Science.gov

Sample records for 19f nuclear magnetic

  1. Xenobiotic monitoring in plants by sup 19 F and sup 1 H nuclear magnetic resonance imaging and spectroscopy

    SciTech Connect

    Rollins, A.; Barber, J.; Wood, B. ); Elliott, R. )

    1989-12-01

    {sup 19}F and {sup 1}H nuclear magnetic resonance imaging and spectroscopy have been used to monitor the uptake of trifluoroacetic acid in stems and leaves of Lycopersicon esculentum. The movement and location of a xenobiotic have been demonstrated in vivo by a noninvasive technique.

  2. A bisphosphonate for 19F-magnetic resonance imaging

    PubMed Central

    Kenny, Gavin D.; Shaw, Karen P.; Sivachelvam, Saranja; White, Andrew J.P.; Botnar, Rene M.; T.M. de Rosales, Rafael

    2016-01-01

    19F-magnetic resonance imaging (MRI) is a promising technique that may allow us to measure the concentration of exogenous fluorinated imaging probes quantitatively in vivo. Here, we describe the synthesis and characterisation of a novel geminal bisphosphonate (19F-BP) that contains chemically-equivalent fluorine atoms that show a single and narrow 19F resonance and a bisphosphonate group that may be used for labelling inorganic materials based in calcium phosphates and metal oxides. The potential of 19F-BP to provide contrast was analysed in vitro and in vivo using 19F-MRI. In vitro studies demonstrated the potential of 19F-BP as an MRI contrast agent in the millimolar concentration range with signal-to-noise ratios (SNR) comparable to previously reported fluorinated probes. The preliminary in vivo MRI study reported here allowed us to visualise the biodistribution of 19F-BP, showing uptake in the liver and in the bladder/urinary system areas. However, bone uptake was not observed. In addition, 19F-BP showed undesirable toxicity effects in mice that prevent further studies with this compound at the required concentrations for MRI contrast. This study highlights the importance of developing 19F MRI probes with the highest signal intensity achievable. PMID:27110036

  3. In vitro quantitative ((1))H and ((19))F nuclear magnetic resonance spectroscopy and imaging studies of fluvastatin™ in Lescol® XL tablets in a USP-IV dissolution cell.

    PubMed

    Zhang, Qilei; Gladden, Lynn; Avalle, Paolo; Mantle, Michael

    2011-12-20

    Swellable polymeric matrices are key systems in the controlled drug release area. Currently, the vast majority of research is still focused on polymer swelling dynamics. This study represents the first quantitative multi-nuclear (((1))H and ((19))F) fast magnetic resonance imaging study of the complete dissolution process of a commercial (Lescol® XL) tablet, whose formulation is based on the hydroxypropyl methylcellulose (HPMC) polymer under in vitro conditions in a standard USP-IV (United States Pharmacopeia apparatus IV) flow-through cell that is incorporated into high field superconducting magnetic resonance spectrometer. Quantitative RARE ((1))H magnetic resonance imaging (MRI) and ((19))F nuclear magnetic resonance (NMR) spectroscopy and imaging methods have been used to give information on: (i) dissolution media uptake and hydrodynamics; (ii) active pharmaceutical ingredient (API) mobilisation and dissolution; (iii) matrix swelling and dissolution and (iv) media activity within the swelling matrix. In order to better reflect the in vivo conditions, the bio-relevant media Simulated Gastric Fluid (SGF) and Fasted State Simulated Intestinal Fluid (FaSSIF) were used. A newly developed quantitative ultra-fast MRI technique was applied and the results clearly show the transport dynamics of media penetration and hydrodynamics along with the polymer swelling processes. The drug dissolution and mobility inside the gel matrix was characterised, in parallel to the ((1))H measurements, by ((19))F NMR spectroscopy and MRI, and the drug release profile in the bulk solution was recorded offline by UV spectrometer. We found that NMR spectroscopy and 1D-MRI can be uniquely used to monitor the drug dissolution/mobilisation process within the gel layer, and the results from ((19))F NMR spectra indicate that in the gel layer, the physical mobility of the drug changes from "dissolved immobilised drug" to "dissolved mobilised drug".

  4. Site-specific solvent exposure analysis of a membrane protein using unnatural amino acids and {sup 19}F nuclear magnetic resonance

    SciTech Connect

    Shi, Pan; Li, Dong; Chen, Hongwei; Xiong, Ying; Tian, Changlin

    2011-10-22

    Highlights: {yields} Solvent isotope shift analysis of {sup 19}F-tfmF in different H{sub 2}O/D{sub 2}O molar ratio. {yields} Correlation between solvent isotope shift of {sup 19}F-spins and solvent exposure analysis. {yields} Solvent exposure analysis of membrane proteins. -- Abstract: Membrane proteins play an essential role in cellular metabolism, transportation and signal transduction across cell membranes. The scarcity of membrane protein structures has thus far prevented a full understanding of their molecular mechanisms. Preliminary topology studies and residue solvent exposure analysis have the potential to provide valuable information on membrane proteins of unknown structure. Here, a {sup 19}F-containing unnatural amino acid (trimethylfluoro-phenylalanine, tfmF) was applied to accomplish site-specific {sup 19}F spin incorporation at different sites in diacylglycerol kinase (DAGK, an Escherichia coli membrane protein) for site-specific solvent exposure analysis. Due to isotope effect on {sup 19}F spins, a standard curve for {sup 19}F-tfmF chemical shifts was drawn for varying solvent H{sub 2}O/D{sub 2}O ratios. Further site-specific {sup 19}F solvent isotope shift analysis was conducted for DAGK to distinguish residues in water-soluble loops, interfacial areas or hydrophobic membrane regions. This site-specific solvent exposure analysis method could be applied for further topological analysis of other membrane proteins.

  5. (19)F Nuclear Magnetic Resonance Spectrometric Determination of the Partition Coefficients of Flutamide and Nilutamide (Antiprostate Cancer Drugs) in a Lipid Nano-Emulsion and Prediction of Its Encapsulation Efficiency for the Drugs.

    PubMed

    Takegami, Shigehiko; Kitamura, Keisuke; Ohsugi, Mayuko; Konishi, Atsuko; Kitade, Tatsuya

    2016-12-01

    To design a useful lipid drug carrier having a high encapsulation efficiency (EE%) for the antiprostate cancer drugs flutamide (FT) and nilutamide (NT), a lipid nano-emulsion (LNE) was prepared with soybean oil (SO), phosphatidylcholine (PC), and sodium palmitate, and the partition coefficients (K ps) of the drugs for the LNE were determined by (19)F nuclear magnetic resonance (NMR) spectrometry. The (19)F NMR signal of the trifluoromethyl group of both drugs showed a downfield shift from an internal standard (trifluoroethanol) and broadening according to the increase in the lipid concentration due to their interaction with LNE particles. The difference in the chemical shift (Δδ) of each drug caused by the addition of LNE was measured under different amounts of LNE, and the K p values were calculated from the Δδ values. The results showed that FT has higher lipophilicity than NT. The total lipid concentration (SO + PC) required to encapsulate each drug into LNE with an EE% of more than 95% was calculated from the K p values as 93.3 and 189.9 mmol/L for FT and NT, respectively. For an LNE prepared with the total lipid concentration of 215 mmol/L, the predicted EE% values were 98 and 96% for FT and NT, respectively, while the experimental EE% values determined by a centrifugation method were approximately 99% for both drugs. Thus, the (19)F NMR spectrometric method is a useful technique to obtain the K p values of fluorinated drugs and thereby predict the theoretical lipid concentrations and prepare LNEs with high EE% values.

  6. Injectable hyaluronic acid hydrogel for 19F magnetic resonance imaging.

    PubMed

    Yang, Xia; Sun, Yi; Kootala, Sujit; Hilborn, Jöns; Heerschap, Arend; Ossipov, Dmitri

    2014-09-22

    We report on a 19F labeled injectable hyaluronic acid (HA) hydrogel that can be monitored by both 1H and 19F MR imaging. The HA based hydrogel formed via carbazone reaction can be obtained within a minute by simple mixing of HA-carbazate and HA-aldehyde derivatized polymers. 19F contrast agent was linked to with carbazate and thiol dually functionalized HA via orthogonal Michael addition reaction which afforded cross-linkable and 19F labeled HA. The 19F labeling of HA polymer did not affect the mechanical properties of the formed hydrogel. As a result, the shape of a hydrogel sample could be imaged very well by both 1H MRI and high resolution 19F MRI. This hydrogel has high potential in clinical applications since it is injectable, biocompatible, and can be tracked in a minimally invasive manner. The present approach can be applied in preparation of injectable 19F labeled hydrogel biomaterials from other natural biomacromolecules.

  7. Fluorinated polyurethane scaffolds for 19F magnetic resonance imaging

    PubMed Central

    Rahimi, Khosrow; Shi, Yang; Schulz, Volkmar; Kuehne, Alexander J. C.; Jockenhoevel, Stefan; Kiessling, Fabian

    2017-01-01

    Polymers are increasingly employed in implant materials. To reduce the incidence of complications, which in the case of vascular grafts include incorrect placement and restenosis, materials are needed which allow for image-guided implantation, as well as for accurate and efficient postoperative implant imaging. We here describe amorphous fluorinated polymers based on thermoplastic polyurethane (19F-TPU), and show that are useful starting materials for developing tissue-engineered vascular grafts which can be detected using 19F MRI.

  8. Probe-Specific Procedure to Estimate Sensitivity and Detection Limits for 19F Magnetic Resonance Imaging

    PubMed Central

    Taylor, Alexander J.; Granwehr, Josef; Lesbats, Clémentine; Krupa, James L.; Six, Joseph S.; Pavlovskaya, Galina E.; Thomas, Neil R.; Auer, Dorothee P.; Meersmann, Thomas; Faas, Henryk M.

    2016-01-01

    Due to low fluorine background signal in vivo, 19F is a good marker to study the fate of exogenous molecules by magnetic resonance imaging (MRI) using equilibrium nuclear spin polarization schemes. Since 19F MRI applications require high sensitivity, it can be important to assess experimental feasibility during the design stage already by estimating the minimum detectable fluorine concentration. Here we propose a simple method for the calibration of MRI hardware, providing sensitivity estimates for a given scanner and coil configuration. An experimental “calibration factor” to account for variations in coil configuration and hardware set-up is specified. Once it has been determined in a calibration experiment, the sensitivity of an experiment or, alternatively, the minimum number of required spins or the minimum marker concentration can be estimated without the need for a pilot experiment. The definition of this calibration factor is derived based on standard equations for the sensitivity in magnetic resonance, yet the method is not restricted by the limited validity of these equations, since additional instrument-dependent factors are implicitly included during calibration. The method is demonstrated using MR spectroscopy and imaging experiments with different 19F samples, both paramagnetically and susceptibility broadened, to approximate a range of realistic environments. PMID:27727294

  9. Defect induced magnetism in highly oriented pyrolytic graphite: bulk magnetization and 19F hyperfine interaction studies.

    PubMed

    Mohanta, S K; Mishra, S N; Davane, S M; Srivastava, S K

    2012-02-29

    We have made bulk and local investigations on defect induced magnetism in highly oriented pyrolytic graphite (HOPG) irradiated with a 40 MeV carbon beam. The local magnetic response of irradiated HOPG was studied by measuring the hyperfine field of recoil implanted (19)F using γ-ray time differential perturbed angular distribution (TDPAD) measurements. While the bulk magnetic properties of the irradiated sample show features characteristic of room temperature ferromagnetism, the hyperfine field data reflect enhanced paramagnetism with no indication of long range magnetic ordering. The experimental studies are further supported by ab initio density functional calculations. We believe that the ferromagnetic response in irradiated HOPG arises mostly from defect induced magnetic moments of carbon atoms in the near surface region, while those deep inside the host matrix remain paramagnetic.

  10. Monitoring Dendritic Cell Migration using 19F / 1H Magnetic Resonance Imaging

    PubMed Central

    Waiczies, Helmar; Guenther, Martin; Skodowski, Julia; Lepore, Stefano; Pohlmann, Andreas; Niendorf, Thoralf; Waiczies, Sonia

    2013-01-01

    Continuous advancements in noninvasive imaging modalities such as magnetic resonance imaging (MRI) have greatly improved our ability to study physiological or pathological processes in living organisms. MRI is also proving to be a valuable tool for capturing transplanted cells in vivo. Initial cell labeling strategies for MRI made use of contrast agents that influence the MR relaxation times (T1, T2, T2*) and lead to an enhancement (T1) or depletion (T2*) of signal where labeled cells are present. T2* enhancement agents such as ultrasmall iron oxide agents (USPIO) have been employed to study cell migration and some have also been approved by the FDA for clinical application. A drawback of T2* agents is the difficulty to distinguish the signal extinction created by the labeled cells from other artifacts such as blood clots, micro bleeds or air bubbles. In this article, we describe an emerging technique for tracking cells in vivo that is based on labeling the cells with fluorine (19F)-rich particles. These particles are prepared by emulsifying perfluorocarbon (PFC) compounds and then used to label cells, which subsequently can be imaged by 19F MRI. Important advantages of PFCs for cell tracking in vivo include (i) the absence of carbon-bound 19F in vivo, which then yields background-free images and complete cell selectivityand(ii) the possibility to quantify the cell signal by 19F MR spectroscopy. PMID:23542739

  11. Measured 19F(α,n) with VANDLE for Nuclear Safeguards

    NASA Astrophysics Data System (ADS)

    Peters, William; Clement, R. C. C.; Smith, M. S.; Pain, S.; Febbraro, M.; Pittman, S.; Thomspon, S.; Grinder, M.; Cizewski, J. A.; Reingold, C.; Manning, B.; Burcher, S.; Bardayan, D. W.; Tan, W.-P.; Stech, E.; Smith, M. K.; Avetisyan, R.; Gyurjinyan, A.; Lowe, M.; Ilyushkin, S.; Grzywacz, R.; Madurga, M.; Paulauskas, S. V.; Taylor, S. Z.; Smith, K.

    2015-10-01

    One of the most promising non-destructive assay (NDA) methods to monitor UF6 canisters consists of measuring gross neutron rates induced by uranium-decay alpha particles reacting with the fluorine and emitting a neutron. This method currently lacks reliable nuclear data on the 19F(α,n) reaction cross section to determine an accurate neutron yield rate for a given sample of UF6. We have measured the cross section and coincident neutron spectrum for the alpha-decay energy range using the VANDLE system. This experiment had two parts: first at Notre Dame with a LaF3 target and and a pulsed alpha-particle beam, and second at ORNL with a windowless He-gas target and a 19F beam. The motivation for this measurement and cross section results will be presented. This work is funded in part by the DOE Office of Science, the National Nuclear Security Administration SSAA and the Office of Defense Nuclear Nonproliferation R&D, and the NSF.

  12. Measurement of the 19F(α,n)22Na Cross Section for Nuclear Safeguards Science

    NASA Astrophysics Data System (ADS)

    Lowe, Marcus; Smith, M. S.; Pain, S.; Febbraro, M.; Pittman, S.; Chipps, K. A.; Thompson, S. J.; Grinder, M.; Grzywacz, R.; Smith, K.; Thornsberry, C.; Thompson, P.; Peters, W. A.; Waddell, D.; Blanchard, R.; Carls, A.; Shadrick, S.; Engelhardt, A.; Hertz-Kintish, D.; Allen, N.; Sims, H.

    2015-10-01

    Enriched uranium is commonly stored in fluoride matrices such as UF6. Alpha decays of uranium in UF6 will create neutrons via the 19F(α,n)22Na reaction. An improved cross section for this reaction will enable improved nondestructive assays of uranium content in storage cylinders at material enrichment facilities. To determine this reaction cross section, we have performed experiments using both forward and inverse kinematic techniques at the University of Notre Dame (forward) and Oak Ridge National Laboratory (inverse). Both experiments utilized the Versatile Array of Neutron Detectors at Low Energy (VANDLE) for neutron detection. The ORNL experiment also used a new ionization chamber for 22Na particle identification. Gating on the 22Na nuclei detected drastically reduced the background counts in the neutron time-of-flight spectra. The latest analysis and results will be presented for 19F beam energies ranging from 20-37 MeV. This work is funded in part by the DOE Office of Nuclear Physics, the National Nuclear Security Administration's Office of Defense Nuclear Nonproliferation R&D, and the NSF.

  13. First-Principles Study of Nuclear Quadruple Interaction of ^19F* and Binding in Solid Fluorine

    NASA Astrophysics Data System (ADS)

    Mishra, D. R.; Aryal, M. M.; Adhikari, N. P.; Badu, S. R.; Pink, R. H.; Scheicher, R. H.; Chow, Lee; Das, T. P.

    2010-03-01

    We have studied the binding energy (BE) and nuclear quadrupule interaction (NQI) parameters for the ^19F* excited nuclear state in solid fluorine as part of our investigation [1] of the properties of solid halogens using the first principles Hartree-Fock Cluster procedure combined with many-body perturbation theory (MBPT), implemented by the Gaussian set of programs. Our results show that Van der Waals interaction obtained from intermolecular electron correlation effects has dominant influence on the BE but negligible effect on the NQI parameters. For the latter, ourcalculated e^2qQ is 119.0MHz using for Q(19F*), the value of 0.072 *10-28m2 [2], and η, the asymmetry parameter, is essentially zero. The influence of rotational vibrational effects on e^2qQ is being investigated using a first-principles procedure [3] to bridge the small remaining difference with experiment (127.2 MHz) for e^2qQ [4]. [1] M.M. Aryal et al., Hyperfine Interact, 176, 51 (2007). [2] K.C.Mishra et al.,Phys. Rev.B25, 3389(1982). [3] N. Sahoo et al. Phys. Rev. Lett. 50, 913(1983) [4] H. Barfuss et al., Phys. Lett. 90A, 33(1982)

  14. Cerebral blood flow in experimental ischemia assessed by sup 19 F magnetic resonance spectroscopy in cats

    SciTech Connect

    Brunetti, A.; Nagashima, G.; Bizzi, A.; DesPres, D.J. )

    1990-10-01

    We evaluated a 19F magnetic resonance spectroscopic technique that detects Freon-23 washout as a means of measuring cerebral blood flow in halothane-anesthetized adult cats during and after transient cerebral ischemia produced by vascular occlusion. The experiments were performed to test the ability of this recently developed method to detect postischemic flow deficits. Results were consistent with postischemic hypoperfusion. The method also proved valuable for measuring small residual flow during vascular occlusion. Our experiments indicate that this method provides simple, rapid, and repeatable flow measurements that can augment magnetic resonance examinations of cerebral metabolic parameters in the study of ischemia.

  15. Hexaphyrin as a Potential Theranostic Dye for Photothermal Therapy and 19F Magnetic Resonance Imaging.

    PubMed

    Higashino, Tomohiro; Nakatsuji, Hirotaka; Fukuda, Ryosuke; Okamoto, Haruki; Imai, Hirohiko; Matsuda, Tetsuya; Tochio, Hidehito; Shirakawa, Masahiro; Tkachenko, Nikolai; Hashida, Mitsuru; Murakami, Tatsuya; Imahori, Hiroshi

    2017-02-15

    meso-Aryl substituted expanded porphyrins have two potential key features suitable for theranostic agents, excellent absorption in near infrared (NIR) region and possible introduction of multiple fluorine atoms at structurally nearly equivalent positions. Herein, hexaphyrin (hexa) was synthesized using 2,6-bis(trifluoromethyl)-4-formyl benzoate and pyrrole and evaluated as a novel theranostic expanded porphyrin possessing the above key features. Under NIR light illumination hexa showed intense photothermal and weak photodynamic effects, which were most likely due to its low-lying excited states close to a singlet oxygen. This sustained photothermal effect caused the ablation of cancer cells more effectively than the photodynamic effect of indocyanine green, a clinically used dye. In addition, hexa@cpHDL revealed potential for use in visualization of tumors by 19F magnetic resonance imaging (MRI) due to the presence of the multiple fluorine atoms. These results shed light on a latent utility of expanded porphyrins as theranostic agents in both photothermal therapy and 19F MRI.

  16. Visualizing arthritic inflammation and therapeutic response by fluorine-19 magnetic resonance imaging (19F MRI)

    PubMed Central

    2012-01-01

    Background Non-invasive imaging of inflammation to measure the progression of autoimmune diseases, such as rheumatoid arthritis (RA), and to monitor responses to therapy is critically needed. V-Sense, a perfluorocarbon (PFC) contrast agent that preferentially labels inflammatory cells, which are then recruited out of systemic circulation to sites of inflammation, enables detection by 19F MRI. With no 19F background in the host, detection is highly-specific and can act as a proxy biomarker of the degree of inflammation present. Methods Collagen-induced arthritis in rats, a model with many similarities to human RA, was used to study the ability of the PFC contrast agent to reveal the accumulation of inflammation over time using 19F MRI. Disease progression in the rat hind limbs was monitored by caliper measurements and 19F MRI on days 15, 22 and 29, including the height of clinically symptomatic disease. Naïve rats served as controls. The capacity of the PFC contrast agent and 19F MRI to assess the effectiveness of therapy was studied in a cohort of rats administered oral prednisolone on days 14 to 28. Results Quantification of 19F signal measured by MRI in affected limbs was linearly correlated with disease severity. In animals with progressive disease, increases in 19F signal reflected the ongoing recruitment of inflammatory cells to the site, while no increase in 19F signal was observed in animals receiving treatment which resulted in clinical resolution of disease. Conclusion These results indicate that 19F MRI may be used to quantitatively and qualitatively evaluate longitudinal responses to a therapeutic regimen, while additionally revealing the recruitment of monocytic cells involved in the inflammatory process to the anatomical site. This study may support the use of 19F MRI to clinically quantify and monitor the severity of inflammation, and to assess the effectiveness of treatments in RA and other diseases with an inflammatory component. PMID:22721447

  17. Using magnetic coupling to implement 1H, 19F, 13C experiments in routine high resolution NMR probes

    NASA Astrophysics Data System (ADS)

    Bowyer, Paul; Finnigan, Jim; Marsden, Brian; Taber, Bob; Zens, Albert

    2015-12-01

    We report in this paper the design of 1H, 19F, 13C circuitry using magnetic coupling which can do on demand experiments where one of the three nuclei is observed and the other two are decoupled. The implementation of this circuitry in routine NMR probes is compared with capacitive coupling methods where it was found that by using magnetic coupling the performance of the routine NMR probe was not impacted by the addition of this circuitry. It is surmised that using this type of circuitry would be highly desirable for those chemists doing routine 19F NMR.

  18. Exploiting Copper Redox for (19)F Magnetic Resonance-Based Detection of Cellular Hypoxia.

    PubMed

    Xie, Da; King, Tyler L; Banerjee, Arnab; Kohli, Vikraant; Que, Emily L

    2016-03-09

    We report a pair of fluorinated, redox-active copper complexes for potential use as (19)F MRI contrast agents for detecting cellular hypoxia. Trifluorinated Cu(II) ATSM-F3 displays the appropriate redox potential for selective accumulation in hypoxic cells and a completely quenched (19)F NMR signal that is "turned on" following reduction to Cu(I). Incubation of cancer cells with CuATSM-F3 resulted in a selective detection of (19)F signal in cells grown under hypoxic conditions.

  19. Understanding of Nuclear Quadruple Interaction of ^ 19F* and Binding Energies of Solid Fluorine at the First-Principles Level

    NASA Astrophysics Data System (ADS)

    Mishra, D. R.; Aryal, M. M.; Adhikari, N. P.; Badu, S. R.; Pink, R. H.; Scheicher, R. H.; Chow, Lee; Das, T. P.

    2009-03-01

    We have studied the binding energy (BE) and nuclear quadrupole interaction (NQI) parameters for the ^19F* excited nuclear state in solid fluorine as part of our investigation [1] of the properties of solid halogens using the first principles Hartree-Fock Cluster procedure combined with many-body perturbation theory (MBPT), implemented by the Gaussian 03 set of programs. Our results show that Van der Waals interaction obtained from intermolecular electron correlation has dominant effect on the BE but negligible effect on the NQI parameters. For the latter, our e^2qQ is 117.7MHz forQ(^19F*), 0.072 *10-28 m^2 [2] and η is essentially zero.. The influence of vibrational effects on e^2qQ is being investigated using a first-principles procedure [3] to bridge the small remaining difference with experiment. [1] M.M. Aryal et al., Hyperfine Interact, 176, 51 (2007). [2] K.C.Mishra et al.,Phys. Rev.B25, 3389(1982). [3] N. Sahoo et al. Phys. Rev. Lett. 50, 913(1983) [4] H. Barfuss et al., Phys. Lett. 90A, 33(1982).

  20. Magnetism, optical absorbance, and 19F NMR spectra of nafion films with self-assembling paramagnetic networks

    SciTech Connect

    Levin, E. M.; Chen, Q.; Bud'ko, S. L.

    2012-01-15

    Magnetization, optical absorbance, and {sup 19}F NMR spectra of Nafion transparent films as received and doped with Mn{sup 2+}, Co{sup 2+}, Fe{sup 2+}, and Fe{sup 3+} ions with and without treatment in 1H-1,2,4-triazole (trz) have been studied. Doping of Nafion with Fe{sup 2+} and Co{sup 2+} and their bridging to nitrogen of triazole yields a hybrid self-assembling paramagnetic system that exhibits interesting magnetic and optical properties. These include spin crossover phenomena between high-spin (HS) and low-spin (LS) states in Nafion-Fe{sup 2+}-trz and Nafion-Co{sup 2+}-trz accompanied by thermochromic effects in the visible range induced by temperature. A large shift of the magnetization curve induced by a magnetic field in the vicinity of the HS {leftrightarrow} LS, {approx}220 K, observed for Nafion-Fe{sup 2+}-trz has a rate of {approx}6 K/kOe, which is about three orders of magnitude larger than that in bulk spin crossover Fe{sup 2+} materials. Selective response of {sup 19}F NMR signals on doping with paramagnetic ions demonstrates that NMR can be used as spatially resolved method to study Nafion film with paramagnetic network. Both chemical shift and width of {sup 19}F NMR signals show that SO groups of Nafion, Fe or Co ions, and nitrogen of triazole are bonded whereas they form a spin crossover system. Based on a model of nanosize cylinders proposed for Nafion [K. Schmidt-Rohr and Q. Chen, Nat Mater (2008), 75], we suggest that paramagnetic ions are located inside these cylinders, forming self-assembling magnetically and optically active nanoscale networks.

  1. Tumour oxygen dynamics measured simultaneously by near-infrared spectroscopy and 19F magnetic resonance imaging in rats

    NASA Astrophysics Data System (ADS)

    Xia, Mengna; Kodibagkar, Vikram; Liu, Hanli; Mason, Ralph P.

    2006-01-01

    Simultaneous near-infrared spectroscopy (NIRS) and magnetic resonance imaging (MRI) were used to investigate the correlation between tumour vascular oxygenation and tissue oxygen tension dynamics in rat breast 13762NF tumours with respect to hyperoxic gas breathing. NIRS directly detected global variations in the oxygenated haemoglobin concentration (Δ[HbO2]) within tumours and oxygen tension (pO2) maps were achieved using 19F MRI of the reporter molecule hexafluorobenzene. Multiple correlations were examined between rates and magnitudes of vascular (Δ[HbO2]) and tissue (pO2) responses. Significant correlations were found between response to oxygen and carbogen breathing using either modality. Comparison of results for the two methods showed a correlation between the vascular perfusion rate ratio and the mean pO2 values (R2 > 0.7). The initial rates of increase of Δ[HbO2] and the slope of dynamic pO2 response, d(pO2)/dt, of well-oxygenated voxels in response to hyperoxic challenge were also correlated. These results demonstrate the feasibility of simultaneous measurements using NIRS and MRI. As expected, the rate of pO2 response to oxygen is primarily dependent upon the well perfused rather than poorly perfused vasculature. Presented in part at the 12th annual meeting of the International Society of Magnetic Resonance in Medicine, Kyoto, 2004.

  2. Annual Report FY2013-- A Kinematically Complete, Interdisciplinary, and Co-Institutional Measurement of the 19F(α,n) Cross-section for Nuclear Safeguards Science

    SciTech Connect

    Peters, William A; Smith, Michael Scott; Clement, Ryan; Tan, Wanpeng; Stech, Ed; Cizewski, J A; Febbraro, Michael; Madurga Flores, Miguel

    2013-10-01

    The goal of this proposal is to enable neutron detection for precision Non-Destructive Assays (NDAs) of actinide-fluoride samples. Neutrons are continuously generated from a UFx matrix in a container or sample as a result of the interaction of alpha particles from uranium-decay α particles with fluorine nuclei in the matrix. Neutrons from 19F(α,n)22Na were once considered a poorly characterized background for assays of UFx samples via 238U spontaneous fission neutron detection [SMI2010B]. However, the yield of decay-α-driven neutrons is critical for 234,235U LEU and HEU assays, as it can used to determine both the total amount of uranium and the enrichment [BER2010]. This approach can be extremely valuable in a variety of safeguard applications, such as cylinder monitoring in underground uranium storage facilities, nuclear criticality safety studies, nuclear materials accounting, and other nonproliferation applications. The success of neutron-based assays critically depends on an accurate knowledge of the cross section of the (α,n) reaction that generates the neutrons. The 40% uncertainty in the 19F(α,n)22Na cross section currently limits the precision of such assays, and has been identified as a key factor in preventing accurate enrichment determinations [CRO2003]. The need for higher quality cross section data for (α,n) reactions has been a recurring conclusion in reviews of the nuclear data needs to support safeguards. The overarching goal of this project is to enable neutron detection to be used for precision Non- Destructive Assays (NDAs) of actinide-fluoride samples. This will significantly advance safeguards verification at existing declared facilities, nuclear materials accounting, process control, nuclear criticality safety monitoring, and a variety of other nonproliferation applications. To reach this goal, Idaho National Laboratory (INL), in partnership with Oak Ridge National Laboratory (ORNL), Rutgers University (RU), and the University of Notre

  3. 19F Magnetic Resonance Imaging of Perfluorocarbons for the Evaluation of Response to Antibiotic Therapy in a Staphylococcus aureus Infection Model

    PubMed Central

    Jakob, Peter; Ohlsen, Knut

    2013-01-01

    Background The emergence of antibiotic resistant bacteria in recent decades has highlighted the importance of developing new drugs to treat infections. However, in addition to the design of new drugs, the development of accurate preclinical testing methods is essential. In vivo imaging technologies such as bioluminescence imaging (BLI) or magnetic resonance imaging (MRI) are promising approaches. In a previous study, we showed the effectiveness of 19F MRI using perfluorocarbon (PFC) emulsions for detecting the site of Staphylococcus aureus infection. In the present follow-up study, we investigated the use of this method for in vivo visualization of the effects of antibiotic therapy. Methods/Principal findings Mice were infected with S. aureus Xen29 and treated with 0.9% NaCl solution, vancomycin or linezolid. Mock treatment led to the highest bioluminescence values during infection followed by vancomycin treatment. Counting the number of colony-forming units (cfu) at 7 days post-infection (p.i.) showed the highest bacterial burden for the mock group and the lowest for the linezolid group. Administration of PFCs at day 2 p.i. led to the accumulation of 19F at the rim of the abscess in all mice (in the shape of a hollow sphere), and antibiotic treatment decreased the 19F signal intensity and volume. Linezolid showed the strongest effect. The BLI, cfu, and MRI results were comparable. Conclusions 19F-MRI with PFCs is an effective non-invasive method for assessing the effects of antibiotic therapy in vivo. This method does not depend on pathogen specific markers and can therefore be used to estimate the efficacy of antibacterial therapy against a broad range of clinically relevant pathogens, and to localize sites of infection. PMID:23724049

  4. 19F single-quantum and 19F-33S heteronuclear multiple-quantum coherence NMR of SF6 in thermotropic nematogens and in the gas phase.

    PubMed

    Tervonen, Henri; Saunavaara, Jani; Ingman, L Petri; Jokisaari, Jukka

    2006-08-24

    (19)F single-quantum (SQC) and (19)F-(33)S heteronuclear multiple-quantum coherence (HMQC) NMR spectroscopy of sulfur hexafluoride (SF(6)) dissolved in thermotropic liquid crystals (TLCs) were used to investigate the properties of TLCs. On one hand, environmental effects on the NMR parameters of SF(6), (19)F nuclear shielding, (19)F-(33)S spin-spin coupling, secondary isotope effects of sulfur on (19)F shielding, and the self-diffusion coefficient in the direction of the external magnetic field were studied as well. The temperature dependence of the (19)F shielding of SF(6) in TLCs was modeled with a function that takes into account the properties of both TLC and SF(6). It appears that the TLC environment deforms the electronic system of SF(6) so that the (19)F shielding tensor becomes slightly anisotropic, with the anisotropy being from -0.5 to -1.4 ppm, depending upon the TLC solvent. On the contrary, no sign of residual dipolar coupling between (19)F and (33)S was found, meaning that the so-called deformational effects, which arise from the interaction between vibrational and reorientational motions of the molecule, on the geometry of the molecule are insignificant. Diffusion activation energies, E(a), were determined from the temperature dependence of the self-diffusion coefficients. In each TLC, E(a) increases when moving from an isotropic phase to a nematic phase. The spin-spin coupling constant, J((19)F,(33)S), increases by ca. 10 Hz when moving from the gas phase to TLC solutions. The secondary isotope shifts of (19)F shielding are practically independent of TLC solvent and temperature. For the first time, (19)F-(33)S heteronuclear multiple-quantum NMR spectra were recorded for SF(6) in the gas phase and in a liquid-crystalline solution.

  5. Absolute NMR shielding scales and nuclear spin–rotation constants in {sup 175}LuX and {sup 197}AuX (X = {sup 19}F, {sup 35}Cl, {sup 79}Br and {sup 127}I)

    SciTech Connect

    Demissie, Taye B. Komorovsky, Stanislav; Repisky, Michal; Ruud, Kenneth; Jaszuński, Michał

    2015-10-28

    We present nuclear spin–rotation constants, absolute nuclear magnetic resonance (NMR) shielding constants, and shielding spans of all the nuclei in {sup 175}LuX and {sup 197}AuX (X = {sup 19}F, {sup 35}Cl, {sup 79}Br, {sup 127}I), calculated using coupled-cluster singles-and-doubles with a perturbative triples (CCSD(T)) correction theory, four-component relativistic density functional theory (relativistic DFT), and non-relativistic DFT. The total nuclear spin–rotation constants determined by adding the relativistic corrections obtained from DFT calculations to the CCSD(T) values are in general in agreement with available experimental data, indicating that the computational approach followed in this study allows us to predict reliable results for the unknown spin–rotation constants in these molecules. The total NMR absolute shielding constants are determined for all the nuclei following the same approach as that applied for the nuclear spin–rotation constants. In most of the molecules, relativistic effects significantly change the computed shielding constants, demonstrating that straightforward application of the non-relativistic formula relating the electronic contribution to the nuclear spin–rotation constants and the paramagnetic contribution to the shielding constants does not yield correct results. We also analyze the origin of the unusually large absolute shielding constant and its relativistic correction of gold in AuF compared to the other gold monohalides.

  6. Absolute NMR shielding scales and nuclear spin-rotation constants in (175)LuX and (197)AuX (X = (19)F, (35)Cl, (79)Br and (127)I).

    PubMed

    Demissie, Taye B; Jaszuński, Michał; Komorovsky, Stanislav; Repisky, Michal; Ruud, Kenneth

    2015-10-28

    We present nuclear spin-rotation constants, absolute nuclear magnetic resonance (NMR) shielding constants, and shielding spans of all the nuclei in (175)LuX and (197)AuX (X = (19)F, (35)Cl, (79)Br, (127)I), calculated using coupled-cluster singles-and-doubles with a perturbative triples (CCSD(T)) correction theory, four-component relativistic density functional theory (relativistic DFT), and non-relativistic DFT. The total nuclear spin-rotation constants determined by adding the relativistic corrections obtained from DFT calculations to the CCSD(T) values are in general in agreement with available experimental data, indicating that the computational approach followed in this study allows us to predict reliable results for the unknown spin-rotation constants in these molecules. The total NMR absolute shielding constants are determined for all the nuclei following the same approach as that applied for the nuclear spin-rotation constants. In most of the molecules, relativistic effects significantly change the computed shielding constants, demonstrating that straightforward application of the non-relativistic formula relating the electronic contribution to the nuclear spin-rotation constants and the paramagnetic contribution to the shielding constants does not yield correct results. We also analyze the origin of the unusually large absolute shielding constant and its relativistic correction of gold in AuF compared to the other gold monohalides.

  7. Absolute NMR shielding scales and nuclear spin-rotation constants in 175LuX and 197AuX (X = 19F, 35Cl, 79Br and 127I)

    NASA Astrophysics Data System (ADS)

    Demissie, Taye B.; Jaszuński, Michał; Komorovsky, Stanislav; Repisky, Michal; Ruud, Kenneth

    2015-10-01

    We present nuclear spin-rotation constants, absolute nuclear magnetic resonance (NMR) shielding constants, and shielding spans of all the nuclei in 175LuX and 197AuX (X = 19F, 35Cl, 79Br, 127I), calculated using coupled-cluster singles-and-doubles with a perturbative triples (CCSD(T)) correction theory, four-component relativistic density functional theory (relativistic DFT), and non-relativistic DFT. The total nuclear spin-rotation constants determined by adding the relativistic corrections obtained from DFT calculations to the CCSD(T) values are in general in agreement with available experimental data, indicating that the computational approach followed in this study allows us to predict reliable results for the unknown spin-rotation constants in these molecules. The total NMR absolute shielding constants are determined for all the nuclei following the same approach as that applied for the nuclear spin-rotation constants. In most of the molecules, relativistic effects significantly change the computed shielding constants, demonstrating that straightforward application of the non-relativistic formula relating the electronic contribution to the nuclear spin-rotation constants and the paramagnetic contribution to the shielding constants does not yield correct results. We also analyze the origin of the unusually large absolute shielding constant and its relativistic correction of gold in AuF compared to the other gold monohalides.

  8. Characterisation and evaluation of paramagnetic fluorine labelled glycol chitosan conjugates for (19)F and (1)H magnetic resonance imaging.

    PubMed

    De Luca, Elena; Harvey, Peter; Chalmers, Kirsten H; Mishra, Anurag; Senanayake, P Kanthi; Wilson, J Ian; Botta, Mauro; Fekete, Marianna; Blamire, Andrew M; Parker, David

    2014-02-01

    Medium molecular weight glycol chitosan conjugates have been prepared, linked by an amide bond to paramagnetic Gd(III), Ho(III) and Dy(III) macrocyclic complexes in which a trifluoromethyl reporter group is located 6.5 Å from the paramagnetic centre. The faster relaxation of the observed nucleus allows modified pulse sequences to be used with shorter acquisition times. The polydisperse materials have been characterised by gel permeation chromatography, revealing an average molecular weight on the order of 13,800 (Gd), 14,600 (Dy) and 16,200 (Ho), consistent with the presence of 8.5, 9.5 and 13 complexes, respectively. The gadolinium conjugate was prepared for both a q = 1 monoamide tricarboxylate conjugate (r1p 11.2 mM(-1) s(-1), 310 K, 1.4 T) and a q = 0 triphosphinate system, and conventional contrast-enhanced proton MRI studies at 7 T were undertaken in mice bearing an HT-29 or an HCT-116 colorectal tumour xenograft (17 μmol/kg). Enhanced contrast was observed following injection in the tail vein in tumour tissue, with uptake also evident in the liver and kidney with a tumour-to-liver ratio of 2:1 at 13 min, and large amounts in the kidney and bladder consistent with predominant renal clearance. Parallel experiments observing the (19)F resonance in the holmium conjugate complex using a surface coil did not succeed owing to its high R2 value (750 Hz, 7 T). However, the fluorine signal in the dysprosium triphosphinate chitosan conjugate [R1/R2 = 0.6 and R1 = 145 Hz (7 T)] was sharper and could be observed in vivo at -65.7 ppm, following intravenous tail vein injection of a dose of 34 μmol/kg.

  9. Determination of size and sign of hetero-nuclear coupling constants from 2D 19F-13C correlation spectra

    NASA Astrophysics Data System (ADS)

    Ampt, Kirsten A. M.; Aspers, Ruud L. E. G.; Dvortsak, Peter; van der Werf, Ramon M.; Wijmenga, Sybren S.; Jaeger, Martin

    2012-02-01

    Fluorinated organic compounds have become increasingly important within the polymer and the pharmaceutical industry as well as for clinical applications. For the structural elucidation of such compounds, NMR experiments with fluorine detection are of great value due to the favorable NMR properties of the fluorine nucleus. For the investigation of three fluorinated compounds, triple resonance 2D HSQC and HMBC experiments were adopted to fluorine detection with carbon and/or proton decoupling to yield F-C, F-C{H}, F-C{Cacq} and F-C{H,Cacq} variants. Analysis of E.COSY type cross-peak patterns in the F-C correlation spectra led, apart from the chemical shift assignments, to determination of size and signs of the JCH, JCF, and JHF coupling constants. In addition, the fully coupled F-C HMQC spectrum of steroid 1 was interpreted in terms of E.COSY type patterns. This example shows how coupling constants due to different nuclei can be determined together with their relative signs from a single spectrum. The analysis of cross-peak patterns, as presented here, not only provides relatively straightforward routes to the determination of size and sign of hetero-nuclear J-couplings in fluorinated compounds, it also provides new and easy ways for the determination of residual dipolar couplings and thus for structure elucidation. The examples and results presented in this study may contribute to a better interpretation and understanding of various F-C correlation experiments and thereby stimulate their utilization.

  10. Using "On/Off" (19)F NMR/Magnetic Resonance Imaging Signals to Sense Tyrosine Kinase/Phosphatase Activity in Vitro and in Cell Lysates.

    PubMed

    Zheng, Zhen; Sun, Hongbin; Hu, Chen; Li, Gongyu; Liu, Xiaomei; Chen, Peiyao; Cui, Yusi; Liu, Jing; Wang, Junfeng; Liang, Gaolin

    2016-03-15

    Tyrosine kinase and phosphatase are two important, antagonistic enzymes in organisms. Development of noninvasive approach for sensing their activity with high spatial and temporal resolution remains challenging. Herein, we rationally designed a hydrogelator Nap-Phe-Phe(CF3)-Glu-Tyr-Ile-OH (1a) whose supramolecular hydrogel (i.e., Gel 1a) can be subjected to tyrosine kinase-directed disassembly, and its phosphate precursor Nap-Phe-Phe(CF3)-Glu-Tyr(H2PO3)-Ile-OH (1b), which can be subjected to alkaline phosphatase (ALP)-instructed self-assembly to form supramolecular hydrogel Gel 1b, respectively. Mechanic properties and internal fibrous networks of the hydrogels were characterized with rheology and cryo transmission electron microscopy (cryo-TEM). Disassembly/self-assembly of their corresponding supramolecular hydrogels conferring respective "On/Off" (19)F NMR/MRI signals were employed to sense the activity of these two important enzymes in vitro and in cell lysates for the first time. We anticipate that our new (19)F NMR/magnetic resonance imaging (MRI) method would facilitate pharmaceutical researchers to screen new inhibitors for these two enzymes without steric hindrance.

  11. Single-molecule magnets: structural characterization, magnetic properties, and (19)F NMR spectroscopy of a Mn(12) family spanning three oxidation levels.

    PubMed

    Chakov, Nicole E; Soler, Monica; Wernsdorfer, Wolfgang; Abboud, Khalil A; Christou, George

    2005-07-25

    The syntheses, crystal structures, and magnetic properties of [Mn(12)O(12)(O(2)CC(6)F(5))(16)(H(2)O)(4)] (2), (NMe(4))[Mn(12)O(12)(O(2)CC(6)F(5))(16)(H(2)O)(4)] (3), and (NMe(4))(2)[Mn(12)O(12)(O(2)CC(6)F(5))(16)(H(2)O)(4)] (4) are reported. Complex 2 displays quasi-reversible redox couples when examined by cyclic voltammetry in CH(2)Cl(2): one-electron reductions are observed at 0.64 and 0.30 V vs ferrocene. The reaction of complex 2 with 1 and 2 equiv of NMe(4)I yields the one- and two-electron reduced analogues, 3 and 4, respectively. Complexes 2.3CH(2)Cl(2), 3.4.5CH(2)Cl(2).(1)/(2)H(2)O, and 4.6C(7)H(8) crystallize in the triclinic P, monoclinic P2/c, and monoclinic C2/c space groups, respectively. The molecular structures are all very similar, consisting of a central [Mn(IV)O(4)] cubane surrounded by a nonplanar alternating ring of eight Mn and eight mu(3)-O(2)(-) ions. Peripheral ligation is provided by 16 bridging C(6)F(5)CO(2)(-) and 4 H(2)O ligands. Bond valence sum calculations establish that the added electrons in 3 and 4 are localized on former Mn(III) ions giving trapped-valence Mn(IV)(4)Mn(III)(7)Mn(II) and Mn(IV)(4)Mn(III)(6)Mn(II)(2) anions, respectively. (19)F NMR spectroscopy in CD(2)Cl(2) shows retention of the solid-state structure upon dissolution and detrapping of the added electrons in 3 and 4 among the outer ring of Mn ions on the (19)F NMR time scale. DC studies on dried microcrystalline samples of 2, 3, and 4.2.5C(7)H(8) restrained in eicosane in the 1.80-10.0 K and 1-70 kG ranges were fit to give S = 10, D = -0.40 cm(-)(1), g = 1.87, D/g = 0.21 cm(-)(1) for 2, S = 19/2, D = -0.34 cm(-)(1), g = 2.04, D/g = 0.17 cm(-)(1) for 3, and S = 10, D = -0.29 cm(-)(1), g = 2.05, D/g = 0.14 cm(-)(1) for 4, where D is the axial zero-field splitting parameter. The clusters exhibit out-of-phase AC susceptibility signals (chi(M)' ') indicative of slow magnetization relaxation in the 6-8 K range for 2, 4-6 K range for 3, and 2-4 K range for 4; the shift to

  12. 19F MRI for quantitative in vivo cell tracking

    PubMed Central

    Srinivas, Mangala; Heerschap, Arend; Ahrens, Eric T.; Figdor, Carl G.; de Vries, I. Jolanda M.

    2010-01-01

    Cellular therapy, including stem cell transplants and dendritic cell vaccines, is typically monitored for dosage optimization, accurate delivery and localization using non-invasive imaging, of which magnetic resonance imaging (MRI) is a key modality. 19F MRI retains the advantages of MRI as an imaging modality, while allowing direct detection of labelled cells for unambiguous identification and quantification, unlike typical metal-based contrast agents. Recent developments in 19F MRI-based in vivo cell quantification, the existing clinical use of 19F compounds and current explosive interest in cellular therapeutics have brought 19F imaging technology closer to clinical application. We review the application of 19F MRI to cell tracking, discussing intracellular 19F labels, cell labelling and in vivo quantification, as well as the potential clinical use of 19F MRI. PMID:20427096

  13. Rapid exchange of fluoroethylamine via the Rhesus complex in human erythrocytes: 19F NMR magnetization transfer analysis showing competition by ammonia and ammonia analogues.

    PubMed

    Szekely, David; Chapman, Bogdan E; Bubb, William A; Kuchel, Philip W

    2006-08-01

    A remarkable recent discovery in red blood cell function is that the Rhesus antigen complex that for so long was considered to be simply a means of cell recognition is also the ammonia transporter. It catalyzes transmembrane exchange of ammonia on the subsecond time scale, and yet because of a lack of rapid-exchange methodology its kinetics had not been characterized. The flux of ammonia varies appreciably in diverse clinical states, and a convenient method for its characterization would be of basic and of clinical diagnostic value. Fluoroethylamine is water-soluble and when added to a suspension of human red blood cells (RBCs) displays the experimentally useful property of giving separate 19F NMR spectral peaks for the populations inside and outside the cells. By using two-site, one-dimensional magnetization exchange spectroscopy (1D-EXSY), the transmembrane exchange of fluoroethylamine was measured; it was found to occur on the subsecond time scale with an apparent first-order rate constant for efflux, under the equilibrium exchange conditions, of 3.4 s(-1). The method was used to characterize the concentration, temperature, and pH dependence of the exchange rate constant. We determined the extent of competitive inhibition exhibited by ammonia and two molecules that contain an amine group (ethylamine and methylamine). Inhibition of the exchange by incubating the suspension with anti-RhAG antibody, and no inhibition by anti-RhD antibody, suggested specificity of exchange via the RhAG protein of the Rh complex.

  14. Nickel(II) complexes of N-CH2CF3 cyclam derivatives as contrast agents for (19)F magnetic resonance imaging.

    PubMed

    Blahut, Jan; Hermann, Petr; Gálisová, Andrea; Herynek, Vít; Císařová, Ivana; Tošner, Zdeněk; Kotek, Jan

    2016-01-14

    Kinetically inert Ni(ii) complexes of N(1),N(8)-bis(2,2,2-trifluoroethyl)cyclams with hydrogen atoms or phosphonic acid groups in the N(4),N(11)-positions show significant (19)F NMR relaxation rate enhancement useful for 19-fluorine MRI imaging.

  15. New neutron cross-section measurements on {sup 19}F, {sup 39,41}K, {sup 55}Mn, and {sup 103}Rh for improved nuclear criticality safety

    SciTech Connect

    Guber, K. H.; Leal, L. C.; Sayer, R. O.; Koehler, P. E.; Wiarda, D.; Valentine, T. E.; Derrien, H.; Harvey, J. A.; Kopecky, S.; Siegler, P.; Schillebeeckx, P.; Wynants, R.; Ivanov, I.; Borella, A.

    2006-07-01

    A series of new measurements has been undertaken in response to deficiencies identified in nuclear data libraries of crucial importance to the Nuclear Criticality Safety Program as well as for burnup credit studies involving the transportation of spent nuclear fuel. New data and evaluations including covariances are required for several stable fission products as well as for materials found in mixtures with uranium. (authors)

  16. Visualization of Abscess Formation in a Murine Thigh Infection Model of Staphylococcus aureus by 19F-Magnetic Resonance Imaging (MRI)

    PubMed Central

    Kircher, Stefan; Basse-Lüsebrink, Thomas; Haddad, Daniel; Ohlsen, Knut; Jakob, Peter

    2011-01-01

    Background During the last years, 19F-MRI and perfluorocarbon nanoemulsion (PFC) emerged as a powerful contrast agent based MRI methodology to track cells and to visualize inflammation. We applied this new modality to visualize deep tissue abscesses during acute and chronic phase of inflammation caused by Staphylococcus aureus infection. Methodology and Principal Findings In this study, a murine thigh infection model was used to induce abscess formation and PFC or CLIO (cross linked ironoxides) was administered during acute or chronic phase of inflammation. 24 h after inoculation, the contrast agent accumulation was imaged at the site of infection by MRI. Measurements revealed a strong accumulation of PFC at the abscess rim at acute and chronic phase of infection. The pattern was similar to CLIO accumulation at chronic phase and formed a hollow sphere around the edema area. Histology revealed strong influx of neutrophils at the site of infection and to a smaller extend macrophages during acute phase and strong influx of macrophages at chronic phase of inflammation. Conclusion and Significance We introduce 19F-MRI in combination with PFC nanoemulsions as a new platform to visualize abscess formation in a murine thigh infection model of S. aureus. The possibility to track immune cells in vivo by this modality offers new opportunities to investigate host immune response, the efficacy of antibacterial therapies and the influence of virulence factors for pathogenesis. PMID:21455319

  17. Nuclear magnetic resonance gyroscope

    SciTech Connect

    Grover, B.C.

    1984-02-07

    A nuclear magnetic resonance gyro using two nuclear magnetic resonance gases, preferably xenon 129 and xenon 131, together with two alkaline metal vapors, preferably rubidium, potassium or cesium, one of the two alkaline metal vapors being pumped by light which has the wavelength of that alkaline metal vapor, and the other alkaline vapor being illuminated by light which has the wavelength of that other alkaline vapor.

  18. (19)F NMR spectroscopic characterization of the interaction of niflumic acid with human serum albumin.

    PubMed

    Kitamura, Keisuke; Omran, Ahmed A; Takegami, Shigehiko; Tanaka, Rumi; Kitade, Tatsuya

    2007-04-01

    The interaction of a non-steroidal anti-inflammatory drug, niflumic acid (NFA), with human serum albumin (HSA) has been investigated by (19)F nuclear magnetic resonance (NMR) spectroscopy. A (19)F NMR spectrum of NFA in a buffered (pH 7.4) solution of NaCl (0.1 mol L(-1)) contained a single sharp signal of its CF(3) group 14.33 ppm from the internal reference 2,2,2-trifluoroethanol. Addition of 0.6 mmol L(-1) HSA to the NFA buffer solution caused splitting of the CF(3) signal into two broadened signals, shifted to the lower fields of 14.56 and 15.06 ppm, with an approximate intensity ratio of 1:3. Denaturation of HSA by addition of 3.0 mol L(-1) guanidine hydrochloride (GU) restored a single sharp signal of CF(3) at 14.38 ppm, indicating complete liberation of NFA from HSA as a result of its denaturation. These results suggest that the binding is reversible and occurs in at least two HSA regions. Competitive (19)F NMR experiments using warfarin, dansyl-L: -asparagine, and benzocaine (site I ligands), and L: -tryptophan and ibuprofen (site II ligands) revealed that NFA binds to site I at two different regions, Ia and Ib, in the ratio 1:3. By use of (19)F NMR with NFA as an (19)F NMR probe the nonfluorinated site I-binding drugs sulfobromophthalein and iophenoxic acid were also found to bind sites Ia and Ib, respectively. These results illustrate the usefulness and convenience of (19)F NMR for investigation of the HSA binding of both fluorinated and nonfluorinated drugs.

  19. Direct Comparison of 19F qNMR and 1H qNMR by Characterizing Atorvastatin Calcium Content

    PubMed Central

    Liu, Yang; Liu, Zhaoxia; Yang, Huaxin

    2016-01-01

    Quantitative nuclear magnetic resonance (qNMR) is a powerful tool in measuring drug content because of its high speed, sensitivity, and precision. Most of the reports were based on proton qNMR (1H qNMR) and only a few fluorine qNMR (19F qNMR) were reported. No research has been conducted to directly compare the advantage and disadvantage between these two methods. In the present study, both 19F and 1H qNMR were performed to characterize the content of atorvastatin calcium with the same internal standard. Linearity, precision, and results from two methods were compared. Results showed that 19F qNMR has similar precision and sensitivity to 1H qNMR. Both methods generate similar results compared to mass balance method. Major advantage from 19F qNMR is that the analyte signal is with less or no interference from impurities. 19F qNMR is an excellent approach to quantify fluorine-containing analytes. PMID:27688925

  20. Nuclear Magnetic Resonance Gyroscope

    NASA Astrophysics Data System (ADS)

    Bulatowicz, Michael; Griffith, Robert; Larsen, Michael

    2014-03-01

    The navigation grade micro Nuclear Magnetic Resonance Gyroscope (micro-NMRG) being developed by the Northrop Grumman Corporation (NGC) has concluded the fourth and final phase of the DARPA Navigation Grade Integrated Micro Gyro (NGIMG) program. Traditional MEMS gyros utilize springs as an inherent part of the sensing mechanism, leading to bias and scale factor sensitivity to acceleration and vibration. As a result, they have not met performance expectations in real world environments and to date have been limited to tactical grade applications. The Nuclear Magnetic Resonance Gyroscope (NMRG) utilizes the fixed precession rate of a nuclear spin in a constant magnetic field as an inertial reference for determining rotation. The nuclear spin precession rate sensitivity to acceleration and vibration is negligible for most applications. Therefore, the application of new micro and batch fabrication methods to NMRG technology holds great promise for navigation grade performance in a low cost and compact gyro. This poster will describe the history, operational principles, design, and demonstrated performance of the NMRG including an overview of the NGC designs developed and demonstrated in the DARPA gyro development program.

  1. Nuclear Magnetic Resonance Gyroscope

    NASA Astrophysics Data System (ADS)

    Bulatowicz, Michael; Clark, Philip; Griffith, Robert; Larsen, Michael; Mirijanian, James

    2012-06-01

    The navigation grade micro Nuclear Magnetic Resonance Gyroscope (micro-NMRG) being developed by the Northrop Grumman Corporation is concluding the fourth and final phase of the DARPA Navigation Grade Integrated Micro Gyro (NGIMG) program. Traditional MEMS gyros utilize springs as an inherent part of the sensing mechanism, leading to bias and scale factor sensitivity to acceleration and vibration. As a result, they have not met performance expectations in real world environments and to date have been limited to tactical grade applications. The Nuclear Magnetic Resonance Gyroscope (NMRG) utilizes the fixed precession rate of a nuclear spin in a constant magnetic field as an inertial reference for determining rotation. The nuclear spin precession rate sensitivity to acceleration and vibration is negligible for most applications. Therefore, the application of new micro and batch fabrication methods to NMRG technology holds great promise for navigation grade performance in a low cost and compact gyro. This poster will describe the history, operational principles, and design basics of the NMRG including an overview of the NSD designs developed and demonstrated in the DARPA gyro development program. General performance results from phases 3 and 4 will also be presented.

  2. Nuclear Magnetic Resonance Gyroscope

    NASA Astrophysics Data System (ADS)

    Larsen, Michael; Griffith, Robert; Bulatowicz, Michael

    2014-03-01

    The navigation grade micro Nuclear Magnetic Resonance Gyroscope (micro-NMRG) being developed by the Northrop Grumman Corporation (NGC) has concluded the fourth and final phase of the DARPA Navigation Grade Integrated Micro Gyro (NGIMG) program. Traditional MEMS gyros utilize springs as an inherent part of the sensing mechanism, leading to bias and scale factor sensitivity to acceleration and vibration. As a result, they have not met performance expectations in real world environments and to date have been limited to tactical grade applications. The Nuclear Magnetic Resonance Gyroscope (NMRG) utilizes the fixed precession rate of a nuclear spin in a constant magnetic field as an inertial reference for determining rotation. The nuclear spin precession rate sensitivity to acceleration and vibration is negligible for most applications. Therefore, the application of new micro and batch fabrication methods to NMRG technology holds great promise for navigation grade performance in a low cost and compact gyro. This presentation will describe the operational principles, design basics, and demonstrated performance of the NMRG including an overview of the NGC designs developed and demonstrated in the DARPA gyro development program.

  3. CHARACTERIZATION OF TANK 19F SAMPLES

    SciTech Connect

    Oji, L.; Diprete, D.; Click, D.

    2009-12-17

    The Savannah River National Laboratory (SRNL) was asked by Liquid Waste Operations to characterize Tank 19F closure samples. Tank 19F slurry samples analyzed included the liquid and solid fractions derived from the slurry materials along with the floor scrape bottom Tank 19F wet solids. These samples were taken from Tank 19F in April 2009 and made available to SRNL in the same month. Because of limited amounts of solids observed in Tank 19F samples, the samples from the north quadrants of the tank were combined into one Tank 19F North Hemisphere sample and similarly the south quadrant samples were combined into one Tank 19F South Hemisphere sample. These samples were delivered to the SRNL shielded cell. The Tank 19F samples were analyzed for radiological, chemical and elemental components. Where analytical methods yielded additional contaminants other than those requested by the customer, these results were also reported. The target detection limits for isotopes analyzed were based on detection values of 1E-04 {micro}Ci/g for most radionuclides and customer desired detection values of 1E-05 {micro}Ci/g for I-129, Pa-231, Np-237, and Ra-226. While many of the target detection limits, as specified in the technical task request and task technical and quality assurance plans were met for the species characterized for Tank 19F, some were not met. In a number of cases, the relatively high levels of radioactive species of the same element or a chemically similar element precluded the ability to measure some isotopes to low levels. SRNL, in conjunction with the plant customer, reviewed all these cases and determined that the impacts were negligible.

  4. nuclear magnetic resonance gyroscope

    SciTech Connect

    Karwacki, F. A.; Griffin, J.

    1985-04-02

    A nuclear magnetic resonance gyroscope which derives angular rotation thereof from the phases of precessing nuclear moments utilizes a single-resonance cell situated in the center of a uniform DC magnetic field. The field is generated by current flow through a circular array of coils between parallel plates. It also utilizes a pump and read-out beam and associated electronics for signal processing and control. Encapsulated in the cell for sensing rotation are odd isotopes of Mercury Hg/sup 199/ and Hg/sup 201/. Unpolarized intensity modulated light from a pump lamp is directed by lenses to a linear polarizer, quarter wave plate combination producing circularly polarized light. The circularly polarized light is reflected by a mirror to the cell transverse to the field for optical pumping of the isotopes. Unpolarized light from a readout lamp is directed by lenses to another linear polarizer. The linearly polarized light is reflected by another mirror to the cell transverse to the field and orthogonal to the pump lamp light. The linear light after transversing the cell strikes an analyzer where it is converted to an intensity-modulated light. The modulated light is detected by a photodiode processed and utilized as feedback to control the field and pump lamp excitation and readout of angular displacement.

  5. Nuclear Magnetic Resonance Gyroscope

    NASA Astrophysics Data System (ADS)

    Larsen, Michael; Bulatowicz, Michael; Clark, Philip; Griffith, Robert; Mirijanian, James; Pavell, James

    2015-05-01

    The Nuclear Magnetic Resonance Gyroscope (NMRG) is being developed by the Northrop Grumman Corporation (NGC). Cold and hot atom interferometer based gyroscopes have suffered from Size, Weight, and Power (SWaP) challenges and limits in bandwidth, scale factor stability, dead time, high rotation rate, vibration, and acceleration. NMRG utilizes the fixed precession rate of a nuclear spin in a constant magnetic field as a reference for determining rotation, providing continuous measurement, high bandwidth, stable scale factor, high rotation rate measurement, and low sensitivity to vibration and acceleration in a low SWaP package. The sensitivity to vibration has been partially tested and demonstrates no measured sensitivity within error bars. Real time closed loop implementation of the sensor significantly decreases environmental and systematic sensitivities and supports a compact and low power digital signal processing and control system. Therefore, the NMRG technology holds great promise for navigation grade performance in a low cost SWaP package. The poster will describe the history, operation, and design of the NMRG. General performance results will also be presented along with recent vibration test results.

  6. 19F-MRI for monitoring human NK cells in vivo

    PubMed Central

    Bouchlaka, Myriam N.; Ludwig, Kai D.; Gordon, Jeremy W.; Kutz, Matthew P.; Bednarz, Bryan P.; Fain, Sean B.; Capitini, Christian M.

    2016-01-01

    ABSTRACT The availability of clinical-grade cytokines and artificial antigen-presenting cells has accelerated interest in using natural killer (NK) cells as adoptive cellular therapy (ACT) for cancer. One of the technological shortcomings of translating therapies from animal models to clinical application is the inability to effectively and non-invasively track these cells after infusion in patients. We have optimized the nonradioactive isotope fluorine-19 (19F) as a means to label and track NK cells in preclinical models using magnetic resonance imaging (MRI). Human NK cells were expanded with interleukin (IL)-2 and labeled in vitro with increasing concentrations of 19F. Doses as low as 2 mg/mL 19F were detected by MRI. NK cell viability was only decreased at 8 mg/mL 19F. No effects on NK cell cytotoxicity against K562 leukemia cells were observed with 2, 4 or 8 mg/mL 19F. Higher doses of 19F, 4 mg/mL and 8 mg/mL, led to an improved 19F signal by MRI with 3 × 1011 19F atoms per NK cell. The 4 mg/mL 19F labeling had no effect on NK cell function via secretion of granzyme B or interferon gamma (IFNγ), compared to NK cells exposed to vehicle alone. 19F-labeled NK cells were detectable immediately by MRI after intratumoral injection in NSG mice and up to day 8. When 19F-labeled NK cells were injected subcutaneously, we observed a loss of signal through time at the site of injection suggesting NK cell migration to distant organs. The 19F perfluorocarbon is a safe and effective reagent for monitoring the persistence and trafficking of NK cell infusions in vivo, and may have potential for developing novel imaging techniques to monitor ACT for cancer. PMID:27467963

  7. Single Nuclear Spin Magnetic Resonance Force Microscopy

    DTIC Science & Technology

    2010-05-02

    Lab. In work not directly supported by this grant, these projects advanced MRFM detected Ferromagnetic Resonance ( FMR ) to enable studies of...directly supported by this grant, these projects advanced MRFM detected Ferromagnetic Resonance ( FMR ) to enable studies of submicron magnetic structures...our earlier NMR detection of 19F spins in CaF2 we have conducted 65Cu, 63Cu NMR stud- ies for studies of interface phenomena in multilayered magnetic

  8. Bioluminescence and 19F magnetic resonance imaging visualize the efficacy of lysostaphin alone and in combination with oxacillin against Staphylococcus aureus in murine thigh and catheter-associated infection models.

    PubMed

    Hertlein, Tobias; Sturm, Volker; Lorenz, Udo; Sumathy, K; Jakob, Peter; Ohlsen, Knut

    2014-01-01

    Staphylococci are the leading cause of hospital-acquired infections worldwide. Increasingly, they resist antibiotic treatment owing to the development of multiple antibiotic resistance mechanisms in most strains. Therefore, the activity and efficacy of recombinant lysostaphin as a drug against this pathogen have been evaluated. Lysostaphin exerts high levels of activity against antibiotic-resistant strains of Staphylococcus aureus, including methicillin-resistant S. aureus (MRSA). The therapeutic value of lysostaphin has been analyzed in two different clinically relevant in vivo models, a catheter-associated infection model and a thigh infection model. We infected mice with luciferase-expressing S. aureus Xen 29, and the efficacies of lysostaphin, vancomycin, oxacillin, and combined lysostaphin-oxacillin were investigated by determining numbers of CFU, detecting bioluminescent signals, and measuring the accumulation of perfluorocarbon emulsion at the site of infection by (19)F magnetic resonance imaging. Lysostaphin treatment significantly reduced the bacterial burden in infected thigh muscles and, after systemic spreading from the catheter, in inner organs. The efficiency of lysostaphin treatment was even more pronounced in combinatorial therapy with oxacillin. These results suggest that recombinant lysostaphin may have potential as an anti-S. aureus drug worthy of further clinical development. In addition, both imaging technologies demonstrated efficacy patterns similar to that of CFU determination, although they proved to be less sensitive. Nonetheless, they served as powerful tools to provide additional information about the course and gravity of infection in a noninvasive manner, possibly allowing a reduction in the number of animals needed for research evaluation of new antibiotics in future studies.

  9. Bioluminescence and 19F Magnetic Resonance Imaging Visualize the Efficacy of Lysostaphin Alone and in Combination with Oxacillin against Staphylococcus aureus in Murine Thigh and Catheter-Associated Infection Models

    PubMed Central

    Hertlein, Tobias; Sturm, Volker; Lorenz, Udo; Sumathy, K.; Jakob, Peter

    2014-01-01

    Staphylococci are the leading cause of hospital-acquired infections worldwide. Increasingly, they resist antibiotic treatment owing to the development of multiple antibiotic resistance mechanisms in most strains. Therefore, the activity and efficacy of recombinant lysostaphin as a drug against this pathogen have been evaluated. Lysostaphin exerts high levels of activity against antibiotic-resistant strains of Staphylococcus aureus, including methicillin-resistant S. aureus (MRSA). The therapeutic value of lysostaphin has been analyzed in two different clinically relevant in vivo models, a catheter-associated infection model and a thigh infection model. We infected mice with luciferase-expressing S. aureus Xen 29, and the efficacies of lysostaphin, vancomycin, oxacillin, and combined lysostaphin-oxacillin were investigated by determining numbers of CFU, detecting bioluminescent signals, and measuring the accumulation of perfluorocarbon emulsion at the site of infection by 19F magnetic resonance imaging. Lysostaphin treatment significantly reduced the bacterial burden in infected thigh muscles and, after systemic spreading from the catheter, in inner organs. The efficiency of lysostaphin treatment was even more pronounced in combinatorial therapy with oxacillin. These results suggest that recombinant lysostaphin may have potential as an anti-S. aureus drug worthy of further clinical development. In addition, both imaging technologies demonstrated efficacy patterns similar to that of CFU determination, although they proved to be less sensitive. Nonetheless, they served as powerful tools to provide additional information about the course and gravity of infection in a noninvasive manner, possibly allowing a reduction in the number of animals needed for research evaluation of new antibiotics in future studies. PMID:24366730

  10. 19F solid-state NMR spectroscopic investigation of crystalline and amorphous forms of a selective muscarinic M3 receptor antagonist, in both bulk and pharmaceutical dosage form samples.

    PubMed

    Wenslow, Robert M

    2002-05-01

    The purpose of the following investigation was to display the utility of 19F solid-state nuclear magnetic resonance (NMR) in both distinguishing between solid forms of a selective muscarinic M3 receptor antagonist and characterizing the active pharmaceutical ingredient in low-dose tablets. Ambient- and elevated-temperature solid-state 19F fast (15 kHz) magic-angle spinning (MAS) NMR experiments were employed to obtain desired spectral resolution in this system. Ambient sample temperature combined with rotor frequencies of 15 kHz provided adequate 19F peak resolution to successfully distinguish crystalline and amorphous forms in this system. Additionally, elevated-temperature 19F MAS NMR further characterized solid forms through 19F resonance narrowing brought about by the phenomenon of solvent escape. Similar solvent dynamics at elevated temperatures were utilized in combination with ambient-temperature 19F MAS NMR analysis to provide excipient-free spectra to unambiguously identify the active pharmaceutical ingredient (API) conversion from crystalline Form I to the amorphous form in low-dose tablets. It is shown that 19F solid-state NMR is exceptionally powerful in distinguishing amorphous and crystalline forms in both bulk and formulation samples.

  11. Introduction to nuclear magnetic resonance.

    PubMed

    Mlynárik, Vladimír

    2016-05-19

    Nuclear magnetic resonance spectroscopy is a useful tool for studying normal and pathological biochemical processes in tissues. In this review, the principles of nuclear magnetic resonance and methods of obtaining nuclear magnetic resonance spectra are briefly outlined. The origin of the most important spectroscopic parameters-chemical shifts, coupling constants, longitudinal and transverse relaxation times, and spectroscopic line intensities-is explained, and the role of these parameters in interpretation of spectra is addressed. Basic methodological concepts of localized spectroscopy and spectroscopic imaging for the study of tissue metabolism in vivo are also described.

  12. Nuclear magnetic resonance imaging with 90-nm resolution.

    PubMed

    Mamin, H J; Poggio, M; Degen, C L; Rugar, D

    2007-05-01

    Magnetic resonance imaging (MRI) is a powerful imaging technique that typically operates on the scale of millimetres to micrometres. Conventional MRI is based on the manipulation of nuclear spins with radio-frequency fields, and the subsequent detection of spins with induction-based techniques. An alternative approach, magnetic resonance force microscopy (MRFM), uses force detection to overcome the sensitivity limitations of conventional MRI. Here, we show that the two-dimensional imaging of nuclear spins can be extended to a spatial resolution better than 100 nm using MRFM. The imaging of 19F nuclei in a patterned CaF(2) test object was enabled by a detection sensitivity of roughly 1,200 nuclear spins at a temperature of 600 mK. To achieve this sensitivity, we developed high-moment magnetic tips that produced field gradients up to 1.4 x 10(6) T m(-1), and implemented a measurement protocol based on force-gradient detection of naturally occurring spin fluctuations. The resulting detection volume was less than 650 zeptolitres. This is 60,000 times smaller than the previous smallest volume for nuclear magnetic resonance microscopy, and demonstrates the feasibility of pushing MRI into the nanoscale regime.

  13. Characterization of the ground X{sub 1} state of {sup 204}Pb{sup 19}F, {sup 206}Pb{sup 19}F, {sup 207}Pb{sup 19}F, and {sup 208}Pb{sup 19}F

    SciTech Connect

    Mawhorter, Richard J.; Murphy, Benjamin S.; Baum, Alexander L.; Sears, Trevor J.; Yang, T.; Rupasinghe, P. M; McRaven, C. P.; Shafer-Ray, N. E.; Alphei, Lukas D.; Grabow, Jens-Uwe

    2011-08-15

    Pure rotational spectra of the ground electronic-vibrational X{sub 1} state of {sup 204}Pb{sup 19}F, {sup 206}Pb{sup 19}F, {sup 207}Pb{sup 19}F, and {sup 208}Pb{sup 19}F are measured with a resonator pulsed supersonic jet Fourier-transform microwave spectrometer. Also reported is a new measurement of the Stark effect on the optical spectra of A(leftarrow)X{sub 1} transitions. These spectra are combined with published high-resolution infrared spectra of X{sub 2}{r_reversible}X{sub 1} transitions in order to create a complete picture of the ground state of lead monofluoride. For the microwave data, molecules are prepared by laser ablation of lead target rods and stabilized in a supersonic jet of neon mixed with sulfur hexafluoride. For the optical Stark spectra, a continuous source of molecules is created in a nozzle heated to 1000 deg. C. The microwave spectra confirm, improve, and extend previously reported constants that describe the rotational, spin-orbit, and hyperfine interactions of the ground electronic state of the PbF molecule. A discrepancy concerning the sign of the hyperfine constant describing the {sup 207}Pb nucleus is discussed. Magnetic-field-dependent microwave spectra are used to characterize the Zeeman interaction in terms of two g factors of the body-fixed electronic wave function. The optical Stark spectra are used to characterize the electric dipole moment of the X{sub 1} and A states.

  14. Dual 19F/1H MR gene reporter molecules for in vivo detection of β-galactosidase

    PubMed Central

    Yu, Jian-Xin; Kodibagkar, Vikram D.; Hallac, Rami R.; Liu, Li; Mason, Ralph P.

    2012-01-01

    Increased emphasis on personalized medicine and novel therapies require the development of non-invasive strategies for assessing biochemistry in vivo. The detection of enzyme activity and gene expression in vivo is potentially important for the characterization of diseases and gene therapy. Magnetic resonance imaging (MRI) is a particularly promising tool since it is non-invasive, and has no associated radioactivity, yet penetrates deep tissue. We now demonstrate a novel class of dual 1H/19F nuclear magnetic resonance (NMR) lacZ gene reporter molecule to specifically reveal enzyme activity in human tumor xenografts growing in mice. We report the design, synthesis, and characterization of six novel molecules and evaluation of the most effective reporter in mice in vivo. Substrates show a single 19F NMR signal and exposure to β-galactosidase induces a large 19F NMR chemical shift response. In the presence of ferric ions the liberated aglycone generates intense proton MRI T2 contrast. The dual modality approach allows both the detection of substrate and imaging of product enhancing the confidence in enzyme detection. PMID:22352428

  15. GHz nuclear magnetic resonance

    SciTech Connect

    Cross, T.A.; Drobny, G.; Trewhella, J.

    1994-12-01

    For the past dozen years, 500- and 600-MHz spectrometers have become available in many laboratories. The first 600-MHz NMR spectrometer (at Carnegie Mellon University) was commissioned more than 15 years ago and, until 1994, represented the highest field available for high-resolution NMR. This year, we have witnessed unprecedented progress in the development of very high field magnets for NMR spectroscopy, including the delivery of the first commercial 750-MHz NMR spectrometers. In addition, NMR signals have been obtained from 20-Tesla magnets (850 MHz for {sup 1}H`s) at both Los Alamos National Laboratory and Florida State University in the NHMFL (National High Magnetic Field Laboratory). These preliminary experiments have been performed in magnets with 100-ppm homogeneity, but a 20-Tesla magnet developed for the NHMFL will be brought to field this year with a projected homogeneity of 0.1 ppm over a 1-cm-diam spherical volume.

  16. Implementation of a modified birdcage resonator for 19F/1H MRI at low fields (0.14 T).

    PubMed

    Samaratunga, R C; Pratt, R G; Zhu, Y; Massoth, R J; Thomas, S R

    1994-05-01

    Fluorine-19 nuclear magnetic resonance of perfluorinated blood substitute materials provides a method for determination of oxygen tension (pO2) in vivo. Use of a double resonant 19F/1H radio frequency coil allows convenient correlation between the high resolution anatomic presentation of proton images and the fluorine distribution. However, quantitative 19F measurements require an RF coil with good H1 field homogeneity over the image volume and a high quality factor (Q) to minimize errors caused by the low signal-to-noise levels available in in vivo imaging and image nonuniformities introduced by the large chemical shift of fluorocarbons. The birdcage coil design provides a high Q structure with optimum H1 field uniformity and fill factor. However, at low resonance frequencies, the inherently low inductance of the birdcage geometry requires the use of a large number of chip capacitors giving rise to unwieldy coil fabrication and increased cost. This communication describes a modification to the birdcage design that reduces the chip capacitor requirement by at least a factor of 4 for a given dimension, yet retains the essential characteristics of the birdcage design. The modified structure was tuned for double resonance at 5.7/6.0 MHz for 19F/1H magnetic resonance imaging at 0.14 T. For a coil with a length to diameter ratio of 1.67, an H1 uniformity of +/- 2% for the 19F resonance was obtained over a cylindrical region with radius approximately 0.6r (r = radius of coil) and length approximately 1.8r within the coil.

  17. (19)F Oximetry with semifluorinated alkanes.

    PubMed

    Kegel, Stefan; Chacon-Caldera, Jorge; Tsagogiorgas, Charalambos; Theisinger, Bastian; Glatting, Gerhard; Schad, Lothar R

    2016-12-01

    This work examines the variation of longitudinal relaxation rate R1(= 1/T1) of the (19)F-CF3-resonance of semifluorinated alkanes (SFAs) with oxygen tension (pO2), temperature (T) and pH in vitro. Contrary to their related perfluorocarbons (PFCs), SFA are amphiphilic and facilitate stable emulsions, a prerequisite for clinical use. A linear relationship between R1 and pO2 was confirmed for the observed SFAs at different temperatures. Using a standard saturation recovery sequence, T1 has been successfully measured using fluorine (19)F-MRI with a self-constructed birdcage resonator at 9.4 T. A calibration curve to calculate pO2 depending on T and R1 was found for each SFA used. In contrast to the commonly used PFC, SFAs are less sensitive to changes in pO2, but more sensitive to changes in temperature. The influence of pH to R1 was found to be negligible.

  18. Simultaneous 19F-1H medium resolution NMR spectroscopy for online reaction monitoring

    NASA Astrophysics Data System (ADS)

    Zientek, Nicolai; Laurain, Clément; Meyer, Klas; Kraume, Matthias; Guthausen, Gisela; Maiwald, Michael

    2014-12-01

    Medium resolution nuclear magnetic resonance (MR-NMR) spectroscopy is currently a fast developing field, which has an enormous potential to become an important analytical tool for reaction monitoring, in hyphenated techniques, and for systematic investigations of complex mixtures. The recent developments of innovative MR-NMR spectrometers are therefore remarkable due to their possible applications in quality control, education, and process monitoring. MR-NMR spectroscopy can beneficially be applied for fast, non-invasive, and volume integrating analyses under rough environmental conditions. Within this study, a simple 1/16″ fluorinated ethylene propylene (FEP) tube with an ID of 0.04″ (1.02 mm) was used as a flow cell in combination with a 5 mm glass Dewar tube inserted into a benchtop MR-NMR spectrometer with a 1H Larmor frequency of 43.32 MHz and 40.68 MHz for 19F. For the first time, quasi-simultaneous proton and fluorine NMR spectra were recorded with a series of alternating 19F and 1H single scan spectra along the reaction time coordinate of a homogeneously catalysed esterification model reaction containing fluorinated compounds. The results were compared to quantitative NMR spectra from a hyphenated 500 MHz online NMR instrument for validation. Automation of handling, pre-processing, and analysis of NMR data becomes increasingly important for process monitoring applications of online NMR spectroscopy and for its technical and practical acceptance. Thus, NMR spectra were automatically baseline corrected and phased using the minimum entropy method. Data analysis schemes were designed such that they are based on simple direct integration or first principle line fitting, with the aim that the analysis directly revealed molar concentrations from the spectra. Finally, the performance of 1/16″ FEP tube set-up with an ID of 1.02 mm was characterised regarding the limit of detection (LOQ (1H) = 0.335 mol L-1 and LOQ (19F) = 0.130 mol L-1 for trifluoroethanol in

  19. Theory of nuclear magnetic relaxation

    NASA Technical Reports Server (NTRS)

    Mcconnell, J.

    1983-01-01

    A theory of nuclear magnetic interaction is based on the study of the stochastic rotation operator. The theory is applied explicitly to relaxation by anisotropic chemical shift and to spin-rotational interactions. It is applicable also to dipole-dipole and quadrupole interactions.

  20. Evidence of a structural phase transition in superconducting SmFeAsO1-xFx from 19F NMR

    NASA Astrophysics Data System (ADS)

    Majumder, M.; Ghoshray, K.; Mazumdar, C.; Poddar, A.; Ghoshray, A.; Berardan, D.; Dragoe, N.

    2013-01-01

    We report resistivity, magnetization and 19F NMR results in a polycrystalline sample of SmFeAsO0.86F0.14. The resistivity and magnetization data show a sharp drop at 48 K indicating a superconducting transition. The nuclear spin-lattice rate (1/T1) and spin-spin relaxation rate (1/T2) clearly show the existence of a structural phase transition near 163 K in the sample, which also undergoes a superconducting transition. This finding creates interest in exploring whether this is unique for Sm based systems or is also present in other rare-earth based 1111 superconductors.

  1. Wide-range nuclear magnetic resonance detector

    NASA Technical Reports Server (NTRS)

    Sturman, J. C.; Jirberg, R. J.

    1972-01-01

    Compact and easy to use solid state nuclear magnetic resonance detector is designed for measuring field strength to 20 teslas in cryogenically cooled magnets. Extremely low noise and high sensitivity make detector applicable to nearly all types of analytical nuclear magnetic resonance measurements and can be used in high temperature and radiation environments.

  2. NUCLEAR MAGNETIC RELAXATION IN LIQUID METALS, ALLOYS, AND SALTS.

    DTIC Science & Technology

    NUCLEAR MAGNETIC RESONANCE, *ALKALI METAL ALLOYS, *LIQUID METALS, * SALTS , NUCLEAR MAGNETIC RESONANCE, NUCLEAR MAGNETIC RESONANCE, RELAXATION TIME... SODIUM , GALLIUM, SODIUM ALLOYS, THALLIUM, THALLIUM COMPOUNDS, MELTING, NUCLEAR SPINS, QUANTUM THEORY, OPERATORS(MATHEMATICS), BIBLIOGRAPHIES, INTEGRAL EQUATIONS, TEST EQUIPMENT, MATHEMATICAL ANALYSIS.

  3. Introduction to Nuclear Magnetic Resonance

    NASA Technical Reports Server (NTRS)

    Manatt, Stanley L.

    1985-01-01

    The purpose of this paper is to try to give a short overview of what the status is on nuclear magnetic resonance (NMR). It's a subject where one really has to spend some time to look at the physics in detail to develop a proper working understanding. I feel it's not appropriate to present to you density matrices, Hamiltonians of all sorts, and differential equations representing the motion of spins. I'm really going to present some history and status, and show a few very simple concepts involved in NMR. It is a form of radio frequency spectroscopy and there are a great number of nuclei that can be studied very usefully with the technique. NMR requires a magnet, a r.f. transmitter/receiver system, and a data acquisition system.

  4. (19) F DOSY diffusion-NMR spectroscopy of fluoropolymers.

    PubMed

    Xu, Chenglong; Wan, Yingbo; Chen, Dongxue; Gao, Chun; Yin, Hongnan; Fetherston, Daniel; Kupce, Eriks; Lopez, Gerald; Ameduri, Bruno; Twum, Eric B; Wyzgoski, Faith J; Li, Xiaohong; McCord, Elizabeth F; Rinaldi, Peter L

    2017-05-01

    A new pulse sequence for obtaining (19) F detected DOSY (diffusion ordered spectroscopy) spectra of fluorinated molecules is presented and used to study fluoropolymers based on vinylidene fluoride and chlorotrifluoroethylene. The performance of (19) F DOSY NMR experiments (and in general any type of NMR experiment) on fluoropolymers creates some unique complications that very often prevent detection of important signals. Factors that create these complications include: (1) the presence of many scalar couplings among (1) H, (19) F and (13) C; (2) the large magnitudes of many (19) F homonuclear couplings (especially (2) JFF ); (3) the large (19) F chemical shift range; and (4) the low solubility of these materials (which requires that experiments be performed at high temperatures). A systematic study of the various methods for collecting DOSY NMR data, and the adaptation of these methods to obtain (19) F detected DOSY data, has been performed using a mixture of low molecular weight, fluorinated model compounds. The best pulse sequences and optimal experimental conditions have been determined for obtaining (19) F DOSY spectra. The optimum pulse sequences for acquiring (19) F DOSY NMR data have been determined for various circumstances taking into account the spectral dispersion, number and magnitude of couplings present, and experimental temperature. Pulse sequences and experimental parameters for optimizing these experiments for the study of fluoropolymers have been studied. Copyright © 2016 John Wiley & Sons, Ltd.

  5. Polarization quantum beat spectroscopy of HCF(A1A"). I. 19F and 1H hyperfine structure and Zeeman effect.

    PubMed

    Fan, Haiyan; Ionescu, Ionela; Xin, Ju; Reid, Scott A

    2004-11-08

    To further investigate the (19)F and (1)H nuclear hyperfine structure and Zeeman effect in the simplest singlet carbene, HCF, we recorded polarization quantum beat spectra (QBS) of the pure bending levels 2(0) (n) with n = 0-7 and combination bands 1(0) (1)2(0) (n) with n = 1-6 and 2(0) (n)3(0) (1) with n = 0-3 in the HCF A(1)A(")<--X(1)A(') system. The spectra were measured under jet-cooled conditions using a pulsed discharge source, both at zero field and under application of a weak magnetic field (<30 G). Analysis yielded the nuclear spin-rotation constants C(aa) and weak field Lande g(aa) factors. Consistent with a two-state model, the majority of observed vibrational levels exhibit a linear correlation of C(aa) and g(aa), and our analysis yielded effective (a) hyperfine constants for the (19)F and (1)H nuclei (in MHz) of 728(23) and 55(2), respectively. The latter was determined here owing to the high resolving power of QBS. The vibrational state selectivity of the (19)F hyperfine constants is discussed, and we suggest that the underlying Renner-Teller interaction may play an important role.

  6. Microcoil nuclear magnetic resonance spectroscopy.

    PubMed

    Webb, A G

    2005-08-10

    In comparison with most analytical chemistry techniques, nuclear magnetic resonance has an intrinsically low sensitivity, and many potential applications are therefore precluded by the limited available quantity of certain types of sample. In recent years, there has been a trend, both commercial and academic, towards miniaturization of the receiver coil in order to increase the mass sensitivity of NMR measurements. These small coils have also proved very useful in coupling NMR detection with commonly used microseparation techniques. A further development enabled by small detectors is parallel data acquisition from many samples simultaneously, made possible by incorporating multiple receiver coils into a single NMR probehead. This review article summarizes recent developments and applications of "microcoil" NMR spectroscopy.

  7. Phospho-selective mechanisms of arrestin conformations and functions revealed by unnatural amino acid incorporation and 19F-NMR

    PubMed Central

    Yang, Fan; Yu, Xiao; Liu, Chuan; Qu, Chang-Xiu; Gong, Zheng; Liu, Hong-Da; Li, Fa-Hui; Wang, Hong-Mei; He, Dong-Fang; Yi, Fan; Song, Chen; Tian, Chang-Lin; Xiao, Kun-Hong; Wang, Jiang-Yun; Sun, Jin-Peng

    2015-01-01

    Specific arrestin conformations are coupled to distinct downstream effectors, which underlie the functions of many G-protein-coupled receptors (GPCRs). Here, using unnatural amino acid incorporation and fluorine-19 nuclear magnetic resonance (19F-NMR) spectroscopy, we demonstrate that distinct receptor phospho-barcodes are translated to specific β-arrestin-1 conformations and direct selective signalling. With its phosphate-binding concave surface, β-arrestin-1 ‘reads' the message in the receptor phospho-C-tails and distinct phospho-interaction patterns are revealed by 19F-NMR. Whereas all functional phosphopeptides interact with a common phosphate binding site and induce the movements of finger and middle loops, different phospho-interaction patterns induce distinct structural states of β-arrestin-1 that are coupled to distinct arrestin functions. Only clathrin recognizes and stabilizes GRK2-specific β-arrestin-1 conformations. The identified receptor-phospho-selective mechanism for arrestin conformation and the spacing of the multiple phosphate-binding sites in the arrestin enable arrestin to recognize plethora phosphorylation states of numerous GPCRs, contributing to the functional diversity of receptors. PMID:26347956

  8. NMR shielding and spin–rotation constants of {sup 175}LuX (X = {sup 19}F, {sup 35}Cl, {sup 79}Br, {sup 127}I) molecules

    SciTech Connect

    Demissie, Taye B.

    2015-12-31

    This presentation demonstrates the relativistic effects on the spin-rotation constants, absolute nuclear magnetic resonance (NMR) shielding constants and shielding spans of {sup 175}LuX (X = {sup 19}F, {sup 35}Cl, {sup 79}Br, {sup 127}I) molecules. The results are obtained from calculations performed using density functional theory (non-relativistic and four-component relativistic) and coupled-cluster calculations. The spin-rotation constants are compared with available experimental values. In most of the molecules studied, relativistic effects make an order of magnitude difference on the NMR absolute shielding constants.

  9. 19F-lanthanide complexes with increased sensitivity for 19F-MRI: optimization of the MR acquisition.

    PubMed

    Chalmers, Kirsten H; Kenwright, Alan M; Parker, David; Blamire, Andrew M

    2011-10-01

    Fluorine-19 magnetic resonance methods offer advantages for molecular or cellular imaging in vivo due to the absence of radioactivity, lack of naturally occurring background signal, and the ability to easily combine measurements with anatomical MRI. Previous studies have shown that (19) F-MRI sensitivity is limited to millimolar concentrations by slow longitudinal relaxation. In this study, a new class of macrocyclic fluorinated lanthanide complexes is investigated where relaxation rates are significantly shortened by proximity of the fluorine group to a paramagnetic lanthanide ion located within the same molecule. Longitudinal and transverse relaxation rates are field dependent and in the range 50-150 s(-1) and 70-200 s(-1), respectively, at 7 T. Relaxation rates in these complexes are a function of the molecular structure and are independent of concentration at biologically relevant levels, so can be used as criteria to optimize imaging acquisition. Phantom experiments at 7 T indicate a lower limit for detection by imaging of 20 μM.

  10. An improved nuclear magnetic resonance spectrometer

    NASA Technical Reports Server (NTRS)

    Elleman, D. D.; Manatt, S. L.

    1967-01-01

    Cylindrical sample container provides a high degree of nuclear stabilization to a nuclear magnetic resonance /nmr/ spectrometer. It is placed coaxially about the nmr insert and contains reference sample that gives a signal suitable for locking the field and frequency of an nmr spectrometer with a simple audio modulation system.

  11. Solid-state 19F-NMR analysis of 19F-labeled tryptophan in gramicidin A in oriented membranes.

    PubMed Central

    Grage, Stephan L; Wang, Junfeng; Cross, Timothy A; Ulrich, Anne S

    2002-01-01

    The response of membrane-associated peptides toward the lipid environment or other binding partners can be monitored by solid-state NMR of suitably labeled side chains. Tryptophan is a prominent amino acid in transmembrane helices, and its (19)F-labeled analogues are generally biocompatible and cause little structural perturbation. Hence, we use 5F-Trp as a highly sensitive NMR probe to monitor the conformation and dynamics of the indole ring. To establish this (19)F-NMR strategy, gramicidin A was labeled with 5F-Trp in position 13 or 15, whose chi(1)/chi(2) torsion angles are known from previous (2)H-NMR studies. First, the alignment of the (19)F chemical shift anisotropy tensor within the membrane was deduced by lineshape analysis of oriented samples. Next, the three principal axes of the (19)F chemical shift anisotropy tensor were assigned within the molecular frame of the indole ring. Finally, determination of chi(1)/chi(2) for 5F-Trp in the lipid gel phase showed that the side chain alignment differs by up to 20 degrees from its known conformation in the liquid crystalline state. The sensitivity gain of (19)F-NMR and the reduction in the amount of material was at least 10-fold compared with previous (2)H-NMR studies on the same system and 100-fold compared with (15)N-NMR. PMID:12496101

  12. Nuclear Magnetic Resonance Technology for Medical Studies

    NASA Astrophysics Data System (ADS)

    Budinger, Thomas F.; Lauterbur, Paul C.

    1984-10-01

    Nuclear magnetic resonance proton imaging provides anatomical definition of normal and abnormal tissues with a contrast and detection sensitivity superior to those of x-ray computed tomography in the human head and pelvis and parts of the cardiovascular and musculoskeletal systems. Recent improvements in technology should lead to advances in diagnostic imaging of the breast and regions of the abdomen. Selected-region nuclear magnetic resonance spectroscopy of protons, carbon-13, and phosphorus-31 has developed into a basic science tool for in vivo studies on man and a unique tool for clinical diagnoses of metabolic disorders. At present, nuclear magnetic resonance is considered safe if access to the magnet environment is controlled. Technological advances employing field strengths over 2 teslas will require biophysical studies of heating and static field effects.

  13. Novel fluorinated ligands for gold nanoparticle labelling with applications in (19)F-MRI.

    PubMed

    Michelena, Olatz; Padro, Daniel; Carrillo-Carrión, Carolina; Del Pino, Pablo; Blanco, Jorge; Arnaiz, Blanca; Parak, Wolfgang J; Carril, Mónica

    2017-02-21

    Novel fluorinated ligands for gold nanoparticle labelling have been designed and synthesised. Several types of gold nanoparticles have been prepared in the presence of these fluorinated ligands alone, or in combination with non-fluorinated ligands. Their colloidal stability in water and other solvents was tested and the magnetic resonance properties of the so-obtained nanoparticles were also assessed in detail. (1)H and (19)F-NMR spectra were evaluated and MRI phantoms of the most promising nanoparticles were successfully measured in (19)F-MRI. The MRI signal to noise ratio was related to the fluorine concentration and compared with ICP-MS data to correlate the real concentration of fluorine grafted onto the nanoparticles with the actually active fluorine in MRI.

  14. Clonal distribution of pneumococcal serotype 19F isolates from Ghana.

    PubMed

    Sparding, Nadja; Dayie, Nicholas T K D; Mills, Richael O; Newman, Mercy J; Dalsgaard, Anders; Frimodt-Møller, Niels; Slotved, Hans-Christian

    2015-04-01

    Streptococcus pneumoniae is a major cause of morbidity and mortality worldwide. Pneumococcal strains are classified according to their capsular polysaccharide and more than 90 different serotypes are currently known. In this project, three distinct groups of pneumococcal carriage isolates from Ghana were investigated; isolates from healthy children in Tamale and isolates from both healthy and children attending the outpatient department at a hospital in Accra. The isolates were previously identified and characterized by Gram staining, serotyping and susceptibility to penicillin. In this study, isolates of the common serotype 19F were further investigated by Multi-Locus Sequence Typing (MLST). Overall, 14 different Sequence Types (STs) were identified by MLST, of which nine were novel based on the international MLST database. Two clones within serotype 19F seem to circulate in Ghana, a known ST (ST 4194) and a novel ST (ST 9090). ST 9090 was only found in healthy children in Accra, whereas ST 4194 was found equally in all children studied. In the MLST database, other isolates of ST 4194 were also associated with serotype 19F, and these isolates came from other West African countries. The majority of isolates were penicillin intermediate resistant. In conclusion, two clones within serotype 19F were found to be dominating in pneumococcal carriage in Accra and Tamale in Ghana. Furthermore, it seems as though the clonal distribution of serotype 19F may be different from what is currently known in Ghana in that many new clones were identified. This supports the importance of continued monitoring of pneumococcal carriage in Ghana and elsewhere when vaccines, e.g., PCV-13, have been introduced to monitor the possible future spread of antimicrobial resistant clones.

  15. Nuclear magnetic resonance contrast agents

    DOEpatents

    Smith, P.H.; Brainard, J.R.; Jarvinen, G.D.; Ryan, R.R.

    1997-12-30

    A family of contrast agents for use in magnetic resonance imaging and a method of enhancing the contrast of magnetic resonance images of an object by incorporating a contrast agent of this invention into the object prior to forming the images or during formation of the images. A contrast agent of this invention is a paramagnetic lanthanide hexaazamacrocyclic molecule, where a basic example has the formula LnC{sub 16}H{sub 14}N{sub 6}. Important applications of the invention are in medical diagnosis, treatment, and research, where images of portions of a human body are formed by means of magnetic resonance techniques. 10 figs.

  16. Nuclear magnetic resonance contrast agents

    DOEpatents

    Smith, Paul H.; Brainard, James R.; Jarvinen, Gordon D.; Ryan, Robert R.

    1997-01-01

    A family of contrast agents for use in magnetic resonance imaging and a method of enhancing the contrast of magnetic resonance images of an object by incorporating a contrast agent of this invention into the object prior to forming the images or during formation of the images. A contrast agent of this invention is a paramagnetic lanthanide hexaazamacrocyclic molecule, where a basic example has the formula LnC.sub.16 H.sub.14 N.sub.6. Important applications of the invention are in medical diagnosis, treatment, and research, where images of portions of a human body are formed by means of magnetic resonance techniques.

  17. Determining diffusion coefficients of ionic liquids by means of field cycling nuclear magnetic resonance relaxometry.

    PubMed

    Kruk, D; Meier, R; Rachocki, A; Korpała, A; Singh, R K; Rössler, E A

    2014-06-28

    Field Cycling Nuclear Magnetic Resonance (FC NMR) relaxation studies are reported for three ionic liquids: 1-ethyl-3- methylimidazolium thiocyanate (EMIM-SCN, 220-258 K), 1-butyl-3-methylimidazolium tetrafluoroborate (BMIM-BF4, 243-318 K), and 1-butyl-3-methylimidazolium hexafluorophosphate (BMIM-PF6, 258-323 K). The dispersion of (1)H spin-lattice relaxation rate R1(ω) is measured in the frequency range of 10 kHz-20 MHz, and the studies are complemented by (19)F spin-lattice relaxation measurements on BMIM-PF6 in the corresponding frequency range. From the (1)H relaxation results self-diffusion coefficients for the cation in EMIM-SCN, BMIM-BF4, and BMIM-PF6 are determined. This is done by performing an analysis considering all relevant intra- and intermolecular relaxation contributions to the (1)H spin-lattice relaxation as well as by benefiting from the universal low-frequency dispersion law characteristic of Fickian diffusion which yields, at low frequencies, a linear dependence of R1 on square root of frequency. From the (19)F relaxation both anion and cation diffusion coefficients are determined for BMIM-PF6. The diffusion coefficients obtained from FC NMR relaxometry are in good agreement with results reported from pulsed- field-gradient NMR. This shows that NMR relaxometry can be considered as an alternative route of determining diffusion coefficients of both cations and anions in ionic liquids.

  18. Using fluorine nuclear magnetic resonance to probe the interaction of membrane-active peptides with the lipid bilayer.

    PubMed

    Buer, Benjamin C; Chugh, Jeetender; Al-Hashimi, Hashim M; Marsh, E Neil G

    2010-07-13

    A variety of biologically active peptides exert their function through direct interactions with the lipid membrane of the cell. These surface interactions are generally transient and highly dynamic, making them hard to study. Here we have examined the feasibility of using solution phase (19)F nuclear magnetic resonance (NMR) to study peptide-membrane interactions. Using the antimicrobial peptide MSI-78 as a model system, we demonstrate that peptide binding to either small unilamellar vesicles (SUVs) or bicelles can readily be detected by simple one-dimensional (19)F NMR experiments with peptides labeled with l-4,4,4-trifluoroethylglycine. The (19)F chemical shift associated with the peptide-membrane complex is sensitive both to the position of the trifluoromethyl reporter group (whether in the hydrophobic face or positively charged face of the amphipathic peptide) and to the curvature of the lipid bilayer (whether the peptide is bound to SUVs or bicelles). (19)F spin echo experiments using the Carr-Purcell-Meiboom-Gill pulse sequence were used to measure the transverse relaxation (T(2)) of the nucleus and thereby examine the local mobility of the MSI-78 analogues bound to bicelles. The fluorine probe positioned in the hydrophobic face of the peptide relaxes at a rate that correlates with the tumbling of the bicelle, suggesting that it is relatively immobile, whereas the probe at the positively charged face relaxes more slowly, indicating this position is much more dynamic. These results are in accord with structural models of MSI-78 bound to lipids and point to the feasibility of using fluorine-labeled peptides to monitor peptide-membrane interactions in living cells.

  19. Magnetic fusion driventransmutation of nuclear waste (FTW)

    SciTech Connect

    Peng, Yueng Kay Martin; Cheng, E.T.

    1993-01-01

    The possibility of magnetic Fusion driven Transmutation of Waste (FTW) was revisted and discussed recently. Nuclear wastes include all transuranium elements: Pu isotopes, minor actinides separated from the spent fission fuel, and fissile products. Elimination of thse long-life nuclear wastes is necessary for the long-term viability of fission power. A Small Business Innovative Research program has been initiated under the leadership of TSI Research to examine the efficacy of fusion transmutation of waste utilizing small fusion drivers.

  20. Fluorine-19 nuclear magnetic resonance and biochemical characterization of fluorotyrosine-labeled-thymidylate-synthetase

    NASA Astrophysics Data System (ADS)

    Rosson, Dan; Lewis, Charles A.; Ellis, Paul D.; Dunlap, R. Bruce

    1994-03-01

    Fluorotyrosine has been incorporated into thymidylate synthetase from Lactobacillus casei by growth of the bacterium in media containing 3-fluorotyrosine. The enzyme exhibited a specific activity 70% of that of the normal enzyme and formed a covalent binary complex with pyrimidine nucleotides, as well as a covalent ternary complex with 5-fluorodeoxyuridylate and 5,10-methylenetetrahydrofolate. 19F nuclear magnetic resonance spectroscopy has been used to follow the formation of these complexes. 5-Fluorodeoxyuridylate, dUMP, dTMP and dCMP produced identical conformational changes in the enzyme as monitored by the fluorotyrosyl resonances. Ternary complex formation of the fluorotyrosine-containing enzyme with 5-fluorodeoxyuridylate and 5,10-methylenetetrahydrofolate resulted in further spectral changes.

  1. Toward a reassessment of the 19F(p, α0)16O reaction rate at astrophysical temperatures

    NASA Astrophysics Data System (ADS)

    Lombardo, I.; Dell'Aquila, D.; Di Leva, A.; Indelicato, I.; La Cognata, M.; La Commara, M.; Ordine, A.; Rigato, V.; Romoli, M.; Rosato, E.; Spadaccini, G.; Spitaleri, C.; Tumino, A.; Vigilante, M.

    2015-09-01

    The 19F(p, α0)16O reaction at low energies plays an important role in fundamental physics. In particular in nuclear astrophysics it represents, together with the 19F(p, γ)20Ne reaction, the crossing point between the CNO and the NeNa cycles in stars. Further, in hydrogen-rich stellar environments, it is the most important fluorine destruction channel. In this paper we report new measurements on the 19F(p, α0)16O reaction at deeply sub-Coulomb energies (0.2-0.6 MeV), a region where, despite the key role of this reaction, very few and old data are reported. The deduced astrophysical S-factor is ≈ 1.5- 2 times larger than currently adopted extrapolations with possibly important astrophysical consequences.

  2. Fluorine (19F) MRS and MRI in biomedicine

    PubMed Central

    Ruiz-Cabello, Jesús; Barnett, Brad P.; Bottomley, Paul A.; Bulte, Jeff W.M.

    2011-01-01

    Shortly after the introduction of 1H MRI, fluorinated molecules were tested as MR-detectable tracers or contrast agents. Many fluorinated compounds, which are nontoxic and chemically inert, are now being used in a broad range of biomedical applications, including anesthetics, chemotherapeutic agents, and molecules with high oxygen solubility for respiration and blood substitution. These compounds can be monitored by fluorine (19F) MRI and/or MRS, providing a noninvasive means to interrogate associated functions in biological systems. As a result of the lack of endogenous fluorine in living organisms, 19F MRI of ‘hotspots’ of targeted fluorinated contrast agents has recently opened up new research avenues in molecular and cellular imaging. This includes the specific targeting and imaging of cellular surface epitopes, as well as MRI cell tracking of endogenous macrophages, injected immune cells and stem cell transplants. PMID:20842758

  3. Nuclear Magnetic Resonance Imaging. South Carolina Health Service Area 2

    SciTech Connect

    Not Available

    1984-12-01

    Contents include: Nuclear Magnetic Resonance Imaging (NMRI); (Clinical applications, Magnet types, Comparisons with other systems, Manpower, Manufacturers, Contraindications); Analysis of systems; (Availability, Accessibility, Cost, Quality, Continuity, Acceptability).

  4. Sample spinner for nuclear magnetic resonance spectrometer

    SciTech Connect

    Stejskal, E.O.

    1984-05-01

    A sample spinner for a nuclear magnetic resonance spectrometer having improved operating characteristics is described comprising a rotor supported at both ends by support gas bearings and positioned by a thrust gas bearing. Improved support gas bearings are also described which result in a spinner exhibiting long-term stable operation characteristics.

  5. Nuclear Magnetic Resonance Technology for Medical Studies.

    ERIC Educational Resources Information Center

    Budinger, Thomas F.; Lauterbur, Paul C.

    1984-01-01

    Reports on the status of nuclear magnetic resonance (NMR) from theoretical and clinical perspectives, reviewing NMR theory and relaxation parameters relevant to NMR imaging. Also reviews literature related to modern imaging strategies, signal-to-noise ratio, contrast agents, in vivo spectroscopy, spectroscopic imaging, clinical applications, and…

  6. Conformational isomerism in solid state of AMG 853--structure studies using solid-state nuclear magnetic resonance and X-ray diffraction.

    PubMed

    Kiang, Y-H; Nagapudi, Karthik; Wu, Tian; Peterson, Matthew L; Jona, Janan; Staples, Richard J; Stephens, Peter W

    2015-07-01

    Investigation of an additional resonance peak in the (19) F solid-state nuclear magnetic resonance (NMR) spectrum of AMG 853, a dual antagonist of DP and CRTH2 previously in clinical development for asthma, has led to the identification of two conformational isomers coexisting in the crystal lattice in a continuous composition range between 89.7%:10.3% and 96.5%:3.5%. These two isomers differ in the chloro-flurorophenyl moiety orientation-the aromatic ring is flipped by 180° in these two isomers. The level of the minor isomer is directly measured through integration of the two peaks in the (19) F solid-state NMR spectrum. The values obtained from the NMR data are in excellent agreement with the degree of disorder of the fluorine atom in the crystal structure, refined using both single-crystal and high-resolution powder X-ray diffraction data.

  7. Nuclear magnetic resonance studies of lens transparency

    SciTech Connect

    Beaulieu, C.F.

    1989-01-01

    Transparency of normal lens cytoplasm and loss of transparency in cataract were studied by nuclear magnetic resonance (NMR) methods. Phosphorus ({sup 31}P) NMR spectroscopy was used to measure the {sup 31}P constituents and pH of calf lens cortical and nuclear homogenates and intact lenses as a function of time after lens enucleation and in opacification produced by calcium. Transparency was measured with laser spectroscopy. Despite complete loss of adenosine triphosphate (ATP) within 18 hrs of enucleation, the homogenates and lenses remained 100% transparent. Additions of calcium to ATP-depleted cortical homogenates produced opacification as well as concentration-dependent changes in inorganic phosphate, sugar phosphates, glycerol phosphorylcholine and pH. {sup 1}H relaxation measurements of lens water at 200 MHz proton Larmor frequency studied temperature-dependent phase separation of lens nuclear homogenates. Preliminary measurements of T{sub 1} and T{sub 2} with non-equilibrium temperature changes showed a change in the slope of the temperature dependence of T{sub 1} and T{sub 2} at the phase separation temperature. Subsequent studies with equilibrium temperature changes showed no effect of phase separation on T{sub 1} or T{sub 2}, consistent with the phase separation being a low-energy process. {sup 1}H nuclear magnetic relaxation dispersion (NMRD) studies (measurements of the magnetic field dependence of the water proton 1/T{sub 1} relaxation rates) were performed on (1) calf lens nuclear and cortical homogenates (2) chicken lens homogenates, (3) native and heat-denatured egg white and (4) pure proteins including bovine {gamma}-II crystallin bovine serum albumin (BSA) and myoglobin. The NMRD profiles of all samples exhibited decreases in 1/T{sub 1} with increasing magnetic field.

  8. Optically pumped nuclear magnetic resonance of semiconductors.

    PubMed

    Hayes, Sophia E; Mui, Stacy; Ramaswamy, Kannan

    2008-02-07

    Optically pumped NMR (OPNMR) of direct gap and indirect gap semiconductors has been an area of active research interest, motivated by both basic science and technological perspectives. Proposals to enhance and to spatially localize nuclear polarization have stimulated interest in this area. Recent progress in OPNMR has focused on exploring the experimental parameter space in order to elucidate details of the underlying photophysics of optical pumping phenomena. The focus of this review is on recent studies of bulk samples of GaAs and InP, namely, the photon energy dependence, the magnetic field dependence, and the phase dependence of OPNMR resonances. Models for the development of nuclear polarization are discussed.

  9. Magnetic nuclear core restraint and control

    DOEpatents

    Cooper, Martin H.

    1979-01-01

    A lateral restraint and control system for a nuclear reactor core adaptable to provide an inherent decrease of core reactivity in response to abnormally high reactor coolant fluid temperatures. An electromagnet is associated with structure for radially compressing the core during normal reactor conditions. A portion of the structures forming a magnetic circuit are composed of ferromagnetic material having a curie temperature corresponding to a selected coolant fluid temperature. Upon a selected signal, or inherently upon a preselected rise in coolant temperature, the magnetic force is decreased a given amount sufficient to relieve the compression force so as to allow core radial expansion. The expanded core configuration provides a decreased reactivity, tending to shut down the nuclear reaction.

  10. Magnetic nuclear core restraint and control

    DOEpatents

    Cooper, Martin H.

    1978-01-01

    A lateral restraint and control system for a nuclear reactor core adaptable to provide an inherent decrease of core reactivity in response to abnormally high reactor coolant fluid temperatures. An electromagnet is associated with structure for radially compressing the core during normal reactor conditions. A portion of the structures forming a magnetic circuit are composed of ferromagnetic material having a curie temperature corresponding to a selected coolant fluid temperature. Upon a selected signal, or inherently upon a preselected rise in coolant temperature, the magnetic force is decreased a given amount sufficient to relieve the compression force so as to allow core radial expansion. The expanded core configuration provides a decreased reactivity, tending to shut down the nuclear reaction.

  11. Magnetic-field cycling instrumentation for dynamic nuclear polarization-nuclear magnetic resonance using photoexcited triplets.

    PubMed

    Kagawa, Akinori; Negoro, Makoto; Takeda, Kazuyuki; Kitagawa, Masahiro

    2009-04-01

    To advance static solid-state NMR with hyperpolarized nuclear spins, a system has been developed enabling dynamic nuclear polarization (DNP) using electron spins in the photoexcited triplet state with X-band microwave apparatus, followed by static solid-state nuclear magnetic resonance (NMR) experiments using the polarized nuclear-spin system with a goniometer. In order to perform the DNP and NMR procedures in different magnetic fields, the DNP system and the NMR system are spatially separated, between which the sample can be shuttled while its orientation is controlled in a reproducible fashion. We demonstrate that the system developed in this work is operational for solid-state NMR with hyperpolarized nuclear-spin systems in static organic materials, and also discuss the application of our system.

  12. Nuclear magnetic moments and related sum rules

    SciTech Connect

    Bentz, Wolfgang; Arima, Akito

    2011-05-06

    We first review the history and our present understanding of nuclear magnetic moments and Gamow-Teller transitions, with emphasis on the roles of configuration mixing and meson exchange currents. Then we discuss the renormalization of the orbital g-factor in nuclei, and its relation to the E1 sum rule for photoabsorption and the M1 sum rule for the scissors mode of deformed nuclei.

  13. Hot magnetized nuclear matter: Thermodynamic and saturation properties

    NASA Astrophysics Data System (ADS)

    Rezaei, Z.; Bordbar, G. H.

    2017-03-01

    We have used a realistic nuclear potential, AV_{18}, and a many-body technique, the lowest-order constraint variational (LOCV) approach, to calculate the properties of hot magnetized nuclear matter. By investigating the free energy, spin polarization parameter, and symmetry energy, we have studied the temperature and magnetic field dependence of the saturation properties of magnetized nuclear matter. In addition, we have calculated the equation of state of magnetized nuclear matter at different temperatures and magnetic fields. It was found that the flashing temperature of nuclear matter decreases by increasing the magnetic field. In addition, we have studied the effect of the magnetic field on liquid gas phase transition of nuclear matter. The liquid gas coexistence curves, the order parameter of the liquid gas phase transition, and the properties of critical point at different magnetic fields have been calculated.

  14. Nuclear magnetic resonance properties of lunar samples.

    NASA Technical Reports Server (NTRS)

    Kline, D.; Weeks, R. A.

    1972-01-01

    Nuclear magnetic resonance spectra of Na-23, Al-27, and P-31 in fines samples 10084,60 and 14163,168 and in crystalline rock samples 12021,55 and 14321,166, have been recorded over a range of frequencies up to 20 MHz. A shift in the field at which maximum absorption occurs for all of the spectra relative to the field at which maximum absorption occurs for terrestrial analogues is attributed to a sample-dependent magnetic field at the Na, Al, and P sites opposing the laboratory field. The magnitude of these fields internal to the samples is sample dependent and varies from 5 to 10 G. These fields do not correlate with the iron content of the samples. However, the presence of single-domain particles of iron distributed throughout the plagioclase fraction that contains the principal fraction of Na and Al is inferred from electron magnetic resonance spectra shapes.

  15. STATISTICAL ANALYSIS OF TANK 19F FLOOR SAMPLE RESULTS

    SciTech Connect

    Harris, S.

    2010-09-02

    Representative sampling has been completed for characterization of the residual material on the floor of Tank 19F as per the statistical sampling plan developed by Harris and Shine. Samples from eight locations have been obtained from the tank floor and two of the samples were archived as a contingency. Six samples, referred to in this report as the current scrape samples, have been submitted to and analyzed by SRNL. This report contains the statistical analysis of the floor sample analytical results to determine if further data are needed to reduce uncertainty. Included are comparisons with the prior Mantis samples results to determine if they can be pooled with the current scrape samples to estimate the upper 95% confidence limits (UCL95%) for concentration. Statistical analysis revealed that the Mantis and current scrape sample results are not compatible. Therefore, the Mantis sample results were not used to support the quantification of analytes in the residual material. Significant spatial variability among the current scrape sample results was not found. Constituent concentrations were similar between the North and South hemispheres as well as between the inner and outer regions of the tank floor. The current scrape sample results from all six samples fall within their 3-sigma limits. In view of the results from numerous statistical tests, the data were pooled from all six current scrape samples. As such, an adequate sample size was provided for quantification of the residual material on the floor of Tank 19F. The uncertainty is quantified in this report by an UCL95% on each analyte concentration. The uncertainty in analyte concentration was calculated as a function of the number of samples, the average, and the standard deviation of the analytical results. The UCL95% was based entirely on the six current scrape sample results (each averaged across three analytical determinations).

  16. Tracking Perfluorocarbon Nanoemulsion Delivery by 19F MRI for Precise High Intensity Focused Ultrasound Tumor Ablation

    PubMed Central

    Shin, Soo Hyun; Park, Eun-Joo; Min, Changki; Choi, Sun Il; Jeon, Soyeon; Kim, Yun-Hee; Kim, Daehong

    2017-01-01

    Perfluorocarbon nanoemulsions (PFCNEs) have recently been undergoing rigorous study to investigate their ability to improve the therapeutic efficacy of tumor ablation by high intensity focused ultrasound (HIFU). For precise control of PFCNE delivery and thermal ablation, their accumulation and distribution in a tumor should be quantitatively analyzed. Here, we used fluorine-19 (19F) magnetic resonance imaging (MRI) to quantitatively track PFCNE accumulation in a tumor, and analyzed how intra-tumoral PFCNE quantities affect the therapeutic efficacy of HIFU treatment. Ablation outcomes were assessed by intra-voxel incoherent motion analysis and bioluminescent imaging up to 14 days after the procedure. Assessment of PFCNE delivery and treatment outcomes showed that 2-3 mg/mL of PFCNE in a tumor produces the largest ablation volume under the same HIFU insonation conditions. Histology showed varying degrees of necrosis depending on the amount of PFCNE delivered. 19F MRI promises to be a valuable platform for precisely guiding PFCNE-enhanced HIFU ablation of tumors. PMID:28255351

  17. Nuclear magnetic resonance imaging of liver hemangiomas

    SciTech Connect

    Sigal, R.; Lanir, A.; Atlan, H.; Naschitz, J.E.; Simon, J.S.; Enat, R.; Front, D.; Israel, O.; Chisin, R.; Krausz, Y.

    1985-10-01

    Nine patients with cavernous hemangioma of the liver were examined by nuclear magnetic resonance imaging (MRI) with a 0.5 T superconductive magnet. Spin-echo technique was used with varying time to echo (TE) and repetition times (TR). Results were compared with /sup 99m/Tc red blood cell (RBC) scintigraphy, computed tomography (CT), echography, and arteriography. Four illustrated cases are reported. It was possible to establish a pattern for MRI characteristics of cavernous hemangiomas; rounded or smooth lobulated shape, marked increase in T1 and T2 values as compared with normal liver values. It is concluded that, although more experience is necessary to compare the specificity with that of ultrasound and CT, MRI proved to be very sensitive for the diagnosis of liver hemangioma, especially in the case of small ones which may be missed by /sup 99m/Tc-labeled RBC scintigraphy.

  18. QED theory of the nuclear magnetic shielding in hydrogenlike ions.

    PubMed

    Yerokhin, V A; Pachucki, K; Harman, Z; Keitel, C H

    2011-07-22

    The shielding of the nuclear magnetic moment by the bound electron in hydrogenlike ions is calculated ab initio with inclusion of relativistic, nuclear, and quantum electrodynamics (QED) effects. The QED correction is evaluated to all orders in the nuclear binding strength parameter and, independently, to the first order in the expansion in this parameter. The results obtained lay the basis for the high-precision determination of nuclear magnetic dipole moments from measurements of the g factor of hydrogenlike ions.

  19. Simple and Inexpensive Classroom Demonstrations of Nuclear Magnetic Resonance and Magnetic Resonance Imaging.

    ERIC Educational Resources Information Center

    Olson, Joel A.; Nordell, Karen J.; Chesnik, Marla A.; Landis, Clark R.; Ellis, Arthur B.; Rzchowski, M. S.; Condren, S. Michael; Lisensky, George C.

    2000-01-01

    Describes a set of simple, inexpensive, classical demonstrations of nuclear magnetic resonance (NMR) and magnetic resonance imaging (MRI) principles that illustrate the resonance condition associated with magnetic dipoles and the dependence of the resonance frequency on environment. (WRM)

  20. (13)C and (19)F solid-state NMR and X-ray crystallographic study of halogen-bonded frameworks featuring nitrogen-containing heterocycles.

    PubMed

    Szell, Patrick M J; Gabriel, Shaina A; Gill, Russell D D; Wan, Shirley Y H; Gabidullin, Bulat; Bryce, David L

    2017-03-01

    Halogen bonding is a noncovalent interaction between the electrophilic region of a halogen (σ-hole) and an electron donor. We report a crystallographic and structural analysis of halogen-bonded compounds by applying a combined X-ray diffraction (XRD) and solid-state nuclear magnetic resonance (SSNMR) approach. Single-crystal XRD was first used to characterize the halogen-bonded cocrystals formed between two fluorinated halogen-bond donors (1,4-diiodotetrafluorobenzene and 1,3,5-trifluoro-2,4,6-triiodobenzene) and several nitrogen-containing heterocycles (acridine, 1,10-phenanthroline, 2,3,5,6-tetramethylpyrazine, and hexamethylenetetramine). New structures are reported for the following three cocrystals, all in the P21/c space group: acridine-1,3,5-trifluoro-2,4,6-triiodobenzene (1/1), C6F3I3·C13H9N, 1,10-phenanthroline-1,3,5-trifluoro-2,4,6-triiodobenzene (1/1), C6F3I3·C12H8N2, and 2,3,5,6-tetramethylpyrazine-1,3,5-trifluoro-2,4,6-triiodobenzene (1/1), C6F3I3·C8H12N2. (13)C and (19)F solid-state magic-angle spinning (MAS) NMR is shown to be a convenient method to characterize the structural features of the halogen-bond donor and acceptor, with chemical shifts attributable to cocrystal formation observed in the spectra of both nuclides. Cross polarization (CP) from (19)F to (13)C results in improved spectral sensitivity in characterizing the perfluorinated halogen-bond donor when compared to conventional (1)H CP. Gauge-including projector-augmented wave density functional theory (GIPAW DFT) calculations of magnetic shielding constants, along with optimization of the XRD structures, provide a final set of structures in best agreement with the experimental (13)C and (19)F chemical shifts. Data for carbons bonded to iodine remain outliers due to well-known relativistic effects.

  1. 31P and 19F NMR studies of glycophorin-reconstituted membranes: preferential interaction of glycophorin with phosphatidylserine

    SciTech Connect

    Ong, R.L.

    1984-01-01

    Glycophorin A, a major glycoprotein of the erythrocyte membrane, has been incorporated into small unilamellar vesicles composed of a variety of pure and mixed phospholipids. Nuclear spin labels including 31P and 19F have been used at natural abundance or have been synthetically incorporated in lipids to act as probes of lipid-protein interaction. Interactions produce broadening of resonances in several cases and it can be used to demonstrate preferential interaction of certain lipids with glycophorin. 31P and 19F probes show a strong preferential interaction of glycophorin with phosphatidylserine over phosphatidylcholine. There is some evidence that interactions are more pronounced at the inner surface of the bilayer and these results are rationalized in terms of the asymmetric distribution of protein and lipid.

  2. Combining insights from solid-state NMR and first principles calculation: applications to the 19F NMR of octafluoronaphthalene.

    PubMed

    Robbins, Andrew J; Ng, William T K; Jochym, Dominik; Keal, Thomas W; Clark, Stewart J; Tozer, David J; Hodgkinson, Paul

    2007-05-21

    Advances in solid-state NMR methodology and computational chemistry are applied to the (19)F NMR of solid octafluoronaphthalene. It is demonstrated experimentally, and confirmed by density functional theory (DFT) calculations, that the spectral resolution in the magic-angle spinning spectrum is limited by the anisotropy of the bulk magnetic susceptibility (ABMS). This leads to the unusual observation that the resolution improves as the sample is diluted. DFT calculations provide assignments of each of the peaks in the (19)F spectrum, but the predictions are close to the limits of accuracy and correlation information from 2-D NMR is invaluable in confirming the assignments. The effects of non-Gaussian lineshapes on the use of 2-D NMR for mapping correlations of spectral frequencies (e.g. due to the ABMS) are also discussed.

  3. (19)F MRSI of capecitabine in the liver at 7 T using broadband transmit-receive antennas and dual-band RF pulses.

    PubMed

    van Gorp, Jetse S; Seevinck, Peter R; Andreychenko, Anna; Raaijmakers, Alexander J E; Luijten, Peter R; Viergever, Max A; Koopman, Miriam; Boer, Vincent O; Klomp, Dennis W J

    2015-11-01

    Capecitabine (Cap) is an often prescribed chemotherapeutic agent, successfully used to cure some patients from cancer or reduce tumor burden for palliative care. However, the efficacy of the drug is limited, it is not known in advance who will respond to the drug and it can come with severe toxicity. (19)F Magnetic Resonance Spectroscopy (MRS) and Magnetic Resonance Spectroscopic Imaging (MRSI) have been used to non-invasively study Cap metabolism in vivo to find a marker for personalized treatment. In vivo detection, however, is hampered by low concentrations and the use of radiofrequency (RF) surface coils limiting spatial coverage. In this work, the use of a 7T MR system with radiative multi-channel transmit-receive antennas was investigated with the aim of maximizing the sensitivity and spatial coverage of (19)F detection protocols. The antennas were broadband optimized to facilitate both the (1)H (298 MHz) and (19)F (280 MHz) frequencies for accurate shimming, imaging and signal combination. B1(+) simulations, phantom and noise measurements showed that more than 90% of the theoretical maximum sensitivity could be obtained when using B1(+) and B1(-) information provided at the (1)H frequency for the optimization of B1(+) and B1(-) at the (19)F frequency. Furthermore, to overcome the limits in maximum available RF power, whilst ensuring simultaneous excitation of all detectable conversion products of Cap, a dual-band RF pulse was designed and evaluated. Finally, (19)F MRS(I) measurements were performed to detect (19)F metabolites in vitro and in vivo. In two patients, at 10 h (patient 1) and 1 h (patient 2) after Cap intake, (19)F metabolites were detected in the liver and the surrounding organs, illustrating the potential of the set-up for in vivo detection of metabolic rates and drug distribution in the body.

  4. Nuclear magnetic resonance imaging in medicine

    PubMed Central

    McKinstry, C S

    1986-01-01

    Using the technique of nuclear magnetic resonance (NMR, MR, MRI), the first images displaying pathology in humans were published in 1980.1 Since then, there has been a rapid extension in the use of the technique, with an estimated 225 machines in use in the USA at the end of 1985.2 Considerable enthusiasm has been expressed for this new imaging technique,3 although awareness of its high cost in the present economic climate has led to reservations being expressed in other quarters.2 The aim of this article is to give an outline of the present state of NMR, and indicate some possible future developments. ImagesFig 1Fig 2Fig 3(a)Fig 3 (b)Fig 4Fig 5Fig 6Fig 7 (a)Fig 7 (b)Fig 8Fig 9Fig 10 PMID:3811023

  5. In vivo nuclear magnetic resonance imaging

    NASA Technical Reports Server (NTRS)

    Leblanc, A.; Evans, H.; Bryan, R. N.; Johnson, P.; Schonfeld, E.; Jhingran, S. G.

    1984-01-01

    A number of physiological changes have been demonstrated in bone, muscle and blood after exposure of humans and animals to microgravity. Determining mechanisms and the development of effective countermeasures for long duration space missions is an important NASA goal. The advent of tomographic nuclear magnetic resonance imaging (NMR or MRI) gives NASA a way to greatly extend early studies of this phenomena in ways not previously possible; NMR is also noninvasive and safe. NMR provides both superb anatomical images for volume assessments of individual organs and quantification of chemical/physical changes induced in the examined tissues. The feasibility of NMR as a tool for human physiological research as it is affected by microgravity is demonstrated. The animal studies employed the rear limb suspended rat as a model of mucle atrophy that results from microgravity. And bedrest of normal male subjects was used to simulate the effects of microgravity on bone and muscle.

  6. Small-Volume Nuclear Magnetic Resonance Spectroscopy

    NASA Astrophysics Data System (ADS)

    Fratila, Raluca M.; Velders, Aldrik H.

    2011-07-01

    Nuclear magnetic resonance (NMR) spectroscopy is one of the most information-rich analytical techniques available. However, it is also inherently insensitive, and this drawback precludes the application of NMR spectroscopy to mass- and volume-limited samples. We review a particular approach to increase the sensitivity of NMR experiments, namely the use of miniaturized coils. When the size of the coil is reduced, the sample volume can be brought down to the nanoliter range. We compare the main coil geometries (solenoidal, planar, and microslot/stripline) and discuss their applications to the analysis of mass-limited samples. We also provide an overview of the hyphenation of microcoil NMR spectroscopy to separation techniques and of the integration with lab-on-a-chip devices and microreactors.

  7. Geochemical Controls on Nuclear Magnetic Resonance Measurements

    SciTech Connect

    Knight, Rosemary; Prasad, Manika; Keating, Kristina

    2003-11-11

    OAK-B135 Our research objectives are to determine, through an extensive set of laboratory experiments, the effect of the specific mineralogic form of iron and the effect of the distribution of iron on proton nuclear magnetic resonance (NMR) relaxation mechanisms. In the first nine months of this project, we have refined the experimental procedures to be used in the acquisition of the laboratory NMR data; have ordered, and conducted preliminary measurements on, the sand samples to be used in the experimental work; and have revised and completed the theoretical model to use in this project. Over the next year, our focus will be on completing the first phase of the experimental work where the form and distribution of the iron in the sands in varied.

  8. Through-space (19) F-(15) N couplings for the assignment of stereochemistry in flubenzimine.

    PubMed

    Ghiviriga, Ion; Rubinski, Miles A; Dolbier, William R

    2016-07-01

    Through-space (19) F-(15) N couplings revealed the configuration of flubenzimine, with the CF3 group on N4 pointing towards the lone pair of N5. The (19) F-(15) N coupling constants were measured at natural abundance using a spin-state selective indirect-detection pulse sequence. As (15) N-labelled proteins are routinely synthesized for NMR studies, through-space (19) F-(15) N couplings have the potential to probe the stereochemistry of these proteins by (19) F labelling of some amino acids or can reveal the site of docking of fluorine-containing drugs. Copyright © 2016 John Wiley & Sons, Ltd.

  9. BROADBAND EXCITATION IN NUCLEAR MAGNETIC RESONANCE

    SciTech Connect

    Tycko, R.

    1984-10-01

    Theoretical methods for designing sequences of radio frequency (rf) radiation pulses for broadband excitation of spin systems in nuclear magnetic resonance (NMR) are described. The sequences excite spins uniformly over large ranges of resonant frequencies arising from static magnetic field inhomogeneity, chemical shift differences, or spin couplings, or over large ranges of rf field amplitudes. Specific sequences for creating a population inversion or transverse magnetization are derived and demonstrated experimentally in liquid and solid state NMR. One approach to broadband excitation is based on principles of coherent averaging theory. A general formalism for deriving pulse sequences is given, along with computational methods for specific cases. This approach leads to sequences that produce strictly constant transformations of a spin system. The importance of this feature in NMR applications is discussed. A second approach to broadband excitation makes use of iterative schemes, i.e. sets of operations that are applied repetitively to a given initial pulse sequences, generating a series of increasingly complex sequences with increasingly desirable properties. A general mathematical framework for analyzing iterative schemes is developed. An iterative scheme is treated as a function that acts on a space of operators corresponding to the transformations produced by all possible pulse sequences. The fixed points of the function and the stability of the fixed points are shown to determine the essential behavior of the scheme. Iterative schemes for broadband population inversion are treated in detail. Algebraic and numerical methods for performing the mathematical analysis are presented. Two additional topics are treated. The first is the construction of sequences for uniform excitation of double-quantum coherence and for uniform polarization transfer over a range of spin couplings. Double-quantum excitation sequences are demonstrated in a liquid crystal system. The

  10. Dynamic nuclear polarization at high magnetic fields

    PubMed Central

    Maly, Thorsten; Debelouchina, Galia T.; Bajaj, Vikram S.; Hu, Kan-Nian; Joo, Chan-Gyu; Mak–Jurkauskas, Melody L.; Sirigiri, Jagadishwar R.; van der Wel, Patrick C. A.; Herzfeld, Judith; Temkin, Richard J.; Griffin, Robert G.

    2009-01-01

    Dynamic nuclear polarization (DNP) is a method that permits NMR signal intensities of solids and liquids to be enhanced significantly, and is therefore potentially an important tool in structural and mechanistic studies of biologically relevant molecules. During a DNP experiment, the large polarization of an exogeneous or endogeneous unpaired electron is transferred to the nuclei of interest (I) by microwave (μw) irradiation of the sample. The maximum theoretical enhancement achievable is given by the gyromagnetic ratios (γe/γl), being ∼660 for protons. In the early 1950s, the DNP phenomenon was demonstrated experimentally, and intensively investigated in the following four decades, primarily at low magnetic fields. This review focuses on recent developments in the field of DNP with a special emphasis on work done at high magnetic fields (≥5 T), the regime where contemporary NMR experiments are performed. After a brief historical survey, we present a review of the classical continuous wave (cw) DNP mechanisms—the Overhauser effect, the solid effect, the cross effect, and thermal mixing. A special section is devoted to the theory of coherent polarization transfer mechanisms, since they are potentially more efficient at high fields than classical polarization schemes. The implementation of DNP at high magnetic fields has required the development and improvement of new and existing instrumentation. Therefore, we also review some recent developments in μw and probe technology, followed by an overview of DNP applications in biological solids and liquids. Finally, we outline some possible areas for future developments. PMID:18266416

  11. Dynamic nuclear polarization in a magnetic resonance force microscope experiment.

    PubMed

    Issac, Corinne E; Gleave, Christine M; Nasr, Paméla T; Nguyen, Hoang L; Curley, Elizabeth A; Yoder, Jonilyn L; Moore, Eric W; Chen, Lei; Marohn, John A

    2016-04-07

    We report achieving enhanced nuclear magnetization in a magnetic resonance force microscope experiment at 0.6 tesla and 4.2 kelvin using the dynamic nuclear polarization (DNP) effect. In our experiments a microwire coplanar waveguide delivered radiowaves to excite nuclear spins and microwaves to excite electron spins in a 250 nm thick nitroxide-doped polystyrene sample. Both electron and proton spin resonance were observed as a change in the mechanical resonance frequency of a nearby cantilever having a micron-scale nickel tip. NMR signal, not observable from Curie-law magnetization at 0.6 T, became observable when microwave irradiation was applied to saturate the electron spins. The resulting NMR signal's size, buildup time, dependence on microwave power, and dependence on irradiation frequency was consistent with a transfer of magnetization from electron spins to nuclear spins. Due to the presence of an inhomogeneous magnetic field introduced by the cantilever's magnetic tip, the electron spins in the sample were saturated in a microwave-resonant slice 10's of nm thick. The spatial distribution of the nuclear polarization enhancement factor ε was mapped by varying the frequency of the applied radiowaves. The observed enhancement factor was zero for spins in the center of the resonant slice, was ε = +10 to +20 for spins proximal to the magnet, and was ε = -10 to -20 for spins distal to the magnet. We show that this bipolar nuclear magnetization profile is consistent with cross-effect DNP in a ∼10(5) T m(-1) magnetic field gradient. Potential challenges associated with generating and using DNP-enhanced nuclear magnetization in a nanometer-resolution magnetic resonance imaging experiment are elucidated and discussed.

  12. (19)F labelled glycosaminoglycan probes for solution NMR and non-linear (CARS) microscopy.

    PubMed

    Lima, Marcelo A; Cavalheiro, Renan P; M Viana, Gustavo; Meneghetti, Maria C Z; Rudd, Timothy R; Skidmore, Mark A; Powell, Andrew K; Yates, Edwin A

    2016-08-15

    Studying polysaccharide-protein interactions under physiological conditions by conventional techniques is challenging. Ideally, macromolecules could be followed by both in vitro spectroscopy experiments as well as in tissues using microscopy, to enable a proper comparison of results over these different scales but, often, this is not feasible. The cell surface and extracellular matrix polysaccharides, glycosaminoglycans (GAGs) lack groups that can be detected selectively in the biological milieu. The introduction of (19)F labels into GAG polysaccharides is explored and the interaction of a labelled GAG with the heparin-binding protein, antithrombin, employing (19)F NMR spectroscopy is followed. Furthermore, the ability of (19)F labelled GAGs to be imaged using CARS microscopy is demonstrated. (19)F labelled GAGs enable both (19)F NMR protein-GAG binding studies in solution at the molecular level and non-linear microscopy at a microscopic scale to be conducted on the same material, essentially free of background signals.

  13. Selectivity in multiple quantum nuclear magnetic resonance

    SciTech Connect

    Warren, W.S.

    1980-11-01

    The observation of multiple-quantum nuclear magnetic resonance transitions in isotropic or anisotropic liquids is shown to give readily interpretable information on molecular configurations, rates of motional processes, and intramolecular interactions. However, the observed intensity of high multiple-quantum transitions falls off dramatically as the number of coupled spins increases. The theory of multiple-quantum NMR is developed through the density matrix formalism, and exact intensities are derived for several cases (isotropic first-order systems and anisotropic systems with high symmetry) to shown that this intensity decrease is expected if standard multiple-quantum pulse sequences are used. New pulse sequences are developed which excite coherences and produce population inversions only between selected states, even though other transitions are simultaneously resonant. One type of selective excitation presented only allows molecules to absorb and emit photons in groups of n. Coherent averaging theory is extended to describe these selective sequences, and to design sequences which are selective to arbitrarily high order in the Magnus expansion. This theory and computer calculations both show that extremely good selectivity and large signal enhancements are possible.

  14. /sup 1/H, /sup 19/F and /sup 11/B nuclear magnetic resonance characterization of BF/sub 3/:amine catalysts used in the cure of C fiber-epoxy prepregs

    SciTech Connect

    Happe, J.A.; Morgan, R.J.; Walkup, C.M.

    1983-12-01

    The chemical composition of commercial BF/sub 3/:amine complexes are variable and contain BF/sub 4//sup -/ and BF/sub 3/(OH)/sup -/ salts together with other unidentified highly reactive species. The BF/sub 3/:amine complexes, which are susceptible to hydrolysis, also partially convert to the BF/sub 4//sup -/ salt (i.e. BF/sub 4//sup -/NH/sub 3//sup +/C/sub 2/H/sub 5/) upon heating. This salt formation is accelerated in dimethyl sulfoxide solution and in the presence of the epoxides that are present in commercial prepregs. Commercial C fiber-epoxy prepregs are shown to contain either BF/sub 3/:NH/sub 2/C/sub 2/H/sub 5/ or BF/sub 3/:NHC/sub 5/H/sub 10/ species together with their BF/sub 4//sup -/ salts and a variety of boron-fluorine or carbon-fluorine prepreg species. Considerable variation in the relative quantities of BF/sub 3/:amine to its BF/sub 4//sup -/ salt was observed from prepreg lot to lot, which will cause variable viscosity-time-temperature prepreg cure profiles. It is concluded that the chemically stable and mobile BF/sub 4//sup -/ salt is the pre-dominant catalytic species, acting as a cationic catalyst for the prepreg cure reactions. During the early stages of cure the BF/sub 3/:amine catalyst converts to the BF/sub 4//sup -/ salt in the presence of epoxides, whereas the BF/sub 3/-prepreg species are susceptible to catalytic deactivation and immobilization.

  15. Nuclear magnetic resonance spectroscopy with single spin sensitivity

    PubMed Central

    Müller, C.; Kong, X.; Cai, J.-M.; Melentijević, K.; Stacey, A.; Markham, M.; Twitchen, D.; Isoya, J.; Pezzagna, S.; Meijer, J.; Du, J. F.; Plenio, M. B.; Naydenov, B.; McGuinness, L. P.; Jelezko, F.

    2014-01-01

    Nuclear magnetic resonance spectroscopy and magnetic resonance imaging at the ultimate sensitivity limit of single molecules or single nuclear spins requires fundamentally new detection strategies. The strong coupling regime, when interaction between sensor and sample spins dominates all other interactions, is one such strategy. In this regime, classically forbidden detection of completely unpolarized nuclei is allowed, going beyond statistical fluctuations in magnetization. Here we realize strong coupling between an atomic (nitrogen–vacancy) sensor and sample nuclei to perform nuclear magnetic resonance on four 29Si spins. We exploit the field gradient created by the diamond atomic sensor, in concert with compressed sensing, to realize imaging protocols, enabling individual nuclei to be located with Angstrom precision. The achieved signal-to-noise ratio under ambient conditions allows single nuclear spin sensitivity to be achieved within seconds. PMID:25146503

  16. Nuclear Magnetic Double Resonance Using Weak Perturbing RF Fields

    ERIC Educational Resources Information Center

    Reynolds, G. Fredric

    1977-01-01

    Describes a nuclear magnetic resonance experimental example of spin tickling; also discusses a direct approach for verifying the relative signs of coupling constants in three-spin cyclopropyl systems. (SL)

  17. Nuclear magnetic resonance data of C9H20OSi

    NASA Astrophysics Data System (ADS)

    Mikhova, B. M.

    This document is part of Part 6 `Organic Metalloid Compounds' of Subvolume D 'Chemical Shifts and Coupling Constants for Carbon-13' of Landolt-Börnstein III/35 'Nuclear Magnetic Resonance Data', Group III 'Condensed Matter'.

  18. Nuclear magnetic resonance data of C8H18OSi

    NASA Astrophysics Data System (ADS)

    Mikhova, B. M.

    This document is part of Part 6 `Organic Metalloid Compounds' of Subvolume D 'Chemical Shifts and Coupling Constants for Carbon-13' of Landolt-Börnstein III/35 'Nuclear Magnetic Resonance Data', Group III 'Condensed Matter'.

  19. Nuclear magnetic resonance data of C10H15

    NASA Astrophysics Data System (ADS)

    Kalinowski, H.-O.; Kumar, M.; Gupta, V.; Gupta, R.

    This document is part of Part 1 `Aliphatic Compounds' of Subvolume D 'Chemical Shifts and Coupling Constants for Carbon-13' of Landolt-Börnstein III/35 'Nuclear Magnetic Resonance Data', Group III 'Condensed Matter'.

  20. Electron paramagnetic resonance study of 14N and 19F superhyperfine interaction in VO 2+ doped propylenediammonium hexafluorozirconate

    NASA Astrophysics Data System (ADS)

    Lakshmi^Kasturi, T.; Krishnan, V. G.

    1998-05-01

    Electron paramagnetic resonance spectra have been recorded at X-band frequencies at room temperature on VO 2+ molecular ion in propylenediammonium hexafluorozirconate, [H 3N(CH 2) 3NH 3]ZrF 6, single crystals. The superhyperfine structure caused by 14N and 19F has been clearly observed in the spectra. The two sets of spectra observed are related to each other by the symmetry operations of the host crystals and represent vanadyl ion at two magnetically distinguishable interstitial sites in the unit cell.

  1. Comparison of nuclear electric resonance and nuclear magnetic resonance in integer and fractional quantum Hall states

    SciTech Connect

    Tomimatsu, Toru Shirai, Shota; Hashimoto, Katsushi Sato, Ken; Hirayama, Yoshiro

    2015-08-15

    Electric-field-induced nuclear resonance (NER: nuclear electric resonance) involving quantum Hall states (QHSs) was studied at various filling factors by exploiting changes in nuclear spins polarized at quantum Hall breakdown. Distinct from the magnetic dipole interaction in nuclear magnetic resonance, the interaction of the electric-field gradient with the electric quadrupole moment plays the dominant role in the NER mechanism. The magnitude of the NER signal strongly depends on whether electronic states are localized or extended. This indicates that NER is sensitive to the screening capability of the electric field associated with QHSs.

  2. Nuclear magnetization in gallium arsenide quantum dots at zero magnetic field.

    PubMed

    Sallen, G; Kunz, S; Amand, T; Bouet, L; Kuroda, T; Mano, T; Paget, D; Krebs, O; Marie, X; Sakoda, K; Urbaszek, B

    2014-01-01

    Optical and electrical control of the nuclear spin system allows enhancing the sensitivity of NMR applications and spin-based information storage and processing. Dynamic nuclear polarization in semiconductors is commonly achieved in the presence of a stabilizing external magnetic field. Here we report efficient optical pumping of nuclear spins at zero magnetic field in strain-free GaAs quantum dots. The strong interaction of a single, optically injected electron spin with the nuclear spins acts as a stabilizing, effective magnetic field (Knight field) on the nuclei. We optically tune the Knight field amplitude and direction. In combination with a small transverse magnetic field, we are able to control the longitudinal and transverse components of the nuclear spin polarization in the absence of lattice strain--that is, in dots with strongly reduced static nuclear quadrupole effects, as reproduced by our model calculations.

  3. Nuclear magnetization in gallium arsenide quantum dots at zero magnetic field

    PubMed Central

    Sallen, G.; Kunz, S.; Amand, T.; Bouet, L.; Kuroda, T.; Mano, T.; Paget, D.; Krebs, O.; Marie, X.; Sakoda, K.; Urbaszek, B.

    2014-01-01

    Optical and electrical control of the nuclear spin system allows enhancing the sensitivity of NMR applications and spin-based information storage and processing. Dynamic nuclear polarization in semiconductors is commonly achieved in the presence of a stabilizing external magnetic field. Here we report efficient optical pumping of nuclear spins at zero magnetic field in strain-free GaAs quantum dots. The strong interaction of a single, optically injected electron spin with the nuclear spins acts as a stabilizing, effective magnetic field (Knight field) on the nuclei. We optically tune the Knight field amplitude and direction. In combination with a small transverse magnetic field, we are able to control the longitudinal and transverse components of the nuclear spin polarization in the absence of lattice strain—that is, in dots with strongly reduced static nuclear quadrupole effects, as reproduced by our model calculations. PMID:24500329

  4. Thick target neutron yield from 145 MeV 19F+27Al system

    NASA Astrophysics Data System (ADS)

    Sunil, C.; Bandyopadhyay, T.; Nandy, M.; Suman, Vitisha; Paul, S.; Nanal, V.; Pillay, R. G.; Sarkar, P. K.

    2013-09-01

    The double differential neutron energy distribution has been measured for the 19F+27Al system at 145 MeV projectile energy. The time of flight technique was used to measure the energy while pulse shape discrimination has been used to separate the neutrons from photons. The results are compared with the statistical nuclear reaction model codes PACE and EMPIRE. The PACE code appears to predict the slope and the end point energy of the experimental spectra fairly well but over predicts the values. The slope obtained from the EMPIRE calculations appears to be harder while the values being closer to the experimental results. The yield from the Hauser-Feshbach based compound nucleus model calculations agree reasonably well with the experimental results at the backward angles but not in the forward directions. The energy integrated angular distribution from 145 MeV projectiles show an enhanced emission in the forward angles compared to the similar results from 110 MeV projectiles. This analysis suggests some contribution from the pre-equilibrium emissions from the system at the higher projectile energy.

  5. High-Resolution Nuclear Magnetic Resonance of Solids.

    ERIC Educational Resources Information Center

    Maciel, Gary E.

    1984-01-01

    Examines recent developments in techniques for obtaining high-resolution nuclear magnetic resonance (NMR) spectra on solid samples, discussing the kinds of applications for which these techniques are well suited. Also discusses the characteristics of NMR of solids and generating magnetization for NMR in solids. (JN)

  6. Electron transport through nuclear pasta in magnetized neutron stars

    NASA Astrophysics Data System (ADS)

    Yakovlev, D. G.

    2015-10-01

    We present a simple model for electron transport in a possible layer of exotic nuclear clusters (in the so-called nuclear pasta layer) between the crust and liquid core of a strongly magnetized neutron star. The electron transport there can be strongly anisotropic and gyrotropic. The anisotropy is produced by different electron effective collision frequencies along and across local symmetry axis in domains of exotic ordered nuclear clusters and by complicated effects of the magnetic field. We also calculate averaged kinetic coefficients in case local domains are freely oriented. Possible applications of the obtained results and open problems are outlined.

  7. Need for remeasurements of nuclear magnetic dipole moments

    NASA Astrophysics Data System (ADS)

    Gustavsson, Martin G.; Mårtensson-Pendrill, Ann-Marie

    1998-11-01

    The need for a reassessment of nuclear magnetic dipole moments is prompted by recent experiments on the ground-state hyperfine structure in highly charged hydrogenlike systems which are sufficiently sensitive to probe QED effects. This work gives an overview of the magnetic dipole moments for the nuclei of interest, i.e., 165Ho, 185,187Re, 203,205Tl, 207Pb, and 209Bi. It is found that the present uncertainties in the nuclear magnetic dipole moment limit the interpretation of the accurate experimental hyperfine structures for these systems.

  8. T-maze performance after developmental exposure to 19F tagged 5-HTP in chicks.

    PubMed

    Dingman, Sherry; Nash, Laurie; Hogan, Jeremy; Branch, Craig

    2004-12-01

    Chicks were used as a model to investigate behavioral effects of administering a new compound intended for use with magnetic resonance. The compound has multiple 19F atom tags covalently bonded to the indole ring of 5-hydroxytryptophan (PF-5HTP), the immediate precursor to the neurotransmitter serotonin. On incubation Day 17, 5 microg of PF-5-HTP, an equivalent amount of 5-HTP, or just 200 microL of the weak phosphate buffered saline (PBS) vehicle was injected into the airsac of each egg. Three days after hatching, chicks were isolated at the top of a simple T-Maze which, when traversed correctly, enabled them to return to their brood mates. A second trial in the T-Maze was conducted about three hours later. The brief period of isolation at the start of a trial causes social distress in chicks who are reinforced by returning to the brood. The task was selected as being sensitive to functioning of the serotonin pathways whose development might be altered by administering the compound during brain development. Repeated-measures analysis of variance yielded a statistically significant main effect for trial within groups, but no significant difference between injection groups. Administering a low dose of the fluorine tagged compound during development did not impair performance on this T-maze task.

  9. The Fourier Transform in Chemistry. Part 1. Nuclear Magnetic Resonance: Introduction.

    ERIC Educational Resources Information Center

    King, Roy W.; Williams, Kathryn R.

    1989-01-01

    Using fourier transformation methods in nuclear magnetic resonance has made possible increased sensitivity in chemical analysis. This article describes these methods as they relate to magnetization, the RF magnetic field, nuclear relaxation, the RF pulse, and free induction decay. (CW)

  10. Least Squares Magnetic-Field Optimization for Portable Nuclear Magnetic Resonance Magnet Design

    SciTech Connect

    Paulsen, Jeffrey L; Franck, John; Demas, Vasiliki; Bouchard, Louis-S.

    2008-03-27

    Single-sided and mobile nuclear magnetic resonance (NMR) sensors have the advantages of portability, low cost, and low power consumption compared to conventional high-field NMR and magnetic resonance imaging (MRI) systems. We present fast, flexible, and easy-to-implement target field algorithms for mobile NMR and MRI magnet design. The optimization finds a global optimum ina cost function that minimizes the error in the target magnetic field in the sense of least squares. When the technique is tested on a ring array of permanent-magnet elements, the solution matches the classical dipole Halbach solution. For a single-sided handheld NMR sensor, the algorithm yields a 640 G field homogeneous to 16 100 ppm across a 1.9 cc volume located 1.5 cm above the top of the magnets and homogeneous to 32 200 ppm over a 7.6 cc volume. This regime is adequate for MRI applications. We demonstrate that the homogeneous region can be continuously moved away from the sensor by rotating magnet rod elements, opening the way for NMR sensors with adjustable"sensitive volumes."

  11. Detection of targeted perfluorocarbon nanoparticle binding using 19F diffusion weighted MR spectroscopy.

    PubMed

    Waters, Emily A; Chen, Junjie; Yang, Xiaoxia; Zhang, Huiying; Neumann, Robert; Santeford, Andrea; Arbeit, Jeffrey; Lanza, Gregory M; Wickline, Samuel A

    2008-11-01

    Real-time detection of targeted contrast agent binding is challenging due to background signal from unbound agent. (19)F diffusion weighted MR spectroscopy (DWS) could selectively detect binding of angiogenesis-targeted perfluorocarbon nanoparticles in vivo. Transgenic K14-HPV16 mice with epidermal squamous carcinomas exhibiting up-regulated neovasculature were used, with nontransgenic littermates as controls. Mice were treated with alpha(v)beta(3)-integrin targeted perfluorocarbon nanoparticles. (19)F DWS (b-values from 0 to 16,000 s/mm(2)) was performed on mouse ears in vivo at 11.74 Tesla. Progressive decay of (19)F signal with increased diffusion weighting at low b-values (< 1500 s/mm(2)) was observed in ears of both K14-HPV16 and control mice, demonstrating suppression of background (19)F signal from unbound nanoparticles in the blood. Much of the (19)F signal from ears of K14-HPV16 mice persisted at high b-values, indicating a stationary signal source, reflecting abundant nanoparticle binding to angiogenesis. (19)F signal in controls decayed completely at high b-values (> 1500 s/mm(2)), reflecting a moving signal source due to absence of angiogenesis (no binding sites). Estimated ADCs of nanoparticles in K14-HPV16 and control mice were 33.1 +/- 12.9 microm(2)/s and 19563 +/- 5858 microm(2)/s (p < 0.01). In vivo (19)F DWS can be used for specific detection of bound perfluorocarbon nanoparticles by selectively suppressing background (19)F signal from nanoparticles flowing in blood.

  12. In Vivo 19F MR Imaging Cell Tracking of Inflammatory Macrophages and Site-specific Development of Colitis-associated Dysplasia

    PubMed Central

    Shin, Soo Hyun; Kadayakkara, Deepak K.; Bulte, Jeff W. M.

    2017-01-01

    Purpose To investigate whether the magnitude of in vivo fluorine 19 (19F) magnetic resonance (MR) imaging signal is associated with subsequent development of colitis-associated dysplasia after in situ fluorination of inflammatory macrophages in a mouse model of inflammatory bowel disease (IBD). Materials and Methods Experiments were approved by the institutional animal care and use committee. Mice in the experimental group (n = 10) were administered azoxymethane and dextran sulfate sodium to induce colitis-associated dysplasia. Five mice were in the noninduced control group. Animals were injected with a commercially available perfluorocarbon and were examined in vivo with an 11.7-T MR imager for up to 110 days. Colons were then harvested followed by high-spatial-resolution ex vivo MR imaging. Multiple colon segments with or without 19F signal were histologically graded and were correlated with 19F signal intensity by using a Spearman correlation test. The signal intensity in mice with colitis-associated dysplasia was compared with that in control mice with a two-tailed Mann-Whitney U test. Results Patchy distributions of 19F signal intensity in the colon wall were seen on in vivo and ex vivo images, representing chronic inflammation as shown by immunohistochemistry. Histologic scores of inflammation and site-specific development of colitis-associated dysplasia in the descending colon showed good correlation with normalized 19F signal intensity (r = 0.88, P = .033 for the ascending colon; r = 0.82, P = .006 for the descending colon). A significantly (P = .002) higher normalized 19F signal-to-noise ratio was found at sites that developed dysplasia (mean, 0.58 ± 0.09 [standard deviation]) as compared with sites that did not (mean, 0.17 ± 0.22). Conclusion 19F MR imaging cell tracking of macrophages can be used to assess local inflammation in a mouse model of IBD. The resulting local 19F signal intensity, representing the magnitude of inflammation, has a positive

  13. Nuclear Magnetic Resonance and the BCS Theory

    NASA Astrophysics Data System (ADS)

    Slichter, Charles P.

    The author describes the inspiration for the experiment by Hebel and Slichter to measure the nuclear spin-lattice relaxation time in super-conductors, the design considerations for the experiment, the surprising experimental results, their theoretical treatment using the Bardeen-Cooper-Schrieffer theory, and how comparing the nuclear relaxation results with those for ultrasound absorption confirmed the central idea of the BCS theory, the BCS pair wave function.

  14. Effective Giromagnetic Ratios in Artifical Nuclear Magnetization Pumping of the Noble Gases Mix

    NASA Astrophysics Data System (ADS)

    Popov, E. N.; Barantsev, K. A.; Litvinov, A. N.

    2015-09-01

    Dynamic of the nuclear magnetization of the two noble gases mix was studied in this research. Nuclear magnetization pumped along the induction of external magnetic field. Vector of nuclear magnetization is given a tilt by the week rotational magnetic field, which makes NMR for noble gases. Interaction between the nuclear magnetic moments of the different noble gases adducted to shifts at the frequency of nuclear moments precession in external magnetic field. Effective gyromagnetic ratios of the nuclear of noble gases is defined and it different from the tabulated value. There is theoretical calculation of effective gyromagnetic ratios in this research.

  15. Capacitor-based detection of nuclear magnetization: nuclear quadrupole resonance of surfaces.

    PubMed

    Gregorovič, Alan; Apih, Tomaž; Kvasić, Ivan; Lužnik, Janko; Pirnat, Janez; Trontelj, Zvonko; Strle, Drago; Muševič, Igor

    2011-03-01

    We demonstrate excitation and detection of nuclear magnetization in a nuclear quadrupole resonance (NQR) experiment with a parallel plate capacitor, where the sample is located between the two capacitor plates and not in a coil as usually. While the sensitivity of this capacitor-based detection is found lower compared to an optimal coil-based detection of the same amount of sample, it becomes comparable in the case of very thin samples and even advantageous in the proximity of conducting bodies. This capacitor-based setup may find its application in acquisition of NQR signals from the surface layers on conducting bodies or in a portable tightly integrated nuclear magnetic resonance sensor.

  16. Polywater: proton nuclear magnetic resonance spectrum.

    PubMed

    Page, T F; Jakobsen, R J; Lippincott, E R

    1970-01-02

    In the presence of water, the resonance of the strongly hydrogenbonded protons characteristic of polywater appears at 5 parts per million lower applied magnetic field than water. Polywater made by a new method confirms the infrared spectrum reported originally.

  17. Magnet design considerations for Fusion Nuclear Science Facility

    SciTech Connect

    Zhai, Yuhu; Kessel, Chuck; El-guebaly, Laila; Titus, Peter

    2016-02-25

    The Fusion Nuclear Science Facility (FNSF) is a nuclear confinement facility to provide a fusion environment with components of the reactor integrated together to bridge the technical gaps of burning plasma and nuclear science between ITER and the demonstration power plant (DEMO). Compared to ITER, the FNSF is smaller in size but generates much higher magnetic field, 30 times higher neutron fluence with 3 orders of magnitude longer plasma operation at higher operating temperatures for structures surrounding the plasma. Input parameters to the magnet design from system code analysis include magnetic field of 7.5 T at the plasma center with plasma major radius of 4.8 m and minor radius of 1.2 m, and a peak field of 15.5 T on the TF coils for FNSF. Both low temperature superconductor (LTS) and high temperature superconductor (HTS) are considered for the FNSF magnet design based on the state-of-the-art fusion magnet technology. The higher magnetic field can be achieved by using the high performance ternary Restack Rod Process (RRP) Nb3Sn strands for toroidal field (TF) magnets. The circular cable-in-conduit conductor (CICC) design similar to ITER magnets and a high aspect ratio rectangular CICC design are evaluated for FNSF magnets but low activation jacket materials may need to be selected. The conductor design concept and TF coil winding pack composition and dimension based on the horizontal maintenance schemes are discussed. Neutron radiation limits for the LTS and HTS superconductors and electrical insulation materials are also reviewed based on the available materials previously tested. As a result, the material radiation limits for FNSF magnets are defined as part of the conceptual design studies for FNSF magnets.

  18. Magnet Design Considerations for Fusion Nuclear Science Facility

    SciTech Connect

    Zhai, Y.; Kessel, C.; El-Guebaly, L.; Titus, P.

    2016-06-01

    The Fusion Nuclear Science Facility (FNSF) is a nuclear confinement facility that provides a fusion environment with components of the reactor integrated together to bridge the technical gaps of burning plasma and nuclear science between the International Thermonuclear Experimental Reactor (ITER) and the demonstration power plant (DEMO). Compared with ITER, the FNSF is smaller in size but generates much higher magnetic field, i.e., 30 times higher neutron fluence with three orders of magnitude longer plasma operation at higher operating temperatures for structures surrounding the plasma. Input parameters to the magnet design from system code analysis include magnetic field of 7.5 T at the plasma center with a plasma major radius of 4.8 m and a minor radius of 1.2 m and a peak field of 15.5 T on the toroidal field (TF) coils for the FNSF. Both low-temperature superconductors (LTS) and high-temperature superconductors (HTS) are considered for the FNSF magnet design based on the state-of-the-art fusion magnet technology. The higher magnetic field can be achieved by using the high-performance ternary restacked-rod process Nb3Sn strands for TF magnets. The circular cable-in-conduit conductor (CICC) design similar to ITER magnets and a high-aspect-ratio rectangular CICC design are evaluated for FNSF magnets, but low-activation-jacket materials may need to be selected. The conductor design concept and TF coil winding pack composition and dimension based on the horizontal maintenance schemes are discussed. Neutron radiation limits for the LTS and HTS superconductors and electrical insulation materials are also reviewed based on the available materials previously tested. The material radiation limits for FNSF magnets are defined as part of the conceptual design studies for FNSF magnets.

  19. Magnet design considerations for Fusion Nuclear Science Facility

    DOE PAGES

    Zhai, Yuhu; Kessel, Chuck; El-guebaly, Laila; ...

    2016-02-25

    The Fusion Nuclear Science Facility (FNSF) is a nuclear confinement facility to provide a fusion environment with components of the reactor integrated together to bridge the technical gaps of burning plasma and nuclear science between ITER and the demonstration power plant (DEMO). Compared to ITER, the FNSF is smaller in size but generates much higher magnetic field, 30 times higher neutron fluence with 3 orders of magnitude longer plasma operation at higher operating temperatures for structures surrounding the plasma. Input parameters to the magnet design from system code analysis include magnetic field of 7.5 T at the plasma center withmore » plasma major radius of 4.8 m and minor radius of 1.2 m, and a peak field of 15.5 T on the TF coils for FNSF. Both low temperature superconductor (LTS) and high temperature superconductor (HTS) are considered for the FNSF magnet design based on the state-of-the-art fusion magnet technology. The higher magnetic field can be achieved by using the high performance ternary Restack Rod Process (RRP) Nb3Sn strands for toroidal field (TF) magnets. The circular cable-in-conduit conductor (CICC) design similar to ITER magnets and a high aspect ratio rectangular CICC design are evaluated for FNSF magnets but low activation jacket materials may need to be selected. The conductor design concept and TF coil winding pack composition and dimension based on the horizontal maintenance schemes are discussed. Neutron radiation limits for the LTS and HTS superconductors and electrical insulation materials are also reviewed based on the available materials previously tested. As a result, the material radiation limits for FNSF magnets are defined as part of the conceptual design studies for FNSF magnets.« less

  20. Self-Assembly of Peptide Amphiphiles Designed as Imaging Probes for 19F and Relaxation-Enhanced 1H imaging

    NASA Astrophysics Data System (ADS)

    Preslar, Adam Truett

    This work incorporates whole-body imaging functionality into peptide amphiphile (PA) nanostructures used for regenerative medicine to facilitate magnetic resonance imaging (MRI). Two strategies were employed: 1. Conjugation of gadolinium chelates to peptide nanostructures to monitor biomaterial degradation in vivo with MRI and inductively-coupled plasma-mass spectroscopy (ICP-MS) 2. Synthesis of perfluorinated moiety-bearing peptide amphiphiles for 19F-MRI. The Gd(III) chelate gadoteridol was conjugated by copper-catalyzed "click" chemistry to a series of PAs known to form cylindrical nanostructures. By fitting nuclear magnetic resonance dispersion (NMRD) profiles to the Solomon-Bloembergen-Morgan (SBM) equations, it was observed that the water exchange parameter (tauM) depended on thermal annealing or calcium ion cross-linking. The sequence C16V 3A3E3G(Gd) exhibited an acceleration of nearly 100 ns after thermal annealing and calcium addition. These gadolinium-labeled PAs were used to track in vivo degradation of gels within the tibialis anterior muscle in a murine model. The half-life of biomaterial degradation was determined to be 13.5 days by inductively coupled plasma mass spectrometry (ICP-MS) of Gd(III). Gel implants could be monitored by MRI for eight days before the signal dispersed due to implant degradation and dilution. Additionally, nanostructures incorporating highly fluorinated domains were investigated for use as MRI contrast agents. Short, perfluoroalkyane tails of seven or eight carbon atoms in length were grafted to PA sequences containing a V2A2 beta-sheet forming sequence. The V2A2 sequence is known to drive 1D nanostructure assembly. It was found that the sequences C7F13V2A 2E2 and C7F13V2A 2K3 formed 1D assemblies in water which transition from ribbon-like to cylindrical shape as pH increases from 4.5 to 8.0. Ribbon-like nanostructures had reduced magnetic resonance signal by T 2 relaxation quenching, whereas their cylindrical counterparts

  1. Characterization via nuclear magnetic resonance of Portland cement and related materials

    NASA Astrophysics Data System (ADS)

    Edwards, Christopher Lane

    The physicochemical and engineering performance properties of several API class G and H ordinary Portland cements (OPCs) from various foreign and domestic sources have been investigated. The engineering performance properties are found to vary from sample to sample, and sources for this variation were sought out and identified. Magic angle spinning (MAS) 29Si nuclear magnetic resonance (NMR) experiments were marked by unusual relaxation behavior due to paramagnetism inherent in OPCs. A model system was created to mimic the paramagnetism of the cements and the system's relaxation behavior was analyzed. The iron in the calcium aluminoferrite (C4AF) provides the paramagnetism sufficient to substantially increase the relaxation rates of the 29Si in the tricalcium silicate (C3S) and dicalcium silicate (C2S) of cement. Several relaxation techniques were evaluated for analyzing cement relaxation, and saturation recovery was identified as the preferred technique. Correlations of data from the saturation recovery experiments with engineering performance properties, especially the strength development of cement pastes, were obtained facilely. An error analysis of the NMR and engineering performance testing techniques was conducted, which indicated that NMR measurements produced less error than the engineering performance tests. A best practice, modified from the saturation recovery experiment, is proposed for use in property correlations. Additionally, 13C MAS NMR was used to characterize various fluorinated single-walled carbon nanotubes (F-SWNTs), which proved surprisingly effective in attenuating 13C-19F dipolar interactions and quantifying the extent of functionalization present at high degrees of reaction. The mixed-metal nanocluster known as FeMoC was also characterized by MAS NMR. The impact of the paramagnetic Fe3+ in the Keplerate cage on the 31P nuclei in the caged Keggin ion of FeMoC was evident in the greatly reduced relaxation times measured.

  2. Simultaneous dual frequency 1H and 19F open coil imaging of arthritic rabbit knee at 3T.

    PubMed

    Hockett, Franklin D; Wallace, Kirk D; Schmieder, Anne H; Caruthers, Shelton D; Pham, Christine T N; Wickline, Samuel A; Lanza, Gregory M

    2011-01-01

    The combination of sensitive magnetic resonance techniques with a selective site-targeted nanoparticle contrast agent has a demonstrated utility for molecular imaging studies. By detecting a unique signature of the contrast agent, this approach can be employed to identify specific bio-molecular markers and observe cellular-level processes within a large and complex organism (e.g., in vivo rabbit). The objective of the present investigation was to design, fabricate and characterize a radio-frequency (RF) coil for the dual frequency ((1)H and (19)F) simultaneous collection of both nuclei images in a 3T field, in order to facilitate studies of arthritic knee degradation in rabbits. The coil supports both transmit and receive modes. The supporting activities included: 1) establishing a technical database for calculating the required coil parameters, 2) selection of a favorable coil geometry, and 3) adaption of existing RF measurement techniques to the design, development and electrical evaluation of the coil. The coil is used in conjunction with a Philips Medical Systems clinical MRI scanner, requiring all RF simultaneous dual frequency ((1)H and (19)F) coils to operate in both transmit and receive modes. A commercial version of SPICE (simulation program with integrated circuit emphasis) was used to estimate significant operational parameters prior to fabricating the imaging coil. Excellent images were obtained with the fabricated coil and no operational problems were observed that would limit the use of other coil geometries and field strengths.

  3. Solid-state 19F MAS NMR study on the conformation and molecular mobility of poly(chlorotrifluoroethylene).

    PubMed

    Tatsuno, Hiroto; Aimi, Keitaro; Ando, Shinji

    2007-05-01

    The temperature dependence of molecular mobility and conformational changes of poly(chlorotrifluoro- ethylene) (PCTFE) have been investigated by solid-state (19)F magic angle spinning (MAS) NMR spectroscopy. The pulse techniques of dipolar-filter and T(1rho)-filter allow selective observation of the amorphous and crystalline domains, respectively. The temperature dependence of T(1rho) (F) revealed that the segmental motion in the amorphous domain becomes vigorous above ca 80 degrees C, which is well above the glass transition (T(g)) temperature (52 degrees C) and more close to the beta-relaxation temperature (95 degrees C). On the other hand, vigorous molecular motions in the crystalline domain occur above 120 degrees C, which is much below the melting temperature (212 degrees C). This indicates that the polymer chains in the PCTFE crystallites are more mobile than those of typical semicrystalline fluoropolymers like poly(vinylidene fluoride) (PVDF), which can be associated with structural imperfections in the crystallites. In addition, the density functional theory (DFT) calculations of (19)F magnetic shielding suggest that the high-frequency shifts observed for the crystalline signals above 80 degrees C can be ascribed to the conformational change around meso diads toward more twisted and/or helical conformations in the main chain.

  4. Nuclear magnetic resonance in environmental engineering: principles and applications.

    PubMed

    Lens, P N; Hemminga, M A

    1998-01-01

    This paper gives an introduction to nuclear magnetic resonance spectroscopy (NMR) and magnetic resonance imaging (MRI) in relation to applications in the field of environmental science and engineering. The underlying principles of high resolution solution and solid state NMR, relaxation time measurements and imaging are presented. Then, the use of NMR is illustrated and reviewed in studies of biodegradation and biotransformation of soluble and solid organic matter, removal of nutrients and xenobiotics, fate of heavy metal ions, and transport processes in bioreactor systems.

  5. Method and apparatus for measuring nuclear magnetic properties

    DOEpatents

    Weitekamp, Daniel P.; Bielecki, Anthony; Zax, David B.; Zilm, Kurt W.; Pines, Alexander

    1987-01-01

    A method for studying the chemical and structural characteristics of materials is disclosed. The method includes placement of a sample material in a high strength polarizing magnetic field to order the sample nucleii. The condition used to order the sample is then removed abruptly and the ordering of the sample allowed to evolve for a time interval. At the end of the time interval, the ordering of the sample is measured by conventional nuclear magnetic resonance techniques.

  6. Method and apparatus for measuring nuclear magnetic properties

    DOEpatents

    Weitekamp, D.P.; Bielecki, A.; Zax, D.B.; Zilm, K.W.; Pines, A.

    1987-12-01

    A method for studying the chemical and structural characteristics of materials is disclosed. The method includes placement of a sample material in a high strength polarizing magnetic field to order the sample nuclei. The condition used to order the sample is then removed abruptly and the ordering of the sample allowed to evolve for a time interval. At the end of the time interval, the ordering of the sample is measured by conventional nuclear magnetic resonance techniques. 5 figs.

  7. Contribution of 19F resonances on 18O( p, α)15N reaction rate

    NASA Astrophysics Data System (ADS)

    Benmeslem, Meriem; Chafa, Azzedine; Barhoumi, Slimane; Tribeche, Mouloud

    2014-08-01

    The 18O( p, α)15N reaction influences the isotopes production such as 19F, 18O, and 15N which can be used to test the models of stellar evolution. 19F is synthesized in both asymptotic giant branch (AGB) and metal-rich Wolf-Rayet (WR) stars. Using R-matrix theory we allow new values of resonances parameters in 19F. We show that the most important contribution to the differential and total cross section at low energies, comes from the levels in 19F situated at resonances energies E R =151, 680 and 840 keV with spin and parity 1/2+. The total width of the 680 keV resonance is badly known. So, we have focused on this broad resonance corresponding to the 8.65 MeV level in 19F. We delimit the temperature range in which each resonance contribution to the total reaction rate occurs by analyzing the ratio ( N A < σν> i / N A < σν>). This allowed us to show that the 680 and 840 keV broad resonances strongly dominate the reaction rate over the stellar temperature range T 9=0.02-0.06 and T 9=0.5-5. Finally, these results were compared to NACRE and Iliadis astrophysical compilations.

  8. Solid state 19F NMR parameters of fluorine-labeled amino acids. Part I: Aromatic substituents

    NASA Astrophysics Data System (ADS)

    Dürr, Ulrich H. N.; Grage, Stephan L.; Witter, Raiker; Ulrich, Anne S.

    2008-03-01

    Structural parameters of peptides and proteins in biomembranes can be directly measured by solid state NMR of selectively labeled amino acids. The 19F nucleus is a promising label to overcome the low sensitivity of 2H, 13C or 15N, and to serve as a background-free reporter group in biological compounds. To make the advantages of solid state 19F NMR fully available for structural studies of polypeptides, we have systematically measured the chemical shift anisotropies and relaxation properties of the most relevant aromatic and aliphatic 19F-labeled amino acids. In this first part of two consecutive contributions, six different 19F-substituents on representative aromatic side chains were characterized as polycrystalline powders by static and MAS experiments. The data are also compared with results on the same amino acids incorporated in synthetic peptides. The spectra show a wide variety of lineshapes, from which the principal values of the CSA tensors were extracted. In addition, temperature-dependent T1 and T2 relaxation times were determined by 19F NMR in the solid state, and isotropic chemical shifts and scalar couplings were obtained in solution.

  9. Interactions of diastereomeric tripeptides of lysyl-5-fluorotryptophyllysine with DNA. 1. Optical and 19F NMR studies of native DNA complexes.

    PubMed

    Shine, N R; James, T L

    1985-07-30

    Lysyl-5-fluoro-L-tryptophyllysine and lysyl-5-fluoro-D-tryptophyllysine were synthesized, and their interactions with double-stranded DNA were investigated as a model for protein-nucleic acid interactions. The binding to DNA was studied by monitoring various 19F NMR parameters, the fluorescence, and the optical absorbance in thermal denaturation. The 19F resonance of the L-Trp peptide shifts upfield in the presence of DNA, and that of the D-Trp peptide shifts downfield with DNA present. The influence of ionic strength on the binding of each peptide to DNA and the fluorescence quenching titration of each with DNA indicate that electrostatic bonding (approximately 2 per peptide-DNA complex) dominates the binding in each case and accounts for the similar binding constants determined from the fluorescence quenching, i.e., 7.7 X 10(4) M-1 for the L-Trp complex and 6.2 X 10(-1) for the D-Trp complex. The 19F NMR chemical shift, line width, 19F[1H] nuclear Overhauser effect, and spin-lattice relaxation time (T1) changes all indicate that the aromatic moiety of the L-Trp complex, but not that of the D-Trp complex, is stacked between the bases of DNA. The relative increases in DNA melting temperature caused by binding of the tripeptide diastereomers are also consistent with stacking in the case of the L-Trp peptide. The magnitude of the changes and the susceptibility of the 19F NMR chemical shift to altering the solvent isotope (H2O vs. D2O) suggest that the L-Trp ring is not intercalated in the classical sense but is partially inserted between the bases of one strand of the double helix.

  10. Saturated symmetric nuclear matter in strong magnetic fields

    NASA Astrophysics Data System (ADS)

    Diener, J. P. W.; Scholtz, F. G.

    2013-06-01

    Strongly magnetized symmetric nuclear matter is investigated within the context of effective baryon-meson exchange models. The magnetic field is coupled to the charge as well as the dipole moment of the baryons by including the appropriate terms in the Lagrangian density. The saturation density of magnetized, symmetric nuclear matter ρ0(B) was calculated for magnetic fields of the order of 1017 gauss. For the calculated range of ρ0(B) the binding energy, symmetry energy coefficient a4, and compressibility K of nuclear matter were also calculated. It is found that with an increasing magnetic field ρ0(B) increases, while the system becomes less bound. Furthermore, the depopulation of proton Landau levels leaves a distinct fluctuating imprint on K and a4. The calculations were also performed for increased values of the baryon magnetic dipole moment. By increasing the dipole moment strength ρ0(B) is found to decrease, but the system becomes more tightly bound while the fluctuations in K and a4 persist.

  11. A symmetrical fluorous dendron-cyanine dye conjugated bimodal nanoprobe for quantitative 19F MRI and NIR fluorescence bioimaging

    PubMed Central

    Wang, Zhe; Yue, Xuyi; Wang, Yu; Qian, Chunqi; Huang, Peng; Lizak, Marty; Niu, Gang; Wang, Fu; Rong, Pengfei; Kiesewetter, Dale O.; Ma, Ying; Chen, Xiaoyuan

    2014-01-01

    19F MRI and optical imaging are two powerful non-invasive molecular imaging modalities in biomedical applications. 19F MRI has great potential for high resolution in vivo imaging, while fluorescent probes enable ultracontrast cellular/tissue imaging with high accuracy and sensitivity. We, thus, developed a bimodal nanoprobe integrating the merits of 19F MRI and fluorescence imaging into a single synthetic molecule, which was further engineered into nanoprobe, by addressing shortcomings of conventional contrast agents to explore the quantitative 19F MRI and fluorescence imaging and cell tracking. Results showed that this bimodal imaging nanoprobe presented high correlation of 19F MR signal and NIR fluorescence intensity in vitro and in vivo. Additionally, this nanoprobe enabled quantitative 19F MR analysis, confirmed by complementary fluorescence analysis. This unique feature can hardly be obtained by traditional 19F MRI contrast agents. We envision that this nanoprobe would hold great potential for quantitative and sensitive multi-modal molecular imaging. PMID:24789108

  12. Calculation of vibrational branching ratios and hyperfine structure of 24Mg19F and its suitability for laser cooling and magneto-optical trapping

    NASA Astrophysics Data System (ADS)

    Xu, Liang; Yin, Yanning; Wei, Bin; Xia, Yong; Yin, Jianping

    2016-01-01

    More recently, laser cooling of the diatomic radical magnesium monofluoride (24Mg19F ) is being experimentally preformed [Appl. Phys. Express 8, 092701 (2015), 10.7567/APEX.8.092701 and Opt. Express 22, 28645 (2014), 10.1364/OE.22.028645] and was also studied theoretically [Phys. Rev. A 91, 042511 (2015), 10.1103/PhysRevA.91.042511]. However, some important problems still remain unsolved, so, in our paper, we perform further theoretical study for the feasibility of laser cooling and trapping the 24Mg19F molecule. At first, the highly diagonal Franck-Condon factors of the main transitions are verified by the closed-form approximation, Morse approximation, and Rydberg-Klein-Rees inversion methods, respectively. Afterwards, we investigate the lower X 2Σ1/2 + hyperfine manifolds using a quantum effective Hamiltonian approach and obtain the zero-field hyperfine spectrum with an accuracy of less than 30 kHz ˜5 μ K compared with the experimental results, and then find out that one cooling beam and one or two repumping beams with their first-order sidebands are enough to implement an efficient laser slowing and cooling of 24Mg19F . Meanwhile, we also calculate the accurate hyperfine structure magnetic g factors of the rotational state (X 2Σ1/2 +,N =1 ) and briefly discuss the influence of the external fields on the hyperfine structure of 24Mg19F as well as its possibility of preparing three-dimensional magneto-optical trapping. Finally we give an explanation for the difference between the Stark and Zeeman effects from the perspective of parity and time reversal symmetry. Our study shows that, besides appropriate excitation wavelengths, the short lifetime for the first excited state A 2Π1 /2 , and lighter mass, the 24Mg19F radical could be a good candidate molecule amenable to laser cooling and magneto-optical trapping.

  13. High Radiation Environment Nuclear Fragment Separator Magnet

    SciTech Connect

    Kahn, Stephen; Gupta, Ramesh

    2016-01-31

    Superconducting coils wound with HTS conductor can be used in magnets located in a high radiation environment. NbTi and Nb3Sn superconductors must operate at 4.5 K or below where removal of heat is less efficient. The HTS conductor can carry significant current at higher temperatures where the Carnot efficiency is significantly more favorable and where the coolant heat capacity is much larger. Using the HTS conductor the magnet can be operated at 40 K. This project examines the use of HTS conductor for the Michigan State University Facility For Rare Isotope Beams (FRIB) fragment separator dipole magnet which bends the beam by 30° and is located in a high radiation region that will not be easily accessible. Two of these magnets are needed to select the chosen isotope. There are a number of technical challenges to be addressed in the design of this magnet. The separator dipole is 2 m long and subtends a large angle. The magnet should keep a constant transverse field profile along its beam reference path. Winding coils with a curved inner segment is difficult as the conductor will tend to unwind during the process. In the Phase I project two approaches to winding the conductor were examined. The first was to wind the coils with curved sections on the inner and outer segments with the inner segment wound with negative curvature. The alternate approach was to use a straight segment on the inner segment to avoid negative curvature. In Phase I coils with a limited number of turns were successfully wound and tested at 77 K for both coil configurations. The Phase II program concentrated on the design, coil winding procedures, structural analysis, prototyping and testing of an HTS curved dipole coil at 40 K with a heat load representative of the radiation environment. One of the key criteria of the design of this magnet is to avoid the use of organic materials that would degrade rapidly in radiation. The Lorentz forces expected from the coils interacting with the

  14. In vivo nuclear magnetic resonance imaging

    NASA Technical Reports Server (NTRS)

    Leblanc, A.

    1986-01-01

    During the past year the Woodlands Baylor Magnetic Resonance Imaging (MRI) facility became fully operational. A detailed description of this facility is given. One significant instrument addition this year was the 100 MHz, 40cm bore superconducting imaging spectrometer. This instrument gives researchers the capability to acquire high energy phosphate spectra. This will be used to investigate ATP, phosphocreatinine and inorganic phosphate changes in normal and atrophied muscle before, during and after exercise. An exercise device for use within the bore of the imaging magnet is under design/construction. The results of a study of T sub 1 and T sub 2 changes in atrophied muscle in animals and human subjects are given. The imaging and analysis of the lower leg of 15 research subjects before and after 5 weeks of complete bedrest was completed. A compilation of these results are attached.

  15. DC SQUID Spectrometers for Nuclear Quadrupole and Low-Field Nuclear Magnetic Resonance Spectroscopy

    SciTech Connect

    TonThat, Dinh M.

    1998-04-01

    The dc Superconducting Quantum Interference Device (SQUJD) is a very sensitive detector of magnetic flux, with a typical flux noise of the order of 1 μΦ0Hz-1/2 at liquid helium temperature (Φ0=h/2e). This inherent flux sensitivity of the SQUID is used in a spectrometer for the detection of nuclear magnetic resonance (NMR.)and nuclear quadruple resonance (NQR). The processing magnetic field from the nuclear spins is coupled to the SQUID by mean of a flux transformer. The SQUID NMR spectrometer is used to measure the longitudinal relaxation time T1 of solid 129Xe at 4.2 K down to 0.1 mT.

  16. Using Nuclear Magnetic Resonance Spectroscopy for Measuring Ternary Phase Diagrams

    ERIC Educational Resources Information Center

    Woodworth, Jennifer K.; Terrance, Jacob C.; Hoffmann, Markus M.

    2006-01-01

    A laboratory experiment is presented for the upper-level undergraduate physical chemistry curriculum in which the ternary phase diagram of water, 1-propanol and n-heptane is measured using proton nuclear magnetic resonance (NMR) spectroscopy. The experiment builds upon basic concepts of NMR spectral analysis, typically taught in the undergraduate…

  17. Real or imaginary? Human metabolism through nuclear magnetism.

    PubMed

    Ross, B D

    2000-09-01

    This account of the beginnings and later applications of the use of nuclear magnetic resonance for noninvasive medical diagnosis was presented at a Symposium held in Oxford, UK, during September 13-15, 2000 to mark the centenary of the birth of Hans Krebs, on August 25, 1900.

  18. Concepts in Biochemistry: Nuclear Magnetic Resonance Spectroscopy in Biochemistry.

    ERIC Educational Resources Information Center

    Cheatham, Steve

    1989-01-01

    Discusses the nature of a nuclear magnetic resonance (NMR) experiment, the techniques used, the types of structural and dynamic information obtained, and how one can view and refine structures using computer graphics techniques in combination with NMR data. Provides several spectra and a computer graphics image from B-form DNA. (MVL)

  19. C-13 nuclear magnetic resonance in organic geochemistry.

    NASA Technical Reports Server (NTRS)

    Balogh, B.; Wilson, D. M.; Burlingame, A. L.

    1972-01-01

    Study of C-13 nuclear magnetic resonance (NMR) spectra of polycyclic fused systems. The fingerprint qualities of the natural abundance in C-13 NMR spectra permitting unequivocal identification of these compounds is discussed. The principle of structural additivity of C-13 NMR information is exemplified on alpha and beta androstanes, alpha and beta cholestanes, ergostanes, sitostanes, and isodecanes.

  20. Nuclear Magnetic Resonance Coupling Constants and Electronic Structure in Molecules.

    ERIC Educational Resources Information Center

    Venanzi, Thomas J.

    1982-01-01

    Theory of nuclear magnetic resonance spin-spin coupling constants and nature of the three types of coupling mechanisms contributing to the overall spin-spin coupling constant are reviewed, including carbon-carbon coupling (neither containing a lone pair of electrons) and carbon-nitrogen coupling (one containing a lone pair of electrons).…

  1. Observation of force-detected nuclear magnetic resonance in a homogeneous field

    PubMed Central

    Madsen, L. A.; Leskowitz, G. M.; Weitekamp, D. P.

    2004-01-01

    We report the experimental realization of BOOMERANG (better observation of magnetization, enhanced resolution, and no gradient), a sensitive and general method of magnetic resonance. The prototype millimeter-scale NMR spectrometer shows signal and noise levels in agreement with the design principles. We present 1H and 19F NMR in both solid and liquid samples, including time-domain Fourier transform NMR spectroscopy, multiple-pulse echoes, and heteronuclear J spectroscopy. By measuring a 1H-19F J coupling, this last experiment accomplishes chemically specific spectroscopy with force-detected NMR. In BOOMERANG, an assembly of permanent magnets provides a homogeneous field throughout the sample, while a harmonically suspended part of the assembly, a detector, is mechanically driven by spin-dependent forces. By placing the sample in a homogeneous field, signal dephasing by diffusion in a field gradient is made negligible, enabling application to liquids, in contrast to other force-detection methods. The design appears readily scalable to μm-scale samples where it should have sensitivity advantages over inductive detection with microcoils and where it holds great promise for application of magnetic resonance in biology, chemistry, physics, and surface science. We briefly discuss extensions of the BOOMERANG method to the μm and nm scales. PMID:15326302

  2. Multinuclear solid state nuclear magnetic resonance investigation of water penetration in proton exchange membrane Nafion-117 by mechanical spinning.

    PubMed

    Sabarinathan, Venkatachalam; Wu, Zhen; Cheng, Ren-Hao; Ding, Shangwu

    2013-05-30

    (1)H, (17)O, and (19)F solid state NMR spectroscopies have been used to investigate water penetration in Nafion-117 under mechanical spinning. It is found that both (1)H and (17)O spectra depend on the orientation of the membrane with respect to the magnetic field. The intensities of the side chain (19)F spectra depend slightly on the orientation of membrane with respect to the magnetic field, but the backbone (19)F spectra do not exhibit orientation dependence. By analyzing the orientation dependent (1)H and (17)O spectra and time-resolved (1)H spectra, we show that the water loaded in Nafion-117, under high spinning speed, may penetrate into regions that are normally inaccessible by water. Water penetration is enhanced as the spinning speed is increased or the spinning time is increased. In the meantime, mechanical spinning accelerates water exchange. It is also found that water penetration by mechanical spinning is persistent; i.e., after spinning, water remains in those newly found regions. While water penetration changes the pores and channels in Nafion, (19)F spectra indicate that the chemical environments of the polymer backbone do not show change. These results provide new insights about the structure and dynamics of Nafion-117 and related materials. They are relevant to proton exchange membrane aging and offer enlightening points of view on antiaging and modification of this material for better proton conductivity. It is also interesting to view this phenomenon in the perspective of forced nanofiltration.

  3. Accelerated nanoscale magnetic resonance imaging through phase multiplexing

    SciTech Connect

    Moores, B. A.; Eichler, A. Takahashi, H.; Navaretti, P.; Degen, C. L.; Tao, Y.

    2015-05-25

    We report a method for accelerated nanoscale nuclear magnetic resonance imaging by detecting several signals in parallel. Our technique relies on phase multiplexing, where the signals from different nuclear spin ensembles are encoded in the phase of an ultrasensitive magnetic detector. We demonstrate this technique by simultaneously acquiring statistically polarized spin signals from two different nuclear species ({sup 1}H, {sup 19}F) and from up to six spatial locations in a nanowire test sample using a magnetic resonance force microscope. We obtain one-dimensional imaging resolution better than 5 nm, and subnanometer positional accuracy.

  4. Nuclear magnetic resonance imaging at microscopic resolution

    NASA Astrophysics Data System (ADS)

    Johnson, G. Allan; Thompson, Morrow B.; Gewalt, Sally L.; Hayes, Cecil E.

    Resolution limits in NMR imaging are imposed by bandwidth considerations, available magnetic gradients for spatial encoding, and signal to noise. This work reports modification of a clinical NMR imaging device with picture elements of 500 × 500 × 5000 μm to yield picture elements of 50 × 50 × 1000 μm. Resolution has been increased by using smaller gradient coils permitting gradient fields >0.4 mT/cm. Significant improvements in signal to noise are achieved with smaller rf coils, close attention to choice of bandwidth, and signal averaging. These improvements permit visualization of anatomical structures in the rat brain with an effective diameter of 1 cm with the same definition as is seen in human imaging. The techniques and instrumentation should open a number of basic sciences such as embryology, plant sciences, and teratology to the potentials of NMR imaging.

  5. Nuclear magnetic resonance studies of biological systems

    SciTech Connect

    Antypas, W.G. Jr.

    1988-01-01

    The difference between intracellular and extracellular proton relaxation rates provides the basis for the determination of the mean hemoglobin concentration (MHC) in red blood cells. The observed water T{sub 1} relaxation data from red blood cell samples under various conditions were fit to the complete equation for the time-dependent decay of magnetization for a two-compartment system including chemical exchange. The MHC for each sample was calculated from the hematocrit and the intracellular water fraction as determined by NMR. The binding of the phosphorylcholine (PC) analogue, 2-(trimethylphosphonio)-ethylphosphate (phosphoryl-phosphocholine, PPC) to the PC binding myeloma proteins TEPC-15, McPC 603, and MOPC 167 was studied by {sup 31}P NMR.

  6. Investigation of the Possibility of Using Nuclear Magnetic Spin Alignment

    NASA Technical Reports Server (NTRS)

    Dent, William V., Jr.

    1998-01-01

    The goal of the program to investigate a "Gasdynamic fusion propulsion system for space exploration" is to develop a fusion propulsion system for a manned mission to the planet mars. A study using Deuterium and Tritium atoms are currently in progress. When these atoms under-go fusion, the resulting neutrons and alpha particles are emitted in random directions (isotropically). The probable direction of emission is equal for all directions, thus resulting in wasted energy, massive shielding and cooling requirements, and serious problems with the physics of achieving fusion. If the nuclear magnetic spin moments of the deuterium and tritium nuclei could be precisely aligned at the moment of fusion, the stream of emitted neutrons could be directed out the rear of the spacecraft for thrust and the alpha particles directed forward into an electromagnet ot produce electricity to continue operating the fusion engine. The following supporting topics are discussed: nuclear magnetic moments and spin precession in magnetic field, nuclear spin quantum mechanics, kinematics of nuclear reactions, and angular distribution of particles.

  7. Discovery of a (19)F MRI sensitive salinomycin derivative with high cytotoxicity towards cancer cells.

    PubMed

    Shi, Qiuyan; Li, Yu; Bo, Shaowei; Li, Xiaofei; Zhao, Peng; Liu, Qi; Yang, Zhigang; Cong, Hengjiang; Deng, Hexiang; Chen, Mingnan; Chen, Shizhen; Zhou, Xin; Ding, Hong; Jiang, Zhong-Xing

    2016-04-14

    Salinomycin is a promising anti-cancer agent which selectively targets cancer stem cells. To improve its potency and selectivity, an analog library of salinomycin was generated by site-specific modification and CuAAc derivatization. Through a cytotoxicity analysis of the library, a fluorinated analog with high potency, selectivity, and (19)F MRI sensitivity was discovered as a novel theranostic agent.

  8. 19F NMR study on the biodegradation of fluorophenols by various Rhodococcus species.

    PubMed

    Bondar, V S; Boersma, M G; Golovlev, E L; Vervoort, J; Van Berkel, W J; Finkelstein, Z I; Solyanikova, I P; Golovleva, L A; Rietjens, I M

    1998-01-01

    Of all NMR observable isotopes 19F is the one perhaps most convenient for studies on biodegradation of environmental pollutants. The reasons underlying this potential of 19F NMR are discussed and illustrated on the basis of a study on the biodegradation of fluorophenols by four Rhodococcus strains. The results indicate marked differences between the biodegradation pathways of fluorophenols among the various Rhodococcus species. This holds not only for the level and nature of the fluorinated biodegradation pathway intermediates that accumulate, but also for the regioselectivity of the initial hydroxylation step. Several of the Rhodococcus species contain a phenol hydroxylase that catalyses the oxidative defluorination of ortho-fluorinated di- and trifluorophenols. Furthermore, it is illustrated how the 19F NMR technique can be used as a tool in the process of identification of an accumulated unknown metabolite, in this case most likely 5-fluoromaleylacetate. Altogether, the 19F NMR technique proved valid to obtain detailed information on the microbial biodegradation pathways of fluorinated organics, but also to provide information on the specificity of enzymes generally considered unstable and, for this reason, not much studied so far.

  9. High-resolution two-field nuclear magnetic resonance spectroscopy.

    PubMed

    Cousin, Samuel F; Charlier, Cyril; Kadeřávek, Pavel; Marquardsen, Thorsten; Tyburn, Jean-Max; Bovier, Pierre-Alain; Ulzega, Simone; Speck, Thomas; Wilhelm, Dirk; Engelke, Frank; Maas, Werner; Sakellariou, Dimitrios; Bodenhausen, Geoffrey; Pelupessy, Philippe; Ferrage, Fabien

    2016-12-07

    Nuclear magnetic resonance (NMR) is a ubiquitous branch of spectroscopy that can explore matter at the scale of an atom. Significant improvements in sensitivity and resolution have been driven by a steady increase of static magnetic field strengths. However, some properties of nuclei may be more favourable at low magnetic fields. For example, transverse relaxation due to chemical shift anisotropy increases sharply at higher magnetic fields leading to line-broadening and inefficient coherence transfers. Here, we present a two-field NMR spectrometer that permits the application of rf-pulses and acquisition of NMR signals in two magnetic centres. Our prototype operates at 14.1 T and 0.33 T. The main features of this system are demonstrated by novel NMR experiments, in particular a proof-of-concept correlation between zero-quantum coherences at low magnetic field and single quantum coherences at high magnetic field, so that high resolution can be achieved in both dimensions, despite a ca. 10 ppm inhomogeneity of the low-field centre. Two-field NMR spectroscopy offers the possibility to circumvent the limits of high magnetic fields, while benefiting from their exceptional sensitivity and resolution. This approach opens new avenues for NMR above 1 GHz.

  10. Unconventional nuclear magnetic resonance techniques using nanostructured diamond surfaces

    NASA Astrophysics Data System (ADS)

    Acosta, Victor; Jarmola, Andrey; Budker, Dmitry; Santori, Charles; Huang, Zhihong; Beausoleil, Raymond

    2014-03-01

    Nuclear magnetic resonance (NMR) technologies rely on obtaining high nuclear magnetization, motivating low operating temperatures and high magnetic fields. Dynamic nuclear polarization (DNP) techniques traditionally require another superconducting magnet and THz optics. We seek to use chip-scale devices to polarize nuclei in liquids at room temperature. The technique relies on optical pumping of nitrogen-vacancy (NV) centers and subsequent transfer of polarization to nuclei via hyperfine interaction, spin diffusion, and heteronuclear polarization transfer. We expect efficient polarization transfer will be realized by maximizing the diamond surface area. We have fabricated densely-packed (50 % packing fraction), high-aspect-ratio (10+) nanopillars over mm2 regions of the diamond surface. Pillars designed to have a few-hundred-nanometer diameter act as optical antennas, reducing saturation intensity. We also report progress in using nanopillar arrays as sensitive optical detectors of nano-scale NMR by measuring NV center Zeeman shifts produced by nearby external nuclei. The enhanced surface area increases the effective density of NV centers which couple to external nuclei. Combining these techniques may enable, e.g., identification of trace analytes and molecular imaging.

  11. Simple and Inexpensive Classroom Demonstrations of Nuclear Magnetic Resonance and Magnetic Resonance Imaging

    NASA Astrophysics Data System (ADS)

    Olson, Joel A.; Nordell, Karen J.; Chesnik, Marla A.; Landis, Clark R.; Ellis, Arthur B.; Rzchowski, M. S.; Condren, S. Michael; Lisensky, George C.

    2000-07-01

    Several demonstrations of resonance phenomena associated with nuclear magnetic resonance (NMR) and magnetic resonance imaging (MRI) are described. The demonstrations comprise common orienteering compasses, whose needles represent magnetic dipoles, along with three collinear permanent magnets and a magnetic stir plate or pulseable electromagnets. The trio of permanent magnets provides a laterally uniform magnetic field, whose strength decreases with distance from the magnets. Resonance can be observed by adjusting the frequency of the magnetic stirrer to match the resonant frequency of the compass needle, which is shown to depend on magnetic field strength, that is, the needle's position relative to the permanent magnets. Another demonstration involves pulsing electromagnets that apply a perpendicular magnetic field that causes the compass needles to oscillate. The effects of shielding, spin-spin coupling, magnetogyric ratio, and free induction decay can also be demonstrated. By moving the trio of permanent magnets relative to the compasses, the MRI experiment can be mimicked. Complete instructions for the construction of the demonstrations, which can be used on an overhead projector, are included.

  12. Magnetic field simulation of magnetic phase detection sensor for steam generator tube in nuclear power plants

    NASA Astrophysics Data System (ADS)

    Ryu, Kwon-sang; Son, Derac; Park, Duck-gun; Kim, Yong-il

    2010-05-01

    Magnetic phases and defects are partly produced in steam generator tubes by stress and heat, because steam generator tubes in nuclear power plants are used under high temperature, high pressure, and radioactivity. The magnetic phases induce an error in the detection of the defects in steam generator tubes by the conventional eddy current method. So a new method is needed for detecting the magnetic phases in the steam generator tubes. We designed a new U-type yoke which has two kinds of coils and simulated the signal by the magnetic phases and defects in the Inconnel 600 tube.

  13. The metabolism of 2-trifluormethylaniline and its acetanilide in the rat by 19F NMR monitored enzyme hydrolysis and 1H/19F HPLC-NMR spectroscopy.

    PubMed

    Tugnait, M; Lenz, E M; Hofmann, M; Spraul, M; Wilson, I D; Lindon, J C; Nicholson, J K

    2003-01-01

    The urinary excretion profile and identity of the metabolites of 2-trifluoromethyl aniline (2-TFMA) and 2-trifluoromethyl acetanilide (2-TFMAc), following i.p. administration to the rat at 50 mg kg(-1), were determined using a combination of 19F NMR monitored enzyme hydrolysis, SPEC-MS and 19F/1H HPLC-NMR. A total recovery of approximately 96.4% of the dose was excreted into the urine as seven metabolites. The major routes of metabolism were N-conjugation (glucuronidation), and ring-hydroxylation followed by sulphation (and to a lesser extent glucuronidation). The major metabolites excreted into the urine for both compounds were a labile N-conjugated metabolite (a postulated N-glucuronide) and a sulphated ring-hydroxylated metabolite (a postulated 4-amino-5-trifluoromethylphenyl sulphate) following dosing of 2-TFMA. These accounted for approximately 53.0 and 31.5% of the dose, respectively. This study identifies problems on sample component instability in the preparation and analysis procedures.

  14. New Versions of Terahertz Radiation Sources for Dynamic Nuclear Polarization in Nuclear Magnetic Resonance Spectroscopy

    NASA Astrophysics Data System (ADS)

    Bratman, V. L.; Kalynov, Yu. K.; Makhalov, P. B.; Fedotov, A. E.

    2014-01-01

    Dynamic nuclear polarization in strong-field nuclear magnetic resonance (NMR) spectroscopy requires terahertz radiation with moderate power levels. Nowadays, conventional gyrotrons are used almost exclusively to generate such radiation. In this review paper, we consider alternative variants of electronic microwave oscillators which require much weaker magnetic fields for their operation, namely, large-orbit gyrotrons operated at high cyclotron-frequency harmonics and Čerenkov-type devices, such as a backward-wave oscillator and a klystron frequency multiplier with tubular electron beams. Additionally, we consider the possibility to use the magnetic field created directly by the solenoid of an NMR spectrometer for operation of both the gyrotron and the backward-wave oscillator. Location of the oscillator in the spectrometer magnet makes it superfluous to use an additional superconducting magnet creating a strong field, significantly reduces the length of the radiation transmission line, and, in the case of Čerenkov-type devices, allows one to increase considerably the output-signal power. According to our calculations, all the electronic devices considered are capable of ensuring the power required for dynamic nuclear polarization (10 W or more) at a frequency of 260 GHz, whereas the gyrotrons, including their versions proposed in this paper, remain a single option at higher frequencies.

  15. Stochastic dipolar recoupling in nuclear magnetic resonance of solids

    PubMed Central

    Tycko, Robert

    2008-01-01

    I describe a nuclear magnetic resonance (NMR) technique, called stochastic dipolar recoupling (SDR), that permits continuous experimental control of the character of spin dynamics between coherent and incoherent limits in a system of magnetic dipole-coupled nuclei. In the fully incoherent limit of SDR, spin polarization transfers occur at distance-dependent rates without the quantum mechanical interferences among pairwise dipole-dipole couplings that often limit the feasibility or precision of structural studies of solids by NMR. In addition to facilitating structural studies, SDR represents a possible route to experimental studies of effects of decoherence on the dynamics of quantum many-body systems. PMID:17995438

  16. Algorithmic cooling in liquid-state nuclear magnetic resonance

    NASA Astrophysics Data System (ADS)

    Atia, Yosi; Elias, Yuval; Mor, Tal; Weinstein, Yossi

    2016-01-01

    Algorithmic cooling is a method that employs thermalization to increase qubit purification level; namely, it reduces the qubit system's entropy. We utilized gradient ascent pulse engineering, an optimal control algorithm, to implement algorithmic cooling in liquid-state nuclear magnetic resonance. Various cooling algorithms were applied onto the three qubits of C132-trichloroethylene, cooling the system beyond Shannon's entropy bound in several different ways. In particular, in one experiment a carbon qubit was cooled by a factor of 4.61. This work is a step towards potentially integrating tools of NMR quantum computing into in vivo magnetic-resonance spectroscopy.

  17. Flat RF coils in static field gradient nuclear magnetic resonance.

    PubMed

    Stork, H; Gädke, A; Nestle, N; Fujara, F

    2009-10-01

    The use of flat RF coils allows considerable gains in the sensitivity of static field gradient (SFG) nuclear magnetic resonance (NMR) experiments. In this article, this effect is studied theoretically as well as experimentally. Additionally, the flat coil geometry has been studied theoretically depending on magnetic field gradient, pulse sequence and amplifier power. Moreover, detecting the signal directly from the free induction decay (FID) turned out to be quite attractive for STRAFI-like microimaging experiments, especially when using flat coils. In addition to wound rectangular flat coils also spiral flat coils have been developed which can be manufactured by photolithography from printed circuit boards.

  18. Stochastic dipolar recoupling in nuclear magnetic resonance of solids.

    PubMed

    Tycko, Robert

    2007-11-02

    I describe a nuclear magnetic resonance (NMR) technique, called stochastic dipolar recoupling (SDR), that permits continuous experimental control of the character of spin dynamics between coherent and incoherent limits in a system of magnetic dipole-coupled nuclei. In the fully incoherent limit of SDR, spin polarization transfers occur at distance-dependent rates without the quantum mechanical interferences among pairwise dipole-dipole couplings that often limit the feasibility or precision of structural studies of solids by NMR. In addition to facilitating structural studies, SDR represents a possible route to experimental studies of effects of decoherence on the dynamics of quantum many-body systems.

  19. Stochastic Dipolar Recoupling in Nuclear Magnetic Resonance of Solids

    SciTech Connect

    Tycko, Robert

    2007-11-02

    I describe a nuclear magnetic resonance (NMR) technique, called stochastic dipolar recoupling (SDR), that permits continuous experimental control of the character of spin dynamics between coherent and incoherent limits in a system of magnetic dipole-coupled nuclei. In the fully incoherent limit of SDR, spin polarization transfers occur at distance-dependent rates without the quantum mechanical interferences among pairwise dipole-dipole couplings that often limit the feasibility or precision of structural studies of solids by NMR. In addition to facilitating structural studies, SDR represents a possible route to experimental studies of effects of decoherence on the dynamics of quantum many-body system000.

  20. Storage of nuclear magnetization as long-lived singlet order in low magnetic field.

    PubMed

    Pileio, Giuseppe; Carravetta, Marina; Levitt, Malcolm H

    2010-10-05

    Hyperpolarized nuclear states provide NMR signals enhanced by many orders of magnitude, with numerous potential applications to analytical NMR, in vivo NMR, and NMR imaging. However, the lifetime of hyperpolarized magnetization is normally limited by the relaxation time constant T(1), which lies in the range of milliseconds to minutes, apart from in exceptional cases. In many cases, the lifetime of the hyperpolarized state may be enhanced by converting the magnetization into nuclear singlet order, where it is protected against many common relaxation mechanisms. However, all current methods for converting magnetization into singlet order require the use of a high-field, high-homogeneity NMR magnet, which is incompatible with most hyperpolarization procedures. We demonstrate a new method for converting magnetization into singlet order and back again. The new technique is suitable for magnetically inequivalent spin-pair systems in weak and inhomogeneous magnetic fields, and is compatible with known hyperpolarization technology. The method involves audio-frequency pulsed irradiation at the low-field nuclear Larmor frequency, employing coupling-synchronized trains of 180° pulses to induce singlet-triplet transitions. The echo trains are used as building blocks for a pulse sequence called M2S that transforms longitudinal magnetization into long-lived singlet order. The time-reverse of the pulse sequence, called S2M, converts singlet order back into longitudinal magnetization. The method is demonstrated on a solution of (15)N-labeled nitrous oxide. The magnetization is stored in low magnetic field for over 30 min, even though the T(1) is less than 3 min under the same conditions.

  1. Storage of nuclear magnetization as long-lived singlet order in low magnetic field

    PubMed Central

    Pileio, Giuseppe; Carravetta, Marina; Levitt, Malcolm H.

    2010-01-01

    Hyperpolarized nuclear states provide NMR signals enhanced by many orders of magnitude, with numerous potential applications to analytical NMR, in vivo NMR, and NMR imaging. However, the lifetime of hyperpolarized magnetization is normally limited by the relaxation time constant T1, which lies in the range of milliseconds to minutes, apart from in exceptional cases. In many cases, the lifetime of the hyperpolarized state may be enhanced by converting the magnetization into nuclear singlet order, where it is protected against many common relaxation mechanisms. However, all current methods for converting magnetization into singlet order require the use of a high-field, high-homogeneity NMR magnet, which is incompatible with most hyperpolarization procedures. We demonstrate a new method for converting magnetization into singlet order and back again. The new technique is suitable for magnetically inequivalent spin-pair systems in weak and inhomogeneous magnetic fields, and is compatible with known hyperpolarization technology. The method involves audio-frequency pulsed irradiation at the low-field nuclear Larmor frequency, employing coupling-synchronized trains of 180° pulses to induce singlet–triplet transitions. The echo trains are used as building blocks for a pulse sequence called M2S that transforms longitudinal magnetization into long-lived singlet order. The time-reverse of the pulse sequence, called S2M, converts singlet order back into longitudinal magnetization. The method is demonstrated on a solution of 15N-labeled nitrous oxide. The magnetization is stored in low magnetic field for over 30 min, even though the T1 is less than 3 min under the same conditions. PMID:20855584

  2. Nuclear chiral and magnetic rotation in covariant density functional theory

    NASA Astrophysics Data System (ADS)

    Meng, Jie; Zhao, Pengwei

    2016-05-01

    Excitations of chiral rotation observed in triaxial nuclei and magnetic and/or antimagnetic rotations (AMR) seen in near-spherical nuclei have attracted a lot of attention. Unlike conventional rotation in well-deformed or superdeformed nuclei, here the rotational axis is not necessary coinciding with any principal axis of the nuclear density distribution. Thus, tilted axis cranking (TAC) is mandatory to describe these excitations self-consistently in the framework of covariant density functional theory (CDFT). We will briefly introduce the formalism of TAC-CDFT and its application for magnetic and AMR phenomena. Configuration-fixed CDFT and its predictions for nuclear chiral configurations and for favorable triaxial deformation parameters are also presented, and the discoveries of the multiple chiral doublets in 133Ce and 103Rh are discussed.

  3. Segmented contracted basis sets optimized for nuclear magnetic shielding.

    PubMed

    Jensen, Frank

    2015-01-13

    A family of segmented contracted basis sets is proposed, denoted pcSseg-n, which are optimized for calculating nuclear magnetic shielding constants. For the elements H-Ar, these are computationally more efficient than the previously proposed general contracted pcS-n basis sets, and the new basis sets are extended to also include the elements K-Kr. The pcSseg-n basis sets are optimized at the density functional level of theory, but it has been shown previously that these property-optimized basis sets are also suitable for calculating shielding constants with correlated wave function methods. The pcSseg-n basis sets are available in qualities ranging from (unpolarized) double-ζ to pentuple-ζ quality and should be suitable for both routine and benchmark calculations of nuclear magnetic shielding constants. The ability to rigorously separate basis set and method errors should aid in developing more accurate methods.

  4. Chemometric Analysis of Nuclear Magnetic Resonance Spectroscopy Data

    SciTech Connect

    ALAM,TODD M.; ALAM,M. KATHLEEN

    2000-07-20

    Chemometric analysis of nuclear magnetic resonance (NMR) spectroscopy has increased dramatically in recent years. A variety of different chemometric techniques have been applied to a wide range of problems in food, agricultural, medical, process and industrial systems. This article gives a brief review of chemometric analysis of NMR spectral data, including a summary of the types of mixtures and experiments analyzed with chemometric techniques. Common experimental problems encountered during the chemometric analysis of NMR data are also discussed.

  5. High-resolution (19)F MAS NMR spectroscopy: structural disorder and unusual J couplings in a fluorinated hydroxy-silicate.

    PubMed

    Griffin, John M; Yates, Jonathan R; Berry, Andrew J; Wimperis, Stephen; Ashbrook, Sharon E

    2010-11-10

    High-resolution (19)F magic angle spinning (MAS) NMR spectroscopy is used to study disorder and bonding in a crystalline solid. (19)F MAS NMR reveals four distinct F sites in a 50% fluorine-substituted deuterated hydrous magnesium silicate (clinohumite, 4Mg(2)SiO(4)·Mg(OD(1-x)F(x))(2) with x = 0.5), indicating extensive structural disorder. The four (19)F peaks can be assigned using density functional theory (DFT) calculations of NMR parameters for a number of structural models with a range of possible local F environments generated by F(-)/OH(-) substitution. These assignments are supported by two-dimensional (19)F double-quantum MAS NMR experiments that correlate F sites based on either spatial proximity (via dipolar couplings) or through-bond connectivity (via scalar, or J, couplings). The observation of (19)F-(19)F J couplings is unexpected as the fluorines coordinate Mg atoms and the Mg-F interaction is normally considered to be ionic in character (i.e., there is no formal F-Mg-F covalent bonding arrangement). However, DFT calculations predict significant (19)F-(19)F J couplings, and these are in good agreement with the splittings observed in a (19)F J-resolved MAS NMR experiment. The existence of these J couplings is discussed in relation to both the nature of bonding in the solid state and the occurrence of so-called "through-space" (19)F-(19)F J couplings in solution. Finally, we note that we have found similar structural disorder and spin-spin interactions in both synthetic and naturally occurring clinohumite samples.

  6. Magnetic Flux Compression Concept for Nuclear Pulse Propulsion and Power

    NASA Technical Reports Server (NTRS)

    Litchford, Ronald J.

    2000-01-01

    The desire for fast, efficient interplanetary transport requires propulsion systems having short acceleration times and very high specific impulse attributes. Unfortunately, most highly efficient propulsion systems which are within the capabilities of present day technologies are either very heavy or yield very low impulse such that the acceleration time to final velocity is too long to be of lasting interest, One exception, the nuclear thermal thruster, could achieve the desired acceleration but it would require inordinately large mass ratios to reach the range of desired final velocities. An alternative approach, among several competing concepts that are beyond our modern technical capabilities, is a pulsed thermonuclear device utilizing microfusion detonations. In this paper, we examine the feasibility of an innovative magnetic flux compression concept for utilizing microfusion detonations, assuming that such low yield nuclear bursts can be realized in practice. In this concept, a magnetic field is compressed between an expanding detonation driven diamagnetic plasma and a stationary structure formed from a high temperature superconductor (HTSC). In general, we are interested in accomplishing two important functions: (1) collimation of a hot diamagnetic plasma for direct thrust production; and (2) pulse power generation for dense plasma ignition. For the purposes of this research, it is assumed that rnicrofusion detonation technology may become available within a few decades, and that this approach could capitalize on recent advances in inertial confinement fusion ICF) technologies including magnetized target concepts and antimatter initiated nuclear detonations. The charged particle expansion velocity in these detonations can be on the order of 10 (exp 6)- 10 (exp 7) meters per second, and, if effectively collimated by a magnetic nozzle, can yield the Isp and the acceleration levels needed for practical interplanetary spaceflight. The ability to ignite pure

  7. Quantitative velocity distributions via nuclear magnetic resonance flow metering

    NASA Astrophysics Data System (ADS)

    O'Neill, Keelan T.; Fridjonsson, Einar O.; Stanwix, Paul L.; Johns, Michael L.

    2016-08-01

    We demonstrate the use of Tikhonov regularisation as a data inversion technique to determine the velocity distributions of flowing liquid streams. Regularisation is applied to the signal produced by a nuclear magnetic resonance (NMR) flow measurement system consisting of a pre-polarising permanent magnet located upstream of an Earth's magnetic field NMR detection coil. A simple free induction decay (FID) NMR signal is measured for the flowing stream in what is effectively a 'time-of-flight' measurement. The FID signal is then modelled as a function of fluid velocity and acquisition time, enabling determination of the velocity probability distributions via regularisation. The mean values of these velocity distributions were successfully validated against in-line rotameters. The ability to quantify multi-modal velocity distributions was also demonstrated using a two-pipe system.

  8. DC superconducting quantum interference device usable in nuclear quadrupole resonance and zero field nuclear magnetic spectrometers

    DOEpatents

    Fan, Non Q.; Clarke, John

    1993-01-01

    A spectrometer for measuring the nuclear quadrupole resonance spectra or the zero-field nuclear magnetic resonance spectra generated by a sample is disclosed. The spectrometer uses an amplifier having a dc SQUID operating in a flux-locked loop for generating an amplified output as a function of the intensity of the signal generated by the sample. The flux-locked loop circuit includes an integrator. The amplifier also includes means for preventing the integrator from being driven into saturation. As a result, the time for the flux-locked loop to recover from the excitation pulses generated by the spectrometer is reduced.

  9. DC superconducting quantum interference device usable in nuclear quadrupole resonance and zero field nuclear magnetic spectrometers

    DOEpatents

    Fan, N.Q.; Clarke, J.

    1993-10-19

    A spectrometer for measuring the nuclear quadrupole resonance spectra or the zero-field nuclear magnetic resonance spectra generated by a sample is disclosed. The spectrometer uses an amplifier having a dc SQUID operating in a flux-locked loop for generating an amplified output as a function of the intensity of the signal generated by the sample. The flux-locked loop circuit includes an integrator. The amplifier also includes means for preventing the integrator from being driven into saturation. As a result, the time for the flux-locked loop to recover from the excitation pulses generated by the spectrometer is reduced. 7 figures.

  10. First evidences for 19F(α, p)22Ne at astrophysical energies

    NASA Astrophysics Data System (ADS)

    D'Agata, G.; Spitaleri, C.; Pizzone, R. G.; Blagus, S.; Figuera, P.; Grassi, L.; Guardo, G. L.; Gulino, M.; Hayakawa, S.; Indelicato, I.; Kshetri, R.; La Cognata, M.; Lamia, L.; Lattuada, M.; Mijatović, T.; Milin, M.; Miljanic, D.; Prepolec, L.; Sergi, M. L.; Skukan, N.; Soic, N.; Tokic, V.; Tumino, A.; Uroic, M.

    2016-04-01

    19F experimental abundances is overestimated in respect to the theoretical one: it is therefore clear that further investigations are needed. We focused on the 19F(α, p) 22 Ne reaction, representing the main destruction channel in He-rich environments. The lowest energy at which this reaction has been studied with direct methods is E C.M. ≈ 0.91 MeV, while the Gamow region is between 0.39 ÷ 0.8 MeV, far below the Coulomb barrier (3.8 MeV). For this reason, an experiment at Rudjer Boskovic Institute (Zagreb) was performed, applying the Trojan Horse Method. Following this method we selected the quasi-free contribution coming from 6Li(19 F,p22 Ne)2 H at Ebeam=6 MeV at kinematically favourable angles, and the cross section at energies 0 < EC.M. < 1.4 MeV was extracted in arbitrary units, covering the astrophysical region of interest.

  11. Line broadening interference for high-resolution nuclear magnetic resonance spectra under inhomogeneous magnetic fields

    SciTech Connect

    Wei, Zhiliang; Yang, Jian; Lin, Yanqin E-mail: chenz@xmu.edu.cn; Chen, Zhong E-mail: chenz@xmu.edu.cn; Chen, Youhe

    2015-04-07

    Nuclear magnetic resonance spectroscopy serves as an important tool for analyzing chemicals and biological metabolites. However, its performance is subject to the magnetic-field homogeneity. Under inhomogeneous fields, peaks are broadened to overlap each other, introducing difficulties for assignments. Here, we propose a method termed as line broadening interference (LBI) to provide high-resolution information under inhomogeneous magnetic fields by employing certain gradients in the indirect dimension to interfere the magnetic-field inhomogeneity. The conventional spectral-line broadening is thus interfered to be non-diagonal, avoiding the overlapping among adjacent resonances. Furthermore, an inhomogeneity correction algorithm is developed based on pattern recognition to recover the high-resolution information from LBI spectra. Theoretical deductions are performed to offer systematic and detailed analyses on the proposed method. Moreover, experiments are conducted to prove the feasibility of the proposed method for yielding high-resolution spectra in inhomogeneous magnetic fields.

  12. Line broadening interference for high-resolution nuclear magnetic resonance spectra under inhomogeneous magnetic fields.

    PubMed

    Wei, Zhiliang; Yang, Jian; Chen, Youhe; Lin, Yanqin; Chen, Zhong

    2015-04-07

    Nuclear magnetic resonance spectroscopy serves as an important tool for analyzing chemicals and biological metabolites. However, its performance is subject to the magnetic-field homogeneity. Under inhomogeneous fields, peaks are broadened to overlap each other, introducing difficulties for assignments. Here, we propose a method termed as line broadening interference (LBI) to provide high-resolution information under inhomogeneous magnetic fields by employing certain gradients in the indirect dimension to interfere the magnetic-field inhomogeneity. The conventional spectral-line broadening is thus interfered to be non-diagonal, avoiding the overlapping among adjacent resonances. Furthermore, an inhomogeneity correction algorithm is developed based on pattern recognition to recover the high-resolution information from LBI spectra. Theoretical deductions are performed to offer systematic and detailed analyses on the proposed method. Moreover, experiments are conducted to prove the feasibility of the proposed method for yielding high-resolution spectra in inhomogeneous magnetic fields.

  13. Nuclear-Targeted Multifunctional Magnetic Nanoparticles for Photothermal Therapy.

    PubMed

    Peng, Haibao; Tang, Jing; Zheng, Rui; Guo, Guannan; Dong, Angang; Wang, Yajun; Yang, Wuli

    2017-01-27

    The pursuit of multifunctional, innovative, more efficient, and safer cancer treatment has gained increasing interest in the research of preclinical nanoparticle-mediated photothermal therapy (PTT). Cell nucleus is recognized as the ideal target for cancer treatment because it plays a central role in genetic information and the transcription machinery reside. In this work, an efficient nuclear-targeted PTT strategy is proposed using transferrin and TAT peptide (TAT: YGRKKRRQRRR) conjugated monodisperse magnetic nanoparticles, which can be readily functionalized and stabilized for potential diagnostic and therapeutic applications. The monodisperse magnetic nanoparticles exhibit high photothermal conversion efficiency (≈37%) and considerable photothermal stability. They also show a high magnetization value and transverse relaxivity (207.1 mm(-1) s(-1) ), which could be applied for magnetic resonance imaging. The monodisperse magnetic nanoparticles conjugated with TAT peptides can efficiently target the nucleus and achieve the imaging-guided function, efficient cancer cells killing ability. Therefore, this work may present a practicable strategy to develop subcellular organelle targeted PTT agents for simultaneous cancer targeting, imaging, and therapy.

  14. Highly sensitive detection of protein biomarkers via nuclear magnetic resonance biosensor with magnetically engineered nanoferrite particles.

    PubMed

    Jeun, Minhong; Park, Sungwook; Lee, Hakho; Lee, Kwan Hyi

    Magnetic-based biosensors are attractive for on-site detection of biomarkers due to the low magnetic susceptibility of biological samples. Here, we report a highly sensitive magnetic-based biosensing system that is composed of a miniaturized nuclear magnetic resonance (NMR) device and magnetically engineered nanoferrite particles (NFPs). The sensing performance, also identified as the transverse relaxation (R2) rate, of the NMR device is directly related to the magnetic properties of the NFPs. Therefore, we developed magnetically engineered NFPs (MnMg-NFP) and used them as NMR agents to exhibit a significantly improved R2 rate. The magnetization of the MnMg-NFPs was increased by controlling the Mn and Mg cation concentration and distribution during the synthesis process. This modification of the Mn and Mg cation directly contributed to improving the R2 rate. The miniaturized NMR system, combined with the magnetically engineered MnMg-NFPs, successfully detected a small amount of infectious influenza A H1N1 nucleoprotein with high sensitivity and stability.

  15. Magnetism and nuclear magnetic resonance of hectorite and montmorillonite layered silicates

    NASA Astrophysics Data System (ADS)

    Levin, E. M.; Hou, S.-S.; Bud'ko, S. L.; Schmidt-Rohr, K.

    2004-11-01

    The temperature and magnetic-field (H) dependencies of the bulk dc magnetization (M) and the M /H ratio of montmorillonite (MMT), hectorite (HCT), and synthetic mica-montmorillonite (SMMT) clays have been measured and compared with the signal intensity of H1 and Si29 nuclear magnetic resonance (NMR) spectra. MMT exhibits Langevin paramagnetism with an effective magnetic moment of 5.5±0.1μB per Fe ion whereas SMMT has diamagnetic properties. At 300K, M /H of HCT measured in a magnetic field of H ⩽1kOe is larger than that of MMT, whereas in a field of 50kOe, the inverse situation is observed. The difference arises because the magnetization of HCT is dominated by a contribution from ferromagneticlike impurities. The H1 and Si29 NMR signals of MMT are broadened beyond detectability due to the paramagnetic effect. Although HCT contains ferromagneticlike components that result in a large M /H in low field, it yields H1 and Si29 NMR spectra with signal intensities similar to those of diamagnetic SMMT. Our data highlight that the quality of the NMR spectra is not related to the low-field magnetic susceptibility but to the bulk magnetization in the high magnetic field used for NMR.

  16. Highly sensitive detection of protein biomarkers via nuclear magnetic resonance biosensor with magnetically engineered nanoferrite particles

    PubMed Central

    Jeun, Minhong; Park, Sungwook; Lee, Hakho; Lee, Kwan Hyi

    2016-01-01

    Magnetic-based biosensors are attractive for on-site detection of biomarkers due to the low magnetic susceptibility of biological samples. Here, we report a highly sensitive magnetic-based biosensing system that is composed of a miniaturized nuclear magnetic resonance (NMR) device and magnetically engineered nanoferrite particles (NFPs). The sensing performance, also identified as the transverse relaxation (R2) rate, of the NMR device is directly related to the magnetic properties of the NFPs. Therefore, we developed magnetically engineered NFPs (MnMg-NFP) and used them as NMR agents to exhibit a significantly improved R2 rate. The magnetization of the MnMg-NFPs was increased by controlling the Mn and Mg cation concentration and distribution during the synthesis process. This modification of the Mn and Mg cation directly contributed to improving the R2 rate. The miniaturized NMR system, combined with the magnetically engineered MnMg-NFPs, successfully detected a small amount of infectious influenza A H1N1 nucleoprotein with high sensitivity and stability. PMID:27799772

  17. Verification of threshold activation detection (TAD) technique in prompt fission neutron detection using scintillators containing 19F

    NASA Astrophysics Data System (ADS)

    Sibczynski, P.; Kownacki, J.; Moszyński, M.; Iwanowska-Hanke, J.; Syntfeld-Każuch, A.; Gójska, A.; Gierlik, M.; Kaźmierczak, Ł.; Jakubowska, E.; Kędzierski, G.; Kujawiński, Ł.; Wojnarowicz, J.; Carrel, F.; Ledieu, M.; Lainé, F.

    2015-09-01

    In the present study ⌀ 5''× 3'' and ⌀ 2''× 2'' EJ-313 liquid fluorocarbon as well as ⌀ 2'' × 3'' BaF2 scintillators were exposed to neutrons from a 252Cf neutron source and a Sodern Genie 16GT deuterium-tritium (D+T) neutron generator. The scintillators responses to β- particles with maximum endpoint energy of 10.4 MeV from the n+19F reactions were studied. Response of a ⌀ 5'' × 3'' BC-408 plastic scintillator was also studied as a reference. The β- particles are the products of interaction of fast neutrons with 19F which is a component of the EJ-313 and BaF2 scintillators. The method of fast neutron detection via fluorine activation is already known as Threshold Activation Detection (TAD) and was proposed for photofission prompt neutron detection from fissionable and Special Nuclear Materials (SNM) in the field of Homeland Security and Border Monitoring. Measurements of the number of counts between 6.0 and 10.5 MeV with a 252Cf source showed that the relative neutron detection efficiency ratio, defined as epsilonBaF2 / epsilonEJ-313-5'', is 32.0% ± 2.3% and 44.6% ± 3.4% for front-on and side-on orientation of the BaF2, respectively. Moreover, the ⌀ 5'' EJ-313 and side-on oriented BaF2 were also exposed to neutrons from the D+T neutron generator, and the relative efficiency epsilonBaF2 / epsilonEJ-313-5'' was estimated to be 39.3%. Measurements of prompt photofission neutrons with the BaF2 detector by means of data acquisition after irradiation (out-of-beam) of nuclear material and between the beam pulses (beam-off) techniques were also conducted on the 9 MeV LINAC of the SAPHIR facility.

  18. Probing atomic scale transformation of fossil dental enamel using Fourier transform infrared and nuclear magnetic resonance spectroscopy: a case study from the Tugen Hills (Rift Gregory, Kenya).

    PubMed

    Yi, Haohao; Balan, Etienne; Gervais, Christel; Ségalen, Loïc; Roche, Damien; Person, Alain; Fayon, Franck; Morin, Guillaume; Babonneau, Florence

    2014-09-01

    A series of fossil tooth enamel samples was investigated by Fourier transform infrared (FTIR) spectroscopy, (13)C and (19)F magic-angle spinning nuclear magnetic resonance (MAS NMR) and scanning electron microscopy (SEM). Tooth remains were collected in Mio-Pliocene deposits of the Tugen Hills in Kenya. Significant transformations were observed in fossil enamel as a function of increasing fluorine content (up to 2.8wt.%). FTIR spectroscopy revealed a shift of the ν1 PO4 stretching band to higher frequency. The ν2 CO3 vibrational band showed a decrease in the intensity of the primary B-type carbonate signal, which was replaced by a specific band at 864cm(-1). This last band was ascribed to a specific carbonate environment in which the carbonate group is closely associated to a fluoride ion. The occurrence of this carbonate defect was consistently attested by the observation of two different fluoride signals in the (19)F NMR spectra. One main signal, at ∼-100ppm, is related to structural F ions in the apatite channel and the other, at -88ppm, corresponds to the composite defect. These spectroscopic observations can be understood as resulting from the mixture of two phases: biogenic hydroxylapatite (bioapatite) and secondary fluorapatite. SEM observations of the most altered sample confirmed the extensive replacement of the bioapatite by fluorapatite, resulting from the dissolution of the primary bioapatite followed by the precipitation of carbonate-fluorapatite. The ν2 CO3 IR bands can be efficiently used to monitor the extent of this type of bioapatite transformation during fossilization.

  19. Mechanism of dynamic nuclear polarization in high magnetic fields

    NASA Astrophysics Data System (ADS)

    Farrar, C. T.; Hall, D. A.; Gerfen, G. J.; Inati, S. J.; Griffin, R. G.

    2001-03-01

    Solid-state NMR signal enhancements of about two orders of magnitude (100-400) have been observed in dynamic nuclear polarization (DNP) experiments performed at high magnetic field (5 T) and low temperature (10 K) using the nitroxide radical 4-amino TEMPO as the source of electron polarization. Since the breadth of the 4-amino TEMPO EPR spectrum is large compared to the nuclear Larmor frequency, it has been assumed that thermal mixing (TM) is the dominate mechanism by which polarization is transferred from electron to nuclear spins. However, theoretical explanations of TM generally assume a homogeneously broadened EPR line and, since the 4-amino TEMPO line at 5 T is inhomogeneously broadened, they do not explain the observed DNP enhancements. Accordingly, we have developed a treatment of DNP that explicitly uses electron-electron cross-relaxation to mediate electron-nuclear polarization transfer. The process proceeds via spin flip-flops between pairs of electronic spin packets whose Zeeman temperatures differ from one another. To confirm the essential features of the model we have studied the field dependence of electron-electron double resonance (ELDOR) data and DNP enhancement data. Both are well simulated using a simple model of electron cross-relaxation in the inhomogeneously broadened 4-amino TEMPO EPR line.

  20. Magnetic Imaging: a New Tool for UK National Nuclear Security

    PubMed Central

    Darrer, Brendan J.; Watson, Joe C.; Bartlett, Paul; Renzoni, Ferruccio

    2015-01-01

    Combating illicit trafficking of Special Nuclear Material may require the ability to image through electromagnetic shields. This is the case when the trafficking involves cargo containers. Thus, suitable detection techniques are required to penetrate a ferromagnetic enclosure. The present study considers techniques that employ an electromagnetic based principle of detection. It is generally assumed that a ferromagnetic metallic enclosure will effectively act as a Faraday cage to electromagnetic radiation and therefore screen any form of interrogating electromagnetic radiation from penetrating, thus denying the detection of any eventual hidden material. In contrast, we demonstrate that it is actually possible to capture magnetic images of a conductive object through a set of metallic ferromagnetic enclosures. This validates electromagnetic interrogation techniques as a potential detection tool for National Nuclear Security applications. PMID:25608957

  1. Magnetic Imaging: a New Tool for UK National Nuclear Security

    NASA Astrophysics Data System (ADS)

    Darrer, Brendan J.; Watson, Joe C.; Bartlett, Paul; Renzoni, Ferruccio

    2015-01-01

    Combating illicit trafficking of Special Nuclear Material may require the ability to image through electromagnetic shields. This is the case when the trafficking involves cargo containers. Thus, suitable detection techniques are required to penetrate a ferromagnetic enclosure. The present study considers techniques that employ an electromagnetic based principle of detection. It is generally assumed that a ferromagnetic metallic enclosure will effectively act as a Faraday cage to electromagnetic radiation and therefore screen any form of interrogating electromagnetic radiation from penetrating, thus denying the detection of any eventual hidden material. In contrast, we demonstrate that it is actually possible to capture magnetic images of a conductive object through a set of metallic ferromagnetic enclosures. This validates electromagnetic interrogation techniques as a potential detection tool for National Nuclear Security applications.

  2. Magnetic imaging: a new tool for UK national nuclear security.

    PubMed

    Darrer, Brendan J; Watson, Joe C; Bartlett, Paul; Renzoni, Ferruccio

    2015-01-22

    Combating illicit trafficking of Special Nuclear Material may require the ability to image through electromagnetic shields. This is the case when the trafficking involves cargo containers. Thus, suitable detection techniques are required to penetrate a ferromagnetic enclosure. The present study considers techniques that employ an electromagnetic based principle of detection. It is generally assumed that a ferromagnetic metallic enclosure will effectively act as a Faraday cage to electromagnetic radiation and therefore screen any form of interrogating electromagnetic radiation from penetrating, thus denying the detection of any eventual hidden material. In contrast, we demonstrate that it is actually possible to capture magnetic images of a conductive object through a set of metallic ferromagnetic enclosures. This validates electromagnetic interrogation techniques as a potential detection tool for National Nuclear Security applications.

  3. Nuclear magnetic resonance: principles of blood flow imaging

    SciTech Connect

    Mills, C.M.; Brant-Zawadzki, M.; Crooks, L.E.; Kaufman, L.; Sheldon, P.; Norman, D.; Bank, W.; Newton, T.H.

    1984-01-01

    Nuclear magnetic resonance (NMR) imaging with spin-echo techniques defines vascular structures with superb anatomic detail. Contrast agents are not necessary as there is intrinsic contrast between flowing blood and the vascular wall. The signal intensity from blood within the vessel lumen varies with the sequence of gradient and radiofrequency pulses used to generate the image as well as with the velocity of blood flow. Appropriate imaging techniques can optimize anatomic detail, distinguish slow from rapidly flowing blood, and serve to identify marked impairment or complete obstruction of flow in an artery or vein. Some examples of these principles in the intracranial circulation are illustrated.

  4. A versatile pulse programmer for pulsed nuclear magnetic resonance spectroscopy.

    NASA Technical Reports Server (NTRS)

    Tarr, C. E.; Nickerson, M. A.

    1972-01-01

    A digital pulse programmer producing the standard pulse sequences required for pulsed nuclear magnetic resonance spectroscopy is described. In addition, a 'saturation burst' sequence, useful in the measurement of long relaxation times in solids, is provided. Both positive and negative 4 V trigger pulses are produced that are fully synchronous with a crystal-controlled time base, and the pulse programmer may be phase-locked with a maximum pulse jitter of 3 ns to the oscillator of a coherent pulse spectrometer. Medium speed TTL integrated circuits are used throughout.

  5. Applications of Nuclear Magnetic Resonance Sensors to Cultural Heritage

    PubMed Central

    Proietti, Noemi; Capitani, Donatella; Di Tullio, Valeria

    2014-01-01

    In recent years nuclear magnetic resonance (NMR) sensors have been increasingly applied to investigate, characterize and monitor objects of cultural heritage interest. NMR is not confined to a few specific applications, but rather its use can be successfully extended to a wide number of different cultural heritage issues. A breakthrough has surely been the recent development of portable NMR sensors which can be applied in situ for non-destructive and non-invasive investigations. In this paper three studies illustrating the potential of NMR sensors in this field of research are reported. PMID:24755519

  6. Nuclear Magnetic Resonance Applications to Unconventional Fossil Fuel Resources

    NASA Astrophysics Data System (ADS)

    Kleinberg, R. L.; Leu, G.

    2008-12-01

    Technical and economic projections strongly suggest that fossil fuels will continue to play a dominant role in the global energy market through at least the mid twenty-first century. However, low-cost conventional oil and gas will be depleted in that time frame. Therefore new sources of energy will be needed. We discuss two relatively untapped unconventional fossil fuels: heavy oil and gas hydrate. In both cases, nuclear magnetic resonance plays a key role in appraising the resource and providing information needed for designing production processes.

  7. Applications of nuclear magnetic resonance sensors to cultural heritage.

    PubMed

    Proietti, Noemi; Capitani, Donatella; Di Tullio, Valeria

    2014-04-21

    In recent years nuclear magnetic resonance (NMR) sensors have been increasingly applied to investigate, characterize and monitor objects of cultural heritage interest. NMR is not confined to a few specific applications, but rather its use can be successfully extended to a wide number of different cultural heritage issues. A breakthrough has surely been the recent development of portable NMR sensors which can be applied in situ for non-destructive and non-invasive investigations. In this paper three studies illustrating the potential of NMR sensors in this field of research are reported.

  8. Resonantly Detecting Axion-Mediated Forces with Nuclear Magnetic Resonance

    NASA Astrophysics Data System (ADS)

    Arvanitaki, Asimina; Geraci, Andrew A.

    2014-10-01

    We describe a method based on precision magnetometry that can extend the search for axion-mediated spin-dependent forces by several orders of magnitude. By combining techniques used in nuclear magnetic resonance and short-distance tests of gravity, our approach can substantially improve upon current experimental limits set by astrophysics, and probe deep into the theoretically interesting regime for the Peccei-Quinn (PQ) axion. Our method is sensitive to PQ axion decay constants between 109 and 1012 GeV or axion masses between 10-6 and 10-3 eV, independent of the cosmic axion abundance.

  9. Nuclear magnetic resonance-based quantification of organic diphosphates.

    PubMed

    Lenevich, Stepan; Distefano, Mark D

    2011-01-15

    Phosphorylated compounds are ubiquitous in life. Given their central role, many such substrates and analogs have been prepared for subsequent evaluation. Prior to biological experiments, it is typically necessary to determine the concentration of the target molecule in solution. Here we describe a method where concentrations of stock solutions of organic diphosphates and bisphosphonates are quantified using (31)P nuclear magnetic resonance (NMR) spectroscopy with standard instrumentation using a capillary tube with a secondary standard. The method is specific and is applicable down to a concentration of 200 μM. The capillary tube provides the reference peak for quantification and deuterated solvent for locking.

  10. Development of Metallic Magnetic Calorimeters for Nuclear Safeguards Applications

    SciTech Connect

    Bates, Cameron Russell

    2015-03-11

    Many nuclear safeguards applications could benefit from high-resolution gamma-ray spectroscopy achievable with metallic magnetic calorimeters. This dissertation covers the development of a system for these applications based on gamma-ray detectors developed at the University of Heidelberg. It demonstrates new calorimeters of this type, which achieved an energy resolution of 45.5 eV full-width at half-maximum at 59.54 keV, roughly ten times better than current state of the art high purity germanium detectors. This is the best energy resolution achieved with a gamma-ray metallic magnetic calorimeter at this energy to date. In addition to demonstrating a new benchmark in energy resolution, an experimental system for measuring samples with metallic magnetic calorimeters was constructed at Lawrence Livermore National Laboratory. This system achieved an energy resolution of 91.3 eV full-width at half-maximum at 59.54 keV under optimal conditions. Using this system it was possible to characterize the linearity of the response, the count-rate limitations, and the energy resolution as a function of temperature of the new calorimeter. With this characterization it was determined that it would be feasible to measure 242Pu in a mixed isotope plutonium sample. A measurement of a mixed isotope plutonium sample was performed over the course of 12 days with a single two-pixel metallic magnetic calorimeter. The relative concentration of 242Pu in comparison to other plutonium isotopes was determined by direct measurement to less than half a percent accuracy. This is comparable with the accuracy of the best-case scenario using traditional indirect methods. The ability to directly measure the relative concentration of 242Pu in a sample could enable more accurate accounting and detection of indications of undeclared activities in nuclear safeguards, a better constraint on source material in forensic samples containing plutonium, and improvements in verification in a future plutonium

  11. Nuclear conversion theory: molecular hydrogen in non-magnetic insulators

    NASA Astrophysics Data System (ADS)

    Ilisca, Ernest; Ghiglieno, Filippo

    2016-09-01

    The hydrogen conversion patterns on non-magnetic solids sensitively depend upon the degree of singlet/triplet mixing in the intermediates of the catalytic reaction. Three main `symmetry-breaking' interactions are brought together. In a typical channel, the electron spin-orbit (SO) couplings introduce some magnetic excitations in the non-magnetic solid ground state. The electron spin is exchanged with a molecular one by the electric molecule-solid electron repulsion, mixing the bonding and antibonding states and affecting the molecule rotation. Finally, the magnetic hyperfine contact transfers the electron spin angular momentum to the nuclei. Two families of channels are considered and a simple criterion based on the SO coupling strength is proposed to select the most efficient one. The denoted `electronic' conversion path involves an emission of excitons that propagate and disintegrate in the bulk. In the other denoted `nuclear', the excited electron states are transients of a loop, and the electron system returns to its fundamental ground state. The described model enlarges previous studies by extending the electron basis to charge-transfer states and `continui' of band states, and focuses on the broadening of the antibonding molecular excited state by the solid conduction band that provides efficient tunnelling paths for the hydrogen conversion. After working out the general conversion algebra, the conversion rates of hydrogen on insulating and semiconductor solids are related to a few molecule-solid parameters (gap width, ionization and affinity potentials) and compared with experimental measures.

  12. Updated THM Astrophysical Factor of the 19F(p, α)16O Reaction and Influence of New Direct Data at Astrophysical Energies

    NASA Astrophysics Data System (ADS)

    La Cognata, M.; Palmerini, S.; Spitaleri, C.; Indelicato, I.; Mukhamedzhanov, A. M.; Lombardo, I.; Trippella, O.

    2015-06-01

    Fluorine nucleosynthesis represents one of the most intriguing open questions in nuclear astrophysics. It has triggered new measurements which may modify the presently accepted paradigm of fluorine production and establish fluorine as an accurate probe of the inner layers of asymptotic giant branch (AGB) stars. Both direct and indirect measurements have attempted to improve the recommended extrapolation to astrophysical energies, showing no resonances. In this work, we will demonstrate that the interplay between direct and indirect techniques represents the most suitable approach to attain the required accuracy for the astrophysical factor at low energies, {{E}c.m.}≲ 300 keV, which is of interest for fluorine nucleosynthesis in AGB stars. We will use the recently measured direct 19F{{(p,α )}16}O astrophysical factor in the 600 keV≲ {{E}c.m.}≲ 800 keV energy interval to renormalize the existing Trojan Horse Method (THM) data spanning the astrophysical energies, accounting for all identified sources of uncertainty. This has a twofold impact on nuclear astrophysics. It shows the robustness of the THM approach even in the case of direct data of questionable quality, as normalization is extended over a broad range, minimizing systematic effects. Moreover, it allows us to obtain more accurate resonance data at astrophysical energies, thanks to the improved 19F{{(p,α )}16}O direct data. Finally, the present work strongly calls for more accurate direct data at low energies, so that we can obtain a better fitting of the direct reaction mechanism contributing to the 19F{{(p,α )}16}O astrophysical factor. Indeed, this work points out that the major source of uncertainty affecting the low-energy S(E) factor is the estimate of the non-resonant contribution, as the dominant role of the 113 keV resonance is now well established.

  13. TANKS 18 AND 19-F EQUIPMENT GROUT FILL MATERIAL EVALUATION AND RECOMMENDATIONS

    SciTech Connect

    Stefanko, D.; Langton, C.

    2011-12-15

    The United States Department of Energy (US DOE) intends to remove Tanks 18-F and 19-F at the Savannah River Site (SRS) from service. The high-level waste (HLW) tanks have been isolated from the F-area Tank Farm (FTF) facilities and will be filled with cementitious grout for the purpose of: (1) physically stabilizing the empty volumes in the tanks, (2) limiting/eliminating vertical pathways from the surface to residual waste on the bottom of the tanks, (3) providing an intruder barrier, and (4) providing an alkaline, chemical reducing environment within the closure boundary to limit solubility of residual radionuclides. Bulk waste and heel waste removal equipment will remain in Tanks 18-F and 19-F when the tanks are closed. This equipment includes: mixer pumps, transfer pumps, transfer jets, equipment support masts, sampling masts and dip tube assemblies. The current Tank 18-F and 19-F closure strategy is to grout the internal void spaces in this equipment to eliminate fast vertical pathways and slow water infiltration to the residual material on the tank floor. This report documents the results of laboratory testing performed to identify a grout formulation for filling the abandoned equipment in Tanks 18-F and 19-F. The objective of this work was to formulate a flowable grout for filling internal voids of equipment that will remain in Tanks 18-F and 19-F during the final closures. This work was requested by V. A. Chander, Tank Farm Closure Engineering, in HLW-TTR-2011-008. The scope for this task is provided in the Task Technical and Quality Assurance Plan (TTQAP), SRNL-RP-2011-00587. The specific objectives of this task were to: (1) Prepare and evaluate the SRR cooling coil grout identified in WSRC-STI-2008-00298 per the TTR for this work. The cooling coil grout is a mixture of BASF MasterFlow{reg_sign} 816 cable grout (67.67 wt. %), Grade 100 ground granulated blast furnace slag (7.52 wt. %) and water (24.81 wt. %); (2) Identify equipment grout placement and

  14. Solid-state (19)F-NMR of peptides in native membranes.

    PubMed

    Koch, Katja; Afonin, Sergii; Ieronimo, Marco; Berditsch, Marina; Ulrich, Anne S

    2012-01-01

    To understand how membrane-active peptides (MAPs) function in vivo, it is essential to obtain structural information about them in their membrane-bound state. Most biophysical approaches rely on the use of bilayers prepared from synthetic phospholipids, i.e. artificial model membranes. A particularly successful structural method is solid-state NMR, which makes use of macroscopically oriented lipid bilayers to study selectively isotope-labelled peptides. Native biomembranes, however, have a far more complex lipid composition and a significant non-lipidic content (protein and carbohydrate). Model membranes, therefore, are not really adequate to address questions concerning for example the selectivity of these membranolytic peptides against prokaryotic vs eukaryotic cells, their varying activities against different bacterial strains, or other related biological issues.Here, we discuss a solid-state (19)F-NMR approach that has been developed for structural studies of MAPs in lipid bilayers, and how this can be translated to measurements in native biomembranes. We review the essentials of the methodology and discuss key objectives in the practice of (19)F-labelling of peptides. Furthermore, the preparation of macroscopically oriented biomembranes on solid supports is discussed in the context of other membrane models. Two native biomembrane systems are presented as examples: human erythrocyte ghosts as representatives of eukaryotic cell membranes, and protoplasts from Micrococcus luteus as membranes from Gram-positive bacteria. Based on our latest experimental experience with the antimicrobial peptide gramicidin S, the benefits and some implicit drawbacks of using such supported native membranes in solid-state (19)F-NMR analysis are discussed.

  15. Pre-fission neutron emission in {sup 19}F+{sup 209}Bi reaction

    SciTech Connect

    Singh, Hardev; Sugathan, P.; Shidling, P. D.; Behera, B. R.; Singh, Gulzar; Govil, I. M.; Golda, K. S.; Jhingan, Akhil; Singh, R. P.; Chatterjee, M. B.; Datta, S. K.; Pal, Santanu; Viesti, G.

    2009-03-04

    The pre- and post-scission neutron multiplicities are measured for {sup 19}F+{sup 209}Bi reaction at E{sub lab} = 100, 104, 108, 112 and 116 MeV. The measured value of pre-scission neutron multiplicity was found to be increasing with the excitation energy. The comparison of experimental values with the statistical model calculations shows that the measured values are much larger than the model predictions. This difference in excess yield over the model predictions amounts to the survival time of 80{+-}5x10{sup -21} s for the {sup 228}U compound nucleus before it undergoes fission.

  16. 6-Trifluoromethylpyridoxine: novel (19)F NMR pH indicator for in vivo detection.

    PubMed

    Yu, Jian-Xin; Cui, Weina; Bourke, Vincent A; Mason, Ralph P

    2012-08-09

    pH plays an important role in tumor proliferation, angiogenesis, metabolic control, and the efficacy of cytotoxic therapy, and accurate noninvasive assessment of tumor pH promises to provide insight into developmental processes and prognostic information. In this paper, we report the design, synthesis, and characterization of two novel pH indicators 6-trifluoromethylpyridoxine 8 and α(4),α(5)-di-O-[3'-O-(β-d-glucopyranosyl)propyl]-6-trifluoromethylpyridoxine 17 and demonstrate 8 as an extracellular (19)F NMR pH probe to assess pH(e) of various tumors in vivo.

  17. Rotating-frame gradient fields for magnetic resonance imaging and nuclear magnetic resonance in low fields

    SciTech Connect

    Bouchard, Louis-Serge; Pines, Alexander; Demas, Vasiliki

    2014-01-21

    A system and method for Fourier encoding a nuclear magnetic resonance (NMR) signal is disclosed. A static magnetic field B.sub.0 is provided along a first direction. An NMR signal from the sample is Fourier encoded by applying a rotating-frame gradient field B.sub.G superimposed on the B.sub.0, where the B.sub.G comprises a vector component rotating in a plane perpendicular to the first direction at an angular frequency .omega.in a laboratory frame. The Fourier-encoded NMR signal is detected.

  18. The Design and Testing of Magnets for Nuclear Magnetic Resonance Imaging

    NASA Astrophysics Data System (ADS)

    Evans, P. R.

    Available from UMI in association with The British Library. Recently, images of the inside of the human body have been produced non-invasively using nuclear magnetic resonance (nmr). The technique involves placing the patient in a strong, homogeneous magnetic field. The heart of any nmr imaging system is the magnet that produces this field and this thesis is concerned with the design and testing of such magnets. Various computer programs have been written that allow the designer to model a magnet either in terms of axisymmetric coils, or in terms of the discrete conductors that simulate the actual form of the winding. The axisymmetric program automatically optimises the design so as to produce a uniform field, and the data from this program may be used directly to generate an appropriate helical or spiral winding. These programs not only allow the designer to produce a suitable design, but also to put tolerances on the dimensions of the conductors and formers that support the winding. The problem of removing imhomogeneities produced by dimensional inaccuracies and surrounding ferromagnetic materials is also considered. A nmr probe system has been developed that allows the homogeneity of a magnet to be assessed independently of the stability of its power supply. The probe has been used for field measurements in a magnet designed using the above techniques, and the results are presented.

  19. Detection of molecules and cells using nuclear magnetic resonance with magnetic nanoparticles

    NASA Astrophysics Data System (ADS)

    Rümenapp, Christine; Gleich, Bernhard; Mannherz, Hans Georg; Haase, Axel

    2015-04-01

    For the detection of small molecules, proteins or even cells in vitro, functionalised magnetic nanoparticles and nuclear magnetic resonance measurements can be applied. In this work, magnetic nanoparticles with the size of 5-7 nm were functionalised with antibodies to detect two model systems of different sizes, the protein avidin and Saccharomyces cerevisiae as the model organism. The synthesised magnetic nanoparticles showed a narrow size distribution, which was determined using transmission electron microscopy and dynamic light scattering. The magnetic nanoparticles were functionalised with the according antibodies via EDC/NHS chemistry. The binding of the antigen to magnetic nanoparticles was detected through the change in the NMR T2 relaxation time at 0.5 T (≈21.7 MHz). In case of a specific binding the particles cluster and the T2 relaxation time of the sample changes. The detection limit in buffer for FITC-avidin was determined to be 1.35 nM and 107 cells/ml for S. cerevisiae. For fluorescent microscopy the avidin molecules were labelled with FITC and for the detection of S. cerevisiae the magnetic nanoparticles were additionally functionalised with rhodamine. The binding of the particles to S. cerevisiae and the resulting clustering was also seen by transmission electron microscopy.

  20. Magnetism and nuclear magnetic resonance of smectite clays and their polymer nanocomposites

    NASA Astrophysics Data System (ADS)

    Levin, E. M.; Rawal, A.; Hou, S. S.; Budko, S. L.; Schmidt-Rohr, K.

    2004-03-01

    In an effort to understand the magnetic properties of polymer-clay nanocomposites and improve their nuclear magnetic resonance (NMR) spectroscopy, we have measured the "bulk" magnetization and magnetic susceptibility of three smectite clays (2:1 layered silicates), namely natural montmorillonite (MMT), synthetic mica-montmorillonite (SMMT), and natural hectorite (HCT), and correlated these data with the ^1H and ^29Si NMR signal intensities. As observed before, HCT provides much better NMR spectra than does MMT, even though its low-field magnetic susceptibility is larger than that of MMT. The reason is that the magnetization of HCT at ambient temperature is dominated by a contribution from ferromagnetic-like impurities, while MMT exhibits Langevin paramagnetism. Based on this insight, we have improved the HCT purification procedure, introducing magnetic separation and also avoiding centrifugation which enriches the sample with carbonates. This has increased the NMR signal intensity of HCT 4-fold. The resulting improvement in the quality of ^1H-^29Si NMR spectra of HCT dispersed in a polymer matrix is demonstrated.

  1. Defect-induced magnetism in SiC probed by nuclear magnetic resonance

    NASA Astrophysics Data System (ADS)

    Zhang, Z. T.; Dmytriieva, D.; Molatta, S.; Wosnitza, J.; Wang, Yutian; Helm, M.; Zhou, Shengqiang; Kühne, H.

    2017-02-01

    We give evidence for intrinsic defect-induced bulk paramagnetism in SiC by means of 13C and 29Si nuclear magnetic resonance (NMR) spectroscopy. The temperature dependence of the internal dipole-field distribution, probed by the spin part of the NMR Knight shift and the spectral linewidth, follows the Curie law and scales very well with the macroscopic dc susceptibility. In order to quantitatively analyze the NMR spectra, a microscopic model based on dipole-dipole interactions was developed. The very good agreement between these simulations and the NMR data establishes a direct relation between the frequency distribution of the spectral intensity and the corresponding real-space volumes of nuclear spins. The presented approach by NMR can be applied to a variety of similar materials and, thus, opens a new avenue for the microscopic exploration and exploitation of diluted bulk magnetism in semiconductors.

  2. Multinucleon transfer in O,1816,19F+208Pb reactions at energies near the fusion barrier

    NASA Astrophysics Data System (ADS)

    Rafferty, D. C.; Dasgupta, M.; Hinde, D. J.; Simenel, C.; Simpson, E. C.; Williams, E.; Carter, I. P.; Cook, K. J.; Luong, D. H.; McNeil, S. D.; Ramachandran, K.; Vo-Phuoc, K.; Wakhle, A.

    2016-08-01

    Background: Nuclear reactions are complex, involving collisions between composite systems where many-body dynamics determines outcomes. Successful models have been developed to explain particular reaction outcomes in distinct energy and mass regimes, but a unifying picture remains elusive. The irreversible transfer of kinetic energy from the relative motion of the collision partners to their internal states, as is known to occur in deep inelastic collisions, has yet to be successfully incorporated explicitly into fully quantal reaction models. The influence of these processes on fusion is not yet quantitatively understood. Purpose: To investigate the population of high excitation energies in transfer reactions at sub-barrier energies, which are precursors to deep inelastic processes, and their dependence on the internuclear separation. Methods: Transfer probabilities and excitation energy spectra have been measured in collisions of O,1816,19F+208Pb , at various energies below and around the fusion barrier, by detecting the backscattered projectile-like fragments in a Δ E -E telescope. Results: The relative yields of different transfer outcomes are strongly driven by Q values, but change with the internuclear separation. In 16O+208Pb , single nucleon transfer dominates, with a strong contribution from -2 p transfer close to the Coulomb barrier, though this channel becomes less significant in relation to the -2 p 2 n transfer channel at larger separations. For 18O+208Pb , the -2 p 2 n channel is the dominant charge transfer mode at all separations. In the reactions with 19F,-3 p 2 n transfer is significant close to the barrier, but falls off rapidly with energy. Multinucleon transfer processes are shown to lead to high excitation energies (up to ˜15 MeV), which is distinct from single nucleon transfer modes which predominantly populate states at low excitation energy. Conclusions: Kinetic energy is transferred into internal excitations following transfer, with this

  3. TOPICAL REVIEW: Spatial localization in nuclear magnetic resonance spectroscopy

    NASA Astrophysics Data System (ADS)

    Keevil, Stephen F.

    2006-08-01

    The ability to select a discrete region within the body for signal acquisition is a fundamental requirement of in vivo NMR spectroscopy. Ideally, it should be possible to tailor the selected volume to coincide exactly with the lesion or tissue of interest, without loss of signal from within this volume or contamination with extraneous signals. Many techniques have been developed over the past 25 years employing a combination of RF coil properties, static magnetic field gradients and pulse sequence design in an attempt to meet these goals. This review presents a comprehensive survey of these techniques, their various advantages and disadvantages, and implications for clinical applications. Particular emphasis is placed on the reliability of the techniques in terms of signal loss, contamination and the effect of nuclear relaxation and J-coupling. The survey includes techniques based on RF coil and pulse design alone, those using static magnetic field gradients, and magnetic resonance spectroscopic imaging. Although there is an emphasis on techniques currently in widespread use (PRESS, STEAM, ISIS and MRSI), the review also includes earlier techniques, in order to provide historical context, and techniques that are promising for future use in clinical and biomedical applications.

  4. Nuclear Magnetic Moment of the {sup 57}Cu Ground State

    SciTech Connect

    Minamisono, K.; Mertzimekis, T.J.; Pereira, J.; Mantica, P.F.; Pinter, J.S.; Stoker, J.B.; Tomlin, B.E.; Weerasiri, R.R.; Davies, A.D.; Hass, M.; Rogers, W.F.

    2006-03-17

    The nuclear magnetic moment of the ground state of {sup 57}Cu(I{sup {pi}}=3/2{sup -},T{sub 1/2}=196.3 ms) has been measured to be vertical bar {mu}({sup 57}Cu) vertical bar =(2.00{+-}0.05){mu}{sub N} using the {beta}-NMR technique. Together with the known magnetic moment of the mirror partner {sup 57}Ni, the spin expectation value was extracted as <{sigma}{sigma}{sub z}>=-0.78{+-}0.13. This is the heaviest isospin T=1/2 mirror pair above the {sup 40}Ca region for which both ground state magnetic moments have been determined. The discrepancy between the present results and shell-model calculations in the full fp shell giving {mu}({sup 57}Cu){approx}2.4{mu}{sub N} and <{sigma}{sigma}{sub z}>{approx}0.5 implies significant shell breaking at {sup 56}Ni with the neutron number N=28.

  5. Dissection of the ion-induced folding of the hammerhead ribozyme using 19F NMR

    PubMed Central

    Hammann, Christian; Norman, David G.; Lilley, David M. J.

    2001-01-01

    We have used 19F NMR to analyze the metal ion-induced folding of the hammerhead ribozyme by selective incorporation of 5fluorouridine. We have studied the chemical shift and linewidths of 19F resonances of 5-fluorouridine at the 4 and 7 positions in the ribozyme core as a function of added Mg2+. The data fit well to a simple two-state model whereby the formation of domain 1 is induced by the noncooperative binding of Mg2+ with an association constant in the range of 100 to 500 M−1, depending on the concentration of monovalent ions present. The results are in excellent agreement with data reporting on changes in the global shape of the ribozyme. However, the NMR experiments exploit reporters located in the center of the RNA sections undergoing the folding transitions, thereby allowing the assignment of specific nucleotides to the separate stages. The results define the folding pathway at high resolution and provide a time scale for the first transition in the millisecond range. PMID:11331743

  6. TANK 18-F AND 19-F TANK FILL GROUT SCALE UP TEST SUMMARY

    SciTech Connect

    Stefanko, D.; Langton, C.

    2012-01-03

    High-level waste (HLW) tanks 18-F and 19-F have been isolated from FTF facilities. To complete operational closure the tanks will be filled with grout for the purpose of: (1) physically stabilizing the tanks, (2) limiting/eliminating vertical pathways to residual waste, (3) entombing waste removal equipment, (4) discouraging future intrusion, and (5) providing an alkaline, chemical reducing environment within the closure boundary to control speciation and solubility of select radionuclides. This report documents the results of a four cubic yard bulk fill scale up test on the grout formulation recommended for filling Tanks 18-F and 19-F. Details of the scale up test are provided in a Test Plan. The work was authorized under a Technical Task Request (TTR), HLE-TTR-2011-008, and was performed according to Task Technical and Quality Assurance Plan (TTQAP), SRNL-RP-2011-00587. The bulk fill scale up test described in this report was intended to demonstrate proportioning, mixing, and transportation, of material produced in a full scale ready mix concrete batch plant. In addition, the material produced for the scale up test was characterized with respect to fresh properties, thermal properties, and compressive strength as a function of curing time.

  7. TANK 18 AND 19-F TIER 1A EQUIPMENT FILL MOCK UP TEST SUMMARY

    SciTech Connect

    Stefanko, D.; Langton, C.

    2011-11-04

    The United States Department of Energy (US DOE) has determined that Tanks 18-F and 19-F have met the F-Tank Farm (FTF) General Closure Plan Requirements and are ready to be permanently closed. The high-level waste (HLW) tanks have been isolated from FTF facilities. To complete operational closure they will be filled with grout for the purpose of: (1) physically stabilizing the tanks, (2) limiting/eliminating vertical pathways to residual waste, (3) discouraging future intrusion, and (4) providing an alkaline, chemical reducing environment within the closure boundary to control speciation and solubility of select radionuclides. Bulk waste removal and heel removal equipment remain in Tanks 18-F and 19-F. This equipment includes the Advance Design Mixer Pump (ADMP), transfer pumps, transfer jets, standard slurry mixer pumps, equipment-support masts, sampling masts, dip tube assemblies and robotic crawlers. The present Tank 18 and 19-F closure strategy is to grout the equipment in place and eliminate vertical pathways by filling voids in the equipment to vertical fast pathways and water infiltration. The mock-up tests described in this report were intended to address placement issues identified for grouting the equipment that will be left in Tank 18-F and Tank 19-F. The Tank 18-F and 19-F closure strategy document states that one of the Performance Assessment (PA) requirements for a closed tank is that equipment remaining in the tank be filled to the extent practical and that vertical flow paths 1 inch and larger be grouted. The specific objectives of the Tier 1A equipment grout mock-up testing include: (1) Identifying the most limiting equipment configurations with respect to internal void space filling; (2) Specifying and constructing initial test geometries and forms that represent scaled boundary conditions; (3) Identifying a target grout rheology for evaluation in the scaled mock-up configurations; (4) Scaling-up production of a grout mix with the target rheology

  8. Analysis of ringing effects due to magnetic core materials in pulsed nuclear magnetic resonance circuits

    SciTech Connect

    Prabhu Gaunkar, N. Bouda, N. R. Y.; Nlebedim, I. C.; Hadimani, R. L.; Mina, M.; Jiles, D. C.; Bulu, I.; Ganesan, K.; Song, Y. Q.

    2015-05-07

    This work presents investigations and detailed analysis of ringing in a non-resonant pulsed nuclear magnetic resonance (NMR) circuit. Ringing is a commonly observed phenomenon in high power switching circuits. The oscillations described as ringing impede measurements in pulsed NMR systems. It is therefore desirable that those oscillations decay fast. It is often assumed that one of the causes behind ringing is the role of the magnetic core used in the antenna (acting as an inductive load). We will demonstrate that an LRC subcircuit is also set-up due to the inductive load and needs to be considered due to its parasitic effects. It is observed that the parasitics associated with the inductive load become important at certain frequencies. The output response can be related to the response of an under-damped circuit and to the magnetic core material. This research work demonstrates and discusses ways of controlling ringing by considering interrelationships between different contributing factors.

  9. Nuclear Magnetic Resonance Studies in Heavy Fermion Materials

    NASA Astrophysics Data System (ADS)

    Shirer, Kent Robert

    29Si, 31P, and 115In nuclear magnetic resonance studies of heavy fermion materials URu2Si 2, CeRhIn5, and URu2Si2- xPx were conducted as a function of temperature, pressure, and, in the case of URu2Si2- xPx, doping. Knight shift measurements in these systems probe the hybridization between conduction and local f-electrons which is described by the heavy fermion coherence temperature, T*, and can be captured by a two fluid model. This model takes the dual nature of the local moments and the heavy electron fluid into account. In URu2Si2 in a pressure range from 0-9.1 kbar, spin-lattice-relaxation data were taken and suggest a partial suppression of the density of states below 30 K. The data are analyzed in terms of a two component spin-fermion model. The spin-lattice-relaxation behavior is then compared to other materials that demonstrate precursor fluctuations in a pseudogap regime above a ground state with long-range order. Nuclear magnetic resonance data in CeRhIn5 for both the In(1) and In(2) sites are also taken under hydrostatic pressure. The Knight shift data reveal a suppression of the hyperfine coupling to the In(1) site as a function of pressure, and the electric field gradient at the In(2) site exhibits a change of slope. These changes to these coupling constants reflect alterations to the electronic structure at the quantum critical point. Finally, we report 31P nuclear magnetic resonance measurements in single crystals of URu2Si2-xP x with x = 0.09, 0.33. In the case of the x = 0.09 doping, we find no evidence for a phase transition, though the material still exhibits heavy fermion coherence. In the x = 0.33 doping, we find that it undergoes an antiferromagnetic (AFM) phase transition. When we include the pure compound in our analysis, we find that the hyperfine couplings and coherence temperatures evolve with doping. We compare this evolution with the trends seen in other compounds.

  10. Development of a micro nuclear magnetic resonance system

    NASA Astrophysics Data System (ADS)

    Goloshevsky, Artem

    Application of Nuclear Magnetic Resonance (NMR) to on-line/in-line control of industrial processes is currently limited by equipment costs and requirements for installation. A superconducting magnet generating strong fields is the most expensive part of a typical NMR instrument. In industrial environments, fringe magnetic fields make accommodation of NMR instruments difficult. However, a portable, low-cost and low-field magnetic resonance system can be used in virtually any environment. Development of a number of hardware components for a portable, low-cost NMR instrument is reported in this dissertation. Chapter one provides a discussion on a miniaturized Helmholtz spiral radio-frequency (RF) coil (average diameter equal to 3.5 mm) and an NMR probe built around a capillary (outer diameter = 1.59 mm and inner diameter = 1.02 mm) for flow imaging. Experiments of NMR spectroscopy, static and dynamic (flow) imaging, conducted with the use of the miniaturized coil, are described. Chapter two presents a microfabricated package of two biaxial gradient coils and a Helmholtz RF coil. Planar configuration of discrete wires was used to create magnetic field gradients. Performance of the microfabricated gradient coils while imaging water flow compared well with a commercial gradient set of much larger size. Chapter three reports on flow imaging experiments with power law fluids (aqueous solutions of sodium salt of carboxymethyl cellulose (CMC)) of different viscosities, carried out in the NMR probe with the miniaturized RF coil and capillary. Viscosities of the CMC solutions were determined based on the curve fits of the velocity profiles and simultaneous measurements of the flow rates. The curve fits were carried out according to the power law model equations. The NMR viscosity measurements compared well with measurements of the same CMC samples, performed on a conventional rotational rheometer. A portable, home-built transceiver, designed for NMR applications utilizing a

  11. First principles nuclear magnetic resonance signatures of graphene oxide.

    PubMed

    Lu, Ning; Huang, Ying; Li, Hai-bei; Li, Zhenyu; Yang, Jinlong

    2010-07-21

    Nuclear magnetic resonance (NMR) has been widely used in graphene oxide (GO) structure studies. However, the detailed relationship between its spectroscopic features and the GO structural configuration remains elusive. Based on first principles (13)C chemical shift calculations using the gauge including projector augmented waves method, we provide a reliable spectrum-structure connection. The (13)C chemical shift in GO is found to be very sensitive to the atomic environment, even for the same type of oxidation groups. Factors determining the chemical shifts of epoxy and hydroxy groups have been discussed. GO structures previously reported in the literature have been checked from the NMR point of view. The energetically favorable hydroxy chain structure is not expected to be widely existed in real GO samples according to our NMR simulations. The epoxy pair species we proposed previously is also supported by chemical shift calculations.

  12. First principles nuclear magnetic resonance signatures of graphene oxide

    NASA Astrophysics Data System (ADS)

    Lu, Ning; Huang, Ying; Li, Hai-bei; Li, Zhenyu; Yang, Jinlong

    2010-07-01

    Nuclear magnetic resonance (NMR) has been widely used in graphene oxide (GO) structure studies. However, the detailed relationship between its spectroscopic features and the GO structural configuration remains elusive. Based on first principles C13 chemical shift calculations using the gauge including projector augmented waves method, we provide a reliable spectrum-structure connection. The C13 chemical shift in GO is found to be very sensitive to the atomic environment, even for the same type of oxidation groups. Factors determining the chemical shifts of epoxy and hydroxy groups have been discussed. GO structures previously reported in the literature have been checked from the NMR point of view. The energetically favorable hydroxy chain structure is not expected to be widely existed in real GO samples according to our NMR simulations. The epoxy pair species we proposed previously is also supported by chemical shift calculations.

  13. Scaling in biological nuclear magnetic resonance spectral distributions.

    PubMed Central

    Lacelle, S

    1986-01-01

    A statistical analysis of the distribution of the eigenvalues of the chemical shift interaction as detected by nuclear magnetic resonance (NMR) spectroscopy in large biological systems is presented in the light of random matrix theory. A power law dependence is experimentally observed for the distribution of the number of eigenvalues, N, of the shielding hamiltonian with epsilon i less than or equal to E as a function of the energy E. From this cumulative distribution of energy levels, N(E), we also obtain a density of states rho(E). The exponent of the energy variation of N(E) and rho(E) are correlated with the dimensionality of the molecular system. A crossover in the values of the exponents is found in passing from low to higher energy in the spectra. Our method classifies and reduces the chemical shift data base of proteins and also demonstrates a degree of regularity in seemingly irregular spectral patterns. PMID:3730504

  14. Nuclear magnetic resonance spectral analysis and molecular properties of berberine

    NASA Astrophysics Data System (ADS)

    Huang, Ming-Ju; Lee, Ken S.; Hurley, Sharon J.

    An extensive theoretical study of berberine has been performed at the ab initio HF/6-31G**, HF/6-311G**, and B3LYP/6-311G** levels with and without solvent effects. The optimized structures are compared with X-ray data. We found that the optimized structures with solvent effects are in slightly better agreement with X-ray data than those without solvent effects. The 1H and 13C nuclear magnetic resonance (NMR) chemical shifts of berberine were calculated by using the gauge-independent atomic orbital (GIAO) (with and without solvent effects), CSGT, and IGAIM methods. The calculated chemical shifts were compared with the two-dimensional NMR experimental data. Overall, the calculated chemical shifts show very good agreement with the experimental results. The harmonic vibrational frequencies for berberine were calculated at the B3LYP/6-311G** level.

  15. Serum metabonomics of acute leukemia using nuclear magnetic resonance spectroscopy

    PubMed Central

    Musharraf, Syed Ghulam; Siddiqui, Amna Jabbar; Shamsi, Tahir; Choudhary, M. Iqbal; Rahman, Atta-ur

    2016-01-01

    Acute leukemia is a critical neoplasm of white blood cells. In order to differentiate between the metabolic alterations associated with two subtypes of acute leukemia, acute lymphoblastic leukemia (ALL) and acute myeloid leukemia (AML), we investigated the serum of ALL and AML patients and compared with two controls (healthy and aplastic anemia) using 1H NMR (nuclear magnetic resonance) spectroscopy. Thirty-seven putative metabolites were identified using Carr-Purcell-Meiboom-Gill (CPMG) sequence. The use of PLS-DA and OPLS-DA models gave results with 84.38% and 90.63% classification rate, respectively. The metabolites responsible for classification are mainly lipids, lactate and glucose. Compared with controls, ALL and AML patients showed serum metabonomic differences involving aberrant metabolism pathways including glycolysis, TCA cycle, lipoprotein changes, choline and fatty acid metabolisms. PMID:27480133

  16. Blood species discrimination using proton nuclear magnetic resonance spectroscopy.

    PubMed

    Zailer, Elina; Diehl, Bernd W K; Monakhova, Yulia B

    2016-11-25

    Blood species identification is an important challenge in forensic science. Conventional methods used for blood species analysis are destructive and associated with time-consuming sample preparation steps. Nuclear magnetic resonance (NMR) spectroscopy is known for its nondestructive properties and fast results. This research study presents a proton ((1)H) NMR method to discriminate blood species including human, cat, dog, elephant, and bison. Characteristic signals acting as markers are observed for each species. Moreover, the data are evaluated by principle component analysis (PCA) and support vector machines (SVM). A 100% correct species recognition between human and nonhuman species is achieved using radial basis kernel function (RBF) and standardized data. The research study shows that (1)H NMR spectroscopy is a powerful tool for differentiating human and nonhuman blood showing a great significance to forensic science.

  17. Nuclear magnetic resonance of iron and copper disease states

    SciTech Connect

    Runge, V.M.; Clanton, J.A.; Smith, F.W.; Hutchison, J.; Mallard, J.; Partain, C.L.; James, A.E. Jr.

    1983-11-01

    The tissue levels of paramagnetic ions are an important factor in the determination of T/sub 1/ values as observed by nuclear magnetic resonance (NMR) imaging. The increased levels of iron present in human disease states such as hemochromatosis lead to decreased T/sub 1/ values. The mean liver T/sub 1/ of three patients with iron storage disease was determined to be 130 msec, significantly different from the value of 154 msec, the mean for 14 normal controls. Whether NMR will be able to detect the increased copper levels in liver and brain in Wilson disease remains for further clinical trials to evaluate. NMR imaging, however, does serve as a noninvasive method for the diagnosis of states of iron overload and as a technique to follow progression of disease or response to medical therapy.

  18. Effect of a strong magnetic field on the energy yield of nuclear reactions in dense nuclear matter

    SciTech Connect

    Sekerzhitskii, V.S.

    1995-01-01

    According to modern concepts, the electron-neutron-nuclear (Aen) phase of dense highly degenerate matter can be realized in the shells of neutron stars. This phase has relatively stable and absolutely stable states of thermodynamic equilibrium. Strong magnetic fields can exist in neutron stars. For this reason, analysis of their effect on the characteristics of the Aen phase is of great interest. It is specially important to study the influence of strong magnetic fields on the energy yield of nuclear reactions in dense nuclear matter because the transition to the absolute equilibrium state proceeds through these reactions.

  19. Single crystal nuclear magnetic resonance in spinning powders.

    PubMed

    Pell, Andrew J; Pintacuda, Guido; Emsley, Lyndon

    2011-10-14

    We present a method for selectively exciting nuclear magnetic resonances (NMRs) from well-defined subsets of crystallites from a powdered sample under magic angle spinning. Magic angle spinning induces a time dependence in the anisotropic interactions, which results in a time variation of the resonance frequencies which is different for different crystallite orientations. The proposed method exploits this by applying selective pulses, which we refer to as XS (for crystallite-selective) pulses, that follow the resonance frequencies of nuclear species within particular crystallites, resulting in the induced flip angle being orientation dependent. By selecting the radiofrequency field to deliver a 180° pulse for the target orientation and employing a train of such pulses combined with cogwheel phase cycling, we obtain a high degree of orientational selectivity with the resulting spectrum containing only contributions from orientations close to the target. Typically, this leads to the selection of between 0.1% and 10% of the crystallites, and in extreme cases to the excitation of a single orientation resulting in single crystal spectra of spinning powders. Two formulations of this method are described and demonstrated with experimental examples on [1-(13)C]-alanine and the paramagnetic compound Sm(2)Sn(2)O(7).

  20. Single crystal nuclear magnetic resonance in spinning powders

    NASA Astrophysics Data System (ADS)

    Pell, Andrew J.; Pintacuda, Guido; Emsley, Lyndon

    2011-10-01

    We present a method for selectively exciting nuclear magnetic resonances (NMRs) from well-defined subsets of crystallites from a powdered sample under magic angle spinning. Magic angle spinning induces a time dependence in the anisotropic interactions, which results in a time variation of the resonance frequencies which is different for different crystallite orientations. The proposed method exploits this by applying selective pulses, which we refer to as XS (for crystallite-selective) pulses, that follow the resonance frequencies of nuclear species within particular crystallites, resulting in the induced flip angle being orientation dependent. By selecting the radiofrequency field to deliver a 180 ○ pulse for the target orientation and employing a train of such pulses combined with cogwheel phase cycling, we obtain a high degree of orientational selectivity with the resulting spectrum containing only contributions from orientations close to the target. Typically, this leads to the selection of between 0.1% and 10% of the crystallites, and in extreme cases to the excitation of a single orientation resulting in single crystal spectra of spinning powders. Two formulations of this method are described and demonstrated with experimental examples on [1 - 13C]-alanine and the paramagnetic compound Sm2Sn2O7.

  1. Nuclear magnetic resonance probes of membrane biophysics: Structure and dynamics

    NASA Astrophysics Data System (ADS)

    Leftin, Avigdor

    The phospholipid membrane is a self-assembled, dynamic molecular system that may exist alone in association with only water, or in complex systems comprised of multiple lipid types and proteins. In this dissertation the intra- and inter-molecular forces responsible for the atomistic, molecular and collective equilibrium structure and dynamics are studied by nuclear magnetic resonance spectroscopy (NMR). The multinuclear NMR measurements and various experimental techniques are able to provide data that enable the characterization of the hierarchical spatio-temporal organization of the phospholipid membrane. The experimental and theoretical studies conducted target membrane interactions ranging from model systems composed of only water and lipids, to multiple component domain forming membranes that are in association with peripheral and trans-membrane proteins. These measurements consisit of frequency spectrum lineshapes and nuclear-spin relaxation rates obtained using 2H NMR, 13C NMR, 31P NMR and 1H NMR. The changes of these experimental observables are interpreted within a statistical thermodynamic framework that allows the membrane structure, activation energies, and correlation times of motion to be determined. The cases presented demonstrate how fundamental principles of NMR spectroscopy may be applied to a host of membranes, leading to the biophysical characterization of membrane structure and dynamics.

  2. Nuclear magnetic resonance study of the crystallization kinetics in soft magnetic nanocrystalline materials

    NASA Astrophysics Data System (ADS)

    Barbatti, C. F.; Sinnecker, E. H. C. P.; Sarthour, R. S.; Guimarães, A. P.

    2002-05-01

    We used the nuclear magnetic resonance technique to study the evolution of the structural and magnetic properties of Fe-based melt-spun ribbons of Fe73.5Cu1Nb3Si13.5B9, Fe73.5Cu1Nb3Si18.5B4, and Fe86Zr7Cu1B6, as-cast and annealed at 500, 540, and 430 °C, respectively. Experiments were carried out at 4.2 K and zero-applied magnetic field, and in a controlled radio-frequency (rf) field. This type of measurement allows us to observe B and Nb sites, and makes it possible to distinguish signals associated with regions of different magnetic hardnesses. The results exhibit a high dependence of the spectra on rf power. For Fe-Si-based alloys, we observe well-defined 93Nb resonance signals from three distinct sites according to the concentration of Fe atoms in their neighborhood. In the Fe73.5Cu1Nb3Si18.5B4 spectra we also observe a peak around 34 MHz, connected to the 11B resonance in different Fe-B compounds, which remains as the rf power decreases, suggesting that the signals come from atoms inside a soft magnetic region. As for the Fe-Zr alloy, we also observe a peak around 36 MHz, identified as the 11B resonance, and a broad line around 62 MHz.

  3. Phosphorus nuclear magnetic resonance in isolated perfused rat pancreas

    SciTech Connect

    Matsumoto, Takehisa; Kanno, Tomio; Seo, Yoshiteru; Murakami, Masataka; Watari, Hiroshi National Institute for Physiological Sciences, Okazaki )

    1988-04-01

    Phosphorus nuclear magnetic resonance spectroscopy was applied to measure phosphorus energy metabolites in isolated perfused rat pancreas. The gland was perfused with a modified Krebs-Henseleit solution at room temperature (25{degree}C). {sup 31}P resonances of creatine phosphate (PCr), ATP, ADP, inorganic phosphate (P{sub i}) and phosphomonoesters (PMEs) were observed in all the preparations of pancreas. In different individual preparations, the resonance of PCr varied, but those of ATP were almost the same. The initial levels of PCr and ATP in individual preparations, however, remained almost unchanged during perfusion with the standard solution for 2 h. When the perfusion was stopped, the levels of ATP and PCr decreased, while the levels of PME and P{sub i} increased. At that time, the P{sub i} resonance shfted to a higher magnetic field, indicating that the tissue pH decreased. On reperfusion, the tissue levels of phosphorus compounds and the tissue pH were restored to their initial resting levels. Continuous infusion of 0.1 {mu}M acetylcholine caused marked and sustained increases in the flow of pancreatic juice and protein output. During the stimulation the tissue levels of phosphorus compounds remained unchanged, while the tissue pH was decreased slightly.

  4. Optically Pumped Nuclear Magnetic Resonance in the Quantum Hall Regimes

    NASA Astrophysics Data System (ADS)

    Barrett, S. E.; Khandelwal, P.; Kuzma, N. N.; Pfeiffer, L. N.; West, K. W.

    1997-03-01

    Optical pumping enables the direct detection of the nuclear magnetic resonance signal of ^71Ga nuclei located in an electron doped GaAs quantum well.footnote S. E. Barrett et al., Phys. Rev. Lett. 72, 1368 (1994) Using this technique, measurements of the Knight shift (K_S)footnote S. E. Barrett et al., Phys. Rev. Lett. 74, 5112 (1995) and spin-lattice relaxation time (T_1)footnote R. Tycko et al., Science 268, 1460 (1995) have been carried out in the Quantum Hall regimes. This talk will focus on our latest measurements of KS and T1 near Landau level filling ν=1, which extend our earlier results to higher magnetic fields (B=12 Tesla) and lower temperatures (T < 1 Kelvin). We will compare these results to the theoretical predictionsfootnote S. L. Sondhi et al., Phys. Rev. B 47, 16419 (1993); H. A. Fertig et al., Phys. Rev. B 50, 11018 (1994) that the charged excitations of the ν = 1 ground state are novel spin textures called skyrmions. The current status of this picture will be discussed.

  5. Observation of the Nuclear Magnetic Octupole Moment of 137Ba+

    NASA Astrophysics Data System (ADS)

    Hoffman, Matthew

    Single trapped ions are ideal systems in which to test atomic physics at high precision, which can in turn be used for searches for violations of fundamental symmetries and physics beyond the standard model, in addition to quantum computation and a number of other applications. The ion is confined in ultra-high vacuum, is laser cooled to mK temperatures, and kept well isolated from the environment which allows these experimental efforts. In this thesis, a few diagnostic techniques will be discussed, covering a method to measure the linewidth of a narrowband laser in the presence of magnetic field noise, as well as a procedure to measure the ion's temperature using such a narrowband laser. This work has led to two precision experiments to measure atomic structure in 138Ba+, and 137Ba+ discussed here. First, employing laser and radio frequency spectroscopy techniques in 138Ba+, we measured the Lande- gJ factor of the 5D5/2 level at the part-per-million level, the highest precision to date. Later, the development of apparatus to efficiently trap and laser cool 137Ba+ has enabled a measurement of the hyperfine splittings of the 5D3/2 manifold, culminating in the observation of the nuclear magnetic octupole moment of 137Ba+.

  6. Nuclear Magnetic Shieldings of Stacked Aromatic and Antiaromatic Molecules.

    PubMed

    Sundholm, Dage; Rauhalahti, Markus; Özcan, Nergiz; Mera-Adasme, Raúl; Kussmann, Jörg; Luenser, Arne; Ochsenfeld, Christian

    2017-04-04

    Nuclear magnetic shieldings have been calculated at the density functional theory (DFT) level for stacks of benzene, hexadehydro[12]annulene, dodecadehydro[18]annulene, and hexabenzocoronene. The magnetic shieldings due to the ring currents in the adjacent molecules have been estimated by calculating nucleus independent molecular shieldings for the monomer in the atomic positions of neighbor molecules. The calculations show that the independent shielding model works reasonably well for the (1)H NMR shieldings of benzene and hexadehydro[12]annulene, whereas for the larger molecules and for the (13)C NMR shieldings the interaction between the molecules leads to shielding effects that are at least of the same size as the ring current contributions from the adjacent molecules. A better agreement is obtained when the nearest neighbors are also considered at full quantum mechanical (QM) level. The calculations suggest that the nearest solvent molecules must be included in the quantum mechanical system, at least when estimating solvent shifts at the molecular mechanics (MM) level. Current density calculations show that the stacking does not significantly affect the ring current strengths of the individual molecules, whereas the shape of the ring current for a single molecule differs from that of the stacked molecules.

  7. Rotatable Small Permanent Magnet Array for Ultra-Low Field Nuclear Magnetic Resonance Instrumentation: A Concept Study

    PubMed Central

    Vegh, Viktor; Reutens, David C.

    2016-01-01

    Object We studied the feasibility of generating the variable magnetic fields required for ultra-low field nuclear magnetic resonance relaxometry with dynamically adjustable permanent magnets. Our motivation was to substitute traditional electromagnets by distributed permanent magnets, increasing system portability. Materials and Methods The finite element method (COMSOL®) was employed for the numerical study of a small permanent magnet array to calculate achievable magnetic field strength, homogeneity, switching time and magnetic forces. A manually operated prototype was simulated and constructed to validate the numerical approach and to verify the generated magnetic field. Results A concentric small permanent magnet array can be used to generate strong sample pre-polarisation and variable measurement fields for ultra-low field relaxometry via simple prescribed magnet rotations. Using the array, it is possible to achieve a pre-polarisation field strength above 100 mT and variable measurement fields ranging from 20–50 μT with 200 ppm absolute field homogeneity within a field-of-view of 5 x 5 x 5 cubic centimetres. Conclusions A dynamic small permanent magnet array can generate multiple highly homogeneous magnetic fields required in ultra-low field nuclear magnetic resonance (NMR) and magnetic resonance imaging (MRI) instruments. This design can significantly reduce the volume and energy requirements of traditional systems based on electromagnets, improving portability considerably. PMID:27271886

  8. Nuclear Magnetic Resonance Study of High Temperature Superconductivity

    NASA Astrophysics Data System (ADS)

    Mounce, Andrew M.

    The high temperature superconductors HgBa2CuO 4+delta (Hg1201) and Bi2SrCa2Cu2O 8+delta (Bi2212) have been treated with 17O for both nuclear magnetic resonance (NMR) sensitivity and various electronic properties. Subsequently, NMR experiments were performed on Hg1201 and Bi2212 to reveal the nature of the pseudogap, in the normal state, and vortex phases, in the superconducting state. NMR has been performed on 17O in an underdoped Hg1201 crystal with a superconducting transition transition temperature of 74 K to look for circulating orbital currents proposed theoretically and inferred from neutron scattering. The measurements reveal narrow spectra which preclude static local fields in the pseudogap phase at the apical site, suggesting that the moments observed with neutrons are fluctuating or the orbital current ordering is not the correct model for the neutron scattering observation. The fine detail of the NMR frequency shifts at the apical oxygen site are consistent with a dipolar field from the Cu+2 site and diamagnetism below the superconducting transition. It has been predicted that superconducting vortices should be electrically charged and that this effect is particularly enhanced for high temperature superconductors. Here it is shown that the Abrikosov vortex lattice, characteristic of the mixed state of superconductors, will become unstable at sufficiently high magnetic field if there is charge trapped on the vortex core for highly anisotropic superconductors. NMR measurements of the magnetic fields generated by vortices in Bi2212 single crystals provide evidence for an electro-statically driven vortex lattice reconstruction with the magnitude of charge on each vortex pancake of 2x10-3e, depending on doping, in line with theoretical estimates. Competition with magnetism is at the heart of high temperature superconductivity, most intensely felt near a vortex core. To investigate vortex magnetism spatially resolved NMR has been used, finding a strongly non

  9. 19F NMR measurements of the rotational mobility of proteins in vivo.

    PubMed Central

    Williams, S P; Haggie, P M; Brindle, K M

    1997-01-01

    Three glycolytic enzymes, hexokinase, phosphoglycerate kinase, and pyruvate kinase, were fluorine labeled in the yeast Saccharomyces cerevisiae by biosynthetic incorporation of 5-fluorotryptophan. 19F NMR longitudinal relaxation time measurements on the labeled enzymes were used to assess their rotational mobility in the intact cell. Comparison with the results obtained from relaxation time measurements of the purified enzymes in vitro and from theoretical calculations showed that two of the labeled enzymes, phosphoglycerate kinase and hexokinase, were tumbling in a cytoplasm that had a viscosity approximately twice that of water. There were no detectable signals from pyruvate kinase in vivo, although it could be detected in diluted cell extracts, indicating that there was some degree of motional restriction of the enzyme in the intact cell. PMID:8994636

  10. Tanks 18 And 19-F Structural Flowable Grout Fill Material Evaluation And Recommendations

    SciTech Connect

    Langton, C. A.; Stefanko, D. B.

    2013-04-23

    Cementitious grout will be used to close Tanks 18-F and 19-F. The functions of the grout are to: 1) physically stabilize the final landfill by filling the empty volume in the tanks with a non-compressible material; 2) provide a barrier for inadvertent intrusion into the tank; 3) reduce contaminant mobility by a) limiting the hydraulic conductivity of the closed tank and b) reducing contact between the residual waste and infiltrating water; and 4) providing an alkaline, chemically reducing environment in the closed tank to control speciation and solubility of selected radionuclides. The objective of this work was to identify a single (all-in-one) grout to stabilize and isolate the residual radionuclides in the tank, provide structural stability of the closed tank and serve as an inadvertent intruder barrier. This work was requested by V. A. Chander, High Level Waste (HLW) Tank Engineering, in HLW-TTR-2011-008. The complete task scope is provided in the Task Technical and QA Plan, SRNL-RP-2011-00587 Revision 0. The specific objectives of this task were to: 1) Identify new admixtures and dosages for formulating a zero bleed flowable tank fill material selected by HLW Tank Closure Project personnel based on earlier tank fill studies performed in 2007. The chemical admixtures used for adjusting the flow properties needed to be updated because the original admixture products are no longer available. Also, the sources of cement and fly ash have changed, and Portland cements currently available contain up to 5 wt. % limestone (calcium carbonate). 2) Prepare and evaluate the placement, compressive strength, and thermal properties of the selected formulation with new admixture dosages. 3) Identify opportunities for improving the mix selected by HLW Closure Project personnel and prepare and evaluate two potentially improved zero bleed flowable fill design concepts; one based on the reactor fill grout and the other based on a shrinkage compensating flowable fill mix design. 4

  11. High temperature spin dynamics in linear magnetic chains, molecular rings, and segments by nuclear magnetic resonance

    SciTech Connect

    Adelnia, Fatemeh; Lascialfari, Alessandro; Mariani, Manuel; Ammannato, Luca; Caneschi, Andrea; Rovai, Donella; Winpenny, Richard; Timco, Grigore; Corti, Maurizio Borsa, Ferdinando

    2015-05-07

    We present the room temperature proton nuclear magnetic resonance (NMR) nuclear spin-lattice relaxation rate (NSLR) results in two 1D spin chains: the Heisenberg antiferromagnetic (AFM) Eu(hfac){sub 3}NITEt and the magnetically frustrated Gd(hfac){sub 3}NITEt. The NSLR as a function of external magnetic field can be interpreted very well in terms of high temperature spin dynamics dominated by a long time persistence of the decay of the two-spin correlation function due to the conservation of the total spin value for isotropic Heisenberg chains. The high temperature spin dynamics are also investigated in Heisenberg AFM molecular rings. In both Cr{sub 8} closed ring and in Cr{sub 7}Cd and Cr{sub 8}Zn open rings, i.e., model systems for a finite spin segment, an enhancement of the low frequency spectral density is found consistent with spin diffusion but the high cut-off frequency due to intermolecular anisotropic interactions prevents a detailed analysis of the spin diffusion regime.

  12. Superconductivity and magnetic fluctuations in Cd(2))Re(2)O(7) via Cd nuclear magnetic resonance and re nuclear quadrupole resonance.

    PubMed

    Vyaselev, O; Arai, K; Kobayashi, K; Yamazaki, J; Kodama, K; Takigawa, M; Hanawa, M; Hiroi, Z

    2002-07-01

    We report Cd nuclear magnetic resonance (NMR) and Re nuclear quadrupole resonance (NQR) studies on Cd(2)Re(2)O(7), the first superconductor among pyrochlore oxides (T(c) approximately 1 K). The Re NQR spectrum at zero magnetic field below 100 K rules out any magnetic or charge order. The spin-lattice relaxation rate below T(c) exhibits a pronounced coherence peak and follows the weak-coupling BCS theory with nearly isotropic energy gap. The results of Cd NMR point to a moderate ferromagnetic enhancement at high temperatures followed by a rapid decrease of the density of states below the structural transition temperature of 200 K.

  13. Nuclear magnetic resonance dephasing effects in a spherical pore with a magnetic dipolar field

    NASA Astrophysics Data System (ADS)

    Valckenborg, R. M. E.; Huinink, H. P.; Kopinga, K.

    2003-02-01

    The NMR dephasing behavior of the nuclear spins of a fluid confined in a porous material can be investigated by Hahn spin echoes. Previous experimental results on water in a magnetically doped clay have shown a nonmonoexponentially decaying magnetization, which can be understood neither by the known dephasing rate of freely diffusing spins in a uniform gradient nor by spins diffusing in a restricted geometry. For a better understanding of NMR measurements on these systems, a systematic survey was performed of the various length scales that are involved. The standard length scales for the situation of a uniform gradient are diffusing length, structure length, and dephasing length. We show that for a nonuniform gradient, a new length scale has to be introduced: the magnetic-field curvature length. When a particle diffuses less than this length scale, it experiences a local uniform gradient. In that case the spin-echo decay can be described by the so-called local gradient approximation (LGA). When a particle diffuses over a longer distance than the structure length, the spin-echo decay can be described by the motional averaging regime. For both regimes, scaling laws are derived. In this paper, a random-walk model is used to simulate the dephasing effect of diffusing spins in a spherical pore in the presence of a magnetic dipole field. By varying the dipole magnitude, situations can be created in which the dephasing behavior scales according to the motional averaging regime or according to the LGA regime, for certain ranges of echo times. Two model systems are investigated: a spherical pore in the vicinity of a magnetic point dipole and a spherical pore adjacent to a magnetic dipolar grain of the same size as the pore. The simulated magnetization decay curves of both model systems confirm the scaling laws. The LGA, characterized by a nonmonoexponential magnetization decay, is also investigated by calculating the spatially resolved magnetization in the pore. For this

  14. Nuclear forward scattering of synchrotron radiation in pulsed high magnetic fields.

    PubMed

    Strohm, C; Van der Linden, P; Rüffer, R

    2010-02-26

    We report the demonstration of nuclear forward scattering of synchrotron radiation from 57Fe in ferromagnetic alpha iron in pulsed high magnetic fields up to 30 T. The observed magnetic hyperfine field follows the calculated high field bulk magnetization within 1%, establishing the technique as a precise tool for the study of magnetic solids in very high magnetic fields. To perform these experiments in pulsed fields, we have developed a detection scheme for fully time resolved nuclear forward scattering applicable to other pump probe experiments.

  15. Integrated Geophysical Measurements for Bioremediation Monitoring: Combining Spectral Induced Polarization, Nuclear Magnetic Resonance and Magnetic Methods

    SciTech Connect

    Keating, Kristina; Slater, Lee; Ntarlagiannis, Dimitris; Williams, Kenneth H.

    2015-02-24

    This documents contains the final report for the project "Integrated Geophysical Measurements for Bioremediation Monitoring: Combining Spectral Induced Polarization, Nuclear Magnetic Resonance and Magnetic Methods" (DE-SC0007049) Executive Summary: Our research aimed to develop borehole measurement techniques capable of monitoring subsurface processes, such as changes in pore geometry and iron/sulfur geochemistry, associated with remediation of heavy metals and radionuclides. Previous work has demonstrated that geophysical method spectral induced polarization (SIP) can be used to assess subsurface contaminant remediation; however, SIP signals can be generated from multiple sources limiting their interpretation value. Integrating multiple geophysical methods, such as nuclear magnetic resonance (NMR) and magnetic susceptibility (MS), with SIP, could reduce the ambiguity of interpretation that might result from a single method. Our research efforts entails combining measurements from these methods, each sensitive to different mineral forms and/or mineral-fluid interfaces, providing better constraints on changes in subsurface biogeochemical processes and pore geometries significantly improving our understanding of processes impacting contaminant remediation. The Rifle Integrated Field Research Challenge (IFRC) site was used as a test location for our measurements. The Rifle IFRC site is located at a former uranium ore-processing facility in Rifle, Colorado. Leachate from spent mill tailings has resulted in residual uranium contamination of both groundwater and sediments within the local aquifer. Studies at the site include an ongoing acetate amendment strategy, native microbial populations are stimulated by introduction of carbon intended to alter redox conditions and immobilize uranium. To test the geophysical methods in the field, NMR and MS logging measurements were collected before, during, and after acetate amendment. Next, laboratory NMR, MS, and SIP measurements

  16. Partial homogeneity based high-resolution nuclear magnetic resonance spectra under inhomogeneous magnetic fields

    SciTech Connect

    Wei, Zhiliang; Lin, Liangjie; Lin, Yanqin E-mail: chenz@xmu.edu.cn; Chen, Zhong E-mail: chenz@xmu.edu.cn; Chen, Youhe

    2014-09-29

    In nuclear magnetic resonance (NMR) technique, it is of great necessity and importance to obtain high-resolution spectra, especially under inhomogeneous magnetic fields. In this study, a method based on partial homogeneity is proposed for retrieving high-resolution one-dimensional NMR spectra under inhomogeneous fields. Signals from series of small voxels, which characterize high resolution due to small sizes, are recorded simultaneously. Then, an inhomogeneity correction algorithm is developed based on pattern recognition to correct the influence brought by field inhomogeneity automatically, thus yielding high-resolution information. Experiments on chemical solutions and fish spawn were carried out to demonstrate the performance of the proposed method. The proposed method serves as a single radiofrequency pulse high-resolution NMR spectroscopy under inhomogeneous fields and may provide an alternative of obtaining high-resolution spectra of in vivo living systems or chemical-reaction systems, where performances of conventional techniques are usually degenerated by field inhomogeneity.

  17. Towards a beyond 1 GHz solid-state nuclear magnetic resonance: External lock operation in an external current mode for a 500 MHz nuclear magnetic resonance

    NASA Astrophysics Data System (ADS)

    Takahashi, Masato; Ebisawa, Yusuke; Tennmei, Konosuke; Yanagisawa, Yoshinori; Hosono, Masami; Takasugi, Kenji; Hase, Takashi; Miyazaki, Takayoshi; Fujito, Teruaki; Nakagome, Hideki; Kiyoshi, Tsukasa; Yamazaki, Toshio; Maeda, Hideaki

    2012-10-01

    Achieving a higher magnetic field is important for solid-state nuclear magnetic resonance (NMR). But a conventional low temperature superconducting (LTS) magnet cannot exceed 1 GHz (23.5 T) due to the critical magnetic field. Thus, we started a project to replace the Nb3Sn innermost coil of an existing 920 MHz NMR (21.6 T) with a Bi-2223 high temperature superconducting (HTS) innermost coil. Unfortunately, the HTS magnet cannot be operated in persistent current mode; an external dc power supply is required to operate the NMR magnet, causing magnetic field fluctuations. These fluctuations can be stabilized by a field-frequency lock system based on an external NMR detection coil. We demonstrate here such a field-frequency lock system in a 500 MHz LTS NMR magnet operated in an external current mode. The system uses a 7Li sample in a microcoil as external NMR detection system. The required field compensation is calculated from the frequency of the FID as measured with a frequency counter. The system detects the FID signal, determining the FID frequency, and calculates the required compensation coil current to stabilize the sample magnetic field. The magnetic field was stabilized at 0.05 ppm/3 h for magnetic field fluctuations of around 10 ppm. This method is especially effective for a magnet with large magnetic field fluctuations. The magnetic field of the compensation coil is relatively inhomogeneous in these cases and the inhomogeneity of the compensation coil can be taken into account.

  18. Highly efficient (19)F heteronuclear decoupling in solid-state NMR spectroscopy using supercycled refocused-CW irradiation.

    PubMed

    Equbal, Asif; Basse, Kristoffer; Nielsen, Niels Chr

    2016-12-07

    We present heteronuclear (19)F refocused CW (rCW) decoupling pulse sequences for solid-state magic-angle-spinning NMR applications. The decoupling sequences have been designed specifically to ensure suppression of the pertinent (13)C-(19)F dipolar coupling interactions while simultaneously suppressing strong anisotropic chemical shift as well as homonuclear (19)F-(19)F dipolar coupling effects as typically present in perfluorated compounds. In an extensive numerical and experimental analysis using a rigid, organic solid as a model compound, it becomes evident that the supercycled rCW schemes markedly improve the decoupling efficiency, leading to substantial enhancements in resolution and sensitivity when compared to previous state-of-the-art methods. Furthermore, considerable gains in robustness toward rf mismatch as well as offset in the radio-frequency carrier frequency are observed, all of which clearly render the new rCW schemes the methods of choice for (19)F decoupling in rigid, fluorinated compounds - which is further supported by a Floquet-based theoretical analysis.

  19. Nuclear spin conversion of water inside fullerene cages detected by low-temperature nuclear magnetic resonance

    NASA Astrophysics Data System (ADS)

    Mamone, Salvatore; Concistrè, Maria; Carignani, Elisa; Meier, Benno; Krachmalnicoff, Andrea; Johannessen, Ole G.; Lei, Xuegong; Li, Yongjun; Denning, Mark; Carravetta, Marina; Goh, Kelvin; Horsewill, Anthony J.; Whitby, Richard J.; Levitt, Malcolm H.

    2014-05-01

    The water-endofullerene H2O@C60 provides a unique chemical system in which freely rotating water molecules are confined inside homogeneous and symmetrical carbon cages. The spin conversion between the ortho and para species of the endohedral H2O was studied in the solid phase by low-temperature nuclear magnetic resonance. The experimental data are consistent with a second-order kinetics, indicating a bimolecular spin conversion process. Numerical simulations suggest the simultaneous presence of a spin diffusion process allowing neighbouring ortho and para molecules to exchange their angular momenta. Cross-polarization experiments found no evidence that the spin conversion of the endohedral H2O molecules is catalysed by 13C nuclei present in the cages.

  20. Nuclear spin conversion of water inside fullerene cages detected by low-temperature nuclear magnetic resonance

    SciTech Connect

    Mamone, Salvatore Concistrè, Maria; Carignani, Elisa; Meier, Benno; Krachmalnicoff, Andrea; Johannessen, Ole G.; Denning, Mark; Carravetta, Marina; Whitby, Richard J.; Levitt, Malcolm H.; Lei, Xuegong; Li, Yongjun; Goh, Kelvin; Horsewill, Anthony J.

    2014-05-21

    The water-endofullerene H{sub 2}O@C{sub 60} provides a unique chemical system in which freely rotating water molecules are confined inside homogeneous and symmetrical carbon cages. The spin conversion between the ortho and para species of the endohedral H{sub 2}O was studied in the solid phase by low-temperature nuclear magnetic resonance. The experimental data are consistent with a second-order kinetics, indicating a bimolecular spin conversion process. Numerical simulations suggest the simultaneous presence of a spin diffusion process allowing neighbouring ortho and para molecules to exchange their angular momenta. Cross-polarization experiments found no evidence that the spin conversion of the endohedral H{sub 2}O molecules is catalysed by {sup 13}C nuclei present in the cages.

  1. /sup 13/C nuclear magnetic resonance studies of cardiac metabolism

    SciTech Connect

    Seeholzer, S.H.

    1985-01-01

    The last decade has witnessed the increasing use of Nuclear Magnetic Resonance (NMR) techniques for following the metabolic fate of compounds specifically labeled with /sup 13/C. The goals of the present study are: (1) to develop reliable quantitative procedures for measuring the /sup 13/C enrichment of specific carbon sites in compounds enriched by the metabolism of /sup 13/C-labeled substrates in rat heart, and (2) to use these quantitative measurements of fractional /sup 13/C enrichment within the context of a mathematical flux model describing the carbon flow through the TCA cycle and ancillary pathways, as a means for obtaining unknown flux parameters. Rat hearts have been perfused in vitro with various combinations of glucose, acetate, pyruvate, and propionate to achieve steady state flux conditions, followed by perfusion with the same substrates labeled with /sup 13/C in specific carbon sites. The hearts were frozen at different times after addition of /sup 13/C-labeled substrates and neutralized perchloric acid extracts were used to obtain high resolution proton-decoupled /sup 13/C NMR spectra at 90.55 MHz. The fractional /sup 13/C enrichment (F.E.) of individual carbon sites in different metabolites was calculated from the area of the resolved resonances after correction for saturation and nuclear Overhauser effects. These F.E. measurements by /sup 13/C NMR were validated by the analysis of /sup 13/C-/sup 1/H scalar coupling patterns observed in /sup 1/H NMR spectra of the extracted metabolites. The results obtained from perfusion of hearts glucose plus either (2-/sup 13/C) acetate or (3-/sup 13/C) pyruvate are similar to those obtained by previous investigators using /sup 14/C-labeled substrates.

  2. Nuclear magnetic resonance experiments with dc SQUID amplifiers

    SciTech Connect

    Heaney, M.B. . Dept. of Physics Lawrence Berkeley Lab., CA )

    1990-11-01

    The development and fabrication of dc SQUIDs (Superconducting QUantum Interference Devices) with Nb/Al{sub 2}O{sub 3}/Nb Josephson junctions is described. A theory of the dc SQUID as a radio-frequency amplifier is presented, with an optimization strategy that accounts for the loading and noise contributions of the postamplifier and maximizes the signal-to-noise ratio of the total system. The high sensitivity of the dc SQUID is extended to high field NMR. A dc SQUID is used as a tuned radio-frequency amplifier to detect pulsed nuclear magnetic resonance at 32 MHz from a metal film in a 3.5 Tesla static field. A total system noise temperature of 11 K has been achieved, at a bath temperature of 4.2 K. The minimum number of nuclear Bohr magnetons observable from a free precession signal after a single pulse is about 2 {times} 10{sup 17} in a bandwidth of 25 kHz. In a separate experiment, a dc SQUID is used as a rf amplifier in a NQR experiment to observe a new resonance response mechanism. The net electric polarization of a NaClO{sub 3} crystal due to the precessing electric quadrupole moments of the Cl nuclei is detected at 30 MHz. The sensitivity of NMR and NQR spectrometers using dc SQUID amplifiers is compared to the sensitivity of spectrometers using conventional rf amplifiers. A SQUID-based spectrometer has a voltage sensitivity which is comparable to the best achieved by a FET-based spectrometer, at these temperatures and operating frequencies.

  3. Nonequilibrium nuclear polarization and induced hyperfine and dipolar magnetic fields in semiconductor nanostructures

    NASA Astrophysics Data System (ADS)

    Ţifrea, Ionel; Flatté, Michael E.

    2011-10-01

    We investigate the dynamic nuclear polarization (DNP) caused by hyperfine coupling between nonequilibrium electronic spins and nuclear spins in semiconductor nanostructures. We derive the time and position dependence of the resulting hyperfine and dipolar magnetic fields. In GaAs quantum wells the induced nuclear spin polarization greatly exceeds the polarization of the electronic system that causes the DNP. The induced magnetic fields vary between tens of tesla for the electronic hyperfine field acting on nuclei, to hundreds of gauss for the nuclear hyperfine field acting on electrons, to a few gauss for the induced nuclear dipolar fields that act on both nuclei and electrons. The field strengths should be measurable via optically induced nuclear magnetic resonance or time-resolved Faraday rotation experiments. We discuss the implications of our calculations for low-dimensional semiconductor nanostructures.

  4. Nuclear composition of magnetized gamma-ray burst jets

    NASA Astrophysics Data System (ADS)

    Shibata, Sanshiro; Tominaga, Nozomu

    2015-06-01

    We investigate the fraction of metal nuclei in the relativistic jets of gamma-ray bursts associated with core-collapse supernovae. We simulate the fallback in jet-induced explosions with two-dimensional relativistic hydrodynamics calculations and the jet acceleration with steady, radial, relativistic magnetohydrodynamics calculations, and derive the detailed nuclear composition of the jet by post-processing calculation. We found that if the temperature at the jet launch site is above 4.7 × 109 K, quasi-statistical equilibrium is established and heavy nuclei are dissociated into light particles such as 4He during the acceleration of the jets. The criterion for the survival of metal nuclei is written in terms of the isotropic jet luminosity as L_j^iso ≲ 3.9 × 10^{50} ( R_i/107 cm)^2(1 + σi) erg s-1, where Ri and σi are the initial radius of the jets and the initial magnetization parameter, respectively. If the jet is initially dominated by radiation field (i.e., σi ≪ 1) and the isotropic luminosity is relatively high (L_j^iso ≳ 4 × 10^{52} erg s-1), the metal nuclei cannot survive in the jet. On the other hand, if the jet is mainly accelerated by magnetic field (i.e., σi ≫ 1), metal nuclei initially contained in the jet can survive without serious dissociation even in the case of a high-luminosity jet. If the jet contains metal nuclei, the dominant nuclei are 28Si, 16O, and 32S and the mean mass number can be ˜ 25.

  5. Theoretical prediction of nuclear magnetic shieldings and indirect spin-spin coupling constants in 1,1-, cis-, and trans-1,2-difluoroethylenes

    SciTech Connect

    Nozirov, Farhod E-mail: farhod.nozirov@gmail.com; Stachów, Michał; Kupka, Teobald E-mail: farhod.nozirov@gmail.com

    2014-04-14

    A theoretical prediction of nuclear magnetic shieldings and indirect spin-spin coupling constants in 1,1-, cis- and trans-1,2-difluoroethylenes is reported. The results obtained using density functional theory (DFT) combined with large basis sets and gauge-independent atomic orbital calculations were critically compared with experiment and conventional, higher level correlated electronic structure methods. Accurate structural, vibrational, and NMR parameters of difluoroethylenes were obtained using several density functionals combined with dedicated basis sets. B3LYP/6-311++G(3df,2pd) optimized structures of difluoroethylenes closely reproduced experimental geometries and earlier reported benchmark coupled cluster results, while BLYP/6-311++G(3df,2pd) produced accurate harmonic vibrational frequencies. The most accurate vibrations were obtained using B3LYP/6-311++G(3df,2pd) with correction for anharmonicity. Becke half and half (BHandH) density functional predicted more accurate {sup 19}F isotropic shieldings and van Voorhis and Scuseria's τ-dependent gradient-corrected correlation functional yielded better carbon shieldings than B3LYP. A surprisingly good performance of Hartree-Fock (HF) method in predicting nuclear shieldings in these molecules was observed. Inclusion of zero-point vibrational correction markedly improved agreement with experiment for nuclear shieldings calculated by HF, MP2, CCSD, and CCSD(T) methods but worsened the DFT results. The threefold improvement in accuracy when predicting {sup 2}J(FF) in 1,1-difluoroethylene for BHandH density functional compared to B3LYP was observed (the deviations from experiment were −46 vs. −115 Hz)

  6. TANKS 18 AND 19-F STRUCTURAL FLOWABLE GROUT FILL MATERIAL EVALUATION AND RECOMMENDATIONS

    SciTech Connect

    Stefanko, D.; Langton, C.

    2011-11-01

    Cementitious grout will be used to close Tanks 18-F and 19-F. The functions of the grout are to: (1) physically stabilize the final landfill by filling the empty volume in the tanks with a non compressible material; (2) provide a barrier for inadvertent intrusion into the tank; (3) reduce contaminant mobility by (a) limiting the hydraulic conductivity of the closed tank and (b) reducing contact between the residual waste and infiltrating water; and (4) providing an alkaline, chemically reducing environment in the closed tank to control speciation and solubility of selected radionuclides. The objective of this work was to identify a single (all-in-one) grout to stabilize and isolate the residual radionuclides in the tank, provide structural stability of the closed tank and serve as an inadvertent intruder barrier. This work was requested by V. A. Chander, High Level Waste (HLW) Tank Engineering, in HLW-TTR-2011-008. The complete task scope is provided in the Task Technical and QA Plan, SRNL-RP-2011-00587 Revision 0. The specific objectives of this task were to: (1) Identify new admixtures and dosages for formulating a zero bleed flowable tank fill material selected by HLW Tank Closure Project personnel based on earlier tank fill studies performed in 2007. The chemical admixtures used for adjusting the flow properties needed to be updated because the original admixture products are no longer available. Also, the sources of cement and fly ash have changed, and Portland cements currently available contain up to 5 wt. % limestone (calcium carbonate). (2) Prepare and evaluate the placement, compressive strength, and thermal properties of the selected formulation with new admixture dosages. (3) Identify opportunities for improving the mix selected by HLW Closure Project personnel and prepare and evaluate two potentially improved zero bleed flowable fill design concepts; one based on the reactor fill grout and the other based on a shrinkage compensating flowable fill mix

  7. Dynamic nuclear magnetic resonance field sensing with part-per-trillion resolution.

    PubMed

    Gross, Simon; Barmet, Christoph; Dietrich, Benjamin E; Brunner, David O; Schmid, Thomas; Pruessmann, Klaas P

    2016-12-02

    High-field magnets of up to tens of teslas in strength advance applications in physics, chemistry and the life sciences. However, progress in generating such high fields has not been matched by corresponding advances in magnetic field measurement. Based mostly on nuclear magnetic resonance, dynamic high-field magnetometry is currently limited to resolutions in the nanotesla range. Here we report a concerted approach involving tailored materials, magnetostatics and detection electronics to enhance the resolution of nuclear magnetic resonance sensing by three orders of magnitude. The relative sensitivity thus achieved amounts to 1 part per trillion (10(-12)). To exemplify this capability we demonstrate the direct detection and relaxometry of nuclear polarization and real-time recording of dynamic susceptibility effects related to human heart function. Enhanced high-field magnetometry will generally permit a fresh look at magnetic phenomena that scale with field strength. It also promises to facilitate the development and operation of high-field magnets.

  8. Dynamic nuclear magnetic resonance field sensing with part-per-trillion resolution

    NASA Astrophysics Data System (ADS)

    Gross, Simon; Barmet, Christoph; Dietrich, Benjamin E.; Brunner, David O.; Schmid, Thomas; Pruessmann, Klaas P.

    2016-12-01

    High-field magnets of up to tens of teslas in strength advance applications in physics, chemistry and the life sciences. However, progress in generating such high fields has not been matched by corresponding advances in magnetic field measurement. Based mostly on nuclear magnetic resonance, dynamic high-field magnetometry is currently limited to resolutions in the nanotesla range. Here we report a concerted approach involving tailored materials, magnetostatics and detection electronics to enhance the resolution of nuclear magnetic resonance sensing by three orders of magnitude. The relative sensitivity thus achieved amounts to 1 part per trillion (10-12). To exemplify this capability we demonstrate the direct detection and relaxometry of nuclear polarization and real-time recording of dynamic susceptibility effects related to human heart function. Enhanced high-field magnetometry will generally permit a fresh look at magnetic phenomena that scale with field strength. It also promises to facilitate the development and operation of high-field magnets.

  9. Dynamic nuclear magnetic resonance field sensing with part-per-trillion resolution

    PubMed Central

    Gross, Simon; Barmet, Christoph; Dietrich, Benjamin E.; Brunner, David O.; Schmid, Thomas; Pruessmann, Klaas P.

    2016-01-01

    High-field magnets of up to tens of teslas in strength advance applications in physics, chemistry and the life sciences. However, progress in generating such high fields has not been matched by corresponding advances in magnetic field measurement. Based mostly on nuclear magnetic resonance, dynamic high-field magnetometry is currently limited to resolutions in the nanotesla range. Here we report a concerted approach involving tailored materials, magnetostatics and detection electronics to enhance the resolution of nuclear magnetic resonance sensing by three orders of magnitude. The relative sensitivity thus achieved amounts to 1 part per trillion (10−12). To exemplify this capability we demonstrate the direct detection and relaxometry of nuclear polarization and real-time recording of dynamic susceptibility effects related to human heart function. Enhanced high-field magnetometry will generally permit a fresh look at magnetic phenomena that scale with field strength. It also promises to facilitate the development and operation of high-field magnets. PMID:27910860

  10. Updated methodology for nuclear magnetic resonance characterization of shales

    USGS Publications Warehouse

    Washburn, Kathryn E.; Birdwell, Justin E.

    2013-01-01

    Unconventional petroleum resources, particularly in shales, are expected to play an increasingly important role in the world’s energy portfolio in the coming years. Nuclear magnetic resonance (NMR), particularly at low-field, provides important information in the evaluation of shale resources. Most of the low-field NMR analyses performed on shale samples rely heavily on standard T1 and T2 measurements. We present a new approach using solid echoes in the measurement of T1 and T1–T2 correlations that addresses some of the challenges encountered when making NMR measurements on shale samples compared to conventional reservoir rocks. Combining these techniques with standard T1 and T2 measurements provides a more complete assessment of the hydrogen-bearing constituents (e.g., bitumen, kerogen, clay-bound water) in shale samples. These methods are applied to immature and pyrolyzed oil shale samples to examine the solid and highly viscous organic phases present during the petroleum generation process. The solid echo measurements produce additional signal in the oil shale samples compared to the standard methodologies, indicating the presence of components undergoing homonuclear dipolar coupling. The results presented here include the first low-field NMR measurements performed on kerogen as well as detailed NMR analysis of highly viscous thermally generated bitumen present in pyrolyzed oil shale.

  11. Nuclear magnetic resonance studies of bovine γB-crystallin

    NASA Astrophysics Data System (ADS)

    Thurston, George; Mills, Jeffrey; Michel, Lea; Mathews, Kaylee; Zanet, John; Payan, Angel; van Nostrand, Keith; Kotlarchyk, Michael; Ross, David; Wahle, Christopher; Hamilton, John

    Anisotropy of shape and/or interactions play an important role in determining the properties of concentrated solutions of the eye lens protein, γB-crystallin, including its liquid-liquid phase transition. We are studying γB anisotropic interactions with use of nuclear magnetic resonance (NMR) concentration- and temperature-dependent chemical shift perturbations (CSPs). We analyze two-dimensional heteronuclear spin quantum coherence (HSQC) spectra on backbone nitrogen and attached hydrogen nuclei for CSPs, up to 3 percent volume fraction. Cumulative distribution functions of the CSPs show a concentration and temperature-dependent spread. Many peaks that are highly shifted with either concentration or temperature are close (i) crystal intermolecular contacts (ii) locations of cataractogenic point mutations of a homologous human protein, human γD-crystallin, and (iii) charged amino-acid residues. We also discuss the concentration- and temperature-dependence of NMR and quasielastic light scattering measurements of rotational and translational diffusion of γB crystallin in solution, affected by interprotein attractions. Supported by NIH EY018249.

  12. Proton nuclear magnetic resonance studies on brain edema

    SciTech Connect

    Naruse, S.; Horikawa, Y.; Tanaka, C.; Hirakawa, K.; Nishikawa, H.; Yoshizaki, K.

    1982-06-01

    The water in normal and edematous brain tissues of rats was studied by the pulse nuclear magnetic resonance (NMR) technique, measuring the longitudinal relaxation time (T1) and the transverse relaxation time (T2). In the normal brain, T1 and T2 were single components, both shorter than in pure water. Prolongation and separation of T2 into two components, one fast and one slow, were the characteristic findings in brain edema induced by both cold injury and triethyl tin (TET), although some differences between the two types of edema existed in the content of the lesion and in the degree of changes in T1 and T2 values. Quantitative analysis of T1 and T2 values in their time course relating to water content demonstrated that prolongation of T1 referred to the volume of increased water in tissues examined, and that two phases of T2 reflected the distribution and the content of the edema fluid. From the analysis of the slow component of T2 versus water content during edema formation, it was demonstrated that the increase in edema fluid was steady, and its content was constant during formation of TET-induced edema. On the contrary, during the formation of cold-injury edema, water-rich edema fluid increased during the initial few hours, and protein-rich edema fluid increased thereafter. It was concluded that proton NMR relaxation time measurements may provide new understanding in the field of brain edema research.

  13. Nuclear magnetic resonance imaging of water content in the subsurface

    SciTech Connect

    J. Hendricks; T. Yao; A. Kearns

    1999-01-21

    Previous theoretical and experimental studies indicated that surface nuclear magnetic resonance (NMR) has the potential to provide cost-effective water content measurements in the subsurface and is a technology ripe for exploitation in practice. The objectives of this investigation are (a) to test the technique under a wide range of hydrogeological conditions and (b) to generalize existing NMR theories in order to correctly model NMR response from conductive ground and to assess properties of the inverse problem. Twenty-four sites with different hydrogeologic settings were selected in New Mexico and Colorado for testing. The greatest limitation of surface NMR technology appears to be the lack of understanding in which manner the NMR signal is influenced by soil-water factors such as pore size distribution, surface-to-volume ratio, paramagnetic ions dissolved in the ground water, and the presence of ferromagnetic minerals. Although the theoretical basis is found to be sound, several advances need to be made to make surface NMR a viable technology for hydrological investigations. There is a research need to investigate, under controlled laboratory conditions, how the complex factors of soil-water systems affect NMR relaxation times.

  14. Discrete decoding based ultrafast multidimensional nuclear magnetic resonance spectroscopy

    SciTech Connect

    Wei, Zhiliang; Lin, Liangjie; Ye, Qimiao; Li, Jing; Cai, Shuhui; Chen, Zhong

    2015-07-14

    The three-dimensional (3D) nuclear magnetic resonance (NMR) spectroscopy constitutes an important and powerful tool in analyzing chemical and biological systems. However, the abundant 3D information arrives at the expense of long acquisition times lasting hours or even days. Therefore, there has been a continuous interest in developing techniques to accelerate recordings of 3D NMR spectra, among which the ultrafast spatiotemporal encoding technique supplies impressive acquisition speed by compressing a multidimensional spectrum in a single scan. However, it tends to suffer from tradeoffs among spectral widths in different dimensions, which deteriorates in cases of NMR spectroscopy with more dimensions. In this study, the discrete decoding is proposed to liberate the ultrafast technique from tradeoffs among spectral widths in different dimensions by focusing decoding on signal-bearing sites. For verifying its feasibility and effectiveness, we utilized the method to generate two different types of 3D spectra. The proposed method is also applicable to cases with more than three dimensions, which, based on the experimental results, may widen applications of the ultrafast technique.

  15. Nuclear Magnetic Resonance Spectroscopy-Based Identification of Yeast.

    PubMed

    Himmelreich, Uwe; Sorrell, Tania C; Daniel, Heide-Marie

    2017-01-01

    Rapid and robust high-throughput identification of environmental, industrial, or clinical yeast isolates is important whenever relatively large numbers of samples need to be processed in a cost-efficient way. Nuclear magnetic resonance (NMR) spectroscopy generates complex data based on metabolite profiles, chemical composition and possibly on medium consumption, which can not only be used for the assessment of metabolic pathways but also for accurate identification of yeast down to the subspecies level. Initial results on NMR based yeast identification where comparable with conventional and DNA-based identification. Potential advantages of NMR spectroscopy in mycological laboratories include not only accurate identification but also the potential of automated sample delivery, automated analysis using computer-based methods, rapid turnaround time, high throughput, and low running costs.We describe here the sample preparation, data acquisition and analysis for NMR-based yeast identification. In addition, a roadmap for the development of classification strategies is given that will result in the acquisition of a database and analysis algorithms for yeast identification in different environments.

  16. Updated methodology for nuclear magnetic resonance characterization of shales

    NASA Astrophysics Data System (ADS)

    Washburn, Kathryn E.; Birdwell, Justin E.

    2013-08-01

    Unconventional petroleum resources, particularly in shales, are expected to play an increasingly important role in the world's energy portfolio in the coming years. Nuclear magnetic resonance (NMR), particularly at low-field, provides important information in the evaluation of shale resources. Most of the low-field NMR analyses performed on shale samples rely heavily on standard T1 and T2 measurements. We present a new approach using solid echoes in the measurement of T1 and T1-T2 correlations that addresses some of the challenges encountered when making NMR measurements on shale samples compared to conventional reservoir rocks. Combining these techniques with standard T1 and T2 measurements provides a more complete assessment of the hydrogen-bearing constituents (e.g., bitumen, kerogen, clay-bound water) in shale samples. These methods are applied to immature and pyrolyzed oil shale samples to examine the solid and highly viscous organic phases present during the petroleum generation process. The solid echo measurements produce additional signal in the oil shale samples compared to the standard methodologies, indicating the presence of components undergoing homonuclear dipolar coupling. The results presented here include the first low-field NMR measurements performed on kerogen as well as detailed NMR analysis of highly viscous thermally generated bitumen present in pyrolyzed oil shale.

  17. Water Permeability of Chlorella Cell Membranes by Nuclear Magnetic Resonance

    PubMed Central

    Stout, Darryl G.; Steponkus, Peter L.; Bustard, Larry D.; Cotts, Robert M.

    1978-01-01

    Measurement by two nuclear magnetic resonance (NMR) techniques of the mean residence time τa of water molecules inside Chlorella vulgaris (Beijerinck) var. “viridis” (Chodot) is reported. The first is the Conlon and Outhred (1972 Biochim Biophys Acta 288: 354-361) technique in which extracellular water is doped with paramagnetic Mn2+ ions. Some complications in application of this technique are identified as being caused by the affinity of Chlorella cell walls for Mn2+ ions which shortens the NMR relaxation times of intra- and extracellular water. The second is based upon observations of effects of diffusion on the spin echo of intra- and extracellular water. Echo attenuation of intracellular water is distinguished from that of extracellular water by the extent to which diffusive motion is restricted. Intracellular water, being restricted to the cell volume, suffers less echo attenuation. From the dependence of echo amplitude upon gradient strength at several values of echo time, the mean residence time of intracellular water can be determined. From the mean residence time of intracellular water, the diffusional water permeability coefficient of the Chlorella membrane is calculated to be 2.1 ± 0.4 × 10−3 cm sec−1. PMID:16660456

  18. Two-dimensional nuclear magnetic resonance of quadrupolar systems

    SciTech Connect

    Wang, Shuanhu

    1997-09-01

    This dissertation describes two-dimensional nuclear magnetic resonance theory and experiments which have been developed to study quadruples in the solid state. The technique of multiple-quantum magic-angle spinning (MQMAS) is extensively reviewed and expanded upon in this thesis. Specifically, MQMAS is first compared with another technique, dynamic-angle spinning (DAS). The similarity between the two techniques allows us to extend much of the DAS work to the MQMAS case. Application of MQMAS to a series of aluminum containing materials is then presented. The superior resolution enhancement through MQMAS is exploited to detect the five- and six-coordinated aluminum in many aluminosilicate glasses. Combining the MQMAS method with other experiments, such as HETCOR, greatly expands the possibility of the use of MQMAS to study a large range of problems and is demonstrated in Chapter 5. Finally, the technique switching-angle spinning (SAS) is applied to quadrupolar nuclei to fully characterize a quadrupolar spin system in which all of the 8 NMR parameters are accurately determined. This dissertation is meant to demonstrate that with the combination of two-dimensional NMR concepts and new advanced spinning technologies, a series of multiple-dimensional NMR techniques can be designed to allow a detailed study of quadrupolar nuclei in the solid state.

  19. Conformational characterization of ceramides by nuclear magnetic resonance spectroscopy.

    PubMed Central

    Li, Li; Tang, Xiaoping; Taylor, K Grant; DuPré, Donald B; Yappert, M Cecilia

    2002-01-01

    Ceramide (Cer) has been identified as an active lipid second messenger in the regulation of cell growth, differentiation, and apoptosis. Its analog, dihydroceramide, without the 4 to 5 trans double bond in the sphingoid backbone lacks these biological effects. To establish the conformational features that distinguish ceramide from its analogs, nuclear magnetic resonance spectral data were acquired for diluted samples of ceramides (C2- and C18-Cer), dihydroceramide (C16-DHCer), and deoxydihydroceramide (C18-DODHCer). Our results suggest that in both C2- and C18-Cer, an H-bond network is formed in which the amide proton NH is donated to the OH groups on carbons C1 and C3 of the sphingosine backbone. Two tightly bound water molecules appear to stabilize this network by participating in flip-flop interactions with the hydroxyl groups. In DHCer, the lack of the trans double bond leads to a conformational distortion of this H-bonding motif. Without the critical double bond, the degree with which water molecules stabilize the H bonds between the two OH groups of the sphingolipid is reduced. This structural alteration might preclude the participation of DHCer in signaling-related interactions with cellular targets. PMID:11916863

  20. Monitoring iron mineralization processes using nuclear magnetic resonance

    NASA Astrophysics Data System (ADS)

    Keating, Kristina

    Proton nuclear magnetic resonance (NMR) measurements can be used to probe the molecular-scale physical and chemical environment of water in the pore space of geological materials. In geophysics, NMR relaxation measurements are used in to measure water content and estimate permeability in the top 100 m of Earth's surface. The goal of the research presented in this thesis is to determine if NMR can also be used in geophysical applications to monitor iron mineralization processes associated with contaminant remediation. The first part of the research presented in this thesis focuses on understanding the effect of iron mineral form and redox state on the NMR relaxation response of water in geologic material. Laboratory NMR measurements were made on Fe(III)-bearing minerals (ferrihydrite, lepidocrocite, goethite, and hematite), Fe(II)-bearing minerals (siderite, pyrite, and troilite), and a mixed valence iron-bearing mineral (magnetite). The results of these measurements show that the relaxation rate of water is strongly dependent on the mineral form of iron. Shown in the final section of this thesis are results from an experiment exploring temporal changes in the measured NMR relaxation rates during the reaction of ferrihydrite with aqueous Fe(II). These results show that NMR can be used to monitor temporal chemical changes in iron minerals. I conclude that this research shows that NMR indeed has the potential to be used as a tool for monitoring geochemical reactions associated with contaminant remediation.

  1. Multinuclear nuclear magnetic resonance spectroscopic study of cartilage proteoglycans

    SciTech Connect

    Lerner, L.

    1985-01-01

    Hyaline cartilage is a composite material whose major function is to withstand compression while retaining flexibility. Its mechanical properties are affected by tissue hydration and ionic composition. Models of the mechanical behavior of cartilage have incorporated certain assumptions about the interactions of the major components of cartilage: collagen, proteoglycans, water, and cations. To determine the validity of these assumption, the authors have used nuclear magnetic resonance spectroscopy (NMR). Two approaches have been used: (a) natural abundance carbon-13 NMR; and (b) NMR of sodium-23, potassium-39, magnesium-25, and calcium-43. Evidence from studies in intact tissues are reinforced by extensive measurements on solutions of proteoglycans and other relevant macromolecules. Based on the measurements of NMR relaxation rates and lineshapes reported here, it is concluded that neither sodium nor potassium interact strongly with bovine nasal proteoglycan aggregates or their substituent glycosaminoglycan chains in solution. Proteoglycans do bind magnesium and calcium. Therefore there is a qualitative difference between monovalent and divalent cations, which is not taken into account by polyelectrolyte models or models for the ionic dependence of mechanical properties. Cation binding to heparin, which has a higher charge density than cartilage proteoglycans, was also studied. The results presented here establish that heparin binds sodium, magnesium, and calcium.

  2. Nuclear magnetic resonance metabolomics of iron deficiency in soybean leaves.

    PubMed

    Lima, Marta R M; Diaz, Sílvia O; Lamego, Inês; Grusak, Michael A; Vasconcelos, Marta W; Gil, Ana M

    2014-06-06

    Iron (Fe) deficiency is an important agricultural concern that leads to lower yields and crop quality. A better understanding of the condition at the metabolome level could contribute to the design of strategies to ameliorate Fe-deficiency problems. Fe-sufficient and Fe-deficient soybean leaf extracts and whole leaves were analyzed by liquid (1)H nuclear magnetic resonance (NMR) and high-resolution magic-angle spinning NMR spectroscopy, respectively. Overall, 30 compounds were measurable and identifiable (comprising amino and organic acids, fatty acids, carbohydrates, alcohols, polyphenols, and others), along with 22 additional spin systems (still unassigned). Thus, metabolite differences between treatment conditions could be evaluated for different compound families simultaneously. Statistically relevant metabolite changes upon Fe deficiency included higher levels of alanine, asparagine/aspartate, threonine, valine, GABA, acetate, choline, ethanolamine, hypoxanthine, trigonelline, and polyphenols and lower levels of citrate, malate, ethanol, methanol, chlorogenate, and 3-methyl-2-oxovalerate. The data indicate that the main metabolic impacts of Fe deficiency in soybean include enhanced tricarboxylic acid cycle activity, enhanced activation of oxidative stress protection mechanisms and enhanced amino acid accumulation. Metabolites showing accumulation differences in Fe-starved but visually asymptomatic leaves could serve as biomarkers for early detection of Fe-deficiency stress.

  3. Work in progress: nuclear magnetic resonance imaging of the gallbladder

    SciTech Connect

    Hricak, H.; Filly, R.A.; Margulis, A.R.; Moon, K.L.; Crooks, L.E.; Kaufman, L.

    1983-05-01

    A preliminary study of the relation between food intake and intensity of gallbladder bile on nuclear magnetic resonance (NMR) images was made. Twelve subjects (seven volunteers, five patients) were imaged following a minimum of 14 hours of fasting. Six of seven volunteers were reimaged one hour after stimulation by either a fatty meal or an alcoholic beverage. An additional seven patients were imaged two hours after a hospital breakfast. It was found that concentrated bile emits a high-intensity spin echo signal (SE), while hepatic bile in the gallbladder produces a low-intensity SE signal. Following ingestion of cholecystogogue, dilute hepatic bile settles on top of the concentrated bile, each emitting SE signals of different intensity. The average T1 value of concentrated bile was 594 msec, while the T1 vaue of dilute hepatic bile was 2,646 msec. The average T2 values were 104 msec for concentrated bile and 126 msec for dilute bile. The most likely cause for the different SE intensities of bile is the higher water content, and therefore longer T1 or T2 relaxation times, of hepatic bile. It is suggested that NMR imaging has the ability to provide physiological information about the gallbladder and that it may prove to be a simple and safe clinical test of gallbladder function.

  4. Distinguishing Carbonate Reservoir Pore Facies with Nuclear Magnetic Resonance Measurements

    SciTech Connect

    Genty, Coralie; Jensen, Jerry L. Ahr, Wayne M.

    2007-03-15

    Characterization of carbonate rocks may involve identifying the important pore types which are present. In the past, this task has required detailed petrographic analysis of many core samples. Here, we describe a method which uses nuclear magnetic resonance (NMR) measurements to reduce the amount of petrographic analysis needed for porosity typing of carbonate reservoir rocks.For a rock sample which has been measured with NMR, our method decomposes the log(T{sub 2}) spectrum into at most three Gaussian-shaped components and gives a set of nine parameters. Two characteristic quantities having geological significance are extracted from the nine parameters. Values of the two quantities are compared with a reference set, established from samples having both NMR and petrographic evaluations of porosity types. We use a Bayesian approach to the classification of the dominant porosity type.Tests of our method on 103 samples show a correct prediction in 60 to 90 percent of the samples. The lower success rate was obtained for samples with five porosity types from three fields; the higher success rate obtained with samples with three porosity types from one well. The use of geologically significant quantities extracted from the decomposition gives comparable success rate to those obtained using a standard, non-geological approach such as canonical variates.

  5. Advances in Nuclear Magnetic Resonance for Drug Discovery

    PubMed Central

    Powers, Robert

    2010-01-01

    Background Drug discovery is a complex and unpredictable endeavor with a high failure rate. Current trends in the pharmaceutical industry have exasperated these challenges and are contributing to the dramatic decline in productivity observed over the last decade. The industrialization of science by forcing the drug discovery process to adhere to assembly-line protocols is imposing unnecessary restrictions, such as short project time-lines. Recent advances in nuclear magnetic resonance are responding to these self-imposed limitations and are providing opportunities to increase the success rate of drug discovery. Objective/Method A review of recent advancements in NMR technology that have the potential of significantly impacting and benefiting the drug discovery process will be presented. These include fast NMR data collection protocols and high-throughput protein structure determination, rapid protein-ligand co-structure determination, lead discovery using fragment-based NMR affinity screens, NMR metabolomics to monitor in vivo efficacy and toxicity for lead compounds, and the identification of new therapeutic targets through the functional annotation of proteins by FAST-NMR. Conclusion NMR is a critical component of the drug discovery process, where the versatility of the technique enables it to continually expand and evolve its role. NMR is expected to maintain this growth over the next decade with advancements in automation, speed of structure calculation, in-cell imaging techniques, and the expansion of NMR amenable targets. PMID:20333269

  6. Updated methodology for nuclear magnetic resonance characterization of shales.

    PubMed

    Washburn, Kathryn E; Birdwell, Justin E

    2013-08-01

    Unconventional petroleum resources, particularly in shales, are expected to play an increasingly important role in the world's energy portfolio in the coming years. Nuclear magnetic resonance (NMR), particularly at low-field, provides important information in the evaluation of shale resources. Most of the low-field NMR analyses performed on shale samples rely heavily on standard T1 and T2 measurements. We present a new approach using solid echoes in the measurement of T1 and T1-T2 correlations that addresses some of the challenges encountered when making NMR measurements on shale samples compared to conventional reservoir rocks. Combining these techniques with standard T1 and T2 measurements provides a more complete assessment of the hydrogen-bearing constituents (e.g., bitumen, kerogen, clay-bound water) in shale samples. These methods are applied to immature and pyrolyzed oil shale samples to examine the solid and highly viscous organic phases present during the petroleum generation process. The solid echo measurements produce additional signal in the oil shale samples compared to the standard methodologies, indicating the presence of components undergoing homonuclear dipolar coupling. The results presented here include the first low-field NMR measurements performed on kerogen as well as detailed NMR analysis of highly viscous thermally generated bitumen present in pyrolyzed oil shale.

  7. New Approaches to Quantum Computing using Nuclear Magnetic Resonance Spectroscopy

    SciTech Connect

    Colvin, M; Krishnan, V V

    2003-02-07

    The power of a quantum computer (QC) relies on the fundamental concept of the superposition in quantum mechanics and thus allowing an inherent large-scale parallelization of computation. In a QC, binary information embodied in a quantum system, such as spin degrees of freedom of a spin-1/2 particle forms the qubits (quantum mechanical bits), over which appropriate logical gates perform the computation. In classical computers, the basic unit of information is the bit, which can take a value of either 0 or 1. Bits are connected together by logic gates to form logic circuits to implement complex logical operations. The expansion of modern computers has been driven by the developments of faster, smaller and cheaper logic gates. As the size of the logic gates become smaller toward the level of atomic dimensions, the performance of such a system is no longer considered classical but is rather governed by quantum mechanics. Quantum computers offer the potentially superior prospect of solving computational problems that are intractable to classical computers such as efficient database searches and cryptography. A variety of algorithms have been developed recently, most notably Shor's algorithm for factorizing long numbers into prime factors in polynomial time and Grover's quantum search algorithm. The algorithms that were of only theoretical interest as recently, until several methods were proposed to build an experimental QC. These methods include, trapped ions, cavity-QED, coupled quantum dots, Josephson junctions, spin resonance transistors, linear optics and nuclear magnetic resonance. Nuclear magnetic resonance (NMR) is uniquely capable of constructing small QCs and several algorithms have been implemented successfully. NMR-QC differs from other implementations in one important way that it is not a single QC, but a statistical ensemble of them. Thus, quantum computing based on NMR is considered as ensemble quantum computing. In NMR quantum computing, the spins with

  8. Constraints on low-mass WIMP interactions on 19F from PICASSO

    NASA Astrophysics Data System (ADS)

    Archambault, S.; Behnke, E.; Bhattacharjee, P.; Bhattacharya, S.; Dai, X.; Das, M.; Davour, A.; Debris, F.; Dhungana, N.; Farine, J.; Gagnebin, S.; Giroux, G.; Grace, E.; Jackson, C. M.; Kamaha, A.; Krauss, C.; Kumaratunga, S.; Lafrenière, M.; Laurin, M.; Lawson, I.; Lessard, L.; Levine, I.; Levy, C.; MacDonald, R. P.; Marlisov, D.; Martin, J.-P.; Mitra, P.; Noble, A. J.; Piro, M.-C.; Podviyanuk, R.; Pospisil, S.; Saha, S.; Scallon, O.; Seth, S.; Starinski, N.; Stekl, I.; Wichoski, U.; Xie, T.; Zacek, V.

    2012-05-01

    Recent results from the PICASSO dark matter search experiment at SNOLAB are reported. These results were obtained using a subset of 10 detectors with a total target mass of 0.72 kg of 19F and an exposure of 114 kgd. The low backgrounds in PICASSO allow recoil energy thresholds as low as 1.7 keV to be obtained which results in an increased sensitivity to interactions from Weakly Interacting Massive Particles (WIMPs) with masses below 10 GeV/c2. No dark matter signal was found. Best exclusion limits in the spin dependent sector were obtained for WIMP masses of 20 GeV/c2 with a cross section on protons of σpSD=0.032 pb (90% C.L.). In the spin independent sector close to the low mass region of 7 GeV/c2 favoured by CoGeNT and DAMA/LIBRA, cross sections larger than σpSI=1.41×10-4 pb (90% C.L.) are excluded.

  9. Robust and efficient 19F heteronuclear dipolar decoupling using refocused continuous-wave rf irradiation

    NASA Astrophysics Data System (ADS)

    Vinther, Joachim M.; Khaneja, Navin; Nielsen, Niels Chr.

    2013-01-01

    Refocused continuous wave (rCW) decoupling is presented as an efficient and robust means to obtain well-resolved magic-angle-spinning solid-state NMR spectra of low-γ spins, such as 13C dipolar coupled to fluorine. The rCW decoupling sequences, recently introduced for 1H decoupling, are very robust towards large isotropic and anisotropic shift ranges as often encountered for 19F spins. In rCW decoupling, the so-called refocusing pulses inserted into the CW irradiation eliminate critical residual second- and third-order dipolar coupling and dipolar-coupling against chemical shielding anisotropy cross-terms in the effective Hamiltonian through time-reversal (i.e. refocusing). As important additional assets, the rCW decoupling sequences are robust towards variations in rf amplitudes, operational at low to high spinning speeds, and easy to set-up for optimal performance experimentally. These aspects are demonstrated analytically/numerically and experimentally in comparison to state-of-the-art decoupling sequences such as TPPM, SPINAL-64, and frequency-swept variants of these.

  10. Nuclear magnetic resonance of laser-polarized noble gases in molecules, materials and organisms

    SciTech Connect

    Goodson, Boyd McLean

    1999-12-01

    Conventional nuclear magnetic resonance (NMR) spectroscopy and magnetic resonance imaging (MRI) are fundamentally challenged by the insensitivity that stems from the ordinarily low spin polarization achievable in even the strongest NMR magnets. However, by transferring angular momentum from laser light to electronic and nuclear spins, optical pumping methods can increase the nuclear spin polarization of noble gases by several orders of magnitude, thereby greatly enhancing their NMR sensitivity. This dissertation is primarily concerned with the principles and practice of optically pumped nuclear magnetic resonance (OPNMR). The enormous sensitivity enhancement afforded by optical pumping noble gases can be exploited to permit a variety of novel NMR experiments across many disciplines. Many such experiments are reviewed, including the void-space imaging of organisms and materials, NMR and MRI of living tissues, probing structure and dynamics of molecules in solution and on surfaces, and zero-field NMR and MRI.

  11. Nuclear magnetic resonance data of C2H10OSi2

    NASA Astrophysics Data System (ADS)

    Mikhova, B. M.

    This document is part of Part 6 `Organic Metalloid Compounds' of Subvolume D 'Chemical Shifts and Coupling Constants for Carbon-13' of Landolt-Börnstein III/35 'Nuclear Magnetic Resonance Data', Group III 'Condensed Matter'.

  12. Nuclear magnetic resonance data of C8H24OSi4Te

    NASA Astrophysics Data System (ADS)

    Mikhova, B. M.

    This document is part of Part 6 `Organic Metalloid Compounds' of Subvolume D 'Chemical Shifts and Coupling Constants for Carbon-13' of Landolt-Börnstein III/35 'Nuclear Magnetic Resonance Data', Group III 'Condensed Matter'.

  13. Novel nuclear magnetic resonance techniques for studying biological molecules

    SciTech Connect

    Laws, David Douglas

    2000-06-01

    Over the fifty-five year history of Nuclear Magnetic Resonance (NMR), considerable progress has been made in the development of techniques for studying the structure, function, and dynamics of biological molecules. The majority of this research has involved the development of multi-dimensional NMR experiments for studying molecules in solution, although in recent years a number of groups have begun to explore NMR methods for studying biological systems in the solid-state. Despite this new effort, a need still exists for the development of techniques that improve sensitivity, maximize information, and take advantage of all the NMR interactions available in biological molecules. In this dissertation, a variety of novel NMR techniques for studying biomolecules are discussed. A method for determining backbone (Φ/Ψ) dihedral angles by comparing experimentally determined 13Ca, chemical-shift anisotropies with theoretical calculations is presented, along with a brief description of the theory behind chemical-shift computation in proteins and peptides. The utility of the Spin-Polarization Induced Nuclear Overhauser Effect (SPINOE) to selectively enhance NMR signals in solution is examined in a variety of systems, as are methods for extracting structural information from cross-relaxation rates that can be measured in SPINOE experiments. Techniques for the production of supercritical and liquid laser-polarized xenon are discussed, as well as the prospects for using optically pumped xenon as a polarizing solvent. In addition, a detailed study of the structure of PrP 89-143 is presented. PrP 89-143 is a 54 residue fragment of the prion proteins which, upon mutation and aggregation, can induce prion diseases in transgenic mice. Whereas the structure of the wild-type PrP 89-143 is a generally unstructured mixture of α-helical and β-sheet conformers in the solid state, the aggregates formed from the PrP 89-143 mutants appear to be mostly β-sheet.

  14. Developing hyperpolarized krypton-83 for nuclear magnetic resonance spectroscopy and magnetic resonance imaging

    NASA Astrophysics Data System (ADS)

    Cleveland, Zackary I.

    This dissertation discusses the production of highly nonequilibrium nuclear spin polarization, referred to as hyperpolarization or hp, in the nuclear spin I = 9/2 noble gas isotope krypton-83 using spin exchange optical pumping (SEOP). This nonequilibrium polarization yields nuclear magnetic resonance (NMR) signals that are enhanced three or more orders of magnitude above those of thermally polarized krypton and enables experiments that would otherwise be impossible. Krypton-83 possesses a nuclear electric quadrupole moment that dominates the longitudinal (T1) relaxation due to coupling of the quadrupole moment to fluctuating electric field gradients generated by distortions to the spherical symmetry of the electronic environment. Relaxation slows polarization buildup and limits the maximum signal intensity but makes krypton-83 a sensitive probe of its environment. The gas-phase krypton-83 longitudinal relaxation rate increases linearly with total gas density due to binary collisions. Density independent relaxation, caused by the formation of krypton-krypton van der Waals molecules and surface adsorption, also contributes to the observed rate. Buffer gases suppress van der Waals molecule mediated relaxation by breaking apart the weakly bound krypton dimers. Surface relaxation is gas composition independent and therefore more difficult to suppress. However, this relaxation mechanism makes hp krypton-83 sensitive to important surface properties including surface-to-volume ratio, surface chemistry, and surface temperature. The presence of surfaces with high krypton adsorption affinities (i.e. hydrophobic surfaces) accelerates the relaxation times and can produce T1 contrast in hp krypton-83 magnetic resonance imaging (MRI). Tobacco smoke deposited on surfaces generates strong T1 contrast allowing the observation of smoke deposition with spatial resolution. Conversely, water adsorption on surfaces significantly lengths the T1 times due competitive surface adsorption

  15. Nuclear Spin Maser at Highly Stabilized Low Magnetic Field and Search for Atomic EDM

    SciTech Connect

    Yoshimi, A.; Asahi, K.; Inoue, T.; Uchida, M.; Hatakeyama, N.; Tsuchiya, M.; Kagami, S.

    2009-08-04

    A nuclear spin maser is operated at a low static field through an active feedback scheme based on an optical nuclear spin detection and succeeding spin control by a transverse field application. The frequency stability of this optical-coupling spin maser is improved by installation of a low-noise current source for a solenoid magnet producing a static magnetic field in the maser operation. Experimental devices for application of the maser to EDM experiment are being developed.

  16. A Multidisciplinary Approach to High Throughput Nuclear Magnetic Resonance Spectroscopy.

    PubMed

    Pourmodheji, Hossein; Ghafar-Zadeh, Ebrahim; Magierowski, Sebastian

    2016-06-09

    Nuclear Magnetic Resonance (NMR) is a non-contact, powerful structure-elucidation technique for biochemical analysis. NMR spectroscopy is used extensively in a variety of life science applications including drug discovery. However, existing NMR technology is limited in that it cannot run a large number of experiments simultaneously in one unit. Recent advances in micro-fabrication technologies have attracted the attention of researchers to overcome these limitations and significantly accelerate the drug discovery process by developing the next generation of high-throughput NMR spectrometers using Complementary Metal Oxide Semiconductor (CMOS). In this paper, we examine this paradigm shift and explore new design strategies for the development of the next generation of high-throughput NMR spectrometers using CMOS technology. A CMOS NMR system consists of an array of high sensitivity micro-coils integrated with interfacing radio-frequency circuits on the same chip. Herein, we first discuss the key challenges and recent advances in the field of CMOS NMR technology, and then a new design strategy is put forward for the design and implementation of highly sensitive and high-throughput CMOS NMR spectrometers. We thereafter discuss the functionality and applicability of the proposed techniques by demonstrating the results. For microelectronic researchers starting to work in the field of CMOS NMR technology, this paper serves as a tutorial with comprehensive review of state-of-the-art technologies and their performance levels. Based on these levels, the CMOS NMR approach offers unique advantages for high resolution, time-sensitive and high-throughput bimolecular analysis required in a variety of life science applications including drug discovery.

  17. Advances in Theory of Solid-State Nuclear Magnetic Resonance.

    PubMed

    Mananga, Eugene S; Moghaddasi, Jalil; Sana, Ajaz; Akinmoladun, Andrew; Sadoqi, Mostafa

    Recent advances in theory of solid state nuclear magnetic resonance (NMR) such as Floquet-Magnus expansion and Fer expansion, address alternative methods for solving a time-dependent linear differential equation which is a central problem in quantum physics in general and solid-state NMR in particular. The power and the salient features of these theoretical approaches that are helpful to describe the time evolution of the spin system at all times are presented. This review article presents a broad view of manipulations of spin systems in solid-state NMR, based on milestones theories including the average Hamiltonian theory and the Floquet theory, and the approaches currently developing such as the Floquet-Magnus expansion and the Fer expansion. All these approaches provide procedures to control and describe the spin dynamics in solid-state NMR. Applications of these theoretical methods to stroboscopic and synchronized manipulations, non-synchronized experiments, multiple incommensurated frequencies, magic-angle spinning samples, are illustrated. We also reviewed the propagators of these theories and discussed their convergences. Note that the FME is an extension of the popular Magnus Expansion and Average Hamiltonian Theory. It aims is to bridge the AHT to the Floquet Theorem but in a more concise and efficient formalism. Calculations can then be performed in a finite-dimensional Hilbert space instead of an infinite dimensional space within the so-called Floquet theory. We expected that the FME will provide means for more accurate and efficient spin dynamics simulation and for devising new RF pulse sequence.

  18. A Multidisciplinary Approach to High Throughput Nuclear Magnetic Resonance Spectroscopy

    PubMed Central

    Pourmodheji, Hossein; Ghafar-Zadeh, Ebrahim; Magierowski, Sebastian

    2016-01-01

    Nuclear Magnetic Resonance (NMR) is a non-contact, powerful structure-elucidation technique for biochemical analysis. NMR spectroscopy is used extensively in a variety of life science applications including drug discovery. However, existing NMR technology is limited in that it cannot run a large number of experiments simultaneously in one unit. Recent advances in micro-fabrication technologies have attracted the attention of researchers to overcome these limitations and significantly accelerate the drug discovery process by developing the next generation of high-throughput NMR spectrometers using Complementary Metal Oxide Semiconductor (CMOS). In this paper, we examine this paradigm shift and explore new design strategies for the development of the next generation of high-throughput NMR spectrometers using CMOS technology. A CMOS NMR system consists of an array of high sensitivity micro-coils integrated with interfacing radio-frequency circuits on the same chip. Herein, we first discuss the key challenges and recent advances in the field of CMOS NMR technology, and then a new design strategy is put forward for the design and implementation of highly sensitive and high-throughput CMOS NMR spectrometers. We thereafter discuss the functionality and applicability of the proposed techniques by demonstrating the results. For microelectronic researchers starting to work in the field of CMOS NMR technology, this paper serves as a tutorial with comprehensive review of state-of-the-art technologies and their performance levels. Based on these levels, the CMOS NMR approach offers unique advantages for high resolution, time-sensitive and high-throughput bimolecular analysis required in a variety of life science applications including drug discovery. PMID:27294925

  19. Optically Pumped Nuclear Magnetic Resonance in the Quantum Hall Regimes

    NASA Astrophysics Data System (ADS)

    Barrett, Sean E.

    1998-03-01

    Optical pumping enables the direct detection of the nuclear magnetic resonance signal of ^71Ga nuclei located in an electron doped GaAs quantum well.footnote S. E. Barrett et al., Phys. Rev. Lett. 72, 1368 (1994) This OPNMR technique was previously used to measure the Knight shift (K_S)footnote S. E. Barrett et al., Phys. Rev. Lett. 74, 5112 (1995) and spin-lattice relaxation time (T_1)footnote R. Tycko et al., Science 268, 1460 (1995) near Landau level filling ν=1, which provided the first experimental support for the theoretical predictionsfootnote S. L. Sondhi et al., Phys. Rev. B 47, 16419 (1993); H. A. Fertig et al., Phys. Rev. B 50, 11018 (1994) that the charged excitations of the ν = 1 ground state are novel spin textures called skyrmions. We have recently demonstrated that OPNMR is possible in fields up to B=12 Tesla, and temperatures down to T= 0.3 K, making it a viable new probe of the Fractional Quantum Hall Regime. In this talk we will present our latest OPNMR measurements near Landau level filling ν=1/3, which include the first direct measurement of the electron spin polarization at ν=1/3. The spin polarization drops as the filling factor is varied away from ν=1/3, indicating that the quasiparticles and quasiholes are not fully spin-polarized. We will also show how the NMR lineshape away from ν=1/3 changes dramatically at low temperatures, which is due to slowing of the electron dynamics, and a reduction in the motional narrowing of the NMR line. The current understanding of these results will be discussed.

  20. Nuclear magnetic resonance studies of macroscopic morphology and dynamics

    SciTech Connect

    Barrall, Geoffrey Alden

    1995-09-01

    Nuclear magnetic resonance techniques are traditionally used to study molecular level structure and dynamics with a noted exception in medically applied NMR imaging (MRI). In this work, new experimental methods and theory are presented relevant to the study of macroscopic morphology and dynamics using NMR field gradient techniques and solid state two-dimensional exchange NMR. The goal in this work is not to take some particular system and study it in great detail, rather it is to show the utility of a number of new and novel techniques using ideal systems primarily as a proof of principle. By taking advantage of the analogy between NMR imaging and diffraction, one may simplify the experiments necessary for characterizing the statistical properties of the sample morphology. For a sample composed of many small features, e.g. a porous medium, the NMR diffraction techniques take advantage of both the narrow spatial range and spatial isotropy of the sample`s density autocorrelation function to obtain high resolution structural information in considerably less time than that required by conventional NMR imaging approaches. The time savings of the technique indicates that NMR diffraction is capable of finer spatial resolution than conventional NMR imaging techniques. Radio frequency NMR imaging with a coaxial resonator represents the first use of cylindrically symmetric field gradients in imaging. The apparatus as built has achieved resolution at the micron level for water samples, and has the potential to be very useful in the imaging of circularly symmetric systems. The study of displacement probability densities in flow through a random porous medium has revealed the presence of features related to the interconnectedness of the void volumes. The pulsed gradient techniques used have proven successful at measuring flow properties for time and length scales considerably shorter than those studied by more conventional techniques.

  1. Advances in Theory of Solid-State Nuclear Magnetic Resonance

    PubMed Central

    Mananga, Eugene S.; Moghaddasi, Jalil; Sana, Ajaz; Akinmoladun, Andrew; Sadoqi, Mostafa

    2015-01-01

    Recent advances in theory of solid state nuclear magnetic resonance (NMR) such as Floquet-Magnus expansion and Fer expansion, address alternative methods for solving a time-dependent linear differential equation which is a central problem in quantum physics in general and solid-state NMR in particular. The power and the salient features of these theoretical approaches that are helpful to describe the time evolution of the spin system at all times are presented. This review article presents a broad view of manipulations of spin systems in solid-state NMR, based on milestones theories including the average Hamiltonian theory and the Floquet theory, and the approaches currently developing such as the Floquet-Magnus expansion and the Fer expansion. All these approaches provide procedures to control and describe the spin dynamics in solid-state NMR. Applications of these theoretical methods to stroboscopic and synchronized manipulations, non-synchronized experiments, multiple incommensurated frequencies, magic-angle spinning samples, are illustrated. We also reviewed the propagators of these theories and discussed their convergences. Note that the FME is an extension of the popular Magnus Expansion and Average Hamiltonian Theory. It aims is to bridge the AHT to the Floquet Theorem but in a more concise and efficient formalism. Calculations can then be performed in a finite-dimensional Hilbert space instead of an infinite dimensional space within the so-called Floquet theory. We expected that the FME will provide means for more accurate and efficient spin dynamics simulation and for devising new RF pulse sequence. PMID:26878063

  2. GET-SERF, a new gradient encoded SERF experiment for the trivial edition of 1H-19F couplings.

    PubMed

    Di Pietro, Maria Enrica; Aroulanda, Christie; Merlet, Denis

    2013-09-01

    A new spatially encoded heteronuclear (1)H-(19)F selective refocusing NMR experiment (GET-SERF) is proposed. This sequence allows editing in one single 2D experiment all couplings between a selected fluorine site and all the proton nuclei of the molecule. Its efficiency is illustrated in the case of diflunisal, a difluorinated anti-inflammatory drug, in isotropic and anisotropic media.

  3. Fluorinated Carbohydrates as Lectin Ligands: 19F-Based Direct STD Monitoring for Detection of Anomeric Selectivity

    PubMed Central

    Ribeiro, João P.; Diercks, Tammo; Jiménez-Barbero, Jesús; André, Sabine; Gabius, Hans-Joachim; Cañada, Francisco Javier

    2015-01-01

    The characterization of the binding of reducing carbohydrates present as mixtures of anomers in solution to a sugar recepor (lectin) poses severe difficulties. In this situation, NMR spectroscopy enables the observation of signals for each anomer in the mixture by applying approaches based on ligand observation. Saturation transfer difference (STD) NMR allows fast and efficient screening of compound mixtures for reactivity to a receptor. Owing to the exceptionally favorable properties of 19F in NMR spectroscopy and the often complex 1H spectra of carbohydrates, 19F-containing sugars have the potential to be turned into versatile sensors for recognition. Extending the recently established 1H → 1H STDre19F-NMR technique, we here demonstrate its applicability to measure anomeric selectivity of binding in a model system using the plant lectin concanavalin A (ConA) and 2-deoxy-2-fluoro-d-mannose. Indeed, it is also possible to account for the mutual inhibition between the anomers on binding to the lectin by means of a kinetic model. The monitoring of 19F-NMR signal perturbation disclosed the relative activities of the anomers in solution and thus enabled the calculation of their binding affinity towards ConA. The obtained data show a preference for the α anomer that increases with temperature. This experimental approach can be extended to others systems of biomedical interest by testing human lectins with suitably tailored glycan derivatives. PMID:26580665

  4. First Measurement of the 19F(α, p)22Ne Reaction at Energies of Astrophysical Relevance

    NASA Astrophysics Data System (ADS)

    Pizzone, R. G.; D’Agata, G.; La Cognata, M.; Indelicato, I.; Spitaleri, C.; Blagus, S.; Cherubini, S.; Figuera, P.; Grassi, L.; Guardo, G. L.; Gulino, M.; Hayakawa, S.; Kshetri, R.; Lamia, L.; Lattuada, M.; Mijatović, T.; Milin, M.; Miljanić D., Đ.; Prepolec, L.; Rapisarda, G. G.; Romano, S.; Sergi, M. L.; Skukan, N.; Soić, N.; Tokić, V.; Tumino, A.; Uroić, M.

    2017-02-01

    The observational 19F abundance in stellar environments systematically exceeds the predicted one, thus representing one of the unsolved challenges for stellar modeling. It is therefore clear that further investigation is needed in this field. In this work, we focus our attention on the measurement of the {}19{{F}}{(α ,p)}22{Ne} reaction in the astrophysical energy range, between 0.2 and 0.8 MeV (far below the Coulomb barrier, 3.8 MeV), as it represents the main destruction channel in He-rich environments. The lowest energy at which this reaction has been studied with direct measurements is ∼0.66 MeV, covering only the upper tail of the Gamow window, causing the reaction-rate evaluation to be based on extrapolation. To investigate lower energies, the {}19{{F}}{(α ,p)}22{Ne} reaction has been studied by means of the Trojan horse method, applied to the quasi-free {}6{Li}{{(}19{{F}},{p}22{Ne})}2{{H}} reaction at E beam = 6 MeV. The indirect cross section of the {}19{{F}}{(α ,p)}22{Ne} reaction at energies ≲1 MeV was extracted, fully covering the astrophysical region of interest and overlapping existing direct data for normalization. Several resonances have been detected for the first time inside the Gamow window. The reaction rate has been calculated, showing an increase up to a factor of 4 with respect to the literature at astrophysical temperatures. This might lead to potential major astrophysical implications.

  5. Drug-specific [sup 19]F NMR and dynamic [sup 18]F PET imaging of the cytostatic agent 5-fluorouracil

    SciTech Connect

    Bellemann, M.E.; Brix, G.; Haberkorn, U.; Ostertag, H.J.; Lorenz, W.J. )

    1994-12-01

    The spatial distribution of the antineoplastic agent 5-fluorouracil (5-FU) has been mapped both with [sup 19]F NMR and [sup 18]F PET imaging techniques. For [sup 19]F NMR imaging of 5-FU and its major catabolite [alpha]-fluoro-[beta]-alanine (FBAL), a fast gradient-echo pulse sequence was employed. A chemical-shift selective saturation pulse was used to suppress either the 5-FU or the FBAL resonance before the other component of the [sup 19]F NMR spectrum was images. This approach yielded selective 5-FU and FBAL NMR images free of chemical-shift artifacts in readout and slice-selection direction. In phantom experiments, [sup 19]F 5-FU and FBAL images with a spatial resolution of 12.5 x 12.5 x 20 mm[sup 3] were obtained in 32 min from model solutions with drug and catabolite concentrations similar to those estimated in animals and patients undergoing i.v. chemotherapy with 5-FU. The biodistribution of 5-[[sup 18]F]FU in rats shortly after administration of the drug demonstrated the good vascularization of the transplanted tumors. The metabolic turnover of the cytostatic agent started about 10--20 min p.i. and was predominant in the tumor and liver tissue. The rapid adjustment of the [sup 18]F metabolite concentrations in the transplanted tumors to a steady state provides evidence of anabolic tumor activity, which supports the hypothesis of 5-FU trapping in malignant cells based on [sup 19]F NMR spectroscopy data. The high uptake of 5-[[sup 18]F]FU in the liver, on the other hand, mainly reflects the catabolization of 5-FU to the noncytotoxic FBAL, which leads to a reduced bioavailability of the drug.

  6. Characterization of solid polymer dispersions of active pharmaceutical ingredients by 19F MAS NMR and factor analysis.

    PubMed

    Urbanova, Martina; Brus, Jiri; Sedenkova, Ivana; Policianova, Olivia; Kobera, Libor

    2013-01-01

    In this contribution the ability of (19)F MAS NMR spectroscopy to probe structural variability of poorly water-soluble drugs formulated as solid dispersions in polymer matrices is discussed. The application potentiality of the proposed approach is demonstrated on a moderately sized active pharmaceutical ingredient (API, Atorvastatin) exhibiting extensive polymorphism. In this respect, a range of model systems with the API incorporated in the matrix of polvinylpyrrolidone (PVP) was prepared. The extent of mixing of both components was determined by T(1)((1)H) and T(1ρ)((1)H) relaxation experiments, and it was found that the API forms nanosized domains. Subsequently it was found out that the polymer matrix induces two kinds of changes in (19)F MAS NMR spectra. At first, this is a high-frequency shift reaching 2-3 ppm which is independent on molecular structure of the API and which results from the long-range polarization of the electron cloud around (19)F nucleus induced by electrostatic fields of the polymer matrix. At second, this is broadening of the signals and formation of shoulders reflecting changes in molecular arrangement of the API. To avoid misleading in the interpretation of the recorded (19)F MAS NMR spectra, because both the contributions act simultaneously, we applied chemometric approach based on multivariate analysis. It is demonstrated that factor analysis of the recorded spectra can separate both these spectral contributions, and the subtle structural differences in the molecular arrangement of the API in the nanosized domains can be traced. In this way (19)F MAS NMR spectra of both pure APIs and APIs in solid dispersions can be directly compared. The proposed strategy thus provides a powerful tool for the analysis of new formulations of fluorinated pharmaceutical substances in polymer matrices.

  7. Characterization of solid polymer dispersions of active pharmaceutical ingredients by 19F MAS NMR and factor analysis

    NASA Astrophysics Data System (ADS)

    Urbanova, Martina; Brus, Jiri; Sedenkova, Ivana; Policianova, Olivia; Kobera, Libor

    In this contribution the ability of 19F MAS NMR spectroscopy to probe structural variability of poorly water-soluble drugs formulated as solid dispersions in polymer matrices is discussed. The application potentiality of the proposed approach is demonstrated on a moderately sized active pharmaceutical ingredient (API, Atorvastatin) exhibiting extensive polymorphism. In this respect, a range of model systems with the API incorporated in the matrix of polvinylpyrrolidone (PVP) was prepared. The extent of mixing of both components was determined by T1(1H) and T1ρ(1H) relaxation experiments, and it was found that the API forms nanosized domains. Subsequently it was found out that the polymer matrix induces two kinds of changes in 19F MAS NMR spectra. At first, this is a high-frequency shift reaching 2-3 ppm which is independent on molecular structure of the API and which results from the long-range polarization of the electron cloud around 19F nucleus induced by electrostatic fields of the polymer matrix. At second, this is broadening of the signals and formation of shoulders reflecting changes in molecular arrangement of the API. To avoid misleading in the interpretation of the recorded 19F MAS NMR spectra, because both the contributions act simultaneously, we applied chemometric approach based on multivariate analysis. It is demonstrated that factor analysis of the recorded spectra can separate both these spectral contributions, and the subtle structural differences in the molecular arrangement of the API in the nanosized domains can be traced. In this way 19F MAS NMR spectra of both pure APIs and APIs in solid dispersions can be directly compared. The proposed strategy thus provides a powerful tool for the analysis of new formulations of fluorinated pharmaceutical substances in polymer matrices.

  8. Double-tuned single coil probe for nuclear magnetic resonance spectrometer

    SciTech Connect

    McKay, R.A.

    1984-05-01

    A double-tuned single coil probe for a nuclear magnetic resonance spectrometer having improved sensitivity is described comprising a double-tuned circuit means in which the low frequency irradiation is fed to a transmission line through an inductor means. The double-tuned circuit means of the invention may be remotely disposed from the magnetic field which results in greater sensitivity.

  9. Novel detection schemes of nuclear magnetic resonance and magnetic resonance imaging: applications from analytical chemistry to molecular sensors.

    PubMed

    Harel, Elad; Schröder, Leif; Xu, Shoujun

    2008-01-01

    Nuclear magnetic resonance (NMR) is a well-established analytical technique in chemistry. The ability to precisely control the nuclear spin interactions that give rise to the NMR phenomenon has led to revolutionary advances in fields as diverse as protein structure determination and medical diagnosis. Here, we discuss methods for increasing the sensitivity of magnetic resonance experiments, moving away from the paradigm of traditional NMR by separating the encoding and detection steps of the experiment. This added flexibility allows for diverse applications ranging from lab-on-a-chip flow imaging and biological sensors to optical detection of magnetic resonance imaging at low magnetic fields. We aim to compare and discuss various approaches for a host of problems in material science, biology, and physics that differ from the high-field methods routinely used in analytical chemistry and medical imaging.

  10. Phenylboronic acid-based (19)F MRI probe for the detection and imaging of hydrogen peroxide utilizing its large chemical-shift change.

    PubMed

    Nonaka, Hiroshi; An, Qi; Sugihara, Fuminori; Doura, Tomohiro; Tsuchiya, Akira; Yoshioka, Yoshichika; Sando, Shinsuke

    2015-01-01

    Herein, we report on a new (19)F MRI probe for the detection and imaging of H2O2. Our designed 2-fluorophenylboronic acid-based (19)F probe promptly reacted with H2O2 to produce 2-fluorophenol via boronic acid oxidation. The accompanying (19)F chemical-shift change reached 31 ppm under our experimental conditions. Such a large chemical-shift change allowed for the imaging of H2O2 by (19)F chemical-shift-selective MRI.

  11. MEMS-Based Force-Detected Nuclear Magnetic Resonance (FDNMR) Spectrometer

    NASA Technical Reports Server (NTRS)

    Lee, Choonsup; Butler, Mark C.; Elgammal, Ramez A.; George, Thomas; Hunt, Brian; Weitekamp, Daniel P.

    2006-01-01

    Nuclear Magnetic Resonance (NMR) spectroscopy allows assignment of molecular structure by acquiring the energy spectrum of nuclear spins in a molecule, and by interpreting the symmetry and positions of resonance lines in the spectrum. As such, NMR has become one of the most versatile and ubiquitous spectroscopic methods. Despite these tremendous successes, NMR experiments suffer from inherent low sensitivity due to the relatively low energy of photons in the radio frequency (rt) region of the electromagnetic spectrum. Here, we describe a high-resolution spectroscopy in samples with diameters in the micron range and below. We have reported design and fabrication of force-detected nuclear magnetic resonance (FDNMR).

  12. Electronic and nuclear motion and their couplings in the presence of a magnetic field

    NASA Astrophysics Data System (ADS)

    Schmelcher, P.; Cederbaum, L. S.; Meyer, H.-D.

    1988-12-01

    The performance of an adiabatic separation of electronic and nuclear motion in the presence of a magnetic field is examined, and it is shown that the diagonal term of the nonadiabatic coupling elements must be added to the nuclear equation of motion in the Born-Oppenheimer (BO) approximation. The screened BO approximation is described which is particularly suited to describe the adiabatic separation of electronic and nuclear degrees of freedom in a magnetic field. A new interpretation of the well-known gauge-centering is presented. The results are of interest in connection with the studies of white dwarfs and neutron stars.

  13. Nuclear magnetic resonance at millitesla fields using a zero-field spectrometer.

    PubMed

    Tayler, Michael C D; Sjolander, Tobias F; Pines, Alexander; Budker, Dmitry

    2016-09-01

    We describe new analytical capabilities for nuclear magnetic resonance (NMR) experiments in which signal detection is performed with chemical resolution (via spin-spin J couplings) in the zero to ultra-low magnetic field region, below 1μT. Using magnetic fields in the 100μT to 1mT range, we demonstrate the implementation of conventional NMR pulse sequences with spin-species selectivity.

  14. Development and applications of NMR (nuclear magnetic resonance) in low fields and zero field

    SciTech Connect

    Bielecki, A.

    1987-05-01

    This dissertation is about nuclear magnetic resonance (NMR) spectroscopy in the absence of applied magnetic fields. NMR is usually done in large magnetic fields, often as large as can be practically attained. The motivation for going the opposite way, toward zero field, is that for certain types of materials, particularly powdered or polycrystalline solids, the NMR spectra in zero field are easier to interpret than those obtained in high field. 92 refs., 60 figs., 1 tab.

  15. Noncyclic geometric quantum computation in a nuclear-magnetic-resonance system

    SciTech Connect

    Wang, Z. S.; Liu, G. Q.; Ji, Y. H.

    2009-05-15

    A scheme is proposed to include both cyclic and noncyclic geometric quantum computations in nuclear-magnetic-resonance system by the invariant theory. By controlling magnetic field and arbitrary parameters in the invariant operator, the phases accumulated in the entangling quantum gates for single- and two-qubit systems are pure geometric phases. Thus, fault tolerance may occur in some critical magnetic field parameters for either cyclic or noncyclic evolution by differently choosing for gate time.

  16. Microstructure of Wet Cement Pastes: a Nuclear Magnetic Resonance Study

    NASA Astrophysics Data System (ADS)

    Jehng, Jyh-Yuar

    1995-01-01

    Nuclear magnetic resonance relaxation analysis has been applied to interpret the evolution of microstructure in a cement paste during hydration. The work in this thesis has yielded a better understanding of the geometric and physical characterization of porous materials, and specifically cement pastes. A basic understanding of the wet-dry and freeze-thaw processes of cement pastes has been developed. The pore structure evolution has been studied by the suppression of the freezing temperature of water and compared with relaxation analysis performed at room temperature. Both methods consistently show that hydrating cement pastes have two principal components in their size distribution. Firstly, in situ measurements have been made of the water consumption, the total specific surface area, and pore water size distribution as a function of hydration time. The amount of evaporable water in the pore space can be determined from the magnitude of the NMR signal, and the NMR relaxation times provide a measure of the characteristic pore sizes. Drying studies have been performed to determine the surface spin-spin relaxation time. The NMR results on evolution of cement pore structure with hydration clearly show five different stages. The water consumption was determined to be a linear function of the logarithm of hydration time over a wide range during which the total surface area of the wet gel remains constant. These experiments support a model of capillary and gel pores in the cement paste and provide strong evidence of a stable dense-gel structure. Secondly, supercooling and thawing point depression of confined water has been studied systematically. The depression of the freezing point of liquid water confined within a pore was found to be dependent on the pore size with capillary pore water freezing at 240 K and the remaining gel pore water freezing over a temperature range extending to as low as 160 K. Finally, an important application of NMR has been developed to monitor

  17. Optically rewritable patterns of nuclear magnetization in gallium arsenide.

    PubMed

    King, Jonathan P; Li, Yunpu; Meriles, Carlos A; Reimer, Jeffrey A

    2012-06-26

    The control of nuclear spin polarization is important to the design of materials and algorithms for spin-based quantum computing and spintronics. Towards that end, it would be convenient to control the sign and magnitude of nuclear polarization as a function of position within the host lattice. Here we show that, by exploiting different mechanisms for electron-nuclear interaction in the optical pumping process, we are able to control and image the sign of the nuclear polarization as a function of distance from an irradiated GaAs surface. This control is achieved using a crafted combination of light helicity, intensity and wavelength, and is further tuned via use of NMR pulse sequences. These results demonstrate all-optical creation of micron scale, rewritable patterns of positive and negative nuclear polarization in a bulk semiconductor without the need for ferromagnets, lithographic patterning techniques, or quantum-confined structures.

  18. Orientation of the antimicrobial peptide PGLa in lipid membranes determined from 19F-NMR dipolar couplings of 4-CF3-phenylglycine labels.

    PubMed

    Glaser, Ralf W; Sachse, Carsten; Dürr, Ulrich H N; Wadhwani, Parvesh; Ulrich, Anne S

    2004-05-01

    A highly sensitive solid state (19)F-NMR strategy is described to determine the orientation and dynamics of membrane-associated peptides from specific fluorine labels. Several analogues of the antimicrobial peptide PGLa were synthesized with the non-natural amino acid 4-trifluoromethyl-phenylglycine (CF(3)-Phg) at different positions throughout the alpha-helical peptide chain. A simple 1-pulse (19)F experiment allows the simultaneous measurement of both the anisotropic chemical shift and the homonuclear dipolar coupling within the rotating CF(3)-group in a macroscopically oriented membrane sample. The value and sign of the dipolar splitting determines the tilt of the CF(3)-rotational axis, which is rigidly attached to the peptide backbone, with respect to the external magnetic field direction. Using four CF(3)-labeled peptide analogues (with L-CF(3)-Phg at Ile9, Ala10, Ile13, and Ala14) we confirmed that PGLa is aligned at the surface of lipid membranes with its helix axis perpendicular to the bilayer normal at a peptide:lipid ratio of 1:200. We also determined the azimuthal rotation angle of the helix, which agrees well with the orientation expected from its amphiphilic character. Peptide analogues with a D-CF(3)-Phg label resulting from racemization of the amino acid during synthesis were separately collected by HPLC. Their spectra provide additional information about the PGLa structure and orientation but allow only to discriminate qualitatively between multiple solutions. The structural and functional characterization of the individual CF(3)-labeled peptides by circular dichroism and antimicrobial assays showed only small effects for our four substitutions on the hydrophobic face of the helix, but a significant disturbance was observed in a fifth analogue where Ala8 on the hydrophilic face had been replaced. Even though the hydrophobic CF(3)-Phg side chain cannot be utilized in all positions, it allows highly sensitive NMR measurements over a wide range of

  19. Fluorinated amino-derivatives of the sesquiterpene lactone, parthenolide, as (19)f NMR probes in deuterium-free environments.

    PubMed

    Woods, James R; Mo, Huaping; Bieberich, Andrew A; Alavanja, Tanja; Colby, David A

    2011-11-24

    The design, synthesis, and biological activity of fluorinated amino-derivatives of the sesquiterpene lactone, parthenolide, are described. A fluorinated aminoparthenolide analogue with biological activity similar to the parent natural product was discovered, and its X-ray structure was obtained. This lead compound was then studied using (19)F NMR in the presence and absence of glutathione to obtain additional mechanism of action data, and it was found that the aminoparthenolide eliminates amine faster in the presence of glutathione than in the absence of glutathione. The exact changes in concentrations of fluorinated compound and amine were quantified by a concentration-reference method using (19)F NMR; a major benefit of applying this strategy is that no deuterated solvents or internal standards are required to obtain accurate concentrations. These mechanistic data with glutathione may contribute to the conversion of the amino-derivative to parthenolide, the active pharmacological agent, in glutathione-rich cancer cells.

  20. Fluorinated Amino-Derivatives of the Sesquiterpene Lactone, Parthenolide, as 19F NMR Probes in Deuterium-Free Environments

    PubMed Central

    Woods, James R.; Mo, Huaping; Bieberich, Andrew A.; Alavanja, Tanja; Colby, David A.

    2011-01-01

    The design, synthesis, and biological activity of fluorinated amino-derivatives of the sesquiterpene lactone, parthenolide, are described. A fluorinated aminoparthenolide analogue with biological activity similar to the parent natural product was discovered, and its X-ray structure was obtained. This lead compound was then studied using 19F NMR in the presence and absence of glutathione to obtain additional mechanism of action data, and it was found that the aminoparthenolide eliminates amine faster in the presence of glutathione than in the absence of glutathione. The exact changes in concentrations of fluorinated compound and amine were quantified by a concentration-reference method using 19F NMR; a major benefit of applying this strategy is that no deuterated solvents or internal standards are required to obtain accurate concentrations. These mechanistic data with glutathione may contribute to the conversion of the amino-derivative to parthenolide, the active pharmacological agent, in glutathione-rich cancer cells. PMID:22029741

  1. NMR at earth's magnetic field using para-hydrogen induced polarization.

    PubMed

    Hamans, Bob C; Andreychenko, Anna; Heerschap, Arend; Wijmenga, Sybren S; Tessari, Marco

    2011-09-01

    A method to achieve NMR of dilute samples in the earth's magnetic field by applying para-hydrogen induced polarization is presented. Maximum achievable polarization enhancements were calculated by numerically simulating the experiment and compared to the experimental results and to the thermal equilibrium in the earth's magnetic field. Simultaneous 19F and 1H NMR detection on a sub-milliliter sample of a fluorinated alkyne at millimolar concentration (∼10(18) nuclear spins) was realized with just one single scan. A highly resolved spectrum with a signal/noise ratio higher than 50:1 was obtained without using an auxiliary magnet or any form of radio frequency shielding.

  2. Orientation of fluorinated cholesterol in lipid bilayers analyzed by 19F tensor calculation and solid-state NMR.

    PubMed

    Matsumori, Nobuaki; Kasai, Yusuke; Oishi, Tohru; Murata, Michio; Nomura, Kaoru

    2008-04-09

    6-F-cholesterol was reported to exhibit biological and interfacial properties similar to unmodified cholesterol. We have also found that 6-F-cholesterol mimicked the cholesterol activity observed in the systems of amphotericin B and lipid rafts. However, to use 6-F-cholesterol as a molecular probe to explore molecular recognition in membranes, it is indispensable to have detailed knowledge of the dynamic and orientation properties of the molecule in membrane environments. In this paper, we present the molecular orientation of 6-F-cholesterol (30 mol %) in dimyristoylphosphatidylcholine (DMPC) bilayers revealed by combined use of 19F chemical shift anisotropy (CSA), 2H NMR, and C-F rotational echo double resonance (REDOR) experiments. The axis of rotation of 6-F-cholesterol was shown to be in a similar direction to that of cholesterol in DMPC bilayers, which is almost parallel to the long axis of the molecular frame. The molecular order parameter of 6-F-cholesterol was determined to be ca. 0.85, which is within the range of reported values of cholesterol. These findings suggest that the dynamic properties of 6-F-cholesterol in DMPC are quite similar to those of unmodified cholesterol; therefore, the introduction of a fluorine atom at C6 has virtually no effect on cholesterol dynamics in membranes. In addition, this study demonstrates the practical utility of theoretical calculations for determining the 19F CSA principal axes, which would be extremely difficult to obtain experimentally. The combined use of quantum calculations and solid-state 19F NMR will make it possible to apply the orientation information of 19F CSA tensors to membrane systems.

  3. Method of Continuous Variation: Characterization of Alkali Metal Enolates Using 1H and 19F NMR Spectroscopies

    PubMed Central

    2015-01-01

    The method of continuous variation in conjunction with 1H and 19F NMR spectroscopies was used to characterize lithium and sodium enolates solvated by N,N,N′,N′-tetramethylethyldiamine (TMEDA) and tetrahydrofuran (THF). A strategy developed using lithium enolates was then applied to the more challenging sodium enolates. A number of sodium enolates solvated by TMEDA or THF afford exclusively tetramers. Evidence suggests that TMEDA chelates sodium on cubic tetramers. PMID:24915602

  4. Solubilization of flurbiprofen within non-ionic Tween 20 surfactant micelles: a 19F and 1H NMR study.

    PubMed

    Saveyn, Pieter; Cocquyt, Ellen; Zhu, Wuxin; Sinnaeve, Davy; Haustraete, Katrien; Martins, José C; Van der Meeren, Paul

    2009-07-14

    The solubilization of the poorly water soluble anti-inflammatory drug flurbiprofen in non-ionic Tween 20 surfactant micellar solutions was studied by both (19)F and (1)H NMR spectroscopy in an acidic environment. These non-destructive techniques allowed us to investigate the effect of temperature cycling in situ. Using (19)F NMR, an increased solubilisation capacity was observed as the temperature increased. This effect became more pronounced above the cloud point, which was reduced by more than 30 degrees C in the presence of an excess of flurbiprofen. Upon clouding, peak splitting was observed in the (19)F spectrum, which indicates that two pools of solubilised flurbiprofen exist that are in slow exchange on the NMR frequency timescale. The clouding and solubilization processes were found to be reversible, albeit with slow kinetics. Based on chemical shift differences of both Tween 20 and flurbiprofen, as well as NOESY experiments, the flurbiprofen was found to be accumulated within the palisade layer of the Tween 20 micelles.

  5. Force-detected nuclear magnetic resonance: recent advances and future challenges.

    PubMed

    Poggio, M; Degen, C L

    2010-08-27

    We review recent efforts to detect small numbers of nuclear spins using magnetic resonance force microscopy. Magnetic resonance force microscopy (MRFM) is a scanning probe technique that relies on the mechanical measurement of the weak magnetic force between a microscopic magnet and the magnetic moments in a sample. Spurred by the recent progress in fabricating ultrasensitive force detectors, MRFM has rapidly improved its capability over the last decade. Today it boasts a spin sensitivity that surpasses conventional, inductive nuclear magnetic resonance detectors by about eight orders of magnitude. In this review we touch on the origins of this technique and focus on its recent application to nanoscale nuclear spin ensembles, in particular on the imaging of nanoscale objects with a three-dimensional (3D) spatial resolution better than 10 nm. We consider the experimental advances driving this work and highlight the underlying physical principles and limitations of the method. Finally, we discuss the challenges that must be met in order to advance the technique towards single nuclear spin sensitivity-and perhaps-to 3D microscopy of molecules with atomic resolution.

  6. Solid state nuclear magnetic resonance investigations of advanced energy materials

    NASA Astrophysics Data System (ADS)

    Bennett, George D.

    In order to better understand the physical electrochemical changes that take place in lithium ion batteries and asymmetric hybrid supercapacitors solid state nuclear magnetic resonance (NMR) spectroscopy has been useful to probe and identify changes on the atomic and molecular level. NMR is used to characterize the local environment and investigate the dynamical properties of materials used in electrochemical storage devices (ESD). NMR investigations was used to better understand the chemical composition of the solid electrolyte interphase which form on the negative and positive electrodes of lithium batteries as well as identify the breakdown products that occur in the operation of the asymmetric hybrid supercapacitors. The use of nano-structured particles in the development of new materials causes changes in the electrical, structural and other material properties. NMR was used to investigate the affects of fluorinated and non fluorinated single wall nanotubes (SWNT). In this thesis three experiments were performed using solid state NMR samples to better characterize them. The electrochemical reactions of a lithium ion battery determine its operational profile. Numerous means have been employed to enhance battery cycle life and operating temperature range. One primary means is the choice and makeup of the electrolyte. This study focuses on the characteristics of the solid electrolyte interphase (SEI) that is formed on the electrodes surface during the charge discharge cycle. The electrolyte in this study was altered with several additives in order to determine the influence of the additives on SEI formation as well as the intercalation and de-intercalation of lithium ions in the electrodes. 7Li NMR studies where used to characterize the SEI and its composition. Solid state NMR studies of the carbon enriched acetonitrile electrolyte in a nonaqueous asymmetric hybrid supercapacitor were performed. Magic angle spinning (MAS) coupled with cross polarization NMR

  7. Radiofrequency Coil Designs For Nuclear Magnetic Resonance Zeuciviatographic Imaging

    NASA Astrophysics Data System (ADS)

    Bernardo, M. L.; Cohen, A. J.; Lauterbur, P. C.

    1982-11-01

    The requirements for spatial uniformity of the radio-frequency magnetic field used in three-dimensional MAR imaging are discussed and an improved winding distribution for a saddle-shaped single transmitter-receiver coil has been developed and tested by computer simulation of the rf mag-netic field pattern. The use of flat local or "surface" coils for NMR imaging is also proposed. A. method for correcting such images for the apparent spin density differences caused by the extreme rf magnetic field nonuniformity has been developed and tested with phantoms and images of the human back.

  8. Nuclear resonance reflection of synchrotron radiation from thin dysprosium films with different types of magnetic ordering

    NASA Astrophysics Data System (ADS)

    Andreeva, M. A.; Antropov, N. O.; Baulin, R. A.; Kravtsov, E. A.; Ryabukhina, M. V.; Yakunina, E. M.; Ustinov, V. V.

    2016-12-01

    Epitaxial thin films of dysprosium have been successfully synthesized by the method of high-vacuum magnetron sputtering and their structure and magnetic properties have been investigated. The opportunity of the nuclear resonance scattering for the investigation of nanostructures containing 161Dy has been considered; the specific features of the spectra of nuclear resonance reflectivity from the films have been analyzed on the energy and time scales at different orientations of the magnetic hyperfine field. The simulation of the angular dependences of nuclear resonance reflectivity for the case of spiral ordering in periodic structures containing 161Dy has been carried out. It has been shown that these dependences make it possible to uniquely determine the period of magnetic ordering.

  9. Nuclear magnetic resonance detection and spectroscopy of single proteins using quantum logic.

    PubMed

    Lovchinsky, I; Sushkov, A O; Urbach, E; de Leon, N P; Choi, S; De Greve, K; Evans, R; Gertner, R; Bersin, E; Müller, C; McGuinness, L; Jelezko, F; Walsworth, R L; Park, H; Lukin, M D

    2016-02-19

    Nuclear magnetic resonance spectroscopy is a powerful tool for the structural analysis of organic compounds and biomolecules but typically requires macroscopic sample quantities. We use a sensor, which consists of two quantum bits corresponding to an electronic spin and an ancillary nuclear spin, to demonstrate room temperature magnetic resonance detection and spectroscopy of multiple nuclear species within individual ubiquitin proteins attached to the diamond surface. Using quantum logic to improve readout fidelity and a surface-treatment technique to extend the spin coherence time of shallow nitrogen-vacancy centers, we demonstrate magnetic field sensitivity sufficient to detect individual proton spins within 1 second of integration. This gain in sensitivity enables high-confidence detection of individual proteins and allows us to observe spectral features that reveal information about their chemical composition.

  10. Anomalous hyperfine coupling and nuclear magnetic relaxation in Weyl semimetals

    NASA Astrophysics Data System (ADS)

    Okvátovity, Zoltán; Simon, Ferenc; Dóra, Balázs

    2016-12-01

    The electron-nuclear hyperfine interaction shows up in a variety of phenomena including, e.g., NMR studies of correlated states and spin decoherence effects in quantum dots. Here we focus on the hyperfine coupling and the NMR spin relaxation time T1 in Weyl semimetals. Since the density of states in Weyl semimetals varies with the square of the energy around the Weyl point, a naive power counting predicts a 1 /T1T ˜E4 scaling, with E the maximum of temperature (T ) and chemical potential. By carefully investigating the hyperfine interaction between nuclear spins and Weyl fermions, we find that while its spin part behaves conventionally, its orbital part diverges unusually, with the inverse of the energy around the Weyl point. Consequently, the nuclear spin relaxation rate scales in a graphenelike manner as 1 /T1T ˜E2ln(E /ω0) , with ω0 the nuclear Larmor frequency. This allows us to identify an effective hyperfine coupling constant, which is tunable by gating or doping. This is relevant for the decoherence effect in spintronics devices and double quantum dots, where hyperfine coupling is the dominant source of spin-blockade lifting.

  11. Nuclear magnetic resonance apparatus having semitoroidal rf coil for use in topical NMR and NMR imaging

    DOEpatents

    Fukushima, Eiichi; Roeder, Stephen B. W.; Assink, Roger A.; Gibson, Atholl A. V.

    1986-01-01

    An improved nuclear magnetic resonance (NMR) apparatus for use in topical magnetic resonance (TMR) spectroscopy and other remote sensing NMR applications includes a semitoroidal radio-frequency (rf) coil. The semitoroidal rf coil produces an effective alternating magnetic field at a distance from the poles of the coil, so as to enable NMR measurements to be taken from selected regions inside an object, particularly including human and other living subjects. The semitoroidal rf coil is relatively insensitive to magnetic interference from metallic objects located behind the coil, thereby rendering the coil particularly suited for use in both conventional and superconducting NMR magnets. The semitoroidal NMR coil can be constructed so that it emits little or no excess rf electric field associated with the rf magnetic field, thus avoiding adverse effects due to dielectric heating of the sample or to any other interaction of the electric field with the sample.

  12. Design and development of a novel nuclear magnetic resonance detection for the gas phase ions by magnetic resonance acceleration technique

    NASA Astrophysics Data System (ADS)

    Fuke, K.; Tona, M.; Fujihara, A.; Sakurai, M.; Ishikawa, H.

    2012-08-01

    Nuclear magnetic resonance (NMR) technique is a well-established powerful tool to study the physical and chemical properties of a wide range of materials. However, presently, NMR applications are essentially limited to materials in the condensed phase. Although magnetic resonance was originally demonstrated in gas phase molecular beam experiments, no application to gas phase molecular ions has yet been demonstrated. Here, we present a novel principle of NMR detection for gas phase ions based on a "magnetic resonance acceleration" technique and describe the design and construction of an apparatus which we are developing. We also present an experimental technique and some results on the formation and manipulation of cold ion packets in a strong magnetic field, which are the key innovations to detect NMR signal using the present method. We expect this novel method to lead new realm for the study of mass-selected gas-phase ions with interesting applications in both fundamental and applied sciences.

  13. Nuclear magnetic resonance in sedimentary rocks: Effect of proton desorption rate

    NASA Astrophysics Data System (ADS)

    Mendelson, Kenneth S.

    1982-09-01

    In a discussion of nuclear magnetic resonance of protons in the pore fluid of sedimentary rocks, Cohen and Mendelson assumed that the desorption rate of protons from the rock surface is much faster than the relaxation rate of the magnetization for protons on the surface. In the present paper it is shown that this assumption is not necessary and conditions are established under which the analysis of Cohen and Mendelson is valid.

  14. Zero and Ultra-Low-Field Nuclear Magnetic Resonance Spectroscopy Via Optical Magnetometry

    NASA Astrophysics Data System (ADS)

    Blanchard, John Woodland

    Nuclear magnetic resonance (NMR) is among the most powerful analytical tools available to the chemical and biological sciences for chemical detection, characterization, and structure elucidation. NMR experiments are usually performed in large magnetic fields in order to maximize sensitivity and increase chemical shift resolution. However, the high magnetic fields required for conventional NMR necessitate large, immobile, and expensive superconducting magnets, limiting the use of the technique. New hyperpolarization and non-inductive detection methods have recently allowed for NMR measurements in the inverse regime of extremely low magnetic fields. Whereas a substantial body of research has been conducted in the high-field regime, taking advantage of the efficient coherent control afforded by a spectroscopy dominated by coupling to the spectrometer, the zero- and ultra-low-field (ZULF) regime has remained mostly unexplored. In this dissertation, we investigate the applicability of ZULF-NMR as a novel spectroscopic technique complimentary to high-field NMR. In particular, we consider various aspects of the ZULF-NMR experiment and the dynamics of nuclear spins under various local spin coupling Hamiltonians. We first survey zero-field NMR experiments on systems dominated by the electron-mediated indirect spin-spin coupling (J-coupling). The resulting J-spectra permit precision measurement of chemically relevant information due to the exquisite sensitivity of J-couplings to subtle changes in molecular geometry and electronic structure. We also consider the effects of weak magnetic fields and residual dipolar couplings in anisotropic media, which encode information about nuclear magnetic moments and geometry, and further resolve topological ambiguities by lifting degeneracies. By extending the understanding of the interactions that contribute to ZULF-NMR spectra, this work represents a significant advancement towards a complete description of zero- and ultra

  15. Nuclear magnetic resonance multiwindow analysis of proton local fields and magnetization distribution in natural and deuterated mouse muscle.

    PubMed Central

    Peemoeller, H; Pintar, M M

    1979-01-01

    The proton free-induction decays, spin-spin relaxation times, local fields in the rotating frame, and spin-lattice relaxation times in the laboratory and rotating frames, in natural and fully deuterated mouse muscle, are reported. Measurements were taken above and below freezing temperature and at two time windows on the free-induction decay. A comparative analysis show that the magnetization fractions deduced from the different experiments are in good agreement. The main conclusion is that the resolution of the (heterogeneous) muscle nuclear magnetic resonance (NMR) response is improved by the multiwindow analysis. PMID:262554

  16. NbF5 and TaF5: Assignment of 19F NMR resonances and chemical bond analysis from GIPAW calculations

    NASA Astrophysics Data System (ADS)

    Biswal, Mamata; Body, Monique; Legein, Christophe; Sadoc, Aymeric; Boucher, Florent

    2013-11-01

    The 19F isotropic chemical shifts (δiso) of two isomorphic compounds, NbF5 and TaF5, which involve six nonequivalent fluorine sites, have been experimentally determined from the reconstruction of 1D 19F MAS NMR spectra. In parallel, the corresponding 19F chemical shielding tensors have been calculated using the GIPAW method for both experimental and DFT-optimized structures. Furthermore, the [M4F20] units of NbF5 and TaF5 being held together by van der Waals interactions, the relevance of Grimme corrections to the DFT optimization processes has been evaluated. However, the semi-empirical dispersion correction term introduced by such a method does not show any significant improvement. Nonetheless, a complete and convincing assignment of the 19F NMR lines of NbF5 and TaF5 is obtained, ensured by the linearity between experimental 19F δiso values and calculated 19F isotropic chemical shielding σiso values. The effects of the geometry optimizations have been carefully analyzed, confirming among other matters, the inaccuracy of the experimental structure of NbF5. The relationships between the fluorine chemical shifts, the nature of the fluorine atoms (bridging or terminal), the position of the terminal ones (opposite or perpendicular to the bridging ones), the fluorine charges, the ionicity and the length of the M-F bonds have been established. Additionally, for three of the 19F NMR lines of NbF5, distorted multiplets, arising from 1J-coupling and residual dipolar coupling between the 19F and 93Nb nuclei, were simulated yielding to values of 93Nb-19F 1J-coupling for the corresponding fluorine sites.

  17. Exact two-component relativistic theory for nuclear magnetic resonance parameters.

    PubMed

    Sun, Qiming; Liu, Wenjian; Xiao, Yunlong; Cheng, Lan

    2009-08-28

    An exact two-component (X2C) relativistic theory for nuclear magnetic resonance parameters is obtained by first a single block-diagonalization of the matrix representation of the Dirac operator in a magnetic-field-dependent basis and then a magnetic perturbation expansion of the resultant two-component Hamiltonian and transformation matrices. Such a matrix formulation is not only simple but also general in the sense that the various ways of incorporating the field dependence can be treated in a unified manner. The X2C dia- and paramagnetic terms agree individually with the corresponding four-component ones up to machine accuracy for any basis.

  18. The effects of nuclear magnetic resonance on patients with cardiac pacemakers

    SciTech Connect

    Pavlicek, W.; Geisinger, M.; Castle, L.; Borkowski, G.P.; Meaney, T.F.; Bream, B.L.; Gallagher, J.H.

    1983-04-01

    The effect of nuclear magnetic resonance (NMR) imaging on six representative cardiac pacemakers was studied. The results indicate that the threshold for initiating the asynchronous mode of a pacemaker is 17 gauss. Radiofrequency levels are present in an NMR unit and may confuse or possibly inhibit demand pacemakers, although sensing circuitry is normally provided with electromagnetic interference discrimination. Time-varying magnetic fields can generate pulse amplitudes and frequencies to mimic cardiac activity. A serious limitation in the possibility of imaging a patient with a pacemaker would be the alteration of normal pulsing parameters due to time-varying magnetic fields.

  19. Detection and differentiation of neutral organic compounds by 19F NMR with a tungsten calix[4]arene imido complex.

    PubMed

    Zhao, Yanchuan; Swager, Timothy M

    2013-12-18

    Fluorinated tungsten calix[4]arene imido complexes were synthesized and used as receptors to detect and differentiate neutral organic compounds. It was found that the binding of specific neutral organic molecules to the tungsten centers induces an upfield shift of the fluorine atom appended on the arylimido group, the extent of which is highly dependent on electronic and steric properties. We demonstrate that the specific bonding and size-selectivity of calix[4]arene tungsten-imido complex combined with (19)F NMR spectroscopy is a powerful new method for the analysis of complex mixtures.

  20. Nuclear conversion theory: molecular hydrogen in non-magnetic insulators

    PubMed Central

    Ghiglieno, Filippo

    2016-01-01

    The hydrogen conversion patterns on non-magnetic solids sensitively depend upon the degree of singlet/triplet mixing in the intermediates of the catalytic reaction. Three main ‘symmetry-breaking’ interactions are brought together. In a typical channel, the electron spin–orbit (SO) couplings introduce some magnetic excitations in the non-magnetic solid ground state. The electron spin is exchanged with a molecular one by the electric molecule–solid electron repulsion, mixing the bonding and antibonding states and affecting the molecule rotation. Finally, the magnetic hyperfine contact transfers the electron spin angular momentum to the nuclei. Two families of channels are considered and a simple criterion based on the SO coupling strength is proposed to select the most efficient one. The denoted ‘electronic’ conversion path involves an emission of excitons that propagate and disintegrate in the bulk. In the other denoted ‘nuclear’, the excited electron states are transients of a loop, and the electron system returns to its fundamental ground state. The described model enlarges previous studies by extending the electron basis to charge-transfer states and ‘continui’ of band states, and focuses on the broadening of the antibonding molecular excited state by the solid conduction band that provides efficient tunnelling paths for the hydrogen conversion. After working out the general conversion algebra, the conversion rates of hydrogen on insulating and semiconductor solids are related to a few molecule–solid parameters (gap width, ionization and affinity potentials) and compared with experimental measures. PMID:27703681

  1. In vivo imaging of the rat anatomy with nuclear magnetic resonance.

    PubMed

    Hansen, G; Crooks, L E; Davis, P; De Groot, J; Herfkens, R; Margulis, A R; Gooding, C; Kaufman, L; Hoenninger, J; Arakawa, M; McRee, R; Watts, J

    1980-09-01

    Live rats were imaged by nuclear magnetic resonance (NMR). These images demonstrated fine detail and high object contrast. Motion artifacts are not apparent in 4-minute images, and major blood vessels are demonstrated as regions of low signal intensity because of blood flow. Selective contrast enhancement is possible by varying NMR imager accumulation parameters.

  2. A Noninvasive Method to Study Regulation of Extracellular Fluid Volume in Rats Using Nuclear Magnetic Resonance

    EPA Science Inventory

    Time-domain nuclear magnetic resonance (TD-NMR)-based measurement of body composition of rodents is an effective method to quickly and repeatedly measure proportions of fat, lean, and fluid without anesthesia. TD-NMR provides a measure of free water in a living animal, termed % f...

  3. Exploration of the Use of Nuclear Magnetic Resonance for the Study of Ricin Toxicity in Cells

    DTIC Science & Technology

    2009-04-01

    ricin. 15. SUBJECT TERMS 3T3 Cells Ricinus communis Cell Toxicity Nuclear Magnetic Resonance NMR Ricin 16. SECURITY CLASSIFICATION OF: a. REPORT u...Ricin Preparation. The Ricin communis agglutinin II (ricin) stock solution was prepared by dialyzing ricin (Vector Laboratories, Burlingame, CA

  4. Interaction between adrenaline and dibenzo-18-crown-6: Electrochemical, nuclear magnetic resonance, and theoretical study

    NASA Astrophysics Data System (ADS)

    Yu, Zhang-Yu; Liu, Tao; Wang, Xue-Liang

    2014-12-01

    The interaction between adrenaline (Ad) and dibenzo-18-crown-6 (DB18C6) was studied by cyclic voltammetry, nuclear magnetic resonance spectroscopy, and the theoretical calculations, respectively. The results show that DB18C6 will affect the electron transfer properties of Ad. DB18C6 can form stable supramolecular complexes with Ad through ion-dipole and hydrogen bond interactions.

  5. MEMS-based force-detected nuclear magnetic resonance spectrometer for in situ planetary exploration

    NASA Technical Reports Server (NTRS)

    George, T.; Leskowitz, G.; Madsen, L.; Weitekamp, D.; Tang, W.

    2000-01-01

    Nuclear Magnetic resonance (NMR) is a well-known spectroscopic technique used by chemists and is especially powerful in detecting the presence of water and distinguishing between arbitrary physisorbed and chemisorbed states. This ability is of particular importance in the search for extra-terrestrial life on planets such as Mars.

  6. Quantitative Analysis of Nail Polish Remover Using Nuclear Magnetic Resonance Spectroscopy Revisited

    ERIC Educational Resources Information Center

    Hoffmann, Markus M.; Caccamis, Joshua T.; Heitz, Mark P.; Schlecht, Kenneth D.

    2008-01-01

    Substantial modifications are presented for a previously described experiment using nuclear magnetic resonance (NMR) spectroscopy to quantitatively determine analytes in commercial nail polish remover. The revised experiment is intended for a second- or third-year laboratory course in analytical chemistry and can be conducted for larger laboratory…

  7. Quantitative nuclear magnetic resonance to measure body composition in infants and children

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Quantitative Nuclear Magnetic Resonance (QMR) is being used in human adults to obtain measures of total body fat (FM) with high precision. The current study assessed a device specially designed to accommodate infants and children between 3 and 50 kg (EchoMRI-AH™). Body composition of 113 infants and...

  8. Sealed magic angle spinning nuclear magnetic resonance probe and process for spectroscopy of hazardous samples

    SciTech Connect

    Cho, Herman M.; Washton, Nancy M.; Mueller, Karl T.; Sears, Jr., Jesse A.; Townsend, Mark R.; Ewing, James R.

    2016-06-14

    A magic-angle-spinning (MAS) nuclear magnetic resonance (NMR) probe is described that includes double containment enclosures configured to seal and contain hazardous samples for analysis. The probe is of a modular design that ensures containment of hazardous samples during sample analysis while preserving spin speeds for superior NMR performance and convenience of operation.

  9. An Accessible Two-Dimensional Solution Nuclear Magnetic Resonance Experiment on Human Ubiquitin

    ERIC Educational Resources Information Center

    Rovnyak, David; Thompson, Laura E.

    2005-01-01

    Solution-state nuclear magnetic resonance (NMR) is an invaluable tool in structural and molecular biology research, but may be underutilized in undergraduate laboratories because instrumentation for performing structural studies of macromolecules in aqueous solutions is not yet widely available for use in undergraduate laboratories. We have…

  10. Structural Isomer Identification via NMR: A Nuclear Magnetic Resonance Experiment for Organic, Analytical, or Physical Chemistry.

    ERIC Educational Resources Information Center

    Szafran, Zvi

    1985-01-01

    Background information, procedures used, and typical results obtained are provided for an experiment that examines the ability of nuclear magnetic resonance (NMR) to distinguish between structural isomers via resonance multiplicities and chemical shifts. Reasons for incorporating the experiment into organic, analytical, or physical chemistry…

  11. The Complexation of the Na(super +) by 18-Crown-6 Studied via Nuclear Magnetic Resonance

    ERIC Educational Resources Information Center

    Peters, Steven J.; Stevenson, Cheryl D.

    2004-01-01

    A student friendly experiment that teaches several important concepts of modern nuclear magnetic resonance (NMR), like multinuclear capabilities, the NMR time scale, and time-averaged signals, is described along with some important concepts of thermo chemical equilibria. The mentioned experiment involves safe and inexpensive compounds, such as…

  12. Effect of 1. 5 tesla nuclear magnetic resonance imaging scanner on implanted permanent pacemakers

    SciTech Connect

    Hayes, D.L.; Holmes, D.R. Jr.; Gray, J.E.

    1987-10-01

    Patients with a permanent pacemaker are currently restricted from diagnostic nuclear magnetic resonance (NMR) imaging because of potential adverse effects on the pacemaker by the magnet. Previous work has shown that NMR imaging will result in asynchronous pacing of the pulse generator within a given distance of the magnet. The radiofrequency signal generated by the system may also result in rapid cardiac pacing, which may have deleterious effects. This study utilized a 1.5 tesla unit in an in vivo laboratory animal to evaluate the unit's effects on eight different pulse generators from two manufacturers. All pacemakers functioned in an asynchronous mode when placed within a certain distance of the magnet. In addition, transient reed switch inhibition was observed. Seven of the eight pulse generators paced rapidly when exposed to the radiofrequency signal and there was a dramatic decrease in arterial blood pressure. Whether effective rapid cardiac pacing would occur could not be predicted before exposure to the magnetic resonance unit. Nuclear magnetic resonance imaging with high magnetic fields in patients with a pacemaker should continue to be avoided until the mechanism of the rapid cardiac pacing can be further delineated and either predicted or prevented.

  13. Remote detection of nuclear magnetic resonance with an anisotropic magnetoresistive sensor.

    PubMed

    Verpillat, F; Ledbetter, M P; Xu, S; Michalak, D J; Hilty, C; Bouchard, L-S; Antonijevic, S; Budker, D; Pines, A

    2008-02-19

    We report the detection of nuclear magnetic resonance (NMR) using an anisotropic magnetoresistive (AMR) sensor. A "remote-detection" arrangement was used in which protons in flowing water were prepolarized in the field of a superconducting NMR magnet, adiabatically inverted, and subsequently detected with an AMR sensor situated downstream from the magnet and the adiabatic inverter. AMR sensing is well suited for NMR detection in microfluidic "lab-on-a-chip" applications because the sensors are small, typically on the order of 10 mum. An estimate of the sensitivity for an optimized system indicates that approximately 6 x 10(13) protons in a volume of 1,000 mum(3), prepolarized in a 10-kG magnetic field, can be detected with a signal-to-noise ratio of 3 in a 1-Hz bandwidth. This level of sensitivity is competitive with that demonstrated by microcoils in superconducting magnets and with the projected sensitivity of microfabricated atomic magnetometers.

  14. Electrically detected nuclear magnetic resonance in GaAs/AlGaAs-based quantum point contacts

    NASA Astrophysics Data System (ADS)

    Keane, Zachary; Godfrey, Matthew; Burke, Adam; Chen, Jason; Fricke, Sebastian; Klochan, Oleh; Micolich, Adam; Beere, Harvey; Ritchie, Dave; Trunov, Kirill; Reuter, Dirk; Wieck, Andreas; Hamilton, Alex

    2011-03-01

    Nuclear magnetic resonance (NMR) is a well-known technique with widespread applications in physics, chemistry and medicine. Conventional NMR studies use inductive coils to detect the magnetic field produced by precessing nuclear spins; this approach requires on the order of 1012 spins for detection. Recently, resistive detection of NMR through the hyperfine interaction has been demonstrated with electrons in mesoscopic 2- and 1-dimensional devices based on high-quality GaAs/AlGaAs heterostructures. These studies are typically sensitive to 108 spins, enabling NMR on much smaller sample volumes. Holes are predicted to have much weaker nuclear spin coupling than electrons, which could be relevant to the emerging fields of spintronics and quantum information processing. We present a preliminary comparison between the magnitude of the NMR signal in electron and hole quantum point contacts.

  15. Damage dosimetry and embrittlement monitoring of nuclear pressure vessels in real time by magnetic properties measurement

    SciTech Connect

    Stubbins, J.F.; Ougouag, A.M.; Williams, J.G.

    1992-07-01

    The objective of this project is to develop a technique for real-time monitoring of neutron dose and of the onset and progression of embrittlement in operating nuclear pressure vessels. The technique relies on the measurement of magnetic properties of steel and other magnetic materials which are extremely sensitive to radiation-induced properties changes. The approach being developed here is innovative and unique. It promises to be readily applicable to all existing and planned reactor structures. The significance of this program is that it addresses a major concern in the operation of existing nuclear pressure vessels. The development of microscopic defect clusters during irradiation in the nuclear pressure vessel beltline region leads to an increase in material yield strength and a concomitant decrease in ductility, or ability to absorb energy in fracture (i.e. fracture toughness). This decrease in fracture toughness is alarming since it may impair the ability of the pressure vessel to resist fracture during unusual loading situations.

  16. Optically detected nuclear magnetic resonance in n-GaAs using an on-chip microcoil

    NASA Astrophysics Data System (ADS)

    Chen, Y. S.; Huang, J.; Reuter, D.; Ludwig, A.; Wieck, A. D.; Bacher, G.

    2011-02-01

    Optically detected nuclear magnetic resonance (NMR) with micrometer resolution is demonstrated in n-GaAs using an on-chip microcoil. To trace the Overhauser field, the electron Larmor frequency is monitored via time-resolved magneto-optical Kerr rotation. Sweeping the frequency of the rf magnetic field induced by an on-chip microscale current loop, nuclear spin depolarization is achieved for each isotope species. The experimental data indicate an impact of a local quadrupole field, most likely caused by ionized donors, on the amplitude and linewidth of the NMR spectrum. By applying rf pulse sequences, the Rabi oscillation of A75s nuclear spins is obtained with an effective dephasing time of ˜200 μs.

  17. Relativistic effects on the nuclear magnetic shielding in the MF (M=Cu, Ag, Au) series

    SciTech Connect

    David, Jorge; Restrepo, Albeiro

    2007-11-15

    Relativistic effects on the nuclear magnetic shielding {sigma}(M) of the series of diatomics MF (M=Cu, Ag, Au) are calculated and analyzed using the Dirac-Hartree-Fock (DHF) method in the random phase approximation (RPA). Significant differences due to relativistic effects on the shielding constant {sigma}(M) are found in this series of atoms. The high electronegativity of the fluorine atom works in conjunction with the spin-orbit coupling to increase the calculated value for {sigma}(Au). An unusually large diamagnetic contribution to the shielding constant is observed. Nonrelativistic nuclear magnetic shielding [{sigma}{sup NR}(M)] shows very good linear correlation with the nuclear charge (Z) of the metal, while the relativistic shielding [{sigma}{sup rel}(M)] varies as Z{sup 2.26}.

  18. Structural analysis of strained quantum dots using nuclear magnetic resonance.

    PubMed

    Chekhovich, E A; Kavokin, K V; Puebla, J; Krysa, A B; Hopkinson, M; Andreev, A D; Sanchez, A M; Beanland, R; Skolnick, M S; Tartakovskii, A I

    2012-10-01

    Strained semiconductor nanostructures can be used to make single-photon sources, detectors and photovoltaic devices, and could potentially be used to create quantum logic devices. The development of such applications requires techniques capable of nanoscale structural analysis, but the microscopy methods typically used to analyse these materials are destructive. NMR techniques can provide non-invasive structural analysis, but have been restricted to strain-free semiconductor nanostructures because of the significant strain-induced quadrupole broadening of the NMR spectra. Here, we show that optically detected NMR spectroscopy can be used to analyse individual strained quantum dots. Our approach uses continuous-wave broadband radiofrequency excitation with a specially designed spectral pattern and can probe individual strained nanostructures containing only 1 × 10(5) quadrupole nuclear spins. With this technique, we are able to measure the strain distribution and chemical composition of quantum dots in the volume occupied by the single confined electron. The approach could also be used to address problems in quantum information processing such as the precise control of nuclear spins in the presence of strong quadrupole effects.

  19. The magnetic field dependence of cross-effect dynamic nuclear polarization under magic angle spinning

    SciTech Connect

    Mance, Deni; Baldus, Marc; Gast, Peter; Huber, Martina; Ivanov, Konstantin L.

    2015-06-21

    We develop a theoretical description of Dynamic Nuclear Polarization (DNP) in solids under Magic Angle Spinning (MAS) to describe the magnetic field dependence of the DNP effect. The treatment is based on an efficient scheme for numerical solution of the Liouville-von Neumann equation, which explicitly takes into account the variation of magnetic interactions during the sample spinning. The dependence of the cross-effect MAS-DNP on various parameters, such as the hyperfine interaction, electron-electron dipolar interaction, microwave field strength, and electron spin relaxation rates, is analyzed. Electron spin relaxation rates are determined by electron paramagnetic resonance measurements, and calculations are compared to experimental data. Our results suggest that the observed nuclear magnetic resonance signal enhancements provided by MAS-DNP can be explained by discriminating between “bulk” and “core” nuclei and by taking into account the slow DNP build-up rate for the bulk nuclei.

  20. Spinodal instabilities and the distillation effect in nuclear matter under strong magnetic fields

    SciTech Connect

    Rabhi, A.; Providencia, C.; Providencia, J. Da

    2009-01-15

    We study the effect of strong magnetic fields, of the order of 10{sup 18}-10{sup 19} G, on the instability region of nuclear matter at subsaturation densities. Relativistic nuclear models both with constant couplings and with density-dependent parameters are considered. It is shown that a strong magnetic field can have large effects on the instability regions giving rise to bands of instability and wider unstable regions. As a consequence, we predict larger transition densities at the inner edge of the crust of compact stars with strong magnetic fields. The direction of instability gives rise to a very strong distillation effect if the last Landau level is only partially filled. However, for almost completed Landau levels, an antidistillation effect may occur.

  1. Nuclear magnetic resonance relaxation and diffusion in the presence of internal gradients: the effect of magnetic field strength.

    PubMed

    Mitchell, J; Chandrasekera, T C; Johns, M L; Gladden, L F; Fordham, E J

    2010-02-01

    It is known that internal magnetic field gradients in porous materials, caused by susceptibility differences at the solid-fluid interfaces, alter the observed effective Nuclear Magnetic Resonance transverse relaxation times T2,eff. The internal gradients scale with the strength of the static background magnetic field B0. Here, we acquire data at various magnitudes of B0 to observe the influence of internal gradients on T2-T2 exchange measurements; the theory discussed and observations made are applicable to any T2-T2 analysis of heterogeneous materials. At high magnetic field strengths, it is possible to observe diffusive exchange between regions of local internal gradient extrema within individual pores. Therefore, the observed exchange pathways are not associated with pore-to-pore exchange. Understanding the significance of internal gradients in transverse relaxation measurements is critical to interpreting these results. We present the example of water in porous sandstone rock and offer a guideline to determine whether an observed T2,eff relaxation time distribution reflects the pore size distribution for a given susceptibility contrast (magnetic field strength) and spin echo separation. More generally, we confirm that for porous materials T1 provides a better indication of the pore size distribution than T2,eff at high magnetic field strengths (B0>1 T), and demonstrate the data analysis necessary to validate pore size interpretations of T2,eff measurements.

  2. Evaluation of radio frequency microcoils as nuclear magnetic resonance detectors in low-homogeneity high-field superconducting magnets

    NASA Astrophysics Data System (ADS)

    Wright, A. C.; Neideen, T. A.; Magin, R. L.; Norcross, J. A.

    1998-11-01

    We describe here experiments evaluating the performance of solenoidal radio frequency probes having submillimeter dimensions (microcoils) as detectors for liquid nuclear magnetic resonance (NMR) in very low-homogeneity (100 ppm/cm) magnetic fields. Performance is based on the measured H2O linewidth. A series of solenoidal microcoils having sample volumes 8, 53, and 593 nl were filled with distilled H2O and evaluated for smallest obtainable unshimmed NMR spectral linewidths in a vertical bore superconducting magnet, stabilized at 5.9 T (1H frequency=250 MHz). The smallest microcoil (472 μm diameter) gave a smallest H2O linewidth of 525 Hz, 25 times smaller than that from a standard 5.7 mm probe. Linewidth increased approximately as the square root of sample volume. For comparison, shimmed H2O linewidths using the same microcoils in a high-homogeneity (0.1 ppm/cm) NMR magnet were also measured. Shimmed linewidths in the high-homogeneity magnet were two orders of magnitude smaller and exhibited a similar dependence on volume. The results demonstrate that by using microcoils the volume over which the polarizing magnetic field must meet a specified homogeneity can be significantly reduced, which would be advantageous for smaller, less expensive NMR systems.

  3. [Nuclear magnetic resonance tomography of the temporomandibular joint].

    PubMed

    König, H; Spitzer, W J

    1986-05-01

    Because of its position, the temporomandibular joint is difficult to demonstrate by conventional radiological methods. Even the use of complex methods, such as arthro-tomography or CT, does not result in the satisfactory demonstration of the soft tissues and, in particular, of the articular disc. Magnetic resonance was carried out in 24 patients; it was possible to differentiate functional from morphological changes in the cartilage and these are discussed. Measurements were carried out during progressive opening of the mouth. This permits direct demonstration of reversible and irreversible cartilage displacement and of other changes in the joint and cartilages.

  4. Quantitation of crystalline material within a liquid vehicle using 1H/19F CP/MAS NMR.

    PubMed

    Farrer, Brian T; Peresypkin, Andrey; Wenslow, Robert M

    2007-02-01

    A method to detect and quantify a small amount crystalline material within a liquid solution of solubilized material is described. 19F CP-MAS ssNMR was investigated as a technique to detect low levels (0.2 mg/g) of crystalline sodium (2R)-7-{3-[2-chloro-4-(2,2,2-trifluoroethoxy)phenoxy]propoxy}-2-methyl-3,4-dihydro-2H-chromane-2-carboxylate (I) within a solid mixture (with microcrystalline cellulose) and a slurry with a liquid vehicle (capric and caprylic acid triglycerides). The results demonstrate that the area of the 19F CP/MAS signal obtained in 25 min at 25 degrees C is linearly dependent (R2=0.997) on the mass of I within the ssNMR rotor. Slopes of CP-MAS peak area versus mass of I in the rotor were nearly identical for the solid mixture and slurry suspension. Signal-to-noise ratio for the low potency slurry suggest detection and quantitation of 0.1 mg of crystalline I in the rotor, corresponding to 2 mg/g of crystalline material within the slurry suspension.

  5. A 19F NMR Approach using Reporter Molecule Pairs to Assess β-Galactosidase in Human Xenograft Tumors in Vivo

    PubMed Central

    Yu, Jian-Xin; Kodibagkar, Vikram D.; Liu, Li; Mason, Ralph P.

    2011-01-01

    Gene therapy has emerged as a promising strategy for treatment of various diseases. However, widespread implementation is hampered by difficulties in assessing the success of transfection in the target tissue and the longevity of gene expression. Thus, there is increasing interest in the development of non-invasive in vivo reporter techniques to assay gene expression. We recently demonstrated the ability to detect β-galactosidase activity in stably transfected human prostate tumor xenografts in mice in vivo using 19F NMR. We now extend the studies to human MCF7 breast cancer cells growing as xenografts in nude mice. Moreover, by using two spectrally resolved reporters (o-fluoro-p-nitrophenyl-β-D-galactopyranoside and an isomer) two tumors could be interrogated simultaneously revealing lacZ transgene activity in a stably transfected tumor versus no activity in a wild type tumor. Most significantly hydrolytic activity observed by 19F NMR corresponded with differential activity in lacZ expressing tumors. PMID:18288788

  6. Ferromagnetic ordering in NpAl2: Magnetic susceptibility and 27Al nuclear magnetic resonance

    NASA Astrophysics Data System (ADS)

    Martel, L.; Griveau, J.-C.; Eloirdi, R.; Selfslag, C.; Colineau, E.; Caciuffo, R.

    2015-08-01

    We report on the magnetic properties of the neptunium based ferromagnetic compound NpAl2. We used magnetization measurements and 27Al NMR spectroscopy to access magnetic features related to the paramagnetic and ordered states (TC=56 K). While very precise DC SQUID magnetization measurements confirm ferromagnetic ordering, they show a relatively small hysteresis loop at 5 K reduced with a coercive field HCo~3000 Oe. The variable offset cumulative spectra (VOCS) acquired in the paramagnetic state show a high sensitivity of the 27Al nuclei spectral parameters (Knight shifts and line broadening) to the ferromagnetic ordering, even at room temperature.

  7. Methodological aspects in the calculation of parity-violating effects in nuclear magnetic resonance parameters.

    PubMed

    Weijo, Ville; Bast, Radovan; Manninen, Pekka; Saue, Trond; Vaara, Juha

    2007-02-21

    We examine the quantum chemical calculation of parity-violating (PV) electroweak contributions to the spectral parameters of nuclear magnetic resonance (NMR) from a methodological point of view. Nuclear magnetic shielding and indirect spin-spin coupling constants are considered and evaluated for three chiral molecules, H2O2, H2S2, and H2Se2. The effects of the choice of a one-particle basis set and the treatment of electron correlation, as well as the effects of special relativity, are studied. All of them are found to be relevant. The basis-set dependence is very pronounced, especially at the electron correlated ab initio levels of theory. Coupled-cluster and density-functional theory (DFT) results for PV contributions differ significantly from the Hartree-Fock data. DFT overestimates the PV effects, particularly with nonhybrid exchange-correlation functionals. Beginning from third-row elements, special relativity is of importance for the PV NMR properties, shown here by comparing perturbational one-component and various four-component calculations. In contrast to what is found for nuclear magnetic shielding, the choice of the model for nuclear charge distribution--point charge or extended (Gaussian)--has a significant impact on the PV contribution to the spin-spin coupling constants.

  8. Design and Synthesis of Fluorinated Amphiphile as (19)F MRI/Fluorescence Dual-Imaging Agent by Tuning the Self-Assembly.

    PubMed

    Bo, Shaowei; Song, Cong; Li, Yu; Yu, Weijiang; Chen, Shizhen; Zhou, Xin; Yang, Zhigang; Zheng, Xing; Jiang, Zhong-Xing

    2015-06-19

    Both (19)F MRI and optical imaging are powerful noninvasive molecular imaging modalities in biomedical applications. To integrate these two complementary imaging modalities, the design and synthesis of a novel (19)F MRI/fluorescence dual-modal imaging agent is reported herein. Through Sonogashira coupling reaction between the fluorinated phenylacetylene and 1,2,4,5-tetraiodobenzene, a fluorophore with 48 symmetrical fluorines at its periphery was constructed with high efficacy. High aqueous solubility was achieved by PEGylation of the fluorophore with monodisperse PEGs. However, an unexpected self-assembly of the PEGylated amphiphilic fluorophore in water "turned off" the (19)F NMR signal. However, hydrogenation of the triple bonds or introduction of branched monodisperse PEGs was able to efficiently tune the self-assembly, resulting in the "turning on" of the (19)F NMR signal. One of these amphiphiles combines the advantages of label-free fluorescence, high (19)F MRI sensitivity, biocompatibility, and excellent aqueous solubility. The results demonstrate the great potential of such amphiphiles for real-time (19)F MRI and fluorescence dual-modality imaging.

  9. Experimental quantum simulation of Avian Compass in a nuclear magnetic resonance system

    NASA Astrophysics Data System (ADS)

    Pearson, Jason; Feng, GuanRu; Zheng, Chao; Long, GuiLu

    2016-12-01

    Avian magnetoreception is the capacity for avians to sense the direction of the Earth's magnetic field. Discovered more than forty years ago, it has attracted intensive studies over the years. One promising model for describing this capacity in avians is the widely used reference-and-probe model where radical pairs within the eyes of bird combines to form singlet and triplet quantum states. The yield depends on the angle between the Earth's magnetic field and the molecules' axis, hence the relative value of yield of the singlet state or triplet state enables avians to sense the direction. Here we report the experimental demonstration of avian magnetoreception in a nuclear magnetic resonance quantum information processor. It is shown clearly from the experiment that the yield of the singlet state attains maximum when it is normal to the Earth's magnetic field, and the experimental results agree with theory very well.

  10. Structural, dielectric, magnetic, and nuclear magnetic resonance studies of multiferroic Y-type hexaferrites

    NASA Astrophysics Data System (ADS)

    Khanduri, H.; Chandra Dimri, M.; Kooskora, H.; Heinmaa, I.; Viola, G.; Ning, H.; Reece, M. J.; Krustok, J.; Stern, R.

    2012-10-01

    The effect of strontium substitution on structural, magnetic, and dielectric properties of a multiferroic Y-type hexaferrite (chemical formula Ba2-xSrxMg2Fe12O22 with 0 ≤ x ≤ 2) was investigated. Y-type hexaferrite phase formation was not affected by strontium substitution for barium, in the range 0 ≤ x ≤ 1.5, confirmed by x-ray diffraction and Raman spectroscopy measured at room temperature. Two intermediate magnetic spin phase transitions (at tempertures TI and TII) and a ferrimagnetic-paramagnetic transition (at Curie temperature TC) were identified from the temperature dependence of the magnetic susceptibility. Magnetic transition temperatures (TI, TII, and TC) increased with increasing strontium content. Magnetic hysteresis measurements indicated that by increasing strontium concentration, the coercivity increases, while the saturation magnetization decreases. The 57Fe NMR spectrum of the Y-type hexaferrite measured at 5 K and in zero magnetic field showed remarkable differences compared to that of other hexaferrites due to their different number of tetrahedral and octahedral iron sites. The temperature and frequency dependence of the dielectric permittivity evidenced broad peaks with frequency dispersion in correspondence of the Curie temperature.

  11. Four-component relativistic theory for nuclear magnetic shielding: magnetically balanced gauge-including atomic orbitals.

    PubMed

    Cheng, Lan; Xiao, Yunlong; Liu, Wenjian

    2009-12-28

    It is recognized only recently that the incorporation of the magnetic balance condition is absolutely essential for four-component relativistic theories of magnetic properties. Another important issue to be handled is the so-called gauge problem in calculations of, e.g., molecular magnetic shielding tensors with finite bases. It is shown here that the magnetic balance can be adapted to distributed gauge origins, leading to, e.g., magnetically balanced gauge-including atomic orbitals (MB-GIAOs) in which each magnetically balanced atomic orbital has its own local gauge origin placed on its center. Such a MB-GIAO scheme can be combined with any level of theory for electron correlation. The first implementation is done here at the coupled-perturbed Dirac-Kohn-Sham level. The calculated molecular magnetic shielding tensors are not only independent of the choice of gauge origin but also converge rapidly to the basis set limit. Close inspections reveal that (zeroth order) negative energy states are only important for the expansion of first order electronic core orbitals. Their contributions to the paramagnetism are therefore transferable from atoms to molecule and are essentially canceled out for chemical shifts. This allows for simplifications of the coupled-perturbed equations.

  12. Recursive polarization of nuclear spins in diamond at arbitrary magnetic fields

    SciTech Connect

    Pagliero, Daniela; Laraoui, Abdelghani; Henshaw, Jacob D.; Meriles, Carlos A.

    2014-12-15

    We introduce an alternate route to dynamically polarize the nuclear spin host of nitrogen-vacancy (NV) centers in diamond. Our approach articulates optical, microwave, and radio-frequency pulses to recursively transfer spin polarization from the NV electronic spin. Using two complementary variants of the same underlying principle, we demonstrate nitrogen nuclear spin initialization approaching 80% at room temperature both in ensemble and single NV centers. Unlike existing schemes, our approach does not rely on level anti-crossings and is thus applicable at arbitrary magnetic fields. This versatility should prove useful in applications ranging from nanoscale metrology to sensitivity-enhanced NMR.

  13. Determination of the magnetic spin direction from the nuclear forward-scattering line intensities.

    PubMed

    Callens, R; L'abbé, C; Meersschaut, J; Serdons, I; Sturhahn, W; Toellner, T S

    2007-07-01

    An expression is derived for the line intensities in a nuclear forward-scattering energy spectrum that is obtained via a Fourier transformation of the time dependence of the wavefield. The calculation takes into account the coherent properties of the nuclear forward-scattering process and the experimental limitations on the observable time window. It is shown that, for magnetic samples, the spin direction can be determined from the ratios between the different lines in the energy spectrum. The theory is complemented with experimental results on alpha-iron.

  14. Quantitative nuclear magnetic resonance imaging: characterisation of experimental cerebral oedema.

    PubMed Central

    Barnes, D; McDonald, W I; Johnson, G; Tofts, P S; Landon, D N

    1987-01-01

    Magnetic resonance imaging (MRI) has been used quantitatively to define the characteristics of two different models of experimental cerebral oedema in cats: vasogenic oedema produced by cortical freezing and cytotoxic oedema induced by triethyl tin. The MRI results have been correlated with the ultrastructural changes. The images accurately delineated the anatomical extent of the oedema in the two lesions, but did not otherwise discriminate between them. The patterns of measured increase in T1' and T2' were, however, characteristic for each type of oedema, and reflected the protein content. The magnetisation decay characteristics of both normal and oedematous white matter were monoexponential for T1 but biexponential for T2 decay. The relative sizes of the two component exponentials of the latter corresponded with the physical sizes of the major tissue water compartments. Quantitative MRI data can provide reliable information about the physico-chemical environment of tissue water in normal and oedematous cerebral tissue, and are useful for distinguishing between acute and chronic lesions in multiple sclerosis. Images PMID:3572428

  15. The relationship between reorientational molecular motions and phase transitions in [Mg(H2O)6](BF4)2, studied with the use of 1H and 19F NMR and FT-MIR

    NASA Astrophysics Data System (ADS)

    Mikuli, Edward; Hetmańczyk, Joanna; Grad, Bartłomiej; Kozak, Asja; Wasicki, Jan W.; Bilski, Paweł; Hołderna-Natkaniec, Krystyna; Medycki, Wojciech

    2015-02-01

    A 1H and 19F nuclear magnetic resonance study of [Mg(H2O)6](BF4)2 has confirmed the existence of two phase transitions at Tc1 ≈ 257 K and Tc2 ≈ 142 K, detected earlier by the DSC method. These transitions were reflected by changes in the temperature dependences of both proton and fluorine of second moments M2H and M2F and of spin-lattice relaxation times T1H and T1F. The study revealed anisotropic reorientations of whole [Mg(H2O)6]2+ cations, reorientations by 180° jumps of H2O ligands, and aniso- and isotropic reorientations of BF4- anions. The activation parameters for these motions were obtained. It was found that the phase transition at Tc1 is associated with the reorientation of the cation as a whole unit around the C3 axis and that at Tc2 with isotropic reorientation of the BF4- anions. The temperature dependence of the full width at half maximum value of the infrared band of ρt(H2O) mode (at ˜596 cm-1) indicated that in phases I and II, all H2O ligands in [Mg(H2O)6]2+ perform fast reorientational motions (180° jumps) with a mean value of activation energy equal to ca 10 kJ mole-1, what is fully consistent with NMR results. The phase transition at Tc1 is associated with a sudden change of speed of fast (τR ≈ 10-12 s) reorientational motions of H2O ligands. Below Tc2 (in phase III), the reorientations of certain part of the H2O ligands significantly slow down, while others continue their fast reorientation with an activation energy of ca 2 kJ mole-1. This fast reorientation cannot be evidenced in NMR relaxation experiments. Splitting of certain IR bands connected with H2O ligands at the observed phase transitions suggests a reduction of the symmetry of the octahedral [Mg(H2O)6]2+ complex cation.

  16. Meso-Scale Magnetic Signatures for Nuclear Reactor Steel Irradiation Embrittlement Monitoring

    SciTech Connect

    Suter, Jonathan D.; Ramuhalli, Pradeep; McCloy, John S.; Xu, Ke; Hu, Shenyang Y.; Li, Yulan; Jiang, Weilin; Edwards, Danny J.; Schemer-Kohrn, Alan L.; Johnson, Bradley R.

    2015-03-31

    Verifying the structural integrity of passive components in light-water and advanced reactors will be necessary to ensure safe, long-term operations of the existing U.S. nuclear fleet. This objective can be achieved through nondestructive condition monitoring techniques, which can be integrated with plant operations to quantify the ‘state of health’ of structural materials in real-time. While nondestructive methods for monitoring many classes of degradation (such as fatigue or stress corrosion cracking) are relatively advanced, this is not the case for degradation caused by irradiation. The development of non-destructive evaluation (NDE) technologies for these types of degradation will require advanced materials characterization techniques and tools that enable comprehensive understanding of nuclear reactor material microstructural and behavioral changes under extreme operating environments. Irradiation-induced degradation of reactor steels causes changes in their microstructure that impacts their micro-magnetic properties. In this paper, we describe preliminary results to integrate advanced material characterization techniques with meso-scale computational models to provide an interpretive understanding of the state of degradation in a material. Microstructural data are presented from monocrystalline Fe and are correlated with variable-field magnetic force microscopy and micro-magnetic measurements. In future efforts, microstructural measurements and meso-scale magnetic measurements on thin films will be used to gain insights into the structural state of these materials to study the impact of irradiation on magnetic properties. Preliminary conclusions from these correlations are presented, and next steps described.

  17. Four-component relativistic theory for nuclear magnetic shielding constants: critical assessments of different approaches.

    PubMed

    Xiao, Yunlong; Liu, Wenjian; Cheng, Lan; Peng, Daoling

    2007-06-07

    Both formal and numerical analyses have been carried out on various exact and approximate variants of the four-component relativistic theory for nuclear magnetic shielding constants. These include the standard linear response theory (LRT), the full or external field-dependent unitary transformations of the Dirac operator, as well as the orbital decomposition approach. In contrast with LRT, the latter schemes take explicitly into account both the kinetic and magnetic balances between the large and small components of the Dirac spinors, and are therefore much less demanding on the basis sets. In addition, the diamagnetic contributions, which are otherwise "missing" in LRT, appear naturally in the latter schemes. Nevertheless, the definitions of paramagnetic and diamagnetic terms are not the same in the different schemes, but the difference is only of O(c(-2)) and thus vanishes in the nonrelativistic limit. It is shown that, as an operator theory, the full field-dependent unitary transformation approach cannot be applied to singular magnetic fields such as that due to the magnetic point dipole moment of a nucleus. However, the inherent singularities can be avoided by the corresponding matrix formulation (with a partial closed summation). All the schemes are combined with the Dirac-Kohn-Sham ansatz for ground state calculations, and by using virtually complete basis sets a new and more accurate set of absolute nuclear magnetic resonance shielding scales for the rare gases He-Rn have been established.

  18. Permanently magnetized high gradient magnetic air filters for the nuclear industry

    SciTech Connect

    Watson, J.H.P.

    1995-11-01

    This paper describes the structure and testing of two novel permanently magnetized magnetic filters for fine radioactive material. In the first filter the holes in the filter are left open as capture proceeds which means the pressure drop builds up only slowly. This filter is not suitable for composite particles which can be broken by mechanical forces. The second filter has been changed so as to strongly capture particles composed of fine particles weakly bound together which tend to break when captured. This uses a principle of assisted capture in which coarse particles aid the capture of the fine fragments. These filters have the following characteristics: (1) no external magnet is required, (2) no external power is required, (3) small in size and portable, (4) easily interchangeable, and (5) can be cleaned without demagnetizing by using a magnetic fluid which matches the susceptibility of the captured particles.

  19. Nuclear Magnetic Moment of {sup 210}Fr: A Combined Theoretical and Experimental Approach

    SciTech Connect

    Gomez, E.; Aubin, S.; Sprouse, G. D.; Orozco, L. A.; Iskrenova-Tchoukova, E.; Safronova, M. S.

    2008-05-02

    We measure the hyperfine splitting of the 9S{sub 1/2} level of {sup 210}Fr, and find a magnetic dipole hyperfine constant A=622.25(36) MHz. The theoretical value, obtained using the relativistic all-order method from the electronic wave function at the nucleus, allows us to extract a nuclear magnetic moment of 4.38(5){mu}{sub N} for this isotope, which represents a factor of 2 improvement in precision over previous measurements. The same method can be applied to other rare isotopes and elements.

  20. Micro-coil detection of nuclear magnetic resonance for nanofluidic samples

    NASA Astrophysics Data System (ADS)

    Shibahara, A.; Casey, A.; Lusher, C. P.; Saunders, J.; Aßmann, C.; Schurig, Th.; Drung, D.

    2014-02-01

    We have developed a novel dc SQUID system with a micro-coil input circuit to act as a local probe of quantum matter and nanosystems. The planar niobium micro-coil pickup loop is located remotely from the SQUID, coupled through a superconducting twisted pair. A high degree of coupling between the coil and the region of interest of similar dimensions (up to ˜ 100 microns) can be achieved. We report nuclear magnetic resonance (NMR) measurements to characterise the sensitivity of these coils to 3He in the gas phase at 4.2 K in a 30 mT magnetic field.

  1. Micro-coil detection of nuclear magnetic resonance for nanofluidic samples

    SciTech Connect

    Shibahara, A.; Casey, A.; Lusher, C. P.; Saunders, J.; Aßmann, C.; Schurig, Th.; Drung, D.

    2014-02-15

    We have developed a novel dc SQUID system with a micro-coil input circuit to act as a local probe of quantum matter and nanosystems. The planar niobium micro-coil pickup loop is located remotely from the SQUID, coupled through a superconducting twisted pair. A high degree of coupling between the coil and the region of interest of similar dimensions (up to ∼ 100 microns) can be achieved. We report nuclear magnetic resonance (NMR) measurements to characterise the sensitivity of these coils to {sup 3}He in the gas phase at 4.2 K in a 30 mT magnetic field.

  2. Application of a portable nuclear magnetic resonance surface probe to porous media.

    PubMed

    Marko, Andriy; Wolter, Bernd; Arnold, Walter

    2007-03-01

    A portable nuclear magnetic resonance (NMR) surface probe was used to determine the time-dependent self-diffusion coefficient D(t) of water molecules in two fluid-filled porous media. The measuring equipment and the inhomogeneous magnetic fields in the sensitive volume of the probe are described. It is discussed how to evaluate D(t) using a surface probe from the primary and stimulated echoes generated in three-pulse experiments. Furthermore, the evaluation of D(t) allows one to determine the geometrical structure of porous materials.

  3. Mechanical Generation of Radio-Frequency Fields in Nuclear-Magnetic-Resonance Force Microscopy

    NASA Astrophysics Data System (ADS)

    Wagenaar, J. J. T.; den Haan, A. M. J.; Donkersloot, R. J.; Marsman, F.; de Wit, M.; Bossoni, L.; Oosterkamp, T. H.

    2017-02-01

    We present a method for magnetic-resonance force microscopy (MRFM) with ultralow dissipation, by using the higher modes of the mechanical detector as a radio-frequency (rf) source. This method allows MRFM on samples without the need to be close to a conventional electrically driven rf source. Furthermore, since conventional electrically driven rf sources require currents that give dissipation, our method enables nuclear-magnetic-resonance experiments at ultralow temperatures. Removing the need for an on-chip rf source is an important step towards an MRFM which can be widely used in condensed matter physics.

  4. Magnetic equivalence of terminal nuclei in the azide anion broken by nuclear spin relaxation

    NASA Astrophysics Data System (ADS)

    Bernatowicz, P.; Szymański, S.

    NMR spectra of water solution of sodium azide selectively 15N labelled in the central position were studied using an iterative least-squares method. In agreement with predictions based on Bloch-Wangsness-Redfield nuclear spin relaxation theory, it is demonstrated that quadrupolar relaxation of the magnetically equivalent terminal 14N (spin-1) nuclei in the azide anion renders the J coupling between these nuclei an observable quantity. In isotropic fluids, this seems to be the first experimental evidence of relaxation-broken magnetic equivalence symmetry.

  5. Two-dimensional nuclear magnetic resonance studies of molecular structure in liquids and liquid crystals

    SciTech Connect

    Rucker, S.P.

    1991-07-01

    Magnetic couplings between protons, such as through-space dipole couplings, and scalar J-couplings depend sensitively on the structure of the molecule. Two dimensional nuclear magnetic resonance experiments provide a powerful tool for measuring these couplings, correlating them to specific pairs of protons within the molecule, and calculating the structure. This work discusses the development of NMR methods for examining two such classes of problems -- determination of the secondary structure of flexible molecules in anisotropic solutions, and primary structure of large biomolecules in aqueous solutions. 201 refs., 84 figs., 19 tabs.

  6. Generation of low-frequency electric and magnetic fields during large- scale chemical and nuclear explosions

    SciTech Connect

    Adushkin, V.V.; Dubinya, V.A.; Karaseva, V.A.; Soloviev, S.P.; Surkov, V.V.

    1995-06-01

    We discuss the main parameters of the electric field in the surface layer of the atmosphere and the results of the investigations of the natural electric field variations. Experimental investigations of the electromagnetic field for explosions in air are presented. Electromagnetic signals generated by underground nuclear and chemical explosions are discussed and explosions for 1976--1991 are listed. Long term anomalies of the earth`s electromagnetic field in the vicinity of underground explosions were also investigated. Study of the phenomenon of the irreversible shock magnetization showed that in the zone nearest to the explosion the quasistatic magnetic field decreases in inverse proportion to the distance.

  7. Cavity- and waveguide-resonators in electron paramagnetic resonance, nuclear magnetic resonance, and magnetic resonance imaging.

    PubMed

    Webb, Andrew

    2014-11-01

    Cavity resonators are widely used in electron paramagnetic resonance, very high field magnetic resonance microimaging and also in high field human imaging. The basic principles and designs of different forms of cavity resonators including rectangular, cylindrical, re-entrant, cavity magnetrons, toroidal cavities and dielectric resonators are reviewed. Applications in EPR and MRI are summarized, and finally the topic of traveling wave MRI using the magnet bore as a waveguide is discussed.

  8. Differential cross section measurements of the 19F(d,d0) elastic scattering for Ion Beam Analysis purposes

    NASA Astrophysics Data System (ADS)

    Foteinou, V.; Provatas, G.; Aslanoglou, X.; Axiotis, M.; Harissopulos, S.; Kokkoris, M.; Lagoyannis, A.; Misaelides, P.; Ntemou, E.; Patronis, N.; Preketes-Sigalas, K.

    2017-04-01

    The differential cross sections of the 19F(d,d0) elastic scattering were determined at five backward angles from 125° to 170°. Two independent experiments were performed, one for the determination of the cross sections and one for the validation of the obtained results. In the first experiment, a thin natLiF target was bombarded with deuterons in the energy region from 0.94 to 2.0 MeV. In the benchmarking experiment, a thick ZnF2 pellet was irradiated with deuterons at Ed,lab = 1.11, 1.4, 1.6, 1.8and 2.0MeV .

  9. Kinetics of membrane binding and dissociation of 5-fluorouracil by pulsed-field-gradient 19F NMR

    NASA Astrophysics Data System (ADS)

    Yoshii, Noriyuki; Okamura, Emiko

    2009-06-01

    The kinetics of membrane binding and dissociation of an anticancer drug, 5-fluorouracil (5FU) is quantified by high resolution NMR with the pulsed-field-gradient technique. The 19F NMR signal of 5FU is analyzed at 293-313 K by the solution of Bloch equation with exchange terms. The rate constants of 5FU binding and dissociation are 0.2 and 4.1 s -1 at 303 K. The 5FU motion in the vertical direction to the membrane surface is restricted as compared with the lateral diffusion, judging from the activation energy (57 kJ/mol) larger than the lateral diffusion in membrane (26 kJ/mol [E. Okamura, N. Yoshii, J. Chem. Phys. 129 (2008) 215102]).

  10. NbF{sub 5} and TaF{sub 5}: Assignment of {sup 19}F NMR resonances and chemical bond analysis from GIPAW calculations

    SciTech Connect

    Biswal, Mamata; Body, Monique; Legein, Christophe; Sadoc, Aymeric; Boucher, Florent

    2013-11-15

    The {sup 19}F isotropic chemical shifts (δ{sub iso}) of two isomorphic compounds, NbF{sub 5} and TaF{sub 5}, which involve six nonequivalent fluorine sites, have been experimentally determined from the reconstruction of 1D {sup 19}F MAS NMR spectra. In parallel, the corresponding {sup 19}F chemical shielding tensors have been calculated using the GIPAW method for both experimental and DFT-optimized structures. Furthermore, the [M{sub 4}F{sub 20}] units of NbF{sub 5} and TaF{sub 5} being held together by van der Waals interactions, the relevance of Grimme corrections to the DFT optimization processes has been evaluated. However, the semi-empirical dispersion correction term introduced by such a method does not show any significant improvement. Nonetheless, a complete and convincing assignment of the {sup 19}F NMR lines of NbF{sub 5} and TaF{sub 5} is obtained, ensured by the linearity between experimental {sup 19}F δ{sub iso} values and calculated {sup 19}F isotropic chemical shielding σ{sub iso} values. The effects of the geometry optimizations have been carefully analyzed, confirming among other matters, the inaccuracy of the experimental structure of NbF{sub 5}. The relationships between the fluorine chemical shifts, the nature of the fluorine atoms (bridging or terminal), the position of the terminal ones (opposite or perpendicular to the bridging ones), the fluorine charges, the ionicity and the length of the M–F bonds have been established. Additionally, for three of the {sup 19}F NMR lines of NbF{sub 5}, distorted multiplets, arising from {sup 1}J-coupling and residual dipolar coupling between the {sup 19}F and {sup 93}Nb nuclei, were simulated yielding to values of {sup 93}Nb–{sup 19}F {sup 1}J-coupling for the corresponding fluorine sites. - Graphical abstract: The complete assignment of the {sup 19}F NMR lines of NbF{sub 5} and TaF{sub 5} allow establishing relationships between the {sup 19}F δ{sub iso} values, the nature of the fluorine atoms

  11. Application of nuclear magnetic resonance spectroscopy for identification of ciprofloxacin crystalluria.

    PubMed

    Morell-Garcia, Daniel; Barceló, Bernardino; Rodriguez, Adrian; Liñeiro, Victor; Robles, Rosa; Vidal-Puigserver, Joan; Costa-Bauzá, Antonia; Grases, Felix

    2015-01-01

    This is a report describing a previously healthy young patient, who experienced crystalluria and non-cholestatic acute liver injury after a single intravenous dose of 400mg. The nuclear magnetic resonance spectra confirmed that the urinary sediment in our patient was formed by pure ciprofloxacin. The nuclear magnetic resonance spectra ((1)H NMR) of the urine sediment are a good test to confirm the composition of the crystals observed by electron microscopy and infrared spectrum. The findings indicate the importance of adequate hydration, urinalysis, measurement of pH and liver enzyme levels, prior to treatment with ciprofloxacin. Our findings also indicate that ciprofloxacin should not be administered to patients with renal tubular acidosis, due to their high urinary pH.

  12. Analysis of antimycin A by reversed-phase liquid chromatography/nuclear magnetic-resonance spectrometry

    USGS Publications Warehouse

    Ha, Steven T.K.; Wilkins, Charles L.; Abidi, Sharon L.

    1989-01-01

    A mixture of closely related streptomyces fermentation products, antimycin A, Is separated, and the components are identified by using reversed-phase high-performance liquid chromatography with directly linked 400-MHz proton nuclear magnetic resonance detection. Analyses of mixtures of three amino acids, alanine, glycine, and valine, are used to determine optimal measurement conditions. Sensitivity increases of as much as a factor of 3 are achieved, at the expense of some loss in chromatographic resolution, by use of an 80-μL NMR cell, Instead of a smaller 14-μL cell. Analysis of the antimycin A mixture, using the optimal analytical high performance liquid chromatography/nuclear magnetic resonance conditions, reveals it to consist of at least 10 closely related components.

  13. Effect of the {delta} meson on the instabilities of nuclear matter under strong magnetic fields

    SciTech Connect

    Rabhi, A.; Providencia, C.; Da Providencia, J.

    2009-08-15

    We study the influence of the isovector-scalar meson on the spinodal instabilities and the distillation effect in asymmetric nonhomogenous nuclear matter under strong magnetic fields of the order of 10{sup 18}-10{sup 19} G. Relativistic nuclear models both with constant couplings (NLW) and with density-dependent parameters (DDRH) are considered. A strong magnetic field can have large effects on the instability regions giving rise to bands of instability and wider unstable regions. It is shown that for neutron-rich matter the inclusion of the {delta} meson increases the size of the instability region for NLW models and decreases it for the DDRH models. The effect of the {delta} meson on the transition density to homogeneous {beta}-equilibrium matter is discussed. The DDRH{delta} model predicts the smallest transition pressures, about half the values obtained for NL{delta}.

  14. Quantitative nuclear magnetic resonance spectroscopic determination of the oxyethylene group content of polysorbates.

    PubMed

    Sugimoto, Naoki; Koike, Ryo; Furusho, Noriko; Tanno, Makoto; Yomota, Chikako; Sato, Kyoko; Yamazaki, Takeshi; Tanamoto, Kenichi

    2007-08-01

    Guidelines for the oxyethylene group (EO) content of polysorbates are set by the Food and Agriculture Organization/World Health Organization Joint Expert Committee on Food Additives. However, the classical titration method for EO determination is difficult and time-consuming. Here, we show that quantitative (1)H-nuclear magnetic resonance spectroscopy can determine the EO contents of polysorbates rapidly and simply. The EO signals were identified through comparisons with sorbitan monolaurate and poly(ethylene glycol) distearate. Potassium hydrogen phthalate was used as an internal standard. The EO contents were estimated from the ratio of the signal intensities of EO to the internal standard. Two nuclear magnetic resonance systems were used to validate the proposed method. The EO content of commercial polysorbates 20, 60, 65, and 80 was determined to be within the recommended limits using this technique. Our approach thus represents an additional or alternative method of determining the EO contents of polysorbates.

  15. Magnetic hysteresis properties of neutron-irradiated VVER440-type nuclear reactor pressure vessel steels

    NASA Astrophysics Data System (ADS)

    Kobayashi, S.; Gillemot, F.; Horváth, Á.; Székely, R.; Horváth, M.

    2012-11-01

    The development of non-destructive evaluation methods for irradiation embrittlement in nuclear reactor pressure vessel steels has a key role for safe and long-term operation of nuclear power plants. In this study, we have investigated the effect of neutron irradiation on base and weld metals of Russian VVER440-type reactor pressure vessel steels by measurements of magnetic minor hysteresis loops. A minor-loop coefficient, which is obtained from a scaling power-law relation of minor-loop parameters and is a sensitive indicator of internal stress, is found to change with neutron fluence for both metals. While the coefficient for base metal exhibits a local maximum at low fluence and a subsequent slow decrease, that for weld metal monotonically decreases with fluence. The observed results are explained by competing mechanisms of nanoscale defect formation and recovery, among which the latter process plays a dominant role for magnetic property changes in weld metal due to its ferritic microstructure.

  16. Key metabolites in tissue extracts of Elliptio complanata identified using (1)H nuclear magnetic resonance spectroscopy.

    PubMed

    Hurley-Sanders, Jennifer L; Levine, Jay F; Nelson, Stacy A C; Law, J M; Showers, William J; Stoskopf, Michael K

    2015-01-01

    We used (1)H nuclear magnetic resonance spectroscopy to describe key metabolites of the polar metabolome of the freshwater mussel, Elliptio complanata. Principal components analysis documented variability across tissue types and river of origin in mussels collected from two rivers in North Carolina (USA). Muscle, digestive gland, mantle and gill tissues yielded identifiable but overlapping metabolic profiles. Variation in digestive gland metabolic profiles between the two mussel collection sites was characterized by differences in mono- and disaccharides. Variation in mantle tissue metabolomes appeared to be associated with sex. Nuclear magnetic resonance spectroscopy is a sensitive means to detect metabolites in the tissues of E. complanata and holds promise as a tool for the investigation of freshwater mussel health and physiology.

  17. Nuclear Magnetic Resonance (NMR) analysis of a Kel-F resin and lacquer

    NASA Astrophysics Data System (ADS)

    Rutenberg, A. C.

    1985-08-01

    Proton, carbon, and fluorine nuclear magnetic resonance (NMR) spectroscopy has been used at the Oak Ridge Y-12 Plant to determine the concentration of various species present in Kel-F 800 resin and its lacquers. Nuclear magnetic resonance (NMR) spectroscopy has been used to characterize Kel-F 800 resin and to measure the various chemical species present in a lacquer based on this resin. Proton NMR spectroscopy was used to measure the ratio of ethyl acetate to xylenes and to estimate the vinylidene fluoride content of the resin. Fluorine NMR spectroscopy was used to determine the water and ethanol content of the lacquer as well as some of its components. Fluorine NMR spectroscopy was also used to estimate the amount of perfluorodecanoate emulsifier present in the Kel-F resin. Carbon-13 NMR spectroscopy was used to determine the isomeric composition of various batches of xylenes and as an alternate method for measuring the vinylidene fluoride content of the resin.

  18. Measurement of conductivity and permittivity on samples sealed in nuclear magnetic resonance tubes

    SciTech Connect

    Huang, W.; Angell, C. A.; Yarger, J. L.; Richert, R.

    2013-07-15

    We present a broadband impedance spectroscopy instrument designed to measure conductivity and/or permittivity for samples that are sealed in glass tubes, such as the standard 5 mm tubes used for nuclear magnetic resonance experiments. The calibrations and corrections required to extract the dielectric properties of the sample itself are outlined. It is demonstrated that good estimates of the value of dc-conductivity can be obtained even without correcting for the effects of glass or air on the overall impedance. The approach is validated by comparing data obtained from samples sealed in nuclear magnetic resonance tubes with those from standard dielectric cells, using glycerol and butylmethylimidazolium-hexafluorophosphate as respective examples of a molecular and an ionic liquid. This instrument and approach may prove useful for other studies of permittivity and conductivity where contact to the metal electrodes or to the ambient atmosphere needs to be avoided.

  19. Key metabolites in tissue extracts of Elliptio complanata identified using 1H nuclear magnetic resonance spectroscopy

    PubMed Central

    Hurley-Sanders, Jennifer L.; Levine, Jay F.; Nelson, Stacy A. C.; Law, J. M.; Showers, William J.; Stoskopf, Michael K.

    2015-01-01

    We used 1H nuclear magnetic resonance spectroscopy to describe key metabolites of the polar metabolome of the freshwater mussel, Elliptio complanata. Principal components analysis documented variability across tissue types and river of origin in mussels collected from two rivers in North Carolina (USA). Muscle, digestive gland, mantle and gill tissues yielded identifiable but overlapping metabolic profiles. Variation in digestive gland metabolic profiles between the two mussel collection sites was characterized by differences in mono- and disaccharides. Variation in mantle tissue metabolomes appeared to be associated with sex. Nuclear magnetic resonance spectroscopy is a sensitive means to detect metabolites in the tissues of E. complanata and holds promise as a tool for the investigation of freshwater mussel health and physiology. PMID:27293708

  20. Use of Nuclear Spin Noise Spectroscopy to Monitor Slow Magnetization Buildup at Millikelvin Temperatures

    PubMed Central

    Pöschko, Maria Theresia; Peat, David; Owers‐Bradley, John

    2016-01-01

    Abstract At ultralow temperatures, longitudinal nuclear magnetic relaxation times become exceedingly long and spectral lines are very broad. These facts pose particular challenges for the measurement of NMR spectra and spin relaxation phenomena. Nuclear spin noise spectroscopy is used to monitor proton spin polarization buildup to thermal equilibrium of a mixture of glycerol, water, and copper oxide nanoparticles at 17.5 mK in a static magnetic field of 2.5 T. Relaxation times determined in such a way are essentially free from perturbations caused by excitation radiofrequency pulses, radiation damping, and insufficient excitation bandwidth. The experimental spin‐lattice relaxation times determined on resonance by saturation recovery with spin noise detection are consistently longer than those determined by using pulse excitation. These longer values are in better accordance with the expected field dependence trend than those obtained by on‐resonance experiments with pulsed excitation. PMID:27305629

  1. Feasibility of 19F-NMR for assessing the molecular mobility of flufenamic acid in solid dispersions.

    PubMed

    Aso, Yukio; Yoshioka, Sumie; Miyazaki, Tamaki; Kawanishi, Toru

    2009-01-01

    The purpose of the present study was to clarify the feasibility of 19F-NMR for assessing the molecular mobility of flufenamic acid (FLF) in solid dispersions. Amorphous solid dispersions of FLF containing poly(vinylpyrrolidone) (PVP) or hydroxypropylmethylcellulose (HPMC) were prepared by melting and rapid cooling. Spin-lattice relaxation times (T1 and T(1rho)) of FLF fluorine atoms in the solid dispersions were determined at various temperatures (-20 to 150 degrees C). Correlation time (tauc), which is a measure of rotational molecular mobility, was calculated from the observed T1 or T1rho value and that of the T1 or T1rho minimum, assuming that the relaxation mechanism of spin-lattice relaxation of FLF fluorine atoms does not change with temperature. The tauc value for solid dispersions containing 20% PVP was 2-3 times longer than that for solid dispersions containing 20% HPMC at 50 degrees C, indicating that the molecular mobility of FLF in solid dispersions containing 20% PVP was lower than that in solid dispersions containing 20% HPMC. The amount of amorphous FLF remaining in the solid dispersions stored at 60 degrees C was successfully estimated by analyzing the solid echo signals of FLF fluorine atoms, and it was possible to follow the overall crystallization of amorphous FLF in the solid dispersions. The solid dispersion containing 20% PVP was more stable than that containing 20% HPMC. The difference in stability between solid dispersions containing PVP and HPMC is considered due to the difference in molecular mobility as determined by tauc. The molecular mobility determined by 19F-NMR seems to be a useful measure for assessing the stability of drugs containing fluorine atoms in amorphous solid dispersions.

  2. Measurement of lateral diffusion rates in membranes by pulsed magnetic field gradient, magic angle spinning-proton nuclear magnetic resonance.

    PubMed

    Gawrisch, Klaus; Gaede, Holly C

    2007-01-01

    Membrane organization, including the presence of domains, can be characterized by measuring lateral diffusion rates of lipids and membrane-bound substances. Magic angle spinning (MAS) yields well-resolved proton nuclear magnetic resonance (NMR) of lipids in biomembranes. When combined with pulsed-field gradient NMR (rendering what is called "pulsed magnetic field gradients-MAS-NMR"), it permits precise diffusion measurements on the micrometer lengths scale for any substance with reasonably well-resolved proton MAS-NMR resonances, without the need of preparing oriented samples. Sample preparation procedures, the technical requirements for the NMR equipment, and spectrometer settings are described. Additionally, equations for analysis of diffusion data obtained from unoriented samples, and a method for correcting the data for liposome curvature are provided.

  3. A noninvasive method to study regulation of extracellular fluid volume in rats using nuclear magnetic resonance

    EPA Pesticide Factsheets

    NMR fluid measurements of commonly used rat strains when subjected to SQ normotonic or hypertonic salines, as well as physiologic comparisons to sedentary and exercised subjects.This dataset is associated with the following publication:Gordon , C., P. Phillips , and A. Johnstone. A Noninvasive Method to Study Regulation of Extracellular Fluid Volume in Rats Using Nuclear Magnetic Resonance. American Journal of Physiology- Renal Physiology. American Physiological Society, Bethesda, MD, USA, 310(5): 426-31, (2016).

  4. Nuclear magnetic resonance studies of granular flows: Technical progress report, quarter ending 09/30/93

    SciTech Connect

    Not Available

    1993-10-27

    This Technical Progress Report for the quarter ending 09/30/93 describes work on two tasks which are part of nuclear magnetic resonance studies of granular flows. (1) Research has been directed toward improving concentration measurements under reasonably fast conditions. (2) The process continues of obtaining comprehensive velocity, concentration, and diffusion information at several angular velocities of the cylinder for seeds (mustard, sesame, and sunflower seeds) flowing in a half-filled cylinder.

  5. Solid state nuclear magnetic resonance studies of prion peptides and proteins

    SciTech Connect

    Heller, Jonathan

    1997-08-01

    High-resolution structural studies using x-ray diffraction and solution nuclear magnetic resonance (NMR) are not feasible for proteins of low volubility and high tendency to aggregate. Solid state NMR (SSNMR) is in principle capable of providing structural information in such systems, however to do this efficiently and accurately, further SSNMR tools must be developed This dissertation describes the development of three new methods and their application to a biological system of interest, the priori protein (PrP).

  6. Theory and applications of maps on SO(3) in nuclear magnetic resonance

    SciTech Connect

    Cho, H.M.

    1987-02-01

    Theoretical approaches and experimental work in the design of multiple pulse sequences in Nuclear Magnetic Resonance (NMR) are the subjects of this dissertation. Sequences of discrete pulses which reproduce the nominal effect of single pulses, but over substantially broader, narrower, or more selective ranges of transition frequencies, radiofrequency field amplitudes, and spin-spin couplings than the single pulses they replace, are developed and demonstrated. 107 refs., 86 figs., 6 tabs.

  7. Fetal imaging by nuclear magnetic resonance: a study in goats: work in progress

    SciTech Connect

    Foster, M.A.; Knight, C.H.; Rimmington, J.E.; Mallard, J.R.

    1983-10-01

    Nuclear magnetic resonance proton imaging was used to obtain images of goat fetuses in utero. The long T1 relaxation time of amniotic fluid makes it appear black on proton density images when examined using the Aberdeen imager, and so allows very good discrimination of the position and structure of the fetus. Some fetal internal tissues can be seen on T1 images. These findings suggest that NMR imaging has great potential in pregnancy studies.

  8. Proton nuclear magnetic resonance of intact friend leukemia cells: phosphorylcholine increase during differentiation

    SciTech Connect

    Agris, P.F.; Campbell, I.D.

    1982-06-18

    Proton nuclear magnetic resonance of intact Friend leukemia cells was used to analyze their erythroid-like differentiation. The technique, which requires only 10/sup 8/ to 10/sup 9/ cells and approximately 2 minutes for acquisition of each spectrum, demonstrated the occurrence of many signal changes during differentiation. With cell extracts, 64 signals were assigned to 12 amino acids and 19 other intermediary metabolites, and a dramatic signal change was attributed to a fourfrease in cytoplasmic phosphorylcholines.

  9. Nuclear magnetic resonance monitoring of treatment and prediction of outcome in multiple sclerosis.

    PubMed Central

    Miller, D H; Thompson, A J

    1999-01-01

    Magnetic resonance (MR) techniques provide an objective, sensitive and quantitative assessment of the evolving pathology in multiple sclerosis. There is an increasing definition of the pathological specificity of newer techniques, and more robust correlations with clinical evolution are emerging. As the pathophysiological basis of in vivo nuclear MR signal abnormalities is further elucidated, it is likely that the importance of MR as a tool to monitor new therapies will increase. PMID:10603620

  10. Robert Vivian Pound and the Discovery of Nuclear Magnetic Resonance in Condensed Matter

    NASA Astrophysics Data System (ADS)

    Pavlish, Ursula

    2010-06-01

    This paper is based upon five interviews I conducted with Robert Vivian Pound in 2006-2007 and covers his childhood interest in radios, his time at the Massachusetts Institute of Technology Radiation Laboratory during the Second World War, his work on the discovery of nuclear magnetic resonance in condensed matter, his travels as a professor at Harvard University, and his social interactions with other physicists.

  11. Application of electronic paramagnetic, nuclear magnetic, γ-nuclear magnetic resonance, and defibrillation in experimental biology and medecine

    NASA Astrophysics Data System (ADS)

    Piruzyan, L. A.

    2005-08-01

    Nowadays an attention is paid to pathbreaking approaches to the therapy of different pathologies with EPR, NMR and NGR dialysis and mechanisms of physical factors influence in prophylactics and therapy of a number of diseases. Any pathology is evidently begins its development in atomic-molecular levels earlier then any morphologic alterations in tissues can be detected. We have studied the alterations of FR content in liver, spleen and brain in hypoxia and hyperoxia conditions. Under hypoxia and hyperoxia the FR concentrations are equal in all organs and tissues. However this ratio is different for some forms of leucosis. For different leucosis types gas mixtures the most adequate for the current pathology should be developed. Then we represent the method of biologic objects treatment with the energy of super-high frequency field (SIT) and the instrument for its performance. The study of magnetic heterogeneity of biologic systems proposes the new approach and a set of methods for medical and scientific purpose. Application of combined with chemotherapy extraction of anionic and cationic radicals from bloodstream using EPRD, NMRD and NGRD influence and also the single ions separate extraction using NGRD are able to detect and perhaps to cure their appearance in a period before neoformation. These studies should be carried out experimentally and clinically.

  12. High-resolution nuclear magnetic resonance measurements in inhomogeneous magnetic fields: A fast two-dimensional J-resolved experiment.

    PubMed

    Huang, Yuqing; Lin, Yung-Ya; Cai, Shuhui; Yang, Yu; Sun, Huijun; Lin, Yanqin; Chen, Zhong

    2016-03-14

    High spectral resolution in nuclear magnetic resonance (NMR) is a prerequisite for achieving accurate information relevant to molecular structures and composition assignments. The continuous development of superconducting magnets guarantees strong and homogeneous static magnetic fields for satisfactory spectral resolution. However, there exist circumstances, such as measurements on biological tissues and heterogeneous chemical samples, where the field homogeneity is degraded and spectral line broadening seems inevitable. Here we propose an NMR method, named intermolecular zero-quantum coherence J-resolved spectroscopy (iZQC-JRES), to face the challenge of field inhomogeneity and obtain desired high-resolution two-dimensional J-resolved spectra with fast acquisition. Theoretical analyses for this method are given according to the intermolecular multiple-quantum coherence treatment. Experiments on (a) a simple chemical solution and (b) an aqueous solution of mixed metabolites under externally deshimmed fields, and on (c) a table grape sample with intrinsic field inhomogeneity from magnetic susceptibility variations demonstrate the feasibility and applicability of the iZQC-JRES method. The application of this method to inhomogeneous chemical and biological samples, maybe in vivo samples, appears promising.

  13. High-resolution nuclear magnetic resonance measurements in inhomogeneous magnetic fields: A fast two-dimensional J-resolved experiment

    NASA Astrophysics Data System (ADS)

    Huang, Yuqing; Lin, Yung-Ya; Cai, Shuhui; Yang, Yu; Sun, Huijun; Lin, Yanqin; Chen, Zhong

    2016-03-01

    High spectral resolution in nuclear magnetic resonance (NMR) is a prerequisite for achieving accurate information relevant to molecular structures and composition assignments. The continuous development of superconducting magnets guarantees strong and homogeneous static magnetic fields for satisfactory spectral resolution. However, there exist circumstances, such as measurements on biological tissues and heterogeneous chemical samples, where the field homogeneity is degraded and spectral line broadening seems inevitable. Here we propose an NMR method, named intermolecular zero-quantum coherence J-resolved spectroscopy (iZQC-JRES), to face the challenge of field inhomogeneity and obtain desired high-resolution two-dimensional J-resolved spectra with fast acquisition. Theoretical analyses for this method are given according to the intermolecular multiple-quantum coherence treatment. Experiments on (a) a simple chemical solution and (b) an aqueous solution of mixed metabolites under externally deshimmed fields, and on (c) a table grape sample with intrinsic field inhomogeneity from magnetic susceptibility variations demonstrate the feasibility and applicability of the iZQC-JRES method. The application of this method to inhomogeneous chemical and biological samples, maybe in vivo samples, appears promising.

  14. Nonaqueous magnetic nanoparticle suspensions with controlled particle size and nuclear magnetic resonance properties.

    PubMed

    Meledandri, Carla J; Stolarczyk, Jacek K; Ghosh, Swapankumar; Brougham, Dermot F

    2008-12-16

    We report the preparation of monodisperse maghemite (gamma-Fe2O3) nanoparticle suspensions in heptane, by thermal decomposition of iron(III) acetylacetonate in the presence of oleic acid and oleylamine surfactants. By varying the surfactant/Fe precursor mole ratio during synthesis, control was exerted both over the nanocrystal core size, in the range from 3 to 6 nm, and over the magnetic properties of the resulting nanoparticle dispersions. We report field-cycling 1H NMR relaxation analysis of the superparamagnetic relaxation rate enhancement of nonaqueous suspensions for the first time. This approach permits measurement of the relaxivity and provides information on the saturation magnetization and magnetic anisotropy energy of the suspended particles. The saturation magnetization was found to be in the expected range for maghemite particles of this size. The anisotropy energy was found to increase significantly with decreasing particle size, which we attribute to increased shape anisotropy. This study can be used as a guide for the synthesis of maghemite nanoparticles with selected magnetic properties for a given application.

  15. Separation Nanotechnology of Diethylenetriaminepentaacetic Acid Bonded Magnetic Nanoparticles for Spent Nuclear Fuel

    SciTech Connect

    Kaur, Maninder; Johnson, Andrew; Tian, Guoxin; Jiang, Weilin; Rao, Linfeng; Paszczynski, Andrzej; Qiang, You

    2013-01-01

    A nanomagnetic separation method based on Diethylenetriaminepentaacetic acid (DTPA) conjugated with magnetic nanoparticles (MNPs) is studied for application in spent nuclear fuel separation. The high affinity of DTPA towards actinides aids in separation from the highly acidic medium of nuclear waste. The solubility and magnetization of particles at low pH is protected by encapsulating them in silica layer. Surface functionalization of silica coated particles with polyamines enhances the loading capacity of the chelators on MNPs. The particles were characterized before and after surface modification using transmission electron microscopy (TEM), helium ion microscopy (HIM), Fourier transform-infrared (FT-IR) spectrometry, and X-ray diffractometry. The coated and uncoated samples were studied using vibrating sample magnetometer (VSM) to understand the change in magnetic properties due to the influence of the surface functionalization. The hydrodynamic size and surface charge of the particles are investigated using Dynamic Light Scattering (DLS). The uptake behavior of Am(III), Pu(IV), U(VI), and Np(V) from 0.1M NaNO3 solution was investigated. The sorption result shows the strong affinity of DTPA towards Am(III) and Pu(IV) by extracting 97% and 80% of actinides, respectively. The high removal efficiency and fast uptake of actinides make the chelator conjugated MNPs an effective method for spent nuclear fuel separation.

  16. Nuclear magnetic shielding constants of liquid water: Insights from hybrid quantum mechanics/molecular mechanics models

    NASA Astrophysics Data System (ADS)

    Kongsted, Jacob; Nielsen, Christian B.; Mikkelsen, Kurt V.; Christiansen, Ove; Ruud, Kenneth

    2007-01-01

    We present a gauge-origin independent method for the calculation of nuclear magnetic shielding tensors of molecules in a structured and polarizable environment. The method is based on a combination of density functional theory (DFT) or Hartree-Fock wave functions with molecular mechanics. The method is unique in the sense that it includes three important properties that need to be fulfilled in accurate calculations of nuclear magnetic shielding constants: (i) the model includes electron correlation effects, (ii) the model uses gauge-including atomic orbitals to give gauge-origin independent results, and (iii) the effect of the environment is treated self-consistently using a discrete reaction-field methodology. The authors present sample calculations of the isotropic nuclear magnetic shielding constants of liquid water based on a large number of solute-solvent configurations derived from molecular dynamics simulations employing potentials which treat solvent polarization either explicitly or implicitly. For both the O17 and H1 isotropic shielding constants the best predicted results compare fairly well with the experimental data, i.e., they reproduce the experimental solvent shifts to within 4ppm for the O17 shielding and 1ppm for the H1 shielding.

  17. NMR absolute shielding scale and nuclear magnetic dipole moment of (207)Pb.

    PubMed

    Adrjan, Bożena; Makulski, Włodzimierz; Jackowski, Karol; Demissie, Taye B; Ruud, Kenneth; Antušek, Andrej; Jaszuński, Michał

    2016-06-28

    An absolute shielding scale is proposed for (207)Pb nuclear magnetic resonance (NMR) spectroscopy. It is based on ab initio calculations performed on an isolated tetramethyllead Pb(CH3)4 molecule and the assignment of the experimental resonance frequency from the gas-phase NMR spectra of Pb(CH3)4, extrapolated to zero density of the buffer gas to obtain the result for an isolated molecule. The computed (207)Pb shielding constant is 10 790 ppm for the isolated molecule, leading to a shielding of 10799.7 ppm for liquid Pb(CH3)4 which is the accepted reference standard for (207)Pb NMR spectra. The new experimental and theoretical data are used to determine μ((207)Pb), the nuclear magnetic dipole moment of (207)Pb, by applying the standard relationship between NMR frequencies, shielding constants and nuclear moments of two nuclei in the same external magnetic field. Using the gas-phase (207)Pb and (reference) proton results and the theoretical value of the Pb shielding in Pb(CH3)4, we find μ((207)Pb) = 0.59064 μN. The analysis of new experimental and theoretical data obtained for the Pb(2+) ion in water solutions provides similar values of μ((207)Pb), in the range of 0.59000-0.59131 μN.

  18. Leading-order relativistic effects on nuclear magnetic resonance shielding tensors.

    PubMed

    Manninen, Pekka; Ruud, Kenneth; Lantto, Perttu; Vaara, Juha

    2005-03-15

    We present perturbational ab initio calculations of the nuclear-spin-dependent relativistic corrections to the nuclear magnetic resonance shielding tensors that constitute, together with the other relativistic terms reported by us earlier, the full leading-order perturbational set of results for the one-electron relativistic contributions to this observable, based on the (Breit-)Pauli Hamiltonian. These contributions are considered for the H(2)X (X = O,S,Se,Te,Po) and HX (X = F,Cl,Br,I,At) molecules, as well as the noble gas (Ne, Ar, Kr, Xe, Rn) atoms. The corrections are evaluated using the relativistic and magnetic operators as perturbations on an equal footing, calculated using analytical linear and quadratic response theory applied on top of a nonrelativistic reference state provided by self-consistent field calculations. The (1)H and heavy-atom nuclear magnetic shielding tensors are compared with four component, nearly basis-set-limit Dirac-Hartree-Fock calculations that include positronic excitations, as well as available literature data. Besides the easy interpretability of the different contributions in terms of familiar nonrelativistic concepts, the accuracy of the present perturbational scheme is striking for the isotropic part of the shielding tensor, for systems including elements up to Xe.

  19. Using magnetic moments to study the nuclear structure of I ≥ 2 states

    NASA Astrophysics Data System (ADS)

    Torres, D. A.

    2013-05-01

    The experimental study of magnetic moments for nuclear states near the ground state, I ≥ 2, provides a powerful tool to test nuclear structure models. Traditionally, the use of Coulomb excitation reactions have been utilized to study low spin states, mostly I = 2. The use of alternative reaction channels, such as α transfer, for the production of radioactive species that, otherwise, will be only produced in future radioactive beam facilities has proved to be an alternative to measure not only excited states with I > 2, but to populate and study long-live radioactive nuclei. This contribution will present the experimental tools and challenges for the use of the transient field technique for the measurement of g factors in nuclear states with I ≥ 2, using Coulomb excitation and α-transfer reactions. Recent examples of experimental results near the N = 50 shell closure, and the experimental challenges for future implementations with radioactive beams, will be discussed.

  20. Nuclear magnetic resonance of external protons using continuous dynamical decoupling with shallow NV centers

    NASA Astrophysics Data System (ADS)

    de Las Casas, Charles; Ohno, Kenichi; Awschalom, David D.

    2015-03-01

    The nitrogen vacancy (NV) center in diamond is a paramagnetic defect with excellent spin properties that can reside within a few nanometers of the diamond surface, enabling atomic-scale magnetic resonance sensing of external nuclear spins. Here we use rotating frame longitudinal spin relaxation (T1ρ) based sensing schemes, known as Continuous Dynamical Decoupling (CDD), to detect external nuclear spins with shallow NV centers (<5 nm from the surface). Distinguishing neighboring nuclear spins from each other requires the NV center be near enough to create differences in the hyperfine shifts and coupling strengths of the nuclei. However, spin coherence time and consequently the sensitivity of dynamical decoupling techniques degrade sharply as NVs become shallower. We use strong continuous driving to overcome this fast decoherence and detect an ensemble of external nuclear spins using a single shallow NV center with a short T2 (<2 μs) at magnetic fields as high as 0.5 Tesla. The increased sensitivity of this method relative to pulsed dynamical decoupling techniques demonstrates the benefits of CDD for sensing with very shallow NV centers. This work was supported by DARPA, AFOSR, and the DIAMANT program.

  1. Nuclear magnetic biosignatures in the carbonaceous matter of ancient cherts: comparison with carbonaceous meteorites.

    PubMed

    Gourier, Didier; Delpoux, Olivier; Binet, Laurent; Vezin, Hervé

    2013-10-01

    The search for organic biosignatures is motivated by the hope of understanding the conditions of emergence of life on Earth and the perspective of finding traces of extinct life in martian sediments. Paramagnetic radicals, which exist naturally in amorphous carbonaceous matter fossilized in Precambrian cherts, were used as local structural probes and studied by electron paramagnetic resonance (EPR) spectroscopy. The nuclear magnetic resonance transitions of elements inside and around these radicals were detected by monitoring the nuclear modulations of electron spin echo in pulsed EPR. We found that the carbonaceous matter of fossilized microorganisms with age up to 3.5 billion years gives specific nuclear magnetic signatures of hydrogen (¹H), carbon (¹³C), and phosphorus (³¹P) nuclei. We observed that these potential biosignatures of extinct life are found neither in the carbonaceous matter of carbonaceous meteorites (4.56 billion years), the most ancient objects of the Solar System, nor in any carbonaceous matter resulting from carbonization of organic and bioorganic precursors. These results indicate that these nuclear signatures are sensitive to thermal episodes and can be used for Archean cherts with metamorphism not higher than the greenschist facies.

  2. Bioengineered Magnetoferritin Nanoprobes for Single-Dose Nuclear-Magnetic Resonance Tumor Imaging.

    PubMed

    Zhao, Yanzhao; Liang, Minmin; Li, Xiao; Fan, Kelong; Xiao, Jie; Li, Yanli; Shi, Hongcheng; Wang, Fei; Choi, Hak Soo; Cheng, Dengfeng; Yan, Xiyun

    2016-04-26

    Despite all the advances in multimodal imaging, it remains a significant challenge to acquire both magnetic resonance and nuclear imaging in a single dose because of the enormous difference in sensitivity. Indeed, nuclear imaging is almost 10(6)-fold more sensitive than magnetic resonance imaging (MRI); thus, repeated injections are generally required to obtain sufficient MR signals after nuclear imaging. Here, we show that strategically engineered magnetoferritin nanoprobes can image tumors with high sensitivity and specificity using SPECT and MRI in living mice after a single intravenous injection. The magnetoferritin nanoprobes composed of (125)I radionuclide-conjugated human H-ferritin iron nanocages ((125)I-M-HFn) internalize robustly into cancer cells via a novel tumor-specific HFn-TfR1 pathway. In particular, the endocytic recycling characteristic of TfR1 transporters solves the nuclear signal blocking issue caused by the high dose nanoprobes injected for MRI, thus enabling simultaneous functional and morphological tumor imaging without reliance on multi-injections.

  3. Ultra-low field nuclear magnetic resonance and magnetic resonance imaging to discriminate and identify materials

    DOEpatents

    Kraus, Robert H.; Matlashov, Andrei N.; Espy, Michelle A.; Volegov, Petr L.

    2010-03-30

    An ultra-low magnetic field NMR system can non-invasively examine containers. Database matching techniques can then identify hazardous materials within the containers. Ultra-low field NMR systems are ideal for this purpose because they do not require large powerful magnets and because they can examine materials enclosed in conductive shells such as lead shells. The NMR examination technique can be combined with ultra-low field NMR imaging, where an NMR image is obtained and analyzed to identify target volumes. Spatial sensitivity encoding can also be used to identify target volumes. After the target volumes are identified the NMR measurement technique can be used to identify their contents.

  4. Meso-scale magnetic signatures for nuclear reactor steel irradiation embrittlement monitoring

    SciTech Connect

    Suter, J. D. Ramuhalli, P. Hu, S.; Li, Y.; Jiang, W.; Edwards, D. J.; Schemer-Kohrn, A. L.; Johnson, B. R.; McCloy, J. S. Xu, K.

    2015-03-31

    Verifying the structural integrity of passive components in light water and advanced reactors will be necessary to ensure safe, long-term operations of the existing U.S. nuclear fleet. This objective can be achieved through nondestructive condition monitoring techniques, which can be integrated with plant operations to quantify the “state of health” of structural materials in real-time. While nondestructive methods for monitoring many classes of degradation (such as fatigue or stress corrosion cracking) are relatively advanced, this is not the case for degradation caused by irradiation. The development of nondestructive evaluation technologies for these types of degradation will require advanced materials characterization techniques and tools that enable comprehensive understanding of nuclear reactor material microstructural and behavioral changes under extreme operating environments. Irradiation-induced degradation of reactor steels causes changes in their microstructure that impacts their micro-magnetic properties. In this paper, we describe preliminary results of integrating advanced material characterization techniques with meso-scale computational models. In the future, this will help to provide an interpretive understanding of the state of degradation in structural materials. Microstructural data are presented from monocrystalline Fe and are correlated with variable-field magnetic force microscopy and micro-magnetic measurements. Ongoing research is focused on extending the measurements and models on thin films to gain insights into the structural state of irradiated materials and the resulting impact on magnetic properties. Preliminary conclusions from these correlations are presented, and next steps described.

  5. Meso-scale magnetic signatures for nuclear reactor steel irradiation embrittlement monitoring

    NASA Astrophysics Data System (ADS)

    Suter, J. D.; Ramuhalli, P.; McCloy, J. S.; Xu, K.; Hu, S.; Li, Y.; Jiang, W.; Edwards, D. J.; Schemer-Kohrn, A. L.; Johnson, B. R.

    2015-03-01

    Verifying the structural integrity of passive components in light water and advanced reactors will be necessary to ensure safe, long-term operations of the existing U.S. nuclear fleet. This objective can be achieved through nondestructive condition monitoring techniques, which can be integrated with plant operations to quantify the "state of health" of structural materials in real-time. While nondestructive methods for monitoring many classes of degradation (such as fatigue or stress corrosion cracking) are relatively advanced, this is not the case for degradation caused by irradiation. The development of nondestructive evaluation technologies for these types of degradation will require advanced materials characterization techniques and tools that enable comprehensive understanding of nuclear reactor material microstructural and behavioral changes under extreme operating environments. Irradiation-induced degradation of reactor steels causes changes in their microstructure that impacts their micro-magnetic properties. In this paper, we describe preliminary results of integrating advanced material characterization techniques with meso-scale computational models. In the future, this will help to provide an interpretive understanding of the state of degradation in structural materials. Microstructural data are presented from monocrystalline Fe and are correlated with variable-field magnetic force microscopy and micro-magnetic measurements. Ongoing research is focused on extending the measurements and models on thin films to gain insights into the structural state of irradiated materials and the resulting impact on magnetic properties. Preliminary conclusions from these correlations are presented, and next steps described.

  6. /sup 19/F NMR studies of 5-fluorouracil-substituted Escherichia coli transfer RNAs: solution structure and codon-anticodon interaction

    SciTech Connect

    Gollnick, P.D.

    1986-01-01

    /sup 19/F NMR was used to study E. coli tRNA/sub 1//sup Val/, tRNA/sub f//sup Met/, and tRNA/sub m//Met/, in which 5-fluorouracil (FUra) has replaced uracil and uracil-derived minor bases. /sup 19/F NMR spectra of these tRNAs resolve resonances from nearly all the incorporated FUra residues. Each of the three tRNAs can be resolved into two isoaccepting species, termed forms A and B, whose /sup 19/F spectra differ in the shift of one /sup 19/F peak from ca. 4.5 ppm in form B, upfield to -15 ppm in form A. Because the two isoacceptors of each tRNA differ only at one position, the peaks at 4.5 ppm in the spectra of (FUra)tRNA/sub 1//sup Val/ and (FUra)tRNA/sub m//sup Met/; are assigned to FUra 17 and Fura 20 respectively. Bisulfate modification and pH dependence indicate that /sup 19/F signals in the central region of the spectrum of (FUra)tRNA/sub 1//sup Val/ correspond to fluorouracils in non-base-paired regions. Photoreaction with psoralen indicates upfield /sup 19/F signals arise from residues in helical environments. Removal of magnesium or addition of NaCl produces major, reversible changes in the /sup 19/F spectrum of fluorinated tRNAs. Studies of manganese and spermine binding to (FUra)tRNA/sub 1//sup Val/ allow localization of several resonances in the /sup 18/F spectrum to regions near putative binding sites for these ions. Binding of the codon G/sub p/U/sub p/A causes an upfield shift of a /sup 19/F resonance at 3.9 ppm in the spectrum of (FUra)tRNA/sub 1//sup Val/. G/sub p/U/sub p/A/sub p/A, which is complementary to the anticodon and 5'-adjacent FUra 33, shifts an additional /sup 19/F peak at 4.5 ppm. /sup 1/H NMR and RNase H digestion studies show that the oligonucleotides bind to the anticodon.

  7. Low-field nuclear magnetic resonance for the in vivo study of water content in trees.

    PubMed

    Yoder, Jacob; Malone, Michael W; Espy, Michelle A; Sevanto, Sanna

    2014-09-01

    Nuclear magnetic resonance (NMR) and magnetic resonance imaging have long been used to study water content in plants. Approaches have been primarily based on systems using large magnetic fields (~1 T) to obtain NMR signals with good signal-to-noise. This is because the NMR signal scales approximately with the magnetic field strength squared. However, there are also limits to this approach in terms of realistic physiological configuration or those imposed by the size and cost of the magnet. Here we have taken a different approach--keeping the magnetic field low to produce a very light and inexpensive system, suitable for bulk water measurements on trees less than 5 cm in diameter, which could easily be duplicated to measure on many trees or from multiple parts of the same tree. Using this system we have shown sensitivity to water content in trees and their cuttings and observed a diurnal signal variation in tree water content in a greenhouse. We also demonstrate that, with calibration and modeling of the thermal polarization, the system is reliable under significant temperature variation.

  8. Low-field nuclear magnetic resonance for the in vivo study of water content in trees

    SciTech Connect

    Yoder, Jacob; Malone, Michael W.; Espy, Michelle A.; Sevanto, Sanna

    2014-09-15

    Nuclear magnetic resonance (NMR) and magnetic resonance imaging have long been used to study water content in plants. Approaches have been primarily based on systems using large magnetic fields (∼1 T) to obtain NMR signals with good signal-to-noise. This is because the NMR signal scales approximately with the magnetic field strength squared. However, there are also limits to this approach in terms of realistic physiological configuration or those imposed by the size and cost of the magnet. Here we have taken a different approach – keeping the magnetic field low to produce a very light and inexpensive system, suitable for bulk water measurements on trees less than 5 cm in diameter, which could easily be duplicated to measure on many trees or from multiple parts of the same tree. Using this system we have shown sensitivity to water content in trees and their cuttings and observed a diurnal signal variation in tree water content in a greenhouse. We also demonstrate that, with calibration and modeling of the thermal polarization, the system is reliable under significant temperature variation.

  9. Superconducting quantum interference device microsusceptometer balanced over a wide bandwidth for nuclear magnetic resonance applications

    SciTech Connect

    Vinante, A. Falferi, P.; Mezzena, R.

    2014-10-15

    Superconducting Quantum Interference Device (SQUID) microsusceptometers have been widely used to study magnetic properties of materials at microscale. As intrinsically balanced devices, they could also be exploited for direct SQUID-detection of nuclear magnetic resonance (NMR) from micron sized samples, or for SQUID readout of mechanically detected NMR from submicron sized samples. Here, we demonstrate a double balancing technique that enables achievement of very low residual imbalance of a SQUID microsusceptometer over a wide bandwidth. In particular, we can generate ac magnetic fields within the SQUID loop as large as 1 mT, for frequencies ranging from dc up to a few MHz. As an application, we demonstrate direct detection of NMR from {sup 1}H spins in a glycerol droplet placed directly on top of the 20 μm SQUID loops.

  10. Interface between heavy fermions and normal electrons investigated by spatially resolved nuclear magnetic resonance

    NASA Astrophysics Data System (ADS)

    Yamanaka, Takayoshi; Shimozawa, Masaaki; Endo, Ryota; Mizukami, Yuta; Shishido, Hiroaki; Terashima, Takahito; Shibauchi, Takasada; Matsuda, Yuji; Ishida, Kenji

    2015-12-01

    We have studied the superlattices with alternating block layers (BLs) of heavy-fermion superconductor CeCoIn5 and conventional-metal YbCoIn5 by site-selective nuclear magnetic resonance spectroscopy, which uniquely offers spatially resolved dynamical magnetic information. We find that the presence of antiferromagnetic fluctuations is confined to the Ce BLs, indicating that magnetic degrees of freedom of f electrons are quenched inside the Yb BLs. Contrary to simple expectations that the two dimensionalization enhances fluctuations, we observe that antiferromagnetic fluctuations are rapidly suppressed with decreasing Ce BL thickness. Moreover, the suppression is more prominent near the interfaces between the BLs. These results imply significant effects of local inversion symmetry breaking at the interfaces.

  11. Moissanite anvil cell design for giga-pascal nuclear magnetic resonance

    NASA Astrophysics Data System (ADS)

    Meier, Thomas; Herzig, Tobias; Haase, Jürgen

    2014-04-01

    A new design of a non-magnetic high-pressure anvil cell for nuclear magnetic resonance (NMR) experiments at Giga-Pascal pressures is presented, which uses a micro-coil inside the pressurized region for high-sensitivity NMR. The comparably small cell has a length of 22 mm and a diameter of 18 mm, so it can be used with most NMR magnets. The performance of the cell is demonstrated with external-force vs. internal-pressure experiments, and the cell is shown to perform well at pressures up to 23.5 GPa using 800 μm 6H-SiC large cone Boehler-type anvils. 1H, 23Na, 27Al, 69Ga, and 71Ga NMR test measurements are presented, which show a resolution of better than 4.5 ppm, and an almost maximum possible signal-to-noise ratio.

  12. Nuclear relaxation in an electric field enables the determination of isotropic magnetic shielding

    NASA Astrophysics Data System (ADS)

    Garbacz, Piotr

    2016-08-01

    It is shown that in contrast to the case of nuclear relaxation in a magnetic field B, simultaneous application of the magnetic field B and an additional electric field E causes transverse relaxation of a spin-1/2 nucleus with the rate proportional to the square of the isotropic part of the magnetic shielding tensor. This effect can contribute noticeably to the transverse relaxation rate of heavy nuclei in molecules that possess permanent electric dipole moments. Relativistic quantum mechanical computations indicate that for 205Tl nucleus in a Pt-Tl bonded complex, Pt(CN)5Tl, the transverse relaxation rate induced by the electric field is of the order of 1 s-1 at E = 5 kV/mm and B = 10 T.

  13. Prospects for sub-micron solid state nuclear magnetic resonance imaging with low-temperature dynamic nuclear polarization.

    PubMed

    Thurber, Kent R; Tycko, Robert

    2010-06-14

    We evaluate the feasibility of (1)H nuclear magnetic resonance (NMR) imaging with sub-micron voxel dimensions using a combination of low temperatures and dynamic nuclear polarization (DNP). Experiments are performed on nitroxide-doped glycerol-water at 9.4 T and temperatures below 40 K, using a 30 mW tunable microwave source for DNP. With DNP at 7 K, a 0.5 microL sample yields a (1)H NMR signal-to-noise ratio of 770 in two scans with pulsed spin-lock detection and after 80 db signal attenuation. With reasonable extrapolations, we infer that (1)H NMR signals from 1 microm(3) voxel volumes should be readily detectable, and voxels as small as 0.03 microm(3) may eventually be detectable. Through homonuclear decoupling with a frequency-switched Lee-Goldburg spin echo technique, we obtain 830 Hz (1)H NMR linewidths at low temperatures, implying that pulsed field gradients equal to 0.4 G/d or less would be required during spatial encoding dimensions of an imaging sequence, where d is the resolution in each dimension.

  14. Solid state nuclear magnetic resonance with magic-angle spinning and dynamic nuclear polarization below 25 K

    PubMed Central

    Thurber, Kent R.; Potapov, Alexey; Yau, Wai-Ming; Tycko, Robert

    2012-01-01

    We describe an apparatus for solid state nuclear magnetic resonance (NMR) with dynamic nuclear polarization (DNP) and magic-angle spinning (MAS) at 20–25 K and 9.4 Tesla. The MAS NMR probe uses helium to cool the sample space and nitrogen gas for MAS drive and bearings, as described earlier (Thurber et al., J. Magn. Reson. 2008) [1], but also includes a corrugated waveguide for transmission of microwaves from below the probe to the sample. With a 30 mW circularly polarized microwave source at 264 GHz, MAS at 6.8 kHz, and 21 K sample temperature, greater than 25-fold enhancements of cross-polarized 13C NMR signals are observed in spectra of frozen glycerol/water solutions containing the triradical dopant DOTOPA-TEMPO when microwaves are applied. As demonstrations, we present DNP-enhanced one-dimensional and two-dimensional 13C MAS NMR spectra of frozen solutions of uniformly 13C-labeled L-alanine and melittin, a 26-residue helical peptide that we have synthesized with four uniformly 13C-labeled amino acids. PMID:23238592

  15. [Recent progress in nuclear magnetic resonance spectrum for drug research and development].

    PubMed

    Zhong, Jun; Jiang, Xue-mei

    2015-01-01

    In the process of modern drug research, the new methods and technologies which can detect drug molecules' chemical composition, structure and interaction with biomolecules are always the key scientific problems people care about. Spectra (including IR, UV and NMR) are the most common analytical methods, of which NMR can obtain detailed parameter about the nucleus of organic molecules through researching the laws of nuclear transition in the impact of surrounding chemical environment. The parameter contains rich information about the chemical composition, structure and interaction with other molecules of organic molecules. In many complex environments, such as liquid, solid or gas state, even biological in situ environment, NMR can provide molecules' chemical composition, atomic-resolution three-dimensional structure, information of interaction with each other and dynamic process, especially the information about drug interacting with biomacromolecules. In recent years, the applications of nuclear magnetic resonance spectrum in drug research and development are more and more widespread. This paper reviewed its recent progress in structure and dynamic of targeted biological macromolecules, drug design and screening and drug metabolism in drug research and development. In the first part, we gave a brief introduction of nuclear magnetic resonance technology and its applications in drug research. In the second part, we explained the basic principles briefly and summarized progress in methods and techniques for drug research. In the third part, we discussed applications of nuclear magnetic resonance ir structure and dynamic of targeted biological macromolecules, drug design and screening and drug metabolism in detail. The conclusions were stated in the last part.

  16. Homometallic and Heterometallic Antiferromagnetic Rings: Magnetic Properties Studied by Nuclear Magnetic Resonance

    SciTech Connect

    Casadei, Cecilia

    2011-01-01

    The aim of the present thesis is to investigate the local magnetic properties of homometallic Cr8 antiferromagnetic (AFM) ring and the changes occurring by replacing one Cr3+ ion with diamagnetic Cd2+ (Cr7Cd) and with Ni2+ (Cr7Ni). In the heterometallic ring a redistribution of the local magnetic moment is expected in the low temperature ground state. We have investigated those changes by both 53Cr-NMR and 19F-NMR. We have determined the order of magnitude of the transferred hyperfine coupling constant 19F - M+ where M+ = Cr3+, Ni2+ in the different rings. This latter result gives useful information about the overlapping of the electronic wavefunctions involved in the coordinative bond.

  17. High Performance Nuclear Magnetic Resonance Imaging Using Magnetic Resonance Force Microscopy

    DTIC Science & Technology

    2013-12-12

    spin nanowires in diamond, presented in a manuscript entitled ``The effect of spin transport on lifetime in nanoscale systems,’’ is currently under...The effect of spin transport on lifetime in nanoscale systems, Nature Nanotechnology (submitted), (11 2013): 0. doi: TOTAL: 2 Number of Papers...magnetic eld gradient, neighboring spin sites experience dierent Zeeman splitting which would cause ip-ops to violate energy conser- vation [21, 22

  18. Nuclear magnetic resonance studies of quadrupolar nuclei and dipolar field effects

    SciTech Connect

    Urban, Jeffry Todd

    2004-01-01

    Experimental and theoretical research conducted in two areas in the field of nuclear magnetic resonance (NMR) spectroscopy is presented: (1) studies of the coherent quantum-mechanical control of the angular momentum dynamics of quadrupolar (spin I > 1/2) nuclei and its application to the determination of molecular structure; and (2) applications of the long-range nuclear dipolar field to novel NMR detection methodologies.The dissertation is organized into six chapters. The first two chapters and associated appendices are intended to be pedagogical and include an introduction to the quantum mechanical theory of pulsed NMR spectroscopy and the time dependent theory of quantum mechanics. The third chapter describes investigations of the solid-state multiple-quantum magic angle spinning (MQMAS) NMR experiment applied to I = 5/2 quadrupolar nuclei. This work reports the use of rotary resonance-matched radiofrequency irradiation for sensitivity enhancement of the I = 5/2 MQMAS experiment. These experiments exhibited certain selective line narrowing effects which were investigated theoretically.The fourth chapter extends the discussion of multiple quantum spectroscopy of quadrupolar nuclei to a mostly theoretical study of the feasibility of enhancing the resolution of nitrogen-14 NMR of large biomolecules in solution via double-quantum spectroscopy. The fifth chapter continues to extend the principles of multiple quantum NMR spectroscopy of quadrupolar nuclei to make analogies between experiments in NMR/nuclear quadrupolar resonance (NQR) and experiments in atomic/molecular optics (AMO). These analogies are made through the Hamiltonian and density operator formalism of angular momentum dynamics in the presence of electric and magnetic fields.The sixth chapter investigates the use of the macroscopic nuclear dipolar field to encode the NMR spectrum of an analyte nucleus indirectly in the magnetization of a sensor nucleus. This technique could potentially serve as an

  19. Nanomagnetism of Core-Shell Magnetic Nanoparticles and Application in Spent Nuclear Fuel Separation

    NASA Astrophysics Data System (ADS)

    Tarsem Singh, Maninder Kaur

    This dissertation presents the study on novel core-shell magnetic nanoparticles (NPs) with unique magnetic properties. Understanding the fundamental physics of antiferromagnetic - ferromagnetic interactions is essential to apply in different applications. Chromium (Cr) doped and undoped core-shell iron/iron-oxide NPs have been synthesized using cluster deposition system and studied with respect to their nanostructures, morphologies, sizes, chemical composition and magnetic properties. The room-temperature magnetic properties of Fe based NPs shows the strong dependence of intra/inter-particle interaction on NP size. The Cr-doped Fe NP shows the origin of sigma-FeCr phase at very low Cr concentration (2 at.%) unlike others reported at high Cr content and interaction reversal from dipolar to exchange interaction. A theoretical model of watermelon is constructed based on the experimental results and core-shell NP system in order to explain the physics of exchange interaction in Cr-doped Fe particles. The magnetic nanoparticle---chelator separation nanotechnology is investigated for spent nuclear fuel recycling and is reported 97% and 80% of extraction for Am(III) and Pu(IV) actinides respectively. If the long-term heat generating actinides such as Am(III) can be efficiently removed from the used fuel raffinates, the volume of material that can be placed in a given amount of repository space can be significantly increased. As it is a simple, versatile, compact, and cost efficient process that minimizes secondary waste and improves storage performance.

  20. Modeling the nuclear magnetic resonance behavior of lung: from electrical engineering to critical care medicine.

    PubMed

    Cutillo, A G; Ailion, D C

    1999-01-01

    The present article reviews the basic principles of a new approach to the characterization of pulmonary disease. This approach is based on the unique nuclear magnetic resonance (NMR) properties of the lung and combines experimental measurements (using specially developed NMR techniques) with theoretical simulations. The NMR signal from inflated lungs decays very rapidly compared with the signal from completely collapsed (airless) lungs. This phenomenon is due to the presence of internal magnetic field inhomogeneity produced by the alveolar air-tissue interface (because air and water have different magnetic susceptibilities). The air-tissue interface effects can be detected and quantified by magnetic resonance imaging (MRI) techniques using temporally symmetric and asymmetric spin-echo sequences. Theoretical models developed to explain the internal (tissue-induced) magnetic field inhomogeneity in aerated lungs predict the NMR lung behavior as a function of various technical and physiological factors (e.g., the level of lung inflation) and simulate the effects of various lung disorders (in particular, pulmonary edema) on this behavior. Good agreement has been observed between the predictions obtained from the mathematical models and the results of experimental NMR measurements in normal and diseased lungs. Our theoretical and experimental data have important pathophysiological and clinical implications, especially with respect to the characterization of acute lung disease (e.g., pulmonary edema) and the management of critically ill patients.

  1. High-sensitivity cooled coil system for nuclear magnetic resonance in kHz range

    SciTech Connect

    Lin, Tingting; Zhao, Jing; Zhang, Yi; Krause, Hans-Joachim; Lee, Yong-Ho; Lin, Jun

    2014-11-15

    In several low-field Nuclear Magnetic Resonance (LF-NMR) and surface nuclear magnetic resonance applications, i.e., in the frequency range of kHz, high sensitivity magnetic field detectors are needed. Usually, low-T{sub c} superconducting quantum interference devices (SQUIDs) with a high field sensitivity of about 1 fT/Hz{sup 1/2} are employed as detectors. Considering the flux trapping and operational difficulties associated with low-T{sub c} SQUIDs, we designed and fabricated liquid-nitrogen-cooled Cu coils for NMR detection in the kHz range. A cooled coil system consisting of a 9-cm diameter Cu coil and a low noise preamplifier was systematically investigated and reached a sensitivity of 2 fT/Hz{sup 1/2} at 77 K, which is 3 times better compared to the sensitivity at 300 K. A Q-switch circuit as an essential element for damping the ringing effects of the pickup coil was developed to acquire free induction decay signals of a water sample with minimum loss of signal. Our studies demonstrate that cooled Cu coils, if designed properly, can provide a comparable sensitivity to low-T{sub c} SQUIDs.

  2. Probing the effective nuclear-spin magnetic field in a single quantum dot via full counting statistics

    SciTech Connect

    Xue, Hai-Bin; Nie, Yi-Hang; Chen, Jingzhe; Ren, Wei

    2015-03-15

    We study theoretically the full counting statistics of electron transport through a quantum dot weakly coupled to two ferromagnetic leads, in which an effective nuclear-spin magnetic field originating from the configuration of nuclear spins is considered. We demonstrate that the quantum coherence between the two singly-occupied eigenstates and the spin polarization of two ferromagnetic leads play an important role in the formation of super-Poissonian noise. In particular, the orientation and magnitude of the effective field have a significant influence on the variations of the values of high-order cumulants, and the variations of the skewness and kurtosis values are more sensitive to the orientation and magnitude of the effective field than the shot noise. Thus, the high-order cumulants of transport current can be used to qualitatively extract information on the orientation and magnitude of the effective nuclear-spin magnetic field in a single quantum dot. - Highlights: • The effective nuclear-spin magnetic field gives rise to the off-diagonal elements of the reduced density matrix of single QD. • The off-diagonal elements of reduced density matrix of the QD have a significant impact on the high-order current cumulants. • The high-order current cumulants are sensitive to the orientation and magnitude of the effective nuclear-spin magnetic field. • The FCS can be used to detect the orientation and magnitude of the effective nuclear-spin magnetic field in a single QD.

  3. Reaction mechanism coexistence in the 123 MeV {sup 19}F+{sup 56}Fe reaction

    SciTech Connect

    Brondi, A.; Kildir, M.; La Rana, G.; Moro, R.; Vardaci, E.; Pirrone, S.; Porto, F.; Sambataro, S.; Politi, G.; Figuera, P.

    1996-10-01

    Mass and charge identified ejectiles, spanning from {sup 11}B to {sup 22}Ne, have been detected in the 123 MeV {sup 19}F+{sup 56}Fe reaction. The coexistence of deep inelastic collision (DIC) and incomplete fusion (IF) mechanisms has been observed. The shape of the energy spectra and their behavior with angle allowed us to identify two components: The less dissipative one was dominating near the grazing angle. For both components experimental optimum {ital Q} values were derived. Two approaches based on the sum rule (SR) model of Wilczy{acute n}ski were used to calculate DIC and IF contributions to the complex fragment cross sections. Both prescriptions fit reasonably well experimental ejectile cross sections and {ital Q} optimum values. Results of the present investigation support the idea that the DIC can be treated on the same footing as IF in the SR model once the first process is confined in an inner angular momentum window, starting from the maximum fusion angular momentum, with respect to quasielastic processes. {copyright} {ital 1996 The American Physical Society.}

  4. A Miniaturized, 1.9F Integrated Optical Fiber and Stone Basket for Use in Thulium Fiber Laser Lithotripsy.

    PubMed

    Wilson, Christopher R; Hutchens, Thomas C; Hardy, Luke A; Irby, Pierce B; Fried, Nathaniel M

    2015-10-01

    The thulium fiber laser (TFL) is being explored as an alternative laser lithotripter to the standard holmium:yttrium-aluminum-garnet laser. The more uniform beam profile of the TFL enables higher power transmission through smaller fibers. In this study, a 100-μm core, 140-μm outer-diameter (OD) silica fiber with 5-mm length hollow steel tip was integrated with 1.3F (0.433-mm OD) nitinol wire basket to form a 1.9F (0.633-mm OD) device. TFL energy of 30 mJ, 500 μs pulse duration, and 500 Hz pulse rate was delivered to human uric acid stones, ex vivo. Stone ablation rates measured 1.5 ± 0.2 mg/s, comparable to 1.7 ± 0.3 mg/s using bare fiber tips separately with stone basket. With further development, this device may minimize stone retropulsion, allowing more efficient TFL lithotripsy at higher pulse rates. It may also provide increased flexibility, higher saline irrigation rates through the ureteroscope working channel, reduce fiber degradation compared with separate fiber and basket manipulation, and reduce laser-induced nitinol wire damage.

  5. Nucleon momentum distributions and elastic electron scattering from 19F, 25Mg, 27Al, and 29Si nuclei

    NASA Astrophysics Data System (ADS)

    Al-Rahmani, A.

    2016-04-01

    The nucleon momentum distributions and elastic electron scattering form factors of the ground state for some odd 2 s-1 d shell nuclei, such as 19F, 25Mg, 27Al, and 29Si, have been investigated using the coherent density fluctuation model and expressed in terms of the fluctuation function (weight function) | f( x)|2. The fluctuation function has been related to the nucleon density distribution of the nuclei and determined from the theory. The property of the long-tail manner at high-momentum region of the nucleon momentum distribution has been obtained by theoretical fluctuation function. The calculated form factors F( q) of all nuclei under study are in very good agreement with those of experimental data throughout all values of momentum transfer q. It is concluded that the contributions of the quadrupole form factor F C2( q) in 25Mg and 27Al nuclei, which are characterized by the undeformed 2 s-1 d shell model, are necessary for getting a remarkable agreement between the theoretical and experimental form factors.

  6. Enhancement of nuclear magnetic resonance in microtesla magnetic field with prepolarization field detected with high-Tc superconducting quantum interference device

    NASA Astrophysics Data System (ADS)

    Yang, Hong-Chang; Liao, Shu-Hsien; Horng, Herng-Er; Kuo, Shing-Ling; Chen, Hsin-Hsien; Yang, S. Y.

    2006-06-01

    We applied prepolarization field and high-Tc superconducting quantum interference device (SQUID) detector to enhance nuclear magnetic resonance signal in a microtesla magnetic field. The minimum measuring magnetic field is 8.9μT at which the proton resonance frequency is 380Hz. The specificity instrumentation and the difficulty of using a high-Tc SQUID with prepolarization field were investigated. We applied gradient field to perform one-dimensional proton imaging in a microtesla magnetic field. Additionally, low field high-Tc SQUID-based NMR systems are promising in biomagnetic research due to its use, for example, in imaging with hyperpolarized noble gas.

  7. Time-Reversal Symmetry Violation in Molecules Induced by Nuclear Magnetic Quadrupole Moments

    NASA Astrophysics Data System (ADS)

    Flambaum, V. V.; DeMille, D.; Kozlov, M. G.

    2014-09-01

    Recent measurements in paramagnetic molecules improved the limit on the electron electric dipole moment (EDM) by an order of magnitude. Time-reversal (T) and parity (P) symmetry violation in molecules may also come from their nuclei. We point out that nuclear T, P-odd effects are amplified in paramagnetic molecules containing deformed nuclei, where the primary effects arise from the T, P-odd nuclear magnetic quadrupole moment (MQM). We perform calculations of T, P-odd effects in the molecules TaN, ThO, ThF+, HfF+, YbF, HgF, and BaF induced by MQMs. We compare our results with those for the diamagnetic TlF molecule, where the T, P-odd effects are produced by the nuclear Schiff moment. We argue that measurements in molecules with MQMs may provide improved limits on the strength of T, P-odd nuclear forces, on the proton, neutron, and quark EDMs, on quark chromo-EDMs, and on the QCD θ term and CP-violating quark interactions.

  8. The potential of nuclear magnetic resonance to track lipids in planta.

    PubMed

    Munz, Eberhard; Jakob, Peter M; Borisjuk, Ljudmilla

    2016-11-01

    Nuclear Magnetic Resonance (NMR) provides a highly flexible platform for non invasive analysis and imaging biological samples, since the manipulation of nuclear spin allows the tailoring of experiments to maximize the informativeness of the data. MRI is capable of visualizing a holistic picture of the lipid storage in living plant/seed. This review has sought to explain how the technology can be used to acquire functional and physiological data from plant samples, and how to exploit it to characterize lipid deposition in vivo. At the same time, we have referred to the current limitations of NMR technology as applied to plants, and in particular of the difficulty of transferring methodologies optimized for animal/medical subjects to plant ones. A forward look into likely developments in the field is included, anticipating its key future role in the study of living plant.

  9. Billion-fold enhancement in sensitivity of nuclear magnetic resonance spectroscopy for magnesium ions in solution.

    PubMed

    Gottberg, Alexander; Stachura, Monika; Kowalska, Magdalena; Bissell, Mark L; Arcisauskaite, Vaida; Blaum, Klaus; Helmke, Alexander; Johnston, Karl; Kreim, Kim; Larsen, Flemming H; Neugart, Rainer; Neyens, Gerda; Garcia Ruiz, Ronald F; Szunyogh, Daniel; Thulstrup, Peter W; Yordanov, Deyan T; Hemmingsen, Lars

    2014-12-15

    β-nuclear magnetic resonance (NMR) spectroscopy is highly sensitive compared to conventional NMR spectroscopy, and may be applied for several elements across the periodic table. β-NMR has previously been successfully applied in the fields of nuclear and solid-state physics. In this work, β-NMR is applied, for the first time, to record an NMR spectrum for a species in solution. (31)Mg β-NMR spectra are measured for as few as 10(7) magnesium ions in ionic liquid (EMIM-Ac) within minutes, as a prototypical test case. Resonances are observed at 3882.9 and 3887.2 kHz in an external field of 0.3 T. The key achievement of the current work is to demonstrate that β-NMR is applicable for the analysis of species in solution, and thus represents a novel spectroscopic technique for use in general chemistry and potentially in biochemistry.

  10. Nuclear magnetic resonance spectroscopy is highly sensitive for lipid-soluble metabolites.

    PubMed

    Dai, Haiyang; Hong, Bikai; Xu, Zhifeng; Ma, Lian; Chen, Yaowen; Xiao, Yeyu; Wu, Renhua

    2013-08-05

    Although the water-soluble metabolite profile of human mesenchymal stem cells is known, the lipid profile still needs further investigation. In this study, methanol-chloroform was used to extract pid-soluble metabolites and perchloric acid was used to extract water-soluble metabolites. Furthermore, a dual phase extraction method using methanol-chloroform and water was used to obtain both water and lipid fractions simultaneously. All metabolite extractions were analyzed on a 9.4T high-resolution nuclear magnetic resonance spectrometer. Metabolite resonance peaks were assigned in the acquired spectra according to the chemical shift, and the extraction efficiency of ferent methods was compared. Results showed that in the spectra of water-soluble extracts, major metabolites comprised low molecular weight metabolites, including lactate, acetic acid, fatty acids, threonine, glutamic acid, creatine, choline and its derivatives, while in the spectra of lipid-soluble extracts, most metabolites were assigned to fatty acids. Among the different extraction procedures, perchloric acid was more efficient in extracting water-soluble metabolites and methanol-chloroform was efficient in extracting organic components compared with the dual phase extraction method. Nuclear magnetic resonance spectroscopy showed that as low as 0.7 mg organic yield was enough to obtain clear resonance peaks, while about 6.0 mg water-soluble yield was needed to obtain relatively favorable spectral lines. These results show that the efficiency of extracting water and lipid fractions is higher using perchloric acid and methanol-chloroform compared with dual phase extraction and that nuclear magnetic resonance spectroscopy is highly sensitive for analyzing lipid-soluble extracts.

  11. Influence of intramolecular f-f interactions on nuclear spin driven quantum tunneling of magnetizations in quadruple-decker phthalocyanine complexes containing two terbium or dysprosium magnetic centers.

    PubMed

    Fukuda, Takamitsu; Matsumura, Kazuya; Ishikawa, Naoto

    2013-10-10

    Nuclear spin driven quantum tunneling of magnetization (QTM) phenomena, which arise from admixture of more than two orthogonal electronic spin wave functions through the couplings with those of the nuclear spins, are one of the important magnetic relaxation processes in lanthanide single molecule magnets (SMMs) in the low temperature range. Although recent experimental studies have indicated that the presence of the intramolecular f-f interactions affects their magnetic relaxation processes, little attention has been given to their mechanisms and, to the best of our knowledge, no rational theoretical models have been proposed for the interpretations of how the nuclear spin driven QTMs are influenced by the f-f interactions. Since quadruple-decker phthalocyanine complexes with two terbium or dysprosium ions as the magnetic centers show moderate f-f interactions, these are appropriate to investigate the influence of the f-f interactions on the dynamic magnetic relaxation processes. In the present paper, a theoretical model including ligand field (LF) potentials, hyperfine, nuclear quadrupole, magnetic dipolar, and the Zeeman interactions has been constructed to understand the roles of the nuclear spins for the QTM processes, and the resultant Zeeman plots are obtained. The ac susceptibility measurements of the magnetically diluted quadruple-decker monoterbium and diterbium phthalocyanine complexes, [Tb-Y] and [Tb-Tb], have indicated that the presence of the f-f interactions suppresses the QTMs in the absence of the external magnetic field (H(dc)) being consistent with previous reports. On the contrary, the faster magnetic relaxation processes are observed for [Tb-Tb] than [Tb-Y] at H(dc) = 1000 Oe, clearly demonstrating that the QTMs are rather enhanced in the presence of the external magnetic field. Based on the calculated Zeeman diagrams, these observations can be attributed to the enhanced nuclear spin driven QTMs for [Tb-Tb]. At the H(dc) higher than 2000 Oe, the

  12. Experimental study of quantum simulation for quantum chemistry with a nuclear magnetic resonance simulator.

    PubMed

    Lu, Dawei; Xu, Nanyang; Xu, Boruo; Li, Zhaokai; Chen, Hongwei; Peng, Xinhua; Xu, Ruixue; Du, Jiangfeng

    2012-10-13

    Quantum computers have been proved to be able to mimic quantum systems efficiently in polynomial time. Quantum chemistry problems, such as static molecular energy calculations and dynamical chemical reaction simulations, become very intractable on classical computers with scaling up of the system. Therefore, quantum simulation is a feasible and effective approach to tackle quantum chemistry problems. Proof-of-principle experiments have been implemented on the calculation of the hydrogen molecular energies and one-dimensional chemical isomerization reaction dynamics using nuclear magnetic resonance systems. We conclude that quantum simulation will surpass classical computers for quantum chemistry in the near future.

  13. Realization of quantum state privacy amplification in a nuclear magnetic resonance quantum system

    NASA Astrophysics Data System (ADS)

    Hao, Liang; Wang, Chuan; Long, Gui Lu

    2010-06-01

    Quantum state privacy amplification (QSPA) is the quantum analogue of classical privacy amplification. If the state information of a series of single-particle states has some leakage, QSPA reduces this leakage by condensing the state information of two particles into the state of one particle. Recursive applications of the operations will eliminate the quantum state information leakage to a required minimum level. In this paper, we report the experimental implementation of a quantum state privacy amplification protocol in a nuclear magnetic resonance system. The density matrices of the states are constructed in the experiment, and the experimental results agree well with theory.

  14. Coaxial probe for nuclear magnetic resonance diffusion and relaxation correlation experiments

    SciTech Connect

    Tang, Yiqiao; Hürlimann, Martin; Mandal, Soumyajit; Paulsen, Jeffrey; Song, Yi-Qiao

    2014-02-21

    A coaxial nuclear magnetic resonance (NMR) probe is built to measure diffusion and relaxation properties of liquid samples. In particular, we demonstrate the acquisition of two-dimensional (2D) distribution functions (T{sub 1}-T{sub 2} and diffusion–T{sub 2}), essential for fluids characterization. The compact design holds promise for miniaturization, thus enabling the measurement of molecular diffusion that is inaccessible to conventional micro-NMR setups. Potential applications range from crude oil characterization to biomolecular screening and detections.

  15. Characterization of humic acid fractions by C-13 nuclear magnetic resonance spectroscopy

    USGS Publications Warehouse

    Wershaw, R. L.; Thorn, K.A.; Pinckney, D.J.

    1988-01-01

    Soil humic acids from different environments were fractionated by adsorption chromatography on Sephadex and characterized by C-13 nuclear magnetic resonance (NMR) spectroscopy. The C-13 NMR spectra of the fractions consist of some sharp, well-resolved lines and some broad bands in contrast to the spectra of the unfractionated humic acids, where the bands are broader and less well-resolved. The marked increase in resolution is apparently due to increased homogeneity of the fractions. These spectra are compared to the spectra of model compounds.

  16. A potential nuclear magnetic resonance imaging approach for noncontact temperature measurement

    NASA Technical Reports Server (NTRS)

    Manatt, Stanley L.

    1989-01-01

    It is proposed that in a nuclear magnetic resonance (NMR) imaging experiment that it should be possible to measure temperature through an extended volume. The basis for such a measurement would depend upon sensing a temperature dependent on NMR parameter in an inert, volatile molecule (or fluid) filling the volume of interest. Exploratory work suggest that one suitable candidate for such a purpose might be CH3Cl. Possible parameters, other inert gases and feasible measurement schemes that might provide such temperature measurement are discussed.

  17. Chemical characterization of pigment gallstones using /sup 13/C nuclear magnetic resonance analysis

    SciTech Connect

    Woolfenden, W.R.; Grant, D.M.; Straight, R.C.; Englert, E. Jr.

    1982-07-30

    The unique ability of Carbon-13 nuclear magnetic resonance analysis with cross polarization/magic angle spinning techniques to investigate chemical structures of solids is used to probe the chemical characteristics of several gallstone types. New pulse program techniques are used to distinguish various carbon atoms in studying the polymeric nature of the black bilirubinoid pigment of pigment gallstones. Evidence for the involvement of the carboxyl group and noninvolvement of vinyl groups of bilirubinoids in the polymeric bond formation is presented. Conjugated bilirubin structures are found to be present in some solid residues from pigment stones extracted with acidic methanol/chloroform.

  18. Nuclear magnetic resonance spectroscopy of mussel adhesive protein repeating peptide segment.

    PubMed

    Olivieri, M P; Wollman, R M; Alderfer, J L

    1997-12-01

    Mussel adhesive protein (MAP) is the adhesive agent used by the common blue sea mussel (Mytilus edulis) to attach the animal to various underwater surfaces. It is generally composed of 75 to 85 repeating decameric units with the reported primary sequence NH2-Ala(1)-Lyst(2)-Pro(3)-Ser(4)-Tyr(5)-Hyp(6)-Hyp(7)-Thr(8)-DOPA( 9)- Lys(10)-COOH. This study examines this peptide's solution-state conformation using proton nuclear magnetic resonance (NMR) spectroscopy. NMR and molecular modeling of the decamer before and after molecular dynamics calculations in water suggests a conformation that retains an overall bent helix.

  19. 31P nuclear magnetic resonance study of the proton-irradiated KTiOPO4

    NASA Astrophysics Data System (ADS)

    Kim, Se-Hun; Lee, Cheol Eui

    2013-08-01

    31P nuclear magnetic resonance (NMR) was employed to study the effects of proton irradiation on KTiOPO4 (KTP) in view of the previously studied paramagnetic impurity doping effects. High-resolution 31P NMR measurements showed significant increase in the isotropic chemical shifts of the two inequivalent phosphorus sites in the proton-irradiated KTP system, indicating decrease in the electron density around the phosphorous nuclei. The 31P NMR linewidths of the KTP system manifested anomalies associated with the superionic transition and with the polaron formation, which became much weaker after proton irradiation. Besides, the activation energy of the charge carriers increased significantly after proton irradiation.

  20. New Approach to High-Pressure Nuclear Magnetic Resonance with Anvil Cells

    NASA Astrophysics Data System (ADS)

    Meissner, T.; Goh, S. K.; Haase, J.; Meier, B.; Rybicki, D.; Alireza, P. L.

    2010-04-01

    A novel approach that uses radio-frequency microcoils in the high-pressure region of anvil cells with Nuclear Magnetic Resonance (NMR) experiments is described. High-sensitivity Al NMR data at 70 kbar for Al metal are presented for the first time. An expected decrease in the Al Knight shift at 70 kbar is observed, as well as an unexpected change in the local charge symmetry at the Al nucleus. The latter is not predicted by chemical structure analysis under high pressure.

  1. Design and testing of high sensitivity microreceiver coil apparatus for nuclear magnetic resonance and imaging

    NASA Astrophysics Data System (ADS)

    Seeber, D. A.; Cooper, R. L.; Ciobanu, L.; Pennington, C. H.

    2001-04-01

    We report the design and testing of a nuclear magnetic resonance (NMR) microcoil receiver apparatus, employing solenoidal microreceiver coils of dimensions of tens to hundreds of microns, using applied field of 9 T (proton resonance frequency 383 MHz). For the smallest receiver coils we attain sensitivity sufficient to observe proton NMR with signal to noise (S/N) one in a single scan applied to a ˜10 μm3 (10 fl) water sample, containing 7×1011 total proton spins. We also test the dependence of the S/N on important coil parameters, including coil composition and resistivity, turn spacing, and lead lengths.

  2. Molecular Structure Laboratory. Fourier Transform Nuclear Magnetic Resonance (FTNMR) Spectrometer and Ancillary Instrumentation at SUNY Geneseo

    SciTech Connect

    Geiger, David K

    2015-12-31

    An Agilent 400-MR nuclear magnetic resonance (NMR) spectrometer and ancillary equipment were purchased, which are being used for molecular structure elucidation.  The instrumentation is housed in a pre-existing facility designed specifically for its use. This instrument package is being used to expand the research and educational efforts of the faculty and students at SUNY-Geneseo and is made available to neighboring educational institutions and business concerns.  Funds were also used for training of College personnel, maintenance of the instrumentation, and installation of the equipment.

  3. Determination of alkylbenzenesulfonate surfactants in groundwater using macroreticular resins and carbon-13 nuclear magnetic resonance spectrometry

    USGS Publications Warehouse

    Thurman, E.M.; Willoughby, T.; Barber, L.B.; Thorn, K.A.

    1987-01-01

    Alkylbenzenesulfonate surfactants were determined in groundwater at concentrations as low as 0.3 mg/L. The method uses XAD-8 resin for concentration, followed by elution with methanol, separation of anionic and nonionic surfactants by anion exchange, quantitation by titration, and identification by 13C nuclear magnetic resonance spectrometry. Laboratory standards and field samples containing straight-chain and branched-chain alkylbenzenesulfonates, sodium dodecyl sulfate, and alkylbenzene ethoxylates were studied. The XAD-8 extraction of surfactants from groundwater was completed in the field, which simplified sample preservation and reduced the cost of transporting samples.

  4. High-resolution proton nuclear magnetic resonance characterization of seminolipid from bovine spermatozoa.

    PubMed

    Alvarez, J G; Storey, B T; Hemling, M L; Grob, R L

    1990-06-01

    The high-resolution one- and two-dimensional proton nuclear magnetic resonance (1H-NMR) characterization of seminolipid from bovine spermatozoa is presented. The 1H-NMR data was confirmed by gas-liquid chromatography-mass spectrometric analysis of the partially methylated alditol acetates of the sugar unit, mild alkaline methanolysis of the glyceryl ester, mobility on normal phase and diphasic thin-layer chromatography (HPTLC), and fast atom bombardment mass spectrometry (FAB-MS). The structure of the molecule corresponds to 1-O-hexadecyl-2-O-hexadecanoyl-3-O-beta-D-(3'-sulfo)-galactopyranosyl- sn-glycerol.

  5. Isotropic proton-detected local-field nuclear magnetic resonancein solids

    SciTech Connect

    Havlin, Robert H.; Walls, Jamie D.; Pines, Alexander

    2004-08-04

    A new nuclear magnetic resonance (NMR) method is presented which produces linear, isotropic proton-detected local-field spectra for InS spin systems in powdered samples. The method, HETeronuclear Isotropic Evolution (HETIE), refocuses the anisotropic portion of the heteronuclear dipolar coupling frequencies by evolving the system under a series of specially designed Hamiltonians and evolution pathways. The theory behind HETIE is represented along with experimental studies conducted on a powdered sample of ferrocene, demonstrating the methodology outlined in this paper. Applications of HETIE for structural determination in solid-state NMR are discussed.

  6. Recent advances in computational methods for nuclear magnetic resonance data processing.

    PubMed

    Gao, Xin

    2013-02-01

    Although three-dimensional protein structure determination using nuclear magnetic resonance (NMR) spectroscopy is a computationally costly and tedious process that would benefit from advanced computational techniques, it has not garnered much research attention from specialists in bioinformatics and computational biology. In this paper, we review recent advances in computational methods for NMR protein structure determination. We summarize the advantages of and bottlenecks in the existing methods and outline some open problems in the field. We also discuss current trends in NMR technology development and suggest directions for research on future computational methods for NMR.

  7. Development of Nuclear Magnetic Resonance Imaging/spectroscopy for improved petroleum recovery. Final report

    SciTech Connect

    Barrufet, M.A.; Flumerfelt, F.W.; Walsh, M.P.; Watson, A.T.

    1994-04-01

    The overall objectives of this program are to develop and apply Nuclear Magnetic Resonance Imaging (NMRI) and CT X-Ray Scanning methods for determining rock, fluid, and petrophysical properties and for fundamental studies of multiphase flow behavior in porous media. Specific objectives are divided into four subtasks: (1) development of NMRI and CT scanning for the determination of rock-fluid and petrophysical properties; (2) development of NMRI and CT scanning for characterizing conventional multiphase displacement processes; (3) development of NMR and CT scanning for characterizing dispersed phase processes; and (4) miscible displacement studies.

  8. Material degradation of liquid organic semiconductors analyzed by nuclear magnetic resonance spectroscopy

    SciTech Connect

    Fukushima, Tatsuya; Yamamoto, Junichi; Fukuchi, Masashi; Kaji, Hironori; Hirata, Shuzo; Jung, Heo Hyo; Adachi, Chihaya; Hirata, Osamu; Shibano, Yuki

    2015-08-15

    Liquid organic light-emitting diodes (liquid OLEDs) are unique devices consisting only of liquid organic semiconductors in the active layer, and the device performances have been investigated recently. However, the device degradation, especially, the origin has been unknown. In this study, we show that material degradation occurs in liquid OLEDs, whose active layer is composed of carbazole with an ethylene glycol chain. Nuclear magnetic resonance (NMR) experiments clearly exhibit that the dimerization reaction of carbazole moiety occurs in the liquid OLEDs during driving the devices. In contrast, cleavages of the ethylene glycol chain are not detected within experimental error. The dimerization reaction is considered to be related to the device degradation.

  9. Cranial anatomy and detection of ischemic stroke in the cat by nuclear magnetic resonance imaging

    SciTech Connect

    Buonanno, F.S.; Pykett, I.L.; Kistler, J.P.; Vielma, J.; Brady, T.J.; Hinshaw, W.S.; Goldman, M.R.; Newhouse, J.H.; Pohost, G.M.

    1982-04-01

    Proton nuclear magnetic resonance (NMR) images of cat heads were obtained using a small, experimental imaging system. As a prelude to the study of experimental ischemic brain infarction, the normal cat head was imaged for identification of anatomical features. Images of one cat which had undergone ligation of the middle cerebral artery three weeks previously showed brain changes associated with chronic ischemic stroke and compared favorably with findings on computed tomography (CT). The NMR images have millimetric spatial resolution. NMR parameters inherent in the tissues provide intensity variations and are sufficiently sensitive to yield contrast resolution surpassing that of CT.

  10. Relativistic, QED, and nuclear mass effects in the magnetic shielding of 3He.

    PubMed

    Rudziński, Adam; Puchalski, Mariusz; Pachucki, Krzysztof

    2009-06-28

    The magnetic shielding sigma of (3)He is studied. The complete relativistic corrections of order O(alpha(2)), leading QED corrections of order O(alpha(3) ln alpha), and finite nuclear mass effects of order O(m/m(N)) are calculated with high numerical precision. The resulting theoretical predictions for sigma = 59.967 43(10)x10(-6) are the most accurate to date among all elements and support the use of (3)He as a NMR standard.

  11. Nanoscale NMR spectroscopy and imaging of multiple nuclear species

    NASA Astrophysics Data System (ADS)

    Devience, Stephen J.; Pham, Linh M.; Lovchinsky, Igor; Sushkov, Alexander O.; Bar-Gill, Nir; Belthangady, Chinmay; Casola, Francesco; Corbett, Madeleine; Zhang, Huiliang; Lukin, Mikhail; Park, Hongkun; Yacoby, Amir; Walsworth, Ronald L.

    2015-02-01

    Nuclear magnetic resonance (NMR) spectroscopy and magnetic resonance imaging (MRI) provide non-invasive information about multiple nuclear species in bulk matter, with wide-ranging applications from basic physics and chemistry to biomedical imaging. However, the spatial resolution of conventional NMR and MRI is limited to several micrometres even at large magnetic fields (>1 T), which is inadequate for many frontier scientific applications such as single-molecule NMR spectroscopy and in vivo MRI of individual biological cells. A promising approach for nanoscale NMR and MRI exploits optical measurements of nitrogen-vacancy (NV) colour centres in diamond, which provide a combination of magnetic field sensitivity and nanoscale spatial resolution unmatched by any existing technology, while operating under ambient conditions in a robust, solid-state system. Recently, single, shallow NV centres were used to demonstrate NMR of nanoscale ensembles of proton spins, consisting of a statistical polarization equivalent to ˜100-1,000 spins in uniform samples covering the surface of a bulk diamond chip. Here, we realize nanoscale NMR spectroscopy and MRI of multiple nuclear species (1H, 19F, 31P) in non-uniform (spatially structured) samples under ambient conditions and at moderate magnetic fields (˜20 mT) using two complementary sensor modalities.

  12. A Magnetic Carbon Sorbent for Radioactive Material from the Fukushima Nuclear Accident

    NASA Astrophysics Data System (ADS)

    Yamaguchi, Daizo; Furukawa, Kazumi; Takasuga, Masaya; Watanabe, Koki

    2014-08-01

    Here we present the first report of a carbon-γ-Fe2O3 nanoparticle composite of mesoporous carbon, bearing COOH- and phenolic OH- functional groups on its surface, a remarkable and magnetically separable adsorbent, for the radioactive material emitted by the Fukushima Daiichi nuclear power plant accident. Contaminated water and soil at a level of 1,739 Bq kg-1 (134Cs and 137Cs at 509 Bq kg-1 and 1,230 Bq kg-1, respectively) and 114,000 Bq kg-1 (134Cs and 137Cs at 38,700 Bq kg-1 and 75,300 Bq kg-1, respectively) were decontaminated by 99% and 90% respectively with just one treatment carried out in Nihonmatsu city in Fukushima. Since this material is remarkably high performance, magnetically separable, and a readily applicable technology, it would reduce the environmental impact of the Fukushima accident if it were used.

  13. Sub-nanoliter nuclear magnetic resonance coils fabricated with multilayer soft lithography

    NASA Astrophysics Data System (ADS)

    Lam, Matthew H. C.; Homenuke, Mark A.; Michal, Carl A.; Hansen, Carl L.

    2009-09-01

    We describe the fabrication and characterization of sub-nanoliter volume nuclear magnetic resonance (NMR) transceiver coils that are easily amenable to integration within PDMS-based microfluidics. NMR coils were constructed by the injection of liquid metal into solenoidal cavities created around a microchannel using consecutive replica molding and bonding of PDMS layers. This construction technique permits the integration of NMR coils with solenoidal, toroidal or other three-dimensional geometries within highly integrated microfluidic systems and are one step toward NMR-based chemical screening and analysis on chip. The current proof-of-principle implementation displays limited sensitivity and resolution due to the conductivity and magnetic susceptibilities of the construction materials. However, NMR measurements and finite-element simulations made with the current device geometry indicate that optimization of these materials will allow for the collection of spectra from sub-millimolar concentration samples in less than 1 nL of solution.

  14. Effects of Barrier-Induced Nuclear Spin Magnetization Inhomogeneities on Diffusion-Attenuated MR Signal

    PubMed Central

    Sukstanskii, A.L.; Ackerman, J.J.H.; Yablonskiy, D.A.

    2007-01-01

    The spatial distribution of the transverse nuclear spin magnetization, appearing in a single compartment with impermeable boundaries in a Stejskal-Tanner gradient pulse MR experiment, is analyzed in detail. At short diffusion times the presence of diffusion-restrictive barriers (membranes) reduces effective diffusivity near the membranes and leads to an inhomogeneous spin magnetization distribution (the edge-enhancement effect). In this case, the signal reveals a quasi-two-compartment behavior and can be empirically modeled remarkably well by a biexponential function. The current results provide a framework for interpreting experimental MR data on various phenoma, including water diffusion in giant axons, metabolite diffusion in the brain, and hyperpolarized gas diffusion in lung airways. PMID:14523959

  15. Optically Pumped Nuclear Magnetic Resonance near Landau level filling ν = 1/3

    NASA Astrophysics Data System (ADS)

    Khandelwal, P.; Kuzma, N. N.; Barrett, S. E.; Pfeiffer, L. N.; West, K. W.

    1997-03-01

    Optical pumping enables the direct detection of the nuclear magnetic resonance signal of ^71Ga nuclei located in an electron doped GaAs quantum well.footnote S. E. Barrett et al., Phys. Rev. Lett. 72, 1368 (1994) Using this technique, measurements of the Knight shift (K_S)footnote S. E. Barrett et al., Phys. Rev. Lett. 74, 5112 (1995) and spin-lattice relaxation time (T_1)footnote R. Tycko et al., Science 268, 1460 (1995) have been carried out in the Quantum Hall regimes. In this talk will present our recent measurements of KS and T1 near Landau level filling ν = 1/3, which were carried out in high magnetic fields (up to 12 Tesla) and at low temperatures (T < 1 Kelvin). We will compare these results to the data obtained near ν = 1 and ν = 2/3.

  16. Nuclear magnetic resonance in cancer, XII: Application of NMR malignancy index to human lung tumours.

    PubMed Central

    Goldsmith, M.; Koutcher, J. A.; Damadian, R.

    1977-01-01

    Sixty specimens of human lung tissue from 52 individuals were inspected at 22.5 MHz by proton magnetic resonance techniques. The purpose of the study was to evaluate the diagnostic capabilities of the nuclear magnetic resonance (NMR) technique for the diagnosis of malignancy. The combination of two NMR parameters (spin-lattice (T1) and spin-spin (T2) relaxation times) into a malignancy index yielded 3 cases of overlap between the two populations of tissue. The mean and standard deviations obtained were 1.966 +/- 0.262 for normal tissue, and 2.925 +/- 0.864 for malignant specimens. In addition, analysis of the electrolyte and water content of the tissues confirm that factors other than specimen water content influence the relaxation time. PMID:911662

  17. Spin dynamics of a confined electron interacting with magnetic or nuclear spins: A semiclassical approach

    NASA Astrophysics Data System (ADS)

    Dietl, Tomasz

    2015-03-01

    A physically transparent and mathematically simple semiclassical model is employed to examine dynamics in the central-spin problem. The results reproduce previous findings obtained by various quantum approaches and, at the same time, provide information on the electron spin dynamics and Berry's phase effects over a wider range of experimentally relevant parameters than available previously. This development is relevant to dynamics of bound magnetic polarons and spin dephasing of an electron trapped by an impurity or a quantum dot, and coupled by a contact interaction to neighboring localized magnetic impurities or nuclear spins. Furthermore, it substantiates the applicability of semiclassical models to simulate dynamic properties of spintronic nanostructures with a mesoscopic number of spins.

  18. The use and promise of nuclear magnetic resonance imaging in epilepsy.

    PubMed

    Oldendorf, W H

    1984-01-01

    The revolutionary influence of X-ray computerized tomography (CT) on neurodiagnosis will be considerably extended by a newer imaging probe using magnetic fields. This form of imaging uses nuclear magnetic resonance (NMR) as the probe-tissue interaction to make many regional measurements of tissue in a short time, thus allowing an image to be computer-reconstructed. The nuclei of about 100 nuclides have significant magnetic properties, behaving like small permanent bar magnets. The most interesting of these in brain tissue are ordinary hydrogen, sodium, and phosphorus. Placed in a strong magnetic field, they partially align themselves with the field. They can then absorb energy which will subsequently be reradiated. Since the resonant frequency of each nucleus is proportional to the magnetic field in which it finds itself, producing fields which change predictably in strength with position, it becomes possible to localize the activated nuclei. Images of hydrogen density and relaxation times can be made and offer considerable tissue characterization. Bone is nearly invisible and considerable gray-white matter contrast is seen. Factors altering water-binding in tissues affect the image. Malignant tissue usually is seen in contrast to adjacent healthy tissue. Movement of blood is visible. By measuring energy-rich phosphorus, energy stores can be determined. There is no tissue ionization, no injected contrast materials are needed, and there are no radioactive materials involved. NMR scanners probably will replace CT within the next decade for most brain scanning purposes and will offer considerably greater tissue characterization which surely will influence studies of human epilepsy.

  19. Contributed Review: Nuclear magnetic resonance core analysis at 0.3 T

    SciTech Connect

    Mitchell, Jonathan Fordham, Edmund J.

    2014-11-15

    Nuclear magnetic resonance (NMR) provides a powerful toolbox for petrophysical characterization of reservoir core plugs and fluids in the laboratory. Previously, there has been considerable focus on low field magnet technology for well log calibration. Now there is renewed interest in the study of reservoir samples using stronger magnets to complement these standard NMR measurements. Here, the capabilities of an imaging magnet with a field strength of 0.3 T (corresponding to 12.9 MHz for proton) are reviewed in the context of reservoir core analysis. Quantitative estimates of porosity (saturation) and pore size distributions are obtained under favorable conditions (e.g., in carbonates), with the added advantage of multidimensional imaging, detection of lower gyromagnetic ratio nuclei, and short probe recovery times that make the system suitable for shale studies. Intermediate field instruments provide quantitative porosity maps of rock plugs that cannot be obtained using high field medical scanners due to the field-dependent susceptibility contrast in the porous medium. Example data are presented that highlight the potential applications of an intermediate field imaging instrument as a complement to low field instruments in core analysis and for materials science studies in general.

  20. Two lanthanide-hydroxo clusters with different nuclearity: Synthesis, structures, luminescent and magnetic properties

    NASA Astrophysics Data System (ADS)

    Li, Xi-Li; Zhu, Cancan; Zhang, Xue-Li; Hu, Ming; Wang, Ai-Ling; Xiao, Hong-Ping

    2017-01-01

    Under the identical reaction conditions, two new TbIII and SmIII-hydroxo clusters with different nuclearity have been prepared and characterized by X-ray crystallography, spectroscopic methods and magnetic measurements. Solid-state structure analyses reveal that the TbIII cluster shows a pentanuclear square pyramidal shape of the composition [Tb5(μ3-OH)4(μ4-OH)(dbm)10]·2H2O (1, dbm- = dibenzoylmethanate) with the dbm ligands presenting two types of coordination modes [η2-and (μ-O)-η2-]. The SmIII species presents a tetranuclear parallelogram structure formulated as [Sm4(μ3-OH)2(dbm)10]·12H2O (2), and three types of coordination modes [η2-, (μ-O)-η2- and (μ-O)2-η2-] for dbm ligands are observed. The measurements of magnetic properties indicate that the direct-current (dc) magnetic behaviors of two clusters mainly result from the thermal depopulation of the Stark sublevels of the TbIII and SmIII ions, respectively. Meanwhile, alternating current (ac) magnetic susceptibility of 1 is also assessed. Investigations on luminescence properties show that 2 displays characteristic emission of the SmIII ion in visible range, while 1 does not exhibit any detectable emission. The interpretations of different emission behaviors for 1 and 2 are also presented in detail.

  1. Nondestructive Magnetic Adaptive Testing of nuclear reactor pressure vessel steel degradation

    NASA Astrophysics Data System (ADS)

    Tomáš, I.; Vértesy, G.; Gillemot, F.; Székely, R.

    2013-01-01

    Inspection of neutron-irradiation-generated degradation of nuclear reactor pressure vessel steel (RPVS) is a very important task. In ferromagnetic materials, such as RPVS, the structural degradation is connected with a change of their magnetic properties. In this work, applicability of a novel magnetic nondestructive method (Magnetic Adaptive Testing, MAT), based on systematic measurement and evaluation of minor magnetic hysteresis loops, is shown for inspection of neutron irradiation embrittlement in RPVS. Three series of samples, made of JRQ, 15CH2MFA and 10ChMFT type steels were measured by MAT. The samples were irradiated by E > 1 MeV energy neutrons with total neutron fluence of 1.58 × 1019-11.9 × 1019 n/cm2. Regular correlation was found between the optimally chosen MAT degradation functions and the neutron fluence in all three types of the materials. Shift of the ductile-brittle transition temperature, ΔDBTT, independently determined as a function of the neutron fluence for the 15CH2MFA material, was also evaluated. A sensitive, linear correlation was found between the ΔDBTT and values of the relevant MAT degradation function. Based on these results, MAT is shown to be a promising (at least) complimentary tool of the destructive tests within the surveillance programs, which are presently used for inspection of neutron-irradiation-generated embrittlement of RPVS.

  2. Contributed review: nuclear magnetic resonance core analysis at 0.3 T.

    PubMed

    Mitchell, Jonathan; Fordham, Edmund J

    2014-11-01

    Nuclear magnetic resonance (NMR) provides a powerful toolbox for petrophysical characterization of reservoir core plugs and fluids in the laboratory. Previously, there has been considerable focus on low field magnet technology for well log calibration. Now there is renewed interest in the study of reservoir samples using stronger magnets to complement these standard NMR measurements. Here, the capabilities of an imaging magnet with a field strength of 0.3 T (corresponding to 12.9 MHz for proton) are reviewed in the context of reservoir core analysis. Quantitative estimates of porosity (saturation) and pore size distributions are obtained under favorable conditions (e.g., in carbonates), with the added advantage of multidimensional imaging, detection of lower gyromagnetic ratio nuclei, and short probe recovery times that make the system suitable for shale studies. Intermediate field instruments provide quantitative porosity maps of rock plugs that cannot be obtained using high field medical scanners due to the field-dependent susceptibility contrast in the porous medium. Example data are presented that highlight the potential applications of an intermediate field imaging instrument as a complement to low field instruments in core analysis and for materials science studies in general.

  3. Direct mapping of 19F in 19FDG-6P in brain tissue at subcellular resolution using soft X-ray fluorescence

    NASA Astrophysics Data System (ADS)

    Poitry-Yamate, C.; Gianoncelli, A.; Kourousias, G.; Kaulich, B.; Lepore, M.; Gruetter, R.; Kiskinova, M.

    2013-10-01

    Low energy x-ray fluorescence (LEXRF) detection was optimized for imaging cerebral glucose metabolism by mapping the fluorine LEXRF signal of 19F in 19FDG, trapped as intracellular 19F-deoxyglucose-6-phosphate (19FDG-6P) at 1μm spatial resolution from 3μm thick brain slices. 19FDG metabolism was evaluated in brain structures closely resembling the general cerebral cytoarchitecture following formalin fixation of brain slices and their inclusion in an epon matrix. 2-dimensional distribution maps of 19FDG-6P were placed in a cytoarchitectural and morphological context by simultaneous LEXRF mapping of N and O, and scanning transmission x-ray (STXM) imaging. A disproportionately high uptake and metabolism of glucose was found in neuropil relative to intracellular domains of the cell body of hypothalamic neurons, showing directly that neurons, like glial cells, also metabolize glucose. As 19F-deoxyglucose-6P is structurally identical to 18F-deoxyglucose-6P, LEXRF of subcellular 19F provides a link to in vivo 18FDG PET, forming a novel basis for understanding the physiological mechanisms underlying the 18FDG PET image, and the contribution of neurons and glia to the PET signal.

  4. 19F NMR Reveals Multiple Conformations at the Dimer Interface of the Non-Structural Protein 1 Effector Domain from Influenza A Virus

    PubMed Central

    Ma, Li-Chung; Swapna, G. V. T.; Leonard, Paul G.; Ladbury, John E.; Krug, Robert M.; Montelione, Gaetano T.

    2014-01-01

    SUMMARY Non-structural protein 1 of influenza A virus, NS1A, is a conserved virulence factor comprised of an N-terminal double-stranded RNA (dsRNA)-binding domain (RBD) and a multifunctional C-terminal effector domain (ED), each of which can independently form symmetric homodimers. Here we apply 19F NMR to NS1A from influenza A/Udorn/307/1972 virus (H3N2) labeled with 5-fluorotryptophan (5-F-Trp), and demonstrate that the 19F signal of Trp187 is a sensitive, direct monitor of the ED helix-helix dimer interface. 19F relaxation dispersion data reveal the presence of conformational dynamics within this functionally important protein-protein interface, whose rate is over three orders of magnitude faster than the kinetics of ED dimerization. 19F NMR also affords direct spectroscopic evidence that Trp187, which mediates intermolecular ED:ED interactions required for cooperative dsRNA binding, is solvent exposed in full-length NS1Aat concentrations below aggregation. These results have important implications for the diverse roles of this NS1A epitope during influenza virus infection. PMID:24582435

  5. Homometallic Dy(III) Complexes of Varying Nuclearity from 2 to 21: Synthesis, Structure, and Magnetism.

    PubMed

    Biswas, Sourav; Das, Sourav; Acharya, Joydev; Kumar, Vierandra; van Leusen, Jan; Kögerler, Paul; Herrera, Juan Manuel; Colacio, Enrique; Chandrasekhar, Vadapalli

    2017-04-11

    The synthesis, structure, and magnetic properties of four Dy(III) coordination compounds isolated as [Dy2 (LH2 )2 (μ2 -η(1) :η(1) -Piv)]Cl⋅2 MeOH⋅H2 O (1), [Dy4 (LH)2 (μ3 -OH)2 (Piv)4 (MeOH)2 ]⋅4 MeOH⋅2 H2 O (2), [Dy6 (LH2 )3 (tfa)3 (O3 PtBu)(Cl)3 ]Cl4 ⋅15.5 H2 O⋅4 MeOH⋅5 CHCl3 (3) and [Dy21 (L)7 (LH)7 (tfa)7 ]Cl7 ⋅15 H2 O⋅7 MeOH⋅12 CHCl3 (4) are reported (Piv=pivalate, tfa=1,1,1-trifluoroacetylacetone, O3 PtBu=tert-butylphosphonate). Among these, 3 displays an equilateral triangle topology with a side length of 9.541 Å and a rare pentagonal-bipyramidal Dy(3+) environment, whereas complex 4 exhibits a single-stranded nanowheel structure with the highest nuclearity known for a homometallic lanthanide cluster structure. A tentative model of the dc magnetic susceptibility and the low-temperature magnetization of compounds 1 and 2 indicates that the former exhibits weak ferromagnetic intramolecular exchange interaction between the Dy(3+) ions, whereas in the latter both intramolecular ferromagnetic and antiferromagnetic magnetic exchange interactions are present. Compounds 1, 3, and 4 exhibit frequency-dependent ac signals below 15 K at zero bias field, but without exhibiting any maximum above 2 K at frequencies up to 1400 Hz. The observed slow relaxation of the magnetization suggests that these compounds could exhibit single molecule magnet (SMM) behavior with either a thermal energy barrier for the reversal of the magnetization that is not high enough to block the magnetization above 2 K, or there exists quantum tunneling of the magnetization (QTM).

  6. Tunnel-diode resonator and nuclear magnetic resonance studies of low-dimensional magnetic and superconducting systems

    NASA Astrophysics Data System (ADS)

    Yeninas, Steven Lee

    This thesis emphasizes two frequency-domain techniques which uniquely employ radio frequency (RF) excitations to investigate the static and dynamic properties of novel magnetic and superconducting materials. The first technique is a tunnel-diode resonator (TDR) which detects bulk changes in the dynamic susceptibility, chi = dM/dH. The capability of TDR to operate at low temperatures (less than 100 mK) and high fields (up to 65 T in pulsed fields) was critical for investigations of the antiferromagnetically correlated magnetic molecules Cr12Cu2 and Cr12 Ln4 (Ln = Y, Eu, Gd, Tb, Dy, Ho, Er, Yb), and the superconductor SrFe2(As1--xPx) 2 (x = 0.35). Investigations of Cr12Cu 2 and Cr12Ln4 demonstrates the first implementation of TDR to experimentally investigate the lowlying energy spectra of magnetic molecules in pulsed magnetic fields. Zeeman splitting of the quantum spin states results in transitions between field-dependent ground state energy levels observed as peaks in dM/dH at 600 mK, and demonstrate good agreement with theoretical calculations using a isotropic Heisenberg spin Hamiltonian. Increasing temperature to 2.5 K, TDR reveals a rich spectrum of frequency-dependent level crossings from thermally populated excited states which cannot be observed by conventional static magnetometry techniques. The last study presented uses TDR in pulsed fields to determine the temperature-dependent upper-critical field Hc2 to investigate the effects of columnar defects arising from heavy ion irradiation of SrFe2(As 1--xPx)2. Results suggest irradiation uniformly suppresses Tc and Hc2, and does not introduce additional features on H c2(T) and the shapes of the anisotropic Hc2 curves indicates a nodal superconducting gap. The second technique is nuclear magnetic resonance (NMR) which yields site specific magnetic and electronic information arising from hyperfine interactions for select magnetic nuclei. NMR spectra and nuclear spin-lattice relaxation measurements are reported

  7. Assessment of chemical exchange in tryptophan-albumin solution through (19)F multicomponent transverse relaxation dispersion analysis.

    PubMed

    Lin, Ping-Chang

    2015-06-01

    A number of NMR methods possess the capability of probing chemical exchange dynamics in solution. However, certain drawbacks limit the applications of these NMR approaches, particularly, to a complex system. Here, we propose a procedure that integrates the regularized nonnegative least squares (NNLS) analysis of multiexponential T2 relaxation into Carr-Purcell-Meiboom-Gill (CPMG) relaxation dispersion experiments to probe chemical exchange in a multicompartmental system. The proposed procedure was validated through analysis of (19)F T2 relaxation data of 6-fluoro-DL-tryptophan in a two-compartment solution with and without bovine serum albumin. Given the regularized NNLS analysis of a T2 relaxation curve acquired, for example, at the CPMG frequency υ CPMG  = 125, the nature of two distinct peaks in the associated T2 distribution spectrum indicated 6-fluoro-DL-tryptophan either retaining the free state, with geometric mean */multiplicative standard deviation (MSD) = 1851.2 ms */1.51, or undergoing free/albumin-bound interconversion, with geometric mean */MSD = 236.8 ms */1.54, in the two-compartment system. Quantities of the individual tryptophan species were accurately reflected by the associated T2 peak areas, with an interconversion state-to-free state ratio of 0.45 ± 0.11. Furthermore, the CPMG relaxation dispersion analysis estimated the exchange rate between the free and albumin-bound states in this fluorinated tryptophan analog and the corresponding dissociation constant of the fluorinated tryptophan-albumin complex in the chemical-exchanging, two-compartment system.

  8. Characterisation of erythrocyte transmembrane exchange of trifluoroacetate using 19F-NMR: evidence for transport via the monocarboxylate transporter.

    PubMed

    Xu, A S; Kuchel, P W

    1993-07-25

    The transport of trifluoroacetate (TFA) and difluorophosphate (DFP) into and out of human and sheep erythrocytes was measured using 19F-NMR. The pathways for the transport in human erythrocytes were characterised by differentiating between the transport inhibition caused by different reagents. (1) Pre-treatment of human erythrocytes with N-ethylmaleimide (10 mM) caused a decrease of the membrane-permeability coefficients for TFA influx and efflux to 0.74 +/- 0.05 and 0.83 +/- 0.09-times, respectively, of those determined in the absence of inhibition. Concomitantly there was no apparent effect on the band-3-mediated transport of DFP. Thus, the decrease of the permeability of TFA is consistent with the inhibition being that of the monocarboxylate transporter. (2) Inhibition of TFA and DFP exchange was also seen in human erythrocytes treated with p-chloromercuriphenylsulfonate (pCMBS). The extent of inhibition reached a maximum value for the pCMBS concentrations beyond which further inhibition was not achieved and there was substantial residual exchange of the two solutes. (3) Residual flux of TFA was found in the presence of high concentrations of the inhibitors, alpha-cyano-4-hydroxycinnamate (> or = 4 mM) or 4,4'-dinitrostilbene-2,2'-disulfonate (> or = 1 mM) when each compound was used alone. (4) Complete inhibition of TFA uptake was obtained when human erythrocytes were treated with both alpha-cyano-4-hydroxycinnamate (4 mM) and a stilbene disulfonate. It was, therefore, concluded that simple diffusion of TFA via the lipid bilayer was negligible in human erythrocytes and that incomplete inhibition of the monocarboxylate transporter occurred when the compounds were used alone.

  9. NMR Spectroscopy for Thin Films by Magnetic Resonance Force Microscopy

    PubMed Central

    Won, Soonho; Saun, Seung-Bo; Lee, Soonchil; Lee, SangGap; Kim, Kiwoong; Han, Yunseok

    2013-01-01

    Nuclear magnetic resonance (NMR) is a fundamental research tool that is widely used in many fields. Despite its powerful applications, unfortunately the low sensitivity of conventional NMR makes it difficult to study thin film or nano-sized samples. In this work, we report the first NMR spectrum obtained from general thin films by using magnetic resonance force microscopy (MRFM). To minimize the amount of imaging information inevitably mixed into the signal when a gradient field is used, we adopted a large magnet with a flat end with a diameter of 336 μm that generates a homogeneous field on the sample plane and a field gradient in a direction perpendicular to the plane. Cyclic adiabatic inversion was used in conjunction with periodic phase inversion of the frequency shift to maximize the SNR. In this way, we obtained the 19F NMR spectrum for a 34 nm-thick CaF2 thin film. PMID:24217000

  10. Angstrom-Resolution Magnetic Resonance Imaging of Single Molecules via Wave-Function Fingerprints of Nuclear Spins

    NASA Astrophysics Data System (ADS)

    Ma, Wen-Long; Liu, Ren-Bao

    2016-08-01

    Single-molecule sensitivity of nuclear magnetic resonance (NMR) and angstrom resolution of magnetic resonance imaging (MRI) are the highest challenges in magnetic microscopy. Recent development in dynamical-decoupling- (DD) enhanced diamond quantum sensing has enabled single-nucleus NMR and nanoscale NMR. Similar to conventional NMR and MRI, current DD-based quantum sensing utilizes the "frequency fingerprints" of target nuclear spins. The frequency fingerprints by their nature cannot resolve different nuclear spins that have the same noise frequency or differentiate different types of correlations in nuclear-spin clusters, which limit the resolution of single-molecule MRI. Here we show that this limitation can be overcome by using "wave-function fingerprints" of target nuclear spins, which is much more sensitive than the frequency fingerprints to the weak hyperfine interaction between the targets and a sensor under resonant DD control. We demonstrate a scheme of angstrom-resolution MRI that is capable of counting and individually localizing single nuclear spins of the same frequency and characterizing the correlations in nuclear-spin clusters. A nitrogen-vacancy-center spin sensor near a diamond surface, provided that the coherence time is improved by surface engineering in the near future, may be employed to determine with angstrom resolution the positions and conformation of single molecules that are isotope labeled. The scheme in this work offers an approach to breaking the resolution limit set by the "frequency gradients" in conventional MRI and to reaching the angstrom-scale resolution.

  11. Investigation of enzymatic C-P bond formation using multiple quantum HCP nuclear magnetic resonance spectroscopy.

    PubMed

    Hu, Kaifeng; Werner, Williard J; Allen, Kylie D; Wang, Susan C

    2015-04-01

    The biochemical mechanism for the formation of the C-P-C bond sequence found in l-phosphinothricin, a natural product with antibiotic and herbicidal activity, remains unclear. To obtain further insight into the catalytic mechanism of PhpK, the P-methyltransferase responsible for the formation of the second C-P bond in l-phosphinothricin, we utilized a combination of stable isotopes and two-dimensional nuclear magnetic resonance spectroscopy. Exploiting the newly emerged Bruker QCI probe (Bruker Corp.), we specifically designed and ran a (13) C-(31) P multiple quantum (1) H-(13) C-(31) P (HCP) experiment in (1) H-(31) P two-dimensional mode directly on a PhpK-catalyzed reaction mixture using (13) CH3 -labeled methylcobalamin as the methyl group donor. This method is particularly advantageous because minimal sample purification is needed to maximize product visualization. The observed 3:1:1:3 multiplet specifically and unequivocally illustrates direct bond formation between (13) CH3 and (31) P. Related nuclear magnetic resonance experiments based upon these principles may be designed for the study of enzymatic and/or synthetic chemical reaction mechanisms.

  12. Citrate and Sugar Cofermentation in Leuconostoc oenos, a (sup13)C Nuclear Magnetic Resonance Study

    PubMed Central

    Ramos, A.; Santos, H.

    1996-01-01

    (sup13)C nuclear magnetic resonance spectroscopy was used to investigate citrate-glucose cometabolism in nongrowing cell suspensions of the wine lactic acid bacterium Leuconostoc oenos. The use of isotopically enriched substrates allowed us to identify and quantify in the end products the carbon atoms derived from each of the substrates supplied; furthermore, it was possible to differentiate between products derived from the metabolism of endogenous carbon reserves and those derived from external substrates. Citrate-sugar cometabolism was also monitored in dilute cell suspensions for comparison with the nuclear magnetic resonance results. A clear metabolic shift of the end products from glucose metabolism was observed when citrate was provided along with glucose: ethanol was replaced by acetate, and 2,3-butanediol was produced. Reciprocally, the production of lactate and 2,3-butanediol from citrate was increased in the presence of glucose. When citrate was cometabolized with glucose, a 10-fold reduction in the intracellular concentration of glucose-6-phosphate was observed, a result in line with the observed citrate-induced stimulation of glucose consumption. The presence of citrate provided additional pathways for NADP(sup+) regeneration and allowed the diversion of sugar carbon to reactions in which ATP was synthesized. The increased growth rates and maximal biomass yields of L. oenos growing on citrate-glucose mixtures resulted from increased ATP synthesis both by substrate-level phosphorylation and by a chemiosmotic mechanism. PMID:16535363

  13. Remote sensing of sample temperatures in nuclear magnetic resonance using photoluminescence of semiconductor quantum dots.

    PubMed

    Tycko, Robert

    2014-07-01

    Knowledge of sample temperatures during nuclear magnetic resonance (NMR) measurements is important for acquisition of optimal NMR data and proper interpretation of the data. Sample temperatures can be difficult to measure accurately for a variety of reasons, especially because it is generally not possible to make direct contact to the NMR sample during the measurements. Here I show that sample temperatures during magic-angle spinning (MAS) NMR measurements can be determined from temperature-dependent photoluminescence signals of semiconductor quantum dots that are deposited in a thin film on the outer surface of the MAS rotor, using a simple optical fiber-based setup to excite and collect photoluminescence. The accuracy and precision of such temperature measurements can be better than ±5K over a temperature range that extends from approximately 50K (-223°C) to well above 310K (37°C). Importantly, quantum dot photoluminescence can be monitored continuously while NMR measurements are in progress. While this technique is likely to be particularly valuable in low-temperature MAS NMR experiments, including experiments involving dynamic nuclear polarization, it may also be useful in high-temperature MAS NMR and other forms of magnetic resonance.

  14. Theory of Stochastic Dipolar Recoupling in Solid State Nuclear Magnetic Resonance

    PubMed Central

    Tycko, Robert

    2008-01-01

    Dipolar recoupling techniques in solid state nuclear magnetic resonance (NMR) consist of radio-frequency (rf) pulse sequences applied in synchrony with magic-angle spinning (MAS) that create non-zero average magnetic dipole-dipole couplings under MAS. Stochastic dipolar recoupling (SDR) is a variant in which randomly chosen rf carrier frequency offsets are introduced to cause random phase modulations of individual pairwise couplings in the dipolar spin Hamiltonian. Several aspects of SDR are investigated through analytical theory and numerical simulations: (1) An analytical expression for the evolution of nuclear spin polarization under SDR in a two-spin system is derived and verified through simulations, which show a continuous evolution from coherent, oscillatory polarization exchange to incoherent, exponential approach to equilibrium as the range of random carrier offsets (controlled by a parameter fmax) increases; (2) In a many-spin system, polarization transfers under SDR are shown to be described accurately by a rate matrix in the limit of large fmax, with pairwise transfer rates that are proportional to the inverse sixth power of pairwise internuclear distances; (3) Quantum mechanical interferences among non-commuting pairwise dipole-dipole couplings, which are a complicating factor in solid state NMR studies of molecular structures by traditional dipolar recoupling methods, are shown to be absent from SDR data in the limit of large fmax, provided that coupled nuclei have distinct NMR chemical shifts. PMID:18085769

  15. Nuclear Magnetic Resonance Project at the Medical University of South Carolina

    SciTech Connect

    Lacy, Eric R.

    2008-04-25

    Department of Energy funds were used to support the development of a Center for Marine Structural Biology at the Marine Resources Center at Ft. Johnson in Charleston, South Carolina. The Ft. Johnson site is home to five institutions in a unique state/federal/academic partnership whose member institutions include the National Ocean Service (NOS), the National Institute of Standards and Technology (NIST), the Medical University of South Carolina (MUSC), the SC Department of Natural Resources, and the College of Charleston. The Center for Marine Structural Biology sits adjacent to the newly completed Hollings Marine Laboratory and houses a 700 and 800 MHz nuclear magnetic resource instruments. The completed center is operational and meets it goal to provide state-of-the-art nuclear magnetic resonance capabilities to resolve the molecular structures of compounds that have direct relevance to human health, including marine-derived biotoxins that are tested against cancer cell lines through collaborative studies with researchers at the Hollings Cancer Center at MUSC. Funds from the DOE assisted, in part, with the purchase of NMR probes and ancillary equipment for the 800 MHz NMR instrument. In addition, developmental funds was used to support the visit of an Scientific Advisory Board and for the NMR Planning Team to visit currently operational high field NMR facilities to guide their choice of instrumentation and design of the building.

  16. [Value of the nuclear magnetic cholangio resonance in the study of the patient with jaundice].

    PubMed

    Gramática, L; Struni, M; Carranza, D; Verasay, G; Taborda, B; Caballero, F; Gramática, L

    1999-01-01

    This report analyse the results about forty three (43) patients, thirty six (36) of which showed an extrahepatic obstructive biliary Syndrome was made evident by ultrasonography, five (5) with a cholecistolithiasis and doubtful history of jaundice were evaluated to carry out a video-surgery procedure and two (2) patients whom hepatic-yeyunostomy had been practiced, a control of anastomosis in postoperative period was required. Nuclear Magnetic Resonance and Operative Cholangiography findings were correlated and afterward with the anatomopathological studies when they arrived. In all cases the Nuclear Magnetic Cholangio Resonance (NMCR) let us prove the diagnosis of extrahepatic biliary obstruction determining with precision furthermore the topographical site of the lesion. Respecting the aetiology of obstruction, NMCR was accurate in 34 out of 36 cases (94.4%). In conclusion Cholangio-Resonance is an excellent diagnostic method to evaluate biliary ductal system including anatomic changes. However, there are some limitations yet in order to determine the aetiology of lesions about extrahepatic biliary via extremes. We emphasize its features such as non-invasive, little operating dependent, and without morbimortality that become it as a method of choice to study the biliary via from a diagnostic viewpoint.

  17. Nanoscale β-nuclear magnetic resonance depth imaging of topological insulators.

    PubMed

    Koumoulis, Dimitrios; Morris, Gerald D; He, Liang; Kou, Xufeng; King, Danny; Wang, Dong; Hossain, Masrur D; Wang, Kang L; Fiete, Gregory A; Kanatzidis, Mercouri G; Bouchard, Louis-S

    2015-07-14

    Considerable evidence suggests that variations in the properties of topological insulators (TIs) at the nanoscale and at interfaces can strongly affect the physics of topological materials. Therefore, a detailed understanding of surface states and interface coupling is crucial to the search for and applications of new topological phases of matter. Currently, no methods can provide depth profiling near surfaces or at interfaces of topologically inequivalent materials. Such a method could advance the study of interactions. Herein, we present a noninvasive depth-profiling technique based on β-detected NMR (β-NMR) spectroscopy of radioactive (8)Li(+) ions that can provide "one-dimensional imaging" in films of fixed thickness and generates nanoscale views of the electronic wavefunctions and magnetic order at topological surfaces and interfaces. By mapping the (8)Li nuclear resonance near the surface and 10-nm deep into the bulk of pure and Cr-doped bismuth antimony telluride films, we provide signatures related to the TI properties and their topological nontrivial characteristics that affect the electron-nuclear hyperfine field, the metallic shift, and magnetic order. These nanoscale variations in β-NMR parameters reflect the unconventional properties of the topological materials under study, and understanding the role of heterogeneities is expected to lead to the discovery of novel phenomena involving quantum materials.

  18. Remote sensing of sample temperatures in nuclear magnetic resonance using photoluminescence of semiconductor quantum dots

    PubMed Central

    Tycko, Robert

    2014-01-01

    Knowledge of sample temperatures during nuclear magnetic resonance (NMR) measurements is important for acquisition of optimal NMR data and proper interpretation of the data. Sample temperatures can be difficult to measure accurately for a variety of reasons, especially because it is generally not possible to make direct contact to the NMR sample during the measurements. Here I show that sample temperatures during magic-angle spinning (MAS) NMR measurements can be determined from temperature-dependent photoluminescence signals of semiconductor quantum dots that are deposited in a thin film on the outer surface of the MAS rotor, using a simple optical fiber-based setup to excite and collect photoluminescence. The accuracy and precision of such temperature measurements can be better than ±5 K over a temperature range that extends from approximately 50 K (−223° C) to well above 310 K (37° C). Importantly, quantum dot photoluminescence can be monitored continuously while NMR measurements are in progress. While this technique is likely to be particularly valuable in low-temperature MAS NMR experiments, including experiments involving dynamic nuclear polarization, it may also be useful in high-temperature MAS NMR and other forms of magnetic resonance. PMID:24859817

  19. Nanoscale β-nuclear magnetic resonance depth imaging of topological insulators

    PubMed Central

    Koumoulis, Dimitrios; Morris, Gerald D.; He, Liang; Kou, Xufeng; King, Danny; Wang, Dong; Hossain, Masrur D.; Wang, Kang L.; Fiete, Gregory A.; Kanatzidis, Mercouri G.; Bouchard, Louis-S.

    2015-01-01

    Considerable evidence suggests that variations in the properties of topological insulators (TIs) at the nanoscale and at interfaces can strongly affect the physics of topological materials. Therefore, a detailed understanding of surface states and interface coupling is crucial to the search for and applications of new topological phases of matter. Currently, no methods can provide depth profiling near surfaces or at interfaces of topologically inequivalent materials. Such a method could advance the study of interactions. Herein, we present a noninvasive depth-profiling technique based on β-detected NMR (β-NMR) spectroscopy of radioactive 8Li+ ions that can provide “one-dimensional imaging” in films of fixed thickness and generates nanoscale views of the electronic wavefunctions and magnetic order at topological surfaces and interfaces. By mapping the 8Li nuclear resonance near the surface and 10-nm deep into the bulk of pure and Cr-doped bismuth antimony telluride films, we provide signatures related to the TI properties and their topological nontrivial characteristics that affect the electron–nuclear hyperfine field, the metallic shift, and magnetic order. These nanoscale variations in β-NMR parameters reflect the unconventional properties of the topological materials under study, and understanding the role of heterogeneities is expected to lead to the discovery of novel phenomena involving quantum materials. PMID:26124141

  20. MAGNETICALLY CONFINED INTERSTELLAR HOT PLASMA IN THE NUCLEAR BULGE OF OUR GALAXY

    SciTech Connect

    Nishiyama, Shogo; Kwon, Jungmi; Tamura, Motohide; Yasui, Kazuki; Nagata, Tetsuya; Yoshikawa, Tatsuhito; Uchiyama, Hideki; Schödel, Rainer; Hatano, Hirofumi; Sato, Shuji; Sugitani, Koji; Suenaga, Takuya

    2013-06-01

    The origin of the Galactic center diffuse X-ray emission (GCDX) is still under intense investigation. In particular, the interpretation of the hot (kT ≈ 7 keV) component of the GCDX, characterized by the strong Fe 6.7 keV line emission, has been contentious. If the hot component originates from a truly diffuse interstellar plasma, not a collection of unresolved point sources, such plasma cannot be gravitationally bound, and its regeneration would require a huge amount of energy. Here, we show that the spatial distribution of the GCDX does not correlate with the number density distribution of an old stellar population traced by near-infrared light, strongly suggesting a significant contribution of the diffuse interstellar plasma. Contributions of the old stellar population to the GCDX are implied to be ∼50% and ∼20% in the nuclear stellar disk (NSD) and nuclear star cluster, respectively. For the NSD, a scale height of 0.°32 ± 0.°02 is obtained for the first time from the stellar number density profiles. We also show the results of the extended near-infrared polarimetric observations in the central 3° × 2° region of our Galaxy, and confirm that the GCDX region is permeated by a large scale, toroidal magnetic field (MF) as previously claimed. Together with observed MF strengths close to energy equipartition, the hot plasma could be magnetically confined, reducing the amount of energy required to sustain it.