Science.gov

Sample records for 19s proteasome subcomplex

  1. An atomic model AAA-ATPase/20S core particle sub-complex of the 26S proteasome.

    PubMed

    Förster, Friedrich; Lasker, Keren; Beck, Florian; Nickell, Stephan; Sali, Andrej; Baumeister, Wolfgang

    2009-10-16

    The 26S proteasome is the most downstream element of the ubiquitin-proteasome pathway of protein degradation. It is composed of the 20S core particle (CP) and the 19S regulatory particle (RP). The RP consists of 6 AAA-ATPases and at least 13 non-ATPase subunits. Based on a cryo-EM map of the 26S proteasome, structures of homologs, and physical protein-protein interactions we derive an atomic model of the AAA-ATPase-CP sub-complex. The ATPase order in our model (Rpt1/Rpt2/Rpt6/Rpt3/Rpt4/Rpt5) is in excellent agreement with the recently identified base-precursor complexes formed during the assembly of the RP. Furthermore, the atomic CP-AAA-ATPase model suggests that the assembly chaperone Nas6 facilitates CP-RP association by enhancing the shape complementarity between Rpt3 and its binding CP alpha subunits partners. PMID:19653995

  2. An atomic model AAA-ATPase/20S core particle sub-complex of the 26S proteasome

    SciTech Connect

    Foerster, Friedrich; Lasker, Keren; Beck, Florian; Nickell, Stephan; Sali, Andrej; Baumeister, Wolfgang

    2009-10-16

    The 26S proteasome is the most downstream element of the ubiquitin-proteasome pathway of protein degradation. It is composed of the 20S core particle (CP) and the 19S regulatory particle (RP). The RP consists of 6 AAA-ATPases and at least 13 non-ATPase subunits. Based on a cryo-EM map of the 26S proteasome, structures of homologs, and physical protein-protein interactions we derive an atomic model of the AAA-ATPase-CP sub-complex. The ATPase order in our model (Rpt1/Rpt2/Rpt6/Rpt3/Rpt4/Rpt5) is in excellent agreement with the recently identified base-precursor complexes formed during the assembly of the RP. Furthermore, the atomic CP-AAA-ATPase model suggests that the assembly chaperone Nas6 facilitates CP-RP association by enhancing the shape complementarity between Rpt3 and its binding CP alpha subunits partners.

  3. Thiostrepton interacts covalently with Rpt subunits of the 19S proteasome and proteasome substrates

    PubMed Central

    Sandu, Cristinel; Chandramouli, Nagaranjan; Glickman, Joseph Fraser; Molina, Henrik; Kuo, Chueh-Ling; Kukushkin, Nikolay; Goldberg, Alfred L; Steller, Hermann

    2015-01-01

    Here, we report a novel mechanism of proteasome inhibition mediated by Thiostrepton (Thsp), which interacts covalently with Rpt subunits of the 19S proteasome and proteasome substrates. We identified Thsp in a cell-based high-throughput screen using a fluorescent reporter sensitive to degradation by the ubiquitin–proteasome pathway. Thiostrepton behaves as a proteasome inhibitor in several paradigms, including cell-based reporters, detection of global ubiquitination status, and proteasome-mediated labile protein degradation. In vitro, Thsp does not block the chymotrypsin activity of the 26S proteasome. In a cell-based IκBα degradation assay, Thsp is a slow inhibitor and 4 hrs of treatment achieves the same effects as MG-132 at 30 min. We show that Thsp forms covalent adducts with proteins in human cells and demonstrate their nature by mass spectrometry. Furthermore, the ability of Thsp to interact covalently with the cysteine residues is essential for its proteasome inhibitory function. We further show that a Thsp modified peptide cannot be degraded by proteasomes in vitro. Importantly, we demonstrate that Thsp binds covalently to Rpt subunits of the 19S regulatory particle and forms bridges with a proteasome substrate. Taken together, our results uncover an important role of Thsp in 19S proteasome inhibition. PMID:26033448

  4. Compromising the 19S proteasome complex protects cells from reduced flux through the proteasome

    PubMed Central

    Tsvetkov, Peter; Mendillo, Marc L; Zhao, Jinghui; Carette, Jan E; Merrill, Parker H; Cikes, Domagoj; Varadarajan, Malini; van Diemen, Ferdy R; Penninger, Josef M; Goldberg, Alfred L; Brummelkamp, Thijn R; Santagata, Sandro; Lindquist, Susan

    2015-01-01

    Proteasomes are central regulators of protein homeostasis in eukaryotes. Proteasome function is vulnerable to environmental insults, cellular protein imbalance and targeted pharmaceuticals. Yet, mechanisms that cells deploy to counteract inhibition of this central regulator are little understood. To find such mechanisms, we reduced flux through the proteasome to the point of toxicity with specific inhibitors and performed genome-wide screens for mutations that allowed cells to survive. Counter to expectation, reducing expression of individual subunits of the proteasome's 19S regulatory complex increased survival. Strong 19S reduction was cytotoxic but modest reduction protected cells from inhibitors. Protection was accompanied by an increased ratio of 20S to 26S proteasomes, preservation of protein degradation capacity and reduced proteotoxic stress. While compromise of 19S function can have a fitness cost under basal conditions, it provided a powerful survival advantage when proteasome function was impaired. This means of rebalancing proteostasis is conserved from yeast to humans. DOI: http://dx.doi.org/10.7554/eLife.08467.001 PMID:26327695

  5. Paradoxical resistance of multiple myeloma to proteasome inhibitors by decreased levels of 19S proteasomal subunits

    PubMed Central

    Acosta-Alvear, Diego; Cho, Min Y; Wild, Thomas; Buchholz, Tonia J; Lerner, Alana G; Simakova, Olga; Hahn, Jamie; Korde, Neha; Landgren, Ola; Maric, Irina; Choudhary, Chunaram; Walter, Peter; Weissman, Jonathan S; Kampmann, Martin

    2015-01-01

    Hallmarks of cancer, including rapid growth and aneuploidy, can result in non-oncogene addiction to the proteostasis network that can be exploited clinically. The defining example is the exquisite sensitivity of multiple myeloma (MM) to 20S proteasome inhibitors, such as carfilzomib. However, MM patients invariably acquire resistance to these drugs. Using a next-generation shRNA platform, we found that proteostasis factors, including chaperones and stress-response regulators, controlled the response to carfilzomib. Paradoxically, 19S proteasome regulator knockdown induced resistance to carfilzomib in MM and non-MM cells. 19S subunit knockdown did not affect the activity of the 20S subunits targeted by carfilzomib nor their inhibition by the drug, suggesting an alternative mechanism, such as the selective accumulation of protective factors. In MM patients, lower 19S levels predicted a diminished response to carfilzomib-based therapies. Together, our findings suggest that an understanding of network rewiring can inform development of new combination therapies to overcome drug resistance. DOI: http://dx.doi.org/10.7554/eLife.08153.001 PMID:26327694

  6. The 19S proteasome subunit Rpt3 regulates distribution of CENP-A by associating with centromeric chromatin.

    PubMed

    Kitagawa, Teppei; Ishii, Kojiro; Takeda, Kojiro; Matsumoto, Tomohiro

    2014-01-01

    CENP-A, a variant of histone H3, is incorporated into centromeric chromatin and plays a role during kinetochore establishment. In fission yeast, the localization of CENP-A is limited to a region spanning 10-20 kb of the core domain of the centromere. Here, we report a mutant (rpt3-1) in which this region is expanded to 40-70 kb. Likely due to abnormal distribution of CENP-A, this mutant exhibits chromosome instability and enhanced gene silencing. Interestingly, the rpt3(+) gene encodes a subunit of the 19S proteasome, which localizes to the nuclear membrane. Although Rpt3 associates with centromeric chromatin, the mutant protein has lost this localization. A loss of the cut8(+) gene encoding an anchor of the proteasome to the nuclear membrane causes similar phenotypes as observed in the rpt3-1 mutant. Thus, we propose that the proteasome (or its subcomplex) associates with centromeric chromatin and regulates distribution of CENP-A. PMID:24710126

  7. A novel proteasome inhibitor suppresses tumor growth via targeting both 19S proteasome deubiquitinases and 20S proteolytic peptidases

    PubMed Central

    Liu, Ningning; Liu, Chunjiao; Li, Xiaofen; Liao, Siyan; Song, Wenbin; Yang, Changshan; Zhao, Chong; Huang, Hongbiao; Guan, Lixia; Zhang, Peiquan; Liu, Shouting; Hua, Xianliang; Chen, Xin; Zhou, Ping; Lan, Xiaoying; Yi, Songgang; Wang, Shunqing; Wang, Xuejun; Dou, Q. Ping; Liu, Jinbao

    2014-01-01

    The successful development of bortezomib-based therapy for treatment of multiple myeloma has established proteasome inhibition as an effective therapeutic strategy, and both 20S proteasome peptidases and 19S deubiquitinases (DUBs) are becoming attractive targets of cancer therapy. It has been reported that metal complexes, such as copper complexes, inhibit tumor proteasome. However, the involved mechanism of action has not been fully characterized. Here we report that (i) copper pyrithione (CuPT), an alternative to tributyltin for antifouling paint biocides, inhibits the ubiquitin-proteasome system (UPS) via targeting both 19S proteasome-specific DUBs and 20S proteolytic peptidases with a mechanism distinct from that of the FDA-approved proteasome inhibitor bortezomib; (ii) CuPT potently inhibits proteasome-specific UCHL5 and USP14 activities; (iii) CuPT inhibits tumor growth in vivo and induces cytotoxicity in vitro and ex vivo. This study uncovers a novel class of dual inhibitors of DUBs and proteasome and suggests a potential clinical strategy for cancer therapy. PMID:24912524

  8. A novel proteasome inhibitor suppresses tumor growth via targeting both 19S proteasome deubiquitinases and 20S proteolytic peptidases.

    PubMed

    Liu, Ningning; Liu, Chunjiao; Li, Xiaofen; Liao, Siyan; Song, Wenbin; Yang, Changshan; Zhao, Chong; Huang, Hongbiao; Guan, Lixia; Zhang, Peiquan; Liu, Shouting; Hua, Xianliang; Chen, Xin; Zhou, Ping; Lan, Xiaoying; Yi, Songgang; Wang, Shunqing; Wang, Xuejun; Dou, Q Ping; Liu, Jinbao

    2014-01-01

    The successful development of bortezomib-based therapy for treatment of multiple myeloma has established proteasome inhibition as an effective therapeutic strategy, and both 20S proteasome peptidases and 19S deubiquitinases (DUBs) are becoming attractive targets of cancer therapy. It has been reported that metal complexes, such as copper complexes, inhibit tumor proteasome. However, the involved mechanism of action has not been fully characterized. Here we report that (i) copper pyrithione (CuPT), an alternative to tributyltin for antifouling paint biocides, inhibits the ubiquitin-proteasome system (UPS) via targeting both 19S proteasome-specific DUBs and 20S proteolytic peptidases with a mechanism distinct from that of the FDA-approved proteasome inhibitor bortezomib; (ii) CuPT potently inhibits proteasome-specific UCHL5 and USP14 activities; (iii) CuPT inhibits tumor growth in vivo and induces cytotoxicity in vitro and ex vivo. This study uncovers a novel class of dual inhibitors of DUBs and proteasome and suggests a potential clinical strategy for cancer therapy. PMID:24912524

  9. The proteasomal subunit Rpn6 is a molecular clamp holding the core and regulatory subcomplexes together

    PubMed Central

    Pathare, Ganesh Ramnath; Nagy, István; Bohn, Stefan; Unverdorben, Pia; Hubert, Agnes; Körner, Roman; Nickell, Stephan; Lasker, Keren; Sali, Andrej; Tamura, Tomohiro; Nishioka, Taiki; Förster, Friedrich; Baumeister, Wolfgang; Bracher, Andreas

    2012-01-01

    Proteasomes execute the degradation of most cellular proteins. Although the 20S core particle (CP) has been studied in great detail, the structure of the 19S regulatory particle (RP), which prepares ubiquitylated substrates for degradation, has remained elusive. Here, we report the crystal structure of one of the RP subunits, Rpn6, and we describe its integration into the cryo-EM density map of the 26S holocomplex at 9.1 Å resolution. Rpn6 consists of an α-solenoid-like fold and a proteasome COP9/signalosome eIF3 (PCI) module in a right-handed suprahelical configuration. Highly conserved surface areas of Rpn6 interact with the conserved surfaces of the Pre8 (alpha2) and Rpt6 subunits from the alpha and ATPase rings, respectively. The structure suggests that Rpn6 has a pivotal role in stabilizing the otherwise weak interaction between the CP and the RP. PMID:22187461

  10. Inhibition of 19S proteasome-associated deubiquitinases by metal-containing compounds.

    PubMed

    Liu, Ningning; Huang, Hongbiao; Dou, Q Ping; Liu, Jinbao

    2015-01-01

    Copper and gold complexes have clinical activity in several diseases including cancer. Recently, we have reported that the anti-cancer activity of copper (II) pyrithione CuPT and gold (I) complex auranofin is associated with targeting the 19S proteasome-associated deubiquitinases (DUBs), UCHL5 and USP14. Here we discuss metal DUB inhibitors in treating cancer and other diseases. (from Editor). Several copper and gold complexes have clinical activity in treating some human diseases including cancer. Recently, we have reported that the anti-cancer activity of copper (II) pyrithione CuPT and gold (I) complex auranofin is tightly associated with their ability to target and inhibit the 19S proteasome-associated deubiquitinases (DUBs), UCHL5 and USP14. In this article we review small molecule inhibitors of DUBs and 19S proteasome-associated DUBs. We then describe and discuss the ubique nature of CuPT and auranofin, which is inhibition of 19S proteasome-associated UCHL5 and USP14. We finally suggest the potential to develop novel, specific metal-based DUB inhibitors for treating cancer and other diseases. PMID:26097878

  11. Inhibition of 19S proteasome-associated deubiquitinases by metal-containing compounds

    PubMed Central

    Liu, Ningning; Huang, Hongbiao; Ping Dou, Q.; Liu, Jinbao

    2015-01-01

    Copper and gold complexes have clinical activity in several diseases including cancer. Recently, we have reported that the anti-cancer activity of copper (II) pyrithione CuPT and gold (I) complex auranofin is associated with targeting the 19S proteasome-associated deubiquitinases (DUBs), UCHL5 and USP14. Here we discuss metal DUB inhibitors in treating cancer and other diseases. (from Editor). Several copper and gold complexes have clinical activity in treating some human diseases including cancer. Recently, we have reported that the anti-cancer activity of copper (II) pyrithione CuPT and gold (I) complex auranofin is tightly associated with their ability to target and inhibit the 19S proteasome-associated deubiquitinases (DUBs), UCHL5 and USP14. In this article we review small molecule inhibitors of DUBs and 19S proteasome-associated DUBs. We then describe and discuss the ubique nature of CuPT and auranofin, which is inhibition of 19S proteasome-associated UCHL5 and USP14. We finally suggest the potential to develop novel, specific metal-based DUB inhibitors for treating cancer and other diseases PMID:26097878

  12. Structural Insights into Proteasome Activation by the 19S Regulatory Particle

    PubMed Central

    Ehlinger, Aaron; Walters, Kylie J.

    2013-01-01

    Since its discovery in the late 1970s, the ubiquitin-proteasome system (UPS) has become recognized as the major pathway for regulated cellular proteolysis. Processes ranging from cell cycle control, pathogen resistance, and protein quality control rely on selective protein degradation at the proteasome for homeostatic function. Perhaps as a consequence of the importance of this pathway, and the genesis of severe diseases upon its dysregulation, protein degradation by the UPS is highly controlled from the level of substrate recognition to proteolysis. Technological advances over the last decade have created an explosion of structural and mechanistic information that has underscored the complexity of the proteasome and its upstream regulatory factors. Significant insights have come from study of the 19S proteasome regulatory particle (RP) responsible for recognition and processing of ubiquitinated substrates destined for proteolysis. Established as a highly dynamic proteasome activator, a large number of both permanent and transient RP components with specialized functional roles are critical for proteasome function. In this review, we highlight recent mechanistic developments in the study of proteasome activation by the RP and how they provide context to our current understanding of the UPS. PMID:23672618

  13. The Cellular Level of PR500, a Protein Complex Related to the 19S Regulatory Particle of the Proteasome, Is Regulated in Response to Stresses in Plants

    PubMed Central

    Peng, Zhaohua; Staub, Jeffrey M.; Serino, Giovanna; Kwok, Shing F.; Kurepa, Jasmina; Bruce, Barry D.; Vierstra, Richard D.; Wei, Ning; Deng, Xing-Wang

    2001-01-01

    In Arabidopsis seedlings and cauliflower florets, Rpn6 (a proteasome non-ATPase regulatory subunit) was found in two distinct protein complexes of ∼800 and 500 kDa, respectively. The large complex likely represents the proteasome 19S regulator particle (RP) because it displays the expected subunit composition and all characteristics. The small complex, designated PR500, shares at least three subunits with the “lid” subcomplex of 19S RP and is loosely associated with an hsp70 protein. In Arabidopsis COP9 signalosome mutants, PR500 was specifically absent or reduced to an extent that correlates with the severity of the mutations. Furthermore, PR500 was also diminished in response to potential protein-misfolding stresses caused by the heat shock and canavanine treatment. Immunofluorescence studies suggest that PR500 has a distinct localization pattern and is enriched in specific nuclear foci. We propose that PR500 may be evolved in higher plants to cope with the frequently encountered environmental stresses. PMID:11179422

  14. Proteasome Addiction Defined in Ewing Sarcoma Is Effectively Targeted by a Novel Class of 19S Proteasome Inhibitors.

    PubMed

    Shukla, Neerav; Somwar, Romel; Smith, Roger S; Ambati, Sri; Munoz, Stanley; Merchant, Melinda; D'Arcy, Padraig; Wang, Xin; Kobos, Rachel; Antczak, Christophe; Bhinder, Bhavneet; Shum, David; Radu, Constantin; Yang, Guangbin; Taylor, Barry S; Ng, Charlotte K Y; Weigelt, Britta; Khodos, Inna; de Stanchina, Elisa; Reis-Filho, Jorge S; Ouerfelli, Ouathek; Linder, Stig; Djaballah, Hakim; Ladanyi, Marc

    2016-08-01

    Ewing sarcoma is a primitive round cell sarcoma with a peak incidence in adolescence that is driven by a chimeric oncogene created from the fusion of the EWSR1 gene with a member of the ETS family of genes. Patients with metastatic and recurrent disease have dismal outcomes and need better therapeutic options. We screened a library of 309,989 chemical compounds for growth inhibition of Ewing sarcoma cells to provide the basis for the development of novel therapies and to discover vulnerable pathways that might broaden our understanding of the pathobiology of this aggressive sarcoma. This screening campaign identified a class of benzyl-4-piperidone compounds that selectively inhibit the growth of Ewing sarcoma cell lines by inducing apoptosis. These agents disrupt 19S proteasome function through inhibition of the deubiquitinating enzymes USP14 and UCHL5. Functional genomic data from a genome-wide shRNA screen in Ewing sarcoma cells also identified the proteasome as a node of vulnerability in Ewing sarcoma cells, providing orthologous confirmation of the chemical screen findings. Furthermore, shRNA-mediated silencing of USP14 or UCHL5 in Ewing sarcoma cells produced significant growth inhibition. Finally, treatment of a xenograft mouse model of Ewing sarcoma with VLX1570, a benzyl-4-piperidone compound derivative currently in clinical trials for relapsed multiple myeloma, significantly inhibited in vivo tumor growth. Overall, our results offer a preclinical proof of concept for the use of 19S proteasome inhibitors as a novel therapeutic strategy for Ewing sarcoma. Cancer Res; 76(15); 4525-34. ©2016 AACR. PMID:27256563

  15. Targeting the 19S proteasomal subunit, Rpt4, for the treatment of colon cancer.

    PubMed

    Boland, Karen; Flanagan, Lorna; McCawley, Niamh; Pabari, Ritesh; Kay, Elaine W; McNamara, Deborah A; Murray, Frank; Byrne, Annette T; Ramtoola, Zebunnissa; Concannon, Caoimhín G; Prehn, Jochen H M

    2016-06-01

    Deregulation of the ubiquitin-proteasome pathway has been frequently observed in a number of malignancies. Using quantitative Western blotting of normal and matched tumour tissue, we here identified a significant increase in the 19S proteasome subunit Rpt4 in response to chemoradiation in locally advanced rectal cancer patients with unfavourable outcome. We therefore explored the potential of Rpt4 reduction as a therapeutic strategy in colorectal cancer (CRC). Utilizing siRNA to down regulate Rpt4 expression, we show that silencing of Rpt4 reduced proteasomal activity and induced endoplasmic reticulum stress. Gene silencing of Rpt4 also inhibited cell proliferation, reduced clonogenic survival and induced apoptosis in HCT-116 colon cancer cells. We next developed a cell penetrating peptide-based nanoparticle delivery system to achieve in vivo gene silencing of Rpt4. Administration of Rpt4 siRNA nanoparticles reduced tumour growth and improved survival in a HCT-116 colon cancer xenograft tumour model in vivo. Collectively, our data suggest that inhibition of Rpt4 represents a novel strategy for the treatment of CRC. PMID:26997367

  16. The Ubiquitin Ligase Hul5 Promotes Proteasomal Processivity▿

    PubMed Central

    Aviram, Sharon; Kornitzer, Daniel

    2010-01-01

    The 26S proteasome is a large cytoplasmic protease that degrades polyubiquitinated proteins to short peptides in a processive manner. The proteasome 19S regulatory subcomplex tethers the target protein via its polyubiquitin adduct and unfolds the target polypeptide, which is then threaded into the proteolytic site-containing 20S subcomplex. Hul5 is a 19S subcomplex-associated ubiquitin ligase that elongates ubiquitin chains on proteasome-bound substrates. We isolated hul5Δ as a mutation with which fusions of an unstable cyclin to stable reporter proteins accumulate as partially processed products. These products appear transiently in the wild type but are strongly stabilized in 19S ATPase mutants and in the hul5Δ mutant, supporting a role for the ATPase subunits in the unfolding of proteasome substrates before insertion into the catalytic cavity and suggesting a role for Hul5 in the processive degradation of proteins that are stalled on the proteasome. PMID:20008553

  17. Glucocorticoids regulate mRNA levels for subunits of the 19 S regulatory complex of the 26 S proteasome in fast-twitch skeletal muscles.

    PubMed Central

    Combaret, Lydie; Taillandier, Daniel; Dardevet, Dominique; Béchet, Daniel; Rallière, Cécile; Claustre, Agnès; Grizard, Jean; Attaix, Didier

    2004-01-01

    Circulating levels of glucocorticoids are increased in many traumatic and muscle-wasting conditions that include insulin-dependent diabetes, acidosis, infection, and starvation. On the basis of indirect findings, it appeared that these catabolic hormones are required to stimulate Ub (ubiquitin)-proteasome-dependent proteolysis in skeletal muscles in such conditions. The present studies were performed to provide conclusive evidence for an activation of Ub-proteasome-dependent proteolysis after glucocorticoid treatment. In atrophying fast-twitch muscles from rats treated with dexamethasone for 6 days, compared with pair-fed controls, we found (i) increased MG132-inhibitable proteasome-dependent proteolysis, (ii) an enhanced rate of substrate ubiquitination, (iii) increased chymotrypsin-like proteasomal activity of the proteasome, and (iv) a co-ordinate increase in the mRNA expression of several ATPase (S4, S6, S7 and S8) and non-ATPase (S1, S5a and S14) subunits of the 19 S regulatory complex, which regulates the peptidase and the proteolytic activities of the 26 S proteasome. These studies provide conclusive evidence that glucocorticoids activate Ub-proteasome-dependent proteolysis and the first in vivo evidence for a hormonal regulation of the expression of subunits of the 19 S complex. The results suggest that adaptations in gene expression of regulatory subunits of the 19 S complex by glucocorticoids are crucial in the regulation of the 26 S muscle proteasome. PMID:14636157

  18. Structure-Driven Developments of 26S Proteasome Inhibitors.

    PubMed

    Śledź, Paweł; Baumeister, Wolfgang

    2016-01-01

    The 26S proteasome is a 2.5-MDa complex, and it operates at the executive end of the ubiquitin-proteasome pathway. It is a proven target for therapeutic agents for the treatment of some cancers and autoimmune diseases, and moreover, it has potential as a target of antibacterial agents. Most inhibitors, including all molecules approved for clinical use, target the 20S proteolytic core complex; its structure was determined two decades ago. Hitherto, efforts to develop inhibitors targeting the 19S regulatory particle subunits have been less successful. This is, in part, because the molecular architecture of this subcomplex has been, until recently, poorly understood, and high-resolution structures have been available only for a few subunits. In this review, we describe, from a structural perspective, the development of inhibitory molecules that target both the 20S and 19S subunits of the proteasome. We highlight the recent progress achieved in structure-based drug-discovery approaches, and we discuss the prospects for further improvement. PMID:26738474

  19. Reconstitution and functional analysis of kinetochore subcomplexes

    PubMed Central

    Gestaut, Daniel R.; Cooper, Jeremy; Asbury, Charles L.; Davis, Trisha N.; Wordeman, Linda

    2010-01-01

    Kinetochores are multifunctional supercomplexes that link chromosomes to dynamic microtubule tips. Groups of proteins from the kinetochore are arranged into distinct subcomplexes that co-purify under stringent conditions and cause similar phenotypes when mutated. By co-expressing all the components of a given subcomplex from a polycistronic plasmid in bacteria, many labs have had great success in purifying active subcomplexes. This has enabled the study of how the microtubule binding subcomplexes of the kinetochore interact with both the microtubule lattice and dynamic microtubule tips. Here we outline methods for rapid cloning of polycistronic vectors for expression of kinetochore subcomplexes, their purification, and techniques for functional analysis using Total Internal Reflection Fluorescence Microscopy (TIRFM). PMID:20466157

  20. Bacterial Proteasomes

    PubMed Central

    Jastrab, Jordan B.; Darwin, K. Heran

    2015-01-01

    Interest in bacterial proteasomes was sparked by the discovery that proteasomal degradation is required for the pathogenesis of Mycobacterium tuberculosis, one of the world's deadliest pathogens. Although bacterial proteasomes are structurally similar to their eukaryotic and archaeal homologs, there are key differences in their mechanisms of assembly, activation, and substrate targeting for degradation. In this article, we compare and contrast bacterial proteasomes with their archaeal and eukaryotic counterparts, and we discuss recent advances in our understanding of how bacterial proteasomes function to influence microbial physiology. PMID:26488274

  1. Structural Insights into the Regulatory Particle of the Proteasome from Methanocaldococcus jannaschii

    SciTech Connect

    Zhang, F.; Hu, M; Tian, G; Zhang, P; Finley, D; Jeffrey, P; Shi, Y

    2009-01-01

    Eukaryotic proteasome consists of a core particle (CP), which degrades unfolded protein, and a regulatory particle (RP), which is responsible for recognition, ATP-dependent unfolding, and translocation of polyubiquitinated substrate protein. In the archaea Methanocaldococcus jannaschii, the RP is a homohexameric complex of proteasome-activating nucleotidase (PAN). Here, we report the crystal structures of essential elements of the archaeal proteasome: the CP, the ATPase domain of PAN, and a distal subcomplex that is likely the first to encounter substrate. The distal subcomplex contains a coiled-coil segment and an OB-fold domain, both of which appear to be conserved in the eukaryotic proteasome. The OB domains of PAN form a hexameric ring with a 13 A pore, which likely constitutes the outermost constriction of the substrate translocation channel. These studies reveal structural codes and architecture of the complete proteasome, identify potential substrate-binding sites, and uncover unexpected asymmetry in the RP of archaea and eukaryotes.

  2. BISC: binary subcomplexes in proteins database.

    PubMed

    Juettemann, Thomas; Gerloff, Dietlind L

    2011-01-01

    Binary subcomplexes in proteins database (BISC) is a new protein-protein interaction (PPI) database linking up the two communities most active in their characterization: structural biology and functional genomics researchers. The BISC resource offers users (i) a structural perspective and related information about binary subcomplexes (i.e. physical direct interactions between proteins) that are either structurally characterized or modellable entries in the main functional genomics PPI databases BioGRID, IntAct and HPRD; (ii) selected web services to further investigate the validity of postulated PPI by inspection of their hypothetical modelled interfaces. Among other uses we envision that this resource can help identify possible false positive PPI in current database records. BISC is freely available at http://bisc.cse.ucsc.edu. PMID:21081561

  3. Deciphering preferential interactions within supramolecular protein complexes: the proteasome case

    PubMed Central

    Fabre, Bertrand; Lambour, Thomas; Garrigues, Luc; Amalric, François; Vigneron, Nathalie; Menneteau, Thomas; Stella, Alexandre; Monsarrat, Bernard; Van den Eynde, Benoît; Burlet-Schiltz, Odile; Bousquet-Dubouch, Marie-Pierre

    2015-01-01

    In eukaryotic cells, intracellular protein breakdown is mainly performed by the ubiquitin–proteasome system. Proteasomes are supramolecular protein complexes formed by the association of multiple sub-complexes and interacting proteins. Therefore, they exhibit a very high heterogeneity whose function is still not well understood. Here, using a newly developed method based on the combination of affinity purification and protein correlation profiling associated with high-resolution mass spectrometry, we comprehensively characterized proteasome heterogeneity and identified previously unknown preferential associations within proteasome sub-complexes. In particular, we showed for the first time that the two main proteasome subtypes, standard proteasome and immunoproteasome, interact with a different subset of important regulators. This trend was observed in very diverse human cell types and was confirmed by changing the relative proportions of both 20S proteasome forms using interferon-γ. The new method developed here constitutes an innovative and powerful strategy that could be broadly applied for unraveling the dynamic and heterogeneous nature of other biologically relevant supramolecular protein complexes. PMID:25561571

  4. Proteasome inhibitors.

    PubMed

    Teicher, Beverly A; Tomaszewski, Joseph E

    2015-07-01

    Proteasome inhibitors have a 20 year history in cancer therapy. The first proteasome inhibitor, bortezomib (Velcade, PS-341), a break-through multiple myeloma treatment, moved rapidly through development from bench in 1994 to first approval in 2003. Bortezomib is a reversible boronic acid inhibitor of the chymotrypsin-like activity of the proteasome. Next generation proteasome inhibitors include carfilzomib and oprozomib which are irreversible epoxyketone proteasome inhibitors; and ixazomib and delanzomib which are reversible boronic acid proteasome inhibitors. Two proteasome inhibitors, bortezomib and carfilzomib are FDA approved drugs and ixazomib and oprozomib are in late stage clinical trials. All of the agents are potent cytotoxics. The disease focus for all the proteasome inhibitors is multiple myeloma. This focus arose from clinical observations made in bortezomib early clinical trials. Later preclinical studies confirmed that multiple myeloma cells were indeed more sensitive to proteasome inhibitors than other tumor cell types. The discovery and development of the proteasome inhibitor class of anticancer agents has progressed through a classic route of serendipity and scientific investigation. These agents are continuing to have a major impact in their treatment of hematologic malignancies and are beginning to be explored as potential treatment agent for non-cancer indications. PMID:25935605

  5. Structural Biology of the Proteasome

    PubMed Central

    Kish-Trier, Erik

    2016-01-01

    The proteasome refers to a collection of complexes centered on the 20S proteasome core particle, a complex of 28 subunits that houses proteolytic sites in its hollow interior. Proteasomes are found in eukaryotes, archaea, and some eubacteria, and their activity is critical for many cellular pathways. Important advances include inhibitor binding studies and the structure of the immunoproteasome, whose specificity is altered by incorporation of inducible catalytic subunits. The inherent repression of the 20S CP is relieved by the ATP-independent activators, 11S and Blm10/PA200, whose structures reveal principles of proteasome mechanism. The structure of the ATP-dependent 19S regulatory particle, which mediates degradation of polyubiquitylated proteins, is being revealed by a combination of crystal or NMR structures of individual subunits and electron microscopy reconstruction of the intact complex. Other recent structural advances inform about mechanisms of assembly and the role of conformational changes in the functional cycle. PMID:23414347

  6. Phosphorylation of the C-terminal tail of proteasome subunit α7 is required for binding of the proteasome quality control factor Ecm29

    PubMed Central

    Wani, Prashant S.; Suppahia, Anjana; Capalla, Xavier; Ondracek, Alex; Roelofs, Jeroen

    2016-01-01

    The proteasome degrades many short-lived proteins that are labeled with an ubiquitin chain. The identification of phosphorylation sites on the proteasome subunits suggests that degradation of these substrates can also be regulated at the proteasome. In yeast and humans, the unstructured C-terminal region of α7 contains an acidic patch with serine residues that are phosphorylated. Although these were identified more than a decade ago, the molecular implications of α7 phosphorylation have remained unknown. Here, we showed that yeast Ecm29, a protein involved in proteasome quality control, requires the phosphorylated tail of α7 for its association with proteasomes. This is the first example of proteasome phosphorylation dependent binding of a proteasome regulatory factor. Ecm29 is known to inhibit proteasomes and is often found enriched on mutant proteasomes. We showed that the ability of Ecm29 to bind to mutant proteasomes requires the α7 tail binding site, besides a previously characterized Rpt5 binding site. The need for these two binding sites, which are on different proteasome subcomplexes, explains the specificity of Ecm29 for proteasome holoenzymes. We propose that alterations in the relative position of these two sites in different conformations of the proteasome provides Ecm29 the ability to preferentially bind specific proteasome conformations. PMID:27302526

  7. [Proteasome inhibitor].

    PubMed

    Yagi, Hideo

    2014-06-01

    The ubiquitin-proteasome system plays an essential role in degradation of eukaryotic intracellular protein, including cell cycle regulation, cell growth and proliferation, and survival. Cancer cells generally have higher level of proteasome activity compared with normal cells, suggesting proteasome inhibition could be therapeutic target in oncology. Bortezomib, the first proteasome inhibitor introduced into the clinic, is approved for the treatment of patients with multiple myeloma (MM). Although it was approved as single agent in the relapsed setting, bortezomib is now predominantly used in combination with conventional and novel targeted agents because bortezomib has demonstrated additive and synergistic activity in preclinical studies. Recently, several second-generation proteasome inhibitors, such as carfilzomib and MLN9708, have been developed and entered into clinical trials. These agents were investigated in frontline MM in combination with lenalidomide and low-dose dexamethasone. These studies demonstrated positive efficacy and safety, and it is expected that they will be approved in near future. PMID:25016815

  8. An evolutionarily conserved pathway controls proteasome homeostasis.

    PubMed

    Rousseau, Adrien; Bertolotti, Anne

    2016-08-11

    The proteasome is essential for the selective degradation of most cellular proteins, but how cells maintain adequate amounts of proteasome is unclear. Here we show that there is an evolutionarily conserved signalling pathway controlling proteasome homeostasis. Central to this pathway is TORC1, the inhibition of which induced all known yeast 19S regulatory particle assembly-chaperones (RACs), as well as proteasome subunits. Downstream of TORC1 inhibition, the yeast mitogen-activated protein kinase, Mpk1, acts to increase the supply of RACs and proteasome subunits under challenging conditions in order to maintain proteasomal degradation and cell viability. This adaptive pathway was evolutionarily conserved, with mTOR and ERK5 controlling the levels of the four mammalian RACs and proteasome abundance. Thus, the central growth and stress controllers, TORC1 and Mpk1/ERK5, endow cells with a rapid and vital adaptive response to adjust proteasome abundance in response to the rising needs of cells. Enhancing this pathway may be a useful therapeutic approach for diseases resulting from impaired proteasomal degradation. PMID:27462806

  9. Hyperglycemia Impairs Proteasome Function by Methylglyoxal

    PubMed Central

    Queisser, Markus A.; Yao, Dachun; Geisler, Sven; Hammes, Hans-Peter; Lochnit, Günter; Schleicher, Erwin D.; Brownlee, Michael; Preissner, Klaus T.

    2010-01-01

    OBJECTIVE The ubiquitin-proteasome system is the main degradation machinery for intracellularly altered proteins. Hyperglycemia has been shown to increase intracellular levels of the reactive dicarbonyl methylglyoxal (MGO) in cells damaged by diabetes, resulting in modification of proteins and alterations of their function. In this study, the influence of MGO-derived advanced glycation end product (AGE) formation on the activity of the proteasome was investigated in vitro and in vivo. RESEARCH DESIGN AND METHODS MGO-derived AGE modification of proteasome subunits was analyzed by mass spectrometry, immunoprecipitation, and Western blots. Proteasome activity was analyzed using proteasome-specific fluorogenic substrates. Experimental models included bovine retinal endothelial cells, diabetic Ins2Akita mice, glyoxalase 1 (GLO1) knockdown mice, and streptozotocin (STZ)-injected diabetic mice. RESULTS In vitro incubation with MGO caused adduct formation on several 20S proteasomal subunit proteins. In cultured endothelial cells, the expression level of the catalytic 20S proteasome subunit was not altered but proteasomal chymotrypsin-like activity was significantly reduced. In contrast, levels of regulatory 19S proteasomal proteins were decreased. In diabetic Ins2Akita, STZ diabetic, and nondiabetic and diabetic G101 knockdown mice, chymotrypsin-like activity was also reduced and MGO modification of the 20S-β2 subunit was increased. CONCLUSIONS Hyperglycemia-induced formation of MGO covalently modifies the 20S proteasome, decreasing its activity in the diabetic kidney and reducing the polyubiquitin receptor 19S-S5a. The results indicate a new link between hyperglycemia and impairment of cell functions. PMID:20009088

  10. Nonproteolytic Roles of 19S ATPases in Transcription of CIITApIV Genes

    PubMed Central

    Maganti, Nagini; Moody, Tomika D.; Truax, Agnieszka D.; Thakkar, Meghna; Spring, Alexander M.; Germann, Markus W.; Greer, Susanna F.

    2014-01-01

    Accumulating evidence shows the 26S proteasome is involved in the regulation of gene expression. We and others have demonstrated that proteasome components bind to sites of gene transcription, regulate covalent modifications to histones, and are involved in the assembly of activator complexes in mammalian cells. The mechanisms by which the proteasome influences transcription remain unclear, although prior observations suggest both proteolytic and non-proteolytic activities. Here, we define novel, non-proteolytic, roles for each of the three 19S heterodimers, represented by the 19S ATPases Sug1, S7, and S6a, in mammalian gene expression using the inflammatory gene CIITApIV. These 19S ATPases are recruited to induced CIITApIV promoters and also associate with CIITA coding regions. Additionally, these ATPases interact with elongation factor PTEFb complex members CDK9 and Hexim-1 and with Ser5 phosphorylated RNA Pol II. Both the generation of transcripts from CIITApIV and efficient recruitment of RNA Pol II to CIITApIV are negatively impacted by siRNA mediated knockdown of these 19S ATPases. Together, these results define novel roles for 19S ATPases in mammalian gene expression and indicate roles for these ATPases in promoting transcription processes. PMID:24625964

  11. Complete subunit architecture of the proteasome regulatory particle

    PubMed Central

    Lander, Gabriel C.; Estrin, Eric; Matyskiela, Mary E.; Bashore, Charlene; Nogales, Eva; Martin, Andreas

    2011-01-01

    The proteasome is the major ATP-dependent protease in eukaryotic cells, but limited structural information strongly restricts a mechanistic understanding of its activities. The proteasome regulatory particle, consisting of the lid and base subcomplexes, recognizes and processes poly-ubiquitinated substrates. We used electron microscopy and a newly-developed heterologous expression system for the lid to delineate the complete subunit architecture of the regulatory particle. Our studies reveal the spatial arrangement of ubiquitin receptors, deubiquitinating enzymes, and the protein unfolding machinery at subnanometer resolution, outlining the substrate’s path to degradation. Unexpectedly, the ATPase subunits within the base unfoldase are arranged in a spiral staircase, providing insight into potential mechanisms for substrate translocation through the central pore. Large conformational rearrangements of the lid upon holoenzyme formation suggest allosteric regulation of deubiquitination. We provide a structural basis for the ability of the proteasome to degrade a diverse set of substrates and thus regulate vital cellular processes. PMID:22237024

  12. Proteasome Inhibitors: An Expanding Army Attacking a Unique Target

    PubMed Central

    Kisselev, Alexei F.; van der Linden, Wouter A.; Overkleeft, Herman S.

    2012-01-01

    Proteasomes are large, multisubunit proteolytic complexes presenting multiple targets for therapeutic intervention. The 26S proteasome consists of a 20S proteolytic core and one or two 19S regulatory particles. The 20S core contains three types of active sites. Many structurally diverse inhibitors of these active sites, both natural product and synthetic, have been discovered in the last two decades. One, bortezomib, is used clinically for treatment of multiple myeloma, mantle cell lymphoma, and acute allograft rejection. Five more recently developed proteasome inhibitors are in trials for treatment of myeloma and other cancers. Proteasome inhibitors also have activity in animal models of autoimmune and inflammatory diseases, reperfusion injury, promote bone and hair growth, and can potentially be used as anti-infectives. In addition, inhibitors of ATPases and deubiquitinases of 19S regulatory particles have been discovered in the last decade. PMID:22284358

  13. Disulfide Engineering to Map Subunit Interactions in the Proteasome and Other Macromolecular Complexes

    PubMed Central

    Hochstrasser, Mark; Funakoshi, Minoru

    2013-01-01

    Summary In studies of protein complexes for which high-resolution structural data are unavailable, it is often still possible to determine both nearest-neighbor relationships between subunits and atomic-resolution details of these interactions. The eukaryotic 26S proteasome, a ~2.5 MDa protein complex with at least 33 different subunits, is a prime example. Important information about quaternary organization and assembly of proteasomes has been gained using a combination of sequence alignments with related proteins of known tertiary structure, molecular modeling, and disulfide engineering to allow oxidative crosslinking between predicted polypeptide neighbors. Here we provide detailed protocols for engineered cysteine crosslinking of yeast proteasome subunits in whole cell extracts, in active 26S proteasome complexes first isolated by native polyacrylamide gel electrophoresis, and in subcomplexes that function as potential assembly intermediates. PMID:22350897

  14. Evolution of Proteasome Regulators in Eukaryotes

    PubMed Central

    Fort, Philippe; Kajava, Andrey V.; Delsuc, Fredéric; Coux, Olivier

    2015-01-01

    All living organisms require protein degradation to terminate biological processes and remove damaged proteins. One such machine is the 20S proteasome, a specialized barrel-shaped and compartmentalized multicatalytic protease. The activity of the 20S proteasome generally requires the binding of regulators/proteasome activators (PAs), which control the entrance of substrates. These include the PA700 (19S complex), which assembles with the 20S and forms the 26S proteasome and allows the efficient degradation of proteins usually labeled by ubiquitin tags, PA200 and PA28, which are involved in proteolysis through ubiquitin-independent mechanisms and PI31, which was initially identified as a 20S inhibitor in vitro. Unlike 20S proteasome, shown to be present in all Eukaryotes and Archaea, the evolutionary history of PAs remained fragmentary. Here, we made a comprehensive survey and phylogenetic analyses of the four types of regulators in 17 clades covering most of the eukaryotic supergroups. We found remarkable conservation of each PA700 subunit in all eukaryotes, indicating that the current complex PA700 structure was already set up in the last eukaryotic common ancestor (LECA). Also present in LECA, PA200, PA28, and PI31 showed a more contrasted evolutionary picture, because many lineages have subsequently lost one or two of them. The paramount conservation of PA700 composition in all eukaryotes and the dynamic evolution of PA200, PA28, and PI31 are discussed in the light of current knowledge on their physiological roles. PMID:25943340

  15. N-Terminal Coiled-Coil Structure of ATPase Subunits of 26S Proteasome Is Crucial for Proteasome Function

    PubMed Central

    Inobe, Tomonao; Genmei, Reiko

    2015-01-01

    The proteasome is an essential proteolytic machine in eukaryotic cells, where it removes damaged proteins and regulates many cellular activities by degrading ubiquitinated proteins. Its heterohexameric AAA+ ATPase Rpt subunits play a central role in proteasome activity by the engagement of substrate unfolding and translocation for degradation; however, its detailed mechanism remains poorly understood. In contrast to AAA+ ATPase domains, their N-terminal regions of Rpt subunits substantially differ from each other. Here, to investigate the requirements and roles of the N-terminal regions of six Rpt subunits derived from Saccharomyces cerevisiae, we performed systematic mutational analysis using conditional knockdown yeast strains for each Rpt subunit and bacterial heterologous expression system of the base subcomplex. We showed that the formation of the coiled-coil structure was the most important for the N-terminal region of Rpt subunits. The primary role of coiled-coil structure would be the maintenance of the ring structure with the defined order. However, the coiled-coil region would be also be involved in substrate recognition and an interaction between lid and base subcomplexes. PMID:26208326

  16. Atomic structure of the 26S proteasome lid reveals the mechanism of deubiquitinase inhibition

    PubMed Central

    Dambacher, Corey M; Worden, Evan J; Herzik, Mark A; Martin, Andreas; Lander, Gabriel C

    2016-01-01

    The 26S proteasome is responsible for the selective, ATP-dependent degradation of polyubiquitinated cellular proteins. Removal of ubiquitin chains from targeted substrates at the proteasome is a prerequisite for substrate processing and is accomplished by Rpn11, a deubiquitinase within the ‘lid’ sub-complex. Prior to the lid’s incorporation into the proteasome, Rpn11 deubiquitinase activity is inhibited to prevent unwarranted deubiquitination of polyubiquitinated proteins. Here we present the atomic model of the isolated lid sub-complex, as determined by cryo-electron microscopy at 3.5 Å resolution, revealing how Rpn11 is inhibited through its interaction with a neighboring lid subunit, Rpn5. Through mutagenesis of specific residues, we describe the network of interactions that are required to stabilize this inhibited state. These results provide significant insight into the intricate mechanisms of proteasome assembly, outlining the substantial conformational rearrangements that occur during incorporation of the lid into the 26S holoenzyme, which ultimately activates the deubiquitinase for substrate degradation. DOI: http://dx.doi.org/10.7554/eLife.13027.001 PMID:26744777

  17. Inherent Asymmetry in the 26S Proteasome Is Defined by the Ubiquitin Receptor RPN13*

    PubMed Central

    Berko, Dikla; Herkon, Ora; Braunstein, Ilana; Isakov, Elada; David, Yael; Ziv, Tamar; Navon, Ami; Stanhill, Ariel

    2014-01-01

    The 26S double-capped proteasome is assembled in a hierarchic event that is orchestrated by dedicated set of chaperons. To date, all stoichiometric subunits are considered to be present in equal ratios, thus providing symmetry to the double-capped complex. Here, we show that although the vast majority (if not all) of the double-capped 26S proteasomes, both 19S complexes, contain the ubiquitin receptor Rpn10/S5a, only one of these 19S particles contains the additional ubiquitin receptor Rpn13, thereby defining asymmetry in the 26S proteasome. These results were validated in yeast and mammals, utilizing biochemical and unbiased AQUA-MS methodologies. Thus, the double-capped 26S proteasomes are asymmetric in their polyubiquitin binding capacity. Our data point to a potential new role for ubiquitin receptors as directionality factors that may participate in the prevention of simultaneous substrates translocation into the 20S from both 19S caps. PMID:24429290

  18. Chromosomal characteristics and distribution of constitutive heterochromatin in the Matogrossensis and Rubrovaria subcomplexes.

    PubMed

    Alevi, Kaio Cesar Chaboli; de Oliveira, Jader; Moreira, Felipe Ferraz Figueiredo; Jurberg, José; da Rosa, João Aristeu; de Azeredo-Oliveira, Maria Tercília Vilela

    2015-07-01

    Since 1966 the triatomines were grouped in complexes and specific subcomplexes. Although the complex and subcomplexes not have taxonomic importance, should be monophyletic groups and cytogenetic tools have proved to be of great importance to characterize these species groupings. Based on this, this paper aims to describe the chromosomal characteristics and heterochromatic pattern of Matogrossensis and Rubrovaria subcomplexes, in order to contribute to the taxonomic and evolutionary relationships of these vectors. In this study, at least three males from each species (Triatoma baratai, Triatoma costalimai, Triatoma guazu, Triatoma jurbergi, Triatoma matogrossensis, Triatoma vandae, Triatoma williami, Triatoma carcavalloi, Triatoma circummaculata, Triatoma klugi, Triatoma pintodiasi and Triatoma rubrovaria) were analyzed by means analyzed by means of cytogenetic techniques of C-banding. All species showed the same cytogenetic characteristics: 22 chromosomes, low variation in the size of autosomes, sex chromosome Y larger than X, initial prophase composed of only one heterochromatic chromocenter formed by the sex chromosomes X and Y (except for T. pintodiasi that presented the sex chromosomes individualized during all stages of prophase) and presence of constitutive heterochromatin restricted to sex chromosome Y. These characteristics, although common to Matogrossensis and Rubrovaria subcomplexes allow to distinguish these species of species grouped in most of South America subcomplexes, as Brasiliensis, Maculata, Sordida and Insfestans. Thus, the cytogenetic analysis was of extreme importance to differentiate both subcomplexes of the other subcomplexes of South America. However, probably due to evolutionary proximity existing between these subcomplexes was not possible to observar species differences that make up the Matogrossensis subcomplex of the Rubrovaria subcomplex. Therefore, we emphasize that new comparative analyzes, as experimental hybrid crosses and

  19. Super elongation complex contains a TFIIF-related subcomplex.

    PubMed

    Knutson, Bruce A; Smith, Marissa L; Walker-Kopp, Nancy; Xu, Xia

    2016-08-01

    Super elongation complex (SEC) belongs to a family of RNA polymerase II (Pol II) elongation factors that has similar properties as TFIIF, a general transcription factor that increases the transcription elongation rate by reducing pausing. Although SEC has TFIIF-like functional properties, it apparently lacks sequence and structural homology. Using HHpred, we find that SEC contains an evolutionarily related TFIIF-like subcomplex. We show that the SEC subunit ELL interacts with the Pol II Rbp2 subunit, as expected for a TFIIF-like factor. These findings suggest a new model for how SEC functions as a Pol II elongation factor and how it suppresses Pol II pausing. PMID:27223670

  20. HSP70 Mediates Dissociation and Reassociation of the 26S Proteasome During Adaptation to Oxidative Stress

    PubMed Central

    Grune, Tilman; Catalgol, Betül; Licht, Anke; Ermak, Gennady; Pickering, Andrew; Ngo, Jenny K.; Davies, Kelvin J. A.

    2011-01-01

    We report an entirely new role for the HSP70 chaperone in dissociating 26S proteasome complexes (into free 20S proteasomes and bound 19S regulators), preserving 19S regulators, and reconstituting 26S proteasomes in the first 1-3 hours following mild oxidative stress. These responses, coupled with direct 20S proteasome activation by poly-ADP ribose polymerase in the nucleus and by PA28αβ in the cytoplasm, instantly provides cells with increased capacity to degrade oxidatively damaged proteins and to survive the initial effects of stress exposure. Subsequent adaptive (hormetic) processes (3-24 hours following stress exposure), mediated by several signal transduction pathways and involving increased transcription/translation of 20S proteasomes, immunoproteasomes, and PA28αβ, abrogate the need for 26S proteasome dissociation. During this adaptive period, HSP70 releases its bound 19S regulators, 26S proteasomes are reconstituted, and ATP-stimulated proteolysis is restored. The 26S proteasome-dependent, and ATP-stimulated, turnover of ubiquitinylated proteins is essential for normal cell metabolism, and its restoration is required for successful stress-adaptation. PMID:21767633

  1. Cytotaxonomy of the Simulium sanctipauli sub-complex in Liberia.

    PubMed

    Kashan, A; Garms, R

    1987-12-01

    Larvae of the Simulium sanctipauli sub-complex from three of the main rivers of Liberia, the Lofa, the St. Paul and the Farmington were examined. All larvae were identified as S. sanctipauli (sensu Vajime and Dunbar, 1975) but as S. soubrense using the new definition of Post (1986). It therefore appears that S. soubrense (sensu Post) and not S. sanctipauli is the main man-biting species of the S. sanctipauli sub-complex in Liberia. Larval populations from the three rivers were genetically distinct. Those from the Lofa and St. Paul were most closely related, but the double inversion 1L-B.C. which was in Hardy-Weinberg equilibrium in the Lofa at a frequency of 0.578 was absent in the St. Paul. An abrupt genetical change was observed between the populations of the St. Paul and Farmington, which are only about 30 to 40 km away from each other. The inversion 2L-D, which was fixed and present in more than 90% of specimens from the Lofa and St. Paul respectively, was practically absent in the Farmington. Of further interest was the sex-linkage of inversion 3L-5 in the Lofa and the St. Paul. This inversion was autosomal and rare in the Farmington. PMID:3441735

  2. A comparative analysis of computational approaches and algorithms for protein subcomplex identification

    PubMed Central

    Zaki, Nazar; Mora, Antonio

    2014-01-01

    High-throughput AP-MS methods have allowed the identification of many protein complexes. However, most post-processing methods of this type of data have been focused on detection of protein complexes and not its subcomplexes. Here, we review the results of some existing methods that may allow subcomplex detection and propose alternative methods in order to detect subcomplexes from AP-MS data. We assessed and drew comparisons between the use of overlapping clustering methods, methods based in the core-attachment model and our own prediction strategy (TRIBAL). The hypothesis behind TRIBAL is that subcomplex-building information may be concealed in the multiple edges generated by an interaction repeated in different contexts in raw data. The CACHET method offered the best results when the evaluation of the predicted subcomplexes was carried out using both the hypergeometric and geometric scores. TRIBAL offered the best performance when using a strict meet-min score. PMID:24584908

  3. Genetics of proteasome diseases.

    PubMed

    Gomes, Aldrin V

    2013-01-01

    The proteasome is a large, multiple subunit complex that is capable of degrading most intracellular proteins. Polymorphisms in proteasome subunits are associated with cardiovascular diseases, diabetes, neurological diseases, and cancer. One polymorphism in the proteasome gene PSMA6 (-8C/G) is associated with three different diseases: type 2 diabetes, myocardial infarction, and coronary artery disease. One type of proteasome, the immunoproteasome, which contains inducible catalytic subunits, is adapted to generate peptides for antigen presentation. It has recently been shown that mutations and polymorphisms in the immunoproteasome catalytic subunit PSMB8 are associated with several inflammatory and autoinflammatory diseases including Nakajo-Nishimura syndrome, CANDLE syndrome, and intestinal M. tuberculosis infection. This comprehensive review describes the disease-related polymorphisms in proteasome genes associated with human diseases and the physiological modulation of proteasome function by these polymorphisms. Given the large number of subunits and the central importance of the proteasome in human physiology as well as the fast pace of detection of proteasome polymorphisms associated with human diseases, it is likely that other polymorphisms in proteasome genes associated with diseases will be detected in the near future. While disease-associated polymorphisms are now readily discovered, the challenge will be to use this genetic information for clinical benefit. PMID:24490108

  4. Site-specific Proteasome Phosphorylation Controls Cell Proliferation and Tumorigenesis

    PubMed Central

    Guo, Xing; Wang, Xiaorong; Wang, Zhiping; Banerjee, Sourav; Yang, Jing; Huang, Lan; Dixon, Jack E.

    2015-01-01

    Despite the fundamental importance of proteasomal degradation in cells, little is known about whether and how the 26S proteasome itself is regulated in coordination with various physiological processes. Here we show that the proteasome is dynamically phosphorylated during cell cycle at Thr25 of the 19S subunit Rpt3. CRISPR/Cas9-mediated genome editing, RNA interference and biochemical studies demonstrate that blocking Rpt3-Thr25 phosphorylation markedly impairs proteasome activity and impedes cell proliferation. Through a kinome-wide screen, we have identified dual-specificity tyrosine-regulated kinase 2 (DYRK2) as the primary kinase that phosphorylates Rpt3-Thr25, leading to enhanced substrate translocation and degradation. Importantly, loss of the single phosphorylation of Rpt3-Thr25 or knockout of DYRK2 significantly inhibits tumor formation by proteasome-addicted human breast cancer cells in mice. These findings define an important mechanism for proteasome regulation and demonstrate the biological significance of proteasome phosphorylation in regulating cell proliferation and tumorigenesis. PMID:26655835

  5. The transition zone protein Rpgrip1l regulates proteasomal activity at the primary cilium

    PubMed Central

    Lier, Johanna Maria; Burmühl, Stephan; Struchtrup, Andreas; Deutschmann, Kathleen; Vetter, Maik; Leu, Tristan; Reeg, Sandra; Grune, Tilman; Rüther, Ulrich

    2015-01-01

    Mutations in RPGRIP1L result in severe human diseases called ciliopathies. To unravel the molecular function of RPGRIP1L, we analyzed Rpgrip1l−/− mouse embryos, which display a ciliopathy phenotype and die, at the latest, around birth. In these embryos, cilia-mediated signaling was severely disturbed. Defects in Shh signaling suggested that the Rpgrip1l deficiency causes an impairment of protein degradation and protein processing. Indeed, we detected a cilia-dependent decreased proteasomal activity in the absence of Rpgrip1l. We found different proteasomal components localized to cilia and identified Psmd2, a component of the regulatory proteasomal 19S subunit, as an interaction partner for Rpgrip1l. Quantifications of proteasomal substrates demonstrated that Rpgrip1l regulates proteasomal activity specifically at the basal body. Our study suggests that Rpgrip1l controls ciliary signaling by regulating the activity of the ciliary proteasome via Psmd2. PMID:26150391

  6. Degradation of oxidized proteins by the proteasome: Distinguishing between the 20S, 26S, and immunoproteasome proteolytic pathways.

    PubMed

    Raynes, Rachel; Pomatto, Laura C D; Davies, Kelvin J A

    2016-08-01

    The proteasome is a ubiquitous and highly plastic multi-subunit protease with multi-catalytic activity that is conserved in all eukaryotes. The most widely known function of the proteasome is protein degradation through the 26S ubiquitin-proteasome system, responsible for the vast majority of protein degradation during homeostasis. However, the proteasome also plays an important role in adaptive immune responses and adaptation to oxidative stress. The unbound 20S proteasome, the core common to all proteasome conformations, is the main protease responsible for degrading oxidized proteins. During periods of acute stress, the 19S regulatory cap of the 26S proteasome disassociates from the proteolytic core, allowing for immediate ATP/ubiquitin-independent protein degradation by the 20S proteasome. Despite the abundance of unbound 20S proteasome compared to other proteasomal conformations, many publications fail to distinguish between the two proteolytic systems and often regard the 26S proteasome as the dominant protease. Further confounding the issue are the differential roles these two proteolytic systems have in adaptation and aging. In this review, we will summarize the increasing evidence that the 20S core proteasome constitutes the major conformation of the proteasome system and that it is far from a latent protease requiring activation by binding regulators. PMID:27155164

  7. Overview of proteasome inhibitor-based anti-cancer therapies: perspective on bortezomib and second generation proteasome inhibitors versus future generation inhibitors of ubiquitin-proteasome system.

    PubMed

    Dou, Q Ping; Zonder, Jeffrey A

    2014-01-01

    Over the past ten years, proteasome inhibition has emerged as an effective therapeutic strategy for treating multiple myeloma (MM) and some lymphomas. In 2003, Bortezomib (BTZ) became the first proteasome inhibitor approved by the U.S. Food and Drug Administration (FDA). BTZ-based therapies have become a staple for the treatment of MM at all stages of the disease. The survival rate of MM patients has improved significantly since clinical introduction of BTZ and other immunomodulatory drugs. However, BTZ has several limitations. Not all patients respond to BTZ based therapies and relapse occurs in many patients who initially responded. Solid tumors, in particular, are often resistant to BTZ. Furthermore, BTZ can induce dose-limiting peripheral neuropathy (PN). The second generation proteasome inhibitor Carfizomib (CFZ; U.S. FDA approved in August 2012) induces responses in a minority of MM patients relapsed from or refractory to BTZ. There is less PN compared to BTZ. Four other second-generation proteasome inhibitors (Ixazomib, Delanzomib, Oprozomib and Marizomib) with different pharmacologic properties and broader anticancer activities, have also shown some clinical activity in bortezomib-resistant cancers. While the mechanism of resistance to bortezomib in human cancers still remains to be fully understood, targeting the immunoproteasome, ubiquitin E3 ligases, the 19S proteasome and deubiquitinases in pre-clinical studies represents possible directions for future generation inhibitors of ubiquitin-proteasome system in the treatment of MM and other cancers. PMID:25092212

  8. Overview of Proteasome Inhibitor-Based Anti-cancer Therapies: Perspective on Bortezomib and Second Generation Proteasome Inhibitors versus Future Generation Inhibitors of Ubiquitin-Proteasome System

    PubMed Central

    Dou, Q. Ping; Zonder, Jeffrey A.

    2014-01-01

    Over the past ten years, proteasome inhibition has emerged as an effective therapeutic strategy for treating multiple myeloma (MM) and some lymphomas. In 2003, Bortezomib (BTZ) became the first proteasome inhibitor approved by the U.S. Food and Drug Administration (FDA). BTZ-based therapies have become a staple for the treatment of MM at all stages of the disease. The survival rate of MM patients has improved significantly since clinical introduction of BTZ and other immunomodulatory drugs. However, BTZ has several limitations. Not all patients respond to BTZ-based therapies and relapse occurs in many patients who initially responded. Solid tumors, in particular, are often resistant to BTZ. Furthermore, BTZ can induce dose-limiting peripheral neuropathy (PN). The second generation proteasome inhibitor Carfizomib (CFZ; U.S. FDA approved in August 2012) induces responses in a minority of MM patients relapsed from or refractory to BTZ. There is less PN compared to BTZ. Four other second-generation proteasome inhibitors (Ixazomib, Delanzomib, Oprozomib and Marizomib) with different pharmacologic properties and broader anticancer activities, have also shown some clinical activity in bortezomib-resistant cancers. While the mechanism of resistance to bortezomib in human cancers still remains to be fully understood, targeting the immunoproteasome, ubiquitin E3 ligases, the 19S proteasome and deubiquitinases in pre-clinical studies represents possible directions for future generation inhibitors of ubiquitin-proteasome system in the treatment of MM and other cancers. PMID:25092212

  9. The proteasome assembly line

    PubMed Central

    Madura, Kiran

    2013-01-01

    The assembly of the proteasome — the cellular machine that eliminates unwanted proteins — is a carefully choreographed affair, involving a complex sequence of steps overseen by dedicated protein chaperones. PMID:19516331

  10. The proteasome: a macromolecular assembly designed for controlled proteolysis.

    PubMed Central

    Zwickl, P; Voges, D; Baumeister, W

    1999-01-01

    In eukaryotic cells, the vast majority of proteins in the cytosol and nucleus are degraded via the proteasome-ubiquitin pathway. The 26S proteasome is a huge protein degradation machine of 2.5 MDa, built of approximately 35 different subunits. It contains a proteolytic core complex, the 20S proteasome and one or two 19S regulatory complexes which associate with the termini of the barrel-shaped 20S core. The 19S regulatory complex serves to recognize ubiquitylated target proteins and is implicated to have a role in their unfolding and translocation into the interior of the 20S complex where they are degraded into oligopeptides. While much progress has been made in recent years in elucidating the structure, assembly and enzymatic mechanism of the 20S complex, our knowledge of the functional organization of the 19S regulator is rather limited. Most of its subunits have been identified, but specific functions can be assigned to only a few of them. PMID:10582236

  11. Docking of the Proteasomal ATPases’ C-termini in the 20S Proteasomes alpha Ring Opens the Gate for Substrate Entry

    PubMed Central

    Smith, David M.; Chang, Shih-Chung; Park, Soyeon; Finley, Daniel; Cheng, Yifan; Goldberg, Alfred

    2007-01-01

    Summary The 20S proteasome functions in protein degradation in eukaryotes together with the 19S ATPases or in archaea with the homologous PAN ATPase complex. PAN and the 19S ATPases contain a conserved C-terminal hydrophobic-tyrosine-X motif (HbYX). We show that these residues are essential for PAN to associate with the 20S and open its gated-channel for substrate entry. Upon ATP binding, these C-terminal residues bind to pockets between the 20S’s α-subunits. Furthermore, seven-residue peptides from PAN’s C-terminus that contain the HbYX motif also bind to these sites and induce gate-opening in both archaeal and mammalian 20S proteasomes. Gate-opening could be induced by short C-terminal peptides from the 19S ATPase subunits, Rpt2 and Rpt5, but not by ones from PA28/26, which lack the HbYX motif and cause gate-opening by distinct mechanism. The C-terminal YX residues in the 19S ATPases were also shown to be critical for gating and stability of mammalian and yeast 26S proteasomes. Thus, the C-termini of the proteasomal ATPases function like a “key-in-a-lock” to induce gate-opening and allow substrate entry. PMID:17803938

  12. COG lobe B sub-complex engages v-SNARE GS15 and functions via regulated interaction with lobe A sub-complex.

    PubMed

    Willett, Rose; Blackburn, Jessica Bailey; Climer, Leslie; Pokrovskaya, Irina; Kudlyk, Tetyana; Wang, Wei; Lupashin, Vladimir

    2016-01-01

    The conserved oligomeric Golgi (COG) complex is a peripheral membrane protein complex which orchestrates tethering of intra-Golgi vesicles. We found that COG1-4 (lobe A) and 5-8 (lobe B) protein assemblies are present as independent sub-complexes on cell membranes. Super-resolution microscopy demonstrates that COG sub-complexes are spatially separated on the Golgi with lobe A preferential localization on Golgi stacks and the presence of lobe B on vesicle-like structures, where it physically interacts with v-SNARE GS15. The localization and specific interaction of the COG sub-complexes with the components of vesicle tethering/fusion machinery suggests their different roles in the vesicle tethering cycle. We propose and test a novel model that employs association/disassociation of COG sub-complexes as a mechanism that directs vesicle tethering at Golgi membranes. We demonstrate that defective COG assembly or restriction of tethering complex disassembly by a covalent COG1-COG8 linkage is inhibitory to COG complex activity, supporting the model. PMID:27385402

  13. COG lobe B sub-complex engages v-SNARE GS15 and functions via regulated interaction with lobe A sub-complex

    PubMed Central

    Willett, Rose; Blackburn, Jessica Bailey; Climer, Leslie; Pokrovskaya, Irina; Kudlyk, Tetyana; Wang, Wei; Lupashin, Vladimir

    2016-01-01

    The conserved oligomeric Golgi (COG) complex is a peripheral membrane protein complex which orchestrates tethering of intra-Golgi vesicles. We found that COG1-4 (lobe A) and 5–8 (lobe B) protein assemblies are present as independent sub-complexes on cell membranes. Super-resolution microscopy demonstrates that COG sub-complexes are spatially separated on the Golgi with lobe A preferential localization on Golgi stacks and the presence of lobe B on vesicle-like structures, where it physically interacts with v-SNARE GS15. The localization and specific interaction of the COG sub-complexes with the components of vesicle tethering/fusion machinery suggests their different roles in the vesicle tethering cycle. We propose and test a novel model that employs association/disassociation of COG sub-complexes as a mechanism that directs vesicle tethering at Golgi membranes. We demonstrate that defective COG assembly or restriction of tethering complex disassembly by a covalent COG1-COG8 linkage is inhibitory to COG complex activity, supporting the model. PMID:27385402

  14. Ni(II), Cu(II), and Zn(II) Diethyldithiocarbamate Complexes Show Various Activities Against the Proteasome in Breast Cancer Cells

    PubMed Central

    Cvek, Boris; Milacic, Vesna; Taraba, Jan; Dou, Q. Ping

    2008-01-01

    A series of three complexes with diethyldithiocarbamate ligand and three different metals (Ni, Cu, Zn) was prepared, confirmed by X-ray crystallography, and tested in human breast cancer MDA-MB-231 cells. Zinc and copper complexes, but not nickel complex, were found to be more active against cellular 26S proteasome than against purified 20S proteasome core particle. One of the possible explanations is inhibition of JAMM domain in the 19S proteasome lid. PMID:18816109

  15. The murine cardiac 26S proteasome: an organelle awaiting exploration.

    PubMed

    Gomes, Aldrin V; Zong, Chenggong; Edmondson, Ricky D; Berhane, Beniam T; Wang, Guang-Wu; Le, Steven; Young, Glen; Zhang, Jun; Vondriska, Thomas M; Whitelegge, Julian P; Jones, Richard C; Joshua, Irving G; Thyparambil, Sheeno; Pantaleon, Dawn; Qiao, Joe; Loo, Joseph; Ping, Peipei

    2005-06-01

    Multiprotein complexes have been increasingly recognized as essential functional units for a variety of cellular processes, including the protein degradation system. Selective degradation of proteins in eukaryotes is primarily conducted by the ubiquitin proteasome system. The current knowledge base, pertaining to the proteasome complexes in mammalian cells, relies largely upon information gained in the yeast system, where the 26S proteasome is hypothesized to contain a 20S multiprotein core complex and one or two 19S regulatory complexes. To date, the molecular structure of the proteasome system, the proteomic composition of the entire 26S multiprotein complexes, and the specific designated function of individual components within this essential protein degradation system in the heart remain virtually unknown. A functional proteomic approach, employing multidimensional chromatography purification combined with liquid chromatography tandem mass spectrometry and protein chemistry, was utilized to explore the murine cardiac 26S proteasome system. This article presents an overview on the subject of protein degradation in mammalian cells. In addition, this review shares the limited information that has been garnered thus far pertaining to the molecular composition, function, and regulation of this important organelle in the cardiac cells. PMID:16093497

  16. Subcomplexes of Ancestral Respiratory Complex I Subunits Rapidly Turn Over in Vivo as Productive Assembly Intermediates in Arabidopsis*

    PubMed Central

    Li, Lei; Nelson, Clark J.; Carrie, Chris; Gawryluk, Ryan M. R.; Solheim, Cory; Gray, Michael W.; Whelan, James; Millar, A. Harvey

    2013-01-01

    Subcomplexes of mitochondrial respiratory complex I (CI; EC 1.6.5.3) are shown to turn over in vivo, and we propose a role in an ancestral assembly pathway. By progressively labeling Arabidopsis cell cultures with 15N and isolating mitochondria, we have identified CI subcomplexes through differences in 15N incorporation into their protein subunits. The 200-kDa subcomplex, containing the ancestral γ-carbonic anhydrase (γ-CA), γ-carbonic anhydrase-like, and 20.9-kDa subunits, had a significantly higher turnover rate than intact CI or CI+CIII2. In vitro import of precursors for these CI subunits demonstrated rapid generation of subcomplexes and revealed that their specific abundance varied when different ancestral subunits were imported. Time course studies of precursor import showed the further assembly of these subcomplexes into CI and CI+CIII2, indicating that the subcomplexes are productive intermediates of assembly. The strong transient incorporation of new subunits into the 200-kDa subcomplex in a γ-CA mutant is consistent with this subcomplex being a key initiator of CI assembly in plants. This evidence alongside the pattern of coincident occurrence of genes encoding these particular proteins broadly in eukaryotes, except for opisthokonts, provides a framework for the evolutionary conservation of these accessory subunits and evidence of their function in ancestral CI assembly. PMID:23271729

  17. Synthesis and evaluation of derivatives of the proteasome deubiquitinase inhibitor b-AP15.

    PubMed

    Wang, Xin; D'Arcy, Pádraig; Caulfield, Thomas R; Paulus, Aneel; Chitta, Kasyapa; Mohanty, Chitralekha; Gullbo, Joachim; Chanan-Khan, Asher; Linder, Stig

    2015-11-01

    The ubiquitin-proteasome system (UPS) is increasingly recognized as a therapeutic target for the development of anticancer therapies. The success of the 20S proteasome core particle (20S CP) inhibitor bortezomib in the clinical management of multiple myeloma has raised the possibility of identifying other UPS components for therapeutic intervention. We previously identified the small molecule b-AP15 as an inhibitor of 19S proteasome deubiquitinase (DUB) activity. Building upon our previous data, we performed a structure-activity relationship (SAR) study on b-AP15 and identified VLX1570 as an analog with promising properties, including enhanced potency and improved solubility in aqueous solution. In silico modeling was consistent with interaction of VLX1570 with key cysteine residues located at the active sites of the proteasome DUBs USP14 and UCHL5. VLX1570 was found to inhibit proteasome deubiquitinase activity in vitro in a manner consistent with competitive inhibition. Furthermore, using active-site-directed probes, VLX1570 also inhibited proteasome DUB activity in exposed cells. Importantly, VLX1570 did not show inhibitory activity on a panel of recombinant non-proteasome DUBs, on recombinant kinases, or on caspase-3 activity, suggesting that VLX1570 is not an overtly reactive general enzyme inhibitor. Taken together, our data shows the chemical and biological properties of VLX1570 as an optimized proteasome DUB inhibitor. PMID:25854145

  18. Proteasome Subtypes and Regulators in the Processing of Antigenic Peptides Presented by Class I Molecules of the Major Histocompatibility Complex

    PubMed Central

    Vigneron, Nathalie; Van den Eynde, Benoît J.

    2014-01-01

    The proteasome is responsible for the breakdown of cellular proteins. Proteins targeted for degradation are allowed inside the proteasome particle, where they are cleaved into small peptides and released in the cytosol to be degraded into amino acids. In vertebrates, some of these peptides escape degradation in the cytosol, are loaded onto class I molecules of the major histocompatibility complex (MHC) and displayed at the cell surface for scrutiny by the immune system. The proteasome therefore plays a key role for the immune system: it provides a continued sampling of intracellular proteins, so that CD8-positive T-lymphocytes can kill cells expressing viral or tumoral proteins. Consequently, the repertoire of peptides displayed by MHC class I molecules at the cell surface depends on proteasome activity, which may vary according to the presence of proteasome subtypes and regulators. Besides standard proteasomes, cells may contain immunoproteasomes, intermediate proteasomes and thymoproteasomes. Cells may also contain regulators of proteasome activity, such as the 19S, PA28 and PA200 regulators. Here, we review the effects of these proteasome subtypes and regulators on the production of antigenic peptides. We also discuss an unexpected function of the proteasome discovered through the study of antigenic peptides: its ability to splice peptides. PMID:25412285

  19. The N-terminal domain of Rpn4 serves as a portable ubiquitin-independent degron and is recognized by specific 19S RP subunits

    PubMed Central

    Ha, Seung-Wook; Ju, Donghong; Xie, Youming

    2014-01-01

    The number of proteasomal substrates that are degraded without prior ubiquitylation continues to grow. However, it remains poorly understood how the proteasome recognizes substrates lacking a ubiquitin (Ub) signal. Here we demonstrated that the Ub-independent degradation of Rpn4 requires the 19S regulatory particle (RP). The Ub-independent degron of Rpn4 was mapped to an N-terminal region including the first 80 residues. Inspection of its amino acid sequence revealed that the Ub-independent degron of Rpn4 consists of an intrinsically disordered domain followed by a folded segment. Using a photo-crosslinking-label transfer method, we captured three 19S RP subunits (Rpt1, Rpn2 and Rpn5) that bind the Ub-independent degron of Rpn4. This is the first time that specific 19S RP subunits have been identified interacting with a Ub-independent degron. This study provides insight into the mechanism by which Ub-independent substrates are recruited to the 26S proteasome. PMID:22349505

  20. Structural basis for proteasome formation controlled by an assembly chaperone nas2.

    PubMed

    Satoh, Tadashi; Saeki, Yasushi; Hiromoto, Takeshi; Wang, Ying-Hui; Uekusa, Yoshinori; Yagi, Hirokazu; Yoshihara, Hidehito; Yagi-Utsumi, Maho; Mizushima, Tsunehiro; Tanaka, Keiji; Kato, Koichi

    2014-05-01

    Proteasome formation does not occur due to spontaneous self-organization but results from a highly ordered process assisted by several assembly chaperones. The assembly of the proteasome ATPase subunits is assisted by four client-specific chaperones, of which three have been structurally resolved. Here, we provide the structural basis for the working mechanisms of the last, hereto structurally uncharacterized assembly chaperone, Nas2. We revealed that Nas2 binds to the Rpt5 subunit in a bivalent mode: the N-terminal helical domain of Nas2 masks the Rpt1-interacting surface of Rpt5, whereas its C-terminal PDZ domain caps the C-terminal proteasome-activating motif. Thus, Nas2 operates as a proteasome activation blocker, offering a checkpoint during the formation of the 19S ATPase prior to its docking onto the proteolytic 20S core particle. PMID:24685148

  1. The devil is in the details: comparison between COP9 signalosome (CSN) and the LID of the 26S proteasome.

    PubMed

    Meister, Cindy; Gulko, Miriam Kolog; Köhler, Anna M; Braus, Gerhard H

    2016-02-01

    The COP9 signalosome (CSN) and the proteasomal LID are conserved macromolecular complexes composed of at least eight subunits with molecular weights of approximately 350 kDa. CSN and LID are part of the ubiquitin–proteasome pathway and cleave isopeptide linkages of lysine side chains on target proteins. CSN cleaves the isopeptide bond of ubiquitin-like protein Nedd8 from cullins, whereas the LID cleaves ubiquitin from target proteins sentenced for degradation. CSN and LID are structurally and functionally similar but the order of the assembly pathway seems to be different. The assembly differs in at least the last subunit joining the pre-assembled subcomplex. This review addresses the similarities and differences in structure, function and assembly of CSN and LID. PMID:26497135

  2. Evolutionary Relationships of the Triatoma matogrossensis Subcomplex, the Endemic Triatoma in Central-Western Brazil, Based on Mitochondrial DNA Sequences

    PubMed Central

    Gardim, Sueli; Rocha, Cláudia S.; Almeida, Carlos E.; Takiya, Daniela M.; da Silva, Marco T. A.; Ambrósio, Daniela L.; Cicarelli, Regina M. B.; da Rosa, João A.

    2013-01-01

    The phylogenetic relationships among species of Triatoma matogrossensis subcomplex ( T. baratai, T. guazu, T. matogrossensis, T. sordida, T. vandae, and T. williami) was addressed by using fragments of cytochrome oxidase I (COI), 16S rDNA (16S), and cytochrome b (Cytb) through Bayesian and parsimony analyses. We did not recover a monophyletic T. matogrossensis subcomplex, and their members were found clustered in three strongly supported clades, as follows: i) T. jurbergi + T. matogrossensis + T. vandae + T. garciabesi + T. sordida; ii) with T. guasayana as the sister group of clade (i); and iii) T. williami + T. guazu, however not closely related to the clade formed by the previously mentioned species. The other two endemic species from Central-Western Brazil, T. baratai and T. costalimai, were not recovered with strong clade support as related to other members of this subcomplex. Results call for a further revision in the classification of the subcomplexes within the genus Triatoma. PMID:24002487

  3. Revision of the Ketaketa subcomplex of blackflies of the Simulium damnosum complex.

    PubMed

    Krueger, A; Mustapha, M; Kalinga, A K; Tambala, P A J; Post, R J; Maegga, B T A

    2006-03-01

    A revision of the taxonomy of the Ketaketa subcomplex of the Simulium damnosum Theobald complex (Diptera: Simuliidae) is presented including new material from Tanzania, Malawi and South Africa. The cytotaxonomy, morphology and molecular identity of known and new taxa are described. The Ketaketa subcomplex is cytotaxonomically defined by the paracentric inversion 1L-7. We recognize three sibling species, namely Simulium latipollex (Enderlein), Simulium plumbeum Krueger, sp.n. and Simulium kipengere Krueger, sp.n., the latter comprising three cytoforms: 'Typical', 'Linthipe' and 'Mombo'. The cytoforms 'Mwamphanzi', 'Ketaketa' and 'Hammerkopi' are synonymized with S. plumbeum. Identification keys are provided on the basis of chromosomal and morphological characters. In view of their potential role as vectors of human onchocerciasis (river blindness) we also discuss the possible medical importance of the different cytoforms and their geographical distribution. PMID:16608492

  4. Characterization of Protein Complexes and Subcomplexes in Protein-Protein Interaction Databases

    PubMed Central

    Zaki, Nazar; Mohamed, Elfadil A.; Mora, Antonio

    2015-01-01

    The identification and characterization of protein complexes implicated in protein-protein interaction data are crucial to the understanding of the molecular events under normal and abnormal physiological conditions. This paper provides a novel characterization of subcomplexes in protein interaction databases, stressing definition and representation issues, quantification, biological validation, network metrics, motifs, modularity, and gene ontology (GO) terms. The paper introduces the concept of “nested group” as a way to represent subcomplexes and estimates that around 15% of those nested group with the higher Jaccard index may be a result of data artifacts in protein interaction databases, while a number of them can be found in biologically important modular structures or dynamic structures. We also found that network centralities, enrichment in essential proteins, GO terms related to regulation, imperfect 5-clique motifs, and higher GO homogeneity can be used to identify proteins in nested complexes. PMID:25722891

  5. Proteasome regulates turnover of toxic human amylin in pancreatic cells.

    PubMed

    Singh, Sanghamitra; Trikha, Saurabh; Sarkar, Anjali; Jeremic, Aleksandar M

    2016-09-01

    Toxic human amylin (hA) oligomers and aggregates are implicated in the pathogenesis of type 2 diabetes mellitus (T2DM). Although recent studies demonstrated a causal connection between hA uptake and toxicity in pancreatic cells, the mechanism of amylin's clearance following its internalization and its relationship to toxicity is yet to be determined, and hence was investigated here. Using pancreatic rat insulinoma β-cells and human islets as model systems, we show that hA, following its internalization, first accumulates in the cytosol followed by its translocation into nucleus, and to a lesser extent lysosomes, keeping the net cytosolic amylin content low. An increase in hA accumulation in the nucleus of pancreatic cells correlated with its cytotoxicity, suggesting that its excessive accumulation in the nucleus is detrimental. hA interacted with 20S core and 19S lid subunits of the β-cell proteasomal complex, as suggested by immunoprecipitation and confocal microscopy studies, which subsequently resulted in a decrease in the proteasome's proteolytic activity in these cells. In vitro binding and activity assays confirmed an intrinsic and potent ability of amylin to interact with the 20S core complex thereby modulating its proteolytic activity. Interestingly, less toxic and aggregation incapable rat amylin (rA) showed a comparable inhibitory effect on proteasome activity and protein ubiquitination, decoupling amylin aggregation/ toxicity and amylin-induced protein stress. In agreement with these studies, inhibition of proteasomal proteolytic activity significantly increased intracellular amylin content and toxicity. Taken together, our results suggest a pivotal role of proteasomes in amylin's turnover and detoxification in pancreatic cells. PMID:27340132

  6. Activation of Chymotrypsin-Like Activity of the Proteasome during Ischemia Induces Myocardial Dysfunction and Death.

    PubMed

    Sanchez, Gina; Berrios, Daniela; Olmedo, Ivonne; Pezoa, Javier; Riquelme, Jaime A; Montecinos, Luis; Pedrozo, Zully; Donoso, Paulina

    2016-01-01

    Inhibitors of the ubiquitin-proteasome system improve hemodynamic parameters and decrease the infarct size after ischemia reperfusion. The molecular basis of this protection is not fully understood since most available data report inhibition of the 26 proteasome after ischemia reperfusion. The decrease in cellular ATP levels during ischemia leads to the dissociation of the 26S proteasome into the 19S regulatory complex and the 20S catalytic core, which results in protein degradation independently of ubiquitination. There is scarce information on the activity of the 20S proteasome during cardiac ischemia. Accordingly, the aim of this work was to determine the effects of 30 minutes of ischemia, or 30 min of ischemia followed by 60 minutes of reperfusion on the three main peptidase activities of the 20S proteasome in Langendorff perfused rat hearts. We found that 30 min of ischemia produced a significant increase in the chymotrypsin-like activity of the proteasome, without changes in its caspase-like or trypsin-like activities. In contrast, all three activities were decreased upon reperfusion. Ixazomib, perfused before ischemia at a concentration that reduced the chymotrypsin-like activity to 50% of the control values, without affecting the other proteasomal activities, improved the hemodynamic parameters upon reperfusion and decreased the infarct size. Ixazomib also prevented the 50% reduction in RyR2 content observed after ischemia. The protection was lost, however, when simultaneous inhibition of chymotrypsin-like and caspase-like activities of the proteasome was achieved at higher concentration of ixazomib. Our results suggest that selective inhibition of chymotrypsin-like activity of the proteasome during ischemia preserves key proteins for cardiomyocyte function and exerts a positive impact on cardiac performance after reperfusion. PMID:27529620

  7. Activation of Chymotrypsin-Like Activity of the Proteasome during Ischemia Induces Myocardial Dysfunction and Death

    PubMed Central

    Sanchez, Gina; Berrios, Daniela; Olmedo, Ivonne; Pezoa, Javier; Riquelme, Jaime A.; Montecinos, Luis; Pedrozo, Zully; Donoso, Paulina

    2016-01-01

    Inhibitors of the ubiquitin-proteasome system improve hemodynamic parameters and decrease the infarct size after ischemia reperfusion. The molecular basis of this protection is not fully understood since most available data report inhibition of the 26 proteasome after ischemia reperfusion. The decrease in cellular ATP levels during ischemia leads to the dissociation of the 26S proteasome into the 19S regulatory complex and the 20S catalytic core, which results in protein degradation independently of ubiquitination. There is scarce information on the activity of the 20S proteasome during cardiac ischemia. Accordingly, the aim of this work was to determine the effects of 30 minutes of ischemia, or 30 min of ischemia followed by 60 minutes of reperfusion on the three main peptidase activities of the 20S proteasome in Langendorff perfused rat hearts. We found that 30 min of ischemia produced a significant increase in the chymotrypsin-like activity of the proteasome, without changes in its caspase-like or trypsin-like activities. In contrast, all three activities were decreased upon reperfusion. Ixazomib, perfused before ischemia at a concentration that reduced the chymotrypsin-like activity to 50% of the control values, without affecting the other proteasomal activities, improved the hemodynamic parameters upon reperfusion and decreased the infarct size. Ixazomib also prevented the 50% reduction in RyR2 content observed after ischemia. The protection was lost, however, when simultaneous inhibition of chymotrypsin-like and caspase-like activities of the proteasome was achieved at higher concentration of ixazomib. Our results suggest that selective inhibition of chymotrypsin-like activity of the proteasome during ischemia preserves key proteins for cardiomyocyte function and exerts a positive impact on cardiac performance after reperfusion. PMID:27529620

  8. Induction of Tumor Cell Apoptosis by a Proteasome Deubiquitinase Inhibitor Is Associated with Oxidative Stress

    PubMed Central

    Brnjic, Slavica; Mazurkiewicz, Magdalena; Fryknäs, Mårten; Sun, Chao; Zhang, Xiaonan; Larsson, Rolf

    2014-01-01

    Abstract Aims: b-AP15 is a recently described inhibitor of the USP14/UCHL5 deubiquitinases (DUBs) of the 19S proteasome. Exposure to b-AP15 results in blocking of proteasome function and accumulation of polyubiquitinated protein substrates in cells. This novel mechanism of proteasome inhibition may potentially be exploited for cancer therapy, in particular for treatment of malignancies resistant to currently used proteasome inhibitors. The aim of the present study was to characterize the cellular response to b-AP15-mediated proteasome DUB inhibition. Results: We report that b-AP15 elicits a similar, but yet distinct, cellular response as the clinically used proteasome inhibitor bortezomib. b-AP15 induces a rapid apoptotic response, associated with enhanced induction of oxidative stress and rapid activation of Jun-N-terminal kinase 1/2 (JNK)/activating protein-1 signaling. Scavenging of reactive oxygen species and pharmacological inhibition of JNK reduced b-AP15-induced apoptosis. We further report that endoplasmic reticulum (ER) stress is induced by b-AP15 and is involved in apoptosis induction. In contrast to bortezomib, ER stress is associated with induction of α-subunit of eukaryotic initiation factor 2 phosphorylation. Innovation: The findings establish that different modes of proteasome inhibition result in distinct cellular responses, a finding of potential therapeutic importance. Conclusion: Our data show that enhanced oxidative stress and ER stress are major determinants of the strong apoptotic response elicited by the 19S DUB inhibitor b-AP15. Antioxid. Redox Signal. 21, 2271–2285. PMID:24011031

  9. Cytotaxonomy of the Brasiliensis subcomplex and the Triatoma brasiliensis complex (Hemiptera: Reduviidae: Triatominae).

    PubMed

    Alevi, Kaio C C; Rosa, João A; Azeredo-Oliveira, Maria Tercília V

    2014-01-01

    We analyzed the classical cytotaxonomy of the Brasiliensis subcomplex (Triatoma brasiliensis Neiva, T. juazeirensis Costa & Felix, T. melanica Costa, Argolo & Felix, T. melanocephala Neiva & Pinto, T. petrochiae Pinto & Barreto, T. lenti Sherlock & Serafim, T. sherlocki Papa, Jurberg, Carcavallo, Cerqueira & Barata, T. tibiamaculata Pinto and T. vitticeps Stal) and the T. brasiliensis complex (T. b. brasiliensis, T. b. macromelasoma Neiva & Lent, T. juazeirensis, T. melanica and T. sherlocki). The five members of the T. brasiliensis complex share the same cytogenetic characteristics. Merely T. sherlocki show differences in spermatids, which confirms the status of more differentiated member of the complex. T. lenti also presented the same cytogenetic characteristics described for the species of the T. brasiliensis complex, which supports possible grouping of the species as sixth member of the complex, although further analysis as molecular and experimental crosses are needed to corroborate this hypothesis. T. petrochiae, T. vitticeps, T. tibiamaculata and T. melanocephala presented one or more characteristics that allow questioning grouping in the proposed Brasiliensis subcomplex. Thus, we suggested that Brasiliensis subcomplex and T. brasiliensis complex should be constituted by the same triatomines (T. b. brasiliensis, T. b. macromelasoma, T. juazeirensis, T. melanica and T. sherlocki). However, we draw attention to T. lenti and suggest that although new analyzes should be performed, possibly this species is the sixth member of the T. brasiliensis complex.  PMID:25081800

  10. [Proteasome inhibitors in cancer therapy].

    PubMed

    Romaniuk, Wioletta; Ołdziej, Agnieszka Ewa; Zińczuk, Justyna; Kłoczko, Janusz

    2015-01-01

    Proteasomes are multisubunit enzyme complexes. They contain three enzymatic active sites which are termed chymotrypsin-like, trypsin-like, and caspase-like. The elementary function of the proteasomes is degradation of damaged proteins. Proteasome inhibition leads to accumulation of damaged protein, which leads to caspase activation and cell death. This relationship is used in cancer therapy. Bortezomib is the first proteasome inhibitor approved by the US Food and Drug Administration for the treatment of relapsed/refractory multiple myeloma. Carfilzomib belongs to the second generation of drugs, which was approved by the US FDA in 2012. Currently in the study phase there are four new inhibitors: ixazomib (MLN9780/MLN2238), delanzomib (CEP-18770), oprozomib (ONX0912/PR-047) and marizomib (NPI-0052). PMID:27259216

  11. Molecular Architecture and Assembly of the Eukaryotic Proteasome

    PubMed Central

    Tomko, Robert J.; Hochstrasser, Mark

    2013-01-01

    The eukaryotic ubiquitin-proteasome system is responsible for most cellular quality-control and regulatory protein degradation. Its substrates, which are usually modified by polymers of ubiquitin, are ultimately degraded by the 26S proteasome. This 2.6 MDa protein complex is separated into a barrel-shaped proteolytic 20S core particle (CP) of 28 subunits capped on one or both ends by a 19S regulatory particle (RP) comprising at least 19 subunits. The RP coordinates substrate recognition, removal of substrate polyubiquitin chains, and substrate unfolding and translocation into the CP for degradation. While many atomic structures of the CP have been determined, the RP has resisted high-resolution analysis. Recently, however, a combination of cryo-electron microscopy (cryo-EM), biochemical analysis, and crystal structure determination of several RP subunits has yielded a near-atomic resolution view of much of the complex. Major new insights into chaperone-assisted proteasome assembly have also recently been made. Here we review these novel findings. PMID:23495936

  12. Proteasome Assay in Cell Lysates

    PubMed Central

    Maher, Pamela

    2016-01-01

    The ubiquitin-proteasome system (UPS) mediates the majority of the proteolysis seen in the cytoplasm and nucleus of mammalian cells. As such it plays an important role in the regulation of a variety of physiological and pathophysiological processes including tumorigenesis, inflammation and cell death (Ciechanover, 2005; Kisselev and Goldberg, 2001). A number of recent studies have shown that proteasome activity is decreased in a variety of neurological disorders including Parkinson's disease, Alzheimer's disease, amyotrophic lateral sclerosis and stroke as well as during normal aging (Chung et al., 2001; Ciechanover and Brundin, 2003; Betarbet et al., 2005). This decrease in proteasome activity is thought to play a critical role in the accumulation of abnormal and oxidized proteins. Protein clearance by the UPS involves two sequential reactions. The first is the tagging of protein lysine residues with ubiquitin (Ub) and the second is the subsequent degradation of the tagged proteins by the proteasome. We herein describe an assay for the second of these two reactions (Valera et al., 2013). This assay uses fluorogenic substrates for each of the three activities of the proteasome: chymotrypsin-like activity, trypsin-like activity and caspase-like activity. Cleavage of the fluorophore from the substrate by the proteasome results in fluorescence that can be detected with a fluorescent plate reader.

  13. The 26S proteasome in Schistosoma mansoni: bioinformatics analysis, developmental expression, and RNA interference (RNAi) studies.

    PubMed

    Nabhan, Joseph F; El-Shehabi, Fouad; Patocka, Nicholas; Ribeiro, Paula

    2007-11-01

    The 26S proteasome is a proteolytic complex responsible for the degradation of the vast majority of eukaryotic proteins. Regulated proteolysis by the proteasome is thought to influence cell cycle progression, transcriptional control, and other critical cellular processes. Here, we used a bioinformatics approach to identify the proteasomal constituents of the parasitic trematode Schistosoma mansoni. A detailed search of the S. mansoni genome database identified a total of 31 putative proteasomal subunits, including 17 subunits of the regulatory (19S) complex and 14 predicted catalytic (20S) subunits. A quantitative real-time RT-PCR analysis of subunit expression levels revealed that the S. mansoni proteasome components are differentially expressed among cercaria, schistosomula, and adult worms. In particular, the data suggest that the proteasome may be downregulated during the early stages of schistosomula development and is subsequently upregulated as the parasite matures to the adult stage. To test for biological relevance, we developed a transfection-based RNA interference method to knockdown the expression of the proteasome subunit, SmRPN11/POH1. Transfection of in vitro transformed S. mansoni schistosomula with specific short-interfering RNAs (siRNAs) diminished SmRPN11/POH1 expression nearly 80%, as determined by quantitative RT-PCR analysis, and also decreased parasite viability 78%, whereas no significant effect could be seen after treatment with the same amount of an irrelevant siRNA. These results indicate that the subunit SmRPN11/POH1 is an essential gene in schistosomes and further suggest an important role for the proteasome in parasite development and survival. PMID:17892869

  14. Structure of subcomplex Iβ of mammalian respiratory complex I leads to new supernumerary subunit assignments.

    PubMed

    Zhu, Jiapeng; King, Martin S; Yu, Minmin; Klipcan, Liron; Leslie, Andrew G W; Hirst, Judy

    2015-09-29

    Mitochondrial complex I (proton-pumping NADH:ubiquinone oxidoreductase) is an essential respiratory enzyme. Mammalian complex I contains 45 subunits: 14 conserved "core" subunits and 31 "supernumerary" subunits. The structure of Bos taurus complex I, determined to 5-Å resolution by electron cryomicroscopy, described the structure of the mammalian core enzyme and allowed the assignment of 14 supernumerary subunits. Here, we describe the 6.8-Å resolution X-ray crystallography structure of subcomplex Iβ, a large portion of the membrane domain of B. taurus complex I that contains two core subunits and a cohort of supernumerary subunits. By comparing the structures and composition of subcomplex Iβ and complex I, supported by comparisons with Yarrowia lipolytica complex I, we propose assignments for eight further supernumerary subunits in the structure. Our new assignments include two CHCH-domain containing subunits that contain disulfide bridges between CX9C motifs; they are processed by the Mia40 oxidative-folding pathway in the intermembrane space and probably stabilize the membrane domain. We also assign subunit B22, an LYR protein, to the matrix face of the membrane domain. We reveal that subunit B22 anchors an acyl carrier protein (ACP) to the complex, replicating the LYR protein-ACP structural module that was identified previously in the hydrophilic domain. Thus, we significantly extend knowledge of how the mammalian supernumerary subunits are arranged around the core enzyme, and provide insights into their roles in biogenesis and regulation. PMID:26371297

  15. PROTEASOME ACTIVITY DECLINES IN AGED MACROPHAGES

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The ubiquitin-proteasome pathway is involved in regulation of a variety of biologically important processes including antigen presentation by macrophages. Age-related decrease in proteasome activity has been reported in other tissues. However, the effect of aging on the ubiquitin-proteasome pathway ...

  16. PROTEASOME ACTIVITY DECLINES IN AGED MACROPHAGES

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The ubiquitin-proteasome pathway is involved in regulation of a variety of biologically important processes including antigen presentation by macrophages (Mf). Age-related decrease in proteasome activity has been reported in other tissues. However, the effect of aging on the ubiquitin-proteasome pat...

  17. Constraining the Accretion Mode in LINER 1.9s

    NASA Astrophysics Data System (ADS)

    Sabra, Bassem; Der Sahaguian, Elias; Badr, Elie

    2016-01-01

    The accretion mode and the dominant power source in low-ionization nuclear emission-line regions (LINERs), a class of active galactic nuclei (AGN), are still elusive. We focus on a sample of 22 LINER 1.9s (Ho et al. 1997), a subclass of LINERs that show broad Halpha lines, a signature of blackhole-powered accretion, to test the hypothesis that the ionizing continuum emitted by a radiatively inefficient accretion flow (RIAF) could lead to the LINER ultraviolet (UV) emission-line ratios. Optical line-ratio diagrams are a weak diagnostic tool in distinguishing between possible power sources (Sabra et al. 2003). We search the Mikulski Archive for Space Telescopes (MAST) for UV spectra of the objects in the above sample and also perform photoionization simulations using CLOUDY (Ferland et al. 2013). Unfortunately, only one object (NGC 1052; Gabel et al. 2000) of the 22 LINER 1.9s has UV spectra that cover many emission lines; the rest of the objects either do not have any UV spectra, the spectral coverage is in-adequate, or the spectra have very low signal-to-noise ratios. Our photoionization simulations set up two identical grids of clouds with a range of densities and ionization parameters. We illuminate one grid with radiation emitted by a thin accretion disk (AD) and we illuminate the other grid with radiation from a RIAF. We overplot the UV emission-line ratio predictions for AD and RIAF illumination, together with the available line ratios for NGC 1052. Initial results show that UV lines could be used as diagnostics for the accretion mode in AGN. More UV spectral coverage of LINER 1.9s is needed in order to more fully utilize the diagnostic powers of UV emission line ratios.

  18. Structure of a Blm10 complex reveals common mechanisms for proteasome binding and gate opening

    PubMed Central

    Sadre-Bazzaz, Kianoush; Whitby, Frank G.; Robinson, Howard; Formosa, Tim; Hill, Christopher P.

    2010-01-01

    Summary The proteasome is an abundant protease that is critically important for numerous cellular pathways. Proteasomes are activated in vitro by three known classes of proteins/complexes, including Blm10/PA200. Here we report a 3.4Å resolution crystal structure of a proteasome-Blm10 complex, which reveals that Blm10 surrounds the proteasome entry pore in the 1.2 MDa complex to form a largely closed dome that is expected to restrict access of potential substrates. This architecture, and the observation that Blm10 induces a disordered proteasome gate structure, challenges the assumption that Blm10 functions as an activator of proteolysis in vivo. The Blm10 C-terminus binds in the same manner as seen for 11S activators and inferred for 19S/PAN activators, and indicates a unified model for gate opening. We also demonstrate that Blm10 acts to maintain mitochondrial function. Consistent with the structural data, the C-terminal residues of Blm10 are needed for this activity. PMID:20227375

  19. Altered Composition of Liver Proteasome Assemblies Contributes to Enhanced Proteasome Activity in the Exceptionally Long-Lived Naked Mole-Rat

    PubMed Central

    Rodriguez, Karl A.; Edrey, Yael H.; Osmulski, Pawel; Gaczynska, Maria; Buffenstein, Rochelle

    2012-01-01

    The longest-lived rodent, the naked mole-rat (Bathyergidae; Heterocephalus glaber), maintains robust health for at least 75% of its 32 year lifespan, suggesting that the decline in genomic integrity or protein homeostasis routinely observed during aging, is either attenuated or delayed in this extraordinarily long-lived species. The ubiquitin proteasome system (UPS) plays an integral role in protein homeostasis by degrading oxidatively-damaged and misfolded proteins. In this study, we examined proteasome activity in naked mole-rats and mice in whole liver lysates as well as three subcellular fractions to probe the mechanisms behind the apparently enhanced effectiveness of UPS. We found that when compared with mouse samples, naked mole-rats had significantly higher chymotrypsin-like (ChT-L) activity and a two-fold increase in trypsin-like (T-L) in both whole lysates as well as cytosolic fractions. Native gel electrophoresis of the whole tissue lysates showed that the 20S proteasome was more active in the longer-lived species and that 26S proteasome was both more active and more populous. Western blot analyses revealed that both 19S subunits and immunoproteasome catalytic subunits are present in greater amounts in the naked mole-rat suggesting that the observed higher specific activity may be due to the greater proportion of immunoproteasomes in livers of healthy young adults. It thus appears that proteasomes in this species are primed for the efficient removal of stress-damaged proteins. Further characterization of the naked mole-rat proteasome and its regulation could lead to important insights on how the cells in these animals handle increased stress and protein damage to maintain a longer health in their tissues and ultimately a longer life. PMID:22567116

  20. Proteolysis, proteasomes and antigen presentation

    NASA Technical Reports Server (NTRS)

    Goldberg, A. L.; Rock, K. L.

    1992-01-01

    Proteins presented to the immune system must first be cleaved to small peptides by intracellular proteinases. Proteasomes are proteolytic complexes that degrade cytosolic and nuclear proteins. These particles have been implicated in ATP-ubiquitin-dependent proteolysis and in the processing of intracellular antigens for cytolytic immune responses.

  1. Proteomics of the 26S proteasome in Spodoptera frugiperda cells infected with the nucleopolyhedrovirus, AcMNPV.

    PubMed

    Lyupina, Yulia V; Zatsepina, Olga G; Serebryakova, Marina V; Erokhov, Pavel A; Abaturova, Svetlana B; Kravchuk, Oksana I; Orlova, Olga V; Beljelarskaya, Svetlana N; Lavrov, Andrey I; Sokolova, Olga S; Mikhailov, Victor S

    2016-06-01

    Baculoviruses are large DNA viruses that infect insect species such as Lepidoptera and are used in biotechnology for protein production and in agriculture as insecticides against crop pests. Baculoviruses require activity of host proteasomes for efficient reproduction, but how they control the cellular proteome and interact with the ubiquitin proteasome system (UPS) of infected cells remains unknown. In this report, we analyzed possible changes in the subunit composition of 26S proteasomes of the fall armyworm, Spodoptera frugiperda (Sf9), cells in the course of infection with the Autographa californica multiple nucleopolyhedrovirus (AcMNPV). 26S proteasomes were purified from Sf9 cells by an immune affinity method and subjected to 2D gel electrophoresis followed by MALDI-TOF mass spectrometry and Mascot search in bioinformatics databases. A total of 34 homologues of 26S proteasome subunits of eukaryotic species were identified including 14 subunits of the 20S core particle (7 α and 7 β subunits) and 20 subunits of the 19S regulatory particle (RP). The RP contained homologues of 11 of RPN-type and 6 of RPT-type subunits, 2 deubiquitinating enzymes (UCH-14/UBP6 and UCH-L5/UCH37), and thioredoxin. Similar 2D-gel maps of 26S proteasomes purified from uninfected and AcMNPV-infected cells at 48hpi confirmed the structural integrity of the 26S proteasome in insect cells during baculovirus infection. However, subtle changes in minor forms of some proteasome subunits were detected. A portion of the α5(zeta) cellular pool that presumably was not associated with the proteasome underwent partial proteolysis at a late stage in infection. PMID:26945516

  2. New arrangements on several species subcomplexes of Triatoma genus based on the chromosomal position of ribosomal genes (Hemiptera - Triatominae).

    PubMed

    Pita, Sebastián; Lorite, Pedro; Nattero, Julieta; Galvão, Cleber; Alevi, Kaio C C; Teves, Simone C; Azeredo-Oliveira, Maria T V; Panzera, Francisco

    2016-09-01

    The hemipteran subfamily Triatominae includes 150 blood-sucking species, vectors of Chagas disease. By far the most specious genus is Triatoma, assembled in groups, complexes and subcomplexes based on morphological similarities, geographic distribution and genetic data. However, many molecular studies questioned the species integration of several subcomplexes as monophyletic units. In triatomines, chromosomal position of major ribosomal DNA (rDNA) loci is extremely variable but seems to be species-specific and an evolutionary conserved genetic trait, so that closely related species tend to have ribosomal clusters in the same chromosomal location. Considering that the autosomal position as the ancestral character for all heteropteran species, including triatomines, we suggest that the movement of rDNA loci from autosomes to sex chromosomes rapidly established reproductive barriers between divergent lineages. We proposed that the rDNA translocation from the autosomes to the sex chromosomes restrict reproductive compatibility and eventually promote speciation processes. We analyzed the chromosomal position of 45S rDNA clusters in almost all species of the matogrossensis, rubrovaria, maculata and sordida subcomplexes. The fluorescent in situ hybridization results are discussed considering the available genetic data and we proposed new arrangements in the species that constitute each one of these subcomplexes. PMID:27245153

  3. Denervation-Induced Activation of the Ubiquitin-Proteasome System Reduces Skeletal Muscle Quantity Not Quality.

    PubMed

    Baumann, Cory W; Liu, Haiming M; Thompson, LaDora V

    2016-01-01

    It is well known that the ubiquitin-proteasome system is activated in response to skeletal muscle wasting and functions to degrade contractile proteins. The loss of these proteins inevitably reduces skeletal muscle size (i.e., quantity). However, it is currently unknown whether activation of this pathway also affects function by impairing the muscle's intrinsic ability to produce force (i.e., quality). Therefore, the purpose of this study was twofold, (1) document how the ubiquitin-proteasome system responds to denervation and (2) identify the physiological consequences of these changes. To induce soleus muscle atrophy, C57BL6 mice underwent tibial nerve transection of the left hindlimb for 7 or 14 days (n = 6-8 per group). At these time points, content of several proteins within the ubiquitin-proteasome system were determined via Western blot, while ex vivo whole muscle contractility was specifically analyzed at day 14. Denervation temporarily increased several key proteins within the ubiquitin-proteasome system, including the E3 ligase MuRF1 and the proteasome subunits 19S, α7 and β5. These changes were accompanied by reductions in absolute peak force and power, which were offset when expressed relative to physiological cross-sectional area. Contrary to peak force, absolute and relative forces at submaximal stimulation frequencies were significantly greater following 14 days of denervation. Taken together, these data represent two keys findings. First, activation of the ubiquitin-proteasome system is associated with reductions in skeletal muscle quantity rather than quality. Second, shortly after denervation, it appears the muscle remodels to compensate for the loss of neural activity via changes in Ca2+ handling. PMID:27513942

  4. Denervation-Induced Activation of the Ubiquitin-Proteasome System Reduces Skeletal Muscle Quantity Not Quality

    PubMed Central

    Liu, Haiming M.; Thompson, LaDora V.

    2016-01-01

    It is well known that the ubiquitin-proteasome system is activated in response to skeletal muscle wasting and functions to degrade contractile proteins. The loss of these proteins inevitably reduces skeletal muscle size (i.e., quantity). However, it is currently unknown whether activation of this pathway also affects function by impairing the muscle’s intrinsic ability to produce force (i.e., quality). Therefore, the purpose of this study was twofold, (1) document how the ubiquitin-proteasome system responds to denervation and (2) identify the physiological consequences of these changes. To induce soleus muscle atrophy, C57BL6 mice underwent tibial nerve transection of the left hindlimb for 7 or 14 days (n = 6–8 per group). At these time points, content of several proteins within the ubiquitin-proteasome system were determined via Western blot, while ex vivo whole muscle contractility was specifically analyzed at day 14. Denervation temporarily increased several key proteins within the ubiquitin-proteasome system, including the E3 ligase MuRF1 and the proteasome subunits 19S, α7 and β5. These changes were accompanied by reductions in absolute peak force and power, which were offset when expressed relative to physiological cross-sectional area. Contrary to peak force, absolute and relative forces at submaximal stimulation frequencies were significantly greater following 14 days of denervation. Taken together, these data represent two keys findings. First, activation of the ubiquitin-proteasome system is associated with reductions in skeletal muscle quantity rather than quality. Second, shortly after denervation, it appears the muscle remodels to compensate for the loss of neural activity via changes in Ca2+ handling. PMID:27513942

  5. Modeling proteasome dynamics in Parkinson's disease.

    PubMed

    Sneppen, Kim; Lizana, Ludvig; Jensen, Mogens H; Pigolotti, Simone; Otzen, Daniel

    2009-01-01

    In Parkinson's disease (PD), there is evidence that alpha-synuclein (alphaSN) aggregation is coupled to dysfunctional or overburdened protein quality control systems, in particular the ubiquitin-proteasome system. Here, we develop a simple dynamical model for the on-going conflict between alphaSN aggregation and the maintenance of a functional proteasome in the healthy cell, based on the premise that proteasomal activity can be titrated out by mature alphaSN fibrils and their protofilament precursors. In the presence of excess proteasomes the cell easily maintains homeostasis. However, when the ratio between the available proteasome and the alphaSN protofilaments is reduced below a threshold level, we predict a collapse of homeostasis and onset of oscillations in the proteasome concentration. Depleted proteasome opens for accumulation of oligomers. Our analysis suggests that the onset of PD is associated with a proteasome population that becomes occupied in periodic degradation of aggregates. This behavior is found to be the general state of a proteasome/chaperone system under pressure, and suggests new interpretations of other diseases where protein aggregation could stress elements of the protein quality control system. PMID:19411740

  6. Modeling proteasome dynamics in Parkinson's disease

    NASA Astrophysics Data System (ADS)

    Sneppen, Kim; Lizana, Ludvig; Jensen, Mogens H.; Pigolotti, Simone; Otzen, Daniel

    2009-09-01

    In Parkinson's disease (PD), there is evidence that α-synuclein (αSN) aggregation is coupled to dysfunctional or overburdened protein quality control systems, in particular the ubiquitin-proteasome system. Here, we develop a simple dynamical model for the on-going conflict between αSN aggregation and the maintenance of a functional proteasome in the healthy cell, based on the premise that proteasomal activity can be titrated out by mature αSN fibrils and their protofilament precursors. In the presence of excess proteasomes the cell easily maintains homeostasis. However, when the ratio between the available proteasome and the αSN protofilaments is reduced below a threshold level, we predict a collapse of homeostasis and onset of oscillations in the proteasome concentration. Depleted proteasome opens for accumulation of oligomers. Our analysis suggests that the onset of PD is associated with a proteasome population that becomes occupied in periodic degradation of aggregates. This behavior is found to be the general state of a proteasome/chaperone system under pressure, and suggests new interpretations of other diseases where protein aggregation could stress elements of the protein quality control system.

  7. In vivo pharmacodynamic imaging of proteasome inhibition.

    PubMed

    Kimbrel, Erin A; Davis, Tina N; Bradner, James E; Kung, Andrew L

    2009-01-01

    Inhibiting the proteolytic activity of the 26S proteasome has been shown to have selective apoptotic effects on cancer cells and to be clinically efficacious in certain malignancies. There is an unmet medical need for additional proteasome inhibitors, and their development will be facilitated by surrogate markers of proteasome function. Toward this end, ectopic fusion of the destruction domain from ornithine decarboxylase (ODC) to reporter proteins is often used for assessing proteasome function. For luciferase-based reporters, we hypothesized that the oxygen-dependent destruction domain (ODD) from hypoxia-inducible factor 1 alpha (HIF-1 alpha) may provide improved sensitivity over luciferase-ODC, owing to its extremely rapid turnover by the proteasome (HIF-1 alpha has a half-life of less than 5 minutes). In the current study, we show that ODD-luciferase affords a greater dynamic range and faster kinetics than luciferase-ODC in sensing proteasome inhibition in vitro. Importantly, ODD-luciferase also serves as an effective in vivo marker of proteasome function in xenograft tumor models, with inhibition being detected by noninvasive imaging within 3 hours of bortezomib administration. These data establish ODD-luciferase as a surrogate marker of proteasome function that can be used both in vitro and in vivo for the development of novel proteasome inhibitors. PMID:19723471

  8. ahg12 is a dominant proteasome mutant that affects multiple regulatory systems for germination of Arabidopsis.

    PubMed

    Hayashi, Shimpei; Hirayama, Takashi

    2016-01-01

    The ubiquitin-proteasome system is fundamentally involved in myriad biological phenomena of eukaryotes. In plants, this regulated protein degradation system has a pivotal role in the cellular response mechanisms for both internal and external stimuli, such as plant hormones and environmental stresses. Information about substrate selection by the ubiquitination machinery has accumulated, but there is very little information about selectivity for substrates at the proteasome. Here, we report characterization of a novel abscisic acid (ABA)-hypersensitive mutant named ABA hypersensitive germination12 (ahg12) in Arabidopsis. The ahg12 mutant showed a unique pleiotropic phenotype, including hypersensitivity to ABA and ethylene, and hyposensitivity to light. Map-based cloning identified the ahg12 mutation to cause an amino acid conversion in the L23 loop of RPT5a, which is predicted to form the pore structure of the 19S RP complex of the proteasome. Transient expression assays demonstrated that some plant-specific signaling components accumulated at higher levels in the ahg12 mutant. These results suggest that the ahg12 mutation led to changes in the substrate preference of the 26S proteasome. The discovery of the ahg12 mutation thus will contribute to elucidate the characteristics of the regulated protein degradation system. PMID:27139926

  9. Redox modulation of cellular metabolism through targeted degradation of signaling proteins by the proteasome

    SciTech Connect

    Squier, Thomas C.

    2006-02-01

    Under conditions of oxidative stress, the 20S proteasome plays a critical role in maintaining cellular homeostasis through the selective degradation of oxidized and damaged proteins. This adaptive stress response is distinct from ubiquitin-dependent pathways in that oxidized proteins are recognized and degraded in an ATP-independent mechanism, which can involve the molecular chaperone Hsp90. Like the regulatory complexes 19S and 11S REG, Hsp90 tightly associates with the 20S proteasome to mediate the recognition of aberrant proteins for degradation. In the case of the calcium signaling protein calmodulin, proteasomal degradation results from the oxidation of a single surface exposed methionine (i.e., Met145); oxidation of the other eight methionines has a minimal effect on the recognition and degradation of calmodulin by the proteasome. Since cellular concentrations of calmodulin are limiting, the targeted degradation of this critical signaling protein under conditions of oxidative stress will result in the downregulation of cellular metabolism, serving as a feedback regulation to diminish the generation of reactive oxygen species. The targeted degradation of critical signaling proteins, such as calmodulin, can function as sensors of oxidative stress to downregulate global rates of metabolism and enhance cellular survival.

  10. ahg12 is a dominant proteasome mutant that affects multiple regulatory systems for germination of Arabidopsis

    PubMed Central

    Hayashi, Shimpei; Hirayama, Takashi

    2016-01-01

    The ubiquitin-proteasome system is fundamentally involved in myriad biological phenomena of eukaryotes. In plants, this regulated protein degradation system has a pivotal role in the cellular response mechanisms for both internal and external stimuli, such as plant hormones and environmental stresses. Information about substrate selection by the ubiquitination machinery has accumulated, but there is very little information about selectivity for substrates at the proteasome. Here, we report characterization of a novel abscisic acid (ABA)-hypersensitive mutant named ABA hypersensitive germination12 (ahg12) in Arabidopsis. The ahg12 mutant showed a unique pleiotropic phenotype, including hypersensitivity to ABA and ethylene, and hyposensitivity to light. Map-based cloning identified the ahg12 mutation to cause an amino acid conversion in the L23 loop of RPT5a, which is predicted to form the pore structure of the 19S RP complex of the proteasome. Transient expression assays demonstrated that some plant-specific signaling components accumulated at higher levels in the ahg12 mutant. These results suggest that the ahg12 mutation led to changes in the substrate preference of the 26S proteasome. The discovery of the ahg12 mutation thus will contribute to elucidate the characteristics of the regulated protein degradation system. PMID:27139926

  11. Coupling caspase cleavage and proteasomal degradation of proteins carrying PEST motif.

    PubMed

    Belizario, José E; Alves, Juliano; Garay-Malpartida, Miguel; Occhiucci, João Marcelo

    2008-06-01

    The degradation is critical to activation and deactivation of regulatory proteins involved in signaling pathways to cell growth, differentiation, stress responses and physiological cell death. Proteins carry domains and sequence motifs that function as prerequisite for their proteolysis by either individual proteases or the 26S multicomplex proteasomes. Two models for entry of substrates into the proteasomes have been considered. In one model, it is proposed that the ubiquitin chain attached to the protein serves as recognition element to drag them into the 19S regulatory particle, which promotes the unfolding required to its access into the 20S catalytic chamber. In second model, it is proposed that an unstructured tail located at amino or carboxyl terminus directly track proteins into the 26S/20S proteasomes. Caspases are cysteinyl aspartate proteases that control diverse signaling pathways, promoting the cleavage at one or two sites of hundreds of structural and regulatory protein substrates. Caspase cleavage sites are commonly found within PEST motifs, which are segments rich in proline (P), glutamic acid (D), aspartic acid (E) and serine (S) or threonine (T) residues. Considering that N- and C- terminal peptide carrying PEST motifs form disordered loops in the globular proteins after caspase cleavage, it is postulated here that these exposed termini serve as unstructured initiation site, coupling caspase cleavage and ubiquitin-proteasome dependent and independent degradation of short-lived proteins. This could explain the inherent susceptibility to proteolysis among proteins containing PEST motif. PMID:18537676

  12. The expression, purification, crystallization and preliminary X-ray analysis of a subcomplex of the peripheral stalk of ATP synthase from bovine mitochondria

    SciTech Connect

    Silvester, Jocelyn A.; Kane Dickson, Veronica; Runswick, Michael J.; Leslie, Andrew G. W.; Walker, John E.

    2006-06-01

    A recombinant subcomplex of the peripheral stalk or stator domain of the ATP synthase from bovine mitochondria has been crystallized and a native data set has been collected to 2.8 Å resolution. A subcomplex of the peripheral stalk or stator domain of the ATP synthase from bovine mitochondria has been expressed to high levels in a soluble form in Escherichia coli. The subcomplex consists of residues 79–184 of subunit b, residues 1–124 of subunit d and the entire F{sub 6} subunit (76 residues). It has been purified and crystallized by vapour diffusion. The morphology and diffraction properties of the crystals of the subcomplex were improved by the presence of thioxane or 4-methylpyridine in the crystallization liquor. With a synchrotron-radiation source, these crystals diffracted to 2.8 Å resolution. They belong to the monoclinic space group P2{sub 1}.

  13. The ubiquitin proteasome system and efficacy of proteasome inhibitors in diseases.

    PubMed

    Chitra, Selvarajan; Nalini, Ganesan; Rajasekhar, Gopalakrishnan

    2012-06-01

    In eukaryotes the ubiquitin proteasome pathway plays an important role in cellular homeostasis and also it exerts a critical role in regulating a wide variety of cellular pathways, including cell growth and proliferation, apoptosis, DNA repair, transcription and immune response. Defects in these pathways have been implicated in a number of human pathologies. Inhibition of the ubiquitin proteasome pathway by proteasome inhibitors may be a rational therapeutic approach for various diseases, such as cancer and inflammatory diseases. Many of the critical cytokine and chemokine mediators of the progression of rheumatoid arthritis are regulated by nuclear factor kappa B (NF-κB). In peptidoglycan/polysaccharide-induced polyarthritis, proteasome inhibitors limit the overall inflammation, reduce NF-κB activation, decrease cellular adhesion molecule expression, inhibit nitric oxide synthase, attenuate circulating levels of proinflammatory cytokine interleukin-6 and reduce the arthritis index and swelling in the joints of the animals. Since proteasome inhibitors exhibit anti-inflammatory and anti proliferative effects, diseases characterized by both of these processes such as rheumatoid arthritis might also represent clinical opportunities for such drugs. The regulation of the proteasomal complex by proteasome inhibitors also has implications and potential benefits for the treatment of rheumatoid arthritis. This review summarizes the ubiquitin proteasome pathway, the structure of 26S proteasomes and types of proteasome inhibitors, with their actions, and clinical applications of proteasome inhibitors in various diseases. PMID:22709487

  14. Single-molecule analysis reveals self assembly and nanoscale segregation of two distinct cavin subcomplexes on caveolae

    PubMed Central

    Gambin, Yann; Ariotti, Nicholas; McMahon, Kerrie-Ann; Bastiani, Michele; Sierecki, Emma; Kovtun, Oleksiy; Polinkovsky, Mark E; Magenau, Astrid; Jung, WooRam; Okano, Satomi; Zhou, Yong; Leneva, Natalya; Mureev, Sergey; Johnston, Wayne; Gaus, Katharina; Hancock, John F; Collins, Brett M; Alexandrov, Kirill; Parton, Robert G

    2014-01-01

    In mammalian cells three closely related cavin proteins cooperate with the scaffolding protein caveolin to form membrane invaginations known as caveolae. Here we have developed a novel single-molecule fluorescence approach to directly observe interactions and stoichiometries in protein complexes from cell extracts and from in vitro synthesized components. We show that up to 50 cavins associate on a caveola. However, rather than forming a single coat complex containing the three cavin family members, single-molecule analysis reveals an exquisite specificity of interactions between cavin1, cavin2 and cavin3. Changes in membrane tension can flatten the caveolae, causing the release of the cavin coat and its disassembly into separate cavin1-cavin2 and cavin1-cavin3 subcomplexes. Each of these subcomplexes contain 9 ± 2 cavin molecules and appear to be the building blocks of the caveolar coat. High resolution immunoelectron microscopy suggests a remarkable nanoscale organization of these separate subcomplexes, forming individual striations on the surface of caveolae. DOI: http://dx.doi.org/10.7554/eLife.01434.001 PMID:24473072

  15. Evidence for a cytochrome f-Rieske protein subcomplex in the cytochrome b6f system from spinach chloroplasts.

    PubMed

    el-Demerdash, M; Salnikow, J; Vater, J

    1988-01-01

    The cytochrome b6f complex of spinach chloroplasts was prepared with minor modification according to the method of E. Hurt and G. Hauska (1981) Eur. J. Biochem. 117, 591-599) replacing, however, the final ultracentrifugation step by hydroxyapatite chromatography as suggested by M. F. Doyle and C.-A Yu (1985) Biochem. Biophys. Res. Commun. 131, 700-706). The purified complex was partially dissociated by treatment with 4 M urea or 0.1% sodium dodecyl sulfate (SDS) in the absence of reducing agents. A binary subcomplex consisting of cytochrome f and the Rieske iron-sulfur protein was observed under these conditions by three different methods: (a) hydroxyapatite chromatography; (b) extraction with an isopropanol/water/trifluoroacetic acid mixture; and (c) gel filtration in the presence of low SDS concentrations. The subcomplex dissociated into its components by treatment with mercaptoethanol. These results suggest a close interaction of the cytochrome f with the Rieske protein involving SH groups which under reducing conditions leads to complete dissociation of the subcomplex. PMID:3277532

  16. Metal Binding in Photosystem II Super- and Subcomplexes from Barley Thylakoids1

    PubMed Central

    Schmidt, Sidsel Birkelund; Persson, Daniel Pergament; Powikrowska, Marta; Frydenvang, Jens; Schjoerring, Jan K.; Jensen, Poul Erik; Husted, Søren

    2015-01-01

    Metals exert important functions in the chloroplast of plants, where they act as cofactors and catalysts in the photosynthetic electron transport chain. In particular, manganese (Mn) has a key function because of its indispensable role in the water-splitting reaction of photosystem II (PSII). More and better knowledge is required on how the various complexes of PSII are affected in response to, for example, nutritional disorders and other environmental stress conditions. We here present, to our knowledge, a new method that allows the analysis of metal binding in intact photosynthetic complexes of barley (Hordeum vulgare) thylakoids. The method is based on size exclusion chromatography coupled to inductively coupled plasma triple-quadrupole mass spectrometry. Proper fractionation of PSII super- and subcomplexes was achieved by critical selection of elution buffers, detergents for protein solubilization, and stabilizers to maintain complex integrity. The applicability of the method was shown by quantification of Mn binding in PSII from thylakoids of two barley genotypes with contrasting Mn efficiency exposed to increasing levels of Mn deficiency. The amount of PSII supercomplexes was drastically reduced in response to Mn deficiency. The Mn efficient genotype bound significantly more Mn per unit of PSII under control and mild Mn deficiency conditions than the inefficient genotype, despite having lower or similar total leaf Mn concentrations. It is concluded that the new method facilitates studies of the internal use of Mn and other biometals in various PSII complexes as well as their relative dynamics according to changes in environmental conditions. PMID:26084923

  17. Detection of mRNA sequences in nuclear 30S ribonucleoprotein subcomplexes.

    PubMed Central

    Kinniburgh, A J; Martin, T E

    1976-01-01

    RNA from nuclear 30S ribonucleoprotein (RNP) complexes of mouse ascites cells has been shows to contain sequences homologous to poly(A) + mRNA by its ability to hybridize with complementary DNA prepared from poly(A) + mRNA template. Analysis of the hybridization kinetics of poly(A) + mRNA with its own complementary DNA revealed several abundancy classes. The total complexity of poly(A) + mRNA from ascites cells was estimated to be approximately 30,000 sequences of average molecular weight (6 X 10(5)). When the hybridization reaction of 30S RNP-RNA with mRNA-specific cDNA was compared to the homologous reaction the majority, and most probably all, of the poly(A) + mRNA sequences were found to be present in the RNA. The kinetics of hybridization suggest that 10-15% of the RNA in this RNP complex is homologous to poly(A) + mRNA. The 30S RNP subcomplexes therefore contain nuclear poly(A) + mRNA sequences as well as the bulk of heterogeneous RNA. PMID:1066686

  18. Metal Binding in Photosystem II Super- and Subcomplexes from Barley Thylakoids.

    PubMed

    Schmidt, Sidsel Birkelund; Persson, Daniel Pergament; Powikrowska, Marta; Frydenvang, Jens; Schjoerring, Jan K; Jensen, Poul Erik; Husted, Søren

    2015-08-01

    Metals exert important functions in the chloroplast of plants, where they act as cofactors and catalysts in the photosynthetic electron transport chain. In particular, manganese (Mn) has a key function because of its indispensable role in the water-splitting reaction of photosystem II (PSII). More and better knowledge is required on how the various complexes of PSII are affected in response to, for example, nutritional disorders and other environmental stress conditions. We here present, to our knowledge, a new method that allows the analysis of metal binding in intact photosynthetic complexes of barley (Hordeum vulgare) thylakoids. The method is based on size exclusion chromatography coupled to inductively coupled plasma triple-quadrupole mass spectrometry. Proper fractionation of PSII super- and subcomplexes was achieved by critical selection of elution buffers, detergents for protein solubilization, and stabilizers to maintain complex integrity. The applicability of the method was shown by quantification of Mn binding in PSII from thylakoids of two barley genotypes with contrasting Mn efficiency exposed to increasing levels of Mn deficiency. The amount of PSII supercomplexes was drastically reduced in response to Mn deficiency. The Mn efficient genotype bound significantly more Mn per unit of PSII under control and mild Mn deficiency conditions than the inefficient genotype, despite having lower or similar total leaf Mn concentrations. It is concluded that the new method facilitates studies of the internal use of Mn and other biometals in various PSII complexes as well as their relative dynamics according to changes in environmental conditions. PMID:26084923

  19. New proteasome inhibitors in myeloma.

    PubMed

    Lawasut, Panisinee; Chauhan, Dharminder; Laubach, Jacob; Hayes, Catriona; Fabre, Claire; Maglio, Michelle; Mitsiades, Constantine; Hideshima, Teru; Anderson, Kenneth C; Richardson, Paul G

    2012-12-01

    Proteasome inhibition has a validated role in cancer therapy since the successful introduction of bortezomib for the treatment of multiple myeloma (MM) and mantle cell lymphoma, leading to the development of second-generation proteasome inhibitors (PI) for MM patients in whom currently approved therapies have failed. Five PIs have reached clinical evaluation, with the goals of improving efficacy and limiting toxicity, including peripheral neuropathy (PN). Carfilzomib, an epoxyketone with specific chymothrypsin-like activity, acts as an irreversible inhibitor and was recently FDA approved for the response benefit seen in relapsed and refractory MM patients previously treated with bortezomib, thalidomide and lenalidomide. ONX-0912 is now under evaluation as an oral form with similar activity. The boronate peptides MLN9708 and CEP-18770 are orally bioactive bortezomib analogs with prolonged activity and greater tissue penetration. NPI-0052 (marizomib) is a unique, beta-lactone non-selective PI that has been shown to potently overcome bortezomib resistance in vitro. All of these second-generation PIs demonstrate encouraging anti-MM activity and appear to reduce the incidence of PN, with clinical trials ongoing. PMID:23065395

  20. A Single α Helix Drives Extensive Remodeling of the Proteasome Lid and Completion of Regulatory Particle Assembly

    PubMed Central

    Tomko, Robert J.; Taylor, David W.; Chen, Zhuo A.; Wang, Hong-Wei; Rappsilber, Juri; Hochstrasser, Mark

    2015-01-01

    Summary Most short-lived eukaryotic proteins are degraded by the proteasome. A proteolytic core particle (CP) capped by regulatory particles (RPs) constitutes the 26S proteasome complex. RP biogenesis culminates with the joining of two large subcomplexes, the lid and base. In yeast and mammals, the lid appears to assemble completely before attaching to the base, but how this hierarchical assembly is enforced has remained unclear. Using biochemical reconstitutions, quantitative cross-linking/mass spectrometry, and electron microscopy, we resolve the mechanistic basis for the linkage between lid biogenesis and lid-base joining. Assimilation of the final lid subunit, Rpn12, triggers a large-scale conformational remodeling of the nascent lid that drives RP assembly, in part by relieving steric clash with the base. Surprisingly, this remodeling is triggered by a single Rpn12 α helix. Such assembly-coupled conformational switching is reminiscent of viral particle maturation and may represent a commonly used mechanism to enforce hierarchical assembly in multisubunit complexes. PMID:26451487

  1. The therapeutic potential of microbial proteasome inhibitors.

    PubMed

    Momose, Isao; Kawada, Manabu

    2016-08-01

    The proteasome influences cellular homeostasis through the degradation of regulatory proteins, many of which are also involved in disease pathogenesis. In particular, numerous regulatory proteins associated with tumor growth, such as cyclins, cyclin-dependent kinase inhibitors, tumor suppressors, and NF-κB inhibitors are degraded by the proteasome. Proteasome inhibitors can stabilize these regulatory proteins, resulting in the suppression of tumor development and the regulation of immune responses. Thus, proteasome inhibitors are promising candidate antitumor agents and immune-regulatory agents. Bortezomib is the first-in-class proteasome inhibitor approved for the treatment of multiple myeloma. Despite its high efficiency, however, a large proportion of patients do not attain sufficient clinical response due to toxicity and drug resistance. Therefore, the development of new proteasome inhibitors with improved pharmacological properties is needed. Natural products produced by microorganisms are a promising source of such compounds. This review provides an overview of proteasome inhibitors produced by microorganisms, with special focus on inhibitors isolated from actinomycetes. PMID:26589840

  2. Characterizing the Dynamics of Proteasome Complexes by Proteomics Approaches

    PubMed Central

    Kaake, Robyn M.; Kao, Athit; Yu, Clinton

    2014-01-01

    Abstract Significance: The proteasome is the degradation machine of the ubiquitin-proteasome system, which is critical in controlling many essential biological processes. Aberrant regulation of proteasome-dependent protein degradation can lead to various human diseases, and general proteasome inhibitors have shown efficacy for cancer treatments. Though clinically effective, current proteasome inhibitors have detrimental side effects and, thus, better therapeutic strategies targeting proteasomes are needed. Therefore, a comprehensive characterization of proteasome complexes will provide the molecular details that are essential for developing new and improved drugs. Recent Advances: New mass spectrometry (MS)-based proteomics approaches have been developed to study protein interaction networks and structural topologies of proteasome complexes. The results have helped define the dynamic proteomes of proteasome complexes, thus providing new insights into the mechanisms underlying proteasome function and regulation. Critical Issues: The proteasome exists as heterogeneous populations in tissues/cells, and its proteome is highly dynamic and complex. In addition, proteasome complexes are regulated by various mechanisms under different physiological conditions. Consequently, complete proteomic profiling of proteasome complexes remains a major challenge for the field. Future Directions: We expect that proteomic methodologies enabling full characterization of proteasome complexes will continue to evolve. Further advances in MS instrumentation and protein separation techniques will be needed to facilitate the detailed proteomic analysis of low-abundance components and subpopulations of proteasome complexes. The results will help us understand proteasome biology as well as provide new therapeutic targets for disease diagnostics and treatment. Antioxid. Redox Signal. 21, 2444–2456. PMID:24423446

  3. Substituted quinolines as noncovalent proteasome inhibitors.

    PubMed

    McDaniel, Tanner J; Lansdell, Theresa A; Dissanayake, Amila A; Azevedo, Lauren M; Claes, Jacob; Odom, Aaron L; Tepe, Jetze J

    2016-06-01

    Screening of a library of diverse heterocyclic scaffolds identified substituted quinolines as inhibitors of the human proteasome. The heterocyclic library was prepared via a novel titanium-catalyzed multicomponent coupling reaction, which rendered a diverse set of isoxazoles, pyrimidines, pyrroles, pyrazoles and quinolines. SAR of the parent lead compound indicated that hydrophobic residues on the benzo-moiety significantly improved potency. Lead compound 25 inhibits the chymotryptic-like proteolytic activity of the proteasome (IC50 5.4μM), representing a new class of nonpeptidic, noncovalent proteasome inhibitors. PMID:27112450

  4. An Archaeal Homolog of Proteasome Assembly Factor Functions as a Proteasome Activator

    PubMed Central

    Kumoi, Kentaro; Satoh, Tadashi; Murata, Kazuyoshi; Hiromoto, Takeshi; Mizushima, Tsunehiro; Kamiya, Yukiko; Noda, Masanori; Uchiyama, Susumu; Yagi, Hirokazu; Kato, Koichi

    2013-01-01

    Assembly of the eukaryotic 20S proteasome is an ordered process involving several proteins operating as proteasome assembly factors including PAC1-PAC2 but archaeal 20S proteasome subunits can spontaneously assemble into an active cylindrical architecture. Recent bioinformatic analysis identified archaeal PAC1-PAC2 homologs PbaA and PbaB. However, it remains unclear whether such assembly factor-like proteins play an indispensable role in orchestration of proteasome subunits in archaea. We revealed that PbaB forms a homotetramer and exerts a dual function as an ATP-independent proteasome activator and a molecular chaperone through its tentacle-like C-terminal segments. Our findings provide insights into molecular evolution relationships between proteasome activators and assembly factors. PMID:23555947

  5. Proteasome activity or expression is not altered by activation of the heat shock transcription factor Hsf1 in cultured fibroblasts or myoblasts.

    PubMed

    Taylor, David M; Kabashi, Edor; Agar, Jeffrey N; Minotti, Sandra; Durham, Heather D

    2005-01-01

    Heat shock proteins (Hsps) with chaperoning function work together with the ubiquitin-proteasome pathway to prevent the accumulation of misfolded, potentially toxic proteins, as well as to control catabolism of the bulk of cytoplasmic, cellular protein. There is evidence for the involvement of both systems in neurodegenerative disease, and a therapeutic target is the heat shock transcription factor, Hsf1, which mediates upregulation of Hsps in response to cellular stress. The mechanisms regulating expression of proteasomal proteins in mammalian cells are less well defined. To assess any direct effect of Hsf1 on expression of proteasomal subunits and activity in mammalian cells, a plasmid encoding a constitutively active form of Hsf1 (Hsf1act) was expressed in mouse embryonic fibroblasts lacking Hsf1 and in cultured human myoblasts. Plasmid encoding an inactivatible form of Hsf1 (Hsf1inact) served as control. In cultures transfected with plasmid hsf1act, robust expression of the major stress-inducible Hsp, Hsp70, occurred but not in cultures transfected with hsf1inact. No significant changes in the level of expression of representative proteasomal proteins (structural [20Salpha], a nonpeptidase beta subunit [20Sbeta3], or 2 regulatory subunits [19S subunit 6b, 11 Salpha]) or in chymotrypsin-, trypsin-, and caspaselike activities of the proteasome were measured. Thus, stress-induced or pharmacological activation of Hsf1 in mammalian cells would upregulate Hsps but not directly affect expression or activity of proteasomes. PMID:16184768

  6. Serendipity in discovery of proteasome inhibitors.

    PubMed

    Dunn, Derek; Iqbal, Mohamed; Husten, Jean; Ator, Mark A; Chatterjee, Sankar

    2012-05-15

    Among its various catalytic activities, the 'chymotrypsin-like' activity of the proteasome, a large multicatalytic proteinase complex has emerged as the focus of drug discovery efforts in cancer therapy. Herein, a series of first generation (2S, 3R)-2-amino-3-hydroxybutyric acid derived proteasome inhibitors that were discovered serendipitously en route to original goal of generating a series of sterically constrained oxazoline derivatives has been reported. PMID:22503349

  7. Molecular architecture of the 26S proteasome holocomplex determined by an integrative approach

    PubMed Central

    Lasker, Keren; Förster, Friedrich; Bohn, Stefan; Walzthoeni, Thomas; Villa, Elizabeth; Unverdorben, Pia; Beck, Florian; Aebersold, Ruedi; Sali, Andrej; Baumeister, Wolfgang

    2012-01-01

    The 26S proteasome is at the executive end of the ubiquitin-proteasome pathway for the controlled degradation of intracellular proteins. While the structure of its 20S core particle (CP) has been determined by X-ray crystallography, the structure of the 19S regulatory particle (RP), which recruits substrates, unfolds them, and translocates them to the CP for degradation, has remained elusive. Here, we describe the molecular architecture of the 26S holocomplex determined by an integrative approach based on data from cryoelectron microscopy, X-ray crystallography, residue-specific chemical cross-linking, and several proteomics techniques. The “lid” of the RP (consisting of Rpn3/5/6/7/8/9/11/12) is organized in a modular fashion. Rpn3/5/6/7/9/12 form a horseshoe-shaped heterohexamer, which connects to the CP and roofs the AAA-ATPase module, positioning the Rpn8/Rpn11 heterodimer close to its mouth. Rpn2 is rigid, supporting the lid, while Rpn1 is conformationally variable, positioned at the periphery of the ATPase ring. The ubiquitin receptors Rpn10 and Rpn13 are located in the distal part of the RP, indicating that they were recruited to the complex late in its evolution. The modular structure of the 26S proteasome provides insights into the sequence of events prior to the degradation of ubiquitylated substrates. PMID:22307589

  8. Inhibitors Selective for Mycobacterial Versus Human Proteasomes

    SciTech Connect

    Lin, G.; Li, D; Sorio de Carvalho, L; Deng, H; Tao, H; Vogt, G; Wu, K; Schneider, J; Chidawanyika, T; et. al.

    2009-01-01

    Many anti-infectives inhibit the synthesis of bacterial proteins, but none selectively inhibits their degradation. Most anti-infectives kill replicating pathogens, but few preferentially kill pathogens that have been forced into a non-replicating state by conditions in the host. To explore these alternative approaches we sought selective inhibitors of the proteasome of Mycobacterium tuberculosis. Given that the proteasome structure is extensively conserved, it is not surprising that inhibitors of all chemical classes tested have blocked both eukaryotic and prokaryotic proteasomes, and no inhibitor has proved substantially more potent on proteasomes of pathogens than of their hosts. Here we show that certain oxathiazol-2-one compounds kill non-replicating M.?tuberculosis and act as selective suicide-substrate inhibitors of the M.?tuberculosis proteasome by cyclocarbonylating its active site threonine. Major conformational changes protect the inhibitor-enzyme intermediate from hydrolysis, allowing formation of an oxazolidin-2-one and preventing regeneration of active protease. Residues outside the active site whose hydrogen bonds stabilize the critical loop before and after it moves are extensively non-conserved. This may account for the ability of oxathiazol-2-one compounds to inhibit the mycobacterial proteasome potently and irreversibly while largely sparing the human homologue.

  9. Direct cellular delivery of human proteasomes to delay tau aggregation.

    PubMed

    Han, Dong Hoon; Na, Hee-Kyung; Choi, Won Hoon; Lee, Jung Hoon; Kim, Yun Kyung; Won, Cheolhee; Lee, Seung-Han; Kim, Kwang Pyo; Kuret, Jeff; Min, Dal-Hee; Lee, Min Jae

    2014-01-01

    The 26S proteasome is the primary machinery that degrades ubiquitin (Ub)-conjugated proteins, including many proteotoxic proteins implicated in neurodegeneraton. It has been suggested that the elevation of proteasomal activity is tolerable to cells and may be beneficial to prevent the accumulation of protein aggregates. Here we show that purified proteasomes can be directly transported into cells through mesoporous silica nanoparticle-mediated endocytosis. Proteasomes that are loaded onto nanoparticles through non-covalent interactions between polyhistidine tags and nickel ions fully retain their proteolytic activity. Cells treated with exogenous proteasomes are more efficient in degrading overexpressed human tau than endogenous proteasomal substrates, resulting in decreased levels of tau aggregates. Moreover, exogenous proteasome delivery significantly promotes cell survival against proteotoxic stress caused by tau and reactive oxygen species. These data demonstrate that increasing cellular proteasome activity through the direct delivery of purified proteasomes may be an effective strategy for reducing cellular levels of proteotoxic proteins. PMID:25476420

  10. Interactions of PAN's C-termini with archaeal 20S proteasome and implications for the eukaryotic proteasome–ATPase interactions

    PubMed Central

    Yu, Yadong; Smith, David M; Kim, Ho Min; Rodriguez, Victor; Goldberg, Alfred L; Cheng, Yifan

    2010-01-01

    Protein degradation in the 20S proteasome is regulated in eukaryotes by the 19S ATPase complex and in archaea by the homologous PAN ATPase ring complex. Subunits of these hexameric ATPases contain on their C-termini a conserved hydrophobic-tyrosine-X (HbYX) motif that docks into pockets in the 20S to stimulate the opening of a gated substrate entry channel. Here, we report the crystal structure of the archaeal 20S proteasome in complex with the C-terminus of the archaeal proteasome regulatory ATPase, PAN. This structure defines the detailed interactions between the critical C-terminal HbYX motif and the 20S α-subunits and indicates that the intersubunit pocket in the 20S undergoes an induced-fit conformational change on binding of the HbYX motif. This structure together with related mutagenesis data suggest how in eukaryotes certain proteasomal ATPases bind to specific pockets in an asymmetrical manner to regulate gate opening. PMID:20019667

  11. Molecular characterization of NbPAF encoding the alpha6 subunit of the 20S proteasome in Nicotiana benthamiana.

    PubMed

    Kim, Moonil; Yang, Kyoung-Sil; Kim, Yu-Kyung; Paek, Kyung-Hee; Pai, Hyun-Sook

    2003-02-28

    The 26S proteasome involved in degradation of proteins covalently modified with polyubiquitin consists of the 20S proteasome and 19S regulatory complex. The NbPAF gene encoding the alpha6 subunit of the 20S proteasome was identified from Nicotiana benthamiana. NbPAF exhibits high sequence homology with the corresponding genes from Arabidopsis, human and yeast. The deduced amino acid sequence of NbPAF reveals that this protein contains the proteasome alpha-type subunits signature and nuclear localization signal at the N-terminus. The genomic Southern blot analysis suggests that the N. benthamiana genome contains one copy of NbPAF. The NbPAF mRNA was detected abundantly in flowers and weakly in roots and stems, but it was almost undetectable in mature leaves. In response to stresses, accumulation of the NbPAF mRNA was stimulated by methyl jasmonate, NaCl and salicylic acid, but not by abscisic acid and cold treatment in leaves. The NbPAF-GFP fusion protein was localized in the cytoplasm and nucleus. PMID:12661772

  12. Proteasome inhibitor associated thrombotic microangiopathy.

    PubMed

    Yui, Jennifer C; Van Keer, Jan; Weiss, Brendan M; Waxman, Adam J; Palmer, Matthew B; D'Agati, Vivette D; Kastritis, Efstathios; Dimopoulos, Meletios A; Vij, Ravi; Bansal, Dhruv; Dingli, David; Nasr, Samih H; Leung, Nelson

    2016-09-01

    A variety of medications have been implicated in the causation of thrombotic microangiopathy (TMA). Recently, a few case reports have emerged of TMA attributed to the proteasome inhibitors (PI) bortezomib and carfilzomib in patients with multiple myeloma. The aim of this case series was to better characterize the role of PI in the etiology of drug-induced TMA. We describe eleven patients from six medical centers from around the world who developed TMA while being treated with PI. The median time between medication initiation and diagnosis of TMA was 21 days (range 5 days to 17 months). Median laboratory values at diagnosis included hemoglobin-7.5 g dL(-1) , platelet count-20 × 10(9) /L, LDH-698 U L(-1) , creatinine-3.12 mg dL(-1) . No patient had any other cause of TMA, including ADAMTS13 inhibition, other malignancy or use of any other medication previously associated with TMA. Nine patients had resolution of TMA without evidence of hemolysis after withdrawal of PI. Two patients had stabilization of laboratory values but persistent evidence of hemolysis despite medication withdrawal. One patient had recurrence of TMA with rechallenge of PI. There is a strong level of evidence that PI can cause DITMA. In evaluating patients with suspected TMA, PI use should be recognized as a potential etiology, and these medications should be discontinued promptly if thought to be the cause of TMA. Am. J. Hematol. 91:E348-E352, 2016. © 2016 Wiley Periodicals, Inc. PMID:27286661

  13. Clinical and marketed proteasome inhibitors for cancer treatment.

    PubMed

    Zhang, Jiankang; Wu, Peng; Hu, Yongzhou

    2013-01-01

    The ubiquitin-proteasome pathway (UPP), which influences essential cellular functions including cell growth, differentiation, apoptosis, signal transduction, antigen processing and inflammatory responses, has been considered as one of the most important cellular protein degradation approaches. Proteasome functions as a gatekeeper, which controls the execution of protein degradation and plays a critical role in the ubiquitin-proteasome pathway. The unfolding of the close connection between proteasome and cancer provides a potential strategy for cancer treatment by using proteasome inhibitors. Small molecular inhibitors of varied structures and potency against proteasome have been discovered in recent years, with bortezomib and carfilzomib having been successfully approved for clinical application while some other promising candidates are currently under clinical trials. Herein, we review the development history of drugs and candidates that target the 20S proteasome, structure-activity relationships (SARs) of various proteasome inhibitors, and related completed or ongoing clinical trials. PMID:23531219

  14. Trial Watch: Proteasomal inhibitors for anticancer therapy

    PubMed Central

    Obrist, Florine; Manic, Gwenola; Kroemer, Guido; Vitale, Ilio; Galluzzi, Lorenzo

    2015-01-01

    The so-called “ubiquitin-proteasome system” (UPS) is a multicomponent molecular apparatus that catalyzes the covalent attachment of several copies of the small protein ubiquitin to other proteins that are generally (but not always) destined to proteasomal degradation. This enzymatic cascade is crucial for the maintenance of intracellular protein homeostasis (both in physiological conditions and in the course of adaptive stress responses), and regulates a wide array of signaling pathways. In line with this notion, defects in the UPS have been associated with aging as well as with several pathological conditions including cardiac, neurodegenerative, and neoplastic disorders. As transformed cells often experience a constant state of stress (as a result of the hyperactivation of oncogenic signaling pathways and/or adverse microenvironmental conditions), their survival and proliferation are highly dependent on the integrity of the UPS. This rationale has driven an intense wave of preclinical and clinical investigation culminating in 2003 with the approval of the proteasomal inhibitor bortezomib by the US Food and Drug Administration for use in multiple myeloma patients. Another proteasomal inhibitor, carfilzomib, is now licensed by international regulatory agencies for use in multiple myeloma patients, and the approved indications for bortezomib have been extended to mantle cell lymphoma. This said, the clinical activity of bortezomib and carfilzomib is often limited by off-target effects, innate/acquired resistance, and the absence of validated predictive biomarkers. Moreover, the antineoplastic activity of proteasome inhibitors against solid tumors is poor. In this Trial Watch we discuss the contribution of the UPS to oncogenesis and tumor progression and summarize the design and/or results of recent clinical studies evaluating the therapeutic profile of proteasome inhibitors in cancer patients. PMID:27308423

  15. Trial Watch: Proteasomal inhibitors for anticancer therapy.

    PubMed

    Obrist, Florine; Manic, Gwenola; Kroemer, Guido; Vitale, Ilio; Galluzzi, Lorenzo

    2015-01-01

    The so-called "ubiquitin-proteasome system" (UPS) is a multicomponent molecular apparatus that catalyzes the covalent attachment of several copies of the small protein ubiquitin to other proteins that are generally (but not always) destined to proteasomal degradation. This enzymatic cascade is crucial for the maintenance of intracellular protein homeostasis (both in physiological conditions and in the course of adaptive stress responses), and regulates a wide array of signaling pathways. In line with this notion, defects in the UPS have been associated with aging as well as with several pathological conditions including cardiac, neurodegenerative, and neoplastic disorders. As transformed cells often experience a constant state of stress (as a result of the hyperactivation of oncogenic signaling pathways and/or adverse microenvironmental conditions), their survival and proliferation are highly dependent on the integrity of the UPS. This rationale has driven an intense wave of preclinical and clinical investigation culminating in 2003 with the approval of the proteasomal inhibitor bortezomib by the US Food and Drug Administration for use in multiple myeloma patients. Another proteasomal inhibitor, carfilzomib, is now licensed by international regulatory agencies for use in multiple myeloma patients, and the approved indications for bortezomib have been extended to mantle cell lymphoma. This said, the clinical activity of bortezomib and carfilzomib is often limited by off-target effects, innate/acquired resistance, and the absence of validated predictive biomarkers. Moreover, the antineoplastic activity of proteasome inhibitors against solid tumors is poor. In this Trial Watch we discuss the contribution of the UPS to oncogenesis and tumor progression and summarize the design and/or results of recent clinical studies evaluating the therapeutic profile of proteasome inhibitors in cancer patients. PMID:27308423

  16. The Human CDK8 Subcomplex Is a Histone Kinase That Requires Med12 for Activity and Can Function Independently of Mediator▿

    PubMed Central

    Knuesel, Matthew T.; Meyer, Krista D.; Donner, Aaron J.; Espinosa, Joaquin M.; Taatjes, Dylan J.

    2009-01-01

    The four proteins CDK8, cyclin C, Med12, and Med13 can associate with Mediator and are presumed to form a stable “CDK8 subcomplex” in cells. We describe here the isolation and enzymatic activity of the 600-kDa CDK8 subcomplex purified directly from human cells and also via recombinant expression in insect cells. Biochemical analysis of the recombinant CDK8 subcomplex identifies predicted (TFIIH and RNA polymerase II C-terminal domain [Pol II CTD]) and novel (histone H3, Med13, and CDK8 itself) substrates for the CDK8 kinase. Notably, these novel substrates appear to be metazoan-specific. Such diverse targets imply strict regulation of CDK8 kinase activity. Along these lines, we observe that Mediator itself enables CDK8 kinase activity on chromatin, and we identify Med12—but not Med13—to be essential for activating the CDK8 kinase. Moreover, mass spectrometry analysis of the endogenous CDK8 subcomplex reveals several associated factors, including GCN1L1 and the TRiC chaperonin, that may help control its biological function. In support of this, electron microscopy analysis suggests TRiC sequesters the CDK8 subcomplex and kinase assays reveal the endogenous CDK8 subcomplex—unlike the recombinant submodule—is unable to phosphorylate the Pol II CTD. PMID:19047373

  17. Oxathiazolones Selectively Inhibit the Human Immunoproteasome over the Constitutive Proteasome

    PubMed Central

    2014-01-01

    Selective inhibitors for the human immunoproteasome LMP7 (β5i) subunit over the constitutive proteasome hold promise for the treatment of autoimmune and inflammatory diseases and hematologic malignancies. Here we report that oxathiazolones inhibit the immunoproteasome β5i with up to 4700-fold selectivity over the constitutive proteasome, are cell permeable, and inhibit proteasomes inside cells. PMID:24900849

  18. Intracellular Dynamics of the Ubiquitin-Proteasome-System.

    PubMed

    Chowdhury, Maisha; Enenkel, Cordula

    2015-01-01

    The ubiquitin-proteasome system is the major degradation pathway for short-lived proteins in eukaryotic cells. Targets of the ubiquitin-proteasome-system are proteins regulating a broad range of cellular processes including cell cycle progression, gene expression, the quality control of proteostasis and the response to geno- and proteotoxic stress. Prior to degradation, the proteasomal substrate is marked with a poly-ubiquitin chain. The key protease of the ubiquitin system is the proteasome. In dividing cells, proteasomes exist as holo-enzymes composed of regulatory and core particles. The regulatory complex confers ubiquitin-recognition and ATP dependence on proteasomal protein degradation. The catalytic sites are located in the proteasome core particle. Proteasome holo-enzymes are predominantly nuclear suggesting a major requirement for proteasomal proteolysis in the nucleus. In cell cycle arrested mammalian or quiescent yeast cells, proteasomes deplete from the nucleus and accumulate in granules at the nuclear envelope (NE) / endoplasmic reticulum (ER) membranes. In prolonged quiescence, proteasome granules drop off the NE / ER membranes and migrate as stable organelles throughout the cytoplasm, as thoroughly investigated in yeast. When quiescence yeast cells are allowed to resume growth, proteasome granules clear and proteasomes are rapidly imported into the nucleus. Here, we summarize our knowledge about the enigmatic structure of proteasome storage granules and the trafficking of proteasomes and their substrates between the cyto- and nucleoplasm. Most of our current knowledge is based on studies in yeast. Their translation to mammalian cells promises to provide keen insight into protein degradation in non-dividing cells which comprise the majority of our body's cells. PMID:26339477

  19. A cryptobiosis-specific 19S protein complex of Artemia salina gastrulae.

    PubMed

    De Herdt, E; De Voeght, F; Clauwaert, J; Kondo, M; Slegers, H

    1981-01-15

    The postribosomal supernatant of Artemia salina cryptobiotic embryos contains a large quantity of a 19S protein complex. An amount of 3.6 mg/g of cysts is measured by immunoprecipitation with anti-(19S protein complex) antibody. The quantity of this complex decreases during further development to nauplius larvae to only 15% of the quantity present in cryptobiotic embryos. The complex was no longer detectable after 7 days of growth. The 27000-Mr protein subunit of the 19S complex is not synthesized by mRNA isolated from cryptobiotic embryos. The cryptobiosis-specific complex has Mr 573000 and 610000 as calculated from light-scattering and sedimentation-diffusion measurements respectively. The 19S homocomplex contains 20-23 27000-Mr proteins and has no function in the translation of homologous mRNA. From hydrodynamic data a hydration of 1.25 g of water/g of protein is calculated. The abundant presence of the 19S protein complex in cryptobiotic embryos and the absence of synthesis during development to nauplius larvae indicate a functional role during the cryptobiotic process in early embryogenesis. A role in maintaining the water content of the cytoplasm above a critical threshold during desiccation is suggested. PMID:7305995

  20. D1 dopamine receptor stimulation impairs striatal proteasome activity in Parkinsonism through 26S proteasome disassembly.

    PubMed

    Barroso-Chinea, Pedro; Thiolat, Marie-Laure; Bido, Simone; Martinez, Audrey; Doudnikoff, Evelyne; Baufreton, Jérôme; Bourdenx, Mathieu; Bloch, Bertrand; Bezard, Erwan; Martin-Negrier, Marie-Laure

    2015-06-01

    Among the mechanisms underlying the development of L-dopa-induced dyskinesia (LID) in Parkinson's disease, complex alterations in dopamine signaling in D1 receptor (D1R)-expressing medium spiny striatal neurons have been unraveled such as, but not limited to, dysregulation of D1R expression, lateral diffusion, intraneuronal trafficking, subcellular localization and desensitization, leading to a pathological anchorage of D1R at the plasma membrane. Such anchorage is partly due to a decreased proteasomal activity that is specific of the L-dopa-exposed dopamine-depleted striatum, results from D1R activation and feeds-back the D1R exaggerated cell surface abundance. The precise mechanisms by which L-dopa affects striatal proteasome activity remained however unknown. We here show, in a series of in vitro ex vivo and in vivo models, that such rapid modulation of striatal proteasome activity intervenes through D1R-mediated disassembly of the 26S proteasome rather than change in transcription or translation of proteasome or proteasome subunits intraneuronal relocalization. PMID:25766677

  1. Proteasome as a Molecular Target of Microcystin-LR

    PubMed Central

    Zhu, Zhu; Zhang, Li; Shi, Guoqing

    2015-01-01

    Proteasome degrades proteins in eukaryotic cells. As such, the proteasome is crucial in cell cycle and function. This study proved that microcystin-LR (MC-LR), which is a toxic by-product of algal bloom, can target cellular proteasome and selectively inhibit proteasome trypsin-like (TL) activity. MC-LR at 1 nM can inhibit up to 54% of the purified 20S proteasome TL activity and 43% of the proteasome TL activity in the liver of the cyprinid rare minnow (Gobiocypris rarus). Protein degradation was retarded in GFP-CL1-transfected PC-3 cells because MC-LR inhibited the proteasome TL activity. Docking studies indicated that MC-LR blocked the active site of the proteasome β2 subunit; thus, the proteasome TL activity was inhibited. In conclusion, MC-LR can target proteasome, selectively inhibit proteasome TL activity, and retard protein degradation. This study may be used as a reference of future research on the toxic mechanism of MC-LR. PMID:26090622

  2. The Proteasome Is a Molecular Target of Environmental Toxic Organotins

    PubMed Central

    Shi, Guoqing; Chen, Di; Zhai, Guangshu; Chen, Marina S.; Cui, Qiuzhi Cindy; Zhou, Qunfang; He, Bin; Dou, Q. Ping; Jiang, Guibin

    2009-01-01

    Background Because of the vital importance of the proteasome pathway, chemicals affecting proteasome activity could disrupt essential cellular processes. Although the toxicity of organotins to both invertebrates and vertebrates is well known, the essential cellular target of organotins has not been well identified. We hypothesize that the proteasome is a molecular target of environmental toxic organotins. Objectives Our goal was to test the above hypothesis by investigating whether organotins could inhibit the activity of purified and cellular proteasomes and, if so, the involved molecular mechanisms and downstream events. Results We found that some toxic organotins [e.g., triphenyltin (TPT)] can potently and preferentially inhibit the chymotrypsin-like activity of purified 20S proteasomes and human breast cancer cellular 26S proteasomes. Direct binding of tin atoms to cellular proteasomes is responsible for the observed irreversible inhibition. Inhibition of cellular proteasomes by TPT in several human cell lines results in the accumulation of ubiquitinated proteins and natural proteasome target proteins, accompanied by induction of cell death. Conclusions The proteasome is one of the molecular targets of environmental toxic organotins in human cells, and proteasome inhibition by organotins contributes to their cellular toxicity. PMID:19337512

  3. Proteasome Regulation of ULBP1 Transcription

    PubMed Central

    Butler, James E.; Moore, Mikel B.; Presnell, Steven R.; Chan, Huei-Wei; Chalupny, N. Jan; Lutz, Charles T.

    2009-01-01

    Killer lymphocytes recognize stress-activated NKG2D ligands on tumors. We examined NKG2D ligand expression in head and neck squamous cell carcinoma (HNSCC) cells and other cell lines. HNSCC cells typically expressed MHC class I chain-related gene A (MICA), MICB, UL16-binding protein (ULBP)2, and ULBP3, but they were uniformly negative for cell surface ULBP1 and ULBP4. We then studied how cancer treatments affected NKG2D ligand expression. NKG2D ligand expression was not changed by most cancer-relevant treatments. However, bortezomib and other proteasome inhibitor drugs with distinct mechanisms of action dramatically and specifically up-regulated HNSCC ULBP1 mRNA and cell surface protein. Proteasome inhibition also increased RNA for ULBP1 and other NKG2D ligands in nontransformed human keratinocytes. Proteasome inhibitor drugs increased ULBP1 transcription by acting at a site in the 522-bp ULBP1 promoter. Although the DNA damage response pathways mediated by ATM (ataxia-telangiectasia, mutated) and ATR (ATM and Rad3-related) signaling had been reported to up-regulate NKG2D ligand expression, we found that ULBP1 up-regulation was not inhibited by caffeine and wortmannin, inhibitors of ATM/ATR signaling. ULBP1 expression in HNSCC cells was not increased by several ATM/ATR activating treatments, including bleomycin, cisplatin, aphidicolin, and hydroxyurea. Ionizing radiation caused ATM activation in HNSCC cells, but high-level ULBP1 expression was not induced by gamma radiation or UV radiation. Thus, ATM/ATR signaling was neither necessary nor sufficient for high-level ULBP1 expression in human HNSCC cell lines and could not account for the proteasome effect. The selective induction of ULBP1 expression by proteasome inhibitor drugs, along with variable NKG2D ligand expression by human tumor cells, indicates that NKG2D ligand genes are independently regulated. PMID:19414815

  4. Dynamic recruitment of active proteasomes into polyglutamine initiated inclusion bodies.

    PubMed

    Schipper-Krom, Sabine; Juenemann, Katrin; Jansen, Anne H; Wiemhoefer, Anne; van den Nieuwendijk, Rianne; Smith, Donna L; Hink, Mark A; Bates, Gillian P; Overkleeft, Hermen; Ovaa, Huib; Reits, Eric

    2014-01-01

    Neurodegenerative disorders such as Huntington's disease are hallmarked by neuronal intracellular inclusion body formation. Whether proteasomes are irreversibly recruited into inclusion bodies in these protein misfolding disorders is a controversial subject. In addition, it has been proposed that the proteasomes may become clogged by the aggregated protein fragments, leading to impairment of the ubiquitin-proteasome system. Here, we show by fluorescence pulse-chase experiments in living cells that proteasomes are dynamically and reversibly recruited into inclusion bodies. As these recruited proteasomes remain catalytically active and accessible to substrates, our results challenge the concept of proteasome sequestration and impairment in Huntington's disease, and support the reported absence of proteasome impairment in mouse models of Huntington's disease. PMID:24291262

  5. Thermochemical studies on SrFe{sub 12}O{sub 19}(s)

    SciTech Connect

    Rakshit, S.K. . E-mail: swarupkr@magnum.barc.ernet.in; Parida, S.C.; Dash, S.; Singh, Z.; Prasad, R.; Venugopal, V.

    2005-02-15

    The citrate-nitrate gel combustion route was used to prepare SrFe{sub 12}O{sub 19}(s) powder sample and the compound was characterized by X-ray diffraction analysis. A solid-state electrochemical cell of the type: (-)Pt, O{sub 2}(g)/(CaO(s)+CaF{sub 2}(s))//CaF{sub 2}(s)//(SrFe{sub 12}O{sub 19}(s)+SrF{sub 2}(s)+Fe{sub 2}O{sub 3}(s))/O{sub 2}(g), Pt(+) was used for the measurement of emf as a function of temperature from 984 to 1151K. The standard molar Gibbs energy of formation of SrFe{sub 12}O{sub 19}(s) was calculated as a function of temperature from the emf data and is given by: {delta}{sub f}G{sub m}{sup o} (SrFe{sub 12}O{sub 19}, s, T)/kJmol{sup -1} (+/-1.3)=-5453.5+1.5267x(T/K). Standard molar heat capacity of SrFe{sub 12}O{sub 19}(s) was determined in two different temperature ranges 130-325K and 310-820K using a heat flux type differential scanning calorimeter (DSC). A heat capacity anomaly was observed at 732K, which has been attributed to the magnetic order-disorder transition from ferrimagnetic state to paramagnetic state. The standard molar enthalpy of formation, {delta}{sub f}H{sub m}{sup o} (298.15K) and the standard molar entropy, S{sub m}{sup o} (298.15K) of SrFe{sub 12}O{sub 19}(s) were calculated by second law method and the values are -5545.2kJmol{sup -1} and 633.1JK{sup -1}mol{sup -1}, respectively.

  6. The proteasome activator 11 S REG (PA28) and class I antigen presentation.

    PubMed Central

    Rechsteiner, M; Realini, C; Ustrell, V

    2000-01-01

    There are two immune responses in vertebrates: humoral immunity is mediated by circulating antibodies, whereas cytotoxic T lymphocytes (CTL) confer cellular immunity. CTL lyse infected cells upon recognition of cell-surface MHC Class I molecules complexed with foreign peptides. The displayed peptides are produced in the cytosol by degradation of host proteins or proteins from intracellular pathogens that might be present. Proteasomes are cylindrical multisubunit proteases that generate many of the peptides eventually transferred to the cell surface for immune surveillance. In mammalian proteasomes, six active sites face a central chamber. As this chamber is sealed off from the enzyme's surface, there must be mechanisms to promote entry of substrates. Two protein complexes have been found to bind the ends of the proteasome and activate it. One of the activators is the 19 S regulatory complex of the 26 S proteasome; the other activator is '11 S REG' [Dubiel, Pratt, Ferrell and Rechsteiner (1992) J. Biol. Chem. 267, 22369-22377] or 'PA28' [Ma, Slaughter and DeMartino (1992) J. Biol. Chem. 267, 10515-10523]. During the past 7 years, our understanding of the structure of REG molecules has increased significantly, but much less is known about their biological functions. There are three REG subunits, namely alpha, beta and gamma. Recombinant REGalpha forms a ring-shaped heptamer of known crystal structure. 11 S REG is a heteroheptamer of alpha and beta subunits. REGgamma is also presumably a heptameric ring, and it is found in the nuclei of the nematode work Caenorhabditis elegans and higher organisms, where it may couple proteasomes to other nuclear components. REGalpha and REGbeta, which are abundant in vertebrate immune tissues, are located mostly in the cytoplasm. Synthesis of REG alpha and beta subunits is induced by interferon-gamma, and this has led to the prevalent hypothesis that REG alpha/beta hetero-oligomers play an important role in Class I antigen

  7. Bacterial Proteasome Activator Bpa (Rv3780) Is a Novel Ring-Shaped Interactor of the Mycobacterial Proteasome

    PubMed Central

    Delley, Cyrille L.; Laederach, Juerg; Ziemski, Michal; Bolten, Marcel; Boehringer, Daniel; Weber-Ban, Eilika

    2014-01-01

    The occurrence of the proteasome in bacteria is limited to the phylum of actinobacteria, where it is maintained in parallel to the usual bacterial compartmentalizing proteases. The role it plays in these organisms is still not fully understood, but in the human pathogen Mycobacterium tuberculosis (Mtb) the proteasome supports persistence in the host. In complex with the ring-shaped ATPase Mpa (called ARC in other actinobacteria), the proteasome can degrade proteins that have been post-translationally modified with the prokaryotic ubiquitin-like protein Pup. Unlike for the eukaryotic proteasome core particle, no other bacterial proteasome interactors have been identified to date. Here we describe and characterize a novel bacterial proteasome activator of Mycobacterium tuberculosis we termed Bpa (Rv3780), using a combination of biochemical and biophysical methods. Bpa features a canonical C-terminal proteasome interaction motif referred to as the HbYX motif, and its orthologs are only found in those actinobacteria encoding the proteasomal subunits. Bpa can inhibit degradation of Pup-tagged substrates in vitro by competing with Mpa for association with the proteasome. Using negative-stain electron microscopy, we show that Bpa forms a ring-shaped homooligomer that can bind coaxially to the face of the proteasome cylinder. Interestingly, Bpa can stimulate the proteasomal degradation of the model substrate β-casein, which suggests it could play a role in the removal of non-native or damaged proteins. PMID:25469515

  8. Structure of Rpn10 and Its Interactions with Polyubiquitin Chains and the Proteasome Subunit Rpn12*

    PubMed Central

    Riedinger, Christiane; Boehringer, Jonas; Trempe, Jean-Francois; Lowe, Edward D.; Brown, Nicholas R.; Gehring, Kalle; Noble, Martin E. M.; Gordon, Colin; Endicott, Jane A.

    2010-01-01

    Schizosaccharomyces pombe Rpn10 (SpRpn10) is a proteasomal ubiquitin (Ub) receptor located within the 19 S regulatory particle where it binds to subunits of both the base and lid subparticles. We have solved the structure of full-length SpRpn10 by determining the crystal structure of the von Willebrand factor type A domain and characterizing the full-length protein by NMR. We demonstrate that the single Ub-interacting motif (UIM) of SpRpn10 forms a 1:1 complex with Lys48-linked diUb, which it binds selectively over monoUb and Lys63-linked diUb. We further show that the SpRpn10 UIM binds to SpRpn12, a subunit of the lid subparticle, with an affinity comparable with Lys48-linked diUb. This is the first observation of a UIM binding other than a Ub fold and suggests that SpRpn12 could modulate the activity of SpRpn10 as a proteasomal Ub receptor. PMID:20739285

  9. Identification of substrates of the Mycobacterium tuberculosis proteasome

    PubMed Central

    Pearce, Michael J; Arora, Pooja; Festa, Richard A; Butler-Wu, Susan M; Gokhale, Rajesh S; Darwin, K Heran

    2006-01-01

    The putative proteasome-associated proteins Mpa (Mycobaterium proteasomal ATPase) and PafA (proteasome accessory factor A) of the human pathogen Mycobacterium tuberculosis (Mtb) are essential for virulence and resistance to nitric oxide. However, a direct link between the proteasome protease and Mpa or PafA has never been demonstrated. Furthermore, protein degradation by bacterial proteasomes in vitro has not been accomplished, possibly due to the failure to find natural degradation substrates or other necessary proteasome co-factors. In this work, we identify the first bacterial proteasome substrates, malonyl Co-A acyl carrier protein transacylase and ketopantoate hydroxymethyltransferase, enzymes that are required for the biosynthesis of fatty acids and polyketides that are essential for the pathogenesis of Mtb. Maintenance of the physiological levels of these enzymes required Mpa and PafA in addition to proteasome protease activity. Mpa levels were also regulated in a proteasome-dependent manner. Finally, we found that a conserved tyrosine of Mpa was essential for function. Thus, these results suggest that Mpa, PafA, and the Mtb proteasome degrade bacterial proteins that are important for virulence in mice. PMID:17082771

  10. Characterization of the 26S proteasome network in Plasmodium falciparum

    PubMed Central

    Wang, Lihui; Delahunty, Claire; Fritz-Wolf, Karin; Rahlfs, Stefan; Helena Prieto, Judith; Yates, John R.; Becker, Katja

    2015-01-01

    In eukaryotic cells, the ubiquitin-proteasome system as a key regulator of protein quality control is an excellent drug target. We therefore aimed to analyze the 26S proteasome complex in the malaria parasite Plasmodium falciparum, which still threatens almost half of the world’s population. First, we established an affinity purification protocol allowing for the isolation of functional 26S proteasome complexes from the parasite. Subunit composition of the proteasome and component stoichiometry were studied and physiologic interacting partners were identified via in situ protein crosslinking. Furthermore, intrinsic ubiquitin receptors of the plasmodial proteasome were determined and their roles in proteasomal substrate recognition were analyzed. Notably, PfUSP14 was characterized as a proteasome-associated deubiquitinase resulting in the concept that targeting proteasomal deubiquitinating activity in P. falciparum may represent a promising antimalarial strategy. The data provide insights into a profound network orchestrated by the plasmodial proteasome and identified novel drug target candidates in the ubiquitin-proteasome system. PMID:26639022

  11. Pupylation-dependent and -independent proteasomal degradation in mycobacteria.

    PubMed

    Imkamp, Frank; Ziemski, Michal; Weber-Ban, Eilika

    2015-08-01

    Bacteria make use of compartmentalizing protease complexes, similar in architecture but not homologous to the eukaryotic proteasome, for the selective and processive removal of proteins. Mycobacteria as members of the actinobacteria harbor proteasomes in addition to the canonical bacterial degradation complexes. Mycobacterial proteasomal degradation, although not essential during normal growth, becomes critical for survival under particular environmental conditions, like, for example, during persistence of the pathogenic Mycobacterium tuberculosis in host macrophages or of environmental mycobacteria under starvation. Recruitment of protein substrates for proteasomal degradation is usually mediated by pupylation, the post-translational modification of lysine side chains with the prokaryotic ubiquitin-like protein Pup. This substrate recruitment strategy is functionally reminiscent of ubiquitination in eukaryotes, but is the result of convergent evolution, relying on chemically and structurally distinct enzymes. Pupylated substrates are recognized by the ATP-dependent proteasomal regulator Mpa that associates with the 20S proteasome core. A pupylation-independent proteasome degradation pathway has recently been discovered that is mediated by the ATP-independent bacterial proteasome activator Bpa (also referred to as PafE), and that appears to play a role under stress conditions. In this review, mechanistic principles of bacterial proteasomal degradation are discussed and compared with functionally related elements of the eukaryotic ubiquitin-proteasome system. Special attention is given to an understanding on the molecular level based on structural and biochemical analysis. Wherever available, discussion of in vivo studies is included to highlight the biological significance of this unusual bacterial degradation pathway. PMID:26352358

  12. Subpopulations of proteasomes in rat liver nuclei, microsomes and cytosol.

    PubMed Central

    Palmer, A; Rivett, A J; Thomson, S; Hendil, K B; Butcher, G W; Fuertes, G; Knecht, E

    1996-01-01

    Mammalian proteasomes are composed of 14-17 different types of subunits, some of which, including major-histocompatibility-complex-encoded subunits LMP2 and LMP7, are non-essential and present in variable amounts. We have investigated the distribution of total proteasomes and some individual subunits in rat liver by quantitative immunoblot analysis of purified subcellular fractions (nuclei, mitochondria, microsomes and cytosol). Proteasomes were mainly found in the cytosol but were also present in the purified nuclear and microsomal fractions. In the nuclei, proteasomes were soluble or loosely attached to the chromatin, since they could be easily extracted by treatment with nucleases or high concentrations of salt. In the microsomes, proteasomes were on the outside of the membranes. Further subfractionation of the microsomes showed that the proteasomes in this fraction were associated with the smooth endoplasmic reticulum and with the cis-Golgi but were practically absent from the rough endoplasmic reticulum. Using monospecific antibodies for some proteasomal subunits (C8, C9, LMP2 and Z), the composition of proteasomes in nuclei, microsomes and cytosol was investigated. Although there appear not to be differences in proteasome composition in the alpha subunits (C8 and C9) in the different locations, the relative amounts of some beta subunits varied. Subunit Z was enriched in nuclear proteasomes but low in microsome-associated proteasomes, whereas LMP2, which was relatively low in nuclei, showed a small enrichment in the microsomes. These differences in subunit composition of proteasomes probably reflect differences in the function of proteasomes in distinct cell compartments. PMID:8687380

  13. Cupriphilic compounds to aid in proteasome inhibition.

    PubMed

    Mukherjee, Sreya; Sparks, Robert; Metcalf, Rainer; Brooks, Wesley; Daniel, Kenyon; Guida, Wayne C

    2016-08-01

    It has been found that tumor cells and tissues, compared to normal cells, have higher levels of copper and possibly other metal ions. This presents a potential vulnerability of tumor cells that can serve as a physiological difference between cancer cells and normal cells and allows design of compounds that selectively target tumor cells while sparing normal cells. Recently we have identified compounds that have potential to inhibit the proteasome in tumor cells and induce cell death by mobilizing endogenous tumor copper resulting in in cellulo activation of the compound. These compounds hence act as pro-drugs, becoming active drugs in tumor cells with high copper content but remaining essentially inactive in normal cells, thereby greatly reducing adverse effects in patients. Such use would be of significant benefit in early detection and treatment of cancers, in particular, aggressive cancers such as pancreatic cancer which is usually not detected until it has reached an advanced stage. Six compounds were identified following virtual screening of the NCI Diversity Set with our proteasome computer model followed by confirmation with a biochemical assay that showed significant inhibition of the proteasome by the compounds in the presence of copper ions. In a dose response assay, NSC 37408 (6,7-dihydroxy-1-benzofuran-3-one), our best compound, exhibited an IC50 of 3μM in the presence of 100nM copper. PMID:27311892

  14. Immunoaffinity purification of the functional 20S proteasome from human cells via transient overexpression of specific proteasome subunits.

    PubMed

    Livinskaya, Veronika A; Barlev, Nickolai A; Nikiforov, Andrey A

    2014-05-01

    The proteasome is a multi-subunit proteolytic complex that plays a central role in protein degradation in all eukaryotic cells. It regulates many vital cellular processes therefore its dysfunction can lead to various pathologies including cancer and neurodegeneration. Isolation of enzymatically active proteasomes is a key step to the successful study of the proteasome regulation and functions. Here we describe a simple and efficient protocol for immunoaffinity purification of the functional 20S proteasomes from human HEK 293T cells after transient overexpression of specific proteasome subunits tagged with 3xFLAG. To construct 3xFLAG-fusion proteins, DNA sequences encoding the 20S proteasome subunits PSMB5, PSMA5, and PSMA3 were cloned into mammalian expression vector pIRES-hrGFP-1a. The corresponding recombinant proteins PSMB5-3xFLAG, PSMA5-3xFLAG, or PSMA3-3xFLAG were transiently overexpressed in human HEK 293T cells and were shown to be partially incorporated into the intact proteasome complexes. 20S proteasomes were immunoprecipitated from HEK 293T cell extracts under mild conditions using antibodies against FLAG peptide. Isolation of highly purified 20S proteasomes were confirmed by SDS-PAGE and Western blotting using antibodies against different proteasome subunits. Affinity purified 20S proteasomes were shown to possess chymotrypsin- and trypsin-like peptidase activities confirming their functionality. This simple single-step affinity method of the 20S proteasome purification can be instrumental to subsequent functional studies of proteasomes in human cells. PMID:24583181

  15. Novel binding motif and new flexibility revealed by structural analyses of a pyruvate dehydrogenase-dihydrolipoyl acetyltransferase subcomplex from the Escherichia coli pyruvate dehydrogenase multienzyme complex.

    PubMed

    Arjunan, Palaniappa; Wang, Junjie; Nemeria, Natalia S; Reynolds, Shelley; Brown, Ian; Chandrasekhar, Krishnamoorthy; Calero, Guillermo; Jordan, Frank; Furey, William

    2014-10-24

    The Escherichia coli pyruvate dehydrogenase multienzyme complex contains multiple copies of three enzymatic components, E1p, E2p, and E3, that sequentially carry out distinct steps in the overall reaction converting pyruvate to acetyl-CoA. Efficient functioning requires the enzymatic components to assemble into a large complex, the integrity of which is maintained by tethering of the displaced, peripheral E1p and E3 components to the E2p core through non-covalent binding. We here report the crystal structure of a subcomplex between E1p and an E2p didomain containing a hybrid lipoyl domain along with the peripheral subunit-binding domain responsible for tethering to the core. In the structure, a region at the N terminus of each subunit in the E1p homodimer previously unseen due to crystallographic disorder was observed, revealing a new folding motif involved in E1p-E2p didomain interactions, and an additional, unexpected, flexibility was discovered in the E1p-E2p didomain subcomplex, both of which probably have consequences in the overall multienzyme complex assembly. This represents the first structure of an E1p-E2p didomain subcomplex involving a homodimeric E1p, and the results may be applicable to a large range of complexes with homodimeric E1 components. Results of HD exchange mass spectrometric experiments using the intact, wild type 3-lipoyl E2p and E1p are consistent with the crystallographic data obtained from the E1p-E2p didomain subcomplex as well as with other biochemical and NMR data reported from our groups, confirming that our findings are applicable to the entire E1p-E2p assembly. PMID:25210042

  16. Substrate Ubiquitination Controls the Unfolding Ability of the Proteasome.

    PubMed

    Reichard, Eden L; Chirico, Giavanna G; Dewey, William J; Nassif, Nicholas D; Bard, Katelyn E; Millas, Nickolas E; Kraut, Daniel A

    2016-08-26

    In eukaryotic cells, proteins are targeted to the proteasome for degradation by polyubiquitination. These proteins bind to ubiquitin receptors, are engaged and unfolded by proteasomal ATPases, and are processively degraded. The factors determining to what extent the proteasome can successfully unfold and degrade a substrate are still poorly understood. We find that the architecture of polyubiquitin chains attached to a substrate affects the ability of the proteasome to unfold and degrade the substrate, with K48- or mixed-linkage chains leading to greater processivity than K63-linked chains. Ubiquitin-independent targeting of substrates to the proteasome gave substantially lower processivity of degradation than ubiquitin-dependent targeting. Thus, even though ubiquitin chains are removed early in degradation, during substrate engagement, remarkably they dramatically affect the later unfolding of a protein domain. Our work supports a model in which a polyubiquitin chain associated with a substrate switches the proteasome into an activated state that persists throughout the degradation process. PMID:27405762

  17. The recognition of ubiquitinated proteins by the proteasome.

    PubMed

    Grice, Guinevere L; Nathan, James A

    2016-09-01

    The ability of ubiquitin to form up to eight different polyubiquitin chain linkages generates complexity within the ubiquitin proteasome system, and accounts for the diverse roles of ubiquitination within the cell. Understanding how each type of ubiquitin linkage is correctly interpreted by ubiquitin binding proteins provides important insights into the link between chain recognition and cellular fate. A major function of ubiquitination is to signal degradation of intracellular proteins by the 26S proteasome. Lysine-48 (K48) linked polyubiquitin chains are well established as the canonical signal for proteasomal degradation, but recent studies show a role for other ubiquitin linked chains in facilitating degradation by the 26S proteasome. Here, we review how different types of polyubiquitin linkage bind to ubiquitin receptors on the 26S proteasome, how they signal degradation and discuss the implications of ubiquitin chain linkage in regulating protein breakdown by the proteasome. PMID:27137187

  18. Insights into the Composition and Assembly of the Membrane Arm of Plant Complex I through Analysis of Subcomplexes in Arabidopsis Mutant Lines*

    PubMed Central

    Meyer, Etienne H.; Solheim, Cory; Tanz, Sandra K.; Bonnard, Géraldine; Millar, A. Harvey

    2011-01-01

    NADH-ubiquinone oxidoreductase (Complex I, EC 1.6.5.3) is the largest complex of the mitochondrial respiratory chain. In eukaryotes, it is composed of more than 40 subunits that are encoded by both the nuclear and mitochondrial genomes. Plant Complex I differs from the enzyme described in other eukaryotes, most notably due to the large number of plant-specific subunits in the membrane arm of the complex. The elucidation of the assembly pathway of Complex I has been a long-standing research aim in cellular biochemistry. We report the study of Arabidopsis mutants in Complex I subunits using a combination of Blue-Native PAGE and immunodetection to identify stable subcomplexes containing Complex I components, along with mass spectrometry analysis of Complex I components in membrane fractions and two-dimensional diagonal Tricine SDS-PAGE to study the composition of the largest subcomplex. Four subcomplexes of the membrane arm of Complex I with apparent molecular masses of 200, 400, 450, and 650 kDa were observed. We propose a working model for the assembly of the membrane arm of Complex I in plants and assign putative roles during the assembly process for two of the subunits studied. PMID:21606486

  19. Overall Architecture of the Intraflagellar Transport (IFT)-B Complex Containing Cluap1/IFT38 as an Essential Component of the IFT-B Peripheral Subcomplex.

    PubMed

    Katoh, Yohei; Terada, Masaya; Nishijima, Yuya; Takei, Ryota; Nozaki, Shohei; Hamada, Hiroshi; Nakayama, Kazuhisa

    2016-05-20

    Intraflagellar transport (IFT) is essential for assembly and maintenance of cilia and flagella as well as ciliary motility and signaling. IFT is mediated by multisubunit complexes, including IFT-A, IFT-B, and the BBSome, in concert with kinesin and dynein motors. Under high salt conditions, purified IFT-B complex dissociates into a core subcomplex composed of at least nine subunits and at least five peripherally associated proteins. Using the visible immunoprecipitation assay, which we recently developed as a convenient protein-protein interaction assay, we determined the overall architecture of the IFT-B complex, which can be divided into core and peripheral subcomplexes composed of 10 and 6 subunits, respectively. In particular, we identified TTC26/IFT56 and Cluap1/IFT38, neither of which was included with certainty in previous models of the IFT-B complex, as integral components of the core and peripheral subcomplexes, respectively. Consistent with this, a ciliogenesis defect of Cluap1-deficient mouse embryonic fibroblasts was rescued by exogenous expression of wild-type Cluap1 but not by mutant Cluap1 lacking the binding ability to other IFT-B components. The detailed interaction map as well as comparison of subcellular localization of IFT-B components between wild-type and Cluap1-deficient cells provides insights into the functional relevance of the architecture of the IFT-B complex. PMID:26980730

  20. Could inhibition of the proteasome cause mad cow disease?

    PubMed

    Hooper, Nigel M

    2003-04-01

    The proteasome is the cellular machinery responsible for the degradation of normal and misfolded proteins. Inhibitors of the proteasome are being evaluated as therapeutic agents and recent work suggests that such inhibition might promote the neurotoxic properties of the prion protein (the causative agent of mad cow disease) and its conformational conversion to the infectious form, thus raising the question as to whether proteasome inhibitors might facilitate the development of prion diseases. PMID:12679058

  1. 26S Proteasome: Hunter and Prey in Auxin Signaling.

    PubMed

    Kong, Xiangpei; Zhang, Liangran; Ding, Zhaojun

    2016-07-01

    Auxin binds to TRANSPORT INHIBITOR RESPONSE 1 and AUXIN SIGNALLING F-BOX proteins (TIR1/AFBs) and promotes the degradation of Aux/IAA transcriptional repressors. The proteasome regulator PROTEASOME REGULATOR1 (PTRE1) has now been shown to be required for auxin-mediated repression of 26S proteasome activity, thus providing new insights into the fine-tuning of the homoeostasis of Aux/IAA proteins and auxin signaling. PMID:27246455

  2. Regulated protein turnover: snapshots of the proteasome in action

    PubMed Central

    Bhattacharyya, Sucharita; Yu, Houqing; Mim, Carsten; Matouschek, Andreas

    2015-01-01

    The ubiquitin-proteasome system (UPS) is the main ATP-dependent protein degradation pathway in the cytosol and nucleus of eukaryotic cells. At its centre is the 26S proteasome, which degrades regulatory proteins and mis-folded or damaged proteins. In a major breakthrough, several groups have determined high-resolution structures of the entire 26S proteasome particle in different nucleotide conditions and with and without substrate using cryo-electron microscopy combined with other techniques. These structures bring some surprising insights into the functional mechanism of the proteasome and will provide invaluable guidance for genetic and biochemical studies of this key regulatory system. PMID:24452470

  3. Proteasomes and protein conjugation across domains of life

    PubMed Central

    Maupin-Furlow, Julie

    2012-01-01

    Like other energy-dependent proteases, proteasomes, which are found across the three domains of life, are self-compartmentalized and important in the early steps of proteolysis. Proteasomes degrade improperly synthesized, damaged or misfolded proteins and hydrolyse regulatory proteins that must be specifically removed or cleaved for cell signalling. In eukaryotes, proteins are typically targeted for proteasome-mediated destruction through polyubiquitylation, although ubiquitin-independent pathways also exist. Interestingly, actinobacteria and archaea also covalently attach small proteins (prokaryotic ubiquitin-like protein (Pup) and small archaeal modifier proteins (Samps), respectively) to certain proteins, and this may serve to target the modified proteins for degradation by proteasomes. PMID:22183254

  4. The proteasome and the degradation of oxidized proteins: Part III—Redox regulation of the proteasomal system

    PubMed Central

    Höhn, Tobias Jung Annika; Grune, Tilman

    2014-01-01

    Here, we review shortly the current knowledge on the regulation of the proteasomal system during and after oxidative stress. After addressing the components of the proteasomal system and the degradation of oxidatively damaged proteins in part I and II of this series, we address here which changes in activity undergo the proteasome and the ubiquitin-proteasomal system itself under oxidative conditions. While several components of the proteasomal system undergo direct oxidative modification, a number of redox-regulated events are modulating the proteasomal activity in a way it can address the major tasks in an oxidative stress situation: the removal of oxidized proteins and the adaptation of the cellular metabolism to the stress situation. PMID:24563857

  5. A subcomplex of human mitochondrial RNase P is a bifunctional methyltransferase—extensive moonlighting in mitochondrial tRNA biogenesis

    PubMed Central

    Vilardo, Elisa; Nachbagauer, Christa; Buzet, Aurélie; Taschner, Andreas; Holzmann, Johann; Rossmanith, Walter

    2012-01-01

    Transfer RNAs (tRNAs) reach their mature functional form through several steps of processing and modification. Some nucleotide modifications affect the proper folding of tRNAs, and they are crucial in case of the non-canonically structured animal mitochondrial tRNAs, as exemplified by the apparently ubiquitous methylation of purines at position 9. Here, we show that a subcomplex of human mitochondrial RNase P, the endonuclease removing tRNA 5′ extensions, is the methyltransferase responsible for m1G9 and m1A9 formation. The ability of the mitochondrial tRNA:m1R9 methyltransferase to modify both purines is uncommon among nucleic acid modification enzymes. In contrast to all the related methyltransferases, the human mitochondrial enzyme, moreover, requires a short-chain dehydrogenase as a partner protein. Human mitochondrial RNase P, thus, constitutes a multifunctional complex, whose subunits moonlight in cascade: a fatty and amino acid degradation enzyme in tRNA methylation and the methyltransferase, in turn, in tRNA 5′ end processing. PMID:23042678

  6. Relationship between the proteasomal system and autophagy

    PubMed Central

    Lilienbaum, Alain

    2013-01-01

    Two major pathways degrade most cellular proteins in eukaryotic cells: the ubiquitin–proteasome system (UPS), which usually degrades the majority of proteins, and autophagy, primarily responsible for the degradation of most long-lived or aggregated proteins and cellular organelles. Disruption of these processes can contribute to pathology of a variety of diseases. Further, both pathways are critical for the maintenance of several aspects of cellular homeostasis, but, until recently, were thought to be largely distinct. Recent advances in this field, however, now strongly suggest that their activities are carefully orchestrated through several interfacing elements that are presented and discussed in this review. PMID:23638318

  7. Ubiquitin proteasome system research in gastrointestinal cancer

    PubMed Central

    Zhong, Jia-Ling; Huang, Chang-Zhi

    2016-01-01

    The ubiquitin proteasome system (UPS) is important for the degradation of proteins in eukaryotic cells. It is involved in nearly every cellular process and plays an important role in maintaining body homeostasis. An increasing body of evidence has linked alterations in the UPS to gastrointestinal malignancies, including esophageal, gastric and colorectal cancers. Here, we summarize the current literature detailing the involvement of the UPS in gastrointestinal cancer, highlighting its role in tumor occurrence and development, providing information for therapeutic targets research and anti-gastrointestinal tumor drug design. PMID:26909134

  8. Impaired proteasome function in sporadic amyotrophic lateral sclerosis.

    PubMed

    Kabashi, Edor; Agar, Jeffrey N; Strong, Michael J; Durham, Heather D

    2012-06-01

    Abstract The ubiquitin-proteasome system, important for maintaining protein quality control, is compromised in experimental models of familial ALS. The objective of this study was to determine if proteasome function is impaired in sporadic ALS. Proteasomal activities and subunit composition were evaluated in homogenates of spinal cord samples obtained at autopsy from sporadic ALS and non-neurological control cases, compared to cerebellum as a clinically spared tissue. The level of 20S α structural proteasome subunits was assessed in motor neurons by immunohistochemistry. Catalysis of peptide substrates of the three major proteasomal activities was substantially reduced in ALS thoracic spinal cord, but not in cerebellum, accompanied by alterations in the constitutive proteasome machinery. Chymotrypsin-like activity was decreased to 60% and 65% of control in ventral and dorsal spinal cord, respectively, concomitant with reduction in the β5 subunit with this catalytic activity. Caspase- and trypsin-like activities were reduced to a similar extent (46% - 68% of control). Proteasome levels, although generally maintained, appeared reduced specifically in motor neurons by immunolabelling. In conclusion, there are commonalities of findings in sporadic ALS patients and presymptomatic SOD1-G93A transgenic mice and these implicate inadequate proteasome function in the pathogenesis of both familial and sporadic ALS. PMID:22632443

  9. Activity and regulation of the centrosome-associated proteasome.

    PubMed

    Fabunmi, R P; Wigley, W C; Thomas, P J; DeMartino, G N

    2000-01-01

    Regulated proteolysis is important for maintaining appropriate cellular levels of many proteins. The bulk of intracellular protein degradation is catalyzed by the proteasome. Recently, the centrosome was identified as a novel site for concentration of the proteasome and associated regulatory proteins (Wigley, W. C., Fabunmi, R. P., Lee, M. G., Marino, C. R., Muallem, S., DeMartino, G. N., and Thomas, P. J. (1999) J. Cell Biol. 145, 481-490). Here we provide evidence that centrosomes contain the active 26 S proteasome that degrades ubiquitinated-protein and proteasome-specific peptide substrates. Moreover, the centrosomes contain an ubiquitin isopeptidase activity. The proteolytic activity is ATP-dependent and is inhibited by proteasome inhibitors. Notably, treatment of cells with inhibitors of proteasome activity promotes redistribution of the proteasome and associated regulatory proteins to the centrosome independent of an intact microtubule system. These data provide biochemical evidence for active proteasomal complexes at the centrosome, highlighting a novel function for this organizing structure. PMID:10617632

  10. Cytosolic Hsp60 Can Modulate Proteasome Activity in Yeast*

    PubMed Central

    Kalderon, Bella; Kogan, Gleb; Bubis, Ettel; Pines, Ophry

    2015-01-01

    Hsp60, an essential oligomeric molecular mitochondrial chaperone, has been subject to rigorous basic and clinical research. With yeast as a model system, we provide evidence for the ability of cytosolic yHsp60 to inhibit the yeast proteasome. (i) Following biological turnover of murine Bax (a proteasome substrate), we show that co-expression of cytosolic yHsp60 stabilizes Bax, enhances its association with mitochondria, and enhances its killing capacity. (ii) Expression of yHsp60 in the yeast cytosol (yHsp60c) inhibits degradation of a cytosolic protein ΔMTS-Aco1 tagged with the degron SL17 (a ubiquitin-proteasome substrate). (iii) Conditions under which Hsp60 accumulates in the cytosol (elevated Hsp60c or growth at 37 °C) correlate with reduced 20 S peptidase activity in proteasomes purified from cell extracts. (iv) Elevated yHsp60 in the cytosol correlate with accumulation of polyubiquitinated proteins. (v) According to 20 S proteasome pulldown experiments, Hsp60 is physically associated with proteasomes in extracts of cells expressing Hsp60c or grown at 37 °C. Even mutant Hsp60 proteins, lacking chaperone activity, were still capable of proteasome inhibition. The results support the hypothesis that localization of Hsp60 to the cytosol may modulate proteasome activity according to cell need. PMID:25525272

  11. Ubiquitin-proteasome pathway and cellular responses to oxidative stress

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The ubiquitin-proteasome pathway (UPP) is the primary cytosolic proteolytic machinery for the selective degradation of various forms of damaged proteins. Thus, the UPP is an important protein quality control mechanism. In the canonical UPP, both ubiquitin and the 26S proteasome are involved. Subs...

  12. Identification of Novel Proteasome Inhibitors from an Enaminone Library.

    PubMed

    Elliott, Megan L; Thomas, Kevin; Kennedy, Steven; Koduri, Naga D; Hussaini, R Syed; Sheaff, Robert J

    2015-09-01

    A library of structurally distinct enaminones was synthesized using sonication or Ru(II) catalysis to couple primary, secondary, and tertiary thioamides with α-halocarbonyls or α-diazocarbonyls. Screening the library for proteasome inhibition using a luciferase-based assay identified seven structurally diverse compounds. Two of these molecules targeted luciferase, while the remaining five exhibited varying potency and specificity for the trypsin-like, chymotrypsin-like, or caspase-like protease activities of the proteasome. Physiological relevance was confirmed by showing these molecules inhibited proteasomal degradation of the full-length protein substrate p21cip1 expressed in tissue culture cells. A cell viability analysis revealed that the proteasome inhibitors differentially affected cell survival. Results indicate a subset of enaminones and precursor molecules identified in this study are good candidates for further development into novel proteasome inhibitors with potential therapeutic value. PMID:25494709

  13. Proteasome modulators: essential chemical genetic tools for understanding human diseases.

    PubMed

    Wehenkel, Marie; Hong, Jin Tae; Kim, Kyung Bo

    2008-04-01

    Primarily used for medicinal purposes in the past, biologically active small molecules have been increasingly employed to explore complex biological processes in the era of "chemical genetics". Since the contributions of this small molecule approach to biology have been extensive, we limit the focus of our review to the use of small-molecule modulators in the exciting field of proteasomal biology, one that has benefited significantly from a chemical genetics approach. Specifically, as the contributions of general inhibitors of proteasomal activity to the fields of cell biology and clinical oncology have been extensively discussed in several excellent reviews, we instead outline recent progress towards the development of novel, specific classes of proteasome modulators for studies of proteasomal biology and the types of proteasome inhibitors emerging as important new treatment options for cancer therapeutics. PMID:18354780

  14. Analysis of the Lotus japonicus nuclear pore NUP107-160 subcomplex reveals pronounced structural plasticity and functional redundancy

    PubMed Central

    Binder, Andreas; Parniske, Martin

    2013-01-01

    Mutations in the Lotus japonicus nucleoporin genes, NUP85, NUP133, and NENA (SEH1), lead to defects in plant-microbe symbiotic signaling. The homologous proteins in yeast and vertebrates are part of the conserved NUP84/NUP107-160 subcomplex, which is an essential component of the nuclear pore scaffold and has a pivotal role in nuclear pore complex (NPC) assembly. Loss and down-regulation of NUP84/NUP107-160 members has previously been correlated with a variety of growth and molecular defects, however, in L. japonicus only surprisingly specific phenotypes have been reported. We investigated whether Lotus nup85, nup133, and nena mutants exhibit general defects in NPC composition and distribution. Whole mount immunolocalization confirmed a typical nucleoporin-like localization for NUP133, which was unchanged in the nup85-1 mutant. Severe NPC clustering and aberrations in the nuclear envelope have been reported for Saccharomyces cerevisiae nup85 and nup133 mutants. However, upon transmission electron microscopy analysis of L. japonicus nup85, nup133 and nena, we detected only a slight reduction in the average distances between neighboring NPCs in nup133. Using quantitative immunodetection on protein-blots we observed that loss of individual nucleoporins affected the protein levels of other NUP107–160 complex members. Unlike the single mutants, nup85/nup133 double mutants exhibited severe temperature dependent growth and developmental defects, suggesting that the loss of more than one NUP107–160 member affects basal functions of the NPC. PMID:24478780

  15. Crystallographic analysis of a subcomplex of the transsulfursome with tRNA for Cys-tRNA(Cys) synthesis.

    PubMed

    Chen, Meirong; Nakazawa, Yuto; Kubo, Yume; Asano, Nozomi; Kato, Koji; Tanaka, Isao; Yao, Min

    2016-07-01

    In most organisms, Cys-tRNA(Cys) is directly synthesized by cysteinyl-tRNA synthetase (CysRS). Many methanogenic archaea, however, use a two-step, indirect pathway to synthesize Cys-tRNA(Cys) owing to a lack of CysRS and cysteine-biosynthesis systems. This reaction is catalyzed by O-phosphoseryl-tRNA synthetase (SepRS), Sep-tRNA:Cys-tRNA synthase (SepCysS) and SepRS/SepCysS pathway enhancer (SepCysE) as the transsulfursome, in which SepCysE connects both SepRS and SepCysS. On the transsulfursome, SepRS first ligates an O-phosphoserine to tRNA(Cys), and the mischarged intermediate Sep-tRNA(Cys) is then transferred to SepCysS, where it is further modified to Cys-tRNA(Cys). In this study, a subcomplex of the transsulfursome with tRNA(Cys) (SepCysS-SepCysE-tRNA(Cys)), which is involved in the second reaction step of the indirect pathway, was constructed and then crystallized. The crystals diffracted X-rays to a resolution of 2.6 Å and belonged to space group P6522, with unit-cell parameters a = b = 107.2, c = 551.1 Å. The structure determined by molecular replacement showed that the complex consists of a SepCysS dimer, a SepCysE dimer and one tRNA(Cys) in the asymmetric unit. PMID:27380375

  16. Ubiquitin-proteasome pathway and cellular responses to oxidative stress

    PubMed Central

    Taylor, Allen

    2011-01-01

    The ubiquitin-proteasome pathway (UPP) is the primary cytosolic proteolytic machinery for the selective degradation of various forms of damaged proteins. Thus, the UPP is an important protein quality control mechanism. In the canonical UPP, both ubiquitin and the 26S proteasome are involved. Substrate proteins of the canonical UPP are first tagged by multiple ubiquitin molecules and then degraded by the 26S proteasome. However, in non-canonical UPP, proteins can be degraded by the 26S or the 20S proteasome without being ubiquitinated. It is clear that a proteasome is responsible for selective degradation of oxidized proteins, but the extent to which ubiquitination is involved in this process remains a subject of debate. While many publications suggest that the 20S proteasome degrades oxidized proteins independent of ubiquitin, there is also solid evidence indicating that ubiquitin and ubiquitination are involved in degradation of some forms of oxidized proteins. A fully functional UPP is required for cells to cope with oxidative stress and the activity of the UPP is also modulated by cellular redox status. Mild or transient oxidative stress up-regulates the ubiquitination system and proteasome activity in cells and tissues and transiently enhances intracellular proteolysis. Severe or sustained oxidative stress impairs the function of the UPP and decreases intracellular proteolysis. Both the ubiquitin conjugation enzymes and the proteasome can be inactivated by sustained oxidative stress, especially the 26S proteasome. Differential susceptibilities of the ubiquitin conjugation enzymes and the 26S proteasome to oxidative damage lead to an accumulation of ubiquitin conjugates in cells in response to mild oxidative stress. Thus, increased levels of ubiquitin conjugates in cells appear to be an indicator of mild oxidative stress. PMID:21530648

  17. Harnessing Proteasome Dynamics and Allostery in Drug Design

    PubMed Central

    Osmulski, Pawel A.

    2014-01-01

    Abstract Significance: The proteasome is the essential protease that is responsible for regulated cleavage of the bulk of intracellular proteins. Its central role in cellular physiology has been exploited in therapies against aggressive cancers where proteasome-specific competitive inhibitors that block proteasome active centers are very effectively used. However, drugs regulating this essential protease are likely to have broader clinical usefulness. The non-catalytic sites of the proteasome emerge as an attractive alternative target in search of highly specific and diverse proteasome regulators. Recent Advances: Crystallographic models of the proteasome leave the false impression of fixed structures with minimal molecular dynamics lacking long-distance allosteric signaling. However, accumulating biochemical and structural observations strongly support the notion that the proteasome is regulated by precise allosteric interactions arising from protein dynamics, encouraging the active search for allosteric regulators. Here, we discuss properties of several promising compounds that affect substrate gating and processing in antechambers, and interactions of the catalytic core with regulatory proteins. Critical Issues: Given the structural complexity of proteasome assemblies, it is a painstaking process to better understand their allosteric regulation and molecular dynamics. Here, we discuss the challenges and achievements in this field. We place special emphasis on the role of atomic force microscopy imaging in probing the allostery and dynamics of the proteasome, and in dissecting the mechanisms involving small-molecule allosteric regulators. Future Directions: New small-molecule allosteric regulators may become a next generation of drugs targeting the proteasome, which is critical to the development of new therapies in cancers and other diseases. Antioxid. Redox Signal. 21, 2286–2301. PMID:24410482

  18. Structure of the 26S proteasome with ATP-γS bound provides insights into the mechanism of nucleotide-dependent substrate translocation

    PubMed Central

    Śledź, Paweł; Unverdorben, Pia; Beck, Florian; Pfeifer, Günter; Schweitzer, Andreas; Förster, Friedrich; Baumeister, Wolfgang

    2013-01-01

    The 26S proteasome is a 2.5-MDa, ATP-dependent multisubunit proteolytic complex that processively destroys proteins carrying a degradation signal. The proteasomal ATPase heterohexamer is a key module of the 19S regulatory particle; it unfolds substrates and translocates them into the 20S core particle where degradation takes place. We used cryoelectron microscopy single-particle analysis to obtain insights into the structural changes of 26S proteasome upon the binding and hydrolysis of ATP. The ATPase ring adopts at least two distinct helical staircase conformations dependent on the nucleotide state. The transition from the conformation observed in the presence of ATP to the predominant conformation in the presence of ATP-γS induces a sliding motion of the ATPase ring over the 20S core particle ring leading to an alignment of the translocation channels of the ATPase and the core particle gate, a conformational state likely to facilitate substrate translocation. Two types of intersubunit modules formed by the large ATPase domain of one ATPase subunit and the small ATPase domain of its neighbor exist. They resemble the contacts observed in the crystal structures of ClpX and proteasome-activating nucleotidase, respectively. The ClpX-like contacts are positioned consecutively and give rise to helical shape in the hexamer, whereas the proteasome-activating nucleotidase-like contact is required to close the ring. Conformational switching between these forms allows adopting different helical conformations in different nucleotide states. We postulate that ATP hydrolysis by the regulatory particle ATPase (Rpt) 5 subunit initiates a cascade of conformational changes, leading to pulling of the substrate, which is primarily executed by Rpt1, Rpt2, and Rpt6. PMID:23589842

  19. Architecture of the eIF2B regulatory subcomplex and its implications for the regulation of guanine nucleotide exchange on eIF2

    PubMed Central

    Kuhle, Bernhard; Eulig, Nora K.; Ficner, Ralf

    2015-01-01

    Eukaryal translation initiation factor 2B (eIF2B) acts as guanine nucleotide exchange factor (GEF) for eIF2 and forms a central target for pathways regulating global protein synthesis. eIF2B consists of five non-identical subunits (α–ϵ), which assemble into a catalytic subcomplex (γ, ϵ) responsible for the GEF activity, and a regulatory subcomplex (α, β, δ) which regulates the GEF activity under stress conditions. Here, we provide new structural and functional insight into the regulatory subcomplex of eIF2B (eIF2BRSC). We report the crystal structures of eIF2Bβ and eIF2Bδ from Chaetomium thermophilum as well as the crystal structure of their tetrameric eIF2B(βδ)2 complex. Combined with mutational and biochemical data, we show that eIF2BRSC exists as a hexamer in solution, consisting of two eIF2Bβδ heterodimers and one eIF2Bα2 homodimer, which is homologous to homohexameric ribose 1,5-bisphosphate isomerases. This homology is further substantiated by the finding that eIF2Bα specifically binds AMP and GMP as ligands. Based on our data, we propose a model for eIF2BRSC and its interactions with eIF2 that is consistent with previous biochemical and genetic data and provides a framework to better understand eIF2B function, the molecular basis for Gcn−, Gcd− and VWM/CACH mutations and the evolutionary history of the eIF2B complex. PMID:26384431

  20. REH2C Helicase and GRBC Subcomplexes May Base Pair through mRNA and Small Guide RNA in Kinetoplastid Editosomes.

    PubMed

    Kumar, Vikas; Madina, Bhaskara R; Gulati, Shelly; Vashisht, Ajay A; Kanyumbu, Chiedza; Pieters, Brittany; Shakir, Afzal; Wohlschlegel, James A; Read, Laurie K; Mooers, Blaine H M; Cruz-Reyes, Jorge

    2016-03-11

    Mitochondrial mRNAs in Trypanosoma brucei undergo extensive insertion and deletion of uridylates that are catalyzed by the RNA editing core complex (RECC) and directed by hundreds of small guide RNAs (gRNAs) that base pair with mRNA. RECC is largely RNA-free, and accessory mitochondrial RNA-binding complex 1 (MRB1) variants serve as scaffolds for the assembly of mRNA-gRNA hybrids and RECC. However, the molecular steps that create higher-order holoenzymes ("editosomes") are unknown. Previously, we identified an RNA editing helicase 2-associated subcomplex (REH2C) and showed that REH2 binds RNA. Here we showed that REH2C is an mRNA-associated ribonucleoprotein (mRNP) subcomplex with editing substrates, intermediates, and products. We isolated this mRNP from mitochondria lacking gRNA-bound RNP (gRNP) subcomplexes and identified REH2-associated cofactors 1 and 2 ((H2)F1 and (H2)F2). (H2)F1 is an octa-zinc finger protein required for mRNP-gRNP docking, pre-mRNA and RECC loading, and RNP formation with a short synthetic RNA duplex. REH2 and other eukaryotic DEAH/RHA-type helicases share a conserved regulatory C-terminal domain cluster that includes an oligonucleotide-binding fold. Recombinant REH2 and (H2)F1 constructs associate in a purified complex in vitro. We propose a model of stepwise editosome assembly that entails controlled docking of mRNP and gRNP modules via specific base pairing between their respective mRNA and gRNA cargo and regulatory REH2 and (H2)F1 subunits of the novel mRNP that may control specificity checkpoints in the editing pathway. PMID:26769962

  1. Emerging mechanistic insights into AAA complexes regulating proteasomal degradation.

    PubMed

    Förster, Friedrich; Schuller, Jan M; Unverdorben, Pia; Aufderheide, Antje

    2014-01-01

    The 26S proteasome is an integral element of the ubiquitin-proteasome system(UPS) and, as such, responsible for regulated degradation of proteins in eukaryotic cells.It consists of the core particle, which catalyzes the proteolysis of substrates into small peptides, and the regulatory particle, which ensures specificity for a broad range of substrates.The heart of the regulatory particle is an AAA-ATPase unfoldase, which is surrounded by non-ATPase subunits enabling substrate recognition and processing. Cryo-EM-based studies revealed the molecular architecture of the 26S proteasome and its conformational rearrangements, providing insights into substrate recognition, commitment, deubiquitylation and unfolding. The cytosol proteasomal degradation of polyubiquitylated substrates is tuned by various associating cofactors, including deubiquitylating enzymes, ubiquitin ligases,shuttling ubiquitin receptors and the AAA-ATPase Cdc48/p97. Cdc48/p97 and its cofactors function upstream of the 26S proteasome, and their modular organization exhibits some striking analogies to the regulatory particle. In archaea PAN, the closest regulatory particle homolog and Cdc48 even have overlapping functions, underscoring their intricate relationship.Here, we review recent insights into the structure and dynamics of the 26S proteasome and its associated machinery, as well as our current structural knowledge on the Cdc48/p97 and its cofactors that function in the ubiquitin-proteasome system (UPS). PMID:25102382

  2. Emerging Mechanistic Insights into AAA Complexes Regulating Proteasomal Degradation

    PubMed Central

    Förster, Friedrich; Schuller, Jan M.; Unverdorben, Pia; Aufderheide, Antje

    2014-01-01

    The 26S proteasome is an integral element of the ubiquitin-proteasome system (UPS) and, as such, responsible for regulated degradation of proteins in eukaryotic cells. It consists of the core particle, which catalyzes the proteolysis of substrates into small peptides, and the regulatory particle, which ensures specificity for a broad range of substrates. The heart of the regulatory particle is an AAA-ATPase unfoldase, which is surrounded by non-ATPase subunits enabling substrate recognition and processing. Cryo-EM-based studies revealed the molecular architecture of the 26S proteasome and its conformational rearrangements, providing insights into substrate recognition, commitment, deubiquitylation and unfolding. The cytosol proteasomal degradation of polyubiquitylated substrates is tuned by various associating cofactors, including deubiquitylating enzymes, ubiquitin ligases, shuttling ubiquitin receptors and the AAA-ATPase Cdc48/p97. Cdc48/p97 and its cofactors function upstream of the 26S proteasome, and their modular organization exhibits some striking analogies to the regulatory particle. In archaea PAN, the closest regulatory particle homolog and Cdc48 even have overlapping functions, underscoring their intricate relationship. Here, we review recent insights into the structure and dynamics of the 26S proteasome and its associated machinery, as well as our current structural knowledge on the Cdc48/p97 and its cofactors that function in the ubiquitin-proteasome system (UPS). PMID:25102382

  3. Analysis of Myelin Basic Protein Fragmentation by Proteasome

    PubMed Central

    Bacheva, A. V.; Belogurov, A. A.; Ponomarenko, N. A.; Govorun, V. M.; Serebryakova, M. V.; Gabibov, A. G.

    2009-01-01

    The proteasome is a high molecular protein complex whose purpose is specific protein degradation in eukaryotic cells. One of the proteasome functions is to produce peptides, which will then be presented on the outer cell membrane using main histocompatibility complex (MHC) molecules of the first or second class. There are definite reasons to believe that proteasome directly takes part in the specific degradation of myelin basic protein (MBP), which make up to 30% of all proteins in the myelin sheath of neuronal axons. The details of the proteasomal degradation of MBP are still unclear. In this work, the features of specific MBP degradation by proteasome were studied. It was demonstrated that MBP (non-ubiquitinated) is a good substrate for 20S and for the 26S proteasome. This is the first work on detecting the sites of MBP proteolysis by proteasome from brains of SJL/J/J and Balb/C mice's lines. Substantial differences in the degradation pattern of this neuroantigen were found, which could indicate the better presentation MBP parts on MHC molecules in the case of mice predisposed to the development of experimental autoimmune encephalomyelitis. PMID:22649589

  4. Structural Insights on the Mycobacterium tuberculosis Proteasomal ATPase Mpa

    SciTech Connect

    Wang, T.; Li, H; Lin, G; Tang, C; Li, D; Nathan, C; Heran Darwin, K

    2009-01-01

    Proteasome-mediated protein turnover in all domains of life is an energy-dependent process that requires ATPase activity. Mycobacterium tuberculosis (Mtb) was recently shown to possess a ubiquitin-like proteasome pathway that plays an essential role in Mtb resistance to killing by products of host macrophages. Here we report our structural and biochemical investigation of Mpa, the presumptive Mtb proteasomal ATPase. We demonstrate that Mpa binds to the Mtb proteasome in the presence of ATPS, providing the physical evidence that Mpa is the proteasomal ATPase. X-ray crystallographic determination of the conserved interdomain showed a five stranded double {beta} barrel structure containing a Greek key motif. Structure and mutational analysis indicate a major role of the interdomain for Mpa hexamerization. Our mutational and functional studies further suggest that the central channel in the Mpa hexamer is involved in protein substrate translocation and degradation. These studies provide insights into how a bacterial proteasomal ATPase interacts with and facilitates protein degradation by the proteasome.

  5. Abnormally high expression of proteasomes in human leukemic cells.

    PubMed Central

    Kumatori, A; Tanaka, K; Inamura, N; Sone, S; Ogura, T; Matsumoto, T; Tachikawa, T; Shin, S; Ichihara, A

    1990-01-01

    Proteasomes are eukaryotic ring-shaped or cylindrical particles with multicatalytic protease activities. To clarify the involvement of proteasomes in tumorigenesis of human blood cells, we compared their expression in human hematopoietic malignant tumor cells with that in normal peripheral blood mononuclear cells. Immunohistochemical staining showed considerably increased concentrations of proteasomes in leukemic cells from the bone marrow of patients with various types of leukemia and the predominant localization of these proteasomes in the nuclei. Moreover, enzyme immunoassay and Northern blot analysis indicated that the concentrations of proteasomes and their mRNA levels were consistently much higher in a variety of malignant human hematopoietic cell lines than in resting peripheral lymphocytes and monocytes from healthy adults. Proteasome expression was also greatly increased in normal blood mononuclear cells during blastogenic transformation induced by phytohemagglutinin; their expression increased in parallel with induction of DNA synthesis and returned to the basal level with progress of the cell cycle. Thus, abnormally high expression of proteasomes may play an important role in transformation and proliferation of blood cells and in specific functions of hematopoietic tumor cells. Images PMID:2205851

  6. Proteasome activation as a novel anti-aging strategy.

    PubMed

    Gonos, Efstathios

    2014-10-01

    Aging and longevity are two multifactorial biological phenomena whose knowledge at molecular level is still limited. We have studied proteasome function in replicative senescence and cell survival (Mol Aspects Med 35, 1-71, 2014). We have observed reduced levels of proteasome content and activities in senescent cells due to the down-regulation of the catalytic subunits of the 20S complex (J Biol Chem 278, 28026-28037, 2003). In support, partial inhibition of proteasomes in young cells by specific inhibitors induces premature senescence which is p53 dependent (Aging Cell 7, 717-732, 2008). Stable over-expression of catalytic subunits or POMP resulted in enhanced proteasome assembly and activities and increased cell survival following treatments with various oxidants. Importantly, the developed "proteasome activated" human fibroblasts cell lines exhibit a delay of senescence by approximately 15% (J Biol Chem 280, 11840-11850, 2005; J Biol Chem 284, 30076-30086, 2009). Our current work proposes that proteasome activation is an evolutionary conserved mechanism, as it can delay aging in various in vivo systems. Moreover, additional findings indicate that the recorded proteasome activation by many inducers is Nrf2-dependent (J Biol Chem 285, 8171-8184, 2010). Finally, we have studied the proteolysis processes of various age-related proteins and we have identified that CHIP is a major p53 E3 ligase in senescent fibroblasts (Free Rad Biol Med 50, 157-165, 2011). PMID:26461417

  7. Activities of proteasome and m-calpain are essential for Chikungunya virus replication.

    PubMed

    Karpe, Yogesh A; Pingale, Kunal D; Kanade, Gayatri D

    2016-10-01

    Replication of many viruses is dependent on the ubiquitin proteasome system. The present study demonstrates that Chikungunya virus replication increases proteasome activity and induces unfolded protein response (UPR) in cultured cells. Further, it was seen that the virus replication was dependent on the activities of proteasomes and m-calpain. Proteasome inhibition induced accumulation of polyubiquitinated proteins and earlier visualization of UPR. PMID:27206501

  8. The ubiquitin-proteasome system meets angiogenesis.

    PubMed

    Rahimi, Nader

    2012-03-01

    A strict physiological balance between endogenous proangiogenic and antiangiogenic factors controls endothelial cell functions, such that endothelial cell growth is normally restrained. However, in pathologic angiogenesis, a shift occurs in the balance of regulators, favoring endothelial growth. Much of the control of angiogenic events is instigated through hypoxia-induced VEGF expression. The ubiquitin-proteasome system (UPS) plays a central role in fine-tuning the functions of core proangiogenic proteins, including VEGF, VEGFR-2, angiogenic signaling proteins (e.g., the PLCγ1 and PI3 kinase/AKT pathways), and other non-VEGF angiogenic pathways. The emerging mechanisms by which ubiquitin modification of angiogenic proteins control angiogenesis involve both proteolytic and nonproteolytic functions. Here, I review recent advances that link the UPS to regulation of angiogenesis and highlight the potential therapeutic value of the UPS in angiogenesis-associated diseases. PMID:22357635

  9. Development of novel proteasome inhibitors based on phthalazinone scaffold.

    PubMed

    Yang, Lingfei; Wang, Wei; Sun, Qi; Xu, Fengrong; Niu, Yan; Wang, Chao; Liang, Lei; Xu, Ping

    2016-06-15

    In this study we designed a series of proteasome inhibitors using pyridazinone as initial scaffold, and extended the structure with rational design by computer aided drug design (CADD). Two different synthetic routes were explored and the biological evaluation of the phthalazinone derivatives was investigated. Most importantly, electron positive triphenylphosphine group was first introduced in the structure of proteasome inhibitors and potent inhibition was achieved. As 6c was the most potent inhibitor of proteasome, we examined the structure-activity relationship (SAR) of 6c analogs. PMID:27158142

  10. Arabidopsis PROTEASOME REGULATOR1 is required for auxin-mediated suppression of proteasome activity and regulates auxin signalling.

    PubMed

    Yang, Bao-Jun; Han, Xin-Xin; Yin, Lin-Lin; Xing, Mei-Qing; Xu, Zhi-Hong; Xue, Hong-Wei

    2016-01-01

    The plant hormone auxin is perceived by the nuclear F-box protein TIR1 receptor family and regulates gene expression through degradation of Aux/IAA transcriptional repressors. Several studies have revealed the importance of the proteasome in auxin signalling, but details on how the proteolytic machinery is regulated and how this relates to degradation of Aux/IAA proteins remains unclear. Here we show that an Arabidopsis homologue of the proteasome inhibitor PI31, which we name PROTEASOME REGULATOR1 (PTRE1), is a positive regulator of the 26S proteasome. Loss-of-function ptre1 mutants are insensitive to auxin-mediated suppression of proteasome activity, show diminished auxin-induced degradation of Aux/IAA proteins and display auxin-related phenotypes. We found that auxin alters the subcellular localization of PTRE1, suggesting this may be part of the mechanism by which it reduces proteasome activity. Based on these results, we propose that auxin regulates proteasome activity via PTRE1 to fine-tune the homoeostasis of Aux/IAA repressor proteins thus modifying auxin activity. PMID:27109828

  11. Arabidopsis PROTEASOME REGULATOR1 is required for auxin-mediated suppression of proteasome activity and regulates auxin signalling

    PubMed Central

    Yang, Bao-Jun; Han, Xin-Xin; Yin, Lin-Lin; Xing, Mei-Qing; Xu, Zhi-Hong; Xue, Hong-Wei

    2016-01-01

    The plant hormone auxin is perceived by the nuclear F-box protein TIR1 receptor family and regulates gene expression through degradation of Aux/IAA transcriptional repressors. Several studies have revealed the importance of the proteasome in auxin signalling, but details on how the proteolytic machinery is regulated and how this relates to degradation of Aux/IAA proteins remains unclear. Here we show that an Arabidopsis homologue of the proteasome inhibitor PI31, which we name PROTEASOME REGULATOR1 (PTRE1), is a positive regulator of the 26S proteasome. Loss-of-function ptre1 mutants are insensitive to auxin-mediated suppression of proteasome activity, show diminished auxin-induced degradation of Aux/IAA proteins and display auxin-related phenotypes. We found that auxin alters the subcellular localization of PTRE1, suggesting this may be part of the mechanism by which it reduces proteasome activity. Based on these results, we propose that auxin regulates proteasome activity via PTRE1 to fine-tune the homoeostasis of Aux/IAA repressor proteins thus modifying auxin activity. PMID:27109828

  12. Cytoplasmic proteasomes are not indispensable for cell growth in Saccharomyces cerevisiae

    SciTech Connect

    Tsuchiya, Hikaru; Arai, Naoko; Tanaka, Keiji Saeki, Yasushi

    2013-07-05

    Highlights: •We succeeded to control the proteasome localization by the anchor-away technique. •Nuclear proteasome-depleted cells showed a lethal phenotype. •Cytoplasmic proteasomes are not indispensable for cell growth in dividing cells. -- Abstract: The 26S proteasome is an essential protease complex responsible for the degradation of ubiquitinated proteins in eukaryotic cells. In rapidly proliferating yeast cells, proteasomes are mainly localized in the nucleus, but the biological significance of the proteasome localization is still unclear. In this study, we investigated the relationship between the proteasome localization and the functions by the anchor-away technique, a ligand-dependent sequestration of a target protein into specific compartment(s). Anchoring of the proteasome to the plasma membrane or the ribosome resulted in conditional depletion of the nuclear proteasomes, whereas anchoring to histone resulted in the proteasome sequestration into the nucleus. We observed that the accumulation of ubiquitinated proteins in all the proteasome-targeted cells, suggesting that both the nuclear and cytoplasmic proteasomes have proteolytic functions and that the ubiquitinated proteins are produced and degraded in each compartment. Consistent with previous studies, the nuclear proteasome-depleted cells exhibited a lethal phenotype. In contrast, the nuclear sequestration of the proteasome resulted only in a mild growth defect, suggesting that the cytoplasmic proteasomes are not basically indispensable for cell growth in rapidly growing yeast cells.

  13. A PTIP-PA1 subcomplex promotes transcription for IgH class switching independently from the associated MLL3/MLL4 methyltransferase complex.

    PubMed

    Starnes, Linda M; Su, Dan; Pikkupeura, Laura M; Weinert, Brian T; Santos, Margarida A; Mund, Andreas; Soria, Rebeca; Cho, Young-Wook; Pozdnyakova, Irina; Kubec Højfeldt, Martina; Vala, Andrea; Yang, Wenjing; López-Méndez, Blanca; Lee, Ji-Eun; Peng, Weiqun; Yuan, Joan; Ge, Kai; Montoya, Guillermo; Nussenzweig, André; Choudhary, Chunaram; Daniel, Jeremy A

    2016-01-15

    Class switch recombination (CSR) diversifies antibodies for productive immune responses while maintaining stability of the B-cell genome. Transcription at the immunoglobulin heavy chain (Igh) locus targets CSR-associated DNA damage and is promoted by the BRCT domain-containing PTIP (Pax transactivation domain-interacting protein). Although PTIP is a unique component of the mixed-lineage leukemia 3 (MLL3)/MLL4 chromatin-modifying complex, the mechanisms for how PTIP promotes transcription remain unclear. Here we dissected the minimal structural requirements of PTIP and its different protein complexes using quantitative proteomics in primary lymphocytes. We found that PTIP functions in transcription and CSR separately from its association with the MLL3/MLL4 complex and from its localization to sites of DNA damage. We identified a tandem BRCT domain of PTIP that is sufficient for CSR and identified PA1 as its main functional protein partner. Collectively, we provide genetic and biochemical evidence that a PTIP-PA1 subcomplex functions independently from the MLL3/MLL4 complex to mediate transcription during CSR. These results further our understanding of how multifunctional chromatin-modifying complexes are organized by subcomplexes that harbor unique and distinct activities. PMID:26744420

  14. A PTIP–PA1 subcomplex promotes transcription for IgH class switching independently from the associated MLL3/MLL4 methyltransferase complex

    PubMed Central

    Starnes, Linda M.; Su, Dan; Pikkupeura, Laura M.; Weinert, Brian T.; Santos, Margarida A.; Mund, Andreas; Soria, Rebeca; Cho, Young-Wook; Pozdnyakova, Irina; Kubec Højfeldt, Martina; Vala, Andrea; Yang, Wenjing; López-Méndez, Blanca; Lee, Ji-Eun; Peng, Weiqun; Yuan, Joan; Ge, Kai; Montoya, Guillermo; Nussenzweig, André; Choudhary, Chunaram; Daniel, Jeremy A.

    2016-01-01

    Class switch recombination (CSR) diversifies antibodies for productive immune responses while maintaining stability of the B-cell genome. Transcription at the immunoglobulin heavy chain (Igh) locus targets CSR-associated DNA damage and is promoted by the BRCT domain-containing PTIP (Pax transactivation domain-interacting protein). Although PTIP is a unique component of the mixed-lineage leukemia 3 (MLL3)/MLL4 chromatin-modifying complex, the mechanisms for how PTIP promotes transcription remain unclear. Here we dissected the minimal structural requirements of PTIP and its different protein complexes using quantitative proteomics in primary lymphocytes. We found that PTIP functions in transcription and CSR separately from its association with the MLL3/MLL4 complex and from its localization to sites of DNA damage. We identified a tandem BRCT domain of PTIP that is sufficient for CSR and identified PA1 as its main functional protein partner. Collectively, we provide genetic and biochemical evidence that a PTIP–PA1 subcomplex functions independently from the MLL3/MLL4 complex to mediate transcription during CSR. These results further our understanding of how multifunctional chromatin-modifying complexes are organized by subcomplexes that harbor unique and distinct activities. PMID:26744420

  15. Conserved Sequence Preferences Contribute to Substrate Recognition by the Proteasome*

    PubMed Central

    Yu, Houqing; Singh Gautam, Amit K.; Wilmington, Shameika R.; Wylie, Dennis; Martinez-Fonts, Kirby; Kago, Grace; Warburton, Marie; Chavali, Sreenivas; Inobe, Tomonao; Finkelstein, Ilya J.; Babu, M. Madan

    2016-01-01

    The proteasome has pronounced preferences for the amino acid sequence of its substrates at the site where it initiates degradation. Here, we report that modulating these sequences can tune the steady-state abundance of proteins over 2 orders of magnitude in cells. This is the same dynamic range as seen for inducing ubiquitination through a classic N-end rule degron. The stability and abundance of His3 constructs dictated by the initiation site affect survival of yeast cells and show that variation in proteasomal initiation can affect fitness. The proteasome's sequence preferences are linked directly to the affinity of the initiation sites to their receptor on the proteasome and are conserved between Saccharomyces cerevisiae, Schizosaccharomyces pombe, and human cells. These findings establish that the sequence composition of unstructured initiation sites influences protein abundance in vivo in an evolutionarily conserved manner and can affect phenotype and fitness. PMID:27226608

  16. Rational Design of Proteasome Inhibitors as Antimalarial Drugs.

    PubMed

    Le Chapelain, Camille; Groll, Michael

    2016-05-23

    One life, two strategies: Crucial structural differences between the human and the Plasmodium falciparum proteasomes were recently identified. A combination of cryo-EM and functional characterization enabled the design of a selective antimalarial proteasome inhibitor that shows low toxicity in the host. When used with artemisinin, this ligand offers a new approach for the efficient treatment of malaria at all stages of the parasite lifecycle. PMID:27079849

  17. Cytokine induced changes in proteasome subunit composition are concentration dependent.

    PubMed

    Stohwasser, R; Kloetzel, P M

    1996-09-01

    In eukaryotes, 20S proteasome subunit composition is controlled by the cytokine interferon-gamma (IFN-gamma). IFN-gamma induces the synthesis of the beta-subunits LMP2, LMP7 and MECL-1, which in consequence replace their constitutive subunit homologs delta, MB1 and MC14/Z in the 20S complex. By pulse labeling mouse RMA cells and immunoprecipitation of proteasome complexes with the antibody MP3, we have analysed the effect of different IFN-gamma concentrations on proteasomal subunit composition. Our experiments show that IFN-gamma concentrations as low as 5 U/ml induce subunit substitutions and that overall proteasomal subunit composition is dependent on the cytokine concentration used. An IFN-gamma concentration of 50 U/ml is sufficient for complete replacement of subunit delta by LMP2. In contrast, IFN-gamma treatment never induces a complete replacement of subunit MC14 by MECL-1. These subunits are present at an approximate 1:1 molar ratio, suggesting that both subunits coexist in the same 20S proteasome complex. Furthermore, different regulatory mechanisms have to be postulated for the synthesis and incorporation of the three IFN-gamma inducible proteasome subunits. Both IFN-gamma as well as IL-2 also seem to influence the modification state of the alpha subunit C8. Since the subunit composition is dependent on the cytokine concentration used and strongly influences the proteolytic properties of the 20S proteasome complex, our experiments represent a caveat for experiments in which IFN-gamma dependent proteasomal enzyme characteristics have been analysed without monitoring the subunit composition. PMID:9067255

  18. Dynamic Association of Proteasomal Machinery with the Centrosome

    PubMed Central

    Christian Wigley, W.; Fabunmi, Rosalind P.; Lee, Min Goo; Marino, Christopher R.; Muallem, Shmuel; DeMartino, George N.; Thomas, Philip J.

    1999-01-01

    Although the number of pathologies known to arise from the inappropriate folding of proteins continues to grow, mechanisms underlying the recognition and ultimate disposition of misfolded polypeptides remain obscure. For example, how and where such substrates are identified and processed is unknown. We report here the identification of a specific subcellular structure in which, under basal conditions, the 20S proteasome, the PA700 and PA28 (700- and 180-kD proteasome activator complexes, respectively), ubiquitin, Hsp70 and Hsp90 (70- and 90-kD heat shock protein, respectively) concentrate in HEK 293 and HeLa cells. The structure is perinuclear, surrounded by endoplasmic reticulum, adjacent to the Golgi, and colocalizes with γ-tubulin, an established centrosomal marker. Density gradient fractions containing purified centrosomes are enriched in proteasomal components and cell stress chaperones. The centrosome-associated structure enlarges in response to inhibition of proteasome activity and the level of misfolded proteins. For example, folding mutants of CFTR form large inclusions which arise from the centrosome upon inhibition of proteasome activity. At high levels of misfolded protein, the structure not only expands but also extensively recruits the cytosolic pools of ubiquitin, Hsp70, PA700, PA28, and the 20S proteasome. Thus, the centrosome may act as a scaffold, which concentrates and recruits the systems which act as censors and modulators of the balance between folding, aggregation, and degradation. PMID:10225950

  19. Dynamic association of proteasomal machinery with the centrosome.

    PubMed

    Wigley, W C; Fabunmi, R P; Lee, M G; Marino, C R; Muallem, S; DeMartino, G N; Thomas, P J

    1999-05-01

    Although the number of pathologies known to arise from the inappropriate folding of proteins continues to grow, mechanisms underlying the recognition and ultimate disposition of misfolded polypeptides remain obscure. For example, how and where such substrates are identified and processed is unknown. We report here the identification of a specific subcellular structure in which, under basal conditions, the 20S proteasome, the PA700 and PA28 (700- and 180-kD proteasome activator complexes, respectively), ubiquitin, Hsp70 and Hsp90 (70- and 90-kD heat shock protein, respectively) concentrate in HEK 293 and HeLa cells. The structure is perinuclear, surrounded by endoplasmic reticulum, adjacent to the Golgi, and colocalizes with gamma-tubulin, an established centrosomal marker. Density gradient fractions containing purified centrosomes are enriched in proteasomal components and cell stress chaperones. The centrosome-associated structure enlarges in response to inhibition of proteasome activity and the level of misfolded proteins. For example, folding mutants of CFTR form large inclusions which arise from the centrosome upon inhibition of proteasome activity. At high levels of misfolded protein, the structure not only expands but also extensively recruits the cytosolic pools of ubiquitin, Hsp70, PA700, PA28, and the 20S proteasome. Thus, the centrosome may act as a scaffold, which concentrates and recruits the systems which act as censors and modulators of the balance between folding, aggregation, and degradation. PMID:10225950

  20. Nuclear import of an intact preassembled proteasome particle

    PubMed Central

    Savulescu, Anca F.; Shorer, Hagai; Kleifeld, Oded; Cohen, Ilana; Gruber, Rita; Glickman, Michael H.; Harel, Amnon

    2011-01-01

    The 26S proteasome is a conserved 2.5 MDa protein degradation machine that localizes to different cellular compartments, including the nucleus. Little is known about the specific targeting mechanisms of proteasomes in eukaryotic cells. We used a cell-free nuclear reconstitution system to test for nuclear targeting and import of distinct proteasome species. Three types of stable, proteolytically active proteasomes particles were purified from Xenopus egg cytosol. Two of these, the 26S holoenzyme and the 20S core particle, were targeted to the nuclear periphery but did not reach the nucleoplasm. This targeting depends on the presence of mature nuclear pore complexes (NPCs) in the nuclear envelope. A third, novel form, designated here as 20S+, was actively imported through NPCs. The 20S+ proteasome particle resembles recently described structural intermediates from other systems. Nuclear import of this particle requires functional NPCs, but it is not directly regulated by the Ran GTPase cycle. The mere presence of the associated “+” factors is sufficient to reconstitute nuclear targeting and confer onto isolated 20S core particles the ability to be imported. Stable 20S+ particles found in unfertilized eggs may provide a means for quick mobilization of existing proteasome particles into newly formed nuclear compartments during early development. PMID:21289101

  1. Proteasome dysfunction induces muscle growth defects and protein aggregation

    PubMed Central

    Kitajima, Yasuo; Tashiro, Yoshitaka; Suzuki, Naoki; Warita, Hitoshi; Kato, Masaaki; Tateyama, Maki; Ando, Risa; Izumi, Rumiko; Yamazaki, Maya; Abe, Manabu; Sakimura, Kenji; Ito, Hidefumi; Urushitani, Makoto; Nagatomi, Ryoichi; Takahashi, Ryosuke; Aoki, Masashi

    2014-01-01

    ABSTRACT The ubiquitin–proteasome and autophagy–lysosome pathways are the two major routes of protein and organelle clearance. The role of the proteasome pathway in mammalian muscle has not been examined in vivo. In this study, we report that the muscle-specific deletion of a crucial proteasomal gene, Rpt3 (also known as Psmc4), resulted in profound muscle growth defects and a decrease in force production in mice. Specifically, developing muscles in conditional Rpt3-knockout animals showed dysregulated proteasomal activity. The autophagy pathway was upregulated, but the process of autophagosome formation was impaired. A microscopic analysis revealed the accumulation of basophilic inclusions and disorganization of the sarcomeres in young adult mice. Our results suggest that appropriate proteasomal activity is important for muscle growth and for maintaining myofiber integrity in collaboration with autophagy pathways. The deletion of a component of the proteasome complex contributed to myofiber degeneration and weakness in muscle disorders that are characterized by the accumulation of abnormal inclusions. PMID:25380823

  2. Phosphorylation of 20S proteasome alpha subunit C8 (alpha7) stabilizes the 26S proteasome and plays a role in the regulation of proteasome complexes by gamma-interferon.

    PubMed Central

    Bose, Suchira; Stratford, Fiona L L; Broadfoot, Kerry I; Mason, Grant G F; Rivett, A Jennifer

    2004-01-01

    In animal cells there are several regulatory complexes which interact with 20S proteasomes and give rise to functionally distinct proteasome complexes. gamma-Interferon upregulates three immuno beta catalytic subunits of the 20S proteasome and the PA28 regulator, and decreases the level of 26S proteasomes. It also decreases the level of phosphorylation of two proteasome alpha subunits, C8 (alpha7) and C9 (alpha3). In the present study we have investigated the role of phosphorylation of C8 by protein kinase CK2 in the formation and stability of 26S proteasomes. An epitope-tagged C8 subunit expressed in mammalian cells was efficiently incorporated into both 20S proteasomes and 26S proteasomes. Investigation of mutants of C8 at the two known CK2 phosphorylation sites demonstrated that these are the two phosphorylation sites of C8 in animal cells. Although phosphorylation of C8 was not absolutely essential for the formation of 26S proteasomes, it did have a substantial effect on their stability. Also, when cells were treated with gamma-interferon, there was a marked decrease in phosphorylation of C8, a decrease in the level of 26S proteasomes, and an increase in immunoproteasomes and PA28 complexes. These results suggest that the down-regulation of 26S proteasomes after gamma-interferon treatment results from the destabilization that occurs after dephosphorylation of the C8 subunit. PMID:14583091

  3. Structural Basis for the Assembly and Gate Closure Mechanisms of the Mycobacterium tuberculosis 20S Proteasome

    SciTech Connect

    Lin, D.; Li, H; Wang, T; Pan, H; Lin, G; Li, H

    2010-01-01

    Mycobacterium tuberculosis (Mtb) possesses a proteasome system analogous to the eukaryotic ubiquitin-proteasome pathway. Mtb requires the proteasome to resist killing by the host immune system. The detailed assembly process and the gating mechanism of Mtb proteasome have remained unknown. Using cryo-electron microscopy and X-ray crystallography, we have obtained structures of three Mtb proteasome assembly intermediates, showing conformational changes during assembly, and explaining why the {beta}-subunit propeptide inhibits rather than promotes assembly. Although the eukaryotic proteasome core particles close their protein substrate entrance gates with different amino terminal peptides of the seven {alpha}-subunits, it has been unknown how a prokaryotic proteasome might close the gate at the symmetry axis with seven identical peptides. We found in the new Mtb proteasome crystal structure that the gate is tightly sealed by the seven identical peptides taking on three distinct conformations. Our work provides the structural bases for assembly and gating mechanisms of the Mtb proteasome.

  4. Structural basis for the assembly and gate closure mechanisms of the Mycobacterium tuberculosis 20S proteasome

    SciTech Connect

    Li, D.; Li, H.; Li, H.; Wang, T.; Pan, H.; Lin, G.

    2010-06-16

    Mycobacterium tuberculosis (Mtb) possesses a proteasome system analogous to the eukaryotic ubiquitin-proteasome pathway. Mtb requires the proteasome to resist killing by the host immune system. The detailed assembly process and the gating mechanism of Mtb proteasome have remained unknown. Using cryo-electron microscopy and X-ray crystallography, we have obtained structures of three Mtb proteasome assembly intermediates, showing conformational changes during assembly, and explaining why the {beta}-subunit propeptide inhibits rather than promotes assembly. Although the eukaryotic proteasome core particles close their protein substrate entrance gates with different amino terminal peptides of the seven {alpha}-subunits, it has been unknown how a prokaryotic proteasome might close the gate at the symmetry axis with seven identical peptides. We found in the new Mtb proteasome crystal structure that the gate is tightly sealed by the seven identical peptides taking on three distinct conformations. Our work provides the structural bases for assembly and gating mechanisms of the Mtb proteasome.

  5. Biochemical and Physical Properties of the Methanococcus jannaschii 20S Proteasome and PAN, a Homolog of the ATPase (Rpt) Subunits of the Eucaryal 26S Proteasome†

    PubMed Central

    Wilson, Heather L.; Ou, Mark S.; Aldrich, Henry C.; Maupin-Furlow, Julie

    2000-01-01

    The 20S proteasome is a self-compartmentalized protease which degrades unfolded polypeptides and has been purified from eucaryotes, gram-positive actinomycetes, and archaea. Energy-dependent complexes, such as the 19S cap of the eucaryal 26S proteasome, are assumed to be responsible for the recognition and/or unfolding of substrate proteins which are then translocated into the central chamber of the 20S proteasome and hydrolyzed to polypeptide products of 3 to 30 residues. All archaeal genomes which have been sequenced are predicted to encode proteins with up to ∼50% identity to the six ATPase subunits of the 19S cap. In this study, one of these archaeal homologs which has been named PAN for proteasome-activating nucleotidase was characterized from the hyperthermophile Methanococcus jannaschii. In addition, the M. jannaschii 20S proteasome was purified as a 700-kDa complex by in vitro assembly of the α and β subunits and has an unusually high rate of peptide and unfolded-polypeptide hydrolysis at 100°C. The 550-kDa PAN complex was required for CTP- or ATP-dependent degradation of β-casein by archaeal 20S proteasomes. A 500-kDa complex of PAN(Δ1–73), which has a deletion of residues 1 to 73 of the deduced protein and disrupts the predicted N-terminal coiled-coil, also facilitated this energy-dependent proteolysis. However, this deletion increased the types of nucleotides hydrolyzed to include not only ATP and CTP but also ITP, GTP, TTP, and UTP. The temperature optimum for nucleotide (ATP) hydrolysis was reduced from 80°C for the full-length protein to 65°C for PAN(Δ1–73). Both PAN protein complexes were stable in the absence of ATP and were inhibited by N-ethylmaleimide and p-chloromercuriphenyl-sulfonic acid. Kinetic analysis reveals that the PAN protein has a relatively high Vmax for ATP and CTP hydrolysis of 3.5 and 5.8 μmol of Pi per min per mg of protein as well as a relatively low affinity for CTP and ATP with Km values of 307 and 497

  6. From Bortezomib to other Inhibitors of the Proteasome and Beyond

    PubMed Central

    Buac, Daniela; Shen, Min; Schmitt, Sara; Kona, Fathima Rani; Deshmukh, Rahul; Zhang, Zhen; Neslund-Dudas, Christine; Mitra, Bharati; Dou, Q. Ping

    2013-01-01

    The cancer drug discovery field has placed much emphasis on the identification of novel and cancer-specific molecular targets. A rich source of such targets for the design of novel anti-tumor agents is the ubiqutin-proteasome system (UP-S), a tightly regulated, highly specific pathway responsible for the vast majority of protein turnover within the cell. Because of its critical role in almost all cell processes that ensure normal cellular function, its inhibition at one point in time was deemed non-specific and therefore not worth further investigation as a molecular drug target. However, today the proteasome is one of the most promising anti-cancer drug targets of the century. The discovery that tumor cells are in fact more sensitive to proteasome inhibitors than normal cells indeed paved the way for the design of its inhibitors. Such efforts have led to bortezomib, the first FDA approved proteasome inhibitor now used as a frontline treatment for newly diagnosed multiple myeloma (MM), relapsed/refractory MM and mantle cell lymphoma. Though successful in improving clinical outcomes for patients with hematological malignancies, relapse often occurs in those who initially responded to bortezomib. Therefore, the acquisition of bortezomib resistance is a major issue with its therapy. Furthermore, some neuro-toxicities have been associated with bortezomib treatment and its efficacy in solid tumors is lacking. These observations have encouraged researchers to pursue the next generation of proteasome inhibitors, which would ideally overcome bortezomib resistance, have reduced toxicities and a broader range of anti-cancer activity. This review summarizes the success and limitations of bortezomib, and describes recent advances in the field, including, and most notably, the most recent FDA approval of carfilzomib in July, 2012, a second generation proteasome inhibitor. Other proteasome inhibitors currently in clinical trials and those that are currently experimental grade

  7. The novel β2-selective proteasome inhibitor LU-102 synergizes with bortezomib and carfilzomib to overcome proteasome inhibitor resistance of myeloma cells

    PubMed Central

    Kraus, Marianne; Bader, Juergen; Geurink, Paul P.; Weyburne, Emily S.; Mirabella, Anne C.; Silzle, Tobias; Shabaneh, Tamer B.; van der Linden, Wouter A.; de Bruin, Gerjan; Haile, Sarah R.; van Rooden, Eva; Appenzeller, Christina; Li, Nan; Kisselev, Alexei F.; Overkleeft, Herman; Driessen, Christoph

    2015-01-01

    Proteasome inhibitor resistance is a challenge for myeloma therapy. Bortezomib targets the β5 and β1 activity, but not the β2 activity of the proteasome. Bortezomib-resistant myeloma cells down-regulate the activation status of the unfolded protein response, and up-regulate β2 proteasome activity. To improve proteasome inhibition in bortezomib-resistant myeloma and to achieve more efficient UPR activation, we have developed LU-102, a selective inhibitor of the β2 proteasome activity. LU-102 inhibited the β2 activity in intact myeloma cells at low micromolar concentrations without relevant co-inhibition of β1 and β5 proteasome subunits. In proteasome inhibitor-resistant myeloma cells, significantly more potent proteasome inhibition was achieved by bortezomib or carfilzomib in combination with LU-102, compared to bortezomib/carfilzomib alone, resulting in highly synergistic cytotoxic activity of the drug combination via endoplasmatic reticulum stress-induced apoptosis. Combining bortezomib/carfilzomib with LU-102 significantly prolonged proteasome inhibition and increased activation of the unfolded protein response and IRE1-a activity. IRE1-α has recently been shown to control myeloma cell differentiation and bortezomib sensitivity (Leung-Hagesteijn, Cancer Cell 24:3, 289-304). Thus, β2-selective proteasome inhibition by LU-102 in combination with bortezomib or carfilzomib results in synergistic proteasome inhibition, activation of the unfolded protein response, and cytotoxicity, and overcomes bortezomib/carfilzomib resistance in myeloma cells in vitro PMID:26069288

  8. The novel β2-selective proteasome inhibitor LU-102 synergizes with bortezomib and carfilzomib to overcome proteasome inhibitor resistance of myeloma cells.

    PubMed

    Kraus, Marianne; Bader, Juergen; Geurink, Paul P; Weyburne, Emily S; Mirabella, Anne C; Silzle, Tobias; Shabaneh, Tamer B; van der Linden, Wouter A; de Bruin, Gerjan; Haile, Sarah R; van Rooden, Eva; Appenzeller, Christina; Li, Nan; Kisselev, Alexei F; Overkleeft, Herman; Driessen, Christoph

    2015-10-01

    Proteasome inhibitor resistance is a challenge for myeloma therapy. Bortezomib targets the β5 and β1 activity, but not the β2 activity of the proteasome. Bortezomib-resistant myeloma cells down-regulate the activation status of the unfolded protein response, and up-regulate β2 proteasome activity. To improve proteasome inhibition in bortezomib-resistant myeloma and to achieve more efficient UPR activation, we have developed LU-102, a selective inhibitor of the β2 proteasome activity. LU-102 inhibited the β2 activity in intact myeloma cells at low micromolar concentrations without relevant co-inhibition of β1 and β5 proteasome subunits. In proteasome inhibitor-resistant myeloma cells, significantly more potent proteasome inhibition was achieved by bortezomib or carfilzomib in combination with LU-102, compared to bortezomib/carfilzomib alone, resulting in highly synergistic cytotoxic activity of the drug combination via endoplasmatic reticulum stress-induced apoptosis. Combining bortezomib/carfilzomib with LU-102 significantly prolonged proteasome inhibition and increased activation of the unfolded protein response and IRE1-a activity. IRE1-α has recently been shown to control myeloma cell differentiation and bortezomib sensitivity (Leung-Hagesteijn, Cancer Cell 24:3, 289-304). Thus, β2-selective proteasome inhibition by LU-102 in combination with bortezomib or carfilzomib results in synergistic proteasome inhibition, activation of the unfolded protein response, and cytotoxicity, and overcomes bortezomib/carfilzomib resistance in myeloma cells in vitro. PMID:26069288

  9. Oxidative Stress-Mediated Regulation of Proteasome Complexes*

    PubMed Central

    Aiken, Charity T.; Kaake, Robyn M.; Wang, Xiaorong; Huang, Lan

    2011-01-01

    Oxidative stress has been implicated in aging and many human diseases, notably neurodegenerative disorders and various cancers. The reactive oxygen species that are generated by aerobic metabolism and environmental stressors can chemically modify proteins and alter their biological functions. Cells possess protein repair pathways to rescue oxidized proteins and restore their functions. If these repair processes fail, oxidized proteins may become cytotoxic. Cell homeostasis and viability are therefore dependent on the removal of oxidatively damaged proteins. Numerous studies have demonstrated that the proteasome plays a pivotal role in the selective recognition and degradation of oxidized proteins. Despite extensive research, oxidative stress-triggered regulation of proteasome complexes remains poorly defined. Better understanding of molecular mechanisms underlying proteasome function in response to oxidative stress will provide a basis for developing new strategies aimed at improving cell viability and recovery as well as attenuating oxidation-induced cytotoxicity associated with aging and disease. Here we highlight recent advances in the understanding of proteasome structure and function during oxidative stress and describe how cells cope with oxidative stress through proteasome-dependent degradation pathways. PMID:21543789

  10. Proteasome Inhibitors in the Treatment of Multiple Myeloma

    PubMed Central

    Shah, Jatin J.; Orlowski, Robert Z.

    2016-01-01

    Targeting intracellular protein turnover by inhibiting the ubiquitin-proteasome pathway as a strategy for cancer therapy is a new addition to our chemotherapeutic armamentarium, and has seen its greatest successes against multiple myeloma. The first-in-class proteasome inhibitor bortezomib was initially approved for treatment of patients in the relapsed/refractory setting as a single agent, and was recently shown to induce even greater benefits as part of rationally-designed combinations that overcome chemoresistance. Modulation of proteasome function is also a rational approach to achieve chemosensitization to other anti-myeloma agents, and bortezomib has now been incorporated into the front-line setting. Bortezomib-based induction regimens are able to achieve higher overall response rates and response qualities than was the case with prior standards of care, and unlike these older approaches, maintain efficacy in patients with clinically- and molecularly-defined high-risk disease. Second-generation proteasome inhibitors with novel properties, such as NPI-0052 and carfilzomib, are entering the clinical arena, and showing evidence of anti-myeloma activity. In this spotlight review, we provide an overview of the current state of the art use of bortezomib and other proteasome inhibitors against multiple myeloma, and highlight areas for future study that will further optimize our ability to benefit patients with this disease. PMID:19741722

  11. Proteasome inhibition: a new anti-inflammatory strategy.

    PubMed

    Elliott, Peter J; Zollner, Thomas Matthias; Boehncke, Wolf-Henning

    2003-04-01

    The ubiquitin-proteasome pathway has a central role in the selective degradation of intracellular proteins. Among the key proteins modulated by the proteasome are those involved in the control of inflammatory processes, cell cycle regulation, and gene expression. Consequently proteasome inhibition is a potential treatment option for cancer and inflammatory conditions. Thus far, proof of principle has been obtained from studies in numerous animal models for a variety of human diseases including cancer, reperfusion injury, and inflammatory conditions such as rheumatoid arthritis, asthma, multiple sclerosis, and psoriasis. Two proteasome inhibitors, each representing a unique chemical class, are currently under clinical evaluation. Velcade (PS-341) is currently being evaluated in multiple phase II clinical trials for several solid tumor indications and has just entered a phase III trial for multiple myeloma. PS-519, representing another class of inhibitors, focuses on the inflammatory events following ischemia and reperfusion injury. Since proteasome inhibitors exhibit anti-inflammatory and antiproliferative effects, diseases characterized by both of these processes simultaneously, as is the case in rheumatoid arthritis or psoriasis, might also represent clinical opportunities for such drugs. PMID:12700891

  12. Proteasome Inhibition Suppresses Dengue Virus Egress in Antibody Dependent Infection

    PubMed Central

    Costa, Vivian V.; Tan, Hwee Cheng; Horrevorts, Sophie; Ooi, Eng Eong

    2015-01-01

    The mosquito-borne dengue virus (DENV) is a cause of significant global health burden, with an estimated 390 million infections occurring annually. However, no licensed vaccine or specific antiviral treatment for dengue is available. DENV interacts with host cell factors to complete its life cycle although this virus-host interplay remains to be fully elucidated. Many studies have identified the ubiquitin proteasome pathway (UPP) to be important for successful DENV production, but how the UPP contributes to DENV life cycle as host factors remains ill defined. We show here that proteasome inhibition decouples infectious virus production from viral RNA replication in antibody-dependent infection of THP-1 cells. Molecular and imaging analyses in β-lactone treated THP-1 cells suggest that proteasome function does not prevent virus assembly but rather DENV egress. Intriguingly, the licensed proteasome inhibitor, bortezomib, is able to inhibit DENV titers at low nanomolar drug concentrations for different strains of all four serotypes of DENV in primary monocytes. Furthermore, bortezomib treatment of DENV-infected mice inhibited the spread of DENV in the spleen as well as the overall pathological changes. Our findings suggest that preventing DENV egress through proteasome inhibition could be a suitable therapeutic strategy against dengue. PMID:26565697

  13. Proteasome Inhibition Suppresses Dengue Virus Egress in Antibody Dependent Infection.

    PubMed

    Choy, Milly M; Zhang, Summer L; Costa, Vivian V; Tan, Hwee Cheng; Horrevorts, Sophie; Ooi, Eng Eong

    2015-11-01

    The mosquito-borne dengue virus (DENV) is a cause of significant global health burden, with an estimated 390 million infections occurring annually. However, no licensed vaccine or specific antiviral treatment for dengue is available. DENV interacts with host cell factors to complete its life cycle although this virus-host interplay remains to be fully elucidated. Many studies have identified the ubiquitin proteasome pathway (UPP) to be important for successful DENV production, but how the UPP contributes to DENV life cycle as host factors remains ill defined. We show here that proteasome inhibition decouples infectious virus production from viral RNA replication in antibody-dependent infection of THP-1 cells. Molecular and imaging analyses in β-lactone treated THP-1 cells suggest that proteasome function does not prevent virus assembly but rather DENV egress. Intriguingly, the licensed proteasome inhibitor, bortezomib, is able to inhibit DENV titers at low nanomolar drug concentrations for different strains of all four serotypes of DENV in primary monocytes. Furthermore, bortezomib treatment of DENV-infected mice inhibited the spread of DENV in the spleen as well as the overall pathological changes. Our findings suggest that preventing DENV egress through proteasome inhibition could be a suitable therapeutic strategy against dengue. PMID:26565697

  14. New orally active proteasome inhibitors in multiple myeloma.

    PubMed

    Allegra, Alessandro; Alonci, Andrea; Gerace, Demetrio; Russo, Sabina; Innao, Vanessa; Calabrò, Laura; Musolino, Caterina

    2014-01-01

    Bortezomib is the first proteasome inhibitor approved for the therapy of multiple myeloma (MM). Although Bortezomib has renovated the treatment of MM, a considerable proportion of subjects fail to respond to Bortezomib treatment and almost all patients relapse from this drug either alone or when used in combination therapies. However, the good clinical outcome of Bortezomib treatment in MM patients gave impulsion for the development of second generation proteasome inhibitors with the ambition of improving efficacy of proteasome inhibition, enhancing antitumor activity, and decreasing toxicity, as well as providing flexible dosing schedules and patient convenience. This review provides an overview of the role of oral proteasome inhibitors including Marizomib, Oprozomib, Delanzomib, chemical proteasome inhibitors, and cinnabaramides, in the therapy of MM, focusing on developments over the past five years. These emerging drugs with different mechanisms of action have exhibited promising antitumor activity in patients with relapsed/refractory MM, and they are creating chances to target multiple pathways, overcome resistance, and improve clinical outcomes, mainly for those subjects who are refractory to approved agents. Future steps in the clinical development of oral inhibitors include the optimization of the schedule and the definition of their antitumor activity in MM. PMID:24239172

  15. Structural disorder and its role in proteasomal degradation.

    PubMed

    Aufderheide, Antje; Unverdorben, Pia; Baumeister, Wolfgang; Förster, Friedrich

    2015-09-14

    The ubiquitin proteasome system is responsible for the controlled degradation of a vast number of intracellular proteins. It targets misfolded or otherwise aberrant proteins as well as proteins no longer needed at a given point in time. The 26S proteasome is a large macromolecular machine comprising 33 distinct subunits as well as a number of transiently associating cofactors. Being essentially a non-specific protease, specificity is conferred by the ubiquitin system, which selects and marks substrates for degradation. Here, we review our current understanding of the structure and function of the 26S proteasome; in doing so we highlight the role of disordered protein regions. Disordered segments in substrates promote their degradation, whereas low complexity regions prevent their proteolysis. In the 26S proteasome itself a main role of disordered segments seems to be rendering the ubiquitin receptors mobile, possibly supporting recruitment of polyubiquitylated substrates. Thus, these structural features of substrates as well as of the 26S proteasome itself likely play important roles at different stages of the protein degradation process. PMID:26226424

  16. Quiescent fibroblasts are protected from proteasome inhibition–mediated toxicity

    PubMed Central

    Legesse-Miller, Aster; Raitman, Irene; Haley, Erin M.; Liao, Albert; Sun, Lova L.; Wang, David J.; Krishnan, Nithya; Lemons, Johanna M. S.; Suh, Eric J.; Johnson, Elizabeth L.; Lund, Benjamin A.; Coller, Hilary A.

    2012-01-01

    Proteasome inhibition is used as a treatment strategy for multiple types of cancers. Although proteasome inhibition can induce apoptotic cell death in actively proliferating cells, it is less effective in quiescent cells. In this study, we used primary human fibroblasts as a model system to explore the link between the proliferative state of a cell and proteasome inhibition–mediated cell death. We found that proliferating and quiescent fibroblasts have strikingly different responses to MG132, a proteasome inhibitor; proliferating cells rapidly apoptosed, whereas quiescent cells maintained viability. Moreover, MG132 treatment of proliferating fibroblasts led to increased superoxide anion levels, juxtanuclear accumulation of ubiquitin- and p62/SQSTM1-positive protein aggregates, and apoptotic cell death, whereas MG132-treated quiescent cells displayed fewer juxtanuclear protein aggregates, less apoptosis, and higher levels of mitochondrial superoxide dismutase. In both cell states, reducing reactive oxygen species with N-acetylcysteine lessened protein aggregation and decreased apoptosis, suggesting that protein aggregation promotes apoptosis. In contrast, increasing cellular superoxide levels with 2-methoxyestradiol treatment or inhibition of autophagy/lysosomal pathways with bafilomycin A1 sensitized serum-starved quiescent cells to MG132-induced apoptosis. Thus, antioxidant defenses and the autophagy/lysosomal pathway protect serum-starved quiescent fibroblasts from proteasome inhibition–induced cytotoxicity. PMID:22875985

  17. Targeting Tumor Ubiquitin-Proteasome Pathway with Polyphenols for Chemosensitization

    PubMed Central

    Shen, Min; Chan, Tak Hang; Dou, Q. Ping

    2012-01-01

    The development of tumor drug resistance is one of the biggest obstacles on the way to achieve a favorable outcome of chemotherapy. Among various strategies that have been explored to overcome drug resistance, the combination of current chemotherapy with plant polyphenols as a chemosensitizer has emerged as a promising one. Plant polyphenols are a group of phytochemicals characterized by the presence of more than one phenolic group. Mechanistic studies suggest that polyphenols have multiple intracellular targets, one of which is the proteasome complex. The proteasome is a proteolytic enzyme complex responsible for intracellular protein degradation and has been shown to play an important role in tumor growth and the development of drug resistance. Therefore, proteasome inhibition by plant polyphenols could be one of the mechanisms contributing to their chemosensitizing effect. Plant polyphenols that have been identified to possess proteasome-inhibitory activity include (−)-epigallocatechins-3-gallate (EGCG), genistein, luteolin, apigenin, chrysin, quercetin, curcumin and tannic acid. These polyphenols have exhibited an appreciable effect on overcoming resistance to various chemotherapeutic drugs as well as multidrug resistance in a broad spectrum of tumors ranging from carcinoma and sarcoma to hematological malignances. The in vitro and in vivo studies on polyphenols with proteasome-inhibitory activity have built a solid foundation to support the idea that they could serve as a chemosensitizer for the treatment of cancer. In-depth mechanistic studies and identification of optimal regimen are needed in order to eventually translate this laboratory concept into clinical trials to actually benefit current chemotherapy. PMID:22292765

  18. Production and decay properties of the 1.9-s isomeric state in {sup 261}Rf

    SciTech Connect

    Haba, H.; Kaji, D.; Kikunaga, H.; Kudou, Y.; Morimoto, K.; Morita, K.; Ozeki, K.; Sumita, T.; Yoneda, A.; Kasamatsu, Y.; Komori, Y.; Ooe, K.; Shinohara, A.

    2011-03-15

    The 1.9-s isomeric state ({sup 261}Rf{sup b}) in {sup 261}Rf was directly populated in the {sup 248}Cm({sup 18}O,5n){sup 261}Rf{sup b} reaction. Alpha and spontaneous fission (SF) decays of {sup 261}Rf{sup b}, as well as the 68-s state {sup 261}Rf{sup a}, was investigated with a rotating wheel apparatus under low background conditions attained by a gas-jet transport system coupled to the RIKEN gas-filled recoil ion separator. An identification of {sup 261}Rf{sup b} was based on {alpha}-{alpha} correlations linking {alpha} decays of {sup 261}Rf{sup b} and its daughter {sup 257}No. The {alpha}-particle energy of {sup 261}Rf{sup b} was measured to be 8.52 {+-} 0.05 MeV. The half-life was determined to be 1.9 {+-} 0.4 s based on both 8.52-MeV {alpha} and SF decays. The {alpha} and SF branches are 0.27 {+-} 0.06 and 0.73 {+-} 0.06, respectively. The cross section for the {sup 248}Cm({sup 18}O,5n){sup 261}Rf{sup b} reaction is {sigma}({sup 261}Rf{sup b}) = 11 {+-} 2 nb at 95.1 MeV, which gives a cross-section ratio of {sigma}({sup 261}Rf{sup a})/{sigma}({sup 261}Rf{sup b}) = 1.1 {+-} 0.2.

  19. The initiator caspase Dronc is subject of enhanced autophagy upon proteasome impairment in Drosophila.

    PubMed

    Lee, T V; Kamber Kaya, H E; Simin, R; Baehrecke, E H; Bergmann, A

    2016-09-01

    A major function of ubiquitylation is to deliver target proteins to the proteasome for degradation. In the apoptotic pathway in Drosophila, the inhibitor of apoptosis protein 1 (Diap1) regulates the activity of the initiator caspase Dronc (death regulator Nedd2-like caspase; caspase-9 ortholog) by ubiquitylation, supposedly targeting Dronc for degradation by the proteasome. Using a genetic approach, we show that Dronc protein fails to accumulate in epithelial cells with impaired proteasome function suggesting that it is not degraded by the proteasome, contrary to the expectation. Similarly, decreased autophagy, an alternative catabolic pathway, does not result in increased Dronc protein levels. However, combined impairment of the proteasome and autophagy triggers accumulation of Dronc protein levels suggesting that autophagy compensates for the loss of the proteasome with respect to Dronc turnover. Consistently, we show that loss of the proteasome enhances endogenous autophagy in epithelial cells. We propose that enhanced autophagy degrades Dronc if proteasome function is impaired. PMID:27104928

  20. Profiling human protein degradome delineates cellular responses to proteasomal inhibition and reveals a feedback mechanism in regulating proteasome homeostasis.

    PubMed

    Yu, Tao; Tao, Yonghui; Yang, Meiqiang; Chen, Peng; Gao, Xiaobo; Zhang, Yanbo; Zhang, Tao; Chen, Zi; Hou, Jian; Zhang, Yan; Ruan, Kangcheng; Wang, Hongyan; Hu, Ronggui

    2014-10-01

    Global change in protein turnover (protein degradome) constitutes a central part of cellular responses to intrinsic or extrinsic stimuli. However, profiling protein degradome remains technically challenging. Recently, inhibition of the proteasome, e.g., by using bortezomib (BTZ), has emerged as a major chemotherapeutic strategy for treating multiple myeloma and other human malignancies, but systematic understanding of the mechanisms for BTZ drug action and tumor drug resistance is yet to be achieved. Here we developed and applied a dual-fluorescence-based Protein Turnover Assay (ProTA) to quantitatively profile global changes in human protein degradome upon BTZ-induced proteasomal inhibition. ProTA and subsequent network analyses delineate potential molecular basis for BTZ action and tumor drug resistance in BTZ chemotherapy. Finally, combined use of BTZ with drugs targeting the ProTA-identified key genes or pathways in BTZ action reduced BTZ resistance in multiple myeloma cells. Remarkably, BTZ stabilizes proteasome subunit PSMC1 and proteasome assembly factor PSMD10, suggesting a previously under-appreciated mechanism for regulating proteasome homeostasis. Therefore, ProTA is a novel tool for profiling human protein degradome to elucidate potential mechanisms of drug action and resistance, which might facilitate therapeutic development targeting proteostasis to treat human disorders. PMID:25223703

  1. The 26S Proteasome and Initiation of Gene Transcription

    PubMed Central

    Durairaj, Geetha; Kaiser, Peter

    2014-01-01

    Transcription activation is the foremost step of gene expression and is modulated by various factors that act in synergy. Misregulation of this process and its associated factors has severe effects and hence requires strong regulatory control. In recent years, growing evidence has highlighted the 26S proteasome as an important contributor to the regulation of transcription initiation. Well known for its role in protein destruction, its contribution to protein synthesis was initially viewed with skepticism. However, studies over the past several years have established the proteasome as an important component of transcription initiation through proteolytic and non-proteolytic activities. In this review, we discuss findings made so far in understanding the connections between transcription initiation and the 26S proteasome complex. PMID:25211636

  2. Transcriptional upregulation of BAG3 upon proteasome inhibition

    SciTech Connect

    Wang Huaqin Liu Haimei; Zhang Haiyan; Guan Yifu; Du Zhenxian

    2008-01-11

    Proteasome inhibitors exhibit antitumoral activity against malignancies of different histology. Emerging evidence indicates that antiapoptotic factors may also accumulate as a consequence of exposure to these drugs, thus it seems plausible that activation of survival signaling cascades might compromise their antitumoral effects. Bcl-2-associated athanogene (BAG) family proteins are characterized by their property of interaction with a variety of partners involved in modulating the proliferation/death balance, including heat shock proteins (HSP), Bcl-2, Raf-1. In this report, we demonstrated that BAG3 is a novel antiapoptotic molecule induced by proteasome inhibitors in various cancer cells at the transcriptional level. Moreover, we demonstrated that BAG3 knockdown by siRNA sensitized cancer cells to MG132-induced apoptosis. Taken together, our results suggest that BAG3 induction might represents as an unwanted molecular consequence of utilizing proteasome inhibitors to combat tumors.

  3. A novel proteasome inhibitor NPI-0052 as an anticancer therapy

    PubMed Central

    Chauhan, D; Hideshima, T; Anderson, K C

    2006-01-01

    Proteasome inhibitor Bortezomib/Velcade has emerged as an effective anticancer therapy for the treatment of relapsed and/or refractory multiple myeloma (MM), but prolonged treatment can be associated with toxicity and development of drug resistance. In this review, we discuss the recent discovery of a novel proteasome inhibitor, NPI-0052, that is distinct from Bortezomib in its chemical structure, mechanisms of action, and effects on proteasomal activities; most importantly, it overcomes resistance to conventional and Bortezomib therapies. In vivo studies using human MM xenografts shows that NPI-0052 is well tolerated, prolongs survival, and reduces tumour recurrence. These preclinical studies provided the basis for Phase-I clinical trial of NPI-0052 in relapsed/refractory MM patients. PMID:17047643

  4. Proteasome inhibitors - molecular basis and current perspectives in multiple myeloma.

    PubMed

    Kubiczkova, Lenka; Pour, Ludek; Sedlarikova, Lenka; Hajek, Roman; Sevcikova, Sabina

    2014-06-01

    Inhibition of proteasome, a proteolytic complex responsible for the degradation of ubiquitinated proteins, has emerged as a powerful strategy for treatment of multiple myeloma (MM), a plasma cell malignancy. First-in-class agent, bortezomib, has demonstrated great positive therapeutic efficacy in MM, both in pre-clinical and in clinical studies. However, despite its high efficiency, a large proportion of patients do not achieve sufficient clinical response. Therefore, the development of a second-generation of proteasome inhibitors (PIs) with improved pharmacological properties was needed. Recently, several of these new agents have been introduced into clinics including carfilzomib, marizomib and ixazomib. Further, new orally administered second-generation PI oprozomib is being investigated. This review provides an overview of main mechanisms of action of PIs in MM, focusing on the ongoing development and progress of novel anti-proteasome therapeutics. PMID:24712303

  5. The Regulatory Particle of the Saccharomyces cerevisiae Proteasome

    PubMed Central

    Glickman, Michael H.; Rubin, David M.; Fried, Victor A.; Finley, Daniel

    1998-01-01

    The proteasome is a multisubunit protease responsible for degrading proteins conjugated to ubiquitin. The 670-kDa core particle of the proteasome contains the proteolytic active sites, which face an interior chamber within the particle and are thus protected from the cytoplasm. The entry of substrates into this chamber is thought to be governed by the regulatory particle of the proteasome, which covers the presumed channels leading into the interior of the core particle. We have resolved native yeast proteasomes into two electrophoretic variants and have shown that these represent core particles capped with one or two regulatory particles. To determine the subunit composition of the regulatory particle, yeast proteasomes were purified and analyzed by gradient sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Resolution of the individual polypeptides revealed 17 distinct proteins, whose identities were determined by amino acid sequence analysis. Six of the subunits have sequence features of ATPases (Rpt1 to Rpt6). Affinity chromatography was used to purify regulatory particles from various strains, each of which expressed one of the ATPases tagged with hexahistidine. In all cases, multiple untagged ATPases copurified, indicating that the ATPases assembled together into a heteromeric complex. Of the remaining 11 subunits that we have identified (Rpn1 to Rpn3 and Rpn5 to Rpn12), 8 are encoded by previously described genes and 3 are encoded by genes not previously characterized for yeasts. One of the previously unidentified subunits exhibits limited sequence similarity with deubiquitinating enzymes. Overall, regulatory particles from yeasts and mammals are remarkably similar, suggesting that the specific mechanistic features of the proteasome have been closely conserved over the course of evolution. PMID:9584156

  6. Impaired methylation as a novel mechanism for proteasome suppression in liver cells

    SciTech Connect

    Osna, Natalia A.; White, Ronda L.; Donohue, Terrence M.; Beard, Michael R.; Tuma, Dean J.; Kharbanda, Kusum K.

    2010-01-08

    The proteasome is a multi-catalytic protein degradation enzyme that is regulated by ethanol-induced oxidative stress; such suppression is attributed to CYP2E1-generated metabolites. However, under certain conditions, it appears that in addition to oxidative stress, other mechanisms are also involved in proteasome regulation. This study investigated whether impaired protein methylation that occurs during exposure of liver cells to ethanol, may contribute to suppression of proteasome activity. We measured the chymotrypsin-like proteasome activity in Huh7CYP cells, hepatocytes, liver cytosols and nuclear extracts or purified 20S proteasome under conditions that maintain or prevent protein methylation. Reduction of proteasome activity of hepatoma cell and hepatocytes by ethanol or tubercidin was prevented by simultaneous treatment with S-adenosylmethionine (SAM). Moreover, the tubercidin-induced decline in proteasome activity occurred in both nuclear and cytosolic fractions. In vitro exposure of cell cytosolic fractions or highly purified 20S proteasome to low SAM:S-adenosylhomocysteine (SAH) ratios in the buffer also suppressed proteasome function, indicating that one or more methyltransferase(s) may be associated with proteasomal subunits. Immunoblotting a purified 20S rabbit red cell proteasome preparation using methyl lysine-specific antibodies revealed a 25 kDa proteasome subunit that showed positive reactivity with anti-methyl lysine. This reactivity was modified when 20S proteasome was exposed to differential SAM:SAH ratios. We conclude that impaired methylation of proteasome subunits suppressed proteasome activity in liver cells indicating an additional, yet novel mechanism of proteasome activity regulation by ethanol.

  7. Subunit specific inhibitors of proteasomes and their potential for immunomodulation

    PubMed Central

    Kisselev, Alexei F; Groettrup, Marcus

    2015-01-01

    Specialized variants of the constitutive 20S proteasome in the immune system like the immunoproteasomes and the thymoproteasome contain active site-bearing subunits which differ in their cleavage priorities and substrate binding pockets. The immunoproteasome plays a crucial role in antigen processing and for the differentiation of pro-inflammatory T helper cells which are involved in the pathogenesis of autoimmunity. Selective inhibitors of the immunoproteasome and constitutive proteasome have recently been generated which interfere with the development and progression of autoimmune diseases. Here we describe these inhibitors and their therapeutic potential as predicted from preclinical models. PMID:25217863

  8. Characterization of peptidyl boronic acid inhibitors of mammalian 20 S and 26 S proteasomes and their inhibition of proteasomes in cultured cells.

    PubMed Central

    Gardner, R C; Assinder, S J; Christie, G; Mason, G G; Markwell, R; Wadsworth, H; McLaughlin, M; King, R; Chabot-Fletcher, M C; Breton, J J; Allsop, D; Rivett, A J

    2000-01-01

    Proteasomes are large multisubunit proteinases which have several distinct catalytic sites. In this study a series of di- and tri-peptidyl boronic acids have been tested on the chymotrypsin-like activity of purified mammalian 20 S and 26 S proteasomes assayed with succinyl-Leu-Leu-Val-Tyr-amidomethylcoumarin (suc-Leu-Leu-Val-Tyr-AMC) as substrate. The inhibition of 20 S proteasomes is competitive but only slowly reversible. The K(i) values for the best inhibitors were in the range 10-100 nM with suc-Leu-Leu-Val-Tyr-AMC as substrate, but the compounds tested were much less effective on other proteasome activities measured with other substrates. Free boronic acid inhibitors exhibited equivalent potency to their pinacol esters. Both benzoyl (Bz)-Phe-boroLeu and benzyloxycarbonyl (Cbz)-Leu-Leu-boroLeu pinacol ester inhibited 20 S and 26 S proteasomes with non-ideal behaviour, differences in inhibition of the two forms of proteasomes becoming apparent at high inhibitor concentrations (above 3xK(i)). Both of these compounds were also potent inhibitors of 20 S and 26 S proteasomes in cultured cells. However, gel filtration of cell extracts prepared from cells treated with radiolabelled phenacetyl-Leu-Leu-boroLeu showed that only 20 S proteasomes were strongly labelled, demonstrating differences in the characteristics of inhibition of 20 S and 26 S proteasomes. The usefulness of peptidyl boronic acid inhibitors for investigations of proteasome-mediated protein degradation was confirmed by the observation that Bz-Phe-boroLeu and Cbz-Leu-Leu-boroLeu pinacol ester inhibited NFkappaB activation with IC(50) values comparable to their K(i) values for purified proteasomes. The latter result supports the view that the chymotrypsin-like activity of proteasomes assayed with suc-Leu-Leu-Val-Tyr-AMC is a critical one for protein degradation in cells. PMID:10677365

  9. Proteasome function shapes innate and adaptive immune responses.

    PubMed

    Kammerl, Ilona E; Meiners, Silke

    2016-08-01

    The proteasome system degrades more than 80% of intracellular proteins into small peptides. Accordingly, the proteasome is involved in many essential cellular functions, such as protein quality control, transcription, immune responses, cell signaling, and apoptosis. Moreover, degradation products are loaded onto major histocompatibility class I molecules to communicate the intracellular protein composition to the immune system. The standard 20S proteasome core complex contains three distinct catalytic active sites that are exchanged upon stimulation with inflammatory cytokines to form the so-called immunoproteasome. Immunoproteasomes are constitutively expressed in immune cells and have different proteolytic activities compared with standard proteasomes. They are rapidly induced in parenchymal cells upon intracellular pathogen infection and are crucial for priming effective CD8(+) T-cell-mediated immune responses against infected cells. Beyond shaping these adaptive immune reactions, immunoproteasomes also regulate the function of immune cells by degradation of inflammatory and immune mediators. Accordingly, they emerge as novel regulators of innate immune responses. The recently unraveled impairment of immunoproteasome function by environmental challenges and by genetic variations of immunoproteasome genes might represent a currently underestimated risk factor for the development and progression of lung diseases. In particular, immunoproteasome dysfunction will dampen resolution of infections, thereby promoting exacerbations, may foster autoimmunity in chronic lung diseases, and possibly contributes to immune evasion of tumor cells. Novel pharmacological tools, such as site-specific inhibitors of the immunoproteasome, as well as activity-based probes, however, hold promises as innovative therapeutic drugs for respiratory diseases and biomarker profiling, respectively. PMID:27343191

  10. The Ubiquitin-Proteasome Pathway and Synaptic Plasticity

    ERIC Educational Resources Information Center

    Hegde, Ashok N.

    2010-01-01

    Proteolysis by the ubiquitin-proteasome pathway (UPP) has emerged as a new molecular mechanism that controls wide-ranging functions in the nervous system, including fine-tuning of synaptic connections during development and synaptic plasticity in the adult organism. In the UPP, attachment of a small protein, ubiquitin, tags the substrates for…

  11. Ubiquitin/proteasome pathway impairment in neurodegeneration: therapeutic implications

    PubMed Central

    Huang, Qian; Figueiredo-Pereira, Maria E.

    2010-01-01

    The ubiquitin/proteasome pathway is the major proteolytic quality control system in cells. In this review we discuss the impact of a deregulation of this pathway on neuronal function and its causal relationship to the intracellular deposition of ubiquitin protein conjugates in pathological inclusion bodies in all the major chronic neurodegenerative disorders, such as Alzheimer’s, Parkinson’s and Huntington’s diseases as well as amyotrophic lateral sclerosis. We describe the intricate nature of the ubiquitin/proteasome pathway and discuss the paradox of protein aggregation, i.e. its potential toxic/protective effect in neurodegeneration. The relations between some of the dysfunctional components of the pathway and neurodegeneration are presented. We highlight possible ubiquitin/proteasome pathway-targeting therapeutic approaches, such as activating the proteasome, enhancing ubiquitination and promoting SUMOylation that might be important to slow/treat the progression of neurodegeneration. Finally, a model time line is presented for neurodegeneration starting at the initial injurious events up to protein aggregation and cell death, with potential time points for therapeutic intervention. PMID:20131003

  12. Exploring the Ubiquitin-Proteasome Protein Degradation Pathway in Yeast

    ERIC Educational Resources Information Center

    Will, Tamara J.; McWatters, Melissa K.; McQuade, Kristi L.

    2006-01-01

    This article describes an undergraduate biochemistry laboratory investigating the ubiquitin-proteasome pathway in yeast. In this exercise, the enzyme beta-galactosidase (beta-gal) is expressed in yeast under the control of a stress response promoter. Following exposure to heat stress to induce beta-gal expression, cycloheximide is added to halt…

  13. [Antiatherogenic characteristics of korvitin: effect on proteasome activity of the aorta, heart, and blood cells].

    PubMed

    Pashevin, D O; Dosenko, B Ie; Byts', Iu V; Moĭbenko, O O

    2009-01-01

    We studied the changes in proteasomal proteolisis during modelling of rabbit cholesterol-induced atherosclerosis. It was determined that in aorta the TL activity of proteasome increased 2.4-fold (P < 0.05), CTL activity increased by 43%, and PGPG--by 10%. In heart tissue it was observed the increase of CTL proteasome activity by 14%. The application of "Korvitin" (water-soluble form of quercetine) followed by considerable decrease of proteasomal activity both in tissues (aorta and heart) and leucocytes. The intensity ofatherosclerotic changes in aorta was significantly smaller. Obtained data suggest that "Korvitin" reveales angioprotective properties mediated by it effect on proteasomal proteolisis. PMID:19827630

  14. Molecular sequelae of proteasome inhibition in human multiple myeloma cells

    PubMed Central

    Mitsiades, Nicholas; Mitsiades, Constantine S.; Poulaki, Vassiliki; Chauhan, Dharminder; Fanourakis, Galinos; Gu, Xuesong; Bailey, Charles; Joseph, Marie; Libermann, Towia A.; Treon, Steven P.; Munshi, Nikhil C.; Richardson, Paul G.; Hideshima, Teru; Anderson, Kenneth C.

    2002-01-01

    The proteasome inhibitor PS-341 inhibits IκB degradation, prevents NF-κB activation, and induces apoptosis in several types of cancer cells, including chemoresistant multiple myeloma (MM) cells. PS-341 has marked clinical activity even in the setting of relapsed refractory MM. However, PS-341-induced apoptotic cascade(s) are not yet fully defined. By using gene expression profiling, we characterized the molecular sequelae of PS-341 treatment in MM cells and further focused on molecular pathways responsible for the anticancer actions of this promising agent. The transcriptional profile of PS-341-treated cells involved down-regulation of growth/survival signaling pathways, and up-regulation of molecules implicated in proapoptotic cascades (which are both consistent with the proapoptotic effect of proteasome inhibition), as well as up-regulation of heat-shock proteins and ubiquitin/proteasome pathway members (which can correspond to stress responses against proteasome inhibition). Further studies on these pathways showed that PS-341 decreases the levels of several antiapoptotic proteins and triggers a dual apoptotic pathway of mitochondrial cytochrome c release and caspase-9 activation, as well as activation of Jun kinase and a Fas/caspase-8-dependent apoptotic pathway [which is inhibited by a dominant negative (decoy) Fas construct]. Stimulation with IGF-1, as well as overexpression of Bcl-2 or constitutively active Akt in MM cells also modestly attenuates PS-341-induced cell death, whereas inhibitors of the BH3 domain of Bcl-2 family members or the heat-shock protein 90 enhance tumor cell sensitivity to proteasome inhibition. These data provide both insight into the molecular mechanisms of antitumor activity of PS-341 and the rationale for future clinical trials of PS-341, in combination with conventional and novel therapies, to improve patient outcome in MM. PMID:12391322

  15. Open-gate mutants of the mammalian proteasome show enhanced ubiquitin-conjugate degradation

    PubMed Central

    Choi, Won Hoon; de Poot, Stefanie A. H.; Lee, Jung Hoon; Kim, Ji Hyeon; Han, Dong Hoon; Kim, Yun Kyung; Finley, Daniel; Lee, Min Jae

    2016-01-01

    When in the closed form, the substrate translocation channel of the proteasome core particle (CP) is blocked by the convergent N termini of α-subunits. To probe the role of channel gating in mammalian proteasomes, we deleted the N-terminal tail of α3; the resulting α3ΔN proteasomes are intact but hyperactive in the hydrolysis of fluorogenic peptide substrates and the degradation of polyubiquitinated proteins. Cells expressing the hyperactive proteasomes show markedly elevated degradation of many established proteasome substrates and resistance to oxidative stress. Multiplexed quantitative proteomics revealed ∼200 proteins with reduced levels in the mutant cells. Potentially toxic proteins such as tau exhibit reduced accumulation and aggregate formation. These data demonstrate that the CP gate is a key negative regulator of proteasome function in mammals, and that opening the CP gate may be an effective strategy to increase proteasome activity and reduce levels of toxic proteins in cells. PMID:26957043

  16. Open-gate mutants of the mammalian proteasome show enhanced ubiquitin-conjugate degradation.

    PubMed

    Choi, Won Hoon; de Poot, Stefanie A H; Lee, Jung Hoon; Kim, Ji Hyeon; Han, Dong Hoon; Kim, Yun Kyung; Finley, Daniel; Lee, Min Jae

    2016-01-01

    When in the closed form, the substrate translocation channel of the proteasome core particle (CP) is blocked by the convergent N termini of α-subunits. To probe the role of channel gating in mammalian proteasomes, we deleted the N-terminal tail of α3; the resulting α3ΔN proteasomes are intact but hyperactive in the hydrolysis of fluorogenic peptide substrates and the degradation of polyubiquitinated proteins. Cells expressing the hyperactive proteasomes show markedly elevated degradation of many established proteasome substrates and resistance to oxidative stress. Multiplexed quantitative proteomics revealed ∼ 200 proteins with reduced levels in the mutant cells. Potentially toxic proteins such as tau exhibit reduced accumulation and aggregate formation. These data demonstrate that the CP gate is a key negative regulator of proteasome function in mammals, and that opening the CP gate may be an effective strategy to increase proteasome activity and reduce levels of toxic proteins in cells. PMID:26957043

  17. The 26S proteasome is a multifaceted target for anti-cancer therapies.

    PubMed

    Grigoreva, Tatyana A; Tribulovich, Vyacheslav G; Garabadzhiu, Alexander V; Melino, Gerry; Barlev, Nickolai A

    2015-09-22

    Proteasomes play a critical role in the fate of proteins that are involved in major cellular processes, including signal transduction, gene expression, cell cycle, replication, differentiation, immune response, cellular response to stress, etc. In contrast to non-specific degradation by lysosomes, proteasomes are highly selective and destroy only the proteins that are covalently labelled with small proteins, called ubiquitins. Importantly, many diseases, including neurodegenerative diseases and cancers, are intimately connected to the activity of proteasomes making them an important pharmacological target. Currently, the vast majority of inhibitors are aimed at blunting the proteolytic activities of proteasomes. However, recent achievements in solving structures of proteasomes at very high resolution provided opportunities to design new classes of small molecules that target other physiologically-important enzymatic activities of proteasomes, including the de-ubiquitinating one. This review attempts to catalog the information available to date about novel classes of proteasome inhibitors that may have important pharmacological ramifications. PMID:26295307

  18. The 26S proteasome is a multifaceted target for anti-cancer therapies

    PubMed Central

    Grigoreva, Tatyana A; Tribulovich, Vyacheslav G.; Garabadzhiu, Alexander V.; Melino, Gerry; Barlev, Nickolai A.

    2015-01-01

    Proteasomes play a critical role in the fate of proteins that are involved in major cellular processes, including signal transduction, gene expression, cell cycle, replication, differentiation, immune response, cellular response to stress, etc. In contrast to non-specific degradation by lysosomes, proteasomes are highly selective and destroy only the proteins that are covalently labelled with small proteins, called ubiquitins. Importantly, many diseases, including neurodegenerative diseases and cancers, are intimately connected to the activity of proteasomes making them an important pharmacological target. Currently, the vast majority of inhibitors are aimed at blunting the proteolytic activities of proteasomes. However, recent achievements in solving structures of proteasomes at very high resolution provided opportunities to design new classes of small molecules that target other physiologically-important enzymatic activities of proteasomes, including the de-ubiquitinating one. This review attempts to catalog the information available to date about novel classes of proteasome inhibitors that may have important pharmacological ramifications. PMID:26295307

  19. Implications for proteasome nuclear localization revealed by the structure of the nuclear proteasome tether protein Cut8

    PubMed Central

    Takeda, Kojiro; Tonthat, Nam K.; Glover, Tiffany; Xu, Weijun; Koonin, Eugene V.; Yanagida, Mitsuhiro; Schumacher, Maria A.

    2011-01-01

    Degradation of nuclear proteins by the 26S proteasome is essential for cell viability. In yeast, the nuclear envelope protein Cut8 mediates nuclear proteasomal sequestration by an uncharacterized mechanism. Here we describe structures of Schizosaccharomyces pombe Cut8, which shows that it contains a unique, modular fold composed of an extended N-terminal, lysine-rich segment that when ubiquitinated binds the proteasome, a dimer domain followed by a six-helix bundle connected to a flexible C tail. The Cut8 six-helix bundle shows structural similarity to 14-3-3 phosphoprotein-binding domains, and binding assays show that this domain is necessary and sufficient for liposome and cholesterol binding. Moreover, specific mutations in the 14-3-3 regions corresponding to putative cholesterol recognition/interaction amino acid consensus motifs abrogate cholesterol binding. In vivo studies confirmed that the 14-3-3 region is necessary for Cut8 membrane localization and that dimerization is critical for its function. Thus, the data reveal the Cut8 organization at the nuclear envelope. Reconstruction of Cut8 evolution suggests that it was present in the last common ancestor of extant eukaryotes and accordingly that nuclear proteasomal sequestration is an ancestral eukaryotic feature. The importance of Cut8 for cell viability and its absence in humans suggests it as a possible target for the development of specific chemotherapeutics against invasive fungal infections. PMID:21976488

  20. Gene therapy by proteasome activator, PA28γ, improves motor coordination and proteasome function in Huntington's disease YAC128 mice.

    PubMed

    Jeon, J; Kim, W; Jang, J; Isacson, O; Seo, H

    2016-06-01

    Huntington's disease (HD) is neurologically characterized by involuntary movements, associated with degeneration of the medium-sized spiny neurons (MSNs) and ubiquitin-positive neuronal intranuclear inclusions (NIIs). It has been reported that the proteolytic activities of the ubiquitin-proteasome system (UPS) are generally inhibited in HD patient's brain. We previously discovered that a proteasome activator (PA), PA28γ enhances proteasome activities and cell survival in in vitro HD model. In this study, we aimed to find whether PA28γ gene transfer improves the proteasome activities and pathological symptoms in in vivo HD model. We stereotaxically injected lenti-PA28γ virus into the striatum of mutant (MT) YAC128 HD mice and littermate (LM) controls at 14-18months of age, and validated their behavioral and biochemical changes at 12weeks after the injection. YAC128 mice showed a significant increase in their peptidyl-glutamyl preferring hydrolytic (PGPH) proteasome activity and the mRNA or protein levels of brain-derived neurotrophic factor (BDNF) and pro-BDNF after lenti-PA28γ injection. The number of ubiquitin-positive inclusion bodies was reduced in the striatum of YAC128 mice after lenti-PA28γ injection. YAC128 mice showed significant improvement of latency to fall on the rota-rod test after lenti-PA28γ injection. These data demonstrate that the gene therapy with PA, PA28γ can improve UPS function as well as behavioral abnormalities in HD model mice. PMID:26944602

  1. Pyruvate dehydrogenase/sub b/ phosphatase inhibition by NADH and dihydrolipoamide along with effects of and capacity for binding the phosphatase to the bovine kidney transacetylase-protein X subcomplex

    SciTech Connect

    Roche, T.E.; Rahmatullah, M.; Maher, J.

    1986-05-01

    NADH inhibits PDH/sub b/ phosphatase activity when /sup 32/P-PDH is associated with the intact complex but not when /sup 32/P-PDH is prepared free of other components of the complex. Addition of the transacetylase-protein X (E2-X) subcomplex both activated the phosphatase and restored NADH inhibition. Low levels of dihydrolipoyl dehydrogenase associated with the subcomplex might be required for NADH inhibition. Dihydrolipoamide gave inhibition of the phosphatase equivalent to NADH and the combination did not give additional inhibition suggesting a common mechanism. Pretreatment of phosphorylated complex and phosphatase with 2.0 mM dithiothreitol nearly eliminated inhibition of the phosphatase by NADH or dihydrolipoamide. Strong arsenite inhibition of phosphatase activity occurred only in the presence of NADH suggesting modification of thiols reduced by NADH can alter phosphatase activity. Only about 6 molecules of purified phosphatase could be activated by 1 molecule of E2-X subcomplex (initial velocities measured in 15s period). Since that corresponded to the number of protein X rather than E2 subunits, protein X may contribute to the Ca/sup 2 +/-dependent binding of the phosphatase. Since protein X also contains a lipoyl moiety, it may also contribute to NADH inhibition of the phosphatase.

  2. Roles for both FtsA and the FtsBLQ subcomplex in FtsN-stimulated cell constriction in Escherichia coli

    PubMed Central

    Liu, Bing; Persons, Logan; Lee, Lynda; de Boer, Piet A. J.

    2015-01-01

    SUMMARY Escherichia coli FtsN is a bitopic membrane protein that is essential for triggering active cell constriction. A small periplasmic subdomain (EFtsN) is required and sufficient for function, but its mechanism of action is unclear. We isolated extragenic EFtsN*-suppressing mutations that restore division in cells producing otherwise non-functional variants of FtsN. These mapped to the IC domain of FtsA in the cytoplasm and to small subdomains of the FtsB and FtsL proteins in the periplasm. All FtsB and FtsL variants allowed survival without EFtsN, but many then imposed a new requirement for interaction between the cytoplasmic domain of FtsN (NFtsN) with FtsA. Alternatively, variants of FtsA, FtsB or FtsL acted synergistically to allow cell division in the complete absence of FtsN. Strikingly, moreover, substitution of a single residue in FtsB (E56) proved sufficient to rescue ΔftsN cells as well. In FtsN+ cells, EFtsN*-suppressing mutations promoted cell fission at an abnormally small cell size, and caused cell shape and integrity defects under certain conditions. This and additional evidence support a model in which FtsN acts on either side of the membrane to induce a conformational switch in both FtsA and the FtsBLQ subcomplex to derepress septal peptidoglycan synthesis and membrane invagination. PMID:25496160

  3. Mutational analysis reveals a role for the C terminus of the proteasome subunit Rpt4p in spindle pole body duplication in Saccharomyces cerevisiae.

    PubMed Central

    McDonald, Heather B; Helfant, Astrid Hoes; Mahony, Erin M; Khosla, Shaun K; Goetsch, Loretta

    2002-01-01

    The ubiquitin/proteasome pathway plays a key role in regulating cell cycle progression. Previously, we reported that a conditional mutation in the Saccharomyces cerevisiae gene RPT4/PCS1, which encodes one of six ATPases in the proteasome 19S cap complex/regulatory particle (RP), causes failure of spindle pole body (SPB) duplication. To improve our understanding of Rpt4p, we created 58 new mutations, 53 of which convert clustered, charged residues to alanine. Virtually all mutations that affect the N-terminal region, which contains a putative nuclear localization signal and coiled-coil motif, result in a wild-type phenotype. Nine mutations that affect the central ATPase domain and the C-terminal region confer recessive lethality. The two conditional mutations identified, rpt4-145 and rpt4-150, affect the C terminus. After shift to high temperature, these mutations generally cause cells to progress slowly through the first cell cycle and to arrest in the second cycle with large buds, a G2 content of DNA, and monopolar spindles, although this phenotype can vary depending on the medium. Additionally, we describe a genetic interaction between RPT4 and the naturally polymorphic gene SSD1, which in wild-type form modifies the rpt4-145 phenotype such that cells arrest in G2 of the first cycle with complete bipolar spindles. PMID:12399382

  4. An adenosine triphosphate-independent proteasome activator contributes to the virulence of Mycobacterium tuberculosis

    DOE PAGESBeta

    Jastrab, Jordan B.; Wang, Tong; Murphy, J. Patrick; Bai, Lin; Hu, Kuan; Merkx, Remco; Huang, Jessica; Chatterjee, Champak; Ovaa, Huib; Gygi, Steven P.; et al

    2015-03-23

    Mycobacterium tuberculosis encodes a proteasome that is highly similar to eukaryotic proteasomes and is required to cause lethal infections in animals. The only pathway known to target proteins for proteasomal degradation in bacteria is pupylation, which is functionally analogous to eukaryotic ubiquitylation. However, evidence suggests that the M. tuberculosis proteasome contributes to pupylation-independent pathways as well. To identify new proteasome cofactors that might contribute to such pathways, we isolated proteins that bound to proteasomes overproduced in M. tuberculosis and found a previously uncharacterized protein, Rv3780, which formed rings and capped M. tuberculosis proteasome core particles. Rv3780 enhanced peptide and proteinmore » degradation by proteasomes in an adenosine triphosphate (ATP)-independent manner. We identified putative Rv3780-dependent proteasome substrates and found that Rv3780 promoted robust degradation of the heat shock protein repressor, HspR. Importantly, an M. tuberculosis Rv3780 mutant had a general growth defect, was sensitive to heat stress, and was attenuated for growth in mice. Collectively, these data demonstrate that ATP-independent proteasome activators are not confined to eukaryotes and can contribute to the virulence of one the world’s most devastating pathogens.« less

  5. An adenosine triphosphate-independent proteasome activator contributes to the virulence of Mycobacterium tuberculosis

    SciTech Connect

    Jastrab, Jordan B.; Wang, Tong; Murphy, J. Patrick; Bai, Lin; Hu, Kuan; Merkx, Remco; Huang, Jessica; Chatterjee, Champak; Ovaa, Huib; Gygi, Steven P.; Li, Huilin; Darwin, K. Heran

    2015-03-23

    Mycobacterium tuberculosis encodes a proteasome that is highly similar to eukaryotic proteasomes and is required to cause lethal infections in animals. The only pathway known to target proteins for proteasomal degradation in bacteria is pupylation, which is functionally analogous to eukaryotic ubiquitylation. However, evidence suggests that the M. tuberculosis proteasome contributes to pupylation-independent pathways as well. To identify new proteasome cofactors that might contribute to such pathways, we isolated proteins that bound to proteasomes overproduced in M. tuberculosis and found a previously uncharacterized protein, Rv3780, which formed rings and capped M. tuberculosis proteasome core particles. Rv3780 enhanced peptide and protein degradation by proteasomes in an adenosine triphosphate (ATP)-independent manner. We identified putative Rv3780-dependent proteasome substrates and found that Rv3780 promoted robust degradation of the heat shock protein repressor, HspR. Importantly, an M. tuberculosis Rv3780 mutant had a general growth defect, was sensitive to heat stress, and was attenuated for growth in mice. Collectively, these data demonstrate that ATP-independent proteasome activators are not confined to eukaryotes and can contribute to the virulence of one the world’s most devastating pathogens.

  6. Fellutamide B is a Potent Inhibitor of the Mycobacterium tuberculosis Proteasome

    SciTech Connect

    Lin, G.; Li, D; Chidawanyika, T; Nathan, C; Li, H

    2010-01-01

    Via high-throughput screening of a natural compound library, we have identified a lipopeptide aldehyde, fellutamide B (1), as the most potent inhibitor of the Mycobacterium tuberculosis (Mtb) proteasome tested to date. Kinetic studies reveal that 1 inhibits both Mtb and human proteasomes in a time-dependent manner under steady-state condition. Remarkably, 1 inhibits the Mtb proteasome in a single-step binding mechanism with K{sub i} = 6.8 nM, whereas it inhibits the human proteasome {beta}5 active site following a two-step mechanism with K{sub i} = 11.5 nM and K*{sub i} = 0.93 nM. Co-crystallization of 1 bound to the Mtb proteasome revealed a structural basis for the tight binding of 1 to the active sites of the Mtb proteasome. The hemiacetal group of 1 in the Mtb proteasome takes the (R)-configuration, whereas in the yeast proteasome it takes the (S)-configuration, indicating that the pre-chiral CHO group of 1 binds to the active site Thr1 in a different orientation. Re-examination of the structure of the yeast proteasome in complex with 1 showed significant conformational changes at the substrate-binding cleft along the active site. These structural differences are consistent with the different kinetic mechanisms of 1 against Mtb and human proteasomes.

  7. The Ubiquitin-Proteasome System as a Prospective Molecular Target for Cancer Treatment and Prevention

    PubMed Central

    Chen, Di; Dou, Q. Ping

    2012-01-01

    Proteasomes are large multicatalytic proteinase complexes located in the cytosol and the nucleus of eukaryotic cells. The ubiquitin-proteasome system is responsible for the degradation of most intracellular proteins and therefore plays an essential regulatory role in critical cellular processes including cell cycle progression, proliferation, differentiation, angiogenesis and apoptosis. Besides involving in normal cellular functions and homeostasis, the alteration of proteasomal activity contributes to the pathological states of several clinical disorders including inflammation, neurodegeneration and cancer. It has been reported that human cancer cells possess elevated level of proteasome activity and are more sensitive to proteasome inhibitors than normal cells, indicating that the inhibition of the ubiquitin-proteasome system could be used as a novel approach for cancer therapy. In this review we summarize several specific aspects of research for the proteasome complex, including the structure and catalytic activities of the proteasome, properties and mechanisms of action of various proteasome inhibitors, and finally the clinical development of proteasome inhibitors as novel anticancer agents. PMID:20491623

  8. Distinct specificities of Mycobacterium tuberculosis and mammalian proteasomes for N-acetyl tripeptide substrates.

    PubMed

    Lin, Gang; Tsu, Christopher; Dick, Lawrence; Zhou, Xi K; Nathan, Carl

    2008-12-01

    The proteasome of Mycobacterium tuberculosis (Mtb) is a validated and drug-treatable target for therapeutics. To lay ground-work for developing peptide-based inhibitors with a useful degree of selectivity for the Mtb proteasome over those of the host, we used a library of 5,920 N-acetyl tripeptide-aminomethylcoumarins to contrast the substrate preferences of the recombinant Mtb proteasome wild type and open gate mutant, the Rhodococcus erythropolis proteasome, and the bovine proteasome with activator PA28. The Mtb proteasome was distinctive in strictly preferring P1 = tryptophan, particularly in combination with P3 = glycine, proline, lysine or arginine. Screening results were validated with Michalis-Menten kinetic analyses of 21 oligopeptide aminomethyl-coumarin substrates. Bortezomib, a proteasome inhibitor in clinical use, and 17 analogs varying only at P1 were used to examine the differential impact of inhibitors on human and Mtb proteasomes. The results with the inhibitor panel confirmed those with the substrate panel in demonstrating differential preferences of Mtb and mammalian proteasomes at the P1 amino acid. Changing P1 in bortezomib from Leu to m-CF(3)-Phe led to a 220-fold increase in IC(50) against the human proteasome, whereas changing a P1 Ala to m-F-Phe decreased the IC(50) 400-fold against the Mtb proteasome. The change of a P1 Ala to m-Cl-Phe led to an 8000-fold shift in inhibitory potency in favor of the Mtb proteasome, resulting in 8-fold selectivity. Combinations of preferred amino acids at different sites may thus improve the species selectivity of peptide-based inhibitors that target the Mtb proteasome. PMID:18829465

  9. Bufalin derivative BF211 inhibits proteasome activity in human lung cancer cells in vitro by inhibiting β1 subunit expression and disrupting proteasome assembly

    PubMed Central

    Sun, Peng; Feng, Li-xing; Zhang, Dong-mei; Liu, Miao; Liu, Wang; Mi, Tian; Wu, Wan-ying; Jiang, Bao-hong; Yang, Min; Hu, Li-hong; Guo, De-an; Liu, Xuan

    2016-01-01

    Aim: Bufalin is one of the active components in the traditional Chinese medicine ChanSu that is used to treat arrhythmia, inflammation and cancer. BF211 is a bufalin derivative with stronger cytotoxic activity in cancer cells. The aim of this study was to identify the putative target proteins of BF211 and the signaling pathways in cancer cells. Methods: A549 human lung cancer cells were treated with BF211. A SILAC-based proteomic analysis was used to detect the protein expression profiles of BF211-treated A549 cells. Cellular proteasome activities were examined using fluorogenic peptide substrates, and the binding affinities of BF211 to recombinant proteasome subunit proteins were evaluated using the Biacore assay. The expression levels of proteasome subunits were determined using RT-PCR and Western blotting, and the levels of the integral 26S proteasome were evaluated using native PAGE analysis. Results: The proteomic analysis revealed that 1282 proteins were differentially expressed in BF211-treated A549 cells, and the putative target proteins of BF211 were associated with various cellular functions, including transcription, translation, mRNA splicing, ribosomal protein synthesis and proteasome function. In A549 cells, BF211 (5, 10, and 20 nmol/L) dose-dependently inhibited the enzymatic activities of proteasome. But BF211 displayed a moderate affinity in binding to proteasome β1 subunit and no binding affinity to the β2 and β5 subunits. Moreover, BF211 (0.1, 1, and 10 nmol/L) did not inhibit the proteasome activities in the cell lysates. BF211 (5, 10, and 20 nmol/L) significantly decreased the expression level of proteasome β1 subunit and the levels of integral 26S proteasome in A549 cells. Similarly, knockdown of the β1 subunit with siRNA in A549 cells significantly decreased integral 26S proteasome and proteasome activity. Conclusion: BF211 inhibits proteasome activity in A549 cells by decreasing β1 subunit expression and disrupting proteasome assembly

  10. The ubiquitin-proteasome system regulates plant hormone signaling

    PubMed Central

    Santner, Aaron; Estelle, Mark

    2011-01-01

    SUMMARY Plants utilize the ubiquitin-proteasome system (UPS) to modulate nearly every aspect of growth and development. Ubiquitin is covalently attached to target proteins through the action of three enzymes known as E1, E2, and E3. The ultimate outcome of this post-translational modification depends on the nature of the ubiquitin linkage and the extent of polyubiquitination. In most cases, ubiquitination results in degradation of the target protein in the 26S proteasome. During the last 10 years it has become clear that the UPS plays a prominent regulatory role in hormone biology. E3 ubiquitin ligases in particular actively participate in hormone perception, de-repression of hormone signaling pathways, degradation of hormone specific transcription factors, and regulation of hormone biosynthesis. It is certain that additional functions will be discovered as more of the nearly 1200 potential E3s in plants are elucidated. PMID:20409276

  11. Multiple proteolytic systems, including the proteasome, contribute to CFTR processing.

    PubMed

    Jensen, T J; Loo, M A; Pind, S; Williams, D B; Goldberg, A L; Riordan, J R

    1995-10-01

    The molecular components of the quality control system that rapidly degrades abnormal membrane and secretory proteins have not been identified. The cystic fibrosis transmembrane conductance regulator (CFTR) is an integral membrane protein to which this quality control is stringently applied; approximately 75% of the wild-type precursor and 100% of the delta F508 CFTR variant found in most CF patients are rapidly degraded before exiting from the ER. We now show that this ER degradation is sensitive to inhibitors of the cytosolic proteasome, including lactacystin and certain peptide aldehydes. One of the latter compounds, MG-132, also completely blocks the ATP-dependent conversion of the wild-type precursor to the native folded form that enables escape from degradation. Hence, CFTR and presumably other intrinsic membrane proteins are substrates for proteasomal degradation during their maturation within the ER. PMID:7553864

  12. Colorectal Carcinogenesis, Radiation Quality, and the Ubiquitin-Proteasome Pathway

    PubMed Central

    Datta, Kamal; Suman, Shubhankar; Kumar, Santosh; Fornace, Albert J

    2016-01-01

    Adult colorectal epithelium undergoes continuous renewal and maintains homeostatic balance through regulated cellular proliferation, differentiation, and migration. The canonical Wnt signaling pathway involving the transcriptional co-activator β-catenin is important for colorectal development and normal epithelial maintenance, and deregulated Wnt/β-catenin signaling has been implicated in colorectal carcinogenesis. Colorectal carcinogenesis has been linked to radiation exposure, and radiation has been demonstrated to alter Wnt/β-catenin signaling, as well as the proteasomal pathway involved in the degradation of the signaling components and thus regulation of β-catenin. The current review discusses recent progresses in our understanding of colorectal carcinogenesis in relation to different types of radiation and roles that radiation quality plays in deregulating β-catenin and ubiquitin-proteasome pathway (UPP) for colorectal cancer initiation and progression. PMID:26819641

  13. TRIB1 Is Regulated Post-Transcriptionally by Proteasomal and Non-Proteasomal Pathways

    PubMed Central

    Soubeyrand, Sébastien; Martinuk, Amy; Lau, Paulina; McPherson, Ruth

    2016-01-01

    The TRIB1 gene has been associated with multiple malignancies, plasma triglycerides and coronary artery disease (CAD). Despite the clinical significance of this pseudo-kinase, there is little information on the regulation of TRIB1. Previous studies reported TRIB1 mRNA to be unstable, hinting that TRIB1 might be subject to post-transcriptional regulation. This work explores TRIB1 regulation, focusing on its post-transcriptional aspects. In 3 distinct model systems (HEK293T, HeLa and arterial smooth muscle cells) TRIB1 was undetectable as assessed by western blot. Using recombinant TRIB1 as a proxy, we demonstrate TRIB1 to be highly unstable at the protein and RNA levels. By contrast, recombinant TRIB1 was stable in cellular extracts. Blocking proteasome function led to increased protein steady state levels but failed to rescue protein instability, demonstrating that the 2 processes are uncoupled. Unlike as shown for TRIB2, CUL1 and TRCPβ did not play a role in mediating TRIB1 instability although TRCPβ suppression increased TRIB1 expression. Lastly, we demonstrate that protein instability is independent of TRIB1 subcellular localization. Following the identification of TRIB1 nuclear localization signal, a cytosolic form was engineered. Despite being confined to the cytosol, TRIB1 remained unstable, suggesting that instability occurs at a stage that precedes its nuclear translocation and downstream nuclear function. These results uncover possible avenues of intervention to regulate TRIB1 function by identifying two distinct regulatory axes that control TRIB1 at the post-transcriptional level. PMID:27019349

  14. MG132, a proteasome inhibitor, induces apoptosis in tumor cells.

    PubMed

    Guo, Na; Peng, Zhilan

    2013-03-01

    The balance between cell proliferation and apoptosis is critical for normal development and for the maintenance of homeostasis in adult organisms. Disruption of this balance has been implicated in a large number of disease processes, ranging from autoimmunity and neurodegenerative disorders to cancer. The ubiquitin-proteasome pathway, responsible for mediating the majority of intracellular proteolysis, plays a crucial role in the regulation of many normal cellular processes, including the cell cycle, differentiation and apoptosis. Apoptosis in cancer cells is closely connected with the activity of ubiquitin-proteasome pathway. The peptide-aldehyde proteasome inhibitor MG132 (carbobenzoxyl-L-leucyl-L-leucyl-L-leucine) induces the apoptosis of cells by a different intermediary pathway. Although the pathway of induction of apoptosis is different, it plays a crucial role in anti-tumor treatment. There are many cancer-related molecules in which the protein levels present in cells are regulated by a proteasomal pathway; for example, tumor inhibitors (P53, E2A, c-Myc, c-Jun, c-Fos), transcription factors (transcription factor nuclear factor-kappa B, IκBα, HIFI, YYI, ICER), cell cycle proteins (cyclin A and B, P27, P21, IAP1/3), MG132 induces cell apoptosis through formation of reactive oxygen species or the upregulation and downregulation of these factors, which is ultimately dependent upon the activation of the caspase family of cysteine proteases. In this article we review the mechanism of the induction of apoptosis in order to provide information required for research. PMID:22897979

  15. Formation of Tankyrase Inhibitor-Induced Degradasomes Requires Proteasome Activity

    PubMed Central

    Pedersen, Nina Marie; Thorvaldsen, Tor Espen; Schultz, Sebastian Wolfgang; Wenzel, Eva Maria; Stenmark, Harald

    2016-01-01

    In canonical Wnt signaling, the protein levels of the key signaling mediator β-catenin are under tight regulation by the multimeric destruction complex that mediates proteasomal degradation of β-catenin. In colorectal cancer, destruction complex activity is often compromised due to mutations in the multifunctional scaffolding protein Adenomatous Polyposis Coli (APC), leading to a stabilization of β-catenin. Recently, tankyrase inhibitors (TNKSi), a novel class of small molecule inhibitors, were shown to re-establish a functional destruction complex in APC-mutant cancer cell lines by stabilizing AXIN1/2, whose protein levels are usually kept low via poly(ADP-ribosyl)ation by the tankyrase enzymes (TNKS1/2). Surprisingly, we found that for the formation of the morphological correlates of destruction complexes, called degradasomes, functional proteasomes are required. In addition we found that AXIN2 is strongly upregulated after 6 h of TNKS inhibition. The proteasome inhibitor MG132 counteracted TNKSi-induced degradasome formation and AXIN2 stabilization, and this was accompanied by reduced transcription of AXIN2. Mechanistically we could implicate the transcription factor FoxM1 in this process, which was recently shown to be a transcriptional activator of AXIN2. We observed a substantial reduction in TNKSi-induced stabilization of AXIN2 after siRNA-mediated depletion of FoxM1 and found that proteasome inhibition reduced the active (phosphorylated) fraction of FoxM1. This can explain the decreased protein levels of AXIN2 after MG132 treatment. Our findings have implications for the design of in vitro studies on the destruction complex and for clinical applications of TNKSi. PMID:27482906

  16. The role of allostery in the ubiquitin-proteasome system

    PubMed Central

    Liu, Jin; Nussinov, Ruth

    2012-01-01

    The Ubiquitin-Proteasome System is involved in many cellular processes including protein degradation. Degradation of a protein via this system involves two successive steps: ubiquitination and degradation. Ubiquitination tags the target protein with ubiquitin-like proteins, such as ubiquitin, SUMO and NEDD8, via a cascade involving three enzymes: activating enzyme E1, conjugating enzyme E2, and E3 ubiquitin ligases. The proteasomes recognize the ubiquitin-like protein tagged substrate proteins and degrade them. Accumulating evidence indicates that allostery is a central player in the regulation of ubiquitination, as well as deubiquitination and degradation. Here, we provide an overview of the key mechanistic roles played by allostery in all steps of these processes, and highlight allosteric drugs targeting them. Throughout the review, we emphasize the crucial mechanistic role played by linkers in allosterically controlling the Ubiquitin-Proteasome System action by biasing the sampling of the conformational space, which facilitate the catalytic reactions of the ubiquitination and degradation. Finally, we propose that allostery may similarly play key roles in the regulation of molecular machines in the cell, and as such allosteric drugs can be expected to be increasingly exploited in therapeutic regimes. PMID:23234564

  17. Marizomib, a potent second generation proteasome inhibitor from natural origin.

    PubMed

    Ma, Long; Diao, Aipo

    2015-01-01

    The malignance of cancers reinforces the need to find potent antineoplastic agents. In the past decades, proteasome has been witnessed as a potential target to fulfil this purpose, as evidenced by the fact that the first-in-class proteasome inhibitor Bortezomib was marketed in 2003. Marizomib (Salinosporamide A, NPI-0052), as a marine natural product, promises to be of high efficacy against multiple myeloma (MM), relapsed/refractory MM and other types of solid tumours. Compared with Bortezomib, it arguably has fewer severe side effects. Marizomib has been termed as orphan drug against multiple myeloma by US Food and Drug Administration (FDA) in 2013 and by European Medicines Agency (EMA) in 2014. As one of the second generation proteasome inhibitors (PIs), Marizomib is expected to bring about a sustained and complete therapeutic to extend cancer patients' life span. In this article, we intended to briefly review the historical developments, mechanisms, pharmacology, biosynthesis and side effects of this agent, aiming to provide concise coverage for a broad readership. In the end, we proposed our perspective for its futuristic applications. PMID:25403165

  18. Proteasomal Degradation of TRIM5α during Retrovirus Restriction

    PubMed Central

    Rold, Christopher James; Aiken, Christopher

    2008-01-01

    The host protein TRIM5α inhibits retroviral infection at an early post-penetration stage by targeting the incoming viral capsid. While the detailed mechanism of restriction remains unclear, recent studies have implicated the activity of cellular proteasomes in the restriction of retroviral reverse transcription imposed by TRIM5α. Here, we show that TRIM5α is rapidly degraded upon encounter of a restriction-susceptible retroviral core. Inoculation of TRIM5α-expressing human 293T cells with a saturating level of HIV-1 particles resulted in accelerated degradation of the HIV-1-restrictive rhesus macaque TRIM5α protein but not the nonrestrictive human TRIM5α protein. Exposure of cells to HIV-1 also destabilized the owl monkey restriction factor TRIMCyp; this was prevented by addition of the inhibitor cyclosporin A and was not observed with an HIV-1 virus containing a mutation in the capsid protein that relieves restriction by TRIMCyp IVHIV. Likewise, human TRIM5α was rapidly degraded upon encounter of the restriction-sensitive N-tropic murine leukemia virus (N-MLV) but not the unrestricted B-MLV. Pretreatment of cells with proteasome inhibitors prevented the HIV-1-induced loss of both rhesus macaque TRIM5α and TRIMCyp proteins. We also detected degradation of endogenous TRIM5α in rhesus macaque cells following HIV-1 infection. We conclude that engagement of a restriction-sensitive retrovirus core results in TRIM5α degradation by a proteasome-dependent mechanism. PMID:18497858

  19. General Strategy for Synthesis of C-19 Methyl-Substituted Sarpagine/Macroline/Ajmaline Indole Alkaloids Including Total Synthesis of 19(S),20(R)-Dihydroperaksine, 19(S),20(R)-Dihydroperaksine-17-al, and Peraksine

    PubMed Central

    2015-01-01

    A detailed account of the development of a general strategy for synthesis of the C-19 methyl-substituted alkaloids including total synthesis of 19(S),20(R)-dihydroperaksine-17-al (1), 19(S),20(R)-dihydroperaksine (2), and peraksine (6) is presented. Efforts directed toward the total synthesis of macrosalhine chloride (5) are also reported. Important to success is the sequence of chemical reactions which include a critical haloboration reaction, regioselective hydroboration, and controlled oxidation (to provide sensitive enolizable aldehydes at C-20). In addition, the all-important Pd-catalyzed α-vinylation reaction has been extended to a chiral C-19 alkyl-substituted substrate for the first time. Synthesis of the advanced intermediate 64 completes an improved formal total synthesis of talcarpine (26) and provides a starting point for synthesis of macroline-related alkaloids 27–31. Similarly, extension of this synthetic strategy in the ring A oxygenated series should provide easy access to the northern hemisphere 32b of the bisindoles angustricraline, alstocraline, and foliacraline (Figure 4). PMID:25247616

  20. Multiple Sclerosis Autoantigen Myelin Basic Protein Escapes Control by Ubiquitination during Proteasomal Degradation*

    PubMed Central

    Belogurov, Alexey; Kudriaeva, Anna; Kuzina, Ekaterina; Smirnov, Ivan; Bobik, Tatyana; Ponomarenko, Natalia; Kravtsova-Ivantsiv, Yelena; Ciechanover, Aaron; Gabibov, Alexander

    2014-01-01

    The vast majority of cellular proteins are degraded by the 26S proteasome after their ubiquitination. Here, we report that the major component of the myelin multilayered membrane sheath, myelin basic protein (MBP), is hydrolyzed by the 26S proteasome in a ubiquitin-independent manner both in vitro and in mammalian cells. As a proteasomal substrate, MBP reveals a distinct and physiologically relevant concentration range for ubiquitin-independent proteolysis. Enzymatic deimination prevents hydrolysis of MBP by the proteasome, suggesting that an abnormally basic charge contributes to its susceptibility toward proteasome-mediated degradation. To our knowledge, our data reveal the first case of a pathophysiologically important autoantigen as a ubiquitin-independent substrate of the 26S proteasome. PMID:24739384

  1. DNA damage modulates interactions between microRNAs and the 26S proteasome

    PubMed Central

    Tsimokha, Anna S; Kulichkova, Valentina A.; Karpova, Elena V.; Zaykova, Julia J.; Aksenov, Nikolai D; Vasilishina, Anastasia A.; Kropotov, Andrei V.; Antonov, Alexey; Barlev, Nikolai A.

    2014-01-01

    26S proteasomes are known as major non-lysosomal cellular machines for coordinated and specific destruction of ubiquitinylated proteins. The proteolytic activities of proteasomes are controlled by various post-translational modifications in response to environmental cues, including DNA damage. Besides proteolysis, proteasomes also associate with RNA hydrolysis and splicing. Here, we extend the functional diversity of proteasomes by showing that they also dynamically associate with microRNAs (miRNAs) both in the nucleus and cytoplasm of cells. Moreover, DNA damage induced by an anti-cancer drug, doxorubicin, alters the repertoire of proteasome-associated miRNAs, enriching the population of miRNAs that target cell cycle checkpoint regulators and DNA repair proteins. Collectively, these data uncover yet another potential mode of action for proteasomes in the cell via their dynamic association with microRNAs. PMID:25004448

  2. Structure of an endogenous yeast 26S proteasome reveals two major conformational states

    PubMed Central

    Luan, Bai; Huang, Xiuliang; Wu, Jianping; Mei, Ziqing; Wang, Yiwei; Xue, Xiaobin; Yan, Chuangye; Wang, Jiawei; Finley, Daniel J.; Shi, Yigong; Wang, Feng

    2016-01-01

    The eukaryotic proteasome mediates degradation of polyubiquitinated proteins. Here we report the single-particle cryoelectron microscopy (cryo-EM) structures of the endogenous 26S proteasome from Saccharomyces cerevisiae at 4.6- to 6.3-Å resolution. The fine features of the cryo-EM maps allow modeling of 18 subunits in the regulatory particle and 28 in the core particle. The proteasome exhibits two distinct conformational states, designated M1 and M2, which correspond to those reported previously for the proteasome purified in the presence of ATP-γS and ATP, respectively. These conformations also correspond to those of the proteasome in the presence and absence of exogenous substrate. Structure-guided biochemical analysis reveals enhanced deubiquitylating enzyme activity of Rpn11 upon assembly of the lid. Our structures serve as a molecular basis for mechanistic understanding of proteasome function. PMID:26929360

  3. Computational Approaches for the Discovery of Human Proteasome Inhibitors: An Overview.

    PubMed

    Guedes, Romina A; Serra, Patrícia; Salvador, Jorge A R; Guedes, Rita C

    2016-01-01

    Proteasome emerged as an important target in recent pharmacological research due to its pivotal role in degrading proteins in the cytoplasm and nucleus of eukaryotic cells, regulating a wide variety of cellular pathways, including cell growth and proliferation, apoptosis, DNA repair, transcription, immune response, and signaling processes. The last two decades witnessed intensive efforts to discover 20S proteasome inhibitors with significant chemical diversity and efficacy. To date, the US FDA approved to market three proteasome inhibitors: bortezomib, carfilzomib, and ixazomib. However new, safer and more efficient drugs are still required. Computer-aided drug discovery has long being used in drug discovery campaigns targeting the human proteasome. The aim of this review is to illustrate selected in silico methods like homology modeling, molecular docking, pharmacophore modeling, virtual screening, and combined methods that have been used in proteasome inhibitors discovery. Applications of these methods to proteasome inhibitors discovery will also be presented and discussed to raise improvements in this particular field. PMID:27438821

  4. Calcium-dependent proteasome activation is required for axonal neurofilament degradation.

    PubMed

    Park, Joo Youn; Jang, So Young; Shin, Yoon Kyung; Suh, Duk Joon; Park, Hwan Tae

    2013-12-25

    Even though many studies have identified roles of proteasomes in axonal degeneration, the molecular mechanisms by which axonal injury regulates proteasome activity are still unclear. In the present study, we found evidence indicating that extracellular calcium influx is an upstream regulator of proteasome activity during axonal degeneration in injured peripheral nerves. In degenerating axons, the increase in proteasome activity and the degradation of ubiquitinated proteins were significantly suppressed by extracellular calcium chelation. In addition, electron microscopic findings revealed selective inhibition of neurofilament degradation, but not microtubule depolymerization or mitochondrial swelling, by the inhibition of calpain and proteasomes. Taken together, our findings suggest that calcium increase and subsequent proteasome activation are an essential initiator of neurofilament degradation in Wallerian degeneration. PMID:25206662

  5. 1.15 Å resolution structure of the proteasome-assembly chaperone Nas2 PDZ domain

    SciTech Connect

    Singh, Chingakham R.; Lovell, Scott; Mehzabeen, Nurjahan; Chowdhury, Wasimul Q.; Geanes, Eric S.; Battaile, Kevin P.; Roelofs, Jeroen

    2014-03-25

    The proteasome-assembly chaperone Nas2 binds to the proteasome subunit Rpt5 using its PDZ domain. The structure of the Nas2 PDZ domain has been determined. The 26S proteasome is a 2.5 MDa protease dedicated to the degradation of ubiquitinated proteins in eukaryotes. The assembly of this complex containing 66 polypeptides is assisted by at least nine proteasome-specific chaperones. One of these, Nas2, binds to the proteasomal AAA-ATPase subunit Rpt5. The PDZ domain of Nas2 binds to the C-terminal tail of Rpt5; however, it does not require the C-terminus of Rpt5 for binding. Here, the 1.15 Å resolution structure of the PDZ domain of Nas2 is reported. This structure will provide a basis for further insights regarding the structure and function of Nas2 in proteasome assembly.

  6. Quantitative time-resolved analysis reveals intricate, differential regulation of standard- and immuno-proteasomes.

    PubMed

    Liepe, Juliane; Holzhütter, Hermann-Georg; Bellavista, Elena; Kloetzel, Peter M; Stumpf, Michael P H; Mishto, Michele

    2015-01-01

    Proteasomal protein degradation is a key determinant of protein half-life and hence of cellular processes ranging from basic metabolism to a host of immunological processes. Despite its importance the mechanisms regulating proteasome activity are only incompletely understood. Here we use an iterative and tightly integrated experimental and modelling approach to develop, explore and validate mechanistic models of proteasomal peptide-hydrolysis dynamics. The 20S proteasome is a dynamic enzyme and its activity varies over time because of interactions between substrates and products and the proteolytic and regulatory sites; the locations of these sites and the interactions between them are predicted by the model, and experimentally supported. The analysis suggests that the rate-limiting step of hydrolysis is the transport of the substrates into the proteasome. The transport efficiency varies between human standard- and immuno-proteasomes thereby impinging upon total degradation rate and substrate cleavage-site usage. PMID:26393687

  7. Proteasomal control of cytokinin synthesis protects Mycobacterium tuberculosis against nitric oxide

    PubMed Central

    Samanovic, Marie I.; Tu, Shengjiang; Novák, Ondřej; Iyer, Lakshminarayan M.; McAllister, Fiona E.; Aravind, L.; Gygi, Steven P.; Hubbard, Stevan R.; Strnad, Miroslav; Darwin, K. Heran

    2015-01-01

    Summary One of several roles of the Mycobacterium tuberculosis proteasome is to defend against host-produced nitric oxide (NO), a free radical that can damage numerous biological macromolecules. Mutations that inactivate proteasomal degradation in Mycobacterium tuberculosis result in bacteria that are hypersensitive to NO and attenuated for growth in vivo, but it was not known why. To elucidate the link between proteasome function, NO-resistance, and pathogenesis, we screened for suppressors of NO hypersensitivity in a mycobacterial proteasome ATPase mutant and identified mutations in Rv1205. We determined that Rv1205 encodes a pupylated proteasome substrate. Rv1205 is a homologue of the plant enzyme LONELY GUY, which catalyzes the production of hormones called cytokinins. Remarkably, we report for the first time that an obligate human pathogen secretes several cytokinins. Finally, we determined that the Rv1205-dependent accumulation of cytokinin breakdown products is likely responsible for the sensitization of Mycobacterium tuberculosis proteasome-associated mutants to NO. PMID:25728768

  8. Priming the proteasome by protein kinase G: a novel cardioprotective mechanism of sildenafil

    PubMed Central

    Zhang, Hanming; Wang, Xuejun

    2015-01-01

    The proteasome mediates the degradation of most cellular proteins including misfolded proteins, pivotal to intracellular protein hemostasis. Proteasome functional insufficiency is implicated in a large subset of human failing hearts. Experimental studies have established proteasome functional insufficiency as a major pathogenic factor, rationalizing proteasome enhancement as a potentially new therapeutic strategy for congestive heart failure. Protein kinase G activation known to be cardioprotective was recently found to facilitate proteasomal degradation of misfolded proteins in cardiomyocytes; sildenafil was shown to activate myocardial protein kinase G, improve cardiac protein quality control and slow down the progression of cardiac proteinopathy in mice. This identifies the first clinically used drug that is capable of benign proteasome enhancement and unveils a potentially novel cardioprotective mechanism for sildenafil. PMID:25760877

  9. Proteasome activity is required for the initiation of precancerous pancreatic lesions.

    PubMed

    Furuyama, Takaki; Tanaka, Shinji; Shimada, Shu; Akiyama, Yoshimitsu; Matsumura, Satoshi; Mitsunori, Yusuke; Aihara, Arihiro; Ban, Daisuke; Ochiai, Takanori; Kudo, Atsushi; Fukamachi, Hiroshi; Arii, Shigeki; Kawaguchi, Yoshiya; Tanabe, Minoru

    2016-01-01

    Proteasome activity is significantly increased in advanced cancers, but its role in cancer initiation is not clear, due to difficulties in monitoring this process in vivo. We established a line of transgenic mice that carried the ZsGreen-degron(ODC) (Gdeg) proteasome reporter to monitor the proteasome activity. In combination with Pdx-1-Cre;LSL-Kras(G12D) model, proteasome activity was investigated in the initiation of precancerous pancreatic lesions (PanINs). Normal pancreatic acini in Gdeg mice had low proteasome activity. By contrast, proteasome activity was increased in the PanIN lesions that developed in Gdeg;Pdx-1-Cre;LSL-Kras(G12D) mice. Caerulein administration to Gdeg;Pdx-1-Cre;LSL-Kras(G12D) mice induced constitutive elevation of proteasome activity in pancreatic tissues and accelerated PanIN formation. The proteasome inhibitor markedly reduced PanIN formation in Gdeg;Pdx-1-Cre;LSL-Kras(G12D) mice (P = 0.001), whereas it had no effect on PanIN lesions that had already formed. These observations indicated the significance of proteasome activity in the initiation of PanIN but not the maintenance per se. In addition, the expressions of pERK and its downstream factors including cyclin D1, NF-κB, and Cox2 were decreased after proteasome inhibition in PanINs. Our studies showed activation of proteasome is required specifically for the initiation of PanIN. The roles of proteasome in the early stages of pancreatic carcinogenesis warrant further investigation. PMID:27244456

  10. Proteasome activity is required for the initiation of precancerous pancreatic lesions

    PubMed Central

    Furuyama, Takaki; Tanaka, Shinji; Shimada, Shu; Akiyama, Yoshimitsu; Matsumura, Satoshi; Mitsunori, Yusuke; Aihara, Arihiro; Ban, Daisuke; Ochiai, Takanori; Kudo, Atsushi; Fukamachi, Hiroshi; Arii, Shigeki; Kawaguchi, Yoshiya; Tanabe, Minoru

    2016-01-01

    Proteasome activity is significantly increased in advanced cancers, but its role in cancer initiation is not clear, due to difficulties in monitoring this process in vivo. We established a line of transgenic mice that carried the ZsGreen-degronODC (Gdeg) proteasome reporter to monitor the proteasome activity. In combination with Pdx-1-Cre;LSL-KrasG12D model, proteasome activity was investigated in the initiation of precancerous pancreatic lesions (PanINs). Normal pancreatic acini in Gdeg mice had low proteasome activity. By contrast, proteasome activity was increased in the PanIN lesions that developed in Gdeg;Pdx-1-Cre;LSL-KrasG12D mice. Caerulein administration to Gdeg;Pdx-1-Cre;LSL-KrasG12D mice induced constitutive elevation of proteasome activity in pancreatic tissues and accelerated PanIN formation. The proteasome inhibitor markedly reduced PanIN formation in Gdeg;Pdx-1-Cre;LSL-KrasG12D mice (P = 0.001), whereas it had no effect on PanIN lesions that had already formed. These observations indicated the significance of proteasome activity in the initiation of PanIN but not the maintenance per se. In addition, the expressions of pERK and its downstream factors including cyclin D1, NF-κB, and Cox2 were decreased after proteasome inhibition in PanINs. Our studies showed activation of proteasome is required specifically for the initiation of PanIN. The roles of proteasome in the early stages of pancreatic carcinogenesis warrant further investigation. PMID:27244456

  11. Changes in expression of proteasome in rats at different stages of atherosclerosis

    PubMed Central

    Oenzil, Fadil; Yanwirasti; Yerizel, Eti

    2016-01-01

    It has been suggested that proteasome system has a role in initiation, progression, and complication stages of atherosclerosis. Although there is still controversy, there has been no research that compares the expression of proteasome in tissue and serum at each of these stages. This study aimed to investigated the expression of proteasome at different stages of atherosclerosis using rat model. We measured the expression of aortic proteasome by immunohistochemical analyses and were then analyzed using ImageJ software for percentage of area and integrated density. We used Photoshop version 3.0 to analyze aortic proteasome expression as a comparison. We measured serum proteasome expression by enzyme linked immunosorbents assays. Kruskal-Wallis test was used to compare mean value of percentage of area and serum proteasome. Analysis of variance test was used to compare mean value of integrated density. Correlation test between vascular proteasome expression and serum proteasome expression was made using Spearman test. A P-value of 0.05 was considered statistically significant. Compared with normal, percentage of area was higher in initiation, progression, and complication. Compared with normal, integrated density was higher in initiation and further higher in progression and complication. Data from Image J is similar with data from Photoshop. Serum proteasome expression was higher in initiation compared with normal, and further higher in progression and complication. It was concluded that there were different vascular proteasome expression and serum proteasome expression at the stages of atherosclerosis. These results may be used in research into new marker and therapeutic target in atherosclerosis. PMID:27382511

  12. Clinical Use of Proteasome Inhibitors in the Treatment of Multiple Myeloma

    PubMed Central

    Merin, Noah M.; Kelly, Kevin R.

    2014-01-01

    Multiple myeloma (MM) is an incurable hematological malignancy characterized by the clonal proliferation of neoplastic plasma cells. The use of proteasome inhibitors in the treatment of MM has led to significant improvements in outcomes. This article reviews data on the use of the two approved proteasome inhibitors (bortezomib and carlfilzomib), as well as newer agents under development. Emphasis is placed on the clinical use of proteasome inhibitors, including management of side effects and combination with other agents. PMID:25545164

  13. Focal dysfunction of the proteasome: a pathogenic factor in a mouse model of amyotrophic lateral sclerosis.

    PubMed

    Kabashi, Edor; Agar, Jeffrey N; Taylor, David M; Minotti, Sandra; Durham, Heather D

    2004-06-01

    Mutations in the Cu/Zn-superoxide dismutase (SOD-1) gene are responsible for a familial form of amyotrophic lateral sclerosis (fALS). The present study demonstrated impaired proteasomal function in the lumbar spinal cord of transgenic mice expressing human SOD-1 with the ALS-causing mutation G93A (SOD-1(G93A)) compared to non-transgenic littermates (LM) and SOD-1(WT) transgenic mice. Chymotrypsin-like activity was decreased as early as 45 days of age. By 75 days, chymotrypsin-, trypsin-, and caspase-like activities of the proteasome were impaired, at about 50% of control activity in lumbar spinal cord, but unchanged in thoracic spinal cord and liver. Both total and specific activities of the proteasome were reduced to a similar extent, indicating that a change in proteasome function, rather than a decrease in proteasome levels, had occurred. Similar decreases of total and specific activities of the proteasome were observed in NIH 3T3 cell lines expressing fALS mutants SOD-1(G93A) and SOD-1(G41S), but not in SOD-1(WT) controls. Although overall levels of proteasome were maintained in spinal cord of SOD-1(G93A) transgenic mice, the level of 20S proteasome was substantially reduced in lumbar spinal motor neurons relative to the surrounding neuropil. It is concluded that impairment of the proteasome is an early event and contributes to ALS pathogenesis. PMID:15189335

  14. Structural analysis of the dodecameric proteasome activator PafE in Mycobacterium tuberculosis.

    PubMed

    Bai, Lin; Hu, Kuan; Wang, Tong; Jastrab, Jordan B; Darwin, K Heran; Li, Huilin

    2016-04-01

    The human pathogen Mycobacterium tuberculosis (Mtb) requires a proteasome system to cause lethal infections in mice. We recently found that proteasome accessory factor E (PafE, Rv3780) activates proteolysis by the Mtb proteasome independently of adenosine triphosphate (ATP). Moreover, PafE contributes to the heat-shock response and virulence of Mtb Here, we show that PafE subunits formed four-helix bundles similar to those of the eukaryotic ATP-independent proteasome activator subunits of PA26 and PA28. However, unlike any other known proteasome activator, PafE formed dodecamers with 12-fold symmetry, which required a glycine-XXX-glycine-XXX-glycine motif that is not found in previously described activators. Intriguingly, the truncation of the PafE carboxyl-terminus resulted in the robust binding of PafE rings to native proteasome core particles and substantially increased proteasomal activity, suggesting that the extended carboxyl-terminus of this cofactor confers suboptimal binding to the proteasome core particle. Collectively, our data show that proteasomal activation is not limited to hexameric ATPases in bacteria. PMID:27001842

  15. Structural analysis of the dodecameric proteasome activator PafE in Mycobacterium tuberculosis

    DOE PAGESBeta

    Bai, Lin; Hu, Kuan; Wang, Tong; Jastrab, Jordan B.; Darwin, K. Heran; Li, Huilin

    2016-03-21

    Here, the human pathogen Mycobacterium tuberculosis (Mtb) requires a proteasome system to cause lethal infections in mice. We recently found that proteasome accessory factor E (PafE, Rv3780) activates proteolysis by the Mtb proteasome independently of adenosine triphosphate (ATP). Moreover, PafE contributes to the heat-shock response and virulence of Mtb. Here, we show that PafE subunits formed four-helix bundles similar to those of the eukaryotic ATP-independent proteasome activator subunits of PA26 and PA28. However, unlike any other known proteasome activator, PafE formed dodecamers with 12-fold symmetry, which required a glycine-XXX-glycine-XXX-glycine motif that is not found in previously described activators. Intriguingly, themore » truncation of the PafE carboxyl-terminus resulted in the robust binding of PafE rings to native proteasome core particles and substantially increased proteasomal activity, suggesting that the extended carboxyl-terminus of this cofactor confers suboptimal binding to the proteasome core particle. Collectively, our data show that proteasomal activation is not limited to hexameric ATPases in bacteria.« less

  16. Halophilic 20S Proteasomes of the Archaeon Haloferax volcanii: Purification, Characterization, and Gene Sequence Analysis

    PubMed Central

    Wilson, Heather L.; Aldrich, Henry C.; Maupin-Furlow, Julie

    1999-01-01

    A 20S proteasome, composed of α1 and β subunits arranged in a barrel-shaped structure of four stacked rings, was purified from a halophilic archaeon Haloferax volcanii. The predominant peptide-hydrolyzing activity of the 600-kDa α1β-proteasome on synthetic substrates was cleavage carboxyl to hydrophobic residues (chymotrypsin-like [CL] activity) and was optimal at 2 M NaCl, pH 7.7 to 9.5, and 75°C. The α1β-proteasome also hydrolyzed insulin B-chain protein. Removal of NaCl inactivated the CL activity of the α1β-proteasome and dissociated the complex into monomers. Rapid equilibration of the monomers into buffer containing 2 M NaCl facilitated their reassociation into fully active α1β-proteasomes of 600 kDa. However, long-term incubation of the halophilic proteasome in the absence of salt resulted in hydrolysis and irreversible inactivation of the enzyme. Thus, the isolated proteasome has unusual salt requirements which distinguish it from any proteasome which has been described. Comparison of the β-subunit protein sequence with the sequence deduced from the gene revealed that a 49-residue propeptide is removed to expose a highly conserved N-terminal threonine which is proposed to serve as the catalytic nucleophile and primary proton acceptor during peptide bond hydrolysis. Consistent with this mechanism, the known proteasome inhibitors carbobenzoxyl-leucinyl-leucinyl-leucinal-H (MG132) and N-acetyl-leucinyl-leucinyl-norleucinal (calpain inhibitor I) were found to inhibit the CL activity of the H. volcanii proteasome (Ki = 0.2 and 8 μM, respectively). In addition to the genes encoding the α1 and β subunits, a gene encoding a second α-type proteasome protein (α2) was identified. All three genes coding for the proteasome subunits were mapped in the chromosome and found to be unlinked. Modification of the methods used to purify the α1β-proteasome resulted in the copurification of the α2 protein with the α1 and β subunits in nonstoichometric ratios

  17. Proteasome function is not impaired in healthy aging of the lung.

    PubMed

    Caniard, Anne; Ballweg, Korbinian; Lukas, Christina; Yildirim, Ali Ö; Eickelberg, Oliver; Meiners, Silke

    2015-10-01

    Aging is the progressive loss of cellular function which inevitably leads to death. Failure of proteostasis including the decrease in proteasome function is one hallmark of aging. In the lung, proteasome activity was shown to be impaired in age-related diseases such as chronic obstructive pulmonary disease. However, little is known on proteasome function during healthy aging. Here, we comprehensively analyzed healthy lung aging and proteasome function in wildtype, proteasome reporter and immunoproteasome knockout mice. Wildtype mice spontaneously developed senile lung emphysema while expression and activity of proteasome complexes and turnover of ubiquitinated substrates was not grossly altered in lungs of aged mice. Immunoproteasome subunits were specifically upregulated in the aged lung and the caspase-like proteasome activity concomitantly decreased. Aged knockout mice for the LMP2 or LMP7 immunoproteasome subunits showed no alteration in proteasome activities but exhibited typical lung aging phenotypes suggesting that immunoproteasome function is dispensable for physiological lung aging in mice. Our results indicate that healthy aging of the lung does not involve impairment of proteasome function. Apparently, the reserve capacity of the proteostasis systems in the lung is sufficient to avoid severe proteostasis imbalance during healthy aging. PMID:26540298

  18. Effects of aging and dietary restriction on ubiquitination, sumoylation, and the proteasome in the spleen

    PubMed Central

    Zhang, Le; Li, Feng; Dimayuga, Edgardo; Craddock, Jeffrey; Keller, Jeffrey N.

    2015-01-01

    In the present study we demonstrate for the first time that aging increases the levels of ubiquitinated protein in the spleen, and that dietary restriction (DR) significantly reduces these age-related increases in ubiquitinated protein. Sumoylated protein, proteasome subunits, and a protein essential for proteasome biogenesis (POMP1) were also increased with age in the spleen but were not significantly affected by DR. Chymotrypsin-like proteasome activity was elevated in the aged spleen, and was not significantly altered by DR. Together, these data demonstrate for the first time the multiple effects of aging and DR on ubiquitination, sumoylation, and the proteasome in the spleen. PMID:17991438

  19. Assembly of an Evolutionarily Conserved Alternative Proteasome Isoform in Human Cells

    PubMed Central

    Padmanabhan, Achuth; Vuong, Simone Anh-Thu; Hochstrasser, Mark

    2016-01-01

    Summary Targeted intracellular protein degradation in eukaryotes is largely mediated by the proteasome. Here we report formation of an alternative proteasome isoform in human cells, previously found only in budding yeast, which bears an altered subunit arrangement in the outer ring of the proteasome core particle. These proteasomes result from incorporation of an additional α4 (PSMA7) subunit in the position normally occupied by α3 (PSMA4). Assembly of ‘α4-α4’ proteasomes depends on the relative cellular levels of α4 and α3, and on the proteasome assembly chaperone PAC3. The oncogenic tyrosine kinases ABL and ARG and the tumor suppressor BRCA1 regulate cellular α4 levels and formation of α4-α4 proteasomes. Cells primed to assemble α4-α4 proteasomes exhibit enhanced resistance to toxic metal ions. Taken together, our results establish the existence of a novel mammalian proteasome isoform and suggest a potential role in enabling cells to adapt to environmental stresses. PMID:26997268

  20. Proteasome function is not impaired in healthy aging of the lung

    PubMed Central

    Lukas, Christina; Yildirim, Ali Ö.; Eickelberg, Oliver; Meiners, Silke

    2015-01-01

    Aging is the progressive loss of cellular function which inevitably leads to death. Failure of proteostasis including the decrease in proteasome function is one hallmark of aging. In the lung, proteasome activity was shown to be impaired in age‐related diseases such as chronic obstructive pulmonary disease. However, little is known on proteasome function during healthy aging. Here, we comprehensively analyzed healthy lung aging and proteasome function in wildtype, proteasome reporter and immunoproteasome knockout mice. Wildtype mice spontaneously developed senile lung emphysema while expression and activity of proteasome complexes and turnover of ubiquitinated substrates was not grossly altered in lungs of aged mice. Immunoproteasome subunits were specifically upregulated in the aged lung and the caspase‐like proteasome activity concomitantly decreased. Aged knockout mice for the LMP2 or LMP7 immunoproteasome subunits showed no alteration in proteasome activities but exhibited typical lung aging phenotypes suggesting that immunoproteasome function is dispensable for physiological lung aging in mice. Our results indicate that healthy aging of the lung does not involve impairment of proteasome function. Apparently, the reserve capacity of the proteostasis systems in the lung is sufficient to avoid severe proteostasis imbalance during healthy aging. PMID:26540298

  1. ACTIVATION OF PERK KINASE IN NEURAL CELLS BY PROTEASOME INHIBITOR TREATMENT

    PubMed Central

    Zhang, Le; Ebenezer, Philip J; Dasuri, Kalavathi; Bruce-Keller, Annadora J.; Fernandez-Kim, Sun Ok; Liu, Ying; Keller, Jeffrey N.

    2010-01-01

    Inhibition of the proteasome proteolytic pathway occurs as the result of normal aging, as well as in a variety of neurodegenerative conditions, and is believed to promote cellular toxicity in each of these conditions through diverse mechanisms. In the present study we examined whether proteasome inhibition alters the protein kinase (PKR)-like ER kinase (PERK). Our studies demonstrate that proteasome inhibitors induce the transient activation of PERK in both primary rat neurons as well as the N2a neural cell line. Experiments with siRNA to PERK demonstrated that the modulation of PERK was not significant involved in regulating toxicity, ubiquitinated protein levels, or ribosome perturbations in response to proteasome inhibitor treatment. Surprisingly, PERK was observed to be involved in the upregulation of p38 kinase following proteasome inhibitor treatment. Taken together, these data demonstrate the ability of proteasome inhibition to activate PERK and demonstrate evidence for novel cross talk between PERK and the activation of p38 kinase in neural cells following proteasome inhibition. Taken together, these data have implications for understanding the basis by which proteasome inhibition alters neural homeostasis, and the basis by which cell signaling cascades are regulated by proteasome inhibition. PMID:19860852

  2. Force Spectroscopy of Substrate Molecules En Route to the Proteasome's Active Sites

    PubMed Central

    Classen, Mirjam; Breuer, Sarah; Baumeister, Wolfgang; Guckenberger, Reinhard; Witt, Susanne

    2011-01-01

    We used an atomic force microscope to study the mechanism underlying the translocation of substrate molecules inside the proteasome. Our specific experimental setup allowed us to measure interaction forces between the 20S proteasome and its substrates. The substrate (β-casein) was covalently bound either via a thiol-Au bond or by a PEG-based binding procedure to the atomic force microscope cantilever tip and offered as bait to proteasomes from Methanosarcina mazei. The proteasomes were immobilized densely in an upright orientation on mica, which made their upper pores accessible for substrates to enter. Besides performing conventional single-molecule force spectroscopy experiments, we developed a three-step procedure that allows the detection of specific proteasome-substrate single-molecule events without tip-sample contact. Using the active 20S wild type and an inactive active-site mutant, as well as two casein mutants bound with opposite termini to the microscope tip, we detected no directional preference of the proteasome-substrate interactions. By comparing the distribution of the measured forces for the proteasome-substrate interactions, were observed that a significant proportion of interaction events occurred at higher forces for the active versus the inactive proteasome. These forces can be attributed to the translocation of substrate en route to the active sites that are harbored deep inside the proteasome. PMID:21244845

  3. Autoubiquitination of the 26S proteasome on Rpn13 regulates breakdown of ubiquitin conjugates.

    PubMed

    Besche, Henrike C; Sha, Zhe; Kukushkin, Nikolay V; Peth, Andreas; Hock, Eva-Maria; Kim, Woong; Gygi, Steven; Gutierrez, Juan A; Liao, Hua; Dick, Lawrence; Goldberg, Alfred L

    2014-05-16

    Degradation rates of most proteins in eukaryotic cells are determined by their rates of ubiquitination. However, possible regulation of the proteasome's capacity to degrade ubiquitinated proteins has received little attention, although proteasome inhibitors are widely used in research and cancer treatment. We show here that mammalian 26S proteasomes have five associated ubiquitin ligases and that multiple proteasome subunits are ubiquitinated in cells, especially the ubiquitin receptor subunit, Rpn13. When proteolysis is even partially inhibited in cells or purified 26S proteasomes with various inhibitors, Rpn13 becomes extensively and selectively poly-ubiquitinated by the proteasome-associated ubiquitin ligase, Ube3c/Hul5. This modification also occurs in cells during heat-shock or arsenite treatment, when poly-ubiquitinated proteins accumulate. Rpn13 ubiquitination strongly decreases the proteasome's ability to bind and degrade ubiquitin-conjugated proteins, but not its activity against peptide substrates. This autoinhibitory mechanism presumably evolved to prevent binding of ubiquitin conjugates to defective or stalled proteasomes, but this modification may also be useful as a biomarker indicating the presence of proteotoxic stress and reduced proteasomal capacity in cells or patients. PMID:24811749

  4. Assembly of an Evolutionarily Conserved Alternative Proteasome Isoform in Human Cells.

    PubMed

    Padmanabhan, Achuth; Vuong, Simone Anh-Thu; Hochstrasser, Mark

    2016-03-29

    Targeted intracellular protein degradation in eukaryotes is largely mediated by the proteasome. Here, we report the formation of an alternative proteasome isoform in human cells, previously found only in budding yeast, that bears an altered subunit arrangement in the outer ring of the proteasome core particle. These proteasomes result from incorporation of an additional α4 (PSMA7) subunit in the position normally occupied by α3 (PSMA4). Assembly of "α4-α4" proteasomes depends on the relative cellular levels of α4 and α3 and on the proteasome assembly chaperone PAC3. The oncogenic tyrosine kinases ABL and ARG and the tumor suppressor BRCA1 regulate cellular α4 levels and formation of α4-α4 proteasomes. Cells primed to assemble α4-α4 proteasomes exhibit enhanced resistance to toxic metal ions. Taken together, our results establish the existence of an alternative mammalian proteasome isoform and suggest a potential role in enabling cells to adapt to environmental stresses. PMID:26997268

  5. The Archaeal Proteasome Is Regulated by a Network of AAA ATPases*

    PubMed Central

    Forouzan, Dara; Ammelburg, Moritz; Hobel, Cedric F.; Ströh, Luisa J.; Sessler, Nicole; Martin, Jörg; Lupas, Andrei N.

    2012-01-01

    The proteasome is the central machinery for targeted protein degradation in archaea, Actinobacteria, and eukaryotes. In its basic form, it consists of a regulatory ATPase complex and a proteolytic core particle. The interaction between the two is governed by an HbYX motif (where Hb is a hydrophobic residue, Y is tyrosine, and X is any amino acid) at the C terminus of the ATPase subunits, which stimulates gate opening of the proteasomal α-subunits. In archaea, the proteasome-interacting motif is not only found in canonical proteasome-activating nucleotidases of the PAN/ARC/Rpt group, which are absent in major archaeal lineages, but also in proteins of the CDC48/p97/VAT and AMA groups, suggesting a regulatory network of proteasomal ATPases. Indeed, Thermoplasma acidophilum, which lacks PAN, encodes one CDC48 protein that interacts with the 20S proteasome and activates the degradation of model substrates. In contrast, Methanosarcina mazei contains seven AAA proteins, five of which, both PAN proteins, two out of three CDC48 proteins, and the AMA protein, function as proteasomal gatekeepers. The prevalent presence of multiple, distinct proteasomal ATPases in archaea thus results in a network of regulatory ATPases that may widen the substrate spectrum of proteasomal protein degradation. PMID:22992741

  6. [STR loci D2S1338 and D19S433 in a population sample from the Lower Silesia region].

    PubMed

    Krzyzanńska, Agnieszka; Kowalczyk, Elzbieta; Markowska, Joanna; Dobosz, Tadeusz

    2006-01-01

    Over the past decade, the human identity testing community has established a set of core short tandem repeat (STR) loci that are widely used for DNA typing applications [1]. The present paper analyzed the usefulness of STR D2S1338 and D19S433 loci in paternity testing and human identity establishment. The population study was performed on 1500 individuals, inhabitants of the Lower Silesia region. The DNA samples were amplified simultaneously at 15 STR loci using a multiplex kit AmpFISTR Identifiler PCR Amplification Kit. The amplified products were separated by capillary electrophoresis using an ABI Prism 310 Genetic Analyzer (Applied Biosystems) with the separation medium POP4 according to the manufacturer's recommended protocols. Loci D2S1338 and D19S433 are highly polymorphic [2]. There were no detectable differences from Hardy-Weinberg expectations (HWE) in both the tested loci. The distribution of the observed allele is shown in Figures 1 and 2. The observed and expected homozygotes, the exact test for departures from HWE, probability of discrimination (PD), power of exclusion (PE), matching probability (MP), polymorphism information content (PIC), typical paternity index (TPI) and probability of paternity (PP) were also calculated and presented. PMID:17249371

  7. Mapping Key Residues of ISD11 Critical for NFS1-ISD11 Subcomplex Stability: IMPLICATIONS IN THE DEVELOPMENT OF MITOCHONDRIAL DISORDER, COXPD19.

    PubMed

    Saha, Prasenjit Prasad; Srivastava, Shubhi; Kumar S K, Praveen; Sinha, Devanjan; D'Silva, Patrick

    2015-10-23

    Biogenesis of the iron-sulfur (Fe-S) cluster is an indispensable process in living cells. In mammalian mitochondria, the initial step of the Fe-S cluster assembly process is assisted by the NFS1-ISD11 complex, which delivers sulfur to scaffold protein ISCU during Fe-S cluster synthesis. Although ISD11 is an essential protein, its cellular role in Fe-S cluster biogenesis is still not defined. Our study maps the important ISD11 amino acid residues belonging to putative helix 1 (Phe-40), helix 3 (Leu-63, Arg-68, Gln-69, Ile-72, Tyr-76), and C-terminal segment (Leu-81, Glu-84) are critical for in vivo Fe-S cluster biogenesis. Importantly, mutation of these conserved ISD11 residues into alanine leads to its compromised interaction with NFS1, resulting in reduced stability and enhanced aggregation of NFS1 in the mitochondria. Due to altered interaction with ISD11 mutants, the levels of NFS1 and Isu1 were significantly depleted, which affects Fe-S cluster biosynthesis, leading to reduced electron transport chain complex (ETC) activity and mitochondrial respiration. In humans, a clinically relevant ISD11 mutation (R68L) has been associated in the development of a mitochondrial genetic disorder, COXPD19. Our findings highlight that the ISD11 R68A/R68L mutation display reduced affinity to form a stable subcomplex with NFS1, and thereby fails to prevent NFS1 aggregation resulting in impairment of the Fe-S cluster biogenesis. The prime affected machinery is the ETC complex, which showed compromised redox properties, causing diminished mitochondrial respiration. Furthermore, the R68L ISD11 mutant displayed accumulation of mitochondrial iron and reactive oxygen species, leading to mitochondrial dysfunction, which correlates with the phenotype observed in COXPD19 patients. PMID:26342079

  8. Structural analysis of an eIF3 subcomplex reveals conserved interactions required for a stable and proper translation pre-initiation complex assembly

    PubMed Central

    Herrmannová, Anna; Daujotytė, Dalia; Yang, Ji-Chun; Cuchalová, Lucie; Gorrec, Fabrice; Wagner, Susan; Dányi, István; Lukavsky, Peter J.; Shivaya Valášek, Leoš

    2012-01-01

    Translation initiation factor eIF3 acts as the key orchestrator of the canonical initiation pathway in eukaryotes, yet its structure is greatly unexplored. We report the 2.2 Å resolution crystal structure of the complex between the yeast seven-bladed β-propeller eIF3i/TIF34 and a C-terminal α-helix of eIF3b/PRT1, which reveals universally conserved interactions. Mutating these interactions displays severe growth defects and eliminates association of eIF3i/TIF34 and strikingly also eIF3g/TIF35 with eIF3 and 40S subunits in vivo. Unexpectedly, 40S-association of the remaining eIF3 subcomplex and eIF5 is likewise destabilized resulting in formation of aberrant pre-initiation complexes (PICs) containing eIF2 and eIF1, which critically compromises scanning arrest on mRNA at its AUG start codon suggesting that the contacts between mRNA and ribosomal decoding site are impaired. Remarkably, overexpression of eIF3g/TIF35 suppresses the leaky scanning and growth defects most probably by preventing these aberrant PICs to form. Leaky scanning is also partially suppressed by eIF1, one of the key regulators of AUG recognition, and its mutant sui1G107R but the mechanism differs. We conclude that the C-terminus of eIF3b/PRT1 orchestrates co-operative recruitment of eIF3i/TIF34 and eIF3g/TIF35 to the 40S subunit for a stable and proper assembly of 48S pre-initiation complexes necessary for stringent AUG recognition on mRNAs. PMID:22090426

  9. Isolation and characterization of a PSI-LHCI super-complex and its sub-complexes from a siphonaceous marine green alga, Bryopsis Corticulans.

    PubMed

    Qin, Xiaochun; Wang, Wenda; Chang, Lijing; Chen, Jinghua; Wang, Peng; Zhang, Jianping; He, Yikun; Kuang, Tingyun; Shen, Jian-Ren

    2015-01-01

    A novel super-complex of photosystem I (PSI)-light-harvesting complex I (LHCI) was isolated from a siphonaceous marine green alga, Bryopsis corticulans. The super-complex contained 9-10 Lhca antennas as external LHCI bound to the core complex. The super-complex was further disintegrated into PSI core and LHCI sub-complexes, and analysis of the pigment compositions by high-performance liquid chromatography revealed unique characteristics of the B. corticulans PSI in that one PSI core contained around 14 α-carotenes and 1-2 ε-carotenes. This is in sharp contrast to the PSI core from higher plants and most cyanobacteria where only β-carotenes were present, and is the first report for an α-carotene-type PSI core complex among photosynthetic eukaryotes, suggesting a structural flexibility of the PSI core. Lhca antennas from B. corticulans contained seven kinds of carotenoids (siphonaxanthin, all-trans neoxanthin, 9'-cis neoxanthin, violaxanthin, siphonein, ε-carotene, and α-carotene) and showed a high carotenoid:chlorophyll ratio of around 7.5:13. PSI-LHCI super-complex and PSI core showed fluorescence emission peaks at 716 and 718 nm at 77 K, respectively; whereas two Lhca oligomers had fluorescence peaks at 681 and 684 nm, respectively. By comparison with spinach PSI preparations, it was found that B. corticulans PSI had less red chlorophylls, most of them are present in the core complex but not in the outer light-harvesting systems. These characteristics may contribute to the fine tuning of the energy transfer network, and to acclimate to the ever-changing light conditions under which the unique green alga inhabits. PMID:25214185

  10. Ty1 Integrase Interacts with RNA Polymerase III-specific Subcomplexes to Promote Insertion of Ty1 Elements Upstream of Polymerase (Pol) III-transcribed Genes.

    PubMed

    Cheung, Stephanie; Ma, Lina; Chan, Patrick H W; Hu, Hui-Lan; Mayor, Thibault; Chen, Hung-Ta; Measday, Vivien

    2016-03-18

    Retrotransposons are eukaryotic mobile genetic elements that transpose by reverse transcription of an RNA intermediate and are derived from retroviruses. The Ty1 retrotransposon of Saccharomyces cerevisiae belongs to the Ty1/Copia superfamily, which is present in every eukaryotic genome. Insertion of Ty1 elements into the S. cerevisiae genome, which occurs upstream of genes transcribed by RNA Pol III, requires the Ty1 element-encoded integrase (IN) protein. Here, we report that Ty1-IN interacts in vivo and in vitro with RNA Pol III-specific subunits to mediate insertion of Ty1 elements upstream of Pol III-transcribed genes. Purification of Ty1-IN from yeast cells followed by mass spectrometry (MS) analysis identified an enrichment of peptides corresponding to the Rpc82/34/31 and Rpc53/37 Pol III-specific subcomplexes. GFP-Trap purification of multiple GFP-tagged RNA Pol III subunits from yeast extracts revealed that the majority of Pol III subunits co-purify with Ty1-IN but not two other complexes required for Pol III transcription, transcription initiation factors (TF) IIIB and IIIC. In vitro binding studies with bacterially purified RNA Pol III proteins demonstrate that Rpc31, Rpc34, and Rpc53 interact directly with Ty1-IN. Deletion of the N-terminal 280 amino acids of Rpc53 abrogates insertion of Ty1 elements upstream of the hot spot SUF16 tRNA locus and abolishes the interaction of Ty1-IN with Rpc37. The Rpc53/37 complex therefore has an important role in targeting Ty1-IN to insert Ty1 elements upstream of Pol III-transcribed genes. PMID:26797132

  11. Structure- and function-based design of Plasmodium-selective proteasome inhibitors.

    PubMed

    Li, Hao; O'Donoghue, Anthony J; van der Linden, Wouter A; Xie, Stanley C; Yoo, Euna; Foe, Ian T; Tilley, Leann; Craik, Charles S; da Fonseca, Paula C A; Bogyo, Matthew

    2016-02-11

    The proteasome is a multi-component protease complex responsible for regulating key processes such as the cell cycle and antigen presentation. Compounds that target the proteasome are potentially valuable tools for the treatment of pathogens that depend on proteasome function for survival and replication. In particular, proteasome inhibitors have been shown to be toxic for the malaria parasite Plasmodium falciparum at all stages of its life cycle. Most compounds that have been tested against the parasite also inhibit the mammalian proteasome, resulting in toxicity that precludes their use as therapeutic agents. Therefore, better definition of the substrate specificity and structural properties of the Plasmodium proteasome could enable the development of compounds with sufficient selectivity to allow their use as anti-malarial agents. To accomplish this goal, here we use a substrate profiling method to uncover differences in the specificities of the human and P. falciparum proteasome. We design inhibitors based on amino-acid preferences specific to the parasite proteasome, and find that they preferentially inhibit the β2-subunit. We determine the structure of the P. falciparum 20S proteasome bound to the inhibitor using cryo-electron microscopy and single-particle analysis, to a resolution of 3.6 Å. These data reveal the unusually open P. falciparum β2 active site and provide valuable information about active-site architecture that can be used to further refine inhibitor design. Furthermore, consistent with the recent finding that the proteasome is important for stress pathways associated with resistance of artemisinin family anti-malarials, we observe growth inhibition synergism with low doses of this β2-selective inhibitor in artemisinin-sensitive and -resistant parasites. Finally, we demonstrate that a parasite-selective inhibitor could be used to attenuate parasite growth in vivo without appreciable toxicity to the host. Thus, the Plasmodium proteasome is a

  12. Structure and function based design of Plasmodium-selective proteasome inhibitors

    PubMed Central

    Li, Hao; O'Donoghue, Anthony J.; van der Linden, Wouter A.; Xie, Stanley C.; Yoo, Euna; Foe, Ian T.; Tilley, Leann; Craik, Charles S.; da Fonseca, Paula C. A.; Bogyo, Matthew

    2016-01-01

    The proteasome is a multi-component protease complex responsible for regulating key processes such as the cell cycle and antigen presentation1. Compounds that target the proteasome are potentially valuable tools for the treatment of pathogens that depend on proteasome function for survival and replication. In particular, proteasome inhibitors have been shown to be toxic for the malaria parasite Plasmodium falciparum at all stages of its life cycle2-5. Most compounds that have been tested against the parasite also inhibit the mammalian proteasome resulting in toxicity that precludes their use as therapeutic agents2,6. Therefore, better definition of the substrate specificity and structural properties of the Plasmodium proteasome could enable the development of compounds with sufficient selectivity to allow their use as anti-malarial agents. To accomplish this goal, we used a substrate profiling method to uncover differences in the specificities of the human and P. falciparum proteasome. We designed inhibitors based on amino acid preferences specific to the parasite proteasome, and found that they preferentially inhibit the β 2 subunit. We determined the structure of the P. falciparum 20S proteasome bound to the inhibitor using cryo-electron microscopy (cryo-EM) and single particle analysis, to a resolution of 3.6 Å. These data reveal the unusually open P. falciparum β2 active site and provide valuable information regarding active site architecture that can be used to further refine inhibitor design. Furthermore, consistent with the recent finding that the proteasome is important for stress pathways associated with resistance of artemisinin (ART) family anti-malarials7,8, we observed growth inhibition synergism with low doses of this β 2 selective inhibitor in ART sensitive and resistant parasites. Finally, we demonstrated that a parasite selective inhibitor could be used to attenuate parasite growth in vivo without significant toxicity to the host. Thus, the

  13. Enhanced proteasome degradation extends Caenorhabditis elegans lifespan and alleviates aggregation-related pathologies.

    PubMed

    Chondrogianni, Niki; Georgila, Konstantina; Kourtis, Nikos; Tavernarakis, Nektarios; Gonos Efstathios, S

    2014-10-01

    Collapse of proteostasis and accumulation of damaged macromolecules have been recognized as hallmarks of aging and age-related diseases. The proteasome is the major cellular protease responsible for intracellular protein degradation, having an impaired function during aging. We have previously shown that proteasome activation through overexpression of β5 proteasome subunit delays replicative senescence and confers resistance to oxidative stress in primary fibroblasts. Herein, we have investigated the impact of enhanced proteasome function on organismal longevity and aggregation-related pathologies by employing Caenorhabditis elegans as a model system. We have found that overexpression of a core 20S proteasome subunit in wild type worms extends lifespan, healthspan and survival under proteotoxic conditions. The longevity prolonging effect of the proteasome subunit overexpression was found to depend on the FOXO transcription factor DAF-16 and was associated with its elevated transcriptional activity. We have also uncovered a major role of enhanced proteasome activity in aggregation-related pathologies underlying neurodegenerative diseases. Genetic activation of the proteasome minimized the detrimental effect of polyglutamine-induced toxicity mimicking Huntington's disease, whereas knock-down of the proteasome component exaggerated the disease phenotypes. Similar results were obtained by using a C.elegans model of Amyloid beta (Αβ) -induced toxicity mimicking Alzheimer's disease. Collectively, these findings demonstrate that enhanced proteasome function alleviates proteotoxicity and promotes longevity in synergy with other nodes of lifespan regulation in C.elegans. Understanding the mechanism by which preservation of proteostasis via enhancement of proteasome function, decelerates the aging process and alleviates age-related pathologies may assist in the rational design of therapeutic and anti-aging interventions. PMID:26461298

  14. Decreased Proteasomal Activity Causes Photoreceptor Degeneration in Mice

    PubMed Central

    Ando, Ryo; Noda, Kousuke; Tomaru, Utano; Kamoshita, Mamoru; Ozawa, Yoko; Notomi, Shoji; Hisatomi, Toshio; Noda, Mika; Kanda, Atsuhiro; Ishibashi, Tatsuro; Kasahara, Masanori; Ishida, Susumu

    2014-01-01

    Purpose. To study the retinal degeneration caused by decreased proteasomal activity in β5t transgenic (β5t-Tg) mice, an animal model of senescence acceleration. Methods. β5t-Tg mice and age-matched littermate control (WT) mice were used. Proteasomal activities and protein level of poly-ubiquitinated protein in retinal extracts were quantified. Fundus images of β5t-Tg mice were taken and their features were assessed. For histologic evaluation, the thicknesses of inner nuclear layer (INL), outer nuclear layer (ONL), and photoreceptor outer segment (OS) were measured. For functional analysis, ERG was recorded under scotopic and photopic illumination conditions. Immunofluorescence (IF) staining and TUNEL were performed to investigate the mechanism of photoreceptor degeneration. Results. Chymotrypsin-like activity was partially suppressed in retinal tissues of β5t-Tg mice. Retinal degenerative changes with arterial attenuation were present in β5t-Tg, but not in WT mice. Inner nuclear layer thickness showed no significant change between β5t-Tg and WT mice at 1, 3, 6, and 9 months of age. By contrast, thicknesses of ONL and OS in β5t-Tg mice were significantly decreased at 3, 6, and 9 months compared with those in WT mice. Electroretinograms showed decrease of scotopic a-wave amplitude in β5t-Tg mice. The number of TUNEL-positive cells in ONL were significantly increased in β5t-Tg mice and colocalized with apoptosis-inducing factor, but not with cleaved caspase-3 and -9, indicating that the photoreceptor cell death was induced via a caspase-independent pathway. Conclusions. The current data showed that impaired proteasomal function causes photoreceptor degeneration. PMID:24994871

  15. The Ubiquitin–Proteasome System of Saccharomyces cerevisiae

    PubMed Central

    Finley, Daniel; Ulrich, Helle D.; Sommer, Thomas; Kaiser, Peter

    2012-01-01

    Protein modifications provide cells with exquisite temporal and spatial control of protein function. Ubiquitin is among the most important modifiers, serving both to target hundreds of proteins for rapid degradation by the proteasome, and as a dynamic signaling agent that regulates the function of covalently bound proteins. The diverse effects of ubiquitylation reflect the assembly of structurally distinct ubiquitin chains on target proteins. The resulting ubiquitin code is interpreted by an extensive family of ubiquitin receptors. Here we review the components of this regulatory network and its effects throughout the cell. PMID:23028185

  16. JMJ24 targets CHROMOMETHYLASE3 for proteasomal degradation in Arabidopsis

    PubMed Central

    Deng, Shulin; Jang, In-Cheol; Su, Linlin; Xu, Jun; Chua, Nam-Hai

    2016-01-01

    H3K9 methylation is usually associated with DNA methylation, and together they symbolize transcriptionally silenced heterochromatin. A number of proteins involved in epigenetic processes have been characterized. However, how the stability of these proteins is regulated at the post-translational level is largely unknown. Here, we show that an Arabidopsis JmjC domain protein, JMJ24, possesses ubiquitin E3 ligase activity. JMJ24 directly targets a DNA methyltransferase, CHROMOMETHYLASE 3 (CMT3), for proteasomal degradation to initiate destabilization of the heterochromatic state of endogenous silenced loci. Our results uncover an additional connection between two conserved epigenetic modifications: histone modification and DNA methylation. PMID:26798133

  17. Autophagic Degradation of the 26S Proteasome Is Mediated by the Dual ATG8/Ubiquitin Receptor RPN10 in Arabidopsis.

    PubMed

    Marshall, Richard S; Li, Faqiang; Gemperline, David C; Book, Adam J; Vierstra, Richard D

    2015-06-18

    Autophagic turnover of intracellular constituents is critical for cellular housekeeping, nutrient recycling, and various aspects of growth and development in eukaryotes. Here we show that autophagy impacts the other major degradative route involving the ubiquitin-proteasome system by eliminating 26S proteasomes, a process we termed proteaphagy. Using Arabidopsis proteasomes tagged with GFP, we observed their deposition into vacuoles via a route requiring components of the autophagy machinery. This transport can be initiated separately by nitrogen starvation and chemical or genetic inhibition of the proteasome, implying distinct induction mechanisms. Proteasome inhibition stimulates comprehensive ubiquitylation of the complex, with the ensuing proteaphagy requiring the proteasome subunit RPN10, which can simultaneously bind both ATG8 and ubiquitin. Collectively, we propose that Arabidopsis RPN10 acts as a selective autophagy receptor that targets inactive 26S proteasomes by concurrent interactions with ubiquitylated proteasome subunits/targets and lipidated ATG8 lining the enveloping autophagic membranes. PMID:26004230

  18. Essential role of proteasomes in maintaining self-renewal in neural progenitor cells

    PubMed Central

    Zhao, Yunhe; Liu, Xueqin; He, Zebin; Niu, Xiaojie; Shi, Weijun; Ding, Jian M.; Zhang, Li; Yuan, Tifei; Li, Ang; Yang, Wulin; Lu, Li

    2016-01-01

    Protein turnover and homeostasis are regulated by the proteasomal system, which is critical for cell function and viability. Pluripotency of stem cells also relies on normal proteasomal activity that mitigates senescent phenotypes induced by intensive cell replications, as previously demonstrated in human bone marrow stromal cells. In this study, we investigated the role of proteasomes in self-renewal of neural progenitor cells (NPCs). Through both in vivo and in vitro analyses, we found that the expression of proteasomes was progressively decreased during aging. Likewise, proliferation and self-renewal of NPCs were also impaired in aged mice, suggesting that the down-regulation of proteasomes might be responsible for this senescent phenotype. Lowering proteasomal activity by loss-of-function manipulations mimicked the senescence of NPCs both in vitro and in vivo; conversely, enhancing proteasomal activity restored and improved self-renewal in aged NPCs. These results collectively indicate that proteasomes work as a key regulator in promoting self-renewal of NPCs. This potentially provides a promising therapeutic target for age-dependent neurodegenerative diseases. PMID:26804982

  19. The aspartyl protease DDI2 activates Nrf1 to compensate for proteasome dysfunction

    PubMed Central

    Koizumi, Shun; Irie, Taro; Hirayama, Shoshiro; Sakurai, Yasuyuki; Yashiroda, Hideki; Naguro, Isao; Ichijo, Hidenori; Hamazaki, Jun; Murata, Shigeo

    2016-01-01

    In response to proteasome dysfunction, mammalian cells upregulate proteasome gene expression by activating Nrf1. Nrf1 is an endoplasmic reticulum-resident transcription factor that is continually retrotranslocated and degraded by the proteasome. Upon proteasome inhibition, Nrf1 escapes degradation and is cleaved to become active. However, the processing enzyme for Nrf1 remains obscure. Here we show that the aspartyl protease DNA-damage inducible 1 homolog 2 (DDI2) is required to cleave and activate Nrf1. Deletion of DDI2 reduced the cleaved form of Nrf1 and increased the full-length cytosolic form of Nrf1, resulting in poor upregulation of proteasomes in response to proteasome inhibition. These defects were restored by adding back wild-type DDI2 but not protease-defective DDI2. Our results provide a clue for blocking compensatory proteasome synthesis to improve cancer therapies targeting proteasomes. DOI: http://dx.doi.org/10.7554/eLife.18357.001 PMID:27528193

  20. Structure of the Mycobacterium tuberculosis proteasome and mechanism of inhibition by a peptidyl boronate

    SciTech Connect

    Hu,G.; Lin, G.; Wang, M.; Dick, L.; Xu, R.; Nathan, C.; Li, H.

    2006-01-01

    Mycobacterium tuberculosis (Mtb) has the remarkable ability to resist killing by human macrophages. The 750 kDa proteasome, not available in most eubacteria except Actinomycetes, appears to contribute to Mtb's resistance. The crystal structure of the Mtb proteasome at 3.0 Angstroms resolution reveals a substrate-binding pocket with composite features of the distinct {beta}1, {beta}2 and {beta}5 substrate binding sites of eukaryotic proteasomes, accounting for the broad specificity of the Mtb proteasome towards oligopeptides described in the companion article [Lin et al. (2006), Mol Microbiol doi:10.1111/j.1365-2958.2005.05035.x]. The substrate entrance at the end of the cylindrical proteasome appears open in the crystal structure due to partial disorder of the a-subunit N-terminal residues. However, cryo-electron microscopy of the core particle reveals a closed end, compatible with the density observed in negative-staining electron microscopy that depended on the presence of the N-terminal octapeptides of the a-subunits in the companion article, suggesting that the Mtb proteasome has a gated structure. We determine for the first time the proteasomal inhibition mechanism of the dipeptidyl boronate N-(4-morpholine)carbonyl-{beta}-(1-naphthyl)-l-alanine-l-leucine boronic acid (MLN-273), an analogue of the antimyeloma drug bortezomib. The structure improves prospects for designing Mtb-specific proteasomal inhibitors as a novel approach to chemotherapy of tuberculosis.

  1. The Lysine 48 and Lysine 63 Ubiquitin Conjugates Are Processed Differently by the 26 S Proteasome*

    PubMed Central

    Jacobson, Andrew D.; Zhang, Nan-Yan; Xu, Ping; Han, Ke-Jun; Noone, Seth; Peng, Junmin; Liu, Chang-Wei

    2009-01-01

    The role of Lys-63 ubiquitin chains in targeting proteins for proteasomal degradation is still obscure. We systematically compared proteasomal processing of Lys-63 ubiquitin chains with that of the canonical proteolytic signal, Lys-48 ubiquitin chains. Quantitative mass spectrometric analysis of ubiquitin chains in HeLa cells determines that the levels of Lys-63 ubiquitin chains are insensitive to short-time proteasome inhibition. Also, the Lys-48/Lys-63 ratio in the 26 S proteasome-bound fraction is 1.7-fold more than that in the cell lysates, likely because some cellular Lys-63 ubiquitin conjugates are sequestered by Lys-63 chain-specific binding proteins. In vitro, Lys-48 and Lys-63 ubiquitin chains bind the 26 S proteasome comparably, whereas Lys-63 chains are deubiquitinated 6-fold faster than Lys-48 chains. Also, Lys-63 tetraubiquitin-conjugated UbcH10 is rapidly deubiquitinated into the monoubiquitinated form, whereas Lys-48 tetraubiquitin targets UbcH10 for degradation. Furthermore, we found that both the ubiquitin aldehyde- and 1,10-phenanthroline-sensitive deubiquitinating activities of the 26 S proteasome contribute to Lys-48- and Lys-63-linkage deubiquitination, albeit the inhibitory extents are different. Together, our findings suggest that compared with Lys-48 chains, cellular Lys-63 chains have less proteasomal accessibility, and proteasome-bound Lys-63 chains are more rapidly deubiquitinated, which could cause inefficient degradation of Lys-63 conjugates. PMID:19858201

  2. Structure of the Mycobacterium tuberculosis proteasome and mechanism of inhibition by a peptidyl boronate.

    PubMed

    Hu, Guiqing; Lin, Gang; Wang, Ming; Dick, Lawrence; Xu, Rui-Ming; Nathan, Carl; Li, Huilin

    2006-03-01

    Mycobacterium tuberculosis (Mtb) has the remarkable ability to resist killing by human macrophages. The 750 kDa proteasome, not available in most eubacteria except Actinomycetes, appears to contribute to Mtb's resistance. The crystal structure of the Mtb proteasome at 3.0 A resolution reveals a substrate-binding pocket with composite features of the distinct beta1, beta2 and beta5 substrate binding sites of eukaryotic proteasomes, accounting for the broad specificity of the Mtb proteasome towards oligopeptides described in the companion article [Lin et al. (2006), Mol Microbiol doi:10.1111/j.1365-2958.2005.05035.x]. The substrate entrance at the end of the cylindrical proteasome appears open in the crystal structure due to partial disorder of the alpha-subunit N-terminal residues. However, cryo-electron microscopy of the core particle reveals a closed end, compatible with the density observed in negative-staining electron microscopy that depended on the presence of the N-terminal octapetides of the alpha-subunits in the companion article, suggesting that the Mtb proteasome has a gated structure. We determine for the first time the proteasomal inhibition mechanism of the dipeptidyl boronate N-(4-morpholine)carbonyl-beta-(1-naphthyl)-L-alanine-L-leucine boronic acid (MLN-273), an analogue of the antimyeloma drug bortezomib. The structure improves prospects for designing Mtb-specific proteasomal inhibitors as a novel approach to chemotherapy of tuberculosis. PMID:16468986

  3. PI31 is a modulator of proteasome formation and antigen processing

    PubMed Central

    Zaiss, Dietmar M. W.; Standera, Sybille; Kloetzel, Peter-M.; Sijts, Alice J. A. M.

    2002-01-01

    Regulation of the proteasome system, which is responsible for the generation of most MHC class I-bound peptides, occurs through the interaction of the 20S proteasome with several regulatory proteins. One of these is PI31, which acts in vitro as an inhibitor of proteasome activity. Here, we demonstrate that, rather than inhibiting proteasome function, PI31 acts as a selective modulator of the proteasome-mediated steps in MHC class I antigen processing. Overexpression of PI31 in mouse embryonic cells has no impact on proteasome-mediated proteolysis. Instead, PI31, which localizes at the nuclear envelope/endoplasmic reticulum membrane, selectively interferes with the maturation of immunoproteasome precursor complexes. Consequently, overexpression of PI31 abrogates MHC class I presentation of an immunoproteasome-dependent cytotoxic T lymphocyte epitope and reduces the surface MHC class I levels on IFN-γ-treated mouse embryonic cells. Thus, PI31 represents a cellular regulator of proteasome formation and of proteasome-mediated antigen processing. PMID:12374861

  4. Ciliopathy proteins regulate paracrine signaling by modulating proteasomal degradation of mediators

    PubMed Central

    Liu, Yangfan P.; Tsai, I-Chun; Morleo, Manuela; Oh, Edwin C.; Leitch, Carmen C.; Massa, Filomena; Lee, Byung-Hoon; Parker, David S.; Finley, Daniel; Zaghloul, Norann A.; Franco, Brunella; Katsanis, Nicholas

    2014-01-01

    Cilia are critical mediators of paracrine signaling; however, it is unknown whether proteins that contribute to ciliopathies converge on multiple paracrine pathways through a common mechanism. Here, we show that loss of cilopathy-associated proteins Bardet-Biedl syndrome 4 (BBS4) or oral-facial-digital syndrome 1 (OFD1) results in the accumulation of signaling mediators normally targeted for proteasomal degradation. In WT cells, several BBS proteins and OFD1 interacted with proteasomal subunits, and loss of either BBS4 or OFD1 led to depletion of multiple subunits from the centrosomal proteasome. Furthermore, overexpression of proteasomal regulatory components or treatment with proteasomal activators sulforaphane (SFN) and mevalonolactone (MVA) ameliorated signaling defects in cells lacking BBS1, BBS4, and OFD1, in morphant zebrafish embryos, and in induced neurons from Ofd1-deficient mice. Finally, we tested the hypothesis that other proteasome-dependent pathways not known to be associated with ciliopathies are defective in the absence of ciliopathy proteins. We found that loss of BBS1, BBS4, or OFD1 led to decreased NF-κB activity and concomitant IκBβ accumulation and that these defects were ameliorated with SFN treatment. Taken together, our data indicate that basal body proteasomal regulation governs paracrine signaling pathways and suggest that augmenting proteasomal function might benefit ciliopathy patients. PMID:24691443

  5. The immunoproteasome, the 20S proteasome and the PA28αβ proteasome regulator are oxidative-stress-adaptive proteolytic complexes.

    PubMed

    Pickering, Andrew M; Koop, Alison L; Teoh, Cheryl Y; Ermak, Gennady; Grune, Tilman; Davies, Kelvin J A

    2010-12-15

    Oxidized cytoplasmic and nuclear proteins are normally degraded by the proteasome, but accumulate with age and disease. We demonstrate the importance of various forms of the proteasome during transient (reversible) adaptation (hormesis), to oxidative stress in murine embryonic fibroblasts. Adaptation was achieved by 'pre-treatment' with very low concentrations of H2O2, and tested by measuring inducible resistance to a subsequent much higher 'challenge' dose of H2O2. Following an initial direct physical activation of pre-existing proteasomes, the 20S proteasome, immunoproteasome and PA28αβ regulator all exhibited substantially increased de novo synthesis during adaptation over 24 h. Cellular capacity to degrade oxidatively damaged proteins increased with 20S proteasome, immunoproteasome and PA28αβ synthesis, and was mostly blocked by the 20S proteasome, immunoproteasome and PA28 siRNA (short interfering RNA) knockdown treatments. Additionally, PA28αβ-knockout mutants achieved only half of the H2O2-induced adaptive increase in proteolytic capacity of wild-type controls. Direct comparison of purified 20S proteasome and immunoproteasome demonstrated that the immunoproteasome can selectively degrade oxidized proteins. Cell proliferation and DNA replication both decreased, and oxidized proteins accumulated, during high H2O2 challenge, but prior H2O2 adaptation was protective. Importantly, siRNA knockdown of the 20S proteasome, immunoproteasome or PA28αβ regulator blocked 50-100% of these adaptive increases in cell division and DNA replication, and immunoproteasome knockdown largely abolished protection against protein oxidation. PMID:20919990

  6. Ubiquitination and proteasomal degradation of ATG12 regulates its proapoptotic activity

    PubMed Central

    Haller, Martina; Hock, Andreas K; Giampazolias, Evangelos; Oberst, Andrew; Green, Douglas R; Debnath, Jayanta; Ryan, Kevin M; Vousden, Karen H; Tait, Stephen W G

    2015-01-01

    During macroautophagy, conjugation of ATG12 to ATG5 is essential for LC3 lipidation and autophagosome formation. Additionally, ATG12 has ATG5-independent functions in diverse processes including mitochondrial fusion and mitochondrial-dependent apoptosis. In this study, we investigated the regulation of free ATG12. In stark contrast to the stable ATG12–ATG5 conjugate, we find that free ATG12 is highly unstable and rapidly degraded in a proteasome-dependent manner. Surprisingly, ATG12, itself a ubiquitin-like protein, is directly ubiquitinated and this promotes its proteasomal degradation. As a functional consequence of its turnover, accumulation of free ATG12 contributes to proteasome inhibitor-mediated apoptosis, a finding that may be clinically important given the use of proteasome inhibitors as anticancer agents. Collectively, our results reveal a novel interconnection between autophagy, proteasome activity, and cell death mediated by the ubiquitin-like properties of ATG12. PMID:25629932

  7. Proteasome Activity Is Affected by Fluctuations in Insulin-Degrading Enzyme Distribution

    PubMed Central

    Sbardella, Diego; Tundo, Grazia Raffaella; Sciandra, Francesca; Bozzi, Manuela; Gioia, Magda; Ciaccio, Chiara; Tarantino, Umberto; Brancaccio, Andrea; Coletta, Massimo; Marini, Stefano

    2015-01-01

    Insulin-Degrading-Enzyme (IDE) is a Zn2+-dependent peptidase highly conserved throughout evolution and ubiquitously distributed in mammalian tissues wherein it displays a prevalent cytosolic localization. We have recently demonstrated a novel Heat Shock Protein-like behaviour of IDE and its association with the 26S proteasome. In the present study, we examine the mechanistic and molecular features of IDE-26S proteasome interaction in a cell experimental model, extending the investigation also to the effect of IDE on the enzymatic activities of the 26S proteasome. Further, kinetic investigations indicate that the 26S proteasome activity undergoes a functional modulation by IDE through an extra-catalytic mechanism. The IDE-26S proteasome interaction was analyzed during the Heat Shock Response and we report novel findings on IDE intracellular distribution that might be of critical relevance for cell metabolism. PMID:26186340

  8. Inhibition of Proteasome Activity Impairs Centrosome-dependent Microtubule Nucleation and Organization

    PubMed Central

    Didier, Christine; Merdes, Andreas; Gairin, Jean-Edouard

    2008-01-01

    Centrosomes are dynamic organelles that consist of a pair of cylindrical centrioles, surrounded by pericentriolar material. The pericentriolar material contains factors that are involved in microtubule nucleation and organization, and its recruitment varies during the cell cycle. We report here that proteasome inhibition in HeLa cells induces the accumulation of several proteins at the pericentriolar material, including gamma-tubulin, GCP4, NEDD1, ninein, pericentrin, dynactin, and PCM-1. The effect of proteasome inhibition on centrosome proteins does not require intact microtubules and is reversed after removal of proteasome inhibitors. This accrual of centrosome proteins is paralleled by accumulation of ubiquitin in the same area and increased polyubiquitylation of nonsoluble gamma-tubulin. Cells that have accumulated centrosome proteins in response to proteasome inhibition are impaired in microtubule aster formation. Our data point toward a role of the proteasome in the turnover of centrosome proteins, to maintain proper centrosome function. PMID:18094058

  9. Distinct temporal requirements for autophagy and the proteasome in yeast meiosis.

    PubMed

    Wen, Fu-Ping; Guo, Yue-Shuai; Hu, Yang; Liu, Wei-Xiao; Wang, Qian; Wang, Yuan-Ting; Yu, Hai-Yan; Tang, Chao-Ming; Yang, Jun; Zhou, Tao; Xie, Zhi-Ping; Sha, Jia-Hao; Guo, Xuejiang; Li, Wei

    2016-04-01

    Meiosis is a special type of cellular renovation that involves 2 successive cell divisions and a single round of DNA replication. Two major degradation systems, the autophagy-lysosome and the ubiquitin-proteasome, are involved in meiosis, but their roles have yet to be elucidated. Here we show that autophagy mainly affects the initiation of meiosis but not the nuclear division. Autophagy works not only by serving as a dynamic recycling system but also by eliminating some negative meiotic regulators such as Ego4 (Ynr034w-a). In a quantitative proteomics study, the proteasome was found to be significantly upregulated during meiotic divisions. We found that proteasomal activity is essential to the 2 successive meiotic nuclear divisions but not for the initiation of meiosis. Our study defines the roles of autophagy and the proteasome in meiosis: Autophagy mainly affects the initiation of meiosis, whereas the proteasome mainly affects the 2 successive meiotic divisions. PMID:27050457

  10. Progress of computer-aided drug design (CADD) of proteasome inhibitors.

    PubMed

    Lei, Meng; Liu, Yunde; Zhu, Yongqiang; Liu, Zhenming

    2011-12-01

    The target proteasome has been the focus of drug discovery since the first drug bortezomib was launched in 2003. Many structurally diverse proteasome inhibitors were discovered and even some of them entered the clinical trials. Due to rapid technological progress in chemistry, bioinformatics, structural biology and computer technology, computer-aided drug design (CADD) plays a more and more important role in today's drug discovery. Many CADD technologies were employed in designing various inhibitors of proteasome in the past years. This review gives a global description of the development of computer-aided proteasome inhibitor design by using different commercial or academic software. The binding modes of some structurally novel inhibitors with proteasome were visualized with these new technologies. PMID:21824106

  11. Use of missense proteasome subunits for conditional lethality in the tephritid fruit flies Anastrepha suspensa and Ceratitis capitata

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Proteasomes play a critical role in eukaryote development by regulating protein degradation. In Drosophila, mis-sense mutations in the 20S proteasome subunit lead to the production of dominant temperature-sensitive (DTS) "poison subunits" or antimorphs that disrupt proteasome function. DTS5 and DTS...

  12. Ubiquitin, Proteasomes and Proteolytic Mechanisms Activated by Kidney Disease

    PubMed Central

    Rajan, Vik; Mitch, William E.

    2008-01-01

    Summary The ubiquitin-proteasome system (UPS) includes 3 enzymes that conjugate ubiquitin to intracellular proteins that are then recognized and degraded in the proteasome. The process participates in the regulation of cell metabolism. In the kidney, the UPS regulates the turnover of transporters and signaling proteins and its activity is down regulated in acidosis-induced proximal tubular cell hypertrophy. In chronic kidney disease (CKD), muscle wasting occurs because complications of CKD including acidosis, insulin resistance, inflammation, and increased angiotensin II levels stimulate the UPS to degrade muscle proteins. This response also includes caspase-3 and calpains which act to cleave muscle proteins to provide substrates for the UPS. For example, caspase-3 degrades actomyosin, leaving a 14kD fragment of actin in muscle. The 14 kD actin fragment is increased in muscle of patient with kidney disease, burn injury and surgery. In addition, acidosis, insulin resistance, inflammation and angiotensin II stimulate glucocorticoid production. Glucocorticoids are also required for the muscle wasting that occurs in CKD. Thus, the UPS is involved in regulating kidney function and participates in highly organized responses that degrade muscle protein in response to loss of kidney function. PMID:18723090

  13. Disease-proportional proteasomal degradation of missense dystrophins

    PubMed Central

    Talsness, Dana M.; Belanto, Joseph J.; Ervasti, James M.

    2015-01-01

    The 427-kDa protein dystrophin is expressed in striated muscle where it physically links the interior of muscle fibers to the extracellular matrix. A range of mutations in the DMD gene encoding dystrophin lead to a severe muscular dystrophy known as Duchenne (DMD) or a typically milder form known as Becker (BMD). Patients with nonsense mutations in dystrophin are specifically targeted by stop codon read-through drugs, whereas out-of-frame deletions and insertions are targeted by exon-skipping therapies. Both treatment strategies are currently in clinical trials. Dystrophin missense mutations, however, cause a wide range of phenotypic severity in patients. The molecular and cellular consequences of such mutations are not well understood, and there are no therapies specifically targeting this genotype. Here, we have modeled two representative missense mutations, L54R and L172H, causing DMD and BMD, respectively, in full-length dystrophin. In vitro, the mutation associated with the mild phenotype (L172H) caused a minor decrease in tertiary stability, whereas the L54R mutation associated with a severe phenotype had a more dramatic effect. When stably expressed in mammalian muscle cells, the mutations caused steady-state decreases in dystrophin protein levels inversely proportional to the tertiary stability and directly caused by proteasomal degradation. Both proteasome inhibitors and heat shock activators were able to increase mutant dystrophin to WT levels, establishing the new cell lines as a platform to screen for potential therapeutics personalized to patients with destabilized dystrophin. PMID:26392559

  14. Disease-proportional proteasomal degradation of missense dystrophins.

    PubMed

    Talsness, Dana M; Belanto, Joseph J; Ervasti, James M

    2015-10-01

    The 427-kDa protein dystrophin is expressed in striated muscle where it physically links the interior of muscle fibers to the extracellular matrix. A range of mutations in the DMD gene encoding dystrophin lead to a severe muscular dystrophy known as Duchenne (DMD) or a typically milder form known as Becker (BMD). Patients with nonsense mutations in dystrophin are specifically targeted by stop codon read-through drugs, whereas out-of-frame deletions and insertions are targeted by exon-skipping therapies. Both treatment strategies are currently in clinical trials. Dystrophin missense mutations, however, cause a wide range of phenotypic severity in patients. The molecular and cellular consequences of such mutations are not well understood, and there are no therapies specifically targeting this genotype. Here, we have modeled two representative missense mutations, L54R and L172H, causing DMD and BMD, respectively, in full-length dystrophin. In vitro, the mutation associated with the mild phenotype (L172H) caused a minor decrease in tertiary stability, whereas the L54R mutation associated with a severe phenotype had a more dramatic effect. When stably expressed in mammalian muscle cells, the mutations caused steady-state decreases in dystrophin protein levels inversely proportional to the tertiary stability and directly caused by proteasomal degradation. Both proteasome inhibitors and heat shock activators were able to increase mutant dystrophin to WT levels, establishing the new cell lines as a platform to screen for potential therapeutics personalized to patients with destabilized dystrophin. PMID:26392559

  15. CHIP: a co-chaperone for degradation by the proteasome.

    PubMed

    Edkins, Adrienne L

    2015-01-01

    Protein homeostasis relies on a balance between protein folding and protein degradation. Molecular chaperones like Hsp70 and Hsp90 fulfil well-defined roles in protein folding and conformational stability via ATP dependent reaction cycles. These folding cycles are controlled by associations with a cohort of non-client protein co-chaperones, such as Hop, p23 and Aha1. Pro-folding co-chaperones facilitate the transit of the client protein through the chaperone mediated folding process. However, chaperones are also involved in ubiquitin-mediated proteasomal degradation of client proteins. Similar to folding complexes, the ability of chaperones to mediate protein degradation is regulated by co-chaperones, such as the C terminal Hsp70 binding protein (CHIP). CHIP binds to Hsp70 and Hsp90 chaperones through its tetratricopeptide repeat (TPR) domain and functions as an E3 ubiquitin ligase using a modified RING finger domain (U-box). This unique combination of domains effectively allows CHIP to network chaperone complexes to the ubiquitin-proteasome system. This chapter reviews the current understanding of CHIP as a co-chaperone that switches Hsp70/Hsp90 chaperone complexes from protein folding to protein degradation. PMID:25487024

  16. Puromycin induces SUMO and ubiquitin redistribution upon proteasome inhibition.

    PubMed

    Matsumoto, Hotaru; Saitoh, Hisato

    2016-07-29

    We have previously reported the co-localization of O-propargyl-puromycin (OP-Puro) with SUMO-2/3 and ubiquitin at promyelocytic leukemia-nuclear bodies (PML-NBs) in the presence of the proteasome inhibitor MG132, implying a role for the ubiquitin family in sequestering OP-puromycylated immature polypeptides to the nucleus during impaired proteasome activity. Here, we found that as expected puromycin induced SUMO-1/2/3 accumulation with ubiquitin at multiple nuclear foci in HeLa cells when co-exposed to MG132. Co-administration of puromycin and MG132 also facilitated redistribution of PML and the SUMO-targeted ubiquitin ligase RNF4 concurrently with SUMO-2/3. As removal of the drugs from the medium led to disappearance of the SUMO-2/3-ubiquitin nuclear foci, our findings indicated that nuclear assembly/disassembly of SUMO-2/3 and ubiquitin was pharmacologically manipulable, supporting our previous observation on OP-Puro, which predicted the ubiquitin family function in sequestrating aberrant proteins to the nucleus. PMID:27181354

  17. Oxidative stress and proteasome inhibitors in multiple myeloma.

    PubMed

    Lipchick, Brittany C; Fink, Emily E; Nikiforov, Mikhail A

    2016-03-01

    Multiple myeloma is a form of plasma cell neoplasm that accounts for approximately 10% of all hematological malignancies. Recently, several novel drugs have been discovered that almost doubled the overall survival of multiple myeloma patients. One of these drugs, the first-in-class proteasome inhibitor bortezomib (Velcade) has demonstrated remarkable response rates in multiple myeloma patients, and yet, currently this disease remains incurable. The major factor undermining the success of multiple myeloma treatment is a rapidly emerging resistance to the available therapy. Thus, the development of stand-alone or adjuvant anti-myeloma agents becomes of paramount importance. Overproduction of intracellular reactive oxygen species (ROS) often accompanies malignant transformation due to oncogene activation and/or enhanced metabolism in tumor cells. As a result, these cells possess higher levels of ROS and lower levels of antioxidant molecules compared to their normal counterparts. Unbalanced production of ROS leads to oxidative stress which, if left unchecked, could be toxic for the cell. In multiple myeloma cells where high rates of immunoglobulin synthesis is an additional factor contributing to overproduction of ROS, further induction of oxidative stress can be an effective strategy to cope with this disease. Here we will review the available data on the role of oxidative stress in the cytotoxicity of proteasome inhibitors and the use of ROS-inducing compounds as anti-myeloma agents. PMID:26827824

  18. The ubiquitin proteasome system in Caenorhabditis elegans and its regulation☆

    PubMed Central

    Papaevgeniou, Nikoletta; Chondrogianni, Niki

    2014-01-01

    Protein degradation constitutes a major cellular function that is responsible for maintenance of the normal cellular physiology either through the degradation of normal proteins or through the elimination of damaged proteins. The Ubiquitin–Proteasome System (UPS)1 is one of the main proteolytic systems that orchestrate protein degradation. Given that up- and down- regulation of the UPS system has been shown to occur in various normal (such as ageing) and pathological (such as neurodegenerative diseases) processes, the exogenous modulation of the UPS function and activity holds promise of (a) developing new therapeutic interventions against various diseases and (b) establishing strategies to maintain cellular homeostasis. Since the proteasome genes are evolutionarily conserved, their role can be dissected in simple model organisms, such as the nematode, Caenorhabditis elegans. In this review, we survey findings on the redox regulation of the UPS in C. elegans showing that the nematode is an instrumental tool in the identification of major players in the UPS pathway. Moreover, we specifically discuss UPS-related genes that have been modulated in the nematode and in human cells and have resulted in similar effects thus further exhibiting the value of this model in the study of the UPS. PMID:24563851

  19. Bladder cancer detection using a peptide substrate of the 20S proteasome.

    PubMed

    Gruba, Natalia; Wysocka, Magdalena; Brzezińska, Magdalena; Dębowski, Dawid; Sieńczyk, Marcin; Gorodkiewicz, Ewa; Guszcz, Tomasz; Czaplewski, Cezary; Rolka, Krzysztof; Lesner, Adam

    2016-08-01

    The 20S catalytic core of the human 26S proteasome can be secreted from cells, and high levels of extracellular 20S proteasome have been linked to many types of cancers and autoimmune diseases. Several diagnostic approaches have been developed that detect 20S proteasome activity in plasma, but these suffer from problems with efficiency and sensitivity. In this report, we describe the optimization and synthesis of an internally quenched fluorescent substrate of the 20S proteasome, and investigate its use as a potential diagnostic test in bladder cancer. This peptide, 2-aminobenzoic acid (ABZ)-Val-Val-Ser-Tyr-Ala-Met-Gly-Tyr(3-NO2 )-NH2 , is cleaved by the chymotrypsin 20S proteasome subunit and displays an excellent specificity constant value (9.7 × 10(5)  m(-1) ·s(-1) ) and a high kcat (8 s(-1) ). Using this peptide, we identified chymotrypsin-like proteasome activity in the majority of urine samples obtained from patients with bladder cancer, whereas the proteasome activity in urine samples from healthy volunteers was below the detection limit (0.5 pm). These findings were confirmed by an inhibitory study and immunochemistry methods. PMID:27326540

  20. Suppression of cytochrome P450 3A protein levels by proteasome inhibitors.

    SciTech Connect

    Zangar, Richard C. ); Kocarek, Thomas A.; Shen, Shang; Bollinger, Nikki ); Dahn, Michael S.; Lee, Donna W.

    2003-06-01

    We have previously reported that CYP3A cross-links with polyubiquitinated proteins in microsomes from nicardipine-treated rats in a process that is distinct from classical polyubiquitination. To further examine the role of the proteasome in CYP3A degradation, we investigated the effects of proteasome inhibitors lactacystin, MG132, proteasome inhibitor 1, and hemin in primary cultures of rat and human hepatocytes. With the exception of hemin, these agents increased the total pool of ubiquitinated proteins in microsomes isolated from rat hepatocytes, indicating that lactacystin, MG132, and proteasome inhibitor 1 effectively inhibited the proteasome in these cells. All four agents caused a reduction in the amount of the major approximately 55-kDa CYP3A band, opposite to what would be expected if the ubiquitin-proteasome pathway degraded CYP3A. Only hemin treatment caused an increase in high molecular mass (HMM) CYP3A bands. Because hemin treatment did not alter levels of ubiquitin in CYP3 A immunoprecipitates, the HMM CYP3A bands formed in response to hemin treatment clearly were not due to proteasome inhibition. Rather, because hemin treatment also caused an increase in HMM CYP3A in the detergent-insoluble fraction of the 10,000g pellet, the HMM CYP3A seems to represent a large protein complex that is unlikely to primarily represent ubiquitination.

  1. Facilitated Tau Degradation by USP14 Aptamers via Enhanced Proteasome Activity

    PubMed Central

    Lee, Jung Hoon; Shin, Seung Kyun; Jiang, Yanxialei; Choi, Won Hoon; Hong, Chaesun; Kim, Dong-Eun; Lee, Min Jae

    2015-01-01

    The ubiquitin-proteasome system (UPS) is the primary mechanism by which intracellular proteins, transcription factors, and many proteotoxic proteins with aggregation-prone structures are degraded. The UPS is reportedly downregulated in various neurodegenerative disorders, with increased proteasome activity shown to be beneficial in many related disease models. Proteasomes function under tonic inhibitory conditions, possibly via the ubiquitin chain-trimming function of USP14, a proteasome-associated deubiquitinating enzyme (DUB). We identified three specific RNA aptamers of USP14 (USP14-1, USP14-2, and USP14-3) that inhibited its deubiquitinating activity. The nucleotide sequences of these non-cytotoxic USP14 aptamers contained conserved GGAGG motifs, with G-rich regions upstream, and similar secondary structures. They efficiently elevated proteasomal activity, as determined by the increased degradation of small fluorogenic peptide substrates and physiological polyubiquitinated Sic1 proteins. Additionally, proteasomal degradation of tau proteins was facilitated in the presence of the UPS14 aptamers in vitro. Our results indicate that these novel inhibitory UPS14 aptamers can be used to enhance proteasome activity, and to facilitate the degradation of proteotoxic proteins, thereby protecting cells from various neurodegenerative stressors. PMID:26041011

  2. The proteasomal and apoptotic phenotype determine bortezomib sensitivity of non-small cell lung cancer cells

    PubMed Central

    Voortman, Jens; Chęcińska, Agnieszka; Giaccone, Giuseppe

    2007-01-01

    Bortezomib is a novel anti-cancer agent which has shown promising activity in non-small lung cancer (NSCLC) patients. However, only a subset of patients respond to this treatment. We show that NSCLC cell lines are differentially sensitive to bortezomib, IC50 values ranging from 5 to 83 nM. The apoptosis-inducing potential of bortezomib in NSCLC cells was found to be dependent not only on the apoptotic phenotype but also on the proteasomal phenotype of individual cell lines. Upon effective proteasome inhibition, H460 cells were more susceptible to apoptosis induction by bortezomib than SW1573 cells, indicating a different apoptotic phenotype. However, exposure to a low dose of bortezomib did only result in SW1573 cells, and not in H460 cells, in inhibition of proteasome activity and subsequent apoptosis. This suggests a different proteasomal phenotype as well. Additionally, overexpression of anti-apoptotic protein Bcl-2 in H460 cells did not affect the proteasomal phenotype of H460 cells but did result in decreased bortezomib-induced apoptosis. In conclusion, successful proteasome-inhibitor based treatment strategies in NSCLC face the challenge of having to overcome apoptosis resistance as well as proteasomal resistance of individual lung cancer cells. Further studies in NSCLC are warranted to elucidate underlying mechanisms. PMID:18021420

  3. Structural characterization of the interaction of Ubp6 with the 26S proteasome.

    PubMed

    Aufderheide, Antje; Beck, Florian; Stengel, Florian; Hartwig, Michaela; Schweitzer, Andreas; Pfeifer, Günter; Goldberg, Alfred L; Sakata, Eri; Baumeister, Wolfgang; Förster, Friedrich

    2015-07-14

    In eukaryotic cells, the 26S proteasome is responsible for the regulated degradation of intracellular proteins. Several cofactors interact transiently with this large macromolecular machine and modulate its function. The deubiquitylating enzyme ubiquitin C-terminal hydrolase 6 [Ubp6; ubiquitin-specific protease (USP) 14 in mammals] is the most abundant proteasome-interacting protein and has multiple roles in regulating proteasome function. Here, we investigate the structural basis of the interaction between Ubp6 and the 26S proteasome in the presence and absence of the inhibitor ubiquitin aldehyde. To this end we have used single-particle electron cryomicroscopy in combination with cross-linking and mass spectrometry. Ubp6 binds to the regulatory particle non-ATPase (Rpn) 1 via its N-terminal ubiquitin-like domain, whereas its catalytic USP domain is positioned variably. Addition of ubiquitin aldehyde stabilizes the binding of the USP domain in a position where it bridges the proteasome subunits Rpn1 and the regulatory particle triple-A ATPase (Rpt) 1. The USP domain binds to Rpt1 in the immediate vicinity of the Ubp6 active site, which may effect its activation. The catalytic triad is positioned in proximity to the mouth of the ATPase module and to the deubiquitylating enzyme Rpn11, strongly implying their functional linkage. On the proteasome side, binding of Ubp6 favors conformational switching of the 26S proteasome into an intermediate-energy conformational state, in particular upon the addition of ubiquitin aldehyde. This modulation of the conformational space of the 26S proteasome by Ubp6 explains the effects of Ubp6 on the kinetics of proteasomal degradation. PMID:26130806

  4. Structural characterization of the interaction of Ubp6 with the 26S proteasome

    PubMed Central

    Aufderheide, Antje; Beck, Florian; Stengel, Florian; Hartwig, Michaela; Schweitzer, Andreas; Pfeifer, Günter; Goldberg, Alfred L.; Sakata, Eri; Baumeister, Wolfgang; Förster, Friedrich

    2015-01-01

    In eukaryotic cells, the 26S proteasome is responsible for the regulated degradation of intracellular proteins. Several cofactors interact transiently with this large macromolecular machine and modulate its function. The deubiquitylating enzyme ubiquitin C-terminal hydrolase 6 [Ubp6; ubiquitin-specific protease (USP) 14 in mammals] is the most abundant proteasome-interacting protein and has multiple roles in regulating proteasome function. Here, we investigate the structural basis of the interaction between Ubp6 and the 26S proteasome in the presence and absence of the inhibitor ubiquitin aldehyde. To this end we have used single-particle electron cryomicroscopy in combination with cross-linking and mass spectrometry. Ubp6 binds to the regulatory particle non-ATPase (Rpn) 1 via its N-terminal ubiquitin-like domain, whereas its catalytic USP domain is positioned variably. Addition of ubiquitin aldehyde stabilizes the binding of the USP domain in a position where it bridges the proteasome subunits Rpn1 and the regulatory particle triple-A ATPase (Rpt) 1. The USP domain binds to Rpt1 in the immediate vicinity of the Ubp6 active site, which may effect its activation. The catalytic triad is positioned in proximity to the mouth of the ATPase module and to the deubiquitylating enzyme Rpn11, strongly implying their functional linkage. On the proteasome side, binding of Ubp6 favors conformational switching of the 26S proteasome into an intermediate-energy conformational state, in particular upon the addition of ubiquitin aldehyde. This modulation of the conformational space of the 26S proteasome by Ubp6 explains the effects of Ubp6 on the kinetics of proteasomal degradation. PMID:26130806

  5. The lack of Lazarus effect with proteasome inhibition.

    PubMed

    Marks, Stephen D

    2016-08-01

    There have been marked improvements in the short- and long-term outcomes for children after renal transplantation over the past two decades with superior quality and quantity of life. It is encouraging to see increased patient and renal allograft survival rates with initially lower acute renal allograft rejection rates due to improved matching and immunosuppressive regimens. Unfortunately, longer-term renal allograft survival remains unchanged with chronic allograft injury from both immune and non-immune causes, resulting in chronic allograft dysfunction, morbidity from chronic kidney disease, and eventual renal allograft loss. Acute and chronic antibody-mediated rejection remains a clinical dilemma with a growing evidence base of its treatment, including proteasome inhibition using intravenous bortezomib. The future goal is to reduce chronic allograft dysfunction and make renal transplants last longer for pediatric renal transplant recipients who may require retransplantation during their childhood and adult lives, which can become successively more difficult due to sensitization. PMID:27048227

  6. Identification of Potent and Selective Non-covalent Inhibitors of the Plasmodium falciparum Proteasome

    PubMed Central

    2015-01-01

    We have identified short N,C-capped peptides that selectively inhibit the proteasome of the malaria-causing pathogen Plasmodium falciparum. These compounds are highly potent in culture with no toxicity in host cells. One cyclic biphenyl ether compound inhibited intraerythrocytic growth of P. falciparum with an IC50 of 35 nM, and we show that even a pulse treatment with this cyclic peptide induced parasite death due to proteasome inhibition. These compounds represent promising new antimalarial agents that target the essential proteasomal machinery of the parasite without toxicity toward the host. PMID:25226494

  7. Proteasome inhibitors induce apoptosis and reduce viral replication in primary effusion lymphoma cells

    SciTech Connect

    Saji, Chiaki; Higashi, Chizuka; Niinaka, Yasufumi; Yamada, Koji; Noguchi, Kohji; Fujimuro, Masahiro

    2011-12-02

    Highlights: Black-Right-Pointing-Pointer Constitutive NF-{kappa}B signaling is essential for the survival and growth of PEL cells. Black-Right-Pointing-Pointer NF-{kappa}B signaling is upregulated by the proteasome-dependent degradation of I{kappa}B{alpha}. Black-Right-Pointing-Pointer Proteasome inhibitors suppress NF-{kappa}B signaling and induce apoptosis in PEL cells through stabilization of I{kappa}B{alpha}. Black-Right-Pointing-Pointer Proteasome inhibitors suppress viral replication in PEL cells during lytic KSHV infection. -- Abstract: Primary effusion lymphoma (PEL) is an aggressive neoplasm caused by Kaposi's sarcoma-associated herpesvirus (KSHV). This study provides evidence that proteasomal activity is required for both survival of PEL cells stably harboring the KSHV genome and viral replication of KSHV. We evaluated the cytotoxic effects of proteasome inhibitors on PEL cells. The proteasome inhibitors MG132, lactacystin, and proteasome inhibitor I dramatically inhibited cell proliferation and induced apoptosis of PEL cells through the accumulation of p21 and p27. Furthermore, proteasome inhibitors induced the stabilization of NF-{kappa}B inhibitory molecule (I{kappa}B{alpha}) and suppressed the transcriptional activity of NF-{kappa}B in PEL cells. The NF-{kappa}B specific inhibitor BAY11-7082 also induced apoptosis in PEL cells. The constitutive activation of NF-{kappa}B signaling is essential for the survival and growth of B cell lymphoma cells, including PEL cells. NF-{kappa}B signaling is upregulated by proteasome-dependent degradation of I{kappa}B{alpha}. The suppression of NF-{kappa}B signaling by proteasome inhibitors may contribute to the induction of apoptosis in PEL cells. In addition, proteasome activity is required for KSHV replication in KSHV latently infected PEL cells. MG132 reduced the production of progeny virus from PEL cells at low concentrations, which do not affect PEL cell growth. These findings suggest that proteasome inhibitors

  8. Analysing properties of proteasome inhibitors using kinetic and X-ray crystallographic studies.

    PubMed

    Gallastegui, Nerea; Groll, Michael

    2012-01-01

    The combination of X-ray crystallography and kinetic studies of proteasome:ligand complexes has proven to be an important tool in inhibitor analysis of this crucial protein degradation machinery. Here, we describe in detail the purification protocols, proteolytic activity assays, crystallisation methods, and structure determination for the yeast 20S proteasome (CP) in complex with its inhibitors. The fusion of these advanced techniques offers the opportunity to further optimise drugs which are already tested in different clinical phase studies, as well as to design new promising proteasome lead structures which might be suitable for their application in medicine, plant protection, and antibiotics. PMID:22350899

  9. Proteasome inhibitors prevent cell death and prolong survival of mice challenged by Shiga toxin

    PubMed Central

    Hattori, Takayuki; Watanabe-Takahashi, Miho; Ohoka, Nobumichi; Hamabata, Takashi; Furukawa, Koichi; Nishikawa, Kiyotaka; Naito, Mikihiko

    2015-01-01

    Shiga toxin (Stx) causes fatal systemic complications. Stx induces apoptosis, but the mechanism of which is unclear. We report that Stx induced rapid reduction of short-lived anti-apoptotic proteins followed by activation of caspase 9 and the progression of apoptosis. Proteasome inhibitors prevented the reduction of anti-apoptotic proteins, and inhibited caspase activation and apoptosis, suggesting that the reduction of anti-apoptotic proteins is a prerequisite for Stx-induced apoptosis. A clinically approved proteasome inhibitor, bortezomib, prolonged the survival of mice challenged by Stx. These results imply that proteasome inhibition may be a novel approach to prevent the fatal effects of Stx. PMID:26273560

  10. Suppression of BRCA1 sensitizes cells to proteasome inhibitors

    PubMed Central

    Gu, Y; Bouwman, P; Greco, D; Saarela, J; Yadav, B; Jonkers, J; Kuznetsov, S G

    2014-01-01

    BRCA1 is a multifunctional protein best known for its role in DNA repair and association with breast and ovarian cancers. To uncover novel biologically significant molecular functions of BRCA1, we tested a panel of 198 approved and experimental drugs to inhibit growth of MDA-MB-231 breast cancer cells depleted for BRCA1 by siRNA. 26S proteasome inhibitors bortezomib and carfilzomib emerged as a new class of selective BRCA1-targeting agents. The effect was confirmed in HeLa and U2OS cancer cell lines using two independent siRNAs, and in mouse embryonic stem (ES) cells with inducible deletion of Brca1. Bortezomib treatment did not cause any increase in nuclear foci containing phosphorylated histone H2AX, and knockdown of BRCA2 did not entail sensitivity to bortezomib, suggesting that the DNA repair function of BRCA1 may not be directly involved. We found that a toxic effect of bortezomib on BRCA1-depleted cells is mostly due to deregulated cell cycle checkpoints mediated by RB1-E2F pathway and 53BP1. Similar to BRCA1, depletion of RB1 also conferred sensitivity to bortezomib, whereas suppression of E2F1 or 53BP1 together with BRCA1 reduced induction of apoptosis after bortezomib treatment. A gene expression microarray study identified additional genes activated by bortezomib treatment only in the context of inactivation of BRCA1 including a critical involvement of the ERN1-mediated unfolded protein response. Our data indicate that BRCA1 has a novel molecular function affecting cell cycle checkpoints in a manner dependent on the 26S proteasome activity. PMID:25522274

  11. The interrelationship of proteasome impairment and oligomeric intermediates in neurodegeneration

    PubMed Central

    Deger, Jennifer M; Gerson, Julia E; Kayed, Rakez

    2015-01-01

    Various neurodegenerative diseases are characterized by the accumulation of amyloidogenic proteins such as tau, α-synuclein, and amyloid-β. Prior to the formation of these stable aggregates, intermediate species of the respective proteins—oligomers—appear. Recently acquired data have shown that oligomers may be the most toxic and pathologically significant to neurodegenerative diseases such as Alzheimer’s and Parkinson’s. The covalent modification of these oligomers may be critically important for biological processes in disease. Ubiquitin and small ubiquitin-like modifiers are the commonly used tags for degradation. While the modification of large amyloid aggregates by ubiquitination is well established, very little is known about the role ubiquitin may play in oligomer processing and the importance of the more recently discovered sumoylation. Many proteins involved in neurodegeneration have been found to be sumoylated, notably tau protein in brains afflicted with Alzheimer’s. This evidence suggests that while the cell may not have difficulty recognizing dangerous proteins, in brains afflicted with neurodegenerative disease, the proteasome may be unable to properly digest the tagged proteins. This would allow toxic aggregates to develop, leading to even more proteasome impairment in a snowball effect that could explain the exponential progression in most neurodegenerative diseases. A better understanding of the covalent modifications of oligomers could have a huge impact on the development of therapeutics for neurodegenerative diseases. This review will focus on the proteolysis of tau and other amyloidogenic proteins induced by covalent modification, and recent findings suggesting a relationship between tau oligomers and sumoylation. PMID:26053162

  12. Suppression of BRCA1 sensitizes cells to proteasome inhibitors.

    PubMed

    Gu, Y; Bouwman, P; Greco, D; Saarela, J; Yadav, B; Jonkers, J; Kuznetsov, S G

    2014-01-01

    BRCA1 is a multifunctional protein best known for its role in DNA repair and association with breast and ovarian cancers. To uncover novel biologically significant molecular functions of BRCA1, we tested a panel of 198 approved and experimental drugs to inhibit growth of MDA-MB-231 breast cancer cells depleted for BRCA1 by siRNA. 26S proteasome inhibitors bortezomib and carfilzomib emerged as a new class of selective BRCA1-targeting agents. The effect was confirmed in HeLa and U2OS cancer cell lines using two independent siRNAs, and in mouse embryonic stem (ES) cells with inducible deletion of Brca1. Bortezomib treatment did not cause any increase in nuclear foci containing phosphorylated histone H2AX, and knockdown of BRCA2 did not entail sensitivity to bortezomib, suggesting that the DNA repair function of BRCA1 may not be directly involved. We found that a toxic effect of bortezomib on BRCA1-depleted cells is mostly due to deregulated cell cycle checkpoints mediated by RB1-E2F pathway and 53BP1. Similar to BRCA1, depletion of RB1 also conferred sensitivity to bortezomib, whereas suppression of E2F1 or 53BP1 together with BRCA1 reduced induction of apoptosis after bortezomib treatment. A gene expression microarray study identified additional genes activated by bortezomib treatment only in the context of inactivation of BRCA1 including a critical involvement of the ERN1-mediated unfolded protein response. Our data indicate that BRCA1 has a novel molecular function affecting cell cycle checkpoints in a manner dependent on the 26S proteasome activity. PMID:25522274

  13. Two-substrate association with the 20S proteasome at single-molecule level.

    PubMed

    Hutschenreiter, Silke; Tinazli, Ali; Model, Kirstin; Tampé, Robert

    2004-07-01

    The bipartite structure of the proteasome raises the question of functional significance. A rational design for unraveling mechanistic details of the highly symmetrical degradation machinery from Thermoplasma acidophilum pursues orientated immobilization at metal-chelating interfaces via affinity tags fused either around the pore apertures or at the sides. End-on immobilization of the proteasome demonstrates that one pore is sufficient for substrate entry and product release. Remarkably, a 'dead-end' proteasome can process only one substrate at a time. In contrast, the side-on immobilized and free proteasome can bind two substrates, presumably one in each antechamber, with positive cooperativity as analyzed by surface plasmon resonance and single-molecule cross-correlation spectroscopy. Thus, the two-stroke engine offers the advantage of speeding up degradation without enhancing complexity. PMID:15175655

  14. Aggresome-like structure induced by isothiocyanates is novel proteasome-dependent degradation machinery

    SciTech Connect

    Mi, Lixin; Gan, Nanqin; Chung, Fung-Lung

    2009-10-16

    Unwanted or misfolded proteins are either refolded by chaperones or degraded by the ubiquitin-proteasome system (UPS). When UPS is impaired, misfolded proteins form aggregates, which are transported along microtubules by motor protein dynein towards the juxta-nuclear microtubule-organizing center to form aggresome, a single cellular garbage disposal complex. Because aggresome formation results from proteasome failure, aggresome components are degraded through the autophagy/lysosome pathway. Here we report that small molecule isothiocyanates (ITCs) can induce formation of aggresome-like structure (ALS) through covalent modification of cytoplasmic {alpha}- and {beta}-tubulin. The formation of ALS is related to neither proteasome inhibition nor oxidative stress. ITC-induced ALS is a proteasome-dependent assembly for emergent removal of misfolded proteins, suggesting that the cell may have a previously unknown strategy to cope with misfolded proteins.

  15. Novel internally quenched substrate of the trypsin-like subunit of 20S eukaryotic proteasome.

    PubMed

    Gruba, Natalia; Wysocka, Magdalena; Brzezińska, Magdalena; Debowski, Dawid; Rolka, Krzysztof; Martin, Nathaniel I; Lesner, Adam

    2016-09-01

    This article describes the synthesis, using combinatorial chemistry, of internally quenched substrates of the trypsin-like subunit of human 20S proteasome. Such substrates were optimized in both the nonprime and prime regions of the peptide chain. Two were selected as the most susceptible for proteasomal proteolysis with excellent kinetic parameters: (i) ABZ-Val-Val-Ser-Arg-Ser-Leu-Gly-Tyr(3-NO2)-NH2 (kcat/KM = 934,000 M(-1) s(-1)) and (ii) ABZ-Val-Val-Ser-GNF-Ala-Met-Gly-Tyr(3-NO2)-NH2 (kcat/KM = 1,980,000 M(-1) s(-1)). Both compounds were efficiently hydrolyzed by the 20S proteasome at picomolar concentrations, demonstrating significant selectivity over other proteasome entities. PMID:26314791

  16. The effects of proteasome inhibitors on bone remodeling in multiple myeloma.

    PubMed

    Zangari, Maurizio; Suva, Larry J

    2016-05-01

    Bone disease is a characteristic feature of multiple myeloma, a malignant plasma cell dyscrasia. In patients with multiple myeloma, the normal process of bone remodeling is dysregulated by aberrant bone marrow plasma cells, resulting in increased bone resorption, prevention of new bone formation, and consequent bone destruction. The ubiquitin-proteasome system, which is hyperactive in patients with multiple myeloma, controls the catabolism of several proteins that regulate bone remodeling. Clinical studies have reported that treatment with the first-in-class proteasome inhibitor bortezomib reduces bone resorption and increases bone formation and bone mineral density in patients with multiple myeloma. Since the introduction of bortezomib in 2003, several next-generation proteasome inhibitors have also been used clinically, including carfilzomib, oprozomib, ixazomib, and delanzomib. This review summarizes the available preclinical and clinical evidence regarding the effect of proteasome inhibitors on bone remodeling in multiple myeloma. PMID:26947893

  17. Localization of the proteasomal ubiquitin receptors Rpn10 and Rpn13 by electron cryomicroscopy

    PubMed Central

    Sakata, Eri; Bohn, Stefan; Mihalache, Oana; Kiss, Petra; Beck, Florian; Nagy, Istvan; Nickell, Stephan; Tanaka, Keiji; Saeki, Yasushi; Förster, Friedrich; Baumeister, Wolfgang

    2012-01-01

    Two canonical subunits of the 26S proteasome, Rpn10 and Rpn13, function as ubiquitin (Ub) receptors. The mutual arrangement of these subunits—and all other non-ATPase subunits—in the regulatory particle is unknown. Using electron cryomicroscopy, we calculated difference maps between wild-type 26S proteasome from Saccharomyces cerevisiae and deletion mutants (rpn10Δ, rpn13Δ, and rpn10Δrpn13Δ). These maps allowed us to localize the two Ub receptors unambiguously. Rpn10 and Rpn13 mapped to the apical part of the 26S proteasome, above the N-terminal coiled coils of the AAA-ATPase heterodimers Rpt4/Rpt5 and Rpt1/Rpt2, respectively. On the basis of the mutual positions of Rpn10 and Rpn13, we propose a model for polyubiquitin binding to the 26S proteasome. PMID:22215586

  18. Secondary Metabolites Produced by an Endophytic Fungus Pestalotiopsis sydowiana and Their 20S Proteasome Inhibitory Activities.

    PubMed

    Xia, Xuekui; Kim, Soonok; Liu, Changheng; Shim, Sang Hee

    2016-01-01

    Fungal endophytes have attracted attention due to their functional diversity. Secondary metabolites produced by Pestalotiopsis sydowiana from a halophyte, Phragmites communis Trinus, were investigated. Eleven compounds, including four penicillide derivatives (1-4) and seven α-pyrone analogues (5-10) were isolated from cultures of P. sydowiana. The compounds were identified based on spectroscopic data. The inhibitory activities against the 20S proteasome were evaluated. Compounds 1-3, 5, and 9-10 showed modest proteasome inhibition activities, while compound 8 showed strong activity with an IC50 of 1.2 ± 0.3 μM. This is the first study on the secondary metabolites produced by P. sydowiana and their proteasome inhibitory activities. The endophytic fungus P. sydowiana might be a good resource for proteasome inhibitors. PMID:27447600

  19. cAMP stimulates the ubiquitin/proteasome pathway in rat spinal cord neurons.

    PubMed

    Myeku, Natura; Wang, Hu; Figueiredo-Pereira, Maria E

    2012-10-11

    Proteasome impairment and accumulation of ubiquitinated proteins are implicated in neurodegeneration associated with different forms of spinal cord injury. We show herein that elevating cAMP in rat spinal cord neurons increases 26S proteasome activity in a protein kinase A-dependent manner. Treating spinal cord neurons with dibutyryl-cAMP (db-cAMP) also raised the levels of various components of the UPP including proteasome subunits Rpt6 and β5, polyubiquitin shuttling factor p62/sequestosome1, E3 ligase CHIP, AAA-ATPase p97 and the ubiquitin gene ubB. Finally, db-cAMP reduced the accumulation of ubiquitinated proteins, proteasome inhibition, and neurotoxicity triggered by the endogenous product of inflammation prostaglandin J2. We propose that optimizing the effects of cAMP/PKA-signaling on the UPP could offer an effective therapeutic approach to prevent UPP-related proteotoxicity in spinal cord neurons. PMID:22982149

  20. Search for Inhibitors of the Ubiquitin-Proteasome System from Natural Sources for Cancer Therapy.

    PubMed

    Tsukamoto, Sachiko

    2016-01-01

    Since the approval of the proteasome inhibitor, Velcade(®), by the Food and Drug Administration (FDA) for the treatment of relapsed multiple myeloma, inhibitors of the ubiquitin-proteasome system have been attracting increasing attention as promising drug leads for cancer therapy. While the development of drugs for diseases related to this proteolytic system has mainly been achieved by searching libraries of synthetic small molecules or chemical modifications to drug leads, limited searches have been conducted on natural sources. We have been searching natural sources for inhibitors that target this proteolytic system through in-house screening. Our recent studies on the search for natural inhibitors of the ubiquitin-proteasome system, particularly, inhibitors against the proteasome, E1 enzyme (Uba1), E2 enzyme (Ubc13-Uev1A heterodimer), and E3 enzyme (Hdm2), and also those against deubiquitinating enzyme (USP7), are reviewed here. PMID:26833439

  1. Characterisation of 20S Proteasome in Tritrichomonas foetus and Its Role during the Cell Cycle and Transformation into Endoflagellar Form

    PubMed Central

    Pereira-Neves, Antonio; Gonzaga, Luiz; Menna-Barreto, Rubem F. S.; Benchimol, Marlene

    2015-01-01

    Proteasomes are intracellular complexes that control selective protein degradation in organisms ranging from Archaea to higher eukaryotes. These structures have multiple proteolytic activities that are required for cell differentiation, replication and maintaining cellular homeostasis. Here, we document the presence of the 20S proteasome in the protist parasite Tritrichomonas foetus. Complementary techniques, such as a combination of whole genome sequencing technologies, bioinformatics algorithms, cell fractionation and biochemistry and microscopy approaches were used to characterise the 20S proteasome of T. foetus. The 14 homologues of the typical eukaryotic proteasome subunits were identified in the T. foetus genome. Alignment analyses showed that the main regulatory and catalytic domains of the proteasome were conserved in the predicted amino acid sequences from T. foetus-proteasome subunits. Immunofluorescence assays using an anti-proteasome antibody revealed a labelling distributed throughout the cytosol as punctate cytoplasmic structures and in the perinuclear region. Electron microscopy of a T. foetus-proteasome-enriched fraction confirmed the presence of particles that resembled the typical eukaryotic 20S proteasome. Fluorogenic assays using specific peptidyl substrates detected presence of the three typical peptidase activities of eukaryotic proteasomes in T. foetus. As expected, these peptidase activities were inhibited by lactacystin, a well-known specific proteasome inhibitor, and were not affected by inhibitors of serine or cysteine proteases. During the transformation of T. foetus to endoflagellar form (EFF), also known as pseudocyst, we observed correlations between the EFF formation rates, increases in the proteasome activities and reduced levels of ubiquitin-protein conjugates. The growth, cell cycle and EFF transformation of T. foetus were inhibited after treatment with lactacystin in a dose-dependent manner. Lactacystin treatment also resulted in

  2. Additive loss-of-function proteasome subunit mutations in CANDLE/PRAAS patients promote type I IFN production.

    PubMed

    Brehm, Anja; Liu, Yin; Sheikh, Afzal; Marrero, Bernadette; Omoyinmi, Ebun; Zhou, Qing; Montealegre, Gina; Biancotto, Angelique; Reinhardt, Adam; Almeida de Jesus, Adriana; Pelletier, Martin; Tsai, Wanxia L; Remmers, Elaine F; Kardava, Lela; Hill, Suvimol; Kim, Hanna; Lachmann, Helen J; Megarbane, Andre; Chae, Jae Jin; Brady, Jilian; Castillo, Rhina D; Brown, Diane; Casano, Angel Vera; Gao, Ling; Chapelle, Dawn; Huang, Yan; Stone, Deborah; Chen, Yongqing; Sotzny, Franziska; Lee, Chyi-Chia Richard; Kastner, Daniel L; Torrelo, Antonio; Zlotogorski, Abraham; Moir, Susan; Gadina, Massimo; McCoy, Phil; Wesley, Robert; Rother, Kristina I; Rother, Kristina; Hildebrand, Peter W; Brogan, Paul; Krüger, Elke; Aksentijevich, Ivona; Goldbach-Mansky, Raphaela

    2015-11-01

    Autosomal recessive mutations in proteasome subunit β 8 (PSMB8), which encodes the inducible proteasome subunit β5i, cause the immune-dysregulatory disease chronic atypical neutrophilic dermatosis with lipodystrophy and elevated temperature (CANDLE), which is classified as a proteasome-associated autoinflammatory syndrome (PRAAS). Here, we identified 8 mutations in 4 proteasome genes, PSMA3 (encodes α7), PSMB4 (encodes β7), PSMB9 (encodes β1i), and proteasome maturation protein (POMP), that have not been previously associated with disease and 1 mutation in PSMB8 that has not been previously reported. One patient was compound heterozygous for PSMB4 mutations, 6 patients from 4 families were heterozygous for a missense mutation in 1 inducible proteasome subunit and a mutation in a constitutive proteasome subunit, and 1 patient was heterozygous for a POMP mutation, thus establishing a digenic and autosomal dominant inheritance pattern of PRAAS. Function evaluation revealed that these mutations variably affect transcription, protein expression, protein folding, proteasome assembly, and, ultimately, proteasome activity. Moreover, defects in proteasome formation and function were recapitulated by siRNA-mediated knockdown of the respective subunits in primary fibroblasts from healthy individuals. Patient-isolated hematopoietic and nonhematopoietic cells exhibited a strong IFN gene-expression signature, irrespective of genotype. Additionally, chemical proteasome inhibition or progressive depletion of proteasome subunit gene transcription with siRNA induced transcription of type I IFN genes in healthy control cells. Our results provide further insight into CANDLE genetics and link global proteasome dysfunction to increased type I IFN production. PMID:26524591

  3. Additive loss-of-function proteasome subunit mutations in CANDLE/PRAAS patients promote type I IFN production

    PubMed Central

    Brehm, Anja; Liu, Yin; Sheikh, Afzal; Marrero, Bernadette; Omoyinmi, Ebun; Zhou, Qing; Montealegre, Gina; Biancotto, Angelique; Reinhardt, Adam; Almeida de Jesus, Adriana; Pelletier, Martin; Tsai, Wanxia L.; Remmers, Elaine F.; Kardava, Lela; Hill, Suvimol; Kim, Hanna; Lachmann, Helen J.; Megarbane, Andre; Chae, Jae Jin; Brady, Jilian; Castillo, Rhina D.; Brown, Diane; Casano, Angel Vera; Gao, Ling; Chapelle, Dawn; Huang, Yan; Stone, Deborah; Chen, Yongqing; Sotzny, Franziska; Lee, Chyi-Chia Richard; Kastner, Daniel L.; Torrelo, Antonio; Zlotogorski, Abraham; Moir, Susan; Gadina, Massimo; McCoy, Phil; Wesley, Robert; Rother, Kristina; Hildebrand, Peter W.; Brogan, Paul; Krüger, Elke; Aksentijevich, Ivona; Goldbach-Mansky, Raphaela

    2015-01-01

    Autosomal recessive mutations in proteasome subunit β 8 (PSMB8), which encodes the inducible proteasome subunit β5i, cause the immune-dysregulatory disease chronic atypical neutrophilic dermatosis with lipodystrophy and elevated temperature (CANDLE), which is classified as a proteasome-associated autoinflammatory syndrome (PRAAS). Here, we identified 8 mutations in 4 proteasome genes, PSMA3 (encodes α7), PSMB4 (encodes β7), PSMB9 (encodes β1i), and proteasome maturation protein (POMP), that have not been previously associated with disease and 1 mutation in PSMB8 that has not been previously reported. One patient was compound heterozygous for PSMB4 mutations, 6 patients from 4 families were heterozygous for a missense mutation in 1 inducible proteasome subunit and a mutation in a constitutive proteasome subunit, and 1 patient was heterozygous for a POMP mutation, thus establishing a digenic and autosomal dominant inheritance pattern of PRAAS. Function evaluation revealed that these mutations variably affect transcription, protein expression, protein folding, proteasome assembly, and, ultimately, proteasome activity. Moreover, defects in proteasome formation and function were recapitulated by siRNA-mediated knockdown of the respective subunits in primary fibroblasts from healthy individuals. Patient-isolated hematopoietic and nonhematopoietic cells exhibited a strong IFN gene-expression signature, irrespective of genotype. Additionally, chemical proteasome inhibition or progressive depletion of proteasome subunit gene transcription with siRNA induced transcription of type I IFN genes in healthy control cells. Our results provide further insight into CANDLE genetics and link global proteasome dysfunction to increased type I IFN production. PMID:26524591

  4. Characterisation of 20S Proteasome in Tritrichomonas foetus and Its Role during the Cell Cycle and Transformation into Endoflagellar Form.

    PubMed

    Pereira-Neves, Antonio; Gonzaga, Luiz; Menna-Barreto, Rubem F S; Benchimol, Marlene

    2015-01-01

    Proteasomes are intracellular complexes that control selective protein degradation in organisms ranging from Archaea to higher eukaryotes. These structures have multiple proteolytic activities that are required for cell differentiation, replication and maintaining cellular homeostasis. Here, we document the presence of the 20S proteasome in the protist parasite Tritrichomonas foetus. Complementary techniques, such as a combination of whole genome sequencing technologies, bioinformatics algorithms, cell fractionation and biochemistry and microscopy approaches were used to characterise the 20S proteasome of T. foetus. The 14 homologues of the typical eukaryotic proteasome subunits were identified in the T. foetus genome. Alignment analyses showed that the main regulatory and catalytic domains of the proteasome were conserved in the predicted amino acid sequences from T. foetus-proteasome subunits. Immunofluorescence assays using an anti-proteasome antibody revealed a labelling distributed throughout the cytosol as punctate cytoplasmic structures and in the perinuclear region. Electron microscopy of a T. foetus-proteasome-enriched fraction confirmed the presence of particles that resembled the typical eukaryotic 20S proteasome. Fluorogenic assays using specific peptidyl substrates detected presence of the three typical peptidase activities of eukaryotic proteasomes in T. foetus. As expected, these peptidase activities were inhibited by lactacystin, a well-known specific proteasome inhibitor, and were not affected by inhibitors of serine or cysteine proteases. During the transformation of T. foetus to endoflagellar form (EFF), also known as pseudocyst, we observed correlations between the EFF formation rates, increases in the proteasome activities and reduced levels of ubiquitin-protein conjugates. The growth, cell cycle and EFF transformation of T. foetus were inhibited after treatment with lactacystin in a dose-dependent manner. Lactacystin treatment also resulted in

  5. Targeting the ubiquitin proteasome pathway for the treatment of septic shock in patients

    PubMed Central

    2009-01-01

    Endotoxic shock is a serious systemic inflammatory response to an external biological stressor. The responsiveness of NF-κB is built upon rapid protein modification and degradation involving the ubiquitin proteasome pathway. Using transgenic mice, we have obtained in vivo evidence that interference with this pathway can alleviate the symptoms of toxic shock. We posit that administration of proteasome inhibitors may enhance the survival of patients with septic shock. PMID:19691815

  6. Hsp90 Enhances Degradation of Oxidized Calmodulin by the 20S Proteasome

    SciTech Connect

    Whittier, Jennifer E.; Xiong, Yijia; Rechsteiner, Martin C.; Squier, Thomas C.

    2004-10-29

    The 20S proteasome has been suggested to play a critical role in mediating the degradation of abnormal proteins under conditions of oxidative stress, and has been found in tight association with the molecular chaperone Hsp90. To elucidate the role of Hsp90 in promoting the degradation of oxidized calmodulin (CaMox), which accumulates in senescent brain during normal biological aging, we have purified the 20S proteasome free of Hsp90 from red blood cells and assessed its ability to recognize and degrade CaMox in the absence and presence of added Hsp90. The purified 20S proteasome does not degrade CaMox to any appreciable extent. However, following association with Hsp90, the 20S proteasome selectively degrades CaMox. This degradation is sensitive to both proteasome and Hsp90-specific inhibitors, and is further enhanced in the presence of 2 mM ATP. Irrespective of the presence of Hsp90 we find that unoxidized CaM is not significantly degraded. Furthermore, the ability of the proteasome to degrade commonly used fluorogenic peptides is not affected by Hsp90, indicating that there is no change in the accessibility of the catalytic core. Direct binding measurements demonstrate that Hsp90 selectively associates with CaMox; essentially no binding is observed between Hsp90 and unoxidized CaM. Since oxidation has previously been shown to induce both global conformational changes and a reduction in helical content of CaM, these results suggest that Hsp90 in association with the 20S proteasome selectively associates with partially unfolded proteins to promote their degradation by the proteasome.

  7. Regulation of Sperm Capacitation by the 26S Proteasome: An Emerging New Paradigm in Spermatology.

    PubMed

    Kerns, Karl; Morales, Patricio; Sutovsky, Peter

    2016-05-01

    The ubiquitin proteasome system (UPS) participates in many biological processes ranging from cell cycle and antigen processing to cellular defense and signaling. Work of the last decade has made it evident that the UPS is involved in many sperm-related processes leading up to and as part of fertilization. The current knowledge of UPS involvement and changes during sperm capacitation are reviewed together with a list of known proteasome-associated sperm proteins and a discussion of the relationships between these proteins and the proteasome. Proteasomal inhibitors such as MG-132 and epoxomicin significantly alter capacitation and prevent acrosome reaction. The 26S proteasome degrades AKAP3, an A-kinase anchoring protein, partially regulating the release of protein-kinase A (PKA), a vital component necessary for the steps leading up to capacitation. Further, changes occur in 20S core subunit localization and abundance throughout capacitation. Proteasome-interacting valosine-containing protein (VCP) undergoes tyrosine phosphorylation; however, its physiological roles in capacitation and fertilization remain unknown. The E1-type ubiquitin-activating enzyme (UBA1) inhibitor PYR-41 also alters acrosomal membrane remodeling during capacitation. Furthermore, after capacitation, the acrosomal proteasomes facilitate the degradation of zona pellucida glycoproteins leading up to fertilization. Methods to modulate the sperm proteasome activity during sperm storage and capacitation may translate to increased reproductive efficiency in livestock animals. Human male infertility diagnostics may benefit from incorporation of research outcomes built upon relationships between UPS and capacitation. Altogether, the studies reviewed here support the involvement of UPS in sperm capacitation and present opportunities for new discoveries. PMID:27053366

  8. Why does threonine, and not serine, function as the active site nucleophile in proteasomes?

    PubMed

    Kisselev, A F; Songyang, Z; Goldberg, A L

    2000-05-19

    Proteasomes belong to the N-terminal nucleophile group of amidases and function through a novel proteolytic mechanism, in which the hydroxyl group of the N-terminal threonines is the catalytic nucleophile. However, it is unclear why threonine has been conserved in all proteasomal active sites, because its replacement by a serine in proteasomes from the archaeon Thermoplasma acidophilum (T1S mutant) does not alter the rates of hydrolysis of Suc-LLVY-amc (Seemüller, E., Lupas, A., Stock, D., Lowe, J., Huber, R., and Baumeister, W. (1995) Science 268, 579-582) and other standard peptide amide substrates. However, we found that true peptide bonds in decapeptide libraries were cleaved by the T1S mutant 10-fold slower than by wild type (wt) proteasomes. In degrading proteins, the T1S proteasome was 3.5- to 6-fold slower than the wt, and this difference increased when proteolysis was stimulated using the proteasome-activating nucleotidase (PAN) ATPase complex. With mutant proteasomes, peptide bond cleavage appeared to be rate-limiting in protein breakdown, unlike with wt. Surprisingly, a peptide ester was hydrolyzed by both particles much faster than the corresponding amide, and the T1S mutant cleaved it faster than the wt. Moreover, the T1S mutant was inactivated by the ester inhibitor clasto-lactacystin-beta-lactone severalfold faster than the wt, but reacted with nonester irreversible inhibitors at similar rates. T1A and T1C mutants were completely inactive in all these assays. Thus, proteasomes lack additional active sites, and the N-terminal threonine evolved because it allows more efficient protein breakdown than serine. PMID:10809725

  9. Validation of the 2nd Generation Proteasome Inhibitor Oprozomib for Local Therapy of Pulmonary Fibrosis.

    PubMed

    Semren, Nora; Habel-Ungewitter, Nunja C; Fernandez, Isis E; Königshoff, Melanie; Eickelberg, Oliver; Stöger, Tobias; Meiners, Silke

    2015-01-01

    Proteasome inhibition has been shown to prevent development of fibrosis in several organs including the lung. However, effects of proteasome inhibitors on lung fibrosis are controversial and cytotoxic side effects of the overall inhibition of proteasomal protein degradation cannot be excluded. Therefore, we hypothesized that local lung-specific application of a novel, selective proteasome inhibitor, oprozomib (OZ), provides antifibrotic effects without systemic toxicity in a mouse model of lung fibrosis. Oprozomib was first tested on the human alveolar epithelial cancer cell line A549 and in primary mouse alveolar epithelial type II cells regarding its cytotoxic effects on alveolar epithelial cells and compared to the FDA approved proteasome inhibitor bortezomib (BZ). OZ was less toxic than BZ and provided high selectivity for the chymotrypsin-like active site of the proteasome. In primary mouse lung fibroblasts, OZ showed significant anti-fibrotic effects, i.e. reduction of collagen I and α smooth muscle actin expression, in the absence of cytotoxicity. When applied locally into the lungs of healthy mice via instillation, OZ was well tolerated and effectively reduced proteasome activity in the lungs. In bleomycin challenged mice, however, locally applied OZ resulted in accelerated weight loss and increased mortality of treated mice. Further, OZ failed to reduce fibrosis in these mice. While upon systemic application OZ was well tolerated in healthy mice, it rather augmented instead of attenuated fibrotic remodelling of the lung in bleomycin challenged mice. To conclude, low toxicity and antifibrotic effects of OZ in pulmonary fibroblasts could not be confirmed for pulmonary fibrosis of bleomycin-treated mice. In light of these data, the use of proteasome inhibitors as therapeutic agents for the treatment of fibrotic lung diseases should thus be considered with caution. PMID:26340365

  10. Reduced Levels of Proteasome Products in a Mouse Striatal Cell Model of Huntington’s Disease

    PubMed Central

    Dasgupta, Sayani; Fishman, Michael A.; Mahallati, Hana; Castro, Leandro M.; Tashima, Alexandre K.; Ferro, Emer S.; Fricker, Lloyd D.

    2015-01-01

    Huntington’s disease is the result of a long polyglutamine tract in the gene encoding huntingtin protein, which in turn causes a large number of cellular changes and ultimately results in neurodegeneration of striatal neurons. Although many theories have been proposed, the precise mechanism by which the polyglutamine expansion causes cellular changes is not certain. Some evidence supports the hypothesis that the long polyglutamine tract inhibits the proteasome, a multiprotein complex involved in protein degradation. However, other studies report normal proteasome function in cells expressing long polyglutamine tracts. The controversy may be due to the methods used to examine proteasome activity in each of the previous studies. In the present study, we measured proteasome function by examining levels of endogenous peptides that are products of proteasome cleavage. Peptide levels were compared among mouse striatal cell lines expressing either 7 glutamines (STHdhQ7/Q7) or 111 glutamines in the huntingtin protein, either heterozygous (STHdhQ7/Q111) or homozygous (STHdhQ111/Q111). Both of the cell lines expressing huntingtin with 111 glutamines showed a large reduction in nearly all of the peptides detected in the cells, relative to levels of these peptides in cells homozygous for 7 glutamines. Treatment of STHdhQ7/Q7 cells with proteasome inhibitors epoxomicin or bortezomib also caused a large reduction in most of these peptides, suggesting that they are products of proteasome-mediated cleavage of cellular proteins. Taken together, these results support the hypothesis that proteasome function is impaired by the expression of huntingtin protein containing long polyglutamine tracts. PMID:26691307

  11. Validation of the 2nd Generation Proteasome Inhibitor Oprozomib for Local Therapy of Pulmonary Fibrosis

    PubMed Central

    Semren, Nora; Habel-Ungewitter, Nunja C.; Fernandez, Isis E.; Königshoff, Melanie; Eickelberg, Oliver; Stöger, Tobias; Meiners, Silke

    2015-01-01

    Proteasome inhibition has been shown to prevent development of fibrosis in several organs including the lung. However, effects of proteasome inhibitors on lung fibrosis are controversial and cytotoxic side effects of the overall inhibition of proteasomal protein degradation cannot be excluded. Therefore, we hypothesized that local lung-specific application of a novel, selective proteasome inhibitor, oprozomib (OZ), provides antifibrotic effects without systemic toxicity in a mouse model of lung fibrosis. Oprozomib was first tested on the human alveolar epithelial cancer cell line A549 and in primary mouse alveolar epithelial type II cells regarding its cytotoxic effects on alveolar epithelial cells and compared to the FDA approved proteasome inhibitor bortezomib (BZ). OZ was less toxic than BZ and provided high selectivity for the chymotrypsin-like active site of the proteasome. In primary mouse lung fibroblasts, OZ showed significant anti-fibrotic effects, i.e. reduction of collagen I and α smooth muscle actin expression, in the absence of cytotoxicity. When applied locally into the lungs of healthy mice via instillation, OZ was well tolerated and effectively reduced proteasome activity in the lungs. In bleomycin challenged mice, however, locally applied OZ resulted in accelerated weight loss and increased mortality of treated mice. Further, OZ failed to reduce fibrosis in these mice. While upon systemic application OZ was well tolerated in healthy mice, it rather augmented instead of attenuated fibrotic remodelling of the lung in bleomycin challenged mice. To conclude, low toxicity and antifibrotic effects of OZ in pulmonary fibroblasts could not be confirmed for pulmonary fibrosis of bleomycin-treated mice. In light of these data, the use of proteasome inhibitors as therapeutic agents for the treatment of fibrotic lung diseases should thus be considered with caution. PMID:26340365

  12. Decreased proteasomal function accelerates cigarette smoke-induced pulmonary emphysema in mice.

    PubMed

    Yamada, Yosuke; Tomaru, Utano; Ishizu, Akihiro; Ito, Tomoki; Kiuchi, Takayuki; Ono, Ayako; Miyajima, Syota; Nagai, Katsura; Higashi, Tsunehito; Matsuno, Yoshihiro; Dosaka-Akita, Hirotoshi; Nishimura, Masaharu; Miwa, Soichi; Kasahara, Masanori

    2015-06-01

    Chronic obstructive pulmonary disease (COPD) is a disease common in elderly people, characterized by progressive destruction of lung parenchyma and chronic inflammation of the airways. The pathogenesis of COPD remains unclear, but recent studies suggest that oxidative stress-induced apoptosis in alveolar cells contributes to emphysematous lung destruction. The proteasome is a multicatalytic enzyme complex that plays a critical role in proteostasis by rapidly destroying misfolded and modified proteins generated by oxidative and other stresses. Proteasome activity decreases with aging in many organs including lungs, and an age-related decline in proteasomal function has been implicated in various age-related pathologies. However, the role of the proteasome system in the pathogenesis of COPD has not been investigated. Recently, we have established a transgenic (Tg) mouse model with decreased proteasomal chymotrypsin-like activity, showing age-related phenotypes. Using this model, we demonstrate here that decreased proteasomal function accelerates cigarette smoke (CS)-induced pulmonary emphysema. CS-exposed Tg mice showed remarkable airspace enlargement and increased foci of inflammation compared with wild-type controls. Importantly, apoptotic cells were found in the alveolar walls of the affected lungs. Impaired proteasomal activity also enhanced apoptosis in cigarette smoke extract (CSE)-exposed fibroblastic cells derived from mice and humans in vitro. Notably, aggresome formation and prominent nuclear translocation of apoptosis-inducing factor were observed in CSE-exposed fibroblastic cells isolated from Tg mice. Collective evidence suggests that CS exposure and impaired proteasomal activity coordinately enhance apoptotic cell death in the alveolar walls that may be involved in the development and progression of emphysema in susceptible individuals such as the elderly. PMID:25915723

  13. A monoclonal antibody that distinguishes latent and active forms of the proteasome (multicatalytic proteinase complex)

    NASA Technical Reports Server (NTRS)

    Weitman, D.; Etlinger, J. D.

    1992-01-01

    Monoclonal antibodies (mAbs) were generated to proteasome purified from human erythrocytes. Five of six proteasome-specific mAbs reacted with three subunits in the molecular mass range of 25-28 kDa, indicating a common epitope. The other mAb (AP5C10) exhibited a more restricted reactivity, recognizing a 32-kDa subunit of the proteasome purified in its latent state. However, when the proteasome is isolated in its active state, AP5C10 reacts with a 28-kDa subunit, evidence for processing of the proteasome subunits during purification. Purified proteasome preparations which exhibited partial latency have both AP5C10 reactive subunits. Although the 32-kDa subunit appears required for latency, loss of this component and generation of the 28-kDa component are not obligatory for activation. The 32- and 28-kDa subunits can each be further resolved into three components by isoelectric focusing. The apparent loss of 4 kDa during the conversion of the 32- to 28-kDa subunit is accompanied by a shift to a more basic pI for each polypeptide. Western blots of the early steps of proteasome purification reveal an AP5C10-reactive protein at 41 kDa. This protein was separated from proteasomes by sizing chromatography and may represent a pool of precursor subunits. Since the 32-kDa subunit appears necessary for latency, it is speculated to play a regulatory role in ATP-dependent proteolytic activity.

  14. Proteasome inhibitor MG-132 lowers gastric adenocarcinoma TMK1 cell proliferation via bone morphogenetic protein signaling

    SciTech Connect

    Wu, William Ka Kei; Sung, Joseph Jao Yiu; Yu Le; Cho, C.H.

    2008-06-27

    Proteasome inhibitor is a novel class of cancer therapeutics, of which the mechanism of action is not fully understood. It is reported that proteasome inhibitor enhances bone morphogenetic protein (BMP) signaling in osteoblasts to stimulate bone formation. BMP signaling is also an important tumor-suppressing pathway in gastric carcinogenesis. We therefore sought to determine the anti-mitogenic effect of proteasome inhibition in relation to BMP signaling in gastric cancer cells. Results showed that proteasome inhibitor MG-132 significantly suppressed the proliferation and the colony-forming ability of gastric cancer TMK1 cells. In this connection, MG-132 activated BMP signaling, manifested as an increase in Smad1/5/8 phosphorylation and up-regulation of p21{sup Waf1/Cip1} mRNA and protein expression. Knockdown of BMP receptor II by RNA interference abolished Smad1/5/8 phosphorylation, p21{sup Waf1/Cip1} induction, and the inhibition of cell proliferation induced by MG-132. Further analysis revealed that MG-132 up-regulated the expression of BMP1 and BMP4 and suppressed the expression of Smad6. Knockdown of Smad6 also mimicked the effect of MG-132 on BMP signaling. Collectively, these findings suggest that inhibition of proteasome suppresses gastric cancer cell proliferation via activation of BMP signaling. This discovery may open up a novel therapeutic avenue to proteasome inhibitors for the management of gastric cancer.

  15. Induction of autophagy by proteasome inhibitor is associated with proliferative arrest in colon cancer cells

    SciTech Connect

    Wu, William Ka Kei Wu Yachun; Yu Le; Li Zhijie; Sung, Joseph Jao Yiu; Cho, C.H.

    2008-09-19

    The ubiquitin-proteasome system (UPS) and lysosome-dependent macroautophagy (autophagy) are two major intracellular pathways for protein degradation. Blockade of UPS by proteasome inhibitors has been shown to activate autophagy. Recent evidence also suggests that proteasome inhibitors may inhibit cancer growth. In this study, the effect of a proteasome inhibitor MG-132 on the proliferation and autophagy of cultured colon cancer cells (HT-29) was elucidated. Results showed that MG-132 inhibited HT-29 cell proliferation and induced G{sub 2}/M cell cycle arrest which was associated with the formation of LC3{sup +} autophagic vacuoles and the accumulation of acidic vesicular organelles. MG-132 also increased the protein expression of LC3-I and -II in a time-dependent manner. In this connection, 3-methyladenine, a Class III phosphoinositide 3-kinase inhibitor, significantly abolished the formation of LC3{sup +} autophagic vacuoles and the expression of LC3-II but not LC3-I induced by MG-132. Taken together, this study demonstrates that inhibition of proteasome in colon cancer cells lowers cell proliferation and activates autophagy. This discovery may shed a new light on the novel function of proteasome in the regulation of autophagy and proliferation in colon cancer cells.

  16. The mycobacterial Mpa–proteasome unfolds and degrades pupylated substrates by engaging Pup's N-terminus

    PubMed Central

    Striebel, Frank; Hunkeler, Moritz; Summer, Heike; Weber-Ban, Eilika

    2010-01-01

    Mycobacterium tuberculosis, along with other actinobacteria, harbours proteasomes in addition to members of the general bacterial repertoire of degradation complexes. In analogy to ubiquitination in eukaryotes, substrates are tagged for proteasomal degradation with prokaryotic ubiquitin-like protein (Pup) that is recognized by the N-terminal coiled-coil domain of the ATPase Mpa (also called ARC). Here, we reconstitute the entire mycobacterial proteasome degradation system for pupylated substrates and establish its mechanistic features with respect to substrate recruitment, unfolding and degradation. We show that the Mpa–proteasome complex unfolds and degrades Pup-tagged proteins and that this activity requires physical interaction of the ATPase with the proteasome. Furthermore, we establish the N-terminal region of Pup as the structural element required for engagement of pupylated substrates into the Mpa pore. In this process, Mpa pulls on Pup to initiate unfolding of substrate proteins and to drag them toward the proteasome chamber. Unlike the eukaryotic ubiquitin, Pup is not recycled but degraded with the substrate. This assigns a dual function to Pup as both the Mpa recognition element as well as the threading determinant. PMID:20203624

  17. Starvation Induces Proteasome Autophagy with Different Pathways for Core and Regulatory Particles*

    PubMed Central

    Waite, Kenrick A.; Mota-Peynado, Alina De-La; Vontz, Gabrielle; Roelofs, Jeroen

    2016-01-01

    The proteasome is responsible for the degradation of many cellular proteins. If and how this abundant and normally stable complex is degraded by cells is largely unknown. Here we show that in yeast, upon nitrogen starvation, proteasomes are targeted for vacuolar degradation through autophagy. Using GFP-tagged proteasome subunits, we observed that autophagy of a core particle (CP) subunit depends on the deubiquitinating enzyme Ubp3, although a regulatory particle (RP) subunit does not. Furthermore, upon blocking of autophagy, RP remained largely nuclear, although CP largely localized to the cytosol as well as granular structures within the cytosol. In all, our data reveal a regulated process for the removal of proteasomes upon nitrogen starvation. This process involves CP and RP dissociation, nuclear export, and independent vacuolar targeting of CP and RP. Thus, in addition to the well characterized transcriptional up-regulation of genes encoding proteasome subunits, cells are also capable of down-regulating cellular levels of proteasomes through proteaphagy. PMID:26670610

  18. Downregulation of 26S proteasome catalytic activity promotes epithelial-mesenchymal transition

    PubMed Central

    van Baarsel, Eric D.; Metz, Patrick J.; Fisch, Kathleen; Widjaja, Christella E.; Kim, Stephanie H.; Lopez, Justine; Chang, Aaron N.; Geurink, Paul P.; Florea, Bogdan I.; Overkleeft, Hermen S.; Ovaa, Huib; Bui, Jack D.; Yang, Jing; Chang, John T.

    2016-01-01

    The epithelial-mesenchymal transition (EMT) endows carcinoma cells with phenotypic plasticity that can facilitate the formation of cancer stem cells (CSCs) and contribute to the metastatic cascade. While there is substantial support for the role of EMT in driving cancer cell dissemination, less is known about the intracellular molecular mechanisms that govern formation of CSCs via EMT. Here we show that β2 and β5 proteasome subunit activity is downregulated during EMT in immortalized human mammary epithelial cells. Moreover, selective proteasome inhibition enabled mammary epithelial cells to acquire certain morphologic and functional characteristics reminiscent of cancer stem cells, including CD44 expression, self-renewal, and tumor formation. Transcriptomic analyses suggested that proteasome-inhibited cells share gene expression signatures with cells that have undergone EMT, in part, through modulation of the TGF-β signaling pathway. These findings suggest that selective downregulation of proteasome activity in mammary epithelial cells can initiate the EMT program and acquisition of a cancer stem cell-like phenotype. As proteasome inhibitors become increasingly used in cancer treatment, our findings highlight a potential risk of these therapeutic strategies and suggest a possible mechanism by which carcinoma cells may escape from proteasome inhibitor-based therapy. PMID:26930717

  19. Proteasome activation is a mechanism for pyrazolone small molecules displaying therapeutic potential in amyotrophic lateral sclerosis.

    PubMed

    Trippier, Paul C; Zhao, Kevin Tianmeng; Fox, Susan G; Schiefer, Isaac T; Benmohamed, Radhia; Moran, Jason; Kirsch, Donald R; Morimoto, Richard I; Silverman, Richard B

    2014-09-17

    Amyotrophic lateral sclerosis (ALS) is a progressive and ultimately fatal neurodegenerative disease. Pyrazolone containing small molecules have shown significant disease attenuating efficacy in cellular and murine models of ALS. Pyrazolone based affinity probes were synthesized to identify high affinity binding partners and ascertain a potential biological mode of action. Probes were confirmed to be neuroprotective in PC12-SOD1(G93A) cells. PC12-SOD1(G93A) cell lysates were used for protein pull-down, affinity purification, and subsequent proteomic analysis using LC-MS/MS. Proteomics identified the 26S proteasome regulatory subunit 4 (PSMC1), 26S proteasome regulatory subunit 6B (PSMC4), and T-complex protein 1 (TCP-1) as putative protein targets. Coincubation with appropriate competitors confirmed the authenticity of the proteomics results. Activation of the proteasome by pyrazolones was demonstrated in the absence of exogenous proteasome inhibitor and by restoration of cellular protein degradation of a fluorogenic proteasome substrate in PC12-SOD1(G93A) cells. Importantly, supplementary studies indicated that these molecules do not induce a heat shock response. We propose that pyrazolones represent a rare class of molecules that enhance proteasomal activation in the absence of a heat shock response and may have therapeutic potential in ALS. PMID:25001311

  20. Distinct Proteasome Subpopulations in the Alveolar Space of Patients with the Acute Respiratory Distress Syndrome

    PubMed Central

    Sixt, S. U.; Alami, R.; Hakenbeck, J.; Adamzik, M.; Kloß, A.; Costabel, U.; Jungblut, P. R.; Dahlmann, B.; Peters, J.

    2012-01-01

    There is increasing evidence that proteasomes have a biological role in the extracellular alveolar space, but inflammation could change their composition. We tested whether immunoproteasome protein-containing subpopulations are present in the alveolar space of patients with lung inflammation evoking the acute respiratory distress syndrome (ARDS). Bronchoalveolar lavage (BAL) supernatants and cell pellet lysate from ARDS patients (n = 28) and healthy subjects (n = 10) were analyzed for the presence of immunoproteasome proteins (LMP2 and LMP7) and proteasome subtypes by western blot, chromatographic purification, and 2D-dimensional gelelectrophoresis. In all ARDS patients but not in healthy subjects LMP7 and LMP2 were observed in BAL supernatants. Proteasomes purified from pooled ARDS BAL supernatant showed an altered enzyme activity ratio. Chromatography revealed a distinct pattern with 7 proteasome subtype peaks in BAL supernatant of ARDS patients that differed from healthy subjects. Total proteasome concentration in BAL supernatant was increased in ARDS (971 ng/mL ± 1116 versus 59 ± 25; P < 0.001), and all fluorogenic substrates were hydrolyzed, albeit to a lesser extent, with inhibition by epoxomicin (P = 0.0001). Thus, we identified for the first time immunoproteasome proteins and a distinct proteasomal subtype pattern in the alveolar space of ARDS patients, presumably in response to inflammation. PMID:22363101

  1. Localization of the regulatory particle subunit Sem1 in the 26S proteasome

    SciTech Connect

    Bohn, Stefan; Sakata, Eri; Beck, Florian; Pathare, Ganesh R.; Schnitger, Jérôme; Nágy, Istvan; Baumeister, Wolfgang Förster, Friedrich

    2013-05-31

    Highlights: •26S proteasome subunit Sem1 was mapped using cryo-EM and cross-linking data. •C-terminal helix of Sem1 located near winged helix motif of Rpn7. •N-terminal part of Sem1 tethers Rpn7, Rpn3 and lid helical bundle. •Sem1 binds differently to PCI-domains of proteasome subunit Rpn7 and TREX-2 subunit Thp1. -- Abstract: The ubiquitin–proteasome system is responsible for regulated protein degradation in the cell with the 26S proteasome acting as its executive arm. The molecular architecture of this 2.5 MDa complex has been established recently, with the notable exception of the small acidic subunit Sem1. Here, we localize the C-terminal helix of Sem1 binding to the PCI domain of the subunit Rpn7 using cryo-electron microscopy single particle reconstruction of proteasomes purified from yeast cells with sem1 deletion. The approximate position of the N-terminal region of Sem1 bridging the cleft between Rpn7 and Rpn3 was inferred based on site-specific cross-linking data of the 26S proteasome. Our structural studies indicate that Sem1 can assume different conformations in different contexts, which supports the idea that Sem1 functions as a molecular glue stabilizing the Rpn3/Rpn7 heterodimer.

  2. USP15 stabilizes the transcription factor Nrf1 in the nucleus, promoting the proteasome gene expression.

    PubMed

    Fukagai, Kousuke; Waku, Tsuyoshi; Chowdhury, A M Masudul Azad; Kubo, Kaori; Matsumoto, Mariko; Kato, Hiroki; Natsume, Tohru; Tsuruta, Fuminori; Chiba, Tomoki; Taniguchi, Hiroaki; Kobayashi, Akira

    2016-09-01

    The transcriptional factor Nrf1 (NF-E2-related factor 1) sustains protein homeostasis (proteostasis) by regulating the expression of proteasome genes. Under physiological conditions, the transcriptional activity of Nrf1 is repressed by its sequestration into the endoplasmic reticulum (ER) and furthermore by two independent ubiquitin-proteasome pathways, comprising Hrd1 and β-TrCP in the cytoplasm and nucleus, respectively. However, the molecular mechanisms underlying Nrf1 activation remain unclear. Here, we report that USP15 (Ubiquitin-Specific Protease 15) activates Nrf1 in the nucleus by stabilizing it through deubiquitination. We first identified USP15 as an Nrf1-associated factor through proteome analysis. USP15 physically interacts with Nrf1, and it markedly stabilizes Nrf1 by removing its ubiquitin moieties. USP15 activates the Nrf1-mediated expression of a proteasome gene luciferase reporter and endogenous proteasome activity. The siRNA-mediated knockdown of USP15 diminishes the Nrf1-induced proteasome gene expression in response to proteasome inhibition. These results uncover a new regulatory mechanism that USP15 activates Nrf1 against the β-TrCP inhibition to maintain proteostasis. PMID:27416755

  3. Architecture of the Smc5/6 Complex of Saccharomyces cerevisiae Reveals a Unique Interaction between the Nse5-6 Subcomplex and the Hinge Regions of Smc5 and Smc6.

    PubMed

    Duan, Xinyuan; Yang, Yan; Chen, Yu-Hung; Arenz, Jacqueline; Rangi, Gurdish K; Zhao, Xiaolan; Ye, Hong

    2009-03-27

    The evolutionarily conserved structural maintenance of chromosome (SMC) proteins forms the core structures of three multisubunit complexes as follows: cohesin, condensin, and the Smc5/6 complex. These complexes play crucial roles in different aspects of chromosomal organization, duplication, and segregation. Although the architectures of cohesin and condensin are better understood, that of the more recently identified Smc5/6 complex remains to be elucidated. We have previously shown that the Smc5/6 complex of Saccharomyces cerevisiae contains Smc5, Smc6, and six non-SMC elements (Nse1-6). In this study, we investigated the architecture of the budding yeast Smc5/6 complex employing the yeast two-hybrid assay as well as in vitro biochemical approaches using purified recombinant proteins. These analyses revealed that Smc5 and Smc6 associate with each other at their hinge regions and constitute the backbone of the complex, whereas the Nse1-6 subunits form three distinct subcomplexes/entities that interact with different regions of Smc5 and Smc6. The Nse1, -3, and -4 subunits form a stable subcomplex that binds to the head and the adjacent coiled-coil region of Smc5. Nse2 binds to the middle of the coiled-coil region of Smc5. Nse5 and Nse6 interact with each other and, as a heterodimer, bind to the hinge regions of Smc5 and Smc6. These findings provide new insights into the structures of the Smc5/6 complex and lay the foundation for further investigations into the mechanism of its functions. PMID:19141609

  4. Rpn1 provides adjacent receptor sites for substrate binding and deubiquitination by the proteasome

    PubMed Central

    Shi, Yuan; Chen, Xiang; Elsasser, Suzanne; Stocks, Bradley B.; Tian, Geng; Lee, Byung-Hoon; Shi, Yanhong; Zhang, Naixia; de Poot, Stefanie A. H.; Tuebing, Fabian; Sun, Shuangwu; Vannoy, Jacob; Tarasov, Sergey G.; Engen, John R.; Finley, Daniel; Walters, Kylie J.

    2016-01-01

    Structured Abstract INTRODUCTION The ubiquitin-proteasome system comprises hundreds of distinct pathways of degradation, which converge at the step of ubiquitin recognition by the proteasome. Five proteasomal ubiquitin receptors have been identified, two that are intrinsic to the proteasome (Rpn10 and Rpn13) and three reversibly associated proteasomal ubiquitin receptors (Rad23, Dsk2, and Ddi1). RATIONALE We found that the five known proteasomal ubiquitin receptors of yeast are collectively nonessential for ubiquitin recognition by the proteasome. We therefore screened for additional ubiquitin receptors in the proteasome and identified subunit Rpn1 as a candidate. We used nuclear magnetic resonance (NMR) spectroscopy to characterize the structure of the binding site within Rpn1, which we term the T1 site. Mutational analysis of this site showed its functional importance within the context of intact proteasomes. T1 binds both ubiquitin and ubiquitin-like (UBL) proteins, in particular the substrate-delivering shuttle factor Rad23. A second site within the Rpn1 toroid, T2, recognizes the UBL domain of deubiquitinating enzyme Ubp6, as determined by hydrogen-deuterium exchange mass spectrometry analysis and validated by amino acid substitution and functional assays. The Rpn1 toroid thus serves a critical scaffolding role within the proteasome, helping to assemble multiple proteasome cofactors as well as substrates. RESULTS Our results indicate that proteasome subunit Rpn1 can recognize both ubiquitin and UBL domains of substrate shuttling factors that themselves bind ubiquitin and function as reversibly-associated proteasomal ubiquitin receptors. Recognition is mediated by the T1 site within the Rpn1 toroid, which supports proteasome function in vivo. We found that the capacity of T1 to recognize both ubiquitin and UBL proteins was shared with Rpn10 and Rpn13. The surprising multiplicity of ubiquitin-recognition domains within the proteasome may promote enhanced

  5. Binding-induced folding of prokaryotic ubiquitin-like protein on the mycobacterium proteasomal ATPase targets substrates for degradation

    SciTech Connect

    Wang, T.; Li, H.; Darwin, K. H.

    2010-11-01

    Mycobacterium tuberculosis uses a proteasome system that is analogous to the eukaryotic ubiquitin-proteasome pathway and is required for pathogenesis. However, the bacterial analog of ubiquitin, prokaryotic ubiquitin-like protein (Pup), is an intrinsically disordered protein that bears little sequence or structural resemblance to the highly structured ubiquitin. Thus, it was unknown how pupylated proteins were recruited to the proteasome. Here, we show that the Mycobacterium proteasomal ATPase (Mpa) has three pairs of tentacle-like coiled coils that recognize Pup. Mpa bound unstructured Pup through hydrophobic interactions and a network of hydrogen bonds, leading to the formation of an {alpha}-helix in Pup. Our work describes a binding-induced folding recognition mechanism in the Pup-proteasome system that differs mechanistically from substrate recognition in the ubiquitin-proteasome system. This key difference between the prokaryotic and eukaryotic systems could be exploited for the development of a small molecule-based treatment for tuberculosis.

  6. Binding-induced Folding of Prokaryotic Ubiquitin-like Protein on the Mycobacterium Proteasomal ATPase Targets Substrates for Degradation

    SciTech Connect

    T Wang; K Heran Darwin; H Li

    2011-12-31

    Mycobacterium tuberculosis uses a proteasome system that is analogous to the eukaryotic ubiquitin-proteasome pathway and is required for pathogenesis. However, the bacterial analog of ubiquitin, prokaryotic ubiquitin-like protein (Pup), is an intrinsically disordered protein that bears little sequence or structural resemblance to the highly structured ubiquitin. Thus, it was unknown how pupylated proteins were recruited to the proteasome. Here, we show that the Mycobacterium proteasomal ATPase (Mpa) has three pairs of tentacle-like coiled coils that recognize Pup. Mpa bound unstructured Pup through hydrophobic interactions and a network of hydrogen bonds, leading to the formation of an {alpha}-helix in Pup. Our work describes a binding-induced folding recognition mechanism in the Pup-proteasome system that differs mechanistically from substrate recognition in the ubiquitin-proteasome system. This key difference between the prokaryotic and eukaryotic systems could be exploited for the development of a small molecule-based treatment for tuberculosis.

  7. Proteasome inhibitors prevent cytochrome c release during apoptosis but not in excitotoxic death of cerebellar granule neurons.

    PubMed

    Bobba, Antonella; Canu, Nadia; Atlante, Anna; Petragallo, Vito; Calissano, Pietro; Marra, Ersilia

    2002-03-27

    In order to find out whether and how proteasomes participate in the processes leading cerebellar granule cells to death either in necrosis, due to glutamate neurotoxicity, or in apoptosis, due to K(+) shift, we measured the three proteasome activities by using specific fluorescent probes and investigated the effect of several proteasome inhibitors, including MG132, on the cytochrome c release taking place in the early phase of both apoptosis and necrosis. We show that differently from apoptosis, the early phase of necrosis does not require proteasome activation. Inhibition of proteasome activity can prevent cytochrome c release in cerebellar granule cells undergoing apoptosis, thus improving cell survival, but not necrosis. These findings show that proteasomes play an important role in the early phase of apoptosis but not that of necrosis, and that these two types of cell death differ from each other in their mechanism of cytochrome c release. PMID:11943185

  8. CERAMIDE SYNTHASE 1 IS REGULATED BY PROTEASOMAL MEDIATED TURNOVER

    PubMed Central

    Sridevi, Priya; Alexander, Hannah; Laviad, Elad L.; Pewzner-Jung, Yael; Hannink, Mark; Futerman, Anthony H.; Alexander, Stephen

    2009-01-01

    Ceramide is an important bioactive lipid, intimately involved in many cellular functions, including the regulation of cell death, and in cancer and chemotherapy. Ceramide is synthesized de novo from sphinganine and acyl CoA via a family of 6 ceramide synthase enzymes, each having a unique preference for different fatty acyl CoA substrates and a unique tissue distribution. However, little is known regarding the regulation of these important enzymes. In this study we focus on ceramide synthase 1 (CerS1) which is the most structurally and functionally distinct of the enzymes, and describe a regulatory mechanism that specifically controls the level of CerS1 via ubiquitination and proteasome dependent protein turnover. We show that both endogenous and ectopically expressed CerS1 have rapid basal turnover and that diverse stresses including chemotherapeutic drugs, UV light and DTT can induce CerS1 turnover. The turnover requires CerS1 activity and is regulated by the opposing actions of p38 MAP kinase and protein kinase C (PKC). p38 MAP kinase is a positive regulator of turnover, while PKC is a negative regulator of turnover. CerS1 is phosphorylated in vivo and activation of PKC increases the phosphorylation of the protein. This study reveals a novel and highly specific mechanism by which CerS1 protein levels are regulated and which directly impacts ceramide homeostasis. PMID:19393694

  9. Aspirin Delimits Platelet Life Span by Proteasomal Inhibition

    PubMed Central

    Nayak, Manasa K.; Dash, Ayusman; Singh, Nitesh; Dash, Debabrata

    2014-01-01

    Aspirin is widely used in clinical settings as an anti-inflammatory and anti-platelet drug due its inhibitory effect on cyclooxygenase activity. Although the drug has long been considered to be an effective and safe therapeutic regime against inflammatory and cardiovascular disorders, consequences of its cyclooxygenase-independent attributes on platelets, the key players in thrombogenesis, beg serious investigation. In this report we explored the effect of aspirin on platelet lifespan in murine model and its possible cytotoxicity against human platelets in vitro. Aspirin administration in mice led to significant reduction in half-life of circulating platelets, indicative of enhanced rate of platelet clearance. Aspirin-treated human platelets were found to be phagocytosed more efficiently by macrophages, associated with attenuation in platelet proteasomal activity and upregulation of conformationally active Bax, which were consistent with enhanced platelet apoptosis. Although the dosage of aspirin administered in mice was higher than the therapeutic regimen against cardiovascular events, it is comparable with the recommended anti-inflammatory prescription. Thus, above observations provide cautionary framework to critically re-evaluate prophylactic and therapeutic dosage regime of aspirin in systemic inflammatory as well as cardiovascular ailments. PMID:25126950

  10. Role of the ubiquitin proteasome system in Alzheimer's disease

    PubMed Central

    Upadhya, Sudarshan C; Hegde, Ashok N

    2007-01-01

    Though Alzheimer's disease (AD) is a syndrome with well-defined clinical and neuropathological manifestations, an array of molecular defects underlies its pathology. A role for the ubiquitin proteasome system (UPS) was suspected in the pathogenesis of AD since the presence of ubiquitin immunoreactivity in AD-related neuronal inclusions, such as neurofibrillary tangles, is seen in all AD cases. Recent studies have indicated that components of the UPS could be linked to the early phase of AD, which is marked by synaptic dysfunction, as well as to the late stages of the disease, characterized by neurodegeneration. Insoluble protein aggregates in the brain of AD patients could result from malfunction or overload of the UPS, or from structural changes in the protein substrates, which prevent their recognition and degradation by the UPS. Defective proteolysis could cause the synaptic dysfunction observed early in AD since the UPS is known to play a role in the normal functioning of synapses. In this review, we discuss recent observations on possible links between the UPS and AD, and the potential for utilizing UPS components as targets for treatment of this disease. Publication history: Republished from Current BioData's Targeted Proteins database (TPdb; ). PMID:18047736

  11. ASB2 targets filamins A and B to proteasomal degradation

    PubMed Central

    Heuzé, Mélina L.; Lamsoul, Isabelle; Baldassarre, Massimiliano; Lad, Yatish; Lévêque, Sophie; Razinia, Ziba; Moog-Lutz, Christel; Calderwood, David A.

    2008-01-01

    The ordered series of proliferation and differentiation from hematopoietic progenitor cells is disrupted in leukemia, resulting in arrest of differentiation at immature proliferative stages. Characterizing the molecular basis of hematopoietic differentiation is therefore important for understanding and treating disease. Retinoic acid induces expression of ankyrin repeat-containing protein with a suppressor of cytokine signaling box 2 (ASB2) in acute promyelocytic leukemia cells, and ASB2 expression inhibits growth and promotes commitment, recapitulating an early step critical for differentiation. ASB2 is the specificity subunit of an E3 ubiquitin ligase complex and is proposed to exert its effects by regulating the turnover of specific proteins; however, no ASB2 substrates had been identified. Here, we report that ASB2 targets the actin-binding proteins filamin A and B for proteasomal degradation. Knockdown of endogenous ASB2 in leukemia cells delays retinoic acid-induced differentiation and filamin degradation; conversely, ASB2 expression in leukemia cells induces filamin degradation. ASB2 expression inhibits cell spreading, and this effect is recapitulated by knocking down both filamin A and filamin B. Thus, we suggest that ASB2 may regulate hematopoietic cell differentiation by modulating cell spreading and actin remodeling through targeting of filamins for degradation. PMID:18799729

  12. N,C-capped dipeptides with selectivity for mycobacterial proteasome over human proteasomes: Role of S3 and S1 binding pockets

    PubMed Central

    Chidawanyika, Tamutenda; Tsu, Christopher; Warrier, Thulasi; Vaubourgeix, Julien; Blackburn, Christopher; Gigstad, Kenneth; Sintchak, Michael; Dick, Lawrence

    2013-01-01

    We identified N,C-capped dipeptides that are selective for the Mycobacterium tuberculosis proteasome over human constitutive and immunoproteasomes. Differences in S3 and S1 binding pockets appeared to account for species-selectivity. The inhibitors are able to penetrate mycobacteria and kill non-replicating M. tuberculosis under nitrosative stress. PMID:23782398

  13. Proteasome dysfunction triggers activation of SKN-1A/Nrf1 by the aspartic protease DDI-1.

    PubMed

    Lehrbach, Nicolas J; Ruvkun, Gary

    2016-01-01

    Proteasomes are essential for protein homeostasis in eukaryotes. To preserve cellular function, transcription of proteasome subunit genes is induced in response to proteasome dysfunction caused by pathogen attacks or proteasome inhibitor drugs. In Caenorhabditis elegans, this response requires SKN-1, a transcription factor related to mammalian Nrf1/2. Here, we use comprehensive genetic analyses to identify the pathway required for C. elegans to detect proteasome dysfunction and activate SKN-1. Genes required for SKN-1 activation encode regulators of ER traffic, a peptide N-glycanase, and DDI-1, a conserved aspartic protease. DDI-1 expression is induced by proteasome dysfunction, and we show that DDI-1 is required to cleave and activate an ER-associated isoform of SKN-1. Mammalian Nrf1 is also ER-associated and subject to proteolytic cleavage, suggesting a conserved mechanism of proteasome surveillance. Targeting mammalian DDI1 protease could mitigate effects of proteasome dysfunction in aging and protein aggregation disorders, or increase effectiveness of proteasome inhibitor cancer chemotherapies. PMID:27528192

  14. Proteasome dysfunction triggers activation of SKN-1A/Nrf1 by the aspartic protease DDI-1

    PubMed Central

    Lehrbach, Nicolas J; Ruvkun, Gary

    2016-01-01

    Proteasomes are essential for protein homeostasis in eukaryotes. To preserve cellular function, transcription of proteasome subunit genes is induced in response to proteasome dysfunction caused by pathogen attacks or proteasome inhibitor drugs. In Caenorhabditis elegans, this response requires SKN-1, a transcription factor related to mammalian Nrf1/2. Here, we use comprehensive genetic analyses to identify the pathway required for C. elegans to detect proteasome dysfunction and activate SKN-1. Genes required for SKN-1 activation encode regulators of ER traffic, a peptide N-glycanase, and DDI-1, a conserved aspartic protease. DDI-1 expression is induced by proteasome dysfunction, and we show that DDI-1 is required to cleave and activate an ER-associated isoform of SKN-1. Mammalian Nrf1 is also ER-associated and subject to proteolytic cleavage, suggesting a conserved mechanism of proteasome surveillance. Targeting mammalian DDI1 protease could mitigate effects of proteasome dysfunction in aging and protein aggregation disorders, or increase effectiveness of proteasome inhibitor cancer chemotherapies. DOI: http://dx.doi.org/10.7554/eLife.17721.001 PMID:27528192

  15. Negatively Charged Metal Oxide Nanoparticles Interact with the 20S Proteasome and Differentially Modulate Its Biologic Functional Effects

    PubMed Central

    Falaschetti, Christine A.; Paunesku, Tatjana; Kurepa, Jasmina; Nanavati, Dhaval; Chou, Stanley S.; De, Mrinmoy; Song, MinHa; Jang, Jung-tak; Wu, Aiguo; Dravid, Vinayak P.; Cheon, Jinwoo; Smalle, Jan; Woloschak, Gayle E.

    2013-01-01

    The multicatalytic ubiquitin-proteasome system (UPS) carries out proteolysis in a highly orchestrated way and regulates a large number of cellular processes. Deregulation of the UPS in many disorders has been documented. In some cases, e.g. carcinogenesis, elevated proteasome activity has been implicated in disease development, while the etiology of other diseases, e.g. neurodegeneration, includes decreased UPS activity. Therefore, agents that alter proteasome activity could suppress as well as enhance a multitude of diseases. Metal oxide nanoparticles, often developed as diagnostic tools, have not previously been tested as modulators of proteasome activity. Here, several types of metal oxide nanoparticles were found to adsorb to the proteasome and show variable preferential binding for particular proteasome subunits with several peptide binding “hotspots” possible. These interactions depend on the size, charge, and concentration of the nanoparticles and affect proteasome activity in a time-dependent manner. Should metal oxide nanoparticles increase proteasome activity in cells, as they do in vitro, unintended effects related to changes in proteasome function can be expected. PMID:23930940

  16. ROS inhibitor N-acetyl-L-cysteine antagonizes the activity of proteasome inhibitors.

    PubMed

    Halasi, Marianna; Wang, Ming; Chavan, Tanmay S; Gaponenko, Vadim; Hay, Nissim; Gartel, Andrei L

    2013-09-01

    NAC (N-acetyl-L-cysteine) is commonly used to identify and test ROS (reactive oxygen species) inducers, and to inhibit ROS. In the present study, we identified inhibition of proteasome inhibitors as a novel activity of NAC. Both NAC and catalase, another known scavenger of ROS, similarly inhibited ROS levels and apoptosis associated with H₂O₂. However, only NAC, and not catalase or another ROS scavenger Trolox, was able to prevent effects linked to proteasome inhibition, such as protein stabilization, apoptosis and accumulation of ubiquitin conjugates. These observations suggest that NAC has a dual activity as an inhibitor of ROS and proteasome inhibitors. Recently, NAC was used as a ROS inhibitor to functionally characterize a novel anticancer compound, piperlongumine, leading to its description as a ROS inducer. In contrast, our own experiments showed that this compound depicts features of proteasome inhibitors including suppression of FOXM1 (Forkhead box protein M1), stabilization of cellular proteins, induction of ROS-independent apoptosis and enhanced accumulation of ubiquitin conjugates. In addition, NAC, but not catalase or Trolox, interfered with the activity of piperlongumine, further supporting that piperlongumine is a proteasome inhibitor. Most importantly, we showed that NAC, but not other ROS scavengers, directly binds to proteasome inhibitors. To our knowledge, NAC is the first known compound that directly interacts with and antagonizes the activity of proteasome inhibitors. Taken together, the findings of the present study suggest that, as a result of the dual nature of NAC, data interpretation might not be straightforward when NAC is utilized as an antioxidant to demonstrate ROS involvement in drug-induced apoptosis. PMID:23772801

  17. Unfolding knots by proteasome-like systems: simulations of the behaviour of folded and neurotoxic proteins.

    PubMed

    Wojciechowski, Michał; Gómez-Sicilia, Àngel; Carrión-Vázquez, Mariano; Cieplak, Marek

    2016-08-16

    Knots in proteins have been proposed to resist proteasomal degradation. Ample evidence associates proteasomal degradation with neurodegeneration. One interesting possibility is that indeed knotted conformers stall this machinery leading to toxicity. However, although the proteasome is known to unfold mechanically its substrates, at present there are no experimental methods to emulate this particular traction geometry. Here, we consider several dynamical models of the proteasome in which the complex is represented by an effective potential with an added pulling force. This force is meant to induce the translocation of a protein or a polypeptide into the catalytic chamber. The force is either constant or applied periodically. The translocated proteins are modelled in a coarse-grained fashion. We do comparative analysis of several knotted globular proteins and the transiently knotted polyglutamine tracts of length 60 alone and fused in exon 1 of the huntingtin protein. Huntingtin is associated with Huntington's disease, a well-known genetically determined neurodegenerative disease. We show that the presence of a knot hinders and sometimes even jams translocation. We demonstrate that the probability to do so depends on the protein, the model of the proteasome, the magnitude of the pulling force, and the choice of the pulled terminus. In any case, the net effect would be a hindrance in the proteasomal degradation process in the cell. This would then yield toxicity via two different mechanisms: one through toxic monomers compromising degradation and another by the formation of toxic oligomers. Our work paves the way for the mechanistic investigation of the mechanical unfolding of knotted structures by the proteasome and its relation to toxicity and disease. PMID:27425826

  18. Proteasome Modulates Positive and Negative Translational Regulators in Long-Term Synaptic Plasticity

    PubMed Central

    Dong, Chenghai; Bach, Svitlana V.; Haynes, Kathryn A.

    2014-01-01

    Proteolysis by the ubiquitin-proteasome pathway appears to have a complex role in synaptic plasticity, but its various functions remain to be elucidated. Using late phase long-term potentiation (L-LTP) in the hippocampus of the mouse as a model for long-term synaptic plasticity, we previously showed that inhibition of the proteasome enhances induction but blocks maintenance of L-LTP. In this study, we investigated the possible mechanisms by which proteasome inhibition has opposite effects on L-LTP induction and maintenance. Our results show that inhibiting phosphatidyl inositol-3 kinase or blocking the interaction between eukaryotic initiation factors 4E (eIF4E) and 4G (eIF4G) reduces the enhancement of L-LTP induction brought about by proteasome inhibition suggesting interplay between proteolysis and the signaling pathway mediated by mammalian target of rapamycin (mTOR). Also, proteasome inhibition leads to accumulation of translational activators in the mTOR pathway such as eIF4E and eukaryotic elongation factor 1A (eEF1A) early during L-LTP causing increased induction. Furthermore, inhibition of the proteasome causes a buildup of translational repressors, such as polyadenylate-binding protein interacting protein 2 (Paip2) and eukaryotic initiation factor 4E-binding protein 2 (4E-BP2), during late stages of L-LTP contributing to the blockade of L-LTP maintenance. Thus, the proteasome plays a critical role in regulating protein synthesis during L-LTP by tightly controlling translation. Our results provide novel mechanistic insights into the interplay between protein degradation and protein synthesis in long-term synaptic plasticity. PMID:24573276

  19. Proteasome inhibition improves fractionated radiation treatment against non-small cell lung cancer: an antioxidant connection.

    PubMed

    Grimes, Kristopher Ray; Daosukho, Chotiros; Zhao, Yunfeng; Meigooni, Ali; St Clair, William

    2005-10-01

    Non-small cell lung cancer frequently presents as a locally advanced disease. In this setting, radiation has a prominent role in cancer therapy. However, tumor adaptation to oxidative stress may lessen the efficacy of radiation therapy. Recent studies demonstrate that proteasome inhibitors increase the efficacy of radiation against a range of tumors. Although proteasome inhibition impacts on NF-kappaB translocation, the precise mechanism through which proteasome inhibitors induce tumor cell death and promote radiation efficacy remains unclear. The purpose of this study is to evaluate the potential of the proteasome inhibitor, MG-132, to improve the efficacy of radiation therapy and to determine whether its effect is linked to the suppression of the antioxidant enzyme, manganese superoxide dismutase (MnSOD). Human NSCLC (A549) cells were utilized both in vivo and in vitro to evaluate proteasome inhibition on radiation response. In vivo, mice that received combined treatments of 2.5 microg/g body weight MG-132 and 30 Gy demonstrated a delay in tumor regrowth in comparison to the 30 Gy control group. In vitro, clonegenic survival assays confirmed a dose-dependent enhancement of radiation sensitivity in combination with MG-132 and a significant interaction between the two. The levels of IkappaB-alpha, a NF-kappaB target gene and also an inhibitor of NF-kappaB nuclear translocation, decreased in a time-dependent manner following administration of MG-132 confirming the inhibition of the 26S proteasome. The MnSOD protein level was increased consistent with lower levels of IkappaB-alpha, confirming a NF-kappaB-mediated effect. Cells treated with radiation demonstrated an induction of MnSOD; however, the administration of MG-132 suppressed this induction These results support the hypothesis that proteasome inhibitors such as MG-132 can increase the efficacy of radiation therapy, in part, by suppression of cytoprotective NF-kappaB-mediated MnSOD expression. PMID:16142322

  20. USP14 deubiquitinates proteasome-bound substrates that are ubiquitinated at multiple sites.

    PubMed

    Lee, Byung-Hoon; Lu, Ying; Prado, Miguel A; Shi, Yuan; Tian, Geng; Sun, Shuangwu; Elsasser, Suzanne; Gygi, Steven P; King, Randall W; Finley, Daniel

    2016-04-21

    USP14 is a major regulator of the proteasome and one of three proteasome-associated deubiquitinating enzymes. Its effects on protein turnover are substrate-specific, for unknown reasons. We report that USP14 shows a marked preference for ubiquitin-cyclin B conjugates that carry more than one ubiquitin modification or chain. This specificity is conserved from yeast to humans and is independent of chain linkage type. USP14 has been thought to cleave single ubiquitin groups from the distal tip of a chain, but we find that it removes chains from cyclin B en bloc, proceeding until a single chain remains. The suppression of degradation by USP14's catalytic activity reflects its capacity to act on a millisecond time scale, before the proteasome can initiate degradation of the substrate. In addition, single-molecule studies showed that the dwell time of ubiquitin conjugates at the proteasome was reduced by USP14-dependent deubiquitination. In summary, the specificity of the proteasome can be regulated by rapid ubiquitin chain removal, which resolves substrates based on a novel aspect of ubiquitin conjugate architecture. PMID:27074503

  1. Phosphorylation and Methylation of Proteasomal Proteins of the Haloarcheon Haloferax volcanii

    DOE PAGESBeta

    Humbard, Matthew A.; Reuter, Christopher J.; Zuobi-Hasona, Kheir; Zhou, Guangyin; Maupin-Furlow, Julie A.

    2010-01-01

    Promore » teasomes are composed of 20S core particles (CPs) of α - and β -type subunits that associate with regulatory particle AAA ATPases such as the proteasome-activating nucleotidase (PAN) complexes of archaea. In this study, the roles and additional sites of post-translational modification of proteasomes were investigated using the archaeon Haloferax volcanii as a model. Indicative of phosphorylation, phosphatase-sensitive isoforms of α 1 and α 2 were detected by 2-DE immunoblot. To map these and other potential sites of post-translational modification, proteasomes were purified and analyzed by tandem mass spectrometry (MS/MS). Using this approach, several phosphosites were mapped including α 1 Thr147, α 2 Thr13/Ser14 and PAN-A Ser340. Multiple methylation sites were also mapped to α 1 , thus, revealing a new type of proteasomal modification.bing the biological role of α 1 and PAN-A phosphorylation by site-directed mutagenesis revealed dominant negative phenotypes for cell viability and/or pigmentation for α 1 variants including Thr147Ala, Thr158Ala and Ser58Ala. An H. volcanii Rio1p Ser/Thr kinase homolog was purified and shown to catalyze autophosphorylation and phosphotransfer to α 1 . The α 1 variants in Thr and Ser residues that displayed dominant negative phenotypes were significantly reduced in their ability to accept phosphoryl groups from Rio1p, thus, providing an important link between cell physiology and proteasomal phosphorylation.« less

  2. Proteasome inhibition and oxidative reactions disrupt cellular homeostasis during heme stress

    PubMed Central

    Vallelian, F; Deuel, J W; Opitz, L; Schaer, C A; Puglia, M; Lönn, M; Engelsberger, W; Schauer, S; Karnaukhova, E; Spahn, D R; Stocker, R; Buehler, P W; Schaer, D J

    2015-01-01

    Dual control of cellular heme levels by extracellular scavenger proteins and degradation by heme oxygenases is essential in diseases associated with increased heme release. During severe hemolysis or rhabdomyolysis, uncontrolled heme exposure can cause acute kidney injury and endothelial cell damage. The toxicity of heme was primarily attributed to its pro-oxidant effects; however additional mechanisms of heme toxicity have not been studied systematically. In addition to redox reactivity, heme may adversely alter cellular functions by binding to essential proteins and impairing their function. We studied inducible heme oxygenase (Hmox1)-deficient mouse embryo fibroblast cell lines as a model to systematically explore adaptive and disruptive responses that were triggered by intracellular heme levels exceeding the homeostatic range. We extensively characterized the proteome phenotype of the cellular heme stress responses by quantitative mass spectrometry of stable isotope-labeled cells that covered more than 2000 individual proteins. The most significant signals specific to heme toxicity were consistent with oxidative stress and impaired protein degradation by the proteasome. This ultimately led to an activation of the response to unfolded proteins. These observations were explained mechanistically by demonstrating binding of heme to the proteasome that was linked to impaired proteasome function. Oxidative heme reactions and proteasome inhibition could be differentiated as synergistic activities of the porphyrin. Based on the present data a novel model of cellular heme toxicity is proposed, whereby proteasome inhibition by heme sustains a cycle of oxidative stress, protein modification, accumulation of damaged proteins and cell death. PMID:25301065

  3. Is insulin signaling molecules misguided in diabetes for ubiquitin-proteasome mediated degradation?

    PubMed

    Balasubramanyam, Muthuswamy; Sampathkumar, Rangasamy; Mohan, Viswanathan

    2005-07-01

    Recent mining of the human and mouse genomes, use of yeast genetics, and detailed analyses of several biochemical pathways, have resulted in the identification of many new roles for ubiquitin-proteasome mediated degradation of proteins. In the context of last year's award of Noble Prize (Chemistry) work, the ubiquitin and ubiquitin-like modifications are increasingly recognized as key regulatory events in health and disease. Although the ATP-dependent ubiquitin-proteasome system has evolved as premier cellular proteolytic machinery, dysregulation of this system by several different mechanisms leads to inappropriate degradation of specific proteins and pathological consequences. While aberrations in the ubiquitin-proteasome pathway have been implicated in certain malignancies and neurodegenerative disorders, recent studies indicate a role for this system in the pathogenesis of diabetes and its complications. Inappropriate degradation of insulin signaling molecules such as insulin receptor substrates (IRS-1 and IRS-2) has been demonstrated in experimental diabetes, mediated in part through the up-regulation of suppressors of cytokine signaling (SOCS). It appears that altered ubiquitin-proteasome system might be one of the molecular mechanisms of insulin resistance in many pathological situations. Drugs that modulate the SOCS action and/or proteasomal degradation of proteins could become novel agents for the treatment of insulin resistance and Type 2 diabetes. PMID:16335791

  4. Repression of protein translation and mTOR signaling by proteasome inhibitor in colon cancer cells

    SciTech Connect

    Wu, William Ka Kei; Volta, Viviana; Cho, Chi Hin; Wu, Ya Chun; Li, Hai Tao; Yu, Le; Li, Zhi Jie; Sung, Joseph Jao Yiu

    2009-09-04

    Protein homeostasis relies on a balance between protein synthesis and protein degradation. The ubiquitin-proteasome system is a major catabolic pathway for protein degradation. In this respect, proteasome inhibition has been used therapeutically for the treatment of cancer. Whether inhibition of protein degradation by proteasome inhibitor can repress protein translation via a negative feedback mechanism, however, is unknown. In this study, proteasome inhibitor MG-132 lowered the proliferation of colon cancer cells HT-29 and SW1116. In this connection, MG-132 reduced the phosphorylation of mammalian target of rapamycin (mTOR) at Ser2448 and Ser2481 and the phosphorylation of its downstream targets 4E-BP1 and p70/p85 S6 kinases. Further analysis revealed that MG-132 inhibited protein translation as evidenced by the reductions of {sup 35}S-methionine incorporation and polysomes/80S ratio. Knockdown of raptor, a structural component of mTOR complex 1, mimicked the anti-proliferative effect of MG-132. To conclude, we demonstrate that the inhibition of protein degradation by proteasome inhibitor represses mTOR signaling and protein translation in colon cancer cells.

  5. Inhibition of Cellular Proteasome Activities Mediates HBX-Independent Hepatitis B Virus Replication In Vivo▿

    PubMed Central

    Zhang, Zhensheng; Sun, Eun; Ou, Jing-hsiung James; Liang, T. Jake

    2010-01-01

    The X protein (HBX) of the hepatitis B virus (HBV) is essential for HBV productive infection in vivo. Our previous study (Z. Hu, Z. Zhang, E. Doo, O. Coux, A. L. Goldberg, and T. J. Liang, J. Virol. 73:7231-7240, 1999) shows that interaction of HBX with the proteasome complex may underlie the pleiotropic functions of HBX. Previously, we demonstrated that HBX affects hepadnaviral replication through a proteasome-dependent pathway in cell culture models. In the present study, we studied the effect of the proteasome inhibitor MLN-273 in two HBV mouse models. We demonstrated that administration of MLN-273 to transgenic mice containing the replication-competent HBV genome with the defective HBX gene substantially enhanced HBV replication, while the compound had a minor effect on wild-type HBV transgenic mice. Similar results were obtained by using C57BL/6 mice infected with recombinant adenoviruses expressing the replicating HBV genome. Our data suggest that HBV replication is subjected to regulation by cellular proteasome and HBX functions through the inhibition of proteasome activities to enhance HBV replication in vivo. PMID:20592087

  6. Proteasome Inhibitors Block DNA Repair and Radiosensitize Non-Small Cell Lung Cancer

    PubMed Central

    Kushwaha, Deepa S.; Hsieh, Grace; Merzon, Dmitry; Rameseder, Jonathan; Chen, Clark C.; D’Andrea, Alan D.; Kozono, David

    2013-01-01

    Despite optimal radiation therapy (RT), chemotherapy and/or surgery, a majority of patients with locally advanced non-small cell lung cancer (NSCLC) fail treatment. To identify novel gene targets for improved tumor control, we performed whole genome RNAi screens to identify knockdowns that most reproducibly increase NSCLC cytotoxicity. These screens identified several proteasome subunits among top hits, including the topmost hit PSMA1, a component of the core 20 S proteasome. Radiation and proteasome inhibition showed synergistic effects. Proteasome inhibition resulted in an 80–90% decrease in homologous recombination (HR), a 50% decrease in expression of NF-κB-inducible HR genes BRCA1 and FANCD2, and a reduction of BRCA1, FANCD2 and RAD51 ionizing radiation-induced foci. IκBα RNAi knockdown rescued NSCLC radioresistance. Irradiation of mice with NCI-H460 xenografts after inducible PSMA1 shRNA knockdown markedly increased murine survival compared to either treatment alone. Proteasome inhibition is a promising strategy for NSCLC radiosensitization via inhibition of NF-κB-mediated expression of Fanconi Anemia/HR DNA repair genes. PMID:24040035

  7. Acetylation-Mediated Proteasomal Degradation of Core Histones during DNA Repair and Spermatogenesis

    PubMed Central

    Qian, Min-Xian; Pang, Ye; Liu, Cui Hua; Haratake, Kousuke; Du, Bo-Yu; Ji, Dan-Yang; Wang, Guang-Fei; Zhu, Qian-Qian; Song, Wei; Yu, Yadong; Zhang, Xiao-Xu; Huang, Hai-Tao; Miao, Shiying; Chen, Lian-Bin; Zhang, Zi-Hui; Liang, Ya-Nan; Liu, Shan; Cha, Hwangho; Yang, Dong; Zhai, Yonggong; Komatsu, Takuo; Tsuruta, Fuminori; Li, Haitao; Cao, Cheng; Li, Wei; Li, Guo-Hong; Cheng, Yifan; Chiba, Tomoki; Wang, Linfang; Goldberg, Alfred L.; Shen, Yan; Qiu, Xiao-Bo

    2013-01-01

    SUMMARY Histone acetylation plays critical roles in chromatin remodeling, DNA repair, and epigenetic regulation of gene expression, but the underlying mechanisms are unclear. Proteasomes usually catalyze ATP- and polyubiquitin-dependent proteolysis. Here we show that the proteasomes containing the activator PA200 catalyze the polyubiquitin-independent degradation of histones. Most proteasomes in mammalian testes (“spermatoproteasomes”) contain a spermatid/sperm-specific α-subunit α4s/PSMA8 and/or the catalytic β-subunits of immunoproteasomes in addition to PA200. Deletion of PA200 in mice abolishes acetylation-dependent degradation of somatic core histones during DNA double-strand breaks, and delays core histone disappearance in elongated spermatids. Purified PA200 greatly promotes ATP-independent proteasomal degradation of the acetylated core histones, but not polyubiquitinated proteins. Furthermore, acetylation on histones is required for their binding to the bromodomain-like regions in PA200 and its yeast ortholog, Blm10. Thus, PA200/Blm10 specifically targets the core histones for acetylation-mediated degradation by proteasomes, providing mechanisms by which acetylation regulates histone degradation, DNA repair, and spermatogenesis. PMID:23706739

  8. A Set of Activity-Based Probes to Visualize Human (Immuno)proteasome Activities.

    PubMed

    de Bruin, Gerjan; Xin, Bo Tao; Kraus, Marianne; van der Stelt, Mario; van der Marel, Gijsbert A; Kisselev, Alexei F; Driessen, Christoph; Florea, Bogdan I; Overkleeft, Herman S

    2016-03-18

    Proteasomes are therapeutic targets for various cancers and autoimmune diseases. Constitutively expressed proteasomes have three active sites, β1c, β2c, and β5c. Lymphoid tissues also express the immunoproteasome subunits β1i, β2i, and β5i. Rapid and simultaneous measurement of the activity of these catalytic subunits would assist in the discovery of new inhibitors, improve analysis of proteasome inhibitors in clinical trials, and simplify analysis of subunit expression. In this work, we present a cocktail of activity-based probes that enables simultaneous gel-based detection of all six catalytic human proteasome subunits. We used this cocktail to develop specific inhibitors for β1c, β2c, β5c, and β2i, to compare the active-site specificity of clinical proteasome inhibitors, and to demonstrate that many hematologic malignancies predominantly express immunoproteasomes. Furthermore, we show that selective and complete inhibition of β5i and β1i is cytotoxic to primary cells from acute lymphocytic leukemia (ALL) patients. PMID:26511210

  9. Dual targeting of the proteasome regulates survival and homing in Waldenström macroglobulinemia

    PubMed Central

    Roccaro, Aldo M.; Leleu, Xavier; Sacco, Antonio; Jia, Xiaoying; Melhem, Molly; Moreau, Anne-Sophie; Ngo, Hai T.; Runnels, Judith; Azab, Abdelkareem; Azab, Feda; Burwick, Nicholas; Farag, Mena; Treon, Steven P.; Palladino, Michael A.; Hideshima, Teru; Chauhan, Dharminder; Anderson, Kenneth C.

    2008-01-01

    Waldenström macroglobulinemia (WM) is an incurable low-grade B-cell lymphoma characterized by high protein turnover. We dissected the biologic role of the proteasome in WM using 2 proteasome inhibitors, NPI-0052 and bortezomib. We found that NPI-0052 inhibited proliferation and induced apoptosis in WM cells, and that the combination of NPI-0052 and bortezomib induced synergistic cytotoxicity in WM cells, leading to inhibition of nuclear translocation of p65NF-κB and synergistic induction of caspases-3, -8, and -9 and PARP cleavage. These 2 agents inhibited the canonical and noncanonical NF-κB pathways and acted synergistically through their differential effect on Akt activity and on chymotrypsin-like, caspaselike, and trypsinlike activities of the proteasome. We demonstrated that NPI-0052–induced cytotoxicity was completely abrogated in an Akt knockdown cell line, indicating that its major activity is mediated through the Akt pathway. Moreover, we demonstrated that NPI-0052 and bortezomib inhibited migration and adhesion in vitro and homing of WM cells in vivo, and overcame resistance induced by mesenchymal cells or by the addition of interleukin-6 in a coculture in vitro system. Theses studies enhance our understanding of the biologic role of the proteasome pathway in WM, and provide the preclinical basis for clinical trials of combinations of proteasome inhibitors in WM. PMID:18316628

  10. Structure of the human 26S proteasome at a resolution of 3.9 Å.

    PubMed

    Schweitzer, Andreas; Aufderheide, Antje; Rudack, Till; Beck, Florian; Pfeifer, Günter; Plitzko, Jürgen M; Sakata, Eri; Schulten, Klaus; Förster, Friedrich; Baumeister, Wolfgang

    2016-07-12

    Protein degradation in eukaryotic cells is performed by the Ubiquitin-Proteasome System (UPS). The 26S proteasome holocomplex consists of a core particle (CP) that proteolytically degrades polyubiquitylated proteins, and a regulatory particle (RP) containing the AAA-ATPase module. This module controls access to the proteolytic chamber inside the CP and is surrounded by non-ATPase subunits (Rpns) that recognize substrates and deubiquitylate them before unfolding and degradation. The architecture of the 26S holocomplex is highly conserved between yeast and humans. The structure of the human 26S holocomplex described here reveals previously unidentified features of the AAA-ATPase heterohexamer. One subunit, Rpt6, has ADP bound, whereas the other five have ATP in their binding pockets. Rpt6 is structurally distinct from the other five Rpt subunits, most notably in its pore loop region. For Rpns, the map reveals two main, previously undetected, features: the C terminus of Rpn3 protrudes into the mouth of the ATPase ring; and Rpn1 and Rpn2, the largest proteasome subunits, are linked by an extended connection. The structural features of the 26S proteasome observed in this study are likely to be important for coordinating the proteasomal subunits during substrate processing. PMID:27342858

  11. Evaluation of the proteasome inhibitor MLN9708 in preclinical models of human cancer.

    PubMed

    Kupperman, Erik; Lee, Edmund C; Cao, Yueying; Bannerman, Bret; Fitzgerald, Michael; Berger, Allison; Yu, Jie; Yang, Yu; Hales, Paul; Bruzzese, Frank; Liu, Jane; Blank, Jonathan; Garcia, Khristofer; Tsu, Christopher; Dick, Larry; Fleming, Paul; Yu, Li; Manfredi, Mark; Rolfe, Mark; Bolen, Joe

    2010-03-01

    The proteasome was validated as an oncology target following the clinical success of VELCADE (bortezomib) for injection for the treatment of multiple myeloma and recurring mantle cell lymphoma. Consequently, several groups are pursuing the development of additional small-molecule proteasome inhibitors for both hematologic and solid tumor indications. Here, we describe MLN9708, a selective, orally bioavailable, second-generation proteasome inhibitor that is in phase I clinical development. MLN9708 has a shorter proteasome dissociation half-life and improved pharmacokinetics, pharmacodynamics, and antitumor activity compared with bortezomib. MLN9708 has a larger blood volume distribution at steady state, and analysis of 20S proteasome inhibition and markers of the unfolded protein response confirmed that MLN9708 has greater pharmacodynamic effects in tissues than bortezomib. MLN9708 showed activity in both solid tumor and hematologic preclinical xenograft models, and we found a correlation between greater pharmacodynamic responses and improved antitumor activity. Moreover, antitumor activity was shown via multiple dosing routes, including oral gavage. Taken together, these data support the clinical development of MLN9708 for both hematologic and solid tumor indications. PMID:20160034

  12. Antitumor effects of tyropeptin-boronic acid derivatives: New proteasome inhibitors

    PubMed Central

    Momose, Isao; Abe, Hikaru; Watanabe, Takumi; Ohba, Shun-ichi; Yamazaki, Kanami; Dan, Shingo; Yamori, Takao; Masuda, Tohru; Nomoto, Akio

    2014-01-01

    The proteasome degrades numerous regulatory proteins that are critical for tumor growth. Thus, proteasome inhibitors are promising antitumor agents. New proteasome inhibitors, such as tyropeptins and tyropeptin-boronic acid derivatives, have a potent inhibitory activity. Here we report the antitumor effects of two new tyropeptin-boronic acid derivatives, AS-06 and AS-29. AS-06 and AS-29 significantly suppress the degradation of the proteasome-sensitive fluorescent proteins in HEK293PS cells, and induce the accumulation of ubiquitinated proteins in human multiple myeloma cells. We show that these derivatives also suppress the degradation of the NF-κB inhibitor IκB-α and the nuclear translocation of NF-κB p65 in multiple myeloma cells, resulting in the inhibition of NF-κB activation. Furthermore, we demonstrate that AS-06 and AS-29 induce apoptosis through the caspase-8 and caspase-9 cascades. In a xenograft mouse model, i.v. administration of tyropeptin-boronic acid derivatives inhibits proteasome in tumors and clearly suppresses tumor growth in mice bearing human multiple myeloma. Our results indicate that tyropeptin-boronic acid derivatives could be lead therapeutic agents against human multiple myeloma. PMID:25251038

  13. Proteasome inhibitors attenuated cholesterol-induced cardiac hypertrophy in H9c2 cells.

    PubMed

    Lee, Hyunjung; Park, Jinyoung; Kim, Eunice EunKyeong; Yoo, Young Sook; Song, Eun Joo

    2016-05-01

    The Ubiquitin proteasome system (UPS) plays roles in protein degradation, cell cycle control, and growth and inflammatory cell signaling. Dysfunction of UPS in cardiac diseases has been seen in many studies. Cholesterol acts as an inducer of cardiac hypertrophy. In this study, the effect of proteasome inhibitors on the cholesterol-induced hypertrophic growth in H9c2 cells is examined in order to observe whether UPS is involved in cardiac hypertrophy. The treatment of proteasome inhibitors MG132 and Bortezomib markedly reduced cellular surface area and mRNA expression of β-MHC in cholesterol-induced cardiac hypertrophy. In addition, activated AKT and ERK were significantly attenuated by MG132 and Bortezomib in cholesterol- induced cardiac hypertrophy. We demonstrated that cholesterol- induced cardiac hypertrophy was suppressed by proteasome inhibitors. Thus, regulatory mechanism of cholesterol- induced cardiac hypertrophy by proteasome inhibitors may provide a new therapeutic strategy to prevent the progression of heart failure. [BMB Reports 2016; 49(5): 270-275]. PMID:26592933

  14. Proteasome inhibition enhances the killing effect of BikDD gene therapy

    PubMed Central

    Sun, Ye; Ponz-Sarvise, Mariano; Chang, Shih-Shin; Chang, Wei-Chao; Chen, Chung-Hsuan; Hsu, Jennifer L; Hung, Mien-Chie

    2015-01-01

    BikDD, a phosphorylation-mimic mutant of pro-apoptotic protein Bik, elicits strong apoptosis in cancer cells when introduced via an expression platform termed VP16-GAL4-WPRE integrated systemic amplifier (VISA) under the control of a cancer-specific promoter both in vitro and in vivo. C-VISA-BikDD expression plasmid encapsulated in liposomes is currently in the process to initiate a phase I clinical trial for pancreatic cancer. In this study, we report a potential combination approach of BikDD with proteasome inhibitors on the basis of our findings that exogenously expressed BikDD protein undergoes proteasome-mediated degradation via both ubiquitin-dependent and -independent pathways. Inhibition of proteasome increases the protein stability of BikDD, enhancing the apoptotic effect of BikDD. Hence, high proteasome activity may be a mechanism by which intrinsic and acquired resistance occurs in BikDD gene therapy, and a combination therapy with current clinically approved proteasome inhibitor may overcome resistance. PMID:25901200

  15. Role of ubiquitin-proteasome system (UPS) in left ventricular hypertrophy (LVH)

    PubMed Central

    Cacciapuoti, Federico

    2014-01-01

    Cardiac hypertrophy is a key compensatory mechanism acting in response to pressure or volume overload, involving some alterations in signaling transduction pathways and transcription factors-regulation. These changes result in enhanced proteins’ synthesis leading to Left Ventricular Hypertrophy (LVH). It is known that the main function of Ubiquitin-Proteasome System (UPS) is to prevent accumulation of damaged, misfolded and mutant proteins by proteolysis. But emerging evidences suggest that UPS also attends to the cells’ growth, favoring proteins’ synthesis, subsequently evolving in LVH. The role of the proteasome in to favor cellular hypertrophy consists in upregulation of the catalytic proteasome subunit, with prevalence of proteins-synthesis on proteins degradation. It is also evident that UPS inhibition may prevent cells’ growth opposing to the hypertrophy. In fact in several experimental models, UPS inhibition demonstrated to be able to prevent or reverse cardiac hypertrophy induced by abdominal aortic banding (AAB). That can happen with several proteasome inhibitors acting by multifactorial mechanisms. These evidences induce to hypothesize that, in the future, in patients with the increased volume overload by systemic hypertension, some proteasome-inhibitors could be used to antagonize or prevent LVH without reducing peripheral high blood pressure levels too. PMID:24551479

  16. The Role of the Ubiquitin Proteasome System in Ischemia and Ischemic Tolerance

    PubMed Central

    Meller, Robert

    2010-01-01

    Ubiquitin modification targets a protein for rapid degradation by the proteasome. However, poly-ubiquitination of proteins can result in multiple functions depending on the topology of the ubiquitin chain. Therefore ubiquitin signaling offers a more complex and versatile biology compared to many other post translational modifications. One area of potential for the application of this knowledge is the field of ischemia-induced brain damage, as occurs following a stroke. The ubiquitin proteasome system may exert a dual role on neuronal outcome following ischemia. Harmful ischemia results in an overload of the ubiquitin proteasome system, and blocking the proteasome reduces brain infarction following ischemia. However, the rapid and selective degradation of proteins following brief ischemia results in endogenous protection against ischemia. Therefore further understanding of the molecular signaling mechanisms which regulate the ubiquitin proteasome system may reveal novel therapeutic targets to reduce brain damage when ischemia is predicted, or to reduce the activation of the cell death mechanisms and the inflammatory response following stroke. The aim of this review is to discuss some of the recent advances in the understanding of protein ubiquitination and its implications for novel stroke therapies. PMID:19181875

  17. Indirect inhibition of 26S proteasome activity in a cellular model of Huntington’s disease

    PubMed Central

    Hipp, Mark S.; Patel, Chetan N.; Bersuker, Kirill; Riley, Brigit E.; Kaiser, Stephen E.; Shaler, Thomas A.; Brandeis, Michael

    2012-01-01

    Pathognomonic accumulation of ubiquitin (Ub) conjugates in human neurodegenerative diseases, such as Huntington’s disease, suggests that highly aggregated proteins interfere with 26S proteasome activity. In this paper, we examine possible mechanisms by which an N-terminal fragment of mutant huntingtin (htt; N-htt) inhibits 26S function. We show that ubiquitinated N-htt—whether aggregated or not—did not choke or clog the proteasome. Both Ub-dependent and Ub-independent proteasome reporters accumulated when the concentration of mutant N-htt exceeded a solubility threshold, indicating that stabilization of 26S substrates is not linked to impaired Ub conjugation. Above this solubility threshold, mutant N-htt was rapidly recruited to cytoplasmic inclusions that were initially devoid of Ub. Although synthetically polyubiquitinated N-htt competed with other Ub conjugates for access to the proteasome, the vast majority of mutant N-htt in cells was not Ub conjugated. Our data confirm that proteasomes are not directly impaired by aggregated N-terminal fragments of htt; instead, our data suggest that Ub accumulation is linked to impaired function of the cellular proteostasis network. PMID:22371559

  18. Structure of the human 26S proteasome at a resolution of 3.9 Å

    PubMed Central

    Schweitzer, Andreas; Aufderheide, Antje; Rudack, Till; Beck, Florian; Pfeifer, Günter; Plitzko, Jürgen M.; Sakata, Eri; Schulten, Klaus; Förster, Friedrich; Baumeister, Wolfgang

    2016-01-01

    Protein degradation in eukaryotic cells is performed by the Ubiquitin-Proteasome System (UPS). The 26S proteasome holocomplex consists of a core particle (CP) that proteolytically degrades polyubiquitylated proteins, and a regulatory particle (RP) containing the AAA-ATPase module. This module controls access to the proteolytic chamber inside the CP and is surrounded by non-ATPase subunits (Rpns) that recognize substrates and deubiquitylate them before unfolding and degradation. The architecture of the 26S holocomplex is highly conserved between yeast and humans. The structure of the human 26S holocomplex described here reveals previously unidentified features of the AAA-ATPase heterohexamer. One subunit, Rpt6, has ADP bound, whereas the other five have ATP in their binding pockets. Rpt6 is structurally distinct from the other five Rpt subunits, most notably in its pore loop region. For Rpns, the map reveals two main, previously undetected, features: the C terminus of Rpn3 protrudes into the mouth of the ATPase ring; and Rpn1 and Rpn2, the largest proteasome subunits, are linked by an extended connection. The structural features of the 26S proteasome observed in this study are likely to be important for coordinating the proteasomal subunits during substrate processing. PMID:27342858

  19. Proteasome activators, PA28γ and PA200, play indispensable roles in male fertility

    PubMed Central

    Huang, Lin; Haratake, Kousuke; Miyahara, Hatsumi; Chiba, Tomoki

    2016-01-01

    Protein degradation mediated by the proteasome is important for the protein homeostasis. Various proteasome activators, such as PA28 and PA200, regulate the proteasome function. Here we show double knockout (dKO) mice of Psme3 and Psme4 (genes for PA28γ and PA200), but not each single knockout mice, are completely infertile in male. The dKO sperms exhibited remarkable defects in motility, although most of them showed normal appearance in morphology. The proteasome activity of the mutant sperms decreased notably, and the sperms were strongly positive with ubiquitin staining. Quantitative analyses of proteins expressed in dKO sperms revealed up-regulation of several proteins involved in oxidative stress response. Furthermore, increased 8-OHdG staining was observed in dKO sperms head, suggesting defective response to oxidative damage. This report verified PA28γ and PA200 play indispensable roles in male fertility, and provides a novel insight into the role of proteasome activators in antioxidant response. PMID:27003159

  20. Hepatitis C virus mutation affects proteasomal epitope processing

    PubMed Central

    Seifert, Ulrike; Liermann, Heike; Racanelli, Vito; Halenius, Anne; Wiese, Manfred; Wedemeyer, Heiner; Ruppert, Thomas; Rispeter, Kay; Henklein, Peter; Sijts, Alice; Hengel, Hartmut; Kloetzel, Peter-M.; Rehermann, Barbara

    2004-01-01

    The high incidence of hepatitis C virus (HCV) persistence raises the question of how HCV interferes with host immune responses. Studying a single-source HCV outbreak, we identified an HCV mutation that impaired correct carboxyterminal cleavage of an immunodominant HLA-A2–restricted CD8 cell epitope that is frequently recognized by recovered patients. The mutation, a conservative HCV nonstructural protein 3 (NS3) tyrosine to phenylalanine substitution, was absent in 54 clones of the infectious source, but present in 15/21 (71%) HLA-A2–positive and in 11/24 (46%) HLA-A2–negative patients with chronic hepatitis C. In order to analyze whether the mutation affected the processing of the HLA-A2–restricted CD8 cell epitope, mutant and wild-type NS3 polypeptides were digested in vitro with 20S constitutive proteasomes and with immunoproteasomes. The presence of the mutation resulted in impaired carboxyterminal cleavage of the epitope. In order to analyze whether impaired epitope processing affected T cell priming in vivo, HLA-A2–transgenic mice were infected with vaccinia viruses encoding either wild-type or mutant HCV NS3. The mutant induced fewer epitope-specific, IFN-γ;–producing and fewer tetramer+ cells than the wild type. These data demonstrate how a conservative mutation in the flanking region of an HCV epitope impairs the induction of epitope-specific CD8+ T cells and reveal a mechanism that may contribute to viral sequence evolution in infected patients. PMID:15254592

  1. Regulation of dimethyl-fumarate toxicity by proteasome inhibitors.

    PubMed

    Booth, Laurence; Cruickshanks, Nichola; Tavallai, Seyedmehrad; Roberts, Jane L; Peery, Matthew; Poklepovic, Andrew; Dent, Paul

    2014-01-01

    The present studies examined the biology of the multiple sclerosis drug dimethyl-fumarate (DMF) or its in vivo breakdown product and active metabolite mono-methyl-fumarate (MMF), alone or in combination with proteasome inhibitors, in primary human glioblastoma (GBM) cells. MMF enhanced velcade and carfilzomib toxicity in multiple primary GBM isolates. Similar data were obtained in breast and colon cancer cells. MMF reduced the invasiveness of GBM cells, and enhanced the toxicity of ionizing radiation and temozolomide. MMF killed freshly isolated activated microglia which was associated with reduced IL-6, TGFβ and TNFα production. The combination of MMF and the multiple sclerosis drug Gilenya further reduced both GBM and activated microglia viability and cytokine production. Over-expression of c-FLIP-s or BCL(-)XL protected GBM cells from MMF and velcade toxicity. MMF and velcade increased plasma membrane localization of CD95, and knock down of CD95 or FADD blocked the drug interaction. The drug combination inactivated AKT, ERK1/2 and mTOR. Molecular inhibition of AKT/ERK/mTOR signaling enhanced drug combination toxicity whereas molecular activation of these pathways suppressed killing. MMF and velcade increased the levels of autophagosomes and autolysosomes and knock down of ATG5 or Beclin1 protected cells. Inhibition of the eIF2α/ATF4 arm or the IRE1α/XBP1 arm of the ER stress response enhanced drug combination lethality. This was associated with greater production of reactive oxygen species and quenching of ROS suppressed cell killing. PMID:25482938

  2. Proteasomal degradation of glutamine synthetase regulates schwann cell differentiation.

    PubMed

    Saitoh, Fuminori; Araki, Toshiyuki

    2010-01-27

    Rapid saltatory nerve conduction is facilitated by myelin structure, which is composed of Schwann cells in the peripheral nervous system. Schwann cells drastically change their phenotype following peripheral nerve injury. These phenotypic changes are required for efficient degeneration/regeneration. We previously identified ZNRF1 as an E3 ubiquitin ligase containing a RING finger motif, whose expression is upregulated in the Schwann cells following nerve injury. This suggested that posttranscriptional regulation of protein expression in Schwann cells may be involved in their phenotypic changes during nerve degeneration/regeneration. Here we report the identification of glutamine synthetase (GS), an enzyme that synthesizes glutamine using glutamate and ammonia, as a substrate for E3 activity of ZNRF1 in Schwann cells. GS is known to be highly expressed in differentiated Schwann cells, but its functional significance has remained unclear. We found that during nerve degeneration/regeneration, GS expression is controlled mostly by ZNRF1-dependent proteasomal degradation. We also found that Schwann cells increase oxidative stress upon initiation of nerve degeneration, which promotes carbonylation and subsequent degradation of GS. Surprisingly, we discovered that GS expression regulates Schwann cell differentiation; i.e., increased GS expression promotes myelination via its enzymatic activity. Among the substrates and products of GS, increased glutamate concentration inhibited myelination and yet promoted Schwann cell proliferation by activating metabotropic glutamate receptor signaling. This would suggest that GS may exert its effect on Schwann cell differentiation by regulating glutamate concentration. These results indicate that the ZNRF1-GS system may play an important role in correlating Schwann cell metabolism with its differentiation. PMID:20107048

  3. Proteomic Analysis of MG132-Treated Germinating Pollen Reveals Expression Signatures Associated with Proteasome Inhibition

    PubMed Central

    Vannini, Candida; Bracale, Marcella; Crinelli, Rita; Marconi, Valerio; Campomenosi, Paola; Marsoni, Milena; Scoccianti, Valeria

    2014-01-01

    Chemical inhibition of the proteasome has been previously found to effectively impair pollen germination and tube growth in vitro. However, the mediators of these effects at the molecular level are unknown. By performing 2DE proteomic analysis, 24 differentially expressed protein spots, representing 14 unique candidate proteins, were identified in the pollen of kiwifruit (Actinidia deliciosa) germinated in the presence of the MG132 proteasome inhibitor. qPCR analysis revealed that 11 of these proteins are not up-regulated at the mRNA level, but are most likely stabilized by proteasome inhibition. These differentially expressed proteins are predicted to function in various pathways including energy and lipid metabolism, cell wall synthesis, protein synthesis/degradation and stress responses. In line with this evidence, the MG132-induced changes in the proteome were accompanied by an increase in ATP and ROS content and by an alteration in fatty acid composition. PMID:25265451

  4. Deimination of the myelin basic protein decelerates its proteasome-mediated metabolism.

    PubMed

    Kuzina, E S; Kudriaeva, A A; Glagoleva, I S; Knorre, V D; Gabibov, A G; Belogurov, A A

    2016-07-01

    Deimination of myelin basic protein (MBP) by peptidylarginine deiminase (PAD) prevents its binding to the proteasome and decelerates its degradation by the proteasome in mammalian cells. Potential anticancer drug tetrazole analogue of chloramidine 2, at concentrations greater than 1 µM inhibits the enzymatic activity of PAD in vitro. The observed acceleration of proteasome hydrolysis of MBP to antigenic peptides in the presence of PAD inhibitor may increase the efficiency of lesion of the central nervous system by cytotoxic lymphocytes in multiple sclerosis. We therefore suggest that clinical trials and the introduction of PAD inhibitors in clinical practice for the treatment of malignant neoplasms should be performed only after a careful analysis of their potential effect on the induction of autoimmune neurodegeneration processes. PMID:27599511

  5. Synthesis and Biological Evaluation of Naphthoquinone Analogs as a Novel Class of Proteasome Inhibitors

    PubMed Central

    Lawrence, Harshani R.; Kazi, Aslamuzzaman; Luo, Yunting; Kendig, Robert; Ge, Yiyu; Jain, Sanjula; Daniel, Kenyon; Santiago, Daniel; Guida, Wayne C.; Sebti, Saïd M.

    2012-01-01

    Screening of the NCI Diversity Set-1 identified PI-083 (NSC-45382) a proteasome inhibitor selective for cancer over normal cells. Focused libraries of novel compounds based on PI-083 chloronaphthoquinone and sulfonamide moieties were synthesized to gain a better understanding of the structure activity relationship responsible for chymotrypsin-like proteasome inhibitory activity. This led to the demonstration that the chloronaphthoquinone and the sulfonamide moieties are critical for inhibitory activity. The pyridyl group in PI-083 can be replaced with other heterocyclic groups without significant loss of activity. Molecular modeling studies were also performed to explore the detailed interactions of PI-083 and its derivatives with the β5 and β6 subunits of the 20S proteasome. The refined model showed an H-bond interaction between the Asp-114 and the sulfonamide moiety of the PI-083 in the β6 subunit. PMID:20621484

  6. Proteasome Impairment Induces Recovery of Mitochondrial Membrane Potential and an Alternative Pathway of Mitochondrial Fusion

    PubMed Central

    Shirozu, Ryohei; Yashiroda, Hideki

    2015-01-01

    Mitochondria are vital and highly dynamic organelles that continuously fuse and divide to maintain mitochondrial quality. Mitochondrial dysfunction impairs cellular integrity and is known to be associated with various human diseases. However, the mechanism by which the quality of mitochondria is maintained remains largely unexplored. Here we show that impaired proteasome function recovers the growth of yeast cells lacking Fzo1, a pivotal protein for mitochondrial fusion. Decreased proteasome activity increased the mitochondrial oxidoreductase protein Mia40 and the ratio of the short isoform of mitochondrial intermembrane protein Mgm1 (s-Mgm1) to the long isoform (l-Mgm1). The increase in Mia40 restored mitochondrial membrane potential, while the increase in the s-Mgm1/l-Mgm1 ratio promoted mitochondrial fusion in an Fzo1-independent manner. Our findings demonstrate a new pathway for mitochondrial quality control that is induced by proteasome impairment. PMID:26552703

  7. Roles of the ubiquitin proteasome system in the effects of drugs of abuse

    PubMed Central

    Massaly, Nicolas; Francès, Bernard; Moulédous, Lionel

    2015-01-01

    Because of its ability to regulate the abundance of selected proteins the ubiquitin proteasome system (UPS) plays an important role in neuronal and synaptic plasticity. As a result various stages of learning and memory depend on UPS activity. Drug addiction, another phenomenon that relies on neuroplasticity, shares molecular substrates with memory processes. However, the necessity of proteasome-dependent protein degradation for the development of addiction has been poorly studied. Here we first review evidences from the literature that drugs of abuse regulate the expression and activity of the UPS system in the brain. We then provide a list of proteins which have been shown to be targeted to the proteasome following drug treatment and could thus be involved in neuronal adaptations underlying behaviors associated with drug use and abuse. Finally we describe the few studies that addressed the need for UPS-dependent protein degradation in animal models of addiction-related behaviors. PMID:25610367

  8. Fluorescent Tools for In Vivo Studies on the Ubiquitin-Proteasome System.

    PubMed

    Matilainen, Olli; Jha, Sweta; Holmberg, Carina I

    2016-01-01

    The ubiquitin-proteasome system (UPS) plays a key role in maintaining proteostasis by degrading most of the cellular proteins. Traditionally, UPS activity is studied in vitro, in yeast, or in mammalian cell cultures by using short-lived GFP-based UPS reporters. Here, we present protocols for two fluorescent tools facilitating real-time imaging of UPS activity in living animals. We have generated transgenic Caenorhabditis elegans (C. elegans) expressing a photoconvertible UbG76V-Dendra2 UPS reporter, which permits measurement of reporter degradation by the proteasome independently of reporter protein synthesis, and a fluorescent polyubiquitin-binding reporter for detection of the endogenous pool of Lys48-linked polyubiquitinated proteasomal substrates. These reporter systems facilitate cell- and tissue-specific analysis of UPS activity especially in young adult animals, but can also be used for studies during development, aging, and for example stress conditions. PMID:27613038

  9. Dithiocarbamate-based coordination compounds as potent proteasome inhibitors in human cancer cells.

    PubMed

    Buac, Daniela; Schmitt, Sara; Ventro, George; Kona, Fathima Rani; Dou, Q Ping

    2012-10-01

    Dithiocarbamates are a class of metal-chelating compounds with various applications in medicine. They have been used for the treatment of bacterial and fungal infections, possible treatment of AIDS, and most recently cancer. Their anti-tumor effects can in part be attributed to their ability to complex tumor cellular copper, leading to binding to and inhibition of the proteasome and in turn initiating tumor cell-specific apoptosis. Current chemotherapeutic agents are highly toxic and therefore their efficacy in the eradication of tumors is greatly limited. As a result many scientists have joined the quest for novel targeted therapies in hopes of reducing toxicity while maximizing potency and proteasome inhibition has become an attractive therapy in this regard. Here we discuss the origins, mechanism, and evolution of dithiocarbamates as potent proteasome inhibitors and therefore anti-cancer agents. PMID:22931591

  10. Dithiocarbamate-Based Coordination Compounds as Potent Proteasome Inhibitors in Human Cancer Cells

    PubMed Central

    Buac, Daniela; Schmitt, Sara; Ventro, George; Kona, Fathima Rani; Dou, Q. Ping

    2013-01-01

    Dithiocarbamates are a class of metal-chelating compounds with various applications in medicine. They have been used for the treatment of bacterial and fungal infections, possible treatment of AIDS, and most recently cancer. Their anti-tumor effects can in part be attributed to their ability to complex tumor cellular copper, leading to binding to and inhibition of the proteasome and in turn initiating tumor cell-specific apoptosis. Current chemotherapeutic agents are highly toxic and therefore their efficacy in the eradication of tumors is greatly limited. As a result many scientists have joined the quest for novel targeted therapies in hopes of reducing toxicity while maximizing potency and proteasome inhibition has become an attractive therapy in this regard. Here we discuss the origins, mechanism, and evolution of dithiocarbamates as potent proteasome inhibitors and therefore anti-cancer agents. PMID:22931591

  11. "Depupylation" of Prokaryotic Ubiquitin-like Protein from Mycobacterial Proteasome Substrates

    SciTech Connect

    Burns, K.E.; Li, H.; Cerda-Maira, F. A.; Wang, T.; Bishai, W. R.; Darwin, K. H.

    2010-09-10

    Ubiquitin (Ub) provides the recognition and specificity required to deliver proteins to the eukaryotic proteasome for destruction. Prokaryotic ubiquitin-like protein (Pup) is functionally analogous to Ub in Mycobacterium tuberculosis (Mtb), as it dooms proteins to the Mtb proteasome. Studies suggest that Pup and Ub do not share similar mechanisms of activation and conjugation to target proteins. Dop (deamidase of Pup; Mtb Rv2112c/MT2172) deamidates the C-terminal glutamine of Pup to glutamate, preparing it for ligation to target proteins by proteasome accessory factor A (PafA). While studies have shed light on the conjugation of Pup to proteins, it was not known if Pup could be removed from substrates in a manner analogous to the deconjugation of Ub from eukaryotic proteins. Here, we show that Mycobacteria have a depupylase activity provided by Dop. The discovery of a depupylase strengthens the parallels between the Pup- and Ub-tagging systems of prokaryotes and eukaryotes, respectively.

  12. Unconventional secretion of misfolded proteins promotes adaptation to proteasome dysfunction in mammalian cells.

    PubMed

    Lee, Jin-Gu; Takahama, Shokichi; Zhang, Guofeng; Tomarev, Stanislav I; Ye, Yihong

    2016-07-01

    To safeguard proteomic integrity, cells rely on the proteasome to degrade aberrant polypeptides, but it is unclear how cells remove defective proteins that have escaped degradation owing to proteasome insufficiency or dysfunction. Here we report a pathway termed misfolding-associated protein secretion, which uses the endoplasmic reticulum (ER)-associated deubiquitylase USP19 to preferentially export aberrant cytosolic proteins. Intriguingly, the catalytic domain of USP19 possesses an unprecedented chaperone activity, allowing recruitment of misfolded proteins to the ER surface for deubiquitylation. Deubiquitylated cargos are encapsulated into ER-associated late endosomes and secreted to the cell exterior. USP19-deficient cells cannot efficiently secrete unwanted proteins, and grow more slowly than wild-type cells following exposure to a proteasome inhibitor. Together, our findings delineate a protein quality control (PQC) pathway that, unlike degradation-based PQC mechanisms, promotes protein homeostasis by exporting misfolded proteins through an unconventional protein secretion process. PMID:27295555

  13. Proteasome inhibitors – molecular basis and current perspectives in multiple myeloma

    PubMed Central

    Kubiczkova, Lenka; Pour, Ludek; Sedlarikova, Lenka; Hajek, Roman; Sevcikova, Sabina

    2014-01-01

    Inhibition of proteasome, a proteolytic complex responsible for the degradation of ubiquitinated proteins, has emerged as a powerful strategy for treatment of multiple myeloma (MM), a plasma cell malignancy. First-in-class agent, bortezomib, has demonstrated great positive therapeutic efficacy in MM, both in pre-clinical and in clinical studies. However, despite its high efficiency, a large proportion of patients do not achieve sufficient clinical response. Therefore, the development of a second-generation of proteasome inhibitors (PIs) with improved pharmacological properties was needed. Recently, several of these new agents have been introduced into clinics including carfilzomib, marizomib and ixazomib. Further, new orally administered second-generation PI oprozomib is being investigated. This review provides an overview of main mechanisms of action of PIs in MM, focusing on the ongoing development and progress of novel anti-proteasome therapeutics. PMID:24712303

  14. Insights into the relationship between the proteasome and autophagy in human and yeast cells.

    PubMed

    Athané, Axel; Buisson, Anthony; Challier, Marion; Beaumatin, Florian; Manon, Stéphen; Bhatia-Kiššová, Ingrid; Camougrand, Nadine

    2015-07-01

    In eukaryotes, the ubiquitin-proteasome system (UPS) and autophagy are two major intracellular protein degradation pathways. Several lines of evidence support the emerging concept of a coordinated and complementary relationship between these two processes, and a particularly interesting finding is that the inhibition of the proteasome induces autophagy. Yet, there is limited knowledge of the regulation of the UPS by autophagy. In this study, we show that the disruption of ATG5 and ATG32 genes in yeast cells under both nutrient-deficient conditions as well as stress that causes mitochondrial dysfunction leads to an activation of proteasome. The same scenario occurs after pharmacological inhibition of basal autophagy in cultured human cells. Our findings underline the view that the two processes are interconnected and tend to compensate, to some extent, for each other's functions. PMID:25882491

  15. Role of proteasomes in the formation of neurofilamentous inclusions in spinal motor neurons of aluminum-treated rabbits.

    PubMed

    Kimura, Noriyuki; Kumamoto, Toshihide; Ueyama, Hidetsugu; Horinouchi, Hideo; Ohama, Eisaku

    2007-12-01

    We examined the role of the 20S proteasome in pathologic changes, including abnormal aggregation of phosphorylated neurofilaments, of spinal motor nerve cells from aluminum-treated rabbits. Immunohistochemistry for the 20S proteasome revealed that many lumbar spinal motor neurons without intracytoplasmic neurofilamentous inclusions or with small inclusions were more intensely stained in aluminum-treated rabbits than in controls, whereas the immunoreactivity was greatly decreased in some enlarged neurons containing large neurofilamentous inclusions. Proteasome activity in whole spinal cord extracts was significantly increased in aluminum-treated rabbits compared with controls. Furthermore, Western blot analysis indicated that the 20S proteasome degraded non-phosphorylated high molecular weight neurofilament (neurofilament-H) protein in vitro. These results suggest that aluminum does not inhibit 20S proteasome activity, and the 20S proteasome degrades neurofilament-H protein. We propose that abnormal aggregation of phosphorylated neurofilaments is induced directly by aluminum, and is not induced by the proteasome inhibition in the aluminum-treated rabbits. Proteasome activation might be involved in intracellular proteolysis, especially in the earlier stages of motor neuron degeneration in aluminum-treated rabbits. PMID:18021372

  16. Proteasome inhibitors exacerbate interleukin-8 production induced by protease-activated receptor 2 in intestinal epithelial cells.

    PubMed

    Ghouzali, Ibtissem; Azhar, Saïda; Bôle-Feysot, Christine; Ducrotté, Philippe; Déchelotte, Pierre; Coëffier, Moïse

    2016-10-01

    Protease activated receptors (PARs) and the ubiquitin-proteasome system (UPS) regulate inflammatory response in intestinal cells. We aimed to elucidate putative connections between PARs and UPS pathways in intestinal epithelial cells. Caco-2 cells were treated by agonist peptides of PARs and/or IL-1β and/or proteasome inhibitors, bortezomib or MG132. Inflammatory response was evaluated by measuring IL-8 production. Proteasome activities were also evaluated. We showed that PAR-1 and -2 activation increased release of IL-8 compared with vehicle and independently of IL-1β. In contrast, PAR-4 agonist peptide had no effect. Caspase-like and chymotrypsin-like proteasomal activities were increased by PAR-2 activation only in the presence of IL-1β. Interestingly, in polarized Caco-2 cells, the release of IL-8 was predominantly upregulated in the side where PAR-2 agonist peptide was added, apical or basalolateral. In contrast, proteasome activities were only affected when PAR-2 agonist peptide was added in the apical side. Proteasome inhibitors, bortezomib and MG132, enhanced IL-8 production in both sides, apical and basolateral. In conclusion, PAR-2 activation alone did not affect proteasome but needed inflammatory stimulus IL-1β to synergistically increase chymotrypsin-like activity in intestinal epithelial cells. However, proteasome inhibition led to exacerbate inflammatory response induced by PAR-2 activation. PMID:27455449

  17. Proteasome Inhibition Enhances the Induction and Impairs the Maintenance of Late-Phase Long-Term Potentiation

    ERIC Educational Resources Information Center

    Dong, Chenghai; Upadhya, Sudarshan C.; Ding, Lan; Smith, Thuy K.; Hegde, Ashok N.

    2008-01-01

    Protein degradation by the ubiquitin-proteasome pathway plays important roles in synaptic plasticity, but the molecular mechanisms by which proteolysis regulates synaptic strength are not well understood. We investigated the role of the proteasome in hippocampal late-phase long-term potentiation (L-LTP), a model for enduring synaptic plasticity.…

  18. Biochemical analysis of proteasomes from mouse microglia: induction of immunoproteasomes by interferon-gamma and lipopolysaccharide.

    PubMed

    Stohwasser, R; Giesebrecht, J; Kraft, R; Müller, E C; Häusler, K G; Kettenmann, H; Hanisch, U K; Kloetzel, P M

    2000-02-15

    The 20S proteasome is a multicatalytic threonine protease and serves to process peptides that are subsequently presented as antigenic epitopes by MHC class I molecules. In the brain, microglial cells are the major antigen presenting cells and they respond sensitive to pathologic events. We used cultured mouse microglia and a microglial cell line, the BV-2 line, as a model to study the correlation between microglial activation parameters and structural plasticity of the 20S/26S proteasome. Lipopolysaccharide (LPS)- or interferon-gamma (IFN-gamma)-stimulated microglia or BV-2 cells exhibit properties of activated microglia such as high levels of TNFalpha and IL-6 release. In response to IFN-gamma or LPS, three constitutive beta subunits (beta1/Delta, beta2/MC14, beta5/MB1) were replaced by the immunoproteasome subunits ibeta1/LMP2, ibeta2/MECL-1, and ibeta5/LMP7, indicating that activated microglia adapts its proteasomal subunit composition to the requirements of an optimized MHC class I epitope processing. Induction of immunoproteasomes in BV-2 cells was solely provoked by IFN-gamma, but not by LPS. Moreover, LPS (but not IFN-gamma) triggered the expression of a novel protein of approximately 50 kD as part of the proteasome activator PA700, that is the substrate-recognizing and unfolding unit of the 26S proteasome. These results indicate that both the 20S core protease as well as the proteasome activator PA700 are targets of modulatory subunit replacements or transient association of regulatory components in the course of microglial activation. PMID:10652445

  19. Sperm proteasomes degrade sperm receptor on the egg zona pellucida during mammalian fertilization.

    PubMed

    Zimmerman, Shawn W; Manandhar, Gaurishankar; Yi, Young-Joo; Gupta, Satish K; Sutovsky, Miriam; Odhiambo, John F; Powell, Michael D; Miller, David J; Sutovsky, Peter

    2011-01-01

    Despite decades of research, the mechanism by which the fertilizing spermatozoon penetrates the mammalian vitelline membrane, the zona pellucida (ZP) remains one of the unexplained fundamental events of human/mammalian development. Evidence has been accumulating in support of the 26S proteasome as a candidate for echinoderm, ascidian and mammalian egg coat lysin. Monitoring ZP protein degradation by sperm during fertilization is nearly impossible because those few spermatozoa that penetrate the ZP leave behind a virtually untraceable residue of degraded proteins. We have overcome this hurdle by designing an experimentally consistent in vitro system in which live boar spermatozoa are co-incubated with ZP-proteins (ZPP) solubilized from porcine oocytes. Using this assay, mimicking sperm-egg interactions, we demonstrate that the sperm-borne proteasomes can degrade the sperm receptor protein ZPC. Upon coincubation with motile spermatozoa, the solubilized ZPP, which appear to be ubiquitinated, adhered to sperm acrosomal caps and induced acrosomal exocytosis/formation of the acrosomal shroud. The degradation of the sperm receptor protein ZPC was assessed by Western blotting band-densitometry and proteomics. A nearly identical pattern of sperm receptor degradation, evident already within the first 5 min of coincubation, was observed when the spermatozoa were replaced with the isolated, enzymatically active, sperm-derived proteasomes. ZPC degradation was blocked by proteasomal inhibitors and accelerated by ubiquitin-aldehyde(UBAL), a modified ubiquitin protein that stimulates proteasomal proteolysis. Such a degradation pattern of ZPC is consistent with in vitro fertilization studies, in which proteasomal inhibitors completely blocked fertilization, and UBAL increased fertilization and polyspermy rates. Preincubation of intact zona-enclosed ova with isolated active sperm proteasomes caused digestion, abrasions and loosening of the exposed zonae, and significantly reduced

  20. Plant ubiquitin-proteasome pathway and its role in gibberellin signaling

    PubMed Central

    Wang, Feng; Deng, Xing Wang

    2011-01-01

    The ubiquitin-proteasome system (UPS) in plants, like in other eukaryotes, targets numerous intracellular regulators and thus modulates almost every aspect of growth and development. The well-known and best-characterized outcome of ubiquitination is mediating target protein degradation via the 26S proteasome, which represents the major selective protein degradation pathway conserved among eukaryotes. In this review, we will discuss the molecular composition, regulation and function of plant UPS, with a major focus on how DELLA protein degradation acts as a key in gibberellin signal transduction and its implication in the regulation of plant growth. PMID:21788985

  1. Human 20S proteasome activity towards fluorogenic peptides of various chain lengths.

    PubMed

    Rut, Wioletta; Drag, Marcin

    2016-09-01

    The proteasome is a multicatalytic protease responsible for the degradation of misfolded proteins. We have synthesized fluorogenic substrates in which the peptide chain was systematically elongated from two to six amino acids and evaluated the effect of peptide length on all three catalytic activities of human 20S proteasome. In the cases of five- and six-membered peptides, we have also synthesized libraries of fluorogenic substrates. Kinetic analysis revealed that six-amino-acid substrates are significantly better for chymotrypsin-like and caspase-like activity than shorter peptidic substrates. In the case of trypsin-like activity, a five-amino-acid substrate was optimal. PMID:27176742

  2. Involvement of a eukaryotic-like ubiquitin-related modifier in the proteasome pathway of the archaeon Sulfolobus acidocaldarius

    NASA Astrophysics Data System (ADS)

    Anjum, Rana S.; Bray, Sian M.; Blackwood, John K.; Kilkenny, Mairi L.; Coelho, Matthew A.; Foster, Benjamin M.; Li, Shurong; Howard, Julie A.; Pellegrini, Luca; Albers, Sonja-Verena; Deery, Michael J.; Robinson, Nicholas P.

    2015-09-01

    In eukaryotes, the covalent attachment of ubiquitin chains directs substrates to the proteasome for degradation. Recently, ubiquitin-like modifications have also been described in the archaeal domain of life. It has subsequently been hypothesized that ubiquitin-like proteasomal degradation might also operate in these microbes, since all archaeal species utilize homologues of the eukaryotic proteasome. Here we perform a structural and biochemical analysis of a ubiquitin-like modification pathway in the archaeon Sulfolobus acidocaldarius. We reveal that this modifier is homologous to the eukaryotic ubiquitin-related modifier Urm1, considered to be a close evolutionary relative of the progenitor of all ubiquitin-like proteins. Furthermore we demonstrate that urmylated substrates are recognized and processed by the archaeal proteasome, by virtue of a direct interaction with the modifier. Thus, the regulation of protein stability by Urm1 and the proteasome in archaea is likely representative of an ancient pathway from which eukaryotic ubiquitin-mediated proteolysis has evolved.

  3. Mutational analysis of subunit i beta2 (MECL-1) demonstrates conservation of cleavage specificity between yeast and mammalian proteasomes.

    PubMed

    Salzmann, U; Kral, S; Braun, B; Standera, S; Schmidt, M; Kloetzel, P M; Sijts, A

    1999-07-01

    Proteasomes are the major protein-degrading complexes in the cytosol and regulate many cellular processes. To examine the functional importance of the MC14/MECL-1 proteasome active site subunits, cell lines expressing a catalytically inactive form of MECL-1 were established. Whereas mutant MECL-1 was readily incorporated into cytosolic proteasomes, replacing the constitutive MC14 subunit, removal of the prosequence was incomplete indicating that its processing required autocatalytic cleavage. Functional analyses showed that the absence of the MC14/MECL-1 active sites abrogated proteasomal trypsin-like activity, but did not affect other catalytic activities. Our data demonstrate a conservation of cleavage specificity between mammalian and yeast proteasomes. PMID:10413086

  4. Molecular cloning of the mouse proteasome subunits MC14 and MECL-1: reciprocally regulated tissue expression of interferon-gamma-modulated proteasome subunits.

    PubMed

    Stohwasser, R; Standera, S; Peters, I; Kloetzel, P M; Groettrup, M

    1997-05-01

    The primary structures of the interferon-gamma-inducible mouse 20S proteasome subunit MECL-1 and its alternate homolog MC14 were determined. Northern analysis of mouse tissues revealed that MECL-1 mRNA predominantly occurred in thymus, lymph nodes, and spleen, whereas small amounts were detected in non-lymphoid tissues such as kidney, muscle, and testis. Unexpectedly, probing RNA blots with MC14 showed that tissues with high MECL-1 expression contained little MC14 and vice versa. A very similar reciprocal tissue expression was subsequently found for the homologous subunit pairs LMP2 and delta as well as LMP7 and MB1. The subunit protein composition of 20S proteasomes purified from liver, thymus, and lung reflected RNA expression. The impact of a regulated reciprocal tissue expression is discussed with respect to thymic selection and the induction of tolerance in potentially autoreactive T cells. PMID:9174609

  5. Regulation of the retinoblastoma-E2F pathway by the ubiquitin-proteasome system.

    PubMed

    Sengupta, Satyaki; Henry, R William

    2015-10-01

    The retinoblastoma tumor suppressor (RB) and its related family members p107 and p130 regulate cell proliferation through the transcriptional repression of genes involved in cellular G1 to S phase transition. However, RB proteins are functionally versatile, and numerous genetic and biochemical studies point to expansive roles in cellular growth control, pluripotency, and apoptotic response. For the vast majority of genes, RB family members target the E2F family of transcriptional activators as an integral component of its gene regulatory mechanism. These interactions are regulated via reversible phosphorylation by Cyclin/Cyclin-dependent kinase (Cdk) complexes, a major molecular mechanism that regulates transcriptional output of RB/E2F target genes. Recent studies indicate an additional level of regulation involving the ubiquitin-proteasome system that renders pervasive control over each component of the RB pathway. Disruption of the genetic circuitry for proteasome-mediated targeting of the RB pathway has serious consequences on development and cellular transformation, and is associated with several forms of human cancer. In this review, we discuss the role of the ubiquitin-proteasome system in proteolytic control of RB-E2F pathway components, and recent data that points to surprising non-proteolytic roles for the ubiquitin-proteasome system in novel transcriptional regulatory mechanisms. PMID:26319102

  6. Cereblon is recruited to aggresome and shows cytoprotective effect against ubiquitin-proteasome system dysfunction.

    PubMed

    Sawamura, Naoya; Wakabayashi, Satoru; Matsumoto, Kodai; Yamada, Haruka; Asahi, Toru

    2015-09-01

    Cereblon (CRBN) is encoded by a candidate gene for autosomal recessive nonsyndromic intellectual disability (ID). The nonsense mutation, R419X, causes deletion of 24 amino acids at the C-terminus of CRBN, leading to mild ID. Although abnormal CRBN function may be associated with ID disease onset, its cellular mechanism is still unclear. Here, we examine the role of CRBN in aggresome formation and cytoprotection. In the presence of a proteasome inhibitor, exogenous CRBN formed perinuclear inclusions and co-localized with aggresome markers. Endogenous CRBN also formed perinuclear inclusions under the same condition. Treatment with a microtubule destabilizer or an inhibitor of the E3 ubiquitin ligase activity of CRBN blocked formation of CRBN inclusions. Biochemical analysis showed CRBN containing inclusions were high-molecular weight, ubiquitin-positive. CRBN overexpression in cultured cells suppressed cell death induced by proteasome inhibitor. Furthermore, knockdown of endogenous CRBN in cultured cells increased cell death induced by proteasome inhibitor, compared with control cells. Our results show CRBN is recruited to aggresome and has functional roles in cytoprotection against ubiquitin-proteasome system impaired condition. PMID:26188093

  7. Production of Proteasome Inhibitor Syringolin A by the Endophyte Rhizobium sp. Strain AP16

    PubMed Central

    Bigler, Laurent; Dudler, Robert

    2014-01-01

    Syringolin A, the product of a mixed nonribosomal peptide synthetase/polyketide synthase encoded by the syl gene cluster, is a virulence factor secreted by certain Pseudomonas syringae strains. Together with the glidobactins produced by a number of beta- and gammaproteobacterial human and animal pathogens, it belongs to the syrbactins, a structurally novel class of proteasome inhibitors. In plants, proteasome inhibition by syringolin A-producing P. syringae strains leads to the suppression of host defense pathways requiring proteasome activity, such as the ones mediated by salicylic acid and jasmonic acid. Here we report the discovery of a syl-like gene cluster with some unusual features in the alphaproteobacterial endophyte Rhizobium sp. strain AP16 that encodes a putative syringolin A-like synthetase whose components share 55% to 65% sequence identity (72% to 79% similarity) at the amino acid level. As revealed by average nucleotide identity (ANI) calculations, this strain likely belongs to the same species as biocontrol strain R. rhizogenes K84 (formely known as Agrobacterium radiobacter K84), which, however, carries a nonfunctional deletion remnant of the syl-like gene cluster. Here we present a functional analysis of the syl-like gene cluster of Rhizobium sp. strain AP16 and demonstrate that this endophyte synthesizes syringolin A and some related minor variants, suggesting that proteasome inhibition by syrbactin production can be important not only for pathogens but also for endophytic bacteria in the interaction with their hosts. PMID:24727275

  8. Proteasome inhibition by new dual warhead containing peptido vinyl sulfonyl fluorides.

    PubMed

    Brouwer, Arwin J; Herrero Álvarez, Natalia; Ciaffoni, Adriano; van de Langemheen, Helmus; Liskamp, Rob M J

    2016-08-15

    The success of inhibition of the proteasome by formation of covalent bonds is a major victory over the long held-view that this would lead to binding the wrong targets and undoubtedly lead to toxicity. Great challenges are now found in uncovering ensembles of new moieties capable of forming long lasting ties. We have introduced peptido sulfonyl fluorides for this purpose. Tuning the reactivity of this electrophilic trap may be crucial for modulating the biological action. Here we describe incorporation of a vinyl moiety into a peptido sulfonyl fluoride backbone, which should lead to a combined attack of the proteasome active site threonine on the double bond and the sulfonyl fluoride. Although this led to strong proteasome inhibitors, in vitro studies did not unambiguously demonstrate the formation of the proposed seven-membered ring structure. Possibly, formation of a seven-membered covalent adduct with the proteosomal active site threonine can only be achieved within the context of the enzyme. Nevertheless, this dual warhead concept may provide exclusive possibilities for duration and selectivity of proteasome inhibition. PMID:27316540

  9. Atrophy, hypertrophy, and hypoxemia induce transcriptional regulators of the ubiquitin proteasome system in the rat heart

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In skeletal muscle, transcript levels of proteins regulating the ubiquitin proteasome system (UPS) increase with atrophy and decrease with hypertrophy. Whether the same is true for heart muscle is not known. We set out to characterize the transcriptional profile of regulators of the UPS during atrop...

  10. Novel strategies to target the ubiquitin proteasome system in multiple myeloma

    PubMed Central

    Lub, Susanne; Maes, Ken; Menu, Eline; De Bruyne, Elke; Vanderkerken, Karin; Van Valckenborgh, Els

    2016-01-01

    Multiple myeloma (MM) is a hematological malignancy characterized by the accumulation of plasma cells in the bone marrow (BM). The success of the proteasome inhibitor bortezomib in the treatment of MM highlights the importance of the ubiquitin proteasome system (UPS) in this particular cancer. Despite the prolonged survival of MM patients, a significant amount of patients relapse or become resistant to therapy. This underlines the importance of the development and investigation of novel targets to improve MM therapy. The UPS plays an important role in different cellular processes by targeted destruction of proteins. The ubiquitination process consists of enzymes that transfer ubiquitin to proteins targeting them for proteasomal degradation. An emerging and promising approach is to target more disease specific components of the UPS to reduce side effects and overcome resistance. In this review, we will focus on different components of the UPS such as the ubiquitin activating enzyme E1, the ubiquitin conjugating enzyme E2, the E3 ubiquitin ligases, the deubiquitinating enzymes (DUBs) and the proteasome. We will discuss their role in MM and the implications in drug discovery for the treatment of MM. PMID:26695547

  11. Proteasome targeting of proteins in Arabidopsis leaf mesophyll, epidermal and vascular tissues

    PubMed Central

    Svozil, Julia; Gruissem, Wilhelm; Baerenfaller, Katja

    2015-01-01

    Protein and transcript levels are partly decoupled as a function of translation efficiency and protein degradation. Selective protein degradation via the Ubiquitin-26S proteasome system (UPS) ensures protein homeostasis and facilitates adjustment of protein abundance during changing environmental conditions. Since individual leaf tissues have specialized functions, their protein composition is different and hence also protein level regulation is expected to differ. To understand UPS function in a tissue-specific context we developed a method termed Meselect to effectively and rapidly separate Arabidopsis thaliana leaf epidermal, vascular and mesophyll tissues. Epidermal and vascular tissue cells are separated mechanically, while mesophyll cells are obtained after rapid protoplasting. The high yield of proteins was sufficient for tissue-specific proteome analyses after inhibition of the proteasome with the specific inhibitor Syringolin A (SylA) and affinity enrichment of ubiquitylated proteins. SylA treatment of leaves resulted in the accumulation of 225 proteins and identification of 519 ubiquitylated proteins. Proteins that were exclusively identified in the three different tissue types are consistent with specific cellular functions. Mesophyll cell proteins were enriched for plastid membrane translocation complexes as targets of the UPS. Epidermis enzymes of the TCA cycle and cell wall biosynthesis specifically accumulated after proteasome inhibition, and in the vascular tissue several enzymes involved in glucosinolate biosynthesis were found to be ubiquitylated. Our results demonstrate that protein level changes and UPS protein targets are characteristic of the individual leaf tissues and that the proteasome is relevant for tissue-specific functions. PMID:26074939

  12. NMDAR-dependent proteasome activity in the gustatory cortex is necessary for conditioned taste aversion.

    PubMed

    Rosenberg, Tali; Elkobi, Alina; Dieterich, Daniela C; Rosenblum, Kobi

    2016-04-01

    Taste information is processed in different brain structures in the mammalian brain, including the gustatory cortex (GC), which resides within the insular cortex. N-methyl-d-aspartate receptor (NMDAR) activity in the GC is necessary for the acquisition of conditioned taste aversion (CTA) but not positive novel taste learning. Previous studies have shown that taste memory consolidation requires intact protein synthesis in the GC. In addition, the direct involvement of translation initiation and elongation factors was documented in the GC during taste learning. However, protein expression is defined by protein synthesis, degradation, and localization. Protein degradation is critical for the consolidation and reconsolidation of other forms of learning, such as fear learning and addiction behavior, but its role in cortical-dependent learning is not clear. Here, we show for the first time that proteasome activity is specifically increased in the GC 4h following experiencing of a novel taste. This increase in proteasome activity was abolished by local administration to the GC of the NMDA antagonist, APV, as well as a CaMKII inhibitor, at the time of acquisition. In addition, local application of lactacystin, a proteasome inhibitor, resulted in impaired CTA, but not novel taste learning. These results suggest that NMDAR-dependent proteasome activity in the GC participates in the association process between novel taste experience and negative visceral sensation. PMID:26785229

  13. Protein Degradation by Ubiquitin-Proteasome System in Formation and Labilization of Contextual Conditioning Memory

    ERIC Educational Resources Information Center

    Fustiñana, María Sol; de la Fuente, Verónica; Federman, Noel; Freudenthal, Ramiro; Romano, Arturo

    2014-01-01

    The ubiquitin-proteasome system (UPS) of protein degradation has been evaluated in different forms of neural plasticity and memory. The role of UPS in such processes is controversial. Several results support the idea that the activation of this system in memory consolidation is necessary to overcome negative constrains for plasticity. In this…

  14. Ubiquitin-proteasome pathway function is required for lens cell proliferation and differentiation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The ubiquitin proteasome pathway is involved in the regulation of many cellular processes, such as cell cycle control, signal transduction, transcription, and removal of obsolete proteins. The objective of this work was to investigate roles for this proteolytic pathway in controlling the differentia...

  15. Effect of age on proteasomal activity of T cells and macrophages

    Technology Transfer Automated Retrieval System (TEKTRAN)

    T cell function is impaired with aging. Proteasome activity in T cells is important for T cell activation and its activity in macrophages is required for processing antigens in order to be presented via class I major histocompatibility complex to CD8+ T cells. Since studies have demonstrated that pr...

  16. The poxvirus encoded ubiquitin ligase, p28, is regulated by proteasomal degradation and autoubiquitination.

    PubMed

    Mottet, Kelly; Bareiss, Bettina; Milne, Craig D; Barry, Michele

    2014-11-01

    Virus manipulation of the ubiquitin-proteasome system has become increasingly apparent. Ubiquitin is a 76 amino acid protein that is post-translationally conjugated to target proteins, while poly-ubiquitination subsequently leads to degradation via the 26S proteasome. Target specificity is determined by a large family of ubiquitin ligases. Poxviruses encode p28, a highly conserved ubiquitin ligase expressed in a wide range of poxviruses (J. Virol. 79:597). Here we investigate the relationship between p28 and ubiquitination. Confocal microscopy indicated that orthologs of p28 co-localized with ubiquitin at the virus factory. Flow cytometry assays further demonstrated that p28 was regulated by proteasomal degradation. Moreover, when the ubiquitin ligase activity of p28 was disrupted by mutating the RING domain conjugated ubiquitin still localized to the viral factories, indicating that an unknown ubiquitin ligase(s) was responsible for regulating p28. Our observations indicate that p28 is a ubiquitin ligase that is regulated by ubiquitination and proteasomal degradation. PMID:25240226

  17. Dss1 associating with the proteasome functions in selective nuclear mRNA export in yeast

    SciTech Connect

    Mannen, Taro; Andoh, Tomoko; Tani, Tokio

    2008-01-25

    Dss1p is an evolutionarily conserved small protein that interacts with BRCA2, a tumor suppressor protein, in humans. The Schizosaccharomyces pombe strain lacking the dss1{sup +} gene ({delta}dss1) shows a temperature-sensitive growth defect and accumulation of bulk poly(A){sup +} RNA in the nucleus at a nonpermissive temperature. In situ hybridization using probes for several specific mRNAs, however, revealed that the analyzed mRNAs were exported normally to the cytoplasm in {delta}dss1, suggesting that Dss1p is required for export of some subsets of mRNAs. We identified the pad1{sup +} gene, which encodes a component of the 26S proteasome, as a suppressor for the ts{sup -} phenotype of {delta}dss1. Unexpectedly, overexpression of Pad1p could suppress neither the defect in nuclear mRNA export nor a defect in proteasome function. In addition, loss of proteasome functions does not cause defective nuclear mRNA export. Dss1p seems to be a multifunctional protein involved in nuclear export of specific sets of mRNAs and the ubiquitin-proteasome pathway in fission yeast.

  18. Measuring activity in the ubiquitin-proteasome system: From large scale discoveries to single cells analysis

    PubMed Central

    Melvin, Adam T.; Woss, Gregery S.; Park, Jessica H.; Waters, Marcey L.; Allbritton, Nancy L.

    2013-01-01

    The ubiquitin proteasome system (UPS) is the primary pathway responsible for the recognition and degradation of misfolded, damaged, or tightly regulated proteins in addition to performing essential roles in DNA repair, cell cycle regulation, cell migration, and the immune response. While traditional biochemical techniques have proven useful in the identification of key proteins involved in this pathway, the implementation of novel reporters responsible for measuring enzymatic activity of the UPS have provided valuable insight into the effectiveness of therapeutics and role of the UPS in various human diseases such as multiple myeloma and Huntington’s disease. These reporters, usually consisting of a recognition sequences fused to an analytical handle, are designed to specifically evaluate enzymatic activity of certain members of the UPS including the proteasome, E3 ubiquitin ligases, and deubiquitinating enzymes (DUBs). This review highlights the more commonly used reporters employed in a variety of scenarios ranging from high-throughput screening of novel inhibitors to single cell microscopy techniques measuring E3 ligase or proteasome activity. Finally, recent work is presented highlighting the development of novel degron-based substrate designed to overcome the limitations of current reporting techniques in measuring E3 ligase and proteasome activity in patient samples. PMID:23686610

  19. HUWE1 ubiquitinates MyoD and targets it for proteasomal degradation

    SciTech Connect

    Noy, Tahel; Suad, Oded; Taglicht, Daniel; Ciechanover, Aaron

    2012-02-10

    Highlights: Black-Right-Pointing-Pointer HUWE1 ubiquitinates MyoD in vitro and in cells. Black-Right-Pointing-Pointer The ubiquitination by HUWE1 targets MyoD for proteasomal degradation. Black-Right-Pointing-Pointer HUWE1 can modify MyoD on its N-terminal residue. -- Abstract: MyoD is a tissue-specific transcriptional activator that acts as a master switch for muscle development. It activates a broad array of muscle-specific genes, which leads to conversion of proliferating myoblasts into mature myotubes. The ubiquitin proteasome system (UPS) plays an important role in controlling MyoD. Both its N-terminal residue and internal lysines can be targeted by ubiquitin, and both modifications appear to direct it for proteasomal degradation. The protein is short-lived and has a half-life of {approx}45 min in different cells. It was reported that MyoD can be ubiquitinated by MAFbx/AT-1, but accumulating lines of experimental evidence showed that other ligase(s) may also participate in its targeting. Here we describe the involvement of HUWE1 in the ubiquitination and proteasomal degradation of MyoD. Furthermore, we show that the ligase can ubiquitinate the protein in its N-terminal residue.

  20. Proteomics Analysis of Nucleolar SUMO-1 Target Proteins upon Proteasome Inhibition*

    PubMed Central

    Matafora, Vittoria; D'Amato, Alfonsina; Mori, Silvia; Blasi, Francesco; Bachi, Angela

    2009-01-01

    Many cellular processes are regulated by the coordination of several post-translational modifications that allow a very fine modulation of substrates. Recently it has been reported that there is a relationship between sumoylation and ubiquitination. Here we propose that the nucleolus is the key organelle in which SUMO-1 conjugates accumulate in response to proteasome inhibition. We demonstrated that, upon proteasome inhibition, the SUMO-1 nuclear dot localization is redirected to nucleolar structures. To better understand this process we investigated, by quantitative proteomics, the effect of proteasome activity on endogenous nucleolar SUMO-1 targets. 193 potential SUMO-1 substrates were identified, and interestingly in several purified SUMO-1 conjugates ubiquitin chains were found to be present, confirming the coordination of these two modifications. 23 SUMO-1 targets were confirmed by an in vitro sumoylation reaction performed on nuclear substrates. They belong to protein families such as small nuclear ribonucleoproteins, heterogeneous nuclear ribonucleoproteins, ribosomal proteins, histones, RNA-binding proteins, and transcription factor regulators. Among these, histone H1, histone H3, and p160 Myb-binding protein 1A were further characterized as novel SUMO-1 substrates. The analysis of the nature of the SUMO-1 targets identified in this study strongly indicates that sumoylation, acting in coordination with the ubiquitin-proteasome system, regulates the maintenance of nucleolar integrity. PMID:19596686

  1. Therapeutic Potential of Proteasome Inhibition in Duchenne and Becker Muscular Dystrophies

    PubMed Central

    Gazzerro, Elisabetta; Assereto, Stefania; Bonetto, Andrea; Sotgia, Federica; Scarfì, Sonia; Pistorio, Angela; Bonuccelli, Gloria; Cilli, Michele; Bruno, Claudio; Zara, Federico; Lisanti, Michael P.; Minetti, Carlo

    2010-01-01

    Duchenne muscular dystrophy (DMD) and its milder allelic variant, Becker muscular dystrophy (BMD), result from mutations of the dystrophin gene and lead to progressive muscle deterioration. Enhanced activation of proteasomal degradation underlies critical steps in the pathogenesis of the DMD/BMD dystrophic process. Previously, we demonstrated that treatment with the proteasome inhibitor MG-132 rescues the cell membrane localization of dystrophin and the dystrophin glycoprotein complex in mdx mice, a natural genetic mouse model of DMD. The current work aims to thoroughly define the therapeutic potential in dystrophinopathies of Velcade, a drug that selectively blocks the ubiquitin-proteasome pathway. Velcade is particularly intriguing since it has been approved for the treatment of multiple myeloma. Therefore, its side effects in humans have been explored. Velcade effects were analyzed through two independent methodological approaches. First, we administered the drug systemically in mdx mice over a 2-week period. In this system, Velcade restores the membrane expression of dystrophin and dystrophin glycoprotein complex members and improves the dystrophic phenotype. In a second approach, we treated with the compound explants from muscle biopsies of DMD or BMD patients. We show that the inhibition of the proteasome pathway up-regulates dystrophin, α-sarcoglycan, and β-dystroglycan protein levels in explants from BMD patients, whereas it increases the proteins of the dystrophin glycoprotein complex in DMD cases. PMID:20304949

  2. Proteasome inhibitors remarkably prevent translesion replication in cancer cells but not normal cells.

    PubMed

    Takezawa, Jun; Ishimi, Yukio; Yamada, Kouichi

    2008-05-01

    When a replicative DNA polymerase encounters a lesion on the template strand and stalls, it is replaced with another polymerase(s) with low processivity that bypasses the lesion to continue DNA synthesis. This phenomenon is known as translesion replication or replicative bypass. Failing this, the cell is increasingly likely to undergo apoptosis. In this study, we found that proteasome inhibitors prevent translesion replication in human cancer cells but not in normal cells. Three proteasome inhibitors, MG-132, lactacystin, and MG-262, inhibited UV-induced translesion replication in a wide range of cancer cell lines, including HeLa, HGC-27, MCF-7, HepG2, WiDr, a malignant melanoma, an acute lymphoblastic leukemia, and a multiple myeloma cell line; irrespective of cell origin, histological type, or p53 status. In contrast, these inhibitors had little or no influence on normal fibroblasts (NB1RGB and TIG-1) or a normal liver mesenchymal (LI90) cell line. Among the DNA-damaging antineoplastic agents, cisplatin caused a UV-type translesion reaction; the proteasome inhibitors delayed cisplatin-induced translesion replication in cancer cell lines but had only a weak effect on normal cell lines. Therefore, translesion replication would be an effective target of proteasome inhibitors for cancer chemotherapy by which cancer cells can be efficiently sensitized to DNA-damaging antineoplastic agents, such as cisplatin. PMID:18294277

  3. A third interferon-gamma-induced subunit exchange in the 20S proteasome.

    PubMed

    Groettrup, M; Kraft, R; Kostka, S; Standera, S; Stohwasser, R; Kloetzel, P M

    1996-04-01

    The 20S proteasome is a protease complex of functional importance for antigen processing. Two of the 14 proteasome subunits, delta and MB1, can be replaced by the major histocompatibility complex (MHC)-encoded and interferon-gamma (IFN-gamma)-inducible subunits LMP2 and LMP7, respectively. LMP2 and LMP7 alter the cleavage site specificity of the 20S proteasome and are required for the efficient generation of T cell epitopes from a number of viral proteins and for optimal MHC class I cell surface expression. We compared the 20S proteasome subunit pattern from IFN-gamma-induced and non-induced mouse fibroblasts on two-dimensional gels and identified a third subunit exchange by microsequencing: the non-MHC-encoded subunit MECL-1 is induced by IFN-gamma and replaces a sofar barely characterized beta subunit designated 'MC14'. In analogy to LMP2 and LMP7, MECL-1 may be functional in MHC class I-restricted antigen presentation. PMID:8625980

  4. Ubiquitin proteasome pathway-mediated degradation of proteins: effects due to site-specific substrate deamidation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The accumulation, aggregation, and precipitation of proteins are etiologic for age-related diseases, particularly cataract, because the precipitates cloud the lens. Deamidation of crystallins is associated with protein precipitation, aging, and cataract. Among the roles of the ubiquitin proteasome p...

  5. Plasminogen Activator Inhibitor Type 1 Interacts with α3 Subunit of Proteasome and Modulates Its Activity*

    PubMed Central

    Boncela, Joanna; Przygodzka, Patrycja; Papiewska-Pajak, Izabela; Wyroba, Elzbieta; Osinska, Magdalena; Cierniewski, Czeslaw S.

    2011-01-01

    Plasminogen activator inhibitor type-1 (PAI-1), a multifunctional protein, is an important physiological regulator of fibrinolysis, extracellular matrix homeostasis, and cell motility. Recent observations show that PAI-1 may also be implicated in maintaining integrity of cells, especially with respect to cellular proliferation or apoptosis. In the present study we provide evidence that PAI-1 interacts with proteasome and affects its activity. First, by using the yeast two-hybrid system, we found that the α3 subunit of proteasome directly interacts with PAI-1. Then, to ensure that the PAI-1-proteasome complex is formed in vivo, both proteins were coimmunoprecipitated from endothelial cells and identified with specific antibodies. The specificity of this interaction was evidenced after transfection of HeLa cells with pCMV-PAI-1 and coimmunoprecipitation of both proteins with anti-PAI-1 antibodies. Subsequently, cellular distribution of the PAI-1-proteasome complexes was established by immunogold staining and electron microscopy analyses. Both proteins appeared in a diffuse cytosolic pattern but also could be found in a dense perinuclear and nuclear location. Furthermore, PAI-1 induced formation of aggresomes freely located in endothelial cytoplasm. Increased PAI-1 expression abrogated degradation of degron analyzed after cotransfection of HeLa cells with pCMV-PAI-1 and pd2EGFP-N1 and prevented degradation of p53 as well as IκBα, as evidenced both by confocal microscopy and Western immunoblotting. PMID:21135093

  6. THE PROTEASOME IS A TARGET OF OXIDATIVE DAMAGE IN HUMAN RETINA PIGMENT EPITHELIAL CELLS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Purpose: Dysfunction of the ubiquitin-proteasome pathway (UPP) is associated with several age-related degenerative diseases. The objective of this study is to investigate the effect of oxidative stress on the UPP in retina pigment epithelial cells. Methods: To mimic physiological oxidative stress...

  7. Impairment of the ubiquitin-proteasome pathway in RPE alters the expression of inflammation related genes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The ubiquitin-proteasome pathway (UPP) plays an important role in regulating gene expression. Retinal pigment epithelial cells (RPE) are a major source of ocular inflammatory cytokines. In this work we determined the relationship between impairment of the UPP and expression of inflammation-related f...

  8. Proteasome involvement in agonist-induced down-regulation of mu and delta opioid receptors.

    PubMed

    Chaturvedi, K; Bandari, P; Chinen, N; Howells, R D

    2001-04-13

    This study investigated the mechanism of agonist-induced opioid receptor down-regulation. Incubation of HEK 293 cells expressing FLAG-tagged delta and mu receptors with agonists caused a time-dependent decrease in opioid receptor levels assayed by immunoblotting. Pulse-chase experiments using [(35)S]methionine metabolic labeling indicated that the turnover rate of delta receptors was accelerated 5-fold following agonist stimulation. Inactivation of functional G(i) and G(o) proteins by pertussis toxin-attenuated down-regulation of the mu opioid receptor, while down-regulation of the delta opioid receptor was unaffected. Pretreatment of cells with inhibitors of lysosomal proteases, calpain, and caspases had little effect on mu and delta opioid receptor down-regulation. In marked contrast, pretreatment with proteasome inhibitors attenuated agonist-induced mu and delta receptor down-regulation. In addition, incubation of cells with proteasome inhibitors in the absence of agonists increased steady-state mu and delta opioid receptor levels. Immunoprecipitation of mu and delta opioid receptors followed by immunoblotting with ubiquitin antibodies suggested that preincubation with proteasome inhibitors promoted accumulation of polyubiquitinated receptors. These data provide evidence that the ubiquitin/proteasome pathway plays a role in agonist-induced down-regulation and basal turnover of opioid receptors. PMID:11152677

  9. Proteasomes generate spliced epitopes by two different mechanisms and as efficiently as non-spliced epitopes.

    PubMed

    Ebstein, F; Textoris-Taube, K; Keller, C; Golnik, R; Vigneron, N; Van den Eynde, B J; Schuler-Thurner, B; Schadendorf, D; Lorenz, F K M; Uckert, W; Urban, S; Lehmann, A; Albrecht-Koepke, N; Janek, K; Henklein, P; Niewienda, A; Kloetzel, P M; Mishto, M

    2016-01-01

    Proteasome-catalyzed peptide splicing represents an additional catalytic activity of proteasomes contributing to the pool of MHC-class I-presented epitopes. We here biochemically and functionally characterized a new melanoma gp100 derived spliced epitope. We demonstrate that the gp100(mel)47-52/40-42 antigenic peptide is generated in vitro and in cellulo by a not yet described proteasomal condensation reaction. gp100(mel)47-52/40-42 generation is enhanced in the presence of the β5i/LMP7 proteasome-subunit and elicits a peptide-specific CD8(+) T cell response. Importantly, we demonstrate that different gp100(mel)-derived spliced epitopes are generated and presented to CD8(+) T cells with efficacies comparable to non-spliced canonical tumor epitopes and that gp100(mel)-derived spliced epitopes trigger activation of CD8(+) T cells found in peripheral blood of half of the melanoma patients tested. Our data suggest that both transpeptidation and condensation reactions contribute to the frequent generation of spliced epitopes also in vivo and that their immune relevance may be comparable to non-spliced epitopes. PMID:27049119

  10. Proteasomes generate spliced epitopes by two different mechanisms and as efficiently as non-spliced epitopes

    PubMed Central

    Ebstein, F.; Textoris-Taube, K.; Keller, C.; Golnik, R.; Vigneron, N.; Van den Eynde, B. J.; Schuler-Thurner, B.; Schadendorf, D.; Lorenz, F. K. M.; Uckert, W.; Urban, S.; Lehmann, A.; Albrecht-Koepke, N.; Janek, K.; Henklein, P.; Niewienda, A.; Kloetzel, P. M.; Mishto, M.

    2016-01-01

    Proteasome-catalyzed peptide splicing represents an additional catalytic activity of proteasomes contributing to the pool of MHC-class I-presented epitopes. We here biochemically and functionally characterized a new melanoma gp100 derived spliced epitope. We demonstrate that the gp100mel47–52/40–42 antigenic peptide is generated in vitro and in cellulo by a not yet described proteasomal condensation reaction. gp100mel47–52/40–42 generation is enhanced in the presence of the β5i/LMP7 proteasome-subunit and elicits a peptide-specific CD8+ T cell response. Importantly, we demonstrate that different gp100mel-derived spliced epitopes are generated and presented to CD8+ T cells with efficacies comparable to non-spliced canonical tumor epitopes and that gp100mel-derived spliced epitopes trigger activation of CD8+ T cells found in peripheral blood of half of the melanoma patients tested. Our data suggest that both transpeptidation and condensation reactions contribute to the frequent generation of spliced epitopes also in vivo and that their immune relevance may be comparable to non-spliced epitopes. PMID:27049119

  11. The proteasome stress regulon is controlled by a pair of NAC transcription factors in arabidopsis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Proteotoxic stress is mitigated by a variety of mechanisms, including activation of the unfolded protein response and coordinated increases in protein chaperones and activities that direct proteolysis such as the 26S proteasome. Using RNA-seq analyses combined with either chemical inhibitors or mut...

  12. Proteasome-dependent regulation of signal transduction in retinal pigment epithelial cells

    Technology Transfer Automated Retrieval System (TEKTRAN)

    As in many other types of cells, retinal pigment epithelial (RPE) cells have an active ubiquitin-proteasome pathway (UPP). However, the function of the UPP in RPE remains to be elucidated. The objective of this study is to determine the role of the UPP in controlling the levels and activities of tra...

  13. Commentary on "Proteasome Inhibitors: A Novel Class of Potent and Effective Antitumor Agents".

    PubMed

    Tew, Kenneth D

    2016-09-01

    The relatively recent clinical success of bortezomib, particularly in multiple myeloma, has established the validity of the proteasome as a viable target for anticancer drug development. This highly cited 1999 Cancer Research article from Adams and colleagues was published during the period when this drug was transitioning from preclinical studies to phase I clinical trial status. Their results detail structure-activity analyses using a series of boronic acid proteasome inhibitors and correlate cytotoxicity with inhibition of proteasome activity. In and of itself, the recognition that interference with proteasome functions represented a novel therapeutic approach likely underlies the popularity of this article. In addition, the provision of in vitro (at that time using the NCI 60 cell line panel) and in vivo antitumor activity, toxicology, and mouse pharmacokinetic and pharmacodynamic data provided a solid basis for establishing the future credentials for bortezomib to gain initial FDA approval in 2003. Cancer Res; 76(17); 4916-7. ©2016 AACRSee related article by Adams et al., Cancer Res 1999;59:2615-22Visit the Cancer Research 75(th) Anniversary timeline. PMID:27587650

  14. Clinical activity of carfilzomib correlates with inhibition of multiple proteasome subunits: application of a novel pharmacodynamic assay.

    PubMed

    Lee, Susan J; Levitsky, Konstantin; Parlati, Francesco; Bennett, Mark K; Arastu-Kapur, Shirin; Kellerman, Lois; Woo, Tina F; Wong, Alvin F; Papadopoulos, Kyriakos P; Niesvizky, Ruben; Badros, Ashraf Z; Vij, Ravi; Jagannath, Sundar; Siegel, David; Wang, Michael; Ahmann, Gregory J; Kirk, Christopher J

    2016-06-01

    While proteasome inhibition is a validated therapeutic approach for multiple myeloma (MM), inhibition of individual constitutive proteasome (c20S) and immunoproteasome (i20S) subunits has not been fully explored owing to a lack of effective tools. We utilized the novel proteasome constitutive/immunoproteasome subunit enzyme-linked immunosorbent (ProCISE) assay to quantify proteasome subunit occupancy in samples from five phase I/II and II trials before and after treatment with the proteasome inhibitor carfilzomib. Following the first carfilzomib dose (15-56 mg/m(2) ), dose-dependent inhibition of c20S and i20S chymotrypsin-like active sites was observed [whole blood: ≥67%; peripheral blood mononuclear cells (PBMCs): ≥75%]. A similar inhibition profile was observed in bone marrow-derived CD138(+) tumour cells. Carfilzomib-induced proteasome inhibition was durable, with minimal recovery in PBMCs after 24 h but near-complete recovery between cycles. Importantly, the ProCISE assay can be used to quantify occupancy of individual c20S and i20S subunits. We observed a relationship between MM patient response (n = 29), carfilzomib dose and occupancy of multiple i20S subunits, where greater occupancy was associated with an increased likelihood of achieving a clinical response at higher doses. ProCISE represents a new tool for measuring proteasome inhibitor activity in clinical trials and relating drug action to patient outcomes. PMID:27071340

  15. The fungal metabolite gliotoxin inhibits proteasome proteolytic activity and induces an irreversible pseudocystic transformation and cell death in Tritrichomonas foetus.

    PubMed

    Pereira-Neves, Antonio; Menna-Barreto, Rubem F S; Benchimol, Marlene

    2016-08-01

    Proteasomal proteolysis is required for a wide range of cellular processes, including protein quality control, cell cycle progression, cell death and metabolic adaptation to environment changes or stress responses. Proteasome inhibitors are useful compounds for determining the roles of proteasome in eukaryotic cells. Here, we investigated the effects of gliotoxin, a proteasome inhibitor, on the cell growth, replication, ultrastructure, DNA integrity and proteasomal proteolytic activity of the protist parasite Tritrichomonas foetus. The effect of gliotoxin on the transformation of T. foetus to endoflagellar form (EFF), also known as pseudocyst, was investigated. Gliotoxin inhibited the culture growth, arrested cell cycle, and provoked a trichomonacidal effect in a dose-dependent manner. Parasites treated with gliotoxin displayed features typical of cell death, such as membrane blebbing, concentric membrane whorls containing remnants of organelles, intense cytosolic and nuclear vacuolisation, chromatin condensation, DNA fragmentation, cytoplasmic disintegration and plasma membrane disruption. The proteasomal peptidase activity was inhibited by gliotoxin in a dose-dependent manner. Gliotoxin treatment also induced an irreversible EFF transformation in a dose/time-dependent manner. We compared morphological characteristics between gliotoxin- and cold-induced EFF parasites. Our results suggest that gliotoxin could induce EFF transformation by a mechanism distinct from that provoked by cold temperature. This study further contributes to a better understanding of the role of proteasome system in cell cycle, cell death and EFF transformation in T. foetus. PMID:27106236

  16. A cytosolic protein factor from the naked mole-rat activates proteasomes of other species and protects these from inhibition

    PubMed Central

    Rodriguez, Karl A.; Osmulski, Pawel A.; Pierce, Anson; Weintraub, Susan T.; Gaczynska, Maria; Buffenstein, Rochelle

    2015-01-01

    The naked mole-rat maintains robust proteostasis and high levels of proteasome-mediated proteolysis for most of its exceptional (~31y) life span. Here, we report that the highly active proteasome from the naked mole-rat liver resists attenuation by a diverse suite of proteasome-specific small molecule inhibitors. Moreover, mouse, human, and yeast proteasomes exposed to the proteasome-depleted, naked mole-rat cytosolic fractions, recapitulate the observed inhibition resistance, and mammalian proteasomes also show increased activity. Gel filtration coupled with mass spectrometry and atomic force microscopy indicates that these traits are supported by a protein factor that resides in the cytosol. This factor interacts with the proteasome and modulates its activity. Although HSP72 and HSP40 (Hdj1) are among the constituents of this factor, the observed phenomenon, such as increasing peptidase activity and protecting against inhibition cannot be reconciled with any known chaperone functions. This novel function may contribute to the exceptional protein homeostasis in the naked mole-rat and allow it to successfully defy aging. PMID:25018089

  17. An assay for 26S proteasome activity based on fluorescence anisotropy measurements of dye-labeled protein substrates.

    PubMed

    Bhattacharyya, Sucharita; Renn, Jonathan P; Yu, Houqing; Marko, John F; Matouschek, Andreas

    2016-09-15

    The 26S proteasome is the molecular machine at the center of the ubiquitin proteasome system and is responsible for adjusting the concentrations of many cellular proteins. It is a drug target in several human diseases, and assays for the characterization of modulators of its activity are valuable. The 26S proteasome consists of two components: a core particle, which contains the proteolytic sites, and regulatory caps, which contain substrate receptors and substrate processing enzymes, including six ATPases. Current high-throughput assays of proteasome activity use synthetic fluorogenic peptide substrates that report directly on the proteolytic activity of the proteasome, but not on the activities of the proteasome caps that are responsible for protein recognition and unfolding. Here, we describe a simple and robust assay for the activity of the entire 26S proteasome using fluorescence anisotropy to follow the degradation of fluorescently labeled protein substrates. We describe two implementations of the assay in a high-throughput format and show that it meets the expected requirement of ATP hydrolysis and the presence of a canonical degradation signal or degron in the target protein. PMID:27296635

  18. Inhibition on Proteasome β1 Subunit Might Contribute to the Anti-Cancer Effects of Fangchinoline in Human Prostate Cancer Cells

    PubMed Central

    Sun, Peng; Feng, Li-Xing; Liu, Miao; Hu, Li-Hong; Wu, Wan-Ying; Jiang, Bao-Hong; Yang, Min; Qu, Xiao-Bo; Guo, De-An; Liu, Xuan

    2015-01-01

    Fangchinoline is a bisbenzylisoquinoline alkaloid isolated from Radix Stephaniae tetrandrae S. Moore. Fangchinoline and its structure analogue, tetrandrine, exhibited direct binding affinity with recombinant human proteasome β1 subunit and also inhibited its activity in vitro. In cultured prostate PC-3 cells and LnCap cells, fangchinoline could dose-dependently inhibit cell proliferation and caspase-like activity of cellular proteasome which was mediated by proteasome β1 subunit. The inhibitive effect of fangchinoline on caspase-like activity of proteasome was also observed in purified human erythrocyte 20S proteasome. In PC-3 cells, fangchinoline induced cell cycle arrest at G0/G1 phase and apoptosis. Treatment of PC-3 tumor-bearing nude mice with fangchinoline inhibited tumor growth, induced apoptosis and also caused decrease in proteasome activities in tumor xenografts. Dose-dependent and time-dependent accumulation of ubiquitinated proteins and important proteasome substrates such as p27, Bax and IκB-α were observed in fangchinoline-treated cells. Over-expression of proteasome β1 subunit by plasmid transfection increased sensitivity of cells to the cytotoxicity of fangchinoline while knockdown of proteasome β1 subunit ameliorated cytotoxicity of fangchinoline in PC-3 cells. Results of the present study suggested that proteasome inhibition was involved in the anti-cancer effects of fangchinoline. Fangchinoline and its structure analogues might be new natural proteasome inhibitors targeting β1 subunit. PMID:26512898

  19. Inhibition on Proteasome β1 Subunit Might Contribute to the Anti-Cancer Effects of Fangchinoline in Human Prostate Cancer Cells.

    PubMed

    Li, Dong; Lu, Yu; Sun, Peng; Feng, Li-Xing; Liu, Miao; Hu, Li-Hong; Wu, Wan-Ying; Jiang, Bao-Hong; Yang, Min; Qu, Xiao-Bo; Guo, De-An; Liu, Xuan

    2015-01-01

    Fangchinoline is a bisbenzylisoquinoline alkaloid isolated from Radix Stephaniae tetrandrae S. Moore. Fangchinoline and its structure analogue, tetrandrine, exhibited direct binding affinity with recombinant human proteasome β1 subunit and also inhibited its activity in vitro. In cultured prostate PC-3 cells and LnCap cells, fangchinoline could dose-dependently inhibit cell proliferation and caspase-like activity of cellular proteasome which was mediated by proteasome β1 subunit. The inhibitive effect of fangchinoline on caspase-like activity of proteasome was also observed in purified human erythrocyte 20S proteasome. In PC-3 cells, fangchinoline induced cell cycle arrest at G0/G1 phase and apoptosis. Treatment of PC-3 tumor-bearing nude mice with fangchinoline inhibited tumor growth, induced apoptosis and also caused decrease in proteasome activities in tumor xenografts. Dose-dependent and time-dependent accumulation of ubiquitinated proteins and important proteasome substrates such as p27, Bax and IκB-α were observed in fangchinoline-treated cells. Over-expression of proteasome β1 subunit by plasmid transfection increased sensitivity of cells to the cytotoxicity of fangchinoline while knockdown of proteasome β1 subunit ameliorated cytotoxicity of fangchinoline in PC-3 cells. Results of the present study suggested that proteasome inhibition was involved in the anti-cancer effects of fangchinoline. Fangchinoline and its structure analogues might be new natural proteasome inhibitors targeting β1 subunit. PMID:26512898

  20. Acylpeptide Hydrolase Inhibition as Targeted Strategy to Induce Proteasomal Down-Regulation

    PubMed Central

    Luini, Alberto; Ruvo, Menotti; Gogliettino, Marta; Langella, Emma; Saviano, Michele; Hegde, Ramanath N.; Sandomenico, Annamaria; Rossi, Mose

    2011-01-01

    Acylpeptide hydrolase (APEH), one of the four members of the prolyl oligopeptidase class, catalyses the removal of N-acylated amino acids from acetylated peptides and it has been postulated to play a key role in protein degradation machinery. Disruption of protein turnover has been established as an effective strategy to down-regulate the ubiquitin-proteasome system (UPS) and as a promising approach in anticancer therapy. Here, we illustrate a new pathway modulating UPS and proteasome activity through inhibition of APEH. To find novel molecules able to down-regulate APEH activity, we screened a set of synthetic peptides, reproducing the reactive-site loop of a known archaeal inhibitor of APEH (SsCEI), and the conjugated linoleic acid (CLA) isomers. A 12-mer SsCEI peptide and the trans10-cis12 isomer of CLA, were identified as specific APEH inhibitors and their effects on cell-based assays were paralleled by a dose-dependent reduction of proteasome activity and the activation of the pro-apoptotic caspase cascade. Moreover, cell treatment with the individual compounds increased the cytoplasm levels of several classic hallmarks of proteasome inhibition, such as NFkappaB, p21, and misfolded or polyubiquitinylated proteins, and additive effects were observed in cells exposed to a combination of both inhibitors without any cytotoxicity. Remarkably, transfection of human bronchial epithelial cells with APEH siRNA, promoted a marked accumulation of a mutant of the cystic fibrosis transmembrane conductance regulator (CFTR), herein used as a model of misfolded protein typically degraded by UPS. Finally, molecular modeling studies, to gain insights into the APEH inhibition by the trans10-cis12 CLA isomer, were performed. Our study supports a previously unrecognized role of APEH as a negative effector of proteasome activity by an unknown mechanism and opens new perspectives for the development of strategies aimed at modulation of cancer progression. PMID:22016782

  1. Marizomib, a Proteasome Inhibitor for All Seasons: Preclinical Profile and a Framework for Clinical Trials

    PubMed Central

    Potts, B.C.; Albitar, M.X.; Anderson, K.C.; Baritaki, S.; Berkers, C.; Bonavida, B.; Chandra, J.; Chauhan, D.; Cusack, J.C.; Fenical, W.; Ghobrial, I.M.; Groll, M.; Jensen, P.R.; Lam, K.S.; Lloyd, G.K.; McBride, W.; McConkey, D.J.; Miller, C.P.; Neuteboom, S.T.C.; Oki, Y.; Ovaa, H.; Pajonk, F.; Richardson, P.G.; Roccaro, A.M.; Sloss, C.M.; Spear, M.A.; Valashi, E.; Younes, A.; Palladino, M.A.

    2013-01-01

    The proteasome has emerged as an important clinically relevant target for the treatment of hematologic malignancies. Since the Food and Drug Administration approved the first-in-class proteasome inhibitor bortezomib (Velcade®) for the treatment of relapsed/refractory multiple myeloma (MM) and mantle cell lymphoma, it has become clear that new inhibitors are needed that have a better therapeutic ratio, can overcome inherent and acquired bortezomib resistance and exhibit broader anti-cancer activities. Marizomib (NPI-0052; salinosporamide A) is a structurally and pharmacologically unique β-lactone-γ-lactam proteasome inhibitor that may fulfill these unmet needs. The potent and sustained inhibition of all three proteolytic activities of the proteasome by marizomib has inspired extensive preclinical evaluation in a variety of hematologic and solid tumor models, where it is efficacious as a single agent and in combination with biologics, che-motherapeutics and targeted therapeutic agents. Specifically, marizomib has been evaluated in models for multiple myeloma, mantle cell lymphoma, Waldenstrom’s macroglobulinemia, chronic and acute lymphocytic leukemia, as well as glioma, colorectal and pancreatic cancer models, and has exhibited synergistic activities in tumor models in combination with bortezomib, the immunomodulatory agent lenalidomide (Revlimid®), and various histone deacetylase inhibitors. These and other studies provided the framework for ongoing clinical trials in patients with MM, lymphomas, leukemias and solid tumors, including those who have failed bortezomib treatment, as well as in patients with diagnoses where other proteasome inhibitors have not demonstrated significant efficacy. This review captures the remarkable translational studies and contributions from many collaborators that have advanced marizomib from seabed to bench to bedside. PMID:21247382

  2. The ATP costs and time required to degrade ubiquitinated proteins by the 26 S proteasome.

    PubMed

    Peth, Andreas; Nathan, James A; Goldberg, Alfred L

    2013-10-01

    The degradation of ubiquitinated proteins by 26 S proteasomes requires ATP hydrolysis. To investigate if the six proteasomal ATPases function independently or in a cyclic manner, as proposed recently, we used yeast mutants that prevent ATP binding to Rpt3, Rpt5, or Rpt6. Although proteasomes contain six ATPase subunits, each of these single mutations caused a 66% reduction in basal ATP hydrolysis, and each blocked completely the 2-3-fold stimulation of ATPase activity induced by ubiquitinated substrates. Therefore, the ATPase subunits must function in a ordered manner, in which each is required for the stimulation of ATPase activity by substrates. Although ATP is essential for multiple steps in proteasome function, when the rate of ATP hydrolysis was reduced incrementally, the degradation of Ub5-DHFR (where Ub is ubiquitin and DHFR is dihydrofolate reductase) decreased exactly in parallel. This direct proportionality implies that a specific number of ATPs is consumed in degrading a ubiquitinated protein. When the ubiquitinated DHFR was more tightly folded (upon addition of the ligand folate), the rate of ATP hydrolysis was unchanged, but the time to degrade a Ub5-DHFR molecule (∼13 s) and the energy expenditure (50-80 ATPs/Ub5-DHFR) both increased by 2-fold. With a mutation in the ATPase C terminus that reduced gate opening into the 20 S proteasome, the energy costs and time required for conjugate degradation also increased. Thus, different ubiquitin conjugates activate similarly the ATPase subunit cycle that drives proteolysis, but polypeptide structure determines the time required for degradation and thus the energy cost. PMID:23965995

  3. Studies on the activation by ATP of the 26 S proteasome complex from rat skeletal muscle.

    PubMed Central

    Dahlmann, B; Kuehn, L; Reinauer, H

    1995-01-01

    The 26 S proteasome complex is thought to catalyse the breakdown of ubiquitinated proteins within eukaryotic cells. In addition it has been found that the complex also degrades short-lived proteins such as ornithine decarboxylase in a ubiquitin-independent manner. Both proteolytic processes are paralleled by the hydrolysis of ATP. Here we show that ATP also affects the hydrolytic activity towards fluorigenic peptide substrates by the 26 S proteasome complex from rat skeletal muscle tissue. Low concentrations of ATP (about 25 microM) optimally activate the so-called chymotryptic and tryptic activity by increasing the rate of peptide hydrolysis but not peptidylglutamylpeptide hydrolysis. Activation of the enzyme by ATP is transient but this effect can be enhanced and prolonged by including in the assay an ATP-regenerating system, indicating that ATP is hydrolysed by the 26 S proteasome complex. Although ATP cannot be substituted for by adenosine 5'-[beta,gamma-methylene]triphosphate or AMP, hydrolysis of the phosphoanhydride bond of ATP seems not to be necessary for the activation process of the proteasome complex, a conclusion drawn from the findings that ATP analogues such as adenosine 5'-[beta,gamma-imido]triphosphate, adenosine 5'-O-[gamma-thio]triphosphate, adenosine 5'-O-[beta-thio]-diphosphate and adenosine 5'-[alpha,beta-methylene]triphosphate give the same effect as ATP, and vanadate does not prevent ATP activation. These effects are independent of the presence of Mg2+. Thus, ATP and other nucleotides may act as allosteric activators of peptide-hydrolysing activities of the 26 S proteasome complex as has also been found with the lon protease from Escherichia coli. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 Figure 8 PMID:7619056

  4. The Xanthomonas campestris Type III Effector XopJ Proteolytically Degrades Proteasome Subunit RPT61[OPEN

    PubMed Central

    2015-01-01

    Many animal and plant pathogenic bacteria inject type III effector (T3E) proteins into their eukaryotic host cells to suppress immunity. The Yersinia outer protein J (YopJ) family of T3Es is a widely distributed family of effector proteins found in both animal and plant pathogens, and its members are highly diversified in virulence functions. Some members have been shown to possess acetyltransferase activity; however, whether this is a general feature of YopJ family T3Es is currently unknown. The T3E Xanthomonas outer protein J (XopJ), a YopJ family effector from the plant pathogen Xanthomonas campestris pv vesicatoria, interacts with the proteasomal subunit Regulatory Particle AAA-ATPase6 (RPT6) in planta to suppress proteasome activity, resulting in the inhibition of salicylic acid-related immune responses. Here, we show that XopJ has protease activity to specifically degrade RPT6, leading to reduced proteasome activity in the cytoplasm as well as in the nucleus. Proteolytic degradation of RPT6 was dependent on the localization of XopJ to the plasma membrane as well as on its catalytic triad. Mutation of the Walker B motif of RPT6 prevented XopJ-mediated degradation of the protein but not XopJ interaction. This indicates that the interaction of RPT6 with XopJ is dependent on the ATP-binding activity of RPT6, but proteolytic cleavage additionally requires its ATPase activity. Inhibition of the proteasome impairs the proteasomal turnover of Nonexpressor of Pathogenesis-Related1 (NPR1), the master regulator of salicylic acid responses, leading to the accumulation of ubiquitinated NPR1, which likely interferes with the full induction of NPR1 target genes. Our results show that YopJ family T3Es are not only highly diversified in virulence function but also appear to possess different biochemical activities. PMID:25739698

  5. Calpains and proteasomes mediate degradation of ryanodine receptors in a model of cardiac ischemic reperfusion.

    PubMed

    Pedrozo, Zully; Sánchez, Gina; Torrealba, Natalia; Valenzuela, Rodrigo; Fernández, Carolina; Hidalgo, Cecilia; Lavandero, Sergio; Donoso, Paulina

    2010-03-01

    Type-2 ryanodine receptors (RyR2)--the calcium release channels of cardiac sarcoplasmic reticulum--have a central role in cardiac excitation-contraction coupling. In the heart, ischemia/reperfusion causes a rapid and significant decrease in RyR2 content but the mechanisms responsible for this effect are not fully understood. We have studied the involvement of three proteolytic systems--calpains, the proteasome and autophagy--on the degradation of RyR2 in rat neonatal cardiomyocyte cultures subjected to simulated ischemia/reperfusion (sI/R). We found that 8h of ischemia followed by 16h of reperfusion decreased RyR2 content by 50% without any changes in RyR2 mRNA. Specific inhibitors of calpains and the proteasome prevented the decrease of RyR2 caused by sI/R, implicating both pathways in its degradation. Proteasome inhibitors also prevented the degradation of calpastatin, the endogenous calpain inhibitor, hindering the activation of calpain induced by calpastatin degradation. Autophagy was activated during sI/R as evidenced by the increase in LC3-II and beclin-1, two proteins involved in autophagosome generation, and in the emergence of GFP-LC3 containing vacuoles in adenovirus GFP-LC3 transduced cardiomyocytes. Selective autophagy inhibition, however, induced even further RyR2 degradation, making unlikely the participation of autophagy in sI/R-induced RyR2 degradation. Our results suggest that calpain activation as a result of proteasome-induced degradation of calpastatin initiates RyR2 proteolysis, which is followed by proteasome-dependent degradation of the resulting RyR2 fragments. The decrease in RyR2 content during ischemia/reperfusion may be relevant to the decrease of heart contractility after ischemia. PMID:20026269

  6. Syrbactin Structural Analog TIR-199 Blocks Proteasome Activity and Induces Tumor Cell Death.

    PubMed

    Bachmann, André S; Opoku-Ansah, John; Ibarra-Rivera, Tannya R; Yco, Lisette P; Ambadi, Sudhakar; Roberts, Christopher C; Chang, Chia-En A; Pirrung, Michael C

    2016-04-15

    Multiple myeloma is an aggressive hematopoietic cancer of plasma cells. The recent emergence of three effective FDA-approved proteasome-inhibiting drugs, bortezomib (Velcade®), carfilzomib (Kyprolis®), and ixazomib (Ninlaro®), confirms that proteasome inhibitors are therapeutically useful against neoplastic disease, in particular refractory multiple myeloma and mantle cell lymphoma. This study describes the synthesis, computational affinity assessment, and preclinical evaluation of TIR-199, a natural product-derived syrbactin structural analog. Molecular modeling and simulation suggested that TIR-199 covalently binds each of the three catalytic subunits (β1, β2, and β5) and revealed key interaction sites. In vitro and cell culture-based proteasome activity measurements confirmed that TIR-199 inhibits the proteasome in a dose-dependent manner and induces tumor cell death in multiple myeloma and neuroblastoma cells as well as other cancer types in the NCI-60 cell panel. It is particularly effective against kidney tumor cell lines, with >250-fold higher anti-tumor activities than observed with the natural product syringolin A. In vivo studies in mice revealed a maximum tolerated dose of TIR-199 at 25 mg/kg. The anti-tumor activity of TIR-199 was confirmed in hollow fiber assays in mice. Adverse drug reaction screens in a kidney panel revealed no off-targets of concern. This is the first study to examine the efficacy of a syrbactin in animals. Taken together, the results suggest that TIR-199 is a potent new proteasome inhibitor with promise for further development into a clinical drug for the treatment of multiple myeloma and other forms of cancer. PMID:26907687

  7. Proteasome inhibition slightly improves cardiac function in mice with hypertrophic cardiomyopathy

    PubMed Central

    Schlossarek, Saskia; Singh, Sonia R.; Geertz, Birgit; Schulz, Herbert; Reischmann, Silke; Hübner, Norbert; Carrier, Lucie

    2014-01-01

    A growing line of evidence indicates a dysfunctional ubiquitin-proteasome system (UPS) in cardiac diseases. Anti-hypertrophic effects and improved cardiac function have been reported after treatment with proteasome inhibitors in experimental models of cardiac hypertrophy. Here we tested whether proteasome inhibition could also reverse the disease phenotype in a genetically-modified mouse model of hypertrophic cardiomyopathy (HCM), which carries a mutation in Mybpc3, encoding the myofilament protein cardiac myosin-binding protein C. At 7 weeks of age, homozygous mutant mice (KI) have 39% higher left ventricular mass-to-body-weight ratio and 29% lower fractional area shortening (FAS) than wild-type (WT) mice. Both groups were treated with epoxomicin (0.5 mg/kg/day) or vehicle for 1 week via osmotic minipumps. Epoxomicin inhibited the chymotrypsin-like activity by ~50% in both groups. All parameters of cardiac hypertrophy (including the fetal gene program) were not affected by epoxomicin treatment in both groups. In contrast, FAS was 12% and 35% higher in epoxomicin-treated than vehicle-treated WT and KI mice, respectively. To identify which genes or pathways could be involved in this positive effect, we performed a transcriptome analysis in KI and WT neonatal cardiac myocytes, treated or not with the proteasome inhibitor MG132 (1 μM, 24 h). This revealed 103 genes (four-fold difference; 5% FDR) which are commonly regulated in both KI and WT cardiac myocytes. Thus, even in genetically-modified mice with manifest HCM, proteasome inhibition showed beneficial effects, at least with regard to cardiac function. Targeting the UPS in cardiac diseases remains therefore a therapeutic option. PMID:25566086

  8. Controlled Access of p53 to the Nucleus Regulates its Proteasomal Degradation by MDM2

    PubMed Central

    Davis, James R.; Mossalam, Mohanad; Lim, Carol S.

    2013-01-01

    The tumor suppressor p53 can be sent to the proteasome for degradation by placing its nucleo-cytoplasmic shuttling under ligand control. Endogenous p53 is ubiquitinated by MDM2 in the nucleus, and controlling the access of p53 to the nuclear compartment regulates its ubiquitination and proteasomal degradation. This was accomplished by the use of a “protein switch” that places nuclear translocation under the control of externally applied dexamethasone. Fluorescence microscopy revealed that sending protein switch p53 (PS-p53) to the nucleus produces a distinct punctate distribution in both the cytoplasm and nucleus. The nuclear role in accessing the proteasome was investigated by inhibiting classical nuclear export with leptomycin B. Trapping PS-p53 in the nucleus only allows this punctate staining in that compartment, suggesting that PS-p53 must translocate first to the nuclear compartment for cytoplasmic punctate staining to occur. The role of MDM2 binding was explored by inhibiting MDM2/p53 binding with nutlin-3. Inhibition of this interaction blocked both nuclear export and cytoplasmic and nuclear punctate staining, providing evidence that any change in localization after nuclear translocation is due to MDM2 binding. Further, blocking the proteolytic activity of the proteasome maintained the nuclear localization of the construct. Truncations of p53 were made to determine smaller constructs still capable of interacting with MDM2, and their subcellular localization and degradation potential was observed. PS-p53 and a smaller construct, construct containing the two MDM2 binding regions of p53 (Box I+V) were indeed degraded by the proteasome as measured by loss of enhanced green fluorescent protein that was also fused to the construct. The influence of these constructs on p53 gene transactivation function was assessed, and revealed that PS-p53 decreased gene transactivation, while PS-p53(BoxI+V) did not significantly change baseline gene transactivation. PMID

  9. Ubiquitin-Like Proteasome System Represents a Eukaryotic-Like Pathway for Targeted Proteolysis in Archaea

    PubMed Central

    Fu, Xian; Liu, Rui; Sanchez, Iona; Silva-Sanchez, Cecilia; Hepowit, Nathaniel L.; Cao, Shiyun; Chen, Sixue

    2016-01-01

    ABSTRACT The molecular mechanisms of targeted proteolysis in archaea are poorly understood, yet they may have deep evolutionary roots shared with the ubiquitin-proteasome system of eukaryotic cells. Here, we demonstrate in archaea that TBP2, a TATA-binding protein (TBP) modified by ubiquitin-like isopeptide bonds, is phosphorylated and targeted for degradation by proteasomes. Rapid turnover of TBP2 required the functions of UbaA (the E1/MoeB/ThiF homolog of archaea), AAA ATPases (Cdc48/p97 and Rpt types), a type 2 JAB1/MPN/MOV34 metalloenzyme (JAMM/MPN+) homolog (JAMM2), and 20S proteasomes. The ubiquitin-like protein modifier small archaeal modifier protein 2 (SAMP2) stimulated the degradation of TBP2, but SAMP2 itself was not degraded. Analysis of the TBP2 fractions that were not modified by ubiquitin-like linkages revealed that TBP2 had multiple N termini, including Met1-Ser2, Ser2, and Met1-Ser2(p) [where (p) represents phosphorylation]. The evidence suggested that the Met1-Ser2(p) form accumulated in cells that were unable to degrade TBP2. We propose a model in archaea in which the attachment of ubiquitin-like tags can target proteins for degradation by proteasomes and be controlled by N-terminal degrons. In support of a proteolytic mechanism that is energy dependent and recycles the ubiquitin-like protein tags, we find that a network of AAA ATPases and a JAMM/MPN+ metalloprotease are required, in addition to 20S proteasomes, for controlled intracellular proteolysis. PMID:27190215

  10. Disulfiram promotes the conversion of carcinogenic cadmium to a proteasome inhibitor with pro-apoptotic activity in human cancer cells

    SciTech Connect

    Li Lihua; Yang Huanjie; Chen Di; Cui, Cindy; Ping Dou, Q.

    2008-06-01

    The ubiquitin-proteasome system is involved in various cellular processes, including transcription, apoptosis, and cell cycle. In vitro, in vivo, and clinical studies suggest the potential use of proteasome inhibitors as anticancer drugs. Cadmium (Cd) is a widespread environmental pollutant that has been classified as a human carcinogen. Recent study in our laboratory suggested that the clinically used anti-alcoholism drug disulfiram (DSF) could form a complex with tumor cellular copper, resulting in inhibition of the proteasomal chymotrypsin-like activity and induction of cancer cell apoptosis. In the current study, we report, for the first time, that DSF is able to convert the carcinogen Cd to a proteasome-inhibitor and cancer cell apoptosis inducer. Although the DSF-Cd complex inhibited the chymotrypsin-like activity of a purified 20S proteasome with an IC{sub 50} value of 32 {mu}mol/L, this complex was much more potent in inhibiting the chymotrypsin-like activity of prostate cancer cellular 26S proteasome. Inhibition of cellular proteasome activity by the DSF-Cd complex resulted in the accumulation of ubiquitinated proteins and the natural proteasome substrate p27, which was followed by activation of calpain and induction of apoptosis. Importantly, human breast cancer MCF10DCIS cells were much more sensitive to the DSF-Cd treatment than immortalized but non-tumorigenic human breast MCF-10A cells, demonstrating that the DSF-Cd complex could selectively induce proteasome inhibition and apoptosis in human tumor cells. Our work suggests the potential use of DSF for treatment of cells with accumulated levels of carcinogen Cd.

  11. The Keap1-Nrf2-antioxidant response element pathway: a review of its regulation by melatonin and the proteasome.

    PubMed

    Vriend, Jerry; Reiter, Russel J

    2015-02-01

    Both melatonin and proteasome inhibitors upregulate antioxidant enzymes including superoxide dismutase (SOD), glutathione peroxidase (GP), hemoxygenase 1 (HO-1), and NADPH:quinone oxidoreductase (NQO1). Recent evidence suggests that the antioxidant action of both melatonin and proteasome inhibitors involves the Keap1-ARE (Keap1 antioxidant response element) pathway via the upregulation of Nrf2. Melatonin and proteasome inhibitors suppress the degradation of Nrf2 and also enhance its nuclear translocation. In the nucleus Nrf2, together with a cofactor, stimulates the transcription of antioxidant enzymes and detoxifying enzymes. The ligase (E3) complex (Keap1-Cul3-Rbx1) responsible for ubiquitinating Nrf2, prior to proteasomal degradation, also ubiquitinates IkB kinase and the antiapoptotic factor Bcl-2, and possibly additional proteins. In various systems, NF-κB, which is inhibited by IkBα, is downregulated by proteasome inhibitors as well as by melatonin. Similarly in leukemic cells, Bcl-2 is down-regulated by the proteasome inhibitor, bortezomib, and also by melatonin. Thus melatonin administration modulates the activity of three separate substrates of the Keap1-Cul3-Rbx1 ubiquitin ligase. These facts could be accounted for by the hypothesis that melatonin interacts with the ubiquitin ligase complex or, more likely, by the hypothesis that melatonin acts as a proteasome inhibitor. A recent study documented that melatonin acts as a proteasome inhibitor in cancer cells as well as inhibiting chymotrypsin-like activity in cell-free systems of these cells. Further studies, however, are needed to clarify the interaction of melatonin and the ubiquitin-proteasome system as they relate to oxidative stress. PMID:25528518

  12. Selective Restriction of Nef-Defective Human Immunodeficiency Virus Type 1 by a Proteasome-Dependent Mechanism▿

    PubMed Central

    Qi, Mingli; Aiken, Christopher

    2007-01-01

    The Nef protein enhances human immunodeficiency virus type 1 (HIV-1) infectivity by facilitating an early postentry step in the virus life cycle. We report here that the addition of MG132 or lactacystin, each a specific inhibitor of cellular proteasome activity, preferentially enhances cellular permissiveness to infection by Nef-defective versus wild-type HIV-1. Pseudotyping by the glycoprotein of vesicular stomatitis virus rendered Nef-defective HIV-1 particles minimally responsive to the enhancing effects of proteasome inhibitors. These results suggest that Nef enhances the infectivity of HIV-1 particles by reducing their susceptibility to proteasomal degradation in target cells. PMID:17108041

  13. Morphological Changes within the Rat Lateral Ventricle after the Administration of Proteasome Inhibitors.

    PubMed

    Wójcik, Sławomir; Spodnik, Jan Henryk; Dziewiątkowski, Jerzy; Spodnik, Edyta; Moryś, Janusz

    2015-01-01

    The broad variety of substances that inhibit the action of the ubiquitin-proteasome system (UPS)-known as proteasome inhibitors-have been used extensively in previous studies, and they are currently frequently proposed as a novel form of cancer treatment and as a protective factor in intracerebral hemorrhage treatment. The experimental data on the safest route of proteasome inhibitor administration, their associated side effects, and the possible ways of minimizing these effects have recently become a very important topic. The aim of our present study was to determine the effects of administering of MG-132, lactacystin and epoxomicin, compounds belonging to three different classes of proteasome inhibitors, on the ependymal walls of the lateral ventricle. Observations were made 2 and 8 weeks after the intraventricular administration of the studied substances dissolved in dimethyl sulfoxide (DMSO) into the lateral ventricle of adult Wistar rats. Qualitative and quantitative analysis of brain sections stained with histochemical and inmmunofluorescence techniques showed that the administration of proteasome inhibitors caused a partial occlusion of the injected ventricle in all of the studied animals. The occlusion was due to ependymal cells damage and subsequent ependymal discontinuity, which caused direct contact between the striatum and the lateral nuclei of the septum, mononuclear cell infiltration and the formation of a glial scar between these structures (with the activation of astroglia, microglia and oligodendroglia). Morphologically, the ubiquitin-positive aggregates corresponded to aggresomes, indicating impaired activity of the UPS and the accumulation and aggregation of ubiquitinated proteins that coincided with the occurrence of glial scars. The most significant changes were observed in the wall covering the striatum in animals that were administered epoxomicin, and milder changes were observed in animals administered lactacystin and MG-132. Interestingly

  14. Optimization and Evaluation of 5-Styryl-Oxathiazol-2-one Mycobacterium tuberculosis Proteasome Inhibitors as Potential Antitubercular Agents

    PubMed Central

    Russo, Francesco; Gising, Johan; Åkerbladh, Linda; Roos, Annette K; Naworyta, Agata; Mowbray, Sherry L; Sokolowski, Anders; Henderson, Ian; Alling, Torey; Bailey, Mai A; Files, Megan; Parish, Tanya; Karlén, Anders; Larhed, Mats

    2015-01-01

    This is the first report of 5-styryl-oxathiazol-2-ones as inhibitors of the Mycobacterium tuberculosis (Mtb) proteasome. As part of the study, the structure–activity relationship of oxathiazolones as Mtb proteasome inhibitors has been investigated. Furthermore, the prepared compounds displayed a good selectivity profile for Mtb compared to the human proteasome. The 5-styryl-oxathiazol-2-one inhibitors identified showed little activity against replicating Mtb, but were rapidly bactericidal against nonreplicating bacteria. (E)-5-(4-Chlorostyryl)-1,3,4-oxathiazol-2-one) was most effective, reducing the colony-forming units (CFU)/mL below the detection limit in only seven days at all concentrations tested. The results suggest that this new class of Mtb proteasome inhibitors has the potential to be further developed into novel antitubercular agents for synergistic combination therapies with existing drugs. PMID:26246997

  15. Class I T-cell epitope prediction: improvements using a combination of proteasome cleavage, TAP affinity, and MHC binding.

    PubMed

    Doytchinova, Irini A; Flower, Darren R

    2006-05-01

    Cleavage by the proteasome is responsible for generating the C terminus of T-cell epitopes. Modeling the process of proteasome cleavage as part of a multi-step algorithm for T-cell epitope prediction will reduce the number of non-binders and increase the overall accuracy of the predictive algorithm. Quantitative matrix-based models for prediction of the proteasome cleavage sites in a protein were developed using a training set of 489 naturally processed T-cell epitopes (nonamer peptides) associated with HLA-A and HLA-B molecules. The models were validated using an external test set of 227 T-cell epitopes. The performance of the models was good, identifying 76% of the C-termini correctly. The best model of proteasome cleavage was incorporated as the first step in a three-step algorithm for T-cell epitope prediction, where subsequent steps predicted TAP affinity and MHC binding using previously derived models. PMID:16524630

  16. A reversible and highly selective inhibitor of the proteasomal ubiquitin receptor rpn13 is toxic to multiple myeloma cells.

    PubMed

    Trader, Darci J; Simanski, Scott; Kodadek, Thomas

    2015-05-20

    The proteasome is a multisubunit complex responsible for most nonlysosomal turnover of proteins in eukaryotic cells. Proteasome inhibitors are of great interest clinically, particularly for the treatment of multiple myeloma (MM). Unfortunately, resistance arises almost inevitably to these active site-targeted drugs. One strategy to overcome this resistance is to inhibit other steps in the protein turnover cascade mediated by the proteasome. Previously, Anchoori et al. identified Rpn13 as the target of an electrophilic compound (RA-190) that was selectively toxic to MM cells (Cancer Cell 2013, 24, 791-805), suggesting that this subunit of the proteasome is also a viable cancer drug target. Here we describe the discovery of the first highly selective, reversible Rpn13 ligands and show that they are also selectively toxic to MM cells. These data strongly support the hypothesis that Rpn13 is a viable target for the development of drugs to treat MM and other cancers. PMID:25914958

  17. Biochemical analysis of TssK, a core component of the bacterial Type VI secretion system, reveals distinct oligomeric states of TssK and identifies a TssK–TssFG subcomplex

    PubMed Central

    English, Grant; Byron, Olwyn; Cianfanelli, Francesca R.; Prescott, Alan R.; Coulthurst, Sarah J.

    2014-01-01

    Gram-negative bacteria use the Type VI secretion system (T6SS) to inject toxic proteins into rival bacteria or eukaryotic cells. However, the mechanism of the T6SS is incompletely understood. In the present study, we investigated a conserved component of the T6SS, TssK, using the antibacterial T6SS of Serratia marcescens as a model system. TssK was confirmed to be essential for effector secretion by the T6SS. The native protein, although not an integral membrane protein, appeared to localize to the inner membrane, consistent with its presence within a membrane-anchored assembly. Recombinant TssK purified from S. marcescens was found to exist in several stable oligomeric forms, namely trimer, hexamer and higher-order species. Native-level purification of TssK identified TssF and TssG as interacting proteins. TssF and TssG, conserved T6SS components of unknown function, were required for T6SS activity, but not for correct localization of TssK. A complex containing TssK, TssF and TssG was subsequently purified in vitro, confirming that these three proteins form a new subcomplex within the T6SS. Our findings provide new insight into the T6SS assembly, allowing us to propose a model whereby TssK recruits TssFG into the membrane-associated T6SS complex and different oligomeric states of TssK may contribute to the dynamic mechanism of the system. PMID:24779861

  18. Biochemical analysis of TssK, a core component of the bacterial Type VI secretion system, reveals distinct oligomeric states of TssK and identifies a TssK-TssFG subcomplex.

    PubMed

    English, Grant; Byron, Olwyn; Cianfanelli, Francesca R; Prescott, Alan R; Coulthurst, Sarah J

    2014-07-15

    Gram-negative bacteria use the Type VI secretion system (T6SS) to inject toxic proteins into rival bacteria or eukaryotic cells. However, the mechanism of the T6SS is incompletely understood. In the present study, we investigated a conserved component of the T6SS, TssK, using the antibacterial T6SS of Serratia marcescens as a model system. TssK was confirmed to be essential for effector secretion by the T6SS. The native protein, although not an integral membrane protein, appeared to localize to the inner membrane, consistent with its presence within a membrane-anchored assembly. Recombinant TssK purified from S. marcescens was found to exist in several stable oligomeric forms, namely trimer, hexamer and higher-order species. Native-level purification of TssK identified TssF and TssG as interacting proteins. TssF and TssG, conserved T6SS components of unknown function, were required for T6SS activity, but not for correct localization of TssK. A complex containing TssK, TssF and TssG was subsequently purified in vitro, confirming that these three proteins form a new subcomplex within the T6SS. Our findings provide new insight into the T6SS assembly, allowing us to propose a model whereby TssK recruits TssFG into the membrane-associated T6SS complex and different oligomeric states of TssK may contribute to the dynamic mechanism of the system. PMID:24779861

  19. Proteasome activity is important for replication recovery, CHK1 phosphorylation and prevention of G2 arrest after low-dose formaldehyde

    SciTech Connect

    Ortega-Atienza, Sara; Green, Samantha E.; Zhitkovich, Anatoly

    2015-07-15

    Formaldehyde (FA) is a human carcinogen with numerous sources of environmental and occupational exposures. This reactive aldehyde is also produced endogenously during metabolism of drugs and other processes. DNA–protein crosslinks (DPCs) are considered to be the main genotoxic lesions for FA. Accumulating evidence suggests that DPC repair in high eukaryotes involves proteolysis of crosslinked proteins. Here, we examined a role of the main cellular proteolytic machinery proteasomes in toxic responses of human lung cells to low FA doses. We found that transient inhibition of proteasome activity increased cytotoxicity and diminished clonogenic viability of FA-treated cells. Proteasome inactivation exacerbated suppressive effects of FA on DNA replication and increased the levels of the genotoxic stress marker γ-H2AX in normal human cells. A transient loss of proteasome activity in FA-exposed cells also caused delayed perturbations of cell cycle, which included G2 arrest and a depletion of S-phase populations at FA doses that had no effects in control cells. Proteasome activity diminished p53-Ser15 phosphorylation but was important for FA-induced CHK1 phosphorylation, which is a biochemical marker of DPC proteolysis in replicating cells. Unlike FA, proteasome inhibition had no effect on cell survival and CHK1 phosphorylation by the non-DPC replication stressor hydroxyurea. Overall, we obtained evidence for the importance of proteasomes in protection of human cells against biologically relevant doses of FA. Biochemically, our findings indicate the involvement of proteasomes in proteolytic repair of DPC, which removes replication blockage by these highly bulky lesions. - Highlights: • Proteasome inhibition enhances cytotoxicity of low-dose FA in human lung cells. • Active proteasomes diminish replication-inhibiting effects of FA. • Proteasome activity prevents delayed G2 arrest in FA-treated cells. • Proteasome inhibition exacerbates replication stress by FA in

  20. Proteasome dysfunction inhibits surfactant protein gene expression in lung epithelial cells: mechanism of inhibition of SP-B gene expression.

    PubMed

    Das, Aparajita; Boggaram, Vijayakumar

    2007-01-01

    Surfactant proteins maintain lung function through their actions to reduce alveolar surface tension and control of innate immune responses in the lung. The ubiquitin proteasome pathway is responsible for the degradation of majority of intracellular proteins in eukaryotic cells, and proteasome dysfunction has been linked to the development of neurodegenerative, cardiac, and other diseases. Proteasome function is impaired in interstitial lung diseases associated with surfactant protein C (SP-C) mutation mapping to the BRICHOS domain located in the proSP-C protein. In this study we determined the effects of proteasome inhibition on surfactant protein expression in H441 and MLE-12 lung epithelial cells to understand the relationship between proteasome dysfunction and surfactant protein gene expression. Proteasome inhibitors lactacystin and MG132 reduced the levels of SP-A, SP-B, and SP-C mRNAs in a concentration-dependent manner in H441 and MLE-12 cells. In H441 cells, lactacystin and MG132 inhibition of SP-B mRNA was associated with similar decreases in SP-B protein, and the inhibition was due to inhibition of gene transcription. Proteasome inhibitors decreased thyroid transcription factor-1 (TTF-1)/Nkx2.1 DNA binding activity, and the reduced TTF-1 DNA binding activity was due to reduced expression levels of TTF-1 protein. These data indicated that the ubiquitin proteasome pathway is essential for the maintenance of surfactant protein gene expression and that disruption of this pathway inhibits surfactant protein gene expression via reduced expression of TTF-1 protein. PMID:16905641

  1. Gel-based chemical cross-linking analysis of 20S proteasome subunit-subunit interactions in breast cancer.

    PubMed

    Song, Hai; Xiong, Hua; Che, Jing; Xi, Qing-Song; Huang, Liu; Xiong, Hui-Hua; Zhang, Peng

    2016-08-01

    The ubiquitin-proteasome system plays a pivotal role in breast tumorigenesis by controlling transcription factors, thus promoting cell cycle growth, and degradation of tumor suppressor proteins. However, breast cancer patients have failed to benefit from proteasome inhibitor treatment partially due to proteasome heterogeneity, which is poorly understood in malignant breast neoplasm. Chemical crosslinking is an increasingly important tool for mapping protein three-dimensional structures and proteinprotein interactions. In the present study, two cross-linkers, bis (sulfosuccinimidyl) suberate (BS(3)) and its water-insoluble analog disuccinimidyl suberate (DSS), were used to map the subunit-subunit interactions in 20S proteasome core particle (CP) from MDA-MB-231 cells. Different types of gel electrophoresis technologies were used. In combination with chemical cross-linking and mass spectrometry, we applied these gel electrophoresis technologies to the study of the noncovalent interactions among 20S proteasome subunits. Firstly, the CP subunit isoforms were profiled. Subsequently, using native/SDSPAGE, it was observed that 0.5 mmol/L BS(3) was a relatively optimal cross-linking concentration for CP subunit-subunit interaction study. 2-DE analysis of the cross-linked CP revealed that α1 might preinteract with α2, and α3 might pre-interact with α4. Moreover, there were different subtypes of α1α2 and α3α4 due to proteasome heterogeneity. There was no significant difference in cross-linking pattern for CP subunits between BS(3) and DSS. Taken together, the gel-based characterization in combination with chemical cross-linking could serve as a tool for the study of subunit interactions within a multi-subunit protein complex. The heterogeneity of 20S proteasome subunit observed in breast cancer cells may provide some key information for proteasome inhibition strategy. PMID:27465334

  2. Disulfiram promotes the conversion of carcinogenic cadmium to a proteasome inhibitor with pro-apoptotic activity in human cancer cells

    PubMed Central

    Li, Lihua; Yang, Huanjie; Chen, Di; Cui, Cindy; Dou, Q. Ping

    2013-01-01

    The ubiquitinproteasome system is involved in various cellular processes, including transcription, apoptosis, and cell cycle. In vitro, in vivo, and clinical studies suggest the potential use of proteasome inhibitors as anticancer drugs. Cadmium (Cd) is a widespread environmental pollutant that has been classified as a human carcinogen. Recent study in our laboratory suggested that the clinically used anti-alcoholism drug disulfiram (DSF) could form a complex with tumor cellular copper, resulting in inhibition of the proteasomal chymotrypsin-like activity and induction of cancer cell apoptosis. In the current study, we report, for the first time, that DSF is able to convert the carcinogen Cd to a proteasome-inhibitor and cancer cell apoptosis inducer. Although the DSF–Cd complex inhibited the chymotrypsin-like activity of a purified 20S proteasome with an IC50 value of 32 μmol/L, this complex was much more potent in inhibiting the chymotrypsin-like activity of prostate cancer cellular 26S proteasome. Inhibition of cellular proteasome activity by the DSF–Cd complex resulted in the accumulation of ubiquitinated proteins and the natural proteasome substrate p27, which was followed by activation of calpain and induction of apoptosis. Importantly, human breast cancer MCF10DCIS cells were much more sensitive to the DSF–Cd treatment than immortalized but non-tumorigenic human breast MCF-10A cells, demonstrating that the DSF–Cd complex could selectively induce proteasome inhibition and apoptosis in human tumor cells. Our work suggests the potential use of DSF for treatment of cells with accumulated levels of carcinogen Cd. PMID:18304598

  3. The Nuclear Factor (Erythroid-derived 2)-like 2 and Proteasome Maturation Protein Axis Mediate Bortezomib Resistance in Multiple Myeloma.

    PubMed

    Li, Bingzong; Fu, Jinxiang; Chen, Ping; Ge, Xueping; Li, Yali; Kuiatse, Isere; Wang, Hua; Wang, Huihan; Zhang, Xingding; Orlowski, Robert Z

    2015-12-11

    Resistance to the proteasome inhibitor bortezomib is an emerging clinical problem whose mechanisms have not been fully elucidated. We considered the possibility that this could be associated with enhanced proteasome activity in part through the action of the proteasome maturation protein (POMP). Bortezomib-resistant myeloma models were used to examine the correlation between POMP expression and bortezomib sensitivity. POMP expression was then modulated using genetic and pharmacologic approaches to determine the effects on proteasome inhibitor sensitivity in cell lines and in vivo models. Resistant cell lines were found to overexpress POMP, and while its suppression in cell lines enhanced bortezomib sensitivity, POMP overexpression in drug-naive cells conferred resistance. Overexpression of POMP was associated with increased levels of nuclear factor (erythroid-derived 2)-like (NRF2), and NRF2 was found to bind to and activate the POMP promoter. Knockdown of NRF2 in bortezomib-resistant cells reduced POMP levels and proteasome activity, whereas its overexpression in drug-naive cells increased POMP and proteasome activity. The NRF2 inhibitor all-trans-retinoic acid reduced cellular NRF2 levels and increased the anti-proliferative and pro-apoptotic activities of bortezomib in resistant cells, while decreasing proteasome capacity. Finally, the combination of all-trans-retinoic acid with bortezomib showed enhanced activity against primary patient samples and in a murine model of bortezomib-resistant myeloma. Taken together, these studies validate a role for the NRF2/POMP axis in bortezomib resistance and identify NRF2 and POMP as potentially attractive targets for chemosensitization to this proteasome inhibitor. PMID:26483548

  4. Identification of proteasome subunit beta type 6 (PSMB6) associated with deltamethrin resistance in mosquitoes by proteomic and bioassay analyses.

    PubMed

    Sun, Linchun; Ye, Yuting; Sun, Haibo; Yu, Jing; Zhang, Li; Sun, Yan; Zhang, Donghui; Ma, Lei; Shen, Bo; Zhu, Changliang

    2013-01-01

    Deltamethrin (DM) insecticides are currently being promoted worldwide for mosquito control, because of the high efficacy, low mammalian toxicity and less environmental impact. Widespread and improper use of insecticides induced resistance, which has become a major obstacle for the insect-borne disease management. Resistance development is a complex and dynamic process involving many genes. To better understand the possible molecular mechanisms involved in DM resistance, a proteomic approach was employed for screening of differentially expressed proteins in DM-susceptible and -resistant mosquito cells. Twenty-seven differentially expressed proteins were identified by two-dimensional electrophoresis (2-DE) and mass spectrometry (MS). Four members of the ubiquitin-proteasome system were significantly elevated in DM-resistant cells, suggesting that the ubiquitin-proteasome pathway may play an important role in DM resistance. Proteasome subunit beta type 6 (PSMB6) is a member of 20S proteasomal subunit family, which forms the proteolytic core of 26S proteasome. We used pharmaceutical inhibitor and molecular approaches to study the contributions of PSMB6 in DM resistance: the proteasome inhibitor MG-132 and bortezomib were used to suppress the proteasomal activity and siRNA was designed to block the function of PSMB6. The results revealed that both MG-132 and bortezomib increased the susceptibility in DM-resistant cells and resistance larvae. Moreover, PSMB6 knockdown decreased cellular viability under DM treatment. Taken together, our study indicated that PSMB6 is associated with DM resistance in mosquitoes and that proteasome inhibitors such as MG-132 or bortezomib are suitable for use as a DM synergist for vector control. PMID:23762443

  5. Proteasomes remain intact, but show early focal alteration in their composition in a mouse model of amyotrophic lateral sclerosis.

    PubMed

    Kabashi, Edor; Agar, Jeffrey N; Hong, Yu; Taylor, David M; Minotti, Sandra; Figlewicz, Denise A; Durham, Heather D

    2008-06-01

    In amyotrophic lateral sclerosis caused by mutations in Cu/Zn-superoxide dismutase (SOD1), altered solubility and aggregation of the mutant protein implicates failure of pathways for detecting and catabolizing misfolded proteins. Our previous studies demonstrated early reduction of proteasome-mediated proteolytic activity in lumbar spinal cord of SOD1(G93A) transgenic mice, tissue particularly vulnerable to disease. The purpose of this study was to identify any underlying abnormalities in proteasomal structure. In lumbar spinal cord of pre-symptomatic mice [postnatal day 45 (P45) and P75], normal levels of structural 20S alpha subunits were incorporated into 20S/26S proteasomes; however, proteasomal complexes separated by native gel electrophoresis showed decreased immunoreactivity with antibodies to beta3, a structural subunit of the 20S proteasome core, and beta5, the subunit with chymotrypsin-like activity. This occurred prior to increase in beta5i immunoproteasomal subunit. mRNA levels were maintained and no association of mutant SOD1 with proteasomes was identified, implicating post-transcriptional mechanisms. mRNAs also were maintained in laser captured motor neurons at a later stage of disease (P100) in which multiple 20S proteins are reduced relative to the surrounding neuropil. Increase in detergent-insoluble, ubiquitinated proteins at P75 provided further evidence of stress on mechanisms of protein quality control in multiple cell types prior to significant motor neuron death. PMID:18315558

  6. The ubiquitin–proteasome pathway protects Chlamydomonas reinhardtii against selenite toxicity, but is impaired as reactive oxygen species accumulate

    PubMed Central

    Vallentine, Patrick; Hung, Chiu-Yueh; Xie, Jiahua; Van Hoewyk, Doug

    2014-01-01

    The ubiquitin–proteasome pathway (UPP) coordinates a myriad of physiological processes in higher plants, including abiotic stress responses, but it is less well characterized in algal species. In this study, the green alga Chlamydomonas reinhardtii was used to gain insights into the role of the UPP during moderate and severe selenite stress at three different time points. The data indicate that activity of the UPP in response to selenium (Se) stress was both time and dose dependent. Moderate selenite stress increased proteasome activity, protein ubiquitination and the proteasomal removal of malformed selenoproteins. However, severe Se stress caused by prolonged selenite treatment or high selenite concentration decreased proteasome activity, inhibited protein ubiquitination and prevented the proteasomal removal of selenoproteins. The UPP impairment during severe Se stress was associated with the observed accumulation of reactive oxygen species (ROS), including mitochondrial superoxide. Additionally, proteasomal inhibition decreased the concentration of chlorophyll in cultures challenged with Se. Therefore, although the UPP protects Chlamydomonas against Se stress, severe oxidative stress induced by selenite toxicity likely hinders the UPP's capacity to mediate a stress response. The possibility that stress tolerance in plants is dependent upon optimal UPP activity and maintenance is discussed. PMID:25301821

  7. Cytosolic PINK1 promotes the targeting of ubiquitinated proteins to the aggresome-autophagy pathway during proteasomal stress.

    PubMed

    Gao, Ju; Li, Mengen; Qin, Siyue; Zhang, Ting; Jiang, Sicong; Hu, Yuan; Deng, Yongkang; Zhang, Chenliang; You, Dujuan; Li, Hongchang; Mu, Dezhi; Zhang, Zhuohua; Jiang, Changan

    2016-04-01

    During proteasomal stress, cells can alleviate the accumulation of polyubiquitinated proteins by targeting them to perinuclear aggresomes for autophagic degradation, but the mechanism underlying the activation of this compensatory pathway remains unclear. Here we report that PINK1-s, a short form of Parkinson disease (PD)-related protein kinase PINK1 (PTEN induced putative kinase 1), is a major regulator of aggresome formation. PINK1-s is extremely unstable due to its recognition by the N-end rule pathway, and tends to accumulate in the cytosol during proteasomal stress. Overexpression of PINK1-s induces aggresome formation in cells with normal proteasomal activities, while loss of PINK1-s function leads to a significant decrease in the efficiency of aggresome formation induced by proteasomal inhibition. PINK1-s exerts its effect through phosphorylation of the ubiquitin-binding protein SQSTM1 (sequestosome 1) and increasing its ability to sequester polyubiquitinated proteins into aggresomes. These findings pinpoint PINK1-s as a sensor of proteasomal activities that transduces the proteasomal impairment signal to the aggresome formation machinery. PMID:27050454

  8. The Mycobacterium tuberculosis Proteasome Active Site Threonine Is Essential for Persistence Yet Dispensable for Replication and Resistance to Nitric Oxide

    PubMed Central

    Gandotra, Sheetal; Lebron, Maria B.; Ehrt, Sabine

    2010-01-01

    Previous work revealed that conditional depletion of the core proteasome subunits PrcB and PrcA impaired growth of Mycobacterium tuberculosis in vitro and in mouse lungs, caused hypersusceptibility to nitric oxide (NO) and impaired persistence of the bacilli during chronic mouse infections. Here, we show that genetic deletion of prcBA led to similar phenotypes. Surprisingly, however, an active site mutant proteasome complemented the in vitro and in vivo growth defects of the prcBA knockout (ΔprcBA) as well as its NO hypersensitivity. In contrast, long-term survival of M. tuberculosis in stationary phase and during starvation in vitro and in the chronic phase of mouse infection required a proteolytically active proteasome. Inhibition of inducible nitric oxide synthase did not rescue survival of ΔprcBA, revealing a function beyond NO defense, by which the proteasome contributes to M. tuberculosis fitness during chronic mouse infections. These findings suggest that proteasomal proteolysis facilitates mycobacterial persistence, that M. tuberculosis faces starvation during chronic mouse infections and that the proteasome serves a proteolysis-independent function. PMID:20711362

  9. Effect of proteasome inhibition on toxicity and CYP3A23 induction in cultured rat hepatocytes: Comparison with arsenite

    SciTech Connect

    Noreault-Conti, Trisha L.; Jacobs, Judith M.; Trask, Heidi W.; Wrighton, Steven A.; Sinclair, Jacqueline F.; Nichols, Ralph C. . E-mail: ralph.c.nichols@dartmouth.edu

    2006-12-15

    Previous work in our laboratory has shown that acute exposure of primary rat hepatocyte cultures to non-toxic concentrations of arsenite causes major decreases in the DEX-mediated induction of CYP3A23 protein, with minor decreases in CYP3A23 mRNA. To elucidate the mechanism for these effects of arsenite, the effects of arsenite and proteasome inhibition, separately and in combination, on induction of CYP3A23 protein were compared. The proteasome inhibitor, MG132, inhibited proteasome activity, but also decreased CYP3A23 mRNA and protein. Lactacystin, another proteasome inhibitor, decreased CYP3A23 protein without affecting CYP3A23 mRNA at a concentration that effectively inhibited proteasome activity. This result, suggesting that the action of lactacystin is similar to arsenite and was post-transcriptional, was confirmed by the finding that lactacystin decreased association of DEX-induced CYP3A23 mRNA with polyribosomes. Both MG132 and lactacystin inhibited total protein synthesis, but did not affect MTT reduction. Arsenite had no effect on ubiquitination of proteins, nor did arsenite significantly affect proteasomal activity. These results suggest that arsenite and lactacystin act by similar mechanisms to inhibit translation of CYP3A23.

  10. Inhibition of Tumor Proteasome Activity by Gold Dithiocarbamato Complexes via both Redox-Dependent and –Independent Processes

    PubMed Central

    Milacic, Vesna; Ronconi, Luca; Fan, Yuhua; Bi, Caifeng; Fregona, Dolores; Dou, Q Ping

    2013-01-01

    We have previously reported on a gold(III) complex, namely [AuBr2(DMDT)] (N,N-dimethyldithiocarbamate) showing potent in vitro and in vivo growth inhibitory activities toward human cancer cells and identifying the cellular proteasome as one of the major targets. However, the importance of the oxidation state of the gold center and the involved mechanism of action has yet to be established. Here we show that both gold(III)- and gold(I)-dithiocarbamato species, namely [AuBr2(ESDT)] (AUL12) and [Au(ESDT)]2 (AUL15), could inhibit the chymotrypsin-like activity of purified 20S proteasome and 26S proteasome in human breast cancer MDA-MB-231 cells, resulting in accumulation of ubiquitinated proteins and proteasome target proteins, and induction of cell death, but at significantly different levels. Gold(I) and gold(III) compounds-mediated proteasome inhibition and cell death induction were completely reversed by the addition of a reducing agent, dithiothreitol or N-acetyl-l-cysteine, suggesting the involvement of redox processes. Furthermore, treatment of MDA-MB-231 cells with gold(III) compound (AUL12), but not the gold(I) analogue (AUL15), resulted in the production of significant level of reactive oxygen species. Our study provides strong evidence that the cellular proteasome is an imporant target of both gold(I) and gold(III) dithiocarbamates, but distinct cellular mechanisms of action are responsible for their different overall effect. PMID:19911377

  11. The subunits MECL-1 and LMP2 are mutually required for incorporation into the 20S proteasome

    PubMed Central

    Groettrup, Marcus; Standera, Sybille; Stohwasser, Ralf; Kloetzel, Peter M.

    1997-01-01

    Processing of antigens for presentation by major histocompatibility complex (MHC) class I molecules requires the activity of the proteasome. The 20S proteasome complex is composed of 14 different subunits, 2 of which can be substituted by the interferon γ (IFN-γ)-inducible and MHC-encoded subunits LMP2 and LMP7 (low molecular mass poylpeptides 2 and 7). A third subunit, MECL-1, is inducible by IFN-γ but is encoded outside the MHC. Here we show by cotransfection experiments that the incorporation of MECL-1 into the 20S proteasome is directly dependent on the expression of LMP2 but independent of LMP7. Conversely, the uptake of LMP2 is strongly enhanced by MECL-1 expression. The expression of MECL-1 caused a replacement of the homologous subunit Z in the 20S proteasome complex. LMP2 is required for MECL-1 incorporation at the level of proteasome precursor formation that guarantees the concerted incorporation of two IFN-γ-inducible proteasome subunits encoded inside and outside the MHC. The obligatory coincorporation of MECL-1 and LMP2 is an important parameter for the interpretation of results obtained with LMP2-deficient cell lines and mice as well as for the design of experiments addressing the function of MECL-1 in antigen presentation. PMID:9256419

  12. Proteasome inhibitors induce peroxisome proliferator-activated receptor transactivation through RXR accumulation and a protein kinase C-dependent pathway

    SciTech Connect

    Tsao, W.-C.; Wu, H.-M.; Chi, K.-H.; Chang, Y.-H.; Lin, W.-W. . E-mail: wwl@ha.mc.ntu.edu.tw

    2005-03-10

    Peroxisome proliferator-activated receptor {gamma} (PPAR{gamma}), a member of nuclear hormone receptors, forms a heterodimeric DNA binding complex with retinoid X receptor (RXR) and serves as a transcriptional regulator of gene expression. In this study, using luciferase assay of a reporter gene containing PPAR response element (PPRE), we found PPRE transactivity was additively induced by PPAR{gamma} activator (15dPGJ{sub 2}) and RXR activator (9-cis retinoic acid, 9-cis RA). Proteasome inhibitors MG132 and MG262 also stimulate PPRE transactivity in a concentration-dependent manner, and this effect is synergistic to 15dPGJ{sub 2} and 9-cis RA. PKC activation by 12-myristate 13-acetate (PMA) and ingenol 3,20-dibenzoate (IDB) also led to an increased PPRE activation, and this action was additive to PPAR{gamma} activators and 9-cis RA, but not to proteasome inhibitors. Results indicate that the PPAR{gamma} enhancing effect of proteasome inhibitors was attributed to redox-sensitive PKC activation. Western blot analysis showed that the protein level of RXR{alpha}, but not PPAR{gamma}, RXR{beta}, or PKC isoforms, was accumulated in the presence of proteasome inhibitors. Taken together, we conclude that proteasome inhibitors can upregulate PPRE activity through RXR{alpha} accumulation and a PKC-dependent pathway. The former is due to inhibition of RXR{alpha} degradation through ubiquitin-dependent proteasome system, while the latter is mediated by reactive oxygen species (ROS) production.

  13. BRK Targets Dok1 for Ubiquitin-Mediated Proteasomal Degradation to Promote Cell Proliferation and Migration

    PubMed Central

    Miah, Sayem; Goel, Raghuveera Kumar; Dai, Chenlu; Kalra, Natasha; Beaton-Brown, Erika; Bagu, Edward T.; Bonham, Keith; Lukong, Kiven E.

    2014-01-01

    Breast tumor kinase (BRK), also known as protein tyrosine kinase 6 (PTK6), is a non-receptor tyrosine kinase overexpressed in more that 60% of human breast carcinomas. The overexpression of BRK has been shown to sensitize mammary epithelial cells to mitogenic signaling and to promote cell proliferation and tumor formation. The molecular mechanisms of BRK have been unveiled by the identification and characterization of BRK target proteins. Downstream of tyrosine kinases 1 or Dok1 is a scaffolding protein and a substrate of several tyrosine kinases. Herein we show that BRK interacts with and phosphorylates Dok1 specifically on Y362. We demonstrate that this phosphorylation by BRK significantly downregulates Dok1 in a ubiquitin-proteasome-mediated mechanism. Together, these results suggest a novel mechanism of action of BRK in the promotion of tumor formation, which involves the targeting of tumor suppressor Dok1 for degradation through the ubiquitin proteasomal pathway. PMID:24523872

  14. Mitochondrial and Ubiquitin Proteasome System Dysfunction in Ageing and Disease: Two Sides of the Same Coin?

    PubMed Central

    Ross, Jaime M.; Olson, Lars; Coppotelli, Giuseppe

    2015-01-01

    Mitochondrial dysfunction and impairment of the ubiquitin proteasome system have been described as two hallmarks of the ageing process. Additionally, both systems have been implicated in the etiopathogenesis of many age-related diseases, particularly neurodegenerative disorders, such as Alzheimer’s and Parkinson’s disease. Interestingly, these two systems are closely interconnected, with the ubiquitin proteasome system maintaining mitochondrial homeostasis by regulating organelle dynamics, the proteome, and mitophagy, and mitochondrial dysfunction impairing cellular protein homeostasis by oxidative damage. Here, we review the current literature and argue that the interplay of the two systems should be considered in order to better understand the cellular dysfunction observed in ageing and age-related diseases. Such an approach may provide valuable insights into molecular mechanisms underlying the ageing process, and further discovery of treatments to counteract ageing and its associated diseases. Furthermore, we provide a hypothetical model for the heterogeneity described among individuals during ageing. PMID:26287188

  15. Retinoblastoma protein co-purifies with proteasomal insulin-degrading enzyme: Implications for cell proliferation control

    SciTech Connect

    Radulescu, Razvan T.; Duckworth, William C.; Levy, Jennifer L.; Fawcett, Janet

    2010-04-30

    Previous investigations on proteasomal preparations containing insulin-degrading enzyme (IDE; EC 3.4.24.56) have invariably yielded a co-purifying protein with a molecular weight of about 110 kDa. We have now found both in MCF-7 breast cancer and HepG2 hepatoma cells that this associated molecule is the retinoblastoma tumor suppressor protein (RB). Interestingly, the amount of RB in this protein complex seemed to be lower in HepG2 vs. MCF-7 cells, indicating a higher (cytoplasmic) protein turnover in the former vs. the latter cells. Moreover, immunofluorescence showed increased nuclear localization of RB in HepG2 vs. MCF-7 cells. Beyond these subtle differences between these distinct tumor cell types, our present study more generally suggests an interplay between RB and IDE within the proteasome that may have important growth-regulatory consequences.

  16. Proteasome Inhibitor YSY01A Enhances Cisplatin Cytotoxicity in Cisplatin-Resistant Human Ovarian Cancer Cells

    PubMed Central

    Huang, Wei; Zhou, Quan; Yuan, Xia; Ge, Ze-mei; Ran, Fu-xiang; Yang, Hua-yu; Qiang, Guang-liang; Li, Run-tao; Cui, Jing-rong

    2016-01-01

    Cisplatin is one of the most common drugs used for treatment of solid tumors such as ovarian cancer. Unfortunately, the development of resistance against this cytotoxic agent limits its clinical use. Here we report that YSY01A, a novel proteasome inhibitor, is capable of suppressing survival of cisplatin-resistant ovarian cancer cells by inducing apoptosis. And YSY01A treatment enhances the cytotoxicity of cisplatin in drug-resistant ovarian cancer cells. Specifically, YSY01A abrogates regulatory proteins important for cell proliferation and anti-apoptosis including NF-κB p65 and STAT3, resulting in down-regulation of Bcl-2. A dramatic increase in cisplatin uptake was also observed by inductively coupled plasma-mass spectrometry following exposure to YSY01A. Taken together, YSY01A serves as a potential candidate for further development as anticancer therapeutics targeting the proteasome. PMID:27326257

  17. The investigational proteasome inhibitor ixazomib for the treatment of multiple myeloma.

    PubMed

    Richardson, Paul G; Moreau, Philippe; Laubach, Jacob P; Gupta, Neeraj; Hui, Ai-Min; Anderson, Kenneth C; San Miguel, Jesús F; Kumar, Shaji

    2015-01-01

    Ixazomib is an investigational, reversible 20S proteasome inhibitor. It is the first oral proteasome inhibitor under clinical investigation in multiple myeloma (MM). Under physiological conditions, the stable citrate ester drug substance, ixazomib citrate (MLN9708), rapidly hydrolyzes to the biologically active boronic acid, ixazomib (MLN2238). Preclinical studies have demonstrated antitumor activity in MM cell lines and xenograft models. In Phase I/II clinical studies ixazomib has had generally manageable toxicities, with limited peripheral neuropathy observed to date. Preliminary data from these studies indicate ixazomib is active as a single agent in relapsed/refractory MM and as part of combination regimens in newly diagnosed patients. Phase III studies in combination with lenalidomide-dexamethasone are ongoing. PMID:25832873

  18. Surface induced dissociation yields substructure of Methanosarcina thermophila 20S proteasome complexes

    PubMed Central

    Ma, Xin; Loo, Joseph A.; Wysocki, Vicki H.

    2015-01-01

    Native mass spectrometry (MS) and surface induced dissociation (SID) have been applied to study the stoichiometry and quaternary structure of non-covalent protein complexes. In this study, Methanosarcina thermophila 20S proteasome, which consists of four stacked heptameric rings (α7β7β7α7 symmetry), has been selected to explore the SID dissociation pattern of a complicated stacked ring protein complex. SID produces both α and β subunits while collision induced dissociation (CID) produces only highly charged α subunit. In addition, the charge reduced 20S proteasome produces the α7β7 fragment, reflecting the stacked ring topology of the complex. The combination of SID and charge reduction is shown to be a powerful tool for the study of protein complex structure. PMID:26005366

  19. Numerous proteins with unique characteristics are degraded by the 26S proteasome following monoubiquitination.

    PubMed

    Braten, Ori; Livneh, Ido; Ziv, Tamar; Admon, Arie; Kehat, Izhak; Caspi, Lilac H; Gonen, Hedva; Bercovich, Beatrice; Godzik, Adam; Jahandideh, Samad; Jaroszewski, Lukasz; Sommer, Thomas; Kwon, Yong Tae; Guharoy, Mainak; Tompa, Peter; Ciechanover, Aaron

    2016-08-01

    The "canonical" proteasomal degradation signal is a substrate-anchored polyubiquitin chain. However, a handful of proteins were shown to be targeted following monoubiquitination. In this study, we established-in both human and yeast cells-a systematic approach for the identification of monoubiquitination-dependent proteasomal substrates. The cellular wild-type polymerizable ubiquitin was replaced with ubiquitin that cannot form chains. Using proteomic analysis, we screened for substrates that are nevertheless degraded under these conditions compared with those that are stabilized, and therefore require polyubiquitination for their degradation. For randomly sampled representative substrates, we confirmed that their cellular stability is in agreement with our screening prediction. Importantly, the two groups display unique features: monoubiquitinated substrates are smaller than the polyubiquitinated ones, are enriched in specific pathways, and, in humans, are structurally less disordered. We suggest that monoubiquitination-dependent degradation is more widespread than assumed previously, and plays key roles in various cellular processes. PMID:27385826

  20. High-Throughput siRNA Screening Applied to the Ubiquitin-Proteasome System.

    PubMed

    Poulsen, Esben G; Nielsen, Sofie V; Pietras, Elin J; Johansen, Jens V; Steinhauer, Cornelia; Hartmann-Petersen, Rasmus

    2016-01-01

    The ubiquitin-proteasome system is the major pathway for intracellular protein degradation in eukaryotic cells. Due to the large number of genes dedicated to the ubiquitin-proteasome system, mapping degradation pathways for short lived proteins is a daunting task, in particular in mammalian cells that are not genetically tractable as, for instance, a yeast model system. Here, we describe a method relying on high-throughput cellular imaging of cells transfected with a targeted siRNA library to screen for components involved in degradation of a protein of interest. This method is a rapid and cost-effective tool which is also highly applicable for other studies on gene function. PMID:27613054

  1. Proteasome inhibitor model of Parkinson's disease in mice is confounded by neurotoxicity of the ethanol vehicle.

    PubMed

    Landau, Anne M; Kouassi, Edouard; Siegrist-Johnstone, Rosmarie; Desbarats, Julie

    2007-02-15

    Defects in the ubiquitin-proteasome system have been implicated in Parkinson's Disease (PD). Recently, a rat model of PD was developed using a synthetic proteasome inhibitor (PSI), (Z-lle-Glu(OtBu)-Ala-Leu-al). We attempted to transfer this model to mouse studies, where genetics can be more readily investigated due to the availability of genetically modified mice. We treated C57BL/6 (B6) mice with six intraperitoneal injections of 6 mg/kg PSI in 50 mul of 70% ethanol over a 2-week-period. We found significant decreases in nigrostriatal dopamine in PSI-treated mice compared with saline-treated mice. However, we observed similar decreases in the ethanol-treated vehicle control group. Administration of ethanol alone led to significant long-term alterations in dopamine levels. Ethanol significantly eclipses the effects of PSI in the dopamine system, and therefore is a confounding vehicle for this model. PMID:17230468

  2. Lipopolysaccharide Induces Degradation of Connexin43 in Rat Astrocytes via the Ubiquitin-Proteasome Proteolytic Pathway

    PubMed Central

    Liao, Chih-Kai; Jeng, Chung-Jiuan; Wang, Hwai-Shi; Wang, Shu-Huei; Wu, Jiahn-Chun

    2013-01-01

    The astrocytic syncytium plays a critical role in maintaining the homeostasis of the brain through the regulation of gap junction intercellular communication (GJIC). Changes to GJIC in response to inflammatory stimuli in astrocytes may have serious effects on the brain. We have previously shown that lipopolysaccharide (LPS) reduces connexin43 (Cx43) expression and GJIC in cultured rat astrocytes via a toll-like receptor 4-mediated signaling pathway. In the present study, treatment of astrocytes with LPS resulted in a significant increase in levels of the phosphorylated forms of stress-activated protein kinase/c-Jun N-terminal kinase (SAPK/JNK) -1, -2, and -3 for up to 18 h. An increase in nuclear transcription factor NF-κB levels was also observed after 8 h of LPS treatment and was sustained for up to 18 h. The LPS-induced decrease in Cx43 protein levels and inhibition of GJIC were blocked by the SAPK/JNK inhibitor SP600125, but not by the NF-κB inhibitor BAY11-7082. Following blockade of de novo protein synthesis by cycloheximide, LPS accelerated Cx43 degradation. Moreover, the LPS-induced downregulation of Cx43 was blocked following inhibition of 26S proteasome activity using the reversible proteasome inhibitor MG132 or the irreversible proteasome inhibitor lactacystin. Immunoprecipitation analyses revealed an increased association of Cx43 with both ubiquitin and E3 ubiquitin ligase Nedd4 in astrocytes after LPS stimulation for 6 h and this effect was prevented by SP600125. Taken together, these results suggest that LPS stimulation leads to downregulation of Cx43 expression and GJIC in rat astrocytes by activation of SAPK/JNK and the ubiquitin-proteasome proteolytic pathway. PMID:24236122

  3. Uncommon functional properties of the first piscine 26S proteasome from the Antarctic notothenioid Trematomus bernacchii

    PubMed Central

    Gogliettino, Marta; Balestrieri, Marco; Riccio, Alessia; Facchiano, Angelo; Fusco, Carmela; Palazzo, Vincenzo Cecere; Rossi, Mosè; Cocca, Ennio; Palmieri, Gianna

    2016-01-01

    Protein homoeostasis is a fundamental process allowing the preservation of functional proteins and it has a great impact on the life of the Antarctic organisms. However, the effect of low temperatures on protein turnover is poorly understood and the cold-adaptation of the degradation machinery remains an unresolved issue. As the 26S proteasome represents the main proteolytic system devoted to the controlled degradation of intracellular proteins, the purpose of the present study was to investigate the functions of this complex in the notothenioid Trematomus bernacchii, in order to better understand its role in the physiology of Antarctic fish. To this aim, we purified and characterized the 26S proteasome from T. bernacchii and isolated the cDNAs codifying seven of the 14 subunits belonging to the proteasome 20S core particle. Results provided evidences of the high resistance of the piscine 26S proteasome to oxidative agents and of its ‘uncommon’ ability to efficiently hydrolyse oxidized bovine serum albumin (BSA), suggesting that this enzymatic complex could play a key role in the antioxidant defense systems in fish inhabiting permanently cold marine environments. These unique properties were also reflected by the 3D model analysis, which revealed a higher structural stability of the piscine complex respect to the murine template. Finally, a comparative analysis, performed in a variety of tissues collected from T. bernacchii and the temperate fish Dicentrarchus labrax, showed a lower protein retention in the cold-adapted fish, possibly due to a better efficiency of its degradation machinery. PMID:26933238

  4. Diaphragm Muscle Fiber Weakness and Ubiquitin–Proteasome Activation in Critically Ill Patients

    PubMed Central

    Hooijman, Pleuni E.; Beishuizen, Albertus; Witt, Christian C.; de Waard, Monique C.; Girbes, Armand R. J.; Spoelstra-de Man, Angelique M.