08-01

    Metalloregulators of the MerR family activate transcription upon metal binding by underwinding the operator-promoter DNA to permit open complex formation by pre-bound RNA polymerase. Historically, MerR's allostery has been monitored only indirectly via nuclease sensitivity or by fluorescent nucleotide probes and was very specific for Hg(II), although purified MerR binds several thiophilic metals. To observe directly MerR's ligand-induced behavior we made 2-fluorotyrosine-substituted MerR and found similar, minor changes in (19)F chemical shifts of tyrosine residues in the free protein exposed to Hg(II), Cd(II) or Zn(II). However, DNA binding elicits large chemical shift changes in MerR's tyrosine residues and in DNA-bound MerR Hg(II) provokes changes very distinct from those of Cd(II) or Zn(II). These chemical shift changes and other biophysical and phenotypic properties of wild-type MerR and relevant mutants reveal elements of an allosteric network that enables the coordination state of the metal binding site to direct metal-specific movements in the distant DNA binding site and the DNA-bound state also to affect the metal binding domain. PMID:17560604

  10. Binding mechanism of the tyrosine-kinase inhibitor nilotinib to human serum albumin determined by 1H STD NMR, 19F NMR, and molecular modeling.

    PubMed

    Yan, Jin; Wu, Di; Sun, Pingchuan; Ma, Xiaoli; Wang, Lili; Li, Shanshan; Xu, Kailin; Li, Hui

    2016-05-30

    Drug interaction with albumins significantly affects in vivo drug transport and biological metabolism. To gain insight into the binding mechanisms of tyrosine-kinase inhibitor nilotinib (NIL) to human serum albumin (HSA), an approach combining (1)H saturation-transfer difference (STD) nuclear magnetic resonance (NMR) spectroscopy, (19)F NMR spectroscopy, steady-state fluorescence quenching, and molecular modeling was adopted. (19)F NMR was used to determine the binding constant, and a value of 4.12 × 10(3)M(-1) was obtained. Fluorescence spectroscopy was also used to determine the binding constant, and the value obtained was within the same order of magnitude. The binding process was mainly driven by hydrogen bonds and van der Waals forces. Displacement experiments further showed that NIL mainly bound to the hydrophobic cavity of HSA's subdomain IIA, also called Sudlow's site I. Molecular docking simulation was also used to establish a molecular binding model, and findings were consistent with those of displacement and the (1)H STD NMR experiments. PMID:26922576

  11. Alternate strategies to obtain mass balance without the use of radiolabeled compounds: application of quantitative fluorine (19F) nuclear magnetic resonance (NMR) spectroscopy in metabolism studies.

    PubMed

    Mutlib, Abdul; Espina, Robert; Atherton, James; Wang, Jianyao; Talaat, Rasmy; Scatina, JoAnn; Chandrasekaran, Appavu

    2012-03-19

    Nuclear magnetic resonance (NMR) spectroscopy is playing an increasingly important role in the quantitation of small and large molecules. Recently, we demonstrated that (1)H NMR could be used to quantitate drug metabolites isolated in submilligram quantities from biological sources. It was shown that these metabolites, once quantitated by NMR, were suitable to be used as reference standards in quantitative LC/MS-based assays, hence circumventing the need for radiolabeled material or synthetic standards to obtain plasma exposure estimates in humans and preclinical species. The quantitative capabilities of high-field NMR is further demonstrated in the current study by obtaining the mass balance of fluorinated compounds using (19)F-NMR. Two fluorinated compounds which were radio-labeled with carbon-14 on metabolically stable positions were dosed in rats and urine and feces collected. The mass balance of the compounds was obtained initially by counting the radioactivity present in each sample. Subsequently, the same sets of samples were analyzed by (19)F-NMR, and the concentrations determined by this method were compared with data obtained using radioactivity counting. It was shown that the two methods produced comparable values. To demonstrate the value of this analytical technique in drug discovery, a fluorinated compound was dosed intravenously in dogs and feces and urine collected. Initial profiling of samples showed that this compound was excreted mainly unchanged in feces, and hence, an estimate of mass balance was obtained using (19)F-NMR. The data obtained by this method was confirmed by additional quantitative studies using mass spectrometry. Hence cross-validations of the quantitative (19)F-NMR method by radioactivity counting and mass spectrometric analysis were demonstrated in this study. A strategy outlining the use of fluorinated compounds in conjunction with (19)F-NMR to understand their routes of excretion or mass balance in animals is proposed. These

  12. CP-MAS 207Pb with 19F decoupling NMR spectroscopy: medium range investigation in fluoride materials.

    PubMed

    Bureau, B; Silly, G; Buzaré, J Y

    1999-11-01

    The isotropic chemical shift of 207Pb is used to perform structural investigations of crystalline fluoride compounds (PbF2, Pb2ZnF6, PbGaF5, Pb3Ga2F12 and Pb9Ga2F24) and transition metal fluoride glasses (TMFG) of the PZG family (PbF2-ZnF2-GaF3). Using 207Pb Cross Polarisation Magic Angle Spinning (CP-MAS) NMR with 19F decoupling, it is shown that the isotropic chemical shift of 207Pb varies on a large scale (1000 ppm) and that the main changes of its value are not due to the nearest neighbour fluorines but may be related to the number of next nearest neighbour (nnn) Pb2+ ions. In this way, it is demonstrated that 207Pb chemical shift is an interesting probe to investigate medium range order in either crystalline or glassy fluoride systems. The 207Pb delta(iso) parameter has been linearly correlated to the number of nnn Pb2+ ions. PMID:10670899

  13. Modulation of the antioxidant activity of HO* scavengers by albumin binding: a 19F-NMR study.

    PubMed

    Aime, Silvio; Digilio, Giuseppe; Bruno, Erik; Mainero, Valentina; Baroni, Simona; Fasano, Mauro

    2003-08-01

    The interaction between different HO(z.rad;) radical scavengers in a three-component antioxidant system has been investigated by means of 19F-NMR spectroscopy. This system is composed of bovine serum albumin (BSA), trolox, and N-(4-hydroxyphenyl)-trifluoroacetamide (CF(3)PAF). The antioxidant capacity of BSA and trolox has been assessed by measuring the amount of trifluoroacetamide (TFAM) arising from the radical mediated decomposition of CF(3)PAF. When assayed separately, both trolox and BSA behaved as antioxidants, as they were effective to protect CF(3)PAF from HO* radical-mediated decomposition. By contrast, trolox enhanced the production of TFAM in the presence of BSA, thus behaving as a pro-oxidant. Urate, carnosine, glucose, and propylgallate showed antioxidant properties both with or without BSA. CF(3)PAF and trolox were found to bind to BSA with association constants in the order of 5 x 10(3)M(-1) and to compete for the same binding sites. These results have been discussed in terms of BSA-catalysed cross-reactions between trolox-derived secondary radicals and CF(3)PAF. PMID:12878205

  14. 1H and 19F NMR studies on molecular motions and phase transitions in solid triethylammonium tetrafluoroborate

    NASA Astrophysics Data System (ADS)

    Ono, Hiroshi; Seki, Riki; Ikeda, Ryuichi; Ishida, Hiroyuki

    1995-02-01

    Measurements by differential thermal analysis and differential scanning calorimetry and of the spin-lattice relaxation time ( T1), the spin-spin relaxation time ( T2), and the second moment ( M2) of 1H and 19F NMR were carried out in the three solid phases of (CH 3CH 2) 3NHBF 4. X-ray powder patterns were taken in the highest-temperature phase (Phase I) existing above 367 K and the room-temperature phase (Phase II) stable between 220 and 367 K. Phase I formed a NaCl-type cubic structure with a = 11.65(3) Å, Z = 4, V = 1581(13) Å3, and Dx = 0.794 g cm -3, and was expected to be an ionic plastic phase. In this phase, the self-diffusion of anions and the isotropic reorientation of cations were observed. Phase II formed a tetragonal structure with a = 12.47(1) and c = 9.47(3) Å, Z = 4, V = 1473(6) Å3, and Dx = 0.852 g cm -3. From the present DSC and NMR results in this phase, the cations and/or anions were considered to be dynamically disordered states. The C3 reorientation of the cation about the NH bond axis was detected and, in addition, the onset of nutation of the cations and local diffusion of the anions was suggested. In the low-temperature phase (Phase III) stable below 219 K, the C3 reorientations of the three methyl groups of cations and the isotropic reorientation of anions were observed. The motional parameters for these modes were evaluated.

  15. γ-(S)-Trifluoromethyl proline: evaluation as a structural substitute of proline for solid state (19)F-NMR peptide studies.

    PubMed

    Kubyshkin, Vladimir; Afonin, Sergii; Kara, Sezgin; Budisa, Nediljko; Mykhailiuk, Pavel K; Ulrich, Anne S

    2015-03-21

    γ-(4S)-Trifluoromethyl proline was synthesised according to a modified literature protocol with improved yield on a multigram scale. Conformational properties of the amide bond formed by the amino acid were characterised using N-acetyl methyl ester model. The amide populations (s-trans vs. s-cis) and thermodynamic parameters of the isomerization were found to be similar to the corresponding values for intact proline. Therefore, the γ-trifluoromethyl proline was suggested as a structurally low-disturbing proline substitution in peptides for their structural studies by (19)F-NMR. Indeed, the exchange of native proline for γ-trifluoromethyl proline in the peptide antibiotic gramicidin S was shown to preserve the overall amphipathic peptide structure. The utility of the amino acid as a selective (19)F-NMR label was demonstrated by observing the re-alignment of the labelled gramicidin S in oriented lipid bilayers. PMID:25703116

  16. The effect of ethanol on hydroxyl and carbonyl groups in biopolyol produced by hydrothermal liquefaction of loblolly pine: (31)P-NMR and (19)F-NMR analysis.

    PubMed

    Celikbag, Yusuf; Via, Brian K; Adhikari, Sushil; Buschle-Diller, Gisela; Auad, Maria L

    2016-08-01

    The goal of this study was to investigate the role of ethanol and temperature on the hydroxyl and carbonyl groups in biopolyol produced from hydrothermal liquefaction of loblolly pine (Pinus spp.) carried out at 250, 300, 350 and 390°C for 30min. Water and water/ethanol mixture (1/1, wt/wt) were used as liquefying solvent in the HTL experiments. HTL in water and water/ethanol is donated as W-HTL and W/E-HTL, respectively. It was found that 300°C and water/ethanol solvent was the optimum liquefaction temperature and solvent, yielding up to 68.1wt.% bio-oil and 2.4wt.% solid residue. (31)P-NMR analysis showed that biopolyol produced by W-HTL was rich in phenolic OH while W/E-HTL produced more aliphatic OH rich biopolyols. Moreover, biopolyols with higher hydroxyl concentration were produced by W/E-HTL. Carbonyl groups were analyzed by (19)F-NMR, which showed that ethanol reduced the concentration of carbonyl groups. PMID:27126078

  17. NMR shielding and spin–rotation constants of {sup 175}LuX (X = {sup 19}F, {sup 35}Cl, {sup 79}Br, {sup 127}I) molecules

    SciTech Connect

    Demissie, Taye B.

    2015-12-31

    This presentation demonstrates the relativistic effects on the spin-rotation constants, absolute nuclear magnetic resonance (NMR) shielding constants and shielding spans of {sup 175}LuX (X = {sup 19}F, {sup 35}Cl, {sup 79}Br, {sup 127}I) molecules. The results are obtained from calculations performed using density functional theory (non-relativistic and four-component relativistic) and coupled-cluster calculations. The spin-rotation constants are compared with available experimental values. In most of the molecules studied, relativistic effects make an order of magnitude difference on the NMR absolute shielding constants.

  18. NMR shielding and spin-rotation constants of 175LuX (X = 19F, 35Cl, 79Br, 127I) molecules

    NASA Astrophysics Data System (ADS)

    Demissie, Taye B.

    2015-12-01

    This presentation demonstrates the relativistic effects on the spin-rotation constants, absolute nuclear magnetic resonance (NMR) shielding constants and shielding spans of 175LuX (X = 19F, 35Cl, 79Br, 127I) molecules. The results are obtained from calculations performed using density functional theory (non-relativistic and four-component relativistic) and coupled-cluster calculations. The spin-rotation constants are compared with available experimental values. In most of the molecules studied, relativistic effects make an order of magnitude difference on the NMR absolute shielding constants.

  19. Synthesis, fine structure of 19F NMR and fluorescence of novel amorphous TPA derivatives having perfluorinated cyclopentenyl and benzo[b]thiophene unit

    NASA Astrophysics Data System (ADS)

    Wu, Bian-Peng; Pang, Mei-Li; Tan, Ting-Feng; Meng, Ji-ben

    2013-04-01

    Three novel triphenylamine (TPA) derivatives having perfluorinated cyclopentenyl and benzo[b]thiophene unit are obtained from 4-bromo-N,N-diphenyl-2-methylbenzo[b]thiophen-5-amine. The new compounds are expected to find their use in thin film devices as charge transport materials and host organic light-emitting materials. It is found that the new compounds show relatively strong fluorescence either in solution or in solid state, and are amorphous due to a special conformation which is elucidated by the fine structure of 19F NMR. Molecular structure and properties of these compounds is characterized by 1H NMR, 13C NMR (broadband decoupled), ESI-HRMS, elemental analysis and thermal analysis (DSC). Fluorescent quantum yield in solution is measured using 9,10-diphenylanthrancene (DPA) as standard fluorescent substance.

  20. Evidence of a structural phase transition in superconducting SmFeAsO1-xFx from 19F NMR

    NASA Astrophysics Data System (ADS)

    Majumder, M.; Ghoshray, K.; Mazumdar, C.; Poddar, A.; Ghoshray, A.; Berardan, D.; Dragoe, N.

    2013-01-01

    We report resistivity, magnetization and 19F NMR results in a polycrystalline sample of SmFeAsO0.86F0.14. The resistivity and magnetization data show a sharp drop at 48 K indicating a superconducting transition. The nuclear spin-lattice rate (1/T1) and spin-spin relaxation rate (1/T2) clearly show the existence of a structural phase transition near 163 K in the sample, which also undergoes a superconducting transition. This finding creates interest in exploring whether this is unique for Sm based systems or is also present in other rare-earth based 1111 superconductors.

  1. Determination of size and sign of hetero-nuclear coupling constants from 2D 19F-13C correlation spectra

    NASA Astrophysics Data System (ADS)

    Ampt, Kirsten A. M.; Aspers, Ruud L. E. G.; Dvortsak, Peter; van der Werf, Ramon M.; Wijmenga, Sybren S.; Jaeger, Martin

    2012-02-01

    Fluorinated organic compounds have become increasingly important within the polymer and the pharmaceutical industry as well as for clinical applications. For the structural elucidation of such compounds, NMR experiments with fluorine detection are of great value due to the favorable NMR properties of the fluorine nucleus. For the investigation of three fluorinated compounds, triple resonance 2D HSQC and HMBC experiments were adopted to fluorine detection with carbon and/or proton decoupling to yield F-C, F-C{H}, F-C{Cacq} and F-C{H,Cacq} variants. Analysis of E.COSY type cross-peak patterns in the F-C correlation spectra led, apart from the chemical shift assignments, to determination of size and signs of the JCH, JCF, and JHF coupling constants. In addition, the fully coupled F-C HMQC spectrum of steroid 1 was interpreted in terms of E.COSY type patterns. This example shows how coupling constants due to different nuclei can be determined together with their relative signs from a single spectrum. The analysis of cross-peak patterns, as presented here, not only provides relatively straightforward routes to the determination of size and sign of hetero-nuclear J-couplings in fluorinated compounds, it also provides new and easy ways for the determination of residual dipolar couplings and thus for structure elucidation. The examples and results presented in this study may contribute to a better interpretation and understanding of various F-C correlation experiments and thereby stimulate their utilization.

  2. Using "On/Off" (19)F NMR/Magnetic Resonance Imaging Signals to Sense Tyrosine Kinase/Phosphatase Activity in Vitro and in Cell Lysates.

    PubMed

    Zheng, Zhen; Sun, Hongbin; Hu, Chen; Li, Gongyu; Liu, Xiaomei; Chen, Peiyao; Cui, Yusi; Liu, Jing; Wang, Junfeng; Liang, Gaolin

    2016-03-15

    Tyrosine kinase and phosphatase are two important, antagonistic enzymes in organisms. Development of noninvasive approach for sensing their activity with high spatial and temporal resolution remains challenging. Herein, we rationally designed a hydrogelator Nap-Phe-Phe(CF3)-Glu-Tyr-Ile-OH (1a) whose supramolecular hydrogel (i.e., Gel 1a) can be subjected to tyrosine kinase-directed disassembly, and its phosphate precursor Nap-Phe-Phe(CF3)-Glu-Tyr(H2PO3)-Ile-OH (1b), which can be subjected to alkaline phosphatase (ALP)-instructed self-assembly to form supramolecular hydrogel Gel 1b, respectively. Mechanic properties and internal fibrous networks of the hydrogels were characterized with rheology and cryo transmission electron microscopy (cryo-TEM). Disassembly/self-assembly of their corresponding supramolecular hydrogels conferring respective "On/Off" (19)F NMR/MRI signals were employed to sense the activity of these two important enzymes in vitro and in cell lysates for the first time. We anticipate that our new (19)F NMR/magnetic resonance imaging (MRI) method would facilitate pharmaceutical researchers to screen new inhibitors for these two enzymes without steric hindrance. PMID:26901415

  3. Achievement of 1 H-19 F heteronuclear experiments using the conventional spectrometer with a shared single high band amplifier.

    PubMed

    Sakuma, Chiseko; Kurita, Jun-ichi; Furihata, Kazuo; Tashiro, Mitsuru

    2015-05-01

    The (1)H-(19) F heteronuclear NMR experiments were achieved using the conventional spectrometer equipped with a single high band amplifier and a (1)H/(19)F/(13) C double-tuned probe. Although double high band amplifiers are generally required to perform such experiments, a simple modification of pathway in the conventional spectrometer was capable of acquiring various (1)H-(19)F heteronuclear spectra. The efficiency of the present technique was demonstrated in an application for (19)F{(1)H} and (1)H{(19)F} saturation transfer difference experiments. PMID:25808615

  4. Reaction monitoring in LPOS by 19F NMR. Study of soluble polymer supports with fluorine in spacer or linker components of supports.

    PubMed

    Lakshmipathi, Pandarinathan; Crévisy, Christophe; Grée, Rene

    2002-01-01

    Various soluble polystyrene supports with fluorinated spacer or linker were prepared and studied by (19)F NMR for their use in LPOS reaction monitoring. Among three types of systems studied, the perfluoro Wang linker was found to be most efficient for this purpose. Substrates could be easily anchored to and cleaved from this new support-bound linker. The anchoring of the linker and the substrates on the polymer led to significant changes in the fluorine resonances. Therefore, the progress of these reactions could be both monitored and quantified. On the other hand, the chemical transformations on the anchored substrates led only to moderate changes in the fluorine resonances. Nevertheless, the reaction progress could also be monitored in this case. After cleavage of products, the polymer supports were recovered without loss in loading. Membrane separation technology was used to purify some polymer-bound products as well as to obtain the polymer-free cleaved product. PMID:12425606

  5. Quantitative analysis of NMR spectra with chemometrics

    NASA Astrophysics Data System (ADS)

    Winning, H.; Larsen, F. H.; Bro, R.; Engelsen, S. B.

    2008-01-01

    The number of applications of chemometrics to series of NMR spectra is rapidly increasing due to an emerging interest for quantitative NMR spectroscopy e.g. in the pharmaceutical and food industries. This paper gives an analysis of advantages and limitations of applying the two most common chemometric procedures, Principal Component Analysis (PCA) and Multivariate Curve Resolution (MCR), to a designed set of 231 simple alcohol mixture (propanol, butanol and pentanol) 1H 400 MHz spectra. The study clearly demonstrates that the major advantage of chemometrics is the visualisation of larger data structures which adds a new exploratory dimension to NMR research. While robustness and powerful data visualisation and exploration are the main qualities of the PCA method, the study demonstrates that the bilinear MCR method is an even more powerful method for resolving pure component NMR spectra from mixtures when certain conditions are met.

  6. Solid-state {sup 19}F and {sup 13}C NMR of room temperature fluorinated graphite and samples thermally treated under fluorine: Low-field and high-resolution studies

    SciTech Connect

    Giraudet, J.; Dubois, M.; Guerin, K.; Pinheiro, J.P.; Hamwi, A.; Stone, W.E.E.; Pirotte, P.; Masin, F. . E-mail: fmasin@ulb.ac.be

    2005-04-15

    Room temperature graphite fluorides consisting of raw material and samples post-treated in pure fluorine atmosphere in the temperature range 100-500 deg. C have been studied by solid-state NMR. Several NMR approaches have been used, both high and low-field {sup 19}F, {sup 19}F MAS and {sup 13}C MAS with {sup 19}F to {sup 13}C cross polarization. The modifications, in the graphitic lattice, of the catalytic iodine fluorides products have been examined. A transformation of the C-F bond character from semi-ionic to covalent has been found to occur at a post-treatment temperature close to 400 deg. C. It is shown that covalency increases with temperature.

  7. Targeting the Endocannabinoid System for Neuroprotection: A 19F-NMR Study of a Selective FAAH Inhibitor Binding with an Anandamide Carrier Protein, HSA

    PubMed Central

    Zhuang, Jianqin; Yang, De-Ping; Tian, Xiaoyu; Nikas, Spyros P.; Sharma, Rishi; Guo, Jason Jianxin; Makriyannis, Alexandros

    2013-01-01

    Fatty acid amide hydrolase (FAAH), the enzyme involved in the inactivation of the endocannabinoid anandamide (AEA), is being considered as a therapeutic target for analgesia and neuroprotection. We have developed a brain permeable FAAH inhibitor, AM5206, which has served as a valuable pharmacological tool to explore neuroprotective effects of this class of compounds. In the present work, we characterized the interactions of AM5206 with a representative AEA carrier protein, human serum albumin (HSA), using 19F nuclear magnetic resonance (NMR) spectroscopy. Our data showed that as a drug carrier, albumin can significantly enhance the solubility of AM5206 in aqueous environment. Through a series of titration and competitive binding experiments, we also identified that AM5206 primarily binds to two distinct sites within HSA. Our results may provide insight into the mechanism of HSA-AM5206 interactions. The findings should also help in the development of suitable formulations of the lipophilic AM5206 and its congeners for their effective delivery to specific target sites in the brain. PMID:24533425

  8. Roles of Arginine and Lysine Residues in the Translocation of a Cell-Penetrating Peptide from 13C, 31P and 19F Solid-State NMR

    PubMed Central

    Su, Yongchao; Doherty, Tim; Waring, Alan J.; Ruchala, Piotr; Hong, Mei

    2009-01-01

    Cell-penetrating peptides (CPPs) are small cationic peptides that cross the cell membrane while carrying macromolecular cargoes. We use solid-state NMR to investigate the structure and lipid interaction of two cationic residues, Arg10 and Lys13, in the CPP penetratin. 13C chemical shifts indicate that Arg10 adopts a rigid β-strand conformation in the liquid-crystalline state of anionic lipid membranes. This behavior contrasts with all other residues observed so far in this peptide, which adopt a dynamic β-turn conformation with coil-like chemical shifts at physiological temperature. Low-temperature 13C-31P distances between the peptide and the lipid phosphates indicate that both the Arg10 guanidinium Cζ and the Lys13 Cε lie in close proximity to the lipid 31P (4.0 - 4.2 Å), proving the existence of charge-charge interaction for both Arg10 and Lys13 in the gel-phase membrane. However, since lysine substitution in CPPs are known to reduce their translocation ability, we propose that low temperature stabilizes both lysine and arginine interactions with the phosphates, whereas at high temperature the lysine-phosphate interaction is much weaker than the arginine-phosphate interaction. This is supported by the unusually high rigidity of the Arg10 sidechain and its β-strand conformation at high temperature. The latter is proposed to be important for ion pair formation by allowing close approach of the lipid headgroups to guanidinium sidechains. 19F and 13C spin diffusion experiments indicate that penetratin is oligomerized into β-sheets in gel-phase membranes. These solid-state NMR data indicate that guanidinium-phosphate interactions exist in penetratin, and guanidinium groups play a stronger structural role than ammonium groups in the lipid-assisted translocation of CPPs across liquid-crystalline cell membranes. PMID:19364134

  9. Deconvolution of Complex 1D NMR Spectra Using Objective Model Selection.

    PubMed

    Hughes, Travis S; Wilson, Henry D; de Vera, Ian Mitchelle S; Kojetin, Douglas J

    2015-01-01

    Fluorine (19F) NMR has emerged as a useful tool for characterization of slow dynamics in 19F-labeled proteins. One-dimensional (1D) 19F NMR spectra of proteins can be broad, irregular and complex, due to exchange of probe nuclei between distinct electrostatic environments; and therefore cannot be deconvoluted and analyzed in an objective way using currently available software. We have developed a Python-based deconvolution program, decon1d, which uses Bayesian information criteria (BIC) to objectively determine which model (number of peaks) would most likely produce the experimentally obtained data. The method also allows for fitting of intermediate exchange spectra, which is not supported by current software in the absence of a specific kinetic model. In current methods, determination of the deconvolution model best supported by the data is done manually through comparison of residual error values, which can be time consuming and requires model selection by the user. In contrast, the BIC method used by decond1d provides a quantitative method for model comparison that penalizes for model complexity helping to prevent over-fitting of the data and allows identification of the most parsimonious model. The decon1d program is freely available as a downloadable Python script at the project website (https://github.com/hughests/decon1d/). PMID:26241959

  10. Combined ligand-observe 19F and protein-observe 15N,1H-HSQC NMR suggests phenylalanine as the key Δ-somatostatin residue recognized by human protein disulfide isomerase

    PubMed Central

    Richards, Kirsty L.; Rowe, Michelle L.; Hudson, Paul B.; Williamson, Richard A.; Howard, Mark J.

    2016-01-01

    Human protein disulphide isomerase (hPDI) is an endoplasmic reticulum (ER) based isomerase and folding chaperone. Molecular detail of ligand recognition and specificity of hPDI are poorly understood despite the importance of the hPDI for folding secreted proteins and its implication in diseases including cancer and lateral sclerosis. We report a detailed study of specificity, interaction and dissociation constants (Kd) of the peptide-ligand Δ-somatostatin (AGSKNFFWKTFTSS) binding to hPDI using 19F ligand-observe and 15N,1H-HSQC protein-observe NMR methods. Phe residues in Δ-somatostatin are hypothesised as important for recognition by hPDI therefore, step-wise peptide Phe-to-Ala changes were progressively introduced and shown to raise the Kd from 103 + 47 μM until the point where binding was abolished when all Phe residues were modified to Ala. The largest step-changes in Kd involved the F11A peptide modification which implies the C-terminus of Δ-somatostatin is a prime recognition region. Furthermore, this study also validated the combined use of 19F ligand-observe and complimentary 15N,1H-HSQC titrations to monitor interactions from the protein’s perspective. 19F ligand-observe NMR was ratified as mirroring 15N protein-observe but highlighted the advantage that 19F offers improved Kd precision due to higher spectrum resolution and greater chemical environment sensitivity. PMID:26786784

  11. Quality assessment of fluoxetine and fluvoxamine pharmaceutical formulations purchased in different countries or via the Internet by 19F and 2D DOSY 1H NMR.

    PubMed

    Trefi, Saleh; Gilard, Véronique; Balayssac, Stéphane; Malet-Martino, Myriam; Martino, Robert

    2008-03-13

    A simple and selective (19)F NMR method has been validated for the quantitation of fluoxetine (FLX) and fluvoxamine (FLV) in methanol solutions and in human plasma and urine. The regression equations for FLX and FLV showed a good linearity in the range of 1.4-620 microg mL(-1) (3.3 x 10(-6)-1.8 x 10(-3) mol L(-1)) with a limit of detection of approximately 0.5 microg mL(-1) (1.3 x 10(-6) mol L(-1)) and a limit of quantification of approximately 2 microg mL(-1) (4.6 x 10(-6) mol L(-1)). The precision of the assay depends on the concentrations and is comprised between 1.5 and 9.5% for a range of concentrations between 1.2 x 10(-3) and 3.2 x 10(-6) mol L(-1). The accuracy evaluated through recovery studies ranged from approximately 96 to 103% in methanol solutions and in urine, and from approximately 93 to 104% in plasma, with standard deviations <7.5%. The low sensitivity of the method precludes its use for the assay of these antidepressants in biofluids at least at therapeutic doses as the ranges of FLX and FLV plasma levels are 0.15-0.5 microg mL(-1) and 0.15-0.25 microg mL(-1), respectively. The method was applied successfully to the determination of FLX and FLV contents in pharmaceutical samples (brand-named and generic) purchased in several countries or via the Internet. All the commercial formulations contain the active ingredient in the range 94-103% of stated concentration. A "signature" of the formulations (solid and liquid) was obtained with 2D Diffusion-Ordered SpectroscopY (DOSY) (1)H NMR which allowed the characterisation of the active ingredient and excipients present in the formulations studied. Finally, the DOSY separation of FLX and FLV whose molecular weights are very close was obtained by using beta-cyclodextrin as host-guest complexing agent. PMID:18206329

  12. 19F NMR-, ESR-, and vis-NIR-spectroelectrochemical study of the unconventional reduction behaviour of a perfluoroalkylated fullerene: dimerization of the C70(CF3)10– radical anion†

    PubMed Central

    Zalibera, Michal; Machata, Peter; Clikeman, Tyler T.; Rosenkranz, Marco; Strauss, Steven H.; Boltalina, Olga V.; Popov, Alexey A.

    2016-01-01

    The most abundant isomer of C70(CF3)10 (70-10-1) is a rare example of a perfluoroalkylated fullerene exhibiting electrochemically irreversible reduction. We show that electrochemical reversibility at the first reduction step is achieved at scan rates higher than 500 V s-1 Applying ESR-, vis-NIR-, and 19F NMR- spectroelectrochemistry, as well as mass spectrometry and DFT calculations, we show that the (70-10-1)- radical monoanion is in equilibrium with a singly-bonded diamagnetic dimeric dianion. This study is the first example of 19F NMR spectroelectrochemistry, which promises to be an important method for the elucidation of redox mechanisms of fluoroorganic compounds. Additionally, we demonstrate the importance of combining different spectroelectrochemical methods and quantitative analysis of the transferred charge and spin numbers in the determination of the redox mechanism. PMID:26359514

  13. Identification of 2-[2-nitro-4-(trifluoromethyl)benzoyl]- cyclohexane-1,3-dione metabolites in urine of patients suffering from tyrosinemia type I with the use of 1H and 19F NMR spectroscopy.

    PubMed

    Szczeciński, Przemysław; Lamparska, Diana; Gryff-Keller, Adam; Gradowska, Wanda

    2008-01-01

    Organic extracts of six urine samples from children treated with nitisinone, a medicine against tyrosinemia type I, were investigated by (1)H and (19)F NMR spectroscopy. The presence of unchanged 2-[2-nitro-4-(trifluoromethyl)benzoyl]cyclohexane-1,3-dione (NTBC), 6-hydroxy-2-[2-nitro-4-(trifluoromethyl)benzoyl]cyclohexane-1,3-dione (NTBC-OH) and 2-nitro-4-trifluoromethylbenzoic acid (NTFA) as well as a few other unidentified compounds containing CF(3) group was documented. PMID:19039335

  14. Phase transitions and molecular motions in [Cd(H{sub 2}O){sub 6}](BF{sub 4}){sub 2} studied by DSC, {sup 1}H and {sup 19}F NMR and FT-MIR

    SciTech Connect

    Mikuli, E. . E-mail: mikuli@chemia.uj.edu.pl; Grad, B.; Medycki, W.; Holderna-Natkaniec, K.

    2004-10-01

    Two solid phase transitions of [Cd(H{sub 2}O){sub 6}](BF{sub 4}){sub 2} occurring on heating at T{sub C2}=183.3K and T{sub C1}=325.3K, with 2K and 5K hysteresis, respectively, were detected by differential scanning calorimetry (DSC). High value of entropy changes indicated large orientational disorder of the high temperature and intermediate phase. Nuclear magnetic resonance ({sup 1}H NMR and {sup 19}F NMR) relaxation measurements revealed that the phase transitions at T{sub C1} and T{sub C2} were associated with a drastic and small change, respectively, of the both spin-lattice relaxation times: T{sub 1}({sup 1}H) and T{sub 1}({sup 19}F). These relaxation processes were connected with the 'tumbling' motions of the [Cd(H{sub 2}O){sub 6}]{sup 2+}, reorientational motions of the H{sub 2}O ligands, and with the iso- and anisotropic reorientation of the BF{sub 4}{sup -} anions. The cross-relaxation effect was observed in phase III. The line width and the second moment of the {sup 1}H and {sup 19}F NMR line measurements revealed that the H{sub 2}O reorientate in all three phases of the title compound. On heating the onset of the reorientation of 3 H{sub 2}O in the [Cd(H{sub 2}O){sub 6}]{sup +2}, around the three-fold symmetry axis of these octahedron, causes the isotropic reorientation of the whole cation. The BF{sub 4}{sup -} reorientate isotropically in the phases I and II, but in the phase III they perform slow reorientation only about three- or two-fold axes. A small distortion in the structure of BF{sub 4}{sup -} as well as of [Cd(H{sub 2}O){sub 6}]{sup 2+} is postulated. The temperature dependence of the bandwidth of the O-H stretching mode measured by Fourier transform middle infrared spectroscopy (FT-MIR) indicated that the activation energy for the reorientation of the H{sub 2}O did not change much at the T{sub C2} phase transition.

  15. Correlated fluorine diffusion and ionic conduction in the nanocrystalline F(-) solid electrolyte Ba(0.6)La(0.4)F(2.4)-(19)F T1(ρ) NMR relaxation vs. conductivity measurements.

    PubMed

    Preishuber-Pflügl, F; Bottke, P; Pregartner, V; Bitschnau, B; Wilkening, M

    2014-05-28

    Chemical reactions induced by mechanical treatment may give access to new compounds whose properties are governed by chemical metastability, defects introduced and the size effects present. Their interplay may lead to nanocrystalline ceramics with enhanced transport properties being useful to act as solid electrolytes. Here, the introduction of large amounts of La into the cubic structure of BaF2 served as such an example. The ion transport properties in terms of dc-conductivity values of the F(-) anion conductor Ba1-xLaxF2+x (here with x = 0.4) considerably exceed those of pure, nanocrystalline BaF2. So far, there is only little knowledge about activation energies and jump rates of the elementary hopping processes. Here, we took advantage of both impedance spectroscopy and (19)F NMR relaxometry to get to the bottom of ion jump diffusion proceeding on short-range and long-range length scales in Ba0.6La0.4F2.4. While macroscopic transport is governed by an activation energy of 0.55 to 0.59 eV, the elementary steps of hopping seen by NMR are characterised by much smaller activation energies. Fortunately, we were able to deduce an F(-) self-diffusion coefficient by the application of spin-locking NMR relaxometry. PMID:24728404

  16. Binding energies and 19F nuclear magnetic deshielding in paramagnetic halogen-bonded complexes of TEMPO with haloperfluorocarbons.

    PubMed

    Cavallotti, Carlo; Metrangolo, Pierangelo; Meyer, Franck; Recupero, Francesco; Resnati, Giuseppe

    2008-10-01

    19F NMR measurements and theoretical calculations were performed to study paramagnetic complexes of iodoperfluorocarbons with stable nitroxide radicals. Contrary to what is usually measured for diamagnetic halogen-bonded complexes involving iodoperfluorocarbons, it was found that the formation of complexes with the 2,2,6,6-tetramethyl(piperidin-1-yloxyl) (TEMPO) radical determines downfield shifts in the 19F NMR spectra. The experimental finding was confirmed by calculating nuclear shielding using density functional theory and correcting the isotropic diamagnetic (19)F chemical shift with contact interactions evaluated from the hyperfine coupling tensor. The computational analysis of the interaction between CF3I and TEMPO, by using DFT and MP2 theories, showed that the occurrence of the halogen bond between the interacting partners is associated with a significant charge transfer to CF3I and that the measured downfield shift is due to the occurring spin transfer. PMID:18795762

  17. Fluorinated Carbohydrates as Lectin Ligands: 19F-Based Direct STD Monitoring for Detection of Anomeric Selectivity

    PubMed Central

    Ribeiro, João P.; Diercks, Tammo; Jiménez-Barbero, Jesús; André, Sabine; Gabius, Hans-Joachim; Cañada, Francisco Javier

    2015-01-01

    The characterization of the binding of reducing carbohydrates present as mixtures of anomers in solution to a sugar recepor (lectin) poses severe difficulties. In this situation, NMR spectroscopy enables the observation of signals for each anomer in the mixture by applying approaches based on ligand observation. Saturation transfer difference (STD) NMR allows fast and efficient screening of compound mixtures for reactivity to a receptor. Owing to the exceptionally favorable properties of 19F in NMR spectroscopy and the often complex 1H spectra of carbohydrates, 19F-containing sugars have the potential to be turned into versatile sensors for recognition. Extending the recently established 1H → 1H STDre19F-NMR technique, we here demonstrate its applicability to measure anomeric selectivity of binding in a model system using the plant lectin concanavalin A (ConA) and 2-deoxy-2-fluoro-d-mannose. Indeed, it is also possible to account for the mutual inhibition between the anomers on binding to the lectin by means of a kinetic model. The monitoring of 19F-NMR signal perturbation disclosed the relative activities of the anomers in solution and thus enabled the calculation of their binding affinity towards ConA. The obtained data show a preference for the α anomer that increases with temperature. This experimental approach can be extended to others systems of biomedical interest by testing human lectins with suitably tailored glycan derivatives. PMID:26580665

  18. Absolute NMR shielding scales and nuclear spin–rotation constants in {sup 175}LuX and {sup 197}AuX (X = {sup 19}F, {sup 35}Cl, {sup 79}Br and {sup 127}I)

    SciTech Connect

    Demissie, Taye B. Komorovsky, Stanislav; Repisky, Michal; Ruud, Kenneth; Jaszuński, Michał

    2015-10-28

    We present nuclear spin–rotation constants, absolute nuclear magnetic resonance (NMR) shielding constants, and shielding spans of all the nuclei in {sup 175}LuX and {sup 197}AuX (X = {sup 19}F, {sup 35}Cl, {sup 79}Br, {sup 127}I), calculated using coupled-cluster singles-and-doubles with a perturbative triples (CCSD(T)) correction theory, four-component relativistic density functional theory (relativistic DFT), and non-relativistic DFT. The total nuclear spin–rotation constants determined by adding the relativistic corrections obtained from DFT calculations to the CCSD(T) values are in general in agreement with available experimental data, indicating that the computational approach followed in this study allows us to predict reliable results for the unknown spin–rotation constants in these molecules. The total NMR absolute shielding constants are determined for all the nuclei following the same approach as that applied for the nuclear spin–rotation constants. In most of the molecules, relativistic effects significantly change the computed shielding constants, demonstrating that straightforward application of the non-relativistic formula relating the electronic contribution to the nuclear spin–rotation constants and the paramagnetic contribution to the shielding constants does not yield correct results. We also analyze the origin of the unusually large absolute shielding constant and its relativistic correction of gold in AuF compared to the other gold monohalides.

  19. Absolute NMR shielding scales and nuclear spin-rotation constants in (175)LuX and (197)AuX (X = (19)F, (35)Cl, (79)Br and (127)I).

    PubMed

    Demissie, Taye B; Jaszuński, Michał; Komorovsky, Stanislav; Repisky, Michal; Ruud, Kenneth

    2015-10-28

    We present nuclear spin-rotation constants, absolute nuclear magnetic resonance (NMR) shielding constants, and shielding spans of all the nuclei in (175)LuX and (197)AuX (X = (19)F, (35)Cl, (79)Br, (127)I), calculated using coupled-cluster singles-and-doubles with a perturbative triples (CCSD(T)) correction theory, four-component relativistic density functional theory (relativistic DFT), and non-relativistic DFT. The total nuclear spin-rotation constants determined by adding the relativistic corrections obtained from DFT calculations to the CCSD(T) values are in general in agreement with available experimental data, indicating that the computational approach followed in this study allows us to predict reliable results for the unknown spin-rotation constants in these molecules. The total NMR absolute shielding constants are determined for all the nuclei following the same approach as that applied for the nuclear spin-rotation constants. In most of the molecules, relativistic effects significantly change the computed shielding constants, demonstrating that straightforward application of the non-relativistic formula relating the electronic contribution to the nuclear spin-rotation constants and the paramagnetic contribution to the shielding constants does not yield correct results. We also analyze the origin of the unusually large absolute shielding constant and its relativistic correction of gold in AuF compared to the other gold monohalides. PMID:26520517

  20. Absolute NMR shielding scales and nuclear spin-rotation constants in 175LuX and 197AuX (X = 19F, 35Cl, 79Br and 127I)

    NASA Astrophysics Data System (ADS)

    Demissie, Taye B.; Jaszuński, Michał; Komorovsky, Stanislav; Repisky, Michal; Ruud, Kenneth

    2015-10-01

    We present nuclear spin-rotation constants, absolute nuclear magnetic resonance (NMR) shielding constants, and shielding spans of all the nuclei in 175LuX and 197AuX (X = 19F, 35Cl, 79Br, 127I), calculated using coupled-cluster singles-and-doubles with a perturbative triples (CCSD(T)) correction theory, four-component relativistic density functional theory (relativistic DFT), and non-relativistic DFT. The total nuclear spin-rotation constants determined by adding the relativistic corrections obtained from DFT calculations to the CCSD(T) values are in general in agreement with available experimental data, indicating that the computational approach followed in this study allows us to predict reliable results for the unknown spin-rotation constants in these molecules. The total NMR absolute shielding constants are determined for all the nuclei following the same approach as that applied for the nuclear spin-rotation constants. In most of the molecules, relativistic effects significantly change the computed shielding constants, demonstrating that straightforward application of the non-relativistic formula relating the electronic contribution to the nuclear spin-rotation constants and the paramagnetic contribution to the shielding constants does not yield correct results. We also analyze the origin of the unusually large absolute shielding constant and its relativistic correction of gold in AuF compared to the other gold monohalides.

  1. Heteronuclear 19F-1H statistical total correlation spectroscopy as a tool in drug metabolism: study of flucloxacillin biotransformation.

    PubMed

    Keun, Hector C; Athersuch, Toby J; Beckonert, Olaf; Wang, Yulan; Saric, Jasmina; Shockcor, John P; Lindon, John C; Wilson, Ian D; Holmes, Elaine; Nicholson, Jeremy K

    2008-02-15

    We present a novel application of the heteronuclear statistical total correlation spectroscopy (HET-STOCSY) approach utilizing statistical correlation between one-dimensional 19F/1H NMR spectroscopic data sets collected in parallel to study drug metabolism. Parallel one-dimensional (1D) 800 MHz 1H and 753 MHz 19F{1H} spectra (n = 21) were obtained on urine samples collected from volunteers (n = 6) at various intervals up to 24 h after oral dosing with 500 mg of flucloxacillin. A variety of statistical relationships between and within the spectroscopic datasets were explored without significant loss of the typically high 1D spectral resolution, generating 1H-1H STOCSY plots, and novel 19F-1H HET-STOCSY, 19F-19F STOCSY, and 19F-edited 1H-1H STOCSY (X-STOCSY) spectroscopic maps, with a resolution of approximately 0.8 Hz/pt for both nuclei. The efficient statistical editing provided by these methods readily allowed the collection of drug metabolic data and assisted structure elucidation. This approach is of general applicability for studying the metabolism of other fluorine-containing drugs, including important anticancer agents such as 5-fluorouracil and flutamide, and is extendable to any drug metabolism study where there is a spin-active X-nucleus (e.g., 13C, 15N, 31P) label present. PMID:18211034

  2. Photoneutron angular distribution of 19F

    NASA Astrophysics Data System (ADS)

    Kuo, P. C.-K.; Jury, J. W.; McNeill, K. G.; Sherman, N. K.; Davidson, W. F.

    1989-07-01

    Photoneutron time-of-flight spectra from the reaction 19F(γ, n 0) 18F were measured between 48° and 139° using 10 m flight paths over the excitation energy range from 15-25 MeV. The measured values of the normalized Legendre a1 and a3 coefficients are very small or close to zero over the energy region studied, indicating dominance of E1 absorption in this region. A simple modeldependent analysis of the a2 coefficient showed that the likely reaction mechanisms are mainly s → p and d → p single-particle transitions of channel spin {1}/{2}. A comparison of the present angleintegrated ground-state cross section with the (γ, n tot) work of Veyssière et al. indicates that decays to excited states in 18F are much preferred (typically by a factor of 5) over the ground-state channel. The 19F(γ, n 0) cross section shows reasonable agreement in structure and magnitude with the 19F(γ, p 0) cross section of Kerkhove et al. as well as with the 18O(γ, n 0) data of Jury et al. (although some discrepancies are seen at 16 MeV and above 23 MeV).

  3. On the solid-state NMR spectra of naproxen

    NASA Astrophysics Data System (ADS)

    Czernek, Jiří

    2015-01-01

    Two previous measurements of the 13C and 1H NMR isotropic chemical shifts in crystalline naproxen, which is an important pharmaceutical compound, are confronted with the results obtained from several theoretical approaches capable of the proper treatment of solid-phase effects. In the underlying geometrical optimizations, two crystal structures are considered. The agreement between the data sets is quantified, including an evaluation of the similarity between the experimental solid-state NMR spectra. The 13C-1H heteronuclear correlations are analyzed, and their various assignments are discussed employing the statistical treatment of the differences between the measured and theoretical isotropic chemical shifts.

  4. ImatraNMR: novel software for batch integration and analysis of quantitative NMR spectra.

    PubMed

    Mäkelä, A V; Heikkilä, O; Kilpeläinen, I; Heikkinen, S

    2011-08-01

    Quantitative NMR spectroscopy is a useful and important tool for analysis of various mixtures. Recently, in addition of traditional quantitative 1D (1)H and (13)C NMR methods, a variety of pulse sequences aimed for quantitative or semiquantitative analysis have been developed. To obtain actual usable results from quantitative spectra, they must be processed and analyzed with suitable software. Currently, there are many processing packages available from spectrometer manufacturers and third party developers, and most of them are capable of analyzing and integration of quantitative spectra. However, they are mainly aimed for processing single or few spectra, and are slow and difficult to use when large numbers of spectra and signals are being analyzed, even when using pre-saved integration areas or custom scripting features. In this article, we present a novel software, ImatraNMR, designed for batch analysis of quantitative spectra. In addition to capability of analyzing large number of spectra, it provides results in text and CSV formats, allowing further data-analysis using spreadsheet programs or general analysis programs, such as Matlab. The software is written with Java, and thus it should run in any platform capable of providing Java Runtime Environment version 1.6 or newer, however, currently it has only been tested with Windows and Linux (Ubuntu 10.04). The software is free for non-commercial use, and is provided with source code upon request. PMID:21705250

  5. ImatraNMR: Novel software for batch integration and analysis of quantitative NMR spectra

    NASA Astrophysics Data System (ADS)

    Mäkelä, A. V.; Heikkilä, O.; Kilpeläinen, I.; Heikkinen, S.

    2011-08-01

    Quantitative NMR spectroscopy is a useful and important tool for analysis of various mixtures. Recently, in addition of traditional quantitative 1D 1H and 13C NMR methods, a variety of pulse sequences aimed for quantitative or semiquantitative analysis have been developed. To obtain actual usable results from quantitative spectra, they must be processed and analyzed with suitable software. Currently, there are many processing packages available from spectrometer manufacturers and third party developers, and most of them are capable of analyzing and integration of quantitative spectra. However, they are mainly aimed for processing single or few spectra, and are slow and difficult to use when large numbers of spectra and signals are being analyzed, even when using pre-saved integration areas or custom scripting features. In this article, we present a novel software, ImatraNMR, designed for batch analysis of quantitative spectra. In addition to capability of analyzing large number of spectra, it provides results in text and CSV formats, allowing further data-analysis using spreadsheet programs or general analysis programs, such as Matlab. The software is written with Java, and thus it should run in any platform capable of providing Java Runtime Environment version 1.6 or newer, however, currently it has only been tested with Windows and Linux (Ubuntu 10.04). The software is free for non-commercial use, and is provided with source code upon request.

  6. Correlation between 19F environment and isotropic chemical shift in barium and calcium fluoroaluminates.

    PubMed

    Body, M; Silly, G; Legein, C; Buzaré, J-Y

    2004-04-19

    High-speed MAS (19)F NMR spectra are recorded and reconstructed for 10 compounds from BaF(2)-AlF(3) and CaF(2)-AlF(3) binary systems which leads to the determination of 77 isotropic (19)F chemical shifts in various environments. A first attribution of NMR lines is performed for 8 compounds using a superposition model as initially proposed by B. Bureau et al. The phenomenological parameters of this model are then refined to improve the NMR line assignment. A satisfactory reliability is reached with a root-mean-square (RMS) deviation between calculated and measured values equal to 6 ppm. The refined parameters are then successfully tested on alpha-BaCaAlF(7) whose structure was recently determined. Finally, the isotropic chemical shift ranges are defined for shared, unshared, and "free" fluorine atoms encountered in the investigated binary systems. So, the fluorine surroundings can be deduced from the NMR line positions in compounds whose structure is unknown. Such an approach can also be applied to fluoride glasses. PMID:15074964

  7. In vivo 19F MRI and 19F MRS of 19F-labelled boronophenylalanine fructose complex on a C6 rat glioma model to optimize boron neutron capture therapy (BNCT)

    NASA Astrophysics Data System (ADS)

    Porcari, Paola; Capuani, Silvia; D'Amore, Emanuela; Lecce, Mario; La Bella, Angela; Fasano, Fabrizio; Campanella, Renzo; Migneco, Luisa Maria; Saverio Pastore, Francesco; Maraviglia, Bruno

    2008-12-01

    Boron neutron capture therapy (BNCT) is a promising binary modality used to treat malignant brain gliomas. To optimize BNCT effectiveness a non-invasive method is needed to monitor the spatial distribution of BNCT carriers in order to estimate the optimal timing for neutron irradiation. In this study, in vivo spatial distribution mapping and pharmacokinetics evaluation of the 19F-labelled boronophenylalanine (BPA) were performed using 19F magnetic resonance imaging (19F MRI) and 19F magnetic resonance spectroscopy (19F MRS). Characteristic uptake of 19F-BPA in C6 glioma showed a maximum at 2.5 h after compound infusion as confirmed by both 19F images and 19F spectra acquired on blood samples collected at different times after infusion. This study shows the ability of 19F MRI to selectively map the bio-distribution of 19F-BPA in a C6 rat glioma model, as well as providing a useful method to perform pharmacokinetics of BNCT carriers.

  8. Dynamic effects in MAS and MQMAS NMR spectra of half-integer quadrupolar nuclei: calculations and an application to the double perovskite cryolite.

    PubMed

    Kotecha, Mrignayani; Chaudhuri, Santanu; Grey, Clare P; Frydman, Lucio

    2005-11-30

    Dynamic processes such as chemical exchange or rotations between inequivalent orientations can affect the magic-angle spinning (MAS) and the multiple-quantum (MQ) MAS NMR spectra of half-integer quadrupolar nuclei. The present paper discusses such dynamic multisite MAS and MQMAS effects and applies them to study the dynamic processes that occur in the double perovskite cryolite, Na3AlF6. Dynamic line shape simulations invoking a second-order broadening of the central transition and relying on the semiclassical Bloch-McConnell formalism for chemical exchange were performed for a variety of exchange models possessing different symmetries. Fitting experimental variable-temperature cryolite 23Na NMR data with this formalism revealed that the two inequivalent sodium sites in this mineral undergo an exchange characterized by a broad distribution of rates. To further assess this dynamic process a variety of 27Al and 19F MAS NMR studies were also undertaken; quantitative 27Al-19F dipolar coupling measurements then revealed a dynamic motion of the AlF6 octahedra that were qualitatively consistent with predictions stemming from molecular dynamic simulations on this double perovskite. PMID:16305261

  9. Through-space (19) F-(15) N couplings for the assignment of stereochemistry in flubenzimine.

    PubMed

    Ghiviriga, Ion; Rubinski, Miles A; Dolbier, William R

    2016-07-01

    Through-space (19) F-(15) N couplings revealed the configuration of flubenzimine, with the CF3 group on N4 pointing towards the lone pair of N5. The (19) F-(15) N coupling constants were measured at natural abundance using a spin-state selective indirect-detection pulse sequence. As (15) N-labelled proteins are routinely synthesized for NMR studies, through-space (19) F-(15) N couplings have the potential to probe the stereochemistry of these proteins by (19) F labelling of some amino acids or can reveal the site of docking of fluorine-containing drugs. Copyright © 2016 John Wiley & Sons, Ltd. PMID:27059012

  10. Sensitive, quantitative carbon-13 NMR spectra by mechanical sample translation

    NASA Astrophysics Data System (ADS)

    Donovan, Kevin J.; Allen, Mary; Martin, Rachel W.; Shaka, A. J.

    2009-04-01

    Collecting a truly quantitative carbon-13 spectrum is a time-consuming chore. Very long relaxation delays, required between transients to allow the z-magnetization, M z, of the spin with the longestT1 to return to the equilibrium value, M0, must precede each transient. These long delays also reduce sensitivity, as fewer transients per unit time can be acquired. In addition, sometimes T1 is not known to within even a factor of two: a conservative guess for the relaxation delay then leads to very low sensitivity. We demonstrate a fresh method to bypass these problems and collect quantitative carbon-13 spectra by swapping the sample volume after each acquisition with a different portion where the magnetization is already equilibrated to M0. Loading larger sample volumes of 10-20 mL into an unusually long (1520 mm) 5 mm OD. NMR tube and vertically sliding the tube between acquisitions accomplishes the swap. The relaxation delay can then be skipped altogether. The spectra are thus both quantitative, and far more sensitive. We demonstrate the moving tube technique on two small molecules (thymol and butylhydroxytoluene) and show good carbon-13 quantification. The gain in sensitivity can be as much as 10-fold for slowly-relaxing 13C resonances. These experiments show that quantitative, sensitive carbon-13 spectra are possible whenever sufficient sample volumes are available. The method is applicable to any slow-relaxing nuclear spin species, such as 29Si, 15N and other low-γ nuclei.

  11. Characterization of the ground X{sub 1} state of {sup 204}Pb{sup 19}F, {sup 206}Pb{sup 19}F, {sup 207}Pb{sup 19}F, and {sup 208}Pb{sup 19}F

    SciTech Connect

    Mawhorter, Richard J.; Murphy, Benjamin S.; Baum, Alexander L.; Sears, Trevor J.; Yang, T.; Rupasinghe, P. M; McRaven, C. P.; Shafer-Ray, N. E.; Alphei, Lukas D.; Grabow, Jens-Uwe

    2011-08-15

    Pure rotational spectra of the ground electronic-vibrational X{sub 1} state of {sup 204}Pb{sup 19}F, {sup 206}Pb{sup 19}F, {sup 207}Pb{sup 19}F, and {sup 208}Pb{sup 19}F are measured with a resonator pulsed supersonic jet Fourier-transform microwave spectrometer. Also reported is a new measurement of the Stark effect on the optical spectra of A(leftarrow)X{sub 1} transitions. These spectra are combined with published high-resolution infrared spectra of X{sub 2}{r_reversible}X{sub 1} transitions in order to create a complete picture of the ground state of lead monofluoride. For the microwave data, molecules are prepared by laser ablation of lead target rods and stabilized in a supersonic jet of neon mixed with sulfur hexafluoride. For the optical Stark spectra, a continuous source of molecules is created in a nozzle heated to 1000 deg. C. The microwave spectra confirm, improve, and extend previously reported constants that describe the rotational, spin-orbit, and hyperfine interactions of the ground electronic state of the PbF molecule. A discrepancy concerning the sign of the hyperfine constant describing the {sup 207}Pb nucleus is discussed. Magnetic-field-dependent microwave spectra are used to characterize the Zeeman interaction in terms of two g factors of the body-fixed electronic wave function. The optical Stark spectra are used to characterize the electric dipole moment of the X{sub 1} and A states.

  12. CHARACTERIZATION OF TANK 19F SAMPLES

    SciTech Connect

    Oji, L.; Diprete, D.; Click, D.

    2009-12-17

    The Savannah River National Laboratory (SRNL) was asked by Liquid Waste Operations to characterize Tank 19F closure samples. Tank 19F slurry samples analyzed included the liquid and solid fractions derived from the slurry materials along with the floor scrape bottom Tank 19F wet solids. These samples were taken from Tank 19F in April 2009 and made available to SRNL in the same month. Because of limited amounts of solids observed in Tank 19F samples, the samples from the north quadrants of the tank were combined into one Tank 19F North Hemisphere sample and similarly the south quadrant samples were combined into one Tank 19F South Hemisphere sample. These samples were delivered to the SRNL shielded cell. The Tank 19F samples were analyzed for radiological, chemical and elemental components. Where analytical methods yielded additional contaminants other than those requested by the customer, these results were also reported. The target detection limits for isotopes analyzed were based on detection values of 1E-04 {micro}Ci/g for most radionuclides and customer desired detection values of 1E-05 {micro}Ci/g for I-129, Pa-231, Np-237, and Ra-226. While many of the target detection limits, as specified in the technical task request and task technical and quality assurance plans were met for the species characterized for Tank 19F, some were not met. In a number of cases, the relatively high levels of radioactive species of the same element or a chemically similar element precluded the ability to measure some isotopes to low levels. SRNL, in conjunction with the plant customer, reviewed all these cases and determined that the impacts were negligible.

  13. Increasing the quantitative bandwidth of NMR measurements.

    PubMed

    Power, J E; Foroozandeh, M; Adams, R W; Nilsson, M; Coombes, S R; Phillips, A R; Morris, G A

    2016-02-18

    The frequency range of quantitative NMR is increased from tens to hundreds of kHz by a new pulse sequence, CHORUS. It uses chirp pulses to excite uniformly over very large bandwidths, yielding accurate integrals even for nuclei such as (19)F that have very wide spectra. PMID:26789115

  14. Analysis of Radiation Induced Degradation in FPC-461 Fluoropolymers by Variable Temperature Multinuclear NMR

    SciTech Connect

    Chinn, S C; Wilson, T S; Maxwell, R S

    2004-10-27

    Solid state nuclear magnetic resonance techniques have been used to investigate aging mechanisms in a vinyl chloride:chlorotrifluoroethylene copolymer, FPC-461, due to exposure to {gamma}-radiation. Solid state {sup 1}H MAS NMR spectra revealed structural changes of the polymer upon irradiation under both air and nitrogen atmospheres. Considerable degradation is seen with {sup 1}H NMR in the vinyl chloride region of the polymer, particularly in the samples irradiated in air. {sup 19}F MAS NMR was used to investigate speciation in the chlorotrifluoroethylene blocks, though negligible changes were seen. {sup 1}H and {sup 19}F NMR at elevated temperature revealed increased segmental mobility and decreased structural heterogeneity within the polymer, yielding significant resolution enhancement over room temperature solid state detection. The effects of multi-site exchange are manifest in both the {sup 1}H and {sup 19}F NMR spectra as a line broadening and change in peak position as a function of temperature.

  15. Access to experimentally infeasible spectra by pure-shift NMR covariance.

    PubMed

    Fredi, André; Nolis, Pau; Cobas, Carlos; Parella, Teodor

    2016-09-01

    Covariance processing is a versatile processing tool to generate synthetic NMR spectral representations without the need to acquire time-consuming experimental datasets. Here we show that even experimentally prohibited NMR spectra can be reconstructed by introducing key features of a reference 1D CHn-edited spectrum into standard 2D spectra. This general procedure is illustrated with the calculation of experimentally infeasible multiplicity-edited pure-shift NMR spectra of some very popular homonuclear (ME-psCOSY and ME-psTOCSY) and heteronuclear (ME-psHSQC-TOCSY and ME-psHMBC) experiments. PMID:27494746

  16. Access to experimentally infeasible spectra by pure-shift NMR covariance

    NASA Astrophysics Data System (ADS)

    Fredi, André; Nolis, Pau; Cobas, Carlos; Parella, Teodor

    2016-09-01

    Covariance processing is a versatile processing tool to generate synthetic NMR spectral representations without the need to acquire time-consuming experimental datasets. Here we show that even experimentally prohibited NMR spectra can be reconstructed by introducing key features of a reference 1D CHn-edited spectrum into standard 2D spectra. This general procedure is illustrated with the calculation of experimentally infeasible multiplicity-edited pure-shift NMR spectra of some very popular homonuclear (ME-psCOSY and ME-psTOCSY) and heteronuclear (ME-psHSQC-TOCSY and ME-psHMBC) experiments.

  17. Automated evaluation of chemical shift perturbation spectra: New approaches to quantitative analysis of receptor-ligand interaction NMR spectra

    PubMed Central

    Peng, Chen; Unger, Stephen W.; Filipp, Fabian V.; Sattler, Michael; Szalma, Sándor

    2016-01-01

    This paper presents new methods designed for quantitative analysis of chemical shift perturbation NMR spectra. The methods automatically trace the displacements of cross peaks between a perturbed test spectrum and the reference spectrum (or among a series of titration spectra), and measure the changes of chemical shifts, heights, and widths of the altered peaks. The methods are primary aimed at the 1H-15N HSQC spectra of relatively small proteins (<15 kDa) assuming fast exchange between free and ligand-bound states on the chemical shift time scale, or for comparing spectra of free and fully bound states in the slow exchange situation. Using the 1H-15N HSQC spectra from a titration experiment of the 74-residue Pex13p SH3 domain with a Pex14p peptide ligand (14 residues, Kd = ~ 40µM), we demonstrate the scope and limits of our automatic peak tracing (APET) algorithm for efficient scoring of high-throughput SAR by NMR type HSQC spectra, and progressive peak tracing (PROPET) algorithm for detailed analysis of ligand titration spectra. Simulated spectra with low signal-to-noise ratios (S/N ranged from 20 to 1) were used to demonstrate the reliability and reproducibility of the results when dealing with poor quality spectra. These algorithms have been implemented in a new software module, FELIX-Autoscreen, for streamlined processing, analysis and visualization of SAR by NMR and other high-throughput receptor/ligand interaction experiments. PMID:15243180

  18. Anisotropy of hyperfine interactions as a tool for interpretation of NMR spectra in magnetic materials.

    PubMed

    Chlan, V; Stěpánková, H; Rezníček, R; Novák, P

    2011-07-01

    Approach for interpretation of nuclear magnetic resonance (NMR) spectra in magnetic materials is presented, consisting in employing the anisotropy of hyperfine interaction. The anisotropic parts of hyperfine magnetic fields on (57)Fe nuclei are calculated ab initio for a model example of lithium ferrite and utilized to assign the experimental NMR spectral lines to iron sites in the crystal structure. PMID:21536415

  19. NMR and protein folding: equilibrium and stopped-flow studies.

    PubMed Central

    Frieden, C.; Hoeltzli, S. D.; Ropson, I. J.

    1993-01-01

    NMR studies are now unraveling the structure of intermediates of protein folding using hydrogen-deuterium exchange methodologies. These studies provide information about the time dependence of formation of secondary structure. They require the ability to assign specific resonances in the NMR spectra to specific amide protons of a protein followed by experiments involving competition between folding and exchange reactions. Another approach is to use 19F-substituted amino acids to follow changes in side-chain environment upon folding. Current techniques of molecular biology allow assignments of 19F resonances to specific amino acids by site-directed mutagenesis. It is possible to follow changes and to analyze results from 19F spectra in real time using a stopped-flow device incorporated into the NMR spectrometer. PMID:8298453

  20. Proton NMR Spectra: Deceptively Simple and Deceptively Complex Examples.

    ERIC Educational Resources Information Center

    Gurst, J. E.; And Others

    1985-01-01

    Describes relatively simple nuclear magnetic resonance (NMR) experiments that demonstrate unexpected results of the deceptively simple and deceptively complex types. Background information, experimental procedures, and typical results obtained are included. (JN)

  1. Proton Fingerprints Portray Molecular Structures: Enhanced Description of the 1H NMR Spectra of Small Molecules

    PubMed Central

    Napolitano, José G.; Lankin, David C.; McAlpine, James B.; Niemitz, Matthias; Korhonen, Samuli-Petrus; Chen, Shao-Nong; Pauli, Guido F.

    2013-01-01

    The characteristic signals observed in NMR spectra encode essential information on the structure of small molecules. However, extracting all of this information from complex signal patterns is not trivial. This report demonstrates how computer-aided spectral analysis enables the complete interpretation of 1D 1H NMR data. The effectiveness of this approach is illustrated with a set of organic molecules, for which replicas of their 1H NMR spectra were generated. The potential impact of this methodology on organic chemistry research is discussed. PMID:24007197

  2. Median Modified Wiener Filter for nonlinear adaptive spatial denoising of protein NMR multidimensional spectra

    PubMed Central

    Cannistraci, Carlo Vittorio; Abbas, Ahmed; Gao, Xin

    2015-01-01

    Denoising multidimensional NMR-spectra is a fundamental step in NMR protein structure determination. The state-of-the-art method uses wavelet-denoising, which may suffer when applied to non-stationary signals affected by Gaussian-white-noise mixed with strong impulsive artifacts, like those in multi-dimensional NMR-spectra. Regrettably, Wavelet's performance depends on a combinatorial search of wavelet shapes and parameters; and multi-dimensional extension of wavelet-denoising is highly non-trivial, which hampers its application to multidimensional NMR-spectra. Here, we endorse a diverse philosophy of denoising NMR-spectra: less is more! We consider spatial filters that have only one parameter to tune: the window-size. We propose, for the first time, the 3D extension of the median-modified-Wiener-filter (MMWF), an adaptive variant of the median-filter, and also its novel variation named MMWF*. We test the proposed filters and the Wiener-filter, an adaptive variant of the mean-filter, on a benchmark set that contains 16 two-dimensional and three-dimensional NMR-spectra extracted from eight proteins. Our results demonstrate that the adaptive spatial filters significantly outperform their non-adaptive versions. The performance of the new MMWF* on 2D/3D-spectra is even better than wavelet-denoising. Noticeably, MMWF* produces stable high performance almost invariant for diverse window-size settings: this signifies a consistent advantage in the implementation of automatic pipelines for protein NMR-spectra analysis. PMID:25619991

  3. Median Modified Wiener Filter for nonlinear adaptive spatial denoising of protein NMR multidimensional spectra.

    PubMed

    Cannistraci, Carlo Vittorio; Abbas, Ahmed; Gao, Xin

    2015-01-01

    Denoising multidimensional NMR-spectra is a fundamental step in NMR protein structure determination. The state-of-the-art method uses wavelet-denoising, which may suffer when applied to non-stationary signals affected by Gaussian-white-noise mixed with strong impulsive artifacts, like those in multi-dimensional NMR-spectra. Regrettably, Wavelet's performance depends on a combinatorial search of wavelet shapes and parameters; and multi-dimensional extension of wavelet-denoising is highly non-trivial, which hampers its application to multidimensional NMR-spectra. Here, we endorse a diverse philosophy of denoising NMR-spectra: less is more! We consider spatial filters that have only one parameter to tune: the window-size. We propose, for the first time, the 3D extension of the median-modified-Wiener-filter (MMWF), an adaptive variant of the median-filter, and also its novel variation named MMWF*. We test the proposed filters and the Wiener-filter, an adaptive variant of the mean-filter, on a benchmark set that contains 16 two-dimensional and three-dimensional NMR-spectra extracted from eight proteins. Our results demonstrate that the adaptive spatial filters significantly outperform their non-adaptive versions. The performance of the new MMWF* on 2D/3D-spectra is even better than wavelet-denoising. Noticeably, MMWF* produces stable high performance almost invariant for diverse window-size settings: this signifies a consistent advantage in the implementation of automatic pipelines for protein NMR-spectra analysis. PMID:25619991

  4. Strategies to enhance signal intensity with paramagnetic fluorine-labelled lanthanide complexes as probes for 19F magnetic resonance.

    PubMed

    Chalmers, Kirsten H; Botta, Mauro; Parker, David

    2011-01-28

    The synthesis and (19)F NMR spectroscopic properties are reported for three series of CF(3)-labelled lanthanide(III) complexes, based on mono- and diamide cyclen ligands. Analyses of variable temperature, pH and field (19)F, (17)O and (1)H NMR spectroscopic experiments are reported and the merits of a triphosphinate mono-amide complex defined by virtue of its favourable isomer distribution and attractive relaxation properties. These lead to an enhanced sensitivity of detection in (19)F magnetic resonance experiments versus a diamagnetic Y(III) analogue, paving the way for future shift and imaging studies. PMID:21127807

  5. Lattice simulation method to model diffusion and NMR spectra in porous materials.

    PubMed

    Merlet, Céline; Forse, Alexander C; Griffin, John M; Frenkel, Daan; Grey, Clare P

    2015-03-01

    A coarse-grained simulation method to predict nuclear magnetic resonance (NMR) spectra of ions diffusing in porous carbons is proposed. The coarse-grained model uses input from molecular dynamics simulations such as the free-energy profile for ionic adsorption, and density-functional theory calculations are used to predict the NMR chemical shift of the diffusing ions. The approach is used to compute NMR spectra of ions in slit pores with pore widths ranging from 2 to 10 nm. As diffusion inside pores is fast, the NMR spectrum of an ion trapped in a single mesopore will be a sharp peak with a pore size dependent chemical shift. To account for the experimentally observed NMR line shapes, our simulations must model the relatively slow exchange between different pores. We show that the computed NMR line shapes depend on both the pore size distribution and the spatial arrangement of the pores. The technique presented in this work provides a tool to extract information about the spatial distribution of pore sizes from NMR spectra. Such information is difficult to obtain from other characterisation techniques. PMID:25747093

  6. Some plant leaves have orientation-dependent EPR and NMR spectra.

    PubMed

    McCain, D C; Selig, T C; Govindjee; Markley, J L

    1984-02-01

    Proton nuclear magnetic resonance ((1)H NMR) spectra of leaves from 50 plant species were obtained at a spectrometer frequency of 470 MHz. Water present in leaf samples gives rise to characteristic spectral patterns. Most species show only one broad (1)H NMR peak; however, the leaves of some plants display complex, orientation-dependent spectra in which a common three-line pattern is discerned. The pattern varies with the angle between the leaf surface and the external magnetic field. Proton relaxation measurements show the presence of at least two water compartments in the leaves. The compartments are responsible for different components of the spectral pattern. EPR spectra, obtained at 35 GHz and at a temperature of -180 degrees C, of plant leaf sections are dominated by the strong signals of manganous ions. We find that most plant leaves have isotropic Mn(2+) EPR spectra. However, in some species (including ones that exhibit orientation-dependent (1)H NMR spectra) we detect orientation-dependent intensities in the forbidden lines; the spectra indicate that Mn(2+) ions occupy binding sites with axial or lower symmetry on nonrandomly oriented membranes. Both the NMR and the EPR results suggest that the chloroplasts of some plants are preferentially aligned with respect to the leaf surface. PMID:16593413

  7. Effects of instrumental artifacts on triple quantum filtered NMR spectra for spin I = 3/2

    NASA Astrophysics Data System (ADS)

    Sun, Cheng; Wang, Xuefeng; Wang, Zhixiao

    2016-07-01

    In this work, the effects of various instrumental artifacts on the triple quantum filtered NMR spectra for spin I = 3/2 nuclei are investigated. The studied artifacts include finite pulse widths, phase errors, radio frequency field inhomogeneity and pulse transients, which are commonly encountered in practice. The triple quantum filtered spectra are numerically simulated, based on the evolution of the spin density operator under the Hamiltonian for the artifacts. The results show that the presence of the artifacts introduces a shape distortion in the spectrum as well as a variation in the peak intensity, compared with the spectrum without any artifacts. This work indicates that the existence of the instrumental artifacts may cause a misunderstanding of the triple quantum filtered NMR spectra in experiments. The results suggest that one be aware of the instrumental artifacts when performing the triple quantum filtered NMR experiments.

  8. Effects of instrumental artifacts on triple quantum filtered NMR spectra for spin I=3/2.

    PubMed

    Sun, Cheng; Wang, Xuefeng; Wang, Zhixiao

    2016-07-01

    In this work, the effects of various instrumental artifacts on the triple quantum filtered NMR spectra for spin I=3/2 nuclei are investigated. The studied artifacts include finite pulse widths, phase errors, radio frequency field inhomogeneity and pulse transients, which are commonly encountered in practice. The triple quantum filtered spectra are numerically simulated, based on the evolution of the spin density operator under the Hamiltonian for the artifacts. The results show that the presence of the artifacts introduces a shape distortion in the spectrum as well as a variation in the peak intensity, compared with the spectrum without any artifacts. This work indicates that the existence of the instrumental artifacts may cause a misunderstanding of the triple quantum filtered NMR spectra in experiments. The results suggest that one be aware of the instrumental artifacts when performing the triple quantum filtered NMR experiments. PMID:27149654

  9. PR-CALC: A program for the reconstruction of NMR spectra from projections

    PubMed Central

    Coggins, Brian E.; Zhou, Pei

    2013-01-01

    Projection-reconstruction NMR (PR-NMR) has attracted growing attention as a method for collecting multidimensional NMR data rapidly. The PR-NMR procedure involves measuring lower-dimensional projections of a higher-dimensional spectrum, which are then used for the mathematical reconstruction of the full spectrum. We describe here the program PR-CALC, for the reconstruction of NMR spectra from projection data. This program implements a number of reconstruction algorithms, highly optimized to achieve maximal performance, and manages the reconstruction process automatically, producing either full spectra or subsets, such as regions or slices, as requested. The ability to obtain subsets allows large spectra to be analyzed by reconstructing and examining only those subsets containing peaks, offering considerable savings in processing time and storage space. PR-CALC is straightforward to use, and integrates directly into the conventional pipeline for data processing and analysis. It was written in standard C++ and should run on any platform. The organization is flexible, and permits easy extension of capabilities, as well as reuse in new software. PR-CALC should facilitate the widespread utilization of PR-NMR in biomedical research. PMID:16604426

  10. RUBIDIUM, a program for computer-aided assignment of two-dimensional NMR spectra of polypeptides.

    PubMed

    Yu, C; Hwang, J F; Chen, T B; Soo, V W

    1992-01-01

    Taking advantage of the rule-based expert system technology, a program named RUBIDIUM (Rule-Based Identification In 2D NMR Spectrum) was developed to accomplish the automatic 1H NMR resonance assignments of polypeptides. Besides noise elimination and peak selection capabilities, RUBIDIUM detects the cross-peak patterns of amino acid residues in the COSY spectrum, assigning these patterns to amino acid types, performing sequential assignments using combined COSY/NOESY spectra, and finally, achieving the total assignment of the 1H NMR spectrum. PMID:1607394

  11. Genetic algorithm-based feature selection in high-resolution NMR spectra

    PubMed Central

    Cho, Hyun-Woo; Jeong, Myong K.; Park, Youngja; Ziegler, Thomas R.; Jones, Dean P.

    2011-01-01

    High-resolution nuclear magnetic resonance (NMR) spectroscopy has provided a new means for detection and recognition of metabolic changes in biological systems in response to pathophysiological stimuli and to the intake of toxins or nutrition. To identify meaningful patterns from NMR spectra, various statistical pattern recognition methods have been applied to reduce their complexity and uncover implicit metabolic patterns. In this paper, we present a genetic algorithm (GA)-based feature selection method to determine major metabolite features to play a significant role in discrimination of samples among different conditions in high-resolution NMR spectra. In addition, an orthogonal signal filter was employed as a preprocessor of NMR spectra in order to remove any unwanted variation of the data that is unrelated to the discrimination of different conditions. The results of k-nearest neighbors and the partial least squares discriminant analysis of the experimental NMR spectra from human plasma showed the potential advantage of the features obtained from GA-based feature selection combined with an orthogonal signal filter. PMID:21472035

  12. Application of quantitative artificial neural network analysis to 2D NMR spectra of hydrocarbon mixtures.

    PubMed

    Väänänen, Taito; Koskela, Harri; Hiltunen, Yrjö; Ala-Korpela, Mika

    2002-01-01

    Understanding relationships between the structure and composition of molecular mixtures and their chemical properties is a main industrial aim. One central field of research is oil chemistry where the key question is how the molecular characteristics of composite hydrocarbon mixtures can be associated with the macroscopic properties of the oil products. Apparently these relationships are complex and often nonlinear and therefore call for advanced spectroscopic techniques. An informative and an increasingly used approach is two-dimensional nuclear magnetic resonance (2D NMR) spectroscopy. In the case of composite hydrocarbons the application of 2D NMR methodologies in a quantitative manner pose many technical difficulties, and, in any case, the resulting spectra contain many overlapping resonances that challenge the analytical work. Here, we present a general methodology, based on quantitative artificial neural network (ANN) analysis, to resolve overlapping information in 2D NMR spectra and to simultaneously assess the relative importance of multiple spectral variables on the sample properties. The results in a set of 2D NMR spectra of oil samples illustrate, first, that use of ANN analysis for quantitative purposes is feasible also in 2D and, second, that this methodology offers an intrinsic opportunity to assess the complex and nonlinear relationships between the molecular composition and sample properties. The presented ANN methodology is not limited to the analysis of NMR spectra but can also be applied in a manner similar to other (multidimensional) spectroscopic data. PMID:12444730

  13. Modified polysaccharides as potential (19)F magnetic resonance contrast agents.

    PubMed

    Krawczyk, Tomasz; Minoshima, Masafumi; Sugihara, Fuminori; Kikuchi, Kazuya

    2016-06-16

    The introduction of 3-aminobenzotrifluoride into partially oxidized alginic acid, dextran, and polygalacturonic acid (10-100 kDa) by means of the imine formation and a subsequent reduction resulted in water-soluble materials containing 1-14% of fluorine. They showed a single or split (19)F NMR signal in a narrow range of -63 to -63.5 ppm. The observed T1 and T2 were approximately 1 and 0.2 s at 400 or 500 MHz instruments, respectively. The samples showed low toxicity and uptake toward the HeLa cells similar to native polysaccharides and were preferentially localized in lysosomes. A tail intravenous injection of 5 mg of modified dextran containing 1% of fluorine revealed that the probe was not trapped in liver, spleen or kidneys, but was quickly cleared with urine. The proposed materials can be used for imaging of the gastrointestinal tract or the genitourinary system and act as a material for more complex (19)F MRI agent synthesis. PMID:27148998

  14. An efficient spectra processing method for metabolite identification from 1H-NMR metabolomics data.

    PubMed

    Jacob, Daniel; Deborde, Catherine; Moing, Annick

    2013-06-01

    The spectra processing step is crucial in metabolomics approaches, especially for proton NMR metabolomics profiling. During this step, noise reduction, baseline correction, peak alignment and reduction of the 1D (1)H-NMR spectral data are required in order to allow biological information to be highlighted through further statistical analyses. Above all, data reduction (binning or bucketing) strongly impacts subsequent statistical data analysis and potential biomarker discovery. Here, we propose an efficient spectra processing method which also provides helpful support for compound identification using a new data reduction algorithm that produces relevant variables, called buckets. These buckets are the result of the extraction of all relevant peaks contained in the complex mixture spectra, rid of any non-significant signal. Taking advantage of the concentration variability of each compound in a series of samples and based on significant correlations that link these buckets together into clusters, the method further proposes automatic assignment of metabolites by matching these clusters with the spectra of reference compounds from the Human Metabolome Database or a home-made database. This new method is applied to a set of simulated (1)H-NMR spectra to determine the effect of some processing parameters and, as a proof of concept, to a tomato (1)H-NMR dataset to test its ability to recover the fruit extract compositions. The implementation code for both clustering and matching steps is available upon request to the corresponding author. PMID:23525538

  15. 13C-NMR spectra and contact time experiment for Skjervatjern fulvic and humic acids

    USGS Publications Warehouse

    Malcolm, R.L.

    1992-01-01

    The T(CP) and T(1p) time constants for Skjervatjern fulvic and humic acids were determined to be short with T(CP) values ranging from 0.14 ms to 0.53 ms and T(1p) values ranging from 3.3 ms to 5.9 ms. T(CP) or T(1p) time constants at a contact time of 1 ms are favorable for quantification of 13C-NMR spectra. Because of the short T(CP) values, correction factors for signal intensity for various regions of the 13C-NMR spectra would be necessary at contact times greater than 1.1 ms or less than 0.9 ms. T(CP) and T(1p) values have a limited non-homogeneity within Skjervatjern fulvic and humic acids. A pulse delay or repeat time of 700 ms is more than adequate for quantification of these 13C-NMR spectra. Paramagnetic effects in these humic substances are precluded due to low inorganic ash contents, low contents of Fe, Mn, and Co, and low organic free-radical contents. The observed T(CP) values suggest that all the carbon types in Skjervatjern fulvic and humic acids are fully cross-polarized before significant proton relaxation occurs. The 13C-NMR spectra for Skjervatjern fulvic acid is similar to most aquatic fulvic acids as it is predominantly aliphatic, low in aromaticity (fa1 = 24), low in phenolic content, high in carboxyl content, and has no resolution of a methoxyl peak. The 13C-NMR spectra for Skjervatjern humic acid is also similar to most other aquatic humic acids in that it is also predominantly aliphatic, high in aromaticity (fa1 = 38), moderate in phenolic content, moderate in carboxyl content, and has a clear resolution of a methoxyl carbon region. After the consideration of the necessary 13C-NMR experimental conditions, these spectra are considered to be quantitative. With careful consideration of the previously determined 13C-NMR experimental conditions, quantitative spectra can be obtained for humic substances in the future from the HUMEX site. Possible changes in humic substances due to acidification should be determined from 13C-NMR data.

  16. Mise en évidence par RMN du 19F d'une distorsion des octaèdres dans la solution solide CsCaF 3- xH x de type perovskite (0 ≤ x ≤ 1,70)

    NASA Astrophysics Data System (ADS)

    Pezat, M.; Senegas, J.; Villeneuve, G.; Park, H. H.; Tressaud, A.

    1988-12-01

    19F and 1H NMR investigations have been carried out on three powder samples of CsCaF 3- xH x composition (0 ≤ x ≤ 1.70), and on a single crystal of CsCaF 3. It appears that the spectra of 19F are consistent with a distortion of the Ca(F,H) 6 octahedra involving either lower symmetry or a random distribution of a c4-maxis with respect to the crystallographic directions.

  17. Macroscopic orientation effects in broadline NMR-spectra of model membranes at high magnetic field strength

    PubMed Central

    Brumm, T.; Möps, A.; Dolainsky, C.; Brückner, S.; Bayerl, T. M.

    1992-01-01

    The partial orientation of multilamellar vesicles (MLV) in high magnetic fields has been studied and a method to prevent such effects is herewith proposed. The orientation effect was measured with 2H-, 31P-NMR and electron microscopy on MLVs of dipalmitoyl phosphatidylcholine with 30 mol% cholesterol. We present the first freeze—etch electron microscopy data obtained from MLV samples that were frozen directly in the NMR magnet at a field strength of 9.4 Tesla. These experiments clearly show that the MLVs adopt an ellipsoidal (but not a cylindrical) shape in the magnetic field. Best fit 31P-NMR lineshape calculations assuming an ellipsoidal distribution of molecular director axes to the experimentally obtained spectra provide a quantitative measure of the average semiaxis ratio of the ellipsoidal MLVs and its change with temperature. The application of so-called spherical supported vesicles (SSV) is found to prevent any partial orientation effects so that undistorted NMR powder pattern of the bilayer can be measured independently of magnetic field strength and temperature. The usefulness of SSVs is further demonstrated by a direct comparison of spectral data such as 31P-and 2H-NMR lineshapes and relaxation times as well as 2H-NMR dePaked spectra obtained for both model systems. These experiments show that spectral data obtained from partially oriented MLVs are not unambiguous to interpret, in particular, if an external parameter such as temperature is varied. ImagesFIGURE 1 PMID:19431822

  18. Molecular dynamics in paramagnetic materials as studied by magic-angle spinning 2H NMR spectra.

    PubMed

    Mizuno, Motohiro; Suzuki, You; Endo, Kazunaka; Murakami, Miwa; Tansho, Masataka; Shimizu, Tadashi

    2007-12-20

    A magic-angle spinning (MAS) 2H NMR experiment was applied to study the molecular motion in paramagnetic compounds. The temperature dependences of 2H MAS NMR spectra were measured for paramagnetic [M(H2O)6][SiF6] (M=Ni2+, Mn2+, Co2+) and diamagnetic [Zn(H2O)6][SiF6]. The paramagnetic compounds exhibited an asymmetric line shape in 2H MAS NMR spectra because of the electron-nuclear dipolar coupling. The drastic changes in the shape of spinning sideband patterns and in the line width of spinning sidebands due to the 180 degrees flip of water molecules and the reorientation of [M(H2O)6]2+ about its C3 axis were observed. In the paramagnetic compounds, paramagnetic spin-spin relaxation and anisotropic g-factor result in additional linebroadening of each of the spinning sidebands. The spectral simulation of MAS 2H NMR, including the effects of paramagnetic shift and anisotropic spin-spin relaxation due to electron-nuclear dipolar coupling and anisotropic g-factor, was performed for several molecular motions. Information about molecular motions in the dynamic range of 10(2) s(-1)NMR spectra when these paramagnetic effects are taken into account. PMID:18027914

  19. Bulk magnetization and 1H NMR spectra of magnetically heterogeneous model systems

    SciTech Connect

    Levin, E M; Bud' ko, S L

    2011-04-28

    Bulk magnetization and ¹H static and magic angle spinning (MAS) nuclear magnetic resonance (NMR) spectra of two magnetically heterogeneous model systems based on laponite (LAP) layered silicate or polystyrene (PS) with low and high proton concentration, respectively, and ferrimagnetic Fe₂O₃ nano- or micro-particles have been studied. In LAP+Fe₂O₃, a major contribution to the NMR signal broadening is due to the dipolar coupling between the magnetic moments of protons and magnetic particles. In PS+Fe₂O₃, due to the higher proton concentration in polystyrene and stronger proton–proton dipolar coupling, an additional broadening is observed, i.e. ¹H MAS NMR spectra of magnetically heterogeneous systems are sensitive to both proton–magnetic particles and proton–proton dipolar couplings. An increase of the volume magnetization by ~1 emu/cm³ affects the ¹H NMR signal width in a way that is similar to an increase of the proton concentration by ~2×10²²/cm³. ¹H MAS NMR spectra, along with bulk magnetization measurements, allow the accurate determination of the hydrogen concentration in magnetically heterogeneous systems.

  20. [Non-invasive analysis of proteins in living cells using NMR spectroscopy].

    PubMed

    Tochio, Hidehito; Murayama, Shuhei; Inomata, Kohsuke; Morimoto, Daichi; Ohno, Ayako; Shirakawa, Masahiro

    2015-01-01

    NMR spectroscopy enables structural analyses of proteins and has been widely used in the structural biology field in recent decades. NMR spectroscopy can be applied to proteins inside living cells, allowing characterization of their structures and dynamics in intracellular environments. The simplest "in-cell NMR" approach employs bacterial cells; in this approach, live Escherichia coli cells overexpressing a specific protein are subjected to NMR. The cells are grown in an NMR active isotope-enriched medium to ensure that the overexpressed proteins are labeled with the stable isotopes. Thus the obtained NMR spectra, which are derived from labeled proteins, contain atomic-level information about the structure and dynamics of the proteins. Recent progress enables us to work with higher eukaryotic cells such as HeLa and HEK293 cells, for which a number of techniques have been developed to achieve isotope labeling of the specific target protein. In this review, we describe successful use of electroporation for in-cell NMR. In addition, (19)F-NMR to characterize protein-ligand interactions in cells is presented. Because (19)F nuclei rarely exist in natural cells, when (19)F-labeled proteins are delivered into cells and (19)F-NMR signals are observed, one can safely ascertain that these signals originate from the delivered proteins and not other molecules. PMID:25759048

  1. On the practical aspects of recording wideline QCPMG NMR spectra.

    PubMed

    Hung, Ivan; Gan, Zhehong

    2010-06-01

    The practical aspects of applying CPMG for acquisition of wideline powder patterns are examined. It is shown that most distortions/modulations of spikelet spectra can be traced to the incoherent signal averaging from multiple coherence transfer pathways. A strategy for minimizing these distortions/modulations is described. Also, a few interesting observations regarding the implementation of the wideline WURST-QCPMG experiment are presented, namely the accumulation of second-order signal phase and the effects of varying the sweep rate and rf field of chirp pulses. PMID:20359918

  2. Characterisation of the 1H and 13C NMR spectra of methylcitric acid

    NASA Astrophysics Data System (ADS)

    Krawczyk, Hanna; Martyniuk, Tomasz

    2007-06-01

    Methylcitric acid (MCA) was synthesised in Reformatsky reaction (2 RS, 3 RS stereoisomers) and in the nucleophilic addition (2 RS, 3 SR stereoisomers). The stereoselectivity of these reactions was analysed. 1H and 13C NMR spectra of diastereoisomers of methylcitric acid were recorded and interpreted. The values of 1H chemical shifts and 1H- 1H coupling constants were analysed. Proton-decoupled high-resolution 13C NMR spectra of MCA diastereoisomers were measured in a series of dilute water solutions of various acidities. These data may provide a basis for unequivocal determination of the presence of MCA in the urine samples of patients' suffering from propionic acidemia, methylmalonic aciduria, or holocarboxylase synthetase deficiency. NMR spectroscopy enables determination of MCA diastereoisomers in body fluids and can be a complementary and useful diagnostic tool.

  3. Molecular Structures from [superscript 1]H NMR Spectra: Education Aided by Internet Programs

    ERIC Educational Resources Information Center

    Debska, Barbara; Guzowska-Swider, Barbara

    2007-01-01

    The article presents the way in which freeware Internet programs can be applied to teach [superscript 1]H NMR spectroscopy. The computer programs described in this article are part of the educational curriculum that explores spectroscopy and spectra interpretation. (Contains 6 figures.)

  4. Differential Analysis of 2D NMR Spectra: New Natural Products from a Pilot-Scale Fungal Extract Library

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Using a newly developed protocol for the differential analysis of arrays of 2D NMR spectra, we were able to rapidly identify two previously unreported indole alkaloids from a library of unfractionated fungal extracts. Differential analyses of NMR spectra thus constitute an effective tool for the non...

  5. A new method for the comparison of 1H NMR predictors based on tree-similarity of spectra

    PubMed Central

    2014-01-01

    A methodology based on spectral similarity is presented that allows to compare NMR predictors without the recourse to assigned experimental spectra, thereby making the task of benchmarking NMR predictors less tedious, faster, and less prone to human error. This approach was used to compare four popular NMR predictors using a dataset of 1000 molecules and their corresponding experimental spectra. The results found were consistent with those obtained by directly comparing deviations between predicted and experimental shifts. PMID:24666427

  6. Quadrupolar magic angle spinning NMR spectra fitted using the Pearson IV function.

    PubMed

    Mironenko, Roman M; Belskaya, Olga B; Talsi, Valentin P; Likholobov, Vladimir A

    2014-01-01

    The Pearson IV function was used to fit the asymmetric solid-state (27)Al NMR spectra of alumina based catalysts. A high convergence (correlation coefficient is no less than 0.997) between experimental and simulated spectra was achieved. The decomposition of the (27)Al NMR spectra of zinc/aluminum mixed oxides with different Zn/Al molar ratio revealed an increased fraction (6-9%) of pentacoordinated aluminum atoms in these oxides as compared to γ-Al2O3. As the Zn/Al ratio is raised, the fraction of [AlO6] octahedral units decreases, while the fraction of [AlO4] tetrahedra increases. PMID:25454293

  7. HyperBIRD: a sensitivity-enhanced approach to collecting homonuclear-decoupled proton NMR spectra.

    PubMed

    Donovan, Kevin J; Frydman, Lucio

    2015-01-01

    Samples prepared following dissolution dynamic nuclear polarization (DNP) enable the detection of NMR spectra from low-γ nuclei with outstanding sensitivity, yet have limited use for the enhancement of abundant species like (1)H nuclei. Small- and intermediate-sized molecules, however, show strong heteronuclear cross-relaxation effects: spontaneous processes with an inherent isotopic selectivity, whereby only the (13)C-bonded protons receive a polarization enhancement. These effects are here combined with a recently developed method that delivers homonuclear-decoupled (1)H spectra in natural abundance samples based on heteronuclear couplings to these same, (13)C-bonded nuclei. This results in the HyperBIRD methodology; a single-shot combination of these two effects that can simultaneously simplify and resolve complex, congested (1)H NMR spectra with many overlapping spin multiplets, while achieving 50-100 times sensitivity enhancements over conventional thermal counterparts. PMID:25256418

  8. Line shapes in CP/MAS NMR spectra of half-integer quadrupolar nuclei

    NASA Astrophysics Data System (ADS)

    Hayashi, Shigenobu; Hayamizu, Kikuko

    1993-02-01

    Cross polarization (CP) from 1H to quadrupolar nuclei with S = 3/2 has been carried out under magic-angle-spinning (MAS) conditions for powder samples of Na 2B 4O 7·10H 2O and H 3BO 3. The line shapes in the CP/MAS NMR spectra are different from those in the spectra measured with the single pulse sequence combined with 1H dipolar decoupling. Furthermore, the line shapes are found to be dependent on the measuring conditions such as the pulse amplitude for the quadrupolar nuclei. The spin-locking experiments demonstrate that line shapes in CP/MAS NMR spectra are largely dependent on the spin-locking efficiency.

  9. 29Si and 27Al MAS NMR spectra of mullites from different kaolinites.

    PubMed

    He, Hongping; Guo, Jiugao; Zhu, Jianxi; Yuan, Peng; Hu, Cheng

    2004-04-01

    Mullites synthesized from four kaolinites with different random defect densities have been studied by 27Al and 29Si magic angle spinning nuclear magnetic resonance spectroscopy (MAS NMR) and X-ray diffraction (XRD). All these mullites show the same XRD pattern. However, 29Si and 27Al MAS NMR spectra reveal that the mullites derived from kaolinites with high defect densities, have a sillimanite-type Al/Si ordering scheme and are low in silica, whereas those mullites derived from kaolinites with low defect densities, consist of both sillimanite- and mullite-type Al/Si ordering schemes and are rich in silica. PMID:15084323

  10. Practical model fitting approaches to the direct extraction of NMR parameters simultaneously from all dimensions of multidimensional NMR spectra.

    PubMed

    Chylla, R A; Volkman, B F; Markley, J L

    1998-08-01

    A maximum likelihood (ML)-based approach has been established for the direct extraction of NMR parameters (e.g., frequency, amplitude, phase, and decay rate) simultaneously from all dimensions of a D-dimensional NMR spectrum. The approach, referred to here as HTFD-ML (hybrid time frequency domain maximum likelihood), constructs a time-domain model composed of a sum of exponentially-decaying sinusoidal signals. The apodized Fourier transform of this time-domain signal is a model spectrum that represents the 'best-fit' to the equivalent frequency-domain data spectrum. The desired amplitude and frequency parameters can be extracted directly from the signal model constructed by the HTFD-ML algorithm. The HTFD-ML approach presented here, as embodied in the software package CHIFIT, is designed to meet the challenges posed by model fitting of D-dimensional NMR data sets, where each consists of many data points (10(8) is not uncommon) encoding information about numerous signals (up to 10(5) for a protein of moderate size) that exhibit spectral overlap. The suitability of the approach is demonstrated by its application to the concerted analysis of a series of ten 2D 1H-15N HSQC experiments measuring 15N T1 relaxation. In addition to demonstrating the practicality of performing maximum likelihood analysis on large, multidimensional NMR spectra, the results demonstrate that this parametric model-fitting approach provides more accurate amplitude and frequency estimates than those obtained from conventional peak-based analysis of the FT spectrum. The improved performance of the model fitting approach derives from its ability to take into account the simultaneous contributions of all signals in a crowded spectral region (deconvolution) as well as to incorporate prior knowledge in constructing models to fit the data. PMID:9751999

  11. 19F MRI for quantitative in vivo cell tracking

    PubMed Central

    Srinivas, Mangala; Heerschap, Arend; Ahrens, Eric T.; Figdor, Carl G.; de Vries, I. Jolanda M.

    2010-01-01

    Cellular therapy, including stem cell transplants and dendritic cell vaccines, is typically monitored for dosage optimization, accurate delivery and localization using non-invasive imaging, of which magnetic resonance imaging (MRI) is a key modality. 19F MRI retains the advantages of MRI as an imaging modality, while allowing direct detection of labelled cells for unambiguous identification and quantification, unlike typical metal-based contrast agents. Recent developments in 19F MRI-based in vivo cell quantification, the existing clinical use of 19F compounds and current explosive interest in cellular therapeutics have brought 19F imaging technology closer to clinical application. We review the application of 19F MRI to cell tracking, discussing intracellular 19F labels, cell labelling and in vivo quantification, as well as the potential clinical use of 19F MRI. PMID:20427096

  12. Protein–RNA specificity by high-throughput principal component analysis of NMR spectra

    PubMed Central

    Collins, Katherine M.; Oregioni, Alain; Robertson, Laura E.; Kelly, Geoff; Ramos, Andres

    2015-01-01

    Defining the RNA target selectivity of the proteins regulating mRNA metabolism is a key issue in RNA biology. Here we present a novel use of principal component analysis (PCA) to extract the RNA sequence preference of RNA binding proteins. We show that PCA can be used to compare the changes in the nuclear magnetic resonance (NMR) spectrum of a protein upon binding a set of quasi-degenerate RNAs and define the nucleobase specificity. We couple this application of PCA to an automated NMR spectra recording and processing protocol and obtain an unbiased and high-throughput NMR method for the analysis of nucleobase preference in protein–RNA interactions. We test the method on the RNA binding domains of three important regulators of RNA metabolism. PMID:25586222

  13. Magnetic susceptibility effects on 13C MAS NMR spectra of carbon materials and graphite.

    PubMed

    Freita, J C; Emmerich, F G; Cernicchiaro, G R; Sampaio, L C; Bonagamba, T J

    2001-01-01

    13C high-resolution solid-state nuclear magnetic resonance (NMR) was employed to study carbon materials prepared through the thermal decomposition of four different organic precursors (rice hulls, endocarp of babassu coconut, peat, and PVC). For heat treatment temperatures (HTTs) above about 600 C, all materials presented 13C NMR spectra composed of a unique resonance line associated with carbon atoms in aromatic planes. With increasing HTT a continuous broadening of this resonance and a diamagnetic shift in its central frequency were verified for all samples. The evolution of the magnitude and anisotropy of the magnetic susceptibility of the heat-treated carbon samples with HTT explains well these findings. It is shown that these results are better understood when a comparison is made with the features of the 13C NMR spectrum of polycrystalline graphite, for which the magnetic susceptibility effect is also present and is much more pronounced. PMID:11529420

  14. The relationship between reorientational molecular motions and phase transitions in [Mg(H{sub 2}O){sub 6}](BF{sub 4}){sub 2}, studied with the use of {sup 1}H and {sup 19}F NMR and FT-MIR

    SciTech Connect

    Mikuli, Edward Hetmańczyk, Joanna; Grad, Bartłomiej; Kozak, Asja; Wąsicki, Jan W.; Bilski, Paweł; Hołderna-Natkaniec, Krystyna; Medycki, Wojciech

    2015-02-14

    A {sup 1}H and {sup 19}F nuclear magnetic resonance study of [Mg(H{sub 2}O){sub 6}](BF{sub 4}){sub 2} has confirmed the existence of two phase transitions at T{sub c1} ≈ 257 K and T{sub c2} ≈ 142 K, detected earlier by the DSC method. These transitions were reflected by changes in the temperature dependences of both proton and fluorine of second moments M{sub 2}{sup H} and M{sub 2}{sup F} and of spin-lattice relaxation times T{sub 1}{sup H} and T{sub 1}{sup F}. The study revealed anisotropic reorientations of whole [Mg(H{sub 2}O){sub 6}]{sup 2+} cations, reorientations by 180° jumps of H{sub 2}O ligands, and aniso- and isotropic reorientations of BF{sub 4}{sup −} anions. The activation parameters for these motions were obtained. It was found that the phase transition at T{sub c1} is associated with the reorientation of the cation as a whole unit around the C{sub 3} axis and that at T{sub c2} with isotropic reorientation of the BF{sub 4}{sup −} anions. The temperature dependence of the full width at half maximum value of the infrared band of ρ{sub t}(H{sub 2}O) mode (at ∼596 cm{sup −1}) indicated that in phases I and II, all H{sub 2}O ligands in [Mg(H{sub 2}O){sub 6}]{sup 2+} perform fast reorientational motions (180° jumps) with a mean value of activation energy equal to ca 10 kJ mole{sup −1}, what is fully consistent with NMR results. The phase transition at T{sub c1} is associated with a sudden change of speed of fast (τ{sub R} ≈ 10{sup −12} s) reorientational motions of H{sub 2}O ligands. Below T{sub c2} (in phase III), the reorientations of certain part of the H{sub 2}O ligands significantly slow down, while others continue their fast reorientation with an activation energy of ca 2 kJ mole{sup −1}. This fast reorientation cannot be evidenced in NMR relaxation experiments. Splitting of certain IR bands connected with H{sub 2}O ligands at the observed phase transitions suggests a reduction of the symmetry of the octahedral [Mg(H{sub 2}O

  15. A system to obtain radiotracer uptake data simultaneously with NMR spectra in a high field magnet

    SciTech Connect

    Buchanan, M.; Marsden, P.K.; Garlick, P.B.; Mielke, C.H.

    1996-06-01

    Radiotracer techniques and nuclear magnetic resonance (NMR) spectroscopy are two complementary methods that are widely used to investigate cardiac metabolism. The authors have now developed a novel gamma photon detector system that will operate within a wide-bore, 9.4 T magnet. With this detector in position, it is possible to acquire radiotracer uptake data while simultaneously collecting NMR spectra. The advantages of this new system are firstly, that it enables correlations between radiotracer and NMR data to be made on individual rat hearts, and secondly that it allows the number of experiments required to obtain results of statistical significance to be greatly decreased. The extension of the system, to one in which positron emission tomography (PET) and magnetic resonance imaging (MRI) data are acquired simultaneously, clearly has enormous clinical potential. The detector consists of a NaI(Tl) scintillation crystal coupled to a magnetic field-insensitive photomultiplier tube by a 72.5 cm long, acrylic light pipe. This detector configuration satisfies the two, conflicting requirements of the crystal being near the sample, and thus in a high magnetic field, and the PMT being in a low magnetic field and thus far from the sample. In this paper the authors present the technical specifications of their new system together with what they believe are the first examples of simultaneously acquired NMR spectra and {sup 18}F-fluorodeoxyglucose ({sup 18}FDG) uptake data, obtained from isolated, perfused rat hearts.

  16. Deuteron and triton magnetic moments from NMR spectra of the hydrogen molecule

    NASA Astrophysics Data System (ADS)

    Puchalski, Mariusz; Komasa, Jacek; Pachucki, Krzysztof

    2015-08-01

    We present a theory and calculations of the nuclear magnetic shielding with finite nuclear mass effects and determine the magnetic moments of deuteron and triton using the known NMR spectra of HD and HT molecules. The results μd=0.857 438 234 6 (53 ) μN and μt=2.978 962 471 (10 ) μN are more accurate and in good agreement with the currently accepted values.

  17. High-resolution J-resolved NMR spectra of dilute spins in solids

    NASA Astrophysics Data System (ADS)

    Terao, T.; Miura, H.; Saika, A.

    1981-08-01

    A technique for obtaining J-resolved NMR spectra of dilute spins in solids has been developed. It is based on the observation that a combination of magic-angle irradiation and magic-angle spinning removes dipolar broadening, but leaves indirect spin-spin coupling. A preliminary application of this technique to adamantane clearly reveals the AX (J = 121 Hz) and AX (J = 135 Hz) multiplets in the methylene and methyne 13C spectrum, respectively.

  18. Automated recognition and assessment of cross peaks in two-dimensional NMR spectra of macromolecules

    NASA Astrophysics Data System (ADS)

    Glaser, S.; Kalbitzer, H. R.

    A generally applicable procedure for the automated recognition of cross peaks in two-dimensional NMR spectra is presented which exploits local and global spectral properties. It is mainly based on general symmetry considerations which apply for the two-dimensional homonuclear techniques commonly used for structural determination of macromolecules in solution. The corresponding PASCAL program has been tested on a double-quantumfiltered COSY spectrum of a small protein; the results show that the recognition of cross peaks and their assessment works effectively even on spectra with intense 1 noise and experimental artifacts as are typically obtained for biological macromolecules with relatively low solubility.

  19. Nuclear relaxation rates study of GTP(gamma F)-tubulin interaction using 19F-nuclear magnetic resonance.

    PubMed

    Monasterio, O

    1989-07-01

    To study the relationship between the exchangeable GTP binding site (E-site) and the high affinity metal binding site we synthesized P3-fluoro P1-5'-guanosine tripaosphate (GTP(gamma F), an analog of GTP. Our results show that this analog binds to the exchangeable GTP binding site of calf brain tubulin. The values of the dissociation constant and the stoichiometry of the GTP(gamma F)-Mn(II) complex as determined by EPR spectroscopy were 1.64 x 10(-4) M and one mole of manganese per mole of nucleotide, respectively. The distance separating the high-affinity binding site for the divalent metal ion and the exchangeable nucleotide binding site was evaluated by using high-resolution 19F-NMR. The 31P- and 19F-NMR spectra of GTP(gamma F) were studied, both the fluorine and the gamma-phosphate were split in a doublet with a coupling constant of 936 Hz. Tubulin purified by the method of Weisenberg (Weisenberg, R.C., and Timashef, S.N. (1970) Biochemistry 9, 4110-4116) was treated with colchicine to stabilize it, GTP(gamma F) was added and the 254.1 MHz 19fluorine relaxation rates measured within the first four hours. Longitudinal and transversal relaxation rates were determined in the presence of colchicine-tubulin-Mn(II), (paramagnetic complex), or the ternary complex with magnesium (diamagnetic complex). The analysis of the temperature-dependent relaxation data indicates that the metal and the exchangeable nucleotide binding sites are separated by a maximal distance of 6 at 35 degrees C, to 8.1 A at 12 degrees C. PMID:2619317

  20. Tracking Transitions in Spider Wrapping Silk Conformation and Dynamics by (19)F Nuclear Magnetic Resonance Spectroscopy.

    PubMed

    Sarker, Muzaddid; Orrell, Kathleen E; Xu, Lingling; Tremblay, Marie-Laurence; Bak, Jessi J; Liu, Xiang-Qin; Rainey, Jan K

    2016-05-31

    Aciniform silk protein (AcSp1) is the primary component of wrapping silk, the toughest of the spider silks because of a combination of high tensile strength and extensibility. Argiope trifasciata AcSp1 contains a core repetitive domain with at least 14 homogeneous 200-amino acid units ("W" units). Upon fibrillogenesis, AcSp1 converts from an α-helix-rich soluble state to a mixed α-helical/β-sheet conformation. Solution-state nuclear magnetic resonance (NMR) spectroscopy allowed demonstration of variable local stability within the W unit, but comprehensive characterization was confounded by spectral overlap, which was exacerbated by decreased chemical shift dispersion upon denaturation. Here, (19)F NMR spectroscopy, in the context of a single W unit (W1), is applied to track changes in structure and dynamics. Four strategic positions in the W unit were mutated to tryptophan and biosynthetically labeled with 5-fluorotryptophan (5F-Trp). Simulated annealing-based structure calculations implied that these substitutions should be tolerated, while circular dichroism (CD) spectroscopy and (1)H-(15)N chemical shift displacements indicated minimal structural perturbation in W1 mutants. Fiber formation by W2 concatemers containing 5F-Trp substitutions in both W units demonstrated retention of functionality, a somewhat surprising finding in light of sequence conservation between species. Each 5F-Trp-labeled W1 exhibited a unique (19)F chemical shift, line width, longitudinal relaxation time constant (T1), and solvent isotope shift. Perturbation to (19)F chemical shift and nuclear spin relaxation parameters reflected changes in the conformation and dynamics at each 5F-Trp site upon addition of urea and dodecylphosphocholine (DPC). (19)F NMR spectroscopy allowed unambiguous localized tracking throughout titration with each perturbant, demonstrating distinct behavior for each perturbant not previously revealed by heteronuclear NMR experiments. PMID:27153372

  1. Investigation of structure, vibrational and NMR spectra of oxycodone and naltrexone: A combined experimental and theoretical study

    NASA Astrophysics Data System (ADS)

    Tavakol, Hossein; Esfandyari, Maryam; Taheri, Salman; Heydari, Akbar

    2011-08-01

    In this work, two important opioid antagonists, naltrexone and oxycodone, were prepared from thebaine and were characterized by IR, 1H NMR and 13C NMR spectroscopy. Moreover, computational NMR and IR parameters were obtained using density functional theory (DFT) at B3LYP/6-311++G** level of theory. Complete NMR and vibrational assignment were carried out using the observed and calculated spectra. The IR frequencies and NMR chemical shifts, determined experimentally, were compared with those obtained theoretically from DFT calculations, showed good agreements. The RMS errors observed between experimental and calculated data for the IR absorptions are 85 and 105 cm -1, for the 1H NMR peaks are 0.87 and 0.17 ppm and for those of 13C NMR are 5.6 and 5.3 ppm, respectively for naltrexone and oxycodone.

  2. Distinguishing Vaccinium species by chemical fingerprinting based on NMR spectra, validated with spectra collected in different laboratories.

    PubMed

    Markus, Michelle A; Ferrier, Jonathan; Luchsinger, Sarah M; Yuk, Jimmy; Cuerrier, Alain; Balick, Michael J; Hicks, Joshua M; Killday, K Brian; Kirby, Christopher W; Berrue, Fabrice; Kerr, Russell G; Knagge, Kevin; Gödecke, Tanja; Ramirez, Benjamin E; Lankin, David C; Pauli, Guido F; Burton, Ian; Karakach, Tobias K; Arnason, John T; Colson, Kimberly L

    2014-06-01

    A method was developed to distinguish Vaccinium species based on leaf extracts using nuclear magnetic resonance spectroscopy. Reference spectra were measured on leaf extracts from several species, including lowbush blueberry (Vaccinium angustifolium), oval leaf huckleberry (Vaccinium ovalifolium), and cranberry (Vaccinium macrocarpon). Using principal component analysis, these leaf extracts were resolved in the scores plot. Analysis of variance statistical tests demonstrated that the three groups differ significantly on PC2, establishing that the three species can be distinguished by nuclear magnetic resonance. Soft independent modeling of class analogies models for each species also showed discrimination between species. To demonstrate the robustness of nuclear magnetic resonance spectroscopy for botanical identification, spectra of a sample of lowbush blueberry leaf extract were measured at five different sites, with different field strengths (600 versus 700 MHz), different probe types (cryogenic versus room temperature probes), different sample diameters (1.7 mm versus 5 mm), and different consoles (Avance I versus Avance III). Each laboratory independently demonstrated the linearity of their NMR measurements by acquiring a standard curve for chlorogenic acid (R(2) = 0.9782 to 0.9998). Spectra acquired on different spectrometers at different sites classifed into the expected group for the Vaccinium spp., confirming the utility of the method to distinguish Vaccinium species and demonstrating nuclear magnetic resonance fingerprinting for material validation of a natural health product. PMID:24963620

  3. Deuteron NMR spectra of ND4ClO4 single crystal at low temperatures.

    PubMed

    Birczyński, A; Lalowicz, Z T; Ingman, L P; Punkkinen, M; Ylinen, E E

    1993-03-01

    2H NMR spectra of ND4ClO4 single crystal were obtained at v0 = 44 MHz. Orientation and temperature (1.9-75 K) dependences were measured. Fitting the spectra gives the effective quadrupole coupling constants for all deuterons and the ground torsional level structure. The isotope reduction of the (A-T) and (A-E) tunnelling splittings, i.e., the ratios of the respective splittings for NH4+ and ND4+, were found to be different. The splittings at T = 24 K are about 60% of the helium temperature values. The spectrum undergoes intermediate narrowing by reorientations between 26 and 34 K and tunnelling related features in the spectra are eradicated. After reaching the extreme narrowing limit, a doublet with gradually decreasing separation was observed, what was attributed to averaging by torsional oscillations of increasing amplitude. At high temperatures (T > 75 K), the narrow spectrum reflects fast multiaxial reorientation of the ammonium ion. PMID:7834308

  4. Exploring the use of Generalized Indirect Covariance to reconstruct pure shift NMR spectra: Current Pros and Cons

    NASA Astrophysics Data System (ADS)

    Fredi, André; Nolis, Pau; Cobas, Carlos; Martin, Gary E.; Parella, Teodor

    2016-05-01

    The current Pros and Cons of a processing protocol to generate pure chemical shift NMR spectra using Generalized Indirect Covariance are presented and discussed. The transformation of any standard 2D homonuclear and heteronuclear spectrum to its pure shift counterpart by using a reference DIAG spectrum is described. Reconstructed pure shift NMR spectra of NOESY, HSQC, HSQC-TOCSY and HSQMBC experiments are reported for the target molecule strychnine.

  5. A bisphosphonate for 19F-magnetic resonance imaging

    PubMed Central

    Kenny, Gavin D.; Shaw, Karen P.; Sivachelvam, Saranja; White, Andrew J.P.; Botnar, Rene M.; T.M. de Rosales, Rafael

    2016-01-01

    19F-magnetic resonance imaging (MRI) is a promising technique that may allow us to measure the concentration of exogenous fluorinated imaging probes quantitatively in vivo. Here, we describe the synthesis and characterisation of a novel geminal bisphosphonate (19F-BP) that contains chemically-equivalent fluorine atoms that show a single and narrow 19F resonance and a bisphosphonate group that may be used for labelling inorganic materials based in calcium phosphates and metal oxides. The potential of 19F-BP to provide contrast was analysed in vitro and in vivo using 19F-MRI. In vitro studies demonstrated the potential of 19F-BP as an MRI contrast agent in the millimolar concentration range with signal-to-noise ratios (SNR) comparable to previously reported fluorinated probes. The preliminary in vivo MRI study reported here allowed us to visualise the biodistribution of 19F-BP, showing uptake in the liver and in the bladder/urinary system areas. However, bone uptake was not observed. In addition, 19F-BP showed undesirable toxicity effects in mice that prevent further studies with this compound at the required concentrations for MRI contrast. This study highlights the importance of developing 19F MRI probes with the highest signal intensity achievable. PMID:27110036

  6. Complete fusion of 19F with Al and Si isotopes

    NASA Astrophysics Data System (ADS)

    Chiou, M. S.; Wu, M. W.; Easwar, N.; Maher, J. V.

    1981-12-01

    Complete fusion cross sections have been determined by directly detecting evaporation residuals for the systems 19F + 27Al and 19F + 28,30Si over a 19F laboratory energy range 34-75 MeV. In all cases σfus increases smoothly with energy and eventually saturates at 1200-1250 mb. In the barrier penetration region the cross section for 19F + 28Si is always sufficiently smaller than that for 19F + 30Si to make the reduced barrier radius in a Glas-Mosel parametrization significantly smaller for the former system than for the latter. Three entrance channels are now available for the fused-system 46Ti: Critical angular momentum data from the 16O + 30Si entrance channel approach the statistical yrast line at much lower fused-system excitation energy than do the data from the entrance channels 18O + 28Si and 19F + 27Al. NUCLEAR REACTIONS Measured complete fusion cross sections for the systems 19F + 27Al, 19F + 28Si, 19F + 30Si; E=34-75 MeV. Deduced Glas-Mosel model and statistical yrast model parameters.

  7. Chemical shift changes and line narrowing in 13C NMR spectra of hydrocarbon clathrate hydrates.

    PubMed

    Kida, Masato; Sakagami, Hirotoshi; Takahashi, Nobuo; Nagao, Jiro

    2013-05-23

    The solid-state (13)C NMR spectra of various guest hydrocarbons (methane, ethane, propane, adamantane) in clathrate hydrates were measured to elucidate the local structural environments around hydrocarbon molecules isolated in guest-host frameworks of clathrate hydrates. The results show that, depending on the cage environment, the trends in the (13)C chemical shift and line width change as a function of temperature. Shielding around the carbons of the guest normal alkanes in looser cage environments tends to decrease with increasing temperature, whereas shielding in tighter cage environments tends to increase continuously with increasing temperature. Furthermore, the (13)C NMR line widths suggest, because of the reorientation of the guest alkanes, that the local structures in structure II are more averaged than those in structure I. The differences between structures I and II tend to be very large in the lower temperature range examined in this study. The (13)C NMR spectra of adamantane guest molecules in structure H hydrate show that the local structures around adamantane guests trapped in structure H hydrate cages are averaged at the same level as in the α phase of solid adamantane. PMID:23607335

  8. Uncertainty measurement for automated macro program-processed quantitative proton NMR spectra.

    PubMed

    Hays, Patrick A; Schoenberger, Torsten

    2014-11-01

    The evaluation of a fully automated quantitative proton nuclear magnetic resonance spectroscopy (qNMR) processing program, including the determination of its processing uncertainty, and the calculations of the combined uncertainty of the qNMR result, is presented with details on the use of a trimmed purity average. Quantitative NMR spectra (1359) were collected over a 4-month period on various concentrations of pseudoephedrine HCl dissolved in D2O (0.0610 to 93.60 mg/mL) containing maleic acid (the internal standard) to yield signal-to-noise ratios ranging from 3 to 72,000 for analyte integral regions. The resulting 5436 purities exhibited a normal distribution about the best estimate of the true value. The median absolute deviation (MAD) statistical method was used to obtain a model of uncertainty relative to the signal-to-noise of the analyte's integral peaks. The model was then tested using different concentrations of known purity chloroquine diphosphate. qNMR results of numerous illicit heroin HCl samples were compared to those obtained by capillary electrophoresis. PMID:25273593

  9. Alternative approach to the standardization of NMR spectra. Direct measurement of nuclear magnetic shielding in molecules.

    PubMed

    Jackowski, Karol; Jaszuński, Michał; Wilczek, Marcin

    2010-02-25

    Exploring the relation between shielding constants, resonance frequencies and magnetic moments of the nuclei we demonstrate that nuclear magnetic shielding can be directly observed from NMR spectra. In this approach, the absolute shielding constants of all the nuclei can be related to a single reference scale, with atomic (3)He as the primary standard. The accuracy of the data obtained using our method is confirmed comparing the (1)H and (13)C shielding constants for a series of deuterated compounds with those determined analyzing the traditional chemical shifts. Since the use of helium-3 is not in general a practical alternative, we next transfer the reference standard to the (2)H signals of external lock solvents, in this way making the method easy and ready for application with most NMR spectrometers. Finally, we illustrate our new method with the measurements of the (2/1)H primary isotope effects in several liquid deuterated solvents. PMID:20112974

  10. Determination of orientational order parameters from 2H NMR spectra of magnetically partially oriented lipid bilayers.

    PubMed Central

    Schäfer, H; Mädler, B; Sternin, E

    1998-01-01

    The partial orientation of multilamellar vesicles (MLVs) in high magnetic fields is known to affect the shape of 2H NMR spectra. There are numerical methods for extracting either the orientational order parameters of lipid molecules for a random distribution of domain orientations in the sample, or the distribution of orientations for a known set of spectral anisotropies. A first attempt at determining the orientational order parameters in the presence of an unknown nonrandom distribution of orientations is presented. The numerical method is based on the Tikhonov regularization algorithm. It is tested using simulated partially oriented spectra. An experimental spectrum of a phospholipid-ether mixture in water is analyzed as an example. The experimental spectrum is consistent with an ellipsoidal shape of MLVs with a ratio of semiaxes of approximately 3.4. PMID:9533713

  11. Spectral investigations of 2,5-difluoroaniline by using mass, electronic absorption, NMR, and vibrational spectra

    NASA Astrophysics Data System (ADS)

    Kose, Etem; Karabacak, Mehmet; Bardak, Fehmi; Atac, Ahmet

    2016-11-01

    One of the most significant aromatic amines is aniline, a primary aromatic amine replacing one hydrogen atom of a benzene molecule with an amino group (NH2). This study reports experimental and theoretical investigation of 2,5-difluoroaniline molecule (2,5-DFA) by using mass, ultraviolet-visible (UV-vis), 1H and 13C nuclear magnetic resonance (NMR), Fourier transform infrared and Raman (FT-IR and FT-Raman) spectra, and supported with theoretical calculations. Mass spectrum (MS) of 2,5-DFA is presented with their stabilities. The UV-vis spectra of the molecule are recorded in the range of 190-400 nm in water and ethanol solvents. The 1H and 13C NMR chemical shifts are recorded in CDCl3 solution. The vibrational spectra are recorded in the region 4000-400 cm-1 (FT-IR) and 4000-10 cm-1 (FT-Raman), respectively. Theoretical studies are underpinned the experimental results as described below; 2,5-DFA molecule is optimized by using B3LYP/6-311++G(d,p) basis set. The mass spectrum is evaluated and possible fragmentations are proposed based on the stable structure. The electronic properties, such as excitation energies, oscillator strengths, wavelengths, frontier molecular orbitals (FMO), HOMO and LUMO energies, are determined by time-dependent density functional theory (TD-DFT). The electrostatic potential surface (ESPs), density of state (DOS) diagrams are also prepared and evaluated. In addition to these, reduced density gradient (RDG) analysis is performed, and thermodynamic features are carried out theoretically. The NMR spectra (1H and 13C) are calculated by using the gauge-invariant atomic orbital (GIAO) method. The vibrational spectra of 2,5-DFA molecule are obtained by using DFT/B3LYP method with 6-311++G(d,p) basis set. Fundamental vibrations are assigned based on the potential energy distribution (PED) of the vibrational modes. The nonlinear optical properties (NLO) are also investigated. The theoretical and experimental results give a detailed description of

  12. Structures of Si-Carbohydrate Aqueous Complexes: Comparison of NMR Spectra and Molecular Orbital Results

    NASA Astrophysics Data System (ADS)

    Kubicki, J. D.; Heaney, P. J.

    2002-12-01

    Researchers recently have made the discovery that hypercoordinate Si-sorbitol complexes will readily form in biologically relevant fluids, and they have reported the first evidence for a transient organosilicon complex generated within the life cycle of an organism. These interpretations are based upon peak assignments of Si-29 NMR spectra that invoke Si-polyol complexes with Si in five- and six-fold coordination states. However, ab initio analyses of the proposed organosilicon structures do not reproduce the experimentally observed chemical shifts. We have successfully modeled one of the observed Si-29 chemical shifts with a 5-fold Si-disorbitol complex involving 5-membered ring configurations (i.e., Si-O-C-C-O), which yielded Si-29 chemical shifts that closely matched the observed values in the -100 to -102 ppm range. Likewise, Si-29 NMR peaks near -144 ppm were well fit by a model in which a 6-fold Si was complexed to three sorbitol molecules in a 5-membered ring configuration. The ability to simulate observed NMR signals using molecular orbital calculations provides strong support for the controversial role of hypercoordinate organosilicon species in the uptake and transport of silica by biological systems. The existence of such complexes in turn may explain other puzzles in Si biogeochemistry, such as the persistence of monomeric silica in concentrated biological fluids and the biofractionation of Si isotopes and Ge.

  13. Quantification of Human Brain Metabolites from in Vivo1H NMR Magnitude Spectra Using Automated Artificial Neural Network Analysis

    NASA Astrophysics Data System (ADS)

    Hiltunen, Yrjö; Kaartinen, Jouni; Pulkkinen, Juhani; Häkkinen, Anna-Maija; Lundbom, Nina; Kauppinen, Risto A.

    2002-01-01

    Long echo time (TE=270 ms) in vivo proton NMR spectra resembling human brain metabolite patterns were simulated for lineshape fitting (LF) and quantitative artificial neural network (ANN) analyses. A set of experimental in vivo1H NMR spectra were first analyzed by the LF method to match the signal-to-noise ratios and linewidths of simulated spectra to those in the experimental data. The performance of constructed ANNs was compared for the peak area determinations of choline-containing compounds (Cho), total creatine (Cr), and N-acetyl aspartate (NAA) signals using both manually phase-corrected and magnitude spectra as inputs. The peak area data from ANN and LF analyses for simulated spectra yielded high correlation coefficients demonstrating that the peak areas quantified with ANN gave similar results as LF analysis. Thus, a fully automated ANN method based on magnitude spectra has demonstrated potential for quantification of in vivo metabolites from long echo time spectroscopic imaging.

  14. Theoretical study of NMR, infrared and Raman spectra on triple-decker phthalocyanines

    NASA Astrophysics Data System (ADS)

    Suzuki, Atsushi; Oku, Takeo

    2016-02-01

    Electronic structures and magnetic properties of multi-decker phthalocyanines were studied by theoretical calculation. Electronic structures, excited processes at multi-states, isotropic chemical shifts of 13C, 14N and 1H-nuclear magnetic resonance (NMR), principle V-tensor in electronic field gradient (EFG) tensor and asymmetry parameters (η), vibration mode in infrared (IR) and Raman spectra of triple-decker phthalocyanines were calculated by density functional theory (DFT) and time-dependent DFT using B3LYP as basis function. Electron density distribution was delocalized on the phthalocyanine rings with electron static potential. Considerable separation of chemical shifts in 13C, 14N and 1H-NMR was originated from nuclear spin interaction between nitrogen and carbon atoms, nuclear quadrupole interaction based on EFG and η of central metal under crystal field. Calculated optical absorption at multi-excited process was derived from overlapping π-orbital on the phthalocyanine rings. The vibration modes in IR and Raman spectra were based on in-plane deformation and stretching vibrations of metal-ligand coordination bond on the deformed structure.

  15. Cu-NMR spectra in UCu4Ni uncover site disorder

    NASA Astrophysics Data System (ADS)

    Bernal, O. O.; Rose, D. A.; Wu, Hsin-Ju; Chiang, M.; MacLaughlin, D. E.; Stewart, G. R.; Kim, J. S.

    2012-12-01

    Cu-NMR measurements in a random powder of UCu4Ni reveal two types of spectral lines for each of the two isotopes of naturally abundant Cu in the material. These lines, which we label L1 and L2, point to the existence of two inequivalent Cu sites in the sample. We present a study of the NMR line shape in UCu4Ni at three different frequencies (in the range from 40-70 MHz) and two temperature values (10 K and 150 K), that allow us to assign the lines to particular Cu sites. L1 is strongly broadened as the frequency decreases, but changes less with increasing temperature. In contrast, the width of L2 grows in proportion to frequency and decreases noticeably with increasing temperature. This behavior indicates that the crystallographic site corresponding to L1 is exposed to electric field gradients and has lower point symmetry than the site corresponding to L2, which displays some anisotropy but no discernible quadrupole effects. By comparison with the Cu-NMR spectra in UCu4Pd, where only one type of Cu-NMR line has been observed clearly, we can associate L1 with Cu(16e) nuclei: Cu nuclei sitting at the 16e site (Wyckoff notation) in the AuBe5 structure of the parent compound UCu5. This leaves L2 as originating from Cu(4c) nuclei; i.e., those sitting at the 4c site of the same structure. Unlike in UCu4Pd, the appearance of signal from Cu(4c) nuclei in the Ni compound is clear evidence of site disorder in UCu4Ni.

  16. Analysis of the carbon-13 and proton NMR spectra of bovine chromaffin granules.

    PubMed

    Sharp, R R; Richards, E P

    1977-03-29

    Natural abundance carbon-13 and proton NMR spectra of bovine chromaffin granules have been obtained and analyzed using computer simulation techniques. High resolution spectra show the presence of a fluid aqueous phase containing epinephrine, ATP and a random coil protein. The protein spectrum contains unusually intense resonances due to glutamic acid and proline and has been simulated satisfactorily using the known amino acid composition of chromogranin A. The lipid phase of chromaffin granules gives rise to intense, but very broad, resonances in the carbon-13 spectrum. Protons in the lipid phase are also observable as a very rapid component of the proton-free induction decay (T2 approximately equal to 15 microns). Linewidths of the carbon-13 spectra have been used to set upper limits on rotational correlation times and on the motional anisotropy in the aqueous phase. These limits show that the aqueous phase is a simple solution (not a gel) that is isotropic over regions much larger than solute dimensions. No gel transition is observed between -3 and 25 degrees C. The carbon-13 spectra are definitely inconsistent with a lipoprotein matrix model and chromaffin granules previously proposed by Helle and Serck-Hanssen ((1975) Mol. Cell, Biochem. 6, 127-146). Relative carbon-13 intensities of ATP and epinephrine are not consistent with the known 1 : 4 mol ratio of these components. This fact suggests that epinephrine and ATP are not directly complexed in intact chromaffin granules. PMID:849474

  17. 19F magnetic resonance imaging of endogenous macrophages in inflammation.

    PubMed

    Temme, Sebastian; Bönner, Florian; Schrader, Jürgen; Flögel, Ulrich

    2012-01-01

    In this article, we review the use of (19) F MRI (magnetic resonance imaging) for in vivo tracking of monocytes and macrophages in the course of tissue inflammation. Emulsified perfluorocarbons (PFCs) are preferentially phagocytized by monocytes/macrophages and are readily detected by (19) F MRI. Because of the lack of any (19) F background in the body, observed signals are robust and exhibit an excellent degree of specificity. As a consequence of progressive infiltration of the labeled immunocompetent cells into inflamed areas, foci of inflammation can be localized as hot spots by simultaneous acquisition of morphologically matched proton ((1) H) and fluorine ((19) F) MRI. The identification of inflammation by (19) F MRI--at a time when the inflammatory cascade is initiated--opens the possibility for an early detection and more timely therapeutic intervention. Since signal intensity in the (19) F images reflects the severity of inflammation, this approach is also suitable to monitor the efficacy of pharmaceutical treatment. Because PFCs are biochemically inert and the fluorine nucleus exhibits high magnetic resonance (MR) sensitivity, (19) F MRI may be applicable for clinical inflammation imaging. PMID:22354793

  18. Spectroscopic separation of (13) C NMR spectra of complex isomeric mixtures by the CSSF-TOCSY-INEPT experiment.

    PubMed

    Yang, Lu; Moreno, Aitor; Fieber, Wolfgang; Brauchli, Robert; Sommer, Horst

    2015-04-01

    Isomeric mixtures from synthetic or natural origins can pose fundamental challenges for their chromatographic separation and spectroscopic identification. A novel 1D selective NMR experiment, chemical shift selective filter (CSSF)-TOCSY-INEPT, is presented that allows the extraction of (13) C NMR subspectra of discrete isomers in complex mixtures without physical separation. This is achieved via CSS excitation of proton signals in the (1) H NMR mixture spectrum, propagation of the selectivity by polarization transfer within coupled (1) H spins, and subsequent relaying of the magnetization from (1) H to (13) C by direct INEPT transfer to generate (13) C NMR subspectra. Simple consolidation of the subspectra yields (13) C NMR spectra for individual isomers. Alternatively, CSSF-INEPT with heteronuclear long-range transfer can correlate the isolated networks of coupled spins and therefore facilitate the reconstruction of the (13) C NMR spectra for isomers containing multiple spin systems. A proof-of-principle validation of the CSSF-TOCSY-INEPT experiment is demonstrated on three mixtures with different spectral and structural complexities. The results show that CSSF-TOCSY-INEPT is a versatile, powerful tool for deconvoluting isomeric mixtures within the NMR tube with unprecedented resolution and offers unique, unambiguous spectral information for structure elucidation. PMID:25616134

  19. Simulation of 2D NMR Spectra of Carbohydrates Using GODESS Software.

    PubMed

    Kapaev, Roman R; Toukach, Philip V

    2016-06-27

    Glycan Optimized Dual Empirical Spectrum Simulation (GODESS) is a web service, which has been recently shown to be one of the most accurate tools for simulation of (1)H and (13)C 1D NMR spectra of natural carbohydrates and their derivatives. The new version of GODESS supports visualization of the simulated (1)H and (13)C chemical shifts in the form of most 2D spin correlation spectra commonly used in carbohydrate research, such as (1)H-(1)H TOCSY, COSY/COSY-DQF/COSY-RCT, and (1)H-(13)C edHSQC, HSQC-COSY, HSQC-TOCSY, and HMBC. Peaks in the simulated 2D spectra are color-coded and labeled according to the signal assignment and can be exported in JCAMP-DX format. Peak widths are estimated empirically from the structural features. GODESS is available free of charge via the Internet at the platform of the Carbohydrate Structure Database project ( http://csdb.glycoscience.ru ). PMID:27227420

  20. Non-Linear Signal Detection Improvement by Radiation Damping in Single-Pulse NMR Spectra

    PubMed Central

    Schlagnitweit, Judith; Morgan, Steven W; Nausner, Martin; Müller, Norbert; Desvaux, Hervé

    2012-01-01

    When NMR lines overlap and at least one of them is affected by radiation damping, the resonance line shapes of all lines are no longer Lorentzian. We report the appearance of narrow signal distortions, which resemble hole-burnt spectra. This new experimental phenomenon facilitates the detection of tiny signals hidden below the main resonance. Theoretical analysis based on modified Maxwell–Bloch equations shows that the presence of strong transverse magnetization creates a feedback through the coil, which influences the magnetization of all spins with overlapping resonance lines. In the time domain this leads to cross-precession terms between magnetization densities, which ultimately cause non-linear behavior. Numerical simulations corroborate this interpretation. PMID:22266720

  1. An analytical derivation of a popular approximation of the Voigt function for quantification of NMR spectra.

    PubMed

    Bruce, S D; Higinbotham, J; Marshall, I; Beswick, P H

    2000-01-01

    The approximation of the Voigt line shape by the linear summation of Lorentzian and Gaussian line shapes of equal width is well documented and has proved to be a useful function for modeling in vivo (1)H NMR spectra. We show that the error in determining peak areas is less than 0.72% over a range of simulated Voigt line shapes. Previous work has concentrated on empirical analysis of the Voigt function, yielding accurate expressions for recovering the intrinsic Lorentzian component of simulated line shapes. In this work, an analytical approach to the approximation is presented which is valid for the range of Voigt line shapes in which either the Lorentzian or Gaussian component is dominant. With an empirical analysis of the approximation, the direct recovery of T(2) values from simulated line shapes is also discussed. PMID:10617435

  2. Velocity autocorrelation spectra in molten polymers measured by NMR modulated gradient spin-echo

    NASA Astrophysics Data System (ADS)

    Stepišnik, Janez; Mohorič, Aleš; Mattea, Carlos; Stapf, Siegfried; Serša, Igor

    2014-04-01

    The segmental dynamics in molten linear polymers is studied by the NMR method of modulated gradient spin-echo, which directly probes a spectrum of molecular velocity autocorrelation function. Diffusion spectra of mono-disperse poly(isoprene-1.4) with different molecular masses, measured in the frequency range 0.1-10 kHz at a temperature of 26\\ ^{\\circ}\\text{C} , have a form similar to the spectrum of Rouse chain dynamics, which implicates the tube-Rouse motion as the dominant dynamic process in this frequency range. The scaling of the center-of-mass diffusion coefficient, given from the fitting parameters, changes from N^{-1} into N^{-2.4} at around N \\approx 3\\text{-}5 Kuhn steps, which is less than predicted by theory and simulations, while the correlation times of the tube-Rouse mode do not follow the anticipated scaling.

  3. /sup 19/F shielding anisotropy in RbCaF/sub 3/

    SciTech Connect

    Kaliaperumal, R.; Sears, R.E.J.; Finch, C.B.

    1987-07-01

    A /sup 19/F NMR multipulse measurement of the chemical shift in a single crystal of cubic RbCaF/sub 3/ gave -47.0 +- 3 ppm as the isotropic value with respect to C/sub 6/F/sub 6/, and 128.7 +- 6 ppm as the anisotropy. The shielding is accounted for by the usual diamagnetic and paramagnetic ionic overlap and covalent terms. As a result, the Ca/sup + +/ -F/sup -/ bond is estimated to be 98% ionic. No significant spectral changes were found when the crystal was cooled below the cubic to tetragonal phase transition temperature. Reasons for this are given.

  4. Single 19F Probe for Simultaneous Detection of Multiple Metal Ions Using miCEST MRI

    PubMed Central

    2015-01-01

    The local presence and concentration of metal ions in biological systems has been extensively studied ex vivo using fluorescent dyes. However, the detection of multiple metal ions in vivo remains a major challenge. We present a magnetic resonance imaging (MRI)-based method for noninvasive detection of specific ions that may be coexisting, using the tetrafluorinated derivative of the BAPTA (TF-BAPTA) chelate as a 19F chelate analogue of existing optical dyes. Taking advantage of the difference in the ion-specific 19F nuclear magnetic resonance (NMR) chemical shift offset (Δω) values between the ion-bound and free TF-BAPTA, we exploited the dynamic exchange between ion-bound and free TF-BAPTA to obtain MRI contrast with multi-ion chemical exchange saturation transfer (miCEST). We demonstrate that TF-BAPTA as a prototype single 19F probe can be used to separately visualize mixed Zn2+ and Fe2+ ions in a specific and simultaneous fashion, without interference from potential competitive ions. PMID:25523816

  5. Spatially localized sup 1 H NMR spectra of metabolites in the human brain

    SciTech Connect

    Hanstock, C.C. ); Rothman, D.L.; Jue, T.; Shulman, R.G. ); Prichard, J.W. )

    1988-03-01

    Using a surface coil, the authors have obtained {sup 1}H NMR spectra from metabolites in the human brain. Localization was achieved by combining depth pulses with image-selected in vivo spectroscopy magnetic field gradient methods. {sup 1}H spectra in which total creatine (3.03 ppm) has a signal/noise ratio of 95:1 were obtained in 4 min from 14 ml of brain. A resonance at 2.02 ppm consisting predominantly of N-acetylaspartate was measured relative to the creatine peak in gray and white matter, and the ratio was lower in the white matter. The spin-spin relaxation times of N-acetylaspartate and creatine were measured in white and gray matter and while creatine relaxation times were the same in both, the N-acetylaspartate relaxation time was longer in white matter. Lactate was detected in the normoxic brain and the average of three measurements was {approx}0.5 mM from comparison with the creatine plus phosphocreatine peak, which was assumed to be 10.5 mM.

  6. Main-chain-directed strategy for the assignment of /sup 1/H NMR spectra of proteins

    SciTech Connect

    Englander, S.W.; Wand, A.J.

    1987-09-22

    A strategy for assigning the resonances in two-dimensional (2D) NMR spectra of proteins is described. The method emphasizes the analysis of through-space relationships between protons by use of the two-dimensional nuclear Overhauser effect (NOE) experiment. NOE patterns used in the algorithm were derived from a statistical analysis of the combinations of short proton-proton distances observed in the high-resolution crystal structures of 21 proteins. One starts with a search for authentic main-chain NH-C/sub ..cap alpha../H-C/sub ..beta../H J-coupled units, which can be found with high reliability. The many main-chain units of a protein are then placed in their proper juxtaposition by recognition of predefined NOE connectivity patterns. To discover these connectivities, the 2D NOE spectrum is examined, in a prescribed order, for the distinct NOE patterns characteristic of helices, sheets, turns, and extended chain. Finally, the recognition of a few amino acid side-chain types places the discovered secondary structure elements within the polypeptide sequences. Unlike the sequential assignment approach, the main-chain-directed strategy does not rely on the difficult task of recognizing many side-chain spin systems in J-correlated spectra, the assignment process is not in general sequential with the polypeptide chain, and the prescribed connectivity patterns are cyclic rather than linear. The latter characteristic avoids ambiguous branch points in the analysis and imposed an internally confirmatory property on each forward step.

  7. 1H NMR spectra of humic and fulvic acids and their peracetic oxidation products

    NASA Astrophysics Data System (ADS)

    Ruggiero, P.; Interesse, F. S.; Cassidei, L.; Sciacovelli, O.

    1980-04-01

    1H NMR spectra of humic (HA) and fulvic (FA) acids and their oxidative degradation products are reported. The HA shows the presence of -( CH2) n - CH3 ( n > 6) chemical fragments belonging to n-alkanes and/or n-fatty acids physically adsorbed onto the macromolecule structure. These fragments are absent in the FA fraction. Both humic fractions reveal the presence of similar amounts of aromatic protons which partly undergo exchange phenomena. The importance of this experimental observation is discussed. Oxidative degradation seems to cause partial cleavage of aromatic rings, more pronounced in the FA than in the HA. The degraded FA shows a higher total acidity and a higher phenolic OH content than the degraded HA. Both degraded fractions display some sharp singlet signals at 1.9 and 3.9 ppm arising from protons belonging to repetitive chemical fragments probably formed during the oxidation reaction. Tentative assignments of these signals are given. A general analysis of the HA and FA degraded spectra seems to indicate that the chemical fragments which undergo peracetic oxidation are substantially similar. The extent of oxidation of the two humic fractions is different. The HA degradation products reveal the presence of oligomeric structures, whereas the degraded FA appears less resistant to the oxidizing agent.

  8. The NMR investigation of alkaloids. IX. /sup 13/C NMR spectra and stereochemistry of convolvine, convolamine, convoline, convolidine, subhirsine and 6-hydroxyhyoscyamine

    SciTech Connect

    Yagudaev, M.R.; Aripova, S.F.

    1986-07-01

    A correlation has been made on the basis of the results of a study of the C 13 NMR spectra, of the CSs of the C 13 carbon nuclei with the structure and stereochemistry of the tropane alkaloids convolvine, convolamine, convoline, convolidine, subhirsine, and 6-hydroxyhyoscyamine. It has been established that the N-CH/sub 3/ group in convolamine and the -OH group in convoline are oriented equatorially, and the N-CH/sub 3/ in hydroxyhyoscyamine axially.

  9. Spinning-frequency-dependent linewidths in 1H-decoupled 13C magic-angle spinning NMR spectra

    NASA Astrophysics Data System (ADS)

    Nakai, Toshihito; McDowell, Charles A.

    1994-09-01

    The broadenings observed in 13C MAS NMR spectra, which depend on the sample-spinning speed, were studied, using polycrystalline adamantane. Not only was a monotonic increase of the linewidths with the increase of the spinning frequency observed, but also a novel resonant feature was found. The phenomena were interpreted as originating from rotary-resonance 13C 1H recoupling.

  10. Complete assignment of (1)H and (13)C NMR spectra of standard neo-iota-carrabiose oligosaccharides.

    PubMed

    Jouanneau, Diane; Boulenguer, Patrick; Mazoyer, Jacques; Helbert, William

    2010-02-26

    Standard Eucheuma denticulatum iota-carrageenan was degraded with the Alteromonas fortis iota-carrageenase. The most abundant products, the neo-iota-carratetraose and neo-iota-carrahexaose were purified by permeation gel chromatography, and their corresponding (1)H and (13)C NMR spectra were fully assigned. PMID:20038459

  11. Amphiphilic Hyperbranched Fluoropolymers as Nanoscopic 19F-Magnetic Resonance Imaging Agent Assemblies

    PubMed Central

    Du, Wenjun; Nyström, Andreas M.; Zhang, Lei; Powell, Kenya T.; Li, Yali; Cheng, Chong; Wickline, Samuel A.; Wooley, Karen L.

    2009-01-01

    Three hyperbranched fluoropolymers were synthesized and their micelles were constructed as potential 19F MRI agents. A hyperbranched star-like core was first synthesized via ATR-SCVCP of 4-chloromethyl styrene (CMS), lauryl acrylate (LA) and 1,1,1-tris(4′-(2″-bromoisobutyryloxy)phenyl)ethane (TBBPE). The polymerization gave a small core with Mn of 5.5 kDa with PDI of 1.6, which served as a macroinitiator. Trifluoroethyl methacrylate (TFEMA) and tert-butyl acrylate (tBA) in different ratio were then “grafted” from the core to give three polymers with Mn of ca. 120 kDa and PDI values of ca. 1.6–1.8. After acidolysis of the tert-butyl ester groups, amphiphilic, hyperbranched star-like polymers with Mn of ca. 100 kDa were obtained. These structures were subjected to micelle formation in aqueous solution to give micelles having TEM-measured diameters ranging from 3–8 nm and DLS-measured hydrodynamic diameters from 20–30 nm. These micelles gave a narrow, single resonance by 19F NMR spectroscopy, with a half width of approximately 130 Hz. The T1/T2 parameters were ca. 500 ms and 50 ms, respectively, and were not significantly affected by the composition and sizes of the micelles. 19F MRI phantom images of these fluorinated micelles were acquired, which demonstrated that these fluorinated micelles maybe useful as novel 19F MRI agents for a variety of biomedical studies. PMID:18795785

  12. Method for determining molar concentrations of metabolites in complex solutions from two-dimensional 1H-13C NMR spectra.

    PubMed

    Lewis, Ian A; Schommer, Seth C; Hodis, Brendan; Robb, Kate A; Tonelli, Marco; Westler, William M; Sussman, Michael R; Markley, John L

    2007-12-15

    One-dimensional (1D) (1)H nuclear magnetic resonance (NMR) spectroscopy is used extensively for high-throughput analysis of metabolites in biological fluids and tissue extracts. Typically, such spectra are treated as multivariate statistical objects rather than as collections of quantifiable metabolites. We report here a two-dimensional (2D) (1)H-(13)C NMR strategy (fast metabolite quantification, FMQ, by NMR) for identifying and quantifying the approximately 40 most abundant metabolites in biological samples. To validate this technique, we prepared mixtures of synthetic compounds and extracts from Arabidopsis thaliana, Saccharomyces cerevisiae, and Medicago sativa. We show that accurate (technical error 2.7%) molar concentrations can be determined in 12 min using our quantitative 2D (1)H-(13)C NMR strategy. In contrast, traditional 1D (1)H NMR analysis resulted in 16.2% technical error under nearly ideal conditions. We propose FMQ by NMR as a practical alternative to 1D (1)H NMR for metabolomics studies in which 50-mg (extract dry weight) samples can be obtained. PMID:17985927

  13. Deuteron NMR Spectra of ND4 Tunneling at Low Frequenciesin (ND4)2SnBr6

    NASA Astrophysics Data System (ADS)

    Lalowicz, Z. T.; Serafin, R.; Punkkinen, M.; Vuorimäki, A. H.; Ylinen, E. E.

    1995-05-01

    Deuteron NMR spectra of slowly tunneling ND4+ ions are analysed. Spectra are calculated as functions of the tunneling parameters which are the tunneling frequencies about the symmetry axes C2 and C3 of the tetrahedral ion. The structure and splittings within the ground torsional level (GTL) are obtained by fitting the spectra of (ND4)2SnBr6. Comparison with the GTL structure obtained before for NH4+ in the same compound gives the isotope reduction factor of the tunneling frequency about 200.

  14. Unified and Isomer-Specific NMR Metabolomics Database for the Accurate Analysis of 13C–1H HSQC Spectra

    PubMed Central

    2015-01-01

    A new metabolomics database and query algorithm for the analysis of 13C–1H HSQC spectra is introduced, which unifies NMR spectroscopic information on 555 metabolites from both the Biological Magnetic Resonance Data Bank (BMRB) and Human Metabolome Database (HMDB). The new database, termed Complex Mixture Analysis by NMR (COLMAR) 13C–1H HSQC database, can be queried via an interactive, easy to use web interface at http://spin.ccic.ohio-state.edu/index.php/hsqc/index. Our new HSQC database separately treats slowly exchanging isomers that belong to the same metabolite, which permits improved query in cases where lowly populated isomers are below the HSQC detection limit. The performance of our new database and query web server compares favorably with the one of existing web servers, especially for spectra of samples of high complexity, including metabolite mixtures from the model organisms Drosophila melanogaster and Escherichia coli. For such samples, our web server has on average a 37% higher accuracy (true positive rate) and a 82% lower false positive rate, which makes it a useful tool for the rapid and accurate identification of metabolites from 13C–1H HSQC spectra at natural abundance. This information can be combined and validated with NMR data from 2D TOCSY-type spectra that provide connectivity information not present in HSQC spectra. PMID:25333826

  15. Unified and isomer-specific NMR metabolomics database for the accurate analysis of (13)C-(1)H HSQC spectra.

    PubMed

    Bingol, Kerem; Li, Da-Wei; Bruschweiler-Li, Lei; Cabrera, Oscar A; Megraw, Timothy; Zhang, Fengli; Brüschweiler, Rafael

    2015-02-20

    A new metabolomics database and query algorithm for the analysis of (13)C-(1)H HSQC spectra is introduced, which unifies NMR spectroscopic information on 555 metabolites from both the Biological Magnetic Resonance Data Bank (BMRB) and Human Metabolome Database (HMDB). The new database, termed Complex Mixture Analysis by NMR (COLMAR) (13)C-(1)H HSQC database, can be queried via an interactive, easy to use web interface at http://spin.ccic.ohio-state.edu/index.php/hsqc/index . Our new HSQC database separately treats slowly exchanging isomers that belong to the same metabolite, which permits improved query in cases where lowly populated isomers are below the HSQC detection limit. The performance of our new database and query web server compares favorably with the one of existing web servers, especially for spectra of samples of high complexity, including metabolite mixtures from the model organisms Drosophila melanogaster and Escherichia coli. For such samples, our web server has on average a 37% higher accuracy (true positive rate) and a 82% lower false positive rate, which makes it a useful tool for the rapid and accurate identification of metabolites from (13)C-(1)H HSQC spectra at natural abundance. This information can be combined and validated with NMR data from 2D TOCSY-type spectra that provide connectivity information not present in HSQC spectra. PMID:25333826

  16. 19F nuclear magnetic resonance measurement of the distance between the E-site GTP and the high-affinity Mg2+ in tubulin.

    PubMed

    Monasterio, O

    1987-09-22

    The distance separating the divalent metal ion high-affinity binding site and the exchangeable nucleotide binding site on tubulin was evaluated by using high-resolution 19F NMR. The 31P and 19F NMR spectra of guanosine 5'-(gamma-fluorotriphosphate) [GTP (gamma F)] were studied. Both the fluorine and the gamma-phosphate were split into a doublet with a coupling constant of 936 Hz. Tubulin purified according to the method of Weisenberg [Weisenberg, R.C., & Timasheff, S.N. (1970) Biochemistry 9, 4110-4116] was incubated with 1 mM Mn2+. After one cycle of assembly, Mn2+ replaced Mg2+ only partially, i.e., 60% at the high-affinity binding site. After colchicine treatment of tubulin to stabilize it, GTP(gamma F) was added, and the 254-MHz fluorine-19 relaxation rates were measured within the first 4 h. Longitudinal and transversal relaxation rates were determined at two concentrations of GTP(gamma F) and variable concentrations of colchicine-tubulin-Mn(II) (paramagnetic complex) or the ternary complex with magnesium (diamagnetic complex). The analysis of the relaxation data indicates that the rate of exchange of GTP(gamma F) from the exchangeable nucleotide site has a lower limit of 8.7 X 10(4) s-1 and the metal and exchangeable nucleotide binding sites are separated by an upper distance between 6 and 8 A. These data confirm that the high-affinity divalent cation site is situated in the same locus as that of the exchangeable nucleotide, forming a metal-nucleotide complex. PMID:3689763

  17. /sup 19/F nuclear magnetic resonance measurement of the distance between the E-site GTP and the high-affinity Mg/sup 2 +/ in tubulin

    SciTech Connect

    Monasterio, O.

    1987-09-22

    The distance separating the divalent metal ion high-affinity binding site and the exchangeable nucleotide binding site on tubulin was evaluated by using high-resolution /sup 19/F NMR. The /sup 31/P and /sup 19/F NMR spectra of guanosine 5'-(..gamma..-fluorotriphosphate) (GTP(..gamma..F)) were studied. Both the fluorine and the ..gamma..-phosphate were split into a doublet with a coupling constant of 936 Hz. Tubulin purified according to the method of Weisenberg was incubated with 1 mM Mn/sup 2 +/. After one cycle of assembly, Mn/sup 2 +/ only partially, i.e., 60% at the high-affinity binding site. After colchicine treatment of tubulin to stabilize it, GTP(..gamma..F) was added, and the 254-MHz fluorine-19 relaxation rates were measured within the first 4 h. Longitudinal and transversal relaxation rates were determined at two concentrations of GTP(..gamma..F) and variable concentrations of colchicine-tubulin-Mn(II) (paramagnetic complex) or the ternary complex with magnesium diamagnetic complex). The analysis of the relaxation data indicates that the rate of exchange of GTP(..gamma..F) from the exchangeable nucleotide site has a lower limit of 8.7 x 10/sup 4/ s/sup -1/ and the metal and exchangeable nucleotide binding sites are separated by an upper distance between 6 and 8 A. These data confirm that the high-affinity divalent cation site is situated in the same locus as that of the exchangeable nucleotide, forming a metal-nucleotide complex.

  18. Study of fluorine in silicate glass with 19F nuclear magnetic resonance spectroscopy

    NASA Astrophysics Data System (ADS)

    Duncan, T. M.; Douglass, D. C.; Csencsits, R.; Walker, K. L.

    1986-07-01

    We report an application of nuclear magnetic resonance (NMR) spectroscopy to the study of fluorine-doped silicate glass prepared by the modified chemical vapor deposition process, prior to drawing the rod into fibers. The silica contains 1.03-wt. % fluorine, as determined by the calibrated intensity of the 19F NMR spectrum. The isotropic chemical shift of the 19F spectrum shows that fluorine bonds only to silicon; there is no evidence of oxyfluorides. Analysis of the distribution of nuclear dipolar couplings between fluorine nuclei reveals that the relative populations of silicon monofluoride sites [Si(O-)3F] and species having near-neighbor fluorines, such as silicon difluoride sites [Si(O-)2F2], are nearly statistically random. That is, to a good approximation, the fluorine substitutes randomly into the oxygen sites of the silica network. There is no evidence of local clusters of fluorine sites, silicon trifluoride sites [Si(O-)F3], or silicon tetrafluoride (SiF4).

  19. Resolution Improvements in in Vivo1H NMR Spectra with Increased Magnetic Field Strength

    NASA Astrophysics Data System (ADS)

    Gruetter, Rolf; Weisdorf, Sally A.; Rajanayagan, Vasantham; Terpstra, Melissa; Merkle, Hellmut; Truwit, Charles L.; Garwood, Michael; Nyberg, Scott L.; Ugurbil, Kâmil

    1998-11-01

    The measurement of cerebral metabolites using highly homologous localization techniques and similar shimming methods was performed in the human brain at 1.5 and 4 T as well as in the dog and rat brain at 9.4 T. In rat brain, improved resolution was achieved by shimming all first- and second-order shim coils using a fully adiabatic FASTMAP sequence. The spectra showed a clear improvement in spectral resolution for all metabolite resonances with increased field strength. Changes in cerebral glutamine content were clearly observed at 4 T compared to 1.5 T in patients with hepatic encephalopathy. At 9.4 T, glutamine H4 at 2.46 ppm was fully resolved from glutamate H4 at 2.37 ppm, as was the potential resonance from γ-amino-butyric acid at 2.30 ppm and N-acetyl-aspartyl-glutamate at 2.05 ppm. Singlet linewidths were found to be as low as 6 Hz (0.015 ppm) at 9.4 T, indicating a substantial decrease in ppm linewidth with field strength. Furthermore, the methylene peak of creatine was partially resolved from phosphocreatine, indicating a close to 1:1 relationship in gray matter. We conclude that increasing the magnetic field strength increases spectral resolution also for1H NMR, which can lead to more than linear sensitivity gains.

  20. Variations of pH as an additional tool in the analysis of crowded NMR spectra of fucosylated chondroitin sulfates.

    PubMed

    Ustyuzhanina, Nadezhda E; Dmitrenok, Andrey S; Bilan, Maria I; Shashkov, Alexander S; Gerbst, Alexey G; Usov, Anatolii I; Nifantiev, Nikolay E

    2016-03-24

    The influence of pH variation on chemical shift values in NMR spectra of fucosylated chondroitin sulfates was studied using polysaccharides isolated from three sea cucumber species Apostichopus japonicus, Actinopyga mauritiana and Cucumaria japonica. The signals of glucuronic acid residues were found to be the most sensitive to pH changes in comparison to the chemical shifts of the sulfated galactosamine and fucosyl units, most of which were altered insignificantly. It was shown that in the presence of imidazole-HCl buffer (pH 7.2) NMR spectra of the polysaccharides from A. japonicus and A. mauritiana were sufficiently resolved, whereas under acidic conditions their (1)H NMR spectra were complicated by overlapping of H-1 signals of GlcA and GalNAc. In the case of polysaccharide from C. japonica bearing 3-O-fucosylated and 3-O-sulfated glucuronic acid residues in the backbone, acidification of the medium led to separation of H-1 signals of GlcA3S and GalNAc. Therefore, the combination of data obtained at different pH values may be useful for interpretation of overcrowded spectra of fucosylated chondroitin sulfates. PMID:26895544

  1. Dual 19F/1H MR gene reporter molecules for in vivo detection of β-galactosidase

    PubMed Central

    Yu, Jian-Xin; Kodibagkar, Vikram D.; Hallac, Rami R.; Liu, Li; Mason, Ralph P.

    2012-01-01

    Increased emphasis on personalized medicine and novel therapies require the development of non-invasive strategies for assessing biochemistry in vivo. The detection of enzyme activity and gene expression in vivo is potentially important for the characterization of diseases and gene therapy. Magnetic resonance imaging (MRI) is a particularly promising tool since it is non-invasive, and has no associated radioactivity, yet penetrates deep tissue. We now demonstrate a novel class of dual 1H/19F nuclear magnetic resonance (NMR) lacZ gene reporter molecule to specifically reveal enzyme activity in human tumor xenografts growing in mice. We report the design, synthesis, and characterization of six novel molecules and evaluation of the most effective reporter in mice in vivo. Substrates show a single 19F NMR signal and exposure to β-galactosidase induces a large 19F NMR chemical shift response. In the presence of ferric ions the liberated aglycone generates intense proton MRI T2 contrast. The dual modality approach allows both the detection of substrate and imaging of product enhancing the confidence in enzyme detection. PMID:22352428

  2. A General and Facile Strategy to Fabricate Multifunctional Nanoprobes for Simultaneous (19)F Magnetic Resonance Imaging, Optical/Thermal Imaging, and Photothermal Therapy.

    PubMed

    Hu, Gaofei; Li, Nannan; Tang, Juan; Xu, Suying; Wang, Leyu

    2016-09-01

    (19)F magnetic resonance imaging (MRI), due to its high sensitivity and negligible background, is anticipated to be a powerful noninvasive, sensitive, and accurate molecular imaging technique. However, the major challenge of (19)F MRI is to increase the number of (19)F atoms while maintaining the solubility and molecular mobility of the probe. Here, we successfully developed a facile and general strategy to synthesize the multifunctional (19)F MRI nanoprobes by encapsulating the hydrophobic inorganic nanoparticles (NPs) into a hybrid polymer micelle consisting of hydrolysates of 1H,1H,2H,2H-perfluorodecyltriethoxysilane (PDTES) and oleylamine-functionalized poly(succinimide) (PSIOAm). Due to their good water dispersibility, excellent molecular mobility resulting from the ultrathin coating, and high (19)F atom numbers, these nanoprobes generate a separate sharp singlet of (19)F nuclear magnetic resonance (NMR) signal (at -82.8 ppm) with half peak width of ∼28 Hz, which is highly applicable for (19)F MRI. Significantly, by varying the inorganic core from metals (Au), oxides (Fe3O4), fluorides (NaYF4:Yb(3+)/Er(3+)), and phosphates (YPO4) to semiconductors (Cu7S4 and Ag2S, ZnS:Mn(2+)) NPs, which renders the nanoprobes' multifunctional properties such as photothermal ability (Au, Cu7S4), magnetism (Fe3O4), fluorescence (ZnS:Mn(2+)), near-infrared (NIR) fluorescence (Ag2S), and upconversion (UC) luminescence. Meanwhile, the as-prepared nanoprobes possess relatively small sizes (about 50 nm), which is beneficial for long-time circulation. The proof-of-concept in vitro (19)F NMR and photothermal ablation of ZnS:Mn(2+)@PDTES/PSIOAm and Cu7S4@PDTES/PSIOAm nanoprobes further suggest that these nanoprobes hold wide potentials for multifunctional applications in biomedical fields. PMID:27534896

  3. NMR Spectra Transformed by Electron-Nuclear Coupling as Indicator of Structural Peculiarities of Magnetically Active Molecular Systems.

    PubMed

    Voronov, Vladimir K

    2016-09-01

    The peculiarities of nuclear spin relaxation in the paramagnetic systems have been analyzed taking into account the exchange processes. The analysis is based on the modified Solomon-Bloembergen equations. In this line, the conditions of detecting of the NMR signals of samples are discussed depending on resonance frequency of the NMR spectrometer and characteristic relaxation time. On this basis, (1)H NMR spectra of cobalt semiquinolate complex have been analyzed. It has been shown that the satellite signals observed in the spectrum are caused by hyperfine coupling of the tert-butyl group protons with α and β states (localized on pz orbital of the aromatic carbon) of unpaired electron spin. The relaxation process of the resonance protons is controlled by paramagnetic dipole-dipole coupling. The contact hyperfine coupling does not contribute to the paramagnetic broadening. A mechanism involving paramagnetic molecular structures, which are responsible for intramolecular exchange processes in the cobalt semiquinolate complex, is given. PMID:27513208

  4. Characterization of 19A-like 19F pneumococcal isolates from Papua New Guinea and Fiji

    PubMed Central

    Dunne, E.M.; Tikkanen, L.; Balloch, A.; Gould, K.; Yoannes, M.; Phuanukoonnon, S.; Licciardi, P.V.; Russell, F.M.; Mulholland, E.K.; Satzke, C.; Hinds, J.

    2015-01-01

    Molecular identification of Streptococcus pneumoniae serotype 19F is routinely performed by PCR targeting the wzy gene of the capsular biosynthetic locus. However, 19F isolates with genetic similarity to 19A have been reported in the United States and Brazil. We screened 78 pneumococcal carriage isolates and found six 19F wzy variants that originated from children in Papua New Guinea and Fiji. Isolates were characterized using multilocus sequence typing and opsonophagocytic assays. The 19F wzy variants displayed similar susceptibility to anti-19F IgG antibodies compared to standard 19F isolates. Our findings indicate that these 19F variants may be more common than previously believed. PMID:26339490

  5. AssignFit: A program for simultaneous assignment and structure refinement from solid-state NMR spectra

    NASA Astrophysics Data System (ADS)

    Tian, Ye; Schwieters, Charles D.; Opella, Stanley J.; Marassi, Francesca M.

    2012-01-01

    AssignFit is a computer program developed within the XPLOR-NIH package for the assignment of dipolar coupling (DC) and chemical shift anisotropy (CSA) restraints derived from the solid-state NMR spectra of protein samples with uniaxial order. The method is based on minimizing the difference between experimentally observed solid-state NMR spectra and the frequencies back calculated from a structural model. Starting with a structural model and a set of DC and CSA restraints grouped only by amino acid type, as would be obtained by selective isotopic labeling, AssignFit generates all of the possible assignment permutations and calculates the corresponding atomic coordinates oriented in the alignment frame, together with the associated set of NMR frequencies, which are then compared with the experimental data for best fit. Incorporation of AssignFit in a simulated annealing refinement cycle provides an approach for simultaneous assignment and structure refinement (SASR) of proteins from solid-state NMR orientation restraints. The methods are demonstrated with data from two integral membrane proteins, one α-helical and one β-barrel, embedded in phospholipid bilayer membranes.

  6. Solid-state NMR strategies for the structural characterization of paramagnetic NO adducts of Frustrated Lewis Pairs (FLPs).

    PubMed

    Wiegand, Thomas; Sajid, Muhammad; Kehr, Gerald; Erker, Gerhard; Eckert, Hellmut

    2014-01-01

    By N,N addition of NO to the norbonane annulated borane-phosphane Frustrated Lewis pair (FLP) 1 a five-membered heterocyclic persistent aminoxyl radical 2 and its diamagnetic hydroxylamine reduction product 3 are prepared, and the comprehensive multinuclear solid state NMR characterization ((1)H, (11)B, (19)F, (31)P) of these FLP adducts is reported. Signal quantification experiments using a standard addition method reveal that the (11)B and (31)P NMR signals observed in 2 actually arise from molecular impurities of 3 embedded in the paramagnetic crystal. In contrast analogous quantification experiments reveal that the (1)H and (19)F MAS-NMR spectra originate from spin-carrying molecules. Peak assignments are based on DFT-calculated Mulliken spin densities, which lead to the surprising result that the largest paramagnetic shift affecting a proton NMR resonance in 2 originates from intermolecular interactions. For the (19)F nuclei, experiments and calculations indicate that paramagnetic shift effects are very small. In this case, assignments are based on DFT chemical shift calculations carried out on diamagnetic 3 and (19)F((11)B) Rotational Echo Adiabatic Passage DOuble Resonance (REAPDOR) experiments. The set of experiments described here defines an efficient strategy for the structural analysis of paramagnetic FLP adducts. PMID:24815176

  7. Experimental and theoretical studies on compositions, structures, and IR and NMR spectra of functionalized protic ionic liquids.

    PubMed

    Cui, Yingna; Yin, Jingmei; Li, Changping; Li, Shenmin; Wang, Ailing; Yang, Guang; Jia, Yingping

    2016-07-20

    The compositions and structures of amine-based functionalized protic ionic liquids (PILs), namely N,N-dimethyl(cyanoethyl)ammonium propionate (DMCEAP) and N,N-dimethyl(hydroxyethyl)ammonium propionate (DMEOAP) have been investigated systematically by IR and (1)H NMR spectroscopy and density functional theory (DFT) calculations. Analysis of the IR spectra suggests that both DMCEAP and DMEOAP are composed of neutral and ionized species in the liquid phase, the former one mainly existing in the state of precursor molecules, and the latter mainly as ion-pairs. The ratio of precursor molecules to ion-pairs in the liquid phase depends on the types of precursors, especially the functional groups of cations. (1)H NMR spectra indicate that there is a dynamic equilibrium between the neutral and ionized species, probably due to the formation of some intermediates in the PILs. The DFT calculations have been carried out to reveal the conformation, and obtain the corresponding IR and (1)H NMR spectra of the neutral and ionized species, so that the theoretical support to the experimental results can be provided. The present study will help understand the properties of PILs and provide guidance for further applications of PILs. PMID:27385035

  8. Fluorine (19F) MRS and MRI in biomedicine

    PubMed Central

    Ruiz-Cabello, Jesús; Barnett, Brad P.; Bottomley, Paul A.; Bulte, Jeff W.M.

    2011-01-01

    Shortly after the introduction of 1H MRI, fluorinated molecules were tested as MR-detectable tracers or contrast agents. Many fluorinated compounds, which are nontoxic and chemically inert, are now being used in a broad range of biomedical applications, including anesthetics, chemotherapeutic agents, and molecules with high oxygen solubility for respiration and blood substitution. These compounds can be monitored by fluorine (19F) MRI and/or MRS, providing a noninvasive means to interrogate associated functions in biological systems. As a result of the lack of endogenous fluorine in living organisms, 19F MRI of ‘hotspots’ of targeted fluorinated contrast agents has recently opened up new research avenues in molecular and cellular imaging. This includes the specific targeting and imaging of cellular surface epitopes, as well as MRI cell tracking of endogenous macrophages, injected immune cells and stem cell transplants. PMID:20842758

  9. Singular spectrum analysis for an automated solvent artifact removal and baseline correction of 1D NMR spectra

    NASA Astrophysics Data System (ADS)

    De Sanctis, Silvia; Malloni, Wilhelm M.; Kremer, Werner; Tomé, Ana M.; Lang, Elmar W.; Neidig, Klaus-Peter.; Kalbitzer, Hans Robert

    2011-06-01

    NMR spectroscopy in biology and medicine is generally performed in aqueous solutions, thus in 1H NMR spectroscopy, the dominant signal often stems from the partly suppressed solvent and can be many orders of magnitude larger than the resonances of interest. Strong solvent signals lead to a disappearance of weak resonances of interest close to the solvent artifact and to base plane variations all over the spectrum. The AUREMOL-SSA/ALS approach for automated solvent artifact removal and baseline correction has been originally developed for multi-dimensional NMR spectroscopy. Here, we describe the necessary adaptations for an automated application to one-dimensional NMR spectra. Its core algorithm is still based on singular spectrum analysis (SSA) applied on time domain signals (FIDs) and it is still combined with an automated baseline correction (ALS) in the frequency domain. However, both steps (SSA and ALS) have been modified in order to achieve optimal results when dealing with one-dimensional spectra. The performance of the method has been tested on one-dimensional synthetic and experimental spectra including the back-calculated spectrum of HPr protein and an experimental spectrum of a human urine sample. The latter has been recorded with the typically used NOESY-type 1D pulse sequence including water pre-saturation. Furthermore, the fully automated AUREMOL-SSA/ALS procedure includes the managing of oversampled, digitally filtered and zero-filled data and the correction of the frequency domain phase shift caused by the group delay time shift from the digital finite response filtering.

  10. Conformational studies of 3-aminomethylene-2,4-pentanedione using vibrational and NMR spectra, and ab initio calculations

    NASA Astrophysics Data System (ADS)

    Gróf, M.; Gatial, A.; Milata, V.; Prónayová, N.; Sümmchen, L.; Salzer, R.

    2007-10-01

    The IR, Raman and NMR spectra of 3-aminomethylene-2,4-pentanedione (AMP) H 2N sbnd CH dbnd C(COCH 3) 2 were measured. According to the NMR spectra in chloroform and more polar DMSO at room temperature, the sample exists as single entity. On the other hand vibrational spectra revealed that in less polar solutions AMP exists as two conformers with EZ or ZZ orientation of acetyl groups whereas in more polar solvent only one EZ conformer is observed. Such interpretation was confirmed also by the temperature-dependent measurements of IR spectra in chloroform. The observed IR and Raman bands were compared with harmonic vibrational frequencies, calculated using ab initio MP2 and B3LYP density functional methods in 6-31G ∗∗ basis set, and assigned on the basis of potential energy distribution. In addition, the geometries and relative energies of possible conformers of AMP were also evaluated at the same levels of theory and compared with the data from X-ray analysis which revealed that AMP exists in solid state as EZ conformer. The influence of environment polarity on this conformational equilibrium is discussed with respect to the SCRF solvent effect calculations using PCM, IPCM and ONSAGER models.

  11. Conformation of gramicidin A channel in phospholipid vesicles: a 13C and 19F nuclear magnetic resonance study.

    PubMed Central

    Weinstein, S; Wallace, B A; Blout, E R; Morrow, J S; Veatch, W

    1979-01-01

    We have determined the conformation of the channel-forming polypeptide antibiotic gramicidin A in phosphatidylcholine vesicles by using 13C and 19F NMR spectroscopy. The models previously proposed for the conformation of the dimer channel differ in the surface localization of the NH2 and COOH termini. We have incorporated specific 13C and 19F nuclei at both the NH2, and COOH termini of gramicidin and have used 13C and 19F chemical shifts and spin lattice relaxation time measurements to determine the accessibility of these labels to three paramagnetic NMR probes--two in aqueous solution and one attached to the phosphatidylcholine fatty acid chain9 all of our results indicate that the COOH terminus of gramicidin in the channel is located near the surface of the membrane and the NH2 terminus is buried deep within the lipid bilayer. These findings strongly favor an NH2-terminal to NH2-terminal helical dimer as the major conformation for the gramicidin channel in phosphatidylcholine vesicles. PMID:92025

  12. EASY-GOING deconvolution: Combining accurate simulation and evolutionary algorithms for fast deconvolution of solid-state quadrupolar NMR spectra

    NASA Astrophysics Data System (ADS)

    Grimminck, Dennis L. A. G.; Polman, Ben J. W.; Kentgens, Arno P. M.; Leo Meerts, W.

    2011-08-01

    A fast and accurate fit program is presented for deconvolution of one-dimensional solid-state quadrupolar NMR spectra of powdered materials. Computational costs of the synthesis of theoretical spectra are reduced by the use of libraries containing simulated time/frequency domain data. These libraries are calculated once and with the use of second-party simulation software readily available in the NMR community, to ensure a maximum flexibility and accuracy with respect to experimental conditions. EASY-GOING deconvolution ( EGdeconv) is equipped with evolutionary algorithms that provide robust many-parameter fitting and offers efficient parallellised computing. The program supports quantification of relative chemical site abundances and (dis)order in the solid-state by incorporation of (extended) Czjzek and order parameter models. To illustrate EGdeconv's current capabilities, we provide three case studies. Given the program's simple concept it allows a straightforward extension to include other NMR interactions. The program is available as is for 64-bit Linux operating systems.

  13. An inversion method of 2D NMR relaxation spectra in low fields based on LSQR and L-curve

    NASA Astrophysics Data System (ADS)

    Su, Guanqun; Zhou, Xiaolong; Wang, Lijia; Wang, Yuanjun; Nie, Shengdong

    2016-04-01

    The low-field nuclear magnetic resonance (NMR) inversion method based on traditional least-squares QR decomposition (LSQR) always produces some oscillating spectra. Moreover, the solution obtained by traditional LSQR algorithm often cannot reflect the true distribution of all the components. Hence, a good solution requires some manual intervention, for especially low signal-to-noise ratio (SNR) data. An approach based on the LSQR algorithm and L-curve is presented to solve this problem. The L-curve method is applied to obtain an improved initial optimal solution by balancing the residual and the complexity of the solutions instead of manually adjusting the smoothing parameters. First, the traditional LSQR algorithm is used on 2D NMR T1-T2 data to obtain its resultant spectra and corresponding residuals, whose norms are utilized to plot the L-curve. Second, the corner of the L-curve as the initial optimal solution for the non-negative constraint is located. Finally, a 2D map is corrected and calculated iteratively based on the initial optimal solution. The proposed approach is tested on both simulated and measured data. The results show that this algorithm is robust, accurate and promising for the NMR analysis.

  14. Quantitative Quantum Mechanical Spectral Analysis (qQMSA) of 1H NMR spectra of complex mixtures and biofluids

    NASA Astrophysics Data System (ADS)

    Tiainen, Mika; Soininen, Pasi; Laatikainen, Reino

    2014-05-01

    The quantitative interpretation of 1H NMR spectra of mixtures like the biofluids is a demanding task due to spectral complexity and overlap. Complications may arise also from water suppression, T2-editing, protein interactions, relaxation differences of the species, experimental artifacts and, furthermore, the spectra may contain unknown components and macromolecular background which cannot be easily separated from baseline. In this work, tools and strategies for quantitative Quantum Mechanical Spectral Analysis (qQMSA) of 1H NMR spectra from complex mixtures were developed and systematically assessed. In the present approach, the signals of well-defined, stoichiometric components are described by a QM model, while the background is described by a multiterm baseline function and the unknown signals using optimizable and adjustable lines, regular multiplets or any spectral structures which can be composed from spectral lines. Any prior knowledge available from the spectrum can also be added to the model. Fitting strategies for weak and strongly overlapping spectral systems were developed and assessed using two basic model systems, the metabolite mixtures without and with macromolecular (serum) background. The analyses show that if the spectra are measured in high-throughput manner, the consistent absolute quantification demands some calibration to compensate the different response factors of the protons and compounds. On the other hand, the results show that also the T2-edited spectra can be measured so that they obey well the QM rules. In general, qQMSA exploits and interprets the spectral information in maximal way taking full advantage from the QM properties of the spectra and, at the same time, offers chemical confidence which means that individual components can be identified with high confidence on the basis of their accurate spectral parameters.

  15. Constraining Oxygen-17 NMR Spectra of High Pressure Crystals and Glasses: New Data for Jadeite, Pyrope, Grossular, and Mullite

    NASA Astrophysics Data System (ADS)

    Kelsey, K. E.; Stebbins, J. F.; Du, L.; Hankins, B.

    2005-12-01

    17O NMR is a direct way of analyzing the immediate environment around oxygen atoms and can provide information on cation ordering, mixing, and network connectivity in glasses and disordered crystals. Due to overlapping peaks and lack of data on crystalline model compounds, 17O NMR spectra of high pressure glasses have been difficult to interpret. Additionally, data on crystalline model compounds are needed to test the validity of quantum chemical calculations. In this study, 17O NMR spectra were collected for crystalline jadeite, pyrope, grossular, and mullite in order to determine the parameters for oxygen bonded to [6]Al in a variety of environments. Jadeite contains three oxygen sites: oxygen bonded to [4]Si, Na, and two [6]Al atoms (O1), oxygen bonded to [4]Si, Na, and [6]Al atoms (O2), and oxygen bonded to two [4]Si and two Na atoms (O3). The NMR parameters for O1 are CQ = 3.3 MHz, δ = 64 ppm, and ν = 0.9; for O2 are CQ = 4.1 MHz, δ = 59 ppm, and ν = 0.15; and for O3 are CQ = 5.0 MHz, δ = 60 ppm, and ν = 0.15. The parameters for O2 are similar to interpretations of recent data for this kind of site in high pressure sodium aluminosilicate glasses (δ = 59 ppm) and to quantum chemical calculations (Lee et al., 2004, J. Phys. Chem., 108, 5897). Pyrope and grossular each contain one oxygen site, oxygen bonded to [4]Si, [6]Al, and two M2+ cations. The 17O NMR parameters for pyrope are CQ = 3.4 MHz, δ = 84 ppm, and ν = 0.3 and for grossular are CQ = 4.1 MHz, δ = 102 ppm, and ν = 0.4. In grossular, the NMR peak for oxygens bonded to [4]Si, Ca, and high coordinated Al seems to fall between those for "normal" bridging and non bridging oxygens, as reported for high pressure CAS glasses by Allwardt et al. (2005). These data will also be useful to help understand Ca-Mg ordering in the pyrope-grossular solid solutions. Mullite contains four oxygen environments: oxygen bonded to three tetrahedral Al or Si (Oc*), oxygen bonded to two tetrahedral Al or Si (Oc), and

  16. Ab initio study of 59Co NMR spectra in Co2FeAl1-xSix Heusler alloys

    NASA Astrophysics Data System (ADS)

    Nishihara, H.; Sato, K.; Akai, H.; Takiguchi, C.; Geshi, M.; Kanomata, T.; Sakon, T.; Wada, T.

    2015-05-01

    Ab initio electronic structure calculation of a series of Co2FeAl1-xSix Heusler alloys has been performed, using the Korringa-Kohn-Rostoker-coherent potential approximation method to explain experimental 59Co NMR spectra. Two prominent features are explained semi-quantitatively-a global shift of the 59Co resonance line due to alloying with Al and Si atoms in Co2FeAl1-xSix, and the effect of local disorder in creating distinct satellite lines of 59Co NMR in Co2FeAl. The importance is stressed of the positive contribution to the 59Co hyperfine field from valence electron polarization, which emerges from the half-metallic band structure inherent in Co-based Heusler alloys.

  17. Computer-assisted assignment of 2D 1H NMR spectra of proteins: basic algorithms and application to phoratoxin B.

    PubMed

    Kleywegt, G J; Boelens, R; Cox, M; Llinás, M; Kaptein, R

    1991-05-01

    A suite of computer programs (CLAIRE) is described which can be of assistance in the process of assigning 2D 1H NMR spectra of proteins. The programs embody a software implementation of the sequential assignment approach first developed by Wüthrich and co-workers (K. Wüthrich, G. Wider, G. Wagner and W. Braun (1982) J. Mol. Biol. 155, 311). After data-abstraction (peakpicking), the software can be used to detect patterns (spin systems), to find cross peaks between patterns in 2D NOE data sets and to generate assignments that are consistent with all available data and which satisfy a number of constraints imposed by the user. An interactive graphics program called CONPAT is used to control the entire assignment process as well as to provide the essential feedback from the experimental NMR spectra. The algorithms are described in detail and the approach is demonstrated on a set of spectra from the mistletoe protein phoratoxin B, a homolog of crambin. The results obtained compare well with those reported earlier based entirely on a manual assignment process. PMID:1841687

  18. Optimized Spectral Editing of 13C MAS NMR Spectra of Rigid Solids Using Cross-Polarization Methods

    NASA Astrophysics Data System (ADS)

    Sangill, R.; Rastrupandersen, N.; Bildsoe, H.; Jakobsen, H. J.; Nielsen, N. C.

    Combinations of 13C magic-angle spinning (MAS) NMR experiments employing cross polarization (CP), cross polarization-depolarization (CPD), and cross polarization-depolarization-repolarization are analyzed quantitatively to derive simple and general procedures for optimized spectral editing of 13C CP/MAS NMR spectra of rigid solids by separation of the 13C resonances into CH n subspectra ( n = 0, 1, 2, and 3). Special attention is devoted to a differentiation by CPD/MAS of CH and CH 2 resonances since these groups behave quite similarly during spin lock under Hartmann-Hahn match and are therefore generally difficult to distinguish unambiguously. A general procedure for the design of subexperiments and linear combinations of their spectra to provide optimized signal-to-noise ratios for the edited subspectra is described. The technique is illustrated by a series of edited 13C CP/MAS spectra for a number of rigid solids ranging from simple organic compounds (sucrose and l-menthol) to complex pharmaceutical products (calcipotriol monohydrate and vitamin D 3) and polymers (polypropylene, polyvinyl alcohol, polyvinyl chloride, and polystyrene).

  19. Structure of (NH4)3GaF6 investigated by multinuclear magic-angle spinning NMR spectroscopy in comparison with rietveld refinement.

    PubMed

    Krahl, Thoralf; Ahrens, Mike; Scholz, Gudrun; Heidemann, Detlef; Kemnitz, Erhard

    2008-01-21

    The structure of ammonium gallium cryolite (NH(4))(3)GaF(6) was investigated by (19)F and (69,71)Ga magic-angle spinning (MAS) NMR in comparison with X-ray powder diffraction followed by Rietveld refinement. In agreement with previous thermodynamic measurements, NMR experiments on (NH(4))(3)GaF(6) support the model of rigid GaF(6) octahedra. At high spinning speeds (30 kHz), the scalar coupling between the six equivalent (19)F nuclei and (69,71)Ga can be directly observed in the powder spectra. The coupling constants are J(19)F(69)Ga = 197 Hz and J(19)F(71)Ga = 264 Hz. To explain the (71)Ga spectra recorded at 3 kHz a small distribution of quadrupolar frequencies has to be included. The spread of the spinning sidebands hints to a largest nu(Q) value of 28 kHz for (71)Ga. This can be explained by the occurrence of highly symmetric GaF(6) octahedra, which are tilted against the surrounding atoms. In addition, the incomplete motional excitation does not average out the quadrupolar effects. NMR findings are in discrepancy to those of Rietveld refinement. As result it appears that X-ray diffraction is not sensitive enough to deliver proper results. PMID:18069821

  20. Voltage Controlled Geometric Phase Rotation in ^{208}Pb^{19}F.

    NASA Astrophysics Data System (ADS)

    Furneaux, J. E.; Shafer-Ray, Neil; Coker, J.; Rupasinghe, P. M.; McRaven, C. P.

    2013-06-01

    Many theoretical publications have investigated the impact of the geometric phase on measurements of the e-EDM. However, there has been surprisingly little quantitative comparison of these models with experiment. Here we create a quantum beat experiment that starts with an optical pump and ends with an optical probe of ^{208}Pb^{19}F. This measurement includes the ability to control a geometric phase variation of the molecular alignment by applying an appropriate bias voltage. These experiments will then used to test the accuracy of our model calculations of geometric phase rotation.

  1. 1H and 19F spin-lattice relaxation and CH3 or CF3 reorientation in molecular solids containing both H and F atoms

    NASA Astrophysics Data System (ADS)

    Beckmann, Peter A.; Rheingold, Arnold L.

    2016-04-01

    The dynamics of methyl (CH3) and fluoromethyl (CF3) groups in organic molecular (van der Waals) solids can be exploited to survey their local environments. We report solid state 1H and 19F spin-lattice relaxation experiments in polycrystalline 3-trifluoromethoxycinnamic acid, along with an X-ray diffraction determination of the molecular and crystal structure, to investigate the intramolecular and intermolecular interactions that determine the properties that characterize the CF3 reorientation. The molecule is of no particular interest; it simply provides a motionless backbone (on the nuclear magnetic resonance (NMR) time scale) to investigate CF3 reorientation occurring on the NMR time scale. The effects of 19F-19F and 19F-1H spin-spin dipolar interactions on the complicated nonexponential NMR relaxation provide independent inputs into determining a model for CF3 reorientation. As such, these experiments provide much more information than when only one spin species (usually 1H) is present. In Sec. IV, which can be read immediately after the Introduction without reading the rest of the paper, we compare the barrier to CH3 and CF3 reorientation in seven organic solids and separate this barrier into intramolecular and intermolecular components.

  2. Constraining 17O and 27Al NMR spectra of high-pressure crystals and glasses: New data for jadeite, pyrope, grossular, and mullite

    USGS Publications Warehouse

    Kelsey, K.E.; Stebbins, J.F.; Du, L.-S.; Hankins, B.

    2007-01-01

    The 17O NMR spectra of glasses quenched from melts at high pressure are often difficult to interpret due to overlapping peaks and lack of crystalline model compounds. High-pressure aluminosilicate glasses often contain significant amounts of [5]Al and [6]Al, thus these high-pressure glasses must contain oxygen bonded to high-coordinated aluminum. The 17O NMR parameters for the minerals jadeite, pyrope, grossular, and mullite are presented to assist interpretation of glass spectra and to help test quantum chemical calculations. The 17O NMR parameters for jadeite and grossular support previous peak assignments of oxygen bonded to Si and high-coordinated Al in high-pressure glasses as well as quantum chemical calculations. The oxygen tricluster in mullite is very similar to the previously observed tricluster in grossite (CaAl4 O7) and suspected triclusters in glasses. We also present 27Al NMR spectra for pyrope, grossular, and mullite.

  3. Characterisation of the 1H and 13C NMR spectra of N-acetylaspartylglutamate and its detection in urine from patients with Canavan disease.

    PubMed

    Krawczyk, Hanna; Gradowska, Wanda

    2003-03-10

    1H and 13C NMR spectra of N-acetylaspartylglutamate (NAAG) have been recorded and interpreted. The values of the 1H chemical shifts and 1H-(1)H coupling constants at different pH were obtained by iterative computer fitting of 1-D 1H NMR spectra. This provided information on the solution conformation of the investigated molecule. Proton-decoupled high resolution 13C NMR spectra of NAAG have been measured in a series of dilute water solution of various acidity. These data have provided a basis for unequivocal determination of the presence of NAAG in the urine sample of a patient suffering from Canavan disease. NMR spectroscopy provides a possibility of detecting NAAG in body fluids. PMID:12615232

  4. Pharmaceutical Applications of Relaxation Filter-Selective Signal Excitation Methods for (19)F Solid-State Nuclear Magnetic Resonance: Case Study With Atorvastatin in Dosage Formulation.

    PubMed

    Asada, Mamiko Nasu; Nemoto, Takayuki; Mimura, Hisashi

    2016-03-01

    We recently developed several new relaxation filter-selective signal excitation (RFS) methods for (13)C solid-state nuclear magnetic resonance (NMR) that allow (13)C signal extraction of the target components from pharmaceuticals. These methods were successful in not only qualification but also quantitation over the wide range of 5% to 100%. Here, we aimed to improve the sensitivity of these methods and initially applied them to (19)F solid-state NMR, on the basis that the fluorine atom is one of the most sensitive NMR-active nuclei. For testing, we selected atorvastatin calcium (ATC), an antilipid BCS class II drug that inhibits 3-hydroxy-3-methylglutaryl-coenzyme A reductase and is marketed in crystalline and amorphous forms. Tablets were obtained from 2 generic drug suppliers, and the ATC content occurred mainly as an amorphous form. Using the RFS method with (19)F solid-state NMR, we succeeded in qualifying trace amounts (less than 0.5% w/w level) of crystalline phase (Form I) of ATC in the tablets. RFS methods with (19)F solid-state NMR are practical and time efficient and can contribute not only to the study of pharmaceutical drugs, including those with small amounts of a highly potent active ingredient within a formulated product, but also to the study of fluoropolymers in material sciences. PMID:26886305

  5. Measurement of the 19F(α,n)22Na Cross Section for Nuclear Safeguards Science

    NASA Astrophysics Data System (ADS)

    Lowe, Marcus; Smith, M. S.; Pain, S.; Febbraro, M.; Pittman, S.; Chipps, K. A.; Thompson, S. J.; Grinder, M.; Grzywacz, R.; Smith, K.; Thornsberry, C.; Thompson, P.; Peters, W. A.; Waddell, D.; Blanchard, R.; Carls, A.; Shadrick, S.; Engelhardt, A.; Hertz-Kintish, D.; Allen, N.; Sims, H.

    2015-10-01

    Enriched uranium is commonly stored in fluoride matrices such as UF6. Alpha decays of uranium in UF6 will create neutrons via the 19F(α,n)22Na reaction. An improved cross section for this reaction will enable improved nondestructive assays of uranium content in storage cylinders at material enrichment facilities. To determine this reaction cross section, we have performed experiments using both forward and inverse kinematic techniques at the University of Notre Dame (forward) and Oak Ridge National Laboratory (inverse). Both experiments utilized the Versatile Array of Neutron Detectors at Low Energy (VANDLE) for neutron detection. The ORNL experiment also used a new ionization chamber for 22Na particle identification. Gating on the 22Na nuclei detected drastically reduced the background counts in the neutron time-of-flight spectra. The latest analysis and results will be presented for 19F beam energies ranging from 20-37 MeV. This work is funded in part by the DOE Office of Nuclear Physics, the National Nuclear Security Administration's Office of Defense Nuclear Nonproliferation R&D, and the NSF.

  6. Probing protein structure by solvent perturbation of NMR spectra: the surface accessibility of bovine pancreatic trypsin inhibitor.

    PubMed Central

    Molinari, H; Esposito, G; Ragona, L; Pegna, M; Niccolai, N; Brunne, R M; Lesk, A M; Zetta, L

    1997-01-01

    In the absence of specific interactions, the relative attenuation of protein NMR signals due to added stable free radicals such as TEMPOL should reflect the solvent accessibility of the molecular surface. The quantitative correlation between observed attenuation and surface accessibility was investigated with a model system, i.e., the small protein bovine pancreatic trypsin inhibitor. A detailed discussion is presented on the reliability and limits of the approach, and guidelines are provided for data acquisition, treatment, and interpretation. The NMR-derived accessibilities are compared with those obtained from x-ray diffraction and molecular dynamics data. Although the time-averaged accessibilities from molecular dynamics are ideally suited to fit the NMR data, better agreement was observed between the paramagnetic attenuations of the fingerprint cross-peaks of homonuclear proton spectra and the total NH and H alpha accessibilities calculated from x-ray coordinates, than from time-averaged molecular dynamics simulations. In addition, the solvent perturbation response appears to be a promising approach for detecting the thermal conformational evolution of secondary structure elements in proteins. PMID:9199802

  7. Fast acquisition of high-resolution NMR spectra in inhomogeneous fields via intermolecular double-quantum coherences

    PubMed Central

    Chen, Zhong; Cai, Shuhui; Chen, Zhiwei; Zhong, Jianhui

    2009-01-01

    A pulse sequence, IDEAL-II, is proposed based on the concept of intermolecular dipolar-interaction enhanced all lines [Z. Chen et al., J. Am. Chem. Soc. 126, 446 (2004)] for obtaining one-dimensional (1D) high-resolution liquid NMR spectra in inhomogeneous fields via two-dimensional acquisitions. With the new acquisition scheme, the range of magnetic field inhomogeneity rather than chemical shift is sampled in the indirect dimension. This enables a great reduction in acquisition time and amount of data, much improved over the original IDEAL implementation. It is applicable to both isolated and J-coupled spin systems in liquid. For the latter, apparent J coupling constants are magnified threefold in spectra obtained with this sequence. This allows a more accurate measurement of J coupling constants in the cases of small J coupling constants or large inhomogeneous fields. Analytical expression was derived based on intermolecular multiple-quantum coherence treatments. Solution samples that were purposely deshimmed and biological samples with intrinsic field inhomogeneities were tested. Experimental results demonstrate that this sequence retains useful structural information including chemical shifts, relative peak areas, and multiplet patterns of J coupling even when the field inhomogeneity is severe enough to almost erase all spectroscopic information with conventional 1D single-quantum coherence techniques. This sequence is more applicable to weakly coupled and uncoupled spin systems, potentially useful for studying metabolites in in vivo NMR spectroscopy and for characterizing technologically important new materials in combinatorial chemistry. PMID:19256612

  8. Site-resolved 2H relaxation experiments in solid materials by global line-shape analysis of MAS NMR spectra

    NASA Astrophysics Data System (ADS)

    Lindh, E. L.; Stilbs, P.; Furó, I.

    2016-07-01

    We investigate a way one can achieve good spectral resolution in 2H MAS NMR experiments. The goal is to be able to distinguish between and study sites in various deuterated materials with small chemical shift dispersion. We show that the 2H MAS NMR spectra recorded during a spin-relaxation experiment are amenable to spectral decomposition because of the different evolution of spectral components during the relaxation delay. We verify that the results are robust by global least-square fitting of the spectral series both under the assumption of specific line shapes and without such assumptions (COmponent-REsolved spectroscopy, CORE). In addition, we investigate the reliability of the developed protocol by analyzing spectra simulated with different combinations of spectral parameters. The performance is demonstrated in a model material of deuterated poly(methacrylic acid) that contains two 2H spin populations with similar chemical shifts but different quadrupole splittings. In 2H-exchanged cellulose containing two 2H spin populations with very similar chemical shifts and quadrupole splittings, the method provides new site-selective information about the molecular dynamics.

  9. Site-resolved (2)H relaxation experiments in solid materials by global line-shape analysis of MAS NMR spectra.

    PubMed

    Lindh, E L; Stilbs, P; Furó, I

    2016-07-01

    We investigate a way one can achieve good spectral resolution in (2)H MAS NMR experiments. The goal is to be able to distinguish between and study sites in various deuterated materials with small chemical shift dispersion. We show that the (2)H MAS NMR spectra recorded during a spin-relaxation experiment are amenable to spectral decomposition because of the different evolution of spectral components during the relaxation delay. We verify that the results are robust by global least-square fitting of the spectral series both under the assumption of specific line shapes and without such assumptions (COmponent-REsolved spectroscopy, CORE). In addition, we investigate the reliability of the developed protocol by analyzing spectra simulated with different combinations of spectral parameters. The performance is demonstrated in a model material of deuterated poly(methacrylic acid) that contains two (2)H spin populations with similar chemical shifts but different quadrupole splittings. In (2)H-exchanged cellulose containing two (2)H spin populations with very similar chemical shifts and quadrupole splittings, the method provides new site-selective information about the molecular dynamics. PMID:27152833

  10. Metabonomics classifies pathways affected by bioactive compounds. Artificial neural network classification of NMR spectra of plant extracts.

    PubMed

    Ott, Karl-Heinz; Araníbar, Nelly; Singh, Bijay; Stockton, Gerald W

    2003-03-01

    The biochemical mode-of-action (MOA) for herbicides and other bioactive compounds can be rapidly and simultaneously classified by automated pattern recognition of the metabonome that is embodied in the 1H NMR spectrum of a crude plant extract. The ca. 300 herbicides that are used in agriculture today affect less than 30 different biochemical pathways. In this report, 19 of the most interesting MOAs were automatically classified. Corn (Zea mays) plants were treated with various herbicides such as imazethapyr, glyphosate, sethoxydim, and diuron, which represent various biochemical modes-of-action such as inhibition of specific enzymes (acetohydroxy acid synthase [AHAS], protoporphyrin IX oxidase [PROTOX], 5-enolpyruvylshikimate-3-phosphate synthase [EPSPS], acetyl CoA carboxylase [ACC-ase], etc.), or protein complexes (photosystems I and II), or major biological process such as oxidative phosphorylation, auxin transport, microtubule growth, and mitosis. Crude isolates from the treated plants were subjected to 1H NMR spectroscopy, and the spectra were classified by artificial neural network analysis to discriminate the herbicide modes-of-action. We demonstrate the use and refinement of the method, and present cross-validated assignments for the metabolite NMR profiles of over 400 plant isolates. The MOA screen also recognizes when a new mode-of-action is present, which is considered extremely important for the herbicide discovery process, and can be used to study deviations in the metabolism of compounds from a chemical synthesis program. The combination of NMR metabolite profiling and neural network classification is expected to be similarly relevant to other metabonomic profiling applications, such as in drug discovery. PMID:12590124

  11. Cross polarization and magic angle sample spinning NMR spectra of model organic compounds. 1. Highly protonated molecules

    SciTech Connect

    Alemany, L.B.; Grant, D.M.; Pugmire, R.J.; Alger, T.D.; Zilm, K.W.

    1983-04-20

    CP/MAS /sup 13/C NMR spectra were obtained at various contact times on ten solid organic compounds containing a variety of simple functional groups. The spectra show that signal intensities that agree with atomic ratios can be obtained with a contact time of 2.25 ms and often with a contact time as short as about 1 ms. Computer analysis of signal intensities obtained at a minimum of ten different contact times provides T/sub CH/ data that are consistent with these experimental results. The experimental results are also consistent with the previously reported lack of significant variation in the spectra of complex organic solids obtained with contact times of about 1 to 3 ms. In general, nonprotonated carbon atoms polarize more slowly than protonated carbon atoms. The compounds exhibit a wide range of proton spin lattice relaxation times. Some compounds exhibit more resonances than are found in the /sup 13/C(/sup 1/H) spectra of the compounds in solution because the crystalline environment removes the nominal spatial equivalence found for carbon atoms related to each other by unimolecular symmetry elements.

  12. The Chemical Shift Baseline for High-Pressure NMR Spectra of Proteins.

    PubMed

    Frach, Roland; Kibies, Patrick; Böttcher, Saraphina; Pongratz, Tim; Strohfeldt, Steven; Kurrmann, Simon; Koehler, Joerg; Hofmann, Martin; Kremer, Werner; Kalbitzer, Hans Robert; Reiser, Oliver; Horinek, Dominik; Kast, Stefan M

    2016-07-18

    High-pressure (HP) NMR spectroscopy is an important method for detecting rare functional states of proteins by analyzing the pressure response of chemical shifts. However, for the analysis of the shifts it is mandatory to understand the origin of the observed pressure dependence. Here we present experimental HP NMR data on the (15) N-enriched peptide bond model, N-methylacetamide (NMA), in water, combined with quantum-chemical computations of the magnetic parameters using a pressure-sensitive solvation model. Theoretical analysis of NMA and the experimentally used internal reference standard 4,4-dimethyl-4-silapentane-1-sulfonic (DSS) reveal that a substantial part of observed shifts can be attributed to purely solvent-induced electronic polarization of the backbone. DSS is only marginally responsive to pressure changes and is therefore a reliable sensor for variations in the local magnetic field caused by pressure-induced changes of the magnetic susceptibility of the solvent. PMID:27282319

  13. Identification of 2-Fluoro-2-deoxy- D-glucose Metabolites by 19F{ 1H} Hetero-RELAY

    NASA Astrophysics Data System (ADS)

    O'Connell, Thomas M.; London, Robert E.

    1995-12-01

    It has been proposed that in mammalian systems the glucose analog 2-fluoro-2-deoxy-D-glucose (FDG) is phosphoryated and subsequently converted to the corresponding mannose derivative via the action of phosphoglucose isomerase. As is generally true in metabolic studies of fluorinated molecules, the fluorine spectrum alone is suggestive, without providing definitive structural evidence, while the use of1H NMR techniques generally suffers from a lack of adequate selectivity. A1H-19F version of the hetero-RELAY experiment has been applied to this problem. Formation of the corresponding C-6 phosphorylated 2-FDG analog with hexokinase, followed by treatment of the resulting phosphorylated products with phosphoglucose isomerase, resulted in the observation of additional19F resonances consistent with the corresponding 2-fluoro-2-deoxy-D-mannose-6-phosphate metabolite. A more definitive product identification was obtained using the hetero-RELAY experiment, which provides a complete19F-decoupled proton spectrum for each of the fluorinated species.

  14. STATISTICAL ANALYSIS OF TANK 19F FLOOR SAMPLE RESULTS

    SciTech Connect

    Harris, S.

    2010-09-02

    Representative sampling has been completed for characterization of the residual material on the floor of Tank 19F as per the statistical sampling plan developed by Harris and Shine. Samples from eight locations have been obtained from the tank floor and two of the samples were archived as a contingency. Six samples, referred to in this report as the current scrape samples, have been submitted to and analyzed by SRNL. This report contains the statistical analysis of the floor sample analytical results to determine if further data are needed to reduce uncertainty. Included are comparisons with the prior Mantis samples results to determine if they can be pooled with the current scrape samples to estimate the upper 95% confidence limits (UCL95%) for concentration. Statistical analysis revealed that the Mantis and current scrape sample results are not compatible. Therefore, the Mantis sample results were not used to support the quantification of analytes in the residual material. Significant spatial variability among the current scrape sample results was not found. Constituent concentrations were similar between the North and South hemispheres as well as between the inner and outer regions of the tank floor. The current scrape sample results from all six samples fall within their 3-sigma limits. In view of the results from numerous statistical tests, the data were pooled from all six current scrape samples. As such, an adequate sample size was provided for quantification of the residual material on the floor of Tank 19F. The uncertainty is quantified in this report by an UCL95% on each analyte concentration. The uncertainty in analyte concentration was calculated as a function of the number of samples, the average, and the standard deviation of the analytical results. The UCL95% was based entirely on the six current scrape sample results (each averaged across three analytical determinations).

  15. Measurement of the 19F(α,n) Cross Section for Nuclear Safeguards Science

    NASA Astrophysics Data System (ADS)

    Reingold, C. S.; Cizewski, J. A.; Peters, W. A.; Clement, R. R. C.; Bardayan, D. W.; Smith, M. S.; Stech, E.; Strauss, S.; Tan, W. P.; Wiescher, M.; Madurga, M.; Vandle Collaboration

    2013-10-01

    A precise measurement of the 19F(α,n) cross section will improve Non Destructive Assays (NDA) of UF6 and other actinide-fluoride samples via neutron detection techniques. We will determine the cross section with two complementary approaches. First, we will bombard a LaF3 target with a pulsed 4He beam from the Notre Dame FN tandem accelerator; second, we will send a fluorine beam from the ORNL tandem through a pure helium gas target. The neutron spectra from both of these reactions will be measured using the Versatile Array of Neutron Detectors at Low Energy (VANDLE), and coincident γ rays with a HPGe detector. We report here on data taken with VANDLE and a HPGe detector on a LaF3 target. My poster outlines the motivation for this experiment, explains the stages of this experiment, the current experimental setup, and preliminary data. This work is supported by the NNSA.

  16. (1)H and (19)F spin-lattice relaxation and CH3 or CF3 reorientation in molecular solids containing both H and F atoms.

    PubMed

    Beckmann, Peter A; Rheingold, Arnold L

    2016-04-21

    The dynamics of methyl (CH3) and fluoromethyl (CF3) groups in organic molecular (van der Waals) solids can be exploited to survey their local environments. We report solid state (1)H and (19)F spin-lattice relaxationexperiments in polycrystalline 3-trifluoromethoxycinnamic acid, along with an X-ray diffraction determination of the molecular and crystal structure, to investigate the intramolecular and intermolecular interactions that determine the properties that characterize the CF3 reorientation. The molecule is of no particular interest; it simply provides a motionless backbone (on the nuclear magnetic resonance(NMR) time scale) to investigate CF3 reorientation occurring on the NMR time scale. The effects of (19)F-(19)F and (19)F-(1)H spin-spin dipolar interactions on the complicated nonexponential NMRrelaxation provide independent inputs into determining a model for CF3 reorientation. As such, these experiments provide much more information than when only one spin species (usually (1)H) is present. In Sec. IV, which can be read immediately after the Introduction without reading the rest of the paper, we compare the barrier to CH3 and CF3 reorientation in seven organic solids and separate this barrier into intramolecular and intermolecular components. PMID:27389221

  17. Measurement of the 19F(α,n) Cross Section for Nuclear Safeguards Science

    NASA Astrophysics Data System (ADS)

    Reingold, C. S.; Cizewski, J. A.; Burcher, S.; Manning, B.; Peters, W. A.; Clement, R. R. C.; Smith, M. S.; Bardayan, D. W.; Stech, E.; Tan, W. P.; Madurga, M.; Ilyushkin, S.; Thompson, S.; Vandle Collaboration

    2014-09-01

    A precise measurement of the 19F(α,n) cross section will improve Non Destructive Assays (NDA) of UF6 and other actinide-fluoride samples via neutron detection techniques. The cross section will be determined with two complementary approaches. We have already bombarded a LaF3 target with a pulsed 4He beam from the Notre Dame FN tandem accelerator; next, we will send a fluorine beam from the ORNL tandem through a pure helium gas target. The neutron spectra from both of these reactions will be measured using the Versatile Array of Neutron Detectors at Low Energy (VANDLE), and coincident γ rays with a HPGe detector. We report here on data taken with VANDLE and a HPGe detector on a LaF3 target. This poster outlines the motivation for this experiment, explains the stages of this experiment, and presents both of our experimental setups and preliminary data. A precise measurement of the 19F(α,n) cross section will improve Non Destructive Assays (NDA) of UF6 and other actinide-fluoride samples via neutron detection techniques. The cross section will be determined with two complementary approaches. We have already bombarded a LaF3 target with a pulsed 4He beam from the Notre Dame FN tandem accelerator; next, we will send a fluorine beam from the ORNL tandem through a pure helium gas target. The neutron spectra from both of these reactions will be measured using the Versatile Array of Neutron Detectors at Low Energy (VANDLE), and coincident γ rays with a HPGe detector. We report here on data taken with VANDLE and a HPGe detector on a LaF3 target. This poster outlines the motivation for this experiment, explains the stages of this experiment, and presents both of our experimental setups and preliminary data. This work is supported by the NNSA, NSF, and DOE.

  18. Cucurbitacins from Cayaponia racemosa: isolation and total assignment of 1H and 13C NMR spectra.

    PubMed

    Chaves, Davina C; Assunção, João Carlos C; Braz-Filho, Raimundo; Lemos, Telma L G; Monte, Francisco J Q

    2007-05-01

    Two new cucurbitane-type triterpenoids, 2beta,3beta,16alpha,20(R),25-pentahydroxy-9-methyl-19-norlanost-5-en-7,22-dione and 2beta,3beta,16alpha,20(R),25-pentahydroxy-9-methyl-19-norlanost-5-en-7,11,22-trione, were isolated from fruits of Cayaponia racemosa. The total (1)H and (13)C chemical shift assignment of these two closely related compounds is described, making use of one- and two-dimensional NMR techniques. PMID:17372957

  19. Modified Prony Method to Resolve and Quantify in Vivo31P NMR Spectra of Tumors

    NASA Astrophysics Data System (ADS)

    Barone, P.; Guidoni, L.; Ragona, R.; Viti, V.; Furman, E.; Degani, H.

    Prony's method, successfully used in processing NMR signals, performs poorly at low signal-to-noise ratios. To overcome this problem, a statistical approach has been adopted by using Prony's method as a sampling device from the distribution associated with the true spectrum. Specifically, Prony's method is applied for each regression order p and number of data points n, both considered in a suitable range, and the estimates of frequencies, amplitudes, and decay factors are pooled separately. A histogram of the pooled frequencies is computed and, looking at the histogram, a lower and an upper frequency bound for each line of interest is determined. All frequency estimates in each of the determined intervals as well as associated decay factors and amplitudes are considered to be independent normal variates. A mean value and a corresponding 95% confidence interval are computed for each parameter. 31P NMR signals from MCF7 human breast cancer cells, inoculated into athymic mice and which developed into tumors, have been processed with traditional methods and with this modified Prony's method. The main components of the phosphomonoester peak, namely those deriving from phosphorylcholine and phosphorylethanolamine, are always well resolved with this new approach and their relative amplitudes can be consequently evaluated. Peak intensities of these two signals show different behavior during treatment of tumors with the antiestrogenic drug tamoxifen. The results of this new approach are compared with those obtainable with traditional techniques.

  20. A novel approach to the rapid assignment of (13)C NMR spectra of major components of vegetable oils such as avocado, mango kernel and macadamia nut oils.

    PubMed

    Retief, Liezel; McKenzie, Jean M; Koch, Klaus R

    2009-09-01

    Assignment of (13)C nuclear magnetic resonance (NMR) spectra of major fatty acid components of South African produced vegetable oils was attempted using a method in which the vegetable oil was spiked with a standard triacylglycerol. This proved to be inadequate and therefore a new rapid and potentially generic graphical linear correlation method is proposed for assignment of the (13)C NMR spectra of major fatty acid components of apricot kernel, avocado pear, grapeseed, macadamia nut, mango kernel and marula vegetable oils. In this graphical correlation method, chemical shifts of fatty acids present in a known standard triacylglycerol is plotted against the corresponding chemical shifts of fatty acids present in the vegetable oils. This new approach (under carefully defined conditions and concentrations) was found especially useful for spectrally crowded regions where significant peak overlap occurs and was validated with the well-known (13)C NMR spectrum of olive oil which has been extensively reported in the literature. In this way, a full assignment of the (13)C{1H} NMR spectra of the vegetable oils, as well as tripalmitolein was readily achieved and the resonances belonging to the palmitoleic acid component of the triacylglycerols in the case of macadamia nut and avocado pear oil resonances were also assigned for the first time in the (13)C NMR spectra of these oils. PMID:19544589

  1. Lifetime-parameters for quasi elastic and deep inelastic collisions extracted from complete angular distributions of89Y(19F, x) y reactions

    NASA Astrophysics Data System (ADS)

    Suomijärvi, T.; Lucas, R.; Mermaz, M. C.; Coffin, J.-P.; Guillaume, G.; Heusch, B.; Jundt, F.; Rami, F.

    1985-09-01

    Energy spectra and angular distributions of heavy fragments produced in 19F + 89Y reaction at 140 MeV incident energy have been measured. Two different domains of reaction mechanism are observed at forward and backward angles respectively; the corresponding lifetime parameters are extracted from their angular distributions.

  2. Analysis of 31P MAS NMR spectra and transversal relaxation of bacteriophage M13 and tobacco mosaic virus.

    PubMed Central

    Magusin, P C; Hemminga, M A

    1994-01-01

    Phosphorus magic angle spinning nuclear magnetic resonance (NMR) spectra and transversal relaxation of M13 and TMV are analyzed by use of a model, which includes both local backbone motions of the encapsulated nucleic acid molecules and overall rotational diffusion of the rod-shaped virions about their length axis. Backbone motions influence the sideband intensities by causing a fast restricted reorientation of the phosphodiesters. To evaluate their influence on the observed sideband patterns, we extend the model that we used previously to analyze nonspinning 31P NMR lineshapes (Magusin, P.C.M.M., and M. A. Hemminga. 1993a. Biophys. J. 64:1861-1868) to magic angle spinning NMR experiments. Backbone motions also influence the conformation of the phosphodiesters, causing conformational averaging of the isotropic chemical shift, which offers a possible explanation for the various linewidths of the centerband and the sidebands observed for M13 gels under various conditions. The change of the experimental lineshape of M13 as a function of temperature and hydration is interpreted in terms of fast restricted fluctuation of the dihedral angles between the POC and the OCH planes on both sides of the 31P nucleus in the nucleic acid backbone. Backbone motions also seem to be the main cause of transversal relaxation measured at spinning rates of 4 kHz or higher. At spinning rates less than 2 kHz, transversal relaxation is significantly faster. This effect is assigned to slow, overall rotation of the rod-shaped M13 phage about its length axis. Equations are derived to simulate the observed dependence of T2e on the spinning rate. PMID:8038391

  3. Molecular structure, vibrational spectra and DFT molecular orbital calculations (TD-DFT and NMR) of the antiproliferative drug Methotrexate

    NASA Astrophysics Data System (ADS)

    Ayyappan, S.; Sundaraganesan, N.; Aroulmoji, V.; Murano, E.; Sebastian, S.

    2010-09-01

    The FT-IR and FT-Raman spectral studies of the Methotrexate (MTX) were carried out. The equilibrium geometry, various bonding features and harmonic vibrational frequencies of MTX have been investigated with the help of B3LYP density functional theory (DFT) using 6-31G(d) as basis set. Detailed analysis of the vibrational spectra has been made with the aid of theoretically predicted vibrational frequencies. The vibrational analysis confirms the differently acting ring modes, steric repulsion, conjugation and back-donation. The energy and oscillator strength calculated by Time-Dependent Density Functional Theory (TD-DFT) results complement with the experimental findings. The calculated HOMO and LUMO energies show that charge transfer occur within the molecule. Good correlations between the experimental 1H and 13C NMR chemical shifts in DMSO solution and calculated GIAO shielding tensors were found.

  4. Weighted least-squares deconvolution method for discovery of group differences between complex biofluid 1H NMR spectra

    NASA Astrophysics Data System (ADS)

    Gipson, Geoffrey T.; Tatsuoka, Kay S.; Sweatman, Brian C.; Connor, Susan C.

    2006-12-01

    Biomarker discovery through analysis of high-throughput NMR data is a challenging, time-consuming process due to the requirement of sophisticated, dataset specific preprocessing techniques and the inherent complexity of the data. Here, we demonstrate the use of weighted, constrained least-squares for fitting a linear mixture of reference standard data to complex urine NMR spectra as an automated way of utilizing current assignment knowledge and the ability to deconvolve confounded spectral regions. Following the least-squares fit, univariate statistics were used to identify metabolites associated with group differences. This method was evaluated through applications on simulated datasets and a murine diabetes dataset. Furthermore, we examined the differential ability of various weighting metrics to correctly identify discriminative markers. Our findings suggest that the weighted least-squares approach is effective for identifying biochemical discriminators of varying physiological states. Additionally, the superiority of specific weighting metrics is demonstrated in particular datasets. An additional strength of this methodology is the ability for individual investigators to couple this analysis with laboratory specific preprocessing techniques.

  5. Importance of Tensor Asymmetry for the Analysis of 2H-NMR Spectra from Deuterated Aromatic Rings

    PubMed Central

    Pulay, Peter; Scherer, Erin M.; van der Wel, Patrick C. A.; Koeppe, Roger E.

    2008-01-01

    We have used ab initio calculations to compute all of the tensor elements of the electric field gradient for each carbon-deuterium bond in the ring of deuterated 3-methyl-indole. Previous analyses have ignored the smaller tensor elements perpendicular to principal component Vzz which is aligned with the C-2H bond (local bond z-axis). At each ring position, the smallest element Vxx is in the molecular plane and Vyy is normal to the plane of the ring. The asymmetry parameter η = (|Vyy|-|Vxx|)/|Vzz| ranges from 0.07 at C4 to 0.11 at C2. We used the perpendicular (off-bond) tensor elements, in concert with an improved understanding of the indole ring geometry1, to analyze prototype 2H-NMR spectra from well-oriented, hydrated peptide/lipid samples. For each of the 4 tryptophans of membrane-spanning gramicidin A (gA)2 channels, the inclusion of the perpendicular elements changes the deduced ring tilt by nearly 10° and increases the ring principal order parameter Szz for overall ‘wobble’ with respect to the membrane normal (molecular z-axis). With the improved analysis, the magnitude of Szz for the outermost indole rings of Trp13 and Trp15 is indistinguishable from that observed previously for backbone atoms (0.93 ± 0.03). For the Trp9 and Trp11 rings, which are slightly more buried within the membrane, Szz is slightly lower (0.86 ± 0.03). The results show that the perpendicular elements are important for the detailed analysis of 2H-NMR spectra from aromatic ring systems. PMID:16332101

  6. The effect of sample hydration on 13C CPMAS NMR spectra of fulvic acids

    USGS Publications Warehouse

    Hatcher, P.G.; Wilson, M.A.

    1991-01-01

    Three fulvic acids, two of which have been well studied by a number of other groups (Armadale and Suwannee river fulvic acids) have been examined by high resolution solid-state 13C-NMR techniques to delineate the effect of absorbed water. Two main effects of absorbed water were observed: (1) changes in spin lattice relaxation times in the rotating frame and cross polarization times and (2) total loss of signal so that some fulvic acid is effectively in solution. These results suggest that discrepancies in the literature concerning observed relative signal intensities from different structural groups are due to absorbed water and emphasize the necessity for proper precautionary drying before spectroscopic analysis. ?? 1991.

  7. Theory of damped quantum rotation in NMR spectra. I. Fundamental aspects.

    PubMed

    Ratajczyk, T; Szymański, S

    2005-11-22

    The damped quantum rotation (DQR) theory, formulated originally for methyl-like atomic groupings, is now extended to hindered (N>3)-fold molecular rotors, such as the cyclopentadienyl, benzene, and cycloheptatrienyl rings in solid phase environments. It heightens the significance of the Pauli principle in shaping up the stochastic dynamics of such objects, reflected in NMR line shapes. The corresponding NMR line-shape equation is derived; its stochastic part is shown for the first time to have the double commutator form for any values of the quantum-mechanical (coherence-damping) rate constants entering it. Constraints on the relative magnitudes of such constants are determined under which the DQR line-shape equation is converted into the phenomenological Alexander-Binsch equation describing classical jumps of the rotor. When all the quantum rate constants happen to be equal, the phenomenological model of equal jump rates between any two of the N (equivalent) orientations of the rotor is reproduced. On the other hand, the seemingly most plausible (for N>3) nearest-neighbor hopping model does not have any peculiar grounds in the DQR approach. For the special instances of stochastic molecular motions addressed in this work, the extended DQR formalism affords a quantification of the "degree of classicality" represented by a complete set of the relevant quantum rate constants. In view of our earlier experimental findings for the methyl rotors, the very occurrence of the nonclassical DQR effects seems unquestionable even for the objects of the size of benzene. The question of under what circumstances such effects can be big enough to be detected experimentally will be addressed in Part II of this work. PMID:16351283

  8. (19)F-MRI for monitoring human NK cells in vivo.

    PubMed

    Bouchlaka, Myriam N; Ludwig, Kai D; Gordon, Jeremy W; Kutz, Matthew P; Bednarz, Bryan P; Fain, Sean B; Capitini, Christian M

    2016-05-01

    The availability of clinical-grade cytokines and artificial antigen-presenting cells has accelerated interest in using natural killer (NK) cells as adoptive cellular therapy (ACT) for cancer. One of the technological shortcomings of translating therapies from animal models to clinical application is the inability to effectively and non-invasively track these cells after infusion in patients. We have optimized the nonradioactive isotope fluorine-19 ((19)F) as a means to label and track NK cells in preclinical models using magnetic resonance imaging (MRI). Human NK cells were expanded with interleukin (IL)-2 and labeled in vitro with increasing concentrations of (19)F. Doses as low as 2 mg/mL (19)F were detected by MRI. NK cell viability was only decreased at 8 mg/mL (19)F. No effects on NK cell cytotoxicity against K562 leukemia cells were observed with 2, 4 or 8 mg/mL (19)F. Higher doses of (19)F, 4 mg/mL and 8 mg/mL, led to an improved (19)F signal by MRI with 3 × 10(11) (19)F atoms per NK cell. The 4 mg/mL (19)F labeling had no effect on NK cell function via secretion of granzyme B or interferon gamma (IFNγ), compared to NK cells exposed to vehicle alone. (19)F-labeled NK cells were detectable immediately by MRI after intratumoral injection in NSG mice and up to day 8. When (19)F-labeled NK cells were injected subcutaneously, we observed a loss of signal through time at the site of injection suggesting NK cell migration to distant organs. The (19)F perfluorocarbon is a safe and effective reagent for monitoring the persistence and trafficking of NK cell infusions in vivo, and may have potential for developing novel imaging techniques to monitor ACT for cancer. PMID:27467963

  9. Improved Quantitative 19F MR Molecular Imaging With Flip Angle Calibration and B1-Mapping Compensation

    PubMed Central

    Goette, Matthew J.; Lanza, Gregory M.; Caruthers, Shelton D.; Wickline, Samuel A.

    2014-01-01

    Purpose To improve 19F flip angle calibration and compensate for B1 inhomogeneities in quantitative 19F MRI of sparse molecular epitopes with perfluorocarbon (PFC) nanoparticle (NP) emulsion contrast agents. Materials and Methods Flip angle sweep experiments on PFC-NP point source phantoms with three custom-designed 19F/1H dual-tuned coils revealed a difference in required power settings for 19F and 1H nuclei, which was used to calculate a calibration ratio specific for each coil. An image-based correction technique was developed using B1-field mapping on 1H to correct for 19F and 1H images in two phantom experiments. Results Optimized 19F peak power differed significantly from that of 1H power for each coil (p<0.05). A ratio of 19F/1H power settings yielded a coil-specific and spatially independent calibration value (surface: 1.48±0.06; semi-cylindrical: 1.71±0.02, single-turn-solenoid: 1.92±0.03). 1H-image-based B1 correction equalized the signal intensity of 19F images for two identical 19F PFC-NP samples placed in different parts of the field, which were offset significantly by ~66% (p<0.001) before correction. Conclusion 19F flip angle calibration and B1-mapping compensations to the 19F images employing the more abundant 1H signal as a basis for correction result in a significant change in the quantification of sparse 19F MR signals from targeted PFC NP emulsions. PMID:25425244

  10. Sensitivity Gains, Linearity, and Spectral Reproducibility in Nonuniformly Sampled Multidimensional MAS NMR Spectra of High Dynamic Range.

    SciTech Connect

    Suiter, Christopher L.; Paramasivam, Sivakumar; Hou, Guangjin; Sun, Shangjin; Rice, David M.; Hoch, Jeffrey C.; Rovnyak, David S.; Polenova, Tatyana E.

    2014-04-22

    Recently, we have demonstrated that considerable inherent sensitivity gains are attained in MAS NMR spectra acquired by nonuniform sampling (NUS) and introduced maximum entropy interpolation (MINT) processing that assures the linearity of transformation between the time and frequency domains. In this report, we examine the utility of the NUS/MINT approach in multidimensional datasets possessing high dynamic range, such as homonuclear 13C–13C correlation spectra. We demonstrate on model compounds and on 1–73-(U-13C,15N)/74–108-(U-15N) E. coli thioredoxin reassembly, that with appropriately constructed 50 % NUS schedules inherent sensitivity gains of 1.7–2.1-fold are readily reached in such datasets. We show that both linearity and line width are retained under these experimental conditions throughout the entire dynamic range of the signals. Furthermore, we demonstrate that the reproducibility of the peak intensities is excellent in the NUS/MINT approach when experiments are repeated multiple times and identical experimental and processing conditions are employed. Finally, we discuss the principles for design and implementation of random exponentially biased NUS sampling schedules for homonuclear 13C–13C MAS correlation experiments that yield high quality artifact-free datasets.

  11. Toward dynamic isotopomer analysis in the rat brain in vivo: automatic quantitation of 13C NMR spectra using LCModel.

    PubMed

    Henry, Pierre-Gilles; Oz, Gülin; Provencher, Stephen; Gruetter, Rolf

    2003-01-01

    The LCModel method was adapted to analyze localized in vivo (13)C NMR spectra obtained from the rat brain in vivo at 9.4 T. Prior knowledge of chemical-shifts, J-coupling constants and J-evolution was included in the analysis. Up to 50 different isotopomer signals corresponding to 10 metabolites were quantified simultaneously in 400 microl volumes in the rat brain in vivo during infusion of [1,6-(13)C(2)]glucose. The analysis remained accurate even at low signal-to-noise ratio of the order of 3:1. The relative distribution of isotopomers in glutamate, glutamine and aspartate determined in vivo in 22 min was in excellent agreement with that measured in brain extracts. Quantitation of time series of (13)C spectra yielded time courses of total (13)C label incorporation into up to 16 carbon positions, as well as time courses of individual isotopomer signals, with a temporal resolution as low as 5 min (dynamic isotopomer analysis). The possibility of measuring in vivo a wealth of information that was hitherto accessible only in extracts is likely to expand the scope of metabolic studies in the intact brain. PMID:14679502

  12. Vibrational spectra, molecular structure, NBO, UV, NMR, first order hyperpolarizability, analysis of 4-Methoxy-4'-Nitrobiphenyl by density functional theory.

    PubMed

    Govindarasu, K; Kavitha, E

    2014-03-25

    In this study, geometrical optimization, spectroscopic analysis, electronic structure and nuclear magnetic resonance studies of 4-Methoxy-4'-Nitrobiphenyl (abbreviated as 4M4'NBPL) were investigated by utilizing HF and DFT/B3LYP with 6-31G(d,p) as basis set. The equilibrium geometry, vibrational wavenumbers and the first order hyperpolarizability of the 4M4'NBPL have been calculated with the help of density functional theory computations. The FT-IR and FT-Raman spectra were recorded in the region 4000-400 cm(-1) and 3500-50 cm(-1) respectively. Natural Bond Orbital (NBO) analysis is also used to explain the molecular stability. The UV-Vis absorption spectra of the title compound dissolved in chloroform were recorded in the range of 200-800 cm(-1). The HOMO-LUMO energy gap explains the charge interaction taking place within the molecule. Good correlation between the experimental (1)H and (13)C NMR chemical shifts in chloroform solution and calculated GIAO shielding tensors were found. The dipole moment, linear polarizability and first order hyperpolarizability values were also computed. The linear polarizability and first order hyperpolarizability of the studied molecule indicate that the compound is a good candidate of nonlinear optical materials. The chemical reactivity and thermodynamic properties of 4M4'NBPL at different temperature are calculated. In addition, molecular electrostatic potential (MEP), frontier molecular orbitals (FMO) analysis were investigated using theoretical calculations. PMID:24299985

  13. Vibrational spectra, molecular structure, NBO, UV, NMR, first order hyperpolarizability, analysis of 4-Methoxy-4";-Nitrobiphenyl by density functional theory

    NASA Astrophysics Data System (ADS)

    Govindarasu, K.; Kavitha, E.

    2014-03-01

    In this study, geometrical optimization, spectroscopic analysis, electronic structure and nuclear magnetic resonance studies of 4-Methoxy-4";-Nitrobiphenyl (abbreviated as 4M4";NBPL) were investigated by utilizing HF and DFT/B3LYP with 6-31G(d,p) as basis set. The equilibrium geometry, vibrational wavenumbers and the first order hyperpolarizability of the 4M4";NBPL have been calculated with the help of density functional theory computations. The FT-IR and FT-Raman spectra were recorded in the region 4000-400 cm-1 and 3500-50 cm-1 respectively. Natural Bond Orbital (NBO) analysis is also used to explain the molecular stability. The UV-Vis absorption spectra of the title compound dissolved in chloroform were recorded in the range of 200-800 cm-1. The HOMO-LUMO energy gap explains the charge interaction taking place within the molecule. Good correlation between the experimental 1H and 13C NMR chemical shifts in chloroform solution and calculated GIAO shielding tensors were found. The dipole moment, linear polarizability and first order hyperpolarizability values were also computed. The linear polarizability and first order hyperpolarizability of the studied molecule indicate that the compound is a good candidate of nonlinear optical materials. The chemical reactivity and thermodynamic properties of 4M4";NBPL at different temperature are calculated. In addition, molecular electrostatic potential (MEP), frontier molecular orbitals (FMO) analysis were investigated using theoretical calculations.

  14. Probing different perfluorocarbons for in vivo inflammation imaging by 19F MRI: image reconstruction, biological half-lives and sensitivity.

    PubMed

    Jacoby, Christoph; Temme, Sebastian; Mayenfels, Friederike; Benoit, Nicole; Krafft, Marie Pierre; Schubert, Rolf; Schrader, Jürgen; Flögel, Ulrich

    2014-03-01

    Inflammatory processes can reliably be assessed by (19)F MRI using perfluorocarbons (PFCs), which is primarily based on the efficient uptake of emulsified PFCs by circulating cells of the monocyte-macrophage system and subsequent infiltration of the (19)F-labeled cells into affected tissue. An ideal candidate for the sensitive detection of fluorine-loaded cells is the biochemically inert perfluoro-15-crown-5 ether (PFCE), as it contains 20 magnetically equivalent (19)F atoms. However, the biological half-life of PFCE in the liver and spleen is extremely long, and so this substance is not suitable for future clinical applications. In the present study, we investigated alternative, nontoxic PFCs with predicted short biological half-lives and high fluorine content: perfluorooctyl bromide (PFOB), perfluorodecalin (PFD) and trans-bis-perfluorobutyl ethylene (F-44E). Despite the complex spectra of these compounds, we obtained artifact-free images using sine-squared acquisition-weighted three-dimensional chemical shift imaging and dedicated reconstruction accomplished with in-house-developed software. The signal-to-noise ratio of the images was maximized using a Nutall window with only moderate localization error. Using this approach, the retention times of the different PFCs in murine liver and spleen were determined at 9.4 T. The biological half-lives were estimated to be 9 days (PFD), 12 days (PFOB) and 28 days (F-44E), compared with more than 250 days for PFCE. In vivo sensitivity for inflammation imaging was assessed using an ear clip injury model. The alternative PFCs PFOB and F-44E provided 37% and 43%, respectively, of the PFCE intensities, whereas PFD did not show any signal in the ear model. Thus, for in vivo monitoring of inflammatory processes, PFOB emerges as the most promising candidate for possible future translation of (19)F MR inflammation imaging to human applications. PMID:24353148

  15. Towards high resolution ^1H NMR spectra of tannin colloidal aggregates

    NASA Astrophysics Data System (ADS)

    Mirabel, M.; Glories, Y.; Pianet, I.; Dufourc, E. J.

    1999-10-01

    The time dependent colloidal formation of tannins in hydro-alcoholic medium has been studied by 1H-NMR. Line broadening observed with time can be cancelled by making use of magic angle sample spinning (MASS) thus yielding sharp lines that allow structural studies. We used as an example catechin, a constitutive monomer of Bordeaux young red wine tannins. Chemical shift variations of polyphenol protons allow monitoring the time course of aggregation. La formation de tanins colloïdaux au cours du temps, en milieu hydroalcoolique, a été suivie par RMN-^1H. Un élargissement marqué des résonances est observé et peut être supprimé par la rotation de l'échantillon à l'angle magique ce qui ouvre tout un champ d'études structurales sur ces composés colloïdaux. L'exemple proposé est celui de la catéchine, monomère constitutif de tannins présents en grande quantité dans les vins rouges jeunes de Bordeaux. Des variations du déplacement chimique de certains protons polyphénoliques permettent de suivre l'évolution temporelle de l'agrégation.

  16. Relativistic force field: parametric computations of proton-proton coupling constants in (1)H NMR spectra.

    PubMed

    Kutateladze, Andrei G; Mukhina, Olga A

    2014-09-01

    Spin-spin coupling constants in (1)H NMR carry a wealth of structural information and offer a powerful tool for deciphering molecular structures. However, accurate ab initio or DFT calculations of spin-spin coupling constants have been very challenging and expensive. Scaling of (easy) Fermi contacts, fc, especially in the context of recent findings by Bally and Rablen (Bally, T.; Rablen, P. R. J. Org. Chem. 2011, 76, 4818), offers a framework for achieving practical evaluation of spin-spin coupling constants. We report a faster and more precise parametrization approach utilizing a new basis set for hydrogen atoms optimized in conjunction with (i) inexpensive B3LYP/6-31G(d) molecular geometries, (ii) inexpensive 4-31G basis set for carbon atoms in fc calculations, and (iii) individual parametrization for different atom types/hybridizations, not unlike a force field in molecular mechanics, but designed for the fc's. With the training set of 608 experimental constants we achieved rmsd <0.19 Hz. The methodology performs very well as we illustrate with a set of complex organic natural products, including strychnine (rmsd 0.19 Hz), morphine (rmsd 0.24 Hz), etc. This precision is achieved with much shorter computational times: accurate spin-spin coupling constants for the two conformers of strychnine were computed in parallel on two 16-core nodes of a Linux cluster within 10 min. PMID:25158224

  17. A Discovery-Based Hydrochlorination of Carvone Utilizing a Guided-Inquiry Approach to Determine the Product Structure from [superscript 13]C NMR Spectra

    ERIC Educational Resources Information Center

    Pelter, Michael W.; Walker, Natalie M.

    2012-01-01

    This experiment describes a discovery-based method for the regio- and stereoselective hydrochlorination of carvone, appropriate for a 3-h second-semester organic chemistry laboratory. The product is identified through interpretation of the [superscript 13]C NMR and DEPT spectra are obtained on an Anasazi EFT-60 at 15 MHz as neat samples. A…

  18. Quantitative analysis of ³¹P NMR spectra of soil extracts--dealing with overlap of broad and sharp signals.

    PubMed

    Doolette, Ashlea L; Smernik, Ronald J

    2015-09-01

    Solution (31)P NMR analysis following extraction with a mixture of sodium hydroxide and ethylenediaminetetraacetic acid is the most widely used method for detailed characterization of soil organic P. However, quantitative analysis of the (31)P NMR spectra is complicated by severe spectral overlap in the monoester region. Various deconvolution procedures have been developed for the task, yet none of these are widely accepted or implemented. In this mini-review, we first describe and compare these varying approaches. We then review approaches to similar issues of spectral overlap in biomedical science applications including NMR-based metabolic profiling and analyzing (31)P magnetic resonance spectra of ex vivo and in vivo intact tissues. The greater maturity and resourcing of this biomedical research means that a wider variety of approaches has been developed. Of particular relevance are approaches to dealing with overlap of broad and sharp signals. Although the existence of this problem is still debated in the context of soil analyses, not only is it well-recognized in biomedical applications, but multiple approaches have been developed to deal with it, including T2 editing and time-domain fitting. Perhaps the most transferable concept is the incorporation of 'prior knowledge' in the fitting of spectra. This is well established in biomedical applications but barely touched in soil analyses. We argue that shortcuts to dealing with overlap in the monoester region (31)P NMR soil spectra are likely to be found in the biomedical literature, although some degree of adaptation will be necessary. PMID:25854619

  19. A General Method for Extracting Individual Coupling Constants from Crowded (1)H NMR Spectra.

    PubMed

    Sinnaeve, Davy; Foroozandeh, Mohammadali; Nilsson, Mathias; Morris, Gareth A

    2016-01-18

    Couplings between protons, whether scalar or dipolar, provide a wealth of structural information. Unfortunately, the high number of (1)H-(1)H couplings gives rise to complex multiplets and severe overlap in crowded spectra, greatly complicating their measurement. Many different methods exist for disentangling couplings, but none approaches optimum resolution. Here, we present a general new 2D J-resolved method, PSYCHEDELIC, in which all homonuclear couplings are suppressed in F2, and only the couplings to chosen spins appear, as simple doublets, in F1. This approaches the theoretical limit for resolving (1)H-(1)H couplings, with close to natural linewidths and with only chemical shifts in F2. With the same high sensitivity and spectral purity as the parent PSYCHE pure shift experiment, PSYCHEDELIC offers a robust method for chemists seeking to exploit couplings for structural, conformational, or stereochemical analyses. PMID:26636773

  20. Communication: Permanent dipoles contribute to electric polarization in chiral NMR spectra

    SciTech Connect

    Buckingham, A. David

    2014-01-07

    Nuclear magnetic resonance spectroscopy is blind to chirality because the spectra of a molecule and its mirror image are identical unless the environment is chiral. However, precessing nuclear magnetic moments in chiral molecules in a strong magnetic field induce an electric polarization through the nuclear magnetic shielding polarizability. This effect is equal and opposite for a molecule and its mirror image but is small and has not yet been observed. It is shown that the permanent electric dipole moment of a chiral molecule is partially oriented through the antisymmetric part of the nuclear magnetic shielding tensor, causing the electric dipole to precess with the nuclear magnetic moment and producing a much larger temperature-dependent electric polarization with better prospects of detection.

  1. X-ray and DFT studies of the structure, vibrational and NMR spectra of 2-amino-pyridine betaine hydrochloride

    NASA Astrophysics Data System (ADS)

    Szafran, M.; Kowalczyk, I.; Koput, J.; Katrusiak, A.

    2005-06-01

    The effect of hydrogen bonding, inter- and intramolecular electrostatic interactions on the conformation of 2-amino-pyridine betaine hydrochloride (1-carboxymethyl-2-amino-pyridinium chloride), 2-NH 2PBH⋯Cl(c), in the crystal and its isolated molecules has been studied by X-ray diffraction, FT-IR, Raman, 1H and 13C NMR spectroscopies, and by DFT calculations. In the crystal, the Cl - anion is connected with protonated betaine via hydrogen bond, O-H⋯Cl -= 2.975(2) Å, two N(12)-H⋯Cl - hydrogen bonds and two N(1) H⋯Cl - intermolecular electrostatic interactions. Two minima are located in the potential energy surface at the B3LYP/6-31G(d,p) level, 2-NH 2PBH⋯Cl(t) and 2-NH 2PB⋯HCl(c), with the latter being 20,7 kcal/mol higher in energy. The optimized bond lengths and angles of 2-NH 2PBH⋯Cl(t) at B3LYP level of theory are in good agreement with X-ray data, except for the conformation of the COOH group, which is cis ( syn) in the crystal and trans ( anti) in the single molecule. The probable assignments for the anharmonic experimental solid state vibrational spectra of 2-NH 2PBH⋯Cl(c) and 2-ND 2PBD⋯Cl(c) based on the calculated B3LYP/6-31G(d,p) harmonic frequencies have been made. 1H and 13C NMR screening constants for both single molecules have been calculated in the GIAO/B3LYP/6-31G(d,p) approach. Linear correlation between the calculated and experimental 1H chemical shifts holds only for cis conformer. The lack of such a correlation for trans conformer indicates that it is absent in D 2O solution.

  2. Automated Quantification of Human Brain Metabolites by Artificial Neural Network Analysis from in VivoSingle-Voxel 1H NMR Spectra

    NASA Astrophysics Data System (ADS)

    Kaartinen, Jouni; Mierisová, Šarka; Oja, Joni M. E.; Usenius, Jukka-Pekka; Kauppinen, Risto A.; Hiltunen, Yrjö

    1998-09-01

    A real-time automated way of quantifying metabolites fromin vivoNMR spectra using an artificial neural network (ANN) analysis is presented. The spectral training and test sets for ANN containing peaks at the chemical shift ranges resembling long echo time proton NMR spectra from human brain were simulated. The performance of the ANN constructed was compared with an established lineshape fitting (LF) analysis using both simulated and experimental spectral data as inputs. The correspondence between the ANN and LF analyses showed correlation coefficients of order of 0.915-0.997 for spectra with large variations in both signal-to-noise and peak areas. Water suppressed1H NMR spectra from 24 healthy subjects were collected and choline-containing compounds (Cho), total creatine (Cr), and N-acetyl aspartate (NAA) were quantified with both methods. The ANN quantified these spectra with an accuracy similar to LF analysis (correlation coefficients of 0.915-0.951). These results show that LF and ANN are equally good quantifiers; however, the ANN analyses are more easily automated than LF analyses.

  3. Automated assignment of NMR chemical shifts based on a known structure and 4D spectra.

    PubMed

    Trautwein, Matthias; Fredriksson, Kai; Möller, Heiko M; Exner, Thomas E

    2016-08-01

    Apart from their central role during 3D structure determination of proteins the backbone chemical shift assignment is the basis for a number of applications, like chemical shift perturbation mapping and studies on the dynamics of proteins. This assignment is not a trivial task even if a 3D protein structure is known and needs almost as much effort as the assignment for structure prediction if performed manually. We present here a new algorithm based solely on 4D [(1)H,(15)N]-HSQC-NOESY-[(1)H,(15)N]-HSQC spectra which is able to assign a large percentage of chemical shifts (73-82 %) unambiguously, demonstrated with proteins up to a size of 250 residues. For the remaining residues, a small number of possible assignments is filtered out. This is done by comparing distances in the 3D structure to restraints obtained from the peak volumes in the 4D spectrum. Using dead-end elimination, assignments are removed in which at least one of the restraints is violated. Including additional information from chemical shift predictions, a complete unambiguous assignment was obtained for Ubiquitin and 95 % of the residues were correctly assigned in the 251 residue-long N-terminal domain of enzyme I. The program including source code is available at https://github.com/thomasexner/4Dassign . PMID:27484442

  4. USING 19F-NMR SPECTROSCOPY TO DETERMINE TRIFLURALIN BINDING TO SOIL

    EPA Science Inventory

    Trifluralin is a widely used herbicide for the control of broad leaf weeds in a variety of crops. Its binding to soil may result in significant losses in herbicidal activity and a delayed pollution problem. To investigate the nature of soil-bound trifluralin residues, 14

  5. Noninvasive detection of graft rejection by in vivo (19) F MRI in the early stage.

    PubMed

    Flögel, U; Su, S; Kreideweiss, I; Ding, Z; Galbarz, L; Fu, J; Jacoby, C; Witzke, O; Schrader, J

    2011-02-01

    Diagnosis of transplant rejection requires tissue biopsy and entails risks. Here, we describe a new (19) F MRI approach for noninvasive visualization of organ rejection via the macrophage host response. For this, we employed biochemically inert emulsified perfluorocarbons (PFCs), known to be preferentially phagocytized by monocytes and macrophages. Isografts from C57BL/6 or allografts from C57B10.A mice were heterotopically transplanted into C57BL/6 recipients. PFCs were applied intravenously followed by (1) H/(19) F MRI at 9.4 T 24 h after injection. (1) H images showed a similar position and anatomy of the graft in the abdomen for both cases. However, corresponding (19) F signals were only observed in allogenic tissue. (1) H/(19) F MRI enabled us to detect the initial immune response not later than 3 days after surgery, when conventional parameters did not reveal any signs of rejection. In allografts, the observed (19) F signal strongly increased with time and correlated with the extent of rejection. In separate experiments, rapamycin was used to demonstrate the ability of (19) F MRI to monitor immunosuppressive therapy. Thus, PFCs can serve as positive contrast agent for the early detection of transplant rejection by (19) F MRI with high spatial resolution and an excellent degree of specificity due to lack of any (19) F background. PMID:21214858

  6. Gadolinium-modulated 19F signals from Perfluorocarbon Nanoparticles as a New Strategy for Molecular Imaging

    PubMed Central

    Neubauer, Anne M.; Myerson, Jacob; Caruthers, Shelton D.; Hockett, Franklin D.; Winter, Patrick M.; Chen, Junjie; Gaffney, Patrick J.; Robertson, J. David; Lanza, Gregory M.; Wickline, Samuel A.

    2008-01-01

    Recent advances in the design of fluorinated nanoparticles for magnetic resonance molecular imaging have enabled specific detection of 19F nuclei, providing unique and quantifiable spectral signatures. However, a pressing need for signal enhancement exists because the total 19F in imaging voxels is often limited. By directly incorporating a relaxation agent (gadolinium) into the lipid monolayer that surrounds the perfluorocarbon, a marked augmentation of the 19F signal from 200nm nanoparticles was achieved. This design increases the magnetic relaxation rate of the 19F nuclei 4-fold at 1.5 T and effects a 125% increase in signal, an effect which is maintained when they are targeted to human plasma clots. By varying the surface concentration of gadolinium, the relaxation effect can be quantitatively modulated to tailor particle properties. This novel strategy dramatically improves the sensitivity and range of 19F MRI/MRS and forms the basis for designing contrast agents capable of sensing their surface chemistry. PMID:18956457

  7. A combined first principles computational and solid-state NMR study of a molecular crystal: flurbiprofen.

    PubMed

    Yates, Jonathan R; Dobbins, Sara E; Pickard, Chris J; Mauri, Francesco; Ghi, Phuong Y; Harris, Robin K

    2005-04-01

    The 1H, 13C and 19F magic-angle spinning NMR spectra have been recorded for Form 1 of flurbiprofen. In the case of 19F, spinning sideband analysis has produced data for the components of the shielding tensor. The chemical shift of the hydrogen-bonded proton was found to be 14.0 ppm. Shielding parameters for all three nuclei have been calculated using Density Functional Theory (DFT) together with the Gauge Including Projector Augmented Wave (GIPAW) method which takes full allowance for the repetition inherent in crystalline structures. Such computations were made for the reported geometry, for a structure with all the atomic positions relaxed using DFT, and with only the hydrogen positions relaxed. The relationships of the computed shifts to those observed are discussed. In general, the correlations are good. PMID:19787961

  8. Visualizing arthritic inflammation and therapeutic response by fluorine-19 magnetic resonance imaging (19F MRI)

    PubMed Central

    2012-01-01

    Background Non-invasive imaging of inflammation to measure the progression of autoimmune diseases, such as rheumatoid arthritis (RA), and to monitor responses to therapy is critically needed. V-Sense, a perfluorocarbon (PFC) contrast agent that preferentially labels inflammatory cells, which are then recruited out of systemic circulation to sites of inflammation, enables detection by 19F MRI. With no 19F background in the host, detection is highly-specific and can act as a proxy biomarker of the degree of inflammation present. Methods Collagen-induced arthritis in rats, a model with many similarities to human RA, was used to study the ability of the PFC contrast agent to reveal the accumulation of inflammation over time using 19F MRI. Disease progression in the rat hind limbs was monitored by caliper measurements and 19F MRI on days 15, 22 and 29, including the height of clinically symptomatic disease. Naïve rats served as controls. The capacity of the PFC contrast agent and 19F MRI to assess the effectiveness of therapy was studied in a cohort of rats administered oral prednisolone on days 14 to 28. Results Quantification of 19F signal measured by MRI in affected limbs was linearly correlated with disease severity. In animals with progressive disease, increases in 19F signal reflected the ongoing recruitment of inflammatory cells to the site, while no increase in 19F signal was observed in animals receiving treatment which resulted in clinical resolution of disease. Conclusion These results indicate that 19F MRI may be used to quantitatively and qualitatively evaluate longitudinal responses to a therapeutic regimen, while additionally revealing the recruitment of monocytic cells involved in the inflammatory process to the anatomical site. This study may support the use of 19F MRI to clinically quantify and monitor the severity of inflammation, and to assess the effectiveness of treatments in RA and other diseases with an inflammatory component. PMID:22721447

  9. Antioxidant activity, NMR, X-ray, ECD and UV/vis spectra of (+)-terrein: Experimental and theoretical approaches

    NASA Astrophysics Data System (ADS)

    Trabolsy, Zuhra Bashir Khalifa Al; Anouar, El Hassane; Zakaria, Nur Shahidatul Shida; Zulkeflee, Manar; Hasan, Mizaton Hazizul; Zin, Maisarah Mohd; Ahmad, Rohaya; Sultan, Sadia; Weber, Jean-Frédéric F.

    2014-02-01

    Fungal metabolite terrein isolated from Aspergillus terreus is endowed with diverse biological and antioxidant activities. To determine the stereochemistry of the isolated terrein, we combined spectroscopic methods (CD and NMR spectra) and theoretical calculations (DFT and TD-DFT methods). Stereochemistry effects on the antioxidant activity of isolated terrein were evaluated by calculating bond dissociation enthalpies (BDEs), ionization potentials (IPs) and spin density delocalization of terrein and isoterrein stereoisomers with B3P86/6-31+G (d, p) method in gas and polarizable continuum model. The results showed a good agreement between experimental data and theoretical calculations which confirmed the (+)-terrein stereochemistry of isolated metabolite. Theoretical calculations showed that the antioxidant activity is relatively influenced by isomeric geometry of the terrein (a variation of 2 kcal/mol between BDEs of terrein and isoterrein isomers), while chirality has no influence on the antioxidant activity [0.2 kcal/mol difference between BDEs of (+)- and (-)-terrein]. The low antioxidant activity of (+)-terrein with respect to trolox and ascorbic acid was explained by the positive free Gibbs energy of the hydrogen atom transfer (HAT) mechanism and high BDE values of the 2-OH active site.

  10. MetaboID: A graphical user interface package for assignment of 1H NMR spectra of bodyfluids and tissues

    NASA Astrophysics Data System (ADS)

    MacKinnon, Neil; Somashekar, Bagganahalli S.; Tripathi, Pratima; Ge, Wencheng; Rajendiran, Thekkelnaycke M.; Chinnaiyan, Arul M.; Ramamoorthy, Ayyalusamy

    2013-01-01

    Nuclear magnetic resonance based measurements of small molecule mixtures continues to be confronted with the challenge of spectral assignment. While multi-dimensional experiments are capable of addressing this challenge, the imposed time constraint becomes prohibitive, particularly with the large sample sets commonly encountered in metabolomic studies. Thus, one-dimensional spectral assignment is routinely performed, guided by two-dimensional experiments on a selected sample subset; however, a publicly available graphical interface for aiding in this process is currently unavailable. We have collected spectral information for 360 unique compounds from publicly available databases including chemical shift lists and authentic full resolution spectra, supplemented with spectral information for 25 compounds collected in-house at a proton NMR frequency of 900 MHz. This library serves as the basis for MetaboID, a Matlab-based user interface designed to aid in the one-dimensional spectral assignment process. The tools of MetaboID were built to guide resonance assignment in order of increasing confidence, starting from cursory compound searches based on chemical shift positions to analysis of authentic spike experiments. Together, these tools streamline the often repetitive task of spectral assignment. The overarching goal of the integrated toolbox of MetaboID is to centralize the one dimensional spectral assignment process, from providing access to large chemical shift libraries to providing a straightforward, intuitive means of spectral comparison. Such a toolbox is expected to be attractive to both experienced and new metabolomic researchers as well as general complex mixture analysts.

  11. The infrared, Raman, NMR and UV spectra, ab initio calculations and spectral assignments of 2-amino-4-chloro-6-methoxypyrimidine

    NASA Astrophysics Data System (ADS)

    Cinar, Z.; Karabacak, M.; Cinar, M.; Kurt, M.; Chinna babu, P.; Sundaraganesan, N.

    2013-12-01

    The 2-amino-4-chloro-6-methoxypyrimidine abbreviated as ACMP have been investigated by both the experimental and theoretical methods; through this work we provide the essential fact about the structural and vibrational insights. The optimized molecular structure, atomic charges, vibrational frequencies and ultraviolet spectral interpretation of ACMP have been studied by performing DFT/B3LYP/6-311++G(df,pd) level of theory. The FT-IR, FT-Raman spectra were recorded in the region 4000-400 cm-1 and 4000-50 cm-1 respectively. The UV absorption spectrum of the compound that dissolved in ethanol and water solution were recorded in the range of 200-400 nm. The scaled wavenumbers are compared with the experimental values. The difference between the observed and scaled wavenumber values of most of the fundamentals is very small. Based on the UV spectrum and TD-DFT calculations, the electronic structure and the assignments of the absorption bands were carried out. The 1H, 13C and DEPT 135 nuclear magnetic resonance (NMR) chemical shifts of the molecule were calculated using with the Gauge Including Atomic Orbital (GIAO) method and compared with experimental results. Besides, molecular electrostatic potential (MEP), frontier molecular orbitals (FMO) analysis were investigated using theoretical calculations.

  12. Study of molecular structure, vibrational, electronic and NMR spectra of oncocalyxone A using DFT and quantum chemical calculations

    NASA Astrophysics Data System (ADS)

    Joshi, Bhawani Datt; Srivastava, Anubha; Honorato, Sara Braga; Tandon, Poonam; Pessoa, Otília Deusdênia Loiola; Fechine, Pierre Basílio Almeida; Ayala, Alejandro Pedro

    2013-09-01

    Oncocalyxone A (C17H18O5) is the major secondary metabolite isolated from ethanol extract from the heartwood of Auxemma oncocalyx Taub popularly known as “pau branco”. Oncocalyxone A (Onco A) has many pharmaceutical uses such as: antitumor, analgesic, antioxidant and causative of inhibition of platelet activation. We have performed the optimized geometry, total energy, conformational study, molecular electrostatic potential mapping, frontier orbital energy gap and vibrational frequencies of Onco A employing ab initio Hartree-Fock (HF) and density functional theory (DFT/B3LYP) method with 6-311++G(d, p) basis set. Stability of the molecule arising from hyperconjugative interactions and/or charge delocalization has been analyzed using natural bond orbital (NBO) analysis. UV-vis spectrum of the compound was recorded in DMSO and MeOH solvent. The TD-DFT calculations have been performed to explore the influence of electronic absorption spectra in the gas phase, as well as in solution environment using IEF-PCM and 6-31G basis set. The 13C NMR chemical shifts have been calculated with the B3LYP/6-311++G(d, p) basis set and compared with the experimental values. These methods have been used as tools for structural characterization of Onco A.

  13. Quantitative (13)C Solid-State NMR Spectra by Multiple-Contact Cross-polarization for Drug Delivery: From Active Principles to Excipients and Drug Carriers.

    PubMed

    Saïdi, Fadila; Taulelle, Francis; Martineau, Charlotte

    2016-08-01

    In this contribution, we present an analysis of the main parameters influencing the efficiency of the (1)H → (13)C multiple-contact cross-polarization nuclear magnetic resonance (NMR) experiment in the context of solid pharmaceutical materials. Using the optimum experimental conditions, quantitative (13)C NMR spectra are then obtained for porous metal-organic frameworks (potential drug carriers) and for components present in drug formulations (active principle ingredient and excipients, amorphous or crystalline). Finally, we show that mixtures of components can also be quantified with this method and, hence, that it represents an ideal tool for quantification of pharmaceutical formulations by (13)C cross-polarization under magic-angle spinning NMR in the industry as it is robust and easy to set up, much faster than direct (13)C polarization and is efficient for samples at natural abundance. PMID:27372550

  14. An approach to the simultaneous quantitative analysis of metabolites in table wines by (1)H NMR self-constructed three-dimensional spectra.

    PubMed

    Li, Bao Qiong; Xu, Min Li; Wang, Xue; Zhai, Hong Lin; Chen, Jing; Liu, Jin Jin

    2017-02-01

    Wine consists of several hundred components with different concentrations, including water, ethanol, glycerol, organic acids and sugars. Accurate quantification of target compounds in such complex samples is a difficult task based on conventional (1)H NMR spectra due to some challenges. In this paper, the three-dimensional spectrum was constructed firstly by simply repeating (1)H NMR spectrum itself so as to extract the features of target compounds by Tchebichef moment method. A proof-of-concept model system, the determination of five metabolites in wines was utilized to evaluate the performance of the proposed strategy. The results indicate that the proposed approach can provide accurate and reliable concentration predictions, probably the best results ever achieved using PLS and interval-PLS methods. Our novel strategy has not only good performance but also does not require laborious multi-step and subjective pretreatments. Therefore, it is expected that the proposed method could extend the application of conventional (1)H NMR. PMID:27596391

  15. Measurement of Long Range 1H-19F Scalar Coupling Constants and their Glycosidic Torsion Dependence in 5-Fluoropyrimidine Substituted RNA

    PubMed Central

    Hennig, Mirko; Munzarová, Markéta L.; Bermel, Wolfgang; Scott, Lincoln G.; Sklenár̂, Vladimír; Williamson, James R.

    2008-01-01

    Long range scalar 5J(H1’,F) couplings were observed in 5-fluoropyrimidine substituted RNA. We developed a novel S3E-19F-α,β-edited NOESY experiment for quantitation of these long range scalar 5J(H1’,F), where the J-couplings can be extracted from inspection of intraresidual (H1’,H6) NOE crosspeaks. Quantum chemical calculations were exploited to investigate the relation between scalar couplings and conformations around the glycosidic bond in oligonucleotides. The theoretical dependence of the observed 5J(H1’,F) couplings on the torsion angle χ can be described by a generalized Karplus relationship. The corresponding density functional theory (DFT) analysis is outlined. Additional NMR experiments facilitating the resonance assignments of 5-fluoropyrimidine substituted RNAs are described and chemical shift changes due to altered shielding in the presence of fluorine-19 (19F) are presented. PMID:16637654

  16. Evaluation of the reliability of the maximum entropy method for reconstructing 3D and 4D NOESY-type NMR spectra of proteins.

    PubMed

    Shigemitsu, Yoshiki; Ikeya, Teppei; Yamamoto, Akihiro; Tsuchie, Yuusuke; Mishima, Masaki; Smith, Brian O; Güntert, Peter; Ito, Yutaka

    2015-02-01

    Despite their advantages in analysis, 4D NMR experiments are still infrequently used as a routine tool in protein NMR projects due to the long duration of the measurement and limited digital resolution. Recently, new acquisition techniques for speeding up multidimensional NMR experiments, such as nonlinear sampling, in combination with non-Fourier transform data processing methods have been proposed to be beneficial for 4D NMR experiments. Maximum entropy (MaxEnt) methods have been utilised for reconstructing nonlinearly sampled multi-dimensional NMR data. However, the artefacts arising from MaxEnt processing, particularly, in NOESY spectra have not yet been clearly assessed in comparison with other methods, such as quantitative maximum entropy, multidimensional decomposition, and compressed sensing. We compared MaxEnt with other methods in reconstructing 3D NOESY data acquired with variously reduced sparse sampling schedules and found that MaxEnt is robust, quick and competitive with other methods. Next, nonlinear sampling and MaxEnt processing were applied to 4D NOESY experiments, and the effect of the artefacts of MaxEnt was evaluated by calculating 3D structures from the NOE-derived distance restraints. Our results demonstrated that sufficiently converged and accurate structures (RMSD of 0.91Å to the mean and 1.36Å to the reference structures) were obtained even with NOESY spectra reconstructed from 1.6% randomly selected sampling points for indirect dimensions. This suggests that 3D MaxEnt processing in combination with nonlinear sampling schedules is still a useful and advantageous option for rapid acquisition of high-resolution 4D NOESY spectra of proteins. PMID:25545060

  17. A study of the molecular conformations and the vibrational, 1H and 13C NMR spectra of the anticancer drug tamoxifen and triphenylethylene

    NASA Astrophysics Data System (ADS)

    Badawi, Hassan M.; Khan, Ibrahim

    2016-08-01

    The structural stability and the vibrational spectra of the anticancer drug tamoxifen and triphenylethylene were investigated by the DFT B3LYP/6-311G (d,p) calculations. Tamoxifen and triphenylethylene were predicted to exist predominantly as non-planar structures. The vibrational frequencies and the 1H and 13C NMR chemical shifts of the low energy structures of tamoxifen and triphenylethylene were computed at the DFT B3LYP level of theory. Complete vibrational assignments were provided by combined theoretical and experimental data of tamoxifen and triphenylethylene. The 1H and 13C NMR spectra of both molecules were interpreted by experimental and DFT calculated chemical shifts of the two molecules. The RMSD between experimental and theoretical 1H and 13C chemical shifts for tamoxifen is 0.29 and 4.72 ppm, whereas for triphenylethylene, it is 0.16 and 2.70 ppm, respectively.

  18. Systematic comparison of sets of (13)C NMR spectra that are potentially identical. Confirmation of the configuration of a cuticular hydrocarbon from the cane beetle Antitrogus parvulus.

    PubMed

    Basar, Norazah; Damodaran, Krishnan; Liu, Hao; Morris, Gareth A; Sirat, Hasnah M; Thomas, Eric J; Curran, Dennis P

    2014-08-15

    A systematic process is introduced to compare (13)C NMR spectra of two (or more) candidate samples of known structure to a natural product sample of unknown structure. The process is designed for the case where the spectra involved can reasonably be expected to be very similar, perhaps even identical. It is first validated by using published (13)C NMR data sets for the natural product 4,6,8,10,16,18-hexamethyldocosane. Then the stereoselective total syntheses of two candidate isomers of the related 4,6,8,10,16-pentamethyldocosane natural product are described, and the process is applied to confidently assign the configuration of the natural product as (4S,6R,8R,10S,16S). This is accomplished even though the chemical shift differences between this isomer and its (16R)-epimer are only ±5-10 ppb (±0.005-0.01 ppm). PMID:25019530

  19. Systematic Comparison of Sets of 13C NMR Spectra That Are Potentially Identical. Confirmation of the Configuration of a Cuticular Hydrocarbon from the Cane Beetle Antitrogus parvulus

    PubMed Central

    2015-01-01

    A systematic process is introduced to compare 13C NMR spectra of two (or more) candidate samples of known structure to a natural product sample of unknown structure. The process is designed for the case where the spectra involved can reasonably be expected to be very similar, perhaps even identical. It is first validated by using published 13C NMR data sets for the natural product 4,6,8,10,16,18-hexamethyldocosane. Then the stereoselective total syntheses of two candidate isomers of the related 4,6,8,10,16-pentamethyldocosane natural product are described, and the process is applied to confidently assign the configuration of the natural product as (4S,6R,8R,10S,16S). This is accomplished even though the chemical shift differences between this isomer and its (16R)-epimer are only ±5–10 ppb (±0.005–0.01 ppm). PMID:25019530

  20. Cellobiose as a model system to reveal cellulose dissolution mechanism in acetate-based ionic liquids: Density functional theory study substantiated by NMR spectra.

    PubMed

    Cao, Bobo; Du, Jiuyao; Du, Dongmei; Sun, Haitao; Zhu, Xiao; Fu, Hui

    2016-09-20

    Cellulose dissolution mechanism in acetate-based ionic liquids was systematically studied in Nuclear Magnetic Resonance (NMR) spectra and Density Functional Theory (DFT) methods by using cellobiose and 1-butyl-3-methylimidazolium acetate (BmimAc) as a model system. The solubility of cellulose in ionic liquid increased with temperature increase in the range of 90-140°C. NMR spectra suggested OAc(-) preferred to form stronger hydrogen bonds with hydrogen of hydroxyl in cellulose. Electrostatic potential method was employed to predict the most possible reaction sites and locate the most stable configuration. Atoms in molecules (AIM) theory was used to study the features of bonds at bond critical points and the variations of bond types. Simultaneously, noncovalent interactions were characterized and visualized by employing reduced density gradient analysis combined with Visual Molecular Dynamics (VMD) program. Natural bond orbital (NBO) theory was applied to study the noncovalent nature and characterize the orbital interactions between cellobiose and Bmim[OAc]. PMID:27261759

  1. Multinuclear high-resolution NMR study of compounds from the ternary system NaF-CaF2-AlF3: from determination to modeling of NMR parameters.

    PubMed

    Martineau, C; Body, M; Legein, C; Silly, G; Buzaré, J-Y; Fayon, F

    2006-12-11

    27Al and 23Na NMR satellite transition spectroscopy and 3Q magic-angle-spinning spectra are recorded for three compounds from the ternary NaF-CaF2-AlF3 system. The quadrupolar frequency nuQ, asymmetry parameter etaQ, and isotropic chemical shift deltaiso are extracted from the spectrum reconstructions for five aluminum and four sodium sites. The quadrupolar parameters are calculated using the LAPW-based ab initio code WIEN2k. It is necessary to perform a structure optimization of all compounds to ensure a fine agreement between experimental and calculated parameters. By a comparison of experimental and calculated values, an attribution of all of the 27Al and 23Na NMR lines to the crystallographic sites is achieved. High-speed 19F NMR MAS spectra are recorded and reconstructed for the same compounds, leading to the determination of 18 isotropic chemical shifts. The superposition model developed by Bureau et al. is used, allowing a bijective assignment of the 19F NMR lines to the crystallographic sites. PMID:17140229

  2. Design principles and theory of paramagnetic fluorine-labelled lanthanide complexes as probes for (19)F magnetic resonance: a proof-of-concept study.

    PubMed

    Chalmers, Kirsten H; De Luca, Elena; Hogg, Naomi H M; Kenwright, Alan M; Kuprov, Ilya; Parker, David; Botta, Mauro; Wilson, J Ian; Blamire, Andrew M

    2010-01-01

    The synthesis and spectroscopic properties of a series of CF(3)-labelled lanthanide(III) complexes (Ln=Gd, Tb, Dy, Ho, Er, Tm) with amide-substituted ligands based on 1,4,7,10-tetraazacyclododecane are described. The theoretical contributions of the (19)F magnetic relaxation processes in these systems are critically assessed and selected volumetric plots are presented. These plots allow an accurate estimation of the increase in the rates of longitudinal and transverse relaxation as a function of the distance between the Ln(III) ion and the fluorine nucleus, the applied magnetic field, and the re-rotational correlation time of the complex, for a given Ln(III) ion. Selected complexes exhibit pH-dependent chemical shift behaviour, and a pK(a) of 7.0 was determined in one example based on the holmium complex of an ortho-cyano DO3A-monoamide ligand, which allowed the pH to be assessed by measuring the difference in chemical shift (varying by over 14 ppm) between two (19)F resonances. Relaxation analyses of variable-temperature and variable-field (19)F, (17)O and (1)H NMR spectroscopy experiments are reported, aided by identification of salient low-energy conformers by using density functional theory. The study of fluorine relaxation rates, over a field range of 4.7 to 16.5 T allowed precise computation of the distance between the Ln(III) ion and the CF(3) reporter group by using global fitting methods. The sensitivity benefits of using such paramagnetic fluorinated probes in (19)F NMR spectroscopic studies are quantified in preliminary spectroscopic and imaging experiments with respect to a diamagnetic yttrium(III) analogue. PMID:19957317

  3. Simplification of the 1H NMR spectra of enantiomers dissolved in chiral liquid crystals, combining variable angle sample spinning and selective refocusing experiments.

    PubMed

    Beguin, Laetitia; Courtieu, Jacques; Ziani, Latifa; Merlet, Denis

    2006-12-01

    This work presents a technique to simplify overcrowded proton spectra in chiral liquid crystal solvents using rotation of the sample near the magic angle, VASS, combined with homonuclear selective refocusing 2D NMR experiments, SERF. This methodology provides a powerful tool to visualise enantiomers out of unresolved proton spectra. A modified SERF sequence is presented where the resulting 2D spectrum can be phased to increase the resolution. Accurate enantiomeric excesses are determined that are not possible to measure on static samples. Two examples are presented. PMID:16991108

  4. A Simple Approach for Obtaining High Resolution, High Sensitivity ¹H NMR Metabolite Spectra of Biofluids with Limited Mass Supply

    SciTech Connect

    Hu, Jian Zhi; Rommereim, Donald N.; Wind, Robert A.; Minard, Kevin R.; Sears, Jesse A.

    2006-11-01

    A simple approach is reported that yields high resolution, high sensitivity ¹H NMR spectra of biofluids with limited mass supply. This is achieved by spinning a capillary sample tube containing a biofluid at the magic angle at a frequency of about 80Hz. A 2D pulse sequence called ¹H PASS is then used to produce a high-resolution ¹H NMR spectrum that is free from magnetic susceptibility induced line broadening. With this new approach a high resolution ¹H NMR spectrum of biofluids with a volume less than 1.0 µl can be easily achieved at a magnetic field strength as low as 7.05T. Furthermore, the methodology facilitates easy sample handling, i.e., the samples can be directly collected into inexpensive and disposable capillary tubes at the site of collection and subsequently used for NMR measurements. In addition, slow magic angle spinning improves magnetic field shimming and is especially suitable for high throughput investigations. In this paper first results are shown obtained in a magnetic field of 7.05T on urine samples collected from mice using a modified commercial NMR probe.

  5. 4 f-4 f hypersensitivity in the absorption spectra and NMR studies on paramagnetic lanthanide chloride complexes with 1,10-phenanthroline in non-aqueous solutions

    NASA Astrophysics Data System (ADS)

    Hussain, H. A.; Iftikhar, K.

    2003-03-01

    The optical absorption and NMR studies of trivalent lanthanide chloride complexes with 1,10-phenanthroline (phen) are presented and discussed. The 1H NMR spectra of the complexes of La, Pr, Nd, Eu and Yb have been studied in methanol- d4. The resonances of phen in the NMR spectra of the paramagnetic complexes have been shifted to lower as well as higher fields, which is a manifestation of dipolar interaction. The H (2) protons of the heterocyclic amine display broad resonances. The degree of broadening in Pr, Nd, and Yb complexes follows the order Prspectra of Pr, Nd, Ho and Er complexes have been investigated in methanol, pyridine, DMSO and DMF, which reveal that the hypersensitive transitions exhibit larger variation in oscillator strength values and band shapes. The change in the coordination geometry of the complexes and relative basicity of ligand are found responsible for oscillator strength and band shape variation. The interelectronic repulsion and covalency parameters show covalent nature of bonding between the metal and the ligand.

  6. Synthesis and NMR Spectral Analysis of Amine Heterocycles: The Effect of Asymmetry on the [superscript 1]H and [superscript 13]C NMR Spectra of N,O-Acetals

    ERIC Educational Resources Information Center

    Saba, Shahrokh; Ciaccio, James A.; Espinal, Jennifer; Aman, Courtney E.

    2007-01-01

    The stereochemical investigation is conducted to give students the combined experience of chemical synthesis of amines and N-heterocycles and structural stereochemical analysis using NMR spectroscopy. Students are introduced to the concept of topicity-stereochemical relationships between ligands within a molecule by synthesizing N,O-acetals.

  7. Paramagnetic effects on the NMR spectra of isotropic bicelles with headgroup modified chelator lipids and metal ions.

    PubMed

    Tang, Ming; Mao, Kevin; Li, Stacey; Zhuang, Jianqin; Diallo, Koumba

    2016-06-21

    We characterized the paramagnetic effects of nine metal ions on NMR signals of isotropic bicelles with headgroup-modified lipids. We found that Mn(2+), Gd(3+) and Dy(3+) show evidence for influencing NMR signals on the surface more than inside and on the disc edge, providing distance information in the bilayers. PMID:27240538

  8. Chromatographic NMR in NMR solvents

    NASA Astrophysics Data System (ADS)

    Carrara, Caroline; Viel, Stéphane; Delaurent, Corinne; Ziarelli, Fabio; Excoffier, Grégory; Caldarelli, Stefano

    2008-10-01

    Recently, it was demonstrated that pseudo-chromatographic NMR experiments could be performed using typical chromatographic solids and solvents. This first setup yielded improved separation of the spectral components of the NMR spectra of mixtures using PFG self-diffusion measurements. The method (dubbed Chromatographic NMR) was successively shown to possess, in favorable cases, superior resolving power on non-functionalized silica, compared to its LC counterpart. To further investigate the applicability of the method, we studied here the feasibility of Chromatographic NMR in common deuterated solvents. Two examples are provided, using deuterated chloroform and water, for homologous compounds soluble in these solvents, namely aromatic molecules and alcohols, respectively.

  9. Trifluoroethanol and 19F magic angle spinning nuclear magnetic resonance as a basic surface hydroxyl reactivity probe for zirconium(IV) hydroxide structures.

    PubMed

    DeCoste, Jared B; Glover, T Grant; Mogilevsky, Gregory; Peterson, Gregory W; Wagner, George W

    2011-08-01

    A novel technique for determining the relative accessibility and reactivity of basic surface hydroxyl sites by reacting various zirconium(IV) hydroxide materials with 2,2,2-trifluoroethanol (TFE) and characterizing the resulting material using (19)F magic angle spinning (MAS) nuclear magnetic resonance (NMR) is presented here. Studied here are three zirconium hydroxide samples, two unperturbed commercial materials, and one commercial material that is crushed by a pellet press. Factors, such as the ratio of bridging/terminal hydroxyls, surface area, and pore size distribution, are examined and found to affect the ability of the zirconium(IV) hydroxide to react with TFE. X-ray diffraction, nitrogen isotherms, and (1)H MAS NMR were used to characterize the unperturbed materials, while thermogravitric analysis with gas chromatography and mass spectrometry along with the (19)F MAS NMR were used to characterize the materials that were reacted with TFE. Zirconium hydroxide materials with a high surface area and a low bridging/terminal hydroxyl ratio were found to react TFE in the greatest amounts. PMID:21699226

  10. Conformational and isomerizational studies of 3- N, N-dimethylhydrazino-2-methylsulfonyl propenenitrile using NMR and vibrational spectra, X-ray analysis and ab initio calculations

    NASA Astrophysics Data System (ADS)

    Gróf, M.; Gatial, A.; Milata, V.; Prónayová, N.; Kožíšek, J.; Breza, M.; Matějka, P.

    2008-11-01

    The IR, Raman and NMR spectra of 3- N, N-dimethylhydrazino-2-methylsulfonyl propenenitrile (DMHSP) [(H 3C) 2N sbnd NH sbnd CH dbnd C(CN) (SO 2CH 3)] as a solid and in different solvents were measured. The spectra and X-ray analysis revealed that DMHSP was prepared as a pure E-isomer and E- syn conformer with the syn orientation of N, N-dimethylhydrazino group towards the C dbnd C double bond in the solid state. Due to the low barrier practically free isomerization process occurred in solutions at room temperature. DMHSP exists in more polar solvents as pure E-isomer in conformational equilibrium between E- syn and E- anti but in a less polar solvent the presence of Z-isomer was observed as well. From the IR and NMR temperature dependence spectra in polar solvents the energy difference between E- anti and E- syn of Δ H = 2.3 ± 0.9 kJ/mol and Δ H = 3.2 ± 0.4 kJ/mol, respectively, was estimated with the syn one being more stable. The geometries and relative energies of possible conformers of DMHSP were evaluated using ab initio MP2 and B3LYP density functional methods in 6-31G ∗∗ basis set and compared with the X-ray data. The interpretation of NMR spectra was supported by ab initio MP2 calculations. The influence of solvent polarity on the conformational equilibrium is discussed with respect to the SCRF solvent effect calculations using PCM model. In addition, the observed IR and Raman bands were compared also with harmonic vibrational frequencies, calculated on the same levels of theory, and assigned on the base of potential energy distribution.

  11. Bond pathway analysis of NMR spectra for Li1.2Mn0.4Co0.4O2: pristine material

    NASA Astrophysics Data System (ADS)

    Iddir, Hakim; Key, Baris; Dogan, Fulya; Russell, John; Long, Brandon; Bareno, Javier; Croy, Jason; Benedek, Roy

    2015-03-01

    NMR has been applied extensively to lithium ion battery cathode materials, of which layered-layered composites xLi2MnO3 . (1 - x) Li MO2 (M = Mn,Co,Ni) are of particular interest, owing to their high energy density. In this work, NMR spectra are measured for the model layered-layered system xLi2MnO3 . (1 - x) LiCoO2 and Bond-Pathway-model analysis is applied to elucidate the atomic arrangement and domain structure of this material (in its pristine state, before electrochemical cycling). The simplest structural element of a domain consists of a stripe of composition LiMn2 parallel to an in-layer crystallographic axis in a metal layer of the composite. A simple model of the composite structure may be constructed by a superposition of such stripes in an LiCoO background. We show that such a model can account for most of the features of the observed NMR spectra. Support from the Vehicle Technologies Program U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy.

  12. Orphan spin operators enable the acquisition of multiple 2D and 3D magic angle spinning solid-state NMR spectra

    NASA Astrophysics Data System (ADS)

    Gopinath, T.; Veglia, Gianluigi

    2013-05-01

    We propose a general method that enables the acquisition of multiple 2D and 3D solid-state NMR spectra for U-13C, 15N-labeled proteins. This method, called MEIOSIS (Multiple ExperIments via Orphan SpIn operatorS), makes it possible to detect four coherence transfer pathways simultaneously, utilizing orphan (i.e., neglected) spin operators of nuclear spin polarization generated during 15N-13C cross polarization (CP). In the MEIOSIS experiments, two phase-encoded free-induction decays are decoded into independent nuclear polarization pathways using Hadamard transformations. As a proof of principle, we show the acquisition of multiple 2D and 3D spectra of U-13C, 15N-labeled microcrystalline ubiquitin. Hadamard decoding of CP coherences into multiple independent spin operators is a new concept in solid-state NMR and is extendable to many other multidimensional experiments. The MEIOSIS method will increase the throughput of solid-state NMR techniques for microcrystalline proteins, membrane proteins, and protein fibrils.

  13. Interpreting the Paramagnetic NMR Spectra of Potential Ru(III) Metallodrugs: Synergy between Experiment and Relativistic DFT Calculations.

    PubMed

    Novotný, Jan; Sojka, Martin; Komorovsky, Stanislav; Nečas, Marek; Marek, Radek

    2016-07-13

    Ruthenium-based compounds are potential candidates for use as anticancer metallodrugs. The central ruthenium atom can be in the oxidation state +2 (e.g., RAPTA, RAED) or +3 (e.g., NAMI, KP). In this study we focus on paramagnetic NAMI analogs of a general structure [4-R-pyH](+)trans-[Ru(III)Cl4(DMSO)(4-R-py)](-), where 4-R-py stands for a 4-substituted pyridine. As paramagnetic systems are generally considered difficult to characterize in detail by NMR spectroscopy, we performed a systematic structural and methodological NMR study of complexes containing variously substituted pyridines. The effect of the paramagnetic nature of these complexes on the (1)H and (13)C NMR chemical shifts was systematically investigated by temperature-dependent NMR experiments and density-functional theory (DFT) calculations. To understand the electronic factors influencing the orbital (δ(orb), temperature-independent) and paramagnetic (δ(para), temperature-dependent) contributions to the total NMR chemical shifts, a relativistic two-component DFT approach was used. The paramagnetic contributions to the (13)C NMR chemical shifts are correlated with the distribution of spin density in the ligand moiety and the (13)C isotropic hyperfine coupling constants, Aiso((13)C), for the individual carbon atoms. To analyze the mechanism of spin distribution in the ligand, the contributions of molecular spin-orbitals (MSOs) to the hyperfine coupling constants and the spatial distribution of the z-component of the spin density in the MSOs calculated at the relativistic four-component DFT level are discussed and rationalized. The significant effects of the substituent and the solvent on δ(para), particularly the contact contribution, are demonstrated. This work should contribute to further understanding of the link between the electronic structure and the NMR chemical shifts in open-shell systems, including the ruthenium-based metallodrugs investigated in this account. PMID:27312929

  14. Theoretical investigation of the 19F(p, p0) differential cross section up to Ep = 2.3 MeV

    NASA Astrophysics Data System (ADS)

    Paneta, V.; Gurbich, A.; Kokkoris, M.

    2016-03-01

    The use of experimental cross-section data on fluorine in analytical EBS studies is quite problematic, because they are indeed inadequate and discrepant (up to ∼30%). The evaluated values on the other hand, being produced by incorporating the available experimental cross sections within a unified theoretical approach, provide the most reliable data to be used and are therefore very important. The present work contributes in this field by reproducing and attempting to extend the corresponding evaluation for 19F(p, p0), which ranges up to 1730 keV, to proton energies up to 2250 keV, using the AZURE code. The performed R-matrix calculations involved the simultaneous analysis of several experimental input datasets, as well as spectroscopic information concerning the formed compound nucleus 20Ne, while valuable feedback information was provided by proton benchmarking spectra on ZnF2 taken at Ep = 1730 and 2250 keV and at several backscattering angles for the fine tuning of the parameters used. The problem of the 19F(p, p‧) and 19F(p, αx) contributions in the obtained thick target yield spectra is also discussed.

  15. A symmetrical fluorous dendron-cyanine dye-conjugated bimodal nanoprobe for quantitative 19F MRI and NIR fluorescence bioimaging.

    PubMed

    Wang, Zhe; Yue, Xuyi; Wang, Yu; Qian, Chunqi; Huang, Peng; Lizak, Marty; Niu, Gang; Wang, Fu; Rong, Pengfei; Kiesewetter, Dale O; Ma, Ying; Chen, Xiaoyuan

    2014-08-01

    (19)F MRI and optical imaging are two powerful noninvasive molecular imaging modalities in biomedical applications. (19)F MRI has great potential for high resolution in vivo imaging, while fluorescent probes enable ultracontrast cellular/tissue imaging with high accuracy and sensitivity. A bimodal nanoprobe is developed, integrating the merits of (19)F MRI and fluorescence imaging into a single synthetic molecule, which is further engineered into nanoprobe, by addressing shortcomings of conventional contrast agents to explore the quantitative (19)F MRI and fluorescence imaging and cell tracking. Results show that this bimodal imaging nanoprobe presents high correlation of (19)F MR signal and NIR fluorescence intensity in vitro and in vivo. Additionally, this nanoprobe enables quantitative (19)F MR analysis, confirmed by a complementary fluorescence analysis. This unique feature can hardly be obtained by traditional (19)F MRI contrast agents. It is envisioned that this nanoprobe can hold great potential for quantitative and sensitive multi-modal molecular imaging. PMID:24789108

  16. The conformational stability, solvation and the assignments of the experimental infrared, Raman, 1H and 13C NMR spectra of the local anesthetic drug lidocaine

    NASA Astrophysics Data System (ADS)

    Badawi, Hassan M.; Förner, Wolfgang; Ali, Shaikh A.

    2015-05-01

    The structure, vibrational and 1H and 13C NMR spectra of the local anesthetic drug lidocaine were investigated by the B3LYP/6-311G∗∗ calculations. The molecule was predicted to have the non-planar cis (NCCN ∼ 0°) structures being about 2-6 kcal/mol lower in energy than the corresponding trans (NCCN ∼ 180°) forms. The calculated NCCN (9.6°) and CNCC (-132.2°) torsional angles were in a good qualitative agreement with the reported X-ray angles (3.1 and 13.0°, -102.67 and -77.9°, respectively, for H-bonded dimers). The Gibbs energy of solution of lidocaine in formamide, water, dimethylsulfoxide, acetonitrile, methanol, ethanol and chloroform solutions was estimated at the B3LYP level. The predicted affinity of lidocaine toward the alcohols, acetonitrile and chloroform solutions was in excellent agreement with the reported experimental solubility of the drug in organic solvents. The analysis of the observed vibrational spectra is consistent with the presence of lidocaine in only one conformation at room temperature. The 1H and 13C NMR spectra of lidocaine were interpreted by experimental and DFT calculated chemical shifts of the drug. The RMSD between experimental and theoretical 1H and 13C chemical shifts for lidocaine is 0.47 and 8.26 ppm, respectively.

  17. A study of the experimental and theoretical infrared, Raman, 1H and 13C NMR spectra of the biochemicals valeric and valproic acids

    NASA Astrophysics Data System (ADS)

    Badawi, Hassan M.; Förner, Wolfgang; Ali, Shaikh A.

    2014-10-01

    The structural stability, vibrational, 1H and 13C NMR spectra of valeric and valproic acids were investigated by the B3LYP calculations with the 6-311G** basis set. Valeric acid is predicted to exist predominantly in the planar cis form (80% abundance). Valproic acid is predicted to have an equilibrium mixture of 68% gauche-1 and 32% gauche-2 structures at 298.15 K. The spectral feature of the Osbnd H stretching mode in the infrared spectra of both acids suggests the presence of strong H-bonding in the condensed phase of valeric acid and weak H-bonding in the case of valproic acid. The harmonic and anharmonic vibrational wavenumbers were computed at the B3LYP level of theory and tentative vibrational assignments were provided on the basis of combined theoretical and experimental infrared and Raman data of the molecules. Not all of the calculated anharmonic wavenumbers showed a consistent trend with the observed wavenumbers. The 1H and 13C NMR spectra of both acids were interpreted by experimental and DFT calculated chemical shifts of the two acids. The RMSD between experimental and theoretical 1H and 13C chemical shifts for valeric acid is 1.8 and 3.8 ppm, whereas for valproic acid, it is 1.4 and 4.5 ppm, respectively.

  18. Quantum-chemical analyses of aromaticity, UV spectra, and NMR chemical shifts in plumbacyclopentadienylidenes stabilized by Lewis bases.

    PubMed

    Kawamura, Toshiaki; Abe, Minori; Saito, Masaichi; Hada, Masahiko

    2014-04-30

    We carried out a series of zeroth-order regular approximation (ZORA)-density functional theory (DFT) and ZORA-time-dependent (TD)-DFT calculations for molecular geometries, NMR chemical shifts, nucleus-independent chemical shifts (NICS), and electronic transition energies of plumbacyclopentadienylidenes stabilized by several Lewis bases, (Ph)2 ((t) BuMe2 Si)2 C4 PbL1 L2 (L1, L2 = tetrahydrofuran, Pyridine, N-heterocyclic carbene), and their model molecules. We mainly discussed the Lewis-base effect on the aromaticity of these complexes. The NICS was used to examine the aromaticity. The NICS values showed that the aromaticity of these complexes increases when the donation from the Lewis bases to Pb becomes large. This trend seems to be reasonable when the 4n-Huckel rule is applied to the fractional π-electron number. The calculated (13)C- and (207)Pb-NMR chemical shifts and the calculated UV transition energies reasonably reproduced the experimental trends. We found a specific relationship between the (13)C-NMR chemical shifts and the transition energies. As we expected, the relativistic effect was essential to reproduce a trend not only in the (207)Pb-NMR chemical shifts and J[Pb-C] but also in the (13)C-NMR chemical shifts of carbons adjacent to the lead atom. PMID:24643814

  19. Contribution of 19F resonances on 18O( p, α)15N reaction rate

    NASA Astrophysics Data System (ADS)

    Benmeslem, Meriem; Chafa, Azzedine; Barhoumi, Slimane; Tribeche, Mouloud

    2014-08-01

    The 18O( p, α)15N reaction influences the isotopes production such as 19F, 18O, and 15N which can be used to test the models of stellar evolution. 19F is synthesized in both asymptotic giant branch (AGB) and metal-rich Wolf-Rayet (WR) stars. Using R-matrix theory we allow new values of resonances parameters in 19F. We show that the most important contribution to the differential and total cross section at low energies, comes from the levels in 19F situated at resonances energies E R =151, 680 and 840 keV with spin and parity 1/2+. The total width of the 680 keV resonance is badly known. So, we have focused on this broad resonance corresponding to the 8.65 MeV level in 19F. We delimit the temperature range in which each resonance contribution to the total reaction rate occurs by analyzing the ratio ( N A < σν> i / N A < σν>). This allowed us to show that the 680 and 840 keV broad resonances strongly dominate the reaction rate over the stellar temperature range T 9=0.02-0.06 and T 9=0.5-5. Finally, these results were compared to NACRE and Iliadis astrophysical compilations.

  20. N-15 NMR spectra of naturally abundant nitrogen in soil and aquatic natural organic matter samples of the International Humic Substances Society

    USGS Publications Warehouse

    Thorn, K.A.; Cox, L.G.

    2009-01-01

    The naturally abundant nitrogen in soil and aquatic NOM samples from the International Humic Substances Society has been characterized by solid state CP/MAS 15N NMR. Soil samples include humic and fulvic acids from the Elliot soil, Minnesota Waskish peat and Florida Pahokee peat, as well as the Summit Hill soil humic acid and the Leonardite humic acid. Aquatic samples include Suwannee River humic, fulvic and reverse osmosis isolates, Nordic humic and fulvic acids and Pony Lake fulvic acid. Additionally, Nordic and Suwannee River XAD-4 acids and Suwannee River hydrophobic neutral fractions were analyzed. Similar to literature reports, amide/aminoquinone nitrogens comprised the major peaks in the solid state spectra of the soil humic and fulvic acids, along with heterocyclic and amino sugar/terminal amino acid nitrogens. Spectra of aquatic samples, including the XAD-4 acids, contain resolved heterocyclic nitrogen peaks in addition to the amide nitrogens. The spectrum of the nitrogen enriched, microbially derived Pony Lake, Antarctica fulvic acid, appeared to contain resonances in the region of pyrazine, imine and/or pyridine nitrogens, which have not been observed previously in soil or aquatic humic substances by 15N NMR. Liquid state 15N NMR experiments were also recorded on the Elliot soil humic acid and Pony Lake fulvic acid, both to examine the feasibility of the techniques, and to determine whether improvements in resolution over the solid state could be realized. For both samples, polarization transfer (DEPT) and indirect detection (1H-15N gHSQC) spectra revealed greater resolution among nitrogens directly bonded to protons. The amide/aminoquinone nitrogens could also be observed by direct detection experiments.

  1. N-15 NMR spectra of naturally abundant nitrogen in soil and aquatic natural organic matter samples of the International Humic Substances Society

    SciTech Connect

    Thorn, Kevin A.; Cox, Larry G.

    2009-02-28

    The naturally abundant nitrogen in soil and aquatic NOM samples from the International Humic Substances Society has been characterized by solid state CP/MAS ¹⁵N NMR. Soil samples include humic and fulvic acids from the Elliot soil, Minnesota Waskish peat and Florida Pahokee peat, as well as the Summit Hill soil humic acid and the Leonardite humic acid. Aquatic samples include Suwannee River humic, fulvic and reverse osmosis isolates, Nordic humic and fulvic acids and Pony Lake fulvic acid. Additionally, Nordic and Suwannee River XAD-4 acids and Suwannee River hydrophobic neutral fractions were analyzed. Similar to literature reports, amide/aminoquinone nitrogens comprised the major peaks in the solid state spectra of the soil humic and fulvic acids, along with heterocyclic and amino sugar/terminal amino acid nitrogens. Spectra of aquatic samples, including the XAD-4 acids, contain resolved heterocyclic nitrogen peaks in addition to the amide nitrogens. The spectrum of the nitrogen enriched, microbially derived Pony Lake, Antarctica fulvic acid, appeared to contain resonances in the region of pyrazine, imine and/or pyridine nitrogens, which have not been observed previously in soil or aquatic humic substances by ¹⁵N NMR. Liquid state ¹⁵N NMR experiments were also recorded on the Elliot soil humic acid and Pony Lake fulvic acid, both to examine the feasibility of the techniques, and to determine whether improvements in resolution over the solid state could be realized. For both samples, polarization transfer (DEPT) and indirect detection (¹H–¹⁵N gHSQC) spectra revealed greater resolution among nitrogens directly bonded to protons. The amide/aminoquinone nitrogens could also be observed by direct detection experiments.

  2. Absolute nutrient concentration measurements in cell culture media: (1)H q-NMR spectra and data to compare the efficiency of pH-controlled protein precipitation versus CPMG or post-processing filtering approaches.

    PubMed

    Goldoni, Luca; Beringhelli, Tiziana; Rocchia, Walter; Realini, Natalia; Piomelli, Daniele

    2016-09-01

    The NMR spectra and data reported in this article refer to the research article titled "A simple and accurate protocol for absolute polar metabolite quantification in cell cultures using q-NMR" [1]. We provide the (1)H q-NMR spectra of cell culture media (DMEM) after removal of serum proteins, which show the different efficiency of various precipitating solvents, the solvent/DMEM ratios, and pH of the solution. We compare the data of the absolute nutrient concentrations, measured by PULCON external standard method, before and after precipitation of serum proteins and those obtained using CPMG (Carr-Purcell-Meiboom-Gill) sequence or applying post-processing filtering algorithms to remove, from the (1)H q-NMR spectra, the proteins signal contribution. For each of these approaches, the percent error in the absolute value of every measurement for all the nutrients is also plotted as accuracy assessment. PMID:27331118

  3. Influence of inner-sphere processes on the paramagnetic shifts in the {sup 1}H NMR spectra of some mixed-ligand complexes of rare-earth elements

    SciTech Connect

    Khachatryan, A.S.; Vashchuk, A.V.; Panyushkin, V.T.

    1995-12-20

    Concentration dependences of the observed chemical shifts in the NMR spectra of 1:1:1 and 1:2:1 mixed-ligand complexes of rare-earth elements with acetylacetone and acrylic, methacrylic, maleic, and fumaric acids were analyzed. The complexes undergo inner-sphere structural transformations involving different modes of coordination of the unsaturated acid, which is capable of coordination to the central ion through both the carboxylic group and {pi} electrons of the double bond. The possibility of determining equilibrium constants and limiting chemical shifts of the isomeric forms of the complexes was demonstrated. 9 refs., 4 figs.

  4. Bare-Minimum Fluorous Mixture Synthesis of a Stereoisomer Library of 4,8,12-Trimethylnonadecanols and Predictions of NMR Spectra of Saturated Oligoisoprenoid Stereoisomers

    PubMed Central

    Yeh, Edmund A.-H.; Kumli, Eveline; Damodaran, Krishnan; Curran, Dennis P.

    2013-01-01

    All four diastereomers of a typical saturated oligoisoprenoid, 4,8,12-trimethylnonadecanol, are made by an iterative three step cycle with the aid of traceless thionocarbonate fluorous tags to encode configurations. The tags have a minimum number of total fluorine atoms, starting at zero and increasing in increments of one. With suitable acquisition and data processing, each diastereomer exhibited characteristic chemical shifts of methyl resonances in its 1H and 13C NMR spectra. Together, these shifts provide a basis to predict the appearance of the methyl region of the spectrum of every stereoisomer of higher saturated oligoisoprenoids. PMID:23297872

  5. NMR profiling of biomolecules at natural abundance using 2D 1H-15N and 1H-13C multiplicity-separated (MS) HSQC spectra

    NASA Astrophysics Data System (ADS)

    Chen, Kang; Freedberg, Darón I.; Keire, David A.

    2015-02-01

    2D NMR 1H-X (X = 15N or 13C) HSQC spectra contain cross-peaks for all XHn moieties. Multiplicity-edited1H-13C HSQC pulse sequences generate opposite signs between peaks of CH2 and CH/CH3 at a cost of lower signal-to-noise due to the 13C T2 relaxation during an additional 1/1JCH period. Such CHn-editing experiments are useful in assignment of chemical shifts and have been successfully applied to small molecules and small proteins (e.g. ubiquitin) dissolved in deuterated solvents where, generally, peak overlap is minimal. By contrast, for larger biomolecules, peak overlap in 2D HSQC spectra is unavoidable and peaks with opposite phases cancel each other out in the edited spectra. However, there is an increasing need for using NMR to profile biomolecules at natural abundance dissolved in water (e.g., protein therapeutics) where NMR experiments beyond 2D are impractical. Therefore, the existing 2D multiplicity-edited HSQC methods must be improved to acquire data on nuclei other than 13C (i.e.15N), to resolve more peaks, to reduce T2 losses and to accommodate water suppression approaches. To meet these needs, a multiplicity-separated1H-X HSQC (MS-HSQC) experiment was developed and tested on 500 and 700 MHz NMR spectrometers equipped with room temperature probes using RNase A (14 kDa) and retroviral capsid (26 kDa) proteins dissolved in 95% H2O/5% D2O. In this pulse sequence, the 1/1JXH editing-period is incorporated into the semi-constant time (semi-CT) X resonance chemical shift evolution period, which increases sensitivity, and importantly, the sum and the difference of the interleaved 1JXH-active and the 1JXH-inactive HSQC experiments yield two separate spectra for XH2 and XH/XH3. Furthermore we demonstrate improved water suppression using triple xyz-gradients instead of the more widely used z-gradient only water-suppression approach.

  6. Toward an in Vivo Neurochemical Profile: Quantification of 18 Metabolites in Short-Echo-Time 1H NMR Spectra of the Rat Brain

    NASA Astrophysics Data System (ADS)

    Pfeuffer, Josef; Tkáč , Ivan; Provencher, Stephen W.; Gruetter, Rolf

    1999-11-01

    Localized in vivo1H NMR spectroscopy was performed with 2-ms echo time in the rat brain at 9.4 T. Frequency domain analysis with LCModel showed that the in vivo spectra can be explained by 18 metabolite model solution spectra and a highly structured background, which was attributed to resonances with fivefold shorter in vivo T1 than metabolites. The high spectral resolution (full width at half maximum approximately 0.025 ppm) and sensitivity (signal-to-noise ratio approximately 45 from a 63-μL volume, 512 scans) was used for the simultaneous measurement of the concentrations of metabolites previously difficult to quantify in 1H spectra. The strongly represented signals of N-acetylaspartate, glutamate, taurine, myo-inositol, creatine, phosphocreatine, glutamine, and lactate were quantified with Cramér-Rao lower bounds below 4%. Choline groups, phosphorylethanolamine, glucose, glutathione, γ-aminobutyric acid, N-acetylaspartylglutamate, and alanine were below 13%, whereas aspartate and scyllo-inositol were below 22%. Intra-assay variation was assessed from a time series of 3-min spectra, and the coefficient of variation was similar to the calculated Cramér-Rao lower bounds. Interassay variation was determined from 31 pooled spectra, and the coefficient of variation for total creatine was 7%. Tissue concentrations were found to be in very good agreement with neurochemical data from the literature.

  7. Perfluoroalkyl Grignard Reagents: NMR Study of 1-Heptafluoropropylmagnesium Chloride in Solution.

    PubMed

    Guang, Jie; Hopson, Russell; Williard, Paul G; Fujiu, Motohiro; Negishi, Kazuyuki; Mikami, Koichi

    2016-07-15

    We report on the generation of a perfluoroalkyl Grignard reagent ((F)RMgX) by exchange reaction between a perfluoroalkyl iodide ((F)R-I) and a Grignard reagent (RMgX). (19)F NMR was applied to monitor the generation of n-C3F7MgCl. Additional NMR techniques, including (19)F COSY, NOESY, and pulsed gradient spin-echo (PGSE) diffusion NMR, were invoked to assign peaks observed in (19)F spectrum. Schlenk equilibrium was observed and was significantly influenced by solvent, diethyl ether, or THF. PMID:27295419

  8. Protein-Observed Fluorine NMR: A Bioorthogonal Approach for Small Molecule Discovery.

    PubMed

    Arntson, Keith E; Pomerantz, William C K

    2016-06-01

    The (19)F isotope is 100% naturally abundant and is the second most sensitive and stable NMR-active nucleus. Unlike the ubiquitous hydrogen atom, fluorine is nearly absent in biological systems, making it a unique bioorthogonal atom for probing molecular interactions in biology. Over 73 fluorinated proteins have been studied by (19)F NMR since the seminal studies of Hull and Sykes in 1974. With advances in cryoprobe production and fluorinated amino acid incorporation strategies, protein-based (19)F NMR offers opportunities to the medicinal chemist for characterizing and ultimately discovering new small molecule protein ligands. This review will highlight new advances using (19)F NMR for characterizing small molecule interactions with both small and large proteins as well as detailing NMR resonance assignment challenges and amino acid incorporation approaches. PMID:26599421

  9. In Vivo Imaging of Stepwise Vessel Occlusion in Cerebral Photothrombosis of Mice by 19F MRI

    PubMed Central

    Kleinschnitz, Christoph; Kampf, Thomas; Jakob, Peter M.; Stoll, Guido

    2011-01-01

    Background 19F magnetic resonance imaging (MRI) was recently introduced as a promising technique for in vivo cell tracking. In the present study we compared 19F MRI with iron-enhanced MRI in mice with photothrombosis (PT) at 7 Tesla. PT represents a model of focal cerebral ischemia exhibiting acute vessel occlusion and delayed neuroinflammation. Methods/Principal Findings Perfluorocarbons (PFC) or superparamagnetic iron oxide particles (SPIO) were injected intravenously at different time points after photothrombotic infarction. While administration of PFC directly after PT induction led to a strong 19F signal throughout the entire lesion, two hours delayed application resulted in a rim-like 19F signal at the outer edge of the lesion. These findings closely resembled the distribution of signal loss on T2-weighted MRI seen after SPIO injection reflecting intravascular accumulation of iron particles trapped in vessel thrombi as confirmed histologically. By sequential administration of two chemically shifted PFC compounds 0 and 2 hours after illumination the different spatial distribution of the 19F markers (infarct core/rim) could be visualized in the same animal. When PFC were applied at day 6 the fluorine marker was only detected after long acquisition times ex vivo. SPIO-enhanced MRI showed slight signal loss in vivo which was much more prominent ex vivo indicative for neuroinflammation at this late lesion stage. Conclusion Our study shows that vessel occlusion can be followed in vivo by 19F and SPIO-enhanced high-field MRI while in vivo imaging of neuroinflammation remains challenging. The timing of contrast agent application was the major determinant of the underlying processes depicted by both imaging techniques. Importantly, sequential application of different PFC compounds allowed depiction of ongoing vessel occlusion from the core to the margin of the ischemic lesions in a single MRI measurement. PMID:22194810

  10. Using a Problem Solving-Cooperative Learning Approach to Improve Students' Skills for Interpreting [Superscript 1]H NMR Spectra of Unknown Compounds in an Organic Spectroscopy Course

    ERIC Educational Resources Information Center

    Angawi, Rihab F.

    2014-01-01

    To address third- and fourth-year chemistry students' difficulties with the challenge of interpreting [superscript 1]H NMR spectra, a problem solving-cooperative learning technique was incorporated in a Spectra of Organic Compounds course. Using this approach helped students deepen their understanding of the basics of [superscript 1]H NMR…

  11. Strategy for Enhancement of (13)C-Photo-CIDNP NMR Spectra by Exploiting Fractional (13)C-Labeling of Tryptophan.

    PubMed

    Eisenreich, Wolfgang; Joshi, Monika; Illarionov, Boris; Kacprzak, Sylwia; Lukaschek, Michail; Kothe, Gerd; Budisa, Nediljko; Fischer, Markus; Bacher, Adelbert; Weber, Stefan

    2015-10-29

    The photo-CIDNP effect has proven to be useful to strongly enhance NMR signals of photochemically active proteins simply by irradiation with light. The evolving characteristic patterns of enhanced absorptive and emissive NMR lines can be exploited to elucidate the photochemistry and photophysics of light-driven protein reactions. In particular, by the assignment of (13)C NMR resonances, redox-active amino acids may be identified and thereby electron-transfer pathways unraveled, in favorable cases, even with (13)C at natural abundance. If signal enhancement is weak, uniform (13)C isotope labeling is traditionally applied to increase the signal strength of protein (13)C NMR. However, this typically leads to cross relaxation, which transfers light-induced nuclear-spin polarization to adjacent (13)C nuclei, thereby preventing an unambiguous analysis of the photo-CIDNP effect. In this contribution, two isotope labeling strategies are presented; one leads to specific but ubiquitous (13)C labeling in tryptophan, and the other is based on fractional isotope labeling affording sets of isotopologs with low probability of next-neighbor isotope accumulation within individual tryptophan molecules. Consequently, cross relaxation is largely avoided while the signal enhancement by (13)C enrichment is preserved. This results in significantly simplified polarization patterns that are easier to analyze with respect to the generation of light-generated nuclear-spin polarization. PMID:26244593

  12. 19F Nuclear Magnetic Resonance and Crystallographic Studies of 5-Fluorotryptophan-Labeled Anthrax Protective Antigen and Effects of the Receptor on Stability

    PubMed Central

    2015-01-01

    The anthrax protective antigen (PA) is an 83 kDa protein that is one of three protein components of the anthrax toxin, an AB toxin secreted by Bacillus anthracis. PA is capable of undergoing several structural changes, including oligomerization to either a heptameric or octameric structure called the prepore, and at acidic pH a major conformational change to form a membrane-spanning pore. To follow these structural changes at a residue-specific level, we have conducted initial studies in which we have biosynthetically incorporated 5-fluorotryptophan (5-FTrp) into PA, and we have studied the influence of 5-FTrp labeling on the structural stability of PA and on binding to the host receptor capillary morphogenesis protein 2 (CMG2) using 19F nuclear magnetic resonance (NMR). There are seven tryptophans in PA, but of the four domains in PA, only two contain tryptophans: domain 1 (Trp65, -90, -136, -206, and -226) and domain 2 (Trp346 and -477). Trp346 is of particular interest because of its proximity to the CMG2 binding interface, and because it forms part of the membrane-spanning pore. We show that the 19F resonance of Trp346 is sensitive to changes in pH, consistent with crystallographic studies, and that receptor binding significantly stabilizes Trp346 to both pH and temperature. In addition, we provide evidence that suggests that resonances from tryptophans distant from the binding interface are also stabilized by the receptor. Our studies highlight the positive impact of receptor binding on protein stability and the use of 19F NMR in gaining insight into structural changes in a high-molecular weight protein. PMID:24387629

  13. (1)H NMR z-spectra of acetate methyl in stretched hydrogels: quantum-mechanical description and Markov chain Monte Carlo relaxation-parameter estimation.

    PubMed

    Shishmarev, Dmitry; Chapman, Bogdan E; Naumann, Christoph; Mamone, Salvatore; Kuchel, Philip W

    2015-01-01

    The (1)H NMR signal of the methyl group of sodium acetate is shown to be a triplet in the anisotropic environment of stretched gelatin gel. The multiplet structure of the signal is due to the intra-methyl residual dipolar couplings. The relaxation properties of the spin system were probed by recording steady-state irradiation envelopes ('z-spectra'). A quantum-mechanical model based on irreducible spherical tensors formed by the three magnetically equivalent spins of the methyl group was used to simulate and fit experimental z-spectra. The multiple parameter values of the relaxation model were estimated by using a Bayesian-based Markov chain Monte Carlo algorithm. PMID:25486634

  14. Structure of pyridine and quinoline vinyl ethers according to data from /sup 1/H and /sup 13/C NMR spectra and quantum-chemical calculations

    SciTech Connect

    Afonin, A.V.; Voronov, V.K.; Andriankov, M.A.; Danovich, D.K.

    1987-08-10

    A systematic investigation of the structure of the vinyl ethers of heterocyclic compounds has not been undertaken. The present work was devoted to investigation of the stereochemical and electronic structure of the vinyl ethers of pyridine and quinoline. The PMR spectra of the samples were recorded for 5% solutions in deuterochloroform on a Tesla BS-497 spectrometer at 100 MHz. The /sup 13/C NMR spectra were recorded on a Tesla BS-567A spectrometer at 25.1 MHz in deuterochloroform with the samples at concentrations of 30%. The internal standard was HMDS. The vinyl ethers of pyridine and quinoline exist preferentially in the nonplanar S-trans conformation. In the vinyl esters of pyridine and quinoline the p-..pi.. conjugation is concurrent in nature and depends on the position of the vinyloxy group in the heterocycle.

  15. Combined experimental (FT-IR, UV-visible spectra, NMR) and theoretical studies on the molecular structure, vibrational spectra, HOMO, LUMO, MESP surfaces, reactivity descriptor and molecular docking of Phomarin

    NASA Astrophysics Data System (ADS)

    Kumar, Abhishek; Srivastava, Ambrish Kumar; Gangwar, Shashi; Misra, Neeraj; Mondal, Avijit; Brahmachari, Goutam

    2015-09-01

    Phomarin is an important natural product belonging to anthraquinone series of compounds. The equilibrium geometry of phomarin has been determined and analyzed at DFT method employing B3LYP/6-311++G(d,p) level of computation. The reactivity of molecule using various descriptors such as Fukui functions, local softness, electrophilicity, electronegativity, Hardness, HOMO-LUMO gap are calculated and discussed. The infrared and UV-vis spectra of phomarin are calculated and compared with the experimentally observed ones. Moreover, 1H and 13C NMR spectra have been calculated by using the gauge independent atomic orbital method. We also notice that phomarin shows remarkable biological activities against malaria parasite. The study suggests further investigation on phomarin for their pharmacological importance.

  16. Degradation of 4-fluorobiphenyl by mycorrhizal fungi as determined by {sup 19}F nuclear magnetic resonance spectroscopy and {sup 14}C radiolabelling analysis

    SciTech Connect

    Green, N.A.; Meharg, A.A.; Till, C.; Troke, J.; Nicholson, J.K.

    1999-09-01

    The pathways of biotransformation of 4-fluorobiphenyl (4FBP) by the ectomycorrhizal fungus Tylospora fibrilosa and several other mycorrhizal fungi were investigated by using {sup 19}F nuclear magnetic resonance (NMR) spectroscopy in combination with {sup 14}C radioisotope-detected high-performance liquid chromatography ({sup 14}C-HPLC). Under the conditions used in this study T. fibrillosa and some other species degraded 4FBP. {sup 14}C-HPLC profiles indicated that there were four major biotransformation products, whereas {sup 19}F NMR showed that there were six major fluorine-containing products. The authors confirmed that 4-fluorobiphen-4{prime}-ol and 4-fluorobiphen-3{prime}-ol were two of the major products formed, but no other products were conclusively identified. There was no evidence for the expected biotransformation pathway (namely, meta cleavage of the less halogenated ring), as none of the expected products of this route were found. To the best of their knowledge, this is the first report describing intermediates formed during mycorrhizal degradation of halogenated biphenyls.

  17. Conformational and isomerizational studies of 3- N, N-dimethylhydrazino-2-acetyl propenenitrile using X-ray analysis, NMR and vibrational spectra, and ab initio calculations

    NASA Astrophysics Data System (ADS)

    Gróf, M.; Gatial, A.; Milata, V.; Prónayová, N.; Kožíšek, J.; Breza, M.; Matějka, P.

    2009-12-01

    The IR, Raman and NMR spectra of 3- N, N-dimethylhydrazino-2-acetyl propenenitrile (DMHAP) [(H 3C) 2N sbnd NH sbnd CH dbnd C(CN)(COCH 3)] were measured. X-ray analysis revealed that DMHAP exists in solid state as ZZa conformer. Vibrational and NMR spectra confirmed the existence of only one ZZa conformer with an intramolecular hydrogen bond in less polar solvents and next two EZa and EZs conformers of E-isomer with Z-orientation of acetyl group and anti and syn orientation of dimethylhydrazino group in more polar environments. The observed IR and Raman bands were compared with harmonic vibrational frequencies, calculated using ab initio MP2 and DFT/B3LYP methods in 6-31G∗∗ basis set, and assigned on the basis of potential energy distribution. In addition, the geometries and relative energies of the possible isomers and conformers of DMHAP were also evaluated on the same levels and compared with the X-ray data. The influence of environment polarity on this conformational equilibrium is discussed with respect to the SCRF solvent effect calculations using IEFPCM model.

  18. IR and NMR spectra, intramolecular hydrogen bonding and conformations of para-tert-butyl-aminothiacalix[4]arene in solid state and chloroform solution

    NASA Astrophysics Data System (ADS)

    Zvereva, Elena E.; Katsyuba, Sergey A.; Vandyukov, Alexander E.; Chernova, Alla V.; Kovalenko, Valery I.; Solovieva, Svetlana E.; Antipin, Igor S.; Konovalov, Alexander I.

    2010-02-01

    It is demonstrated that dissolution of aminothiacalix[4]arene in chloroform results in transformation of 1,3-alternate conformation, adopted in single-crystal and bulk polycrystalline solids, to the pinched-cone form. This conformer is stabilised by the intramolecular hydrogen bonds of two distal amino-groups acting as H-donors with another two amino moieties that appear as H-acceptors. The H-bonds cause quite small (ca. 10-20 cm -1) red shift of the IR bands of the NH 2 stretching vibrations, which suggests rather weak NH⋯N hydrogen bonding. This latter is sufficient to stabilize the pinched-cone conformation in the chloroform solution, but the energy gap between the pinched-cone and other conformations is small, and solid-state intermolecular forces easily overcome it, leading to realisation of the 1,3-alternate conformer. The comparison of the DFT computed and experimental vibrational and NMR spectra demonstrates good quality of present quantum-chemical computations, allows complete interpretation of the spectra and reveals simple IR and NMR spectroscopic markers of the conformers of aminothiacalix[4]arenes.

  19. IR and NMR spectra, intramolecular hydrogen bonding and conformations of para-tert-butyl-aminothiacalix[4]arene in solid state and chloroform solution.

    PubMed

    Zvereva, Elena E; Katsyuba, Sergey A; Vandyukov, Alexander E; Chernova, Alla V; Kovalenko, Valery I; Solovieva, Svetlana E; Antipin, Igor S; Konovalov, Alexander I

    2010-02-01

    It is demonstrated that dissolution of aminothiacalix[4]arene in chloroform results in transformation of 1,3-alternate conformation, adopted in single-crystal and bulk polycrystalline solids, to the pinched-cone form. This conformer is stabilised by the intramolecular hydrogen bonds of two distal amino-groups acting as H-donors with another two amino moieties that appear as H-acceptors. The H-bonds cause quite small (ca. 10-20 cm(-1)) red shift of the IR bands of the NH(2) stretching vibrations, which suggests rather weak NHcdots, three dots, centeredN hydrogen bonding. This latter is sufficient to stabilize the pinched-cone conformation in the chloroform solution, but the energy gap between the pinched-cone and other conformations is small, and solid-state intermolecular forces easily overcome it, leading to realisation of the 1,3-alternate conformer. The comparison of the DFT computed and experimental vibrational and NMR spectra demonstrates good quality of present quantum-chemical computations, allows complete interpretation of the spectra and reveals simple IR and NMR spectroscopic markers of the conformers of aminothiacalix[4]arenes. PMID:20042365

  20. Off-resonance effects on 2D NMR nutation spectra of I = 3/2 quadrupolar nuclei in static samples.

    PubMed

    Xia, Y; Deng, F; Ye, C

    1995-12-01

    The off-resonance effects on 2D NMR nutation of I = 3/2 quadrupolar nuclei are demonstrated with perturbation theory and numerical calculation in static samples. The off-resonant (delta omega) rf field (omega 1) enlarges a nutation frequency and consequently increases the measurement range of nuclear quadrupolar interaction parameters. When omega e > omega Qmax, and arctg(omega 1/delta omega) = +/- 54.7 degrees (magic angle), the satellite lines (produced by coherence transfers) in a nutation spectrum are superimposed with the line of central transition, and hence the nutation spectrum is simplified and its sensitivity is enhanced. The nuclear quadrupolar interaction parameters of 23Na nuclei in Na omega molecular sieve are obtained using 2D NMR nutation. PMID:9053113

  1. Improving the efficiency of branch-and-bound complete-search NMR assignment using the symmetry of molecules and spectra

    SciTech Connect

    Bernal, Andrés; Patiny, Luc; Castillo, Andrés M.; González, Fabio; Wist, Julien

    2015-02-21

    Nuclear magnetic resonance (NMR) assignment of small molecules is presented as a typical example of a combinatorial optimization problem in chemical physics. Three strategies that help improve the efficiency of solution search by the branch and bound method are presented: 1. reduction of the size of the solution space by resort to a condensed structure formula, wherein symmetric nuclei are grouped together; 2. partitioning of the solution space based on symmetry, that becomes the basis for an efficient branching procedure; and 3. a criterion of selection of input restrictions that leads to increased gaps between branches and thus faster pruning of non-viable solutions. Although the examples chosen to illustrate this work focus on small-molecule NMR assignment, the results are generic and might help solving other combinatorial optimization problems.

  2. X-ray CT and NMR imaging of rocks

    SciTech Connect

    Vinegar, H.J.

    1986-03-01

    In little more than a decade, X-ray computerized tomography (CT) and nuclear magnetic resonance (NMR) imaging have become the premier modalities of medical radiology. Both of these imaging techniques also promise to be useful tools in petrophysics and reservoir engineering, because CT and NMR can nondestructively image a host of physical and chemical properties of porous rocks and multiple fluid phases contained within their pores. The images are taken within seconds to minutes, at reservoir temperatures and pressures, with spatial resolution on the millimeter and submillimeter level. The physical properties imaged by the two techniques are complementary. CT images bulk density and effective atomic number. NMR images the nuclide concentration, M/sub 0/, of a variety of nuclei (/sup 1/H, /sup 19/F, /sup 23/Na, /sup 31/P, etc.), their longitudinal and transverse relaxation-time curves (t/sub 1/ and t/sub 2/), and their chemical shift spectra. In rocks, CT images both rock matrix and pore fluids, while NMR images only mobile fluids and the interactions of these mobile fluids with the confining surfaces of the pores.

  3. Study of fusion-fission dynamics in 19F+238U reaction

    NASA Astrophysics Data System (ADS)

    Dubey, R.; Sugathan, P.; Jhingan, A.; Kaur, Gurpreet; Mukul, Ish; Siwal, Davinder; Saneesh, N.; Banerjee, Tathagata; Yadav, Abhishek; Thakur, Meenu; Mahajan, Ruchi; Chaterjee, M. B.

    2016-05-01

    Mass angle distribution measurements for 19F+238U reaction were carried out around the sub barrier energies. Mass angle correlation has not been observed at above and below the fusion barrier in present reaction. This infer the minimal presence of non compound like events at these bombarding energies range.

  4. Cell Labeling for 19F MRI: New and Improved Approach to Perfluorocarbon Nanoemulsion Design

    PubMed Central

    Patel, Sravan K.; Williams, Jonathan; Janjic, Jelena M.

    2013-01-01

    This report describes novel perfluorocarbon (PFC) nanoemulsions designed to improve ex vivo cell labeling for 19F magnetic resonance imaging (MRI). 19F MRI is a powerful non-invasive technique for monitoring cells of the immune system in vivo, where cells are labeled ex vivo with PFC nanoemulsions in cell culture. The quality of 19F MRI is directly affected by the quality of ex vivo PFC cell labeling. When co-cultured with cells for longer periods of time, nanoemulsions tend to settle due to high specific weight of PFC oils (1.5–2.0 g/mL). This in turn can decrease efficacy of excess nanoemulsion removal and reliability of the cell labeling in vitro. To solve this problem, novel PFC nanoemulsions are reported which demonstrate lack of sedimentation and high stability under cell labeling conditions. They are monodisperse, have small droplet size (~130 nm) and low polydispersity (<0.15), show a single peak in the 19F nuclear magnetic resonance spectrum at −71.4 ppm and possess high fluorine content. The droplet size and polydispersity remained unchanged after 160 days of follow up at three temperatures (4, 25 and 37 °C). Further, stressors such as elevated temperature in the presence of cells, and centrifugation, did not affect the nanoemulsion droplet size and polydispersity. Detailed synthetic methodology and in vitro testing for these new PFC nanoemulsions is presented. PMID:25586263

  5. Comparison between optimized GRE and RARE sequences for 19F MRI studies

    NASA Astrophysics Data System (ADS)

    Soffientini, Chiara D.; Mastropietro, Alfonso; Caffini, Matteo; Cocco, Sara; Zucca, Ileana; Scotti, Alessandro; Baselli, Giuseppe; Bruzzone, Maria Grazia

    2014-03-01

    In 19F-MRI studies limiting factors are the presence of a low signal due to the low concentration of 19F-nuclei, necessary for biological applications, and the inherent low sensitivity of MRI. Hence, acquiring images using the pulse sequence with the best signal to noise ratio (SNR) by optimizing the acquisition parameters specifically to a 19F compound is a core issue. In 19F-MRI, multiple-spin-echo (RARE) and gradient-echo (GRE) are the two most frequently used pulse sequence families; therefore we performed an optimization study of GRE pulse sequences based on numerical simulations and experimental acquisitions on fluorinated compounds. We compared GRE performance to an optimized RARE sequence. Images were acquired on a 7T MRI preclinical scanner on phantoms containing different fluorinated compounds. Actual relaxation times (T1, T2, T2*) were evaluated in order to predict SNR dependence on sequence parameters. Experimental comparisons between spoiled GRE and RARE, obtained at a fixed acquisition time and in steady state condition, showed RARE sequence outperforming the spoiled GRE (up to 406% higher). Conversely, the use of the unbalanced-SSFP showed a significant increase in SNR compared to RARE (up to 28% higher). Moreover, this sequence (as GRE in general) was confirmed to be virtually insensitive to T1 and T2 relaxation times, after proper optimization, thus improving marker independence from the biological environment. These results confirm the efficacy of the proposed optimization tool and foster further investigation addressing in-vivo applicability.

  6. 19F MRI detection of acute allograft rejection with in vivo perfluorocarbon labeling of immune cells.

    PubMed

    Hitchens, T Kevin; Ye, Qing; Eytan, Danielle F; Janjic, Jelena M; Ahrens, Eric T; Ho, Chien

    2011-04-01

    Current diagnosis of organ rejection following transplantation relies on tissue biopsy, which is not ideal due to sampling limitations and risks associated with the invasive procedure.We have previously shown that cellular magnetic resonance imaging (MRI) of iron-oxide labeled immune-cell infiltration can provide a noninvasive measure of rejection status by detecting areas of hypointensity on T 2*-weighted images. In this study, we tested the feasibility of using a fluorine-based cellular tracer agent to detect macrophage accumulation in rodent models of acute allograft rejection by fluorine-19 ((19) F) MRI and magnetic resonance spectroscopy. This study used two rat models of acute rejection, including abdominal heterotopic cardiac transplant and orthotopic kidney transplant models. Following in vivo labeling of monocytes and macrophages with a commercially available agent containing perfluoro-15-crown-5-ether, we observed (19) F-signal intensity in the organs experiencing rejection by (19) F MRI, and conventional (1) H MRI was used for anatomical context. Immunofluorescence and histology confirmed macrophage labeling. These results are consistent with our previous studies and show the complementary nature of the two cellular imaging techniques. With no background signal, (19) F MRI/magnetic resonance spectroscopy can provide unambiguous detection of fluorine labeled cells, and may be a useful technique for detecting and quantifying rejection grade in patients. PMID:21305593

  7. Symmetry-guided design and fluorous synthesis of a stable and rapidly excreted imaging tracer for (19)F MRI.

    PubMed

    Jiang, Zhong-Xing; Liu, Xin; Jeong, Eun-Kee; Yu, Yihua Bruce

    2009-01-01

    Getting FIT: A bispherical (19)F imaging tracer, (19)FIT, was designed and synthesized. (19)FIT is advantageous over perfluorocarbon-based (19)F imaging agents, as it is not retained in the organs and does not require complex formulation procedures. Imaging agents such as (19)FIT can lead to (19)F magnetic resonance imaging (MRI) playing an important role in drug therapy, analogous to the role played by (1)H MRI in disease diagnosis. PMID:19475598

  8. NMR characterization of functional groups: 9--isomer ratios of available chloromethylstyrene mixtures

    NASA Technical Reports Server (NTRS)

    Manatt, S. L.; Khune, G. D.; Khatri, N. A.

    1985-01-01

    From the assignments of the 1H and 13C 11.7 tesla NMR spectra of available mixtures of m- and p-chloromethylstyrene, the proportion of the meta and para compounds are easily determined. For these materials from two common commercial sources, proportions of 72 and 28% and 68 and 32% were found. These concentrations are substantially different from the often assumed 60 and 40% for the meta and para compounds, respectively. The influence of this difference on the desired properties of copolymers made from such mixtures is discussed. An alternative quantitative procedure for determining the chloromethyl group isomer ratios is also described which employs silver trifluoroacetate in acetone displacement of chloride and 19F NMR examination of the resulting ester mixture with a 2.3 tesla spectrometer.

  9. 1H NMR spectra of alcohols and diols in chloroform: DFT/GIAO calculation of chemical shifts.

    PubMed

    Lomas, John S

    2014-12-01

    Proton nuclear magnetic resonance (NMR) shifts of aliphatic alcohols in chloroform have been computed on the basis of density functional theory, the solvent being included by the integral-equation-formalism polarisable continuum model of Gaussian 09. Relative energies of all conformers are calculated at the Perdew, Burke and Ernzerhof (PBE)0/6-311+G(d,p) level, and NMR shifts by the gauge-including atomic orbital method with the PBE0/6-311+G(d,p) geometry and the cc-pVTZ basis set. The 208 computed CH proton NMR shifts for 34 alcohols correlate very well with the experimental values, with a gradient of 1.00 ± 0.01 and intercept close to zero; the overall root mean square difference (RMSD) is 0.08 ppm. Shifts for CH protons of diols in chloroform are well correlated with the theoretical values for (isotropic) benzene, with similar gradient and intercept (1.02 ± 0.01, -0.13 ppm), but the overall RMSD is slightly higher, 0.12 ppm. This approach generally gives slightly better results than the CHARGE model of Abraham et al. The shifts of unsaturated alcohols in benzene have been re-examined with Gaussian 09, but the overall fit for CH protons is not improved, and OH proton shifts are worse. Shifts of vinyl protons in alkenols are systematically overestimated, and the correlation of computed shifts against the experimental data for unsaturated alcohols follows a quadratic equation. Splitting the 20 compounds studied into two sets, and applying empirical scaling based on the quadratic for the first set to the second set, gives an RMSD of 0.10 ppm. A multi-standard approach gives a similar result. PMID:25199903

  10. Experimental and theoretical investigation of the molecular structure, conformational stability, hyperpolarizability, electrostatic potential, thermodynamic properties and NMR spectra of pharmaceutical important molecule: 4'-methylpropiophenone.

    PubMed

    Karunakaran, V; Balachandran, V

    2014-07-15

    Combined experimental and theoretical studies have been performed on the structure and vibrational spectra (IR and Raman spectra) of 4'-methylpropiophenone (MPP). The FT-IR and FT-Raman spectra of 4'-methylpropiophenone (MPP) have been recorded in the region 4000-400 cm(-1) and 3500-100 cm(-1), respectively. The harmonic vibrational frequencies were calculated and the scaled values have been compared with experimental FT-IR and FT-Raman spectra. A detailed interpretation of the infrared and Raman spectra of MPP are also reported based on total energy distribution (TED). The observed and the calculated frequencies are found to be in good agreement. The (1)H and (13)C NMR chemical shifts have been calculated by Gauge-Independent Atomic Orbital (GIAO) method with B3LYP/6-311++G(d,p). The natural bond orbital (NBO), natural hybrid orbital (NHO) analysis and electronic properties, such as HOMO and LUMO energies, were performed by DFT approach. The calculated HOMO and LUMO energies show that charge transfer occurs within molecule. The first order hyperpolarizability (β0) of the novel molecular system and related properties (βtot, α0 and Δα) of MPP are calculated using DFT/6-311++G(d,p) method on the finite-field approach. The Mulliken charges, the values of electric dipole moment (μ) of the molecule were computed using DFT calculations. The thermodynamic functions of the title compound were also performed at the above method and basis set. PMID:24657464

  11. Experimental and theoretical investigation of the molecular structure, conformational stability, hyperpolarizability, electrostatic potential, thermodynamic properties and NMR spectra of pharmaceutical important molecule: 4‧-Methylpropiophenone

    NASA Astrophysics Data System (ADS)

    Karunakaran, V.; Balachandran, V.

    2014-07-01

    Combined experimental and theoretical studies have been performed on the structure and vibrational spectra (IR and Raman spectra) of 4‧-methylpropiophenone (MPP). The FT-IR and FT-Raman spectra of 4‧-methylpropiophenone (MPP) have been recorded in the region 4000-400 cm-1 and 3500-100 cm-1, respectively. The harmonic vibrational frequencies were calculated and the scaled values have been compared with experimental FT-IR and FT-Raman spectra. A detailed interpretation of the infrared and Raman spectra of MPP are also reported based on total energy distribution (TED). The observed and the calculated frequencies are found to be in good agreement. The 1H and 13C NMR chemical shifts have been calculated by Gauge-Independent Atomic Orbital (GIAO) method with B3LYP/6-311++G(d,p). The natural bond orbital (NBO), natural hybrid orbital (NHO) analysis and electronic properties, such as HOMO and LUMO energies, were performed by DFT approach. The calculated HOMO and LUMO energies show that charge transfer occurs within molecule. The first order hyperpolarizability (β0) of the novel molecular system and related properties (βtot, α0 and Δα) of MPP are calculated using DFT/6-311++G(d,p) method on the finite-field approach. The Mulliken charges, the values of electric dipole moment (μ) of the molecule were computed using DFT calculations. The thermodynamic functions of the title compound were also performed at the above method and basis set.

  12. Quantification of the Contribution of Extracellular Sodium to 23Na Multiple-Quantum-Filtered NMR Spectra of Suspensions of Human Red Blood Cells

    NASA Astrophysics Data System (ADS)

    Knubovets, Tatyana; Shinar, Hadassah; Navon, Gil

    1998-03-01

    23Na double-quantum-filtered (DQF) NMR enables the detection of anisotropic motion of sodium ions due to their interaction with ordered structures in biological tissues. Using the technique, anisotropic motion was found for sodium ions in mammalian red blood cell suspensions (RBC) and the effect was shown to correlate with the integrity of membrane cytoskeleton. In the present study relative contributions to the DQF and triple-quantum-filtered (TQF) spectra of sodium bound to anisotropic and isotropic binding sites in the intra- and extracellular sodium pools (Na content being 15 and 150 mM, respectively) of human RBC were quantified for different hematocrits. DQF spectra were measured by a modified Jeener-Broekaert pulse sequence which enabled exclusive detection of anisotropically moving sodium ions. The relative contributions of the extracellular sodium to the TQF and DQF spectra decreased as the hematocrit increased, but their efficiency relative to the sodium content increased. The contribution of the extracellular sodium to the TQF signal was found to dominate the spectrum of the RBC suspension at all hematocrits studied. The contribution of the extracellular sodium to the DQF was significantly smaller than that to the TQF and was only 22% at a high hematocrit of about 90%.

  13. Comprehensive multiphase NMR spectroscopy: basic experimental approaches to differentiate phases in heterogeneous samples.

    PubMed

    Courtier-Murias, Denis; Farooq, Hashim; Masoom, Hussain; Botana, Adolfo; Soong, Ronald; Longstaffe, James G; Simpson, Myrna J; Maas, Werner E; Fey, Michael; Andrew, Brian; Struppe, Jochem; Hutchins, Howard; Krishnamurthy, Sridevi; Kumar, Rajeev; Monette, Martine; Stronks, Henry J; Hume, Alan; Simpson, André J

    2012-04-01

    Heterogeneous samples, such as soils, sediments, plants, tissues, foods and organisms, often contain liquid-, gel- and solid-like phases and it is the synergism between these phases that determine their environmental and biological properties. Studying each phase separately can perturb the sample, removing important structural information such as chemical interactions at the gel-solid interface, kinetics across boundaries and conformation in the natural state. In order to overcome these limitations a Comprehensive Multiphase-Nuclear Magnetic Resonance (CMP-NMR) probe has been developed, and is introduced here, that permits all bonds in all phases to be studied and differentiated in whole unaltered natural samples. The CMP-NMR probe is built with high power circuitry, Magic Angle Spinning (MAS), is fitted with a lock channel, pulse field gradients, and is fully susceptibility matched. Consequently, this novel NMR probe has to cover all HR-MAS aspects without compromising power handling to permit the full range of solution-, gel- and solid-state experiments available today. Using this technology, both structures and interactions can be studied independently in each phase as well as transfer/interactions between phases within a heterogeneous sample. This paper outlines some basic experimental approaches using a model heterogeneous multiphase sample containing liquid-, gel- and solid-like components in water, yielding separate (1)H and (13)C spectra for the different phases. In addition, (19)F performance is also addressed. To illustrate the capability of (19)F NMR soil samples, containing two different contaminants, are used, demonstrating a preliminary, but real-world application of this technology. This novel NMR approach possesses a great potential for the in situ study of natural samples in their native state. PMID:22425441

  14. Comprehensive multiphase NMR spectroscopy: Basic experimental approaches to differentiate phases in heterogeneous samples

    NASA Astrophysics Data System (ADS)

    Courtier-Murias, Denis; Farooq, Hashim; Masoom, Hussain; Botana, Adolfo; Soong, Ronald; Longstaffe, James G.; Simpson, Myrna J.; Maas, Werner E.; Fey, Michael; Andrew, Brian; Struppe, Jochem; Hutchins, Howard; Krishnamurthy, Sridevi; Kumar, Rajeev; Monette, Martine; Stronks, Henry J.; Hume, Alan; Simpson, André J.

    2012-04-01

    Heterogeneous samples, such as soils, sediments, plants, tissues, foods and organisms, often contain liquid-, gel- and solid-like phases and it is the synergism between these phases that determine their environmental and biological properties. Studying each phase separately can perturb the sample, removing important structural information such as chemical interactions at the gel-solid interface, kinetics across boundaries and conformation in the natural state. In order to overcome these limitations a Comprehensive Multiphase-Nuclear Magnetic Resonance (CMP-NMR) probe has been developed, and is introduced here, that permits all bonds in all phases to be studied and differentiated in whole unaltered natural samples. The CMP-NMR probe is built with high power circuitry, Magic Angle Spinning (MAS), is fitted with a lock channel, pulse field gradients, and is fully susceptibility matched. Consequently, this novel NMR probe has to cover all HR-MAS aspects without compromising power handling to permit the full range of solution-, gel- and solid-state experiments available today. Using this technology, both structures and interactions can be studied independently in each phase as well as transfer/interactions between phases within a heterogeneous sample. This paper outlines some basic experimental approaches using a model heterogeneous multiphase sample containing liquid-, gel- and solid-like components in water, yielding separate 1H and 13C spectra for the different phases. In addition, 19F performance is also addressed. To illustrate the capability of 19F NMR soil samples, containing two different contaminants, are used, demonstrating a preliminary, but real-world application of this technology. This novel NMR approach possesses a great potential for the in situ study of natural samples in their native state.

  15. Molecular dynamics and information on possible sites of interaction of intramyocellular metabolites in vivo from resolved dipolar couplings in localized 1H NMR spectra

    NASA Astrophysics Data System (ADS)

    Schröder, Leif; Schmitz, Christian; Bachert, Peter

    2004-12-01

    Proton NMR resonances of the endogenous metabolites creatine and phosphocreatine ((P)Cr), taurine (Tau), and carnosine (Cs, β-alanyl- L-histidine) were studied with regard to residual dipolar couplings and molecular mobility. We present an analysis of the direct 1H- 1H interaction that provides information on motional reorientation of subgroups in these molecules in vivo. For this purpose, localized 1H NMR experiments were performed on m. gastrocnemius of healthy volunteers using a 1.5-T clinical whole-body MR scanner. We evaluated the observable dipolar coupling strength SD0 ( S = order parameter) of the (P)Cr-methyl triplet and the Tau-methylene doublet by means of the apparent line splitting. These were compared to the dipolar coupling strength of the (P)Cr-methylene doublet. In contrast to the aliphatic protons of (P)Cr and Tau, the aromatic H2 ( δ = 8 ppm) and H4 ( δ = 7 ppm) protons of the imidazole ring of Cs exhibit second-order spectra at 1.5 T. This effect is the consequence of incomplete transition from Zeeman to Paschen-Back regime and allows a determination of SD0 from H2 and H4 of Cs as an alternative to evaluating the multiplet splitting which can be measured directly in high-resolution 1H NMR spectra. Experimental data showed striking differences in the mobility of the metabolites when the dipolar coupling constant D0 (calculated with the internuclear distance known from molecular geometry in the case of complete absence of molecular dynamics and motion) is used for comparison. The aliphatic signals involve very small order parameters S ≈ (1.4 - 3) × 10 -4 indicating rapid reorientation of the corresponding subgroups in these metabolites. In contrast, analysis of the Cs resonances yielded S ≈ (113 - 137) × 10 -4. Thus, the immobilization of the Cs imidazole ring owing to an anisotropic cellular substructure in human m. gastrocnemius is much more effective than for (P)Cr and Tau subgroups. Furthermore, 1H NMR experiments on aqueous model

  16. Indole-containing new types of dyes and their UV-vis and NMR spectra and electronic structures: Experimental and theoretical study

    NASA Astrophysics Data System (ADS)

    Kuzu, Burak; Menges, Nurettin

    2016-06-01

    Indole containing dyes were synthesized via a simple method with high yield. These molecules have different colors and UV-vis spectra of them were recorded. Impact of solvents on absorbances was investigated and it was observed that basic solvent such as DMF and pyridine have blue shift. TD-DFT calculations were done and results were compared with experimental data. NMR data of molecules were analyzed and tautomeric forms of colorants and their ratio were determined. It was find out that two tautomers might be formed in solution, called indole and indolenine form. HOMO-LUMO and energy gaps were calculated and plotted. Furthermore, molecular electrostatic potentials were simulated to find out electrophilic and nucleophilic regions.

  17. Indole-containing new types of dyes and their UV-vis and NMR spectra and electronic structures: Experimental and theoretical study.

    PubMed

    Kuzu, Burak; Menges, Nurettin

    2016-06-01

    Indole containing dyes were synthesized via a simple method with high yield. These molecules have different colors and UV-vis spectra of them were recorded. Impact of solvents on absorbances was investigated and it was observed that basic solvent such as DMF and pyridine have blue shift. TD-DFT calculations were done and results were compared with experimental data. NMR data of molecules were analyzed and tautomeric forms of colorants and their ratio were determined. It was find out that two tautomers might be formed in solution, called indole and indolenine form. HOMO-LUMO and energy gaps were calculated and plotted. Furthermore, molecular electrostatic potentials were simulated to find out electrophilic and nucleophilic regions. PMID:26985875

  18. Determination of glucan phosphorylation using heteronuclear 1H, 13C double and 1H, 13C, 31P triple-resonance NMR spectra.

    PubMed

    Schmieder, Peter; Nitschke, Felix; Steup, Martin; Mallow, Keven; Specker, Edgar

    2013-10-01

    Phosphorylation and dephosphorylation of starch and glycogen are important for their physicochemical properties and also their physiological functions. It is therefore desirable to reliably determine the phosphorylation sites. Heteronuclear multidimensional NMR-spectroscopy is in principle a straightforward analytical approach even for complex carbohydrate molecules. With heterogeneous samples from natural sources, however, the task becomes more difficult because a full assignment of the resonances of the carbohydrates is impossible to obtain. Here, we show that the combination of heteronuclear (1) H,(13) C and (1) H,(13) C,(31) P techniques and information derived from spectra of a set of reference compounds can lead to an unambiguous determination of the phosphorylation sites even in heterogeneous samples. PMID:23913630

  19. Facilitating quality control for spectra assignments of small organic molecules: nmrshiftdb2--a free in-house NMR database with integrated LIMS for academic service laboratories.

    PubMed

    Kuhn, Stefan; Schlörer, Nils E

    2015-08-01

    nmrshiftdb2 supports with its laboratory information management system the integration of an electronic lab administration and management into academic NMR facilities. Also, it offers the setup of a local database, while full access to nmrshiftdb2's World Wide Web database is granted. This freely available system allows on the one hand the submission of orders for measurement, transfers recorded data automatically or manually, and enables download of spectra via web interface, as well as the integrated access to prediction, search, and assignment tools of the NMR database for lab users. On the other hand, for the staff and lab administration, flow of all orders can be supervised; administrative tools also include user and hardware management, a statistic functionality for accounting purposes, and a 'QuickCheck' function for assignment control, to facilitate quality control of assignments submitted to the (local) database. Laboratory information management system and database are based on a web interface as front end and are therefore independent of the operating system in use. PMID:25998807

  20. Crystal structure and theoretical study of IR and 1H and 13C NMR spectra of cordatin, a natural product with antiulcerogenic activity

    NASA Astrophysics Data System (ADS)

    Brasil, Davi S. B.; Alves, Cláudio N.; Guilhon, Giselle M. S. P.; Muller, Adolfo H.; Secco, Ricardo De S.; Peris, Gabriel; Llusar, Rosa

    Cordatin is a furan diterpenoid with a clerodane skeleton isolated from Croton palanostigma Klotzsch (Euphorbiaceae). This natural product shows significant antiulcerogenic activity, similar to cimetidine (Tagamet®), a compound used for the treatment of peptic ulcers. The crystal structure of cordatin was obtained by X-ray diffraction and its geometrical parameters were compared with theoretical calculations at the B3LYP theory level. The IR and NMR (1H and 13C chemical shifts and coupling constants) spectra were obtained and compared with the theoretical calculations. The B3LYP theory level, with the 6-31G(d,p) and 6-311G(d,p) basis set, provided IR absorption values close to the experimental data. Moreover, theoretical NMR parameters obtained in both gas phase and chloroform solvent at the B3PW91/DGDZVP, B3LYP/6-311+G(2d,p), and B3PW91/6-311+G(2d,p) levels showed good correlations with the experimental results.

  1. FT-IR, FT-Raman, NMR and UV-Vis spectra and DFT calculations of 5-bromo-2-ethoxyphenylboronic acid (monomer and dimer structures)

    NASA Astrophysics Data System (ADS)

    Sas, E. B.; Kose, E.; Kurt, M.; Karabacak, M.

    2015-02-01

    In this study, the Fourier Transform Infrared (FT-IR) and Fourier Transform Raman (FT-Raman) spectra of 5-bromo-2-ethoxyphenylboronic acid (5Br2EPBA) are recorded in the solid phase in the region 4000-400 cm-1 and 3500-10 cm-1, respectively. The 1H, 13C and DEPT nuclear magnetic resonance (NMR) spectra are recorded in DMSO solution. The UV-Vis absorption spectrum of 5Br2EPBA is saved in the range of 200-400 nm in ethanol and water. The following theoretical calculations for monomeric and dimeric structures are supported by experimental results. The molecular geometry and vibrational frequencies in the ground state are calculated by using DFT methods with 6-31G(d,p) and 6-311G(d,p) basis sets. There are four conformers for the present molecule. The computational results diagnose the most stable conformer of 5Br2EPBA as Trans-Cis (TC) form. The complete assignments are performed on the basis of the total energy distribution (TED) of vibrational modes, calculated with scaled quantum mechanics (SQM) method in parallel quantum solutions (PQS) program. The 1H and 13C NMR chemical shifts of 5Br2EPBA molecule are calculated by using the Gauge Invariant Atomic Orbital (GIAO) method in DMSO and gas phase for monomer and dimer structures of the most stable conformer. Moreover, electronic properties, such as the HOMO and LUMO energies (by TD-DFT and CIS methods) and molecular electrostatic potential surface (MEPs) are investigated. Stability of the molecule arising from hyper-conjugative interactions, charge delocalization is analyzed using natural bond orbital (NBO) analysis. Nonlinear optical (NLO) properties and thermodynamic features are presented. All calculated results are compared with the experimental data of the title molecule. The correlation of theoretical and experimental results provides a detailed description of the structural and physicochemical properties of the title molecule.

  2. FT-IR, FT-Raman, NMR and UV-Vis spectra and DFT calculations of 5-bromo-2-ethoxyphenylboronic acid (monomer and dimer structures).

    PubMed

    Sas, E B; Kose, E; Kurt, M; Karabacak, M

    2015-02-25

    In this study, the Fourier Transform Infrared (FT-IR) and Fourier Transform Raman (FT-Raman) spectra of 5-bromo-2-ethoxyphenylboronic acid (5Br2EPBA) are recorded in the solid phase in the region 4000-400 cm(-1) and 3500-10 cm(-1), respectively. The (1)H, (13)C and DEPT nuclear magnetic resonance (NMR) spectra are recorded in DMSO solution. The UV-Vis absorption spectrum of 5Br2EPBA is saved in the range of 200-400 nm in ethanol and water. The following theoretical calculations for monomeric and dimeric structures are supported by experimental results. The molecular geometry and vibrational frequencies in the ground state are calculated by using DFT methods with 6-31G(d,p) and 6-311G(d,p) basis sets. There are four conformers for the present molecule. The computational results diagnose the most stable conformer of 5Br2EPBA as Trans-Cis (TC) form. The complete assignments are performed on the basis of the total energy distribution (TED) of vibrational modes, calculated with scaled quantum mechanics (SQM) method in parallel quantum solutions (PQS) program. The (1)H and (13)C NMR chemical shifts of 5Br2EPBA molecule are calculated by using the Gauge Invariant Atomic Orbital (GIAO) method in DMSO and gas phase for monomer and dimer structures of the most stable conformer. Moreover, electronic properties, such as the HOMO and LUMO energies (by TD-DFT and CIS methods) and molecular electrostatic potential surface (MEPs) are investigated. Stability of the molecule arising from hyper-conjugative interactions, charge delocalization is analyzed using natural bond orbital (NBO) analysis. Nonlinear optical (NLO) properties and thermodynamic features are presented. All calculated results are compared with the experimental data of the title molecule. The correlation of theoretical and experimental results provides a detailed description of the structural and physicochemical properties of the title molecule. PMID:25305625

  3. Organic Matter Composition, Recycling Susceptibility and the Effectiveness of the Biological Pump - An Evaluation using NMR Spectra of Marine Plankton

    NASA Astrophysics Data System (ADS)

    Paytan, A.; Cade-Menun, B.

    2005-12-01

    The degree of organic matter biodegradation and recycling depends on the "reactivity" of compounds synthesized by the biota, which in turn is controlled by the structural characteristics of these compounds. Thus, abundance of a wide-range of organic compounds in seawater would lend itself to different susceptibility for biodegradation, which in turn is important for estimating the potential for rapid regeneration in the euphotic zone and thus the effectiveness of the biological pump. We employed 13C and 31P NMR spectroscopy on cultures of phytoplankton dominating blooms in the Southern Ocean grown under five light levels at 3oC. We found differences in both C and P compounds synthesized by the different taxa as well as for each species at various light levels. Results suggest variability in synthesized organic compounds by different taxa and by a single species grown in different environmental conditions. understanding of the oceanic C cycle in general and C sequestration effectiveness in particular.

  4. Impurity effect of the Λ particle on the structure of 18F and Λ19F

    NASA Astrophysics Data System (ADS)

    Tanimura, Y.; Hagino, K.; Sagawa, H.

    2012-10-01

    We perform three-body model calculations for a sd-shell hypernucleus Λ19F (Λ17O+p+n) and its core nucleus 18F (16O+p+n), employing a density-dependent contact interaction between the valence proton and neutron. We find that the B(E2) value from the first excited state (with spin and parity of Iπ=3+) to the ground state (Iπ=1+) is slightly changed by the addition of a Λ particle, which exhibits the so called shrinkage effect of Λ particle. We also show that the excitation energy of the 3+ state is reduced in Λ19F compared to 18F, as is observed in a p-shell nucleus 6Li. We discuss the mechanism of this reduction of the excitation energy, pointing out that it is caused by a different mechanism from that in Λ7Li.

  5. A Study on 19F( n,α) Reaction Cross Section

    NASA Astrophysics Data System (ADS)

    Uğur, F. A.; Tel, E.; Gökçe, A. A.

    2013-06-01

    In this study, cross sections of neutron induced reactions have been investigated for fluorine target nucleus. The calculations have been made on the excitation functions of 19F ( n,α), 19F( n,xα) reactions. Fluorine (F) and its molten salt compounds (LiF) can serve as a coolant which can be used at high temperatures without reaching a high vapor pressure and also the molten salt compounds are also a good neutron moderator. In these calculations, the pre-equilibrium and equilibrium effects have been investigated. The pre-equilibrium calculations involve the full exciton model and the cascade exciton model. The equilibrium effects are calculated according to the Weisskopf-Ewing model. Also in the present work, reaction cross sections have calculated by using evaluated empirical formulas developed by Tel et al. at 14-15 MeV energy. The obtained results have been discussed and compared with the available experimental data.

  6. Fission fragment angular distributions for 11B and 19F+238U systems

    NASA Astrophysics Data System (ADS)

    Karnik, A.; Kailas, S.; Chatterjee, A.; Navin, A.; Shrivastava, A.; Singh, P.; Samant, M. S.

    1995-12-01

    The fission fragment angular distributions were measured at energies above the fusion barrier, for the systems 11B and 19F + 238U. An analysis of the present data along with those already available for the systems 6,7Li, 12C, and 16O + 238U was made in terms of the saddle-point statistical model. While the anisotropies were ``normal'' for 6,7Li, 11B, 12C+238U systems, the ones for 16O and 19F+238U systems were found to be ``anomalous.'' The entrance channel mass asymmetry dependence of the anisotropies as observed here is consistent with the expectations of preequilibrium fission dynamics. This result emphasizes the importance of preequilibrium fission in heavy-ion induced fusion-fission reactions.

  7. Dark matter spin-dependent limits for WIMP interactions on 19F by PICASSO

    NASA Astrophysics Data System (ADS)

    Archambault, S.; Aubin, F.; Auger, M.; Behnke, E.; Beltran, B.; Clark, K.; Dai, X.; Davour, A.; Farine, J.; Faust, R.; Genest, M.-H.; Giroux, G.; Gornea, R.; Krauss, C.; Kumaratunga, S.; Lawson, I.; Leroy, C.; Lessard, L.; Levy, C.; Levine, I.; MacDonald, R.; Martin, J.-P.; Nadeau, P.; Noble, A.; Piro, M.-C.; Pospisil, S.; Shepherd, T.; Starinski, N.; Stekl, I.; Storey, C.; Wichoski, U.; Zacek, V.

    2009-11-01

    The PICASSO experiment at SNOLAB reports new results for spin-dependent WIMP interactions on 19F using the superheated droplet technique. A new generation of detectors and new features which enable background discrimination via the rejection of non-particle induced events are described. First results are presented for a subset of two detectors with target masses of 19F of 65 g and 69 g respectively and a total exposure of 13.75 ± 0.48 kgd. No dark matter signal was found and for WIMP masses around 24 GeV /c2 new limits have been obtained on the spin-dependent cross section on 19F of σF = 13.9 pb (90% C.L.) which can be converted into cross section limits on protons and neutrons of σp = 0.16 pb and σn = 2.60 pb respectively (90% C.L.). The obtained limits on protons restrict recent interpretations of the DAMA/LIBRA annual modulations in terms of spin-dependent interactions.

  8. First evidences for 19F(α, p)22Ne at astrophysical energies

    NASA Astrophysics Data System (ADS)

    D’Agata, G.; Spitaleri, C.; Pizzone, R. G.; Blagus, S.; Figuera, P.; Grassi, L.; Guardo, G. L.; Gulino, M.; Hayakawa, S.; Indelicato, I.; Kshetri, R.; La Cognata, M.; Lamia, L.; Lattuada, M.; Mijatović, T.; Milin, M.; Miljanic, D.; Prepolec, L.; Sergi, M. L.; Skukan, N.; Soic, N.; Tokic, V.; Tumino, A.; Uroic, M.

    2016-04-01

    19F experimental abundances is overestimated in respect to the theoretical one: it is therefore clear that further investigations are needed. We focused on the 19F(α, p) 22 Ne reaction, representing the main destruction channel in He-rich environments. The lowest energy at which this reaction has been studied with direct methods is E C.M. ≈ 0.91 MeV, while the Gamow region is between 0.39 ÷ 0.8 MeV, far below the Coulomb barrier (3.8 MeV). For this reason, an experiment at Rudjer Boskovic Institute (Zagreb) was performed, applying the Trojan Horse Method. Following this method we selected the quasi-free contribution coming from 6Li(19 F,p22 Ne)2 H at Ebeam=6 MeV at kinematically favourable angles, and the cross section at energies 0 < EC.M. < 1.4 MeV was extracted in arbitrary units, covering the astrophysical region of interest.

  9. (19)F Magnetic Resonance Imaging Signals from Peptide Amphiphile Nanostructures Are Strongly Affected by Their Shape.

    PubMed

    Preslar, Adam T; Tantakitti, Faifan; Park, Kitae; Zhang, Shanrong; Stupp, Samuel I; Meade, Thomas J

    2016-08-23

    Magnetic resonance imaging (MRI) is a noninvasive imaging modality that provides excellent spatial and temporal resolution. The most commonly used MR probes face significant challenges originating from the endogenous (1)H background signal of water. In contrast, fluorine MRI ((19)F MRI) allows quantitative probe imaging with zero background signal. Probes with high fluorine content are required for high sensitivity, suggesting nanoscale supramolecular assemblies containing (19)F probes offer a potentially useful strategy for optimum imaging as a result of improved payload. We report here on supramolecular nanostructures formed by fluorinated peptide amphiphiles containing either glutamic acid or lysine residues in their sequence. We identified molecules that form aggregates in water which transition from cylindrical to ribbon-like shape as pH increased from 4.5 to 8.0. Interestingly, we found that ribbon-like nanostructures had reduced magnetic resonance signal, whereas their cylindrical counterparts exhibited strong signals. We attribute this drastic difference to the greater mobility of fluorinated tails in the hydrophobic compartment of cylindrical nanostructures compared to lower mobility in ribbon-like assemblies. This discovery identifies a strategy to design supramolecular, self-assembling contrast agents for (19)F MRI that can spatially map physiologically relevant changes in pH using changes in morphology. PMID:27425636

  10. Spectrally edited 2D 13Csbnd 13C NMR spectra without diagonal ridge for characterizing 13C-enriched low-temperature carbon materials

    NASA Astrophysics Data System (ADS)

    Johnson, Robert L.; Anderson, Jason M.; Shanks, Brent H.; Fang, Xiaowen; Hong, Mei; Schmidt-Rohr, Klaus

    2013-09-01

    Two robust combinations of spectral editing techniques with 2D 13Csbnd 13C NMR have been developed for characterizing the aromatic components of 13C-enriched low-temperature carbon materials. One method (exchange with protonated and nonprotonated spectral editing, EXPANSE) selects cross peaks of protonated and nearby nonprotonated carbons, while the other technique, dipolar-dephased double-quantum/single-quantum (DQ/SQ) NMR, selects signals of bonded nonprotonated carbons. Both spectra are free of a diagonal ridge, which has many advantages: Cross peaks on the diagonal or of small intensity can be detected, and residual spinning sidebands or truncation artifacts associated with the diagonal ridge are avoided. In the DQ/SQ experiment, dipolar dephasing of the double-quantum coherence removes protonated-carbon signals; this approach also eliminates the need for high-power proton decoupling. The initial magnetization is generated with minimal fluctuation by combining direct polarization, cross polarization, and equilibration by 13C spin diffusion. The dipolar dephased DQ/SQ spectrum shows signals from all linkages between aromatic rings, including a distinctive peak from polycondensed aromatics. In EXPANSE NMR, signals of protonated carbons are selected in the first spectral dimension by short cross polarization combined with dipolar dephasing difference. This removes ambiguities of peak assignment to overlapping signals of nonprotonated and protonated aromatic carbons, e.g. near 125 ppm. Spin diffusion is enhanced by dipolar-assisted rotational resonance. Before detection, Csbnd H dipolar dephasing by gated decoupling is applied, which selects signals of nonprotonated carbons. Thus, only cross peaks due to magnetization originating from protonated C and ending on nearby nonprotonated C are retained. Combined with the chemical shifts deduced from the cross-peak position, this double spectral editing defines the bonding environment of aromatic, COO, and Cdbnd O carbons

  11. NMR of 133Cs+ in stretched hydrogels: One-dimensional, z- and NOESY spectra, and probing the ion's environment in erythrocytes

    NASA Astrophysics Data System (ADS)

    Kuchel, Philip W.; Shishmarev, Dmitry; Puckeridge, Max; Levitt, Malcolm H.; Naumann, Christoph; Chapman, Bogdan E.

    2015-12-01

    133Cs nuclear magnetic resonance (NMR) spectroscopy was conducted on 133Cs+ in gelatin hydrogels that were either relaxed or stretched. Stretching generated a septet from this spin-7/2 nucleus, and its nuclear magnetic relaxation was studied via z-spectra, and two-dimensional nuclear Overhauser (NOESY) spectroscopy. Various spectral features were well simulated by using Mathematica and the software package SpinDynamica. Spectra of CsCl in suspensions of human erythrocytes embedded in gelatin gel showed separation of the resonances from the cation inside and outside the cells. Upon stretching the sample, the extracellular 133Cs+ signal split into a septet, while the intracellular peak was unchanged, revealing different alignment/ordering properties of the environment inside and around the cells. Differential interference contrast light microscopy confirmed that the cells were stretched when the overall sample was elongated. Analysis of the various spectral features of 133Cs+ reported here opens up applications of this K+ congener for studies of cation-handling by metabolically-active cells and tissues in aligned states.

  12. Studies on vibrational, NMR spectra and quantum chemical calculations of N-Succinopyridine: An organic nonlinear optical material

    NASA Astrophysics Data System (ADS)

    Kannan, V.; Thirupugalmani, K.; Brahadeeswaran, S.

    2013-10-01

    Single crystals of N-Succinopyridine (NSP) have been grown from water using solution growth method by isothermal solvent evaporation technique. The solid state Fourier Transform Infrared (FTIR) spectrum of the grown crystal shows a broad absorption extending from 3450 down to 400 cm-1, due to H-bond vibrations and other characteristic vibrations. Fourier Transform Raman (FT-Raman) spectrum of NSP single crystal shows Raman intensities ranging from 3100 to 100 cm-1 due the characteristics vibrations of functional groups present in NSP. The proton and carbon positions of NSP have been described by 1H and 13C NMR spectrum respectively. Ab initio quantum chemical calculations on NSP have been performed by density functional theory (DFT) calculations using B3LYP method with 6-311++G(d,p) basis set. The predicted first hyperpolarizability is found to be 1.29 times greater than that of urea and suggests that the title compound could be an attractive material for nonlinear optical applications. The calculated HOMO-LUMO energies show that charge transfers occur within the molecule and other related molecular properties. Molecular properties such as Mulliken population analysis, thermodynamic functions and perturbation theory energy analysis have also been reported. Electrostatic potential map (ESP) of NSP obtained by electron density isosurface provided the information about the size, shape, charge density distribution and site of chemical reactivity of the title molecule. The molecular stability and bond strength have been investigated through the Natural Bond Orbital (NBO) analysis.

  13. Removal of t1 noise from metabolomic 2D 1H- 13C HSQC NMR spectra by Correlated Trace Denoising

    NASA Astrophysics Data System (ADS)

    Poulding, Simon; Charlton, Adrian J.; Donarski, James; Wilson, Julie C.

    2007-12-01

    The presence of t1 noise artefacts in 2D phase-cycled Heteronuclear Single Quantum Coherence (HSQC) spectra constrains the use of this experiment despite its superior sensitivity. This paper proposes a new processing algorithm, working in the frequency-domain, for reducing t1 noise. The algorithm has been developed for use in contexts, such as metabolomic studies, where existing denoising techniques cannot always be applied. Two test cases are presented that show the algorithm to be effective in improving the SNR of peaks embedded within t1 noise by a factor of more than 2, while retaining the intensity and shape of genuine peaks.

  14. Rapid acquisition of multidimensional solid-state NMR spectra of proteins facilitated by covalently bound paramagnetic tags.

    PubMed

    Nadaud, Philippe S; Helmus, Jonathan J; Sengupta, Ishita; Jaroniec, Christopher P

    2010-07-21

    We describe a condensed data collection approach that facilitates rapid acquisition of multidimensional magic-angle spinning solid-state nuclear magnetic resonance (SSNMR) spectra of proteins by combining rapid sample spinning, optimized low-power radio frequency pulse schemes and covalently attached paramagnetic tags to enhance protein (1)H spin-lattice relaxation. Using EDTA-Cu(2+)-modified K28C and N8C mutants of the B1 immunoglobulin binding domain of protein G as models, we demonstrate that high resolution and sensitivity 2D and 3D SSNMR chemical shift correlation spectra can be recorded in as little as several minutes and several hours, respectively, for samples containing approximately 0.1-0.2 micromol of (13)C,(15)N- or (2)H,(13)C,(15)N-labeled protein. This mode of data acquisition is naturally suited toward the structural SSNMR studies of paramagnetic proteins, for which the typical (1)H longitudinal relaxation time constants are inherently a factor of at least approximately 3-4 lower relative to their diamagnetic counterparts. To illustrate this, we demonstrate the rapid site-specific determination of backbone amide (15)N longitudinal paramagnetic relaxation enhancements using a pseudo-3D SSNMR experiment based on (15)N-(13)C correlation spectroscopy, and we show that such measurements yield valuable long-range (15)N-Cu(2+) distance restraints which report on the three-dimensional protein fold. PMID:20583834

  15. Full differentiation and assignment of boron species in the electrolytes Li{sub 2}B{sub 6}O{sub 9}F{sub 2} and Li{sub 2}B{sub 3}O{sub 4}F{sub 3} by solid-state {sup 11}B NMR spectroscopy

    SciTech Connect

    Braeuniger, Thomas; Pilz, Thomas; Chandran, C. Vinod; Jansen, Martin

    2012-10-15

    The syntheses of two new fluorooxoborates, Li{sub 2}B{sub 3}O{sub 4}F{sub 3} and Li{sub 2}B{sub 6}O{sub 9}F{sub 2}, which possess considerable ion conductivity at higher temperatures, have been reported recently. Here, we describe the characterisation of these compounds by solid-state {sup 11}B NMR spectroscopy. The complex central-transition MAS spectra, resulting from overlap of sub-spectra contributed by the individual boron species in the crystal structures, could be clearly separated by acquisition and analysis of 3QMAS spectra. By numerical fit of these sub-spectra, the isotropic chemical shift {delta}{sub iso}, the quadrupolar coupling constant {chi}, and the asymmetry {eta} were determined. Using known relations between boron coordination and chemical shift as well as quadrupolar coupling, the individual {sup 11}B NMR resonances have been ascribed to boron species in tetrahedral or trigonal environment. To remove remaining assignment ambiguities, the response of the {sup 11}B resonances to {sup 19}F decoupling was qualitatively analysed. Thus, by using the combined information conveyed by chemical shift, quadrupolar and dipolar interaction, a complete assignment of the complex {sup 11}B line shapes exhibited by the fluorooxoborates has been achieved. - Graphical abstract: Structure and solid-state {sup 11}B NMR spectrum of Li{sub 2}B{sub 3}O{sub 4}F{sub 3}. Highlights: Black-Right-Pointing-Pointer Characterisation of title compounds by solid-state {sup 11}B NMR spectroscopy. Black-Right-Pointing-Pointer Sub-spectra of boron species separated by evaluation of 3QMAS spectra. Black-Right-Pointing-Pointer Isotropic chemical shift and quadrupolar interaction parameters determined. Black-Right-Pointing-Pointer Full boron assignment based on NMR parameters and response to {sup 19}F decoupling.

  16. FTIR, FT-RAMAN, NMR, spectra, normal co-ordinate analysis, NBO, NLO and DFT calculation of N,N-diethyl-4-methylpiperazine-1-carboxamide molecule

    NASA Astrophysics Data System (ADS)

    Muthu, S.; Elamurugu Porchelvi, E.

    2013-11-01

    The Fourier Transform Infrared (FT-IR) and FT-Raman of N,N-diethyl-4-methylpiperazine-1-carboxamide (NND4MC) have been recorded and analyzed. The structure of the compound was optimized and the structural characteristics were determined by density functional theory (DFT) using B3LYP method with 6-31G(d,p) and 6-311G(d,p) basis sets. The difference between the observed and scaled wavenumber values of most of the fundamentals is very small. The theoretically predicted FT-IR and FT-Raman spectra of the title molecule have been constructed. The detailed interpretation of the vibrational spectra has been carried out with aid of normal coordinate analysis (NCA) following the scaled quantum mechanical force field methodology. Stability of the molecule arising from hyperconjugative interactions and charge delocalization has been analyzed using natural bond orbital (NBO) analysis. The results show that electron density (ED) in the σ* and π* antibonding orbitals and second order delocalization energies (E2) confirm the occurrence of intramolecular charge transfer (ICT) within the molecule. The electronic dipole moment (μD) and the first hyperpolarizability (βtot) values of the investigated molecule were computed using Density Functional Theory (DFT/B3LYP) with 6-31G(d,p) and 6-311G(d,p) basis sets. The calculated results also show that the NND4MC molecule may have microscopy nonlinear optical (NLO) behavior with non zero values. Mulliken atomic charges of NND4MC were calculated. The 13C nuclear magnetic resonance (NMR) chemical shifts of the molecule were calculated by the gauge independent atomic orbital (GIAO) method and compared with experimental results. The UV-Vis spectrum of the compound was recorded. The theoretical electronic absorption spectra have been calculated by using CIS, TD-DFT methods. A study on the electronic properties, such as HOMO and LUMO energies, molecular electrostatic potential (MEP) were also performed.

  17. FTIR, FT-RAMAN, NMR, spectra, normal co-ordinate analysis, NBO, NLO and DFT calculation of N,N-diethyl-4-methylpiperazine-1-carboxamide molecule.

    PubMed

    Muthu, S; Elamurugu Porchelvi, E

    2013-11-01

    The Fourier Transform Infrared (FT-IR) and FT-Raman of N,N-diethyl-4-methylpiperazine-1-carboxamide (NND4MC) have been recorded and analyzed. The structure of the compound was optimized and the structural characteristics were determined by density functional theory (DFT) using B3LYP method with 6-31G(d,p) and 6-311G(d,p) basis sets. The difference between the observed and scaled wavenumber values of most of the fundamentals is very small. The theoretically predicted FT-IR and FT-Raman spectra of the title molecule have been constructed. The detailed interpretation of the vibrational spectra has been carried out with aid of normal coordinate analysis (NCA) following the scaled quantum mechanical force field methodology. Stability of the molecule arising from hyperconjugative interactions and charge delocalization has been analyzed using natural bond orbital (NBO) analysis. The results show that electron density (ED) in the σ(*) and π(*) antibonding orbitals and second order delocalization energies (E2) confirm the occurrence of intramolecular charge transfer (ICT) within the molecule. The electronic dipole moment (μD) and the first hyperpolarizability (βtot) values of the investigated molecule were computed using Density Functional Theory (DFT/B3LYP) with 6-31G(d,p) and 6-311G(d,p) basis sets. The calculated results also show that the NND4MC molecule may have microscopy nonlinear optical (NLO) behavior with non zero values. Mulliken atomic charges of NND4MC were calculated. The (13)C nuclear magnetic resonance (NMR) chemical shifts of the molecule were calculated by the gauge independent atomic orbital (GIAO) method and compared with experimental results. The UV-Vis spectrum of the compound was recorded. The theoretical electronic absorption spectra have been calculated by using CIS, TD-DFT methods. A study on the electronic properties, such as HOMO and LUMO energies, molecular electrostatic potential (MEP) were also performed. PMID:23845985

  18. Probing the influential factors of NMR T1-T2 spectra in the characterization of the kerogen by numerical simulation.

    PubMed

    Ge, Xinmin; Fan, Yiren; Chen, Hua; Deng, Shaogui; Cao, Yingchang; Zahid, Muhammad Aleem

    2015-11-01

    The low field nuclear magnetic resonance (NMR) spectroscopy has been widely used to characterize the longitudinal and transversal relaxation (T1-T2) spectrum of unconventional resources such as shale gas and tight oil containing significant proportions of kerogen and bitumen. However, it requires exquisite design of the acquisition model and the inversion algorithm due to the fast relaxation nature of the kerogen and bitumen. A new direct two dimensional (2D) inversion algorithm combined the iterative truncated singular value decomposition (TSVD) and the Akaiake Information Criterion (AIC) is presented to perform the data inversion efficiently. The fluid component decomposition (FCD) is applied to construct the forward T1-T2 model of the kerogen, and numerical simulations are conducted to investigate factors which may influence inversion results including echo spacing, recovery time series, signal to noise ratio (SNR), and the maximal iteration time. Results show that the T2 component is heavily impaired by the echo spacing, whereas the T1 component is influenced by the recovery time series but with limited effects. The inversion precision is greatly affected by the quality of the data. The inversed spectrum deviates from the model seriously when the SNR of the artificial noise is lower than 50, and the T2 component is more sensitive to the noise than the T1 component. What's more, the maximal iteration time can also affect the inversion result, especially when the maximal iteration time is smaller than 500. Proper acquisition and inversion parameters for the characterization of the kerogen are obtained considering the precision and the computational cost. PMID:26397220

  19. Probing the influential factors of NMR T1-T2 spectra in the characterization of the kerogen by numerical simulation

    NASA Astrophysics Data System (ADS)

    Ge, Xinmin; Fan, Yiren; Chen, Hua; Deng, Shaogui; Cao, Yingchang; Zahid, Muhammad Aleem

    2015-11-01

    The low field nuclear magnetic resonance (NMR) spectroscopy has been widely used to characterize the longitudinal and transversal relaxation (T1-T2) spectrum of unconventional resources such as shale gas and tight oil containing significant proportions of kerogen and bitumen. However, it requires exquisite design of the acquisition model and the inversion algorithm due to the fast relaxation nature of the kerogen and bitumen. A new direct two dimensional (2D) inversion algorithm combined the iterative truncated singular value decomposition (TSVD) and the Akaiake Information Criterion (AIC) is presented to perform the data inversion efficiently. The fluid component decomposition (FCD) is applied to construct the forward T1-T2 model of the kerogen, and numerical simulations are conducted to investigate factors which may influence inversion results including echo spacing, recovery time series, signal to noise ratio (SNR), and the maximal iteration time. Results show that the T2 component is heavily impaired by the echo spacing, whereas the T1 component is influenced by the recovery time series but with limited effects. The inversion precision is greatly affected by the quality of the data. The inversed spectrum deviates from the model seriously when the SNR of the artificial noise is lower than 50, and the T2 component is more sensitive to the noise than the T1 component. What's more, the maximal iteration time can also affect the inversion result, especially when the maximal iteration time is smaller than 500. Proper acquisition and inversion parameters for the characterization of the kerogen are obtained considering the precision and the computational cost.

  20. Assignment of the sup 1 H and sup 15 N NMR spectra of Rhodobacter capsulatus ferrocytochrome c sub 2

    SciTech Connect

    Gooley, P.R.; Caffrey, M.S.; Cusanovich, M.A.; MacKenzie, N.E. )

    1990-03-06

    The peptide resonances of the {sup 1}H and {sup 15}N nuclear magnetic resonance spectra of ferrocytochrome c{sub 2} from Rhodobacter capsulatus are sequentially assigned by a combination of 2D {sup 1}H-{sup 1}H and {sup 1}H-{sup 15}N spectroscopy, the latter performed on {sup 15}N-enriched protein. Short-range nuclear Overhauser effect (NOE) data show {alpha}-helices from residues 3-17, 55-65, 69-88, and 103-115. Within the latter two {alpha}-helices, there are three single 3{sub 10} turns, 70-72, 76-78, and 107-109. In addition {alpha}H-NH{sub i+1} and {alpha}H-NH{sub i+2} NOEs indicate that the N-terminal helix (3-17) is distorted. Compared to horse or tuna cytochrome c and cytochrome c{sub 2} of Rhodospirillium rubrum, there is a 6-residue insertion at residues 23-29 in R. capsulatus cytochrome c{sub 2}. The NOE data show that this insertion forms a loop, probably an {Omega} loop. {sup 1}H-{sup 15}N heteronuclear multiple quantum correlation experiments are used to follow NH exchange over a period of 40 h. As the 2D spectra are acquired in short time periods (30 min), rates for intermediate exchanging protons can be measured. Comparison of the NH exchange data for the N-terminal helix of cytochrome c{sub 2} of R. capsulatus with the highly homologous horse heart cytochrome c shows that this helix is less stable in cytochrome c{sub 2}.

  1. Multinucleon transfer in O,1816,19F+208Pb reactions at energies near the fusion barrier

    NASA Astrophysics Data System (ADS)

    Rafferty, D. C.; Dasgupta, M.; Hinde, D. J.; Simenel, C.; Simpson, E. C.; Williams, E.; Carter, I. P.; Cook, K. J.; Luong, D. H.; McNeil, S. D.; Ramachandran, K.; Vo-Phuoc, K.; Wakhle, A.

    2016-08-01

    Background: Nuclear reactions are complex, involving collisions between composite systems where many-body dynamics determines outcomes. Successful models have been developed to explain particular reaction outcomes in distinct energy and mass regimes, but a unifying picture remains elusive. The irreversible transfer of kinetic energy from the relative motion of the collision partners to their internal states, as is known to occur in deep inelastic collisions, has yet to be successfully incorporated explicitly into fully quantal reaction models. The influence of these processes on fusion is not yet quantitatively understood. Purpose: To investigate the population of high excitation energies in transfer reactions at sub-barrier energies, which are precursors to deep inelastic processes, and their dependence on the internuclear separation. Methods: Transfer probabilities and excitation energy spectra have been measured in collisions of O,1816,19F+208Pb , at various energies below and around the fusion barrier, by detecting the backscattered projectile-like fragments in a Δ E -E telescope. Results: The relative yields of different transfer outcomes are strongly driven by Q values, but change with the internuclear separation. In 16O+208Pb , single nucleon transfer dominates, with a strong contribution from -2 p transfer close to the Coulomb barrier, though this channel becomes less significant in relation to the -2 p 2 n transfer channel at larger separations. For 18O+208Pb , the -2 p 2 n channel is the dominant charge transfer mode at all separations. In the reactions with 19F,-3 p 2 n transfer is significant close to the barrier, but falls off rapidly with energy. Multinucleon transfer processes are shown to lead to high excitation energies (up to ˜15 MeV), which is distinct from single nucleon transfer modes which predominantly populate states at low excitation energy. Conclusions: Kinetic energy is transferred into internal excitations following transfer, with this

  2. Structural characterization, solvent effects on nuclear magnetic shielding tensors, experimental and theoretical DFT studies on the vibrational and NMR spectra of 3-(acrylamido)phenylboronic acid

    NASA Astrophysics Data System (ADS)

    Alver, Özgür; Kaya, Mehmet Fatih; Dikmen, Gökhan

    2015-12-01

    Structural elucidation of 3-(acrylamido)phenylboronic acid (C9H10BNO3) was carried out with 1H, 13C and HETCOR NMR techniques. Solvent effects on nuclear magnetic shielding tensors were examined with deuterated dimethyl sulfoxide, acetone, methanol and water solvents. The correct order of appearance of carbon and hydrogen atoms on NMR scale from highest magnetic field region to the lowest one were investigated using different types of theoretical levels and the details of the levels were presented in this study. Stable structural conformers and vibrational band analysis of the title molecule (C9H10BNO3) were studied both experimental and theoretical viewpoints using FT-IR, Raman spectroscopic methods and density functional theory (DFT). FT-IR and Raman spectra were obtained in the region of 4000-400 cm-1, and 3700-10 cm-1, respectively. Becke-3-Lee-Yang-Parr (B3LYP) hybrid density functional theory method with 6-31++G(d, p) basis set was included in the search for optimized structures and vibrational wavenumbers. Experimental and theoretical results show that after application of a suitable scaling factor density functional B3LYP method resulted in acceptable results for predicting vibrational wavenumbers except OH and NH stretching modes which is most likely arising from increasing unharmonicity in the high wave number region and possible intra and inter molecular interaction at OH edges those of which are not fully taken into consideration in theoretical processes. To make a more quantitative vibrational assignments, potential energy distribution (PED) values were calculated using VEDA 4 (Vibrational Energy Distribution Analysis) program.

  3. TANKS 18 AND 19-F EQUIPMENT GROUT FILL MATERIAL EVALUATION AND RECOMMENDATIONS

    SciTech Connect

    Stefanko, D.; Langton, C.

    2011-12-15

    The United States Department of Energy (US DOE) intends to remove Tanks 18-F and 19-F at the Savannah River Site (SRS) from service. The high-level waste (HLW) tanks have been isolated from the F-area Tank Farm (FTF) facilities and will be filled with cementitious grout for the purpose of: (1) physically stabilizing the empty volumes in the tanks, (2) limiting/eliminating vertical pathways from the surface to residual waste on the bottom of the tanks, (3) providing an intruder barrier, and (4) providing an alkaline, chemical reducing environment within the closure boundary to limit solubility of residual radionuclides. Bulk waste and heel waste removal equipment will remain in Tanks 18-F and 19-F when the tanks are closed. This equipment includes: mixer pumps, transfer pumps, transfer jets, equipment support masts, sampling masts and dip tube assemblies. The current Tank 18-F and 19-F closure strategy is to grout the internal void spaces in this equipment to eliminate fast vertical pathways and slow water infiltration to the residual material on the tank floor. This report documents the results of laboratory testing performed to identify a grout formulation for filling the abandoned equipment in Tanks 18-F and 19-F. The objective of this work was to formulate a flowable grout for filling internal voids of equipment that will remain in Tanks 18-F and 19-F during the final closures. This work was requested by V. A. Chander, Tank Farm Closure Engineering, in HLW-TTR-2011-008. The scope for this task is provided in the Task Technical and Quality Assurance Plan (TTQAP), SRNL-RP-2011-00587. The specific objectives of this task were to: (1) Prepare and evaluate the SRR cooling coil grout identified in WSRC-STI-2008-00298 per the TTR for this work. The cooling coil grout is a mixture of BASF MasterFlow{reg_sign} 816 cable grout (67.67 wt. %), Grade 100 ground granulated blast furnace slag (7.52 wt. %) and water (24.81 wt. %); (2) Identify equipment grout placement and

  4. Bayesian reconstruction of projection reconstruction NMR (PR-NMR).

    PubMed

    Yoon, Ji Won

    2014-11-01

    Projection reconstruction nuclear magnetic resonance (PR-NMR) is a technique for generating multidimensional NMR spectra. A small number of projections from lower-dimensional NMR spectra are used to reconstruct the multidimensional NMR spectra. In our previous work, it was shown that multidimensional NMR spectra are efficiently reconstructed using peak-by-peak based reversible jump Markov chain Monte Carlo (RJMCMC) algorithm. We propose an extended and generalized RJMCMC algorithm replacing a simple linear model with a linear mixed model to reconstruct close NMR spectra into true spectra. This statistical method generates samples in a Bayesian scheme. Our proposed algorithm is tested on a set of six projections derived from the three-dimensional 700 MHz HNCO spectrum of a protein HasA. PMID:25218584

  5. Quantitative Tissue Oxygen Measurement in Multiple Organs Using 19F MRI in a Rat Model

    PubMed Central

    Liu, Siyuan; Shah, Sameer J.; Wilmes, Lisa J.; Feiner, John; Kodibagkar, Vikram D.; Wendland, Michael F.; Mason, Ralph P.; Hylton, Nola; Hopf, Harriet W.; Rollins, Mark D.

    2011-01-01

    Measurement of individual organ tissue oxygen levels can provide information to help evaluate and optimize medical interventions in many areas including wound healing, resuscitation strategies, and cancer therapeutics. Echo planar 19F MRI has previously focused on tumor oxygen measurement at low oxygen levels (pO2) < 30 mmHg. It uses the linear relationship between spin-lattice relaxation rate (R1) of hexafluorobenzene (HFB) and pO2. The feasibility of this technique for a wider range of pO2 values and individual organ tissue pO2 measurement was investigated in a rat model. Spin-lattice relaxation times (T1=1/R1) of HFB were measured using 19F saturation recovery echo planar imaging (EPI). Initial in vitro studies validated the linear relationship between R1 and pO2 from 0 mmHg to 760 mmHg oxygen partial pressure at 25°C, 37°C, and 41°C at 7 Tesla for HFB. In vivo experiments measured rat tissue oxygen (ptO2) levels of brain, kidney, liver, gut, muscle and skin during inhalation of both 30% and 100% oxygen. All organ ptO2 values significantly increased with hyperoxia (p<0.001). This study demonstrates that 19F MRI of HFB offers a feasible tool to measure regional ptO2 in vivo, and that hyperoxia significantly increases ptO2 of multiple organs in a rat model. PMID:21688315

  6. Quadrupolar transients, cosine correlation functions, and two-dimensional exchange spectra of non-selectively excited spin-3/2 nuclei: A 7Li NMR study of the superionic conductor lithium indium phosphate

    NASA Astrophysics Data System (ADS)

    Storek, M.; Böhmer, R.

    2015-11-01

    Cos-cos stimulated echoes of non-selectively excited spin-3/2 nuclei were not exploited in studies of slow motional processes in solids and solid-like samples, so far. Based on a theoretical analysis of the quadrupolar transients which hitherto obviously precluded the application of such echoes, their utility is demonstrated for the example of 7Li NMR on the polycrystalline fast ion conductor lithium indium phosphate. Quadrupolar transients can adversely affect the shape of two- and three-pulse echo spectra and strategies are successfully tested that mitigate their impact. Furthermore, by means of suitably adapted cos-cos echo sequences an effective suppression of central-line contributions to the NMR spectra is achieved. By combining cos-cos and sin-sin datasets static two-dimensional exchange spectra were recorded that display quadrupolarly modulated off-diagonal intensity indicative of ionic motion.

  7. Cerebral blood flow in experimental ischemia assessed by sup 19 F magnetic resonance spectroscopy in cats

    SciTech Connect

    Brunetti, A.; Nagashima, G.; Bizzi, A.; DesPres, D.J. )

    1990-10-01

    We evaluated a 19F magnetic resonance spectroscopic technique that detects Freon-23 washout as a means of measuring cerebral blood flow in halothane-anesthetized adult cats during and after transient cerebral ischemia produced by vascular occlusion. The experiments were performed to test the ability of this recently developed method to detect postischemic flow deficits. Results were consistent with postischemic hypoperfusion. The method also proved valuable for measuring small residual flow during vascular occlusion. Our experiments indicate that this method provides simple, rapid, and repeatable flow measurements that can augment magnetic resonance examinations of cerebral metabolic parameters in the study of ischemia.

  8. Measuring 19F(α,n) with VANDLE for Nuclear Safeguards

    NASA Astrophysics Data System (ADS)

    Peters, William; Clement, R. C. C.; Smith, M. S.; Pain, S. D.; Thompson, S.; Cizewski, J. A.; Reingold, C.; Manning, B.; Burcher, S.; Bardayan, D. W.; Tan, W.-P.; Stech, E.; Smith, M. K.; Smith, K.; Avetisyan, R.; Long, A.; Battaglia, A.; Marley, S.; Gyurjinyan, A.; Ilyushkin, S.; O'Malley, P. D.; Madurga, M.; Paulauskas, S. V.; Taylor, S.; Febbraro, M.

    2014-09-01

    UF6 is used in many parts of the Uranium Fuel Cycle, and various techniques are used by nonproliferation agencies to monitor and account for the material. One of the most promising non-destructive assay (NDA) methods consists of measuring gross neutron rates induced by uranium-decay alpha particles reacting with the fluorine and emitting a neutron. This method, however, currently lacks reliable nuclear data on the 19F(α,n) reaction cross section to determine an accurate neutron yield rate for a given sample of UF6. We have used the Versatile Array of Neutron Detectors at Low Energy (VANDLE) to measure the cross section and coincident neutron spectrum over an energy range pertinent to NDA in a two part experiment: First at Notre Dame with a LaF3 target and a pulsed alpha-particle beam, and second at ORNL with a windowless He-gas target and a 19F beam. The motivation for this measurement and preliminary results will be presented. UF6 is used in many parts of the Uranium Fuel Cycle, and various techniques are used by nonproliferation agencies to monitor and account for the material. One of the most promising non-destructive assay (NDA) methods consists of measuring gross neutron rates induced by uranium-decay alpha particles reacting with the fluorine and emitting a neutron. This method, however, currently lacks reliable nuclear data on the 19F(α,n) reaction cross section to determine an accurate neutron yield rate for a given sample of UF6. We have used the Versatile Array of Neutron Detectors at Low Energy (VANDLE) to measure the cross section and coincident neutron spectrum over an energy range pertinent to NDA in a two part experiment: First at Notre Dame with a LaF3 target and a pulsed alpha-particle beam, and second at ORNL with a windowless He-gas target and a 19F beam. The motivation for this measurement and preliminary results will be presented. This work is funded in part by NSF Grant 1068192, DOE Office of Science, and the NNSA Office of Defense Nuclear

  9. Fission fragment angular distributions for the system 19F+232Th

    NASA Astrophysics Data System (ADS)

    Kailas, S.; Navin, A.; Chatterjee, A.; Singh, P.; Choudhury, R. K.; Saxena, A.; Nadkarni, D. M.; Kapoor, S. S.; Ramamurthy, V. S.; Nayak, B. K.; Suryanarayana, S. V.

    1991-03-01

    The fission fragment angular distributions for the system 19F+232Th have been measured at several bombarding energies between 94 and 108 MeV. Even though the anisotropy values measured in the present work are considerably smaller than the ones reported by Zhang et al. for the same system at similar energies, they are still anomalous when compared with the predictions of the standard saddle-point statistical model and fit into the systematics of entrance-channel dependence of fission anisotropies reported by us earlier.

  10. SOLID-STATE 19F NMR INVESTIGATION OF HEXAFLUOROBENZENE SORPTION TO SOIL ORGANIC MATTER. (R825549C058)

    EPA Science Inventory

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  11. A comparative study of 1H and 19F Overhauser DNP in fluorinated benzenes.

    PubMed

    Neudert, Oliver; Mattea, Carlos; Spiess, Hans Wolfgang; Stapf, Siegfried; Münnemann, Kerstin

    2013-12-21

    Hyperpolarization techniques, such as Overhauser dynamic nuclear polarization (DNP), can provide a dramatic increase in the signal obtained from nuclear magnetic resonance experiments and may therefore enable new applications where sensitivity is a limiting factor. In this contribution, studies of the (1)H and (19)F Overhauser dynamic nuclear polarization enhancements at 345 mT are presented for three different aromatic solvents with the TEMPO radical for a range of radical concentrations. Furthermore, nuclear magnetic relaxation dispersion measurements of the same solutions are analyzed, showing contributions from dipolar and scalar coupling modulated by translational diffusion and different coupling efficiency for different solvents and nuclei. Measurements of the electron paramagnetic resonance linewidth are included to support the analysis of the DNP saturation factor for varying radical concentration. The results of our study give an insight into the characteristics of nitroxide radicals as polarizing agents for (19)F Overhauser DNP of aromatic fluorinated solvents. Furthermore, we compare our results with the findings of the extensive research on Overhauser DNP that was conducted in the past for a large variety of other radicals. PMID:24192645

  12. Dark matter spin-dependent limits for WIMP interactions on 19F by PICASSO

    NASA Astrophysics Data System (ADS)

    Beltran, Berta; Picasso Collaboration

    2010-01-01

    The PICASSO experiment at SNOLAB uses super-heated C4F10 droplets suspended in a gel as a target sensitive to WIMP-proton spin-dependent elastic scattering. The phase II setup has been improved substantially in sensitivity by using an array of 32 detectors with an active mass of ~65 g each and largely reduced background. First results are presented for a subset of two detectors with target masses of 19F of 65 g and 69 g respectively and a total exposure of 13.75 ± 0.48 kgd. No dark matter signal was found and for WIMP masses around 24 GeV/c2 new limits have been obtained on the spin-dependent cross section on 19F of σF = 13.9 pb (90% C.L.) which can be converted into cross section limits on protons and neutrons of σp = 0.15 pb and σn = 2.45 pb respectively (90% C.L). The obtained limits on protons restrict recent interpretations of the DAMA/LIBRA annual modulations in terms of spin-dependent interactions.

  13. TANK 18-F AND 19-F TANK FILL GROUT SCALE UP TEST SUMMARY

    SciTech Connect

    Stefanko, D.; Langton, C.

    2012-01-03

    High-level waste (HLW) tanks 18-F and 19-F have been isolated from FTF facilities. To complete operational closure the tanks will be filled with grout for the purpose of: (1) physically stabilizing the tanks, (2) limiting/eliminating vertical pathways to residual waste, (3) entombing waste removal equipment, (4) discouraging future intrusion, and (5) providing an alkaline, chemical reducing environment within the closure boundary to control speciation and solubility of select radionuclides. This report documents the results of a four cubic yard bulk fill scale up test on the grout formulation recommended for filling Tanks 18-F and 19-F. Details of the scale up test are provided in a Test Plan. The work was authorized under a Technical Task Request (TTR), HLE-TTR-2011-008, and was performed according to Task Technical and Quality Assurance Plan (TTQAP), SRNL-RP-2011-00587. The bulk fill scale up test described in this report was intended to demonstrate proportioning, mixing, and transportation, of material produced in a full scale ready mix concrete batch plant. In addition, the material produced for the scale up test was characterized with respect to fresh properties, thermal properties, and compressive strength as a function of curing time.

  14. Measured 19F(α,n) with VANDLE for Nuclear Safeguards

    NASA Astrophysics Data System (ADS)

    Peters, William; Clement, R. C. C.; Smith, M. S.; Pain, S.; Febbraro, M.; Pittman, S.; Thomspon, S.; Grinder, M.; Cizewski, J. A.; Reingold, C.; Manning, B.; Burcher, S.; Bardayan, D. W.; Tan, W.-P.; Stech, E.; Smith, M. K.; Avetisyan, R.; Gyurjinyan, A.; Lowe, M.; Ilyushkin, S.; Grzywacz, R.; Madurga, M.; Paulauskas, S. V.; Taylor, S. Z.; Smith, K.

    2015-10-01

    One of the most promising non-destructive assay (NDA) methods to monitor UF6 canisters consists of measuring gross neutron rates induced by uranium-decay alpha particles reacting with the fluorine and emitting a neutron. This method currently lacks reliable nuclear data on the 19F(α,n) reaction cross section to determine an accurate neutron yield rate for a given sample of UF6. We have measured the cross section and coincident neutron spectrum for the alpha-decay energy range using the VANDLE system. This experiment had two parts: first at Notre Dame with a LaF3 target and and a pulsed alpha-particle beam, and second at ORNL with a windowless He-gas target and a 19F beam. The motivation for this measurement and cross section results will be presented. This work is funded in part by the DOE Office of Science, the National Nuclear Security Administration SSAA and the Office of Defense Nuclear Nonproliferation R&D, and the NSF.

  15. TANK 18 AND 19-F TIER 1A EQUIPMENT FILL MOCK UP TEST SUMMARY

    SciTech Connect

    Stefanko, D.; Langton, C.

    2011-11-04

    The United States Department of Energy (US DOE) has determined that Tanks 18-F and 19-F have met the F-Tank Farm (FTF) General Closure Plan Requirements and are ready to be permanently closed. The high-level waste (HLW) tanks have been isolated from FTF facilities. To complete operational closure they will be filled with grout for the purpose of: (1) physically stabilizing the tanks, (2) limiting/eliminating vertical pathways to residual waste, (3) discouraging future intrusion, and (4) providing an alkaline, chemical reducing environment within the closure boundary to control speciation and solubility of select radionuclides. Bulk waste removal and heel removal equipment remain in Tanks 18-F and 19-F. This equipment includes the Advance Design Mixer Pump (ADMP), transfer pumps, transfer jets, standard slurry mixer pumps, equipment-support masts, sampling masts, dip tube assemblies and robotic crawlers. The present Tank 18 and 19-F closure strategy is to grout the equipment in place and eliminate vertical pathways by filling voids in the equipment to vertical fast pathways and water infiltration. The mock-up tests described in this report were intended to address placement issues identified for grouting the equipment that will be left in Tank 18-F and Tank 19-F. The Tank 18-F and 19-F closure strategy document states that one of the Performance Assessment (PA) requirements for a closed tank is that equipment remaining in the tank be filled to the extent practical and that vertical flow paths 1 inch and larger be grouted. The specific objectives of the Tier 1A equipment grout mock-up testing include: (1) Identifying the most limiting equipment configurations with respect to internal void space filling; (2) Specifying and constructing initial test geometries and forms that represent scaled boundary conditions; (3) Identifying a target grout rheology for evaluation in the scaled mock-up configurations; (4) Scaling-up production of a grout mix with the target rheology

  16. Annual Report FY2013-- A Kinematically Complete, Interdisciplinary, and Co-Institutional Measurement of the 19F(α,n) Cross-section for Nuclear Safeguards Science

    SciTech Connect

    Peters, William A; Smith, Michael Scott; Clement, Ryan; Tan, Wanpeng; Stech, Ed; Cizewski, J A; Febbraro, Michael; Madurga Flores, Miguel

    2013-10-01

    Dame (UND), will focus on three specific items: (1) making a precision (better than 10 %) determination of the absolute cross section of the 19F(α,n)22Na reaction as a function of energy; (2) determining the spectrum of neutrons and γ-rays emitted from 19F(α,n)22Na over an energy range pertinent to NDA; and (3) performing simulations with this new cross section to extract the neutron yield (neutrons/gram/second) and resulting neutron- and gamma ray-spectra when α particles interact with fluorine nuclei in actinide samples, to aid in the design and reduce uncertainty of future NDA measurements and simulations.

  17. NMR, UV, FT-IR, FT-Raman spectra and molecular structure (monomeric and dimeric structures) investigation of nicotinic acid N-oxide: A combined experimental and theoretical study

    NASA Astrophysics Data System (ADS)

    Atac, Ahmet; Karabacak, Mehmet; Karaca, Caglar; Kose, Etem

    2012-01-01

    In this work, the experimental and theoretical UV, NMR, and vibrational features of nicotinic acid N-oxide (abbreviated as NANO, C 6H 5NO 3) were studied. The ultraviolet (UV) absorption spectrum of studied compound that dissolved in water was examined in the range of 200-800 nm. FT-IR and FT-Raman spectra in solid state were observed in the region 4000-400 cm -1 and 3500-50 cm -1, respectively. The 1H and 13C NMR spectra in DMSO were recorded. The geometrical parameters, energies and the spectroscopic properties of NANO were obtained for all four conformers from density functional theory (DFT) B3LYP/6-311++G(d,p) basis set calculations. There are four conformers, C n, n = 1-4 for this molecule. The computational results identified the most stable conformer of title molecule as the C1 form. The complete assignments were performed on the basis of the total energy distribution (TED) of the vibrational modes, calculated with scaled quantum mechanics (SQM) method. 13C and 1H nuclear magnetic resonance (NMR) chemical shifts of the molecule were calculated by using the gauge-invariant atomic orbital (GIAO) method. The electronic properties, such as excitation energies, absorption wavelengths, HOMO and LUMO energies, were performed by CIS approach. Finally the calculation results were applied to simulate infrared, Raman, and UV spectra of the title compound which show good agreement with observed spectra.

  18. NMR studies of multiple conformations in complexes of Lactobacillus casei dihydrofolate reductase with analogues of pyrimethamine

    SciTech Connect

    Birdsall, B.; Tendler, S.J.B.; Feeney, J.; Carr, M.D. ); Arnold, J.R.P.; Thomas, J.A.; Roberts, G.C.K. ); Griffin, R.J.; Stevens, M.F.G. )

    1990-10-01

    {sup 1}H and {sup 19}F NMR signals from bound ligands have been assigned in one- and two-dimensional NMR spectra of complexes of Lactobacillus casei dihydrofolate reductase with various pyrimethamine analogues. The signals were identified mainly by correlating signals from bound and free ligands by using 2D exchange experiments. Analogues with symmetrically substituted phenyl rings give rise to {sup 1}H signals from four nonequivalent aromatic protons, clearly indicating the presence of hindered rotation about the pyrimidine-phenyl bond. Analogues with symmetrically substituted phenyl rings give rise to {sup 1}H signals from four nonequivalent aromatic protons, clearly indicating the presence of hindered rotation about the pyrimidine-phenyl bond. Analogues containing asymmetrically substituted aromatic rings exist as mixtures of two rotational isomers (an enantiomeric pair) because of this hindered rotation and the NMR spectra revealed that both isomers (forms A and B) bind to the enzyme with comparable, though unequal, binding energies. In this case two complete sets of bound proton signals were observed. The relative orientations of the two forms have been determined from NOE through-space connections between protons on the ligand and protein. Ternary complexes with NADP{sup {plus}} were also examined.

  19. Effect of organic matter application on CP-MAS-13C-NMR spectra of humic acids from a brown soil

    NASA Astrophysics Data System (ADS)

    Dou, S.

    2009-04-01

    -MAS-13C-NMR spectrum of HA. The CP-MAS- 13C-NMR spectra of the HA were quite similar to each other. These spectra exhibited signals for alkyl (0~50 ppm), O-alkyl (50~110 ppm), aromatic (110~160 ppm) and carbonyl (160~200 ppm) regions. The signals in carbonyl C region concentrated between 172 ppm and 173 ppm, and with a small signal occurred in the region of 190~200 ppm, indicating that there was carbonyl C of carboxylic acid, ester and amide, but a little amount carbonyl C of ketonic compounds. In the region of aromatic C, the most obvious peaks were the absorption at 131~133 ppm and 114~117 ppm. The former was mainly the aromatic C substituted by -COOH or -COOMe and the unsubstituted aromatic meta to carbons bearing an oxygen or nitrogen atom; the latter was mainly the unsubstituted aromatic C ortho and para to carbons bearing an oxygen and nitrogen atom. There was a small peak at 152-154ppm, which was the signal of phenolic OH. The signal at 55~56 ppm was methoxyl C. The signals at 71~73 ppm were due to the -CH(OH)- in carbohydrate. The peak at 102~103 ppm was generally assigned to double oxygen-C in polysaccharide (possibly acetal). The maximum absorption at 30 ppm was the contribution of the polymethylene chain -(CH2)n- in saturated hydrocarbons (Wilson, 1981). After OM application, the contents of alkyl C and O-alkyl C increased and the contents of aromatic C and carbonxyl C except to 1986 decreased. Compared with 1986, the contents of O-alkyl C increased and the contents of alkyl C decreased for the same treatment CKbr and O2. Aromaticity decreased significantly in OM treatments, indicating that the OM decreased the content of aromatic C and was simplified the molecular structure. The relative content of O-alkyl C increased indicating that OM application increased the content of methoxyl C and -CH(OH)- in carbohydrate. Alkyl C was probably derived from compounds of plants with high resistance to degradation, such as cutin and suberin (Baldock et al., 1992; Preston

  20. Imaging of Intratumoral Inflammation during Oncolytic Virotherapy of Tumors by 19F-Magnetic Resonance Imaging (MRI)

    PubMed Central

    Hess, Michael; Hofmann, Elisabeth; Seubert, Carolin; Langbein-Laugwitz, Johanna; Gentschev, Ivaylo; Sturm, Volker Jörg Friedrich; Ye, Yuxiang; Kampf, Thomas; Jakob, Peter Michael; Szalay, Aladar A.

    2013-01-01

    Background Oncolytic virotherapy of tumors is an up-coming, promising therapeutic modality of cancer therapy. Unfortunately, non-invasive techniques to evaluate the inflammatory host response to treatment are rare. Here, we evaluate 19F magnetic resonance imaging (MRI) which enables the non-invasive visualization of inflammatory processes in pathological conditions by the use of perfluorocarbon nanoemulsions (PFC) for monitoring of oncolytic virotherapy. Methodology/Principal Findings The Vaccinia virus strain GLV-1h68 was used as an oncolytic agent for the treatment of different tumor models. Systemic application of PFC emulsions followed by 1H/19F MRI of mock-infected and GLV-1h68-infected tumor-bearing mice revealed a significant accumulation of the 19F signal in the tumor rim of virus-treated mice. Histological examination of tumors confirmed a similar spatial distribution of the 19F signal hot spots and CD68+-macrophages. Thereby, the CD68+-macrophages encapsulate the GFP-positive viral infection foci. In multiple tumor models, we specifically visualized early inflammatory cell recruitment in Vaccinia virus colonized tumors. Furthermore, we documented that the 19F signal correlated with the extent of viral spreading within tumors. Conclusions/Significance These results suggest 19F MRI as a non-invasive methodology to document the tumor-associated host immune response as well as the extent of intratumoral viral replication. Thus, 19F MRI represents a new platform to non-invasively investigate the role of the host immune response for therapeutic outcome of oncolytic virotherapy and individual patient response. PMID:23441176

  1. Solid-state NMR in the analysis of drugs and naturally occurring materials.

    PubMed

    Paradowska, Katarzyna; Wawer, Iwona

    2014-05-01

    This article presents some of the solid-state NMR (SSNMR) techniques used in the pharmaceutical and biomedical research. Solid-state magic angle spinning (MAS) NMR provides structural information on powder amorphous solids for which single-crystal diffraction structures cannot be obtained. NMR is non-destructive; the powder sample may be used for further studies. Quantitative results can be obtained, although solid-state NMR spectra are not normally quantitative. As compared with other techniques, MAS NMR is insensitive and requires a significant amount of the powder sample (2-100mg) to fill the 1.3-7 mm ZrO2 rotor. This is its main drawback, since natural compounds isolated from plants, microorganisms or cell cultures are difficult to obtain in quantities higher than a few milligrams. Multinuclear MAS NMR routinely uses (1)H and (13)C nuclei, less frequently (15)N, (19)F, (31)P, (77)Se, (29)Si, (43)Ca or (23)Na. The article focuses on the pharmaceutical applications of SSNMR, the studies were aimed to control over manufacturing processes (e.g. crystallization and milling) investigation of chemical and physical stability of solid forms both as pure drug and in a formulated product. SSNMR is used in combination with some other analytical methods (DSC, XRD, FT-IR) and theoretical calculations of NMR parameters. Biologically active compounds, such as amino acids and small peptides, steroids and flavonoids were studied by SSNMR methods (part 4) providing valuable structural information. The SSNMR experiments performed on biopolymers and large natural products like proteins, cellulose and lipid layers are commented upon briefly in part 5. PMID:24173236

  2. Ferroelastic phase transitions by 14N NMR spectra in [N(CH3)4]2CoCl4 and [N(CH3)4]2ZnCl4 single crystals

    NASA Astrophysics Data System (ADS)

    Lim, Ae Ran

    2016-09-01

    Changes in the structural geometry of [N(CH3)4]2BCl4 (B=Co and Zn) crystals near the phase transition temperatures were studied by analyzing the 14N nuclear magnetic resonance (NMR) spectra. Two physically inequivalent a-N(1)(CH3)4 and b-N(2)(CH3)4 groups were observed in these spectra. Abrupt changes in the resonance frequency and splitting of 14N NMR signals near the phase transition temperatures were attributed to structural phase transitions, and the primary mechanism of these phase transitions exhibited ferroelastic characteristics. In addition, ferroelasticity of [N(CH3)4]2BCl4 was identified at low temperatures using optical polarizing microscopy.

  3. Tanks 18 And 19-F Structural Flowable Grout Fill Material Evaluation And Recommendations

    SciTech Connect

    Langton, C. A.; Stefanko, D. B.

    2013-04-23

    Cementitious grout will be used to close Tanks 18-F and 19-F. The functions of the grout are to: 1) physically stabilize the final landfill by filling the empty volume in the tanks with a non-compressible material; 2) provide a barrier for inadvertent intrusion into the tank; 3) reduce contaminant mobility by a) limiting the hydraulic conductivity of the closed tank and b) reducing contact between the residual waste and infiltrating water; and 4) providing an alkaline, chemically reducing environment in the closed tank to control speciation and solubility of selected radionuclides. The objective of this work was to identify a single (all-in-one) grout to stabilize and isolate the residual radionuclides in the tank, provide structural stability of the closed tank and serve as an inadvertent intruder barrier. This work was requested by V. A. Chander, High Level Waste (HLW) Tank Engineering, in HLW-TTR-2011-008. The complete task scope is provided in the Task Technical and QA Plan, SRNL-RP-2011-00587 Revision 0. The specific objectives of this task were to: 1) Identify new admixtures and dosages for formulating a zero bleed flowable tank fill material selected by HLW Tank Closure Project personnel based on earlier tank fill studies performed in 2007. The chemical admixtures used for adjusting the flow properties needed to be updated because the original admixture products are no longer available. Also, the sources of cement and fly ash have changed, and Portland cements currently available contain up to 5 wt. % limestone (calcium carbonate). 2) Prepare and evaluate the placement, compressive strength, and thermal properties of the selected formulation with new admixture dosages. 3) Identify opportunities for improving the mix selected by HLW Closure Project personnel and prepare and evaluate two potentially improved zero bleed flowable fill design concepts; one based on the reactor fill grout and the other based on a shrinkage compensating flowable fill mix design. 4

  4. Efficient acid-catalyzed (18) F/(19) F fluoride exchange of BODIPY dyes.

    PubMed

    Keliher, Edmund J; Klubnick, Jenna A; Reiner, Thomas; Mazitschek, Ralph; Weissleder, Ralph

    2014-07-01

    Fluorine-containing fluorochromes are important validation agents for positron emission tomography imaging compounds, as they can be readily validated in cells by fluorescence imaging. In particular, the (18) F-labeled BODIPY-FL fluorophore has emerged as an important platform, but little is known about alternative (18) F-labeling strategies or labeling on red-shifted fluorophores. In this study we explore acid-catalyzed (18) F/(19) F exchange on a range of commercially available N-hydroxysuccinimidyl ester and maleimide BODIPY fluorophores. We show this method to be a simple and efficient (18) F-labeling strategy for a diverse span of fluorescent compounds, including a BODIPY-modified PARP-1 inhibitor, and amine- and thiol-reactive BODIPY fluorophores. PMID:24596307

  5. Magnetic Resonance Detection of CD34+ Cells from Umbilical Cord Blood Using a 19F Label

    PubMed Central

    Duinhouwer, Lucia E.; van Rossum, Bernard J. M.; van Tiel, Sandra T.; van der Werf, Ramon M.; Doeswijk, Gabriela N.; Haeck, Joost C.; Rombouts, Elwin W. J. C.; ter Borg, Mariëtte N. D.; Kotek, Gyula; Braakman, Eric; Cornelissen, Jan J.; Bernsen, Monique R.

    2015-01-01

    Impaired homing and delayed recovery upon hematopoietic stem cell transplantation (HSCT) with hematopoietic stem cells (HSC) derived from umbilical cord blood (UCB) is a major problem. Tracking transplanted cells in vivo will be helpful to detect impaired homing at an early stage and allows early interventions to improve engraftment and outcome after transplantation. In this study, we show sufficient intracellular labeling of UCB-derived CD34+ cells, with 19F-containing PLGA nanoparticles which were detectable with both flow cytometry and magnetic resonance spectroscopy (MRS). In addition, labeled CD34+ cells maintain their capacity to proliferate and differentiate, which is pivotal for successful engraftment after transplantation in vivo. These results set the stage for in vivo tracking experiments, through which the homing efficiency of transplanted cells can be studied. PMID:26394043

  6. Vibrational spectra, molecular structure, NBO, NMR, UV, first order hyperpolarizability, analysis of (S)-(-)-N-(5-Nitro-2-pyridyl) alaninol by Density functional theory.

    PubMed

    Govindarasu, K; Kavitha, E

    2014-06-01

    In this study, geometrical optimization, spectroscopic analysis, electronic structure and nuclear magnetic resonance studies of (S)-(-)-N-(5-Nitro-2-pyridyl) alaninol (abbreviated as SN5N2PLA) were investigated by utilizing HF and DFT/B3LYP with 6-31G(d,p) as basis set. The Fourier transform infrared (FT-IR) and FT-Raman spectra of SN5N2PLA were recorded in the region 4000-400cm(-1) and 3500-50cm(-1), respectively. Complete vibrational assignments, analysis and correlation of the fundamental modes for the title compound were carried out. UV-Visible spectrum of the compound that dissolved in methanol were recorded in the region 200-800nm and the electronic properties HOMO and LUMO energies were measured by TD-DFT approach. The calculated HOMO and LUMO energies show that charge transfer occurs within the molecule. The molecular stability and bond strength have been investigated by applying the Natural Bond Orbital (NBO) analysis. The (1)H and (13)C nuclear magnetic resonance (NMR) chemical shifts of SN5N2PLA were calculated using the GIAO method in methanol solution and compared with the measured experimental data. The dipole moment, polarizability and first order hyperpolarizability values were also computed. The polarizability and first hyperpolarizability of the studied molecule indicate that the compound is a good candidate of nonlinear optical materials. The Chemical reactivity and Thermodynamic properties of SN5N2PLA at different temperature are calculated. In addition, molecular electrostatic potential (MEP), frontier molecular orbitals (FMOs) analysis were investigated using theoretical calculations. PMID:24657932

  7. Phosphorus-31 NMR spectra of ethidium, quinacrine, and daunomycin complexes with poly(adenylic acid)ter dot poly(uridylic acid) RNA duplex and calf thymus DNA

    SciTech Connect

    Gorenstein, D.G.; Lai, K. )

    1989-04-04

    {sup 31}P NMR provides a convenient monitor of the phosphate ester backbone conformational changes upon binding of the intercalating drugs ethidium, quinacrine, and daunomycin to sonicated poly(A){center dot}poly(U) and calf thymus DNA. {sup 31}P chemical shifts can also be used to assess differences in the duplex unwinding angles in the presence of the drug. Thus a new {sup 31}P signal, 1.8-2.2 ppm downfield from the double-stranded helix signals, is observed in the ethidium ion-poly(A){center dot}poly(U) complex. This signal arises from phosphates which are in perturbed environments due to intercalation of the drug. This is in keeping with the hypothesis that the P-O ester torsional angle in phosphates linking the intercalated base pairs is more trans-like. Similar though smaller deshielding of the {sup 31}P signals is observed in sonicated poly(A){center dot}poly(U)-quinacrine complexes as well as in the daunomycin complexes. The effect of added ethidium ion, quinacrine, and daunomycin on the {sup 31}P spectra of sonicated calf thymus DNA is consistent with Wilson and Jones' (1982) earlier study. In these drug-DNA complexes the drug produces a gradual downfield shift in the DNA {sup 31}P signal without the appearance of a separate downfield peak. These differences are attributed to differences in the rate of chemical exchange of the drug between free and bound duplex states. The previous correlation of {sup 31}P chemical shift with drug duplex unwinding angle is confirmed for both the RNA and DNA duplexes.

  8. Application of unsymmetrical indirect covariance NMR methods to the computation of the (13)C <--> (15)N HSQC-IMPEACH and (13)C <--> (15)N HMBC-IMPEACH correlation spectra.

    PubMed

    Martin, Gary E; Hilton, Bruce D; Irish, Patrick A; Blinov, Kirill A; Williams, Antony J

    2007-10-01

    Utilization of long-range (1)H--(15)N heteronuclear chemical shift correlation has continually grown in importance since the first applications were reported in 1995. More recently, indirect covariance NMR methods have been introduced followed by the development of unsymmetrical indirect covariance processing methods. The latter technique has been shown to allow the calculation of hyphenated 2D NMR data matrices from more readily acquired nonhyphenated 2D NMR spectra. We recently reported the use of unsymmetrical indirect covariance processing to combine (1)H--(13)C GHSQC and (1)H--(15)N GHMBC long-range spectra to yield a (13)C--(15)N HSQC-HMBC chemical shift correlation spectrum that could not be acquired in a reasonable period of time without resorting to (15)N-labeled molecules. We now report the unsymmetrical indirect covariance processing of (1)H--(13)C GHMBC and (1)H--(15)N IMPEACH spectra to afford a (13)C--(15)N HMBC-IMPEACH spectrum that has the potential to span as many as six to eight bonds. Correlations for carbon resonances long-range coupled to a protonated carbon in the (1)H--(13)C HMBC spectrum are transferred via the long-range (1)H--(15)N coupling pathway in the (1)H--(15)N IMPEACH spectrum to afford a much broader range of correlation possibilities in the (13)C--(15)N HMBC-IMPEACH correlation spectrum. The indole alkaloid vincamine is used as a model compound to illustrate the application of the method. PMID:17729230

  9. Effect of organic matter application on CP-MAS-13C-NMR spectra of humic acids from a brown soil

    NASA Astrophysics Data System (ADS)

    Dou, S.

    2009-04-01

    -MAS-13C-NMR spectrum of HA. The CP-MAS- 13C-NMR spectra of the HA were quite similar to each other

  10. Inter- and intramolecular spin transfer in molecular magnetic materials. Solid-state NMR spectroscopy of paramagnetic metallocenium ions.

    PubMed

    Heise, Henrike; Köhler, Frank H; Herker, Martin; Hiller, Wolfgang

    2002-09-11

    To shed light on the interaction in molecule-based magnetic materials, the decamethylmetallocenium hexafluorophosphates, [(C(5)Me(5))(2)M](+) [PF(6)](-) with M = Cr, Mn, Fe, Co, and Ni, as well as the tetracyanoethenides, [(C(5)Me(5))(2)M](+) [TCNE](-) with M = Cr, Mn, Fe, and Co, have been investigated in the solid state by using (1)H, (13)C, (19)F, and (31)P NMR spectroscopy under magic angle spinning (MAS). The isotropic (13)C and (1)H NMR signals cover ranges of about 1300 and 500 ppm, respectively. From the shift anisotropies of the ring carbon signal of the [(C(5)Me(5))(2)M](+) cations, the total unpaired electron spin density in the ligand pi orbitals has been calculated; it amounts up to 36% (M = Ni) and is negative for M = Cr, Mn, and Fe. The radical anion of [(C(5)Me(5))(2)M](+) [TCNE](-) shifts the (13)C NMR signals of all [(C(5)Me(5))(2)M](+) cations to high frequency, which establishes transfer of positive spin density from the anions to the cations. The (19)F and (31)P NMR signals of the paramagnetic salts [(C(5)Me(5))(2)M](+) [PF(6)](-) are shifted up to 13.5 ppm relative to diamagnetic [(C(5)Me(5))(2)Co](+) [PF(6)](-). The signs of these shifts are the same as those of the pi spin density in [(C(5)Me(5))(2)M](+). After consideration of interionic ligand- and metal-centered dipolar shifts, this establishes cation-anion spin delocalization. The mixed crystals [(C(5)Me(5))(2)M(x)Co(1-x)](+)[PF(6)](-) have been prepared for M = Cr and Ni. They are isostructural with [(C(5)Me(5))(2)Co](+) [PF(6)](-) whose single-crystal structure has been determined by X-ray diffraction. The (13)C, (19)F, and (31)P MAS NMR spectra of the mixed crystals show that the respective two closest paramagnetic ions in the lattice delocalize spin density to [(C(5)Me(5))(2)Co](+), [(C(5)Me(5))(2)Ni](+), and [PF(6)](-). In [(C(5)Me(5))(2)M](+), about 10(-4) au per carbon atom are transferred. PMID:12207538

  11. Visualizing brain inflammation with a shingled-leg radio-frequency head probe for 19F/1H MRI.

    PubMed

    Waiczies, Helmar; Lepore, Stefano; Drechsler, Susanne; Qadri, Fatimunnisa; Purfürst, Bettina; Sydow, Karl; Dathe, Margitta; Kühne, André; Lindel, Tomasz; Hoffmann, Werner; Pohlmann, Andreas; Niendorf, Thoralf; Waiczies, Sonia

    2013-01-01

    Magnetic resonance imaging (MRI) provides the opportunity of tracking cells in vivo. Major challenges in dissecting cells from the recipient tissue and signal sensitivity constraints albeit exist. In this study, we aimed to tackle these limitations in order to study inflammation in autoimmune encephalomyelitis. We constructed a very small dual-tunable radio frequency (RF) birdcage probe tailored for (19)F (fluorine) and (1)H (proton) MR mouse neuroimaging. The novel design eliminated the need for extra electrical components on the probe structure and afforded a uniform -field as well as good SNR. We employed fluorescently-tagged (19)F nanoparticles and could study the dynamics of inflammatory cells between CNS and lymphatic system during development of encephalomyelitis, even within regions of the brain that are otherwise not easily visualized by conventional probes. (19)F/(1)H MR Neuroimaging will allow us to study the nature of immune cell infiltration during brain inflammation over an extensive period of time. PMID:23412352

  12. TANKS 18 AND 19-F STRUCTURAL FLOWABLE GROUT FILL MATERIAL EVALUATION AND RECOMMENDATIONS

    SciTech Connect

    Stefanko, D.; Langton, C.

    2011-11-01

    Cementitious grout will be used to close Tanks 18-F and 19-F. The functions of the grout are to: (1) physically stabilize the final landfill by filling the empty volume in the tanks with a non compressible material; (2) provide a barrier for inadvertent intrusion into the tank; (3) reduce contaminant mobility by (a) limiting the hydraulic conductivity of the closed tank and (b) reducing contact between the residual waste and infiltrating water; and (4) providing an alkaline, chemically reducing environment in the closed tank to control speciation and solubility of selected radionuclides. The objective of this work was to identify a single (all-in-one) grout to stabilize and isolate the residual radionuclides in the tank, provide structural stability of the closed tank and serve as an inadvertent intruder barrier. This work was requested by V. A. Chander, High Level Waste (HLW) Tank Engineering, in HLW-TTR-2011-008. The complete task scope is provided in the Task Technical and QA Plan, SRNL-RP-2011-00587 Revision 0. The specific objectives of this task were to: (1) Identify new admixtures and dosages for formulating a zero bleed flowable tank fill material selected by HLW Tank Closure Project personnel based on earlier tank fill studies performed in 2007. The chemical admixtures used for adjusting the flow properties needed to be updated because the original admixture products are no longer available. Also, the sources of cement and fly ash have changed, and Portland cements currently available contain up to 5 wt. % limestone (calcium carbonate). (2) Prepare and evaluate the placement, compressive strength, and thermal properties of the selected formulation with new admixture dosages. (3) Identify opportunities for improving the mix selected by HLW Closure Project personnel and prepare and evaluate two potentially improved zero bleed flowable fill design concepts; one based on the reactor fill grout and the other based on a shrinkage compensating flowable fill mix

  13. Binary channels of the {sup 19}F-on-{sup 12}C reaction at 92 MeV

    SciTech Connect

    Aissaoui, N.; Haas, F.; Freeman, R.M.; Beck, C.; Morsad, A.; Djerroud, B.; Caplar, R.; Hachem, A.

    1997-01-01

    Binary-reaction channels of {sup 19}F+{sup 12}C have been studied at E{sub lab}({sup 19}F)=92 MeV using kinematic coincidence techniques. The results are discussed in the light of previous inclusive measurements performed at the same incident energy and for which the occurrence of an important incomplete fusion mechanism after projectile breakup was proposed. Evidence for strong damped binary, especially quasisymmetric, decay processes is found. {copyright} {ital 1997} {ital The American Physical Society}

  14. An overview of the 19F(p,α0)16 O reaction with direct methods

    NASA Astrophysics Data System (ADS)

    Dell’Aquila, D.; Lombardo, I.

    2016-04-01

    The study of the 19F(p,α)16O reaction at low energy is important both for Nuclear Structure and Astrophysics. Despite of its importance, the S-factor of this reaction is poorly known, especially at astrophysical energies. We present an overview of the 19F(p,α0)16O reaction cross section, as obtained from recent direct measurements and from published works in the literature. We include in the systematic also data from an unpublished work, where several excitation functions and angular distributions for α0 and απ channels are reported.

  15. Constraints on low-mass WIMP interactions on 19F from PICASSO

    NASA Astrophysics Data System (ADS)

    Archambault, S.; Behnke, E.; Bhattacharjee, P.; Bhattacharya, S.; Dai, X.; Das, M.; Davour, A.; Debris, F.; Dhungana, N.; Farine, J.; Gagnebin, S.; Giroux, G.; Grace, E.; Jackson, C. M.; Kamaha, A.; Krauss, C.; Kumaratunga, S.; Lafrenière, M.; Laurin, M.; Lawson, I.; Lessard, L.; Levine, I.; Levy, C.; MacDonald, R. P.; Marlisov, D.; Martin, J.-P.; Mitra, P.; Noble, A. J.; Piro, M.-C.; Podviyanuk, R.; Pospisil, S.; Saha, S.; Scallon, O.; Seth, S.; Starinski, N.; Stekl, I.; Wichoski, U.; Xie, T.; Zacek, V.

    2012-05-01

    Recent results from the PICASSO dark matter search experiment at SNOLAB are reported. These results were obtained using a subset of 10 detectors with a total target mass of 0.72 kg of 19F and an exposure of 114 kgd. The low backgrounds in PICASSO allow recoil energy thresholds as low as 1.7 keV to be obtained which results in an increased sensitivity to interactions from Weakly Interacting Massive Particles (WIMPs) with masses below 10 GeV/c2. No dark matter signal was found. Best exclusion limits in the spin dependent sector were obtained for WIMP masses of 20 GeV/c2 with a cross section on protons of σpSD=0.032 pb (90% C.L.). In the spin independent sector close to the low mass region of 7 GeV/c2 favoured by CoGeNT and DAMA/LIBRA, cross sections larger than σpSI=1.41×10-4 pb (90% C.L.) are excluded.

  16. Fast and Efficient Fragment-Based Lead Generation by Fully Automated Processing and Analysis of Ligand-Observed NMR Binding Data.

    PubMed

    Peng, Chen; Frommlet, Alexandra; Perez, Manuel; Cobas, Carlos; Blechschmidt, Anke; Dominguez, Santiago; Lingel, Andreas

    2016-04-14

    NMR binding assays are routinely applied in hit finding and validation during early stages of drug discovery, particularly for fragment-based lead generation. To this end, compound libraries are screened by ligand-observed NMR experiments such as STD, T1ρ, and CPMG to identify molecules interacting with a target. The analysis of a high number of complex spectra is performed largely manually and therefore represents a limiting step in hit generation campaigns. Here we report a novel integrated computational procedure that processes and analyzes ligand-observed proton and fluorine NMR binding data in a fully automated fashion. A performance evaluation comparing automated and manual analysis results on (19)F- and (1)H-detected data sets shows that the program delivers robust, high-confidence hit lists in a fraction of the time needed for manual analysis and greatly facilitates visual inspection of the associated NMR spectra. These features enable considerably higher throughput, the assessment of larger libraries, and shorter turn-around times. PMID:26964888

  17. (19)F(α,n) thick target yield from 3.5 to 10.0 MeV.

    PubMed

    Norman, E B; Chupp, T E; Lesko, K T; Grant, P J; Woodruff, G L

    2015-09-01

    Using a target of PbF2, the thick-target yield from the (19)F(α,n) reaction was measured from E(α)=3.5-10 MeV. From these results, we infer the thick-target neutron yields from targets of F2 and UF6 over this same alpha-particle energy range. PMID:26115205

  18. Mapping phosphorylation rate of fluoro-deoxy-glucose in rat brain by 19F chemical shift imaging

    PubMed Central

    Coman, Daniel; Sanganahalli, Basavaraju G.; Cheng, David; McCarthy, Timothy; Rothman, Douglas L.; Hyder, Fahmeed

    2014-01-01

    19F magnetic resonance spectroscopy (MRS) studies of 2-fluoro-2-deoxy-D-glucose (FDG) and 2-fluoro-2-deoxy-D-glucose-6-phosphate (FDG-6P) can be used for directly assessing total glucose metabolism in vivo. To date, 19F MRS measurements of FDG phosphorylation in the brain have either been achieved ex vivo from extracted tissue or in vivo by unusually long acquisition times. Electrophysiological and functional magnetic resonance imaging (fMRI) measurements indicate that FDG doses up to 500mg/kg can be tolerated with minimal side effects on cerebral physiology and evoked fMRI-BOLD responses to forepaw stimulation. In halothane-anesthetized rats, we report localized in vivo detection and separation of FDG and FDG-6P MRS signals with 19F 2D chemical shift imaging (CSI) at 11.7T. A metabolic model based on reversible transport between plasma and brain tissue, which included a non-saturable plasma to tissue component, was used to calculate spatial distribution of FDG and FDG-6P concentrations in rat brain. In addition, spatial distribution of rate constants and metabolic fluxes of FDG to FDG-6P conversion were estimated. Mapping the rate of FDG to FDG-6P conversion by 19F CSI provides an MR methodology that could impact other in vivo applications such as characterization of tumor pathophysiology. PMID:24581725

  19. Energy dependence of fission fragment angular distributions for 19F, 24Mg and 28Si induced reactions on 208Pb

    NASA Astrophysics Data System (ADS)

    Tsang, M. B.; Utsunomiya, H.; Gelbke, C. K.; Lynch, W. G.; Back, B. B.; Saini, S.; Baisden, P. A.; McMahan, M. A.

    1983-09-01

    The energy dependence of fission fragment angular distributions was measured for reaction induced by 19F, 24Mg, and 28Si on 208Pb over the range of incident energies of {E}/{A} = 5.6-10 MeV. For all three systems the angular distributions are inconsistent with the saddle point deformations of the rotating liquid drop model.

  20. Angular Distribution and Angular Dispersion in Collision of 19F+27Al at 114 MeV

    NASA Astrophysics Data System (ADS)

    Wang, Qi; Dong, Yu-Chuan; Li, Song-Lin; Duan, Li-Min; Xu, Hu-Shan; Xu, Hua-Gen; Chen, Ruo-Fu; Wu, He-Yu; Han, Jian-Long; Li, Zhi-Chang; Lu, Xiu-Qin; Zhao, Kui; Liu, Jian-Cheng; Sergey, Yu-Kun

    2004-10-01

    Angular distributions of fragments B, C, N, O, F, Ne, Na, Mg and Al induced by the collision of 19F+27Al at 114 MeV have been measured. Angular dispersion parameters are extracted from the experimental data and compared with the theoretical ones. The dynamic dispersions for dissipative products depend strongly on the charge number Z of the fragments.

  1. Technical advance: monitoring the trafficking of neutrophil granulocytes and monocytes during the course of tissue inflammation by noninvasive 19F MRI.

    PubMed

    Temme, Sebastian; Jacoby, Christoph; Ding, Zhaoping; Bönner, Florian; Borg, Nadine; Schrader, Jürgen; Flögel, Ulrich

    2014-04-01

    Inflammation results in the recruitment of neutrophils and monocytes, which is crucial for the healing process. In the present study, we used (19)F MRI to monitor in vivo the infiltration of neutrophils and monocytes from the onset of inflammation to the resolution and healing phase. Matrigel, with or without LPS, was s.c.-implanted into C57BL/6 mice. This resulted in a focal inflammation lasting over a period of 20 days, with constantly decreasing LPS levels in doped matrigel plugs. After i.v. administration of (19)F containing contrast agent, (19)F MRI revealed a zonular (19)F signal in the periphery of LPS containing matrigel plugs, which was not observed in control plugs. Analysis of the (19)F signal over the observation period demonstrated the strongest (19)F signal after 24 h, which decreased to nearly zero after 20 days. The (19)F signal was mirrored by the amount of leukocytes in the matrigel, with neutrophils dominating at early time-points and macrophages at later time-points. Both populations were shown to take up the (19)F contrast agent. In conclusion, (19)F MRI, in combination with the matrigel/LPS model, permits the noninvasive analysis of neutrophil and monocyte infiltration over the complete course of inflammation in vivo. PMID:24319285

  2. Impact of Zeolite Transferred from Tank 19F to Tank 18F on DWPF Vitrification of Sludge Batch 3

    SciTech Connect

    Jantzen, C.M.

    2004-01-07

    The Defense Waste Processing Facility (DWPF) is planning to initiate vitrification of Sludge Batch 3 (SB3) in combination with Sludge Batch 2 (SB2) in the spring of 2004. The contents of Sludge Batch 3 will be a mixture of the heel remaining from Sludge Batch 1B, sludge from Tank 7F (containing coal, sand, and sodium oxalate), and sludge materials from Tank 18F. The sludge materials in Tank 18F contain part of a mound of zeolitic material transferred there from Tank 19F. This mound was physically broken up and transfers were made from Tank 19F to Tank 18F for vitrification into SB3. In addition, excess Pu and Am/Cm materials were transferred to Tank 51H to be processed through the DWPF as part of SB3. Additional Pu material and a Np stream from the Canyons are also planned to be added to SB3 before processing of this batch commences at DWPF. The primary objective of this task was to assess the impacts of the excess zeolite mound material in Tank 19F on the predicted glass and processing properties of interest when the zeolite becomes part of SB3. The two potential impacts of the Tank 19F zeolite mound on DWPF processing relates to (1) the samples taken for determination of the acceptability of a macrobatch of DWPF feed and (2) the achievable waste loading. The potential effects of the large size of the zeolite particles found in the Tank 19F solids, as reported in this study, are considered minimal for processing of SB3 in DWPF. Other findings about the zeolite conversion mechanism via a process of Ostwald ripening are discussed in the text and in the conclusions.

  3. FT-IR, FT-Raman, UV, NMR spectra and molecular structure investigation of (E)-2-(3-chloropyrazin-2-yl)-1-(3-ethyl-2, 6-diphenyl piperidin-4-ylidene) hydrazine: A combined experimental and theoretical study

    NASA Astrophysics Data System (ADS)

    Therasa Alphonsa, A.; Loganathan, C.; Athavan Alias Anand, S.; Kabilan, S.

    2015-11-01

    This work presents the characterization of (E)-2-(3-chloropyrazin-2-yl)-1-(3-ethyl-2, 6-diphenyl piperidin-4-ylidene) hydrazine (HDE) by quantum chemical calculations and spectral techniques. The structure was investigated by FT-IR, FT-Raman, UV-vis and NMR techniques. The geometrical parameters and energies have been obtained from Density functional theory (DFT) B3LYP (6-31G (d, p)) basis set calculations. The geometry of the molecule was fully optimized, vibrational spectra were calculated and fundamental vibrations were assigned on the basis of total energy distribution (TED) of the vibrational modes, calculated with scaled quantum mechanics (SQM) method. 1H and 13C NMR chemical shifts of the molecule were calculated using Gauge-independent atomic orbital method (GIAO). The electronic properties such as excitation energies, wavelength, HOMO, LUMO energies performed by Time dependent density functional theory (TD-DFT) results complements with the experimental findings. NBO analysis has been performed for analyzing charge delocalization throughout the molecule. The calculation results were applied to simulate spectra of the title compound, which show excellent agreement with observed spectra. To provide information about the interactions between human cytochrome protein and the novel compound theoretically, docking studies were carried out using Schrödinger software.

  4. PIC microcontroller based external fast analog to digital converter to acquire wide-lined solid NMR spectra by BRUKER DRX and Avance-I spectrometers.

    PubMed

    Koczor, Bálint; Rohonczy, János

    2015-01-01

    Concerning many former liquid or hybrid liquid/solid NMR consoles, the built in Analog-to-Digital Converters (ADCs) are incapable of digitizing the fids at sampling rates in the MHz range. Regarding both strong anisotropic interactions in the solid state and wide chemical shift dispersion nuclei in solution phase such as (195)Pt, (119)Sn, (207)Pb etc., the spectrum range of interest might be in the MHz range. As determining the informative tensor components of anisotropic NMR interactions requires nonlinear fitting over the whole spectrum including the asymptotic baseline, it is prohibited by low sampling rates of the ADCs. Wide spectrum width is also useful in solution NMR, since windowing of wide chemical shift ranges is avoidable. We built an external analog to digital converter with 10 MHz maximal sampling rate, which can work simultaneously with the built in ADC of the spectrometer. The ADC was tested on both Bruker DRX and Avance-I NMR consoles. In addition to the analog channels it only requires three external digital lines of the NMR console. The ADC sends data to PC via USB. The whole process is controlled by software written in JAVA which is implemented under TopSpin. PMID:25727157

  5. 19F nuclear magnetic resonance as a probe of the spatial relationship between the heme iron of cytochrome P-450 and its substrate.

    PubMed

    Crull, G B; Kennington, J W; Garber, A R; Ellis, P D; Dawson, J H

    1989-02-15

    The distance between the heme iron of ferrous cytochrome P-450-CAM and a fluorine label attached to the 9-methyl carbon of its substrate, (1R)-(+)-camphor, has been determined using 19F NMR. This investigation uses the Solomon-Bloembergen equation to measure the distance from a paramagnetic heme iron to a fluorine probe incorporated into a substrate that is not in fast exchange. The structural identity of the substrate analogue, 9-fluorocamphor, has been established using one- and two-dimensional NMR methods and mass spectrometry. The relaxation rate of 9-fluorocamphor bound to high-spin paramagnetic ferrous P-450-CAM has been studied at 188, 282, and 376 MHz, and the correlation time has been directly determined from the frequency dependence of the relaxation rate. When the substrate analogue was bound to the low-spin diamagnetic ferrous-CO derivative of the enzyme, the relaxation rate was found to be 100 times slower and was therefore neglected in the distance calculation. The relaxation data for the paramagnetic system and the correlation time have been used to calculate a distance of 3.8 A between the heme iron and the C-9 fluoride. A fit of the distance and the chemical shift data to the pseudocontact shift equation predicts an angle of approximately 52 degrees between the heme normal and the Fe-F vector. The solution state Fe-F distance is somewhat shorter and the angle between the heme normal and the Fe-F vector slightly larger for the substrate-bound ferrous enzyme reported herein than the analogous values for the substrate-bound ferric enzyme determined in the solid state by x-ray crystallography. These differences may reflect a structural change at the substrate-binding site upon reduction of the iron. PMID:2914926

  6. Self-Assembly of Peptide Amphiphiles Designed as Imaging Probes for 19F and Relaxation-Enhanced 1H imaging

    NASA Astrophysics Data System (ADS)

    Preslar, Adam Truett

    This work incorporates whole-body imaging functionality into peptide amphiphile (PA) nanostructures used for regenerative medicine to facilitate magnetic resonance imaging (MRI). Two strategies were employed: 1. Conjugation of gadolinium chelates to peptide nanostructures to monitor biomaterial degradation in vivo with MRI and inductively-coupled plasma-mass spectroscopy (ICP-MS) 2. Synthesis of perfluorinated moiety-bearing peptide amphiphiles for 19F-MRI. The Gd(III) chelate gadoteridol was conjugated by copper-catalyzed "click" chemistry to a series of PAs known to form cylindrical nanostructures. By fitting nuclear magnetic resonance dispersion (NMRD) profiles to the Solomon-Bloembergen-Morgan (SBM) equations, it was observed that the water exchange parameter (tauM) depended on thermal annealing or calcium ion cross-linking. The sequence C16V 3A3E3G(Gd) exhibited an acceleration of nearly 100 ns after thermal annealing and calcium addition. These gadolinium-labeled PAs were used to track in vivo degradation of gels within the tibialis anterior muscle in a murine model. The half-life of biomaterial degradation was determined to be 13.5 days by inductively coupled plasma mass spectrometry (ICP-MS) of Gd(III). Gel implants could be monitored by MRI for eight days before the signal dispersed due to implant degradation and dilution. Additionally, nanostructures incorporating highly fluorinated domains were investigated for use as MRI contrast agents. Short, perfluoroalkyane tails of seven or eight carbon atoms in length were grafted to PA sequences containing a V2A2 beta-sheet forming sequence. The V2A2 sequence is known to drive 1D nanostructure assembly. It was found that the sequences C7F13V2A 2E2 and C7F13V2A 2K3 formed 1D assemblies in water which transition from ribbon-like to cylindrical shape as pH increases from 4.5 to 8.0. Ribbon-like nanostructures had reduced magnetic resonance signal by T 2 relaxation quenching, whereas their cylindrical counterparts

  7. Characterization of the Tank 19F Closure Grab and Core Samples and the Tank 18F Dip Sample

    SciTech Connect

    Swingle, R.F.

    2002-05-02

    The results of analyses of the Tank 19F closure characterization samples are included herein. The samples analyzed include the two Tank 19F grab samples (FTF-075 and FTF-077) and a Tank 18F dip sample (FTF-076) taken in September 2001 and a Tank 19F core sample (FTF-118) taken in December 2001. The FTF-075 and FTF-077 grab samples were pulled from Tank 19F and the FTF-076 dip sample was pulled from Tank 18F in September 2001 as part of the characterization process for closure of Tank 19F. The samples were delivered to the Savannah River Technology Center (SRTC) Shielded Cells on September 28, 2001 and placed in the Shielded Cells on October 2, 2001. The samples were opened and both grab samples were found to contain plenty of material to allow completion of the analyses. The samples were dark and resembled marsh muck (see Figures 1 and 2). The dip sample was also found to contain plenty of material. The sample looked like muddy water (Figure 4). The FTF-118F core sample was pulled from Tank 19F in December 2001 as part of the characterization process for closure of the tank. The sample was delivered to the SRTC Shielded Cells on December 6, 2001 and placed in the Shielded Cells on December 7, 2001. The sample was opened and found to contain plenty of material to allow completion of the analyses. As evident in Figure 3, the sample resembled a somewhat drier version of the previous grab samples FTF-075 and FTF-077. A group consisting of SRTC Waste Processing Technology (WPT) section personnel and High Level Waste Engineering (HLWE) personnel viewed the sample when it was opened and came to the consensus that the sample appeared to be homogeneous. The decision was made to treat the sample as a single phase and analyze accordingly. Initially, small portions were archived from the top, middle and bottom of the sample in case it is later decided to analyze the levels of the sample separately. The analytical results from the two grab samples and the core sample were all

  8. Automated structure verification based on a combination of 1D (1)H NMR and 2D (1)H - (13)C HSQC spectra.

    PubMed

    Golotvin, Sergey S; Vodopianov, Eugene; Pol, Rostislav; Lefebvre, Brent A; Williams, Antony J; Rutkowske, Randy D; Spitzer, Timothy D

    2007-10-01

    A method for structure validation based on the simultaneous analysis of a 1D (1)H NMR and 2D (1)H - (13)C single-bond correlation spectrum such as HSQC or HMQC is presented here. When compared with the validation of a structure by a 1D (1)H NMR spectrum alone, the advantage of including a 2D HSQC spectrum in structure validation is that it adds not only the information of (13)C shifts, but also which proton shifts they are directly coupled to, and an indication of which methylene protons are diastereotopic. The lack of corresponding peaks in the 2D spectrum that appear in the 1D (1)H spectrum, also gives a clear picture of which protons are attached to heteroatoms. For all these benefits, combined NMR verification was expected and found by all metrics to be superior to validation by 1D (1)H NMR alone. Using multiple real-life data sets of chemical structures and the corresponding 1D and 2D data, it was possible to unambiguously identify at least 90% of the correct structures. As part of this test, challenging incorrect structures, mostly regioisomers, were also matched with each spectrum set. For these incorrect structures, the false positive rate was observed as low as 6%. PMID:17694570

  9. High-resolution solid-state 13C CP MAS NMR spectra of some β-cyclodextrin inclusion complexes with nitriles

    NASA Astrophysics Data System (ADS)

    Okazaki, M.; McDowell, C. A.

    1983-11-01

    β-cyclodextrin inclusion complexes of 3-aminobenzonitrile, 4-aminobenzonitrile, and adamantane-1-carbonitrile were studied by means of high-resolution solid-state CP MAS 13C NMR spectroscopy. The interactions between the host and guest molecules are discussed.

  10. A new approach to the optimisation of non-uniform sampling schedules for use in the rapid acquisition of 2D NMR spectra of small molecules.

    PubMed

    Sidebottom, Philip J

    2016-08-01

    Non-uniform sampling allows the routine, rapid acquisition of 2D NMR data. When the number of points in the NUS schedule is low, the quality of the data obtained is very dependent of the schedule used. A simple proceedure for finding optimium schedules has been developed and is demonstrated for the multiplicity edited HSQC experiment. PMID:27160788

  11. Vibrational (FT-IR and FT-Raman), electronic (UV-Vis), NMR (1H and 13C) spectra and reactivity analyses of 4,5-dimethyl-o-phenylenediamine.

    PubMed

    Atac, Ahmet; Karaca, Caglar; Gunnaz, Salih; Karabacak, Mehmet

    2014-09-15

    The structure of 4,5-dimethyl-o-phenylenediamine (C8H12N2, DMPDA) was investigated on the basis of spectroscopic data and theoretical calculations. The sterochemical structure was determined by FT-IR, FT-Raman, UV, 1H and 13C NMR spectra. An experimental study and a theoretical analysis were associated by using the B3LYP method with Gaussian09 package program. FT-IR and FT-Raman spectra were recorded in the region of 4000-400 cm(-1) and 4000-10 cm(-1), respectively. The vibrational spectra were calculated by DFT method and the fundamental vibrations were assigned on the basis of the total energy distribution (TED), calculated with scaled quantum mechanics (SQM) method with Parallel Quantum Solutions (PQS) program. The UV absorption spectrum of the compound that dissolved in ethanol solution were recorded in the range of 190-400 nm. Total density of state (TDOS) and partial density of state (PDOS) of the DMPDA in terms of HOMOs and LUMOs were calculated and analyzed. Chemical shifts were reported in ppm relative to tetramethylsilane (TMS) for 1H and 13C NMR spectra. The compound was dissolved in dimethyl sulfoxide (DMSO). Also, 1H and 13C chemical shifts calculated using the gauge independent atomic orbital (GIAO) method. Mullikan atomic charges and other thermo-dynamical parameters were investigated with the help of B3LYP (DFT) method using 6-311++G** basis set. On the basis of the thermodynamic properties of the title compound at different temperatures have been carried out, revealing the correlations between heat capacity (C), entropy (S), enthalpy changes (H) and temperatures. The optimized bond lengths, bond angles, chemical shifts and vibrational wavenumbers showed the best agreement with the experimental results. PMID:24813280

  12. Vibrational (FT-IR and FT-Raman), electronic (UV-Vis), NMR (1H and 13C) spectra and reactivity analyses of 4,5-dimethyl-o-phenylenediamine

    NASA Astrophysics Data System (ADS)

    Atac, Ahmet; Karaca, Caglar; Gunnaz, Salih; Karabacak, Mehmet

    2014-09-01

    The structure of 4,5-dimethyl-o-phenylenediamine (C8H12N2, DMPDA) was investigated on the basis of spectroscopic data and theoretical calculations. The sterochemical structure was determined by FT-IR, FT-Raman, UV, 1H and 13C NMR spectra. An experimental study and a theoretical analysis were associated by using the B3LYP method with Gaussian09 package program. FT-IR and FT-Raman spectra were recorded in the region of 4000-400 cm-1 and 4000-10 cm-1, respectively. The vibrational spectra were calculated by DFT method and the fundamental vibrations were assigned on the basis of the total energy distribution (TED), calculated with scaled quantum mechanics (SQM) method with Parallel Quantum Solutions (PQS) program. The UV absorption spectrum of the compound that dissolved in ethanol solution were recorded in the range of 190-400 nm. Total density of state (TDOS) and partial density of state (PDOS) of the DMPDA in terms of HOMOs and LUMOs were calculated and analyzed. Chemical shifts were reported in ppm relative to tetramethylsilane (TMS) for 1H and 13C NMR spectra. The compound was dissolved in dimethyl sulfoxide (DMSO). Also, 1H and 13C chemical shifts calculated using the gauge independent atomic orbital (GIAO) method. Mullikan atomic charges and other thermo-dynamical parameters were investigated with the help of B3LYP (DFT) method using 6-311++G** basis set. On the basis of the thermodynamic properties of the title compound at different temperatures have been carried out, revealing the correlations between heat capacity (C), entropy (S), enthalpy changes (H) and temperatures. The optimized bond lengths, bond angles, chemical shifts and vibrational wavenumbers showed the best agreement with the experimental results.

  13. Angular distributions and cross-sections of projectile-like fragments in the 19F + 159Tb reaction

    NASA Astrophysics Data System (ADS)

    Kumar, Amit; Tripathi, R.; Sodaye, S.; Sudarshan, K.; Pujari, P. K.

    2013-01-01

    The angular distribution of projectile-like fragments (PLFs) in the 19F + 159Tb reaction have been measured at beam energy equal to 98MeV. Angular distributions of PLFs showed a systematic change with increasing mass transfer, starting from the peaking at grazing angle for heavier PLFs to very forward peaked angular distributions for lighter PLFs. Cross-sections of the different PLFs were obtained by integrating their centre-of-mass angular distributions. The PLF cross-sections have been compared with the incomplete fusion cross-sections obtained from the earlier measurement of the evaporation residue cross-section. Reduced cross-sections for lighter PLFs were observed to be higher compared to those observed in 19F + 66Zn reaction at similar values of E cm/ V b. Also, elastic scattering measurements were carried out to get information about the grazing angle and total reaction cross-section.

  14. Novel 19F Activatable Probe for the Detection of Matrix Metalloprotease-2 Activity by MRI/MRS

    PubMed Central

    2015-01-01

    Matrix metalloproteases (MMPs) have been found to be highly expressed in a variety of malignant tumor tissues. Noninvasive visualization of MMP activity may play an important role in the diagnosis of MMP associated diseases. Here we report the design and synthesis of a set of fluorine-19 dendron-based magnetic resonance imaging (MRI) probes for real-time imaging of MMP-2 activity. The probes have the following features: (a) symmetrical fluorine atoms; (b) the number of fluorine atoms can be increased through facile chemical modification; (c) readily accessible peptide sequence as the MMP-2 substrate; (d) activatable 19F signal (off/on mode) via paramagnetic metal ion incorporation. Following optimization for water solubility, one of the probes was selected to evaluate MMP-2 activity by 19F magnetic resonance spectroscopy (MRS). Our results showed that the fluorine signal increased by 8.5-fold in the presence of MMP-2. The specific cleavage site was verified by mass spectrometry. The selected probe was further applied to detect secreted MMP-2 activity of living SCC7 squamous cell carcinoma cells. The fluorine signal was increased by 4.8-fold by MRS analysis after 24 h incubation with SCC7 cells. This type of fluorine probe can be applied to evaluate other enzyme activities by simply tuning the substrate structures. This symmetrical fluorine dendron-based probe design extends the scope of the existing 19F MRI agents and provides a simple but robust method for real-time 19F MRI application. PMID:25271556

  15. Synthesis, experimental spectra (IR & Raman and NMR), vibrational analysis and theoretical DFT investigations of N-(5-(4-methylbenzoyl)-2-oxo-4-(4-methylphenyl)pyrimidine-1(2H)-yl)-4-methylbenzamide

    NASA Astrophysics Data System (ADS)

    Aydın, Lütfiye; Şahan, Emine; Önal, Zülbiye; Özpozan, Talat

    2014-08-01

    The title molecule, N-(5-(4-methylbenzoyl)-2-oxo-4-(4-methylphenyl)pyrimidine-1(2H)-yl)-4-methylbenzamide (C27H23N3O3), was synthesized and characterized by elemental analysis, IR, Raman, 1H and 13C NMR spectral data. To determine conformational flexibility, potential energy surfaces of the title compound were obtained by DFT regarding the selected degree of torsional freedom, which was varied from 0° to 360° in 6° and 20° steps. The ten conformers of the title compound were determined and it was found that the conformer 1 basis the most stable one. All conformers were also optimized by using the density functional theory (DFT/B3LYP) method with the 6-31G(d,p), 6-311G(d,p) and cc-pVDZ basis sets in the ground state. Potential energy distribution was calculated with the 6-31G(d,p) basis set. The vibrational spectra were recorded in solid phase IR and Raman spectra were compared based on the results of the theoretical calculations. The formation of hydrogen bonds was explained using natural bond orbital (NBO) analysis and spectroscopic analysis. NMR analysis and frontier molecular orbitals (FMOs) were also investigated by DFT.

  16. Multimodal Perfluorocarbon Nanoemulsions for 19F MRI, Ultrasonography, and Catalysis of MRgFUS-Mediated Drug Delivery

    NASA Astrophysics Data System (ADS)

    Rapoport, N.; Nam, K.-H.; Christensen, D. A.; Kennedy, A. M.; Parker, D. L.; Payne, A. H.; Todd, N.; Shea, J. E.; Scaife, C. L.

    2011-09-01

    Perfluorocarbon nanoemulsions can target lipophilic therapeutic agents to solid tumors and simultaneously provide for monitoring nanocarrier biodistribution via ultrasonography and/or 19F MRI. In the first generation of block copolymer stabilized perfluorocarbon nanoemulsions, perfluoropentane (PFP) was used as the droplet forming compound. Although manifesting excellent therapeutic and ultrasound imaging properties, PFP nanoemulsions were unstable at storage, difficult to handle, and underwent droplet-to-bubble transition upon injection that was hard to control. To solve the above problems, perfluoro-15-crown-5-ether (PFCE) was used as a core forming compound in the second generation of block copolymer stabilized perfluorocarbon nanoemulsions. In the present paper, acoustic, imaging, and therapeutic properties of unloaded and paclitaxel (PTX) loaded PFCE nanoemulsions are reported. The size of paclitaxel-loaded PFCE nanodroplets (300 nm to 500 nm depending on emulsification conditions) favors their passive accumulation in tumor tissue. PFCE nanodroplets manifest both ultrasound and 19F MR contrast properties, which allows the use of multimodal imaging to monitor nanodroplet biodistribution. Ultrasonography and 19F MRI produced consistent results on nanodroplet biodistribution. Sonication with 1-MHz therapeutic ultrasound triggered reversible droplet-to-bubble transition in PFCE nanoemulsions. Microbubbles formed by acoustic vaporization underwent stable cavitation. In a pilot study on ultrasound-mediated therapy of a large breast cancer tumor, paclitaxel-loaded PFCE nanoemulsions combined with 1-MHz ultrasound (MI≥1.75) showed excellent therapeutic properties. Anticipated mechanisms of the observed effects are discussed.

  17. Molecular structure, vibrational and 13C NMR spectra of two ent-kaurenes spirolactone type diterpenoids rabdosinate and rabdosin B: A combined experimental and density functional methods

    NASA Astrophysics Data System (ADS)

    Wang, Tao; Wang, Xueliang

    2015-01-01

    The title compounds, rabdosinate and rabdosin B, were isolated from the leaves of Isodon japonica, and characterized by IR-NMR spectroscopy. The molecular geometry, vibrational frequencies and gauge including atomic orbital (GIAO-13C) chemical shift values of the title compounds have been calculated by using DFT/B3LYP method with 6-311++G(d,p) basis set. In addition, obtained results were related to the linear regression of experimental 13C NMR chemical shifts values. The integral equation formalism polarized continuum model (IEFPCM) was used in treating chloroform solvation effects on optimized structural parameters and 13C chemical shifts. Besides, molecular electrostatic potential (MEP), HOMO-LUMO analysis were performed by the B3LYP method.

  18. Molecular structure, vibrational and 13C NMR spectra of two ent-kaurenes spirolactone type diterpenoids rabdosinate and rabdosin B: a combined experimental and density functional methods.

    PubMed

    Wang, Tao; Wang, Xueliang

    2015-01-25

    The title compounds, rabdosinate and rabdosin B, were isolated from the leaves of Isodon japonica, and characterized by IR-NMR spectroscopy. The molecular geometry, vibrational frequencies and gauge including atomic orbital (GIAO-13C) chemical shift values of the title compounds have been calculated by using DFT/B3LYP method with 6-311++G(d,p) basis set. In addition, obtained results were related to the linear regression of experimental 13C NMR chemical shifts values. The integral equation formalism polarized continuum model (IEFPCM) was used in treating chloroform solvation effects on optimized structural parameters and 13C chemical shifts. Besides, molecular electrostatic potential (MEP), HOMO-LUMO analysis were performed by the B3LYP method. PMID:25123947

  19. Relationships Between Base-Catalyzed Hydrolysis Rates or Glutathione Reactivity for Acrylates and Methacrylates and Their NMR Spectra or Heat of Formation

    PubMed Central

    Fujisawa, Seiichiro; Kadoma, Yoshinori

    2012-01-01

    The NMR chemical shift, i.e., the π-electron density of the double bond, of acrylates and methacrylates is related to the reactivity of their monomers. We investigated quantitative structure-property relationships (QSPRs) between the base-catalyzed hydrolysis rate constants (k1) or the rate constant with glutathione (GSH) (log kGSH) for acrylates and methacrylates and the 13C NMR chemical shifts of their α,β-unsaturated carbonyl groups (δCα and δCβ) or heat of formation (Hf) calculated by the semi-empirical MO method. Reported data for the independent variables were employed. A significant linear relationship between k1 and δCβ, but not δCα, was obtained for methacrylates (r2 = 0.93), but not for acrylates. Also, a significant relationship between k1 and Hf was obtained for both acrylates and methacrylates (r2 = 0.89). By contrast, log kGSH for acrylates and methacrylates was linearly related to their δCβ (r2 = 0.99), but not to Hf. These findings indicate that the 13C NMR chemical shifts and calculated Hf values for acrylates and methacrylates could be valuable for estimating the hydrolysis rate constants and GSH reactivity of these compounds. Also, these data for monomers may be an important tool for examining mechanisms of reactivity. PMID:22754331

  20. Moving NMR

    NASA Astrophysics Data System (ADS)

    Blümich, Bernhard; Casanova, Federico; Danieli, Ernesto; Gong, Qingxia; Greferath, Marcus; Haber, Agnes; Kolz, Jürgen; Perlo, Juan

    2008-12-01

    Initiated by the use of NMR for well logging, portable NMR instruments are being developed for a variety of novel applications in materials testing and process analysis and control. Open sensors enable non-destructive testing of large objects, and small, cup-size magnets become available for high throughput analysis by NMR relaxation and spectroscopy. Some recent developments of mobile NMR are reviewed which delineate the direction into which portable NMR is moving.

  1. Activatable 19F MRI nanoparticle probes for the detection of reducing environments.

    PubMed

    Nakamura, Tatsuya; Matsushita, Hisashi; Sugihara, Fuminori; Yoshioka, Yoshichika; Mizukami, Shin; Kikuchi, Kazuya

    2015-01-12

    (19)F magnetic resonance imaging (MRI) probes that can detect biological phenomena such as cell dynamics, ion concentrations, and enzymatic activity have attracted significant attention. Although perfluorocarbon (PFC) encapsulated nanoparticles are of interest in molecular imaging owing to their high sensitivity, activatable PFC nanoparticles have not been developed. In this study, we showed for the first time that the paramagnetic relaxation enhancement (PRE) effect can efficiently decrease the (19)F NMR/MRI signals of PFCs in silica nanoparticles. On the basis of the PRE effect, we developed a reduction-responsive PFC-encapsulated nanoparticle probe, FLAME-SS-Gd(3+) (FSG). This is the first example of an activatable PFC-encapsulated nanoparticle that can be used for in vivo imaging. Calculations revealed that the ratio of fluorine atoms to Gd(3+) complexes per nanoparticle was more than approximately 5.0×10(2), resulting in the high signal augmentation. PMID:25413833

  2. jsNMR: an embedded platform-independent NMR spectrum viewer.

    PubMed

    Vosegaard, Thomas

    2015-04-01

    jsNMR is a lightweight NMR spectrum viewer written in JavaScript/HyperText Markup Language (HTML), which provides a cross-platform spectrum visualizer that runs on all computer architectures including mobile devices. Experimental (and simulated) datasets are easily opened in jsNMR by (i) drag and drop on a jsNMR browser window, (ii) by preparing a jsNMR file from the jsNMR web site, or (iii) by mailing the raw data to the jsNMR web portal. jsNMR embeds the original data in the HTML file, so a jsNMR file is a self-transforming dataset that may be exported to various formats, e.g. comma-separated values. The main applications of jsNMR are to provide easy access to NMR data without the need for dedicated software installed and to provide the possibility to visualize NMR spectra on web sites. PMID:25641013

  3. Multinuclear NMR Imaging of Fluid Phases in Berea Sandstone

    NASA Astrophysics Data System (ADS)

    Sarkar, S. N.; Dechter, J. J.; Komoroski, R. A.

    Multinuclear NMR of 7Li, 19F, and 1H has been investigated as a method for discriminating multiple fluid phases in porous rock. Good 7Li NMR images from LiCl brine in saturated Berea sandstone were obtained within a few hours at 1 × 1 × 5 mm 3 resolution using a low-TE, 3D volume imaging sequence. At 4.7 T, the 7Li T1 was 750 ms, and T2 was 10 ms. High-quality 19F and 1H images of a model fluorinated injectant (trifluorotoluene) in Berea were obtained at 0.4 × 0.4 × 3 mm 3 resolution in a few hours. Fluorine-19 imaging was found to be easier than 1H imaging due to the narrower 19F resonance and comparable T1 and T2 in Berea sandstone. Lithium-7 and 19F imaging offer alternatives for discriminating aqueous and organic phases unambiguously in flooded oil cores, especially where 1H signals for the two phases are unresolved.

  4. Site-specific solvent exposure analysis of a membrane protein using unnatural amino acids and {sup 19}F nuclear magnetic resonance

    SciTech Connect

    Shi, Pan; Li, Dong; Chen, Hongwei; Xiong, Ying; Tian, Changlin

    2011-10-22

    Highlights: {yields} Solvent isotope shift analysis of {sup 19}F-tfmF in different H{sub 2}O/D{sub 2}O molar ratio. {yields} Correlation between solvent isotope shift of {sup 19}F-spins and solvent exposure analysis. {yields} Solvent exposure analysis of membrane proteins. -- Abstract: Membrane proteins play an essential role in cellular metabolism, transportation and signal transduction across cell membranes. The scarcity of membrane protein structures has thus far prevented a full understanding of their molecular mechanisms. Preliminary topology studies and residue solvent exposure analysis have the potential to provide valuable information on membrane proteins of unknown structure. Here, a {sup 19}F-containing unnatural amino acid (trimethylfluoro-phenylalanine, tfmF) was applied to accomplish site-specific {sup 19}F spin incorporation at different sites in diacylglycerol kinase (DAGK, an Escherichia coli membrane protein) for site-specific solvent exposure analysis. Due to isotope effect on {sup 19}F spins, a standard curve for {sup 19}F-tfmF chemical shifts was drawn for varying solvent H{sub 2}O/D{sub 2}O ratios. Further site-specific {sup 19}F solvent isotope shift analysis was conducted for DAGK to distinguish residues in water-soluble loops, interfacial areas or hydrophobic membrane regions. This site-specific solvent exposure analysis method could be applied for further topological analysis of other membrane proteins.

  5. The contribution of magnetic susceptibility effects to transmembrane chemical shift differences in the 31P NMR spectra of oxygenated erythrocyte suspensions.

    PubMed

    Kirk, K; Kuchel, P W

    1988-01-01

    Triethyl phosphate, dimethyl methylphosphonate, and the hypophosphite ion all contain the phosphoryl functional group. When added to an oxygenated erythrocyte suspension, the former compound gives rise to a single 31P NMR resonance, whereas the latter compounds give rise to separate intra- and extracellular 31P NMR resonances. On the basis of experiments with intact oxygenated cell suspensions (in which the hematocrit was varied) and with oxygenated cell lysates (in which the lysate concentration was varied), it was concluded that the chemical shifts of the intra- and extracellular populations of triethyl phosphate differ as a consequence of the diamagnetic susceptibility of intracellular oxyhemoglobin but that this difference is averaged by the rapid exchange of the compound across the cell membrane. The difference in the magnetic susceptibility of the intra- and extracellular compartments contributes to the observed separation of the intra- and extracellular resonances of dimethyl methylphosphonate and hypophosphite. The magnitude of this contribution is, however, substantially less than that calculated using a simple two-compartment model and varies with the hematocrit of the suspension. Furthermore, it is insufficient to fully account for the transmembrane chemical shift differences observed for dimethyl methylphosphonate and hypophosphite. An additional effect is operating to move the intracellular resonances of these compounds to a lower chemical shift. The effect is mediated by an intracellular component, and the magnitude of the resultant chemical shift variations depends upon the chemical structure of the phosphoryl compound involved. PMID:3275636

  6. /sup 13/C and /sup 1/H NMR spectra and structure of the products from the condensation of 1,3-dicarbonyl compounds with aldehydes

    SciTech Connect

    Emelina, E.E.; Gindin, V.A.; Ershov, B.A.

    1988-05-20

    The structure of the diadducts formed in the reaction of 1,3-dicarbonyl compounds with aldehydes in a ratio of 2:1 under the conditions of the Knoevenagel condensation was studied by /sup 13/C and /sup 1/H NMR spectroscopy. It was shown that acyclic tetracarbonyl compounds are formed in the absence of a catalyst while substituted cyclohexanones are formed in the presence of piperidine. The acyclic tetracarbonyl compounds exist mainly in the tetraketo form in solution, and the presence of the monoenol form was established for dimethyl 2,4-diacetylpentanedioate in CD/sub 2/Cl/sub 2/. The most characteristic signals which distinguish between the cyclic diadducts and the acyclic products are the signals of the C/sup 5/ (delta 72 ppm) and C/sup 6/ (delta 52 ppm) atoms. The presence of a keto-enol equilibrium in 2,4-diacetyl-5-hydroxy-3-(p-methoxyphenyl)-5-methylcyclohexanone was demonstrated by /sup 13/C NMR.

  7. Contribution of magnetic susceptibility effects to transmembrane chemical shift differences in the /sup 31/P NMR spectra of oxygenated erythrocyte suspensions

    SciTech Connect

    Kirk, K.; Kuchel, P.W.

    1988-01-05

    Triethyl phosphate, dimethyl methylphosphonate, and the hypophosphite ion all contain the phosphoryl functional group. When added to an oxygenated erythrocyte suspension, the former compound gives rise to a single /sup 31/P NMR resonance, whereas the latter compounds give rise to separate intra- and extracellular /sup 31/P NMR resonances. On the basis of experiments with intact oxygenated cell suspensions (in which the hematocrit was varied) and with oxygenated cell lysates (in which the lysate concentration was varied) it was concluded that the chemical shifts of the intra- and extracellular populations of triethyl phosphate differ as a consequence of the diamagnetic susceptibility of intracellular oxyhemoglobin but that this difference is averaged by the rapid exchange of the compound across the cell membrane. The difference is the magnetic susceptibility of the intra- and extracellular compartments contributes to the observed separation of the intra- and extracellular resonances of dimethyl methylphosphonate and hypophosphite. The magnitude of this contribution is, however, substantially less than that calculated using a simple two-compartment model and varies with the hematocrit of the suspension. Furthermore, it is insufficient to fully account for the transmembrane chemical shift differences observed for dimethyl methylphosphonate and hypophosphite. An additional effect is operating to move the intracellular resonances of these compounds to a lower chemical shift. The effect is mediated by an intracellular component, and the magnitude of the resultant chemical shift variations depends upon the chemical structure of the phosphoryl compound involved.

  8. Review of NMR characterization of pyrolysis oils

    DOE PAGESBeta

    Hao, Naijia; Ben, Haoxi; Yoo, Chang Geun; Adhikari, Sushil; Ragauskas, Arthur J.

    2016-08-24

    Here, pyrolysis of renewable biomass has been developed as a method to produce green fuels and chemicals in response to energy security concerns as well as to alleviate environmental issues incurred with fossil fuel usage. However, pyrolysis oils still have limited commercial application, mainly because unprocessed oils cannot be readily blended with current petroleum-based transportation fuels. To better understand these challenges, researchers have applied diverse characterization techniques in the development of bio-oil studies. In particular, nuclear magnetic resonance (NMR) is a key spectroscopic characterization method through analysis of bio-oil components. This review highlights the NMR strategies for pyrolysis oil characterizationmore » and critically discusses the applications of 1H, 13C, 31P, 19F, and two-dimensional (2-D NMR) analyses such as heteronuclear single quantum correlation (HSQC) in representative pyrolysis oil studies.« less

  9. Labeling strategy and signal broadening mechanism of Protein NMR spectroscopy in Xenopus laevis oocytes.

    PubMed

    Ye, Yansheng; Liu, Xiaoli; Chen, Yanhua; Xu, Guohua; Wu, Qiong; Zhang, Zeting; Yao, Chendie; Liu, Maili; Li, Conggang

    2015-06-01

    We used Xenopus laevis oocytes, a paradigm for a variety of biological studies, as a eukaryotic model system for in-cell protein NMR spectroscopy. The small globular protein GB1 was one of the first studied in Xenopus oocytes, but there have been few reports since then of high-resolution spectra in oocytes. The scarcity of data is at least partly due to the lack of good labeling strategies and the paucity of information on resonance broadening mechanisms. Here, we systematically evaluate isotope enrichment and labeling methods in oocytes injected with five different proteins with molecular masses of 6 to 54 kDa. (19) F labeling is more promising than (15) N, (13) C, and (2) H enrichment. We also used (19) F NMR spectroscopy to quantify the contribution of viscosity, weak interactions, and sample inhomogeneity to resonance broadening in cells. We found that the viscosity in oocytes is only about 1.2 times that of water, and that inhomogeneous broadening is a major factor in determining line width in these cells. PMID:25965532

  10. Fission fragment angular distribution for the 19F+197Au fusion-fission reaction at near-barrier energies

    NASA Astrophysics Data System (ADS)

    Tripathi, R.; Sudarshan, K.; Sodaye, S.; Reddy, A. V.; Mahata, K.; Goswami, A.

    2005-04-01

    Angular distribution of fission fragments have been measured for 19F+197Au reaction at bombarding energies from 91 to 110 MeV. Fission fragment angular distributions have been calculated by transition state model with the transmission coefficients obtained using the coupled-channels theory. The calculated angular anisotropies are in good agreement with the experimental anisotropies. The experimental fission cross sections have also been reproduced on the basis of the coupled-channels theory. The results of angular distribution measurement do not show any significant contribution from quasifission as was reported in the literature based on the measurement of evaporation residues and mass distribution.

  11. Superfluorinated PEI Derivative Coupled with (99m) Tc for ASGPR Targeted (19) F MRI/SPECT/PA Tri-Modality Imaging.

    PubMed

    Guo, Zhide; Gao, Mengna; Song, Manli; Li, Yesen; Zhang, Deliang; Xu, Duo; You, Linyi; Wang, Liangliang; Zhuang, Rongqiang; Su, Xinhui; Liu, Ting; Du, Jin; Zhang, Xianzhong

    2016-07-01

    Fluorinated polyethylenimine derivative labeled with radionuclide (99m) Tc is developed as a (19) F MRI/SPECT/PA multifunctional imaging agent with good asialoglycoprotein receptors (ASGPR)-targeting ability. This multifunctional agent is safe and suitable for (19) F MRI/SPECT/PA imaging and has the potential to detect hepatic diseases and to assess liver function, which provide powerful support for the development of personalized and precision medicine. PMID:27159903

  12. NMR shielding calculations across the periodic table: diamagnetic uranium compounds. 2. Ligand and metal NMR.

    PubMed

    Schreckenbach, Georg

    2002-12-16

    In this and a previous article (J. Phys. Chem. A 2000, 104, 8244), the range of application for relativistic density functional theory (DFT) is extended to the calculation of nuclear magnetic resonance (NMR) shieldings and chemical shifts in diamagnetic actinide compounds. Two relativistic DFT methods are used, ZORA ("zeroth-order regular approximation") and the quasirelativistic (QR) method. In the given second paper, NMR shieldings and chemical shifts are calculated and discussed for a wide range of compounds. The molecules studied comprise uranyl complexes, [UO(2)L(n)](+/-)(q); UF(6); inorganic UF(6) derivatives, UF(6-n)Cl(n), n = 0-6; and organometallic UF(6) derivatives, UF(6-n)(OCH(3))(n), n = 0-5. Uranyl complexes include [UO(2)F(4)](2-), [UO(2)Cl(4)](2-), [UO(2)(OH)(4)](2-), [UO(2)(CO(3))(3)](4-), and [UO(2)(H(2)O)(5)](2+). For the ligand NMR, moderate (e.g., (19)F NMR chemical shifts in UF(6-n)Cl(n)) to excellent agreement [e.g., (19)F chemical shift tensor in UF(6) or (1)H NMR in UF(6-n)(OCH(3))(n)] has been found between theory and experiment. The methods have been used to calculate the experimentally unknown (235)U NMR chemical shifts. A large chemical shift range of at least 21,000 ppm has been predicted for the (235)U nucleus. ZORA spin-orbit appears to be the most accurate method for predicting actinide metal chemical shifts. Trends in the (235)U NMR chemical shifts of UF(6-n)L(n) molecules are analyzed and explained in terms of the calculated electronic structure. It is argued that the energy separation and interaction between occupied and virtual orbitals with f-character are the determining factors. PMID:12470051

  13. QUANTITATIVE 15N NMR SPECTROSCOPY

    EPA Science Inventory

    Line intensities in 15N NMR spectra are strongly influenced by spin-lattice and spin-spin relaxation times, relaxation mechanisms and experimental conditions. Special care has to be taken in using 15N spectra for quantitative purposes. Quantitative aspects are discussed for the 1...

  14. Cumulative “roof effect” in high-resolution in vivo 31P NMR spectra of human calf muscle and the Clebsch Gordan coefficients of ATP at 1.5 T

    NASA Astrophysics Data System (ADS)

    Schröder, Leif; Schmitz, Christian; Bachert, Peter

    2005-05-01

    NMR spectra of non-weakly coupled spin systems exhibit asymmetries in line intensities known as "roof effect" in 1D spectroscopy. Due to limited spectral resolution, this effect has not been paid much attention so far in in vivo spectroscopy. But when high-quality spectra are obtained, this effect should be taken into account to explain the quantum-mechanical fine structure of the system. Adenosine 5'-triphosphate (ATP) represents a 31P spin system with multiple line splittings which are caused by J-couplings of medium strength at 1.5 T. We analyzed the ATP roof effect in vivo, especially for the β-ATP multiplet. The intensities of its outer resonances deviate by ca. 12.5% from a symmetrical triplet. As this asymmetry reflects the transition from Paschen-Back to Zeeman effect with total spin that is largely broken up, the Clebsch-Gordan coefficients of the system can be indicated in analogy to the hyperfine structure of hydrogen. Taking the roof effect into account, the χ2 of fitting in vivo ATP resonances is reduced by ca. 9% ( p < 0.005).

  15. Vibrational analysis using FT-IR, FT-Raman spectra and HF-DFT methods and NBO, NLO, NMR, HOMO-LUMO, UV and electronic transitions studies on 2,2,4-trimethyl pentane

    NASA Astrophysics Data System (ADS)

    Suvitha, A.; Periandy, S.; Govindarajan, M.; Gayathri, P.

    2015-03-01

    In this work, the vibrational spectral analysis was carried out by using Raman and infrared spectroscopy in the range 100-4000 cm-1and 50-4000 cm-1, respectively, for 2,2,4-Trimethyl Pentane, TMP (C8H18) molecule. The molecular structure, fundamental vibrational frequencies and intensity of the vibrational bands are interpreted with the aid of structure optimizations and geometrical parameter calculations based on Hartree Fock (HF) and density functional theory (DFT) method with 6-311++G(d,p) basis set. The scaled B3LYP/6-311++G(d,p) results shows the best agreement with the experimental values over the other method. The calculated HOMO and LUMO energies shows that charge transfer within the molecule. The physical reactions of single bond hydrocarbon TMP were investigated. The results of the calculations were applied to simulate spectra of the title compound, which shows the excellent agreement with observed spectra. Besides, Mulliken atomic charges, UV, frontier molecular orbital (FMO), MEP, NLO activity, Natural Bond-Orbital (NBO) analysis, NMR and thermodynamic properties of title molecule were also performed.

  16. FT-IR, FT-Raman, NMR spectra, density functional computations of the vibrational assignments (for monomer and dimer) and molecular geometry of anticancer drug 7-amino-2-methylchromone

    NASA Astrophysics Data System (ADS)

    Mariappan, G.; Sundaraganesan, N.

    2014-04-01

    Vibrational assignments for the 7-amino-2-methylchromone (abbreviated as 7A2MC) molecule using a combination of experimental vibrational spectroscopic measurements and ab initio computational methods are reported. The optimized geometry, intermolecular hydrogen bonding, first order hyperpolarizability and harmonic vibrational wavenumbers of 7A2MC have been investigated with the help of B3LYP density functional theory method. The calculated molecular geometry parameters, the theoretically computed vibrational frequencies for monomer and dimer and relative peak intensities were compared with experimental data. DFT calculations using the B3LYP method and 6-31 + G(d,p) basis set were found to yield results that are very comparable to experimental IR and Raman spectra. Detailed vibrational assignments were performed with DFT calculations and the potential energy distribution (PED) obtained from the Vibrational Energy Distribution Analysis (VEDA) program. Natural Bond Orbital (NBO) study revealed the characteristics of the electronic delocalization of the molecular structure. 13C and 1H NMR spectra have been recorded and 13C and 1H nuclear magnetic resonance chemical shifts of the molecule have been calculated using the gauge independent atomic orbital (GIAO) method. Furthermore, All the possible calculated values are analyzed using correlation coefficients linear fitting equation and are shown strong correlation with the experimental data.

  17. Hydrothermal synthesis, X-ray structure refinement, 31P NMR spectra and vibrational study of NaLa(HPO4)2

    NASA Astrophysics Data System (ADS)

    Ben Hassen, C.; Boujelbene, M.; Mhiri, T.

    2013-10-01

    NaLa(HPO4)2 was obtained by hydrothermal synthesis. The structure of NaLa(HPO4)2 was determined by X-ray powder diffraction methods. The results of Rietveld refinement revealed a space group P21/c (No. 14), with lattice parameters of a = 9.7151(17) Å, b = 8.320(12) Å, c = 9.83(2) Å, beta = 114.65(17)°, V = 722 (8) Å3 and Z = 4. Final refinement led to RF = 4.86% and RB = 12.35%.The existence of bound O-H and bound P-O in the structure has been confirmed by IR and Raman spectroscopy. The existence of two crystallographically independent phosphorus atoms in the structure has been confirmed by NMR spectrum. The structure is characterized by LaO6 octahedra which are solely connected to six adjacent HPO4 tetrahedra via common O-corners. This structure contains twelve- and four-membered rings forming channels along [1 1¯ 1]. The cross sections of the channels are given by twelve-membered rings consisting of four lanthanum coordination octahedral and eight hydrogenphosphate groups as well as four-membered rings consisting of two lanthanum coordination octahedra and two hydrogenphosphate tetrahedra. Sodium ions are located within those channels of the twelve-membered rings.

  18. Minimalist Relativistic Force Field: Prediction of Proton-Proton Coupling Constants in (1)H NMR Spectra Is Perfected with NBO Hybridization Parameters.

    PubMed

    Kutateladze, Andrei G; Mukhina, Olga A

    2015-05-15

    We previously developed a reliable method for multiparametric scaling of Fermi contacts to achieve fast and accurate prediction of proton-proton spin-spin coupling constants (SSCC) in (1)H NMR. We now report that utilization of NBO hybridization coefficients for carbon atoms in the involved C-H bonds allows for a significant simplification of this parametric scheme, requiring only four general types of SSCCs: geminal, vicinal, 1,3-, and long-range constants. The method is optimized for inexpensive B3LYP/6-31G(d) molecular geometries. A new DU8 basis set, based on a training set of 475 experimental spin-spin coupling constants, is developed for hydrogen and common non-hydrogen atoms (Li, B, C, N, O, F, Si, P, S, Cl, Se, Br, I) to calculate Fermi contacts. On a test set of 919 SSCCs from a diverse collection of natural products and complex synthetic molecules the method gave excellent accuracy of 0.29 Hz (rmsd) with the maximum unsigned error not exceeding 1 Hz. PMID:25885091

  19. A sequential assignment procedure for proteins that have intermediate line widths in MAS NMR spectra: amyloid fibrils of human CA150.WW2.

    PubMed

    Becker, Johanna; Ferguson, Neil; Flinders, Jeremy; van Rossum, Barth-Jan; Fersht, Alan R; Oschkinat, Hartmut

    2008-08-11

    The second WW domain (WW2) of CA150, a human transcriptional activator, forms amyloid fibrils in vitro under physiological conditions. Based on experimental constraints from MAS NMR spectroscopy experiments, alanine scanning and electron microscopy, a structural model of CA150.WW2 amyloid fibrils was calculated earlier. Here, the assignment strategy is presented and suggested as a general approach for proteins that show intermediate line width. The (13)C,(13)C correlation experiments were recorded on fully or partially (13)C-labelled fibrils. The earlier (13)C assignment (26 residues) was extended to 34 of the 40 residues by direct (13)C-excitation experiments by using a deuterated sample that showed strongly improved line width. A 3D HNC-TEDOR (transferred-echo double-resonance) experiment with deuterated CA150.WW2 fibrils yielded 14 amide nitrogen and proton resonance assignments. The obtained chemical shifts were compared with the chemical shifts determined with the natively folded WW domain. TALOS (Torsion angle likelihood obtained from shift and sequence similarity) predictions confirmed that, under physiological conditions, the fibrillar form of CA150.WW2 adopts a significantly different beta structure than the native WW-domain fold. PMID:18642254

  20. High-Speed Magic-Angle Spinning 13C MAS NMR Spectra of Adamantane: Self-Decoupling of the Heteronuclear Scalar Interaction and Proton Spin Diffusion

    NASA Astrophysics Data System (ADS)

    Ernst, Matthias; Verhoeven, Aswin; Meier, Beat H.

    1998-02-01

    We have investigated the carbon line shape of solid adamantane under high-speed magic-angle sample spinning (MAS) acquired without proton decoupling. The CH-group shows a spinning-speed-dependent line broadening while the CH2-group consists of a spinning-speed-independent sharp component and a spinning-speed-dependent broader part. These phenomena can be explained by self-decoupling of theJ-interaction due to proton spin diffusion. Such a self-decoupling process can be described by a magnetization exchange process between the multiplet lines. Changing the spin-diffusion rate constant by off-resonance irradiation of the protons allows us to observe the full range from slow exchange to coalescence to fast exchange of the carbon spectra. One of the multiplet components in the CH2-group corresponds to a group spin of the protons of zero and therefore does not couple to the other protons. This gives rise to the sharp central line. The magnetization exchange rate constant between the different multiplet lines can be determined from the spectra and is a measure for the spinning-speed-dependent proton spin-diffusion rate constant. Even at an MAS speed of 30 kHz, proton spin diffusion is still observable despite the relatively weak intermolecular proton dipolar-coupling network in adamantane which results in a static proton line width of only 14 kHz (full width at half height).

  1. The relationship between environmental abundant electromagnetic fields and packaging shape to their effects on the 17O NMR and Raman spectra of H2O-NaCl

    NASA Astrophysics Data System (ADS)

    Abdelsamie, Maher A. A.; Rahman, Russly B. Abdul; Mustafa, Shuhaimi; Hashim, Dzulkifly

    2015-07-01

    In this study, two identical groups of four containers with different packaging shapes made of polymethyl methacrylate (PMMA) were used to store H2O-NaCl solution for seven days at ambient room temperature (25 °C). Faraday shield was used to shield one group. The surrounding electromagnetic fields were measured during the storage period by using R&S®TS-EMF EMF measurement system. Samples of H2O-NaCl were collected at the end of the storage period and examined by 17Oxygene nuclear magnetic resonance spectroscopy (17O NMR) and Raman spectroscopy. Electromagnetic simulation was used to explore the relationship between the packaging shape of H2O-NaCl containers and the environmentally abundant electromagnetic fields to their effects on the cluster size of water. The study showed variations in the cluster size of water stored inside the two groups of containers. It was observed that the cluster size of water stored in the unshielded containers was lower than that of the shielded containers. The cluster size of water stored in the unshielded pyramidal container was lower than the cluster size of water stored in the unshielded rectangular, square, and cylindrical containers. The EM simulation results showed significant variations in the total specific absorption rate SAR and maximum point SAR values induced in the H2O-NaCl solution in the unshielded container models at 2400 MHz for both vertical and horizontal polarization. It can be concluded that the variations in the values of SAR induced in H2O-NaCl solution are directly related to the variations in the cluster size of the stored water.

  2. Access to NMR Spectroscopy for Two-Year College Students: The NMR Site at Trinity University

    ERIC Educational Resources Information Center

    Mills, Nancy S.; Shanklin, Michael

    2011-01-01

    Students at two-year colleges and small four-year colleges have often obtained their exposure to NMR spectroscopy through "canned" spectra because the cost of an NMR spectrometer, particularly a high-field spectrometer, is prohibitive in these environments. This article describes the design of a NMR site at Trinity University in which spectral…

  3. (19)F MRSI of capecitabine in the liver at 7 T using broadband transmit-receive antennas and dual-band RF pulses.

    PubMed

    van Gorp, Jetse S; Seevinck, Peter R; Andreychenko, Anna; Raaijmakers, Alexander J E; Luijten, Peter R; Viergever, Max A; Koopman, Miriam; Boer, Vincent O; Klomp, Dennis W J

    2015-11-01

    Capecitabine (Cap) is an often prescribed chemotherapeutic agent, successfully used to cure some patients from cancer or reduce tumor burden for palliative care. However, the efficacy of the drug is limited, it is not known in advance who will respond to the drug and it can come with severe toxicity. (19)F Magnetic Resonance Spectroscopy (MRS) and Magnetic Resonance Spectroscopic Imaging (MRSI) have been used to non-invasively study Cap metabolism in vivo to find a marker for personalized treatment. In vivo detection, however, is hampered by low concentrations and the use of radiofrequency (RF) surface coils limiting spatial coverage. In this work, the use of a 7T MR system with radiative multi-channel transmit-receive antennas was investigated with the aim of maximizing the sensitivity and spatial coverage of (19)F detection protocols. The antennas were broadband optimized to facilitate both the (1)H (298 MHz) and (19)F (280 MHz) frequencies for accurate shimming, imaging and signal combination. B1(+) simulations, phantom and noise measurements showed that more than 90% of the theoretical maximum sensitivity could be obtained when using B1(+) and B1(-) information provided at the (1)H frequency for the optimization of B1(+) and B1(-) at the (19)F frequency. Furthermore, to overcome the limits in maximum available RF power, whilst ensuring simultaneous excitation of all detectable conversion products of Cap, a dual-band RF pulse was designed and evaluated. Finally, (19)F MRS(I) measurements were performed to detect (19)F metabolites in vitro and in vivo. In two patients, at 10 h (patient 1) and 1 h (patient 2) after Cap intake, (19)F metabolites were detected in the liver and the surrounding organs, illustrating the potential of the set-up for in vivo detection of metabolic rates and drug distribution in the body. PMID:26373355

  4. NMR study of the reversible trapping of SF6 by cucurbit[6]uril in aqueous solution.

    PubMed

    Fusaro, Luca; Locci, Emanuela; Lai, Adolfo; Luhmer, Michel

    2008-11-27

    The complexation of sulfur hexafluoride (SF(6)), a highly potent greenhouse gas, by cucurbit[6]uril (CB) was studied at various temperatures in Na(2)SO(4) aqueous solutions by (19)F and (1)H NMR. CB shows a remarkable affinity for SF(6), suggesting that it is a suitable molecular container for the design of materials tailored for SF(6) trapping. At 298 K, the equilibrium constant characterizing the inclusion of SF(6) by CB is 3.1 x 10(4) M(-1) and the residence time of SF(6) within the CB cavity is estimated to be of the order of a few seconds. The enthalpic and entropic contributions to the free energy of encapsulation were determined and are discussed. This work also reports on the interest of SF(6) in the framework of the spin-spy methodology. The advantages and drawbacks of solution-state (19)F NMR of SF(6) with respect to (129)Xe NMR are discussed. SF(6) comes forward as a versatile and informative spin-spy molecule for probing systems in solution because its detection limit by (19)F NMR reaches the micromolar range with standard equipment and because quantitative integral measurements, relaxation time measurements, and demanding experiments, such as translational diffusion coefficient measurements, are easily carried out in addition to chemical shift measurements. Solution-state (19)F NMR of SF(6) emerges as a promising alternative to (129)Xe NMR for probing cavities and for other applications relying on the encapsulation of an NMR active gaseous probe. PMID:18956898

  5. Study of viscosity on the fission dynamics of the excited nuclei 228U produced in 19F + 209Bi reactions

    NASA Astrophysics Data System (ADS)

    Eslamizadeh, H.

    2015-06-01

    A two-dimensional (2D) dynamical model based on Langevin equations was applied to study the fission dynamics of the compound nuclei 228U produced in 19F + 209Bi reactions at intermediate excitation energies. The distance between the centers of masses of the future fission fragments was used as the first dimension and the projection of the total spin of the compound nucleus onto the symmetry axis, K, was considered as the second dimension in Langevin dynamical calculations. The magnitude of post-saddle friction strength was inferred by fitting measured data on the average pre-scission neutron multiplicity for 228U. It was shown that the results of calculations are in good agreement with the experimental data by using values of the post-saddle friction equal to 6-8 × 1021s-1.

  6. Incomplete fusion studies in the 19F+159Tb system at low energies and its correlation with various systematics

    NASA Astrophysics Data System (ADS)

    Shuaib, Mohd.; Sharma, Vijay R.; Yadav, Abhishek; Singh, Pushpendra P.; Sharma, Manoj Kumar; Singh, Devendra P.; Kumar, R.; Singh, R. P.; Muralithar, S.; Singh, B. P.; Prasad, R.

    2016-07-01

    The excitation functions of reaction residues populated via the complete fusion and incomplete fusion process in the interaction of the 19F+159Tb system have been measured at energies ≈4 -6 MeV/nucleon, using off-line γ -ray spectroscopy. The analysis of data was done within the framework of statistical model code pace4 (a compound nucleus model). A significant fraction of incomplete fusion was observed in the production of reaction residues involving α particle(s) in the exit channels, even at energies as low as near the Coulomb barrier. The incomplete fusion strength function was deduced from the experimental excitation functions and the dependence of this strength function on various entrance channel parameters was studied. The present results show a strong dependence on the projectile α -Q value that agrees well with the existing data. To probe the dependence of incomplete fusion on entrance channel mass asymmetry, the present work was compared with the results obtained in the interaction of 12C, 16O, and 19F with nearby targets available in the literature. It was observed that the mass asymmetry linearly increases for each projectile separately and turns out to be a projectile-dependent mass-asymmetry systematics. The deduced incomplete fusion strength functions in the present work are also plotted as a function of ZPZT (Coulomb effect) and compared with the existing literature. A strong dependence of the Coulomb effect on the incomplete fusion fraction was observed. It was found that the fraction of incomplete fusion linearly increases with ZPZT and was found to be more for larger ZPZT values indicating significantly important linear systematics.

  7. Indocyanine green-loaded perfluorocarbon nanoemulsions for bimodal 19F-magnetic resonance/nearinfrared fluorescence imaging and subsequent phototherapy

    PubMed Central

    Wang, Yuan-Guo; Kim, Hyunjin; Mun, Saehun

    2013-01-01

    We have developed an indocyanine green-loaded perfluorocarbon (ICG/PFCE) nanoemulsion as a multifunctional theranostic nanomedicine which enables not only 19F magnetic resonance (MR)/near-infrared fluorescence (NIRF) bimodal imaging but also subsequent photodynamic/photothermal dual therapy of cancer. The hydrodynamic size of ICG/PFCE nanoemulsions was 164.2 nm. The stability of indocyanine green (ICG) in aqueous solution was significantly improved when loaded on perfluorocarbon nanoemulsions. In addition, ICG/PFCE nanoemulsions showed good dispersion stability in aqueous media containing 10% fetal bovine serum, for at least 14 days. 19F-MRI of ICG/PFCE nanoemulsions showed that the signal intensity increased with increasing nanoemulsion concentration with no signal observed from the surrounding background. Using NIRF imaging with perfluorocarbon nanoemulsion alone, without ICG, did not produce NIRF, while clear and bright fluorescent images were obtained with ICG/PFCE nanoemulsions at 10-µM ICG equivalent. The capacity of ICG-loaded nanoemulsions to generate heat following light irradiation by using an 810-nm laser was comparable to that of free ICG, while singlet oxygen generation of ICG-loaded nanoemulsions was significantly better than that of free ICG. In vitro cytotoxicity tests and fluorescence microscopy confirmed biocompatibility of the nanoemulsion. Upon light irradiation, U87MG glioblastoma cells incubated with ICG/PFCE nanoemulsions underwent necrotic cell death. The therapeutic mechanism during light illumination appears to be mainly due to the photodynamic effect at lower ICG concentrations, whilst the photothermal effect became more obvious at increased ICG concentrations, enabling combined photodynamic/photothermal therapy of cancer cells. PMID:23833726

  8. Imaging Neuroinflammation In Vivo in a Neuropathic Pain Rat Model with Near-Infrared Fluorescence and 19F Magnetic Resonance

    PubMed Central

    Vasudeva, Kiran; Andersen, Karl; Zeyzus-Johns, Bree; Hitchens, T. Kevin; Patel, Sravan Kumar; Balducci, Anthony; Janjic, Jelena M.; Pollock, John A.

    2014-01-01

    Chronic neuropathic pain following surgery represents a serious worldwide health problem leading to life-long treatment and the possibility of significant disability. In this study, neuropathic pain was modeled using the chronic constriction injury (CCI). The CCI rats exhibit mechanical hypersensitivity (typical neuropathic pain symptom) to mechanical stimulation of the affected paw 11 days post surgery, at a time when sham surgery animals do not exhibit hypersensitivity. Following a similar time course, TRPV1 gene expression appears to rise with the hypersensitivity to mechanical stimulation. Recent studies have shown that immune cells play a role in the development of neuropathic pain. To further explore the relationship between neuropathic pain and immune cells, we hypothesize that the infiltration of immune cells into the affected sciatic nerve can be monitored in vivo by molecular imaging. To test this hypothesis, an intravenous injection of a novel perfluorocarbon (PFC) nanoemulsion, which is phagocytosed by inflammatory cells (e.g. monocytes and macrophages), was used in a rat CCI model. The nanoemulsion carries two distinct imaging agents, a near-infrared (NIR) lipophilic fluorescence reporter (DiR) and a 19F MRI (magnetic resonance imaging) tracer, PFC. We demonstrate that in live rats, NIR fluorescence is concentrated in the area of the affected sciatic nerve. Furthermore, the 19F MRI signal was observed on the sciatic nerve. Histological examination of the CCI sciatic nerve reveals significant infiltration of CD68 positive macrophages. These results demonstrate that the infiltration of immune cells into the sciatic nerve can be visualized in live animals using these methods. PMID:24587398

  9. 1H NMR, electronic-absorption and resonance-Raman spectra of isomeric okenone as compared with those of isomeric β-carotene, canthaxanthin, β-apo-8'-carotenal and spheroidene

    NASA Astrophysics Data System (ADS)

    Fujii, Ritsuko; Chen, Chun-Hai; Mizoguchi, Tadashi; Koyama, Yasushi

    1998-05-01

    Eleven cis- trans isomers of okenone were isolated by means of HPLC using a silica-gel column from an isomeric mixture which was obtained by iodine-sensitized photo-isomerization of the all- trans isomer. The configurations of eight isomers among them were determined by NMR spectroscopy using the isomerization shifts of the olefinic 1Hs and the 1H- 1H NOE correlations to be all- trans, 7- cis, 7- cis,8-s- cis, 9- cis, 9'- cis, 13- cis, 13'- cis and 9,9'-di- cis, and their electronic-absorption and resonance-Raman spectra were recorded. Based on the results: (1) the chemical shifts of the olefinic 1Hs in NMR; (2) the wavelength of the A g-→B u+ transition; and (3) the relative intensity of the A g-→A g+ versus the A g-→B u+ transition in electronic absorption; (4) the CC stretching frequency; and (5) the relative intensity of the C10-C11 (C10'-C11') versus the C14-C15 (C14'-C15') stretching vibration in resonance Raman were compared among the all- trans, 7- cis, 9- cis (9'- cis) and 13- cis (13'- cis) isomers of β-carotene, canthaxanthin, β-apo-8'-carotenal, neurosporene, spheroidene and okenone. Relevance of the systematic changes in the above five different parameters originally found in β-carotene was examined in the rest of the carotenoids, and the effects of the peripheral groups on them were explained in terms of the length and asymmetry of the conjugated system consisting of the CC and CO bonds.

  10. Simulations of molecular dynamics in solid-state NMR spectra of spin-1 nuclei including effects of CSA- and EFG-terms up to second order.

    PubMed

    Larsen, Flemming H

    2007-04-01

    By numerical simulations MAS and QCPMG methods for acquiring spectra of spin-1 nuclei were compared in order to determine the most sensitive experiment for analysis of molecular dynamics. To comply with the large quadrupolar constants for 14N and the CSA reported for 6Li both of these interactions are included up to second order. For 2H and 6Li both QCPMG and single-pulse MAS experiments were suitable for dynamics studies whereas the single-pulse MAS experiment were the method of choice for investigation of 14N dynamics for C(Q)'s larger than 750kHz at 14.1T. This property prohibits excitation of the 14N lineshape using either single hard or softer composite rf-pulses. Focusing on 14N it was demonstrated that the centerband lineshape is sensitive toward both off-MAS and CSA effects. In addition, excitation by real-time pulses showed that proper lineshapes corresponding to a site with a C(Q) of 3MHz may be excited by a very short pulse. PMID:17418539

  11. Chiral Recognition Studies of α-(Nonafluoro-tert-butoxy)carboxylic Acids by NMR Spectroscopy.

    PubMed

    Nemes, Anikó; Csóka, Tamás; Béni, Szabolcs; Farkas, Viktor; Rábai, József; Szabó, Dénes

    2015-06-19

    Three chiral α-(nonafluoro-tert-butoxy)carboxylic acids (R)-1, (RS)-2, (R)-3 were synthesized to examine their application as chiral solvating agents with amines. As a model compound, first (S)- and/or (RS)-α-phenylethylamine was used, and their diastereomeric salts were investigated by (1)H and (19)F NMR and ECD spectroscopy. The NMR spectroscopic studies were carried out at room temperature using the slightly polar CDCl3 and apolar C6D6 as solvents in 5 mM and 54 mM concentrations. The difference of the chemical shifts (Δδ) in the diastereomeric complexes is comparable with other, well-known chiral derivatizing and solvating agents (e.g., Mosher's acid, Pirkle's alcohol). Diastereomeric salts of racemic acids (RS)-1 and (RS)-2 with biologically active amines (1R,2S)-ephedrine and (S)-dapoxetine were also investigated by (19)F NMR spectroscopy. PMID:26024423

  12. NMR Spectroscopy for Thin Films by Magnetic Resonance Force Microscopy

    PubMed Central

    Won, Soonho; Saun, Seung-Bo; Lee, Soonchil; Lee, SangGap; Kim, Kiwoong; Han, Yunseok

    2013-01-01

    Nuclear magnetic resonance (NMR) is a fundamental research tool that is widely used in many fields. Despite its powerful applications, unfortunately the low sensitivity of conventional NMR makes it difficult to study thin film or nano-sized samples. In this work, we report the first NMR spectrum obtained from general thin films by using magnetic resonance force microscopy (MRFM). To minimize the amount of imaging information inevitably mixed into the signal when a gradient field is used, we adopted a large magnet with a flat end with a diameter of 336 μm that generates a homogeneous field on the sample plane and a field gradient in a direction perpendicular to the plane. Cyclic adiabatic inversion was used in conjunction with periodic phase inversion of the frequency shift to maximize the SNR. In this way, we obtained the 19F NMR spectrum for a 34 nm-thick CaF2 thin film. PMID:24217000

  13. (19)F(alpha,n)(22)Na, (22)Ne(p,n)(22)Na, and the Role of their Inverses in the Destruction of (22)Na

    NASA Astrophysics Data System (ADS)

    Wrean, Patricia Rose

    The inverses of the 19F(α,n)22Na and 22Ne(p,n)22Na reactions may be important destruction mechanisms for 22Na in neutron-rich, high-temperature or explosive nucleosynthesis. I have measured the cross sections for the 19F(α,n)22Na and 22Ne(p,n)22Na reactions from threshold to 3.1 and 5.4 MeV, respectively. The absolute efficiency of the 4π neutron detector was determined by Monte Carlo calculations and calibrated using two standard sources and two nuclear reactions. Cross sections for the inverse reactions have been calculated using the principle of detailed balance, and reaction rates for both the reactions and their inverses determined for temperatures between 0.01 and 10 GK for 19F(α,n)22Na and between 0.1 and 10 GK for 22Ne(p,n)22Na.

  14. Application of /sup 19/F nuclear magnetic resonance to examine covalent modification reactions of tyrosyl derivatives: a study of calcineurin catalysis

    SciTech Connect

    Martin, B.L.; Graves, D.J.

    1988-04-01

    The hydrolysis of fluorotyrosine phosphate by the calmodulin-activated phosphatase calcineurin has been monitored by /sup 19/F nuclear magnetic resonance spectroscopy. Previous work had established that the /sup 19/F nuclear magnetic resonance shift of the fluorine nucleus was altered after the phosphorylation of the phenolic hydroxyl group. The disappearance of substrate and the appearance of product can be measured simultaneously with this approach. Application of the integrated form of the Michaelis-Menten equation yields estimates of the kinetic parameter, K/sub M/, close to the values obtained by initial rate kinetics. The velocity term, V/sub M/ was also evaluated to be approximately the same value. Calcineurin was determined not to be inactivated over the time period of the reaction. The results demonstrate that /sup 19/F nuclear magnetic resonance spectroscopy can be applied to the examination of enzyme-catalyzed reactions.

  15. Use of [superscript 1]H, [superscript 13]C, and [superscript 19]F-NMR Spectroscopy and Computational Modeling to Explore Chemoselectivity in the Formation of a Grignard Reagent

    ERIC Educational Resources Information Center

    Hein, Sara M.; Kopitzke, Robert W.; Nalli, Thomas W.; Esselman, Brian J.; Hill, Nicholas J.

    2015-01-01

    A discovery-based Grignard experiment for a second-year undergraduate organic chemistry course is described. The exclusive Grignard reagent formed by the reaction of 1-bromo-4-fluorobenzene (1) with Mg is 4-fluorophenylmagnesium bromide (2), which is treated with either benzophenone or CO[subscript 2] to produce the corresponding fluorinated…

  16. A Guided Inquiry Approach to NMR Spectroscopy

    NASA Astrophysics Data System (ADS)

    Parmentier, Laura E.; Lisensky, George C.; Spencer, Brock

    1998-04-01

    We present a novel way to introduce NMR spectroscopy into the general chemistry curriculum as part of a week-long aspirin project in our one-semester introductory course. Aspirin is synthesized by reacting salicylic acid and acetic anhydride. Purity is determined by titration and IR and NMR spectroscopy. Students compare IR and NMR spectra of their aspirin product to a series of reference spectra obtained by the class. Students are able to interpret the IR spectra of their aspirin using IR data from previous experiments. NMR is introduced by having students collect 1H NMR spectra of a series of reference compounds chosen to include some of the structural features of aspirin and compare spectra and structures of the reference compounds to develop a correlation chart for chemical shifts. This process is done in small groups using shared class data and is guided by a series of questions designed to relate the different kinds of hydrogen atoms to number and position of peaks in the NMR spectrum. Students then identify the peaks in the NMR spectrum of their aspirin product and relate percent purity by titration with spectral results and percent yield. This is an enjoyable project that combines the synthesis of a familiar material with a guided inquiry-based introduction to NMR spectroscopy.

  17. Verification of threshold activation detection (TAD) technique in prompt fission neutron detection using scintillators containing 19F

    NASA Astrophysics Data System (ADS)

    Sibczynski, P.; Kownacki, J.; Moszyński, M.; Iwanowska-Hanke, J.; Syntfeld-Każuch, A.; Gójska, A.; Gierlik, M.; Kaźmierczak, Ł.; Jakubowska, E.; Kędzierski, G.; Kujawiński, Ł.; Wojnarowicz, J.; Carrel, F.; Ledieu, M.; Lainé, F.

    2015-09-01

    In the present study ⌀ 5''× 3'' and ⌀ 2''× 2'' EJ-313 liquid fluorocarbon as well as ⌀ 2'' × 3'' BaF2 scintillators were exposed to neutrons from a 252Cf neutron source and a Sodern Genie 16GT deuterium-tritium (D+T) neutron generator. The scintillators responses to β- particles with maximum endpoint energy of 10.4 MeV from the n+19F reactions were studied. Response of a ⌀ 5'' × 3'' BC-408 plastic scintillator was also studied as a reference. The β- particles are the products of interaction of fast neutrons with 19F which is a component of the EJ-313 and BaF2 scintillators. The method of fast neutron detection via fluorine activation is already known as Threshold Activation Detection (TAD) and was proposed for photofission prompt neutron detection from fissionable and Special Nuclear Materials (SNM) in the field of Homeland Security and Border Monitoring. Measurements of the number of counts between 6.0 and 10.5 MeV with a 252Cf source showed that the relative neutron detection efficiency ratio, defined as epsilonBaF2 / epsilonEJ-313-5'', is 32.0% ± 2.3% and 44.6% ± 3.4% for front-on and side-on orientation of the BaF2, respectively. Moreover, the ⌀ 5'' EJ-313 and side-on oriented BaF2 were also exposed to neutrons from the D+T neutron generator, and the relative efficiency epsilonBaF2 / epsilonEJ-313-5'' was estimated to be 39.3%. Measurements of prompt photofission neutrons with the BaF2 detector by means of data acquisition after irradiation (out-of-beam) of nuclear material and between the beam pulses (beam-off) techniques were also conducted on the 9 MeV LINAC of the SAPHIR facility.

  18. Study of the metabolism of flucytosine in Aspergillus species by sup 19 F nuclear magnetic resonance spectroscopy

    SciTech Connect

    Chouini-Lalanne, N.; Malet-Martino, M.C.; Martino, R.; Michel, G. )

    1989-11-01

    The metabolism of flucytosine (5FC) in two Aspergillus species (Aspergillus fumigatus and A. niger) was investigated by 19F nuclear magnetic resonance spectroscopy. In intact mycelia, 5FC was found to be deaminated to 5-fluorouracil and then transformed into fluoronucleotides; the catabolite alpha-fluoro-beta-alanine was also detected in A. fumigatus. Neither 5-fluoroorotic acid nor 5-fluoro-2'-deoxyuridine-5'-monophosphate was detected in perchloric acid extracts after any incubation with 5FC. 5FC, 5-fluorouracil, and the classical fluoronucleotides 5-fluorouridine-5'-mono-, di-, and triphosphates were identified in the acid-soluble pool. Two hydrolysis products of 5-fluorouracil incorporated into RNA, 5-fluorouridine-2'-monophosphate and 5-fluorouridine-3'-monophosphate, were found in the acid-insoluble pool. No significant differences in the metabolic transformation of 5FC were noted in the two species of Aspergillus. The main pathway of 5FC metabolism in the two species of Aspergillus studied is thus the biotransformation into ribofluoronucleotides and the subsequent incorporation of 5-fluorouridine-5'-triphosphate into RNA.

  19. A Miniaturized, 1.9F Integrated Optical Fiber and Stone Basket for Use in Thulium Fiber Laser Lithotripsy.

    PubMed

    Wilson, Christopher R; Hutchens, Thomas C; Hardy, Luke A; Irby, Pierce B; Fried, Nathaniel M

    2015-10-01

    The thulium fiber laser (TFL) is being explored as an alternative laser lithotripter to the standard holmium:yttrium-aluminum-garnet laser. The more uniform beam profile of the TFL enables higher power transmission through smaller fibers. In this study, a 100-μm core, 140-μm outer-diameter (OD) silica fiber with 5-mm length hollow steel tip was integrated with 1.3F (0.433-mm OD) nitinol wire basket to form a 1.9F (0.633-mm OD) device. TFL energy of 30 mJ, 500 μs pulse duration, and 500 Hz pulse rate was delivered to human uric acid stones, ex vivo. Stone ablation rates measured 1.5 ± 0.2 mg/s, comparable to 1.7 ± 0.3 mg/s using bare fiber tips separately with stone basket. With further development, this device may minimize stone retropulsion, allowing more efficient TFL lithotripsy at higher pulse rates. It may also provide increased flexibility, higher saline irrigation rates through the ureteroscope working channel, reduce fiber degradation compared with separate fiber and basket manipulation, and reduce laser-induced nitinol wire damage. PMID:26167738

  20. Tumour oxygen dynamics measured simultaneously by near-infrared spectroscopy and 19F magnetic resonance imaging in rats.

    PubMed

    Xia, Mengna; Kodibagkar, Vikram; Liu, Hanli; Mason, Ralph P

    2006-01-01

    Simultaneous near-infrared spectroscopy (NIRS) and magnetic resonance imaging (MRI) were used to investigate the correlation between tumour vascular oxygenation and tissue oxygen tension dynamics in rat breast 13762NF tumours with respect to hyperoxic gas breathing. NIRS directly detected global variations in the oxygenated haemoglobin concentration (Delta[HbO(2)]) within tumours and oxygen tension (pO(2)) maps were achieved using (19)F MRI of the reporter molecule hexafluorobenzene. Multiple correlations were examined between rates and magnitudes of vascular (Delta[HbO(2)]) and tissue (pO(2)) responses. Significant correlations were found between response to oxygen and carbogen breathing using either modality. Comparison of results for the two methods showed a correlation between the vascular perfusion rate ratio and the mean pO(2) values (R(2) > 0.7). The initial rates of increase of Delta[HbO(2)] and the slope of dynamic pO(2) response, d(pO(2))/dt, of well-oxygenated voxels in response to hyperoxic challenge were also correlated. These results demonstrate the feasibility of simultaneous measurements using NIRS and MRI. As expected, the rate of pO(2) response to oxygen is primarily dependent upon the well perfused rather than poorly perfused vasculature. PMID:16357430

  1. Fission-fragment angular distributions for the 19F + 208Pb near- and sub-barrier fusion-fission reaction

    NASA Astrophysics Data System (ADS)

    Huanqiao, Zhang; Zuhua, Liu; Jincheng, Xu; Kan, Xu; Jun, Lu; Ming, Ruan

    1990-06-01

    Fission cross sections and angular distributions have been measured for the 19F + 208Pb reaction at bombarding energies from 83 to 105 MeV. The fission excitation function is well reproduced on the basis of the coupled-channels theory. The fission-fragment angular distributions are calculated in terms of the transition-state theory, with the transmission coefficients extracted from the excitation function calculation. It is found that a discrepancy between the observations and the predictions in angular anisotropy of fission fragments exists at near- and sub-barrier energies, except for lower and higher energy regions where the discrepancy tends to disappear. Moreover, the anisotropies as a function of the center-of-mass energy show a shoulder around 82 MeV. Our results clearly indicate the considerable effects of the coupling on the sub-barrier fusion cross section and on the near-barrier compound-nucleus spin distribution, and confirm the prediction of an approximately constant value for the mean square spin of a compound nucleus produced in a far sub-barrier fusion reaction.

  2. (19)F spin-lattice relaxation of perfluoropolyethers: Dependence on temperature and magnetic field strength (7.0-14.1T).

    PubMed

    Kadayakkara, Deepak K; Damodaran, Krishnan; Hitchens, T Kevin; Bulte, Jeff W M; Ahrens, Eric T

    2014-05-01

    Fluorine ((19)F) MRI of perfluorocarbon-labeled cells has become a powerful technique to track the migration and accumulation of cells in living organisms. It is common to label cells for (19)F MRI with nanoemulsions of perfluoropolyethers that contain a large number of chemically equivalent fluorine atoms. Understanding the mechanisms of (19)F nuclear relaxation, and in particular the spin-lattice relaxation of these molecules, is critical to improving experimental sensitivity. To date, the temperature and magnetic field strength dependence of spin-lattice relaxation rate constant (R1) for perfluoropolyethers has not been described in detail. In this study, we evaluated the R1 of linear perfluoropolyether (PFPE) and cyclic perfluoro-15-crown-5 ether (PCE) at three magnetic field strengths (7.0, 9.4, and 14.1T) and at temperatures ranging from 256-323K. Our results show that R1 of perfluoropolyethers is dominated by dipole-dipole interactions and chemical shift anisotropy. R1 increased with magnetic field strength for both PCE and PFPE. In the temperature range studied, PCE was in the fast motion regime (ωτc<1) at all field strengths, but for PFPE, R1 passed through a maximum, from which the rotational correlation time was estimated. The importance of these measurements for the rational design of new (19)F MRI agents and methods is discussed. PMID:24594752

  3. 19F Spin-lattice Relaxation of Perfluoropolyethers: Dependence on Temperature and Magnetic Field Strength (7.0-14.1T)

    PubMed Central

    Kadayakkara, Deepak K.; Damodaran, Krishnan; Hitchens, T. Kevin; Bulte, Jeff W.M.; Ahrens, Eric T.

    2014-01-01

    Fluorine (19F) MRI of perfluorocarbon labeled cells has become a powerful technique to track the migration and accumulation of cells in living organisms. It is common to label cells for 19F MRI with nanoemulsions of perfluoropolyethers that contain a large number of chemically equivalent fluorine atoms. Understanding the mechanisms of 19F nuclear relaxation, and in particular the spin-lattice relaxation of these molecules, is critical to improving experimental sensitivity. To date, the temperature and magnetic field strength dependence of spin-lattice relaxation rate constant (R1) for perfluoropolyethers has not been described in detail. In this study, we evaluated R1 of linear perfluoropolyether (PFPE) and cyclic perfluoro-15-crown-5 ether (PCE) at three magnetic field strengths (7.0, 9.4, and 14.1 T) and at temperatures ranging from 256-323K. Our results show that R1 of perfluoropolyethers is dominated by dipole-dipole interactions and chemical shift anisotropy. R1 increased with magnetic field strength for both PCE and PFPE. In the temperature range studied, PCE was in the fast motion regime (ωτc < 1) at all field strengths, but for PFPE, R1 passed through a maximum, from which the rotational correlation time was estimated. The importance of these measurements for the rational design of new 19F MRI agents and methods is discussed. PMID:24594752

  4. Precision spectroscopy of the {sup 207}Pb{sup 19}F molecule: Implications for measurement of P-odd and T-odd effects

    SciTech Connect

    Alphei, Lukas D.; Grabow, Jens-Uwe; Petrov, A. N.; Mawhorter, Richard; Murphy, Benjamin; Baum, Alexander; Sears, Trevor J.; Yang, T. Zh.; Rupasinghe, P. M.; McRaven, C. P.; Shafer-Ray, N. E.

    2011-04-15

    Here we report precision microwave spectroscopy of pure rotational transitions of the {sup 207}Pb{sup 19}F isotopologue. We use these data to make predictions of the sensitivity of the molecule to P-odd, T-even and P-odd, T-odd effects.

  5. 19F spin-lattice relaxation of perfluoropolyethers: Dependence on temperature and magnetic field strength (7.0-14.1 T)

    NASA Astrophysics Data System (ADS)

    Kadayakkara, Deepak K.; Damodaran, Krishnan; Hitchens, T. Kevin; Bulte, Jeff W. M.; Ahrens, Eric T.

    2014-05-01

    Fluorine (19F) MRI of perfluorocarbon-labeled cells has become a powerful technique to track the migration and accumulation of cells in living organisms. It is common to label cells for 19F MRI with nanoemulsions of perfluoropolyethers that contain a large number of chemically equivalent fluorine atoms. Understanding the mechanisms of 19F nuclear relaxation, and in particular the spin-lattice relaxation of these molecules, is critical to improving experimental sensitivity. To date, the temperature and magnetic field strength dependence of spin-lattice relaxation rate constant (R1) for perfluoropolyethers has not been described in detail. In this study, we evaluated the R1 of linear perfluoropolyether (PFPE) and cyclic perfluoro-15-crown-5 ether (PCE) at three magnetic field strengths (7.0, 9.4, and 14.1 T) and at temperatures ranging from 256-323 K. Our results show that R1 of perfluoropolyethers is dominated by dipole-dipole interactions and chemical shift anisotropy. R1 increased with magnetic field strength for both PCE and PFPE. In the temperature range studied, PCE was in the fast motion regime (ωτc < 1) at all field strengths, but for PFPE, R1 passed through a maximum, from which the rotational correlation time was estimated. The importance of these measurements for the rational design of new 19F MRI agents and methods is discussed.

  6. Direct mapping of 19F in 19FDG-6P in brain tissue at subcellular resolution using soft X-ray fluorescence

    NASA Astrophysics Data System (ADS)

    Poitry-Yamate, C.; Gianoncelli, A.; Kourousias, G.; Kaulich, B.; Lepore, M.; Gruetter, R.; Kiskinova, M.

    2013-10-01

    Low energy x-ray fluorescence (LEXRF) detection was optimized for imaging cerebral glucose metabolism by mapping the fluorine LEXRF signal of 19F in 19FDG, trapped as intracellular 19F-deoxyglucose-6-phosphate (19FDG-6P) at 1μm spatial resolution from 3μm thick brain slices. 19FDG metabolism was evaluated in brain structures closely resembling the general cerebral cytoarchitecture following formalin fixation of brain slices and their inclusion in an epon matrix. 2-dimensional distribution maps of 19FDG-6P were placed in a cytoarchitectural and morphological context by simultaneous LEXRF mapping of N and O, and scanning transmission x-ray (STXM) imaging. A disproportionately high uptake and metabolism of glucose was found in neuropil relative to intracellular domains of the cell body of hypothalamic neurons, showing directly that neurons, like glial cells, also metabolize glucose. As 19F-deoxyglucose-6P is structurally identical to 18F-deoxyglucose-6P, LEXRF of subcellular 19F provides a link to in vivo 18FDG PET, forming a novel basis for understanding the physiological mechanisms underlying the 18FDG PET image, and the contribution of neurons and glia to the PET signal.

  7. An Integrated Laboratory Project in NMR Spectroscopy.

    ERIC Educational Resources Information Center

    Hudson, Reggie L.; Pendley, Bradford D.

    1988-01-01

    Describes an advanced NMR project that can be done with a 60-MHz continuous-wave proton spectrometer. Points out the main purposes are to give students experience in second-order NMR analysis, the simplification of spectra by raising the frequency, and the effect of non-hydrogen nuclei on proton resonances. (MVL)

  8. Fragment based drug discovery: practical implementation based on ¹⁹F NMR spectroscopy.

    PubMed

    Jordan, John B; Poppe, Leszek; Xia, Xiaoyang; Cheng, Alan C; Sun, Yax; Michelsen, Klaus; Eastwood, Heather; Schnier, Paul D; Nixey, Thomas; Zhong, Wenge

    2012-01-26

    Fragment based drug discovery (FBDD) is a widely used tool for discovering novel therapeutics. NMR is a powerful means for implementing FBDD, and several approaches have been proposed utilizing (1)H-(15)N heteronuclear single quantum coherence (HSQC) as well as one-dimensional (1)H and (19)F NMR to screen compound mixtures against a target of interest. While proton-based NMR methods of fragment screening (FBS) have been well documented and are widely used, the use of (19)F detection in FBS has been only recently introduced (Vulpetti et al. J. Am. Chem. Soc.2009, 131 (36), 12949-12959) with the aim of targeting "fluorophilic" sites in proteins. Here, we demonstrate a more general use of (19)F NMR-based fragment screening in several areas: as a key tool for rapid and sensitive detection of fragment hits, as a method for the rapid development of structure-activity relationship (SAR) on the hit-to-lead path using in-house libraries and/or commercially available compounds, and as a quick and efficient means of assessing target druggability. PMID:22165820

  9. Calculation of vibrational branching ratios and hyperfine structure of 24Mg19F and its suitability for laser cooling and magneto-optical trapping

    NASA Astrophysics Data System (ADS)

    Xu, Liang; Yin, Yanning; Wei, Bin; Xia, Yong; Yin, Jianping

    2016-01-01

    More recently, laser cooling of the diatomic radical magnesium monofluoride (24Mg19F ) is being experimentally preformed [Appl. Phys. Express 8, 092701 (2015), 10.7567/APEX.8.092701 and Opt. Express 22, 28645 (2014), 10.1364/OE.22.028645] and was also studied theoretically [Phys. Rev. A 91, 042511 (2015), 10.1103/PhysRevA.91.042511]. However, some important problems still remain unsolved, so, in our paper, we perform further theoretical study for the feasibility of laser cooling and trapping the 24Mg19F molecule. At first, the highly diagonal Franck-Condon factors of the main transitions are verified by the closed-form approximation, Morse approximation, and Rydberg-Klein-Rees inversion methods, respectively. Afterwards, we investigate the lower X 2Σ1/2 + hyperfine manifolds using a quantum effective Hamiltonian approach and obtain the zero-field hyperfine spectrum with an accuracy of less than 30 kHz ˜5 μ K compared with the experimental results, and then find out that one cooling beam and one or two repumping beams with their first-order sidebands are enough to implement an efficient laser slowing and cooling of 24Mg19F . Meanwhile, we also calculate the accurate hyperfine structure magnetic g factors of the rotational state (X 2Σ1/2 +,N =1 ) and briefly discuss the influence of the external fields on the hyperfine structure of 24Mg19F as well as its possibility of preparing three-dimensional magneto-optical trapping. Finally we give an explanation for the difference between the Stark and Zeeman effects from the perspective of parity and time reversal symmetry. Our study shows that, besides appropriate excitation wavelengths, the short lifetime for the first excited state A 2Π1 /2 , and lighter mass, the 24Mg19F radical could be a good candidate molecule amenable to laser cooling and magneto-optical trapping.

  10. Automated protein NMR resonance assignments.

    PubMed

    Wan, Xiang; Xu, Dong; Slupsky, Carolyn M; Lin, Guohui

    2003-01-01

    NMR resonance peak assignment is one of the key steps in solving an NMR protein structure. The assignment process links resonance peaks to individual residues of the target protein sequence, providing the prerequisite for establishing intra- and inter-residue spatial relationships between atoms. The assignment process is tedious and time-consuming, which could take many weeks. Though there exist a number of computer programs to assist the assignment process, many NMR labs are still doing the assignments manually to ensure quality. This paper presents (1) a new scoring system for mapping spin systems to residues, (2) an automated adjacency information extraction procedure from NMR spectra, and (3) a very fast assignment algorithm based on our previous proposed greedy filtering method and a maximum matching algorithm to automate the assignment process. The computational tests on 70 instances of (pseudo) experimental NMR data of 14 proteins demonstrate that the new score scheme has much better discerning power with the aid of adjacency information between spin systems simulated across various NMR spectra. Typically, with automated extraction of adjacency information, our method achieves nearly complete assignments for most of the proteins. The experiment shows very promising perspective that the fast automated assignment algorithm together with the new score scheme and automated adjacency extraction may be ready for practical use. PMID:16452794

  11. 1H and 13C NMR spectra, structure and physicochemical features of phenyl acridine-9-carboxylates and 10-methyl-9-(phenoxycarbonyl)acridinium trifluoromethanesulphonates--alkyl substituted in the phenyl fragment.

    PubMed

    Krzymiński, K; Malecha, P; Zadykowicz, B; Wróblewska, A; Błażejowski, J

    2011-01-01

    The 1H and 13C NMR spectra of twelve phenyl acridine-9-carboxylates--alkyl-substituted in the phenyl fragment--and their 10-methyl-9-(phenoxycarbonyl)acridinium salts dissolved in CD3CN, CD3OD, CDCl3 and DMSO-d6 were recorded in order to examine the influence of the structure of these compounds and the properties of the solvents on chemical shifts and 1H-(1)H coupling constants. Experimental data were compared with 1H and 13C chemical shifts predicted at the GIAO/DFT level of theory for DFT(B3LYP)/6-31G** optimised geometries of molecules, as well as with values of 1H chemical shifts and 1H-(1)H coupling constants, estimated using ACD/HNMR database software to ensure that the assignment was correct. To investigate the relations between chemical shifts and selected structural or physicochemical characteristics of the target compounds, the values of several of these parameters were determined at the DFT or HF levels of theory. The HOMO and LUMO energies obtained at the HF level yielded the ionisation potentials and electron affinities of molecules. The DFT method provided atomic partial charges, dipole moments, LCAO coefficients of pz LUMO of selected C atoms, and angles reflecting characteristic structural features of the compounds. It was found that the experimentally determined 1H and 13C chemical shifts of certain atoms relate to the predicted dipole moments, the angles between the acridine and phenyl moieties, and the LCAO coefficients of the pz LUMO of the C atoms believed to participate in the initial step of the oxidation of the target compounds. The spectral and physicochemical characteristics of the target compounds were investigated in the context of their chemiluminogenic ability. PMID:21134782

  12. Characterisation and evaluation of paramagnetic fluorine labelled glycol chitosan conjugates for (19)F and (1)H magnetic resonance imaging.

    PubMed

    De Luca, Elena; Harvey, Peter; Chalmers, Kirsten H; Mishra, Anurag; Senanayake, P Kanthi; Wilson, J Ian; Botta, Mauro; Fekete, Marianna; Blamire, Andrew M; Parker, David

    2014-02-01

    Medium molecular weight glycol chitosan conjugates have been prepared, linked by an amide bond to paramagnetic Gd(III), Ho(III) and Dy(III) macrocyclic complexes in which a trifluoromethyl reporter group is located 6.5 Å from the paramagnetic centre. The faster relaxation of the observed nucleus allows modified pulse sequences to be used with shorter acquisition times. The polydisperse materials have been characterised by gel permeation chromatography, revealing an average molecular weight on the order of 13,800 (Gd), 14,600 (Dy) and 16,200 (Ho), consistent with the presence of 8.5, 9.5 and 13 complexes, respectively. The gadolinium conjugate was prepared for both a q = 1 monoamide tricarboxylate conjugate (r1p 11.2 mM(-1) s(-1), 310 K, 1.4 T) and a q = 0 triphosphinate system, and conventional contrast-enhanced proton MRI studies at 7 T were undertaken in mice bearing an HT-29 or an HCT-116 colorectal tumour xenograft (17 μmol/kg). Enhanced contrast was observed following injection in the tail vein in tumour tissue, with uptake also evident in the liver and kidney with a tumour-to-liver ratio of 2:1 at 13 min, and large amounts in the kidney and bladder consistent with predominant renal clearance. Parallel experiments observing the (19)F resonance in the holmium conjugate complex using a surface coil did not succeed owing to its high R2 value (750 Hz, 7 T). However, the fluorine signal in the dysprosium triphosphinate chitosan conjugate [R1/R2 = 0.6 and R1 = 145 Hz (7 T)] was sharper and could be observed in vivo at -65.7 ppm, following intravenous tail vein injection of a dose of 34 μmol/kg. PMID:23955558

  13. Evaluation of tumor ischemia in response to an indole-based vascular disrupting agent using BLI and (19)F MRI.

    PubMed

    Zhou, Heling; Hallac, Rami R; Lopez, Ramona; Denney, Rebecca; MacDonough, Matthew T; Li, Li; Liu, Li; Graves, Edward E; Trawick, Mary Lynn; Pinney, Kevin G; Mason, Ralph P

    2015-01-01

    Vascular disrupting agents (VDAs) have been proposed as an effective broad spectrum approach to cancer therapy, by inducing ischemia leading to hypoxia and cell death. A novel VDA (OXi8007) was recently reported to show rapid acute selective shutdown of tumor vasculature based on color-Doppler ultrasound. We have now expanded investigations to noninvasively assess perfusion and hypoxiation of orthotopic human MDA-MB-231/luc breast tumor xenografts following the administration of OXi8007 based on dynamic bioluminescence imaging (BLI) and magnetic resonance imaging (MRI). BLI showed significantly lower signal four hours after the administration of OXi8007, which was very similar to the response to combretastatin A-4P (CA4P), but the effect lasted considerably longer, with the BLI signal remaining depressed at 72 hrs. Meanwhile, control tumors exhibited minimal change. Oximetry used (19)F MRI of the reporter molecule hexafluorobenzene and FREDOM (Fluorocarbon Relaxometry using Echo Planar Imaging for Dynamic Oxygen Mapping) to assess pO2 distributions during air and oxygen breathing. pO2 decreased significantly upon the administration of OXi8007 during oxygen breathing (from 122 ± 64 to 34 ± 20 Torr), with further decrease upon switching the gas to air (pO2 = 17 ± 9 Torr). pO2 maps indicated intra-tumor heterogeneity in response to OXi8007, though ultimately all tumor regions became hypoxic. Both BLI and FREDOM showed the efficacy of OXi8007. The pO2 changes measured by FREDOM may be crucial for future study of combined therapy. PMID:25973335

  14. Evidence for the importance of 5'-deoxy-5-fluorouridine catabolism in humans from 19F nuclear magnetic resonance spectrometry.

    PubMed

    Malet-Martino, M C; Armand, J P; Lopez, A; Bernadou, J; Béteille, J P; Bon, M; Martino, R

    1986-04-01

    The use of a new methodology, 19F nuclear magnetic resonance, has allowed detection of all the fluorinated metabolites in the biofluids of patients treated with 5'-deoxy-5-fluorouridine (5'-dFUrd) injected i.v. at a dose of 10 g/m2 over 6 h. This technique, which requires no labeled drug, allows a direct study of the biological sample with no need for extraction or derivatization and a simultaneous identification and quantitation of all the different fluorinated metabolites. As well as the already known metabolites, unmetabolized 5'-dFUrd, 5-fluorouracil, and 5,6-dihydro-5-fluorouracil, the presence of alpha-fluoro-beta-ureidopropionic acid, alpha-fluoro-beta-alanine (FBAL), N-carboxy-alpha-fluoro-beta-alanine, and the fluoride anion F- is reported. The catabolic pathway proposed for 5'-dFUrd is analogous to that of 5-fluorouracil, completed with FBAL----F- step, and the plasmatic equilibrium of FBAL with N-carboxy-alpha-fluoro-beta-alanine, its N-carboxy derivative. The quantitative analysis of the different metabolites found in plasma and urine emphasizes the significance of the catabolic pathway. High concentrations of alpha-fluoro-beta ureidopropionic acid and FBAL are recovered in plasma from 3 h after the beginning of the perfusion to 1 h after its end. The global urinary excretion results show that there is a high excretion of 5'-dFUrd and metabolites. Unchanged 5'-dFUrd and FBAL are by far the major excretory products and are at nearly equal rates. The protocol followed in this study produces relatively low but persistent plasmatic concentrations of 5-fluorouracil throughout the perfusion. PMID:2936452

  15. pEffect of MRI tags: SPIO nanoparticles and 19F nanoemulsion on various populations of mouse mesenchymal stem cells

    PubMed Central

    Muhammad, Ghulam; Jablonska, Anna; Rose, Laura; Walczak, Piotr; Janowski, Miroslaw

    2016-01-01

    Transplantation of mesenchymal stem cells (MSCs) has emerged as a promising strategy for the treatment of myriad human disorders, including several neurological diseases. Superparamagnetic iron oxide nanoparticles (SPION) and fluorine nanoemulsion (19F) are characterized by low toxicity and good sensitivity, and, as such, are among the most frequently used cell-labeling agents. However, to date, their impact across the various populations of MSCs has not been comprehensively investigated. Thus, the impact of MRI tags (independent variable) has been set as a primary endpoint. The various populations of mouse MSCs in which the effect of tag was investigated consisted of 1) tissue of cell origin: bone marrow vs. adipose tissue; 2) age of donor: young vs. old; 3) cell culture conditions: hypoxic vs. normal vs. normal +ascorbic acid (AA); 4) exposure to acidosis: yes vs. no. The impact of those populations has been also analyzed and considered as secondary endpoints. The experimental readouts (dependent variables) included: 1) cell viability; 2) cell size; 3) cell doubling time; 4) colony formation; 5) efficiency of labeling; and 6) cell migration. We did not identify any impact of cell labeling for these investigated populations in any of the readouts. In addition, we found that the harsh microenvironment of injured tissue modeled by a culture of cells in a highly acidic environment has a profound effect on all readouts, and both age of donor and cell origin tissue also have a substantial influence on most of the readouts, while oxygen tension in the cell culture conditions has a smaller impact on MSCs. A detailed characterization of the factors that influence the quality of MSCs is vital to the proper pursuit of preclinical and clinical studies. PMID:26232992

  16. Revisiting NMR through-space J(FF) spin-spin coupling constants for getting insight into proximate F---F interactions.

    PubMed

    Contreras, Rubén H; Llorente, Tomás; Ducati, Lucas Colucci; Tormena, Cláudio Francisco

    2014-07-10

    At present times it is usual practice to mark biological compounds replacing an H for an F atom to study, by means of (19)F NMR spectroscopy, aspects such as binding sites and molecular folding features. This interesting methodology could nicely be improved if it is known how proximity interactions on the F atom affect its electronic structure as gauged through high-resolution (19)F NMR spectroscopy. This is the main aim of the present work and, to this end, differently substituted peri-difluoronaphthalenes are chosen as model systems. In such compounds are rationalized some interesting aspects of the diamagnetic and paramagnetic parts of the (19)F nuclear magnetic shielding tensor as well as the transmission mechanisms for the PSO and FC contributions to (4)JF1F8 indirect nuclear spin-spin coupling constants. PMID:24935717

  17. Applications of Diffusion Ordered Spectroscopy (DOSY-NMR)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Diffusion-ordered NMR (DOSY-NMR) is a powerful, but under-utilized, technique for the investigation of mixtures based on translational diffusion rates. DOSY spectra allow for determination by NMR of components that may differ in molecular weight, geometry or complexation. Typical applications coul...

  18. Scalar operators in solid-state NMR

    SciTech Connect

    Sun, Boqin

    1991-11-01

    Selectivity and resolution of solid-state NMR spectra are determined by dispersion of local magnetic fields originating from relaxation effects and orientation-dependent resonant frequencies of spin nuclei. Theoretically, the orientation-dependent resonant frequencies can be represented by a set of irreducible tensors. Among these tensors, only zero rank tensors (scalar operators) are capable of providing high resolution NMR spectra. This thesis presents a series of new developments in high resolution solid-state NMR concerning the reconstruction of various scalar operators motion in solid C{sub 60} is analyzed.

  19. Solid-state NMR and Membrane Proteins

    PubMed Central

    Opella, Stanley J.

    2015-01-01

    The native environment for a membrane protein is a phospholipid bilayer. Because the protein is immobilized on NMR timescales by the interactions within a bilayer membrane, solid-state NMR methods are essential to obtain high-resolution spectra. Approaches have been developed for both unoriented and oriented samples, however, they all rest on the foundation of the most fundamental aspects solid-state NMR, and the chemical shift and homo- and hetero-nuclear dipole-dipole interactions. Solid-state NMR has advanced sufficiently to enable the structures of membrane proteins to be determined under near-native conditions in phospholipid bilayers. PMID:25681966

  20. Angular momentum distribution for the formation of evaporation residues in fusion of 19F with 184W near the Coulomb barrier

    NASA Astrophysics Data System (ADS)

    Nath, S.; Gehlot, J.; Prasad, E.; Sadhukhan, Jhilam; Shidling, P. D.; Madhavan, N.; Muralithar, S.; Golda, K. S.; Jhingan, A.; Varughese, T.; Rao, P. V. Madhusudhana; Sinha, A. K.; Pal, Santanu

    2011-01-01

    We present γ-ray multiplicity distributions for the formation of evaporation residues in the fusion reaction 19F + 184W → 20383Bi 120 at beam energies in the range of 90-110 MeV. The measurements were carried out using a 14 element BGO detector array and the Heavy Ion Reaction Analyzer at the Inter University Accelerator Centre. The data have been unfolded to obtain angular momentum distributions with inputs from the statistical model calculation. Comparison with another neighboring system, viz. 19F + 175Lu → 19480Hg 114 with nearly similar entrance-channel mass asymmetry, hints at the depletion of higher angular momenta after crossing of the Z=82 shell in the compound nucleus.

  1. High-resolution three-dimensional 19F-magnetic resonance imaging of rat lung in situ: evaluation of airway strain in the perfluorocarbon-filled lung.

    PubMed

    Weigel, Julia K; Steinmann, Daniel; Emerich, Philipp; Stahl, Claudius A; v Elverfeldt, Dominik; Guttmann, Josef

    2011-02-01

    Perfluorocarbons (PFC) are biologically and chemically inert fluids with high oxygen and CO(2) carrying capacities. Their use as liquid intrapulmonary gas carriers during liquid ventilation has been investigated. We established a method of high resolution 3D-(19)F-MRI of the totally PFC-filled lung. The goal of this study was to investigate longitudinal and circumferential airway strain in the setting of increasing airway pressures on 3D-(19)F-MR images of the PFC-filled lung. Sixteen female Wistar rats were euthanized and the liquid perfluorocarbon FC-84 instilled into their lungs. 3D-(19)F-MRI was performed at various intrapulmonary pressures. Measurements of bronchial length and cross-sectional area were obtained from transversal 2D images for each pressure range. Changes in bronchial area were used to determine circumferential strain, while longitudinal strain was calculated from changes in bronchial length. Our method of 3D-(19)F-MRI allowed clear visualization of the great bronchi. Longitudinal strain increased significantly up to 31.1 cmH(2)O. The greatest strain could be found in the range of low airway pressures. Circumferential strain increased strongly with the initial pressure rise, but showed no significant changes above 10.4 cmH(2)O. Longitudinal strain was generally higher in distal airways, while circumferential strain showed no difference. Analysis of mechanical characteristics showed that longitudinal and circumferential airway expansion occurred in an anisotropic fashion. Whereas longitudinal strain still increased with higher pressures, circumferential strain quickly reached a 'strain limit'. Longitudinal strain was higher in distal bronchi, as dense PFCs gravitate to dependent, in this case to dorso-basal parts of the lung, acting as liquid positive end expiratory pressure. PMID:21193813

  2. 19F Magnetic Resonance Imaging of Perfluorocarbons for the Evaluation of Response to Antibiotic Therapy in a Staphylococcus aureus Infection Model

    PubMed Central

    Jakob, Peter; Ohlsen, Knut

    2013-01-01

    Background The emergence of antibiotic resistant bacteria in recent decades has highlighted the importance of developing new drugs to treat infections. However, in addition to the design of new drugs, the development of accurate preclinical testing methods is essential. In vivo imaging technologies such as bioluminescence imaging (BLI) or magnetic resonance imaging (MRI) are promising approaches. In a previous study, we showed the effectiveness of 19F MRI using perfluorocarbon (PFC) emulsions for detecting the site of Staphylococcus aureus infection. In the present follow-up study, we investigated the use of this method for in vivo visualization of the effects of antibiotic therapy. Methods/Principal findings Mice were infected with S. aureus Xen29 and treated with 0.9% NaCl solution, vancomycin or linezolid. Mock treatment led to the highest bioluminescence values during infection followed by vancomycin treatment. Counting the number of colony-forming units (cfu) at 7 days post-infection (p.i.) showed the highest bacterial burden for the mock group and the lowest for the linezolid group. Administration of PFCs at day 2 p.i. led to the accumulation of 19F at the rim of the abscess in all mice (in the shape of a hollow sphere), and antibiotic treatment decreased the 19F signal intensity and volume. Linezolid showed the strongest effect. The BLI, cfu, and MRI results were comparable. Conclusions 19F-MRI with PFCs is an effective non-invasive method for assessing the effects of antibiotic therapy in vivo. This method does not depend on pathogen specific markers and can therefore be used to estimate the efficacy of antibacterial therapy against a broad range of clinically relevant pathogens, and to localize sites of infection. PMID:23724049

  3. Interactions between Nafion resin and protonated dodecylamine modified montmorillonite: a solid state NMR study.

    PubMed

    Zhang, Limin; Xu, Jun; Hou, Guangjin; Tang, Huiru; Deng, Feng

    2007-07-01

    A series of nanocomposites have been prepared from perfluorosulfonylfluoride copolymer resin (Nafion) and layered montmorillonite (MMT) modified with protonated dodecylamine by conventional sol-gel intercalation. The structure of these nanocomposite materials have been characterized using FT-IR, elemental analysis, XRD and solid state NMR techniques, including 19F magic-angle spinning (MAS) NMR, 19F NMR relaxation time measurements, 29Si MAS, 1H MAS, 1H-13C cross-polarization magic-angle spinning (CPMAS), and 1H-13C heteronuclear correlation (HETCOR) 2D NMR. The results showed that thermal stability of Nafion was improved moderately by the addition of dodecylamine modified MMT without intercalation. FT-IR and 29Si MAS NMR results indicated that dodecylamine modification did not result in obvious changes in the MMT lattice structure. The XRD results showed that the protonated dodecylamine has been embedded and intercalated into the MMT interlayers, whereas Nafion was not. Elemental analysis results also suggested that some dodecylamine was adsorbed on the surface of MMT. 1H-13C HETCOR 2D NMR experiment clearly indicated that strong electrostatic interactions were present between the NH+3 group of dodecylamine and the fluorine-containing groups (CF3, OCF2, and SCF2) of Nafion resin. Such electrostatic interactions are probably the major contributors for the improved thermal stability of the resultant composite materials. PMID:17382953

  4. THE FLUORINE DESTRUCTION IN STARS: FIRST EXPERIMENTAL STUDY OF THE {sup 19}F(p, {alpha}{sub 0}){sup 16}O REACTION AT ASTROPHYSICAL ENERGIES

    SciTech Connect

    La Cognata, M.; Spitaleri, C.; Indelicato, I.; Cherubini, S.; Gulino, M.; Kiss, G. G.; Lamia, L.; Pizzone, R. G.; Puglia, S. M. R.; Rapisarda, G. G.; Romano, S.; Mukhamedzhanov, A. M.; Aliotta, M.; Burjan, V.; Hons, Z.; Kroha, V.; Mrazek, J.; Piskor, S.; Coc, A.

    2011-10-01

    The {sup 19}F(p, {alpha}){sup 16}O reaction is an important fluorine destruction channel in the proton-rich outer layers of asymptotic giant branch (AGB) stars and it might also play a role in hydrogen-deficient post-AGB star nucleosynthesis. So far, available direct measurements do not reach the energy region of astrophysical interest (E {sub cm} {approx}< 300 keV), because of the hindrance effect of the Coulomb barrier. The Trojan Horse (TH) method was thus used to access this energy region, by extracting the quasi-free contribution to the {sup 2}H({sup 19}F, {alpha}{sup 16}O)n and the {sup 19}F({sup 3}He, {alpha}{sup 16}O)d reactions. The TH measurement of the {alpha}{sub 0} channel shows the presence of resonant structures not observed before, which cause an increase of the reaction rate at astrophysical temperatures up to a factor of 1.7, with potential consequences for stellar nucleosynthesis.

  5. Completion of the Operational Closure of Tank 18F and Tank 19F at the Savannah River Site by Grouting - 13236

    SciTech Connect

    Tisler, Andrew J.

    2013-07-01

    Radioactive waste is stored in underground waste tanks at the Savannah River Site (SRS). The low-level fraction of the waste is immobilized in a grout waste form, and the high level fraction is disposed of in a glass waste form. Once the waste is removed, the tanks are prepared for closure. Operational closure of the tanks consists of filling with grout for the purpose of chemically stabilizing residual material, filling the tank void space for long-term structural stability, and discouraging future intrusion. Two of the old-style single-shell tanks at the SRS have received regulatory approval confirming waste removal had been completed, and have been stabilized with grout as part of completing operational closure and removal from service. Consistent with the regulatory framework, two types of grout were used for the filling of Tanks 18F and 19F. Reducing grout was used to fill the entire volume of Tanks 18F and 19F (bulk fill grout) and a more flowable grout was used to fill equipment that was left in the tank (equipment fill grout). The reducing grout was added to the tanks using portable grout pumps filled from concrete trucks, and delivered the grout through slick lines to the center riser of each tank. Filling of the two tanks has been completed, and all equipment has been filled. The final capping of riser penetrations brings the operation closure of Tanks 18F and 19F to completion. (authors)

  6. NMR Studies of Peroxidases.

    NASA Astrophysics Data System (ADS)

    Veitch, Nigel Charles

    Available from UMI in association with The British Library. Requires signed TDF. Peroxidases are a haem-containing group of enzymes with a wide diversity of function within biological systems. While a common characteristic is the ability to catalyse the conversion of hydrogen peroxide to water, it is the accompanying processes of hormone synthesis and degradation which have generated such a high level of interest. However, information at the molecular level is limited to a single well-resolved crystal structure, that of yeast cytochrome c peroxidase. This thesis presents a strategy for the investigation of peroxidase structure and function based on proton nuclear magnetic resonance spectroscopy, a technique which has the ability to address aspects of both protein structure and protein dynamics in solution. The application of one- and two-dimensional NMR techniques has been developed in the context of plant peroxidases, notably the isoenzyme HRP-C derived from the horseradish root. Characterisation of the proton NMR spectra of HRP -C in resting and ligated states provided new information enabling the structure of the binding site for aromatic donor molecules, such as indole-3-propionic, ferulic and benzhydroxamic acids, to be resolved. In order to overcome difficulties encountered with a protein of the complexity of peroxidase, additional information was obtained from chemical shift parameters and the use of peroxidase variants produced by site-directed mutagenesis. A comparative study using NMR spectroscopy was undertaken for wild-type recombinant HRP-C expressed in Escherichia coli, and two protein variants with substitutions made to residues located on the distal side of the haem pocket, Phe41 to Val and Arg38 to Lys. NMR analyses of a plant peroxidase from barley grains and the fungal peroxidase from Coprinus cinereus were also successful using methods conceived with HRP-C. Examination of three specifically constructed recombinant protein variants of C. cinereus

  7. Nanoscale NMR spectroscopy and imaging of multiple nuclear species

    NASA Astrophysics Data System (ADS)

    Devience, Stephen J.; Pham, Linh M.; Lovchinsky, Igor; Sushkov, Alexander O.; Bar-Gill, Nir; Belthangady, Chinmay; Casola, Francesco; Corbett, Madeleine; Zhang, Huiliang; Lukin, Mikhail; Park, Hongkun; Yacoby, Amir; Walsworth, Ronald L.

    2015-02-01

    Nuclear magnetic resonance (NMR) spectroscopy and magnetic resonance imaging (MRI) provide non-invasive information about multiple nuclear species in bulk matter, with wide-ranging applications from basic physics and chemistry to biomedical imaging. However, the spatial resolution of conventional NMR and MRI is limited to several micrometres even at large magnetic fields (>1 T), which is inadequate for many frontier scientific applications such as single-molecule NMR spectroscopy and in vivo MRI of individual biological cells. A promising approach for nanoscale NMR and MRI exploits optical measurements of nitrogen-vacancy (NV) colour centres in diamond, which provide a combination of magnetic field sensitivity and nanoscale spatial resolution unmatched by any existing technology, while operating under ambient conditions in a robust, solid-state system. Recently, single, shallow NV centres were used to demonstrate NMR of nanoscale ensembles of proton spins, consisting of a statistical polarization equivalent to ˜100-1,000 spins in uniform samples covering the surface of a bulk diamond chip. Here, we realize nanoscale NMR spectroscopy and MRI of multiple nuclear species (1H, 19F, 31P) in non-uniform (spatially structured) samples under ambient conditions and at moderate magnetic fields (˜20 mT) using two complementary sensor modalities.

  8. Computational and ESR studies of electron attachment to decafluorocyclopentane, octafluorocyclobutane, and hexafluorocyclopropane: electron affinities of the molecules and the structures of their stable negative ions as determined from 13C and 19F hyperfine coupling constants.

    PubMed

    ElSohly, Adel M; Tschumper, Gregory S; Crocombe, Richard A; Wang, Jih Tzong; Williams, Ffrancon

    2005-08-01

    High-resolution ESR spectra of the ground-state negative ions of hexafluorocyclopropane (c-C3F6*-), octafluorocyclobutane (c-C4F8*-), and decafluorocyclopentane (c-C5F10*-) are reported and their isotropic 19F hyperfine coupling constants (hfcc) of 198.6 +/- 0.4 G, 147.6 +/- 0.4 G, and 117.9 +/- 0.4 G, respectively, are in inverse ratio to the total number of fluorine atoms per anion. Together with the small value of 5.2 +/- 0.4 G determined for the isotropic 13C hfcc of c-C4F8*-, these results indicate that in each case the singly occupied molecular orbital (SOMO) is delocalized over the equivalent fluorines and possesses a nodal plane through the carbon atoms of a time-averaged D(nh) structure. A series of quantum chemical computations were carried out to further characterize these anions and their neutral counterparts. Both the B3LYP density functional and second-order Møller-Plesset perturbation theory (MP2) indicate that c-C3F6*- adopts a D(3h) geometry and a (2)A2'' ground electronic state, that c-C4F8*- adopts a D(4h) geometry and a (2)A2u ground electronic state, and that c-C5F10*- adopts a C(s) structure and a (2)A' electronic state. Moreover, the 19F hyperfine coupling constants computed with the MP2 method and a high quality triple-zeta basis set are within 1% of the experimental values. Also, the values computed for the 13C hfcc of c-C4F8*- are consistent with the experimental value of 5.2 G. Therefore, in keeping with the ESR results, these negative ions derived from first-row elements can be characterized as pi* species. In addition, the hypervalency of these perfluorocycloalkane radical anions has been clarified. PMID:16045345

  9. Assigning the NMR Spectrum of Glycidol: An Advanced Organic Chemistry Exercise

    ERIC Educational Resources Information Center

    Helms, Eric; Arpaia, Nicholas; Widener, Melissa

    2007-01-01

    Various one- and two-dimensional NMR experiments have been found to be extremely useful for assigning the proton and carbon NMR spectra of glycidol. The technique provides extremely valuable information aiding in the complete assignment of the peaks.

  10. Updated THM Astrophysical Factor of the 19F(p, α)16O Reaction and Influence of New Direct Data at Astrophysical Energies

    NASA Astrophysics Data System (ADS)

    La Cognata, M.; Palmerini, S.; Spitaleri, C.; Indelicato, I.; Mukhamedzhanov, A. M.; Lombardo, I.; Trippella, O.

    2015-06-01

    Fluorine nucleosynthesis represents one of the most intriguing open questions in nuclear astrophysics. It has triggered new measurements which may modify the presently accepted paradigm of fluorine production and establish fluorine as an accurate probe of the inner layers of asymptotic giant branch (AGB) stars. Both direct and indirect measurements have attempted to improve the recommended extrapolation to astrophysical energies, showing no resonances. In this work, we will demonstrate that the interplay between direct and indirect techniques represents the most suitable approach to attain the required accuracy for the astrophysical factor at low energies, {{E}c.m.}≲ 300 keV, which is of interest for fluorine nucleosynthesis in AGB stars. We will use the recently measured direct 19F{{(p,α )}16}O astrophysical factor in the 600 keV≲ {{E}c.m.}≲ 800 keV energy interval to renormalize the existing Trojan Horse Method (THM) data spanning the astrophysical energies, accounting for all identified sources of uncertainty. This has a twofold impact on nuclear astrophysics. It shows the robustness of the THM approach even in the case of direct data of questionable quality, as normalization is extended over a broad range, minimizing systematic effects. Moreover, it allows us to obtain more accurate resonance data at astrophysical energies, thanks to the improved 19F{{(p,α )}16}O direct data. Finally, the present work strongly calls for more accurate direct data at low energies, so that we can obtain a better fitting of the direct reaction mechanism contributing to the 19F{{(p,α )}16}O astrophysical factor. Indeed, this work points out that the major source of uncertainty affecting the low-energy S(E) factor is the estimate of the non-resonant contribution, as the dominant role of the 113 keV resonance is now well established.

  11. Status of the direct measurements of 18O(p,γ)19F and 23Na(p,γ)24Mg cross sections at astrophysical energies at LUNA

    NASA Astrophysics Data System (ADS)

    Boeltzig, A.; Pantaleo, F. R.; Best, A.; Imbriani, G.; Junker, M.

    2016-04-01

    18O(p, γ)19F and 23Na(p,γ)24Mg are reactions of astrophysical interest for example in AGB star scenarios. The rates of both reactions are potentially influenced by low-energy resonances for whose strengths either exist only values with large uncertainties, upper limits or even contradictory claims. Measurements at the Laboratory for Underground Nuclear Astrophysics (LUNA) aim at a direct observation of these low-energy resonances, and additional cross section measurements to aid a more precise determination of the reaction rates in astrophysical scenarios. We report the experimental setup and the status of the ongoing measurements of the two reactions at LUNA.

  12. In situ assessment of tumor vascularity using fluorine NMR imaging.

    PubMed

    Ceckler, T L; Gibson, S L; Hilf, R; Bryant, R G

    1990-03-01

    In situ fluorine NMR imaging has been used to measure vascularity in subcutaneously implanted mammary tumors. Oxyferol, a perfluorinated blood substitute comprised of an emulsion of 25% w/v perfluorotributylamine, was used as a tracer. Following iv administration, this perfluorocarbon emulsion remains primarily in the vasculature during the image acquisition period. The distribution of the PFTA in the 19F NMR image gives a map of tissue regions with intact vascularity. This technique has been used to demonstrate decreased blood flow in necrotic regions of R3230AC mammary tumors in which vasculature had been damaged either as a result of spontaneous necrosis or by photodynamic therapy (PDT). Damage to tumor vascularity following PDT was observed prior to the development of necrosis. PMID:2325542

  13. Modern NMR spectroscopy: a guide for chemists

    SciTech Connect

    Sanders, J.K.M.; Hunter, B.K.

    1988-01-01

    The aim of the authors of Modern NMR Spectroscopy is to bridge the communication gap between the chemist and the spectroscopist. The approach is nonmathematical, descriptive, and pictorial. To illustrate the ideas introduced in the text, the authors provide original spectra obtained specially for this purpose. Examples include spectroscopy of protons, carbon, and less receptive nuclei of interest to inorganic chemists. The authors succeed in making high-resolution NMR spectroscopy comprehensible for the average student or chemist.

  14. Probing Cancer Cell Metabolism Using NMR Spectroscopy.

    PubMed

    Hollinshead, Kate E R; Williams, Debbie S; Tennant, Daniel A; Ludwig, Christian

    2016-01-01

    Altered cellular metabolism is now accepted to be at the core of many diseases including cancer. Over the past 20 years, NMR has become a core technology to study these metabolic perturbations in detail. This chapter reviews current NMR-based methods for steady-state metabolism and, in particular, the use of non-radioactive stable isotope-enriched tracers. Opportunities and challenges for each method, such as 1D (1)H NMR spectroscopy and (13)C carbon-based NMR spectroscopic methods, are discussed. Ultimately, the combination of NMR and mass spectra as orthogonal technologies are required to compensate for the drawbacks of each technique when used singly are discussed. PMID:27325263

  15. Diamond deposition and defect chemistry studied via solid state NMR

    NASA Astrophysics Data System (ADS)

    Gleason, Karen K.

    1994-06-01

    Diamond defects were quantified by nuclear magnetic resonance (NMR). While maintaining the macroscopic integrity of the films, concentrations between 0.001 and 1.0 at.% H were measured, among the lowest ever reported by solid-state 1H NMR. These concentrations were correlated to infrared absorption in the 8 to 10 micron region and to thermal conductivity. Despite the low concentrations, Multiple Quantum NMR reveals a high degree of hydrogen clustering consistent with grain boundary passivation. Most hydrogen is rigidly held, but some, probably in -OCH3 and -NCH3 defects, undergoes rotation at room temperature. Similar results were obtained for hot-filament, microwave-plasma and DC arc-jet films, suggesting a common surface chemistry, but no hydrogen was detected in an as-deposited combustion film. 13C NMR provided the first quantitative determination of non-diamond bonded carbon defects, providing a benchmark for Raman spectroscopy, the primary characterization method for diamond. Selective 13C labeling demonstrated heterogeneous reactions involving carbon occur at the hot-filament. With high-speed magic-angle-spinning 19F NMR, CFx (x=1-3) functionalities were resolved on the surface of plasma-treated diamond powder. Understanding these defects impacts the understanding of film growth mechanisms and structure-property relationships for CVD diamond.

  16. Free variable selection QSPR study to predict 19F chemical shifts of some fluorinated organic compounds using Random Forest and RBF-PLS methods

    NASA Astrophysics Data System (ADS)

    Goudarzi, Nasser

    2016-04-01

    In this work, two new and powerful chemometrics methods are applied for the modeling and prediction of the 19F chemical shift values of some fluorinated organic compounds. The radial basis function-partial least square (RBF-PLS) and random forest (RF) are employed to construct the models to predict the 19F chemical shifts. In this study, we didn't used from any variable selection method and RF method can be used as variable selection and modeling technique. Effects of the important parameters affecting the ability of the RF prediction power such as the number of trees (nt) and the number of randomly selected variables to split each node (m) were investigated. The root-mean-square errors of prediction (RMSEP) for the training set and the prediction set for the RBF-PLS and RF models were 44.70, 23.86, 29.77, and 23.69, respectively. Also, the correlation coefficients of the prediction set for the RBF-PLS and RF models were 0.8684 and 0.9313, respectively. The results obtained reveal that the RF model can be used as a powerful chemometrics tool for the quantitative structure-property relationship (QSPR) studies.

  17. Analysis of the 19F(p, α0)16O reaction at low energies and the spectroscopy of 20Ne

    NASA Astrophysics Data System (ADS)

    Lombardo, I.; Dell'Aquila, D.; Campajola, L.; Rosato, E.; Spadaccini, G.; Vigilante, M.

    2013-12-01

    The investigation of the 19F(p, α0) reaction at low bombarding energies allows the study of the spectroscopy of the 20Ne compound nucleus in an energy region where the existence of quartet excitations has been suggested in the literature. Moreover, this reaction plays a major role in the fourth branch of the CNO cycle since it is relevant for the correct description of the hydrogen burning of fluorine in stars. For these reasons, we decided to investigate the 19F(p, α0) reaction in the Ep ≃ 0.6-1 MeV energy range. The analysis of angular distributions and excitation functions allows one to improve the 20Ne spectroscopy in an excitation energy region where some ambiguities concerning Jπ assignments exist in the literature. In particular, the present data suggest a Jπ = 0+ assignment to the Ex = 13.642 MeV resonance. For this state, both partial and reduced widths for the α0 channel have been deduced. The trend of the astrophysical factor has been obtained from the integrated cross section. A comparison of the present results with data reported in the literature is also discussed.

  18. The fluorine destruction in stars: First experimental study of the {sup 19}F(p,{alpha}){sup 16}O reaction at astrophysical energies

    SciTech Connect

    La Cognata, M.; Mukhamedzhanov, A.; Spitaleri, C.; Indelicato, I.; Aliotta, M.; Burjan, V.; Cherubini, S.; Coc, A.; Gulino, M.; Hons, Z.; Kiss, G. G.; Kroha, V.; Lamia, L.; Mrazek, J.; Palmerini, S.; Piskor, S.; Pizzone, R. G.; Puglia, S. M. R.; Rapisarda, G. G.; Romano, S.; and others

    2012-11-12

    The {sup 19}F(p,{alpha}){sup 16}O reaction is an important fluorine destruction channel in the proton-rich outer layers of asymptotic giant branch (AGB) stars and it might also play a role in hydrogendeficient post-AGB star nucleosynthesis. So far, available direct measurements do not reach the energy region of astrophysical interest (E{sub cm}{approx} 300 keV), because of the hindrance effect of the Coulomb barrier. The Trojan Horse (TH) method was thus used to access this energy region, by extracting the quasi-free contribution to the {sup 2}H({sup 19}F,{alpha}{sup 16}O)n reaction. The TH measurement of the {alpha}{sub 0} channel, which is the dominant one at such energies, shows the presence of resonant structures not observed before that cause an increase of the reaction rate at astrophysical temperatures up to a factor of 1.7, with potential important consequences for stellar nucleosynthesis.

  19. LEGO-NMR spectroscopy: a method to visualize individual subunits in large heteromeric complexes.

    PubMed

    Mund, Markus; Overbeck, Jan H; Ullmann, Janina; Sprangers, Remco

    2013-10-18

    Seeing the big picture: Asymmetric macromolecular complexes that are NMR active in only a subset of their subunits can be prepared, thus decreasing NMR spectral complexity. For the hetero heptameric LSm1-7 and LSm2-8 rings NMR spectra of the individual subunits of the complete complex are obtained, showing a conserved RNA binding site. This LEGO-NMR technique makes large asymmetric complexes accessible to detailed NMR spectroscopic studies. PMID:23946163

  20. Synthesis and x-ray structural characterization of binuclear iridium(I) and rhodium(I) hydroxypyridinate complexes. 1. Complete assignment of the /sup 1/H NMR spectra by two-dimensional and NOE techniques. The nature of inside and outside /sup 1/H chemical shift differences

    SciTech Connect

    Rodman, G.S.; Mann, K.R.

    1988-09-21

    Six new d/sup 8/-d/sup 8/ complexes, (Ir(COD)(..mu..-hp))/sub 2/, (Ir(COD)(..mu..-mhp))/sub 2/, (Ir(COD)(..mu..-chp))/sub 2/, (Ir(COD)(..mu..-2hq))/sub 2/, (Rh(COD)(..mu..-hp))/sub 2/, and (Rh(COD)(..mu..-mhp))/sub 2/ (hp = 2-hydroxyphridinate, mhp = 6-methyl-2-hydroxypyridinate, chp = 6-chloro-2-hydroxypyridinate, 2hq = 2-hydroxyquinolate, COD = 1,5-cyclooctadiene), were synthesized and characterized by /sup 1/H NMR, /sup 13/C NMR, and IR spectroscopy and FAB mass spectrometry. X-ray crystallographic analyses of the isostructural (M(COD)(..mu..-mhp))/sub 2/ (M = Ir and Rh) complexes confirmed the binuclear nature of the complexes. The complete assignment of the /sup 1/H NMR spectrum of (Ir(COD)(..mu..-hp))/sub 2/ (and by analogy, the spectra of the other five complexes) was carried out with selective decoupling, nuclear Overhauser effect (NOE), and two-dimensional NMR techniques. The NOE observed between hp proton H5 and COD proton H15 allowed the precise assignment of all 12 COD resonances. Olefinic proton H12 (trans to N and outside) resonates downfield of olefinic proton H11 (trans to N and inside). Olefininc proton H15 (trans to O and outside) resonates upfield of olefinic proton H16 (trans to O and inside). The endo methylene protons resonate upfield of the exo methylene protons. The inside/outside chemical shift differences observed for these compounds are ascribed to steric and magnetic anisotropy effects. The crystallographic data are presented. The molecular structure of the complexes is discussed in detail. 39 references, 5 figures, 9 tables.

  1. Effects of fluoride on in vitro enamel demineralization analyzed by ¹⁹F MAS-NMR.

    PubMed

    Mohammed, N R; Kent, N W; Lynch, R J M; Karpukhina, N; Hill, R; Anderson, P

    2013-01-01

    The mechanistic action of fluoride on inhibition of enamel demineralization was investigated using (19)F magic angle spinning nuclear magnetic resonance (MAS-NMR). The aim of this study was to monitor the fluoride-mineral phase formed on the enamel as a function of the concentration of fluoride ions [F(-)] in the demineralizing medium. The secondary aim was to investigate fluorapatite formation on enamel in the mechanism of fluoride anti-caries efficacy. Enamel blocks were immersed into demineralization solutions of 0.1 M acetic acid (pH 4) with increasing concentrations of fluoride up to 2,262 ppm. At and below 45 ppm [F(-)] in the solution, (19)F MAS-NMR showed fluoride-substituted apatite formation, and above 45 ppm, calcium fluoride (CaF2) formed in increasing proportions. Further increases in [F(-)] caused no further reduction in demineralization, but increased the proportion of CaF2 formed. Additionally, the combined effect of strontium and fluoride on enamel demineralization was also investigated using (19)F MAS-NMR. The presence of 43 ppm [Sr(2+)] in addition to 45 ppm [F(-)] increases the fraction of fluoride-substituted apatite, but delays formation of CaF2 when compared to the demineralization of enamel in fluoride-only solution. PMID:23712030

  2. Dual Screening of BPTF and Brd4 Using Protein-Observed Fluorine NMR Uncovers New Bromodomain Probe Molecules.

    PubMed

    Urick, Andrew K; Hawk, Laura M L; Cassel, Melissa K; Mishra, Neeraj K; Liu, Shuai; Adhikari, Neeta; Zhang, Wei; dos Santos, Camila O; Hall, Jennifer L; Pomerantz, William C K

    2015-10-16

    Bromodomain-containing protein dysregulation is linked to cancer, diabetes, and inflammation. Selective inhibition of bromodomain function is a newly proposed therapeutic strategy. We describe a (19)F NMR dual screening method for small molecule discovery using fluorinated tryptophan resonances on two bromodomain-containing proteins. The chemical shift dispersion of (19)F resonances within fluorine-labeled proteins enables the simultaneous analysis of two fluorinated bromodomains by NMR. A library of 229 small molecules was screened against the first bromodomain of Brd4 and the BPTF bromodomain. We report the first small molecule selective for BPTF over Brd4, termed AU1. The Kd = 2.8 μM for AU1, which is active in a cell-based reporter assay. No binding is detected with Brd4. Three new Brd4 inhibitors with submicromolar affinity were also discovered. Brd4 hits were validated in a thermal stability assay and potency determined via fluorescence anisotropy. The speed, ease of interpretation, and low protein concentration needed for protein-observed (19)F NMR experiments in a multiprotein format offers a new method to discover and characterize selective ligands for bromodomain-containing proteins. PMID:26158404

  3. GEL-STATE NMR OF BALL-MILLED WHOLE CELL WALLS IN DMSO-d6 USING 2D SOLUTION-STATE NMR SPECTROSCOPY

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Plant cell walls were used for obtaining 2D solution-state NMR spectra without actual solubilization or structural modification. Ball-milled whole cell walls were swelled directly in the NMR tube with DMSO-d6 where they formed a gel. There are relatively few gel-state NMR studies. Most have involved...

  4. An investigation of the structure and bond rotational potential of some fluorinated ethanes by NMR spectroscopy of solutions in nematic liquid crystalline solvents.

    PubMed

    Emsley, J W; Longeri, M; Merlet, D; Pileio, G; Suryaprakash, N

    2006-06-01

    NMR spectra of 1,2-dibromo-1,1-difluoroethane and 1-bromo-2-iodo-tetrafluoroethane dissolved in nematic liquid crystalline solvents have been analysed to yield the magnitudes and signs of the scalar couplings, J(ij), and total anisotropic couplings, T(ij), between all the (1)H, (19)F, and (13)C nuclei, except for those between two (13)C nuclei. The values obtained for T(ij) in principle contain a contribution from J(ij)(aniso), the component along the static applied magnetic field of the anisotropic part of the electron-mediated spin-spin coupling. Neglecting this contribution allows partially averaged dipolar couplings, D(ij), to be extracted from the T(ij), and these were used to determine the structure, orientational order, and the conformational distribution generated by rotation about the C-C bond. The values obtained are compared with the results of calculations by ab initio and density functional methods. The differences found are no greater than those obtained for similar compounds which do not contain fluorine, so that there is no definitive evidence for significant contributions from J(CF)(aniso) or J(FF)(aniso) in the two compounds studied. PMID:16554180

  5. An investigation of the structure and bond rotational potential of some fluorinated ethanes by NMR spectroscopy of solutions in nematic liquid crystalline solvents

    NASA Astrophysics Data System (ADS)

    Emsley, J. W.; Longeri, M.; Merlet, D.; Pileio, G.; Suryaprakash, N.

    2006-06-01

    NMR spectra of 1,2-dibromo-1,1-difluoroethane and 1-bromo-2-iodo-tetrafluoroethane dissolved in nematic liquid crystalline solvents have been analysed to yield the magnitudes and signs of the scalar couplings, Jij, and total anisotropic couplings, Tij, between all the 1H, 19F, and 13C nuclei, except for those between two 13C nuclei. The values obtained for Tij in principle contain a contribution from Jijaniso, the component along the static applied magnetic field of the anisotropic part of the electron-mediated spin-spin coupling. Neglecting this contribution allows partially averaged dipolar couplings, Dij, to be extracted from the Tij, and these were used to determine the structure, orientational order, and the conformational distribution generated by rotation about the C-C bond. The values obtained are compared with the results of calculations by ab initio and density functional methods. The differences found are no greater than those obtained for similar compounds which do not contain fluorine, so that there is no definitive evidence for significant contributions from JCFaniso or JFFaniso in the two compounds studied.

  6. NMR study of some coumarins and furocoumarins methylated

    NASA Astrophysics Data System (ADS)

    Miranda, R.; Santana, L.; Uriarte, E.; Zagotto, G.

    1994-01-01

    The 1H and 13C NMR spectra of various methylcoumarins and methylfurocoumarins are reported. All signals were assigned and the influence on chemical shifts of methylation at various positions was determined.

  7. Estimation of angular distribution of neutron dose using time-of-flight for 19F+Al system at 110 MeV

    NASA Astrophysics Data System (ADS)

    Nandy, Maitreyee; Sunil, C.; Maiti, Moumita; Palit, R.; Sarkar, P. K.

    2007-06-01

    We have reported measured angular and energy distributions of neutron dose from 110 MeV 19F projectiles bombarding a thick aluminum target. The measurements are carried out with BC501 liquid scintillator detector using the time-of-flight technique. We have measured neutron energy distributions at 0∘, 30∘, 60∘, 90∘, and 120∘ and converted them to dose distributions using the ICRP recommended fluence to ambient dose equivalent and absorbed dose conversion coefficients. Similar conversions to ambient dose equivalent are done for theoretically estimated distributions from the nuclear reaction model code EMPIRE-2.18. The experimental results are compared with calculated ambient dose equivalent from different empirical formulations proposed by earlier workers. Based on the comparison, we have attempted modifications of the parameters in these empirical expressions.

  8. Absolute (γ,p0) and (γ,p1) cross sections and angular distributions for the light, deformed nucleus 19F

    NASA Astrophysics Data System (ADS)

    Kerkhove, E.; Ferdinande, H.; van de Vyver, R.; Berkvens, P.; van Otten, P.; van Camp, E.; Ryckbosch, D.

    1984-06-01

    Absolute (γ,p0) and (γ,p1) differential cross sections for 19F have been measured at seven angles in the energy interval between 13.4 and 25.8 MeV. A sum of Legendre polynomials was fitted to the angular distributions to deduce the angular distribution coefficients. The (γ,p0) and (γ,p1) cross sections have a similar magnitude and represent a minor fraction of the total photoproton channel. The global difference between the two cross sections is attributed to configurational splitting effects. From the (γ,p0) angular distribution coefficients, an E2 cross section was estimated, contributing about 37% to the total E2 energy-weighted sum rule.

  9. Impact of reduction on the properties of metal bisdithiolenes: multinuclear solid-state NMR and structural studies on Pt(tfd)2 and its reduced forms.

    PubMed

    Tang, Joel A; Kogut, Elzbieta; Norton, Danielle; Lough, Alan J; McGarvey, Bruce R; Fekl, Ulrich; Schurko, Robert W

    2009-03-19

    Transition-metal dithiolene complexes have interesting structures and fascinating redox properties, making them promising candidates for a number of applications, including superconductors, photonic devices, chemical sensors, and catalysts. However, not enough is known about the molecular electronic origins of these properties. Multinuclear solid-state NMR spectroscopy and first-principles calculations are used to examine the molecular and electronic structures of the redox series [Pt(tfd)(2)](z-) (tfd = S(2)C(2)(CF(3))(2); z = 0, 1, 2; the anionic species have [NEt(4)](+) countercations). Single-crystal X-ray structures for the neutral (z = 0) and the fully reduced forms (z = 2) were obtained. The two species have very similar structures but differ slightly in their intraligand bond lengths. (19)F-(195)Pt CP/CPMG and (195)Pt magic-angle spinning (MAS) NMR experiments are used to probe the diamagnetic (z = 0, 2) species, revealing large platinum chemical shielding anisotropies (CSA) with distinct CS tensor properties, despite the very similar structural features of these species. Density functional theory (DFT) calculations are used to rationalize the large platinum CSAs and CS tensor orientations of the diamagnetic species using molecular orbital (MO) analysis, and are used to explain their distinct molecular electronic structures in the context of the NMR data. The paramagnetic species (z = 1) is examined using both EPR spectroscopy and (13)C and (19)F MAS NMR spectroscopy. Platinum g-tensor components were determined by using solid-state EPR experiments. The unpaired electron spin densities at (13)C and (19)F nuclei were measured by employing variable-temperature (13)C and (19)F NMR experiments. DFT and ab initio calculations are able to qualitatively reproduce the experimentally measured g-tensor components and spin densities. The combination of experimental and theoretical data confirm localization of unpaired electron density in the pi-system of the

  10. Development of Halbach magnet for portable NMR device

    NASA Astrophysics Data System (ADS)

    Doğan, N.; Topkaya, R.; Subaşi, H.; Yerli, Y.; Rameev, B.

    2009-03-01

    Nuclear magnetic resonance (NMR) has enormous potential for various applications in industry as the on-line or at-line test/control device of process environments. Advantage of NMR is its non-destructive nature, because it does not require the measurement probe to have a contact with the tested media. Despite of the recent progress in this direction, application of NMR in industry is still very limited. This is related to the technical and analytical complications of NMR as a method, and high cost of NMR analyzers available at the market. However in many applications, NMR is a very useful technique to test various products and to monitor quantitatively industrial processes. Fortunately usually there is no need in a high-field superconducting magnets to obtain the high-resolution spectra with the detailed information on chemical shifts and coupling-constant. NMR analyzers are designed to obtain the relaxation parameters by measuring the NMR spectra in the time domain rather than in frequency domain. Therefore it is possible to use small magnetic field (and low frequency of 2-60 MHz) in NMR systems, based on permanent magnet technology, which are specially designed for specific at-line and on-line process applications. In this work we present the permanent magnet system developed to use in the portative NMR devices. We discuss the experimental parameters of the designed Halbach magnet system and compare them with results of theoretical modelling.

  11. Two-dimensional NMR spectrometry

    SciTech Connect

    Farrar, T.C.

    1987-06-01

    This article is the second in a two-part series. In part one (ANALYTICAL CHEMISTRY, May 15) the authors discussed one-dimensional nuclear magnetic resonance (NMR) spectra and some relatively advanced nuclear spin gymnastics experiments that provide a capability for selective sensitivity enhancements. In this article and overview and some applications of two-dimensional NMR experiments are presented. These powerful experiments are important complements to the one-dimensional experiments. As in the more sophisticated one-dimensional experiments, the two-dimensional experiments involve three distinct time periods: a preparation period, t/sub 0/; an evolution period, t/sub 1/; and a detection period, t/sub 2/.

  12. NMR investigation of Ag nanoparticles

    NASA Astrophysics Data System (ADS)

    Son, Kwanghyo; Jang, Zeehoon

    2013-01-01

    109Ag nuclear magnetic resonance (NMR) and relaxation measurements have been performed on two powder samples of Ag nanoparticles with average sizes of 20 nm and 80 nm. The measurements have been done in an external field of 9.4 T and in the temperature range 10 K < T < 280 K. The 109Ag NMR spectra for both samples have close to Lorentzian shapes and turn out to be mixtures of homogeneous and inhomogeneous lines. The linewidth Δ ν at room temperature is 1.3 kHz for both samples and gradually increases with decreasing temperature. Both the Knight shift ( K) and the nuclear spin-lattice relaxation rate (1/ T 1) are observed to be almost identical to the values reported for the bulk Ag metal, whereby the Korringa ratio R(= K 2 T 1 T/S) is found to be 2.0 for both samples in the investigated temperature range.

  13. UPLC-MS, HPLC-radiometric, and NMR-spectroscopic studies on the metabolic fate of 3-fluoro-[U-14C]-aniline in the bile-cannulated rat.

    PubMed

    Athersuch, T J; Castro-Perez, J; Rodgers, C; Nicholson, J K; Wilson, Ian D

    2010-07-01

    1. A study of the rates and routes of excretion of 3-fluoro-[U-(14)C]aniline following intraperitoneal administration to male bile-cannulated rats by liquid scintillation counting (LSC) gave a total recovery of approximately 90% in the 48 h following dosing, with the majority of the dose being excreted in the urine during the first 24 h (approximately 49%). 2. The total recovery as determined by (19)F-nuclear magnetic resonance ((19)F-NMR) was approximately 49%, with the majority of the dose excreted in the first 24 h (approximately 41%). The comparatively low recovery in comparison to that obtained from LSC was due to matrix effects in bile and a contribution from metabolic defluorination. 3. High-performance liquid chromatography with radiometric profiling of urine and bile revealed a complex pattern of metabolites with the bulk of the dose excreted as a single peak. 4. Ultra-performance liquid chromatography-orthogonal acceleration time of flight mass spectrometry profiling also showed a complex pattern of metabolites, detecting approximately 21 metabolites of 3-fluoroaniline (3-FA) with six of these detected only in urine and four solely in bile. 5. (19)F-NMR revealed the presence of the parent compound and 15 metabolites in urine collected during the first 24 h after -dosing. The matrix effects of bile on (19)F-NMR spectroscopy made metabolite profiling impractical for this biofluid. The major metabolite of 3-FA was identified as 2-fluoro-4-acetamidophenol-sulfate. PMID:20443683

  14. An optical NMR spectrometer for Larmor-beat detection and high-resolution POWER NMR

    NASA Astrophysics Data System (ADS)

    Kempf, J. G.; Marohn, J. A.; Carson, P. J.; Shykind, D. A.; Hwang, J. Y.; Miller, M. A.; Weitekamp, D. P.

    2008-06-01

    Optical nuclear magnetic resonance (ONMR) is a powerful probe of electronic properties in III-V semiconductors. Larmor-beat detection (LBD) is a sensitivity optimized, time-domain NMR version of optical detection based on the Hanle effect. Combining LBD ONMR with the line-narrowing method of POWER (perturbations observed with enhanced resolution) NMR further enables atomically detailed views of local electronic features in III-Vs. POWER NMR spectra display the distribution of resonance shifts or line splittings introduced by a perturbation, such as optical excitation or application of an electric field, that is synchronized with a NMR multiple-pulse time-suspension sequence. Meanwhile, ONMR provides the requisite sensitivity and spatial selectivity to isolate local signals within macroscopic samples. Optical NMR, LBD, and the POWER method each introduce unique demands on instrumentation. Here, we detail the design and implementation of our system, including cryogenic, optical, and radio-frequency components. The result is a flexible, low-cost system with important applications in semiconductor electronics and spin physics. We also demonstrate the performance of our systems with high-resolution ONMR spectra of an epitaxial AlGaAs /GaAs heterojunction. NMR linewidths down to 4.1Hz full width at half maximum were obtained, a 103-fold resolution enhancement relative any previous optically detected NMR experiment.

  15. NMR studies of oriented molecules

    SciTech Connect

    Sinton, S.W.

    1981-11-01

    Deuterium and proton magnetic resonance are used in experiments on a number of compounds which either form liquid crystal mesophases themselves or are dissolved in a liquid crystal solvent. Proton multiple quantum NMR is used to simplify complicated spectra. The theory of nonselective multiple quantum NMR is briefly reviewed. Benzene dissolved in a liquid crystal are used to demonstrate several outcomes of the theory. Experimental studies include proton and deuterium single quantum (..delta..M = +-1) and proton multiple quantum spectra of several molecules which contain the biphenyl moiety. 4-Cyano-4'-n-pentyl-d/sub 11/-biphenyl (5CB-d/sub 11/) is studied as a pure compound in the nematic phase. The obtained chain order parameters and dipolar couplings agree closely with previous results. Models for the effective symmetry of the biphenyl group in 5CB-d/sub 11/ are tested against the experimental spectra. The dihedral angle, defined by the planes containing the rings of the biphenyl group, is found to be 30 +- 2/sup 0/ for 5DB-d/sub 11/. Experiments are also described for 4,4'-d/sub 2/-biphenyl, 4,4' - dibromo-biphenyl, and unsubstituted biphenyl.

  16. Properties of small molecular drug loading and diffusion in a fluorinated PEG hydrogel studied by H molecular diffusion NMR and F spin diffusion NMR.

    PubMed

    Mathias, Errol V; Aponte, Julia; Kornfield, Julia A; Ba, Yong

    2010-12-01

    R(f)-PEG (fluoroalkyl double-ended poly(ethylene glycol)) hydrogel is potentially useful as a drug delivery depot due to its advanced properties of sol-gel two-phase coexistence and low surface erosion. In this study, (1)H molecular diffusion nuclear magnetic resonance (NMR) and (19)F spin diffusion NMR were used to probe the drug loading and diffusion properties of the R(f)-PEG hydrogel for small anticancer drugs, 5-fluorouracil (FU) and its hydrophobic analog, 1,3-dimethyl-5-fluorouracil (DMFU). It was found that FU has a larger apparent diffusion coefficient than that of DMFU, and the diffusion of the latter was more hindered. The result of (19)F spin diffusion NMR for the corresponding freeze-dried samples indicates that a larger portion of DMFU resided in the R(f) core/IPDU intermediate-layer region (where IPDU refers to isophorone diurethane, as a linker to interconnect the R(f) group and the PEG chain) than that of FU while the opposite is true in the PEG-water phase. To understand the experimental data, a diffusion model was proposed to include: (1) hindered diffusion of the drug molecules in the R(f) core/IPDU-intermediate-layer region; (2) relatively free diffusion of the drug molecules in the PEG-water phase (or region); and (3) diffusive exchange of the probe molecules between the above two regions. This study also shows that molecular diffusion NMR combined with spin diffusion NMR is useful in studying the drug loading and diffusion properties in hydrogels for the purpose of drug delivery applications. PMID:21170115

  17. Normal coordinate analysis, molecular structure, vibrational, electronic spectra and NMR investigation of 4-Amino-3-phenyl-1H-1,2,4-triazole-5(4H)-thione by ab initio HF and DFT method

    NASA Astrophysics Data System (ADS)

    Bahgat, Khaled; Fraihat, Safwan

    2015-01-01

    In the present work, the characterization of 4-Amino-3-phenyl-1H-1,2,4-triazole-5(4H)-thione (APTT) molecule was carried out by quantum chemical method and vibrational spectral techniques. The FT-IR (4000-400 cm-1) and FT-Raman (4000-100 cm-1) spectra of APTT were recorded in solid phase. The UV-Vis absorption spectrum of the APTT was recorded in the range of 200-400 nm. The molecular geometry, harmonic vibrational frequencies and bonding features of APTT in the ground state have been calculated by HF and DFT methods using 6-311++G(d,p) basis set. The complete vibrational frequency assignments were made by normal coordinate analysis (NCA) following the scaled quantum mechanical force field methodology (SQMF). The molecular stability and bond strength were investigated by applying the natural bond orbital analysis (NBO) and natural localized molecular orbital (NLMO) analysis. The electronic properties, such as excitation energies, absorption wavelength, HOMO and LUMO energies were performed by time depended DFT (TD-DFT) approach. The 1H and 13C nuclear magnetic resonance chemical shift of the molecule were calculated using the gauge-including atomic orbital (GIAO) method and compared with experimental results. Finally, the calculation results were analyzed to simulate infrared, FT-Raman and UV spectra of the title compound which shows better agreement with observed spectra.

  18. NMR analysis of biodiesel

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Biodiesel is usually analyzed by the various methods called for in standards such as ASTM D6751 and EN 14214. Nuclear magnetic resonance (NMR) is not one of these methods. However, NMR, with 1H-NMR commonly applied, can be useful in a variety of applications related to biodiesel. These include monit...

  19. Organic Spectroscopy Laboratory: Utilizing IR and NMR in the Identification of an Unknown Substance

    ERIC Educational Resources Information Center

    Glagovich, Neil M.; Shine, Timothy D.

    2005-01-01

    A laboratory experiment that emphasizes the interpretation of both infrared (IR) and nuclear magnetic resonance (NMR) spectra in the elucidation of the structure of an unknown compound was developed. The method helps students determine [to the first power]H- and [to the thirteenth power]C-NMR spectra from the structures of compounds and to…

  20. Hyperpolarized NMR of plant and cancer cell extracts at natural abundance.

    PubMed

    Dumez, Jean-Nicolas; Milani, Jonas; Vuichoud, Basile; Bornet, Aurélien; Lalande-Martin, Julie; Tea, Illa; Yon, Maxime; Maucourt, Mickaël; Deborde, Catherine; Moing, Annick; Frydman, Lucio; Bodenhausen, Geoffrey; Jannin, Sami; Giraudeau, Patrick

    2015-09-01

    Natural abundance (13)C NMR spectra of biological extracts are recorded in a single scan provided that the samples are hyperpolarized by dissolution dynamic nuclear polarization combined with cross polarization. Heteronuclear 2D correlation spectra of hyperpolarized breast cancer cell extracts can also be obtained in a single scan. Hyperpolarized NMR of extracts opens many perspectives for metabolomics. PMID:26215673