Science.gov

Sample records for 1a channels fabrication

  1. Microfluidic channel fabrication method

    DOEpatents

    Arnold, Don W.; Schoeniger, Joseph S.; Cardinale, Gregory F.

    2001-01-01

    A new channel structure for microfluidic systems and process for fabricating this structure. In contrast to the conventional practice of fabricating fluid channels as trenches or grooves in a substrate, fluid channels are fabricated as thin walled raised structures on a substrate. Microfluidic devices produced in accordance with the invention are a hybrid assembly generally consisting of three layers: 1) a substrate that can or cannot be an electrical insulator; 2) a middle layer, that is an electrically conducting material and preferably silicon, forms the channel walls whose height defines the channel height, joined to and extending from the substrate; and 3) a top layer, joined to the top of the channels, that forms a cover for the channels. The channels can be defined by photolithographic techniques and are produced by etching away the material around the channel walls.

  2. Rapid Fabrication Techniques for Liquid Rocket Channel Wall Nozzles

    NASA Technical Reports Server (NTRS)

    Gradl, Paul R.

    2016-01-01

    The functions of a regeneratively-cooled nozzle are to (1) expand combustion gases to increase exhaust gas velocity while, (2) maintaining adequate wall temperatures to prevent structural failure, and (3) transfer heat from the hot gases to the coolant fluid to promote injector performance and stability. Regeneratively-cooled nozzles are grouped into two categories: tube-wall nozzles and channel wall nozzles. A channel wall nozzle is designed with an internal liner containing a series of integral coolant channels that are closed out with an external jacket. Manifolds are attached at each end of the nozzle to distribute coolant to and away from the channels. A variety of manufacturing techniques have been explored for channel wall nozzles, including state of the art laser-welded closeouts and pressure-assisted braze closeouts. This paper discusses techniques that NASA MSFC is evaluating for rapid fabrication of channel wall nozzles that address liner fabrication, slotting techniques and liner closeout techniques. Techniques being evaluated for liner fabrication include large-scale additive manufacturing of freeform-deposition structures to create the liner blanks. Abrasive water jet milling is being evaluated for cutting the complex coolant channel geometries. Techniques being considered for rapid closeout of the slotted liners include freeform deposition, explosive bonding and Cold Spray. Each of these techniques, development work and results are discussed in further detail in this paper.

  3. Fabrication of polyimide based microfluidic channels for biosensor devices

    NASA Astrophysics Data System (ADS)

    Zulfiqar, Azeem; Pfreundt, Andrea; Svendsen, Winnie Edith; Dimaki, Maria

    2015-03-01

    The ever-increasing complexity of the fabrication process of Point-of-care (POC) devices, due to high demand of functional versatility, compact size and ease-of-use, emphasizes the need of multifunctional materials that can be used to simplify this process. Polymers, currently in use for the fabrication of the often needed microfluidic channels, have limitations in terms of their physicochemical properties. Therefore, the use of a multipurpose biocompatible material with better resistance to the chemical, thermal and electrical environment, along with capability of forming closed channel microfluidics is inevitable. This paper demonstrates a novel technique of fabricating microfluidic devices using polyimide (PI) which fulfills the aforementioned properties criteria. A fabrication process to pattern microfluidic channels, using partially cured PI, has been developed by using a dry etching method. The etching parameters are optimized and compared to those used for fully cured PI. Moreover, the formation of closed microfluidic channel on wafer level by bonding two partially cured PI layers or a partially cured PI to glass with high bond strength has been demonstrated. The reproducibility in uniformity of PI is also compared to the most commonly used SU8 polymer, which is a near UV sensitive epoxy resin. The potential applications of PI processing are POC and biosensor devices integrated with microelectronics.

  4. Bisecting Microfluidic Channels with Metallic Nanowires Fabricated by Nanoskiving.

    PubMed

    Kalkman, Gerard A; Zhang, Yanxi; Monachino, Enrico; Mathwig, Klaus; Kamminga, Machteld E; Pourhossein, Parisa; Oomen, Pieter E; Stratmann, Sarah A; Zhao, Zhiyuan; van Oijen, Antoine M; Verpoorte, Elisabeth; Chiechi, Ryan C

    2016-02-23

    This paper describes the fabrication of millimeter-long gold nanowires that bisect the center of microfluidic channels. We fabricated the nanowires by nanoskiving and then suspended them over a trench in a glass structure. The channel was sealed by bonding it to a complementary poly(dimethylsiloxane) structure. The resulting structures place the nanowires in the region of highest flow, as opposed to the walls, where it approaches zero, and expose their entire surface area to fluid. We demonstrate active functionality, by constructing a hot-wire anemometer to measure flow through determining the change in resistance of the nanowire as a function of heat dissipation at low voltage (<5 V). Further, passive functionality is demonstrated by visualizing individual, fluorescently labeled DNA molecules attached to the wires. We measure rates of flow and show that, compared to surface-bound DNA strands, elongation saturates at lower rates of flow and background fluorescence from nonspecific binding is reduced.

  5. Bisecting Microfluidic Channels with Metallic Nanowires Fabricated by Nanoskiving.

    PubMed

    Kalkman, Gerard A; Zhang, Yanxi; Monachino, Enrico; Mathwig, Klaus; Kamminga, Machteld E; Pourhossein, Parisa; Oomen, Pieter E; Stratmann, Sarah A; Zhao, Zhiyuan; van Oijen, Antoine M; Verpoorte, Elisabeth; Chiechi, Ryan C

    2016-02-23

    This paper describes the fabrication of millimeter-long gold nanowires that bisect the center of microfluidic channels. We fabricated the nanowires by nanoskiving and then suspended them over a trench in a glass structure. The channel was sealed by bonding it to a complementary poly(dimethylsiloxane) structure. The resulting structures place the nanowires in the region of highest flow, as opposed to the walls, where it approaches zero, and expose their entire surface area to fluid. We demonstrate active functionality, by constructing a hot-wire anemometer to measure flow through determining the change in resistance of the nanowire as a function of heat dissipation at low voltage (<5 V). Further, passive functionality is demonstrated by visualizing individual, fluorescently labeled DNA molecules attached to the wires. We measure rates of flow and show that, compared to surface-bound DNA strands, elongation saturates at lower rates of flow and background fluorescence from nonspecific binding is reduced. PMID:26836373

  6. Acid-sensing ion channels 1a (ASIC1a) inhibit neuromuscular transmission in female mice.

    PubMed

    Urbano, Francisco J; Lino, Noelia G; González-Inchauspe, Carlota M F; González, Laura E; Colettis, Natalia; Vattino, Lucas G; Wunsch, Amanda M; Wemmie, John A; Uchitel, Osvaldo D

    2014-02-15

    Acid-sensing ion channels (ASIC) open in response to extracellular acidosis. ASIC1a, a particular subtype of these channels, has been described to have a postsynaptic distribution in the brain, being involved not only in ischemia and epilepsy, but also in fear and psychiatric pathologies. High-frequency stimulation of skeletal motor nerve terminals (MNTs) can induce presynaptic pH changes in combination with an acidification of the synaptic cleft, known to contribute to muscle fatigue. Here, we studied the role of ASIC1a channels on neuromuscular transmission. We combined a behavioral wire hanging test with electrophysiology, pharmacological, and immunofluorescence techniques to compare wild-type and ASIC1a lacking mice (ASIC1a (-/-) knockout). Our results showed that 1) ASIC1a (-/-) female mice were weaker than wild type, presenting shorter times during the wire hanging test; 2) spontaneous neurotransmitter release was reduced by ASIC1a activation, suggesting a presynaptic location of these channels at individual MNTs; 3) ASIC1a-mediated effects were emulated by extracellular local application of acid saline solutions (pH = 6.0; HEPES/MES-based solution); and 4) immunofluorescence techniques revealed the presence of ASIC1a antigens on MNTs. These results suggest that ASIC1a channels might be involved in controlling neuromuscular transmission, muscle contraction and fatigue in female mice.

  7. Acid-sensing ion channels 1a (ASIC1a) inhibit neuromuscular transmission in female mice

    PubMed Central

    Lino, Noelia G.; González-Inchauspe, Carlota M. F.; González, Laura E.; Colettis, Natalia; Vattino, Lucas G.; Wunsch, Amanda M.; Wemmie, John A.; Uchitel, Osvaldo D.

    2013-01-01

    Acid-sensing ion channels (ASIC) open in response to extracellular acidosis. ASIC1a, a particular subtype of these channels, has been described to have a postsynaptic distribution in the brain, being involved not only in ischemia and epilepsy, but also in fear and psychiatric pathologies. High-frequency stimulation of skeletal motor nerve terminals (MNTs) can induce presynaptic pH changes in combination with an acidification of the synaptic cleft, known to contribute to muscle fatigue. Here, we studied the role of ASIC1a channels on neuromuscular transmission. We combined a behavioral wire hanging test with electrophysiology, pharmacological, and immunofluorescence techniques to compare wild-type and ASIC1a lacking mice (ASIC1a −/− knockout). Our results showed that 1) ASIC1a −/− female mice were weaker than wild type, presenting shorter times during the wire hanging test; 2) spontaneous neurotransmitter release was reduced by ASIC1a activation, suggesting a presynaptic location of these channels at individual MNTs; 3) ASIC1a-mediated effects were emulated by extracellular local application of acid saline solutions (pH = 6.0; HEPES/MES-based solution); and 4) immunofluorescence techniques revealed the presence of ASIC1a antigens on MNTs. These results suggest that ASIC1a channels might be involved in controlling neuromuscular transmission, muscle contraction and fatigue in female mice. PMID:24336653

  8. Single sub-20 nm wide, centimeter-long nanofluidic channel fabricated by novel nanoimprint mold fabrication and direct imprinting.

    PubMed

    Liang, Xiaogan; Morton, Keith J; Austin, Robert H; Chou, Stephen Y

    2007-12-01

    We report and demonstrate a new method to fabricate single fluidic-channels of uniform channel width (11-50 nm) and over 1.5 cm in length, which are essential to developing innovative bio/chemical sensors but have not been fabricated previously. The method uses unconventional nanofabrication (a combination of crystallographic anisotropic etching, conformal coating, and edge patterning, etc.) to create an imprint mold of a channel pattern and nanoimprint to duplicate such channel. The centimeter-long channel continuity is verified by flowing fluorescent dye-stained water and stretching and transporting DNAs. The 18 by 20 nm channel cross-section was confirmed by measuring the liquid conductance in the channel.

  9. Fabrication of membrane-type microvalves in rectangular microfluidic channels via seal photopolymerization.

    PubMed

    Park, Wook; Han, Sangkwon; Kwon, Sunghoon

    2010-10-21

    Rectangular fluidic channels have rarely been used in microfluidic devices which use PDMS membrane-type microvalves, since the rectangular channel shape does not perfectly match the round shape of the membrane deformation. We present a polymer sealing method to fabricate PDMS membrane-type microvalves for rectangular microchannels. After fabricating the microfluidic device, photocurable oligomer is introduced into the fluidic channel and gas pressure is applied to the pneumatic channel to deform the membrane. The polymer seal is then locally polymerized by photolithography producing a structure matching the shape of the deformed membrane curvature. We compare the flow leakage between the membrane-type microvalve with and without a polymer seal. We also demonstrate a micropump and droplet generator using this embedded polymer membrane-type microvalve in a rectangular microfluidic channel. This polymeric seal technique enables the use of easily fabricated rectangular channel membrane microvalves with all the functionality of their curved channel counterparts with negligible flow leakage. PMID:20721367

  10. Pre-Deformation-Assisted Cryogenic Micromachining for Fabrication of Three-dimensional Unique Micro Channels

    NASA Astrophysics Data System (ADS)

    Mishima, Koji; Kakinuma, Yasuhiro; Aoyama, Tojiro

    Polydimethylsiloxane (PDMS) is difficult to machine by conventional cutting process because of its low elasticity and high adhesion. We proposed the cryogenic micromachining method assisted by liquid nitrogen cooling for direct fabrication of 3D micro channels on PDMS substrate in short time. In this paper, the cryogenic cutting mechanism is clarified through some verification experiments. Moreover, Pre-Deformation-assisted Cryogenic Micromachining (PDCM) method is also proposed for fabricating the unique shapes of channels and its validity is evaluated experimentally. The results of cutting tests show that 3D unique micro channels can be processed precisely and rapidly on PDMS.

  11. Surface treatment of flow channels in microfluidic devices fabricated by stereolithography.

    PubMed

    Ohtani, Kanako; Tsuchiya, Masaki; Sugiyama, Hitomi; Katakura, Toru; Hayakawa, Masatoshi; Kanai, Toshimitsu

    2014-01-01

    A microfluidic device with three-dimensional flow channels was fabricated by stereolithography, and hydrophilic surface treatment of the flow channel was performed by coating the wall of the channel with a silica layer. After the treatment, the device produced monodisperse oil-in-water (O/W) emulsions. The silica layer on the channel surface was then coated with a fluorinated silane coupling agent to make it hydrophobic, thus enabling the treated device to produce monodisperse inverted water-in-oil (W/O) emulsions.

  12. Controlled fabrication of ion track nanowires and channels

    NASA Astrophysics Data System (ADS)

    Spohr, Reimar; Zet, Cristian; Eberhard Fischer, Bernd; Kiesewetter, Helge; Apel, Pavel; Gunko, Igor; Ohgai, Takeshi; Westerberg, Lars

    2010-03-01

    We describe a system for fabricating prescribed numbers of ion track nanochannels and nanowires from a few hundred down to one. It consists of two parts: first, a mobile tape transport system, which, in connection with an ion beam from a heavy-ion accelerator (nuclear charge Z above 18 and specific energy between 1 and 10 MeV/nucleon) tuned down to low flux density by means of defocusing and a set of sensitive fluorescence screens, can fabricate a series of equidistant irradiation spots on a tape, whereby each spot corresponds to a preset number of ion tracks. The tape transport system uses films of 36 mm width and thicknesses between 5 and 100 μm. The aiming precision of the system depends on the diameter of the installed beam-defining aperture, which is between 50 and 500 μm. The distance between neighboring irradiation spots on the tape is variable and typically set to 25 mm. After reaching the preset number of ion counts the irradiation is terminated, the tape is marked and moved to the next position. The irradiated frames are punched out to circular membranes with the irradiation spot in the center. The second part of the setup is a compact conductometric system with 10 picoampere resolution consisting of a computer controlled conductometric cell, sealing the membrane hermetically between two chemically inert half-chambers containing electrodes and filling/flushing openings, and is encased by an electrical shield and a thermal insulation. The ion tracks can be etched to a preset diameter and the system can be programmed to electroreplicate nanochannels in a prescribed sequence of magnetic/nonmagnetic metals, alloys or semiconductors. The goal of our article is to make the scientific community aware of the special features of single-ion fabrication and to demonstrate convincingly the significance of controlled etching and electro-replication.

  13. Wet-chemical fabrication of a single leakage-channel grating coupler

    NASA Astrophysics Data System (ADS)

    Weisenbach, Lori; Zelinski, Brian J. J.; Roncone, Ronald L.; Burke, James J.

    1995-04-01

    We demonstrate the fabrication of a unique optical device, the single leakage-channel grating coupler, using sol-gel techniques. Design specifications are outlined to establish the material criteria for the sol-gel compositions. Material choice and preparation are described. We evaluate the characteristics and performance of the single leakage-channel grating coupler by comparing the predicted and the measured branching ratios. The branching ratio of the solution-derived device is within 3% of the theoretically predicted value.

  14. Proton radiation damage in P-channel CCDs fabricated on high-resistivity silicon

    SciTech Connect

    Bebek, C.; Groom, D.; Holland, S.; Karcher, A.; Kolbe, W.; Lee, J.; Levi, M.; Palaio, N.; Turko, B.; Uslenghi, M.; Wagner, M.; Wang, G.

    2002-07-28

    P-channel, backside illuminated silicon CCDs were developed and fabricated on high-resistivity n-type silicon. Devices have been exposed up to 1x1011 protons/cm2 at 12 MeV. The charge transfer efficiency and dark current were measured as a function of radiation dose. These CCDs were found to be significantly more radiation tolerant than conventional n-channel devices. This could prove to be a major benefit for long duration space missions.

  15. Fabrication of a Based Fluidic Chip Equipped with Porous Silicon Filter and Micro-Channels

    NASA Astrophysics Data System (ADS)

    Eun, Duk-Soo; Kong, Dae-Young; Kong, Seong Ho; Choi, Pyung; Shin, Jang-Kyoo; Lee, Jong-Hyun

    2008-06-01

    In this paper, a new design and fabrication method for a micro electro mechanical system (MEMS)-based micro-fluidic system that includes an articulated filter with micro-channel is proposed. An anodic reaction that involves chemical etching is used to produce a porous silicon (PS) layer to be applied to a micro-fluidic filter. The micro-fluidic filter is fabricated with vertical micro-pores by an anodic reaction process using a (110) wafer. Physical etching based on a micro-sandblaster process, and wet chemical etching using either tetramethylammonium hydroxide (TMAH) or hydrofluoric, nitric, and acetic (HNA) acid solution are applied to form the micro-channels that function as an essential factor in the micro-fluidic system. These independently-fabricated filter and channel wafers are bonded using a dry film resist (DFR). The characteristics of the filter fabricated on a (100) wafer are analyzed. Moreover, the functional performances of the channels formed by different methods are compared. The proposed micro-fluidic system with porous silicon micro-filters might be applied to bio-material reaction chambers, such as polymerase chain reaction (PCR) chambers and DNA separation devices that require a filter.

  16. Design and fabrication of a 100 GHz channel-drop filter

    SciTech Connect

    Smirnova, Evgenya I; Earley, Lawrence M; Heath, Cynthia E; Shchegolkov, Dmitry Y

    2008-01-01

    We have designed and are fabricating a novel passive mm-wave spectrometer based on a Photonic Band Gap (PBG) channel-drop filter (CDF). There is a need for a compact wide-band versatile and configurable mm-wave spectrometer for applications in mm-wave communications, radio astronomy, and radar receivers for remote sensing and nonproliferation.

  17. Single-step fabrication of microfluidic channels filled with nanofibrous membrane using femtosecond laser irradiation

    NASA Astrophysics Data System (ADS)

    Tavangar, Amirhossein; Tan, Bo; Venkatakrishnan, K.

    2010-08-01

    In this paper, we demonstrate a new method of fabricating silicon microfluidic channels filled with a porous nanofibrous structure utilizing a femtosecond laser. The nanofibrous structure can act as a membrane used for microfiltration. This method allows us to generate both the microfluidic channel and the fibrous nanostructure in a single step under ambient conditions. Due to laser irradiation, a large number of nanoparticles ablate from the channel surface, and then aggregate and grow into porous nanofibrous structures and fill the channels. Energy dispersive x-ray spectroscopy (EDS) analysis was conducted to examine the oxygen concentration in the membrane structure. Our results demonstrated that by controlling the laser parameters including pulse repetition, pulse width and scanning speed, different microfluidic channels with a variety of porosity could be obtained.

  18. Systematic modeling study of channel waveguide fabrication by thermal silver ion exchange.

    PubMed

    Li, Guangyu; Winick, Kim A; Griffin, Henry C; Hayden, Joseph S

    2006-03-10

    A systematic study of thermal silver ion exchange used for the fabrication of optical channel waveguides is reported in a single-alkali glass. The diffusion equilibrium and diffusion dynamics are experimentally studied, and the concentration-dependent diffusion coefficients are determined. The relationship between the fabrication conditions, i.e., time, temperature, and melt concentration, and the induced waveguide refractive index profile is established. It is demonstrated that the diffusion equation can be solved, without use of any free parameters, to predict the refractive index profiles of both planar and channel waveguides. A 1.6 cm diameter integrated optic ring resonator, with a propagation loss of 0.1 dB/cm, is fabricated in a glass by thermal silver ion exchange. The induced refractive index profile is related to the optical characteristics of the functional device. PMID:16572690

  19. Silicon nanowire transistors with a channel width of 4 nm fabricated by atomic force microscope nanolithography.

    PubMed

    Martinez, J; Martínez, R V; Garcia, R

    2008-11-01

    The emergence of an ultrasensitive sensor technology based on silicon nanowires requires both the fabrication of nanoscale diameter wires and the integration with microelectronic processes. Here we demonstrate an atomic force microscopy lithography that enables the reproducible fabrication of complex single-crystalline silicon nanowire field-effect transistors with a high electrical performance. The nanowires have been carved from a silicon-on-insulator wafer by a combination of local oxidation processes with a force microscope and etching steps. We have fabricated and measured the electrical properties of a silicon nanowire transistor with a channel width of 4 nm. The flexibility of the nanofabrication process is illustrated by showing the electrical performance of two nanowire circuits with different geometries. The fabrication method is compatible with standard Si CMOS processing technologies and, therefore, can be used to develop a wide range of architectures and new microelectronic devices.

  20. CO2 laser polishing of microfluidic channels fabricated by femtosecond laser assisted carving

    NASA Astrophysics Data System (ADS)

    Serhatlioglu, Murat; Ortaç, Bülend; Elbuken, Caglar; Biyikli, Necmi; Solmaz, Mehmet E.

    2016-11-01

    In this study, we investigate the effects of CO2 laser polishing on microscopic structures fabricated by femtosecond laser assisted carving (FLAC). FLAC is the peripheral laser irradiation of 2.5D structures suitable for low repetition rate lasers and is first used to define the microwell structures in fused silica followed by chemical etching. Subsequently, the bottom surface of patterned microwells is irradiated with a pulsed CO2 laser. The surfaces were characterized using an atomic force microscope (AFM) and scanning electron microscope (SEM) in terms of roughness and high quality optical imaging before and after the CO2 laser treatment. The AFM measurements show that the surface roughness improves more than threefold after CO2 laser polishing, which promises good channel quality for applications that require optical imaging. In order to demonstrate the ability of this method to produce low surface roughness systems, we have fabricated a microfluidic channel. The channel is filled with polystyrene bead-laden fluid and imaged with transmission mode microscopy. The high quality optical images prove CO2 laser processing as a practical method to reduce the surface roughness of microfluidic channels fabricated by femtosecond laser irradiation. We further compared the traditional and laser-based glass micromachining approaches, which includes FLAC followed by the CO2 polishing technique.

  1. Ninety-six-well planar lipid bilayer chip for ion channel recording fabricated by hybrid stereolithography.

    PubMed

    Suzuki, Hiroaki; Le Pioufle, Bruno; Takeuchi, Shoji

    2009-02-01

    We present a micro fluidic chip for parallel ion channel recording in a large array of artificial planar lipid bilayer membranes. To realize a composite structure that features an array of recording wells with free-standing microapertures for lipid bilayer reconstitution, the device was fabricated by the hybrid stereolithography technology, in which a Parylene film with pre-formed microapertures was inserted during the rapid stereolithography process. We designed and tested a hybrid chip that has 96 (12x8) addressable recording wells to demonstrate recording of ion channel current in high-throughput manner. Measurement was done by sequentially moving the recording electrode, and, as a result, the channel current of model membrane protein was detected in 44 wells out of 96. We also showed that this hybrid fabrication process was capable of integrating micropatterned electrodes suitable for automated recording. These results support the efficiency of our present architecture of the parallel ion channel recording chip toward realization of the high-throughput screening of ion channel proteins in the artificial lipid bilayer system.

  2. Direct visualization of the trimeric structure of the ASIC1a channel, using AFM imaging

    SciTech Connect

    Carnally, Stewart M.; Dev, Harveer S.; Stewart, Andrew P.; Barrera, Nelson P.; Van Bemmelen, Miguel X.; Schild, Laurent; Henderson, Robert M.; Edwardson, J.Michael

    2008-08-08

    There has been confusion about the subunit stoichiometry of the degenerin family of ion channels. Recently, a crystal structure of acid-sensing ion channel (ASIC) 1a revealed that it assembles as a trimer. Here, we used atomic force microscopy (AFM) to image unprocessed ASIC1a bound to mica. We detected a mixture of subunit monomers, dimers and trimers. In some cases, triple-subunit clusters were clearly visible, confirming the trimeric structure of the channel, and indicating that the trimer sometimes disaggregated after adhesion to the mica surface. This AFM-based technique will now enable us to determine the subunit arrangement within heteromeric ASICs.

  3. Enhancing the biocompatibility of microfluidics-assisted fabrication of cell-laden microgels with channel geometry.

    PubMed

    Kim, Suntae; Oh, Jonghyun; Cha, Chaenyung

    2016-11-01

    Microfluidic flow-focusing devices (FFD) are widely used to generate monodisperse droplets and microgels with controllable size, shape and composition for various biomedical applications. However, highly inconsistent and often low viability of cells encapsulated within the microgels prepared via microfluidic FFD has been a major concern, and yet this aspect has not been systematically explored. In this study, we demonstrate that the biocompatibility of microfluidic FFD to fabricate cell-laden microgels can be significantly enhanced by controlling the channel geometry. When a single emulsion ("single") microfluidic FFD is used to fabricate cell-laden microgels, there is a significant decrease and batch-to-batch variability in the cell viability, regardless of their size and composition. It is determined that during droplet generation, some of the cells are exposed to the oil phase which is shown to have a cytotoxic effect. Therefore, a microfluidic device with a sequential ('double') flow-focusing channels is employed instead, in which a secondary aqueous phase containing cells enters the primary aqueous phase, so the cells' exposure to the oil phase is minimized by directing them to the center of droplets. This microfluidic channel geometry significantly enhances the biocompatibility of cell-laden microgels, while maintaining the benefits of a typical microfluidic process. This study therefore provides a simple and yet highly effective strategy to improve the biocompatibility of microfluidic fabrication of cell-laden microgels.

  4. Permeating protons contribute to tachyphylaxis of the acid-sensing ion channel (ASIC) 1a.

    PubMed

    Chen, Xuanmao; Gründer, Stefan

    2007-03-15

    The homomeric acid-sensing ion channel 1a (ASIC1a) is a H+-activated ion channel with important physiological functions and pathophysiological impact in the central nervous system. Here we show that homomeric ASIC1a is distinguished from other ASICs by a reduced response to successive acid stimulations. Such a reduced response is called tachyphylaxis. We show that tachyphylaxis depends on H+ permeating through ASIC1a, that tachyphylaxis is attenuated by extracellular Ca2+, and that tachyphylaxis is probably linked to Ca2+ permeability of ASIC1a. Moreover, we provide evidence that tachyphylaxis is probably due to a long-lived inactive state of ASIC1a. A deeper understanding of ASIC1a tachyphylaxis may lead to pharmacological control of ASIC1a activity that could be of potential benefit for the treatment of stroke.

  5. Fabrication and Characterization of Surface P - MOS Transistors with Channel Lengths to 200 Nanometers

    NASA Astrophysics Data System (ADS)

    Kugelmass, Sheldon Michael

    The scaling of MOS devices requires the development of new fabrication processes, device structures and characterization techniques. A process architecture for the fabrication of nanometer scale, surface p-channel MOS transistors was developed and used to study the impact of gate oxide thickness and gate length scaling as well as to investigate a novel source/drain structure. A new capacitance-based technique for the characterization of hot carrier induced degradation in p-channel MOS transistors was developed and applied to the fabricated devices. Several process modules were developed and integrated into the device fabrication sequence. Rapid Thermal Processing was used for growth of the gate oxide, reoxidation of the gate polysilicon and formation of shallow p^+ /n junctions. The deposition of in situ doped polysilicon films was characterized. P-channel MOS transistors were fabricated with gate oxides as thin as 5 nm as were devices with channel lengths below 200 nm. Polysilicon depletion, due to insufficient doping of the gate polysilicon, increased as the gate oxide decreased. The transconductance increased with decreasing effective length, reaching a value of 82.3 muS/mum for L_{rm eff} = 180 nm. Formation of shallow source/drain junctions using gallium was investigated. A high temperature anneal (1050 ^circC) was required to eliminate implant damage. SIMS analysis showed that after 15 seconds at 1050^circC, over 50% of the dopant was lost to the ambient. A Ga source/drain extension was integrated into the existing MOS device structure and had 15-25% less lateral encroachment of dopant into the channel than an equivalent boron doped structure. The difference in the gate to source/drain capacitance before and after hot carrier stress reflects the influence of a localized trapped charge distribution in the gate oxide. A simple model indicated that both the length and the threshold voltage shift of the degraded region increase with increasing stress time. The

  6. CFTR chloride channels are regulated by a SNAP-23/syntaxin 1A complex

    PubMed Central

    Cormet-Boyaka, Estelle; Di, Anke; Chang, Steven Y.; Naren, Anjaparavanda P.; Tousson, Albert; Nelson, Deborah J.; Kirk, Kevin L.

    2002-01-01

    Soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) mediate membrane fusion reactions in eukaryotic cells by assembling into complexes that link vesicle-associated SNAREs with SNAREs on target membranes (t-SNAREs). Many SNARE complexes contain two t-SNAREs that form a heterodimer, a putative intermediate in SNARE assembly. Individual t-SNAREs (e.g., syntaxin 1A) also regulate synaptic calcium channels and cystic fibrosis transmembrane conductance regulator (CFTR), the epithelial chloride channel that is defective in cystic fibrosis. Whether the regulation of ion channels by individual t-SNAREs is related to SNARE complex assembly and membrane fusion is unknown. Here we show that CFTR channels are coordinately regulated by two cognate t-SNAREs, SNAP-23 (synaptosome-associated protein of 23 kDa) and syntaxin 1A. SNAP-23 physically associates with CFTR by binding to its amino-terminal tail, a region that modulates channel gating. CFTR-mediated chloride currents are inhibited by introducing excess SNAP-23 into HT29-Cl.19A epithelial cells. Conversely, CFTR activity is stimulated by a SNAP-23 antibody that blocks the binding of this t-SNARE to the CFTR amino-terminal tail. The physical and functional interactions between SNAP-23 and CFTR depend on syntaxin 1A, which binds to both proteins. We conclude that CFTR channels are regulated by a t-SNARE complex that may tune CFTR activity to rates of membrane traffic in epithelial cells. PMID:12209004

  7. Fabrication of parylene channels embedded in silicon using a single parylene deposition step

    NASA Astrophysics Data System (ADS)

    Tolstosheeva, Elena; Pimentel, João. V.; Schander, Andreas; Kempen, Ludger; Vellekoop, Michael; Lang, Walter

    2015-06-01

    In-situ integration of microfluidic channels into the microfabrication process flow of implantable microsystems is desirable, for example to enable efficient drug delivery. We propose a fabrication method for such microfluidic channels using parylene C, a biocompatible material whose inert nature favours water flow. A single deposition of parylene C enabled monolithical integration of fully-sealed micro-channels in a silicon substrate. The channel geometry was predefined by etching 100 μm-deep grooves into a silicon substrate. A PVC foil was fixed manually on the wafer and served as a top-cover for the grooves. The wafers were coated with the adhesion promoter AdPro Poly® and a 15 μm-thick parylene C film was deposited conformally into the grooves-foil enclosed space. The outgasing nature of the PVC foil hindered the adhesion of parylene C, allowing the foil to be peeled off easily from the parylene surface. The functionality of the fully-sealed parylene channels, embedded in the silicon wafer, was verified by injecting DI water with dispersed polystyrene microbeads (diameter 6 μm): the polystyrene beads were successfully transported along the channel. Further, a fully-sealed parylene chamber remained leak-tight throughout a stepwise application of hydrostatic pressures from 0.2 to 3.0 bar (15 s step-interval). In short, our parylene channels are: (1) suitable for microsystem drug-delivery; (2) in-situ enclosed hollow spaces embedded in the silicon substrate, realized with a single parylene deposition; (3) intact at hydrostatic pressures up to 3 bar.

  8. Easy fabrication of high quality nickel mold for deep polymer microfluidic channels

    NASA Astrophysics Data System (ADS)

    Wong, Ten It; Limantoro, Julian; Phang Fong, Kin; Tan, Christina Yuan Ling; Quan, Chenggen; Sun, Ling Ling; Zhou, Xiaodong

    2016-06-01

    Mass fabrication of disposable microfluidic chips with hot embossing is a key technology for microfluidic chip based biosensors. In this work, we develop a new method of fabricating high quality and highly durable nickel molds for hot embossing polymer chips. The process involves the addition of a thick, patterned layer of negative photoresist AZ-125nxT to a 4″ silicon wafer, followed by nickel electroplating and delamination of the nickel mold. Our investigations found that compared to a pillar mask, a hole mask can minimize the diffraction effect in photolithography of a thick photoresist, reduce the adhesion of the AZ-125nxT to the photomask in photolithography, and facilitate clean development of the photoresist patterns. By optimizing the hot embossing and chip bonding parameters, microfluidic chips with deep channels are achieved.

  9. The design and fabrication of a single leakage-channel grating coupler

    NASA Technical Reports Server (NTRS)

    Roncone, Ronald L.; Li, Lifeng; Bates, Keith A.; Burke, James J.; Weisenbach, Lori; Zelinski, Brian J. J.

    1992-01-01

    The modeling and fabrication is described of waveguide grating couplers with out-coupling efficiencies into a single diffracted order nearing 100 pct. Termed Single Leakage Channel Grating Couplers (SLCGCs), these devices use a high reflectivity dielectric stack to reflect the out-coupled beam diffracted toward the substrate, back up into the air region where it constructively adds with the beam diffracted into the air region. Computer modeling shows that the branching ratio and the leakage rate can be independently controlled, and that the branching ratio is independent of grating depth and grating period. A SLCGC with a branching ratio of 97.1 pct. was fabricated using a combination of vacuum evaporation and wet chemical techniques.

  10. Fabrication and electrical properties of single wall carbon nanotube channel and graphene electrode based transistors arrays

    SciTech Connect

    Seo, M.; Kim, H.; Kim, Y. H.; Yun, H.; McAllister, K.; Lee, S. W.; Na, J.; Kim, G. T.; Lee, B. J.; Kim, J. J.; Jeong, G. H.; Lee, I.; Kim, K. S.

    2015-07-20

    A transistor structure composed of an individual single-walled carbon nanotube (SWNT) channel with a graphene electrode was demonstrated. The integrated arrays of transistor devices were prepared by transferring patterned graphene electrode patterns on top of the aligned SWNT along one direction. Both single and multi layer graphene were used for the electrode materials; typical p-type transistor and Schottky diode behavior were observed, respectively. Based on our fabrication method and device performances, several issues are suggested and discussed to improve the device reliability and finally to realize all carbon based future electronic systems.

  11. Fabrication and characterization of p-channel Si double quantum dots

    SciTech Connect

    Yamada, Ko; Kambara, Tomohiro; Oda, Shunri; Kodera, Tetsuo

    2014-09-15

    Lithographically defined p-channel Si single hole transistors (SHTs) and double quantum dot (DQD) devices are fabricated and characterized. Coulomb oscillations are clearly evident at a temperature of 4.2 K. The charging energy and the diameter of the SHT are estimated from the Coulomb diamonds. Honeycomb-like charge stability diagrams are observed from measurements of the DQD devices. Single hole transitions through the DQD are detected using an integrated SHT as a charge sensor, and a few-hole regime of the DQD is observed.

  12. Fabricating rectangular internal cooling channels in silicon x-ray monochromator optics

    SciTech Connect

    Bilderback, D. H.

    1989-07-01

    Internally cooled monochromator crystals have been successfully fabricated and tested with synchrotron radiation. A single block of silicon was parted in the middle and grooves on a mm scale were cut into one half. The two blocks were then bonded back together with a silver-glass die attach paste. After firing in air at 430 /degree/C, the composite crystal was virtually strain free. One version of the composite crystal with cooling channels 0.76 mm beneath the diffracting surface was successfully tested at CHESS with intense undulator radiation.

  13. Laser sintering fabrication of three-dimensional tissue engineering scaffolds with a flow channel network.

    PubMed

    Niino, T; Hamajima, D; Montagne, K; Oizumi, S; Naruke, H; Huang, H; Sakai, Y; Kinoshita, H; Fujii, T

    2011-09-01

    The fabrication of tissue engineering scaffolds for the reconstruction of highly oxygen-dependent inner organs is discussed. An additive manufacturing technology known as selective laser sintering was employed to fabricate a highly porous scaffold with an embedded flow channel network. A porogen leaching system was used to obtain high porosity. A prototype was developed using the biodegradable plastic polycaprolactone and sodium chloride as the porogen. A high porosity of 90% was successfully obtained. Micro x-ray CT observation was carried out to confirm that channels with a diameter of approximately 1 mm were generated without clogging. The amount of residual salt was 930 µg while the overall volume of the scaffold was 13 cm(3), and it was confirmed that the toxicity of the salt was negligible. The hydrophilization of the scaffold to improve cell adhesion on the scaffold is also discussed. Oxygen plasma ashing and hydrolysis with sodium hydroxide, typically employed to improve the hydrophilicity of plastic surfaces, were tested. The improvement of hydrophilicity was confirmed by an increase in water retention by the porous scaffold from 180% to 500%.

  14. Fracture-based fabrication of normally closed, adjustable, and fully reversible microscale fluidic channels.

    PubMed

    Kim, Byoung Choul; Moraes, Christopher; Huang, Jiexi; Matsuoka, Toshiki; Thouless, M D; Takayama, Shuichi

    2014-10-15

    Adjustable fluidic structures play an important role in microfluidic systems. Fracture of multilayered materials under applied tension has been previously demonstrated as a convenient, simple, and inexpensive approach to fabricate nanoscale adjustable structures; here, it is demonstrated how to extend this concept to the microscale. This is achieved by a novel pairing of materials that leverages fracture mechanics to limit crack formation to a specified region, allowing to create size-controllable and adjustable microfluidic structures. This technique can be used to fabricate "normally closed" microfluidic channels that are completely reversible, a feature that is challenging to achieve in conventional systems without careful engineering controls. The adjustable microfluidic channels are then applied to mechanically lyse single cells, and subsequently manipulate the released nuclear chromatin, creating new possibilities for epigenetic analysis of single cells. This simple, versatile, and robust technology provides an easily accessible pathway to construct adjustable microfluidic structures, which will be useful in developing complex assays and experiments even in resource-limited settings. PMID:24942855

  15. Heterologously expressed serotonin 1A receptors couple to muscarinic K+ channels in heart.

    PubMed Central

    Karschin, A; Ho, B Y; Labarca, C; Elroy-Stein, O; Moss, B; Davidson, N; Lester, H A

    1991-01-01

    In cardiac atrial cells, muscarinic acetylcholine receptors activate a K+ current directly via a guanine nucleotide-binding protein (G protein). Serotonin type 1A receptors may activate a similar pathway in hippocampal neurons. To develop a system in which receptor/G protein/K+ channel coupling can be experimentally manipulated, we have used a highly efficient recombinant vaccinia virus vector system to express human serotonin 1A receptors in primary cultures of rat atrial myocytes. The expressed 1A receptors activated the inwardly rectifying K+ conductance that is normally activated by the endogenous muscarinic acetylcholine receptors. Maximal responses to either agonist occluded further activation by the other agonist. The average activation time constants for serotonin were about 5 times slower than for acetylcholine. The data support suggestions that the intracellular signaling pathway from seven-helix receptors to G proteins and directly to ion channels is widespread in excitable cells. After a fraction of the G proteins are activated irreversibly by guanosine 5'-[gamma-thio]triphosphate, subsequent transduction proceeds more efficiently. One possible interpretation is that multiple G-protein molecules are required to activate each channel. Vaccinia virus expression vectors are thus useful for expressing seven-helix receptors in primary cultures of postmitotic cells and have provided a heterologous expression system for the signaling pathway from seven-helix receptors to G proteins and directly to ion channels. Images PMID:1905814

  16. Tissue acidosis induces neuronal necroptosis via ASIC1a channel independent of its ionic conduction

    PubMed Central

    Wang, Yi-Zhi; Wang, Jing-Jing; Huang, Yu; Liu, Fan; Zeng, Wei-Zheng; Li, Ying; Xiong, Zhi-Gang; Zhu, Michael X; Xu, Tian-Le

    2015-01-01

    Acidotoxicity is common among neurological disorders, such as ischemic stroke. Traditionally, Ca2+ influx via homomeric acid-sensing ion channel 1a (ASIC1a) was considered to be the leading cause of ischemic acidotoxicity. Here we show that extracellular protons trigger a novel form of neuronal necroptosis via ASIC1a, but independent of its ion-conducting function. We identified serine/threonine kinase receptor interaction protein 1 (RIP1) as a critical component of this form of neuronal necroptosis. Acid stimulation recruits RIP1 to the ASIC1a C-terminus, causing RIP1 phosphorylation and subsequent neuronal death. In a mouse model of focal ischemia, middle cerebral artery occlusion causes ASIC1a-RIP1 association and RIP1 phosphorylation in affected brain areas. Deletion of the Asic1a gene significantly prevents RIP1 phosphorylation and brain damage, suggesting ASIC1a-mediated RIP1 activation has an important role in ischemic neuronal injury. Our findings indicate that extracellular protons function as a novel endogenous ligand that triggers neuronal necroptosis during ischemia via ASIC1a independent of its channel function. DOI: http://dx.doi.org/10.7554/eLife.05682.001 PMID:26523449

  17. Astrocytic Acid-Sensing Ion Channel 1a Contributes to the Development of Chronic Epileptogenesis.

    PubMed

    Yang, Feng; Sun, Xiaolong; Ding, Yinxiu; Ma, Hui; Yang, Tangpeng Ou; Ma, Yue; Wei, Dong; Li, Wen; Xu, Tianle; Jiang, Wen

    2016-01-01

    Unraveling mechanisms underlying epileptogenesis after brain injury is an unmet medical challenge. Although histopathological studies have revealed that reactive astrogliosis and tissue acidosis are prominent features in epileptogenic foci, their roles in epileptogenesis remain unclear. Here, we explored whether astrocytic acid-sensing ion channel-1a (ASIC1a) contributes to the development of chronic epilepsy. High levels of ASIC1a were measured in reactive astrocytes in the hippocampi of patients with temporal lobe epilepsy (TLE) and epileptic mice. Extracellular acidosis caused a significant Ca(2+) influx in cultured astrocytes, and this influx was sensitive to inhibition by the ASIC1a-specific blocker psalmotoxin 1 (PcTX1). In addition, recombinant adeno-associated virus (rAAV) vectors carrying a GFAP promoter in conjunction with ASIC1a shRNA or cDNA were generated to suppress or restore, respectively, ASIC1a expression in astrocytes. Injection of rAAV-ASIC1a-shRNA into the dentate gyrus of the wide type TLE mouse model resulted in the inhibition of astrocytic ASIC1a expression and a reduction in spontaneous seizures. By contrast, rAAV-ASIC1a-cDNA restored astrocytic ASIC1a expression in an ASIC1a knock-out TLE mouse model and increased the frequency of spontaneous seizures. Taken together, our results reveal that astrocytic ASIC1a may be an attractive new target for the treatment of epilepsy. PMID:27526777

  18. Astrocytic Acid-Sensing Ion Channel 1a Contributes to the Development of Chronic Epileptogenesis

    PubMed Central

    Yang, Feng; Sun, Xiaolong; Ding, Yinxiu; Ma, Hui; Yang, Tangpeng Ou; Ma, Yue; Wei, Dong; Li, Wen; Xu, Tianle; Jiang, Wen

    2016-01-01

    Unraveling mechanisms underlying epileptogenesis after brain injury is an unmet medical challenge. Although histopathological studies have revealed that reactive astrogliosis and tissue acidosis are prominent features in epileptogenic foci, their roles in epileptogenesis remain unclear. Here, we explored whether astrocytic acid-sensing ion channel-1a (ASIC1a) contributes to the development of chronic epilepsy. High levels of ASIC1a were measured in reactive astrocytes in the hippocampi of patients with temporal lobe epilepsy (TLE) and epileptic mice. Extracellular acidosis caused a significant Ca2+ influx in cultured astrocytes, and this influx was sensitive to inhibition by the ASIC1a-specific blocker psalmotoxin 1 (PcTX1). In addition, recombinant adeno-associated virus (rAAV) vectors carrying a GFAP promoter in conjunction with ASIC1a shRNA or cDNA were generated to suppress or restore, respectively, ASIC1a expression in astrocytes. Injection of rAAV-ASIC1a-shRNA into the dentate gyrus of the wide type TLE mouse model resulted in the inhibition of astrocytic ASIC1a expression and a reduction in spontaneous seizures. By contrast, rAAV-ASIC1a-cDNA restored astrocytic ASIC1a expression in an ASIC1a knock-out TLE mouse model and increased the frequency of spontaneous seizures. Taken together, our results reveal that astrocytic ASIC1a may be an attractive new target for the treatment of epilepsy. PMID:27526777

  19. Chloroquine impairs visual transduction via modulation of acid sensing ion channel 1a.

    PubMed

    Li, Xiaoyu; Fei, Jianchun; Lei, Zhen; Liu, Kejing; Wu, Jianbo; Meng, Tao; Yu, Jingui; Li, Jingxin

    2014-08-01

    Acid-sensing ion channels (ASICs) are extracellular pH sensors activated by protons, which influence retinal activity and phototransduction. Among all ASICs, ASIC1a is abundantly expressed in the retina and involved in normal retinal activity. Chloroquine, which has been used in the treatment of malaria, rheumatoid arthritis and systemic lupus erythematosus, has been shown to be toxic to the retina. However, the underlying mechanisms remain unclear. In this study, we investigated the role of chloroquine in phototransduction by measuring the electroretinogram (ERG). The effect of chloroquine on acid-evoked currents in either isolated rat retinal ganglion neurons (RGNs) or Chinese hamster ovary (CHO) cells transfected with ASIC1a were assessed using a whole-cell patch-clamp technique. Chloroquine reduced the b-wave of scotopic 0.01 and photopic 3.0 and amplitudes of oscillatory potentials (OPs), an effect which was almost completely reversed by PcTx1, an ASIC1a-specific channel blocker. Further, patch-clamp experiments demonstrated that chloroquine reduced the peak current amplitude and prolonged the activation and desensitization of ASIC1a currents. These chloroquine-induced effects on the kinetics of ASIC 1a were dose-, pH- and Ca(2+)-dependent. Taken together, these results demonstrate that chloroquine affects vision conduction by directly modifying the kinetics of ASIC1a. Such a mechanism, may, in part, explain the retinal toxicity of chloroquine.

  20. The pentamer channel stiffening model for drug action on human rhinovirus HRV-1A

    PubMed Central

    Vaidehi, Nagarajan; Goddard, William A.

    1997-01-01

    Development of effective drugs against the rhinovirus (HRV) responsible for the common cold remains a challenge because there are over 100 serotypes. This process could be significantly aided by an understanding of the atomistic mechanism by which such drugs work. We suggest that the most effective drugs against HRV-1A act by stiffening the pentamer channel of the viral coat through which the RNA is released, preventing the steps leading to uncoating. Using molecular dynamics methods we tested this Pentamer Channel Stiffening Model (PCSM) by examining the changes in strain energy associated with opening the pentamer channel through which the RNA is released. We find that the PCSM strain correlates well with the effectiveness of the WIN (Sterling–Winthrop) drugs for HRV-1A. To illustrate the use of the PCSM to predict new drugs and to prioritize experimental tests, we tested three modifications of the WIN drugs that are predicted to be nearly as effective (for HRV-1A) as the best current drug. PMID:9122218

  1. Fabrication of polydimethylsiloxane (PDMS) nanofluidic chips with controllable channel size and spacing.

    PubMed

    Peng, Ran; Li, Dongqing

    2016-10-01

    The ability to create reproducible and inexpensive nanofluidic chips is essential to the fundamental research and applications of nanofluidics. This paper presents a novel and cost-effective method for fabricating a single nanochannel or multiple nanochannels in PDMS chips with controllable channel size and spacing. Single nanocracks or nanocrack arrays, positioned by artificial defects, are first generated on a polystyrene surface with controllable size and spacing by a solvent-induced method. Two sets of optimal working parameters are developed to replicate the nanocracks onto the polymer layers to form the nanochannel molds. The nanochannel molds are used to make the bi-layer PDMS microchannel-nanochannel chips by simple soft lithography. An alignment system is developed for bonding the nanofluidic chips under an optical microscope. Using this method, high quality PDMS nanofluidic chips with a single nanochannel or multiple nanochannels of sub-100 nm width and height and centimeter length can be obtained with high repeatability. PMID:27539019

  2. Fabrication of polydimethylsiloxane (PDMS) nanofluidic chips with controllable channel size and spacing.

    PubMed

    Peng, Ran; Li, Dongqing

    2016-10-01

    The ability to create reproducible and inexpensive nanofluidic chips is essential to the fundamental research and applications of nanofluidics. This paper presents a novel and cost-effective method for fabricating a single nanochannel or multiple nanochannels in PDMS chips with controllable channel size and spacing. Single nanocracks or nanocrack arrays, positioned by artificial defects, are first generated on a polystyrene surface with controllable size and spacing by a solvent-induced method. Two sets of optimal working parameters are developed to replicate the nanocracks onto the polymer layers to form the nanochannel molds. The nanochannel molds are used to make the bi-layer PDMS microchannel-nanochannel chips by simple soft lithography. An alignment system is developed for bonding the nanofluidic chips under an optical microscope. Using this method, high quality PDMS nanofluidic chips with a single nanochannel or multiple nanochannels of sub-100 nm width and height and centimeter length can be obtained with high repeatability.

  3. Self-fabricated single mode waveguide in fluoride glass excited by self-channeled plasma filaments

    SciTech Connect

    Cho, Sung-Hak; Chang, Won-Seok; Kim, Jae-Goo; Whang, Kyoung-Hyun

    2007-09-17

    Self-fabricated permanent structure of single mode waveguide in optical fluoride glasses was demonstrated using the self-channeled plasma filament excited by a femtosecond (130 fs) Ti:sapphire laser ({lambda}{sub p}=790 nm). The photoinduced refractive index modification in ZrF{sub 4}-BaF{sub 2}-LaF{sub 3}-AlF{sub 3}-NaF glasses reached a length of approximately 10-15 mm from the input surface of the optical glass with the diameters ranging from 5 to 8 {mu}m at the input intensities of more than 1.0x10{sup 12} W/cm{sup 2}. The graded refractive index profiles were fabricated to be a symmetric form from the center of optical fluoride glass, and a maximum value of refractive index change ({delta}n) was measured to be 1.3x10{sup -2}. The beam profile of the output beam transmitted through the modified region showed that the photoinduced refractive index modification produced a permanent structure of single mode waveguide.

  4. Interaction of a turbulent channel flow with a compliant tensegrity fabric

    NASA Astrophysics Data System (ADS)

    Luo, Haoxiang; Bewley, Thomas

    2004-11-01

    A non-trivial influence of the compliant surface on the statistics of near-wall turbulence has been found by direct numerical simulations of a channel flow at Re_τ=150 passing over a ``tensegrity fabric'' surface. Inspired from nature, this compliant surface model is special truss system having tensile members distinguished from the compressive members, as we have presented at previous APS meetings. Validated by a variety of flows, a pseudospectral/finite-difference flow solver with a 3D coordinate transformation is coupled with a C++ code calculating the dynamics of the tensegrity fabric to simulate the flow/structure interaction. Simulation results show that, when the structure has high stiffness and damping, the flow acts as if the interface were a solid flat wall. When the structure's stiffness and damping are reduced, it may resonate under the excitation of the flow disturbances. The resonating flow/structure interface forms a streamwise wave reminiscent of air-water interface but traveling at a much faster phase speed, a few times of the viscous velocity u_τ. Although the wave's amplitude is small, y_w^+≈ 2, it changes the near-wall turbulence significantly. Drag on the compliant surface is increased by about 17% where form drag accounts for only one third of the drag increase due to the small wall deformation. Various domain sizes have been tried in order to make sure that the structure's vibration mode is correct.

  5. Osteoinduction of porous Ti implants with a channel structure fabricated by selective laser melting.

    PubMed

    Fukuda, A; Takemoto, M; Saito, T; Fujibayashi, S; Neo, M; Pattanayak, Deepak K; Matsushita, T; Sasaki, K; Nishida, N; Kokubo, T; Nakamura, T

    2011-05-01

    Many studies have shown that certain biomaterials with specific porous structures can induce bone formation in non-osseous sites without the need for osteoinductive biomolecules, however, the mechanisms responsible for this phenomenon (intrinsic osteoinduction of biomaterials) remain unclear. In particular, to our knowledge the type of pore structure suitable for osteoinduction has not been reported in detail. In the present study we investigated the effects of interconnective pore size on osteoinductivity and the bone formation processes during osteoinduction. Selective laser melting was employed to fabricate porous Ti implants (diameter 3.3mm, length 15 mm) with a channel structure comprising four longitudinal square channels, representing pores, of different diagonal widths, 500, 600, 900, and 1200 μm (termed p500, p600, p900, and p1200, respectively). These were then subjected to chemical and heat treatments to induce bioactivity. Significant osteoinduction was observed in p500 and p600, with the highest observed osteoinduction occurring at 5mm from the end of the implants. A distance of 5mm probably provides a favorable balance between blood circulation and fluid movement. Thus, the simple architecture of the implants allowed effective investigation of the influence of the interconnective pore size on osteoinduction, as well as the relationship between bone quantity and its location for different pore sizes.

  6. Fabrication and validation of a multi-channel type microfluidic chip for electrokinetic streaming potential devices.

    PubMed

    Chun, Myung-Suk; Shim, Min Suk; Choi, Nak Won

    2006-02-01

    To elaborate on the applicability of the electrokinetic micro power generation, we designed and fabricated the silicon-glass as well as the PDMS-glass microfluidic chips with the unique features of a multi-channel. Besides miniaturizing the device, the key advantage of our microfluidic chip utilization lies in the reduction in water flow rate. Both a distributor and a collector taking the tapered duct geometry are positioned aiming the uniform distribution of water flow into all individual channels of the chip, in which several hundreds of single microchannels are assembled in parallel. A proper methodology is developed accompanying the deep reactive ion etching as well as the anodic bonding, and optimum process conditions necessary for hard and soft micromachining are presented. It has been shown experimentally and theoretically that the silicon-based microchannel leads to increasing streaming potential and higher external current compared to those of the PDMS-based one. A proper comparison between experimental results and theoretical computations allows justification of the validity of our novel devices. It is useful to recognize that a material inducing a higher magnitude of zeta potential has an advantage for obtaining higher power density under the same external resistance.

  7. Osteoinduction of porous Ti implants with a channel structure fabricated by selective laser melting.

    PubMed

    Fukuda, A; Takemoto, M; Saito, T; Fujibayashi, S; Neo, M; Pattanayak, Deepak K; Matsushita, T; Sasaki, K; Nishida, N; Kokubo, T; Nakamura, T

    2011-05-01

    Many studies have shown that certain biomaterials with specific porous structures can induce bone formation in non-osseous sites without the need for osteoinductive biomolecules, however, the mechanisms responsible for this phenomenon (intrinsic osteoinduction of biomaterials) remain unclear. In particular, to our knowledge the type of pore structure suitable for osteoinduction has not been reported in detail. In the present study we investigated the effects of interconnective pore size on osteoinductivity and the bone formation processes during osteoinduction. Selective laser melting was employed to fabricate porous Ti implants (diameter 3.3mm, length 15 mm) with a channel structure comprising four longitudinal square channels, representing pores, of different diagonal widths, 500, 600, 900, and 1200 μm (termed p500, p600, p900, and p1200, respectively). These were then subjected to chemical and heat treatments to induce bioactivity. Significant osteoinduction was observed in p500 and p600, with the highest observed osteoinduction occurring at 5mm from the end of the implants. A distance of 5mm probably provides a favorable balance between blood circulation and fluid movement. Thus, the simple architecture of the implants allowed effective investigation of the influence of the interconnective pore size on osteoinduction, as well as the relationship between bone quantity and its location for different pore sizes. PMID:21295166

  8. Reduction of absorption loss in silica-on-silicon channel waveguides fabricated by low-temperature PECVD process

    NASA Astrophysics Data System (ADS)

    Sahu, Jayanta K.; Wosinski, Lech; Fernando, Harendra

    1999-12-01

    This study is focused on the low temperature plasma enhanced chemical vapor deposition technique used for fabrication of silica based optical waveguides on silicon, utilizing nitrous oxide as an oxidant for both silane and dopant. Fabricated channel waveguide shows total insertion loss of 1.2 dB at 1.55 micrometers , and no absorption peaks associated with N-H and Si-H bonds around 1.5 micrometers have been observed in the as deposited material. This fabrication technology adds flexibility to the monolithic integration of electronic and optical components. Using this technology, a n umber of different couplers based on multimode interference technique have been investigated.

  9. Spall Properties of Aluminum 5083 Plate Fabricated using Equi-Channel Angular Extrusion and Rolling

    NASA Astrophysics Data System (ADS)

    Whelchel, Ricky; Thadhani, Naresh; Sanders, Thomas; Mathaudhu, Suveen; Kecskes, Laszlo

    2013-06-01

    The spall strength and Hugoniot Elastic Limit (HEL) of aluminum alloy 5083 (Al 5083) are compared for plates fabricated using equi-channel angular extrusion (ECAE) versus rolling. Al 5083 is a light-weight and strain-hardenable aluminum alloy used for armor plating in military transport vehicles, thus requiring the highest achievable spall strength. The spall strength of strain-hardenable alloys is a function of the grain structure and volume fraction of secondary phases, such as brittle inclusions, in addition to the extent of hardening. Materials processed by ECAE have a highly refined grain structure with little texturing and a large degree of plastic deformation, whereas rolled plates have a textured grain structure that aligns along the rolling direction. The spall behavior of Al 5083 for both forms was measured using plate impact gas gun experiments combined with rear free surface velocity measurements employing VISAR. The spall strength varied with impact orientation for the rolled plate but remained uniform for the ECAE material. Despite large differences in the HEL, the spall behavior for Al 5083 made by both processing techniques was controlled by the extent of brittle particles that acted as nucleation sites for damage during tensile failure.

  10. Spall properties of Al 5083 plate fabricated using equi-channel angular pressing (ECAP) and rolling

    NASA Astrophysics Data System (ADS)

    Whelchel, R. L.; Thadhani, N. N.; Sanders, T. H.; Kecskes, L. J.; Williams, C. L.

    2014-05-01

    The spall strength and Hugoniot Elastic Limit (HEL) of aluminum alloy 5083 (Al 5083) are compared for plates fabricated using equi-channel angular pressing (ECAP) and rolling. Al 5083 is a light-weight and strain-hardenable aluminum alloy used for armor plating in military transport vehicles, thus requiring the highest achievable spall strength and HEL. Materials that were processed by ECAP displayed a highly refined grain structure with little texture and a large degree of plastic deformation, whereas subsequent rolling resulted in a textured microstructure with both grains and inclusions aligning along the rolling direction. The spall behavior of Al 5083 was determined using plate-impact gas-gun experiments with rear free surface velocity measurements for a variety of processing conditions involving both ECAP and rolling. The spall strength and HEL increased from that of the as-received material after processing with ECAP. Subsequent rolling further increased the HEL but reduced the spall strength. Rolling also resulted in directional dependence of the spall strength, with the lowest spall strength occurring for impact through the plate thickness and highest spall strength in the rolling direction. The trends in the spall behavior correlate with the size and preferential alignment of manganese dispersoids and iron and silicon rich inclusions that are evolved during processing.

  11. Pharmacological Characterization of 5-HT1A Autoreceptor-Coupled GIRK Channels in Rat Dorsal Raphe 5-HT Neurons

    PubMed Central

    Montalbano, Alberto; Corradetti, Renato; Mlinar, Boris

    2015-01-01

    G protein-activated inwardly rectifying potassium (GIRK) channels in 5-HT neurons are assumed to be principal effectors of 5-hydroxytryptamine 1A (5-HT1A) autoreceptors, but their pharmacology, subunit composition and the role in regulation of 5-HT neuron activity have not been fully elucidated. We sought for a pharmacological tool for assessing the functional role of GIRK channels in 5-HT neurons by characterizing the effects of drugs known to block GIRK channels in the submicromolar range of concentrations. Whole-cell voltage-clamp recording in brainstem slices were used to determine concentration-response relationships for the selected GIRK channel blockers on 5-HT1A autoreceptor-activated inwardly rectifying K+ conductance in rat dorsal raphe 5-HT neurons. 5-HT1A autoreceptor-activated GIRK conductance was completely blocked by the nonselective inwardly rectifying potassium channels blocker Ba2+ (EC50 = 9.4 μM, full block with 100 μM) and by SCH23390 (EC50 = 1.95 μM, full block with 30 μM). GIRK-specific blocker tertiapin-Q blocked 5-HT1A autoreceptor-activated GIRK conductance with high potency (EC50 = 33.6 nM), but incompletely, i.e. ~16% of total conductance resulted to be tertiapin-Q-resistant. U73343 and SCH28080, reported to block GIRK channels with submicromolar EC50s, were essentially ineffective in 5-HT neurons. Our data show that inwardly rectifying K+ channels coupled to 5-HT1A autoreceptors display pharmacological properties generally expected for neuronal GIRK channels, but different from GIRK1-GIRK2 heteromers, the predominant form of brain GIRK channels. Distinct pharmacological properties of GIRK channels in 5-HT neurons should be explored for the development of new therapeutic agents for mood disorders. PMID:26460748

  12. Acid-sensing ion channel 1a contributes to hippocampal LTP inducibility through multiple mechanisms

    PubMed Central

    Liu, Ming-Gang; Li, Hu-Song; Li, Wei-Guang; Wu, Yan-Jiao; Deng, Shi-Ning; Huang, Chen; Maximyuk, Oleksandr; Sukach, Volodymyr; Krishtal, Oleg; Zhu, Michael X.; Xu, Tian-Le

    2016-01-01

    The exact roles of acid-sensing ion channels (ASICs) in synaptic plasticity remain elusive. Here, we address the contribution of ASIC1a to five forms of synaptic plasticity in the mouse hippocampus using an in vitro multi-electrode array recording system. We found that genetic deletion or pharmacological blockade of ASIC1a greatly reduced, but did not fully abolish, the probability of long-term potentiation (LTP) induction by either single or repeated high frequency stimulation or theta burst stimulation in the CA1 region. However, these treatments did not affect hippocampal long-term depression induced by low frequency electrical stimulation or (RS)-3,5-dihydroxyphenylglycine. We also show that ASIC1a exerts its action in hippocampal LTP through multiple mechanisms that include but are not limited to augmentation of NMDA receptor function. Taken together, these results reveal new insights into the role of ASIC1a in hippocampal synaptic plasticity and the underlying mechanisms. This unbiased study also demonstrates a novel and objective way to assay synaptic plasticity mechanisms in the brain. PMID:26996240

  13. Ten-channel InP-based large-scale photonic integrated transmitter fabricated by SAG technology

    NASA Astrophysics Data System (ADS)

    Zhang, Can; Zhu, Hongliang; Liang, Song; Cui, Xiao; Wang, Huitao; Zhao, Lingjuan; Wang, Wei

    2014-12-01

    A 10-channel InP-based large-scale photonic integrated transmitter was fabricated by selective area growth (SAG) technology combined with butt-joint regrowth (BJR) technology. The SAG technology was utilized to fabricate the electroabsorption modulated distributed feedback (DFB) laser (EML) arrays at the same time. The design of coplanar electrodes for electroabsorption modulator (EAM) was used for the flip-chip bonding package. The lasing wavelength of DFB laser could be tuned by the integrated micro-heater to match the ITU grids, which only needs one electrode pad. The average output power of each channel is 250 μW with an injection current of 200 mA. The static extinction ratios of the EAMs for 10 channels tested are ranged from 15 to 27 dB with a reverse bias of 6 V. The frequencies of 3 dB bandwidth of the chip for each channel are around 14 GHz. The novel design and simple fabrication process show its enormous potential in reducing the cost of large-scale photonic integrated circuit (LS-PIC) transmitter with high chip yields.

  14. Fabrication and propagation characterization of As2S8 chalcogenide channel waveguide made by UV irradiation annealing

    SciTech Connect

    Lin Erzou; Bao Xuechen; He Sanlin; Hamanaka, Hiromi; Iso, Mamoru

    2009-11-20

    Changes in the refractive index of amorphous chalcogenide A2S8 films upon ultraviolet (UV) exposure and annealing at different temperatures are investigated in detail, indicating an index contrast of the order of 10{sup -2} in the A2S8 channel waveguide. An As2S8 channel waveguide is fabricated using UV well irradiation and then annealing near the glass transition temperature and shows a low propagation loss of 0.76 dB/cm and good propagation characterization at the 1310 nm guided mode.

  15. Simulation and fabrication of micro-scaled flow channels for metallic bipolar plates by the electrochemical micro-machining process

    NASA Astrophysics Data System (ADS)

    Lee, Shuo-Jen; Lee, Chi-Yuan; Yang, Kung-Ting; Kuan, Feng-Hui; Lai, Ping-Hung

    In order to take better advantage of metallic bipolar plates for producing metallic fuel cells and make it a feasible technology, it is essential that we have an efficient and cost effective fabrication process for creating micro-scaled flow channels. In this study, an electrochemical micro-machining (EMM) process is developed. In order to have better process control a finite element analysis is employed to ensure machine tool platform rigidity; an electric field analysis is applied for the electrode design; and an electrolytic flow analysis is carried out for the fixture design and the selection of the operational parameter. Finally, flow channels measuring 200 μm in depth and 500 μm in width are fabricated on SS316 stainless steel sheets measuring 50 mm × 0.6 mm thick.

  16. Fabrication and characteristics of low loss and single-mode channel waveguides based on DNA-HCTAC biopolymer material

    NASA Astrophysics Data System (ADS)

    Zhang, Fei-yan; Wang, Zhen-yong; Yan, Cheng-en; Zhou, Jun

    2012-03-01

    A novel biopolymer, deoxyribonucleic acid-hexadecyltrimethylammonium chloride (DNA-HCTAC), is used as the core layer material in optical waveguide, and the cleanroom technology is successfully applied to fabricate the single-mode channel waveguides with low propagation loss. The prepared DNA-HCTAC material shows high optical quality at the optical telecommunication wavelengths, such as high transparency, relatively high refractive index and low birefringence. In the fabrication approach, polymethyl methacrylate (PMMA) is used as a barrier layer to protect the DNA-HCTAC material from the corrosive of photoresist developer, and the etching conditions are optimized to form the smooth wall and sharp cross-section of the waveguide. Lastly, the optical characteristics of DNA-HCTAC channel waveguides are measured. The results show that the DNA-HCTAC waveguide operates with single-mode propagation and has a low optical loss.

  17. Continuous wave channel waveguide lasers in Nd:LuVO4 fabricated by direct femtosecond laser writing.

    PubMed

    Ren, Yingying; Dong, Ningning; Macdonald, John; Chen, Feng; Zhang, Huaijin; Kar, Ajoy K

    2012-01-30

    Buried channel waveguides in Nd:LuVO<4 were fabricated by femtosecond laser writing with the double-line technique. The photoluminescence properties of the bulk materials were found to be well preserved within the waveguide core region. Continuous-wave laser oscillation at 1066.4 nm was observed from the waveguide under ~809 nm optical excitation, with the absorbed pump power at threshold and laser slope efficiency of 98 mW and 14%, respectively.

  18. Kv8.1, a new neuronal potassium channel subunit with specific inhibitory properties towards Shab and Shaw channels.

    PubMed Central

    Hugnot, J P; Salinas, M; Lesage, F; Guillemare, E; de Weille, J; Heurteaux, C; Mattéi, M G; Lazdunski, M

    1996-01-01

    Outward rectifier K+ channels have a characteristic structure with six transmembrane segments and one pore region. A new member of this family of transmembrane proteins has been cloned and called Kv8.1. Kv8.1 is essentially present in the brain where it is located mainly in layers II, IV and VI of the cerebral cortex, in hippocampus, in CA1-CA4 pyramidal cell layer as well in granule cells of the dentate gyrus, in the granule cell layer and in the Purkinje cell layer of the cerebellum. The Kv8.1 gene is in the 8q22.3-8q24.1 region of the human genome. Although Kv8.1 has the hallmarks of functional subunits of outward rectifier K+ channels, injection of its cRNA in Xenopus oocytes does not produce K+ currents. However Kv8.1 abolishes the functional expression of members of the Kv2 and Kv3 subfamilies, suggesting that the functional role of Kv8.1 might be to inhibit the function of a particular class of outward rectifier K+ channel types. Immunoprecipitation studies have demonstrated that inhibition occurs by formation of heteropolymeric channels, and results obtained with Kv8.1 chimeras have indicated that association of Kv8.1 with other types of subunits is via its N-terminal domain. Images PMID:8670833

  19. Design and fabrication of a novel porous implant with pre-set channels based on ceramic stereolithography for vascular implantation.

    PubMed

    Bian, Weiguo; Li, Dichen; Lian, Qin; Zhang, Weijie; Zhu, Linzhong; Li, Xiang; Jin, Zhongmin

    2011-09-01

    Being a multi-etiological factors disease, osteonecrosis of the femoral head affects many young people, leading to the collapse of the femur head; eventually the hip arthroplasty is needed if not treated in time. Unfortunately, as yet, no satisfactory therapy to repair necrotic bone at an early stage is present. Novel implants with pre-set channels were designed for the treatment of early femoral head necrosis. Ceramic stereolithography was applied to fabricate the green part from β-TCP powder. Other processes, such as dehydration, rinsing, drying and sintering, were processed successively. The final ceramic part remains the same as the engineered part in both shape and internal structure. No significant deformation or crack occurred. X-ray diffraction showed that no facies changed or chemical reaction occurred during the fabrication process. The chemical composition remains the same as that of the original β-TCP powder. The compressive strength is 23.54 MPa, close to that of natural cancellous bone. Novel implants with a pre-set channel were designed and fabricated for blood vessel implantation. Bioceramic stereolithography technology based directly on the CAD model in this research shows advantages in accurate design, optimization of 3D scaffold and critical control of the fabrication process. This proposed implant shows promising clinical application in the restoration of early femoral head necrosis.

  20. Effects of Temperature on Heteromeric Kv11.1a/1b and Kv11.3 Channels.

    PubMed

    Mauerhöfer, Maike; Bauer, Christiane K

    2016-08-01

    Kv11.1 channels are crucial in cardiac physiology, and there is increasing evidence of physiological roles of different Kv11 channels outside the heart. The HERG (human Kv11.1a) channel has previously been shown to carry substantially more current at elevated temperatures, and we have now comparably investigated the temperature dependence of neuronal Kv11.3 channels and the more ubiquitous heteromeric Kv11.1a/1b channels. Transiently expressed rat Kv11 channels were studied at 21°C, 30°C, and 35°C. At near-physiological temperature, the maximal sustained outward current density was almost three times the mean value obtained at room temperature for Kv11.1a/1b, and increased by ∼150% for Kv11.3. For both channels, reduced inactivation contributed to the current increase at higher temperature. Elevated temperature moved Kv11.1a/1b isochronal activation curves to more negative potentials, but shifted the potential of half-maximal Kv11.3 channel activation to more depolarized values and reduced its voltage sensitivity. Thus, increased temperature stabilized the open state over the closed state of Kv11.1a/1b channels and exerted the opposite effect on Kv11.3 channel activation. Both Kv11 channels exhibited an overall high temperature sensitivity of most gating parameters, with remarkably high Q10 factors of ∼5 for the rate of Kv11.1a/1b activation. The Q10 factors for Kv11.3 gating were more uniform, but still higher for activation than for inactivation kinetics. The results demonstrate that characteristic differences between Kv11.1a/1b and Kv11.3 determined at room temperature do not necessarily apply to physiological conditions. The data provided here can aid in the design of models that will enhance our understanding of the role of Kv11 currents in excitable cells. PMID:27508435

  1. A distinct sodium channel voltage-sensor locus determines insect selectivity of the spider toxin Dc1a.

    PubMed

    Bende, Niraj S; Dziemborowicz, Sławomir; Mobli, Mehdi; Herzig, Volker; Gilchrist, John; Wagner, Jordan; Nicholson, Graham M; King, Glenn F; Bosmans, Frank

    2014-07-11

    β-Diguetoxin-Dc1a (Dc1a) is a toxin from the desert bush spider Diguetia canities that incapacitates insects at concentrations that are non-toxic to mammals. Dc1a promotes opening of German cockroach voltage-gated sodium (Nav) channels (BgNav1), whereas human Nav channels are insensitive. Here, by transplanting commonly targeted S3b-S4 paddle motifs within BgNav1 voltage sensors into Kv2.1, we find that Dc1a interacts with the domain II voltage sensor. In contrast, Dc1a has little effect on sodium currents mediated by PaNav1 channels from the American cockroach even though their domain II paddle motifs are identical. When exploring regions responsible for PaNav1 resistance to Dc1a, we identified two residues within the BgNav1 domain II S1-S2 loop that when mutated to their PaNav1 counterparts drastically reduce toxin susceptibility. Overall, our results reveal a distinct region within insect Nav channels that helps determine Dc1a sensitivity, a concept that will be valuable for the design of insect-selective insecticides.

  2. A distinct sodium channel voltage-sensor locus determines insect selectivity of the spider toxin Dc1a

    NASA Astrophysics Data System (ADS)

    Bende, Niraj S.; Dziemborowicz, Sławomir; Mobli, Mehdi; Herzig, Volker; Gilchrist, John; Wagner, Jordan; Nicholson, Graham M.; King, Glenn F.; Bosmans, Frank

    2014-07-01

    β-Diguetoxin-Dc1a (Dc1a) is a toxin from the desert bush spider Diguetia canities that incapacitates insects at concentrations that are non-toxic to mammals. Dc1a promotes opening of German cockroach voltage-gated sodium (Nav) channels (BgNav1), whereas human Nav channels are insensitive. Here, by transplanting commonly targeted S3b-S4 paddle motifs within BgNav1 voltage sensors into Kv2.1, we find that Dc1a interacts with the domain II voltage sensor. In contrast, Dc1a has little effect on sodium currents mediated by PaNav1 channels from the American cockroach even though their domain II paddle motifs are identical. When exploring regions responsible for PaNav1 resistance to Dc1a, we identified two residues within the BgNav1 domain II S1-S2 loop that when mutated to their PaNav1 counterparts drastically reduce toxin susceptibility. Overall, our results reveal a distinct region within insect Nav channels that helps determine Dc1a sensitivity, a concept that will be valuable for the design of insect-selective insecticides.

  3. A distinct sodium channel voltage-sensor locus determines insect selectivity of the spider toxin Dc1a

    PubMed Central

    Bende, Niraj S; Dziemborowicz, Slawomir; Mobli, Mehdi; Herzig, Volker; Gilchrist, John; Wagner, Jordan; Nicholson, Graham M; King, Glenn F; Bosmans, Frank

    2014-01-01

    β-Diguetoxin-Dc1a (Dc1a) is a toxin from the desert bush spider Diguetia canities that incapacitates insects at concentrations that are non-toxic to mammals. Dc1a promotes opening of German cockroach voltage-gated sodium (Nav) channels (BgNav1), whereas human Nav channels are insensitive. Here, by transplanting commonly targeted S3b-S4 paddle motifs within BgNav1 voltage sensors into Kv2.1, we find that Dc1a interacts with the domain II voltage sensor. In contrast, Dc1a has little effect on sodium currents mediated by PaNav1 channels from the American cockroach even though their domain II paddle motifs are identical. When exploring regions responsible for PaNav1 resistance to Dc1a, we identified two residues within the BgNav1 domain II S1–S2 loop that when mutated to their PaNav1 counterparts drastically reduce toxin susceptibility. Overall, our results reveal a distinct region within insect Nav channels that helps determine Dc1a sensitivity, aconcept that will be valuable for the design of insect-selective insecticides. PMID:25014760

  4. Solid polymer electrolyte (SPE) fuel cell technology program, phase 1/1A. [design and fabrication

    NASA Technical Reports Server (NTRS)

    1975-01-01

    A solid polymer electrolyte fuel cell was studied for the purpose of improving the characteristics of the technology. Several facets were evaluated, namely: (1) reduced fuel cell costs; (2) reduced fuel cell weight; (3) improved fuel cell efficiency; and (4) increased systems compatibility. Demonstrated advances were incorporated into a full scale hardware design. A single cell unit was fabricated. A substantial degree of success was demonstrated.

  5. Fabrication

    NASA Astrophysics Data System (ADS)

    Angel, Roger; Helms, Richard; Bilbro, Jim; Brown, Norman; Eng, Sverre; Hinman, Steve; Hull-Allen, Greg; Jacobs, Stephen; Keim, Robert; Ulmer, Melville

    1992-08-01

    What aspects of optical fabrication technology need to be developed so as to facilitate existing planned missions, or enable new ones? Throughout the submillimeter to UV wavelengths, the common goal is to push technology to the limits to make the largest possible apertures that are diffraction limited. At any one wavelength, the accuracy of the surface must be better than lambda/30 (rms error). The wavelength range is huge, covering four orders of magnitude from 1 mm to 100 nm. At the longer wavelengths, diffraction limited surfaces can be shaped with relatively crude techniques. The challenge in their fabrication is to make as large as possible a reflector, given the weight and volume constraints of the launch vehicle. The limited cargo diameter of the shuttle has led in the past to emphasis on deployable or erectable concepts such as the Large Deployable Reflector (LDR), which was studied by NASA for a submillimeter astrophysics mission. Replication techniques that can be used to produce light, low-cost reflecting panels are of great interest for this class of mission. At shorter wavelengths, in the optical and ultraviolet, optical fabrication will tax to the limit the most refined polishing methods. Methods of mechanical and thermal stabilization of the substrate will be severely stressed. In the thermal infrared, the need for large aperture is tempered by the even stronger need to control the telescope's thermal emission by cooled or cryogenic operation. Thus, the SIRTF mirror at 1 meter is not large and does not require unusually high accuracy, but the fabrication process must produce a mirror that is the right shape at a temperature of 4 K. Future large cooled mirrors will present more severe problems, especially if they must also be accurate enough to work at optical wavelengths. At the very shortest wavelengths accessible to reflecting optics, in the x-ray domain, the very low count fluxes of high energy photons place a premium on the collecting area. It is

  6. Fabrication

    NASA Technical Reports Server (NTRS)

    Angel, Roger; Helms, Richard; Bilbro, Jim; Brown, Norman; Eng, Sverre; Hinman, Steve; Hull-Allen, Greg; Jacobs, Stephen; Keim, Robert; Ulmer, Melville

    1992-01-01

    What aspects of optical fabrication technology need to be developed so as to facilitate existing planned missions, or enable new ones? Throughout the submillimeter to UV wavelengths, the common goal is to push technology to the limits to make the largest possible apertures that are diffraction limited. At any one wavelength, the accuracy of the surface must be better than lambda/30 (rms error). The wavelength range is huge, covering four orders of magnitude from 1 mm to 100 nm. At the longer wavelengths, diffraction limited surfaces can be shaped with relatively crude techniques. The challenge in their fabrication is to make as large as possible a reflector, given the weight and volume constraints of the launch vehicle. The limited cargo diameter of the shuttle has led in the past to emphasis on deployable or erectable concepts such as the Large Deployable Reflector (LDR), which was studied by NASA for a submillimeter astrophysics mission. Replication techniques that can be used to produce light, low-cost reflecting panels are of great interest for this class of mission. At shorter wavelengths, in the optical and ultraviolet, optical fabrication will tax to the limit the most refined polishing methods. Methods of mechanical and thermal stabilization of the substrate will be severely stressed. In the thermal infrared, the need for large aperture is tempered by the even stronger need to control the telescope's thermal emission by cooled or cryogenic operation. Thus, the SIRTF mirror at 1 meter is not large and does not require unusually high accuracy, but the fabrication process must produce a mirror that is the right shape at a temperature of 4 K. Future large cooled mirrors will present more severe problems, especially if they must also be accurate enough to work at optical wavelengths. At the very shortest wavelengths accessible to reflecting optics, in the x-ray domain, the very low count fluxes of high energy photons place a premium on the collecting area. It is

  7. Fabrication and characterization of gels with integrated channels using 3D printing with microfluidic nozzle for tissue engineering applications.

    PubMed

    Attalla, R; Ling, C; Selvaganapathy, P

    2016-02-01

    The lack of a simple and effective method to integrate vascular network with engineered scaffolds and tissue constructs remains one of the biggest challenges in true 3D tissue engineering. Here, we detail the use of a commercially available, low-cost, open-source 3D printer modified with a microfluidic print-head in order to develop a method for the generation of instantly perfusable vascular network integrated with gel scaffolds seeded with cells. The print-head features an integrated coaxial nozzle that allows the fabrication of hollow, calcium-polymerized alginate tubes that can be easily patterned using 3D printing techniques. The diameter of the hollow channel can be precisely controlled and varied between 500 μm - 2 mm by changing applied flow rates or print-head speed. These channels are integrated into gel layers with a thickness of 800 μm - 2.5 mm. The structural rigidity of these constructs allows the fabrication of multi-layered structures without causing the collapse of hollow channels in lower layers. The 3D printing method was fully characterized at a range of operating speeds (0-40 m/min) and corresponding flow rates (1-30 mL/min) were identified to produce precise definition. This microfluidic design also allows the incorporation of a wide range of scaffold materials as well as biological constituents such as cells, growth factors, and ECM material. Media perfusion of the channels causes a significant viability increase in the bulk of cell-laden structures over the long-term. With this setup, gel constructs with embedded arrays of hollow channels can be created and used as a potential substitute for blood vessel networks. PMID:26842949

  8. Fabrication and characterization of gels with integrated channels using 3D printing with microfluidic nozzle for tissue engineering applications.

    PubMed

    Attalla, R; Ling, C; Selvaganapathy, P

    2016-02-01

    The lack of a simple and effective method to integrate vascular network with engineered scaffolds and tissue constructs remains one of the biggest challenges in true 3D tissue engineering. Here, we detail the use of a commercially available, low-cost, open-source 3D printer modified with a microfluidic print-head in order to develop a method for the generation of instantly perfusable vascular network integrated with gel scaffolds seeded with cells. The print-head features an integrated coaxial nozzle that allows the fabrication of hollow, calcium-polymerized alginate tubes that can be easily patterned using 3D printing techniques. The diameter of the hollow channel can be precisely controlled and varied between 500 μm - 2 mm by changing applied flow rates or print-head speed. These channels are integrated into gel layers with a thickness of 800 μm - 2.5 mm. The structural rigidity of these constructs allows the fabrication of multi-layered structures without causing the collapse of hollow channels in lower layers. The 3D printing method was fully characterized at a range of operating speeds (0-40 m/min) and corresponding flow rates (1-30 mL/min) were identified to produce precise definition. This microfluidic design also allows the incorporation of a wide range of scaffold materials as well as biological constituents such as cells, growth factors, and ECM material. Media perfusion of the channels causes a significant viability increase in the bulk of cell-laden structures over the long-term. With this setup, gel constructs with embedded arrays of hollow channels can be created and used as a potential substitute for blood vessel networks.

  9. The Human Acid-Sensing Ion Channel ASIC1a: Evidence for a Homotetrameric Assembly State at the Cell Surface

    PubMed Central

    Gautschi, Ivan; Schild, Laurent

    2015-01-01

    The chicken acid-sensing ion channel ASIC1 has been crystallized as a homotrimer. We address here the oligomeric state of the functional ASIC1 in situ at the cell surface. The oligomeric states of functional ASIC1a and mutants with additional cysteines introduced in the extracellular pore vestibule were resolved on SDS-PAGE. The functional ASIC1 complexes were stabilized at the cell surface of Xenopus laevis oocytes or CHO cells either using the sulfhydryl crosslinker BMOE, or sodium tetrathionate (NaTT). Under these different crosslinking conditions ASIC1a migrates as four distinct oligomeric states that correspond by mass to multiples of a single ASIC1a subunit. The relative importance of each of the four ASIC1a oligomers was critically dependent on the availability of cysteines in the transmembrane domain for crosslinking, consistent with the presence of ASIC1a homo-oligomers. The expression of ASIC1a monomers, trimeric or tetrameric concatemeric cDNA constructs resulted in functional channels. The resulting ASIC1a complexes are resolved as a predominant tetramer over the other oligomeric forms, after stabilization with BMOE or NaTT and SDS-PAGE/western blot analysis. Our data identify a major ASIC1a homotetramer at the surface membrane of the cell expressing functional ASIC1a channel. PMID:26252376

  10. Identification of PN1, a Predominant Voltage-Dependent Sodium Channel Expressed Principally in Peripheral Neurons

    NASA Astrophysics Data System (ADS)

    Toledo-Aral, Juan J.; Moss, Brenda L.; He, Zhi-Jun; Koszowski, Adam G.; Whisenand, Teri; Levinson, Simon R.; Wolf, John J.; Silos-Santiago, Inmaculada; Halegoua, Simon; Mandel, Gail

    1997-02-01

    Membrane excitability in different tissues is due, in large part, to the selective expression of distinct genes encoding the voltage-dependent sodium channel. Although the predominant sodium channels in brain, skeletal muscle, and cardiac muscle have been identified, the major sodium channel types responsible for excitability within the peripheral nervous system have remained elusive. We now describe the deduced primary structure of a sodium channel, peripheral nerve type 1 (PN1), which is expressed at high levels throughout the peripheral nervous system and is targeted to nerve terminals of cultured dorsal root ganglion neurons. Studies using cultured PC12 cells indicate that both expression and targeting of PN1 is induced by treatment of the cells with nerve growth factor. The preferential localization suggests that the PN1 sodium channel plays a specific role in nerve excitability.

  11. A Method for Activation of Endogenous Acid-sensing Ion Channel 1a (ASIC1a) in the Nervous System with High Spatial and Temporal Precision

    PubMed Central

    Li, Tianbo; Yang, Youshan; Canessa, Cecilia M.

    2014-01-01

    Protons activate acid-sensing ion channel 1a (ASIC1a) in the central nervous system (CNS) although the impact of such activation on brain outputs remains elusive. Progress elucidating the functional roles of ASIC1a in the CNS has been hindered by technical difficulties of achieving acidification with spatial and temporal precision. We have implemented a method to control optically the opening of ASIC1a in brain slices and also in awake animals. The light-driven H+ pump ArchT was expressed in astrocytes of mouse cortex by injection of adenoviral vectors containing a strong and astrocyte-specific promoter. Illumination with amber light acidified the surrounding interstitium and led to activation of endogenous ASIC1a channels and firing of action potentials in neurons localized in close proximity to ArchT-expressing astrocytes. We conclude that this optogenetic method offers a minimally invasive approach that enables examining the biological consequences of ASIC1a currents in any structure of the CNS and in the modulation of animal behaviors. PMID:24727474

  12. An increased expression of Ca(2+) channel alpha(1A) subunit immunoreactivity in deep cerebellar neurons of rolling mouse Nagoya.

    PubMed

    Sawada, K; Sakata-Haga, H; Ando, M; Takeda, N; Fukui, Y

    2001-12-01

    Rolling mouse Nagoya (RMN) is an ataxic mutant and carries a mutation in the gene coding for the alpha(1A) subunit of the P/Q-type Ca(2+) channel. We examined the immunohistochemical expression of the alpha(1A) subunit in deep cerebellar nuclei of RMN. The antibody used recognized residues 865-883 of the mouse alpha(1A) subunit not overlapping the altered sequences in RMN. In RMN, many neurons exhibited definite alpha(1A) subunit-staining in the medial nucleus, interposed nucleus, and lateral nucleus of deep cerebellar nuclei. The number of positive neurons in these nuclei was significantly higher in RMN than in controls. Increased expression of the alpha(1A) subunit in deep cerebellar neurons might compensate for the altered function of the P/Q-type Ca(2+) channel of RMN.

  13. VFK1, a Vicia faba K(+) channel involved in phloem unloading.

    PubMed

    Ache, P; Becker, D; Deeken, R; Dreyer, I; Weber, H; Fromm, J; Hedrich, R

    2001-09-01

    In search of a K(+) channel involved in phloem transport we screened a Vicia faba cotyledon cDNA library taking advantage of a set of degenerated primers, flanking regions conserved among K(+) uptake channels. We cloned VFK1 (for Vicia faba K(+) channel 1) characterised by a structure known from the Shaker family of plant K(+) channels. When co-expressed with a KAT1 mutant in Xenopus oocytes, heteromers revealed the biophysical properties of a K(+) selective, proton-blocked channel. Northern blot analyses showed high levels of expression in cotyledons, flowers, stem and leaves. Using in situ PCR techniques we could localise the K(+) channel mRNA in the phloem. In the stem VFK1 expression levels were higher in the lower internodes. There channel transcripts increased in the light and thus under conditions of increased photosynthate allocation. VFK1 transcripts are elevated in sink leaves, and rise in source leaves during the experimental transition into sinks. Fructose- rather than sucrose- or glucose-feeding via the petiole induced VFK1 gene activity. We therefore monitored the fructose sensitivity of the sieve tube potential through cut aphid stylets. In response to an 1 h fructose treatment the sieve tube potential shift increased from 19 mV to 53 mV per 10-fold change in K(+) concentration. Under these conditions K(+) channels dominated the electrical properties of the plasma membrane. Based on the phloem localisation and expression patterns of VFK1 we conclude that this K(+) channel is involved in sugar unloading and K(+) retrieval.

  14. Dual Input AND Gate Fabricated From a Single Channel Poly (3-Hexylthiophene) Thin Film Field Effect Transistor

    NASA Technical Reports Server (NTRS)

    Pinto, N. J.; Perez, R.; Mueller, C. H.; Theofylaktos, N.; Miranda, F. A.

    2006-01-01

    A regio-regular poly (3-hexylthiophene) (RRP3HT) thin film transistor having a split-gate architecture has been fabricated on a doped silicon/silicon nitride substrate and characterized. This device demonstrates AND logic functionality. The device functionality was controlled by applying either 0 or -10 V to each of the gate electrodes. When -10 V was simultaneously applied to both gates, the device was conductive (ON), while any other combination of gate voltages rendered the device resistive (OFF). The p-type carrier charge mobility was about 5x10(exp -4) per square centimeter per V-sec. The low mobility is attributed to the sharp contours of the RRP3HT film due to substrate non-planarity. A significant advantage of this architecture is that AND logic devices with multiple inputs can be fabricated using a single RRP3HT channel with multiple gates.

  15. Rapid fabrication of pressure-driven open-channel microfluidic devices in omniphobic R(F) paper.

    PubMed

    Glavan, Ana C; Martinez, Ramses V; Maxwell, E Jane; Subramaniam, Anand Bala; Nunes, Rui M D; Soh, Siowling; Whitesides, George M

    2013-08-01

    This paper describes the fabrication of pressure-driven, open-channel microfluidic systems with lateral dimensions of 45-300 microns carved in omniphobic paper using a craft-cutting tool. Vapor phase silanization with a fluorinated alkyltrichlorosilane renders paper omniphobic, but preserves its high gas permeability and mechanical properties. When sealed with tape, the carved channels form conduits capable of guiding liquid transport in the low-Reynolds number regime (i.e. laminar flow). These devices are compatible with complex fluids such as droplets of water in oil. The combination of omniphobic paper and a craft cutter enables the development of new types of valves and switches, such as "fold valves" and "porous switches," which provide new methods to control fluid flow.

  16. Molecular identification of SqKv1A. A candidate for the delayed rectifier K channel in squid giant axon

    PubMed Central

    1996-01-01

    We have cloned the cDNA for a squid Kvl potassium channel (SqKv1A). SqKv1A mRNA is selectively expressed in giant fiber lobe (GFL) neurons, the somata of the giant axons. Western blots detect two forms of SqKv1A in both GFL neuron and giant axon samples. Functional properties of SqKv1A currents expressed in Xenopus oocytes are very similar to macroscopic currents in GFL neurons and giant axons. Macroscopic K currents in GFL neuron cell bodies, giant axons, and in Xenopus oocytes expressing SqKv1A, activate rapidly and inactivate incompletely over a time course of several hundred ms. Oocytes injected with SqKv1A cRNA express channels of two conductance classes, estimated to be 13 and 20 pS in an internal solution containing 470 mM K. SqKv1A is thus a good candidate for the "20 pS" K channel that accounts for the majority of rapidly activating K conductance in both GFL neuron cell bodies and the giant axon. PMID:8882864

  17. Molecular identification of SqKv1A. A candidate for the delayed rectifier K channel in squid giant axon.

    PubMed

    Rosenthal, J J; Vickery, R G; Gilly, W F

    1996-09-01

    We have cloned the cDNA for a squid Kvl potassium channel (SqKv1A). SqKv1A mRNA is selectively expressed in giant fiber lobe (GFL) neurons, the somata of the giant axons. Western blots detect two forms of SqKv1A in both GFL neuron and giant axon samples. Functional properties of SqKv1A currents expressed in Xenopus oocytes are very similar to macroscopic currents in GFL neurons and giant axons. Macroscopic K currents in GFL neuron cell bodies, giant axons, and in Xenopus oocytes expressing SqKv1A, activate rapidly and inactivate incompletely over a time course of several hundred ms. Oocytes injected with SqKv1A cRNA express channels of two conductance classes, estimated to be 13 and 20 pS in an internal solution containing 470 mM K. SqKv1A is thus a good candidate for the "20 pS" K channel that accounts for the majority of rapidly activating K conductance in both GFL neuron cell bodies and the giant axon.

  18. Fabrication of IR-transparent microfluidic devices by anisotropic etching of channels in CaF2.

    PubMed

    Lehmkuhl, Brynson; Noblitt, Scott D; Krummel, Amber T; Henry, Charles S

    2015-11-21

    A simple fabrication method for generating infrared (IR) transparent microfluidic devices using etched CaF2 is demonstrated. To etch microfluidic channels, a poly(dimethylsiloxane) (PDMS) microfluidic device was reversibly sealed on a CaF2 plate and acid was pumped through the channel network to perform anisotropic etching of the underlying CaF2 surface. To complete the CaF2 microfluidic device, another CaF2 plate was sealed over the etched channel using a 700 nm thick layer of PDMS adhesive. The impact of different acids and their concentrations on etching was studied, with HNO3 giving the best results in terms of channel roughness and etch rates. Etch rate was determined at etching times ranging from 4-48 hours and showed a linear correlation with etching time. The IR transparency of the CaF2 device was established using a Fourier Transform IR microscope and showed that the device could be used in the mid-IR region. Finally, utility of the device was demonstrated by following the reaction of N-methylacetamide and D2O, which results in an amide peak shift to 1625 cm(-1) from 1650 cm(-1), using an FTIR microscope. PMID:26450455

  19. Acid-sensing ion channel (ASIC) 1a/2a heteromers have a flexible 2:1/1:2 stoichiometry

    PubMed Central

    Bartoi, Tudor; Augustinowski, Katrin; Polleichtner, Georg; Gründer, Stefan; Ulbrich, Maximilian H.

    2014-01-01

    Acid-sensing ion channels (ASICs) are widely expressed proton-gated Na+ channels playing a role in tissue acidosis and pain. A trimeric composition of ASICs has been suggested by crystallization. Upon coexpression of ASIC1a and ASIC2a in Xenopus oocytes, we observed the formation of heteromers and their coexistence with homomers by electrophysiology, but could not determine whether heteromeric complexes have a fixed subunit stoichiometry or whether certain stoichiometries are preferred over others. We therefore imaged ASICs labeled with green and red fluorescent proteins on a single-molecule level, counted bleaching steps from GFP and colocalized them with red tandem tetrameric mCherry for many individual complexes. Combinatorial analysis suggests a model of random mixing of ASIC1a and ASIC2a subunits to yield both 2:1 and 1:2 ASIC1a:ASIC2a heteromers together with ASIC1a and ASIC2a homomers. PMID:24847067

  20. Fabrication of multilayer ZrO₂-biphasic calcium phosphate-poly-caprolactone unidirectional channeled scaffold for bone tissue formation.

    PubMed

    Mondal, Dibakar; So-Ra, Son; Sarkar, Swapan Kumar; Min, Young Ki; Yang, Hun Mo; Lee, Byong Taek

    2013-09-01

    We developed a continuously porous scaffold with laminated matrix and bone-like microstructure by a multi-pass extrusion process. In this scaffold, tetragonal ZrO₂, biphasic calcium phosphate and poly-caprolactone layers were arranged in a co-axially laminated unit cell with a channel in the center. The entire matrix phase had a laminated microstructure of alternate lamina of tetragonal ZrO₂, biphasic calcium phosphate and poly-caprolactone--biphasic calcium phosphate with optimized designed thickness and channeled porosity. Each of the continuous pores was coaxially encircled by the poly-caprolactone--biphasic calcium phosphate layer, biphasic calcium phosphate layer and finally tetragonal ZrO₂ layer, one after the other. Before extrusion, 5 vol% graphite powder was mixed with tetragonal ZrO₂ to ensure pores in the outer layer and connectivity among the lamellas. The design strategy is aimed to incorporate a lamellar microstructure like the natural bone in the macro-scaled ceramic body to investigate the strengthening phenomenon and pave the way for fabricating complex microstructure of natural bone could be applied for whole bone replacement. The final fabricated scaffold had a compressive strength of 12.7 MPa and porosity of 78 vol% with excellent cell viability, cell attachment and osteocalcin and collagen expression from cultured MG63 cells on scaffold.

  1. Fracture-based Fabrication of Normally-closed, Adjustable and Fully Reversible Micro-scale Fluidic Channels

    PubMed Central

    Huang, Jiexi; Matsuoka, Toshiki; Thouless, M.D.; Takayama, Shuichi

    2014-01-01

    Adjustable fluidic structures play an important role in microfluidic systems. Fracture of multilayered materials under applied tension has been previously demonstrated as a convenient, simple and inexpensive approach to fabricate nano-scale adjustable structures; here, we demonstrate how to extend this concept to the micro-scale. We achieve this by a novel pairing of materials that leverages fracture mechanics to limit crack formation to a specified region, allowing us to create size-controllable and adjustable microfluidic structures. We demonstrate that this technique can be used to fabricate ‘normally-closed’ microfluidic channels that are completely reversible, a feature that is challenging to achieve in conventional systems without careful engineering controls. The adjustable microfluidic channels are then applied to mechanically lyse single cells, and subsequently manipulate the released nuclear chromatin, creating new possibilities for epigenetic analysis of single cells. This simple, versatile and robust technology provides an easily accessible pathway to construct adjustable microfluidic structures, which will be useful in developing complex assays and experiments even in resource-limited settings. PMID:24942855

  2. Three distinct motifs within the C-terminus of acid-sensing ion channel 1a regulate its surface trafficking.

    PubMed

    Jing, L; Chu, X-P; Zha, X-M

    2013-09-01

    Various protein motifs play a key role in regulating protein biogenesis and trafficking. Here, we discovered that three distinct motifs regulate the trafficking of acid-sensing ion channel 1a (ASIC1a), the primary neuronal proton receptor which plays critical roles in neurological diseases including stroke, multiple sclerosis and seizures. Mutating the PDZ binding motif of ASIC1a increased its surface expression and current density. In contrast, mutating either a RRGK motif or a KEAKR motif reduced ASIC1a surface expression and acid-activated current density. Mutating or deleting the RRGK motif also reduced pH sensitivity and the rate of desensitization of ASIC1a. These changes were likely due to a change in ASIC1a biogenesis; mutating either the RRGK or KEAKR motif reduced N-glycosylation of ASIC1a while mutating the PDZ binding motif had the opposite effect. Our results demonstrate that these C-terminal motifs are important for ASIC1a trafficking and channel function. In addition, in contrast to multiple previous studies, which all show that K/R containing motifs lead to endoplasmic reticulum (ER) retention, our findings indicate that these motifs can also be required for efficient trafficking.

  3. A Versatile Method for Fabricating Tissue Engineering Scaffolds with a Three-Dimensional Channel for Prevasculature Networks.

    PubMed

    Li, Shuai; Liu, Yuan-Yuan; Liu, Li-Jun; Hu, Qing-Xi

    2016-09-28

    Despite considerable advances in tissue engineering over the past two decades, solutions to some crucial problems remain elusive. Vascularization is one of the most important factors that greatly influence the function of scaffolds. Many research studies have focused on the construction of a vascular-like network with prevascularization structure. Sacrificial materials are widely used to build perfusable vascular-like architectures, but most of these fabricated scaffolds only have a 2D plane-connected network. The fabrication of three-dimensional perfusable branched networks remains an urgent issue. In this work, we developed a novel sacrificial molding technique for fabricating biocompatible scaffolds with a three-dimensional perfusable branched network. Here, 3D-printed poly(vinyl alcohol) (PVA) filament was used as the sacrificial material. The fused PVA was deposited on the surface of a cylinder to create the 3D branched solid network. Gelatin was used to embed the solid network. Then, the PVA mold was dissolved after curing the hydrogel. The obtained architecture shows good perfusability. Cell experiment results indicated that human umbilical vein endothelial cells (HUVECs) successfully attached to the surface of the branched channel and maintained high viability after a few days in culture. In order to prevent deformation of the channel, paraffin was coated on the surface of the printed structure, and hydroxyapatite (HA) was added to gelatin. In conclusion, we demonstrate a novel strategy toward the engineering of prevasculature thick tissues through the integration of the fused PVA filament deposit. This approach has great potential in solving the issue of three-dimensional perfusable branched networks and opens the way to clinical applications. PMID:27607243

  4. Translational strategies for neuroprotection in ischemic stroke - focusing on Acid Sensing Ion Channel 1a

    PubMed Central

    O'Bryant, Zaven; Vann, Kiara T.; Xiong, Zhi-Gang

    2014-01-01

    Ischemic stroke contributes to the majority of brain injuries and remains to be a leading cause of death and long-term disability. Despite the devastating pathology and high incidence of disease, there remain only few treatment options (tPA and endovascular procedures), which may be hampered by time dependent administration among a variety of other factors. Promising research of glutamate receptor antagonists has been unsuccessful in clinical trial. But, the mechanism by which glutamate receptors initiate injury by excessive calcium overload has spurred investigation of new and potentially successful candidates for stroke therapy. Acid sensing ion channels (ASICs) may contribute to poor stroke prognosis due to localized drop in brain pH, resulting in excessive calcium overload, independent of glutamate activation. Accumulating studies targeting ASICs have underscored the importance of understanding inhibition, regulation, desensitization and trafficking of this channel and its role in disease. This review will discuss potential directions in translational ASIC research for future stroke therapies. PMID:24390970

  5. Fabrication of versatile channel flow cells for quantitative electroanalysis using prototyping.

    PubMed

    Snowden, Michael E; King, Philip H; Covington, James A; Macpherson, Julie V; Unwin, Patrick R

    2010-04-15

    Here we demonstrate the use of microstereolithography (MSL), a 3D direct manufacturing technique, as a viable method to produce small-scale microfluidic components for electrochemical flow detection. The flow cell is assembled simply by resting the microfabricated component on the electrode of interest and securing with thread! This configuration allows the use of a wide range of electrode materials. Furthermore, our approach eliminates the need for additional sealing methods, such as adhesives, waxes, and screws, which have previously been deployed. In addition, it removes any issues associated with compression of the cell chamber. MSL allows a reduction of the dimensions of the channel geometry (and the resultant component) and, compared to most previously produced devices, it offers a high degree of flexibility in the design, reduced manufacture time, and high reliability. Importantly, the polymer utilized does not distort so that the cell maintains well-defined geometrical dimensions after assembly. For the studies herein the channel dimensions were 3 mm wide, 3.5 mm long, and 192 or 250 mum high. The channel flow cell dimensions were chosen to ensure that the substrate electrodes experienced laminar flow conditions, even with volume flow rates of up to 64 mL min(-1) (the limit of our pumping system). The steady-state transport-limited current response, for the oxidation of ferrocenylmethyl trimethylammonium hexaflorophosphate (FcTMA(+)), at gold and polycrystalline boron doped diamond (pBDD) band electrodes was in agreement with the Levich equation and/or finite element simulations of mass transport. We believe that this method of creating and using channel flow electrodes offers a wide range of new applications from electroanalysis to electrocatalysis.

  6. Synthesis of photoreactive ivermectin B1a derivatives and their actions on Haemonchus and Bombyx glutamate-gated chloride channels.

    PubMed

    Fuse, Toshinori; Ikeda, Izumi; Kita, Tomo; Furutani, Shogo; Nakajima, Hiromitsu; Matsuda, Kazuhiko; Ozoe, Fumiyo; Ozoe, Yoshihisa

    2015-05-01

    Glutamate-gated chloride channels (GluCls) are inhibitory neurotransmitter receptors that are present only in invertebrates such as nematodes and insects. These channels are important targets of insecticidal, acaricidal, and anthelmintic macrolides such as avermectins, ivermectin (IVM), and milbemycins. To identify the amino acid residues that interact with IVM in GluCls, three IVM B1a derivatives with different photoreactive substitutions at C-13 were synthesized in the present study. These derivatives displayed low- or subnanomolar affinity for parasitic nematode (Haemonchus contortus) and silkworm (Bombyx mori) GluCls expressed in COS-1 cells. The derivatives also activated homomeric H. contortus GluCls expressed in Xenopus oocytes. The results indicate that synthesized photoreactive IVM B1a derivatives have superior affinity and functionality for chemically labeling the macrolide-binding site in GluCls. .

  7. Synthesis of photoreactive ivermectin B1a derivatives and their actions on Haemonchus and Bombyx glutamate-gated chloride channels.

    PubMed

    Fuse, Toshinori; Ikeda, Izumi; Kita, Tomo; Furutani, Shogo; Nakajima, Hiromitsu; Matsuda, Kazuhiko; Ozoe, Fumiyo; Ozoe, Yoshihisa

    2015-05-01

    Glutamate-gated chloride channels (GluCls) are inhibitory neurotransmitter receptors that are present only in invertebrates such as nematodes and insects. These channels are important targets of insecticidal, acaricidal, and anthelmintic macrolides such as avermectins, ivermectin (IVM), and milbemycins. To identify the amino acid residues that interact with IVM in GluCls, three IVM B1a derivatives with different photoreactive substitutions at C-13 were synthesized in the present study. These derivatives displayed low- or subnanomolar affinity for parasitic nematode (Haemonchus contortus) and silkworm (Bombyx mori) GluCls expressed in COS-1 cells. The derivatives also activated homomeric H. contortus GluCls expressed in Xenopus oocytes. The results indicate that synthesized photoreactive IVM B1a derivatives have superior affinity and functionality for chemically labeling the macrolide-binding site in GluCls. . PMID:25987225

  8. Lithographically-fabricated channel arrays for confocal x-ray fluorescence microscopy and XAFS

    NASA Astrophysics Data System (ADS)

    Woll, Arthur R.; Agyeman-Budu, David; Choudhury, Sanjukta; Coulthard, Ian; Finnefrock, Adam C.; Gordon, Robert; Hallin, Emil; Mass, Jennifer

    2014-03-01

    Confocal X-ray Fluorescence Microscopy (CXRF) employs overlapping focal regions of two x-ray optics—a condenser and collector—to directly probe a 3D volume. The minimum-achievable size of this probe volume is limited by the collector, for which polycapillaries are generally the optic of choice. Recently, we demonstrated an alternative collection optic for CXRF, consisting of an array of micron-scale collimating channels, etched in silicon, and arranged like spokes of a wheel directed towards a single source position. The optic, while successful, had a working distance of only 0.2 mm and exhibited relatively low total collection efficiency, limiting its practical application. Here, we describe a new design in which the collimating channels are formed by a staggered array of pillars whose side-walls taper away from the channel axis. This approach improves both collection efficiency and working distance, while maintaining excellent spatial resolution. We illustrate these improvements with confocal XRF data obtained at the Cornell High Energy Synchrotron Source (CHESS) and the Advanced Photon Source (APS) beamline 20-ID-B.

  9. Switchable dual-wavelength erbium-doped fibre laser utilizing two-channel fibre Bragg grating fabricated by femtosecond laser

    NASA Astrophysics Data System (ADS)

    Shen, Fangcheng; Zhou, Kaiming; Zhang, Lin; Shu, Xuewen

    2016-10-01

    We propose and demonstrate a switchable dual-wavelength erbium-doped fibre ring laser. Competition between the lasing wavelengths in erbium-doped fibre laser at room temperature is suppressed by incorporating a two-channel fibre Bragg grating (TC-FBG), which consists of two highly localized sub-gratings fabricated by femtosecond laser in single mode fibre. Wavelengths and polarization states of the lasing lines are selected by the TC-FBG. Laser output can be switched between single- and dual-wavelength operations by simply adjusting the polarization controller. Stable dual-wavelength output is verified at room temperature with a power fluctuation less than 0.27 dB, and wavelength fluctuation less than 0.004 nm.

  10. SWELL1, a plasma membrane protein, is an essential component of volume-regulated anion channel

    PubMed Central

    Qiu, Zhaozhu; Dubin, Adrienne E.; Mathur, Jayanti; Tu, Buu; Reddy, Kritika; Miraglia, Loren J.; Reinhardt, Jürgen; Orth, Anthony P.; Patapoutian, Ardem

    2014-01-01

    Summary Maintenance of a constant cell volume in response to extracellular or intracellular osmotic changes is critical for cellular homeostasis. Activation of a ubiquitous volume-regulated anion channel (VRAC) plays a key role in this process; however, its molecular identity in vertebrates remains unknown. Here, we used a cell-based fluorescence assay and performed a genome-wide RNAi screen to find components of VRAC. We identified SWELL1 (LRRC8A), a member of a four-transmembrane protein family with unknown function, as essential for hypotonicity-induced iodide influx. SWELL1 is localized to the plasma membrane, and its knockdown dramatically reduces endogenous VRAC currents and regulatory cell volume decrease in various cell types. Furthermore, point mutations in SWELL1 cause a significant change in VRAC anion selectivity, demonstrating that SWELL1 is an essential VRAC component. These findings enable further molecular characterization of the VRAC channel complex and genetic studies for understanding the function of VRAC in normal physiology and disease. PMID:24725410

  11. 3D printing of liquid metals as fugitive inks for fabrication of 3D microfluidic channels.

    PubMed

    Parekh, Dishit P; Ladd, Collin; Panich, Lazar; Moussa, Khalil; Dickey, Michael D

    2016-05-21

    This paper demonstrates a simple method to fabricate 3D microchannels and microvasculature at room temperature by direct-writing liquid metal as a sacrificial template. The formation of a surface oxide skin on the low-viscosity liquid metal stabilizes the shape of the printed metal for planar and out-of-plane structures. The printed structures can be embedded in a variety of soft (e.g. elastomeric) and rigid (e.g. thermoset) polymers. Both acid and electrochemical reduction are capable of removing the oxide skin that forms on the metal, which destabilizes the ink so that it withdraws from the encapsulating material due to capillary forces, resulting in nearly full recovery of the fugitive ink at room temperature. Whereas conventional fabrication procedures typically confine microchannels to 2D planes, the geometry of the printed microchannels can be varied from a simple 2D network to complex 3D architectures without using lithography. The method produces robust monolithic structures without the need for any bonding or assembling techniques that often limit the materials of construction of conventional microchannels. Removing select portions of the metal leaves behind 3D metal features that can be used as antennas, interconnects, or electrodes for interfacing with lab-on-a-chip devices. This paper describes the capabilities and limitations of this simple process. PMID:27025537

  12. 3D printing of liquid metals as fugitive inks for fabrication of 3D microfluidic channels.

    PubMed

    Parekh, Dishit P; Ladd, Collin; Panich, Lazar; Moussa, Khalil; Dickey, Michael D

    2016-05-21

    This paper demonstrates a simple method to fabricate 3D microchannels and microvasculature at room temperature by direct-writing liquid metal as a sacrificial template. The formation of a surface oxide skin on the low-viscosity liquid metal stabilizes the shape of the printed metal for planar and out-of-plane structures. The printed structures can be embedded in a variety of soft (e.g. elastomeric) and rigid (e.g. thermoset) polymers. Both acid and electrochemical reduction are capable of removing the oxide skin that forms on the metal, which destabilizes the ink so that it withdraws from the encapsulating material due to capillary forces, resulting in nearly full recovery of the fugitive ink at room temperature. Whereas conventional fabrication procedures typically confine microchannels to 2D planes, the geometry of the printed microchannels can be varied from a simple 2D network to complex 3D architectures without using lithography. The method produces robust monolithic structures without the need for any bonding or assembling techniques that often limit the materials of construction of conventional microchannels. Removing select portions of the metal leaves behind 3D metal features that can be used as antennas, interconnects, or electrodes for interfacing with lab-on-a-chip devices. This paper describes the capabilities and limitations of this simple process.

  13. Fabrication artifacts and parallel loss channels in metamorphic epitaxial aluminum superconducting resonators

    NASA Astrophysics Data System (ADS)

    Richardson, C. J. K.; Siwak, N. P.; Hackley, J.; Keane, Z. K.; Robinson, J. E.; Arey, B.; Arslan, I.; Palmer, B. S.

    2016-06-01

    Fabrication of coplanar waveguide resonators with internal quality factors near 106 remains challenging. Here, high-purity superconductors are implemented through metamorphic epitaxial aluminum that is grown via molecular beam epitaxy on silicon and sapphire substrates. X-ray diffraction and scanning transmission electron microscopy indicate an abrupt highly ordered interface that results in crystal relaxation within a few monolayers of the substrate interface and no measurable interfacial contamination. Quarter-wave coplanar waveguide resonators are fabricated using optical lithography and measured at temperatures below 100 mK. Post measurement characterization with charge contrast imaging in a scanning electron microscope identifies processing artifacts at the waveguide sidewalls, on the exposed substrate area and on the exposed aluminum surface. Of primary importance are processing induced corrosion defects on aluminum sidewalls, nanoparticle contamination, and photoresist residue that is difficult to remove without affecting the superconductor material. Likely correlations between these artifacts and the measured quality factor are discussed in context of device to device variations in resonator performance.

  14. Acid-sensing ion channel-1a in the amygdala, a novel therapeutic target in depression-related behavior

    PubMed Central

    Coryell, Matthew W.; Wunsch, Amanda M.; Haenfler, Jill M.; Allen, Jason E.; Schnizler, Mikael; Ziemann, Adam E.; Cook, Melloni N.; Dunning, Jonathan P.; Price, Margaret P.; Rainier, Jon D.; Liu, Zhuqing; Light, Alan R.; Langbehn, Douglas R.; Wemmie, John A.

    2009-01-01

    No animal models replicate the complexity of human depression. However, a number of behavioral tests in rodents are sensitive to antidepressants and may thus tap important underlying biological factors. Such models may also offer the best opportunity to discover novel treatments. Here, we used several of these models to test the hypothesis that the acid-sensing ion channel-1a (ASIC1a) might be targeted to reduce depression. Genetically disrupting ASIC1a in mice produced antidepressant-like effects in the forced swim test, the tail suspension test, and following unpredictable mild stress. Pharmacologically inhibiting ASIC1a also had antidepressant-like effects in the forced swim test. The effects of ASIC1a disruption in the forced swim test were independent of and additive to those of several commonly used antidepressants. Furthermore, ASIC1a disruption interfered with an important biochemical marker of depression, the ability of stress to reduce BDNF in the hippocampus. Restoring ASIC1a to the amygdala of ASIC1a−/− mice with a viral vector reversed the forced swim test effects, suggesting that the amygdala is a key site of ASIC1a action in depression-related behavior. These data are consistent with clinical studies emphasizing the importance of the amygdala in mood regulation, and suggest that ASIC1a antagonists may effectively combat depression. PMID:19403806

  15. Bent channel design in buried Er3+/Yb3+ codoped phosphate glass waveguide fabricated by field-assisted annealing

    NASA Astrophysics Data System (ADS)

    Zhao, Ruitu; Wang, Mu; Chen, Baojie; Liu, Ke; Pun, Edwin Yue-Bun; Lin, Hai

    2011-04-01

    Bent waveguide structures (S-, U-, and F-bend) based on buried Er3+/Yb3+ codoped phosphate glass waveguide channel fabricated by field-assisted annealing have been designed to achieve high-gain C-band integrated amplification. Using a simulated-bend method, the optimal radius for the curved structure is derived to be 0.90 cm with loss coefficient of 0.02 dB/cm, as the substrate size is schemed to be 4×3 cm2. In the wavelength range of 1520 to 1575 nm, obvious gain enhancement for the bent structure waveguides is anticipated, and for the F-bend waveguide, the internal gain at 1534-nm wavelength is derived to be 41.61 dB, which is much higher than the value of 26.22 and 13.81 dB in the U- and S-bend waveguides, respectively, and over three times higher than that of the straight one. The simulation results indicate that the bent structure design is beneficial in obtaining high signal gain in buried Er3+/Yb3+ codoped phosphate glass waveguides, which lays the foundation for further design and fabrication of integrated devices.

  16. Photonic Crystal Enhancement of a Homogeneous Fluorescent Assay using Submicron Fluid Channels Fabricated by E-jet Patterning

    PubMed Central

    Tan, Yafang; Sutanto, Erick; Alleyne, Andrew G.; Cunningham, Brian T.

    2016-01-01

    We demonstrate the enhancement of a liquid-based homogenous fluorescence assay using the resonant electric fields from a photonic crystal (PC) surface. Because evanescent fields are confined to the liquid volume nearest to the photonic crystal, we developed a simple approach for integrating a PC fabricated on a silicon substrate within a fluid channel with submicron height, using electrohydrodynamic jet (e-jet) printing of a light-curable epoxy adhesive to define the fluid channel pattern. The PC is excited by a custom-designed compact instrument that illuminates the PC with collimated light that precisely matches the resonant coupling condition when the PC is covered with aqueous media. Using a molecular beacon nucleic acid fluorescence resonant energy transfer (FRET) probe for a specific miRNA sequence, we demonstrate an 8x enhancement of the fluorescence emission signal, compared to performing the same assay without exciting resonance in the PC detecting a miRNA sequence at a concentration of 62nM from a liquid volume of only ~20 nl. The approach may be utilized for any liquid-based fluorescence assay for applications in point-of-care diagnostics, environmental monitoring, or pathogen detection. PMID:24376013

  17. Photonic crystal enhancement of a homogeneous fluorescent assay using submicron fluid channels fabricated by E-jet patterning.

    PubMed

    Tan, Yafang; Sutanto, Erick; Alleyne, Andrew G; Cunningham, Brian T

    2014-04-01

    We demonstrate the enhancement of a liquid-based homogenous fluorescence assay using the resonant electric fields from a photonic crystal (PC) surface. Because evanescent fields are confined to the liquid volume nearest to the photonic crystal, we developed a simple approach for integrating a PC fabricated on a silicon substrate within a fluid channel with submicron height, using electrohydrodynamic jet (e-jet) printing of a light-curable epoxy adhesive to define the fluid channel pattern. The PC is excited by a custom-designed compact instrument that illuminates the PC with collimated light that precisely matches the resonant coupling condition when the PC is covered with aqueous media. Using a molecular beacon nucleic acid fluorescence resonant energy transfer (FRET) probe for a specific miRNA sequence, we demonstrate an 8× enhancement of the fluorescence emission signal, compared to performing the same assay without exciting resonance in the PC detecting a miRNA sequence at a concentration of 62 nM from a liquid volume of only ∼20 nL. The approach may be utilized for any liquid-based fluorescence assay for applications in point-of-care diagnostics, environmental monitoring, or pathogen detection. PMID:24376013

  18. Photonic crystal enhancement of a homogeneous fluorescent assay using submicron fluid channels fabricated by E-jet patterning.

    PubMed

    Tan, Yafang; Sutanto, Erick; Alleyne, Andrew G; Cunningham, Brian T

    2014-04-01

    We demonstrate the enhancement of a liquid-based homogenous fluorescence assay using the resonant electric fields from a photonic crystal (PC) surface. Because evanescent fields are confined to the liquid volume nearest to the photonic crystal, we developed a simple approach for integrating a PC fabricated on a silicon substrate within a fluid channel with submicron height, using electrohydrodynamic jet (e-jet) printing of a light-curable epoxy adhesive to define the fluid channel pattern. The PC is excited by a custom-designed compact instrument that illuminates the PC with collimated light that precisely matches the resonant coupling condition when the PC is covered with aqueous media. Using a molecular beacon nucleic acid fluorescence resonant energy transfer (FRET) probe for a specific miRNA sequence, we demonstrate an 8× enhancement of the fluorescence emission signal, compared to performing the same assay without exciting resonance in the PC detecting a miRNA sequence at a concentration of 62 nM from a liquid volume of only ∼20 nL. The approach may be utilized for any liquid-based fluorescence assay for applications in point-of-care diagnostics, environmental monitoring, or pathogen detection.

  19. TREK1 channel blockade induces an antidepressant-like response synergizing with 5-HT1A receptor signaling.

    PubMed

    Ye, Dongqing; Li, Yang; Zhang, Xiangrong; Guo, Fei; Geng, Leiyu; Zhang, Qi; Zhang, Zhijun

    2015-12-01

    Current antidepressants often remain the inadequate efficacy for many depressive patients, which warrant the necessary endeavor to develop the new molecules and targets for treating depression. Recently, the two-pore domain potassium channel TREK1 has been implicated in mood regulation and TREK-1 antagonists could be the promising antidepressant. This study has screened a TREK1 blocker (SID1900) with a satisfactory blood-brain barrier permeation and bioavailability. Electrophysiological research has shown that SID1900 and the previously reported TREK1 blocker (spadin) efficiently blocked TREK-1 current in HEK293 cells and specifically blocked two-pore domain potassium channels in primary-cultured rat hippocampal neurons. SID1900 and spadin induced a significant antidepressant-like response in the rat model of chronic unpredictable mild stress (CUMS). Both two TREK1 blockers substantially increased the firing rate of 5-HT-ergic neurons in the dorsal raphe nuclei (DRN) and PFC of CUMS rats. SID1900 and spadin significantly up-regulated the expression of PKA-pCREB-BDNF signaling in DRN, hippocampus and PFC of CUMS rats, which were enhanced and reversed by a 5-HTR1A agonist (8-OH-DPAT) and antagonist (WAY100635) respectively. The present findings suggested that TREK1 channel blockers posses the substantial antidepressant-like effect and have the potential synergistic effect with 5-HT1A receptor activation through the common CREB-BDNF signal transduction. PMID:26441141

  20. Acid-sensing ion channel-1a is not required for normal hippocampal LTP and spatial memory.

    PubMed

    Wu, Pu-Yeh; Huang, Yu-Yin; Chen, Chien-Chun; Hsu, Tsan-Ting; Lin, Yen-Chu; Weng, Ju-Yun; Chien, Ta-Chun; Cheng, Irene H; Lien, Cheng-Chang

    2013-01-30

    Acid-sensing ion channel-1a (ASIC1a) is localized in brain regions with high synaptic density and is thought to contribute to synaptic plasticity, learning, and memory. A prominent hypothesis is that activation of postsynaptic ASICs promotes depolarization, thereby augmenting N-methyl-d-aspartate receptor function and contributing to the induction of long-term potentiation (LTP). However, evidence for activation of postsynaptic ASICs during neurotransmission has not been established. Here, we re-examined the role of ASIC1a in LTP in the hippocampus using pharmacological and genetic approaches. Our results showed that a tarantula peptide psalmotoxin, which profoundly blocked ASIC currents in the hippocampal neurons, had no effect on LTP. Similarly, normal LTP was robustly generated in ASIC1a-null mice. A further behavioral analysis showed that mice lacking ASIC1a had normal performance in hippocampus-dependent spatial memory. In summary, our results indicate that ASIC1a is not required for hippocampal LTP and spatial memory. We therefore propose that the role of ASIC1a in LTP and spatial learning should be reassessed. PMID:23365222

  1. Design, fabrication, and analysis of p-channel arsenide/antimonide hetero-junction tunnel transistors

    SciTech Connect

    Rajamohanan, Bijesh Mohata, Dheeraj; Hollander, Matthew; Datta, Suman; Zhu, Yan; Hudait, Mantu; Jiang, Zhengping; Klimeck, Gerhard

    2014-01-28

    In this paper, we demonstrate InAs/GaSb hetero-junction (hetJ) and GaSb homo-junction (homJ) p-channel tunneling field effect transistors (pTFET) employing a low temperature atomic layer deposited high-κ gate dielectric. HetJ pTFET exhibited drive current of 35 μA/μm in comparison to homJ pTFET, which exhibited drive current of 0.3 μA/μm at V{sub DS} = −0.5 V under DC biasing conditions. Additionally, with pulsing of 1 μs gate voltage, hetJ pTFET exhibited enhanced drive current of 85 μA/μm at V{sub DS} = −0.5 V, which is the highest reported in the category of III-V pTFET. Detailed device characterization was performed through analysis of the capacitance-voltage characteristics, pulsed current-voltage characteristics, and x-ray diffraction studies.

  2. 10-channel fiber array fabrication technique for parallel optical coherence tomography system

    NASA Astrophysics Data System (ADS)

    Arauz, Lina J.; Luo, Yuan; Castillo, Jose E.; Kostuk, Raymond K.; Barton, Jennifer

    2007-02-01

    Optical Coherence Tomography (OCT) shows great promise for low intrusive biomedical imaging applications. A parallel OCT system is a novel technique that replaces mechanical transverse scanning with electronic scanning. This will reduce the time required to acquire image data. In this system an array of small diameter fibers is required to obtain an image in the transverse direction. Each fiber in the array is configured in an interferometer and is used to image one pixel in the transverse direction. In this paper we describe a technique to package 15μm diameter fibers on a siliconsilica substrate to be used in a 2mm endoscopic probe tip. Single mode fibers are etched to reduce the cladding diameter from 125μm to 15μm. Etched fibers are placed into a 4mm by 150μm trench in a silicon-silica substrate and secured with UV glue. Active alignment was used to simplify the lay out of the fibers and minimize unwanted horizontal displacement of the fibers. A 10-channel fiber array was built, tested and later incorporated into a parallel optical coherence system. This paper describes the packaging, testing, and operation of the array in a parallel OCT system.

  3. Voltage-Dependent Anion Channel-1, a Possible Ligand of Plasminogen Kringle 5

    PubMed Central

    Liang, Yin-ku; Bian, Liu-jiao

    2016-01-01

    Kringle 5, the fifth fragment of plasminogen, is known to be important for inhibiting the proliferation and migration of vascular endothelial cell (VEC), while not having any effects on normal endothelial cells. Therefore, it may be a potential tumor therapy candidate. However, the ligand of the Kringle 5 in VEC has not yet been identified. In this study, the possible ligand of Kringle 5 in vitro was screened and validated using Ph.D.-7 phage display peptide library with molecular docking, along with surface plasma resonance (SPR). After four rounds of panning, the specific clones of Kringle 5 were confirmed using enzyme-linked immunosorbent assay (ELISA). The gene sequence analysis showed that they expressed the common amino sequence IGNSNTL. Then, using a NCBI BLAST, 103 matching sequences were found. Following the molecular docking evaluation and considering the acting function and pathway of the plasminogen Kringle 5 in the human body, the most promising candidate was determined to be voltage-dependent anion channel-1 (VDAC-1), which was able to bind to Kringle 5 at -822.65 J·mol-1 of the binding energy at the residues of Lys12, Thr19, Ser57, Thr188, Arg139, Asn214, Ser240 and Lys274. A strong dose-dependent interaction occurred between the VDAC-1 and Kringle 5 (binding constant 2.43 × 103 L·mol-1) in SPR observation. Therefore, this study proposed that VDAC-1 was a potential ligand of plasminogen Kringle 5, and also demonstrated that the screening and validation of protein ligand using phage display peptide library with the molecular docking, along with SPR, was a practicable application. PMID:27749918

  4. Troponin T3 regulates nuclear localization of the calcium channel Cavβ1a subunit in skeletal muscle

    PubMed Central

    Zhang, Tan; Taylor, Jackson; Jiang, Yang; Pereyra, Andrea S.; Messi, Maria Laura; Wang, Zhong-Min; Hereñú, Claudia; Delbono, Osvaldo

    2015-01-01

    The voltage-gated calcium channel (Cav) β1a subunit (Cavβ1a) plays an important role in excitation-contraction coupling (ECC), a process in the myoplasm that leads to muscle-force generation. Recently, we discovered that the Cavβ1a subunit travels to the nucleus of skeletal muscle cells where it helps to regulate gene transcription. To determine how it travels to the nucleus, we performed a yeast two-hybrid screening of the mouse fast skeletal muscle cDNA library and identified an interaction with troponin T3 (TnT3), which we subsequently confirmed by co-immunoprecipitation and co-localization assays in mouse skeletal muscle in vivo and in cultured C2C12 muscle cells. Interacting domains were mapped to the leucine zipper domain in TnT3 COOH-terminus (160-244 aa) and Cavβ1a NH2-terminus (1-99 aa), respectively. The double fluorescence assay in C2C12 cells co-expressing TnT3/DsRed and Cavβ1a/YFP shows that TnT3 facilitates Cavβ1a nuclear recruitment, suggesting that the two proteins play a heretofore unknown role during early muscle differentiation in addition to their classical role in ECC regulation. PMID:25981458

  5. Troponin T3 regulates nuclear localization of the calcium channel Cavβ1a subunit in skeletal muscle.

    PubMed

    Zhang, Tan; Taylor, Jackson; Jiang, Yang; Pereyra, Andrea S; Messi, Maria Laura; Wang, Zhong-Min; Hereñú, Claudia; Delbono, Osvaldo

    2015-08-15

    The voltage-gated calcium channel (Cav) β1a subunit (Cavβ1a) plays an important role in excitation-contraction coupling (ECC), a process in the myoplasm that leads to muscle-force generation. Recently, we discovered that the Cavβ1a subunit travels to the nucleus of skeletal muscle cells where it helps to regulate gene transcription. To determine how it travels to the nucleus, we performed a yeast two-hybrid screening of the mouse fast skeletal muscle cDNA library and identified an interaction with troponin T3 (TnT3), which we subsequently confirmed by co-immunoprecipitation and co-localization assays in mouse skeletal muscle in vivo and in cultured C2C12 muscle cells. Interacting domains were mapped to the leucine zipper domain in TnT3 COOH-terminus (160-244 aa) and Cavβ1a NH2-terminus (1-99 aa), respectively. The double fluorescence assay in C2C12 cells co-expressing TnT3/DsRed and Cavβ1a/YFP shows that TnT3 facilitates Cavβ1a nuclear recruitment, suggesting that the two proteins play a heretofore unknown role during early muscle differentiation in addition to their classical role in ECC regulation. PMID:25981458

  6. Isolation, synthesis and characterization of ω-TRTX-Cc1a, a novel tarantula venom peptide that selectively targets L-type Cav channels.

    PubMed

    Klint, Julie K; Berecki, Géza; Durek, Thomas; Mobli, Mehdi; Knapp, Oliver; King, Glenn F; Adams, David J; Alewood, Paul F; Rash, Lachlan D

    2014-05-15

    Spider venoms are replete with peptidic ion channel modulators, often with novel subtype selectivity, making them a rich source of pharmacological tools and drug leads. In a search for subtype-selective blockers of voltage-gated calcium (CaV) channels, we isolated and characterized a novel 39-residue peptide, ω-TRTX-Cc1a (Cc1a), from the venom of the tarantula Citharischius crawshayi (now Pelinobius muticus). Cc1a is 67% identical to the spider toxin ω-TRTX-Hg1a, an inhibitor of CaV2.3 channels. We assembled Cc1a using a combination of Boc solid-phase peptide synthesis and native chemical ligation. Oxidative folding yielded two stable, slowly interconverting isomers. Cc1a preferentially inhibited Ba(2+) currents (IBa) mediated by L-type (CaV1.2 and CaV1.3) CaV channels heterologously expressed in Xenopus oocytes, with half-maximal inhibitory concentration (IC50) values of 825nM and 2.24μM, respectively. In rat dorsal root ganglion neurons, Cc1a inhibited IBa mediated by high voltage-activated CaV channels but did not affect low voltage-activated T-type CaV channels. Cc1a exhibited weak activity at NaV1.5 and NaV1.7 voltage-gated sodium (NaV) channels stably expressed in mammalian HEK or CHO cells, respectively. Experiments with modified Cc1a peptides, truncated at the N-terminus (ΔG1-E5) or C-terminus (ΔW35-V39), demonstrated that the N- and C-termini are important for voltage-gated ion channel modulation. We conclude that Cc1a represents a novel pharmacological tool for probing the structure and function of L-type CaV channels.

  7. Isolation, synthesis and characterization of ω-TRTX-Cc1a, a novel tarantula venom peptide that selectively targets L-type Cav channels.

    PubMed

    Klint, Julie K; Berecki, Géza; Durek, Thomas; Mobli, Mehdi; Knapp, Oliver; King, Glenn F; Adams, David J; Alewood, Paul F; Rash, Lachlan D

    2014-05-15

    Spider venoms are replete with peptidic ion channel modulators, often with novel subtype selectivity, making them a rich source of pharmacological tools and drug leads. In a search for subtype-selective blockers of voltage-gated calcium (CaV) channels, we isolated and characterized a novel 39-residue peptide, ω-TRTX-Cc1a (Cc1a), from the venom of the tarantula Citharischius crawshayi (now Pelinobius muticus). Cc1a is 67% identical to the spider toxin ω-TRTX-Hg1a, an inhibitor of CaV2.3 channels. We assembled Cc1a using a combination of Boc solid-phase peptide synthesis and native chemical ligation. Oxidative folding yielded two stable, slowly interconverting isomers. Cc1a preferentially inhibited Ba(2+) currents (IBa) mediated by L-type (CaV1.2 and CaV1.3) CaV channels heterologously expressed in Xenopus oocytes, with half-maximal inhibitory concentration (IC50) values of 825nM and 2.24μM, respectively. In rat dorsal root ganglion neurons, Cc1a inhibited IBa mediated by high voltage-activated CaV channels but did not affect low voltage-activated T-type CaV channels. Cc1a exhibited weak activity at NaV1.5 and NaV1.7 voltage-gated sodium (NaV) channels stably expressed in mammalian HEK or CHO cells, respectively. Experiments with modified Cc1a peptides, truncated at the N-terminus (ΔG1-E5) or C-terminus (ΔW35-V39), demonstrated that the N- and C-termini are important for voltage-gated ion channel modulation. We conclude that Cc1a represents a novel pharmacological tool for probing the structure and function of L-type CaV channels. PMID:24561180

  8. A parallel microfluidic channel fixture fabricated using laser ablated plastic laminates for electrochemical and chemiluminescent biodetection of DNA.

    PubMed

    Edwards, Thayne L; Harper, Jason C; Polsky, Ronen; Lopez, Deanna M; Wheeler, David R; Allen, Amy C; Brozik, Susan M

    2011-12-01

    Herein is described the fabrication and use of a plastic multilayer 3-channel microfluidic fixture. Multilayer devices were produced by laser machining of plastic polymethylmethacrylate and polyethyleneterapthalate laminates by ablation. The fixture consisted of an array of nine individually addressable gold or gold/ITO working electrodes, and a resistive platinum heating element. Laser machining of both the fluidic pathways in the plastic laminates, and the stencil masks used for thermal evaporation to form electrode regions on the plastic laminates, enabled rapid and inexpensive implementation of design changes. Electrochemiluminescence reactions in the fixture were achieved and monitored through ITO electrodes. Electroaddressable aryl diazonium chemistry was employed to selectively pattern gold electrodes for electrochemical multianalyte DNA detection from double stranded DNA (dsDNA) samples. Electrochemical detection of dsDNA was achieved by melting of dsDNA molecules in solution with the integrated heater, allowing detection of DNA sequences specific to breast and colorectal cancers with a non-specific binding control. Following detection, the array surface could be renewed via high temperature (95 °C) stripping using the integrated heating element. This versatile and simple method for prototyping devices shows potential for further development of highly integrated, multi-functional bioanalytical devices. PMID:22276087

  9. A parallel microfluidic channel fixture fabricated using laser ablated plastic laminates for electrochemical and chemiluminescent biodetection of DNA

    PubMed Central

    Edwards, Thayne L.; Harper, Jason C.; Polsky, Ronen; Lopez, DeAnna M.; Wheeler, David R.; Allen, Amy C.; Brozik, Susan M.

    2011-01-01

    Herein is described the fabrication and use of a plastic multilayer 3-channel microfluidic fixture. Multilayer devices were produced by laser machining of plastic polymethylmethacrylate and polyethyleneterapthalate laminates by ablation. The fixture consisted of an array of nine individually addressable gold or gold/ITO working electrodes, and a resistive platinum heating element. Laser machining of both the fluidic pathways in the plastic laminates, and the stencil masks used for thermal evaporation to form electrode regions on the plastic laminates, enabled rapid and inexpensive implementation of design changes. Electrochemiluminescence reactions in the fixture were achieved and monitored through ITO electrodes. Electroaddressable aryl diazonium chemistry was employed to selectively pattern gold electrodes for electrochemical multianalyte DNA detection from double stranded DNA (dsDNA) samples. Electrochemical detection of dsDNA was achieved by melting of dsDNA molecules in solution with the integrated heater, allowing detection of DNA sequences specific to breast and colorectal cancers with a non-specific binding control. Following detection, the array surface could be renewed via high temperature (95 °C) stripping using the integrated heating element. This versatile and simple method for prototyping devices shows potential for further development of highly integrated, multi-functional bioanalytical devices. PMID:22276087

  10. Mid1, a Mechanosensitive Calcium Ion Channel, Affects Growth, Development, and Ascospore Discharge in the Filamentous Fungus Gibberella zeae▿

    PubMed Central

    Cavinder, Brad; Hamam, Ahmed; Lew, Roger R.; Trail, Frances

    2011-01-01

    The role of Mid1, a stretch-activated ion channel capable of being permeated by calcium, in ascospore development and forcible discharge from asci was examined in the pathogenic fungus Gibberella zeae (anamorph Fusarium graminearum). The Δmid1 mutants exhibited a >12-fold reduction in ascospore discharge activity and produced predominately abnormal two-celled ascospores with constricted and fragile septae. The vegetative growth rate of the mutants was ∼50% of the wild-type rate, and production of macroconidia was >10-fold lower than in the wild type. To better understand the role of calcium flux, Δmid1 Δcch1 double mutants were also examined, as Cch1, an L-type calcium ion channel, is associated with Mid1 in Saccharomyces cerevisiae. The phenotype of the Δmid1 Δcch1 double mutants was similar to but more severe than the phenotype of the Δmid1 mutants for all categories. Potential and current-voltage measurements were taken in the vegetative hyphae of the Δmid1 and Δcch1 mutants and the wild type, and the measurements for all three strains were remarkably similar, indicating that neither protein contributes significantly to the overall electrical properties of the plasma membrane. Pathogenicity of the Δmid1 and Δmid1Δcch1 mutants on the host (wheat) was not affected by the mutations. Exogenous calcium supplementation partially restored the ascospore discharge and vegetative growth defects for all mutants, but abnormal ascospores were still produced. These results extend the known roles of Mid1 to ascospore development and forcible discharge. However, Neurospora crassa Δmid1 mutants were also examined and did not exhibit defects in ascospore development or in ascospore discharge. In comparison to ion channels in other ascomycetes, Mid1 shows remarkable adaptability of roles, particularly with regard to niche-specific adaptation. PMID:21357477

  11. Channel

    NASA Technical Reports Server (NTRS)

    2006-01-01

    [figure removed for brevity, see original site] Context image for PIA03693 Channel

    This channel is located south of Iani Chaos.

    Image information: VIS instrument. Latitude -10.9N, Longitude 345.5E. 17 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  12. Intra-membrane Signaling Between the Voltage-Gated Ca2+-Channel and Cysteine Residues of Syntaxin 1A Coordinates Synchronous Release

    PubMed Central

    Bachnoff, Niv; Cohen-Kutner, Moshe; Trus, Michael; Atlas, Daphne

    2013-01-01

    The interaction of syntaxin 1A (Sx1A) with voltage-gated calcium channels (VGCC) is required for depolarization-evoked release. However, it is unclear how the signal is transferred from the channel to the exocytotic machinery and whether assembly of Sx1A and the calcium channel is conformationally linked to triggering synchronous release. Here we demonstrate that depolarization-evoked catecholamine release was decreased in chromaffin cells infected with semliki forest viral vectors encoding Sx1A mutants, Sx1AC271V, or Sx1AC272V, or by direct oxidation of these Sx1A transmembrane (TM) cysteine residues. Mutating or oxidizing these highly conserved Sx1A Cys271 and Cys272 equally disrupted the Sx1A interaction with the channel. The results highlight the functional link between the VGCC and the exocytotic machinery, and attribute the redox sensitivity of the release process to the Sx1A TM C271 and C272. This unique intra-membrane signal-transduction pathway enables fast signaling, and triggers synchronous release by conformational-coupling of the channel with Sx1A. PMID:23567899

  13. Solution structure of Phrixotoxin 1, a specific peptide inhibitor of Kv4 potassium channels from the venom of the theraphosid spider Phrixotrichus auratus

    PubMed Central

    Chagot, Benjamin; Escoubas, Pierre; Villegas, Elba; Bernard, Cédric; Ferrat, Gilles; Corzo, Gerardo; Lazdunski, Michel; Darbon, Hervé

    2004-01-01

    Animal toxins block voltage-dependent potassium channels (Kv) either by occluding the conduction pore (pore blockers) or by modifying the channel gating properties (gating modifiers). Gating modifiers of Kv channels bind to four equivalent extracellular sites near the S3 and S4 segments, close to the voltage sensor. Phrixotoxins are gating modifiers that bind preferentially to the closed state of the channel and fold into the Inhibitory Cystine Knot structural motif. We have solved the solution structure of Phrixotoxin 1, a gating modifier of Kv4 potassium channels. Analysis of the molecular surface and the electrostatic anisotropy of Phrixotoxin 1 and of other toxins acting on voltage-dependent potassium channels allowed us to propose a toxin interacting surface that encompasses both the surface from which the dipole moment emerges and a neighboring hydrophobic surface rich in aromatic residues. PMID:15096626

  14. Short-channel polymer field-effect-transistor fabrication using spin-coating-induced edge template and ink-jet printing

    SciTech Connect

    Li, S.P.; Chu, D.P.; Newsome, C.J.; Russell, D.M.; Kugler, T.; Ishida, M.; Shimoda, T.

    2005-12-05

    A method to fabricate polymer field-effect transistors with submicron channel lengths is described. A thin polymer film is spin coated on a prepatterned resist with a low resolution to create a thickness contrast in the overcoated polymer layer. After plasma and solvent etching, a submicron-sized line structure, which templates the contour of the prepattern, is obtained. A further lift-off process is applied to define source-drain electrodes of transistors. With a combination of ink-jet printing, transistors with channel length down to 400 nm have been fabricated by this method. We show that drive current density increases as expected, while the on/off current ratio 10{sup 6} is achieved.

  15. Optical planar and channel waveguides in the new nonlinear crystal Ca4YO(BO3)3 (YCOB) fabricated by He+ implantation

    NASA Astrophysics Data System (ADS)

    Boudrioua, Azzedine; Vincent, Brice; Moretti, Paul; Tascu, Sorine; Jacquier, Bernard; Aka, Gérard

    2004-01-01

    We report the first study of optical planar and channel waveguides fabricated in the new nonlinear crystal Ca4YO(BO3)3 by use of MeV He+-implantations. The nx, ny, and nz refractive index modifications are studied. Losses in nonannealed YCOB waveguides measured with a CCD camera are found to be less than 2 dB cm-1. This work is the first step toward the investigation of frequency conversion within the obtained guiding structures.

  16. Optical planar and channel waveguides in the new nonlinear crystal Ca4YO(BO3)3 (YCOB) fabricated by He+ implantation.

    PubMed

    Boudrioua, Azzedine; Vincent, Brice; Moretti, Paul; Tascu, Sorine; Jacquier, Bernard; Aka, Gérard

    2004-01-10

    We report the first study of optical planar and channel waveguides fabricated in the new nonlinear crystal Ca4YO(BO3) by use of MeV He+-implantations. The nx, ny, and nz refractive index modifications are studied. Losses in nonannealed YCOB waveguides measured with a CCD camera are found to be less than 2 dB cm(-1). This work is the first step toward the investigation of frequency conversion within the obtained guiding structures.

  17. Effect of fabrication tolerances on the performance of two-dimensional polymer photonic crystal channel drop filters: a theoretical investigation based on the finite element method

    NASA Astrophysics Data System (ADS)

    Dell'Olio, Francesco; Ciminelli, Caterina; Conteduca, Donato; Armenise, Mario Nicola

    2013-09-01

    Guidelines for the design and fabrication of polymer photonic crystal channel drop filters for coarse wavelength division multiplexing are provided. A Fabry-Perot cavity consisting of a membrane-type slab photonic crystal, where a hole row perpendicular to the propagation direction is removed, is considered. We selected nanoimprinting as the manufacturing technique. The influence on the cavity performance of several key parameters, i.e., polymer core material, lattice geometry, defect length, and holes' radius, has been investigated in a device compliant with the requirement of the ITU-T G.694.2 standard. A detailed analysis of the fabrication tolerances has been carried out at 1551 nm. The maximum acceptable drift of the geometrical parameters has been accurately evaluated by using the finite element method to prove that the fabrication tolerances do not significantly affect the performance of polymer filters for coarse wavelength division multiplexing, when manufactured by thermal nanoimprinting lithography.

  18. CAP-1A is a novel linker that binds clathrin and the voltage-gated sodium channel Na(v)1.8.

    PubMed

    Liu, Chuanju; Cummins, Theodore R; Tyrrell, Lynda; Black, Joel A; Waxman, Stephen G; Dib-Hajj, Sulayman D

    2005-04-01

    The voltage-gated sodium channel Na(v)1.8 produces a tetrodotoxin-resistant current and plays a key role in nociception. Annexin II/p11 binds to Na(v)1.8 and facilitates insertion of the channel within the cell membrane. However, the mechanisms responsible for removal of specific channels from the cell membrane have not been studied. We have identified a novel protein, clathrin-associated protein-1A (CAP-1A), which contains distinct domains that bind Na(v)1.8 and clathrin. CAP-1A is abundantly expressed in DRG neurons and colocalizes with Na(v)1.8 and can form a multiprotein complex with Na(v)1.8 and clathrin. Coexpression of CAP-1A and Na(v)1.8 in DRG neurons reduces Na(v)1.8 current density by approximately 50% without affecting the endogenous or recombinant tetrodotoxin-sensitive currents. This effect of CAP-1A is blocked by bafilomycin A1 treatment of transfected DRG neurons. CAP-1A thus is the first example of an adapter protein that links clathrin and a sodium channel and may regulate Na(v)1.8 channel density at the cell surface. PMID:15797711

  19. Fracture fabrication of a multi-scale channel device that efficiently captures and linearizes DNA from dilute solutions.

    PubMed

    Kim, Byoung Choul; Weerappuli, Priyan; Thouless, M D; Takayama, Shuichi

    2015-03-01

    This paper describes a simple technique for patterning channels on elastomeric substrates, at two distinct scales of depth, through the use of controlled fracture. Control of channel depth is achieved by the careful use of different layers of PDMS, where the thickness and material properties of each layer, as well as the position of the layers relative to one another, dictate the depth of the channels formed. The system created in this work consists of a single 'deep' channel, whose width can be adjusted between the micron- and the nano-scale by the controlled application or removal of a uniaxial strain, and an array of 'shallow' nano-scale channels oriented perpendicular to the 'deep' channel. The utility of this system is demonstrated through the successful capture and linearization of DNA from a dilute solution by executing a two-step 'concentrate-then-linearize' procedure. When the 'deep' channel is in its open state and a voltage is applied across the channel network, an overlapping electric double layer forms within the 'shallow' channel array. This overlapping electric double layer was used to prevent passage of DNA into the 'shallow' channels when the DNA molecules migrate into the junctional region by electrophoresis. Release of the applied strain then allows the 'deep' channel to return to its closed state, reducing the cross-sectional area of this channel from the micro- to the nano-scale. The resulting hydrodynamic flow and nano-confinement effects then combine to efficiently uncoil and trap the DNA in its linearized form. By adopting this strategy, we were able to overcome the entropic barriers associated with capturing and linearizing DNA derived from a dilute solution.

  20. Controllable liquid colour-changing lenses with microfluidic channels for vision protection, camouflage and optical filtering based on soft lithography fabrication.

    PubMed

    Zhang, Min; Li, Songjing

    2016-01-01

    In this work, liquid colour-changing lenses for vision protection, camouflage and optical filtering are developed by circulating colour liquids through microfluidic channels on the lenses manually. Soft lithography technology is applied to fabricate the silicone liquid colour-changing layers with microfluidic channels on the lenses instead of mechanical machining. To increase the hardness and abrasion resistance of the silicone colour-changing layers on the lenses, proper fabrication parameters such as 6:1 (mass ration) mixing proportion and 100 °C curing temperature for 2 h are approved for better soft lithography process of the lenses. Meanwhile, a new surface treatment for the irreversible bonding of silicone colour-changing layer with optical resin (CR39) substrate lens by using 5 % (volume ratio) 3-Aminopropyltriethoxysilane solution is proposed. Vision protection, camouflage and optical filtering functions of the lenses are investigated with different designs of the channels and multi-layer structures. Each application can not only well achieve their functional demands, but also shows the advantages of functional flexibility, rapid prototyping and good controllability compared with traditional ways. Besides optometry, some other designs and applications of the lenses are proposed for potential utility in the future. PMID:27247877

  1. Fabrication of 3-Dimensional Structure of Metal Oxide Semiconductor Field Effect Transistor Embodied in the Convex Corner of the Silicon Micro-Fluidic Channel

    NASA Astrophysics Data System (ADS)

    Lim, Geunbae; Park, Chin-Sung; Lyu, Hong-Kun; Kim, Dong-Sun; Jeong, Yong-Taek; Park, Hey-Jung; Kim, Hyoung Sik; Shin, Jang-Kyoo; Choi, Pyung; Lee, Jong-Hyun

    2003-06-01

    As micro-fluidic systems and biochemical detection systems are scaled to smaller dimensions, the realization of small and portable biochemical detection systems has become increasingly important. In this paper, we propose a 3-dimensional structure of a metal oxide semiconductor field-effect transistor(3-D MOSFET) using tetramethyl ammonium hydroxide (TMAH) anisotropic etching, which is a suitable device for combining with a micro-fluidic system. After fabricating a trapezoidal micro-fluidic channel, the 3-D MOSFET embodied in the convex corner of the micro-fluidic channel was fabricated. The length of the gate is about 20 μm and the width is about 9 μm. The depth and top width of the trapezoidal micro-fluidic channel are about 8 μm and 60 μm, respectively. The measured drain saturation current of the 3-D MOSFET was about -22 μA at VGS=-5 V and VDS=-5 V, and the device characteristics exhibit a typical MOSFET behavior. Moreover, a gold layer was used for the MOSFET’s gate metal to detect charged biochemical samples using the affinity between gold and thiol.

  2. 5-Hydroxytryptamine1A receptor-activation hyperpolarizes pyramidal cells and suppresses hippocampal gamma oscillations via Kir3 channel activation

    PubMed Central

    Johnston, April; McBain, Chris J; Fisahn, André

    2014-01-01

    Rhythmic cortical neuronal oscillations in the gamma frequency band (30–80 Hz, gamma oscillations) have been associated with cognitive processes such as sensory perception and integration, attention, learning, and memory. Gamma oscillations are disrupted in disorders for which cognitive deficits are hallmark symptoms such as schizophrenia and Alzheimer's disease. In vitro, various neurotransmitters have been found to modulate gamma oscillations. Serotonin (5-HT) has long been known to be important for both behavioural and cognitive functions such as learning and memory. Multiple 5-HT receptor subtypes are expressed in the CA3 region of the hippocampus and high doses of 5-HT reduce the power of induced gamma oscillations. Hypothesizing that 5-HT may have cell- and receptor subtype-specific modulatory effects, we investigated the receptor subtypes, cell types and cellular mechanisms engaged by 5-HT in the modulation of gamma oscillations in mice and rats. We found that 5-HT decreases the power of kainate-induced hippocampal gamma oscillations in both species via the 5-HT1A receptor subtype. Whole-cell patch clamp recordings demonstrated that this decrease was caused by a hyperpolarization of CA3 pyramidal cells and a reduction of their firing frequency, but not by alteration of inhibitory neurotransmission. Finally, our results show that the effect on pyramidal cells is mediated via the G protein-coupled receptor inwardly rectifying potassium channel Kir3. Our findings suggest this novel cellular mechanism as a potential target for therapies that are aimed at alleviating cognitive decline by helping the brain to maintain or re-establish normal gamma oscillation levels in neuropsychiatric and neurodegenerative disorders. PMID:25107925

  3. Internal fabric of a fossil erosive subduction channel in the Northern Apennines of Italy: implication for fluid flow and seismogenesis

    NASA Astrophysics Data System (ADS)

    Vannucchi, P.; Remitti, F.; Bettelli, G.

    2006-12-01

    In the Northern Apennines of Italy, a shallow erosive subduction channel have been formed during the Tertiary transition from subduction to collision and it has been preserved by later deactivation and fossilization of the plate boundary. Here for the first time it is possible to observe the activations of a basal and roof décollement defining an erosive subduction channel containing material detached or reworked from the upper plate. The outcropping Apennine erosive subduction channel, about 500 m thick, is representative of a portion reaching about 150°C, a critical temperature recognized in most of the subduction zones as coincident with the updip limit of seismogenesis. The onset of structural features developed in the channel testify an evolution from diffusive deformation to strain localization. In particular as the material enters the subduction channel, compaction and pervasive extensional shear fractures accommodates the longitudinal compression. The geometry and kinematic of the extensional shear fractures define a polymodal fracture pattern that in 2D cut the rock in lozenge-shaped elements. We speculate that the onset of extensional features is representative of the weak nature of erosive plate boundaries. As the material is dragged down the channel shear localization is observed, but still in the extensional strain regime. Our results indicate that this second phase of deformation was characterized by high fluid pressure. The strong dynamic interaction between fluids, shear zones and state of eroded material influence fault mechanics and have maintained a locus of broad active deformation that influenced rupture propagation within the channel. Contraction develops only as result of further strengthening caused by the complete lithification of all the components in the subduction channel and suggests locked condition. Collectively these changes indicate favorable conditions for storage of elastic energy in the subduction channel that can be released

  4. Membranes with well-defined ions transport channels fabricated via solvent-responsive layer-by-layer assembly method for vanadium flow battery

    NASA Astrophysics Data System (ADS)

    Xu, Wanxing; Li, Xianfeng; Cao, Jingyu; Zhang, Hongzhang; Zhang, Huamin

    2014-02-01

    In this work we presented a general strategy for the fabrication of membranes with well-defined ions transport channels through solvent-responsive layer-by-layer assembly (SR-LBL). Multilayered poly (diallyldimethylammonium chloride) (PDDA) and poly (acrylic acid) (PAA) complexes were first introduced on the inner pore wall and the surface of sulfonated poly (ether ether ketone)/poly (ether sulfone) (PES/SPEEK) nanofiltration membranes to form ions transport channels with tuned radius. This type of membranes are highly efficient for the separators of batteries especially vanadium flow batteries (VFBs): the VFBs assembled with prepared membranes exhibit an outstanding performance in a wide current density range, which is much higher than that assembled with commercial Nafion 115 membranes. This idea could inspire the development of membranes for other flow battery systems, as well as create further progress in similar areas such as fuel cells, electro-dialysis, chlor-alkali cells, water electrolysis and so on.

  5. Membranes with well-defined ions transport channels fabricated via solvent-responsive layer-by-layer assembly method for vanadium flow battery

    PubMed Central

    Xu, Wanxing; Li, Xianfeng; Cao, Jingyu; Zhang, Hongzhang; Zhang, Huamin

    2014-01-01

    In this work we presented a general strategy for the fabrication of membranes with well-defined ions transport channels through solvent-responsive layer-by-layer assembly (SR-LBL). Multilayered poly (diallyldimethylammonium chloride) (PDDA) and poly (acrylic acid) (PAA) complexes were first introduced on the inner pore wall and the surface of sulfonated poly (ether ether ketone)/poly (ether sulfone) (PES/SPEEK) nanofiltration membranes to form ions transport channels with tuned radius. This type of membranes are highly efficient for the separators of batteries especially vanadium flow batteries (VFBs): the VFBs assembled with prepared membranes exhibit an outstanding performance in a wide current density range, which is much higher than that assembled with commercial Nafion 115 membranes. This idea could inspire the development of membranes for other flow battery systems, as well as create further progress in similar areas such as fuel cells, electro-dialysis, chlor-alkali cells, water electrolysis and so on. PMID:24500376

  6. Fabrication and characterization of sub-100/10 nm planar nanofluidic channels by triple thermal oxidation and silicon-glass anodic bonding

    PubMed Central

    Ouyang, Wei; Wang, Wei

    2014-01-01

    We reported the fabrication and characterization of nanofluidic channels by Triple Thermal Oxidation and Silicon-Glass Anodic Bonding. Planar nanochannels with depths from sub-100 nm down to sub-10 nm were realized by this method. A theoretical model was developed to precisely predict the depth of nanochannels. The depth and uniformity of nanochannels showed good stability during anodic bonding. This method is promising for various nanofluidic studies, such as nanofluidic electrokinetics, biomolecule manipulation, and energy conversion. PMID:25538802

  7. Rapid, single-molecule assays in nano/micro-fluidic chips with arrays of closely spaced parallel channels fabricated by femtosecond laser machining.

    PubMed

    Canfield, Brian K; King, Jason K; Robinson, William N; Hofmeister, William H; Davis, Lloyd M

    2014-01-01

    Cost-effective pharmaceutical drug discovery depends on increasing assay throughput while reducing reagent needs. To this end, we are developing an ultrasensitive, fluorescence-based platform that incorporates a nano/micro-fluidic chip with an array of closely spaced channels for parallelized optical readout of single-molecule assays. Here we describe the use of direct femtosecond laser machining to fabricate several hundred closely spaced channels on the surfaces of fused silica substrates. The channels are sealed by bonding to a microscope cover slip spin-coated with a thin film of poly(dimethylsiloxane). Single-molecule detection experiments are conducted using a custom-built, wide-field microscope. The array of channels is epi-illuminated by a line-generating red diode laser, resulting in a line focus just a few microns thick across a 500 micron field of view. A dilute aqueous solution of fluorescently labeled biomolecules is loaded into the device and fluorescence is detected with an electron-multiplying CCD camera, allowing acquisition rates up to 7 kHz for each microchannel. Matched digital filtering based on experimental parameters is used to perform an initial, rapid assessment of detected fluorescence. More detailed analysis is obtained through fluorescence correlation spectroscopy. Simulated fluorescence data is shown to agree well with experimental values. PMID:25140634

  8. Rapid, single-molecule assays in nano/micro-fluidic chips with arrays of closely spaced parallel channels fabricated by femtosecond laser machining.

    PubMed

    Canfield, Brian K; King, Jason K; Robinson, William N; Hofmeister, William H; Davis, Lloyd M

    2014-08-20

    Cost-effective pharmaceutical drug discovery depends on increasing assay throughput while reducing reagent needs. To this end, we are developing an ultrasensitive, fluorescence-based platform that incorporates a nano/micro-fluidic chip with an array of closely spaced channels for parallelized optical readout of single-molecule assays. Here we describe the use of direct femtosecond laser machining to fabricate several hundred closely spaced channels on the surfaces of fused silica substrates. The channels are sealed by bonding to a microscope cover slip spin-coated with a thin film of poly(dimethylsiloxane). Single-molecule detection experiments are conducted using a custom-built, wide-field microscope. The array of channels is epi-illuminated by a line-generating red diode laser, resulting in a line focus just a few microns thick across a 500 micron field of view. A dilute aqueous solution of fluorescently labeled biomolecules is loaded into the device and fluorescence is detected with an electron-multiplying CCD camera, allowing acquisition rates up to 7 kHz for each microchannel. Matched digital filtering based on experimental parameters is used to perform an initial, rapid assessment of detected fluorescence. More detailed analysis is obtained through fluorescence correlation spectroscopy. Simulated fluorescence data is shown to agree well with experimental values.

  9. Fabrication of a SU-8-based polymer-enclosed channel with a penetrating UV/ozone-modified interior surface for electrokinetic separation of proteins

    NASA Astrophysics Data System (ADS)

    Chang, Chia-Jung; Yang, Chung-Shi; Lan, Li-Hua; Wang, Pen-Cheng; Tseng, Fan-Gang

    2010-11-01

    This paper introduces electrokinetic separation inside fully cross-linked epoxy-based polymer channels that were batch modified on the inner surfaces using a penetrating UV/ozone treatment from the outside. The treatment can employ either a 254 nm UV source in an ozone-rich environment or a stand-alone 172 nm UV source to directly generate C=O hydrophilic functional groups on the embedded polymer channel wall surfaces. Short-wavelength UV radiation was employed to break polymer surface bonds inside the channel. Ozone generated directly from air or supplied externally oxidized the reaction site on the activated polymer surface to generate the desired functional groups. An epoxy-based photoresist compound, SU-8 (MicroChem, MA), which is widely used in microfluidic systems, was employed to demonstrate the surface modification. Fourier transform infrared spectroscopy (FTIR) and high resolution x-ray photoelectron spectroscopy (HRXPS) were employed to characterize the functional groups that formed after the UV/ozone surface modification and to confirm the formation of O-H functional groups from the phenol group covalently bonded to the SU-8 surface, attributed mostly to the surface hydrophilicity modification. Water contact angles on the modified surface ranged from 72° to 12° depending on the processing time, UV power and ozone concentration. These angles were retained for at least 4 weeks after the process. Finally, the inner wall surfaces of the SU-8-enclosed channels were successfully modified using this technology, and rapid water transportation and EOF pumping were visualized inside the channel after surface modification. Successful electrokinetic separation of 10 mM BSA and 10 mM anti-rabbit IgG labeled with FITC inside the channel was also carried out. The polymer channel revealed a surface charge density of 75% of the zeta potential on a microslide glass surface, indicating the potential for molecule separation using polymer channels instead of glass channels

  10. Isoform-specific interaction of the alpha1A subunits of brain Ca2+ channels with the presynaptic proteins syntaxin and SNAP-25.

    PubMed Central

    Rettig, J; Sheng, Z H; Kim, D K; Hodson, C D; Snutch, T P; Catterall, W A

    1996-01-01

    Presynaptic Ca2+ channels are crucial elements in neuronal excitation-secretion coupling. In addition to mediating Ca2+ entry to initiate transmitter release, they are thought to interact directly with proteins of the synaptic vesicle docking/fusion machinery. Here we report isoform-specific, stoichiometric interaction of the BI and rbA isoforms of the alpha1A subunit of P/Q-type Ca2+ channels with the presynaptic membrane proteins syntaxin and SNAP-25 in vitro and in rat brain membranes. The BI isoform binds to both proteins, while only interaction with SNAP-25 can be detected in vitro for the rbA isoform. The synaptic protein interaction ("synprint") site involves two adjacent segments of the intracellular loop connecting domains II and III between amino acid residues 722 and 1036 of the BI sequence. This interaction is competitively blocked by the corresponding region of the N-type Ca2+ channel, indicating that these two channels bind to overlapping regions of syntaxin and SNAP-25. Our results provide a molecular basis for a physical link between Ca2+ influx into nerve terminals and subsequent exocytosis of neurotransmitters at synapses that have presynaptic Ca2+ channels containing alpha1A subunits. Images Fig. 1 Fig. 3 Fig. 4 Fig. 5 PMID:8692999

  11. Recombinant production and solution structure of PcTx1, the specific peptide inhibitor of ASIC1a proton-gated cation channels

    PubMed Central

    Escoubas, Pierre; Bernard, Cédric; Lambeau, Gérard; Lazdunski, Michel; Darbon, Hervé

    2003-01-01

    Acid-sensing ion channels (ASICs) are thought to be important ion channels, particularly for the perception of pain. Some of them may also contribute to synaptic plasticity, learning, and memory. Psalmotoxin 1 (PcTx1), the first potent and specific blocker of the ASIC1a proton-sensing channel, has been successfully expressed in the Drosophila melanogaster S2 cell recombinant expression system used here for the first time to produce a spider toxin. The recombinant toxin was identical in all respects to the native peptide, and its three-dimensional structure in solution was determined by means of 1H 2D NMR spectroscopy. Surface characteristics of PcTx1 provide insights on key structural elements involved in the binding of PcTx1 to ASIC1a channels. They appear to be localized in the β-sheet and the β-turn linking the strands, as indicated by electrostatic anisotropy calculations, surface charge distribution, and the presence of residues known to be implicated in channel recognition by other inhibitor cystine knot (ICK) toxins. PMID:12824480

  12. Time span of plutonism, fabric development, and cooling in a Neoproterozoic magmatic arc segment: U Pb age constraints from syn-tectonic plutons, Sark, Channel Islands, UK

    NASA Astrophysics Data System (ADS)

    Miller, Brent V.; Samson, Scott D.; D'Lemos, Richard S.

    1999-10-01

    New U-Pb zircon and titanite dates from syn-tectonic plutons on the British Channel Island of Sark constrain the time span of plutonism, fabric development, and cooling in this part of the Neoproterozoic Cadomian magmatic arc. The Tintageu leucogneiss is a mylonitic unit that was dated previously at 615.6 +4.2-2.3 Ma. The Port du Moulin quartz diorite, which intruded the Tintageu unit, contains a high-strain solid-state deformation fabric that is less intense than, but parallel to, fabrics in the leucogneiss and yields a U-Pb zircon date of 613.5 +2.3-1.5 Ma. The Little Sark quartz diorite also displays solid-state deformation fabrics in addition to relict magmatic textures, and yields a U-Pb zircon date of 611.4 +2.1-1.3 Ma. The North Sark granodiorite is largely penetratively undeformed, exhibits mainly magmatic fabrics and textures and has a U-Pb zircon date of 608.7 +1.1-1.0 Ma. Two fractions of titanite from each intrusion are essentially concordant and are identical within error, with mean dates of 606.5±0.4 Ma (Port du Moulin quartz diorite), 606.2±0.6 Ma (Little Sark quartz diorite), 606.4±0.6 Ma (North Sark granodiorite). The new U-Pb data, in combination with previous U-Pb and 40Ar/ 39Ar data and previous field studies, confirm the syn-tectonic nature of the Sark plutons and quantify the time span (ca. 7 m.y.) required for intrusion and sufficient crystallization of each body to record incremental strain during waning deformation. Titanite U-Pb and hornblende 40Ar/ 39Ar dates mark final cooling about 2 m.y. after intrusion of the last pluton.

  13. Complementary metal oxide semiconductor compatible fabrication and characterization of parylene-C covered nanofluidic channels with integrated nanoelectrodes.

    PubMed

    Tung, Chih-Kuan; Riehn, Robert; Austin, Robert H

    2009-01-01

    Nanochannels offer a way to align and analyze long biopolymer molecules such as DNA with high precision at potentially single basepair resolution, especially if a means to detect biomolecules in nanochannels electronically can be developed. Integration of nanochannels with electronics will require the development of nanochannel fabrication procedures that will not damage sensitive electronics previously constructed on the device. We present here a near-room-temperature fabrication technology involving parylene-C conformal deposition that is compatible with complementary metal oxide semiconductor electronic devices and present an analysis of the initial impedance measurements of conformally parylene-C coated nanochannels with integrated gold nanoelectrodes.

  14. Channel waveguide fabrication in KY(WO4)2 combining liquid-phase-epitaxy and beam-multiplexed femtosecond laser writing

    NASA Astrophysics Data System (ADS)

    Martínez de Mendívil, J.; Hoyo, J.; Solís, J.; Pujol, M. C.; Aguiló, M.; Díaz, F.; Lifante, G.

    2015-09-01

    In the present work we propose a 2D-channel waveguide fabrication process based on the microstructuration of the cladding of a planar waveguide by femtosecond laser writing. The core of the waveguide is formed by a layer of KY1-x-yGdxLuy(WO4)2 epitaxially grown over a KY(WO4)2 substrate by means of Liquid Phase Epitaxy (LPE). A cladding of KY(WO4)2 is then grown by LPE over the core waveguide. To obtain lateral light confinement, the cladding is then micromachined using a multiplexed femtosecond laser writing beam, forming a ridge structure. Channel waveguides fabricated following this approach have been characterized in terms of their mode sizes and propagation losses at 0.98 μm and 1.64 μm, which are close to the wavelengths of interest in lasers/amplifiers based on the Er3+/Yb3+ system. Experimental data are compared with simulation analysis based on the Effective Index Method and the Beam Propagation Method, showing a good accordance between experimental and numerical results.

  15. Planar and channel waveguides in fused silica fabricated by multi-energy C ion in the visible and near-infrared band

    NASA Astrophysics Data System (ADS)

    Liu, Tao; Huang, Qing; Liu, Peng; Guo, Sha-Sha; Zhang, Lian; Zhou, Yu-Fan; Wang, Xue-Lin

    2013-07-01

    Fused quartz is a key material in fabrication of integrated devices, which transmits extends from ultraviolet to infrared. We report the fabrication of planar and channel waveguides in fused quartz using multi-energy C ion at energies of (5 + 5.5 + 6) MeV and fluences of (1 + 1 + 1.5) × 1015 ions/cm2. The guiding modes at the wavelength of 633 nm (He-Ne laser) and 1539 nm (diode laser) were detected using the prism-coupling method, and the modes were stable after annealing in air. The refractive index profiles of planar and channel waveguides at the wavelength of 633 nm and 1539 nm were typical "well + barrier" distributions, which were reconstructed using the reflectivity calculation method (RCM) software and intensity calculation method (ICM), respectively. For comparison to the experimental results, the finite difference beam propagation method (FD-BPM) was used to simulate the guiding modes of the waveguides. We measured the near-field intensity distributions for the visible (633 nm) and near-infrared (1300 nm, 1539 nm and 1620 nm) wavelength regions, suggesting that the modes can be effective transmission in the wavelength range for optical fiber communications.

  16. One-step fabrication of hollow-channel gold nanoflowers with excellent catalytic performance and large single-particle SERS activity.

    PubMed

    Ye, Sunjie; Benz, Felix; Wheeler, May C; Oram, Joseph; Baumberg, Jeremy J; Cespedes, Oscar; Christenson, Hugo K; Coletta, Patricia Louise; Jeuken, Lars J C; Markham, Alexander F; Critchley, Kevin; Evans, Stephen D

    2016-08-11

    Hollow metallic nanostructures have shown potential in various applications including catalysis, drug delivery and phototherapy, owing to their large surface areas, reduced net density, and unique optical properties. In this study, novel hollow gold nanoflowers (HAuNFs) consisting of an open hollow channel in the center and multiple branches/tips on the outer surface are fabricated for the first time, via a facile one-step synthesis using an auto-degradable nanofiber as a bifunctional template. The one-dimensional (1D) nanofiber acts as both a threading template as well as a promoter of the anisotropic growth of the gold crystal, the combination of which leads to the formation of HAuNFs with a hollow channel and nanospikes. The synergy of favorable structural/surface features, including sharp edges, open cavity and high-index facets, provides our HAuNFs with excellent catalytic performance (activity and cycling stability) coupled with large single-particle SERS activity (including ∼30 times of activity in ethanol electro-oxidation and ∼40 times of single-particle SERS intensity, benchmarked against similar-sized solid gold nanospheres with smooth surfaces, as well as retaining 86.7% of the initial catalytic activity after 500 cycles in ethanol electro-oxidation). This innovative synthesis gives a nanostructure of the geometry distinct from the template and is extendable to fabricating other systems for example, hollow-channel silver nanoflowers (HAgNFs). It thus provides an insight into the design of hollow nanostructures via template methods, and offers a versatile synthetic strategy for diverse metal nanomaterials suited for a broad range of applications.

  17. One-step fabrication of hollow-channel gold nanoflowers with excellent catalytic performance and large single-particle SERS activity.

    PubMed

    Ye, Sunjie; Benz, Felix; Wheeler, May C; Oram, Joseph; Baumberg, Jeremy J; Cespedes, Oscar; Christenson, Hugo K; Coletta, Patricia Louise; Jeuken, Lars J C; Markham, Alexander F; Critchley, Kevin; Evans, Stephen D

    2016-08-11

    Hollow metallic nanostructures have shown potential in various applications including catalysis, drug delivery and phototherapy, owing to their large surface areas, reduced net density, and unique optical properties. In this study, novel hollow gold nanoflowers (HAuNFs) consisting of an open hollow channel in the center and multiple branches/tips on the outer surface are fabricated for the first time, via a facile one-step synthesis using an auto-degradable nanofiber as a bifunctional template. The one-dimensional (1D) nanofiber acts as both a threading template as well as a promoter of the anisotropic growth of the gold crystal, the combination of which leads to the formation of HAuNFs with a hollow channel and nanospikes. The synergy of favorable structural/surface features, including sharp edges, open cavity and high-index facets, provides our HAuNFs with excellent catalytic performance (activity and cycling stability) coupled with large single-particle SERS activity (including ∼30 times of activity in ethanol electro-oxidation and ∼40 times of single-particle SERS intensity, benchmarked against similar-sized solid gold nanospheres with smooth surfaces, as well as retaining 86.7% of the initial catalytic activity after 500 cycles in ethanol electro-oxidation). This innovative synthesis gives a nanostructure of the geometry distinct from the template and is extendable to fabricating other systems for example, hollow-channel silver nanoflowers (HAgNFs). It thus provides an insight into the design of hollow nanostructures via template methods, and offers a versatile synthetic strategy for diverse metal nanomaterials suited for a broad range of applications. PMID:27352044

  18. The receptor site of the spider toxin PcTx1 on the proton-gated cation channel ASIC1a

    PubMed Central

    Salinas, Miguel; Rash, Lachlan D; Baron, Anne; Lambeau, Gérard; Escoubas, Pierre; Lazdunski, Michel

    2006-01-01

    Acid-sensing ion channels (ASICs) are excitatory neuronal cation channels, involved in physiopathological processes related to extracellular pH fluctuation such as nociception, ischaemia, perception of sour taste and synaptic transmission. The spider peptide toxin psalmotoxin 1 (PcTx1) has previously been shown to inhibit specifically the proton-gated cation channel ASIC1a. To identify the binding site of PcTx1, we produced an iodinated form of the toxin (125I-PcTx1YN) and developed a set of binding and electrophysiological experiments on several chimeras of ASIC1a and the PcTx1-insensitive channels ASIC1b and ASIC2a. We show that 125I-PcTx1YN binds specifically to ASIC1a at a single site, with an IC50 of 128 pm, distinct from the amiloride blocking site. Results obtained from chimeras indicate that PcTx1 does not bind to ASIC1a transmembrane domains (M1 and M2), involved in formation of the ion pore, but binds principally on both cysteine-rich domains I and II (CRDI and CRDII) of the extracellular loop. The post-M1 and pre-M2 regions, although not involved in the binding site, are crucial for the ability of PcTx1 to inhibit ASIC1a current. The linker domain between CRDI and CRDII is important for their correct spatial positioning to form the PcTx1 binding site. These results will be useful for the future identification or design of new molecules acting on ASICs. PMID:16284080

  19. Delta channel networks: 1. A graph-theoretic approach for studying connectivity and steady state transport on deltaic surfaces

    NASA Astrophysics Data System (ADS)

    Tejedor, Alejandro; Longjas, Anthony; Zaliapin, Ilya; Foufoula-Georgiou, Efi

    2015-06-01

    River deltas are intricate landscapes with complex channel networks that self-organize to deliver water, sediment, and nutrients from the apex to the delta top and eventually to the coastal zone. The natural balance of material and energy fluxes, which maintains a stable hydrologic, geomorphologic, and ecological state of a river delta, is often disrupted by external perturbations causing topological and dynamical changes in the delta structure and function. A formal quantitative framework for studying delta channel network connectivity and transport dynamics and their response to change is lacking. Here we present such a framework based on spectral graph theory and demonstrate its value in computing delta's steady state fluxes and identifying upstream (contributing) and downstream (nourishment) areas and fluxes from any point in the network. We use this framework to construct vulnerability maps that quantify the relative change of sediment and water delivery to the shoreline outlets in response to possible perturbations in hundreds of upstream links. The framework is applied to the Wax Lake delta in the Louisiana coast of the U.S. and the Niger delta in West Africa. In a companion paper, we present a comprehensive suite of metrics that quantify topologic and dynamic complexity of delta channel networks and, via application to seven deltas in diverse environments, demonstrate their potential to reveal delta morphodynamics and relate to notions of vulnerability and robustness.

  20. Biochemical properties and subcellular distribution of the BI and rbA isoforms of alpha 1A subunits of brain calcium channels

    PubMed Central

    1996-01-01

    Biochemical properties and subcellular distribution of the class A calcium channel alpha 1 subunits (alpha 1A) from rat and rabbit brain were examined using site-directed anti-peptide antibodies specific for rat rbA (anti-CNA3) and for rabbit BI (anti-NBI-1 and anti-NBI-2) isoforms of alpha 1A. In immunoblotting experiments, anti-CNA3 specifically identifies multiple alpha 1A polypeptides with apparent molecular masses of 210, 190, and 160 kD, and anti-NBI-1 and anti-NBI-2 specifically recognize 190-kD alpha 1A polypeptides in rat brain membrane. In rabbit brain, anti-NBI-1 or anti-NBI-2 specifically detect alpha 1A polypeptides with apparent molecular masses of 220, 200, and 190 kD, while anti-CNA3 specifically recognizes 190-kD alpha 1A polypeptides. These polypeptides evidently represent multiple isoforms of alpha 1A present in both rat and rabbit brain. Anti-CNA3 specifically immunoprecipitates high affinity receptor sites for omega- conotoxin MVIIC (Kd approximately 100 pM), whereas anti-NBI-2 immunoprecipitates two distinct affinity receptor sites for omega- conotoxin MVIIC (Kd approximately 100 pM and approximately 1 microM). Coimmunoprecipitation experiments indicate that alpha 1A subunits recognized by anti-CNA3 and anti-NBI-2 are associated with syntaxin in a stable, SDS-resistant complex and with synaptotagmin. Immunofluorescence studies reveal that calcium channels recognized by anti-NBI-2 are localized predominantly in dendrites and nerve terminals forming synapses on them, while calcium channels recognized by anti- CNA3 are localized more prominently in cell bodies and in nerve terminals. The mossy fiber terminals in hippocampus and the terminals of climbing and parallel fibers in cerebellum are differentially stained by these isoform-specific antibodies. These results indicate that both rbA and BI isoforms of alpha 1A are expressed in rat and rabbit brain and form calcium channels having alpha 1A subunits with distinct molecular mass, pharmacology

  1. HERG1A potassium channel is the predominant isoform in head and neck squamous cell carcinomas: evidence for regulation by epigenetic mechanisms.

    PubMed

    Menéndez, Sofía T; Villaronga, M Ángeles; Rodrigo, Juan P; Álvarez-Teijeiro, Saúl; Urdinguio, Rocío G; Fraga, Mario F; Suárez, Carlos; García-Pedrero, Juana M

    2016-01-01

    Evidences indicate that HERG1 voltage-gated potassium channel is frequently aberrantly expressed in various cancers including head and neck squamous cell carcinomas (HNSCC), representing a clinically and biologically relevant feature during disease progression and a potential therapeutic target. The present study further and significantly extends these data investigating for the first time the expression and individual contribution of HERG1 isoforms, their clinical significance during disease progression and also the underlying regulatory mechanisms. Analysis of HERG1A and HERG1B expression using real-time RT-PCR consistently showed that HERG1A is the predominant isoform in ten HNSCC-derived cell lines tested. HERG2 and HERG3 were also detected. Immunohistochemical analysis of HERG1A expression on 133 HNSCC specimens demonstrated that HERG1A expression increased during tumour progression and correlated significantly with reduced disease-specific survival. Furthermore, our study provides original evidence supporting the involvement of histone acetylation (i.e. H3Ac and H4K16Ac activating marks) in the regulation of HERG1 expression in HNSCC. Interestingly, this mechanism was also found to regulate the expression of another oncogenic channel (Kv3.4) as well as HERG2 and HERG3. These data demonstrate that HERG1A is the predominant and disease-relevant isoform in HNSCC progression, while histone acetylation emerges as an important regulatory mechanism underlying Kv gene expression.

  2. HERG1A potassium channel is the predominant isoform in head and neck squamous cell carcinomas: evidence for regulation by epigenetic mechanisms

    PubMed Central

    Menéndez, Sofía T.; Villaronga, M. Ángeles; Rodrigo, Juan P.; Álvarez-Teijeiro, Saúl; Urdinguio, Rocío G.; Fraga, Mario F.; Suárez, Carlos; García-Pedrero, Juana M.

    2016-01-01

    Evidences indicate that HERG1 voltage-gated potassium channel is frequently aberrantly expressed in various cancers including head and neck squamous cell carcinomas (HNSCC), representing a clinically and biologically relevant feature during disease progression and a potential therapeutic target. The present study further and significantly extends these data investigating for the first time the expression and individual contribution of HERG1 isoforms, their clinical significance during disease progression and also the underlying regulatory mechanisms. Analysis of HERG1A and HERG1B expression using real-time RT-PCR consistently showed that HERG1A is the predominant isoform in ten HNSCC-derived cell lines tested. HERG2 and HERG3 were also detected. Immunohistochemical analysis of HERG1A expression on 133 HNSCC specimens demonstrated that HERG1A expression increased during tumour progression and correlated significantly with reduced disease-specific survival. Furthermore, our study provides original evidence supporting the involvement of histone acetylation (i.e. H3Ac and H4K16Ac activating marks) in the regulation of HERG1 expression in HNSCC. Interestingly, this mechanism was also found to regulate the expression of another oncogenic channel (Kv3.4) as well as HERG2 and HERG3. These data demonstrate that HERG1A is the predominant and disease-relevant isoform in HNSCC progression, while histone acetylation emerges as an important regulatory mechanism underlying Kv gene expression. PMID:26785772

  3. Fabrication and characterization of the normally-off N-channel lateral 4H-SiC metal-oxide-semiconductor field-effect transistors

    NASA Astrophysics Data System (ADS)

    Qing-Wen, Song; Xiao-Yan, Tang; Yan-Jing, He; Guan-Nan, Tang; Yue-Hu, Wang; Yi-Meng, Zhang; Hui, Guo; Ren-Xu, Jia; Hong-Liang, Lv; Yi-Men, Zhang; Yu-Ming, Zhang

    2016-03-01

    In this paper, the normally-off N-channel lateral 4H-SiC metal-oxide-semiconductor field-effect transistors (MOSFFETs) have been fabricated and characterized. A sandwich- (nitridation-oxidation-nitridation) type process was used to grow the gate dielectric film to obtain high channel mobility. The interface properties of 4H-SiC/SiO2 were examined by the measurement of HF I-V, G-V, and C-V over a range of frequencies. The ideal C-V curve with little hysteresis and the frequency dispersion were observed. As a result, the interface state density near the conduction band edge of 4H-SiC was reduced to 2 × 1011 eV-1·cm-2, the breakdown field of the grown oxides was about 9.8 MV/cm, the median peak field-effect mobility is about 32.5 cm2·V-1·s-1, and the maximum peak field-effect mobility of 38 cm2·V-1·s-1 was achieved in fabricated lateral 4H-SiC MOSFFETs. Projcet supported by the National Natural Science Foundation of China (Grant Nos. 61404098, 61176070, and 61274079), the Doctoral Fund of Ministry of Education of China (Grant Nos. 20110203110010 and 20130203120017), the National Key Basic Research Program of China (Grant No. 2015CB759600), and the Key Specific Projects of Ministry of Education of China (Grant No. 625010101).

  4. Density of states of short channel amorphous In-Ga-Zn-O thin-film transistor arrays fabricated using manufacturable processes

    NASA Astrophysics Data System (ADS)

    Kim, Soo Chang; Kim, Young Sun; Kanicki, Jerzy

    2015-05-01

    The effect of temperature on the electrical characteristics of the short channel amorphous In-Ga-Zn-O (a-IGZO) thin-film transistor (TFT) arrays fabricated using manufacturable processes was investigated. This work shows that the fabricated TFT arrays are acceptable and stable enough for manufacturing of the ultra high definition (UHD) active matrix liquid crystal displays in size larger than 55 in. We observed that studied a-IGZO TFT arrays obeyed the Meyer-Neldel (MN) rule over a broad range of gate bias voltages. The MN rule and exponential subgap density of states (DOS) model were combined to extract the DOS distribution for the investigated a-IGZO TFT arrays. The results were consistent with the previous works on single a-IGZO TFTs. This study demonstrates that this method of DOS extraction can be applied to both single devices and arrays, and is reproducible from lab to lab. We believe that this approach of DOS extraction is useful for further development of UHD flat panel display technology.

  5. Process controllability of inductively coupled plasma-enhanced reactive sputter deposition for the fabrication of amorphous InGaZnOx channel thin-film transistors

    NASA Astrophysics Data System (ADS)

    Takenaka, Kosuke; Nakata, Keitaro; Otani, Hirofumi; Osaki, Soichiro; Uchida, Giichiro; Setsuhara, Yuichi

    2016-01-01

    The process controllability of inductively coupled plasma-enhanced reactive sputter deposition for the fabrication of amorphous InGaZnOx (a-IGZO) channel thin-film transistors (TFTs) was investigated. a-IGZO film deposition with the addition of H2 gas was performed using a plasma-assisted reactive sputtering system to control the oxidation process during a-IGZO film formation by balancing the oxidation and reduction reactions. Optical emission spectroscopy measurements indicate the possibility for the oxidation reaction to be inhibited by a decrease in the density of oxygen atoms and the reduction effect of hydrogen during a-IGZO film deposition due to the addition of H2 gas. The characteristics of TFTs fabricated using a-IGZO films deposited with a plasma-enhanced magnetron sputtering deposition system were investigated. The results indicate the possibility of expanding the process window by controlling the balance between oxidation and reduction with the addition of H2 gas. TFTs with a-IGZO films that were deposited with the addition of H2 gas exhibited good performance with a field-effect mobility (μFE) of 15.3 cm2 V-1 s-1 and a subthreshold gate voltage swing (S) of 0.48 V decade-1.

  6. Functional expression of the transient receptor potential channel TRPA1, a sensor for toxic lung inhalants, in pulmonary epithelial cells.

    PubMed

    Büch, Thomas Robert Heinrich; Schäfer, Eva Anna Maria; Demmel, Maria-Theresia; Boekhoff, Ingrid; Thiermann, Horst; Gudermann, Thomas; Steinritz, Dirk; Schmidt, Annette

    2013-12-01

    The cation channel TRPA1 functions as a chemosensory protein and is directly activated by a number of noxious inhalants. A pulmonary expression of TRPA1 has been described in sensory nerve endings and its stimulation leads to the acceleration of inflammatory responses in the lung. Whereas the function of TRPA1 in neuronal cells is well defined, only few reports exist suggesting a role in epithelial cells. The aim of the present study was therefore (1) to evaluate the expression of TRPA1 in pulmonary epithelial cell lines, (2) to characterize TRPA1-promoted signaling in these cells, and (3) to study the extra-neuronal expression of this channel in lung tissue sections. Our results revealed that the widely used alveolar type II cell line A549 expresses TRPA1 at the mRNA and protein level. Furthermore, stimulating A549 cells with known TRPA1 activators (i.e., allyl isothiocyanate) led to an increase in intracellular calcium levels, which was sensitive to the TRPA1 blocker ruthenium red. Investigating TRPA1 coupled downstream signaling cascades it was found that TRPA1 activation elicited a stimulation of ERK1/2 whereas other MAP kinases were not affected. Finally, using epithelial as well as neuronal markers in immunohistochemical approaches, a non-neuronal TRPA1 protein expression was detected in distal parts of the porcine lung epithelium, which was also found examining human lung sections. TRPA1-positive staining co-localized with both epithelial and neuronal markers underlining the observed epithelial expression pattern. Our findings of a functional expression of TRPA1 in pulmonary epithelial cells provide causal evidence for a non-neuronal TRPA1-mediated control of inflammatory responses elicited upon TRPA1-mediated registration of toxic inhalants in vivo. PMID:23994502

  7. Site- and kinase-specific phosphorylation-mediated activation of SLAC1, a guard cell anion channel stimulated by abscisic acid.

    PubMed

    Maierhofer, Tobias; Diekmann, Marion; Offenborn, Jan Niklas; Lind, Christof; Bauer, Hubert; Hashimoto, Kenji; S Al-Rasheid, Khaled A; Luan, Sheng; Kudla, Jörg; Geiger, Dietmar; Hedrich, Rainer

    2014-09-09

    Under drought stress, abscisic acid (ABA) triggers closure of leaf cell pores called stomata, which are formed by two specialized cells called guard cells in plant epidermis. Two pathways downstream of ABA stimulate phosphorylation of the S-type anion channels SLAC1 (slow anion channel associated 1) and SLAH3 (SLAC1 homolog 3), which causes these channels to open, reducing guard cell volume and triggering stomatal closure. One branch involves OST1 (open stomata 1), a calcium-independent SnRK2-type kinase, and the other branch involves calcium-dependent protein kinases of the CPK (calcium-dependent protein kinase) family. We used coexpression analyses in Xenopus oocytes to show that the calcineurin B-like (CBL) calcium sensors CBL1 and CBL9 and their interacting protein kinase CIPK23 also triggered SLAC1 and SLAH3 opening. We analyzed whether regulation of SLAC1 opening by these different families of kinases involved the same or different sites on SLAC1 by measuring channel conductance of SLAC1 with mutations in the putative phosphorylation sites in the amino or carboxyl termini coexpressed with specific kinases in Xenopus oocytes. SLAC1 mutants lacking the OST1-phosphorylated site were still activated by CPK or by CBL/CIPK complexes. Phosphorylation and activation of SLAC1 by any of the kinases were inhibited by the phosphatase ABI1 (ABA insensitive 1), which is inactivated in response to ABA signaling. These findings identified CBL/CIPK complexes as potential regulators of stomatal aperture through S-type anion channels and indicated that phosphorylation at distinct sites enables SLAC1 activation by both calcium-dependent and calcium-independent pathways downstream of ABA.

  8. Fabrication of top-contact pentacene-based organic thin-film transistors with short channels using two-step SU8/poly(vinyl alcohol) lift-off photolithography process

    NASA Astrophysics Data System (ADS)

    Fan, Ching-Lin; Lin, Wei-Chun; Lee, Cheng-Chieh; Lin, Yu-Zuo; Huang, Bohr-Ran

    2016-02-01

    We propose a two-step SU8/poly(vinyl alcohol) (PVA) lift-off photolithography scheme for fabricating top-contact pentacene-based organic thin-film transistors (OTFTs) with small channels. The bilayer of PVA and SU8 will not damage the pentacene channel layer in the lift-off photolithography process used in forming the patterned pentacene channel layer and source/drain metal electrodes. We demonstrate a device that not only obtains a 5 µm short channel length for source/drain metal-electrode patterning but also avoids fringe current resulting from pentacene channel layer patterning. The field-effect mobility and threshold voltage of the pentacene-based OTFTs were changed from 0.29 to 0.12 cm2 V-1 s-1 and from -5.74 to -3.19 V by varying the channel length from 50 to 5 µm, respectively. The proposed scheme is a good candidate for use in the design and fabrication of high-performance short-channel organic electronics.

  9. Cross-sectional study of hepatic CYP1A and CYP3A enzymes in hybrid striped bass, channel catfish and Nile tilapia following oxytetracycline treatment.

    PubMed

    Topic Popovic, N; Howell, T; Babish, J G; Bowser, P R

    2012-04-01

    Terramycin for Fish® (oxytetracycline, OTC) is one of three approved drugs for therapeutic treatment of fish in the United States. Nothing is known, however, of the effects of this therapeutic on drug metabolizing enzymes in fish post-treatment. The main purpose of the study was to examine whether the fish CYP1A and CYP3A enzymes would cross-react with antibodies to known mammalian cytochrome P-450 forms (CYP1A1 and CYP3A). Observational feeding studies of OTC effects were conducted in hybrid striped bass, channel catfish and Nile tilapia. Oxytetracycline was mixed into the feed to achieve a daily dose of 82.8 mg per kg body weight at a feeding rate of 1% body weight per day. Hepatic microsomes of each fish were prepared and Western blotting of CYP1A1 and CYP3A4 and enzyme assays of CYP1A2 and CYP3A4 were performed prior to OTC treatment and on post-treatment days 1, 6, 11 and 21. Both goat anti-rat CYP1A1 and rabbit anti-human CYP3A4 showed good cross-reactivity with all three species in this study. All three species exhibited distinct perturbations in one or more of the variables examined on day 1 post-treatment. Immediately following the 10-day medication period, relative liver weight (RLW) of hybrid striped bass was increased 44% and remained elevated through post-treatment day 21. Increased CYP3A4 enzyme activity and protein abundance were noted in channel catfish and Nile tilapia, respectively. This observational approach demonstrated species differences both in control activities and in the timing and extent of hepatic responses to OTC. The unique perturbations of hepatic CYP450 enzymes in different fish species to OTC treatment observed in this study may have relevance for the use of additional antibiotics or other therapeutics used in aquaculture. PMID:21458012

  10. Cross-sectional study of hepatic CYP1A and CYP3A enzymes in hybrid striped bass, channel catfish and Nile tilapia following oxytetracycline treatment.

    PubMed

    Topic Popovic, N; Howell, T; Babish, J G; Bowser, P R

    2012-04-01

    Terramycin for Fish® (oxytetracycline, OTC) is one of three approved drugs for therapeutic treatment of fish in the United States. Nothing is known, however, of the effects of this therapeutic on drug metabolizing enzymes in fish post-treatment. The main purpose of the study was to examine whether the fish CYP1A and CYP3A enzymes would cross-react with antibodies to known mammalian cytochrome P-450 forms (CYP1A1 and CYP3A). Observational feeding studies of OTC effects were conducted in hybrid striped bass, channel catfish and Nile tilapia. Oxytetracycline was mixed into the feed to achieve a daily dose of 82.8 mg per kg body weight at a feeding rate of 1% body weight per day. Hepatic microsomes of each fish were prepared and Western blotting of CYP1A1 and CYP3A4 and enzyme assays of CYP1A2 and CYP3A4 were performed prior to OTC treatment and on post-treatment days 1, 6, 11 and 21. Both goat anti-rat CYP1A1 and rabbit anti-human CYP3A4 showed good cross-reactivity with all three species in this study. All three species exhibited distinct perturbations in one or more of the variables examined on day 1 post-treatment. Immediately following the 10-day medication period, relative liver weight (RLW) of hybrid striped bass was increased 44% and remained elevated through post-treatment day 21. Increased CYP3A4 enzyme activity and protein abundance were noted in channel catfish and Nile tilapia, respectively. This observational approach demonstrated species differences both in control activities and in the timing and extent of hepatic responses to OTC. The unique perturbations of hepatic CYP450 enzymes in different fish species to OTC treatment observed in this study may have relevance for the use of additional antibiotics or other therapeutics used in aquaculture.

  11. One-step in-mould modification of PDMS surfaces and its application in the fabrication of self-driven microfluidic channels.

    PubMed

    Fatona, Ayodele; Chen, Yang; Reid, Michael; Brook, Michael A; Moran-Mirabal, Jose M

    2015-11-21

    Poly(dimethylsiloxane) (PDMS) has become the material of choice for fabricating microfluidic channels for lab-on-a-chip applications. Key challenges that limit the use of PDMS in microfluidic applications are its hydrophobic nature, and the difficulty in obtaining stable surface modifications. Although a number of approaches exist to render PDMS hydrophilic, they suffer from reversion to hydrophobicity and, frequently, surface cracking or roughening. In this study, we describe a one-step in-mould method for the chemical modification of PDMS surfaces, and its use to assess the ability of different surfactants to render PDMS surfaces hydrophilic. Thin films of ionic and non-ionic surfactants were patterned into an array format, transferred onto silicone pre-polymer, and subsequently immobilized onto the PDMS surface during vulcanization. The hydrophilicity of the resulting surfaces was assessed by contact angle measurements. The wettability was observed to be dependent on the chemical structure of the surfactants, their concentration and interactions with PDMS. The morphology of modified PDMS surfaces and their change after wetting and drying cycles were visualized using atomic force microscopy. Our results show that while all surfactants tested can render PDMS surfaces hydrophilic through the in-mould modification, only those modified with PEG-PDMS-PEG copolymer surfactants were stable over wetting/dying cycles and heat treatments. Finally, the in-mould functionalization approach was used to fabricate self-driven microfluidic devices that exhibited steady flow rates, which could be tuned by the device geometry. It is anticipated that the in-mould method can be applied to a range of surface modifications for applications in analytical separations, biosensing, cell isolation and small molecule discovery. PMID:26400365

  12. One-step in-mould modification of PDMS surfaces and its application in the fabrication of self-driven microfluidic channels.

    PubMed

    Fatona, Ayodele; Chen, Yang; Reid, Michael; Brook, Michael A; Moran-Mirabal, Jose M

    2015-11-21

    Poly(dimethylsiloxane) (PDMS) has become the material of choice for fabricating microfluidic channels for lab-on-a-chip applications. Key challenges that limit the use of PDMS in microfluidic applications are its hydrophobic nature, and the difficulty in obtaining stable surface modifications. Although a number of approaches exist to render PDMS hydrophilic, they suffer from reversion to hydrophobicity and, frequently, surface cracking or roughening. In this study, we describe a one-step in-mould method for the chemical modification of PDMS surfaces, and its use to assess the ability of different surfactants to render PDMS surfaces hydrophilic. Thin films of ionic and non-ionic surfactants were patterned into an array format, transferred onto silicone pre-polymer, and subsequently immobilized onto the PDMS surface during vulcanization. The hydrophilicity of the resulting surfaces was assessed by contact angle measurements. The wettability was observed to be dependent on the chemical structure of the surfactants, their concentration and interactions with PDMS. The morphology of modified PDMS surfaces and their change after wetting and drying cycles were visualized using atomic force microscopy. Our results show that while all surfactants tested can render PDMS surfaces hydrophilic through the in-mould modification, only those modified with PEG-PDMS-PEG copolymer surfactants were stable over wetting/dying cycles and heat treatments. Finally, the in-mould functionalization approach was used to fabricate self-driven microfluidic devices that exhibited steady flow rates, which could be tuned by the device geometry. It is anticipated that the in-mould method can be applied to a range of surface modifications for applications in analytical separations, biosensing, cell isolation and small molecule discovery.

  13. Congenital ataxia and hemiplegic migraine with cerebral edema associated with a novel gain of function mutation in the calcium channel CACNA1A.

    PubMed

    García Segarra, Nuria; Gautschi, Ivan; Mittaz-Crettol, Laureane; Kallay Zetchi, Christine; Al-Qusairi, Lama; Van Bemmelen, Miguel Xavier; Maeder, Philippe; Bonafé, Luisa; Schild, Laurent; Roulet-Perez, Eliane

    2014-07-15

    Mutations in the CACNA1A gene, encoding the α1 subunit of the voltage-gated calcium channel Ca(V)2.1 (P/Q-type), have been associated with three neurological phenotypes: familial and sporadic hemiplegic migraine type 1 (FHM1, SHM1), episodic ataxia type 2 (EA2), and spinocerebellar ataxia type 6 (SCA6). We report a child with congenital ataxia, abnormal eye movements and developmental delay who presented severe attacks of hemiplegic migraine triggered by minor head traumas and associated with hemispheric swelling and seizures. Progressive cerebellar atrophy was also observed. Remission of the attacks was obtained with acetazolamide. A de novo 3 bp deletion was found in heterozygosity causing loss of a phenylalanine residue at position 1502, in one of the critical transmembrane domains of the protein contributing to the inner part of the pore. We characterized the electrophysiology of this mutant in a Xenopus oocyte in vitro system and showed that it causes gain of function of the channel. The mutant Ca(V)2.1 activates at lower voltage threshold than the wild type. These findings provide further evidence of this molecular mechanism as causative of FHM1 and expand the phenotypic spectrum of CACNA1A mutations with a child exhibiting severe SHM1 and non-episodic ataxia of congenital onset.

  14. The structures of the human calcium channel {alpha}{sub 1} subunit (CACNL1A2) and {beta} subunit (CACNLB3) genes

    SciTech Connect

    Yamada, Yuichiro; Masuda, Kazuhiro; Li, Qing

    1995-05-20

    Calcium influx in pancreatic {beta}-cells is regulated mainly by L-type voltage-dependent calcium channels (VDCCs) and triggers insulin secretion. The {alpha}{sub 1} subunit (CACN4) and the {beta} subunit ({beta}{sub 3}) of VDCCs, both of which are expressed in pancreatic islets, are major components for the VDCC activity, and so they may play a critical role in the regulation of insulin secretion. The authors have determined the structures of the human CACN4 (CACNL1A2) and the human {beta}{sub 3} (CACNLB3) genes. The CACNL1A2 gene spans more than 155 kb and has 49 exons. Most of the positions interrupted by introns are well conserved between the CACNL1A2 gene and the previously reported L-type VDCC {alpha}{sub 1} subunit, CACNL1A1, gene. On the other hand, the CACNLB3 gene distributes in {approximately} 8 kb and comprises 13 exons, most of which are located together within {approximately} 5 kb. Comparisons of the genomic sequences of CACNL1A2 with the previously reported cDNA sequences indicate that there are a number of polymorphisms in the human CACNL1A2 gene. In addition, the PCR-SSCP procedure of exon 1 of CACNL1A2 revealed a change from 7 to 8 ATG trinucleotide repeats in a patient with noninsulin-dependent diabetes mellitus (NIDDM), resulting in an addition of methionine at the amino-terminus of CACN4. The determination of the structures of the human CACNL1A2 and CACNLB3 genes should facilitate study of the role of these genes in the development of NIDDM and also other genetic diseases such as long QT syndrome. 39 refs., 3 figs., 3 tabs.

  15. IgG anti-GalNAc-GD1a antibody inhibits the voltage-dependent calcium channel currents in PC12 pheochromocytoma cells.

    PubMed

    Nakatani, Yoshihiko; Nagaoka, Takumi; Hotta, Sayako; Utsunomiya, Iku; Yoshino, Hiide; Miyatake, Tadashi; Hoshi, Keiko; Taguchi, Kyoji

    2007-03-01

    We investigated the effects of IgG anti-GalNAc-GD1a antibodies, produced by immunizing rabbits with GalNAc-GD1a, on the voltage-dependent calcium channel (VDCCs) currents in nerve growth factor (NGF)-differentiated PC12 pheochromocytoma cells. VDCCs currents in NGF-differentiated PC12 cells were recorded using the whole-cell patch-clamp technique. Immunized rabbit serum that had a high titer of anti-GalNAc-GD1a antibodies inhibited the VDCCs currents in the NGF-differentiated PC12 cells (36.0+/-9.6% reduction). The inhibitory effect of this serum was reversed to some degree within 3-4 min by washing with bath solution. Similarly, application of purified IgG from rabbit serum immunized with GalNAc-GD1a significantly inhibited the VDCCs currents in PC12 cells (30.6+/-2.5% reduction), and this inhibition was recovered by washing with bath solution. Furthermore, the inhibitory effect was also observed in the GalNAc-GD1a affinity column binding fraction (reduction of 31.1+/-9.85%), while the GalNAc-GD1a affinity column pass-through fraction attenuated the inhibitory effect on VDCCs currents. Normal rabbit serum and normal rabbit IgG did not affect the VDCCs currents in the PC12 cells. In an immunocytochemical study using fluorescence staining, the PC12 cells were stained using GalNAc-GD1a binding fraction. These results indicate that anti-GalNAc-GD1a antibodies inhibit the VDCCs currents in NGF-differentiated PC12 cells.

  16. Design of Low-Noise Output Amplifiers for P-channel Charge-Coupled Devices Fabricated on High-Resistivity Silicon

    SciTech Connect

    Haque, S; Frost, F Dion R.; Groulx, R; Holland, S E; Karcher, A; Kolbe, W F; Roe, N A; Wang, G; Yu, Y

    2011-12-22

    We describe the design and optimization of low-noise, single-stage output amplifiers for p-channel charge-coupled devices (CCDs) used for scientific applications in astronomy and other fields. The CCDs are fabricated on high-resistivity, 4000–5000 -cm, n-type silicon substrates. Single-stage amplifiers with different output structure designs and technologies have been characterized. The standard output amplifier is designed with an n{sup +} polysilicon gate that has a metal connection to the sense node. In an effort to lower the output amplifier readout noise by minimizing the capacitance seen at the sense node, buried-contact technology has been investigated. In this case, the output transistor has a p{sup +} polysilicon gate that connects directly to the p{sup +} sense node. Output structures with buried-contact areas as small as 2 μm × 2 μm are characterized. In addition, the geometry of the source-follower transistor was varied, and we report test results on the conversion gain and noise of the various amplifier structures. By use of buried-contact technology, better amplifier geometry, optimization of the amplifier biases and improvements in the test electronics design, we obtain a 45% reduction in noise, corresponding to 1.7 e{sup -} rms at 70 kpixels/sec.

  17. Acid-sensing ion channel 1a regulates the survival of nucleus pulposus cells in the acidic environment of degenerated intervertebral discs

    PubMed Central

    Cai, Feng; Wang, Feng; Hong, Xin; Xie, Xin-Hui; Shi, Rui; Xie, Zhi-Yang; Wu, Xiao-Tao

    2016-01-01

    Objective(s): Activation of acid-sensing ion channel 1a (ASIC1a) is responsible for tissue injury caused by acidosis in nervous systems. But its physiological and pathological roles in nucleus pulposus cells (NPCs) are unclear. The aim of this study is to investigate whether ASIC1a regulates the survival of NPCs in the acidic environment of degenerated discs. Materials and Methods: NPCs were isolated and cultured followed by immunofluorescent staining and Western-blot analysis for ASIC1a. Intracellular calcium ([Ca2+]i) was determined by Ca2+-imaging using Fura-2-AM. Cell necrosis, apoptosis, and senescence following acid exposure were determined using lactate dehydrogenase (LDH) release assay, annexin V-fluorescein isothiocyanate/propidium iodide dual-staining and cell cycle analysis, respectively, followed by Western-blot analysis for apoptosis-related proteins (Bax, Bcl-2, and caspase-3) and senescence-related proteins (p53, p21, and p16). Effects of treatment with psalmotoxin-1 (PcTX1, blocker of ASIC1a) on [Ca2+]i and cell survival were investigated. Results: ASIC1a was detected in healthy NPCs, and its expression was significantly higher in degenerated cells. When NPCs were treated with PcTX1, acid-induced increases in [Ca2+]i were significantly inhibited. PcTX1 treatment also resulted in decreased LDH release, cell apoptosis and cell cycle arrest in acid condition. Acid exposure decreased the expression of Bcl-2 and increased the expression of Bax, cleaved caspase-3 and senescence-related proteins (p53, p21, and p16), which was inhibited by PcTX1. Conclusion: The present findings suggest that further understanding of ASIC1a functionality may provide not only a novel insight into intervertebral disc biology but also a novel therapeutic target for intervertebral disc degeneration. PMID:27746861

  18. The tarantula toxin jingzhaotoxin-XI (κ-theraphotoxin-Cj1a) regulates the activation and inactivation of the voltage-gated sodium channel Nav1.5.

    PubMed

    Tang, Cheng; Zhou, Xi; Huang, Yin; Zhang, Yunxiao; Hu, Zhaotun; Wang, Meichi; Chen, Ping; Liu, Zhonghua; Liang, Songping

    2014-12-15

    Specific peptide toxins interact with voltage-gated sodium channels by regulating the activation or inactivation of targeted channels. However, few toxins possessing dual effects have been identified. In the present study, we showed that jingzhaotoxin-XI/κ-theraphotoxin-Cj1a (JZTX-XI), a 34-residue peptide from the venom of the Chinese spider Chilobrachys jingzhao, inhibits the sodium conductance (IC50 = 124 ± 26 nM) and slows the fast inactivation (EC50 = 1.18 ± 0.2 μM) of Nav1.5 expressed in Chinese hamster ovary (CHO-K1) cells. JZTX-XI significantly shifted the activation to more depolarized voltages and decreased the deactivation of Nav1.5 currents upon extreme depolarization, but only slightly affected voltage-dependence of steady-state inactivation. In addition, JZTX-XI caused an approximately five-fold decrease in the rate of recovery from inactivation and an approximately 1.9-fold reduction in the closed-state inactivation rate. Our data suggest that JZTX-XI integrates the functions of site 3 toxins (α-scorpion toxins) with site 4 toxins (β-scorpion and spider toxins) by targeting multiple sites on Nav1.5. The unique properties displayed by JZTX-XI in its inhibitory activity on Nav1.5 suggest that its mechanism of action is distinct from those of site 3 and site 4 toxins, making JZTX-XI a useful probe for investigating the gating mechanism of Nav1.5 and toxin-channel interactions. PMID:25240294

  19. Troponin T3 regulates nuclear localization of the calcium channel Ca{sub v}β{sub 1a} subunit in skeletal muscle

    SciTech Connect

    Zhang, Tan; Taylor, Jackson; Jiang, Yang; Pereyra, Andrea S.; Messi, Maria Laura; Wang, Zhong-Min; Hereñú, Claudia; Delbono, Osvaldo

    2015-08-15

    The voltage-gated calcium channel (Ca{sub v}) β{sub 1a} subunit (Ca{sub v}β{sub 1a}) plays an important role in excitation–contraction coupling (ECC), a process in the myoplasm that leads to muscle-force generation. Recently, we discovered that the Ca{sub v}β{sub 1a} subunit travels to the nucleus of skeletal muscle cells where it helps to regulate gene transcription. To determine how it travels to the nucleus, we performed a yeast two-hybrid screening of the mouse fast skeletal muscle cDNA library and identified an interaction with troponin T3 (TnT3), which we subsequently confirmed by co-immunoprecipitation and co-localization assays in mouse skeletal muscle in vivo and in cultured C2C12 muscle cells. Interacting domains were mapped to the leucine zipper domain in TnT3 COOH-terminus (160–244 aa) and Ca{sub v}β{sub 1a} NH{sub 2}-terminus (1–99 aa), respectively. The double fluorescence assay in C2C12 cells co-expressing TnT3/DsRed and Ca{sub v}β{sub 1a}/YFP shows that TnT3 facilitates Ca{sub v}β{sub 1a} nuclear recruitment, suggesting that the two proteins play a heretofore unknown role during early muscle differentiation in addition to their classical role in ECC regulation. - Highlights: • Previously, we demonstrated that Ca{sub v}β{sub 1a} is a gene transcription regulator. • Here, we show that TnT3 interacts with Ca{sub v}β{sub 1a}. • We mapped TnT3 and Ca{sub v}β{sub 1a} interaction domain. • TnT3 facilitates Ca{sub v}β{sub 1a} nuclear enrichment. • The two proteins play a heretofore unknown role during early muscle differentiation.

  20. Cocaine-induced suppression of saccharin intake and morphine modulation of Ca²⁺ channel currents in sensory neurons of OPRM1 A118G mice.

    PubMed

    Freet, Christopher S; Ballard, Sarah M; Alexander, Danielle N; Cox, Taylor A; Imperio, Caesar G; Anosike, Nnaemeka; Carter, Alyssa B; Mahmoud, Saifeldin; Ruiz-Velasco, Victor; Grigson, Patricia S

    2015-02-01

    Several studies have shown that human carriers of the single nucleotide polymorphism of the μ-opioid receptor, OPRM1 A118G, exhibit greater drug and alcohol use, increased sensitivity to pain, and reduced sensitivity to the antinociceptive effects of opiates. In the present study, we employed a 'humanized' mouse model containing the wild-type (118AA) or variant (118GG) allele to examine behavior in our model of drug-induced suppression of a natural reward cue and to compare the morphine pharmacological profile in acutely isolated sensory neurons. Compared with 118AA mice, our results demonstrate that homozygous 118GG mice exhibit greater avoidance of the cocaine-paired saccharin cue, a behavior linked to an aversive withdrawal-like state. Electrophysiological recordings confirmed the reduced modulation of Ca(2+) channels by morphine in trigeminal ganglion (TG) neurons from 118GG mice compared to the 118AA control cells. However, repeated cocaine exposure in 118GG mice led to a leftward shift of the morphine concentration-response relationship when compared with 118GG control mice, while a rightward shift was observed in 118AA mice. These results suggest that cocaine exposure of mice carrying the 118G allele leads to a heightened sensitivity of the reward system and a blunted modulation of Ca(2+) channels by morphine in sensory neurons. PMID:25449401

  1. Cocaine-induced suppression of saccharin intake and morphine modulation of Ca²⁺ channel currents in sensory neurons of OPRM1 A118G mice.

    PubMed

    Freet, Christopher S; Ballard, Sarah M; Alexander, Danielle N; Cox, Taylor A; Imperio, Caesar G; Anosike, Nnaemeka; Carter, Alyssa B; Mahmoud, Saifeldin; Ruiz-Velasco, Victor; Grigson, Patricia S

    2015-02-01

    Several studies have shown that human carriers of the single nucleotide polymorphism of the μ-opioid receptor, OPRM1 A118G, exhibit greater drug and alcohol use, increased sensitivity to pain, and reduced sensitivity to the antinociceptive effects of opiates. In the present study, we employed a 'humanized' mouse model containing the wild-type (118AA) or variant (118GG) allele to examine behavior in our model of drug-induced suppression of a natural reward cue and to compare the morphine pharmacological profile in acutely isolated sensory neurons. Compared with 118AA mice, our results demonstrate that homozygous 118GG mice exhibit greater avoidance of the cocaine-paired saccharin cue, a behavior linked to an aversive withdrawal-like state. Electrophysiological recordings confirmed the reduced modulation of Ca(2+) channels by morphine in trigeminal ganglion (TG) neurons from 118GG mice compared to the 118AA control cells. However, repeated cocaine exposure in 118GG mice led to a leftward shift of the morphine concentration-response relationship when compared with 118GG control mice, while a rightward shift was observed in 118AA mice. These results suggest that cocaine exposure of mice carrying the 118G allele leads to a heightened sensitivity of the reward system and a blunted modulation of Ca(2+) channels by morphine in sensory neurons.

  2. Cocaine-induced suppression of saccharin intake and morphine modulation of Ca2+ channel currents in sensory neurons of OPRM1 A118G mice

    PubMed Central

    Freet, Christopher S.; Ballard, Sarah M.; Alexander, Danielle N.; Cox, Taylor A.; Imperio, Caesar G.; Anosike, Nnaemeka; Carter, Alyssa B.; Mahmoud, Saifeldin; Ruiz-Velasco, Victor; Grigson, Patricia S.

    2014-01-01

    Several studies have shown that human carriers of the single nucleotide polymorphism of the µ-opioid receptor, OPRM1 A118G, exhibit greater drug and alcohol use, increased sensitivity to pain, and reduced sensitivity to the antinociceptive effects of opiates. In the present study, we employed a ‘humanized’ mouse model containing the wild-type (118AA) or variant (118GG) allele to examine behavior in our model of drug-induced suppression of a natural reward cue and to compare the morphine pharmacological profile in acutely isolated sensory neurons. Compared with 118AA mice, our results demonstrate that homozygous 118GG mice exhibit greater avoidance of the cocaine-paired saccharin cue, a behavior linked to an aversive withdrawal-like state. Electrophysiological recordings confirmed the reduced modulation of Ca2+ channels by morphine in trigeminal ganglion (TG) neurons from 118GG mice compared to the 118AA control cells. However, repeated cocaine exposure in 118GG mice led to a leftward shift of the morphine concentration-response relationship when compared with 118GG control mice, while a rightward shift was observed in 118AA mice. These results suggest that cocaine exposure of mice carrying the 118G allele leads to a heightened sensitivity of the reward system and a blunted modulation of Ca2+ channels by morphine in sensory neurons. PMID:25449401

  3. Effects of deletion and insertion of amino acids on the activity of HelaTx1, a scorpion toxin on potassium channels.

    PubMed

    Peigneur, Steve; Esaki, Nao; Yamaguchi, Yoko; Tytgat, Jan; Sato, Kazuki

    2016-03-01

    Four analogs of HelaTx1, a 25-mer peptide from scorpion venom, were synthesized by deleting its C-terminal hexapeptide fragment and N-terminal Ser residue and by inserting an amino acid in the middle part of the molecule. CD spectrum of HelaTx1(1-19) was almost superimposable to that of native HelaTx1. Functional characterization showed that HelaTx1(1-19) retained its inhibitory activity on Kv1.1 channel although 3 times less potent than HelaTx1, indicating that C-terminal part of HelaTx1 was not essential for its conformation and activity. Further deletion of N-terminal Ser residue and insertion of Ala in the middle part of the molecule affected the CD spectra and resulted in the decrease of activity.

  4. The Human Ortholog of Acid-Sensing Ion Channel Gene ASIC1a Is Associated With Panic Disorder And Amygdala Structure And Function

    PubMed Central

    Smoller, Jordan W.; Gallagher, Patience J.; Duncan, Laramie E.; McGrath, Lauren M.; Haddad, Stephen A.; Holmes, Avram.; Wolf, Aaron B.; Hilker, Sidney; Block, Stefanie R.; Weill, Sydney; Young, Sarah; Choi, Eun Young; Rosenbaum, Jerrold F.; Biederman, Joseph; Faraone, Stephen V.; Roffman, Joshua; Manfro, Gisele G.; Blaya, Carolina; Hirshfeld-Becker, Dina R.; Stein, Murray B.; Van Ameringen, Michael; Tolin, David F.; Otto, Michael W.; Pollack, Mark H.; Simon, Naomi M.; Buckner, Randy L.; Ongur, Dost; Cohen, Bruce M.

    2014-01-01

    Background Individuals with panic disorder (PD) exhibit a hypersensitivity to inhaled carbon dioxide (CO2), possibly reflecting a lowered threshold for sensing signals of suffocation. Animal studies have shown that CO2-mediated fear behavior depends on chemosensing of acidosis in the amygdala via the acid sensing ion channel ASIC1a. We examined whether the human ortholog of the ASIC1a gene, ACCN2, is associated with the presence of PD and with amygdala structure and function. Methods We conducted a case-control analysis (N=414 PD cases, 846 healthy controls) of ACCN2single nucleotide polymorphisms (SNPs) and PD. We then tested whether variants showing significant association with PD are also associated with amygdala volume (n=1,048) and/or task-evoked reactivity to emotional stimuli (n=103) in healthy individuals. Results Two SNPs at the ACCN2 locus showed evidence of association with PD: rs685012 (OR=1.32, gene-wise corrected p=0.011) and rs10875995 (OR=1.26, gene-wise corrected p=0.046). The association appeared to be stronger when early-onset (age ≤ 20) PD cases and when cases with prominent respiratory symptoms were compared to controls. The PD risk allele at rs10875995 was associated with increased amygdala volume (p=0.035), as well as task-evoked amygdala reactivity to fearful and angry faces (p=0.0048). Conclusions Genetic variation at ACCN2 appears to be associated with PD and with amygdala phenotypes that have been linked to anxiety proneness. These results support the possibility that modulation of acid-sensing ion channels may have therapeutic potential for PD. PMID:24529281

  5. Flocculus Purkinje cell signals in mouse Cacna1a calcium channel mutants of escalating severity: an investigation of the role of firing irregularity in ataxia

    PubMed Central

    Thumser, Zachary C.

    2014-01-01

    Mutation of the Cacna1a gene for the P/Q (CaV2.1) calcium channel invariably leads to cerebellar dysfunction. The dysfunction has been attributed to disrupted rhythmicity of cerebellar Purkinje cells, but the hypothesis remains unproven. If irregular firing rates cause cerebellar dysfunction, then the irregularity and behavioral deficits should covary in a series of mutant strains of escalating severity. We compared firing irregularity in floccular and anterior vermis Purkinje cells in the mildly affected rocker and moderately affected tottering Cacna1a mutants and normal C57BL/6 mice. We also measured the amplitude and timing of modulations of floccular Purkinje cell firing rate during the horizontal vestibuloocular reflex (VOR, 0.25–1 Hz) and the horizontal and vertical optokinetic reflex (OKR, 0.125–1 Hz). We recorded Purkinje cells selective for rotational stimulation about the vertical axis (VAPCs) and a horizontal axis (HAPCs). Irregularity scaled with behavioral deficit severity in the flocculus but failed to do so in the vermis, challenging the irregularity hypothesis. Mutant VAPCs exhibited unusually strong modulation during VOR and OKR, the response augmentation scaling with phenotypic severity. HAPCs exhibited increased OKR modulation but in tottering only. The data contradict prior claims that modulation amplitude is unaffected in tottering but support the idea that attenuated compensatory eye movements in Cacna1a mutants arise from defective transfer of Purkinje cell signals to downstream circuitry, rather than attenuated synaptic transmission within the cerebellar cortex. Shifts in the relative sizes of the VAPC and HAPC populations raise the possibility that Cacna1a mutations influence the development of floccular zone architecture. PMID:25143538

  6. OsNIP3;1, a rice boric acid channel, regulates boron distribution and is essential for growth under boron-deficient conditions.

    PubMed

    Hanaoka, Hideki; Uraguchi, Shimpei; Takano, Junpei; Tanaka, Mayuki; Fujiwara, Toru

    2014-06-01

    Boron is an essential micronutrient for higher plants. Boron deficiency is an important agricultural issue because it results in loss of yield quality and/or quantity in cereals and other crops. To understand boron transport mechanisms in cereals, we characterized OsNIP3;1, a member of the major intrinsic protein family in rice (Oryza sativa L.), because OsNIP3;1 is the most similar rice gene to the Arabidopsis thaliana boric acid channel genes AtNIP5;1 and AtNIP6;1. Yeast cells expressing OsNIP3;1 imported more boric acid than control cells. GFP-tagged OsNIP3;1 expressed in tobacco BY2 cells was localized to the plasma membrane. The accumulation of OsNIP3;1 transcript increased fivefold in roots within 6 h of the onset of boron starvation, but not in shoots. Promoter-GUS analysis suggested that OsNIP3;1 is expressed mainly in exodermal cells and steles in roots, as well as in cells around the vascular bundles in leaf sheaths and pericycle cells around the xylem in leaf blades. The growth of OsNIP3;1 RNAi plants was impaired under boron limitation. These results indicate that OsNIP3;1 functions as a boric acid channel, and is required for acclimation to boron limitation. Boron distribution among shoot tissues was altered in OsNIP3;1 knockdown plants, especially under boron-deficient conditions. This result demonstrates that OsNIP3;1 regulates boron distribution among shoot tissues, and that the correct boron distribution is crucial for plant growth.

  7. SLAH1, a homologue of the slow type anion channel SLAC1, modulates shoot Cl− accumulation and salt tolerance in Arabidopsis thaliana

    PubMed Central

    Qiu, Jiaen; Henderson, Sam W; Tester, Mark; Roy, Stuart J; Gilliham, Mathew

    2016-01-01

    Salinity tolerance is correlated with shoot chloride (Cl–) exclusion in multiple crops, but the molecular mechanisms of long-distance Cl– transport are poorly defined. Here, we characterize the in planta role of AtSLAH1 (a homologue of the slow type anion channel-associated 1 (SLAC1)). This protein, localized to the plasma membrane of root stelar cells, has its expression reduced by salt or ABA, which are key predictions for a protein involved with loading Cl– into the root xylem. Artificial microRNA knockdown mutants of AtSLAH1 had significantly reduced shoot Cl− accumulation when grown under low Cl–, whereas shoot Cl– increased and the shoot nitrate/chloride ratio decreased following AtSLAH1 constitutive or stelar-specific overexpression when grown in high Cl–. In both sets of overexpression lines a significant reduction in shoot biomass over the null segregants was observed under high Cl– supply, but not low Cl– supply. Further in planta data showed AtSLAH3 overexpression increased the shoot nitrate/chloride ratio, consistent with AtSLAH3 favouring nitrate transport. Heterologous expression of AtSLAH1 in Xenopus laevis oocytes led to no detectible transport, suggesting the need for post-translational modifications for AtSLAH1 to be active. Our in planta data are consistent with AtSLAH1 having a role in controlling root-to-shoot Cl– transport. PMID:27340232

  8. SLAH1, a homologue of the slow type anion channel SLAC1, modulates shoot Cl- accumulation and salt tolerance in Arabidopsis thaliana.

    PubMed

    Qiu, Jiaen; Henderson, Sam W; Tester, Mark; Roy, Stuart J; Gilliham, Mathew

    2016-08-01

    Salinity tolerance is correlated with shoot chloride (Cl(-)) exclusion in multiple crops, but the molecular mechanisms of long-distance Cl(-) transport are poorly defined. Here, we characterize the in planta role of AtSLAH1 (a homologue of the slow type anion channel-associated 1 (SLAC1)). This protein, localized to the plasma membrane of root stelar cells, has its expression reduced by salt or ABA, which are key predictions for a protein involved with loading Cl(-) into the root xylem. Artificial microRNA knockdown mutants of AtSLAH1 had significantly reduced shoot Cl(-) accumulation when grown under low Cl(-), whereas shoot Cl(-) increased and the shoot nitrate/chloride ratio decreased following AtSLAH1 constitutive or stelar-specific overexpression when grown in high Cl(-) In both sets of overexpression lines a significant reduction in shoot biomass over the null segregants was observed under high Cl(-) supply, but not low Cl(-) supply. Further in planta data showed AtSLAH3 overexpression increased the shoot nitrate/chloride ratio, consistent with AtSLAH3 favouring nitrate transport. Heterologous expression of AtSLAH1 in Xenopus laevis oocytes led to no detectible transport, suggesting the need for post-translational modifications for AtSLAH1 to be active. Our in planta data are consistent with AtSLAH1 having a role in controlling root-to-shoot Cl(-) transport. PMID:27340232

  9. Evolved resistance to PCB- and PAH-induced cardiac teratogenesis, and reduced CYP1A activity in Gulf killifish (Fundulus grandis) populations from the Houston Ship Channel, Texas.

    PubMed

    Oziolor, Elias M; Bigorgne, Emilie; Aguilar, Lissette; Usenko, Sascha; Matson, Cole W

    2014-05-01

    The Houston Ship Channel (HSC), connecting Houston, Texas to Galveston Bay and ultimately the Gulf of Mexico, is heavily industrialized and includes several areas that have historically been identified as containing significant levels of mercury, dioxins, furans, polychlorinated biphenyls (PCBs), and polycyclic aromatic hydrocarbons (PAHs). Gulf killifish, Fundulus grandis, inhabit this entire estuarine system, including the most contaminated areas. F. grandis is the sister species of the well-established estuarine model organism Fundulus heteroclitus, for which heritable resistance to both PCB and PAH toxicity has been documented in several populations. F. grandis collected from two Superfund sites on the HSC and from a reference population were used to establish breeding colonies. F1 embryos from HSC populations were approximately 1000-fold more resistant to PCB126- and 2-5-fold more resistant to coal tar-induced cardiovascular teratogenesis, relative to embryos from the reference population. Reciprocal crosses between reference and contaminated populations exhibit an intermediate level of resistance, confirming that observed protection is genetic and biparentally inherited. Ethoxyresorufin-O-deethylase (EROD) data confirm a reduction in basal and induced cytochrome P4501A (CYP1A) activity in resistant populations of F. grandis. This result is consistent with responses previously described for resistant populations of F. heteroclitus, specifically a recalcitrant aryl hydrocarbon receptor (AHR) pathway. The decreased levels of cardiovascular teratogenesis, and decrease in CYP1A inducibility in response to PCB126 and a PAH mixture, suggest that HSC F. grandis populations have adapted to chronic contaminants exposures via a mechanism similar to that previously described for F. heteroclitus. To the best of our knowledge, this is the first documentation of evolved pollution resistance in F. grandis. Additionally, the mechanistic similarities between the population

  10. Evolved resistance to PCB- and PAH-induced cardiac teratogenesis, and reduced CYP1A activity in Gulf killifish (Fundulus grandis) populations from the Houston Ship Channel, Texas.

    PubMed

    Oziolor, Elias M; Bigorgne, Emilie; Aguilar, Lissette; Usenko, Sascha; Matson, Cole W

    2014-05-01

    The Houston Ship Channel (HSC), connecting Houston, Texas to Galveston Bay and ultimately the Gulf of Mexico, is heavily industrialized and includes several areas that have historically been identified as containing significant levels of mercury, dioxins, furans, polychlorinated biphenyls (PCBs), and polycyclic aromatic hydrocarbons (PAHs). Gulf killifish, Fundulus grandis, inhabit this entire estuarine system, including the most contaminated areas. F. grandis is the sister species of the well-established estuarine model organism Fundulus heteroclitus, for which heritable resistance to both PCB and PAH toxicity has been documented in several populations. F. grandis collected from two Superfund sites on the HSC and from a reference population were used to establish breeding colonies. F1 embryos from HSC populations were approximately 1000-fold more resistant to PCB126- and 2-5-fold more resistant to coal tar-induced cardiovascular teratogenesis, relative to embryos from the reference population. Reciprocal crosses between reference and contaminated populations exhibit an intermediate level of resistance, confirming that observed protection is genetic and biparentally inherited. Ethoxyresorufin-O-deethylase (EROD) data confirm a reduction in basal and induced cytochrome P4501A (CYP1A) activity in resistant populations of F. grandis. This result is consistent with responses previously described for resistant populations of F. heteroclitus, specifically a recalcitrant aryl hydrocarbon receptor (AHR) pathway. The decreased levels of cardiovascular teratogenesis, and decrease in CYP1A inducibility in response to PCB126 and a PAH mixture, suggest that HSC F. grandis populations have adapted to chronic contaminants exposures via a mechanism similar to that previously described for F. heteroclitus. To the best of our knowledge, this is the first documentation of evolved pollution resistance in F. grandis. Additionally, the mechanistic similarities between the population

  11. Fluoro-jade identification of cerebellar granule cell and purkinje cell death in the alpha1A calcium ion channel mutant mouse, leaner.

    PubMed

    Frank, T C; Nunley, M C; Sons, H D; Ramon, R; Abbott, L C

    2003-01-01

    Cell death is a critical component of normal nervous system development; too little or too much results in abnormal development and function of the nervous system. The leaner mouse exhibits excessive, abnormal cerebellar granule cell and Purkinje cell death during postnatal development, which is a consequence of a mutated calcium ion channel subunit, alpha(1A). Previous studies have shown that leaner cerebellar Purkinje cells die in a specific pattern that appears to be influenced by functional and anatomical boundaries of the cerebellum. However, the mechanism of Purkinje cell death and the specific timing of the spatial pattern of cell death remain unclear. By double labeling both leaner and wild-type cerebella with Fluoro-Jade and terminal deoxynucleotide transferase-mediated, deoxyuridine triphosphate nick-end labeling or Fluoro-Jade and tyrosine hydroxylase immunohistochemistry we demonstrated that the relatively new stain, Fluoro-Jade, will label neurons that are dying secondary to a genetic mutation. Then, by staining leaner and wild-type cerebella between postnatal days 20 and 80 with Fluoro-Jade, we were able to show that Purkinje cell death begins at approximately postnatal day 25, peaks in the vermis about postnatal day 40 and in the hemispheres at postnatal day 50 and persists at a low level at postnatal day 80. In addition, we showed that there is a significant difference in the amount of cerebellar Purkinje cell death between rostral and caudal divisions of the leaner cerebellum, and that there is little to no Purkinje cell death in the wild type cerebellum at the ages we examined. This is the first report of the use of Fluoro-Jade to identify dying neurons in a genetic model for neuronal cell death. By using Fluoro-Jade, we have specifically defined the temporospatial pattern of postnatal Purkinje cell death in the leaner mouse. This information can be used to gain insight into the dynamic mechanisms controlling Purkinje cell death in the leaner

  12. Cytoplasmic location of α1A voltage-gated calcium channel C-terminal fragment (Cav2.1-CTF) aggregate is sufficient to cause cell death.

    PubMed

    Takahashi, Makoto; Obayashi, Masato; Ishiguro, Taro; Sato, Nozomu; Niimi, Yusuke; Ozaki, Kokoro; Mogushi, Kaoru; Mahmut, Yasen; Tanaka, Hiroshi; Tsuruta, Fuminori; Dolmetsch, Ricardo; Yamada, Mitsunori; Takahashi, Hitoshi; Kato, Takeo; Mori, Osamu; Eishi, Yoshinobu; Mizusawa, Hidehiro; Ishikawa, Kinya

    2013-01-01

    The human α1A voltage-dependent calcium channel (Cav2.1) is a pore-forming essential subunit embedded in the plasma membrane. Its cytoplasmic carboxyl(C)-tail contains a small poly-glutamine (Q) tract, whose length is normally 4∼19 Q, but when expanded up to 20∼33Q, the tract causes an autosomal-dominant neurodegenerative disorder, spinocerebellar ataxia type 6 (SCA6). A recent study has shown that a 75-kDa C-terminal fragment (CTF) containing the polyQ tract remains soluble in normal brains, but becomes insoluble mainly in the cytoplasm with additional localization to the nuclei of human SCA6 Purkinje cells. However, the mechanism by which the CTF aggregation leads to neurodegeneration is completely elusive, particularly whether the CTF exerts more toxicity in the nucleus or in the cytoplasm. We tagged recombinant (r)CTF with either nuclear-localization or nuclear-export signal, created doxycyclin-inducible rat pheochromocytoma (PC12) cell lines, and found that the CTF is more toxic in the cytoplasm than in the nucleus, the observations being more obvious with Q28 (disease range) than with Q13 (normal-length). Surprisingly, the CTF aggregates co-localized both with cAMP response element-binding protein (CREB) and phosphorylated-CREB (p-CREB) in the cytoplasm, and Western blot analysis showed that the quantity of CREB and p-CREB were both decreased in the nucleus when the rCTF formed aggregates in the cytoplasm. In human brains, polyQ aggregates also co-localized with CREB in the cytoplasm of SCA6 Purkinje cells, but not in other conditions. Collectively, the cytoplasmic Cav2.1-CTF aggregates are sufficient to cause cell death, and one of the pathogenic mechanisms may be abnormal CREB trafficking in the cytoplasm and reduced CREB and p-CREB levels in the nuclei. PMID:23505410

  13. Cytoplasmic Location of α1A Voltage-Gated Calcium Channel C-Terminal Fragment (Cav2.1-CTF) Aggregate Is Sufficient to Cause Cell Death

    PubMed Central

    Takahashi, Makoto; Obayashi, Masato; Ishiguro, Taro; Sato, Nozomu; Niimi, Yusuke; Ozaki, Kokoro; Mogushi, Kaoru; Mahmut, Yasen; Tanaka, Hiroshi; Tsuruta, Fuminori; Dolmetsch, Ricardo; Yamada, Mitsunori; Takahashi, Hitoshi; Kato, Takeo; Mori, Osamu; Eishi, Yoshinobu; Mizusawa, Hidehiro; Ishikawa, Kinya

    2013-01-01

    The human α1A voltage-dependent calcium channel (Cav2.1) is a pore-forming essential subunit embedded in the plasma membrane. Its cytoplasmic carboxyl(C)-tail contains a small poly-glutamine (Q) tract, whose length is normally 4∼19 Q, but when expanded up to 20∼33Q, the tract causes an autosomal-dominant neurodegenerative disorder, spinocerebellar ataxia type 6 (SCA6). A recent study has shown that a 75-kDa C-terminal fragment (CTF) containing the polyQ tract remains soluble in normal brains, but becomes insoluble mainly in the cytoplasm with additional localization to the nuclei of human SCA6 Purkinje cells. However, the mechanism by which the CTF aggregation leads to neurodegeneration is completely elusive, particularly whether the CTF exerts more toxicity in the nucleus or in the cytoplasm. We tagged recombinant (r)CTF with either nuclear-localization or nuclear-export signal, created doxycyclin-inducible rat pheochromocytoma (PC12) cell lines, and found that the CTF is more toxic in the cytoplasm than in the nucleus, the observations being more obvious with Q28 (disease range) than with Q13 (normal-length). Surprisingly, the CTF aggregates co-localized both with cAMP response element-binding protein (CREB) and phosphorylated-CREB (p-CREB) in the cytoplasm, and Western blot analysis showed that the quantity of CREB and p-CREB were both decreased in the nucleus when the rCTF formed aggregates in the cytoplasm. In human brains, polyQ aggregates also co-localized with CREB in the cytoplasm of SCA6 Purkinje cells, but not in other conditions. Collectively, the cytoplasmic Cav2.1-CTF aggregates are sufficient to cause cell death, and one of the pathogenic mechanisms may be abnormal CREB trafficking in the cytoplasm and reduced CREB and p-CREB levels in the nuclei. PMID:23505410

  14. Solution structure of Ptu1, a toxin from the assassin bug Peirates turpis that blocks the voltage-sensitive calcium channel N-type.

    PubMed

    Bernard, C; Corzo, G; Mosbah, A; Nakajima, T; Darbon, H

    2001-10-30

    Ptu1 is a toxin from the assassin bug Peirates turpis which has been demonstrated to bind reversibly the N-type calcium channels and to have lower affinity than the omega-conotoxin MVIIA. We have determined the solution structure of Ptu1 by use of conventional two-dimensional NMR techniques followed by distance-geometry and molecular dynamics. The calculated structure of Ptu1 belongs to the inhibitory cystin knot structural family (ICK) that consists of a compact disulfide-bonded core from which four loops emerge. Analysis of the 25 converged solutions indicates that the molecular structure of Ptu1 contains a 2-stranded antiparallel beta-sheet (residues 24-27 and 31-34) as the only secondary structure. The loop 2 that has been described to be critical for the binding of the toxin on the channel is similar in Ptu1 and MVIIA. In this loop, the critical residue, Tyr13, in MVIIA is retrieved in Ptu1 as Phe13, but the presence of an acidic residue (Asp16) in Ptu1 could disturb the binding of Ptu1 on the channel and could explain the lower affinity of Ptu1 toward the N-type calcium channel compared to the one of MVIIA. Analysis of the electrostatic charge's repartition gives some insights about the importance of the basic residues, which could interact with acidic residues of the channel and then provide a stabilization of the toxin on the channel. PMID:11669615

  15. Identification and Characterization of ProTx-III [μ-TRTX-Tp1a], a New Voltage-Gated Sodium Channel Inhibitor from Venom of the Tarantula Thrixopelma pruriens.

    PubMed

    Cardoso, Fernanda C; Dekan, Zoltan; Rosengren, K Johan; Erickson, Andelain; Vetter, Irina; Deuis, Jennifer R; Herzig, Volker; Alewood, Paul F; King, Glenn F; Lewis, Richard J

    2015-08-01

    Spider venoms are a rich source of ion channel modulators with therapeutic potential. Given the analgesic potential of subtype-selective inhibitors of voltage-gated sodium (NaV) channels, we screened spider venoms for inhibitors of human NaV1.7 (hNaV1.7) using a high-throughput fluorescent assay. Here, we describe the discovery of a novel NaV1.7 inhibitor, μ-TRTX-Tp1a (Tp1a), isolated from the venom of the Peruvian green-velvet tarantula Thrixopelma pruriens. Recombinant and synthetic forms of this 33-residue peptide preferentially inhibited hNaV1.7 > hNaV1.6 > hNaV1.2 > hNaV1.1 > hNaV1.3 channels in fluorescent assays. NaV1.7 inhibition was diminished (IC50 11.5 nM) and the association rate decreased for the C-terminal acid form of Tp1a compared with the native amidated form (IC50 2.1 nM), suggesting that the peptide C terminus contributes to its interaction with hNaV1.7. Tp1a had no effect on human voltage-gated calcium channels or nicotinic acetylcholine receptors at 5 μM. Unlike most spider toxins that modulate NaV channels, Tp1a inhibited hNaV1.7 without significantly altering the voltage dependence of activation or inactivation. Tp1a proved to be analgesic by reversing spontaneous pain induced in mice by intraplantar injection in OD1, a scorpion toxin that potentiates hNaV1.7. The structure of Tp1a as determined using NMR spectroscopy revealed a classic inhibitor cystine knot (ICK) motif. The molecular surface of Tp1a presents a hydrophobic patch surrounded by positively charged residues, with subtle differences from other ICK spider toxins that might contribute to its different pharmacological profile. Tp1a may help guide the development of more selective and potent hNaV1.7 inhibitors for treatment of chronic pain.

  16. Identification and Characterization of ProTx-III [μ-TRTX-Tp1a], a New Voltage-Gated Sodium Channel Inhibitor from Venom of the Tarantula Thrixopelma pruriens.

    PubMed

    Cardoso, Fernanda C; Dekan, Zoltan; Rosengren, K Johan; Erickson, Andelain; Vetter, Irina; Deuis, Jennifer R; Herzig, Volker; Alewood, Paul F; King, Glenn F; Lewis, Richard J

    2015-08-01

    Spider venoms are a rich source of ion channel modulators with therapeutic potential. Given the analgesic potential of subtype-selective inhibitors of voltage-gated sodium (NaV) channels, we screened spider venoms for inhibitors of human NaV1.7 (hNaV1.7) using a high-throughput fluorescent assay. Here, we describe the discovery of a novel NaV1.7 inhibitor, μ-TRTX-Tp1a (Tp1a), isolated from the venom of the Peruvian green-velvet tarantula Thrixopelma pruriens. Recombinant and synthetic forms of this 33-residue peptide preferentially inhibited hNaV1.7 > hNaV1.6 > hNaV1.2 > hNaV1.1 > hNaV1.3 channels in fluorescent assays. NaV1.7 inhibition was diminished (IC50 11.5 nM) and the association rate decreased for the C-terminal acid form of Tp1a compared with the native amidated form (IC50 2.1 nM), suggesting that the peptide C terminus contributes to its interaction with hNaV1.7. Tp1a had no effect on human voltage-gated calcium channels or nicotinic acetylcholine receptors at 5 μM. Unlike most spider toxins that modulate NaV channels, Tp1a inhibited hNaV1.7 without significantly altering the voltage dependence of activation or inactivation. Tp1a proved to be analgesic by reversing spontaneous pain induced in mice by intraplantar injection in OD1, a scorpion toxin that potentiates hNaV1.7. The structure of Tp1a as determined using NMR spectroscopy revealed a classic inhibitor cystine knot (ICK) motif. The molecular surface of Tp1a presents a hydrophobic patch surrounded by positively charged residues, with subtle differences from other ICK spider toxins that might contribute to its different pharmacological profile. Tp1a may help guide the development of more selective and potent hNaV1.7 inhibitors for treatment of chronic pain. PMID:25979003

  17. NRGA1, a putative mitochondrial pyruvate carrier, mediates ABA regulation of guard cell ion channels and drought stress responses in Arabidopsis.

    PubMed

    Li, Chun-Long; Wang, Mei; Ma, Xiao-Yan; Zhang, Wei

    2014-10-01

    Abscisic acid (ABA) regulates ion channel activity and stomatal movements in response to drought and other stresses. Here, we show that the Arabidopsis thaliana gene NRGA1 is a putative mitochondrial pyruvate carrier which negatively regulates ABA-induced guard cell signaling. NRGA1 transcript was abundant in the A. thaliana leaf and particularly in the guard cells, and its product was directed to the mitochondria. The heterologous co-expression of NRGA1 and AtMPC1 in yeast complemented a loss-of-function mitochondrial pyruvate carrier (MPC) mutant. The nrga1 loss-of-function mutant was very sensitive to the presence of ABA in the context of stomatal movements, and exhibited a heightened tolerance to drought stress. Disruption of NRGA1 gene resulted in increased ABA inhibition of inward K(+) currents and ABA activation of slow anion currents in guard cells. The nrga1/NRGA1 functional complementation lines restored the mutant's phenotypes. Furthermore, transgenic lines of constitutively overexpressing NRGA1 showed opposite stomatal responses, reduced drought tolerance, and ABA sensitivity of guard cell inward K(+) channel inhibition and anion channel activation. Our findings highlight a putative role for the mitochondrial pyruvate carrier in guard cell ABA signaling in response to drought.

  18. Micro-patterning of ionic reservoirs within a double bilayer lipid membrane to fabricate a 2D array of ion-channel switch based electrochemical biosensors

    SciTech Connect

    Sansinena, J. M.; Yee, C. K.; Sapuri, A.; Swanson, Basil I.; Redondo, A.; Parikh, A. N.

    2004-01-01

    We present a simple approach for the design of ionic reservoir arrays within a double phospholipid bilayer to ultimately develop a 2D array of ion-channel switch based electrochemical biosensors. As a first step, a primary bilayer lipid membrane is deposited onto an array of electrodes patterned onto a substrate surface. Subsequently, an array of microvoids is created within the bilayer by a wet photolithographic patterning of phospholipid bilayers using a deep UV light source and a quartz/chrome photomask. To ensure registry, the photomask used to pattern bilayers is designed to match up the microvoids within the primary bilayer with the array of electrodes on the substrate surface. The deposition of a secondary bilayer lipid membrane onto the primary bilayer that spans across the patterned microvoids leads to the formation of the array of ionic reservoirs within the double phospholipid bilayer. This is accomplished using giant unilamellar vesicles and by exploiting membrane electrostatics. The use of ion-channels incorporated into the secondary bilayer that covers the individual ionic reservoirs allows the construction of a 2D array of ion-channel switch based electrochemical biosensors that are able to recognize different target-agents simultaneously.

  19. Functional characterization of GhAKT1, a novel Shaker-like K⁺ channel gene involved in K⁺ uptake from cotton (Gossypium hirsutum).

    PubMed

    Xu, Juan; Tian, Xiaoli; Egrinya Eneji, A; Li, Zhaohu

    2014-07-15

    Shaker-like potassium (K(+)) channels in plants play an important role in K(+) absorption and transport. In this study, we characterized a Shaker-like K(+) channel gene GhAKT1 from the roots of Gossypium hirsutum cv. Liaomian17. Phylogenetic analysis showed that the GhAKT1 belongs to the AKT1-subfamily in the Shaker-like K(+) channel family. Confocal imaging of a GhAKT1-green fluorescent fusion protein (GFP) in transgenic Arabidopsis plants indicated that GhAKT1 is localized in the plasma membrane. Transcript analysis located GhAKT1 predominantly in cotton leaves with low abundance in roots, stem and shoot apex. Similarly, β-glucuronidase (GUS) activity was detected in both leaves and roots of PGhAKT1::GUS transgenic Arabidopsis plants. In roots, the GUS signals appeared in the epidermis, cortex and endodermis and root hairs, suggesting the contribution of GhAKT1 to K(+) uptake. In leaves, GhAKT1 was expressed in differentiated leaf primordial as well as mesophyll cells and veins of expanded leaves, pointing to its involvement in cell elongation and K(+) transport and distribution in leaves. Severe K(+) deficiency did not affect the expression of GhAKT1 gene. GhAKT1-overexpression in either the Arabidopsis wild-type or akt1 mutant enhanced the growth of transgenic seedlings under low K(+) deficiency and raised the net K(+) influx in roots at 100μM external K(+) concentration, within the range of operation of the high-affinity K(+) uptake system. The application of 2mM BaCl2 resulted in net K(+) efflux in roots, and eliminated the differences between GhAKT1-overexpression lines and their acceptors indicating that the K(+) uptake mediated by GhAKT1 is also as Ba(2+)-sensitive as AtAKT1.

  20. Turkish scorpion Buthacus macrocentrus: general characterization of the venom and description of Bu1, a potent mammalian Na⁺-channel α-toxin.

    PubMed

    Caliskan, F; Quintero-Hernández, V; Restano-Cassulini, R; Batista, C V F; Zamudio, F Z; Coronas, F I; Possani, L D

    2012-03-01

    The venom of the scorpion Buthacus macrocentrus of Turkey was fractionated by high performance liquid chromatography (HPLC) and its mass finger print analysis was obtained by spectrometry. More than 70 different fractions were obtained, allowing the determination of the molecular masses of at least 60 peptides ranging between 648 and 44,336 Da. The venom is enriched with peptides containing molecular masses between 3200-4500 Da, and 6000-7500 Da. They very likely correspond to K⁺-channel and Na⁺-channel specific peptides, respectively, as expected from venoms of scorpions of the family Buthidae, already determined for other species. The major component obtained from HPLC was shown to be lethal to mice and was further purified and characterized. It contains 65 amino acid residues maintained closely packed by 4 disulfide bridges, and shows a molecular weight of 7263 Da. Additionally, a cDNA from the venomous glands of this scorpion was used in conjunction with sequence data from Edman degradation and mass spectrometry for cloning the gene that codes for Bu1 as we named this toxin. This gene codes for a 67 amino acid residues peptide, where the two last are eliminated post-translationally for production of an amidated C-terminal arginine. Its sequence is closely related to toxins from the species Leiurus quinquestriatus, as revealed by a phylogenetic tree analysis. Electrophysiological results conducted with Bu1 using patch-clamp techniques indicate that it modifies the Na⁺ currents, in a similar way as other well known α-scorpion toxins. These results support the conclusion that this species of scorpions is dangerous to humans, having an epidemiological interest for the country.

  1. Fabrication of multiwalled carbon nanotubes in the channels of iron loaded three dimensional mesoporous material by catalytic chemical vapour deposition technique

    NASA Astrophysics Data System (ADS)

    Somanathan, T.; Gokulakrishnan, N.; Chandrasekar, G.; Pandurangan, A.

    2011-01-01

    The growth of multiwalled carbon nanotubes (MWNTs) was successfully achieved in the channels of three dimensional (3D) iron loaded mesoporous matrices (KIT-6) by employing catalytic chemical vapour deposition (CCVD) technique. The synthesised MWNTs, which were characterised by SEM, TEM and Raman spectroscopy, consist of thick graphene layers of about 10 nm composed of 29 graphene sheets with inner and outer diameter of ∼17 nm and ∼37 nm, respectively. The Raman spectrum showed the formation of well-graphitised MWNTs with significantly higher IG/ID ratio of 1.47 compared to commercial MWNTs. Comparatively, 2 wt% Fe loaded KIT-6 material produced a better yield of 91%, which is also highest compared with the report of MWNTs synthesis using mesoporous materials reported so far.

  2. A thick CESL stressed ultra-small (Lg=40-nm) SiGe-channel MOSFET fabricated with 193-nm scanner lithography and TEOS hard mask etching

    NASA Astrophysics Data System (ADS)

    Liao, Wen-Shiang; Chen, Tung-Hung; Lin, Hsin-Hung; Chang, Wen-Tung; Shih, Tommy; Tsen, Huan-Chiu; Chung, Lee

    2007-03-01

    A 100Å-thick SiGe (22.5%) channel MOSFET with gate length down to 40nm has been successfully integrated with 14Å nitrided gate oxide as well as a 1200Å high-compressive PECVD ILD-SiNx stressing layer as the contact etching stop layer (CESL) that enhances the PMOS electron mobility with +33% current gain. To achieve a poly-Si gate length target of 400Å (40nm), a 193nm scanner lithography and an aggressive oxide hard mask etching techniques were used. First, a 500Å-thick TEOS hard mask layer was deposited upon the 1500Å-thick poly-Si gate electrode. Second, both 1050Å-thick bottom anti-reflective coating (BARC) and 2650Å-thick photoresist (P/R) were coated and a 193nm scanner lithography tool was used for the gate layout patterning with nominal logic 90nm exposure energy. Then, a deep sub-micron plasma etcher was used for an aggressive P/R and BARC trimming down processing and the TEOS hard mask was subsequently plasma etched in another etching chamber without breaking the plasma etcher's vacuum. Continuously, the P/R and BARC were removed with a plasma ashing and RCA cleaning. Moreover, the patterned Si-fin capping oxide can be further trimmed down with a diluted HF (aq) solution (DHF) while rendering the RCA cleaning process and the remained TEOS hard mask is still thick enough for the subsequent poly-Si gate main etching. Finally, an ultra narrow poly-Si gate length of 40nm with promising PMOS drive current enhancement can be formed through a second poly-Si etching, which is above the underneath SiGe (22.5%) conduction channel as well as its upper 14Å-thick nitrided gate oxide.

  3. Engineering potent and selective analogues of GpTx-1, a tarantula venom peptide antagonist of the Na(V)1.7 sodium channel.

    PubMed

    Murray, Justin K; Ligutti, Joseph; Liu, Dong; Zou, Anruo; Poppe, Leszek; Li, Hongyan; Andrews, Kristin L; Moyer, Bryan D; McDonough, Stefan I; Favreau, Philippe; Stöcklin, Reto; Miranda, Les P

    2015-03-12

    NaV1.7 is a voltage-gated sodium ion channel implicated by human genetic evidence as a therapeutic target for the treatment of pain. Screening fractionated venom from the tarantula Grammostola porteri led to the identification of a 34-residue peptide, termed GpTx-1, with potent activity on NaV1.7 (IC50 = 10 nM) and promising selectivity against key NaV subtypes (20× and 1000× over NaV1.4 and NaV1.5, respectively). NMR structural analysis of the chemically synthesized three disulfide peptide was consistent with an inhibitory cystine knot motif. Alanine scanning of GpTx-1 revealed that residues Trp(29), Lys(31), and Phe(34) near the C-terminus are critical for potent NaV1.7 antagonist activity. Substitution of Ala for Phe at position 5 conferred 300-fold selectivity against NaV1.4. A structure-guided campaign afforded additive improvements in potency and NaV subtype selectivity, culminating in the design of [Ala5,Phe6,Leu26,Arg28]GpTx-1 with a NaV1.7 IC50 value of 1.6 nM and >1000× selectivity against NaV1.4 and NaV1.5.

  4. Engineering potent and selective analogues of GpTx-1, a tarantula venom peptide antagonist of the Na(V)1.7 sodium channel.

    PubMed

    Murray, Justin K; Ligutti, Joseph; Liu, Dong; Zou, Anruo; Poppe, Leszek; Li, Hongyan; Andrews, Kristin L; Moyer, Bryan D; McDonough, Stefan I; Favreau, Philippe; Stöcklin, Reto; Miranda, Les P

    2015-03-12

    NaV1.7 is a voltage-gated sodium ion channel implicated by human genetic evidence as a therapeutic target for the treatment of pain. Screening fractionated venom from the tarantula Grammostola porteri led to the identification of a 34-residue peptide, termed GpTx-1, with potent activity on NaV1.7 (IC50 = 10 nM) and promising selectivity against key NaV subtypes (20× and 1000× over NaV1.4 and NaV1.5, respectively). NMR structural analysis of the chemically synthesized three disulfide peptide was consistent with an inhibitory cystine knot motif. Alanine scanning of GpTx-1 revealed that residues Trp(29), Lys(31), and Phe(34) near the C-terminus are critical for potent NaV1.7 antagonist activity. Substitution of Ala for Phe at position 5 conferred 300-fold selectivity against NaV1.4. A structure-guided campaign afforded additive improvements in potency and NaV subtype selectivity, culminating in the design of [Ala5,Phe6,Leu26,Arg28]GpTx-1 with a NaV1.7 IC50 value of 1.6 nM and >1000× selectivity against NaV1.4 and NaV1.5. PMID:25658507

  5. Ultrathin body GaSb-on-insulator p-channel metal-oxide-semiconductor field-effect transistors on Si fabricated by direct wafer bonding

    SciTech Connect

    Yokoyama, Masafumi Takenaka, Mitsuru; Takagi, Shinichi; Yokoyama, Haruki

    2015-02-16

    We have realized ultrathin body GaSb-on-insulator (GaSb-OI) on Si wafers by direct wafer bonding technology using atomic-layer deposition (ALD) Al{sub 2}O{sub 3} and have demonstrated GaSb-OI p-channel metal-oxide-semiconductor field-effect transistors (p-MOSFETs) on Si. A 23-nm-thick GaSb-OI p-MOSFET exhibits the peak effective mobility of ∼76 cm{sup 2}/V s. We have found that the effective hole mobility of the thin-body GaSb-OI p-MOSFETs decreases with a decrease in the GaSb-OI thickness or with an increase in Al{sub 2}O{sub 3} ALD temperature. The InAs passivation of GaSb-OI MOS interfaces can enhance the peak effective mobility up to 159 cm{sup 2}/V s for GaSb-OI p-MOSFETs with the 20-nm-thick GaSb layer.

  6. From the sequence to the conformation of the unabridged transmembrane domains TM1 and TM2 of the cASIC1a ion channel - a parallel tempering approach.

    PubMed

    Pietra, Francesco

    2015-03-01

    This work was devised to unravel, along replica-exchange molecular-dynamics (REMD) simulations, the conformation in solution of the TM1 and TM2 transmembrane domains of the homotrimeric cASIC1a ion channel. This includes the head of TM1 and tail of TM2 that had previously defied X-ray diffraction analysis in the crystal. The structure of the open-channel complex of cASIC1a with psalmotoxin 1 (PcTx1) was chosen here as a basis, although, to make the simulations affordable, the procedure was limited to the missing portions, including a few adjacent α-helical turns. The latter were held fixed during the simulations. Reassembling the whole subunit, by superimposition of the fixed portions, resulted in diving of both TM1 and TM2 as continuous α-helices into the cytoplasm. At completion of this work, it appeared, from similar X-ray diffraction studies, that TM2 for both the complex of cASIC1a with the coral snake MitTx toxin, and the isolated desensitized ion channel, is discontinuous, with the triad G443-A444-S445 taking an extended, belt-like conformation. In this way, a filter ring against hydrated ions is formed by G443 in the trimer. Our REMD examination of this complex revealed a strong resistance by G443, and only that residue, to take dihedral-angle values compatible with an α-helical conformation. This suggests that the flexibility of glycine alone does not explain formation of the extended, belt-like conformation of the triad G443-A444-S445. This also requires cooperation in the trimer.

  7. Ca2+ signaling by plant Arabidopsis thaliana Pep peptides depends on AtPepR1, a receptor with guanylyl cyclase activity, and cGMP-activated Ca2+ channels.

    PubMed

    Qi, Zhi; Verma, Rajeev; Gehring, Chris; Yamaguchi, Yube; Zhao, Yichen; Ryan, Clarence A; Berkowitz, Gerald A

    2010-12-01

    A family of peptide signaling molecules (AtPeps) and their plasma membrane receptor AtPepR1 are known to act in pathogen-defense signaling cascades in plants. Little is currently known about the molecular mechanisms that link these signaling peptides and their receptor, a leucine-rich repeat receptor-like kinase, to downstream pathogen-defense responses. We identify some cellular activities of these molecules that provide the context for a model for their action in signaling cascades. AtPeps activate plasma membrane inwardly conducting Ca(2+) permeable channels in mesophyll cells, resulting in cytosolic Ca(2+) elevation. This activity is dependent on their receptor as well as a cyclic nucleotide-gated channel (CNGC2). We also show that the leucine-rich repeat receptor-like kinase receptor AtPepR1 has guanylyl cyclase activity, generating cGMP from GTP, and that cGMP can activate CNGC2-dependent cytosolic Ca(2+) elevation. AtPep-dependent expression of pathogen-defense genes (PDF1.2, MPK3, and WRKY33) is mediated by the Ca(2+) signaling pathway associated with AtPep peptides and their receptor. The work presented here indicates that extracellular AtPeps, which can act as danger-associated molecular patterns, signal by interaction with their receptor, AtPepR1, a plasma membrane protein that can generate cGMP. Downstream from AtPep and AtPepR1 in a signaling cascade, the cGMP-activated channel CNGC2 is involved in AtPep- and AtPepR1-dependent inward Ca(2+) conductance and resulting cytosolic Ca(2+) elevation. The signaling cascade initiated by AtPeps leads to expression of pathogen-defense genes in a Ca(2+)-dependent manner.

  8. Fabric fastenings

    NASA Technical Reports Server (NTRS)

    Walen, E D; Fisher, R T

    1920-01-01

    The study of aeronautical fabrics has led to a consideration of the best methods of attaching and fastening together such materials. This report presents the results of an investigation upon the proper methods of attaching fabrics to airplane wings. The methods recommended in this report have been adopted by the military services.

  9. The expression profile of acid-sensing ion channel (ASIC) subunits ASIC1a, ASIC1b, ASIC2a, ASIC2b, and ASIC3 in the esophageal vagal afferent nerve subtypes

    PubMed Central

    Dusenkova, Svetlana; Ru, Fei; Surdenikova, Lenka; Nassenstein, Christina; Hatok, Jozef; Dusenka, Robert; Banovcin, Peter; Kliment, Jan; Tatar, Milos

    2014-01-01

    Acid-sensing ion channels (ASICs) have been implicated in esophageal acid sensing and mechanotransduction. However, insufficient knowledge of ASIC subunit expression profile in esophageal afferent nerves hampers the understanding of their role. This knowledge is essential because ASIC subunits form heteromultimeric channels with distinct functional properties. We hypothesized that the esophageal putative nociceptive C-fiber nerves (transient receptor potential vanilloid 1, TRPV1-positive) express multiple ASIC subunits and that the ASIC expression profile differs between the nodose TRPV1-positive subtype developmentally derived from placodes and the jugular TRPV1-positive subtype derived from neural crest. We performed single cell RT-PCR on the vagal afferent neurons retrogradely labeled from the esophagus. In the guinea pig, nearly all (90%–95%) nodose and jugular esophageal TRPV1-positive neurons expressed ASICs, most often in a combination (65–75%). ASIC1, ASIC2, and ASIC3 were expressed in 65–75%, 55–70%, and 70%, respectively, of both nodose and jugular TRPV1-positive neurons. The ASIC1 splice variants ASIC1a and ASIC1b and the ASIC2 splice variant ASIC2b were similarly expressed in both nodose and jugular TRPV1-positive neurons. However, ASIC2a was found exclusively in the nodose neurons. In contrast to guinea pig, ASIC3 was almost absent from the mouse vagal esophageal TRPV1-positive neurons. However, ASIC3 was similarly expressed in the nonnociceptive TRPV1-negative (tension mechanoreceptors) neurons in both species. We conclude that the majority of esophageal vagal nociceptive neurons express multiple ASIC subunits. The placode-derived nodose neurons selectively express ASIC2a, known to substantially reduce acid sensitivity of ASIC heteromultimers. ASIC3 is expressed in the guinea pig but not in the mouse vagal esophageal TRPV1-positive neurons, indicating species differences in ASIC expression. PMID:25190475

  10. MEMS in microfluidic channels.

    SciTech Connect

    Ashby, Carol Iris Hill; Okandan, Murat; Michalske, Terry A.; Sounart, Thomas L.; Matzke, Carolyn M.

    2004-03-01

    Microelectromechanical systems (MEMS) comprise a new class of devices that include various forms of sensors and actuators. Recent studies have shown that microscale cantilever structures are able to detect a wide range of chemicals, biomolecules or even single bacterial cells. In this approach, cantilever deflection replaces optical fluorescence detection thereby eliminating complex chemical tagging steps that are difficult to achieve with chip-based architectures. A key challenge to utilizing this new detection scheme is the incorporation of functionalized MEMS structures within complex microfluidic channel architectures. The ability to accomplish this integration is currently limited by the processing approaches used to seal lids on pre-etched microfluidic channels. This report describes Sandia's first construction of MEMS instrumented microfluidic chips, which were fabricated by combining our leading capabilities in MEMS processing with our low-temperature photolithographic method for fabricating microfluidic channels. We have explored in-situ cantilevers and other similar passive MEMS devices as a new approach to directly sense fluid transport, and have successfully monitored local flow rates and viscosities within microfluidic channels. Actuated MEMS structures have also been incorporated into microfluidic channels, and the electrical requirements for actuation in liquids have been quantified with an elegant theory. Electrostatic actuation in water has been accomplished, and a novel technique for monitoring local electrical conductivities has been invented.

  11. Electron transfer from the A1A and A1B sites to a tethered Pt nanoparticle requires the FeS clusters for suppression of the recombination channel.

    PubMed

    Gorka, Michael; Perez, Adam; Baker, Carol S; Ferlez, Bryan; van der Est, Art; Bryant, Donald A; Golbeck, John H

    2015-11-01

    In this work, a previously described model of electron withdrawal from the A1A/A1B sites of Photosystem I (PS I) was tested using a dihydrogen-producing PS I-NQ(CH2)15S-Pt nanoconstruct. According to this model, the rate of electron transfer from A1A/A1B to a tethered Pt nanoparticle is kinetically unfavorable relative to the rate of forward electron transfer to the FeS clusters. Dihydrogen is produced only when an external donor rapidly reduces P700(+), thereby suppressing the recombination channel and allowing the electron in the FeS clusters to proceed via uphill electron transfer through the A1A/A1B quinones to the Pt nanoparticle. We tested this model by sequentially removing the FeS clusters, FB, FA, and FX, and determining the concentration of cytochrome c6 (Cyt c6) at which the backreaction was outcompeted and dihydrogen production was observed. P700-FA cores were generated in a menB insertionally inactivated strain by removing FB with HgCl2; P700-FX cores were generated in a menB psaC insertionally inactivated strain that lacks FA and FB, and P700-A1 cores were generated in a menB rubA insertionally inactivated strain that lacks FX, FA and FB. Quinone incorporation was measured using transient electron paramagnetic resonance spectroscopy and time resolved optical spectroscopy. Cyt c6 was titrated into each of these PS I preparations and the kinetics of P700(+) reduction were measured. A similar experiment was carried out on PS I-NQ(CH2)15S-Pt nanoconstructs assembled from these PS I preparations. This study showed that the concentration of Cyt c6 needed to produce dihydrogen was comparable to that needed to suppress the backreaction. We conclude that the FeS clusters serve to 'park' the electron and thereby extend the duration of the charge-separated state; however, in doing so, the redox advantage of removing the electron at A1A/A1B is lost.

  12. Fabrication Technology

    SciTech Connect

    Blaedel, K.L.

    1993-03-01

    The mission of the Fabrication Technology thrust area is to have an adequate base of manufacturing technology, not necessarily resident at Lawrence Livermore National Laboratory (LLNL), to conduct the future business of LLNL. The specific goals continue to be to (1) develop an understanding of fundamental fabrication processes; (2) construct general purpose process models that will have wide applicability; (3) document findings and models in journals; (4) transfer technology to LLNL programs, industry, and colleagues; and (5) develop continuing relationships with the industrial and academic communities to advance the collective understanding of fabrication processes. The strategy to ensure success is changing. For technologies in which they are expert and which will continue to be of future importance to LLNL, they can often attract outside resources both to maintain their expertise by applying it to a specific problem and to help fund further development. A popular vehicle to fund such work is the Cooperative Research and Development Agreement with industry. For technologies needing development because of their future critical importance and in which they are not expert, they use internal funding sources. These latter are the topics of the thrust area. Three FY-92 funded projects are discussed in this section. Each project clearly moves the Fabrication Technology thrust area towards the goals outlined above. They have also continued their membership in the North Carolina State University Precision Engineering Center, a multidisciplinary research and graduate program established to provide the new technologies needed by high-technology institutions in the US. As members, they have access to and use of the results of their research projects, many of which parallel the precision engineering efforts at LLNL.

  13. Laboratory experiments in integrated circuit fabrication

    NASA Technical Reports Server (NTRS)

    Jenkins, Thomas J.; Kolesar, Edward S.

    1993-01-01

    The objectives of the experiment are fourfold: to provide practical experience implementing the fundamental processes and technology associated with the science and art of integrated circuit (IC) fabrication; to afford the opportunity for the student to apply the theory associated with IC fabrication and semiconductor device operation; to motivate the student to exercise engineering decisions associated with fabricating integrated circuits; and to complement the theory of n-channel MOS and diffused devices that are presented in the classroom by actually fabricating and testing them. Therefore, a balance between theory and practice can be realized in the education of young engineers, whose education is often criticized as lacking sufficient design and practical content.

  14. Fabrication of plastic microfluidic components

    NASA Astrophysics Data System (ADS)

    Martin, Peter M.; Matson, Dean W.; Bennett, Wendy D.; Hammerstrom, D. J.

    1998-09-01

    Plastic components have many advantages, including ease of fabrication, low cost, chemical inertness, lightweight, and disposability. We report on the fabrication of three plastics-based microfluidic components: a motherboard, a dialysis unit, and a metal sensor. Microchannels, headers, and interconnects were produced in thin sheets (>=50 microns) of polyimide, PMMA, polyethylene, and polycarbonate using a direct-write excimer laser micromachining system. Machined sheets were laminated by thermal and adhesive bonding to form leak-tight microfluidic components. The microfluidic motherboard borrowed the `functionality on a chip' concept from the electronics industry and was the heart of a complex microfluidic analytical device. The motherboard platform was designed to be tightly integrated and self-contained (i.e., liquid flows are all confined within machined microchannels), reducing the need for tubing with fluid distribution and connectivity. This concept greatly facilitated system integration and miniaturization. As fabricated, the motherboard consisted of three fluid reservoirs connected to micropumps by microchannels. The fluids could either be pumped independently or mixed in microchannels prior to being directed to exterior analytical components via outlet ports. The microdialysis device was intended to separate electrolytic solutes from low volume samples prior to mass spectrometric analysis. The device consisted of a dialysis membrane laminated between opposed serpentine microchannels containing the sample fluid and a buffer solution. The laminated metal sensor consisted of fluid reservoirs, micro-flow channels, micropumps, mixing channels, reaction channels, and detector circuitry.

  15. TRP Channels

    NASA Astrophysics Data System (ADS)

    Voets, Thomas; Owsianik, Grzegorz; Nilius, Bernd

    The TRP superfamily represents a highly diverse group of cation-permeable ion channels related to the product of the Drosophila trp (transient receptor potential) gene. The cloning and characterization of members of this cation channel family has experienced a remarkable growth during the last decade, uncovering a wealth of information concerning the role of TRP channels in a variety of cell types, tissues, and species. Initially, TRP channels were mainly considered as phospholipase C (PLC)-dependent and/or store-operated Ca2+-permeable cation channels. More recent research has highlighted the sensitivity of TRP channels to a broad array of chemical and physical stimuli, allowing them to function as dedicated biological sensors involved in processes ranging from vision to taste, tactile sensation, and hearing. Moreover, the tailored selectivity of certain TRP channels enables them to play key roles in the cellular uptake and/or transepithelial transport of Ca2+, Mg2+, and trace metal ions. In this chapter we give a brief overview of the TRP channel superfamily followed by a survey of current knowledge concerning their structure and activation mechanisms.

  16. Fabrication of 20 nm embedded longitudinal nanochannels transferred from metal nanowire patterns

    NASA Technical Reports Server (NTRS)

    Choi, D.; Yang, E. H.

    2003-01-01

    bstract we describe a technique for fabricating nanometer-scale channels embedded by dielectric materials. Longitudinal 'embedded ' nanochannels with an opening size 20 nm x 80 nm have been successfully fabricated on silicon wafer by transferring sacrificial nanowire structures.

  17. Muon cooling in a quadrupole magnet channel

    SciTech Connect

    Neuffer, David; Poklonskiy, A.; /Michigan State U.

    2007-10-01

    As discussed before,[1] a cooling channel using quadrupole magnets in a FODO transport channel can be used for initial cooling of muons. In the present note we discuss this possibility of a FODO focusing channel for cooling, and we present ICOOL simulations of muon cooling within a FODO channel. We explore a 1.5m cell-length cooling channel that could be used for the initial transverse cooling stage of a muon collider or neutrino factory.

  18. Short Channel Field-Effect-Transistors with Inkjet-Printed Semiconducting Carbon Nanotubes.

    PubMed

    Jang, Seonpil; Kim, Bongjun; Geier, Michael L; Hersam, Mark C; Dodabalapur, Ananth

    2015-11-01

    Short channel field-effect-transistors with inkjet-printed semiconducting carbon nanotubes are fabricated using a novel strategy to minimize material consumption, confining the inkjet droplet into the active channel area. This fabrication approach is compatible with roll-to-roll processing and enables the formation of high-performance short channel device arrays based on inkjet printing. PMID:26312458

  19. On the putative binding site of RFamide-family neuropeptides from the western Atlantic clam Sunray Venus and cephalopods on acid-sensing ion channels. An automated docking and molecular-dynamics study with hASIC1a homology model.

    PubMed

    Pietra, Francesco

    2011-05-01

    Investigated here are interactions of C-terminal amidated peptides with the hASIC1a acid-sensing ion channel. The peptides comprise endogenous FMRFa, present in the western Atlantic clam Sunray Venus, and FIRFa, present in cephalopods, as well as non-endogenous ones for comparison. The interaction is investigated by automated docking. The resulting key hASIC1a-FMRFa complex, set in a lipidic POPC (=1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine) membrane surrounded by H(2) O and Na(+) -neutralized, was also investigated by molecular dynamics. It was observed that all investigated peptides become encapsulated into the ion channel, on one side by the thumb and finger of a subunit, and, on the opposite side, by the knuckle and β-ball of a second subunit. The third subunit is not involved. This is much the same binding site that was disclosed previously by both a similar computational approach, and electrophysiological and binding experiments for the hASIC1a ion channel-blocker tarantula toxin PCTX1. This paves the way to a better understanding of the role of these peptides in invertebrates.

  20. THI1, a Thiamine Thiazole Synthase, Interacts with Ca2+-Dependent Protein Kinase CPK33 and Modulates the S-Type Anion Channels and Stomatal Closure in Arabidopsis1[OPEN

    PubMed Central

    Li, Chun-Long; Wang, Mei; Wu, Xiao-Meng; Chen, Dong-Hua; Lv, Hong-Jun; Shen, Jian-Lin; Qiao, Zhu; Zhang, Wei

    2016-01-01

    Thiamine is required for both plant growth and development. Here, the involvement of a thiamine thiazole synthase, THI1, has been demonstrated in both guard cell abscisic acid (ABA) signaling and the drought response in Arabidopsis (Arabidopsis thaliana). THI1 overexpressors proved to be more sensitive to ABA than the wild type with respect to both the activation of guard cell slow type anion channels and stomatal closure; this effectively reduced the rate of water loss from the plant and thereby enhanced its level of drought tolerance. A yeast two-hybrid strategy was used to screen a cDNA library from epidermal strips of leaves for THI1 regulatory factors, and identified CPK33, a Ca2+-dependent protein kinase, as interactor with THI1 in a plasma membrane-delimited manner. Loss-of-function cpk33 mutants were hypersensitive to ABA activation of slow type anion channels and ABA-induced stomatal closure, while the CPK33 overexpression lines showed opposite phenotypes. CPK33 kinase activity was essential for ABA-induced stomatal closure. Consistent with their contrasting regulatory role over stomatal closure, THI1 suppressed CPK33 kinase activity in vitro. Together, our data reveal a novel regulatory role of thiamine thiazole synthase to kinase activity in guard cell signaling. PMID:26662273

  1. Surface Micromachine Microfluidics: Design, Fabrication, Packaging, and Characterization

    SciTech Connect

    Galambos, Paul; Eaton, William P.; Shul, Randy; Willison, Christi Gober; Sniegowski, Jeffrey J.; Miller, Samuel L.; Guttierez, Daniel

    1999-06-30

    The field of microfluidics is undergoing rapid growth in terms of new device and system development. Among the many methods of fabricating microfluidic devices and systems, surface micromachining is relatively underrepresented due to difficulties in the introduction of fluids into the very small channels produced, packaging problems, and difficulties in device and system characterization. The potential advantages of using surface micromachining including compatibility with the existing integrated circuit tool set, integration of electronic sensing and actuation with microfluidics, and fluid volume minimization. In order to explore these potential advantages we have developed first generation surface micromachined microfluidic devices (channels) using an adapted pressure sensor fabrication process to produce silicon nitride channels, and the SUMMiT process to produce polysilicon channels. The channels were characterized by leak testing and flow rate vs. pressure measurements. The fabrication processes used and results of these tests are reported in this paper.

  2. English Channel

    NASA Technical Reports Server (NTRS)

    1984-01-01

    The cloud covered earthscape of Northern Europe demonstrates the difficulty of photographing this elusive subject from space. The English Channel (51.0N, 1.5E) separating the British Islands from Europe is in the center of the scene. The white cliffs of Dover on the SE coast of the UK, the Thames River estuary and a partial view of the city of London can be seen on the north side of the Channel while the Normandy coast of France is to the south.

  3. A Micromechanical RF Channelizer

    NASA Astrophysics Data System (ADS)

    Akgul, Mehmet

    The power consumption of a radio generally goes as the number and strength of the RF signals it must process. In particular, a radio receiver would consume much less power if the signal presented to its electronics contained only the desired signal in a tiny percent bandwidth frequency channel, rather than the typical mix of signals containing unwanted energy outside the desired channel. Unfortunately, a lack of filters capable of selecting single channel bandwidths at RF forces the front-ends of contemporary receivers to accept unwanted signals, and thus, to operate with sub-optimal efficiency. This dissertation focuses on the degree to which capacitive-gap transduced micromechanical resonators can achieve the aforementioned RF channel-selecting filters. It aims to first show theoretically that with appropriate scaling capacitive-gap transducers are strong enough to meet the needed coupling requirements; and second, to fully detail an architecture and design procedure needed to realize said filters. Finally, this dissertation provides an actual experimentally demonstrated RF channel-select filter designed using the developed procedures and confirming theoretical predictions. Specifically, this dissertation introduces four methods that make possible the design and fabrication of RF channel-select filters. The first of these introduces a small-signal equivalent circuit for parallel-plate capacitive-gap transduced micromechanical resonators that employs negative capacitance to model the dependence of resonance frequency on electrical stiffness in a way that facilitates the analysis of micromechanical circuits loaded with arbitrary electrical impedances. The new circuit model not only correctly predicts the dependence of electrical stiffness on the impedances loading the input and output electrodes of parallel-plate capacitive-gap transduced micromechanical device, but does so in a visually intuitive way that identifies current drive as most appropriate for

  4. Microfabrication of cylindrical microfluidic channel networks for microvascular research.

    PubMed

    Huang, Zhouchun; Li, Xiang; Martins-Green, Manuela; Liu, Yuxin

    2012-10-01

    Current methods for formation of microvascular channel scaffolds are limited with non-circular channel cross-sections, complicated fabrication, and less flexibility in microchannel network design. To address current limitations in the creation of engineered microvascular channels with complex three-dimensional (3-D) geometries in the shape of microvessels, we have developed a reproducible, cost-effective, and flexible micromanufacturing process combined with photolithographic reflowable photoresist and soft lithography techniques to fabricate cylindrical microchannel and networks. A positive reflowable photoresist AZ P4620 was used to fabricate a master microchannel mold with semi-circular cross-sections. By the alignment and bonding of two polydimethylsiloxane (PDMS) microchannels replicated from the master mold together, a cylindrical microchannel or microchannel network was created. Further examination of the channel dimensions and surface profiles at different branching levels showed that the shape of the microfluidic channel was well approximated by a semi-circular surface, and a multi-level, multi-depth channel network was created. In addition, a computational fluidic dynamics (CFD) model was used to simulate shear flows and corresponding pressure distributions inside of the microchannel and channel network based on the dimensions of the fabricated channels. The fabricated multi-depth cylindrical microchannel network can provide platforms for the investigation of microvascular cells growing inside of cylindrical channels under shear flows and lumen pressures, and work as scaffolds for the investigation of morphogenesis and tubulogenesis. PMID:22729782

  5. Microfabrication of cylindrical microfluidic channel networks for microvascular research.

    PubMed

    Huang, Zhouchun; Li, Xiang; Martins-Green, Manuela; Liu, Yuxin

    2012-10-01

    Current methods for formation of microvascular channel scaffolds are limited with non-circular channel cross-sections, complicated fabrication, and less flexibility in microchannel network design. To address current limitations in the creation of engineered microvascular channels with complex three-dimensional (3-D) geometries in the shape of microvessels, we have developed a reproducible, cost-effective, and flexible micromanufacturing process combined with photolithographic reflowable photoresist and soft lithography techniques to fabricate cylindrical microchannel and networks. A positive reflowable photoresist AZ P4620 was used to fabricate a master microchannel mold with semi-circular cross-sections. By the alignment and bonding of two polydimethylsiloxane (PDMS) microchannels replicated from the master mold together, a cylindrical microchannel or microchannel network was created. Further examination of the channel dimensions and surface profiles at different branching levels showed that the shape of the microfluidic channel was well approximated by a semi-circular surface, and a multi-level, multi-depth channel network was created. In addition, a computational fluidic dynamics (CFD) model was used to simulate shear flows and corresponding pressure distributions inside of the microchannel and channel network based on the dimensions of the fabricated channels. The fabricated multi-depth cylindrical microchannel network can provide platforms for the investigation of microvascular cells growing inside of cylindrical channels under shear flows and lumen pressures, and work as scaffolds for the investigation of morphogenesis and tubulogenesis.

  6. Schottky barrier MOSFET systems and fabrication thereof

    DOEpatents

    Welch, J.D.

    1997-09-02

    (MOS) device systems-utilizing Schottky barrier source and drain to channel region junctions are disclosed. Experimentally derived results which demonstrate operation of fabricated N-channel and P-channel Schottky barrier (MOSFET) devices, and of fabricated single devices with operational characteristics similar to (CMOS) and to a non-latching (SRC) are reported. Use of essentially non-rectifying Schottky barriers in (MOS) structures involving highly doped and the like and intrinsic semiconductor to allow non-rectifying interconnection of, and electrical accessing of device regions is also disclosed. Insulator effected low leakage current device geometries and fabrication procedures therefore are taught. Selective electrical interconnection of drain to drain, source to drain, or source to source, of N-channel and/or P-channel Schottky barrier (MOSFET) devices formed on P-type, N-type and Intrinsic semiconductor allows realization of Schottky Barrier (CMOS), (MOSFET) with (MOSFET) load, balanced differential (MOSFET) device systems and inverting and non-inverting single devices with operating characteristics similar to (CMOS), which devices can be utilized in modulation, as well as in voltage controlled switching and effecting a direction of rectification. 89 figs.

  7. Schottky barrier MOSFET systems and fabrication thereof

    DOEpatents

    Welch, James D.

    1997-01-01

    (MOS) device systems-utilizing Schottky barrier source and drain to channel region junctions are disclosed. Experimentally derived results which demonstrate operation of fabricated N-channel and P-channel Schottky barrier (MOSFET) devices, and of fabricated single devices with operational characteristics similar to (CMOS) and to a non-latching (SRC) are reported. Use of essentially non-rectifying Schottky barriers in (MOS) structures involving highly doped and the like and intrinsic semiconductor to allow non-rectifying interconnection of, and electrical accessing of device regions is also disclosed. Insulator effected low leakage current device geometries and fabrication procedures therefore are taught. Selective electrical interconnection of drain to drain, source to drain, or source to source, of N-channel and/or P-channel Schottky barrier (MOSFET) devices formed on P-type, N-type and Intrinsic semiconductor allows realization of Schottky Barrier (CMOS), (MOSFET) with (MOSFET) load, balanced differential (MOSFET) device systems and inverting and non-inverting single devices with operating characteristics similar to (CMOS), which devices can be utilized in modulation, as well as in voltage controled switching and effecting a direction of rectification.

  8. Altered expression of the voltage-gated calcium channel subunit α2δ-1: A comparison between two experimental models of epilepsy and a sensory nerve ligation model of neuropathic pain

    PubMed Central

    Nieto-Rostro, M.; Sandhu, G.; Bauer, C.S.; Jiruska, P.; Jefferys, J.G.R.; Dolphin, A.C.

    2014-01-01

    The auxiliary α2δ-1 subunit of voltage-gated calcium channels is up-regulated in dorsal root ganglion neurons following peripheral somatosensory nerve damage, in several animal models of neuropathic pain. The α2δ-1 protein has a mainly presynaptic localization, where it is associated with the calcium channels involved in neurotransmitter release. Relevant to the present study, α2δ-1 has been shown to be the therapeutic target of the gabapentinoid drugs in their alleviation of neuropathic pain. These drugs are also used in the treatment of certain epilepsies. In this study we therefore examined whether the level or distribution of α2δ-1 was altered in the hippocampus following experimental induction of epileptic seizures in rats, using both the kainic acid model of human temporal lobe epilepsy, in which status epilepticus is induced, and the tetanus toxin model in which status epilepticus is not involved. The main finding of this study is that we did not identify somatic overexpression of α2δ-1 in hippocampal neurons in either of the epilepsy models, unlike the upregulation of α2δ-1 that occurs following peripheral nerve damage to both somatosensory and motor neurons. However, we did observe local reorganization of α2δ-1 immunostaining in the hippocampus only in the kainic acid model, where it was associated with areas of neuronal cell loss, as indicated by absence of NeuN immunostaining, dendritic loss, as identified by areas where microtubule-associated protein-2 immunostaining was missing, and reactive gliosis, determined by regions of strong OX42 staining. PMID:24641886

  9. Packed multi-channels for parallel chromatographic separations in microchips.

    PubMed

    Nagy, Andrea; Gaspar, Attila

    2013-08-23

    Here we report on a simple method to fabricate microfluidic chip incorporating multi-channel systems packed by conventional chromatographic particles without the use of frits. The retaining effectivities of different bottlenecks created in the channels were studied. For the parallel multi-channel chromatographic separations several channel patterns were designed. The obtained multipackings were applied for parallel separations of dyes. The implementation of several chromatographic separation units in microscopic size makes possible faster and high throughput separations.

  10. DYRK1A-mediated phosphorylation of GluN2A at Ser(1048) regulates the surface expression and channel activity of GluN1/GluN2A receptors.

    PubMed

    Grau, Cristina; Arató, Krisztina; Fernández-Fernández, José M; Valderrama, Aitana; Sindreu, Carlos; Fillat, Cristina; Ferrer, Isidre; de la Luna, Susana; Altafaj, Xavier

    2014-01-01

    N-methyl-D-aspartate glutamate receptors (NMDARs) play a pivotal role in neural development and synaptic plasticity, as well as in neurological disease. Since NMDARs exert their function at the cell surface, their density in the plasma membrane is finely tuned by a plethora of molecules that regulate their production, trafficking, docking and internalization in response to external stimuli. In addition to transcriptional regulation, the density of NMDARs is also influenced by post-translational mechanisms like phosphorylation, a modification that also affects their biophysical properties. We previously described the increased surface expression of GluN1/GluN2A receptors in transgenic mice overexpressing the Dual specificity tyrosine-phosphorylation-regulated kinase 1A (DYRK1A), suggesting that DYRK1A regulates NMDARs. Here we have further investigated whether the density and activity of NMDARs were modulated by DYRK1A phosphorylation. Accordingly, we show that endogenous DYRK1A is recruited to GluN2A-containing NMDARs in the adult mouse brain, and we identify a DYRK1A phosphorylation site at Ser(1048) of GluN2A, within its intracellular C-terminal domain. Mechanistically, the DYRK1A-dependent phosphorylation of GluN2A at Ser(1048) hinders the internalization of GluN1/GluN2A, causing an increase of surface GluN1/GluN2A in heterologous systems, as well as in primary cortical neurons. Furthermore, GluN2A phosphorylation at Ser(1048) increases the current density and potentiates the gating of GluN1/GluN2A receptors. We conclude that DYRK1A is a direct regulator of NMDA receptors and we propose a novel mechanism for the control of NMDAR activity in neurons. PMID:25368549

  11. DYRK1A-mediated phosphorylation of GluN2A at Ser1048 regulates the surface expression and channel activity of GluN1/GluN2A receptors

    PubMed Central

    Grau, Cristina; Arató, Krisztina; Fernández-Fernández, José M.; Valderrama, Aitana; Sindreu, Carlos; Fillat, Cristina; Ferrer, Isidre; de la Luna, Susana; Altafaj, Xavier

    2014-01-01

    N-methyl-D-aspartate glutamate receptors (NMDARs) play a pivotal role in neural development and synaptic plasticity, as well as in neurological disease. Since NMDARs exert their function at the cell surface, their density in the plasma membrane is finely tuned by a plethora of molecules that regulate their production, trafficking, docking and internalization in response to external stimuli. In addition to transcriptional regulation, the density of NMDARs is also influenced by post-translational mechanisms like phosphorylation, a modification that also affects their biophysical properties. We previously described the increased surface expression of GluN1/GluN2A receptors in transgenic mice overexpressing the Dual specificity tyrosine-phosphorylation-regulated kinase 1A (DYRK1A), suggesting that DYRK1A regulates NMDARs. Here we have further investigated whether the density and activity of NMDARs were modulated by DYRK1A phosphorylation. Accordingly, we show that endogenous DYRK1A is recruited to GluN2A-containing NMDARs in the adult mouse brain, and we identify a DYRK1A phosphorylation site at Ser1048 of GluN2A, within its intracellular C-terminal domain. Mechanistically, the DYRK1A-dependent phosphorylation of GluN2A at Ser1048 hinders the internalization of GluN1/GluN2A, causing an increase of surface GluN1/GluN2A in heterologous systems, as well as in primary cortical neurons. Furthermore, GluN2A phosphorylation at Ser1048 increases the current density and potentiates the gating of GluN1/GluN2A receptors. We conclude that DYRK1A is a direct regulator of NMDA receptors and we propose a novel mechanism for the control of NMDAR activity in neurons. PMID:25368549

  12. Polymorphous computing fabric

    DOEpatents

    Wolinski, Christophe Czeslaw; Gokhale, Maya B.; McCabe, Kevin Peter

    2011-01-18

    Fabric-based computing systems and methods are disclosed. A fabric-based computing system can include a polymorphous computing fabric that can be customized on a per application basis and a host processor in communication with said polymorphous computing fabric. The polymorphous computing fabric includes a cellular architecture that can be highly parameterized to enable a customized synthesis of fabric instances for a variety of enhanced application performances thereof. A global memory concept can also be included that provides the host processor random access to all variables and instructions associated with the polymorphous computing fabric.

  13. Fabrication of zein nanostructure

    NASA Astrophysics Data System (ADS)

    Luecha, Jarupat

    resins. The soft lithography technique was mainly used to fabricate micro and nanostructures on zein films. Zein material well-replicated small structures with the smallest size at sub micrometer scale that resulted in interesting photonic properties. The bonding method was also developed for assembling portable zein microfluidic devices with small shape distortion. Zein-zein and zein-glass microfluidic devices demonstrated sufficient strength to facilitate fluid flow in a complex microfluidic design with no leakage. Aside from the fabrication technique development, several potential applications of this environmentally friendly microfluidic device were investigated. The concentration gradient manipulation of Rhodamine B solution in zein-glass microfluidic devices was demonstrated. The diffusion of small molecules such as fluorescent dye into the wall of the zein microfluidic channels was observed. However, with this formulation, zein microfluidic devices were not suitable for cell culture applications. This pioneer study covered a wide spectrum of the implementation of the two nanotechnology approaches to advance zein biomaterial which provided proof of fundamental concepts as well as presenting some limitations. The findings in this study can lead to several innovative research opportunities of advanced zein biomaterials with broad applications. The information from the study of zein nanocomposite structure allows the packaging industry to develop the low cost biodegradable materials with physical property improvement. The information from the study of the zein microfluidic devices allows agro-industry to develop the nanotechnology-enabled microfluidic sensors fabricated entirely from biodegradable polymer for on-site disease or contaminant detection in the fields of food and agriculture.

  14. The channels of Mars

    NASA Technical Reports Server (NTRS)

    Baker, Victor R.

    1988-01-01

    The geomorphology of Mars is discussed, focusing on the Martian channels. The great flood channels of Mars, the processes of channel erosion, and dendritic channel networks, are examined. The topography of the Channeled Scabland region of the northwestern U.S. is described and compared to the Martian channels. The importance of water in the evolution of the channel systems is considered.

  15. Channelized Optical Waveguides On Silicon

    NASA Astrophysics Data System (ADS)

    Hickernell, F. S.; Seaton, C. T.

    1987-02-01

    Silicon provides a natural substrate base for the development of channel waveguides and their integration with optoelectronic components. Using epitaxial growth, selective doping, and plasma etching, channel waveguides can be fabricated using single crystal silicon alone. Oxide layers of low optical index are readily formed by thermal means on silicon to provide a base upon which low-loss film waveguides can be formed by ion exchange and implantation, chemical vapor deposition, and physical vapor deposition. Thermally oxidized and nitrided layers provide a simple means for developing waveguides. The channel shape for ridge waveguides can be delineated by chemical etching and ion milling techniques. The anisotropic etch characteristics of silicon provide a natural channel for imbedding waveguides using organic and inorganic materials. This paper will review common semiconductor processing techniques used for the formation of channel waveguides on silicon and the performance results obtained to date. The use of channel waveguides for specific device developments will be described and the most promising areas for future development will be addressed.

  16. A metal-assisted templating route (S⁰M⁺I⁻) for fabricating thin-layer CoO covered on the channel of nanospherical-HMS with improved catalytic properties.

    PubMed

    Yang, Fu; Zhou, Shijian; Wang, Haiqing; Long, Saifu; Liu, Xianfeng; Kong, Yan

    2016-04-21

    Nanospherical hexagonal mesoporous silica (HMS) with a functional mesochannel covered with thin-layer-dispersed cobalt oxide species was directly fabricated via a novel metal-assisted templating method (S(0)M(+)I(-)). In this special method, cobalt ions would be enriched on the surface of the pore wall by physicochemical interactions among the surfactant, cobalt ions and silica. Typically, a metallomicelle template (S(0)M(+)) formed from the coordinative assembly of metal cations (Co(2+), M(+)) with neutral surfactant dodecyl amine (DDA, S(0)) would match with negatively charged silicate oligomers (I(-)) by counter-ion interactions to assemble into the Co-modified HMS nanosphere. The metallization of DDA micelles and the role of cobalt ions in the assembly process can be demonstrated. Interestingly, the addition of amounts of cobalt apparently affects the size of the HMS nanosphere. Additionally, the coverage of CoO species on the mesochannel is increased with cobalt ions coordinated on the micelles. Finally, the functional Co-HMS with dispersed catalytic active phase and improved structure exhibits a special catalytic activity (yield of ca. 65%) for direct oxidation of phenol to p-benzoquinone with the assistance of a sulfate radical stimulated from cobalt in the presence of peroxymonosulfate.

  17. Nonlinear channelizer.

    PubMed

    In, Visarath; Longhini, Patrick; Kho, Andy; Neff, Joseph D; Leung, Daniel; Liu, Norman; Meadows, Brian K; Gordon, Frank; Bulsara, Adi R; Palacios, Antonio

    2012-12-01

    The nonlinear channelizer is an integrated circuit made up of large parallel arrays of analog nonlinear oscillators, which, collectively, serve as a broad-spectrum analyzer with the ability to receive complex signals containing multiple frequencies and instantaneously lock-on or respond to a received signal in a few oscillation cycles. The concept is based on the generation of internal oscillations in coupled nonlinear systems that do not normally oscillate in the absence of coupling. In particular, the system consists of unidirectionally coupled bistable nonlinear elements, where the frequency and other dynamical characteristics of the emergent oscillations depend on the system's internal parameters and the received signal. These properties and characteristics are being employed to develop a system capable of locking onto any arbitrary input radio frequency signal. The system is efficient by eliminating the need for high-speed, high-accuracy analog-to-digital converters, and compact by making use of nonlinear coupled systems to act as a channelizer (frequency binning and channeling), a low noise amplifier, and a frequency down-converter in a single step which, in turn, will reduce the size, weight, power, and cost of the entire communication system. This paper covers the theory, numerical simulations, and some engineering details that validate the concept at the frequency band of 1-4 GHz.

  18. Fabrication and Calibration of FORTIS

    NASA Technical Reports Server (NTRS)

    Fleming, Brian T.; McCandliss, Stephan R.; Kaiser, Mary Elizabeth; Kruk, Jeffery; Feldman, Paul D.; Kutyrev, Alexander S.; Li, Mary J.; Rapchun, David A.; Lyness, Eric; Moseley, S. H.; Siegmund, Oswald; Vallerga, John; Martin, Adrian

    2011-01-01

    The Johns Hopkins University sounding rocket group is entering the final fabrication phase of the Far-ultraviolet Off Rowland-circle Telescope for Imaging and Spectroscopy (FORTIS); a sounding rocket borne multi-object spectro-telescope designed to provide spectral coverage of 43 separate targets in the 900 - 1800 Angstrom bandpass over a 30' x 30' field-of-view. Using "on-the-fly" target acquisition and spectral multiplexing enabled by a GSFC microshutter array, FORTIS will be capable of observing the brightest regions in the far-UV of nearby low redshift (z approximately 0.002 - 0.02) star forming galaxies to search for Lyman alpha escape, and to measure the local gas-to-dust ratio. A large area (approximately 45 mm x 170 mm) microchannel plate detector built by Sensor Sciences provides an imaging channel for targeting flanked by two redundant spectral outrigger channels. The grating is ruled directly onto the secondary mirror to increase efficiency. In this paper, we discuss the recent progress made in the development and fabrication of FORTIS, as well as the results of early calibration and characterization of our hardware, including mirror/grating measurements, detector performance, and early operational tests of the micro shutter arrays.

  19. Fabrication of Hydrophobic Nanostructured Surfaces for Microfluidic Control.

    PubMed

    Morikawa, Kyojiro; Tsukahara, Takehiko

    2016-01-01

    In the field of micro- and nanofluidics, various kinds of novel devices have been developed. For such devices, not only fluidic control but also surface control of micro/nano channels is essential. Recently, fluidic control by hydrophobic nanostructured surfaces have attracted much attention. However, conventional fabrication methods of nanostructures require complicated steps, and integration of the nanostructures into micro/nano channels makes fabrication procedures even more difficult and complicated. In the present study, a simple and easy fabrication method of nanostructures integrated into microchannels was developed. Various sizes of nanostructures were successfully fabricated by changing the plasma etching time and etching with a basic solution. Furthermore, it proved possible to construct highly hydrophobic nanostructured surfaces that could effectively control the fluid in microchannels at designed pressures. We believe that the fabrication method developed here and the results obtained are valuable contributions towards further applications in the field of micro- and nanofluidics. PMID:26753710

  20. Multi-channel polarized thermal emitter

    DOEpatents

    Lee, Jae-Hwang; Ho, Kai-Ming; Constant, Kristen P

    2013-07-16

    A multi-channel polarized thermal emitter (PTE) is presented. The multi-channel PTE can emit polarized thermal radiation without using a polarizer at normal emergence. The multi-channel PTE consists of two layers of metallic gratings on a monolithic and homogeneous metallic plate. It can be fabricated by a low-cost soft lithography technique called two-polymer microtransfer molding. The spectral positions of the mid-infrared (MIR) radiation peaks can be tuned by changing the periodicity of the gratings and the spectral separation between peaks are tuned by changing the mutual angle between the orientations of the two gratings.

  1. Fabrication of detectors and transistors on high-resistivity silicon

    SciTech Connect

    Holland, S.

    1988-06-01

    A new process for the fabrication of silicon p-i-n diode radiation detectors is described. The utilization of backside gettering in the fabrication process results in the actual physical removal of detrimental impurities from critical device regions. This reduces the sensitivity of detector properties to processing variables while yielding low diode reverse-leakage currents. In addition, gettering permits the use of processing temperatures compatible with integrated-circuit fabrication. P-channel MOSFETs and silicon p-i-n diodes have been fabricated simultaneously on 10 k..cap omega../center dot/cm<100> silicon using conventional integrated-circuit processing techniques. 25 refs., 5 figs.

  2. Solid freeform fabrication of biomaterials

    NASA Astrophysics Data System (ADS)

    Chu, Tien-Min Gabriel

    1999-12-01

    The biological performance of porous Hydroxyapatite (HA) is closely related to the pore architecture in the implants. The study on the effect of architecture to the biological performance of porous HA requires new manufacturing methods that can fabricate implants with controlled pores channels. In this thesis, four highly loaded HA and alumina suspensions were formulated and three different processes involving Solid Freeform Fabrication (SFF) were developed. An aqueous HA suspension in acrylamides was first formulated and the UV-curing properties were evaluated. With a medical grade HA powder, two non-aqueous HA suspensions were formulated: a 40 vol.% HA suspension in Hexanediol Diacrylate (HDDA) and a 40 vol.% HA suspension in 1:1 mix of Propoxylated Neopentyl Glycol Diacrylate (PNPGDA) and Isobomyl Acrylate (EBA). A 50 vol.% Alumina suspension in PNPGDA/IBA was also formulated. The effect of dispersant to the viscosity of the suspensions was characterized. In the Stereolithography (SL) method, the curing parameters of HA/HDDA and HA/PNPGDA/IBA were determined. Prototype HA implants with 1,700 mum internal channels were built directly on an SL Apparatus (SLA). The designed internal channel patterns were preserved after sintering. In the Ink-jet printing method, the high temperature flow behaviors of the suspensions were characterized. The effects of solids loading to the viscosity of the suspensions were modeled with Krieger-Dougherty equation. Leveling theory developed in paint industry was employed to analyze the self-leveling capability of the suspensions. In the indirect SL method, the thermal curing behavior of HA and alumina suspensions were characterized. The total cure time was measured and the curing kinetics was modeled. Negative molds for the implants were designed and built on SLA with epoxy resin. HA/PNPGDA/IBA was cast into the mold and cured in an oven. The binders and the epoxy mold were pyrolyzed and the green bodies sintered. Internal channels

  3. P-channel silicone gate FET

    NASA Technical Reports Server (NTRS)

    Ostis, S.; Woo, D. S.

    1973-01-01

    Modified fabrication technique for P-channel MOSFET devices eliminates problems involving gate placement and gate overlap. Technique provides self-aligned gate, eliminating complexity of mask aligning. Devices produced by this process are considerably faster than conventional MOSFET's and process increases yield.

  4. A Micromechanical RF Channelizer

    NASA Astrophysics Data System (ADS)

    Akgul, Mehmet

    The power consumption of a radio generally goes as the number and strength of the RF signals it must process. In particular, a radio receiver would consume much less power if the signal presented to its electronics contained only the desired signal in a tiny percent bandwidth frequency channel, rather than the typical mix of signals containing unwanted energy outside the desired channel. Unfortunately, a lack of filters capable of selecting single channel bandwidths at RF forces the front-ends of contemporary receivers to accept unwanted signals, and thus, to operate with sub-optimal efficiency. This dissertation focuses on the degree to which capacitive-gap transduced micromechanical resonators can achieve the aforementioned RF channel-selecting filters. It aims to first show theoretically that with appropriate scaling capacitive-gap transducers are strong enough to meet the needed coupling requirements; and second, to fully detail an architecture and design procedure needed to realize said filters. Finally, this dissertation provides an actual experimentally demonstrated RF channel-select filter designed using the developed procedures and confirming theoretical predictions. Specifically, this dissertation introduces four methods that make possible the design and fabrication of RF channel-select filters. The first of these introduces a small-signal equivalent circuit for parallel-plate capacitive-gap transduced micromechanical resonators that employs negative capacitance to model the dependence of resonance frequency on electrical stiffness in a way that facilitates the analysis of micromechanical circuits loaded with arbitrary electrical impedances. The new circuit model not only correctly predicts the dependence of electrical stiffness on the impedances loading the input and output electrodes of parallel-plate capacitive-gap transduced micromechanical device, but does so in a visually intuitive way that identifies current drive as most appropriate for

  5. Microstructure fabrication on glasses for microfluidics

    NASA Astrophysics Data System (ADS)

    Chen, Qiuping; Chen, Qiuling; Liao, Guihua; Milanese, Daniel

    2008-12-01

    Micro-channels were fabricated in sodalime glass through imprinting, and then joined to a glass slab by thermal assisted direct bonding (TADB). These techniques are simple and low cost, suitable for mass production of micro-fluidic devices. The joined samples were characterized before and after TADB by optical microscopy, profilometer, SEM, shear strength test and Vickers hardness test. The integrity of channels is maintained also after the TADB. The interface between the two glass slabs was found to be without impurities, bubbles and cracks. The bonding strength was also measured to be 31.94MPa.

  6. Laser fabricated microchannels inside photostructurable glass-ceramic

    NASA Astrophysics Data System (ADS)

    Fernández-Pradas, J. M.; Serrano, D.; Serra, P.; Morenza, J. L.

    2009-03-01

    Microchannels have been fabricated by laser direct-write in photostructurable glass-ceramic (Foturan) for their application in 3D-microfluidic systems. A Nd:YAG laser delivering 10 ns pulses at 355 nm wavelength has been used for irradiation. Afterwards, thermal treatment and chemical etching have been required for channel formation. The kinetics of channel formation and the channel morphology have been studied by optical and electron microscopy. A minimum accumulated energy (pulse energy multiplied by the number of pulses in a same site) is required to induce channel formation. Channels with symmetric round apertures at both ends can be obtained when using low pulse energies. On the contrary, irradiation with too high energetic pulses produces direct material damage in Foturan and provokes the formation of non-symmetric channels. One millimetre long channels with a minimum radius of 15 μm can be opened through Foturan slides after 15 min of chemical etching.

  7. Photochemical cutting of fabrics

    DOEpatents

    Piltch, Martin S.

    1994-01-01

    Apparatus for the cutting of garment patterns from one or more layers of fabric. A laser capable of producing laser light at an ultraviolet wavelength is utilized to shine light through a pattern, such as a holographic phase filter, and through a lens onto the one or more layers of fabric. The ultraviolet laser light causes rapid photochemical decomposition of the one or more layers of fabric, but only along the pattern. The balance of the fabric of the one or more layers of fabric is undamaged.

  8. Design of a 12 Channel FM Microwave Receiver.

    ERIC Educational Resources Information Center

    Risch, Craig O.; And Others

    The design, fabrication, and performance of elements of a low cost FM microwave satellite ground station receiver are described. It is capable of accepting 12 contiguous color television equivalent bandwidth channels in the 11.72 to 12.2 GHz band. Each channel is 40 MHz wide and incorporates a 4MHz guard band. The modulation format is wideband FM,…

  9. Energy conversion device with support member having pore channels

    DOEpatents

    Routkevitch, Dmitri [Longmont, CO; Wind, Rikard A [Johnstown, CO

    2014-01-07

    Energy devices such as energy conversion devices and energy storage devices and methods for the manufacture of such devices. The devices include a support member having an array of pore channels having a small average pore channel diameter and having a pore channel length. Material layers that may include energy conversion materials and conductive materials are coaxially disposed within the pore channels to form material rods having a relatively small cross-section and a relatively long length. By varying the structure of the materials in the pore channels, various energy devices can be fabricated, such as photovoltaic (PV) devices, radiation detectors, capacitors, batteries and the like.

  10. Fabrication of Buried Nanochannels From Nanowire Patterns

    NASA Technical Reports Server (NTRS)

    Choi, Daniel; Yang, Eui-Hyeok

    2007-01-01

    A method of fabricating channels having widths of tens of nanometers in silicon substrates and burying the channels under overlying layers of dielectric materials has been demonstrated. With further refinement, the method might be useful for fabricating nanochannels for manipulation and analysis of large biomolecules at single-molecule resolution. Unlike in prior methods, burying the channels does not involve bonding of flat wafers to the silicon substrates to cover exposed channels in the substrates. Instead, the formation and burying of the channels are accomplished in a more sophisticated process that is less vulnerable to defects in the substrates and less likely to result in clogging of, or leakage from, the channels. In this method, the first step is to establish the channel pattern by forming an array of sacrificial metal nanowires on an SiO2-on-Si substrate. In particular, the wire pattern is made by use of focused-ion-beam (FIB) lithography and a subsequent metallization/lift-off process. The pattern of metal nanowires is then transferred onto the SiO2 layer by reactive-ion etching, which yields sacrificial SiO2 nanowires covered by metal. After removal of the metal covering the SiO2 nanowires, what remains are SiO2 nanowires on an Si substrate. Plasma-enhanced chemical vapor deposition (PECVD) is used to form a layer of a dielectric material over the Si substrate and over the SiO2 wires on the surface of the substrate. FIB milling is then performed to form trenches at both ends of each SiO2 wire. The trenches serve as openings for the entry of chemicals that etch SiO2 much faster than they etch Si. Provided that the nanowires are not so long that the diffusion of the etching chemicals is blocked, the sacrificial SiO2 nanowires become etched out from between the dielectric material and the Si substrate, leaving buried channels. At the time of reporting the information for this article, channels 3 m long, 20 nm deep, and 80 nm wide (see figure) had been

  11. Fabrication of gravity-driven microfluidic device.

    PubMed

    Yamada, H; Yoshida, Y; Terada, N; Hagihara, S; Komatsu, T; Terasawa, A

    2008-12-01

    We have studied the micro total analysis system as a blood test. A microfluidic device with a three-pronged microchannel and artificial capillary vessels was fabricated. The microchannel is to transport blood, focus blood cells, and line them up. The vessels are to observe red blood cell deformation. An excimer laser was used to form grooves and so on. Numbers of thermosetting resin film and fluororesin were piled up on a cover glass. A laser fabricated part of the channel at the each film every lamination, and then a three-dimensional structure microchannel was fabricated. The channel sizes have widths of 50-150 microm and depths of 45 mum. Through holes used as artificial capillary vessels are made in the fluororesin having a minimum diameter of 5 microm and a length of 100 microm. As blood and a physiological saline are injected into the microchannel, the device stands upward facing the channel, and blood cells go into the vessels by the force of gravity and sheath flow of the saline. By gravity various groove patterns were made changing the width and length for measurement of blood focusing. Moreover, the red blood cell deformation was observed in the vessels with a microscope.

  12. A photolithographic fabrication technique for magnetohydrodynamic micropumps

    NASA Astrophysics Data System (ADS)

    Kuenstner, Stephen; Baylor, Martha-Elizabeth

    2014-03-01

    Magnetohydrodynamic (MHD) devices use perpendicular electric and magnetic fields to exert a Lorentz body force on a conducting fluid. Miniaturized MHD devices have been used to create pumps, stirrers, heat exchangers, and microfluidic networks. Compared to mechanical micropumps, MHD micropumps are appealing because they require no moving parts, which simplifies fabrication, and because they are amenable to electronic control. This abstract reports the fabrication and testing of a centimeter-scale MHD pump using a thiol-ene/methacrylate-based photopolymer and mask-based photolithographic technique. Pumps like this one could simplify the fabrication of sophisticated optofluidic devices, including liquid-core, liquid cladding (L2) waveguides, which are usually created with PDMS using stamps, or etched into silicon wafers. The photolithographic technique demonstrated here requires only one masking step to create fluid channels with complex geometries.

  13. The Discovery Channel Telescope

    NASA Astrophysics Data System (ADS)

    Millis, R. L.; Dunham, E. W.; Sebring, T. A.; Smith, B. W.; de Kock, M.; Wiecha, O.

    2004-11-01

    The Discovery Channel Telescope (DCT) is a 4.2-m telescope to be built at a new site near Happy Jack, Arizona. The DCT features a large prime focus mosaic CCD camera with a 2-degree-diameter field of view especially designed for surveys of KBOs, Centaurs, NEAs and other moving or time-variable targets. The telescope can be switched quickly to a Ritchey-Chretien configuration for optical/IR spectroscopy or near-IR imaging. This flexibility allows timely follow-up physical studies of high priority objects discovered in survey mode. The ULE (ultra-low-expansion) meniscus primary and secondary mirror blanks for the telescope are currently in fabrication by Corning Glass. Goodrich Aerospace, Vertex RSI, M3 Engineering and Technology Corp., and e2v Technologies have recently completed in-depth conceptual design studies of the optics, mount, enclosure, and mosaic focal plane, respectively. The results of these studies were subjected to a formal design review in July, 2004. Site testing at the 7760-ft altitude Happy Jack site began in 2001. Differential image motion observations from 117 nights since January 1, 2003 gave median seeing of 0.84 arcsec FWHM, and the average of the first quartile was 0.62 arcsec. The National Environmental Policy Act (NEPA) process for securing long-term access to this site on the Coconino National Forest is nearing completion and ground breaking is expected in the spring of 2005. The Discovery Channel Telescope is a project of the Lowell Observatory with major financial support from Discovery Communications, Inc. (DCI). DCI plans ongoing television programming featuring the construction of the telescope and the research ultimately undertaken with the DCT. An additional partner can be accommodated in the project. Interested parties should contact the lead author.

  14. Fabrics for aeronautic construction

    NASA Technical Reports Server (NTRS)

    Walen, E D

    1918-01-01

    The Bureau of Standards undertook the investigation of airplane fabrics with the view of finding suitable substitutes for the linen fabrics, and it was decided that the fibers to be considered were cotton, ramie, silk, and hemp. Of these, the cotton fiber was the logical one to be given primary consideration. Report presents the suitability, tensibility and stretching properties of cotton fabric obtained by laboratory tests.

  15. Fabrication of bio-chips by laser ablation

    NASA Astrophysics Data System (ADS)

    Yoshida, Yoshikazu

    2007-02-01

    A pulse laser of ultraviolet region was used to form the flow path and so on. Numbers of heat-hardening resin-films and fluoro resins were piled up a soda glass. A laser fabricated a part of the channel at the each film every lamination, and then 3-D structure micro-channel was fabricated. The channel sizes are widths of 10-400μm and depths of 30-90μm. Moreover through holes as artificial capillary-vessels are made in the resin having a minimum diameter of 5 μm and a length of 100 μm. As bloods were injected into a particle focusing micro-channel, an artificial capillary-vessel, and a micro-separator, then cell sort, erythrocyte deformability, and blood plasma were observed with a microscope, respectively.

  16. Fabrication of 80-nm T-gate high indium In0.7Ga0.3As/In0.6Ga0.4As composite channels mHEMT on GaAs substrate with simple technological process

    NASA Astrophysics Data System (ADS)

    Xian, Ji; Xiaodong, Zhang; Weihua, Kang; Zhili, Zhang; Jiahui, Zhou; Wenjun, Xu; Qi, Li; Gongli, Xiao; Zhijun, Yin; Yong, Cai; Baoshun, Zhang; Haiou, Li

    2016-02-01

    An 80-nm gate length metamorphic high electron mobility transistor (mHEMT) on a GaAs substrate with high indium composite compound-channels In0.7Ga0.3 As/In0.6Ga0.4 As and an optimized grade buffer scheme is presented. High 2-DEG Hall mobility values of 10200 cm2/(V·s) and a sheet density of 3.5 × 1012 cm-2 at 300 K have been achieved. The device's T-shaped gate was made by utilizing a simple three layers electron beam resist, instead of employing a passivation layer for the T-share gate, which is beneficial to decreasing parasitic capacitance and parasitic resistance of the gate and simplifying the device manufacturing process. The ohmic contact resistance Rc is 0.2 ω·mm when using the same metal system with the gate (Pt/Ti/Pt/Au), which reduces the manufacturing cycle of the device. The mHEMT device demonstrates excellent DC and RF characteristics. The peak extrinsic transconductance of 1.1 S/mm and the maximum drain current density of 0.86 A/mm are obtained. The unity current gain cut-off frequency (fT) and the maximum oscillation frequency (fmax) are 246 and 301 GHz, respectively. Project supported by the Key Laboratory of Nano-Devices and Applications, Nano-Fabrication Facility of SINANO, Chinese Academy of Sciences, the National Natural Science Foundation of China (Nos. 61274077, 61474031, 61464003), the Guangxi Natural Science Foundation (Nos. 2013GXNSFGA019003, 2013GXNSFAA019335), the National Basic Research Program of China (Nos. 2011CBA00605, 2010CB327501), the Project (No. 9140C140101140C14069), and the Innovation Project of GUET Graduate Education (Nos. GDYCSZ201448, GDYCSZ201449, YJCXS201529).

  17. Smart Fabrics Technology Development

    NASA Technical Reports Server (NTRS)

    Simon, Cory; Potter, Elliott; Potter, Elliott; McCabe, Mary; Baggerman, Clint

    2010-01-01

    Advances in Smart Fabrics technology are enabling an exciting array of new applications for NASA exploration missions, the biomedical community, and consumer electronics. This report summarizes the findings of a brief investigation into the state of the art and potential applications of smart fabrics to address challenges in human spaceflight.

  18. Fabric Fact & Fiction.

    ERIC Educational Resources Information Center

    Cohen, Andrew

    2001-01-01

    Examines the positive and negative attributes of fabric structures in providing affordable shelter for a variety of multipurpose applications, including temporary or seasonal use. Describes the three basic types of fabric structures: air-supported, frame-supported, and mast-supported. This article focuses on smaller structures of the air- and…

  19. Equalization in redundant channels

    NASA Technical Reports Server (NTRS)

    Tulpule, Bhalchandra R. (Inventor); Collins, Robert E. (Inventor); Cominelli, Donald F. (Inventor); O'Neill, Richard D. (Inventor)

    1988-01-01

    A miscomparison between a channel's configuration data base and a voted system configuration data base in a redundant channel system having identically operating, frame synchronous channels triggers autoequalization of the channel's historical signal data bases in a hierarchical, chronological manner with that of a correctly operating channel. After equalization, symmetrization of the channel's configuration data base with that of the system permits upgrading of the previously degraded channel to full redundancy. An externally provided equalization command, e.g., manually actuated, can also trigger equalization.

  20. Silicon-based ion channel sensor

    NASA Astrophysics Data System (ADS)

    Goryll, M.; Wilk, S.; Laws, G. M.; Thornton, T.; Goodnick, S.; Saraniti, M.; Tang, J.; Eisenberg, R. S.

    2003-09-01

    In this paper we present a method to fabricate an aperture in a silicon wafer that can be used to suspend a freestanding lipid bilayer membrane. The design offers the feature of scalability of the aperture size into the submicron range. Lipid bilayer membranes formed across the aperture in the oxidized silicon substrate show a gigaohm sealing resistance. The stability of these membranes allowed the insertion of a nanometer-sized ion channel protein (OmpF porin) and the measurement of voltage dependent gating that can be expected from a working porin ion channel.

  1. New polymorphous computing fabric.

    SciTech Connect

    Wolinski, C.; Gokhale, M.; McCabe, K. P.

    2002-01-01

    This paper introduces a new polymorphous computing Fabric well suited to DSP and Image Processing and describes its implementation on a Configurable System on a Chip (CSOC). The architecture is highly parameterized and enables customization of the synthesized Fabric to achieve high performance for a specific class of application. For this reason it can be considered to be a generic model for hardware accelerator synthesis from a high level specification. Another important innovation is the Fabric uses a global memory concept, which gives the host processor random access to all the variables and instructions on the Fabric. The Fabric supports different computing models including MIMD, SPMD and systolic flow and permits dynamic reconfiguration. We present a specific implementation of a bank of FIR filters on a Fabric composed of 52 cells on the Altera Excalibur ARM running at 33 MHz. The theoretical performance of this Fabric is 1.8 GMACh. For the FIR application we obtain 1.6 GMAC/s real performance. Some automatic tools have been developed like the tool to provide a host access utility and assembler.

  2. Channel nut tool

    DOEpatents

    Olson, Marvin

    2016-01-12

    A method, system, and apparatus for installing channel nuts includes a shank, a handle formed on a first end of a shank, and an end piece with a threaded shaft configured to receive a channel nut formed on the second end of the shaft. The tool can be used to insert or remove a channel nut in a channel framing system and then removed from the channel nut.

  3. Age of Martian channels

    NASA Technical Reports Server (NTRS)

    Malin, M. C.

    1976-01-01

    The ages of large Martian channels have been studied by determining the relative abundances of craters superimposed on channels and adjacent terrains and by examining superposition relationships between channels and plains and mantle materials. The channels are extremely old, are spatially confined and temporally related to the ancient cratered terrain, and in many cases are related to the as yet poorly understood genetic processes of fretting and chaos formation. No evidence is found for recent channel activity.

  4. Development of blanket box structure fabrication technology

    SciTech Connect

    Mohri, K.; Sata, S.; Kawaguchi, I.

    1994-12-31

    Fabrication studies have been performed for first wall and blanket box structure in the Fusion Experimental Reactor designed in Japan. The first wall must have internal cooling channels to remove volumetric heat loading by neutron wall load and surface heat loading from the plasma. The blanket which is higher than 10 m and 1 m wide withstands enormous electromagnetic load (about 10 MN/m). And a fabrication accuracy is required in the order of 10 mm from the machine configuration and remote assembling standpoints. To make cooling channels inside the first wall and to reduce the deformation during fabrication, the authors adopted advance techniques Hot Isostatic Pressing method (HIP) and Electron Beam Welding (EBW) respectively. Evaluation studies for the bondability of the HIP bonding joint have been performed. To evaluate the bondability, the mechanical properties such as tensile strength, impact value, low cycle fatigue strength and creep strength of the bonded part were investigated using HIP bonded test specimens. And the detectability of ultrasonic detection tests were also studied on them.

  5. Curved channel MCP improvement program

    NASA Technical Reports Server (NTRS)

    Laprade, Bruce N.; Corbett, Michael B.

    1987-01-01

    Blowholes and blemishes were determined to start at two stages of manufacturing. Sperical blowholes resulted from trapped gas between the high melting temperature bond glass and the MCP wafer. During thermal processing, the trapped gas expanded and displaced the softened channel glass to form a spherical inclusion. This defect was eliminated by grinding the prefritted bond wafer and channel plate wafer to a flatness which ensured intimate contact prior to fusion. Elliptical blowholes or blemishes were introduced during the fiber draw stage. Contaminants trapped between the core bar and clad tubing volatized providing large quantities of expanding gas. These pockets of gas became elongated to an ellipsoidal shape during fiber draw. Special cleanliness procedures were developed for the grinding, polishing, and acid etching of core bars. Improvements in channel curvature fabrication were implemented. The design of the shearing fixture was evaluated. A new design was developed which eliminated an off-axis moment. The shearing furnace design was evaluated. Steady state thermal conditions instead of thermal transient conditions were determined to reduce curvature nonuniformity.

  6. A Self-Aligned High-Mobility Graphene Transistor: Decoupling the Channel with Fluorographene to Reduce Scattering.

    PubMed

    Ho, Kuan-I; Boutchich, Mohamed; Su, Ching-Yuan; Moreddu, Rosalia; Marianathan, Eugene Sebastian Raj; Montes, Laurent; Lai, Chao-Sung

    2015-11-01

    The conduction channel of a graphene field-effect transistor (FET) is decoupled from the parasitic charge impurities of the underlying substrate. Fluorographene as a passivation layer is fabricated between the oxide substrate and channel, and a self-aligned gate-terminated FET is also fabricated. This approach significantly reduces the scattering and, as a result, the mobility increases ten fold. PMID:26398725

  7. Selective Electroless and Electrolytic Deposition of Metal for Applications in Microfluidics: Fabrication of a Microthermocouple

    SciTech Connect

    Allen, Peter B.; Rodriguez, Indalesio; Kuyper, Christopher L.; Lorenz, Robert M.; Spicar-Mihalic, Paolo; Kuo, Jason S.; Chiu, Daniel T.

    2003-04-01

    This paper describes a general strategy for the fabrication of a microthermocouple based on the spatially defined electroless deposition of metal, followed by annealing and electroplating. We present scanning electron microscopy and atomic force microscopy characterizations of the deposition and annealing process, as well as the performance of the microfabricated Ni-Ag thermocouple. The temperature-voltage curve for this Ni-Ag microthermocouple is linear over the range 0-50 C with a slope of 61.9 C mV{sup -1}. The sensitivity of our temperature measurement, which is limited by the uncertainty of our calibration curve, is {approx}1 C. The optimum figure of merit (Z{sub opt}) is 1.0 x 10{sup -5} for this type of Ag-Ni thermocouple. We have fabricated microthermocouples ranging in size from 50 to 300 {micro}m. The microthermocouple was integrated into microchannels and used to measure the in channel temperature rise caused by the following: (1) a simple acid-base reaction, HCl + NaOH {yields} H{sub 2}O + NaCl, and (2) an enzyme-catalyzed biochemical reaction, H{sub 2}O{sub 2} + catalase {yields} H{sub 2}O + 1/2 O{sub 2}. We have also profiled the temperature increase in the presence of electroosmotic flow for a 100-, 200-, and 300-{micro}m channel.

  8. Electron Beam Freeform Fabrication

    NASA Video Gallery

    Electron Beam Freeform Fabrication (EBF3) is a process by which NASA hopes to build metal parts in zero gravity environments. It's a layer-additive process that uses an electron beam and a solid wi...

  9. Other Fabric Structures

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Architects, engineers and building owners are turning increasingly to fabric structures because of their aesthetic appeal, relatively low initial cost, low maintenance outlays, energy efficiency and good space utilization. Several examples are shown.

  10. Speedo Fabric Testing

    NASA Video Gallery

    Because the physical laws of motion for moving a body through water are the same as moving a vehicle through air, NASA aeronautics experts test the drag effects of different fabrics for Olympic-bou...

  11. Superabsorbent Multilayer Fabric

    NASA Technical Reports Server (NTRS)

    Coreale, J. V.; Dawn, F. S.

    1982-01-01

    Material contains gel-forming polymer and copolymer that absorb from 70 to 200 times their weight of liquid. Superabsorbent Polymer and Copolymer form gels to bind and retain liquid in multiply fabric. Until reaction between liquid and absorbent masses forms gel, backing layer retains liquids within fabric; also allows material to "breathe." Possible applications include baby diapers, female hygiene napkins, and hospital bedpads. Might also have uses in improvement of dry soil.

  12. Fabricated torque shaft

    DOEpatents

    Mashey, Thomas Charles

    2002-01-01

    A fabricated torque shaft is provided that features a bolt-together design to allow vane schedule revisions with minimal hardware cost. The bolt-together design further facilitates on-site vane schedule revisions with parts that are comparatively small. The fabricated torque shaft also accommodates stage schedules that are different one from another in non-linear inter-relationships as well as non-linear schedules for a particular stage of vanes.

  13. Nuclear Fabrication Consortium

    SciTech Connect

    Levesque, Stephen

    2013-04-05

    This report summarizes the activities undertaken by EWI while under contract from the Department of Energy (DOE) Office of Nuclear Energy (NE) for the management and operation of the Nuclear Fabrication Consortium (NFC). The NFC was established by EWI to independently develop, evaluate, and deploy fabrication approaches and data that support the re-establishment of the U.S. nuclear industry: ensuring that the supply chain will be competitive on a global stage, enabling more cost-effective and reliable nuclear power in a carbon constrained environment. The NFC provided a forum for member original equipment manufactures (OEM), fabricators, manufacturers, and materials suppliers to effectively engage with each other and rebuild the capacity of this supply chain by : Identifying and removing impediments to the implementation of new construction and fabrication techniques and approaches for nuclear equipment, including system components and nuclear plants. Providing and facilitating detailed scientific-based studies on new approaches and technologies that will have positive impacts on the cost of building of nuclear plants. Analyzing and disseminating information about future nuclear fabrication technologies and how they could impact the North American and the International Nuclear Marketplace. Facilitating dialog and initiate alignment among fabricators, owners, trade associations, and government agencies. Supporting industry in helping to create a larger qualified nuclear supplier network. Acting as an unbiased technology resource to evaluate, develop, and demonstrate new manufacturing technologies. Creating welder and inspector training programs to help enable the necessary workforce for the upcoming construction work. Serving as a focal point for technology, policy, and politically interested parties to share ideas and concepts associated with fabrication across the nuclear industry. The report the objectives and summaries of the Nuclear Fabrication Consortium

  14. Gramicidin Channels: Versatile Tools

    NASA Astrophysics Data System (ADS)

    Andersen, Olaf S.; Koeppe, Roger E., II; Roux, Benoît

    Gramicidin channels are miniproteins in which two tryptophan-rich subunits associate by means of transbilayer dimerization to form the conducting channels. That is, in contrast to other ion channels, gramicidin channels do not open and close; they appear and disappear. Each subunit in the bilayer-spanning channel is tied to the bilayer/solution interface through hydrogen bonds that involve the indole NH groups as donors andwater or the phospholipid backbone as acceptors. The channel's permeability characteristics are well-defined: gramicidin channels are selective for monovalent cations, with no measurable permeability to anions or polyvalent cations; ions and water move through a pore whose wall is formed by the peptide backbone; and the single-channel conductance and cation selectivity vary when the amino acid sequence is varied, even though the permeating ions make no contact with the amino acid side chains. Given the plethora of available experimental information—for not only the wild-type channels but also for channels formed by amino acid-substituted gramicidin analogues—gramicidin channels continue to provide important insights into the microphysics of ion permeation through bilayer-spanning channels. For similar reasons, gramicidin channels constitute a system of choice for evaluating computational strategies for obtaining mechanistic insights into ion permeation through the more complex channels formed by integral membrane proteins.

  15. Fabric space radiators

    SciTech Connect

    Antoniak, Z.I.; Krotiuk, W.J.; Webb, B.J.; Prater, J.T.; Bates, J.M.

    1988-01-01

    Future Air Force space missions will require thermal radiators that both survive in the hostile space environment and stow away for minimal bulk during launch. Advances in all aspects of radiator design, construction, and analysis will be necessary to enable such future missions. Currently, the best means for obtaining high strength along with flexibility is through structures known as fabrics. The development of new materials and bonding techniques has extended the application range of fabrics into areas traditionally dominated by monolithic and/or metallic structures. Given that even current spacecraft heat rejection considerations tend to dominate spacecraft design and mass, the larger and more complex designs of the future face daunting challenges in thermal control. Ceramic fabrics bonded to ultra-thin metal liners (foils) have the potential of achieving radiator performance levels heretofore unattainable, and of readily matching the advances made in other branches of spacecraft design. The research effort documented here indicates that both pumped loops and heat pipes constructed in ceramic fabrics stand to benefit in multiple ways. Flexibility and low mass are the main advantages exhibited by fabric radiators over conventional metal ones. We feel that fabric radiators have intrinsic merits not possessed by any other radiator design and need to be researched further. 26 refs., 16 figs., 17 tabs.

  16. Superamphiphilic Janus fabric.

    PubMed

    Lim, Ho Sun; Park, Song Hee; Koo, Song Hee; Kwark, Young-Je; Thomas, Edwin L; Jeong, Youngjin; Cho, Jeong Ho

    2010-12-21

    Janus fabrics with superamphiphilicity were fabricated via electrospinning of polyacrylonitrile (PAN). PAN nanofibrous mats were formed on an aluminum foil substrate and then thermally treated to cause hydrolysis. An identical PAN solution was subsequently electrospun onto the hydrolyzed PAN layer, followed by peeling off of the bicomposite film from the collector substrate to produce a free-standing Janus fabric. On one side, the electrospun PAN mat exhibited superhydrophobic properties, with a water contact angle of 151.2°, whereas the initially superhydrophobic PAN sheet on the opposite side of the fabric was converted to a superhydrophilic surface (water contact angle of 0°) through hydrolysis of the surface functional groups induced by the thermal treatment. The resulting Janus fabrics exhibited both superhydrophobicity, repelling water on the one side, and superhydrophilicity, absorbing water on the other side. The organic solvent resistance of the PAN nanofibrous sheets was remarkably improved by incorporation of a tetraethyl orthosilicate. This facile and simple technique introduces a new route for the design and development of functional smart, robust fabrics from an inexpensive, commercially available polymer.

  17. A multichannel integrated circuit for electrical recording of neural activity, with independent channel programmability.

    PubMed

    Mora Lopez, Carolina; Prodanov, Dimiter; Braeken, Dries; Gligorijevic, Ivan; Eberle, Wolfgang; Bartic, Carmen; Puers, Robert; Gielen, Georges

    2012-04-01

    Since a few decades, micro-fabricated neural probes are being used, together with microelectronic interfaces, to get more insight in the activity of neuronal networks. The need for higher temporal and spatial recording resolutions imposes new challenges on the design of integrated neural interfaces with respect to power consumption, data handling and versatility. In this paper, we present an integrated acquisition system for in vitro and in vivo recording of neural activity. The ASIC consists of 16 low-noise, fully-differential input channels with independent programmability of its amplification (from 100 to 6000 V/V) and filtering (1-6000 Hz range) capabilities. Each channel is AC-coupled and implements a fourth-order band-pass filter in order to steeply attenuate out-of-band noise and DC input offsets. The system achieves an input-referred noise density of 37 nV/√Hz, a NEF of 5.1, a CMRR > 60 dB, a THD < 1% and a sampling rate of 30 kS/s per channel, while consuming a maximum of 70 μA per channel from a single 3.3 V. The ASIC was implemented in a 0.35 μm CMOS technology and has a total area of 5.6 × 4.5 mm². The recording system was successfully validated in in vitro and in vivo experiments, achieving simultaneous multichannel recordings of cell activity with satisfactory signal-to-noise ratios.

  18. Cholesterol and Ion Channels

    PubMed Central

    Levitan, Irena; Fang, Yun; Rosenhouse-Dantsker, Avia; Romanenko, Victor

    2010-01-01

    A variety of ion channels, including members of all major ion channel families, have been shown to be regulated by changes in the level of membrane cholesterol and partition into cholesterol-rich membrane domains. In general, several types of cholesterol effects have been described. The most common effect is suppression of channel activity by an increase in membrane cholesterol, an effect that was described for several types of inwardly-rectifying K+ channels, voltage-gated K+ channels, Ca+2 sensitive K+ channels, voltage-gated Na+ channels, N-type voltage-gated Ca+2 channels and volume-regulated anion channels. In contrast, several types of ion channels, such as epithelial amiloride-sensitive Na+ channels and Transient Receptor Potential channels, as well as some of the types of inwardly-rectifying and voltage-gated K+ channels were shown to be inhibited by cholesterol depletion. Cholesterol was also shown to alter the kinetic properties and current-voltage dependence of several voltage-gated channels. Finally, maintaining membrane cholesterol level is required for coupling ion channels to signalling cascades. In terms of the mechanisms, three general mechanisms have been proposed: (i) specific interactions between cholesterol and the channel protein, (ii) changes in the physical properties of the membrane bilayer and (iii) maintaining the scaffolds for protein-protein interactions. The goal of this review is to describe systematically the role of cholesterol in regulation of the major types of ion channels and to discuss these effects in the context of the models proposed. PMID:20213557

  19. Fading channel simulator

    SciTech Connect

    Argo, P.E.; Fitzgerald, T.J.

    1991-12-31

    This invention relates to high frequency (HF) radio signal propagation through fading channels and, more particularly, to simulation of fading channels in order to characterize HF radio system performance in transmitting and receiving signals through such fading channels. Fading channel effects on a transmitted communication signal are simulated with both frequency and time variations using a channel scattering function to affect the transmitted signal. A conventional channel scattering function is converted to a series of channel realizations by multiplying the square root of the channel scattering function by a complex number of which the real and imaginary parts are each independent variables. The two-dimensional inverse-FFT of this complex-valued channel realization yields a matrix of channel coefficients that provide a complete frequency-time description of the channel. The transmitted radio signal is segmented to provide a series of transmitted signal and each segment is subject to FFT to generate a series of signal coefficient matrices. The channel coefficient matrices and signal coefficient matrices are then multiplied and subjected to inverse-FFT to output a signal representing the received affected radio signal. A variety of channel scattering functions can be used to characterize the response of a transmitter-receiver system to such atmospheric effects.

  20. Microfluidics in the Undergraduate Laboratory: Device Fabrication and an Experiment to Mimic Intravascular Gas Embolism

    ERIC Educational Resources Information Center

    Jablonski, Erin L.; Vogel, Brandon M.; Cavanagh, Daniel P.; Beers, Kathryn L.

    2010-01-01

    A method to fabricate microfluidic devices and an experimental protocol to model intravascular gas embolism for undergraduate laboratories are presented. The fabrication process details how to produce masters on glass slides; these masters serve as molds to pattern channels in an elastomeric polymer that can be adhered to a substrate, resulting in…

  1. Two-ply channels for faster wicking in paper-based microfluidic devices.

    PubMed

    Camplisson, Conor K; Schilling, Kevin M; Pedrotti, William L; Stone, Howard A; Martinez, Andres W

    2015-12-01

    This article describes the development of porous two-ply channels for paper-based microfluidic devices that wick fluids significantly faster than conventional, porous, single-ply channels. The two-ply channels were made by stacking two single-ply channels on top of each other and were fabricated entirely out of paper, wax and toner using two commercially available printers, a convection oven and a thermal laminator. The wicking in paper-based channels was studied and modeled using a modified Lucas-Washburn equation to account for the effect of evaporation, and a paper-based titration device incorporating two-ply channels was demonstrated.

  2. Microfabricated porous glass channels for electrokinetic separation devices.

    PubMed

    Cezar de Andrade Costa, Reges; Mogensen, Klaus Bo; Kutter, Jörg Peter

    2005-11-01

    Electrically insulated porous SiO2 channels for electrokinetic separation devices were fabricated based on a mask-less etching process for creation of high aspect ratio needles in silicon. The silicon needles are converted to SiO2 by oxidation and integrated within the interior of a fluidic channel network. The channels are about 5 microm high with a pore size of 0.5+/-0.2 microm. An electrophoretic separation of a mixture of fluorescein and 5-carboxyfluorescein using epi-fluorescence detection was performed to verify proper electrokinetic transport in the porous channels. The plate height was about 170,000 m-1 for a field strength of 170 V cm-1. In the near future, it is intended to extend the fabrication scheme to include an array of porous pillars for capillary electrochromatography experiments. PMID:16234957

  3. Charged and Neutral Particles Channeling Phenomena Channeling 2008

    NASA Astrophysics Data System (ADS)

    Dabagov, Sultan B.; Palumbo, Luigi

    2010-04-01

    On the discovery of coherent Bremsstrahlung in a single crystal at the Frascati National Laboratories / C. Barbiellini, G. P. Murtas and S. B. Dabagov -- Advances in coherent Bremsstrahlung and LPM-effect studies (to the lOOth anniversary from the birth of L. D. Landau) / N. F. Shul'ga -- Spectra of radiation and created particles at intermediate energy in oriented crystal taking into account energy loss / V. N. Baier and V. M. Katkov -- The coherent Bremsstrahlung beam at MAX-lab facility / K. Fissum ... [et al.] -- Radiation from thin, structured targets (CERN NA63) / A. Dizdar -- Hard incoherent radiation in thick crystals / N. F. Shul'ga, V. V. Syshchenko and A. I. Tarnovsky -- Coherent Bremsstrahlung in periodically deformed crystals with a complex base / A. R. Mkrtchyan, A. A. Saharian and V. V. Parazian -- Induction of coherent x-ray Bremsstrahlung in crystals under the influence of acoustic waves / A. R. Mkrtchyan and V. V. Parazian -- Coherent processes in bent single crystals / V. A. Maisheev -- Experimental and theoretical investigation of complete transfer phenomenon for media with various heat exchange coefficients / A. R. Mkrtchyan, A. E. Movsisyan and V. R. Kocharyan -- Coherent pair production in crystals / A. R. Mkrtchyan, A. A. Saharian and V. V. Parazian -- Negative particle planar and axial channeling and channeling collimation / R. A. Carrigan, Jr. -- CERN crystal-based collimation in modern hadron colliders / W. Scandale -- Studies and application of bent crystals for beam steering at 70 GeV IHEP accelerator / A. G. Afonin ... [et al.] -- Crystal collimation studies at the Tevatron (T-980) / N. V. Mokhov ... [et al.] -- Fabrication of crystals for channeling of particles in accellerators / A. Mazzolari ... [et al.] -- New possibilities to facilitate collimation of both positively and negatively charged particle beams by crystals / V. Guidi, A. Mazzolari and V. V. Tikhomirov -- Increase of probability of particle capture into the channeling

  4. High-performance low-cost back-channel-etch amorphous gallium-indium-zinc oxide thin-film transistors by curing and passivation of the damaged back channel.

    PubMed

    Park, Jae Chul; Ahn, Seung-Eon; Lee, Ho-Nyeon

    2013-12-11

    High-performance, low-cost amorphous gallium-indium-zinc oxide (a-GIZO) thin-film-transistor (TFT) technology is required for the next generation of active-matrix organic light-emitting diodes. A back-channel-etch structure is the most appropriate device structure for high-performance, low-cost a-GIZO TFT technology. However, channel damage due to source/drain etching and passivation-layer deposition has been a critical issue. To solve this problem, the present work focuses on overall back-channel processes, such as back-channel N2O plasma treatment, SiOx passivation deposition, and final thermal annealing. This work has revealed the dependence of a-GIZO TFT characteristics on the N2O plasma radio-frequency (RF) power and frequency, the SiH4 flow rate in the SiOx deposition process, and the final annealing temperature. On the basis of these results, a high-performance a-GIZO TFT with a field-effect mobility of 35.7 cm(2) V(-1) s(-1), a subthreshold swing of 185 mV dec(-1), a switching ratio exceeding 10(7), and a satisfactory reliability was successfully fabricated. The technology developed in this work can be realized using the existing facilities of active-matrix liquid-crystal display industries. PMID:24221957

  5. Wafer-Scale Microwire Transistor Array Fabricated via Evaporative Assembly.

    PubMed

    Park, Jae Hoon; Sun, Qijun; Choi, Yongsuk; Lee, Seungwoo; Lee, Dong Yun; Kim, Yong Hoon; Cho, Jeong Ho

    2016-06-22

    One-dimensional (1D) nano/microwires have attracted significant attention as promising building blocks for various electronic and optical device applications. The integration of these elements into functional device networks with controlled alignment and density presents a significant challenge for practical device applications. Here, we demonstrated the fabrication of wafer-scale microwire field-effect transistor (FET) arrays based on well-aligned inorganic semiconductor microwires (indium-gallium-zinc-oxide (IGZO)) and organic polymeric insulator microwires fabricated via a simple and large-area evaporative assembly technique. This microwire fabrication method offers a facile approach to precisely manipulating the channel dimensions of the FETs. The resulting solution-processed monolithic IGZO microwire FETs exhibited a maximum electron mobility of 1.02 cm(2) V(-1) s(-1) and an on/off current ratio of 1 × 10(6). The appropriate choice of the polymeric microwires used to define the channel lengths enabled fine control over the threshold voltages of the devices, which were employed to fabricate high-performance depletion-load inverters. Low-voltage-operated microwire FETs were successfully fabricated on a plastic substrate using a high-capacitance ion gel gate dielectric. The microwire fabrication technique involving evaporative assembly provided a facile, effective, and reliable method for preparing flexible large-area electronics.

  6. Wafer-Scale Microwire Transistor Array Fabricated via Evaporative Assembly.

    PubMed

    Park, Jae Hoon; Sun, Qijun; Choi, Yongsuk; Lee, Seungwoo; Lee, Dong Yun; Kim, Yong Hoon; Cho, Jeong Ho

    2016-06-22

    One-dimensional (1D) nano/microwires have attracted significant attention as promising building blocks for various electronic and optical device applications. The integration of these elements into functional device networks with controlled alignment and density presents a significant challenge for practical device applications. Here, we demonstrated the fabrication of wafer-scale microwire field-effect transistor (FET) arrays based on well-aligned inorganic semiconductor microwires (indium-gallium-zinc-oxide (IGZO)) and organic polymeric insulator microwires fabricated via a simple and large-area evaporative assembly technique. This microwire fabrication method offers a facile approach to precisely manipulating the channel dimensions of the FETs. The resulting solution-processed monolithic IGZO microwire FETs exhibited a maximum electron mobility of 1.02 cm(2) V(-1) s(-1) and an on/off current ratio of 1 × 10(6). The appropriate choice of the polymeric microwires used to define the channel lengths enabled fine control over the threshold voltages of the devices, which were employed to fabricate high-performance depletion-load inverters. Low-voltage-operated microwire FETs were successfully fabricated on a plastic substrate using a high-capacitance ion gel gate dielectric. The microwire fabrication technique involving evaporative assembly provided a facile, effective, and reliable method for preparing flexible large-area electronics. PMID:27228025

  7. Open channel electrochromatography on a microchip

    SciTech Connect

    Jacobson, S.C.; Hergenroeder, R.; Koutny, L.B.; Ramsey, J.M. )

    1994-07-15

    A glass microchip having a channel with a cross section of 5.6 [mu]m high and 66 [mu]m wide was fabricated using standard photolithographic and etching techniques. The surface of the channel was chemically modified with octadecylsilane to function as the stationary phase for open channel chromatography. Electroosmotic flow was used to [open quotes]load[close quotes] the sample into the microchip and to [open quotes]pump[close quotes] the mobile phase during the experiments. For electric field strengths in the separation column from 27 to 163 V/cm, the linear velocity for the electroosmotic flow ranged from 0.13 to 0.78 mm/s. Detection was performed using direct fluorescence for separation monitoring and indirect fluorescence for void time measurements. Plate heights as low as 4.1 and 5.0 [mu]m were generated for unretained and retained components, respectively. 28 refs., 6 figs., 2 tabs.

  8. Optimal channels for channelized quadratic estimators.

    PubMed

    Kupinski, Meredith K; Clarkson, Eric

    2016-06-01

    We present a new method for computing optimized channels for estimation tasks that is feasible for high-dimensional image data. Maximum-likelihood (ML) parameter estimates are challenging to compute from high-dimensional likelihoods. The dimensionality reduction from M measurements to L channels is a critical advantage of channelized quadratic estimators (CQEs), since estimating likelihood moments from channelized data requires smaller sample sizes and inverting a smaller covariance matrix is easier. The channelized likelihood is then used to form ML estimates of the parameter(s). In this work we choose an imaging example in which the second-order statistics of the image data depend upon the parameter of interest: the correlation length. Correlation lengths are used to approximate background textures in many imaging applications, and in these cases an estimate of the correlation length is useful for pre-whitening. In a simulation study we compare the estimation performance, as measured by the root-mean-squared error (RMSE), of correlation length estimates from CQE and power spectral density (PSD) distribution fitting. To abide by the assumptions of the PSD method we simulate an ergodic, isotropic, stationary, and zero-mean random process. These assumptions are not part of the CQE formalism. The CQE method assumes a Gaussian channelized likelihood that can be a valid for non-Gaussian image data, since the channel outputs are formed from weighted sums of the image elements. We have shown that, for three or more channels, the RMSE of CQE estimates of correlation length is lower than conventional PSD estimates. We also show that computing CQE by using a standard nonlinear optimization method produces channels that yield RMSE within 2% of the analytic optimum. CQE estimates of anisotropic correlation length estimation are reported to demonstrate this technique on a two-parameter estimation problem. PMID:27409452

  9. Ion channels and cancer.

    PubMed

    Kunzelmann, Karl

    2005-06-01

    Membrane ion channels are essential for cell proliferation and appear to have a role in the development of cancer. This has initially been demonstrated for potassium channels and is meanwhile also suggested for other cation channels and Cl- channels. For some of these channels, like voltage-gated ether à go-go and Ca2+-dependent potassium channels as well as calcium and chloride channels, a cell cycle-dependent function has been demonstrated. Along with other membrane conductances, these channels control the membrane voltage and Ca2+ signaling in proliferating cells. Homeostatic parameters, such as the intracellular ion concentration, cytosolic pH and cell volume, are also governed by the activity of ion channels. Thus it will be an essential task for future studies to unravel cell cycle-specific effects of ion channels and non-specific homeostatic functions. When studying the role of ion channels in cancer cells, it is indispensable to choose experimental conditions that come close to the in vivo situation. Thus, environmental parameters, such as low oxygen pressure, acidosis and exposure to serum proteins, have to be taken into account. In order to achieve clinical application, more studies on the original cancer tissue are required, and improved animal models. Finally, it will be essential to generate more potent and specific inhibitors of ion channels to overcome the shortcomings of some of the current approaches.

  10. Fabric filter system study

    NASA Astrophysics Data System (ADS)

    Chambers, R. L.; Plunk, O. C.; Kunka, S. L.

    1984-08-01

    Results of the fourth year of operation of a fabric filter installed on a coal-fired boiler are reported. Project work during the fourth year concentrated on fabric studies. The 10-oz/sq yd fabrics of the 150 1/2 warp, 150 2/2T fill construction demonstrated superior performance over the most common 14-oz/sq yd constructions, regardless of coating. It was determined that improving cleaning by increasing shaking amplitude is more detrimental to baglife than increasing shaker frequency. Maintenance and operation observations continued, and the resolution of these types of problems became more efficient because of increased experience of maintenance personnel with baghouse-related problems.

  11. In Situ Fabrication Technologies

    NASA Technical Reports Server (NTRS)

    Rolin, Terry D.; Hammond, Monica

    2005-01-01

    A manufacturing system is described that is internal to controlled cabin environments which will produce functional parts to net shape with sufficient tolerance, strength and integrity to meet application specific needs such as CEV ECLS components, robotic arm or rover components, EVA suit items, unforeseen tools, conformal repair patches, and habitat fittings among others. Except for start-up and shut-down, fabrication will be automatic without crew intervention under nominal scenarios. Off-nominal scenarios may require crew and/or Earth control intervention. System will have the ability to fabricate using both provisioned feedstock materials and feedstock refined from in situ regolith.

  12. Thermal Skin fabrication technology

    NASA Technical Reports Server (NTRS)

    Milam, T. B.

    1972-01-01

    Advanced fabrication techniques applicable to Thermal Skin structures were investigated, including: (1) chemical machining; (2) braze bonding; (3) diffusion bonding; and (4) electron beam welding. Materials investigated were nickel and nickel alloys. Sample Thermal Skin panels were manufactured using the advanced fabrication techniques studied and were structurally tested. Results of the program included: (1) development of improved chemical machining processes for nickel and several nickel alloys; (2) identification of design geometry limits; (3) identification of diffusion bonding requirements; (4) development of a unique diffusion bonding tool; (5) identification of electron beam welding limits; and (6) identification of structural properties of Thermal Skin material.

  13. Other Fabric Structures

    NASA Technical Reports Server (NTRS)

    1985-01-01

    There are two kinds of fabric structures - tension, supported by cables and pylons, and those supported by air pressure within an enclosed fabric envelope. They are becoming increasingly popular with architects, engineers, etc., because of their aesthetic appeal, low cost and maintenance, energy efficiency and good space utilization. The Structo-Fab roof weighs only 1/30 as much as a conventional roof of that size. Giant fans are used to blow air into the envelope between the roof's outer membrane and its inner liner automatically maintaining the pressure differential necessary for roof rigidity.

  14. Fabrication of multilayer nanowires

    NASA Astrophysics Data System (ADS)

    Kaur, Jasveer; Singh, Avtar; Kumar, Davinder; Thakur, Anup; Kaur, Raminder

    2016-05-01

    Multilayer nanowires were fabricated by potentiostate ectrodeposition template synthesis method into the pores of polycarbonate membrane. In present work layer by layer deposition of two different metals Ni and Cu in polycarbonate membrane having pore size of 600 nm were carried out. It is found that the growth of nanowires is not constant, it varies with deposition time. Scanning electron microscopy (SEM) is used to study the morphology of fabricated multilayer nanowires. An energy dispersive X-ray spectroscopy (EDS) results confirm the composition of multilayer nanowires. The result shows that multilayer nanowires formed is dense.

  15. Ion channels in plants

    PubMed Central

    Baluška, František; Mancuso, Stefano

    2013-01-01

    In his recent opus magnum review paper published in the October issue of Physiology Reviews, Rainer Hedrich summarized the field of plant ion channels.1 He started from the earliest electric recordings initiated by Charles Darwin of carnivorous Dionaea muscipula,1,2 known as Venus flytrap, and covered the topic extensively up to the most recent discoveries on Shaker-type potassium channels, anion channels of SLAC/SLAH families, and ligand-activated channels of glutamate receptor-like type (GLR) and cyclic nucleotide-gated channels (CNGC).1 PMID:23221742

  16. Cardiac ion channels

    PubMed Central

    Priest, Birgit T; McDermott, Jeff S

    2015-01-01

    Ion channels are critical for all aspects of cardiac function, including rhythmicity and contractility. Consequently, ion channels are key targets for therapeutics aimed at cardiac pathophysiologies such as atrial fibrillation or angina. At the same time, off-target interactions of drugs with cardiac ion channels can be the cause of unwanted side effects. This manuscript aims to review the physiology and pharmacology of key cardiac ion channels. The intent is to highlight recent developments for therapeutic development, as well as elucidate potential mechanisms for drug-induced cardiac side effects, rather than present an in-depth review of each channel subtype. PMID:26556552

  17. Turbulent flow across a natural compound channel

    NASA Astrophysics Data System (ADS)

    Carling, P. A.; Cao, Zhixian; Holland, M. J.; Ervine, D. A.; Babaeyan-Koopaei, K.

    2002-12-01

    The measurements and primary analysis of turbulent flow across a compound channel (River Severn, England) are presented. The velocity was measured using a three-dimensional acoustic Doppler velocimeter in combination with a directional current meter. The statistical flow structure is examined against existing analytical formulations derived for single channel flows based on laboratory studies. The existence of a vertically two-layer structure around the interface between the main channel and the floodplain is demonstrated, indicating (1) a vertical shear-dominated flow zone near the bed; and (2) away from the bed a transverse shear-dominated flow zone with enhanced turbulent mixing. The temporal spectra clearly reveal the occurrence of anisotropic turbulence both in the main channel and over the floodplain. The present findings necessitate the resolution of both transverse and vertical structures for advanced modeling of compound channel flows. The measured data can be used to assess the performance of mathematical river models.

  18. C. elegans TRP channels.

    PubMed

    Xiao, Rui; Xu, X Z Shawn

    2011-01-01

    Transient receptor potential (TRP) channels represent a superfamily of cation channels found in all eukaryotes. The C. elegans genome encodes seventeen TRP channels covering all of the seven TRP subfamilies. Genetic analyses in C. elegans have implicated TRP channels in a wide spectrum of behavioral and physiological processes, ranging from sensory transduction (e.g. chemosensation, touch sensation, proprioception and osmosensation) to fertilization, drug dependence, organelle biogenesis, apoptosis, gene expression, and neurotransmitter/hormone release. Many C. elegans TRP channels share similar activation and regulatory mechanisms with their vertebrate counterparts. Studies in C. elegans have also revealed some previously unrecognized functions and regulatory mechanisms of TRP channels. C. elegans represents an excellent genetic model organism for the study of function and regulation of TRP channels in vivo. PMID:21290304

  19. Mechanically Activated Ion Channels

    PubMed Central

    Ranade, Sanjeev S.; Syeda, Ruhma; Patapoutian, Ardem

    2015-01-01

    Mechanotransduction, the conversion of physical forces into biochemical signals, is an essential component of numerous physiological processes including not only conscious senses of touch and hearing, but also unconscious senses such as blood pressure regulation. Mechanically activated (MA) ion channels have been proposed as sensors of physical force, but the identity of these channels and an understanding of how mechanical force is transduced has remained elusive. A number of recent studies on previously known ion channels along with the identification of novel MA ion channels have greatly transformed our understanding of touch and hearing in both vertebrates and invertebrates. Here, we present an updated review of eukaryotic ion channel families that have been implicated in mechanotransduction processes and evaluate the qualifications of the candidate genes according to specified criteria. We then discuss the proposed gating models for MA ion channels and highlight recent structural studies of mechanosensitive potassium channels. PMID:26402601

  20. C. elegans TRP channels

    PubMed Central

    Xiao, Rui; Xu, X.Z. Shawn

    2010-01-01

    TRP (transient receptor potential) channels represent a superfamily of cation channels found in all eukaryotes. The C. elegans genome encodes seventeen TRP channels covering all of the seven TRP subfamilies. Genetic analyses in C. elegans have implicated TRP channels in a wide spectrum of behavioral and physiological processes, ranging from sensory transduction (e.g. chemosensation, touch sensation, proprioception and osmosensation) to fertilization, drug dependence, organelle biogenesis, apoptosis, gene expression, and neurotransmitter/hormone release. Many C. elegans TRP channels share similar activation and regulatory mechanisms with their vertebrate counterparts. Studies in C. elegans have also revealed some previously unrecognized functions and regulatory mechanisms of TRP channels. C. elegans represents an excellent genetic model organism for the study of function and regulation of TRP channels in vivo. PMID:21290304

  1. Study of pattern fabrication model using near-field photolithography.

    PubMed

    Yang, Ching-Been

    2011-01-01

    This study established a pattern fabrication model for near-field photolithography (NFP) and conducted pattern fabrication and analysis to understand the process of NFP. This study proposed that exposure energy density can accumulate when two exposure beams overlap. We also presented a method to analyze the exposure energy density of patterns and an error function derived from the results of the exposure energy simulation and the maximum exposure energy density. Using the Levenberg-Marquardt method and a reasonable convergence criterion, the exposure interval of two line segments for optimum pattern flatness was obtained. A simulation of the pattern fabrication model showed that when the exposure interval S = 1.66ρ(0) , optimum flatness could be obtained. The results of this study have potential for industrial application in fabrication of micro- and nano-scale channels.

  2. Micromechanical Structures Fabrication

    SciTech Connect

    Rajic, S

    2001-05-08

    Work in materials other than silicon for MEMS applications has typically been restricted to metals and metal oxides instead of more ''exotic'' semiconductors. However, group III-V and II-VI semiconductors form a very important and versatile collection of material and electronic parameters available to the MEMS and MOEMS designer. With these materials, not only are the traditional mechanical material variables (thermal conductivity, thermal expansion, Young's modulus, etc.) available, but also chemical constituents can be varied in ternary and quaternary materials. This flexibility can be extremely important for both friction and chemical compatibility issues for MEMS. In addition, the ability to continually vary the bandgap energy can be particularly useful for many electronics and infrared detection applications. However, there are two major obstacles associated with alternate semiconductor material MEMS. The first issue is the actual fabrication of non-silicon micro-devices and the second impediment is communicating with these novel devices. We have implemented an essentially material independent fabrication method that is amenable to most group III-V and II-VI semiconductors. This technique uses a combination of non-traditional direct write precision fabrication processes such as diamond turning, ion milling, laser ablation, etc. This type of deterministic fabrication approach lends itself to an almost trivial assembly process. We also implemented a mechanical, electrical, and optical self-aligning hybridization technique for these alternate-material MEMS substrates.

  3. Lithographic fabrication of nanoapertures

    DOEpatents

    Fleming, James G.

    2003-01-01

    A new class of silicon-based lithographically defined nanoapertures and processes for their fabrication using conventional silicon microprocessing technology have been invented. The new ability to create and control such structures should significantly extend our ability to design and implement chemically selective devices and processes.

  4. Molecular dynamics of alamethicin transmembrane channels from open-channel current noise analysis.

    PubMed Central

    Mak, D O; Webb, W W

    1995-01-01

    Conductance noise measurement of the open states of alamethicin transmembrane channels reveals excess noise attributable to cooperative low-frequency molecular dynamics that can generate fluctuations approximately 1 A rms in the effective channel pore radius. Single-channel currents through both persistent and nonpersistent channels with multiple conductance states formed by purified polypeptide alamethicin in artificial phospholipid bilayers isolated onto micropipettes with gigaohm seals were recorded using a voltage-clamp technique with low background noise (rms noise < 3 pA up to 20 kHz). Current noise power spectra between 100 Hz and 20 kHz of each open channel state showed little frequency dependence. Noise from undetected conductance state transitions was insignificant. Johnson and shot noises were evaluated. Current noise caused by electrolyte concentration fluctuation via diffusion was isolated by its dependence on buffer concentration. After removing these contributions, significant current noise remains in all persistent channel states and increases in higher conductance states. In nonpersistent channels, remaining noise occurs primarily in the lowest two states. These fluctuations of channel conductance are attributed to thermal oscillations of the channel molecular conformation and are modeled as a Langevin translational oscillation of alamethicin molecules moving radially from the channel pore, damped mostly by lipid bilayer viscosity. PMID:8599640

  5. Dyeing fabrics with metals

    NASA Astrophysics Data System (ADS)

    Kalivas, Georgia

    2002-06-01

    Traditionally, in textile dyeing, metals have been used as mordants or to improve the color produced by a natural or synthetic dye. In biomedical research and clinical diagnostics gold colloids are used as sensitive signals to detect the presence of pathogens. It has been observed that when metals are finely divided, a distinct color may result that is different from the color of the metal in bulk. For example, when gold is finely divided it may appear black, ruby or purple. This can be seen in biomedical research when gold colloids are reduced to micro-particles. Bright color signals are produced by few nanometer-sized particles. Dr. William Todd, a researcher in the Department of Veterinary Science at the Louisiana State University, developed a method of dyeing fabrics with metals. By using a reagent to bond the metal particles deep into the textile fibers and actually making the metal a part of the chemistry of the fiber. The chemicals of the fabric influence the resulting color. The combination of the element itself, the size of the particle, the chemical nature of the particle and the interaction of the metal with the chemistry of the fabric determine the actual hue. By using different elements, reagents, textiles and solvents a broad range of reproducible colors and tones can be created. Metals can also be combined into alloys, which will produce a variety of colors. The students of the ISCC chapter at the Fashion Institute of Technology dyed fabric using Dr. Todd's method and created a presentation of the results. They also did a demonstration of dyeing fabrics with metals.

  6. Method of fabricating a flow device

    DOEpatents

    Hale, Robert L.

    1978-01-01

    This invention is a novel method for fabricating leak-tight tubular articles which have an interior flow channel whose contour must conform very closely with design specifications but which are composed of metal which tends to warp if welded. The method comprises designing two longitudinal half-sections of the article, the half-sections being contoured internally to cooperatively form the desired flow passageway. Each half-section is designed with a pair of opposed side flanges extending between the end flanges and integral therewith. The half-sections are positioned with their various flanges in confronting relation and with elongated metal gaskets extending between the confronting flanges for the length of the array. The gaskets are a deformable metal which is fusion-weldable to the end flanges. The mating side flanges are joined mechanically to deform the gaskets and provide a longitudinally sealed assembly. The portions of the end flanges contiguous with the ends of the gaskets then are welded to provide localized end welds which incorporate ends of the gaskets, thus transversely sealing the assembly. This method of fabrication provides leak-tight articles having the desired precisely contoured flow channels, whereas various conventional methods have been found unsatisfactory.

  7. Fading channel simulator

    DOEpatents

    Argo, Paul E.; Fitzgerald, T. Joseph

    1993-01-01

    Fading channel effects on a transmitted communication signal are simulated with both frequency and time variations using a channel scattering function to affect the transmitted signal. A conventional channel scattering function is converted to a series of channel realizations by multiplying the square root of the channel scattering function by a complex number of which the real and imaginary parts are each independent variables. The two-dimensional inverse-FFT of this complex-valued channel realization yields a matrix of channel coefficients that provide a complete frequency-time description of the channel. The transmitted radio signal is segmented to provide a series of transmitted signal and each segment is subject to FFT to generate a series of signal coefficient matrices. The channel coefficient matrices and signal coefficient matrices are then multiplied and subjected to inverse-FFT to output a signal representing the received affected radio signal. A variety of channel scattering functions can be used to characterize the response of a transmitter-receiver system to such atmospheric effects.

  8. Substrate channelling as an approach to cascade reactions

    NASA Astrophysics Data System (ADS)

    Wheeldon, Ian; Minteer, Shelley D.; Banta, Scott; Barton, Scott Calabrese; Atanassov, Plamen; Sigman, Matthew

    2016-04-01

    Millions of years of evolution have produced biological systems capable of efficient one-pot multi-step catalysis. The underlying mechanisms that facilitate these reaction processes are increasingly providing inspiration in synthetic chemistry. Substrate channelling, where intermediates between enzymatic steps are not in equilibrium with the bulk solution, enables increased efficiencies and yields in reaction and diffusion processes. Here, we review different mechanisms of substrate channelling found in nature and provide an overview of the analytical methods used to quantify these effects. The incorporation of substrate channelling into synthetic cascades is a rapidly developing concept, and recent examples of the fabrication of cascades with controlled diffusion and flux of intermediates are presented.

  9. Design and Fabrication of a PDMS Microchip Based Immunoassay

    SciTech Connect

    Shao, Guocheng; Wang, Wanjun; Wang, Jun; Lin, Yuehe

    2010-07-01

    In this paper, we describe the design and fabrication process of a polydimethylsiloxane (PDMS) microchip for on-chip multiplex immunoassay application. The microchip consists of a PDMS microfluidic channel layer and a micro pneumatic valve control layer. By selectively pressurizing the pneumatic microvalves, immuno reagents were controlled to flow and react in certain fluidic channel sites. Cross contamination was prevented by tightly closed valves. Our design was proposed to utilize PDMS micro channel surface as the solid phase immunoassay substrate and simultaneously detect four targets antigens on chip. Experiment result shows that 20psi valve pressure is sufficient to tightly close a 200µm wide micro channel with flow rate up to 20µl/min.

  10. Fabrication of functional materials in microfluidics

    NASA Astrophysics Data System (ADS)

    Shum, Ho Cheung

    In this thesis, we present a study on how droplets prepared in microfluidics can be used for fabrication of functional materials. We utilize the high degree of fluidic control enabled by miniaturizing the channels to achieve monodisperse single and multiple emulsion with high encapsulation efficiency. By engineering the interfaces of such emulsions and/or applying appropriate reactions, novel functional materials have been fabricated for encapsulation and release applications and for carrying out reactions in confined environments. Glass capillary microfluidics is used in the majority of the thesis. Glass offers excellent solvent resistance to most organic solvents needed for fabricating the desired materials. In Chapter 1, we describe a double-emulsion-templated approach to form polymer vesicles, also known as polymersomes. By dissolving amphiphilic block copolymers in a volatile solvent, which forms the shell layer of double emulsions, polymersomes are formed after evaporation of the volatile solvent. In Chapter 2, we apply the same approach to fabricate phospholipid vesicles. In Chapter 3, we investigate the physics of membrane formation at interfaces laden with amphiphilic diblock copolymers. In Chapter 4, we fabricate polymersomes with multiple compaitalents by using controlled double emulsion drops with multiple inner droplets as templates. In Chapter 5, we describe a non-microfluidic approach for fabricating similar polymersomes with large number of compartments. In Chapter 6, we show that the double-emulsion templated approach for forming polymersomes can be applied to two-dimensional stamped devices, which can be easily scaled up for production of large amount of polymersomes. Apart from polymersomes, controlled emulsions can also be used for generating other functional materials. In Chapter 7, we use double emulsion drops as microreactors for fabricating particles of hydroxyapatite. In Chapter 8, we generate solid capsules by emulsifying a molten phase as

  11. Progress on the superconducting magnets for the MICE cooling channel

    NASA Astrophysics Data System (ADS)

    Green, M. A.; Virostek, S. P.; Li, D.; Zisman, M. S.; Wang, L.; Pan, H.; Wu, H.; Guo, X. L.; Xu, F. Y.; Liu, X. K.; Zheng, S. X.; Bradshaw, T.; Baynham, D. E.; Cobb, J.; Lau, W.; Lau, P.; Yang, S. Q.

    2010-06-01

    The muon ionization cooling experiment (MICE) consists of a target, a beam line, a pion decay channel, the MICE cooling channel. Superconducting magnets are used in the pion decay channel and the MICE cooling channel. This report describes the MICE cooling channel magnets and the progress in the design and fabrication of these magnets. The MICE cooling channel consists of three types of superconducting solenoids; the spectrometer solenoids, the coupling solenoids and the focusing solenoids. The three types of magnets are being fabricated in the United States, China, and the UK respectively. The spectrometer magnets are used to analyze the muon beam before and after muon cooling. The coupling magnets couple the focusing sections and keep the muon beam contained within the iris of the RF cavities that are used to recover the muon momentum lost during ionization cooling. The focusing magnets focus the muon beam in the center of a liquid hydrogen absorber. The first of the cooling channel magnets will be operational in MICE in the spring of 2010.

  12. Biomimetic Micropatterned Multi-channel Nerve Guides by Templated Electrospinning

    PubMed Central

    Jeffries, Eric; Wang, Yadong

    2012-01-01

    This report describes a new approach for fabricating micro-channels within three-dimensional electrospun constructs. These key features serve to mimic the fascicular architecture and fibrous extracellular matrix found in native nerve. Both electrospun fibers and multi-channeled structure nerve guides have become areas of increasing interest for their beneficial roles in nerve repair. However, to the best of our knowledge, this is the first report of a guide that incorporates both. Multiple parallel channels provide a greater number of defined paths and increased surface area compared to cylindrical guides. Additionally, the fibrous nature of electrospun fibers permits better mass transport than solid-walled constructs. The flexible fabrication scheme allows tailoring of nerve guide parameters such as channel diameters ranging from 33-176μm and various wall thicknesses. Channel and fiber structures were assessed by optical and electron microscope images. Geometric calculations estimated a porosity of over 85% for these guides with 16% or less from the channels. In vitro culture with Schwann cells demonstrated cellular infiltration into channels with restricted migration between fibers. Finally, cell proliferation and survival throughout the guide indicates that this design warrants future in vivo examination. PMID:22179932

  13. Progress on Superconducting Magnets for the MICE Cooling Channel

    SciTech Connect

    Green, Michael A; Virostek, Steve P.; Li, Derun; Zisman, Michael S.; Wang, Li; Pan, Heng; Wu, Hong; Guo, XingLong; Xu, FengYu; Liu, X. K.; Zheng, S. X.; Bradshaw, Thomas; Baynham, Elwyn; Cobb, John; Lau, Wing; Lau, Peter; Yang, Stephanie Q.

    2009-09-09

    The muon ionization cooling experiment (MICE) consists of a target, a beam line, a pion decay channel, the MICE cooling channel. Superconducting magnets are used in the pion decay channel and the MICE cooling channel. This report describes the MICE cooling channel magnets and the progress in the design and fabrication of these magnets. The MICE cooling channel consists of three types of superconducting solenoids; the spectrometer solenoids, the coupling solenoids and the focusing solenoids. The three types of magnets are being fabricated in he United States, China, and the United Kingdom respectively. The spectrometer magnets are used to analyze the muon beam before and after muon cooling. The coupling magnets couple the focusing sections and keep the muon beam contained within the iris of the RF cavities that re used to recover the muon momentum lost during ionization cooling. The focusing magnets focus the muon beam in the center of a liquid hydrogen absorber. The first of the cooling channel magnets will be operational in MICE in the spring of 2010.

  14. Jamming in Vertical Channels

    NASA Astrophysics Data System (ADS)

    Baxter, G. William; Steel, Fiona

    2011-03-01

    We study jamming of low aspect-ratio cylindrical Delrin grains in a vertical channel. Grain heights are less than their diameter so the grains resemble antacid tablets, coins, or poker chips. These grains are allowed to fall through a vertical channel with a square cross section where the channel width is greater than the diameter of a grain and constant throughout the length of the channel with no obstructions or constrictions. Grains are sometimes observed to form jams, stable structures supported by the channel walls with no support beneath them. The probability of jam occurrence and the strength or robustness of a jam is effected by grain and channel sizes. We will present experimental measurements of the jamming probability and jam strength in this system and discuss the relationship of these results to other experiments and theories. Supported by an Undergraduate Research Grant from Penn State Erie, The Behrend College.

  15. Mechanosensitive channels in microbes.

    PubMed

    Kung, Ching; Martinac, Boris; Sukharev, Sergei

    2010-01-01

    All cells, including microbes, detect and respond to mechanical forces, of which osmotic pressure is most ancient and universal. Channel proteins have evolved such that they can be directly stretched open when the membrane is under turgor pressure. Osmotic downshock, as in rain, opens bacterial mechanosensitive (MS) channels to jettison osmolytes, relieving pressure and preventing cell lysis. The ion flux through individual channel proteins can be observed directly with a patch clamp. MS channels of large and small conductance (MscL and MscS, respectively) have been cloned, crystallized, and subjected to biophysical and genetic analyses in depth. They are now models to scrutinize how membrane forces direct protein conformational changes. Eukaryotic microbes have homologs from animal sensory channels of the TRP superfamily. The MS channel in yeast is also directly sensitive to membrane stretch. This review examines the key concept that proteins embedded in the lipid bilayer can respond to the changes in the mechanical environment the lipid bilayer provides.

  16. Amyloid peptide channels.

    PubMed

    Kagan, B L; Azimov, R; Azimova, R

    2004-11-01

    At least 16 distinct clinical syndromes including Alzheimer's disease (AD), Parkinson's disease (PD), rheumatoid arthritis, type II diabetes mellitus (DM), and spongiform encephelopathies (prion diseases), are characterized by the deposition of amorphous, Congo red-staining deposits known as amyloid. These "misfolded" proteins adopt beta-sheet structures and aggregate spontaneously into similar extended fibrils despite their widely divergent primary sequences. Many, if not all, of these peptides are capable of forming ion-permeable channels in vitro and possibly in vivo. Common channel properties include irreversible, spontaneous insertion into membranes, relatively large, heterogeneous single-channel conductances, inhibition of channel formation by Congo red, and blockade of inserted channels by Zn2+. Physiologic effects of amyloid, including Ca2+ dysregulation, membrane depolarization, mitochondrial dysfunction, inhibition of long-term potentiation (LTP), and cytotoxicity, suggest that channel formation in plasma and intracellular membranes may play a key role in the pathophysiology of the amyloidoses. PMID:15702375

  17. Fabrication of paper-based microfluidic sensors by printing.

    PubMed

    Li, Xu; Tian, Junfei; Garnier, Gil; Shen, Wei

    2010-04-01

    A novel method for the fabrication of paper-based microfluidic diagnostic devices is reported; it consists of selectively hydrophobizing paper using cellulose reactive hydrophobization agents. The hydrophilic-hydrophobic contrast of patterns so created has excellent ability to control capillary penetration of aqueous liquids in paper channels. Incorporating this idea with digital ink jet printing techniques, a new fabrication method of paper-based microfluidic devices is established. Ink jet printing can deliver biomolecules and indicator reagents with precision into the microfluidic patterns to form bio-chemical sensing zones within the device. This method thus allows the complete sensor, i.e. channel patterns and the detecting chemistries, to be fabricated only by two printing steps. This fabrication method can be scaled up and adapted to use high speed, high volume and low cost commercial printing technology. Sensors can be fabricated for specific tests, or they can be made as general devices to perform on-demand quantitative analytical tasks by incorporating the required detection chemistries for the required tasks.

  18. HIPPI and Fibre Channel

    SciTech Connect

    Tolmie, D.E.

    1992-01-01

    The High-Performance Parallel Interface (HIPPI) and Fibre Channel are near-gigabit per second data communications interfaces being developed in ANSI standards Task Group X3T9.3. HIPPI is the current interface of choice in the high-end and supercomputer arena, and Fibre Channel is a follow-on effort. HIPPI came from a local area network background, and Fibre Channel came from a mainframe to peripheral interface background.

  19. Stretchable transistors with buckled carbon nanotube films as conducting channels

    DOEpatents

    Arnold, Michael S; Xu, Feng

    2015-03-24

    Thin-film transistors comprising buckled films comprising carbon nanotubes as the conductive channel are provided. Also provided are methods of fabricating the transistors. The transistors, which are highly stretchable and bendable, exhibit stable performance even when operated under high tensile strains.

  20. Symmetrization for redundant channels

    NASA Technical Reports Server (NTRS)

    Tulplue, Bhalchandra R. (Inventor); Collins, Robert E. (Inventor)

    1988-01-01

    A plurality of redundant channels in a system each contain a global image of all the configuration data bases in each of the channels in the system. Each global image is updated periodically from each of the other channels via cross channel data links. The global images of the local configuration data bases in each channel are separately symmetrized using a voting process to generate a system signal configuration data base which is not written into by any other routine and is available for indicating the status of the system within each channel. Equalization may be imposed on a suspect signal and a number of chances for that signal to heal itself are provided before excluding it from future votes. Reconfiguration is accomplished upon detecting a channel which is deemed invalid. A reset function is provided which permits an externally generated reset signal to permit a previously excluded channel to be reincluded within the system. The updating of global images and/or the symmetrization process may be accomplished at substantially the same time within a synchronized time frame common to all channels.

  1. Phosphoinositides regulate ion channels

    PubMed Central

    Hille, Bertil; Dickson, Eamonn J.; Kruse, Martin; Vivas, Oscar; Suh, Byung-Chang

    2014-01-01

    Phosphoinositides serve as signature motifs for different cellular membranes and often are required for the function of membrane proteins. Here, we summarize clear evidence supporting the concept that many ion channels are regulated by membrane phosphoinositides. We describe tools used to test their dependence on phosphoinositides, especially phosphatidylinositol 4,5-bisphosphate, and consider mechanisms and biological meanings of phosphoinositide regulation of ion channels. This lipid regulation can underlie changes of channel activity and electrical excitability in response to receptors. Since different intracellular membranes have different lipid compositions, the activity of ion channels still in transit towards their final destination membrane may be suppressed until they reach an optimal lipid environment. PMID:25241941

  2. IBEX channel formation

    SciTech Connect

    Jones, E.E.; Frost, C.A.; Freeman, J.R.; Jojola, J.M.

    1987-01-01

    Exploding wire experiments have been conducted to form a low-density channel for endoatmospheric channel-tracking experiments to be performed on the IBEX accelerator. Stainless steel and tungsten wires as small as six microns radius have been exploded using a 50 kJ, 200 kV fast capacitor bank designed and constructed for the purpose. Density channels have been produced. Preliminary results will be compared with a simple circuit model and hydrocode analysis. Efforts to diagnose the low-density channel are beginning. 5 refs.

  3. Fabrication of diamond shells

    DOEpatents

    Hamza, Alex V.; Biener, Juergen; Wild, Christoph; Woerner, Eckhard

    2016-11-01

    A novel method for fabricating diamond shells is introduced. The fabrication of such shells is a multi-step process, which involves diamond chemical vapor deposition on predetermined mandrels followed by polishing, microfabrication of holes, and removal of the mandrel by an etch process. The resultant shells of the present invention can be configured with a surface roughness at the nanometer level (e.g., on the order of down to about 10 nm RMS) on a mm length scale, and exhibit excellent hardness/strength, and good transparency in the both the infra-red and visible. Specifically, a novel process is disclosed herein, which allows coating of spherical substrates with optical-quality diamond films or nanocrystalline diamond films.

  4. Directed light fabrication

    NASA Astrophysics Data System (ADS)

    Lewis, G. K.; Nemec, R.; Milewski, J.; Thoma, D. J.; Cremers, D.; Barbe, M.

    1994-09-01

    Directed Light Fabrication (DLF) is a rapid prototyping process being developed at Los Alamos National Laboratory to fabricate metal components. This is done by fusing gas delivered metal powder particles in the focal zone of a laser beam that is programmed to move along or across the part cross section. Fully dense metal is built up a layer at a time to form the desired part represented by a 3 dimensional solid model from CAD software. Machine 'tool paths' are created from the solid model that command the movement and processing parameters specific to the DLF process so that the part can be built one layer at a time. The result is a fully dense, near net shape metal part that solidifies under rapid solidification conditions.

  5. The Fabric of Reality

    NASA Astrophysics Data System (ADS)

    Whitaker, Andrew

    David Deutsch, The Fabric of Reality (London: Allen Lane, 1997), x+390 pp., ISBN 0-713-990619, hardback. David Deutsch's popular book, The Fabric of Reality, has already won acclaim as a sustained and comprehensible explanation of his own worldview, which encompasses his four main strands of quantum physics, epistemology, computation and evolution, as well as the many connections between them. Deutsch is a strong opponent of reductionism, and the latter three strands are 'high level' theories compared to quantum physics; but all four are to be regarded as fundamental because they are the theories that provide the deepest explanations. Deutsch considers that his worldview may be called the first genuine Theory of Everything; it would stand in strong contrast to the reductionist theories given that title at present. In fact he believes his approach may enable us to unify and explain not just science, but philosophy, logic, mathematics, ethics, politics and aesthetics.

  6. Automated breeder fuel fabrication

    SciTech Connect

    Goldmann, L.H.; Frederickson, J.R.

    1983-09-01

    The objective of the Secure Automated Fabrication (SAF) Project is to develop remotely operated equipment for the processing and manufacturing of breeder reactor fuel pins. The SAF line will be installed in the Fuels and Materials Examination Facility (FMEF). The FMEF is presently under construction at the Department of Energy's (DOE) Hanford site near Richland, Washington, and is operated by the Westinghouse Hanford Company (WHC). The fabrication and support systems of the SAF line are designed for computer-controlled operation from a centralized control room. Remote and automated fuel fabriction operations will result in: reduced radiation exposure to workers; enhanced safeguards; improved product quality; near real-time accountability, and increased productivity. The present schedule calls for installation of SAF line equipment in the FMEF beginning in 1984, with qualifying runs starting in 1986 and production commencing in 1987. 5 figures.

  7. Fabrication of freeform optics

    NASA Astrophysics Data System (ADS)

    Blalock, Todd; Medicus, Kate; DeGroote Nelson, Jessica

    2015-08-01

    Freeform surfaces on optical components have become an important design tool for optical designers. Non-rotationally symmetric optical surfaces have made solving complex optical problems easier. The manufacturing and testing of these surfaces has been the technical hurdle in freeform optic's wide-spread use. Computer Numerically Controlled (CNC) optics manufacturing technology has made the fabrication of optical components more deterministic and streamlined for traditional optics and aspheres. Optimax has developed a robust freeform optical fabrication CNC process that includes generation, high speed VIBE polishing, sub-aperture figure correction, surface smoothing and testing of freeform surfaces. Metrology of freeform surface is currently achieved with coordinate measurement machines (CMM) for lower resolution and interferometry with computer generated holograms (CGH) for high resolution irregularity measurements.

  8. Ceramic fabrication R D

    SciTech Connect

    Not Available

    1990-01-01

    This project is separated into three tasks. The first task is a design and modeling effort to be carried out by MSE, Inc. The purpose of this task is to develop and analyze designs for various cohesive ceramic fabrication (CCF) components, including an MHD electrode for strategic defense initiative (SDI) applications and a high stress, low cost, reinforced ceramic component for armor applications. The MHD electrode design is substantially completed. A layered structure composed of molybdenum disilicide graded with quartz glass has been designed and analyzed using finite element methods. The design demonstrates the fabrication capabilities of the CCF process. The high stress, armor application component will be silicon carbide reinforced alumina in thick plates. 2 refs., 4 figs., 1 tab.

  9. Dual-channel spectrally encoded endoscopic probe

    PubMed Central

    Engel, Guy; Genish, Hadar; Rosenbluh, Michael; Yelin, Dvir

    2012-01-01

    High quality imaging through sub-millimeter endoscopic probes provides clinicians with valuable diagnostics capabilities in hard to reach locations within the body. Spectrally encoded endoscopy (SEE) has been shown promising for such task; however, challenging probe fabrication and high speckle noise had prevented its testing in in vivo studies. Here we demonstrate a novel miniature SEE probe which incorporates some of the recent progress in spectrally encoded technology into a compact and robust endoscopic system. A high-quality miniature diffraction grating was fabricated using automated femtosecond laser cutting from a large bulk grating. Using one spectrally encoded channel for imaging and a separate channel for incoherent illumination, the new system has large depth of field, negligible back reflections and well controlled speckle noise which depends on the core diameter of the illumination fiber. Moreover, by using a larger imaging channel, higher groove density grating, shorter wavelength and broader spectrum, the new endoscopic system now allow significant improvements in almost all imaging parameter compared to previous systems, through an ultra-miniature endoscopic probe. PMID:22876349

  10. Space Fabrication Demonstration System

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The completion of assembly of the beam builder and its first automatic production of truss is discussed. A four bay, hand assembled, roll formed members truss was built and tested to ultimate load. Detail design of the fabrication facility (beam builder) was completed and designs for subsystem debugging are discussed. Many one bay truss specimens were produced to demonstrate subsystem operation and to detect problem areas.

  11. Space Fabrication Demonstration System

    NASA Technical Reports Server (NTRS)

    1977-01-01

    Progress on fabrication facility (beam builder) support structure control, clamp/weld block, and welding and truss cut off is discussed. The brace attachment design was changed and the design of the weld mechanism was modified which achieved the following system benefits: (1) simplified weld electrode life; (2) reduced weld power requirements; and (3) simplified brace attachment mechanisms. Static and fatigue characteristics of spot welded 2024T3 aluminum joints are evaluated.

  12. Space Fabrication Demonstration System

    NASA Technical Reports Server (NTRS)

    1977-01-01

    Progress in the development of a beam builder to be deployed by space shuttle for assembly of large structures in space is reported. The thermal coating for the structural truss was selected and the detail truss design and analysis completed. Data acquired during verification of the design of the basic 'building block' truss are included as well as design layouts for various fabrication facility subsystems.

  13. MIL1A

    Atmospheric Science Data Center

    2014-09-03

    ... MISR Level 1A camera charge-coupled device (CCD) Science Data: Reformatted Annotated Level 1A product of the CCD science data. ... Files:  Processing Status Production Report Read Software Files :  Data Product ...

  14. Ceramic fabrication R D

    SciTech Connect

    Not Available

    1990-01-01

    This project is separated into three tasks. The first task is a design and modelling effort to be carried out by MSE, Inc. The purpose of this task is to develop and analyze designs for various cohesive ceramic fabrication (CCF) components, principally an MHD electrode for strategic defense initiative (SDI) applications. A high stress, low cost, ceramic component is to be selected, designed and, if possible, analyzed. The final design for the MHD electrode comprised a layered structure of molybdenum disilicide graded with quartz glass. The design demonstrates the fabrication capabilities of the CCF process. The high stress component was targeted at armor applications and will be thick alumina plate. Silicon carbide reinforcement of the alumina will be explored. Task 2 is directed at establishing a mechanical properties data base for monolithic and laminated alumina fabricated using the CCF process. Task 3 involved production of a solid oxide fuel cell model electrode; however, work ceased when it became apparent that successful integration of the electrode modules would require additional time. Currently, work is principally focused on the production of thick CCF alumina plates; three test plates were ballistically tested and showed a very satisfactory performance. Silicon carbide reinforcement of the CCF alumina is being explored. Effort on the CCF processing of molybdenum disilicide (a nonoxide material) continued at a reduced level. Sinter aids were explored, and densities of 87% theoretical density on pressureless sintered dry pressed pellets were achieved. 1 ref., 9 figs., 4 tabs.

  15. Demonstrating Electrophoretic Separation in a Straight Paper Channel Delimited by a Hydrophobic Wax Barrier

    ERIC Educational Resources Information Center

    Xu, Chunxiu; Lin, Wanqi; Cai, Longfei

    2016-01-01

    A demonstration is described of electrophoretic separation of carmine and sunset yellow with a paper-based device. The channel in the paper device was fabricated by hand with a wax pen. Electrophoretic separation of carmine and sunset yellow was achieved within a few minutes by applying potential on the channel using a simple and inexpensive power…

  16. The Testing of Airplane Fabrics

    NASA Technical Reports Server (NTRS)

    Schraivogel, Karl

    1932-01-01

    This report considers the determining factors in the choice of airplane fabrics, describes the customary methods of testing and reports some of the experimental results. To sum up briefly the results obtained with the different fabrics, it may be said that increasing the strength of covering fabrics by using coarser yarns ordinarily offers no difficulty, because the weight increment from doping is relatively smaller.

  17. Note: Design principles of a linear array multi-channel effusive metal-vapor atom source

    SciTech Connect

    Jana, B.; Majumder, A.; Thakur, K. B.; Das, A. K.

    2013-10-15

    Atomic beams can easily be produced by allowing atoms to effuse through a channel. In an earlier investigation [A. Majumder et al., Vacuum 83, 989 (2009)], we had designed, fabricated, and characterized an effusive metal-vapor source using collinear-array of multi-channel. In this note, we describe the theoretical basis of designing the source. Atom density in atomic beam has been estimated using a set of analytical expressions for long-channel operated in transparent mode. Parametric studies on aspect ratio of channel, inter-channel separation, beam width, and vertical distance from the source are carried out. They are useful in providing physical picture and optimizing design parameters.

  18. SEMICONDUCTOR DEVICES: AlGaN/GaN double-channel HEMT

    NASA Astrophysics Data System (ADS)

    Si, Quan; Yue, Hao; Xiaohua, Ma; Pengtian, Zheng; Yuanbin, Xie

    2010-04-01

    The fabrication of AlGaN/GaN double-channel high electron mobility transistors on sapphire substrates is reported. Two carrier channels are formed in an AlGaN/GaN/AlGaN/GaN multilayer structure. The DC performance of the resulting double-channel HEMT shows a wider high transconductance region compared with single-channel HEMT. Simulations provide an explanation for the influence of the double-channel on the high transconductance region. The buffer trap is suggested to be related to the wide region of high transconductance. The RF characteristics are also studied.

  19. Channel length scaling of MoS2 MOSFETs.

    PubMed

    Liu, Han; Neal, Adam T; Ye, Peide D

    2012-10-23

    In this article, we investigate electrical transport properties in ultrathin body (UTB) MoS(2) two-dimensional (2D) crystals with channel lengths ranging from 2 μm down to 50 nm. We compare the short channel behavior of sets of MOSFETs with various channel thickness, and reveal the superior immunity to short channel effects of MoS(2) transistors. We observe no obvious short channel effects on the device with 100 nm channel length (L(ch)) fabricated on a 5 nm thick MoS(2) 2D crystal even when using 300 nm thick SiO(2) as gate dielectric, and has a current on/off ratio up to ~10(9). We also observe the on-current saturation at short channel devices with continuous scaling due to the carrier velocity saturation. Also, we reveal the performance limit of short channel MoS(2) transistors is dominated by the large contact resistance from the Schottky barrier between Ni and MoS(2) interface, where a fully transparent contact is needed to achieve a high-performance short channel device.

  20. Apparatus and method for fabricating multi-strand superconducting cable

    DOEpatents

    Borden, Albert R.

    1986-01-01

    Multi-strand superconducting cables adapted to be used, for example, to wind a magnet is fabricated by directing wire strands inwardly from spools disposed on the perimeter of a rotating disk and wrapping them diagonally around a tapered mandrel with a flattened cross-sectional shape with a core having a wedge-shaped channel. As the cable is pulled axially, flexibly coupled wedge-shaped pieces are continuously passed through the channel in the mandrel and inserted into the cable as an internal support therefor.

  1. Method for fabricating multi-strand superconducting cable

    DOEpatents

    Borden, A.R.

    1985-04-01

    Multi-strand superconducting cables adapted to be used, for example, to wind a magnet are fabricated by directing wire strands inwardly from spools disposed on the perimeter of a rotating disk and wrapping them diagonally around a tapered mandrel with a flattened cross-sectional shape with a core having a wedge-shaped channel. As the cable is pulled axially, flexibly coupled wedge-shaped pieces are continuously passed through the channel in the mandrel and inserted into the cable as an internal support therefor.

  2. Fabrication and characterisation of gallium arsenide ambipolar quantum point contacts

    SciTech Connect

    Chen, J. C. H. Klochan, O.; Micolich, A. P.; Hamilton, A. R.; Das Gupta, K.; Sfigakis, F.; Ritchie, D. A.; Trunov, K.; Wieck, A. D.; Reuter, D.

    2015-05-04

    We show that ballistic one-dimensional channels can be formed in an ambipolar device fabricated on a high mobility Al{sub 0.34}Ga{sub 0.66}As/GaAs heterostructure. Both electron and hole quantised conductances can be measured in the same one-dimensional channel. We have used this device to compare directly the subband spacings of the two charge carriers in the same confining potential and used this to compare the electron and hole effective masses.

  3. A linearization of quantum channels

    NASA Astrophysics Data System (ADS)

    Crowder, Tanner

    2015-06-01

    Because the quantum channels form a compact, convex set, we can express any quantum channel as a convex combination of extremal channels. We give a Euclidean representation for the channels whose inverses are also valid channels; these are a subset of the extreme points. They form a compact, connected Lie group, and we calculate its Lie algebra. Lastly, we calculate a maximal torus for the group and provide a constructive approach to decomposing any invertible channel into a product of elementary channels.

  4. Basaltic Lava Channels

    NASA Astrophysics Data System (ADS)

    Cashman, K. V.; Griffiths, R. W.; Kerr, R. C.

    2004-12-01

    In Hawaii, the mode of lava transport - through open channels or through insulating lava tubes - determines the thermal, rheological, and emplacement history of a lava flow. Most Hawaiian lavas are erupted at near-liquidus temperatures and are therefore crystal-poor; lava transport through open channels allows rapid cooling and consequent rapid increases in lava crystallinity. Solidified aa flows resulting from channelized flow are typically fine-grained throughout their thickness, indicating cooling of the entire flow thickness during transport. In contrast, transport of lava through insulating tubes permits flow over long distances with little cooling. Flows emerging from such tubes typically have pahoehoe flow surfaces with glassy crusts. Groundmass textures that coarsen from the flow rind to the interior reflect rates of post-emplacement, rather than syn-emplacement, cooling. To distinguish eruption conditions that result in lava channels from those that allow formation of lava tubes, we have performed a series of laboratory experiments involving injection of PEG 600 (a wax with a Newtonian rheology and freezing temperature of 19ºC) into cold water through both uniform and non-uniform sloping channels. In uniform channels, tube formation can be distinguished from open channel flow using a dimensionless parameter based on a solidification time scale, an advection time scale, and a Rayleigh number that describes convection by heat loss from crust-free shear zones. Theoretical analysis predicts that in the open channel regime, the width of the crust (dc) will vary with the channel width (W) as dc = W5/3. Crustal coverage of non-uniform channels in both laboratory experiments and field examples from Kilauea Volcano, Hawaii, is consistent with this prediction. However, experiments in non-uniform channels illustrate additional controls on the surface coverage of lava channels. Most important is crustal extension resulting from flow acceleration through constrictions

  5. Tunable electrophoretic separations using a scalable, fabric-based platform.

    PubMed

    Narahari, Tanya; Dendukuri, Dhananjaya; Murthy, Shashi K

    2015-02-17

    There is a rising need for low-cost and scalable platforms for sensitive medical diagnostic testing. Fabric weaving is a mature, scalable manufacturing technology and can be used as a platform to manufacture microfluidic diagnostic tests with controlled, tunable flow. Given its scalability, low manufacturing cost (<$0.25 per device), and potential for patterning multiplexed channel geometries, fabric is a viable platform for the development of analytical devices. In this paper, we describe a fabric-based electrophoretic platform for protein separation. Appropriate yarns were selected for each region of the device and weaved into straight channel electrophoretic chips in a single step. A wide dynamic range of analyte molecules ranging from small molecule dyes (<1 kDa) to macromolecule proteins (67-150 kDa) were separated in the device. Individual yarns behave as a chromatographic medium for electrophoresis. We therefore explored the effect of yarn and fabric parameters on separation resolution. Separation speed and resolution were enhanced by increasing the number of yarns per unit area of fabric and decreasing yarn hydrophilicity. However, for protein analytes that often require hydrophilic, passivated surfaces, these effects need to be properly tuned to achieve well-resolved separations. A fabric device tuned for protein separations was built and demonstrated. As an analytical output parameter for this device, the electrophoretic mobility of a sedimentation marker, Naphthol Blue Black bovine albumin in glycine-NaOH buffer, pH 8.58 was estimated and found to be -2.7 × 10(-8) m(2) V(-1) s(-1). The ability to tune separation may be used to predefine regions in the fabric for successive preconcentrations and separations. The device may then be applied for the multiplexed detection of low abundance proteins from complex biological samples such as serum and cell lysate.

  6. Study of condensation of refrigerants in a micro-channel for development of future compact micro-channel condensers

    NASA Astrophysics Data System (ADS)

    Chowdhury, Sourav

    2009-12-01

    Mini- and micro-channel technology has gained considerable ground in the recent years in industry and is favored due to its several advantages stemming from its high surface to volume ratio and high values of proof pressure it can withstand. Micro-channel technology has paved the way to development of highly compact heat exchangers with low cost and mass penalties. In the present work, the issues related to the sizing of compact micro-channel condensers have been explored. The considered designs encompass both the conventional and MEMS fabrication techniques. In case of MEMS-fabricated micro-channel condenser, wet etching of the micro-channel structures, followed by bonding of two such wafers with silicon nitride layers at the interface was attempted. It was concluded that the silicon nitride bonding requires great care in terms of high degree of surface flatness and absence of roughness and also high degree of surface purity and thus cannot be recommended for mass fabrication. Following this investigation, a carefully prepared experimental setup and test micro-channel with hydraulic diameter 700 mum and aspect ratio 7:1 was fabricated and overall heat transfer and pressure drop aspects of two condensing refrigerants, R134a and R245fa were studied at a variety of test conditions. To the best of author's knowledge, so far no data has been reported in the literature on condensation in such high aspect ratio micro-channels. Most of the published experimental works on condensation of refrigerants are concerning conventional hydraulic diameter channels (> 3mm) and only recently some experimental data has been reported in the sub-millimeter scale channels for which the surface tension and viscosity effects play a dominant role and the effect of gravity is diminished. It is found that both experimental data and empirically-derived correlations tend to under-predict the present data by an average of 25%. The reason for this deviation could be because a high aspect ratio

  7. Ion channels in microbes

    PubMed Central

    Martinac, Boris; Saimi, Yoshiro; Kung, Ching

    2008-01-01

    Summary Studies of ion channels have for long been dominated by the animalcentric, if not anthropocentric view of physiology. The structures and activities of ion channels had, however, evolved long before the appearance of complex multicellular organisms on Earth. The diversity of ion channels existing in cellular membranes of prokaryotes is a good example. Though at first it may appear as a paradox that most of what we know about the structure of eukaryotic ion channels is based on the structure of bacterial channels, this should not be surprising given the evolutionary relatedness of all living organisms and suitability of microbial cells for structural studies of biological macromolecules in a laboratory environment. Genome sequences of the human as well as various microbial, plant and animal organisms unambiguously established the evolutionary links, whereas crystallographic studies of the structures of major types of ion channels published over the last decade clearly demonstrated the advantage of using microbes as experimental organisms. The purpose of this review is not only to provide an account of acquired knowledge on microbial ion channels but also to show that the study of microbes and their ion channels may also hold a key to solving unresolved molecular mysteries in the future. PMID:18923187

  8. Generalized channeled polarimetry.

    PubMed

    Alenin, Andrey S; Tyo, J Scott

    2014-05-01

    Channeled polarimeters measure polarization by modulating the measured intensity in order to create polarization-dependent channels that can be demodulated to reveal the desired polarization information. A number of channeled systems have been described in the past, but their proposed designs often unintentionally sacrifice optimality for ease of algebraic reconstruction. To obtain more optimal systems, a generalized treatment of channeled polarimeters is required. This paper describes methods that enable handling of multi-domain modulations and reconstruction of polarization information using linear algebra. We make practical choices regarding use of either Fourier or direct channels to make these methods more immediately useful. Employing the introduced concepts to optimize existing systems often results in superficial system changes, like changing the order, orientation, thickness, or spacing of polarization elements. For the two examples we consider, we were able to reduce noise in the reconstruction to 34.1% and 57.9% of the original design values. PMID:24979633

  9. Athermalized channeled spectropolarimeter enhancement.

    SciTech Connect

    Jones, Julia Craven; Way, Brandyn Michael; Mercier, Jeffrey Alan; Hunt, Jeffery P.

    2013-09-01

    Channeled spectropolarimetry can measure the complete polarization state of light as a function of wavelength. Typically, a channeled spectropolarimeter uses high order retarders made of uniaxial crystal to amplitude modulate the measured spectrum with the spectrally-dependent Stokes polarization information. A primary limitation of conventional channeled spectropolarimeters is related to the thermal variability of the retarders. Thermal variation often forces frequent system recalibration, particularly for field deployed systems. However, implementing thermally stable retarders, made of biaxial crystal, results in an athermal channeled spectropolarimeter that relieves the need for frequent recalibration. This report presents experimental results for an anthermalized channeled spectropolarimeter prototype produced using potassium titanyl phosphate. The results of this prototype are compared to the current thermal stabilization state of the art. Finally, the application of the technique to the thermal infrared is studied, and the athermalization concept is applied to an infrared imaging spectropolarimeter design.

  10. Jamming in Vertical Channels

    NASA Astrophysics Data System (ADS)

    Baxter, G. William; McCausland, Jeffrey; Steel, Fiona

    2010-03-01

    We experimentally study jamming of cylindrical grains in a vertical channel. The grains have a low aspect-ratio (height/diameter < 1) so their shape is like antacid tablets or poker chips. They are allowed to fall through a vertical channel with a square cross section. The channel width is greater than the diameter of a grain and constant throughout the length of the channel with no obstructions or constrictions. It is observed that grains sometimes jam in this apparatus. In a jam, grains form a stable structure from one side of the channel to the other with nothing beneath them. Jams may be strong enough to support additional grains above. The probability of a jam occurring is a function of the grain height and diameter. We will present experimental measurements of the jamming probability in this system and discuss the relationship of these results to other experiments and theories.

  11. Epithelial Sodium and Chloride Channels and Asthma

    PubMed Central

    Wang, Wen; Ji, Hong-Long

    2015-01-01

    Objective: To focus on the asthmatic pathogenesis and clinical manifestations related to epithelial sodium channel (ENaC)/chlorine ion channel. Data Sources: The data analyzed in this review were the English articles from 1980 to 2015 from journal databases, primarily PubMed and Google Scholar. The terms used in the literature search were: (1) ENaCs; cystic fibrosis (CF) transmembrane conductance regulator (CFTR); asthma/asthmatic, (2) ENaC/sodium salt; CF; asthma/asthmatic, (3) CFTR/chlorine ion channels; asthma/asthmatic, (4) ENaC/sodium channel/scnn1a/scnn1b/scnn1g/scnn1d/amiloride-sensitive/amiloride-inhibtable sodium channels/sodium salt; asthma/asthmatic, lung/pulmonary/respiratory/tracheal/alveolar, and (5) CFTR; CF; asthma/asthmatic (ti). Study Selection: These studies included randomized controlled trials or studies covering asthma pathogenesis and clinical manifestations related to ENaC/chlorine ion channels within the last 25 years (from 1990 to 2015). The data involving chronic obstructive pulmonary disease and CF obtained from individual studies were also reviewed by the authors. Results: Airway surface liquid dehydration can cause airway inflammation and obstruction. ENaC and CFTR are closely related to the airway mucociliary clearance. Ion transporters may play a critical role in pathogenesis of asthmatic exacerbations. Conclusions: Ion channels have been the center of many studies aiming to understand asthmatic pathophysiological mechanisms or to identify therapeutic targets for better control of the disease. PMID:26265620

  12. Fabrication of large-area ultra-thin single crystal silicon membranes

    SciTech Connect

    Dang, Z. Y.; Motapothula, M.; Ow, Y. S.; Venkatesan, T.; Breese, M. B. H.; Rana, M. A.; Osman, A.

    2011-11-28

    Perfectly, crystalline, 55 nm thick silicon membranes have been fabricated over several square millimeters and used to observe transmission ion channeling patterns showing the early evolution of the axially channeled beam angular distribution for small tilts away from the [011] axis. The reduced multiple scattering through such thin layers allows fine angular structure produced by the highly non-equilibrium transverse momentum distribution of the channeled beam during its initial propagation in the crystal to be resolved. The membrane crystallinity and flatness were measured by using proton channeling measurements and the surface roughness of 0.4 nm using atomic force microscopy.

  13. Can Nonprivate Channels Transmit Quantum Information?

    NASA Astrophysics Data System (ADS)

    Smith, Graeme; Smolin, John A.

    2009-01-01

    We study the power of quantum channels with little or no capacity for private communication. Because privacy is a necessary condition for quantum communication, one might expect that such channels would be of little use for transmitting quantum states. Nevertheless, we find strong evidence that there are pairs of such channels that, when used together, can transmit far more quantum information than the sum of their individual private capacities. Because quantum transmissions are necessarily private, this would imply a large violation of additivity for the private capacity. Specifically, we present channels which display either (1) a large joint quantum capacity but very small individual private capacities or (2) a severe violation of additivity for the Holevo information.

  14. Fabrication of boron articles

    DOEpatents

    Benton, Samuel T.

    1976-01-01

    This invention is directed to the fabrication of boron articles by a powder metallurgical method wherein the articles are of a density close to the theoretical density of boron and are essentially crackfree. The method comprises the steps of admixing 1 to 10 weight percent carbon powder with amorphous boron powder, cold pressing the mixture and then hot pressing the cold pressed compact into the desired article. The addition of the carbon to the mixture provides a pressing aid for inhibiting the cracking of the hot pressed article and is of a concentration less than that which would cause the articles to possess significant concentrations of boron carbide.

  15. Intraocular lens fabrication

    DOEpatents

    Salazar, Mike A.; Foreman, Larry R.

    1997-01-01

    This invention describes a method for fabricating an intraocular lens made rom clear Teflon.TM., Mylar.TM., or other thermoplastic material having a thickness of about 0.025 millimeters. These plastic materials are thermoformable and biocompatable with the human eye. The two shaped lenses are bonded together with a variety of procedures which may include thermosetting and solvent based adhesives, laser and impulse welding, and ultrasonic bonding. The fill tube, which is used to inject a refractive filling material is formed with the lens so as not to damage the lens shape. A hypodermic tube may be included inside the fill tube.

  16. Intraocular lens fabrication

    DOEpatents

    Salazar, M.A.; Foreman, L.R.

    1997-07-08

    This invention describes a method for fabricating an intraocular lens made from clear Teflon{trademark}, Mylar{trademark}, or other thermoplastic material having a thickness of about 0.025 millimeters. These plastic materials are thermoformable and biocompatable with the human eye. The two shaped lenses are bonded together with a variety of procedures which may include thermosetting and solvent based adhesives, laser and impulse welding, and ultrasonic bonding. The fill tube, which is used to inject a refractive filling material is formed with the lens so as not to damage the lens shape. A hypodermic tube may be included inside the fill tube. 13 figs.

  17. Electrochemical fabrication of capacitors

    DOEpatents

    Mansour, Azzam N.; Melendres, Carlos A.

    1999-01-01

    A film of nickel oxide is anodically deposited on a graphite sheet held in osition on an electrochemical cell during application of a positive electrode voltage to the graphite sheet while exposed to an electrolytic nickel oxide solution within a volumetrically variable chamber of the cell. An angularly orientated x-ray beam is admitted into the cell for transmission through the deposited nickel oxide film in order to obtain structural information while the film is subject to electrochemical and in-situ x-ray spectroscopy from which optimum film thickness, may be determined by comparative analysis for capacitor fabrication purposes.

  18. Mask fabrication process

    DOEpatents

    Cardinale, Gregory F.

    2000-01-01

    A method for fabricating masks and reticles useful for projection lithography systems. An absorber layer is conventionally patterned using a pattern and etch process. Following the step of patterning, the entire surface of the remaining top patterning photoresist layer as well as that portion of an underlying protective photoresist layer where absorber material has been etched away is exposed to UV radiation. The UV-exposed regions of the protective photoresist layer and the top patterning photoresist layer are then removed by solution development, thereby eliminating the need for an oxygen plasma etch and strip and chances for damaging the surface of the substrate or coatings.

  19. PRSEUS Acoustic Panel Fabrication

    NASA Technical Reports Server (NTRS)

    Nicolette, Velicki; Yovanof, Nicolette P.; Baraja, Jaime; Mathur, Gopal; Thrash, Patrick; Pickell, Robert

    2011-01-01

    This report describes the development of a novel structural concept, Pultruded Rod Stitched Efficient Unitized Structure (PRSEUS), that addresses the demanding fuselage loading requirements for the Hybrid Wing or Blended Wing Body (BWB) airplane configuration with regards to acoustic response. A PRSEUS panel was designed and fabricated and provided to NASA-LaRC for acoustic response testing in the Structural Acoustics Loads and Transmission (SALT) facility). Preliminary assessments of the sound transmission characteristics of a PRSEUS panel subjected to a representative Hybrid Wing Body (HWB) operating environment were completed for the NASA Environmentally Responsible Aviation (ERA) Program.

  20. Fabrication of metal nanoshells

    NASA Technical Reports Server (NTRS)

    Kim, Jae-Woo (Inventor); Choi, Sang H. (Inventor); Lillehei, Peter T. (Inventor); Chu, Sang-Hyon (Inventor); Park, Yeonjoon (Inventor); King, Glen C. (Inventor); Elliott, Jr., James R. (Inventor)

    2012-01-01

    Metal nanoshells are fabricated by admixing an aqueous solution of metal ions with an aqueous solution of apoferritin protein molecules, followed by admixing an aqueous solution containing an excess of an oxidizing agent for the metal ions. The apoferritin molecules serve as bio-templates for the formation of metal nanoshells, which form on and are bonded to the inside walls of the hollow cores of the individual apoferritin molecules. Control of the number of metal atoms which enter the hollow core of each individual apoferritin molecule provides a hollow metal nonparticle, or nanoshell, instead of a solid spherical metal nanoparticle.

  1. A three-channel miniaturized optical system for multi-resolution imaging

    NASA Astrophysics Data System (ADS)

    Belay, Gebirie Y.; Ottevaere, Heidi; Meuret, Youri; Thienpont, Hugo

    2013-09-01

    Inspired by the natural compound eyes of insects, multichannel imaging systems embrace many channels that scramble their entire Field-Of-View (FOV). Our aim in this work was to attain multi-resolution capability into a multi-channel imaging system by manipulating the available channels to possess different imaging properties (focal length, angular resolution). We have designed a three-channel imaging system where the first and third channels have highest and lowest angular resolution of 0.0096° and 0.078° and narrowest and widest FOVs of 7° and 80°, respectively. The design of the channels has been done for a single wavelength of 587.6 nm using CODE V. The three channels each consist of 4 aspherical lens surfaces and an absorbing baffle that avoids crosstalk among the neighbouring channels. The aspherical lens surfaces have been fabricated in PMMA by ultra-precision diamond tooling and the baffles by metal additive manufacturing. The profiles of the fabricated lens surfaces have been measured with an accurate multi-sensor coordinate measuring machine and compared with the corresponding profiles of the designed lens surfaces. The fabricated lens profiles are then incorporated into CODE V to realistically model the three channels and also compare their performances with those of the nominal design. We can conclude that the performances of the two latter models are in a good agreement.

  2. Fabrication and characterization of indium arsenide nanostructures

    NASA Astrophysics Data System (ADS)

    Cheng, Kai-An

    As MOSFET downscaling continues in the sub-0.1mum regime, quantum effects such as size quantization, phase coherence, and ballistic transport will gradually dominate the traditional MOSFET characteristics. It is important to understand these quantum effects in order to design future semiconductor devices. Among the available material systems, the InAs/AlSb quantum well system is particularly suitable for studying quantum effects. Our goal is to develop a fabrication technique for high quality InAs nanostructures and characterize them through transport measurements. Device patterns are defined by e-beam lithography and transferred into the InAs quantum well samples through either dry or wet etching. Dry etching is anisotropic and uniform, desirable for nanofabrication. However, ion bombardment induced damages create reduces the electron mobility. In contrast, shallow wet etching has good controllability and no damage to the crystal structure. Using shallow wet etching and surface Fermi level shifting, we can induce electron conducting channel in the InAs quantum well. Liquid helium temperature transport measurements show shallow-etched InAs channels can have an electron mobility of 4.3 x 105cm2/V·s and a mean free path of 7.5mum. We have successfully fabricated high quality InAs nanostructures. This dissertation is organized as the following: The theories and experimental studies of quantum effects in nanostructures, and the advantages of the InAs/AlSb system in nanofabrication are reviewed in Chapter 1. The development of our nanometer-scale electron beam lithography (EBL) is described in Chapter 2. Our achievement includes 25nm line width and +/-10nm multilevel EBL alignment accuracy. The nanofabrication using RIE mesa etching technique is addressed in Chapter 3. Using RIE for pattern transferring, we have successfully fabricated nanostructures with arbitrary geometry and the smallest feature size we have produced is 30nm. Chapter 4 is dedicated to our novel

  3. Fine Channel Networks

    NASA Technical Reports Server (NTRS)

    1997-01-01

    A color image of fine channel networks on Mars; north toward top. The scene shows heavily cratered highlands dissected by dendritic open channel networks that dissect steep slopes of impact crater walls. This image is a composite of Viking high-resolution images in black and white and low-resolution images in color. The image extends from latitude 9 degrees S. to 5 degrees S. and from longitude 312 degrees to 320 degrees; Mercator projection. The dendritic pattern of the fine channels and their location on steep slopes leads to the interpretation that these are runoff channels. The restriction of these types of channels to ancient highland rocks suggests that these channels are old and date from a time on Mars when conditions existed for precipitation to actively erode rocks. After the channels reach a low plain, they appear to end. Termination may have resulted from burial by younger deposits or perhaps the flows percolated into the surface materials and continued underground.

  4. Why are Channels Sinuous?

    NASA Astrophysics Data System (ADS)

    Constantine, J. A.; Lazarus, E.

    2012-12-01

    Sinuosity is a ubiquitous property of channelized flow patterns on Earth and other planetary bodies. Sinuosity is typically discussed as an emergent consequence of migration processes in meandering rivers, but meandering rivers are only one type of sinuous channel: there are many examples that show little or no indication of meandering, such as bedrock river canyons, drainage channels in tidal mudflats, and volcanic rilles. In some of these patterns, sinuosity is described as "inherited" from a preexisting morphology, which elides an explanation for how the inherited sinuosity originated. Even in river meandering theory there is ongoing debate regarding how initial channel sinuosity arises. Comparing the results of a generalized flow-routing model to observations of natural flow patterns, we find that the ratio of floodplain resistance (R, representing topographic roughness, substrate erodibility, or vegetation density) relative to floodplain slope (m) produces a range of sinuous planforms with natural analogs. We offer a unifying theory for channel sinuosity in which this ratio of resistance to slope (R:m) exerts the primary landscape control on planform shape and predicts the range of sinuosity a floodplain may express. Resistance-dominated floodplains produce channels with higher sinuosity than those of slope-dominated floodplains because increased resistance impedes down-slope flow. Measurement of "relative resistance" (R:m) could inform how riparian restoration projects evaluate the floodplains of artificially straightened rivers. Our analysis suggests that if the sinuosity of a formerly natural channel derived from a high R:m, then even a channel redesigned to be sinuous will straighten if the relative resistance of its floodplain is suppressed or inherently low. (Alternatively, increasing floodplain resistance might foster a higher sinuosity than hydraulic geometry would forecast.) The explanation for sinuosity that we propose is universal enough to account

  5. NCSX Vacuum Vessel Fabrication

    SciTech Connect

    Viola, M. E.; Brown, T.; Heitzenroeder, P.; Malinowski, F.; Reiersen, W.; Sutton, L.; Goranson, P.; Nelson, B.; Cole, M.; Manuel, M.; McCorkle, D.

    2005-10-07

    The National Compact Stellarator Experiment (NCSX) is being constructed at the Princeton Plasma Physics Laboratory (PPPL) in conjunction with the Oak Ridge National Laboratory (ORNL). The goal of this experiment is to develop a device which has the steady state properties of a traditional stellarator along with the high performance characteristics of a tokamak. A key element of this device is its highly shaped Inconel 625 vacuum vessel. This paper describes the manufacturing of the vessel. The vessel is being fabricated by Major Tool and Machine, Inc. (MTM) in three identical 120º vessel segments, corresponding to the three NCSX field periods, in order to accommodate assembly of the device. The port extensions are welded on, leak checked, cut off within 1" of the vessel surface at MTM and then reattached at PPPL, to accommodate assembly of the close-fitting modular coils that surround the vessel. The 120º vessel segments are formed by welding two 60º segments together. Each 60º segment is fabricated by welding ten press-formed panels together over a collapsible welding fixture which is needed to precisely position the panels. The vessel is joined at assembly by welding via custom machined 8" (20.3 cm) wide spacer "spool pieces." The vessel must have a total leak rate less than 5 X 10-6 t-l/s, magnetic permeability less than 1.02μ, and its contours must be within 0.188" (4.76 mm). It is scheduled for completion in January 2006.

  6. Epitaxial solar cells fabrication

    NASA Technical Reports Server (NTRS)

    Daiello, R. V.; Robinson, P. H.; Kressel, H.

    1975-01-01

    Silicon epitaxy has been studied for the fabrication of solar cell structures, with the intent of optimizing efficiency while maintaining suitability for space applications. SiH2CL2 yielded good quality layers and junctions with reproducible impurity profiles. Diode characteristics and lifetimes in the epitaxial layers were investigated as a function of epitaxial growth conditions and doping profile, as was the effect of substrates and epitaxial post-gettering on lifetime. The pyrolytic decomposition of SiH4 was also used in the epitaxial formation of highly doped junction layers on bulk Si wafers. The effects of junction layer thickness and bulk background doping level on cell performance, in particular, open-circuit voltage, were investigated. The most successful solar cells were fabricated with SiH2 CL2 to grow p/n layers on n(+) substrates. The best performance was obtained from a p(+)/p/n/n(+) structure grown with an exponential grade in the n-base layer.

  7. Ceramic fabrication R D

    SciTech Connect

    Not Available

    1990-01-01

    This project is separated into three tasks. The first task is a design and modeling effort to be carried out by MSE, Inc. The purpose of this task is to develop and analyze designs for various cohesive ceramic fabrication (CCF) components. This quarter, the advanced molybdenum disicilide MHD electrode design was essentially completed. Final refinements will be made after molybdenum disilicide processing results are available and the final layer compositions are established. Work involving whisker incorporation was initiated on the high stress component. It is unlikely that whiskers will become low cost, so particulate reinforcement will be pursued. Modeling work will resume once a suitable aluminum oxide/silicon carbide composition is selected that can be fired to acceptable densities by pressureless sintering. Task 2, subcontracted to Applied Technology Laboratories (ATL), is principally directed at establishing a property data base for monolithic and laminated alumina fabricated using the CCF process. This quarter, ATL demonstrated that the CCF process does not compromise the flexure strength of alumina. Task 3, subcontracted to Ceramics Binder Systems, Inc., focused on CCF silicon carbide particulate reinforced alumina and on the development of processing procedures for nonoxide molybdenum disilicide. Preliminary results indicate that achieving high densities in silicon carbide particulate reinforced aluminum oxide will be difficult. Molybdenum disilicide results are encouraging, and it is clear that the CCF process will work with this nonoxide material. 3 refs., 18 figs., 4 tabs.

  8. Fabrics for atopic dermatitis.

    PubMed

    Mason, Rupert

    2008-01-01

    The type of fabric worn by sufferers from atopic dermatitis should not exacerbate the condition but, if possible, help to control it. Synthetic fabrics and wool tend to produce itching and irritate the skin. Cotton is traditionally recommended but its structure contains short fibres which expand and contract, causing a rubbing movement that can irritate delicate skin. Dyes used in cotton garments can increase the potential of a sensitivity reaction. Cotton is also prone to bacterial and fungal attack. Silk garments are often closely woven which impedes the flow of air, and some people are allergic to the sericin protein in silk. Published studies suggest that a specially treated silk material (DermaSilk), which is loosely knitted, has had the sericin removed and has a microbial agent (AEM 5772/5) permanently bonded to it, is well tolerated and has beneficial effects on the skin of children and adults with atopic dermatitis. Atopic dermatitis often becomes infected, commonly with Staphylococcus aureus. Some studies have investigated the use of clothing materials impregnated with substances such as silver, which has antimicrobial properties. However, these are still unproven and there are concerns about bacterial resistance and the local and environmental effects of silver. The use of the antimicrobial AEM 5772/5, which does not transfer to the skin of the patient, is a new development in the control of atopic dermatitis. Further studies are needed to determine whether an antimicrobial shield bonded to clothing material will reduce the colonisation of atopic skin by S. aureus.

  9. Fractional channel multichannel analyzer

    DOEpatents

    Brackenbush, Larry W.; Anderson, Gordon A.

    1994-01-01

    A multichannel analyzer incorporating the features of the present invention obtains the effect of fractional channels thus greatly reducing the number of actual channels necessary to record complex line spectra. This is accomplished by using an analog-to-digital converter in the asynscronous mode, i.e., the gate pulse from the pulse height-to-pulse width converter is not synchronized with the signal from a clock oscillator. This saves power and reduces the number of components required on the board to achieve the effect of radically expanding the number of channels without changing the circuit board.

  10. Channel Access in Erlang

    SciTech Connect

    Nicklaus, Dennis J.

    2013-10-13

    We have developed an Erlang language implementation of the Channel Access protocol. Included are low-level functions for encoding and decoding Channel Access protocol network packets as well as higher level functions for monitoring or setting EPICS process variables. This provides access to EPICS process variables for the Fermilab Acnet control system via our Erlang-based front-end architecture without having to interface to C/C++ programs and libraries. Erlang is a functional programming language originally developed for real-time telecommunications applications. Its network programming features and list management functions make it particularly well-suited for the task of managing multiple Channel Access circuits and PV monitors.

  11. Fabrication and simulation of novel crown-shaped microneedle array

    NASA Astrophysics Data System (ADS)

    Khumpuang, Sommawan; Sugiyama, Susumu

    2005-02-01

    Recently, a novel crown-shaped microneedle array fabricated by deep X-ray lithography so called, quadruplets-microneedle array was reported. The microneedle requires no hole-fabrication whilst still can be used for a blood extraction system. Due to its quadruped tip, a deep channel formed by the space between each spike is used for storing blood by a capillary force. The particular shape of the microneedle is unrealizable by other microfabrication technology apart from PCT(Plain-pattern to Cross-section Transfer) technique. Nanoscaled tips and sloped side-wall of the structure ease a smooth skin-penetration. A model for simulating the capillary height of the extracted blood for this specific shape has been developed since the typical capillary theory is suitable for the only tube shape of liquid channel. The result of simulation conforms to the practical extraction test of the microneedle. The amount of blood retained inside the microneedle can be predicted by the height obtained from the simulation. Besides the PCT technique, the electroforming of Nickel has been demonstrated in order to fabricate the mold. The injections of polycarbonate is then performed for final structures. The cost of each microneedle array after a large volume-production has been dumped to be less than a US dollar. In this paper, the fabrication process and capillary models for individual simulation of the quadruplets-microneedle will be reported.

  12. Calcium Channel Signaling Complexes with Receptors and Channels.

    PubMed

    Zamponi, Gerald W

    2015-01-01

    Voltage-gated calcium channels are not only mediators of cell signalling events, but also are recipients of signalling inputs from G protein coupled receptors (GPCRs) and their associated second messenger pathways. The coupling of GPCRs to calcium channels is optimized through the formation of receptor-channel complexes. In addition, this provides a mechanism for receptorchannel co-trafficking to and from the plasma membrane. On the other hand, voltage-gated calcium channel activity affects other types of ion channels such as voltage-and calcium-activated potassium channels. Coupling efficiency between these two families of channels is also enhanced through the formation of channel-channel complexes. This review provides a concise overview of the current state of knowledge on the physical interactions between voltage-gated calcium channels and members of the GPCR family, and with other types of ion channels.

  13. Nozzle fabrication technique

    NASA Technical Reports Server (NTRS)

    Wells, Dennis L. (Inventor)

    1991-01-01

    A block of electrically conductive material which is to be formed into a body with internal and/or external surfaces that approximate hyperboloids of one sheet is placed so that its axis is set at a predetermined skew angle with relation to a traveling EDM electrode wire. The electrode wire is then moved into cutting proximity of the body wire. Thereafter, by revolving the body about its own axis, the external and/or internal surfaces of the body will be cut into an approximate hyperbolic surface of revolution depending upon whether the body is positioned with the cutting wire outside of the body or in a previously formed longitudinal passage in the body. As an alternative technique, elongated channels can also be cut into the wall of the body by successively orienting the body to a selected number of angular positions, with the electrode wire being either outside of the body or in a previously formed passage in the body. At each of these angular positions, the electrode wire is moved orthogonally with respect to the axis of the wire, while both the body axis skew angle and the rotational position about that axis is controlled by cutting a channel or groove in the body to relieve stresses in the body material or to convey a coolant fluid.

  14. Nozzle fabrication technique

    NASA Technical Reports Server (NTRS)

    Wells, Dennis L. (Inventor)

    1989-01-01

    A block of electrically-conductive material which is to be formed into a body with internal and/or external surfaces that approximate hyperboloids of one sheet is placed so that its axis is set at a predetermined skew angle with relation to a travelling EDM electrode wire and the electrode wire is then moved into cutting proximity of the body. Thereafter, by revolving the body about its own axis, the external and/or internal surfaces of the body will be cut into an approximate hyperbolic surface of revolution depending upon whether the body is positioned with the cutting wire outside of the body or in a previously-formed longitudinal passage in the body. As an alternative technique, elongated channels can also be cut into the walls of the body by successively orienting the body to a selected number of angular positions with the electrode wire being either outside of the body or in a previously-formed passage in the body. At each of these angular positions, the electrode wire is moved orthogonally with respect to the axis of the wire while both the body axis skew angle and the rotational position about that axis are controlled for cutting a channel or groove in the body as required to relieve stresses in the material of the body or to convey a coolant fluid.

  15. Fabrication, Operation and Flow Visualization in Surface-acoustic-wave-driven Acoustic-counterflow Microfluidics

    PubMed Central

    Travagliati, Marco; Shilton, Richie; Beltram, Fabio; Cecchini, Marco

    2013-01-01

    Surface acoustic waves (SAWs) can be used to drive liquids in portable microfluidic chips via the acoustic counterflow phenomenon. In this video we present the fabrication protocol for a multilayered SAW acoustic counterflow device. The device is fabricated starting from a lithium niobate (LN) substrate onto which two interdigital transducers (IDTs) and appropriate markers are patterned. A polydimethylsiloxane (PDMS) channel cast on an SU8 master mold is finally bonded on the patterned substrate. Following the fabrication procedure, we show the techniques that allow the characterization and operation of the acoustic counterflow device in order to pump fluids through the PDMS channel grid. We finally present the procedure to visualize liquid flow in the channels. The protocol is used to show on-chip fluid pumping under different flow regimes such as laminar flow and more complicated dynamics characterized by vortices and particle accumulation domains. PMID:24022515

  16. Channel in Kasei

    NASA Technical Reports Server (NTRS)

    2004-01-01

    14 November 2004 The Kasei Valles are a suite of very large, ancient outflow channels. This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows a portion of the youngest channel system in the Kasei Valles. Torrents of mud, rocks, and water carved this channel as flow was constricted through a narrow portion of the valley. Layers exposed by the erosion that created the channel can be seen in its walls. This 1.4 meters (5 feet) per pixel image is located near 21.1oN, 72.6oW. The picture covers an area approximately 3 km (1.9 mi) across. Sunlight illuminates the scene from the lower left.

  17. Chondrocyte channel transcriptomics

    PubMed Central

    Lewis, Rebecca; May, Hannah; Mobasheri, Ali; Barrett-Jolley, Richard

    2013-01-01

    To date, a range of ion channels have been identified in chondrocytes using a number of different techniques, predominantly electrophysiological and/or biomolecular; each of these has its advantages and disadvantages. Here we aim to compare and contrast the data available from biophysical and microarray experiments. This letter analyses recent transcriptomics datasets from chondrocytes, accessible from the European Bioinformatics Institute (EBI). We discuss whether such bioinformatic analysis of microarray datasets can potentially accelerate identification and discovery of ion channels in chondrocytes. The ion channels which appear most frequently across these microarray datasets are discussed, along with their possible functions. We discuss whether functional or protein data exist which support the microarray data. A microarray experiment comparing gene expression in osteoarthritis and healthy cartilage is also discussed and we verify the differential expression of 2 of these genes, namely the genes encoding large calcium-activated potassium (BK) and aquaporin channels. PMID:23995703

  18. Proton channel models

    PubMed Central

    Pupo, Amaury; Baez-Nieto, David; Martínez, Agustín; Latorre, Ramón; González, Carlos

    2014-01-01

    Voltage-gated proton channels are integral membrane proteins with the capacity to permeate elementary particles in a voltage and pH dependent manner. These proteins have been found in several species and are involved in various physiological processes. Although their primary topology is known, lack of details regarding their structures in the open conformation has limited analyses toward a deeper understanding of the molecular determinants of their function and regulation. Consequently, the function-structure relationships have been inferred based on homology models. In the present work, we review the existing proton channel models, their assumptions, predictions and the experimental facts that support them. Modeling proton channels is not a trivial task due to the lack of a close homolog template. Hence, there are important differences between published models. This work attempts to critically review existing proton channel models toward the aim of contributing to a better understanding of the structural features of these proteins. PMID:24755912

  19. Calcium channel blocker overdose

    MedlinePlus

    ... Goldschlager N. Cardiovascular toxicology. In: Shannon MW, Borron SW, Burns MJ, eds. Haddad and Winchester's Clinical Management ... SD. Calcium channel antagonists. In: Shannon MW, Borron SW, Burns MJ, eds. Haddad and Winchester's Clinical Management ...

  20. TRP channels in disease.

    PubMed

    Jordt, S E; Ehrlich, B E

    2007-01-01

    The transient receptor potential (TRP) channels are a large family of proteins with six main subfamilies termed the TRPC (canonical), TRPV (vanilloid), TRPM (melastatin), TRPP (polycystin), TRPML (mucolipin), and TRPA (ankyrin) groups. The sheer number of different TRPs with distinct functions supports the statement that these channels are involved in a wide range of processes ranging from sensing of thermal and chemical signals to reloading intracellular stores after responding to an extracellular stimulus. Mutations in TRPs are linked to pathophysiology and specific diseases. An understanding of the role of TRPs in normal physiology is just beginning; the progression from mutations in TRPs to pathophysiology and disease will follow. In this review, we focus on two distinct aspects of TRP channel physiology, the role of TRP channels in intracellular Ca2+ homeostasis, and their role in the transduction of painful stimuli in sensory neurons. PMID:18193640

  1. A Simple Water Channel

    ERIC Educational Resources Information Center

    White, A. S.

    1976-01-01

    Describes a simple water channel, for use with an overhead projector. It is run from a water tap and may be used for flow visualization experiments, including the effect of streamlining and elementary building aerodynamics. (MLH)

  2. Turbine airfoil fabricated from tapered extrusions

    DOEpatents

    Marra, John J

    2013-07-16

    An airfoil (30) and fabrication process for turbine blades with cooling channels (26). Tapered tubes (32A-32D) are bonded together in a parallel sequence, forming a leading edge (21), a trailing edge (22), and pressure and suction side walls (23, 24) connected by internal ribs (25). The tapered tubes may be extruded without camber to simplify the extrusion process, then bonded along matching surfaces (34), forming a non-cambered airfoil (28), which may be cambered in a hot forming process and cut (48) to length. The tubes may have tapered walls that are thinner at the blade tip (T1) than at the base (T2), reducing mass. A cap (50) may be attached to the blade tip. A mounting lug (58) may be forged (60) on the airfoil base and then machined, completing the blade for mounting in a turbine rotor disk.

  3. Ion Channels in Epithelial Cells

    NASA Astrophysics Data System (ADS)

    Palmer, Lawrence G.

    Ion channels in epithelial cells serve to move ions, and in some cases fluid, between compartments of the body. This function of the transfer of material is fundamentally different from that of the transfer of information, which is the main job of most channels in excitable cells. Nevertheless the basic construction of the channels is similar in many respects in the two tissue types. This chapter reviews the nature of channels in epithelia and discusses how their functions have evolved to accomplish the basic tasks for which they are responsible. I will focus on three channel types: epithelial Na+ channels, inward-rectifier K+ channels, and CFTR Cl- channels.

  4. Channel-tunnels.

    PubMed

    Koronakis, V; Andersen, C; Hughes, C

    2001-08-01

    TolC and its many homologues comprise an alpha-helical transperiplasmic tunnel embedded in the bacterial outer membrane by a contiguous beta-barrel channel, providing a large exit duct for diverse substrates. The 'channel-tunnel' is closed at its periplasmic entrance, but can be opened by an 'iris-like' mechanism when recruited by substrate-engaged proteins in the cytosolic membrane.

  5. AFIP-6 Fabrication Summary Report

    SciTech Connect

    Glenn A. Moore; M. Craig Marshall

    2011-09-01

    The AFIP-6 (ATR Full-size plate In center flux trap Position) experiment was designed to evaluate the performance of monolithic fuels at a scale prototypic of research reactor fuel plates. Two qualified fueled plates were fabricated for the AFIP-6 experiment; to be irradiated in the INL Advanced Test Reactor (ATR). This report provides details of the fuel fabrication efforts, including material selection, fabrication processes, and fuel plate qualification.

  6. AFIP-4 Fabrication Summary Report

    SciTech Connect

    Glenn A. Moore

    2010-02-01

    The AFIP-4 (ATR Full –size-plate In center flux trap Position) experiment was designed to evaluate the performance of monolithic fuels at a scale prototypic of research reactor fuel plates. Twelve qualified fueled plates were fabricated for the AFIP-4 experiment; to be irradiated in the INL Advanced Test Reactor (ATR). This report provides details of the fuel fabrication efforts; including material selection, fabrication processes, and fuel plate qualification.

  7. AFIP-2 Fabrication Summary Report

    SciTech Connect

    Glenn Moore

    2010-02-01

    The Advanced Test Reactor (ATR) Full-size Plate In Center Flux Trap Position (AFIP)-2 experiment was designed to evaluate the performance of monolithic fuels at a scale prototypic of research reactor fuel plates. Two qualified fueled plates were fabricated for the AFIP 2 experiment to be irradiated in the Idaho National Laboratory ATR. This report provides details of the fuel fabrication efforts, including material selection, fabrication processes, and fuel plate qualification.

  8. Protein fabrication automation

    PubMed Central

    Cox, J. Colin; Lape, Janel; Sayed, Mahmood A.; Hellinga, Homme W.

    2007-01-01

    Facile “writing” of DNA fragments that encode entire gene sequences potentially has widespread applications in biological analysis and engineering. Rapid writing of open reading frames (ORFs) for expressed proteins could transform protein engineering and production for protein design, synthetic biology, and structural analysis. Here we present a process, protein fabrication automation (PFA), which facilitates the rapid de novo construction of any desired ORF from oligonucleotides with low effort, high speed, and little human interaction. PFA comprises software for sequence design, data management, and the generation of instruction sets for liquid-handling robotics, a liquid-handling robot, a robust PCR scheme for gene assembly from synthetic oligonucleotides, and a genetic selection system to enrich correctly assembled full-length synthetic ORFs. The process is robust and scalable. PMID:17242375

  9. Tapered, tubular polyester fabric

    NASA Technical Reports Server (NTRS)

    Lapointe, Donat J. E. (Inventor); Wright, Lawrence T. (Inventor); Vincent, Laurence J. (Inventor)

    1987-01-01

    A tapered tubular polyester sleeve is described to serve as the flexible foundation for a spacesuit limb covering. The tube has a large end and a small end with a length to be determined. The ratio of taper is also determined by scale factors. All the warp yarns extend to the large end. A requisite number of warp yarns extend the full length of the sleeve. Other warp yarns extend from the large end but are terminated along the length of the sleeve. It is then woven with a filling yarn which extends in a full circle along the full length of the sleeve to thereby define the tapered sleeve. The sleeve after fabrication is then placed on a mandrel, heated in an oven, and then attached to the arm or other limb of the spacesuit.

  10. Tapered, tubular polyester fabric

    NASA Technical Reports Server (NTRS)

    LaPointe, Donat J. E. (Inventor); Vincent, Laurence J. (Inventor); Wright, Lawrence T. (Inventor)

    1988-01-01

    A tapered tubular polyester sleeve as set forth. It has a large end 12 and a small end 14 with a length to be determined. The ratio of taper is also determined by scale factors. All the warp yarns extend to the large end 12. A requisite number of warp yarns 16 extend the full length of the sleeve. Other warp yarns exemplified at 18, 22, 26, 28, 30 and 32 extend from the large end but are terminated along the length of the sleeve. It is then woven with a filling yarn 40 which extends in a full circle along the full length of the sleeve to thereby define the tapered sleeve. The sleeve after fabrication is then placed on a mandrel 42, heated in an oven 44 and is thereafter placed on the arm or other limb of a space suit exemplified at 50.

  11. Protein fabrication automation.

    PubMed

    Cox, J Colin; Lape, Janel; Sayed, Mahmood A; Hellinga, Homme W

    2007-03-01

    Facile "writing" of DNA fragments that encode entire gene sequences potentially has widespread applications in biological analysis and engineering. Rapid writing of open reading frames (ORFs) for expressed proteins could transform protein engineering and production for protein design, synthetic biology, and structural analysis. Here we present a process, protein fabrication automation (PFA), which facilitates the rapid de novo construction of any desired ORF from oligonucleotides with low effort, high speed, and little human interaction. PFA comprises software for sequence design, data management, and the generation of instruction sets for liquid-handling robotics, a liquid-handling robot, a robust PCR scheme for gene assembly from synthetic oligonucleotides, and a genetic selection system to enrich correctly assembled full-length synthetic ORFs. The process is robust and scalable.

  12. Multifunctional graphene woven fabrics

    PubMed Central

    Li, Xiao; Sun, Pengzhan; Fan, Lili; Zhu, Miao; Wang, Kunlin; Zhong, Minlin; Wei, Jinquan; Wu, Dehai; Cheng, Yao; Zhu, Hongwei

    2012-01-01

    Tailoring and assembling graphene into functional macrostructures with well-defined configuration are key for many promising applications. We report on a graphene-based woven fabric (GWF) prepared by interlacing two sets of graphene micron-ribbons where the ribbons pass each other essentially at right angles. By using a woven copper mesh as the template, the GWF grown from chemical vapour deposition retains the network configuration of the copper mesh. Embedded into polymer matrices, it has significant flexibility and strength gains compared with CVD grown graphene films. The GWFs display both good dimensional stability in both the warp and the weft directions and the combination of film transparency and conductivity could be optimized by tuning the ribbon packing density. The GWF creates a platform to integrate a large variety of applications, e.g., composites, strain sensors and solar cells, by taking advantages of the special structure and properties of graphene. PMID:22563524

  13. Micro-fabricated packed gas chromatography column based on laser etching technology.

    PubMed

    Sun, J H; Guan, F Y; Zhu, X F; Ning, Z W; Ma, T J; Liu, J H; Deng, T

    2016-01-15

    In this work, a micro packed gas chromatograph column integrated with a micro heater was fabricated by using laser etching technology (LET) for analyzing environmental gases. LET is a powerful tool to etch deep well-shaped channels on the glass wafer, and it is the most effective way to increase depth of channels. The fabricated packed GC column with a length of over 1.6m, to our best knowledge, which is the longest so far. In addition, the fabricated column with a rectangular cross section of 1.2mm (depth) × 0.6mm (width) has a large aspect ratio of 2:1. The results show that the fabricated packed column had a large sample capacity, achieved a separation efficiency of about 5800 plates/m and eluted highly symmetrical Gaussian peaks. PMID:26726935

  14. Micro-fabricated packed gas chromatography column based on laser etching technology.

    PubMed

    Sun, J H; Guan, F Y; Zhu, X F; Ning, Z W; Ma, T J; Liu, J H; Deng, T

    2016-01-15

    In this work, a micro packed gas chromatograph column integrated with a micro heater was fabricated by using laser etching technology (LET) for analyzing environmental gases. LET is a powerful tool to etch deep well-shaped channels on the glass wafer, and it is the most effective way to increase depth of channels. The fabricated packed GC column with a length of over 1.6m, to our best knowledge, which is the longest so far. In addition, the fabricated column with a rectangular cross section of 1.2mm (depth) × 0.6mm (width) has a large aspect ratio of 2:1. The results show that the fabricated packed column had a large sample capacity, achieved a separation efficiency of about 5800 plates/m and eluted highly symmetrical Gaussian peaks.

  15. Cell research with physically modified microfluidic channels: a review.

    PubMed

    Kim, Sun Min; Lee, Sung Hoon; Suh, Kahp Yang

    2008-07-01

    An overview of the use of physically modified microfluidic channels towards cell research is presented. The physical modification can be realized either by combining embedded physical micro/nanostructures or a topographically patterned substrate at the micro- or nanoscale inside a channel. After a brief description of the background and the importance of the physically modified microfluidic system, various fabrication methods are described based on the materials and geometries of physical structures and channels. Of many operational principles for microfluidics (electrical, magnetic, optical, mechanical, and so on), this review primarily focuses on mechanical operation principles aided by structural modification of the channels. The mechanical forces are classified into (i) hydrodynamic, (ii) gravitational, (iii) capillary, (iv) wetting, and (v) adhesion forces. Throughout this review, we will specify examples where necessary and provide trends and future directions in the field.

  16. AlGaN Channel Transistors for Power Management and Distribution

    NASA Technical Reports Server (NTRS)

    VanHove, James M.

    1996-01-01

    Contained within is the Final report of a Phase 1 SBIR program to develop AlGaN channel junction field effect transistors (JFET). The report summarizes our work to design, deposit, and fabricate JFETS using molecular beam epitaxy growth AlGaN. Nitride growth is described using a RF atomic nitrogen plasma source. Processing steps needed to fabricate the device such as ohmic source-drain contacts, reactive ion etching, gate formation, and air bride fabrication are documented. SEM photographs of fabricated power FETS are shown. Recommendations are made to continue the effort in a Phase 2 Program.

  17. Submarine Channels In Rupert Inlet, British Columbia: I. Morphology

    NASA Astrophysics Data System (ADS)

    Hay, Alex E.; Murray, J. W.; Burling, R. W.

    1983-11-01

    The evolution of submarine channel systems in a mine-tailing deposit is presented. Three successive phases of channel development were observed in time-series of seismic reflection, side-scan sonar and bathymetric surveys: (1) a meandering channel phase; (2) an "apron" phase, in which the channel was obliterated; and (3) a rechannelized phase. The meander phase consisted of a leveed channel with three morphologically distinct reaches: a left-hooking upper reach (axial slope decreasing from 9 to 2°); a middle meander reach (1° slope, 500-300 m and 100 m meander wavelength and average amplitude); and a straight lower reach (0.5° slope). The meanders are geometrically similar to those in rivers. Channel width and depth decreased down-channel suggesting continuous loss of solids by deposition and overspill. The morphology of the channel is compared to that of deep-sea fan valleys, particularly the Redondo, which exhibits a meandering-braided transition at an increase in slope from 1 to 2°. Braided-meandering and meandering-straight transitions in subaqueous channels are discussed in the context of the slope—discharge dependence of such transitions in subaerial rivers. Probable trajectories of the Rupert Inlet and Redondo systems in slope—discharge parameter space are proposed, and illustrate the importance to the occurrence of meanders in subaqueous channels of the entrainment of ambient fluid and of suspended sediment loss through deposition and channel overspill.

  18. Molecular characterization and functional expression of the DSC1 channel.

    PubMed

    Zhang, Tianxiang; Liu, Zhiqi; Song, Weizhong; Du, Yuzhe; Dong, Ke

    2011-07-01

    Drosophila Sodium Channel 1 (DSC1) was predicted to encode a sodium channel based on a high sequence similarity with vertebrate and invertebrate sodium channel genes. However, BSC1, a DSC1 ortholog in Blattella germanica, was recently shown to encode a cation channel with ion selectivity toward Ca(2+). In this study, we isolated a total of 20 full-length cDNA clones that cover the entire coding region of the DSC1 gene from adults of Drosophila melanogaster by reverse transcription-polymerase chain reaction. Sequence analysis of the 20 clones revealed nine optional exons, four of which contain in-frame stop codons; and 13 potential A-to-I RNA editing sites. The 20 clones can be grouped into eight splice types and represent 20 different transcripts because of unique RNA editing. Three variants generated DSC1 currents when expressed in Xenopus oocytes. Like the BSC1 channel, all three functional DSC1 channels are permeable to Ca(2+) and Ba(2+), and also to Na(+) in the absence of external Ca(2+). Furthermore, the DSC1 channel is insensitive to tetrodotoxin, a potent and specific sodium channel blocker. Our study shows that DSC1 encodes a voltage-gated cation channel similar to the BSC1 channel in B. germanica. Extensive alternative splicing and RNA editing of the DSC1 transcripts suggest the molecular and functional diversity of the DSC1 channel. PMID:21571069

  19. Interlocked fabric and laminated fabric Kevlar 49/epoxy composites

    SciTech Connect

    Guess, T.R.; Reedy, E.D. Jr.

    1988-01-01

    The mechanical behavior of a novel interlocked fabric reinforced Kevlar 49/epoxy composite has been measured and compared to those of a laminated Kevlar 49 fabric composite (which served as a reference material). Both composites were 5.0 mm thick, contained the same 50% in-plane fiber volume fraction and were fabricated in a similar manner using the same Dow DER 332 epoxy, Jeffamine T403-hardened resin system. The reference material (Material 1) was reinforced with seven plies of Dupont style 1033 Kevlar 49 fabric. A photomicrograph of a section polished parallel to one of the fiber directions is shown. The interlocked fabric was designed and woven for Sandia National Laboratories by Albany International Research Co., Dedham, MA. The main design criterion was to duplicate a sewn through-the-thickness fabric used in preliminary studies. The interlocked fabric composite (Material 2) contains roughly 4% by volume of through-the-thickness fiber reinforcement for the purpose of improving interlaminar strength. A photomicrograph of a section showing the warp-aligned binder yarns interlocking the six fabric plies together is shown. 2 refs., 8 figs.

  20. Morphodynamics of Floodplain Chute Channels

    NASA Astrophysics Data System (ADS)

    David, S. R.; Edmonds, D. A.

    2015-12-01

    Floodplain chute channel formation is a key process that can enable rivers to transition from single-thread to multi-thread planform geometries. Floodplain chute channels are usually incisional channels connecting topographic lows across point bars and in the floodplain. Surprisingly, it is still not clear what conditions promote chute channel formation and what governs their morphodynamic behavior. Towards this end we have initiated an empirical and theoretical study of floodplain chute channels in Indiana, USA. Using elevation models and satellite imagery we mapped 3064 km2 of floodplain in Indiana, and find that 37.3% of mapped floodplains in Indiana have extensive chute channel networks. These chute channel networks consist of two types of channel segments: meander cutoffs of the main channel and chute channels linking the cutoffs together. To understand how these chute channels link meander cutoffs together and eventually create floodplain channel networks we use Delft3D to explore floodplain morphodynamics. Our first modeling experiment starts from a generic floodplain prepopulated with meander cutoffs to test under what conditions chute channels form.We find that chute channel formation is optimized at an intermediate flood discharge. If the flood discharge is too large the meander cutoffs erosively diffuse, whereas if the floodwave is too small the cutoffs fill with sediment. A moderately sized floodwave reworks the sediment surrounding the topographic lows, enhancing the development of floodplain chute channels. Our second modeling experiments explore how floodplain chute channels evolve on the West Fork of the White River, Indiana, USA. We find that the floodplain chute channels are capable of conveying the entire 10 yr floodwave (Q=1330m3/s) leaving the inter-channel areas dry. Moreover, the chute channels can incise into the floodplain while the margins of channels are aggrading, creating levees. Our results suggest that under the right conditions

  1. Neutronic fuel element fabrication

    DOEpatents

    Korton, George

    2004-02-24

    This disclosure describes a method for metallurgically bonding a complete leak-tight enclosure to a matrix-type fuel element penetrated longitudinally by a multiplicity of coolant channels. Coolant tubes containing solid filler pins are disposed in the coolant channels. A leak-tight metal enclosure is then formed about the entire assembly of fuel matrix, coolant tubes and pins. The completely enclosed and sealed assembly is exposed to a high temperature and pressure gas environment to effect a metallurgical bond between all contacting surfaces therein. The ends of the assembly are then machined away to expose the pin ends which are chemically leached from the coolant tubes to leave the coolant tubes with internal coolant passageways. The invention described herein was made in the course of, or under, a contract with the U.S. Atomic Energy Commission. It relates generally to fuel elements for neutronic reactors and more particularly to a method for providing a leak-tight metal enclosure for a high-performance matrix-type fuel element penetrated longitudinally by a multiplicity of coolant tubes. The planned utilization of nuclear energy in high-performance, compact-propulsion and mobile power-generation systems has necessitated the development of fuel elements capable of operating at high power densities. High power densities in turn require fuel elements having high thermal conductivities and good fuel retention capabilities at high temperatures. A metal clad fuel element containing a ceramic phase of fuel intimately mixed with and bonded to a continuous refractory metal matrix has been found to satisfy the above requirements. Metal coolant tubes penetrate the matrix to afford internal cooling to the fuel element while providing positive fuel retention and containment of fission products generated within the fuel matrix. Metal header plates are bonded to the coolant tubes at each end of the fuel element and a metal cladding or can completes the fuel-matrix enclosure

  2. Nanochannels fabricated by high-intensity femtosecond laser pulses on dielectric surfaces

    SciTech Connect

    Kudryashov, Sergey I.; Mourou, Gerard; Joglekar, Ajit; Herbstman, Jeffrey F.; Hunt, Alan J.

    2007-10-01

    Direct scanning electron microscopy examination reveals a complex structure of narrow, micron-deep, internal nanochannels within shallow, nanoscale, external craters fabricated on glass and sapphire surfaces by single high-intensity femtosecond laser pulses, with nearly the same intensity thresholds for both features. Formation of the channels is accompanied by extensive expulsion of molten material produced via surface spallation and phase explosion mechanisms, and redeposited around the corresponding external craters. Potential mechanisms underlying fabrication of the unexpectedly deep channels in dielectrics are considered.

  3. Fabrication and electrical characterizations of SGOI tunnel FETs with gate length down to 50 nm

    NASA Astrophysics Data System (ADS)

    Le Royer, C.; Villalon, A.; Hutin, L.; Martinie, S.; Nguyen, P.; Barraud, S.; Glowacki, F.; Allain, F.; Bernier, N.; Cristoloveanu, S.; Vinet, M.

    2016-01-01

    We report the fabrication and the characterization of tunnel FETs fabricated on SiGe-On-Insulator with a High-κ Metal Gate (HKMG) CMOS process. The beneficial impact of low band gap SiGe channel on ID(VG) characteristics is presented and analyzed: compressive Si0.75Ge0.25 enables to increase by a factor of 25 the saturation currents, even at small gate length (LG = 50 nm). This large gain is due to the threshold voltage shift and to enhanced intrinsic band-to-band tunneling injection (both related to the narrow band gap of SiGe channels).

  4. Optical Communications Channel Combiner

    NASA Technical Reports Server (NTRS)

    Quirk, Kevin J.; Quirk, Kevin J.; Nguyen, Danh H.; Nguyen, Huy

    2012-01-01

    NASA has identified deep-space optical communications links as an integral part of a unified space communication network in order to provide data rates in excess of 100 Mb/s. The distances and limited power inherent in a deep-space optical downlink necessitate the use of photon-counting detectors and a power-efficient modulation such as pulse position modulation (PPM). For the output of each photodetector, whether from a separate telescope or a portion of the detection area, a communication receiver estimates a log-likelihood ratio for each PPM slot. To realize the full effective aperture of these receivers, their outputs must be combined prior to information decoding. A channel combiner was developed to synchronize the log-likelihood ratio (LLR) sequences of multiple receivers, and then combines these into a single LLR sequence for information decoding. The channel combiner synchronizes the LLR sequences of up to three receivers and then combines these into a single LLR sequence for output. The channel combiner has three channel inputs, each of which takes as input a sequence of four-bit LLRs for each PPM slot in a codeword via a XAUI 10 Gb/s quad optical fiber interface. The cross-correlation between the channels LLR time series are calculated and used to synchronize the sequences prior to combining. The output of the channel combiner is a sequence of four-bit LLRs for each PPM slot in a codeword via a XAUI 10 Gb/s quad optical fiber interface. The unit is controlled through a 1 Gb/s Ethernet UDP/IP interface. A deep-space optical communication link has not yet been demonstrated. This ground-station channel combiner was developed to demonstrate this capability and is unique in its ability to process such a signal.

  5. Insight toward epithelial Na+ channel mechanism revealed by the acid-sensing ion channel 1 structure.

    PubMed

    Stockand, James D; Staruschenko, Alexander; Pochynyuk, Oleh; Booth, Rachell E; Silverthorn, Dee U

    2008-09-01

    The epithelial Na(+) channel/degenerin (ENaC/DEG) protein family includes a diverse group of ion channels, including nonvoltage-gated Na(+) channels of epithelia and neurons, and the acid-sensing ion channel 1 (ASIC1). In mammalian epithelia, ENaC helps regulate Na(+) and associated water transport, making it a critical determinant of systemic blood pressure and pulmonary mucosal fluidity. In the nervous system, ENaC/DEG proteins are related to sensory transduction. While the importance and physiological function of these ion channels are established, less is known about their structure. One hallmark of the ENaC/DEG channel family is that each channel subunit has only two transmembrane domains connected by an exceedingly large extracellular loop. This subunit structure was recently confirmed when Jasti and colleagues determined the crystal structure of chicken ASIC1, a neuronal acid-sensing ENaC/DEG channel. By mapping ENaC to the structural coordinates of cASIC1, as we do here, we hope to provide insight toward ENaC structure. ENaC, like ASIC1, appears to be a trimeric channel containing 1alpha, 1beta, and 1gamma subunit. Heterotrimeric ENaC and monomeric ENaC subunits within the trimer possibly contain many of the major secondary, tertiary, and quaternary features identified in cASIC1 with a few subtle but critical differences. These differences are expected to have profound effects on channel behavior. In particular, they may contribute to ENaC insensitivity to acid and to its constitutive activity in the absence of time- and ligand-dependent inactivation. Experiments resulting from this comparison of cASIC1 and ENaC may help clarify unresolved issues related to ENaC architecture, and may help identify secondary structures and residues critical to ENaC function.

  6. Fabrication of 3D high aspect ratio PDMS microfluidic networks with a hybrid stamp.

    PubMed

    Kung, Yu-Chun; Huang, Kuo-Wei; Fan, Yu-Jui; Chiou, Pei-Yu

    2015-04-21

    We report a novel methodology for fabricating large-area, multilayer, thin-film, high aspect ratio, 3D microfluidic structures with through-layer vias and open channels that can be bonded between hard substrates. It is realized by utilizing a hybrid stamp with a thin plastic sheet embedded underneath a PDMS surface. This hybrid stamp solves an important edge protrusion issue during PDMS molding while maintaining necessary stamp elasticity to ensure the removal of PDMS residues at through-layer regions. Removing edge protrusion is a significant progress toward fabricating 3D structures since high aspect ratio PDMS structures with flat interfaces can be realized to facilitate multilayer stacking and bonding to hard substrates. Our method also allows for the fabrication of 3D deformable channels, which can lead to profound applications in electrokinetics, optofluidics, inertial microfluidics, and other fields where the shape of the channel cross section plays a key role in device physics. To demonstrate, as an example, we have fabricated a microfluidic channel by sandwiching two 20 μm wide, 80 μm tall PDMS membranes between two featureless ITO glass substrates. By applying electrical bias to the two ITO substrates and pressure to deform the thin membrane sidewalls, strong electric field enhancement can be generated in the center of a channel to enable 3D sheathless dielectrophoretic focusing of biological objects including mammalian cells and bacteria at a flow speed up to 14 cm s(-1).

  7. Fabric softeners and softness perception.

    PubMed

    Ali, S I; Begum, S

    1994-05-01

    In order to evaluate the efficiency of various commercial chemical fabric softeners, a technique of obtaining subjective assessment known as 'magnitude estimation' was used to estimate the fabric softness. Particular emphasis was given to subjective scaling and limits of human perception. Comparison between softness and compression (a physical measure) was demonstrated. PMID:8206048

  8. Unidirectional Fabric Drape Testing Method

    PubMed Central

    Mei, Zaihuan; Yang, Jingzhi; Zhou, Ting; Zhou, Hua

    2015-01-01

    In most cases, fabrics such as curtains, skirts, suit pants and so on are draped under their own gravity parallel to fabric plane while the gravity is perpendicular to fabric plane in traditional drape testing method. As a result, it does not conform to actual situation and the test data is not convincing enough. To overcome this problem, this paper presents a novel method which simulates the real mechanical conditions and ensures the gravity is parallel to the fabric plane. This method applied a low-cost Kinect Sensor device to capture the 3-dimensional (3D) drape profile, thus we obtained the drape degree parameters and aesthetic parameters by 3D reconstruction and image processing and analysis techniques. The experiment was conducted on our self-devised drape-testing instrument by choosing different kinds of weave structure fabrics as our testing samples and the results were compared with those of traditional method and subjective evaluation. Through regression and correlation analysis we found that this novel testing method was significantly correlated with the traditional and subjective evaluation method. We achieved a new, non-contact 3D measurement method for drape testing, namely unidirectional fabric drape testing method. This method is more suitable for evaluating drape behavior because it is more in line with actual mechanical conditions of draped fabrics and has a well consistency with the requirements of visual and aesthetic style of fabrics. PMID:26600387

  9. Unidirectional Fabric Drape Testing Method.

    PubMed

    Mei, Zaihuan; Shen, Wei; Wang, Yan; Yang, Jingzhi; Zhou, Ting; Zhou, Hua

    2015-01-01

    In most cases, fabrics such as curtains, skirts, suit pants and so on are draped under their own gravity parallel to fabric plane while the gravity is perpendicular to fabric plane in traditional drape testing method. As a result, it does not conform to actual situation and the test data is not convincing enough. To overcome this problem, this paper presents a novel method which simulates the real mechanical conditions and ensures the gravity is parallel to the fabric plane. This method applied a low-cost Kinect Sensor device to capture the 3-dimensional (3D) drape profile, thus we obtained the drape degree parameters and aesthetic parameters by 3D reconstruction and image processing and analysis techniques. The experiment was conducted on our self-devised drape-testing instrument by choosing different kinds of weave structure fabrics as our testing samples and the results were compared with those of traditional method and subjective evaluation. Through regression and correlation analysis we found that this novel testing method was significantly correlated with the traditional and subjective evaluation method. We achieved a new, non-contact 3D measurement method for drape testing, namely unidirectional fabric drape testing method. This method is more suitable for evaluating drape behavior because it is more in line with actual mechanical conditions of draped fabrics and has a well consistency with the requirements of visual and aesthetic style of fabrics. PMID:26600387

  10. Process for fabrication of cermets

    DOEpatents

    Landingham, Richard L.

    2011-02-01

    Cermet comprising ceramic and metal components and a molten metal infiltration method and process for fabrication thereof. The light weight cermets having improved porosity, strength, durability, toughness, elasticity fabricated from presintered ceramic powder infiltrated with a molten metal or metal alloy. Alumina titanium cermets biocompatible with the human body suitable for bone and joint replacements.

  11. CW RFQ fabrication and engineering

    SciTech Connect

    Schrage, D.; Young, L.; Roybal, P.

    1998-12-31

    The design and fabrication of a four-vane RFQ to deliver a 100 mA CW proton beam at 6.7 MeV is described. This linac is an Oxygen-Free Electrolytic (OFE) copper structure 8 m in length and was fabricated using hydrogen furnace brazing as the joining technology.

  12. Organellar Channels and Transporters

    PubMed Central

    Xu, Haoxing; Martinoia, Enrico; Szabo, Ildiko

    2015-01-01

    Decades of intensive research has led to the discovery of most plasma membrane ion channels and transporters and the characterization of their physiological functions. In contrast, although over 80% of transport processes occur inside the cells, the ion flux mechanisms across intracellular membranes (the endoplasmic reticulum, Golgi apparatus, endosomes, lysosomes, mitochondria, chloroplasts, and vacuoles) are difficult to investigate and remain poorly understood. Recent technical advances in super-resolution microscopy, organellar electrophysiology, organelle-targeted fluorescence imaging, and organelle proteomics have pushed a large step forward in the research of intracellular ion transport. Many new organellar channels are molecularly identified and electrophysiologically characterized. Additionally, molecular identification of many of these ion channels/transporters has made it possible to study their physiological functions by genetic and pharmacological means. For example, organellar channels have been shown to regulate important cellular processes such as programmed cell death and photosynthesis, and are involved in many different pathologies. This Special Issue (SI) on Organellar Channels and Transporters aims to provide a forum to discuss the recent advances and to define the standard and open questions in this exciting and rapidly-developing field. Along this line, a new Gordon Research Conference dedicated to the multidisciplinary study of intracellular membrane transport proteins will be launched this coming summer. PMID:25795199

  13. TRP Channels and Analgesia

    PubMed Central

    Premkumar, Louis S.; Abooj, Mruvil

    2013-01-01

    Since cloning and characterizing the first nociceptive ion channel Transient Receptor Potential (TRP) Vanilloid 1 (TRPV1), other TRP channels involved in nociception have been cloned and characterized, which include TRP Vanilloid 2 (TRPV2), TRP Vanilloid 3 (TRPV3), TRP Vanilloid 4 (TRPV4), TRP Ankyrin 1 (TRPA1) and TRP Melastatin 8 (TRPM8), more recently TRP Canonical 1, 5, 6 (TRPC1, 5, 6), TRP Melastatin 2 (TRPM2) and TRP Melastatin 3 (TRPM3). These channels are predominantly expressed in C and Aδ nociceptors and transmit noxious thermal, mechanical and chemical sensitivities. TRP channels are modulated by pro-inflammatory mediators, neuropeptides and cytokines. Significant advances have been made targeting these receptors either by antagonists or agonists to treat painful conditions. In this review, we will discuss TRP channels as targets for next generation analgesics and the side effects that may ensue as a result of blocking/activating these receptors, because they are also involved in physiological functions such as release of vasoactive neuropeptides and regulation of vascular tone, maintenance of the body temperature, gastrointestinal motility, urinary bladder control etc. PMID:22910182

  14. Channel Identification Machines

    PubMed Central

    Lazar, Aurel A.; Slutskiy, Yevgeniy B.

    2012-01-01

    We present a formal methodology for identifying a channel in a system consisting of a communication channel in cascade with an asynchronous sampler. The channel is modeled as a multidimensional filter, while models of asynchronous samplers are taken from neuroscience and communications and include integrate-and-fire neurons, asynchronous sigma/delta modulators and general oscillators in cascade with zero-crossing detectors. We devise channel identification algorithms that recover a projection of the filter(s) onto a space of input signals loss-free for both scalar and vector-valued test signals. The test signals are modeled as elements of a reproducing kernel Hilbert space (RKHS) with a Dirichlet kernel. Under appropriate limiting conditions on the bandwidth and the order of the test signal space, the filter projection converges to the impulse response of the filter. We show that our results hold for a wide class of RKHSs, including the space of finite-energy bandlimited signals. We also extend our channel identification results to noisy circuits. PMID:23227035

  15. Chemically enabled nanostructure fabrication

    NASA Astrophysics Data System (ADS)

    Huo, Fengwei

    The first part of the dissertation explored ways of chemically synthesizing new nanoparticles and biologically guided assembly of nanoparticle building blocks. Chapter two focuses on synthesizing three-layer composite magnetic nanoparticles with a gold shell which can be easily functionalized with other biomolecules. The three-layer magnetic nanoparticles, when functionalized with oligonucleotides, exhibit the surface chemistry, optical properties, and cooperative DNA binding properties of gold nanoparticle probes, while maintaining the magnetic properties of the Fe3O4 inner shell. Chapter three describes a new method for synthesizing nanoparticles asymmetrically functionalized with oligonucleotides and the use of these novel building blocks to create satellite structures. This synthetic capability allows one to introduce valency into such structures and then use that valency to direct particle assembly events. The second part of the thesis explored approaches of nanostructure fabrication on substrates. Chapter four focuses on the development of a new scanning probe contact printing method, polymer pen lithography (PPL), which combines the advantages of muCp and DPN to achieve high-throughput, flexible molecular printing. PPL uses a soft elastomeric tip array, rather than tips mounted on individual cantilevers, to deliver inks to a surface in a "direct write" manner. Arrays with as many as ˜11 million pyramid-shaped pens can be brought into contact with substrates and readily leveled optically in order to insure uniform pattern development. Chapter five describes gel pen lithography, which uses a gel to fabricate pen array. Gel pen lithography is a low-cost, high-throughput nanolithography method especially useful for biomaterials patterning and aqueous solution patterning which makes it a supplement to DPN and PPL. Chapter 6 shows a novel form of optical nanolithography, Beam Pen Lithography (BPL), which uses an array of NSOM pens to do nanoscale optical

  16. Laser modification of polyamide fabrics

    NASA Astrophysics Data System (ADS)

    Bahtiyari, M. İ.

    2011-02-01

    A new method for the modification of the properties of polyamide fabric, based on exposure to the output from a CO 2 laser, has been investigated. It was found that, after laser modification of polyamide fabric, the dyeability of fabric was increased significantly, while the bursting strength was decreased. The reasons for this drastic increase in dyeability of polyamide fabrics have been analyzed with the help of FTIR and iodine sorption methods, revealing a relationship with a decrease in the crystallinity of the polyamide. It was observed that, as the laser modification of the fabric was carried out with low intensity, the concentration of free amino groups, which are necessary during dyeing with acid and reactive dyes, increased.

  17. Narrow conducting channels defined by helium ion beam damage

    SciTech Connect

    Cheeks, T.L.; Roukes, M.L.; Scherer, A.; Craighead, H.G.

    1988-11-14

    We have developed a new technique for patterning narrow conducting channels in GaAs-AlGaAs two-dimensional electron gas (2DEG) materials. A low-energy He ion beam successfully patterned narrow wires with little or no etching of the thin GaAs cap. The damage propagation of the He ion even at low energies was sufficient to decrease the mobility of the 2DEG located deep within the structure. The damage can be removed by a low-temperature anneal but remains stable at room temperature. Conducting channels as narrow as 300 nm have been fabricated and measured using low-temperature magnetoresistance.

  18. U1A Complex

    ScienceCinema

    None

    2016-07-12

    Some of the most sophisticated experiments in the stockpile stewardship program are conducted in an environmentally safe manner, nearly 1000 feet below the ground at the site. The U1a complex a sprawling underground laboratory and tunnel complex is home to a number of unique capabilities.

  19. U1A Complex

    SciTech Connect

    2014-10-28

    Some of the most sophisticated experiments in the stockpile stewardship program are conducted in an environmentally safe manner, nearly 1000 feet below the ground at the site. The U1a complex a sprawling underground laboratory and tunnel complex is home to a number of unique capabilities.

  20. Active Integrated Filters for RF-Photonic Channelizers

    PubMed Central

    Nagdi, Amr El; Liu, Ke; LaFave, Tim P.; Hunt, Louis R.; Ramakrishna, Viswanath; Dabkowski, Mieczyslaw; MacFarlane, Duncan L.; Christensen, Marc P.

    2011-01-01

    A theoretical study of RF-photonic channelizers using four architectures formed by active integrated filters with tunable gains is presented. The integrated filters are enabled by two- and four-port nano-photonic couplers (NPCs). Lossless and three individual manufacturing cases with high transmission, high reflection, and symmetric couplers are assumed in the work. NPCs behavior is dependent upon the phenomenon of frustrated total internal reflection. Experimentally, photonic channelizers are fabricated in one single semiconductor chip on multi-quantum well epitaxial InP wafers using conventional microelectronics processing techniques. A state space modeling approach is used to derive the transfer functions and analyze the stability of these filters. The ability of adapting using the gains is demonstrated. Our simulation results indicate that the characteristic bandpass and notch filter responses of each structure are the basis of channelizer architectures, and optical gain may be used to adjust filter parameters to obtain a desired frequency magnitude response, especially in the range of 1–5 GHz for the chip with a coupler separation of ∼9 mm. Preliminarily, the measurement of spectral response shows enhancement of quality factor by using higher optical gains. The present compact active filters on an InP-based integrated photonic circuit hold the potential for a variety of channelizer applications. Compared to a pure RF channelizer, photonic channelizers may perform both channelization and down-conversion in an optical domain. PMID:22319352

  1. Dequantization Via Quantum Channels

    NASA Astrophysics Data System (ADS)

    Andersson, Andreas

    2016-08-01

    For a unital completely positive map {Φ} ("quantum channel") governing the time propagation of a quantum system, the Stinespring representation gives an enlarged system evolving unitarily. We argue that the Stinespring representations of each power {Φ^m} of the single map together encode the structure of the original quantum channel and provide an interaction-dependent model for the bath. The same bath model gives a "classical limit" at infinite time {mto∞} in the form of a noncommutative "manifold" determined by the channel. In this way, a simplified analysis of the system can be performed by making the large-m approximation. These constructions are based on a noncommutative generalization of Berezin quantization. The latter is shown to involve very fundamental aspects of quantum-information theory, which are thereby put in a completely new light.

  2. Chaos in quantum channels

    NASA Astrophysics Data System (ADS)

    Hosur, Pavan; Qi, Xiao-Liang; Roberts, Daniel A.; Yoshida, Beni

    2016-02-01

    We study chaos and scrambling in unitary channels by considering their entanglement properties as states. Using out-of-time-order correlation functions to diagnose chaos, we characterize the ability of a channel to process quantum information. We show that the generic decay of such correlators implies that any input subsystem must have near vanishing mutual information with almost all partitions of the output. Additionally, we propose the negativity of the tripartite information of the channel as a general diagnostic of scrambling. This measures the delocalization of information and is closely related to the decay of out-of-time-order correlators. We back up our results with numerics in two non-integrable models and analytic results in a perfect tensor network model of chaotic time evolution. These results show that the butterfly effect in quantum systems implies the information-theoretic definition of scrambling.

  3. Chaos in quantum channels

    DOE PAGES

    Hosur, Pavan; Qi, Xiao-Liang; Roberts, Daniel A.; Yoshida, Beni

    2016-02-01

    For this research, we study chaos and scrambling in unitary channels by considering their entanglement properties as states. Using out-of-time-order correlation functions to diagnose chaos, we characterize the ability of a channel to process quantum information. We show that the generic decay of such correlators implies that any input subsystem must have near vanishing mutual information with almost all partitions of the output. Additionally, we propose the negativity of the tripartite information of the channel as a general diagnostic of scrambling. This measures the delocalization of information and is closely related to the decay of out-of-time-order correlators. We back upmore » our results with numerics in two non-integrable models and analytic results in a perfect tensor network model of chaotic time evolution. In conclusion, these results show that the butterfly effect in quantum systems implies the information-theoretic definition of scrambling.« less

  4. Dequantization Via Quantum Channels

    NASA Astrophysics Data System (ADS)

    Andersson, Andreas

    2016-10-01

    For a unital completely positive map {Φ} ("quantum channel") governing the time propagation of a quantum system, the Stinespring representation gives an enlarged system evolving unitarily. We argue that the Stinespring representations of each power {Φ^m} of the single map together encode the structure of the original quantum channel and provide an interaction-dependent model for the bath. The same bath model gives a "classical limit" at infinite time {mto∞} in the form of a noncommutative "manifold" determined by the channel. In this way, a simplified analysis of the system can be performed by making the large- m approximation. These constructions are based on a noncommutative generalization of Berezin quantization. The latter is shown to involve very fundamental aspects of quantum-information theory, which are thereby put in a completely new light.

  5. Entanglement-saving channels

    NASA Astrophysics Data System (ADS)

    Lami, L.; Giovannetti, V.

    2016-03-01

    The set of Entanglement Saving (ES) quantum channels is introduced and characterized. These are completely positive, trace preserving transformations which when acting locally on a bipartite quantum system initially prepared into a maximally entangled configuration, preserve its entanglement even when applied an arbitrary number of times. In other words, a quantum channel ψ is said to be ES if its powers ψn are not entanglement-breaking for all integers n. We also characterize the properties of the Asymptotic Entanglement Saving (AES) maps. These form a proper subset of the ES channels that is constituted by those maps that not only preserve entanglement for all finite n but which also sustain an explicitly not null level of entanglement in the asymptotic limit n → ∞. Structure theorems are provided for ES and for AES maps which yield an almost complete characterization of the former and a full characterization of the latter.

  6. Channel plate for DNA sequencing

    DOEpatents

    Douthart, R.J.; Crowell, S.L.

    1998-01-13

    This invention is a channel plate that facilitates data compaction in DNA sequencing. The channel plate has a length, a width and a thickness, and further has a plurality of channels that are parallel. Each channel has a depth partially through the thickness of the channel plate. Additionally an interface edge permits electrical communication across an interface through a buffer to a deposition membrane surface. 15 figs.

  7. Channel plate for DNA sequencing

    DOEpatents

    Douthart, Richard J.; Crowell, Shannon L.

    1998-01-01

    This invention is a channel plate that facilitates data compaction in DNA sequencing. The channel plate has a length, a width and a thickness, and further has a plurality of channels that are parallel. Each channel has a depth partially through the thickness of the channel plate. Additionally an interface edge permits electrical communication across an interface through a buffer to a deposition membrane surface.

  8. Planar Superconducting Millimeter-Wave/Terahertz Channelizing Filter

    NASA Technical Reports Server (NTRS)

    Ehsan, Negar; U-yen, Kongpop; Brown, Ari; Hsieh, Wen-Ting; Wollack, Edward; Moseley, Samuel

    2013-01-01

    This innovation is a compact, superconducting, channelizing bandpass filter on a single-crystal (0.45 m thick) silicon substrate, which operates from 300 to 600 GHz. This device consists of four channels with center frequencies of 310, 380, 460, and 550 GHz, with approximately 50-GHz bandwidth per channel. The filter concept is inspired by the mammalian cochlea, which is a channelizing filter that covers three decades of bandwidth and 3,000 channels in a very small physical space. By using a simplified physical cochlear model, and its electrical analog of a channelizing filter covering multiple octaves bandwidth, a large number of output channels with high inter-channel isolation and high-order upper stopband response can be designed. A channelizing filter is a critical component used in spectrometer instruments that measure the intensity of light at various frequencies. This embodiment was designed for MicroSpec in order to increase the resolution of the instrument (with four channels, the resolution will be increased by a factor of four). MicroSpec is a revolutionary wafer-scale spectrometer that is intended for the SPICA (Space Infrared Telescope for Cosmology and Astrophysics) Mission. In addition to being a vital component of MicroSpec, the channelizing filter itself is a low-resolution spectrometer when integrated with only an antenna at its input, and a detector at each channel s output. During the design process for this filter, the available characteristic impedances, possible lumped element ranges, and fabrication tolerances were identified for design on a very thin silicon substrate. Iterations between full-wave and lumped-element circuit simulations were performed. Each channel s circuit was designed based on the availability of characteristic impedances and lumped element ranges. This design was based on a tabular type bandpass filter with no spurious harmonic response. Extensive electromagnetic modeling for each channel was performed. Four channels

  9. Space fabrication demonstration system composite beam cap fabricator

    NASA Technical Reports Server (NTRS)

    1982-01-01

    A detailed design for a prototype, composite beam cap fabricator was established. Inputs to this design included functional tests and system operating requirements. All required materials were procured, detail parts were fabricated, and one composite beam cap forming machine was assembled. The machine was demonstrated as a stand-alone system. Two 12-foot-long beam cap members were fabricated from laminates graphite/polysulfane or an equivalent material. One of these members, which as structurally tested in axial compression, failed at 490 pounds.

  10. Sodium channels and pain.

    PubMed

    Habib, Abdella M; Wood, John N; Cox, James J

    2015-01-01

    Human and mouse genetic studies have led to significant advances in our understanding of the role of voltage-gated sodium channels in pain pathways. In this chapter, we focus on Nav1.7, Nav1.8, Nav1.9 and Nav1.3 and describe the insights gained from the detailed analyses of global and conditional transgenic Nav knockout mice in terms of pain behaviour. The spectrum of human disorders caused by mutations in these channels is also outlined, concluding with a summary of recent progress in the development of selective Nav1.7 inhibitors for the treatment of pain. PMID:25846613

  11. Zeolites: Exploring Molecular Channels

    SciTech Connect

    Arslan, Ilke; Derewinski, Mirek

    2015-05-22

    Synthetic zeolites contain microscopic channels, sort of like a sponge. They have many uses, such as helping laundry detergent lather, absorbing liquid in kitty litter, and as catalysts to produce fuel. Of the hundreds of types of zeolites, only about 15 are used for catalysis. PNNL catalysis scientists Ilke Arslan and Mirek Derewinksi are studying these zeolites to understand what make them special. By exploring the mystery of these microscopic channels, their fundamental findings will help design better catalysts for applications such as biofuel production.

  12. High channel count and high precision channel spacing multi-wavelength laser array for future PICs

    NASA Astrophysics Data System (ADS)

    Shi, Yuechun; Li, Simin; Chen, Xiangfei; Li, Lianyan; Li, Jingsi; Zhang, Tingting; Zheng, Jilin; Zhang, Yunshan; Tang, Song; Hou, Lianping; Marsh, John H.; Qiu, Bocang

    2014-12-01

    Multi-wavelength semiconductor laser arrays (MLAs) have wide applications in wavelength multiplexing division (WDM) networks. In spite of their tremendous potential, adoption of the MLA has been hampered by a number of issues, particularly wavelength precision and fabrication cost. In this paper, we report high channel count MLAs in which the wavelengths of each channel can be determined precisely through low-cost standard μm-level photolithography/holographic lithography and the reconstruction-equivalent-chirp (REC) technique. 60-wavelength MLAs with good wavelength spacing uniformity have been demonstrated experimentally, in which nearly 83% lasers are within a wavelength deviation of +/-0.20 nm, corresponding to a tolerance of +/-0.032 nm in the period pitch. As a result of employing the equivalent phase shift technique, the single longitudinal mode (SLM) yield is nearly 100%, while the theoretical yield of standard DFB lasers is only around 33.3%.

  13. Fabrication of flexible ultraviolet photodetectors using an all-spray-coating process

    NASA Astrophysics Data System (ADS)

    Han, Junebeom; Lee, Jonghun; Ju, Sanghyun

    2016-04-01

    We report on a flexible ultraviolet (UV) photodetector fabricated using an all-spray-coating process. Two spray coating units were utilized to deposit semiconducting tin oxide nanowires as an active channel layer and metallic silver nanowires as an electrode layer. The device was mounted on the back of a human hand, and the UV intensities in sunlight were monitored over time. The fabricated flexible UV photodetector showed highly sensitive, stable, and reproducible detection properties. The main advantage of the proposed fabrication method is the extension of the integration environment by allowing direct application on various substrates, such as clothes and human skin, with varying device size and shape.

  14. A 6 μW per channel analog biomimetic cochlear implant processor filterbank architecture with across channels AGC.

    PubMed

    Yang, Guang; Lyon, Richard F; Drakakis, Emmanuel M

    2015-02-01

    A new analog cochlear implant processor filterbank architecture of increased biofidelity, enhanced across-channel contrast and very low power consumption has been designed and prototyped. Each channel implements a biomimetic, asymmetric bandpass-like One-Zero-Gammatone-Filter (OZGF) transfer function, using class-AB log-domain techniques. Each channel's quality factor and suppression are controlled by means of a new low power Automatic Gain Control (AGC) scheme which is coupled across the neighboring channels and emulates lateral inhibition (LI) phenomena in the auditory system. Detailed measurements from a five-channel silicon IC prototype fabricated in a 0.35 μm AMS technology confirm the operation of the coupled AGC scheme and its ability to enhance contrast among channel outputs. The prototype is characterized by an input dynamic range of 92 dB while consuming only 28 μW of power in total ( ∼ 6 μW per channel) under a 1.8 V power supply. The architecture is well-suited for fully-implantable cochlear implants.

  15. A hyperprostaglandin E syndrome mutation in Kir1.1 (renal outer medullary potassium) channels reveals a crucial residue for channel function in Kir1.3 channels.

    PubMed

    Derst, C; Wischmeyer, E; Preisig-Müller, R; Spauschus, A; Konrad, M; Hensen, P; Jeck, N; Seyberth, H W; Daut, J; Karschin, A

    1998-09-11

    Loss of function mutations in kidney Kir1.1 (renal outer medullary potassium channel, KCNJ1) inwardly rectifying potassium channels can be found in patients suffering from hyperprostaglandin E syndrome (HPS), the antenatal form of Bartter syndrome. A novel mutation found in a sporadic case substitutes an asparagine by a positively charged lysine residue at amino acid position 124 in the extracellular M1-H5 linker region. When heterologously expressed in Xenopus oocytes and mammalian cells, current amplitudes from mutant Kir1.1a[N124K] channels were reduced by a factor of approximately 12 as compared with wild type. A lysine at the equivalent position is present in only one of the known Kir subunits, the newly identified Kir1.3, which is also poorly expressed in the recombinant system. When the lysine residue in guinea pig Kir1.3 (gpKir1.3) isolated from a genomic library was changed to an asparagine (reverse HPS mutation), mutant channels yielded macroscopic currents with amplitudes increased 6-fold. From single channel analysis it became apparent that the decrease in mutant Kir1.1 channels and the increase in mutant gpKir1.3 macroscopic currents were mainly due to the number of expressed functional channels. Coexpression experiments revealed a dominant-negative effect of Kir1.1a[N124K] and gpKir1.3 on macroscopic current amplitudes when coexpressed with wild type Kir1.1a and gpKir[K110N], respectively. Thus we postulate that in Kir1.3 channels the extracellular positively charged lysine is of crucial functional importance. The HPS phenotype in man can be explained by the lower expression of functional channels by the Kir1. 1a[N124K] mutant. PMID:9727001

  16. Ion Channels as Drug Targets in Central Nervous System Disorders

    PubMed Central

    Waszkielewicz, A.M; Gunia, A; Szkaradek, N; Słoczyńska, K; Krupińska, S; Marona, H

    2013-01-01

    Ion channel targeted drugs have always been related with either the central nervous system (CNS), the peripheral nervous system, or the cardiovascular system. Within the CNS, basic indications of drugs are: sleep disorders, anxiety, epilepsy, pain, etc. However, traditional channel blockers have multiple adverse events, mainly due to low specificity of mechanism of action. Lately, novel ion channel subtypes have been discovered, which gives premises to drug discovery process led towards specific channel subtypes. An example is Na+ channels, whose subtypes 1.3 and 1.7-1.9 are responsible for pain, and 1.1 and 1.2 – for epilepsy. Moreover, new drug candidates have been recognized. This review is focusing on ion channels subtypes, which play a significant role in current drug discovery and development process. The knowledge on channel subtypes has developed rapidly, giving new nomenclatures of ion channels. For example, Ca2+ channels are not any more divided to T, L, N, P/Q, and R, but they are described as Cav1.1-Cav3.3, with even newer nomenclature α1A-α1I and α1S. Moreover, new channels such as P2X1-P2X7, as well as TRPA1-TRPV1 have been discovered, giving premises for new types of analgesic drugs. PMID:23409712

  17. Mesoscale fabrication and design

    NASA Astrophysics Data System (ADS)

    Hayes, Gregory R.

    A strong link between mechanical engineering design and materials science and engineering fabrication can facilitate an effective and adaptable prototyping process. In this dissertation, new developments in the lost mold-rapid infiltration forming (LM-RIF) process is presented which demonstrates the relationship between these two fields of engineering in the context of two device applications. Within the LM-RIF process, changes in materials processing and mechanical design are updated iteratively, often aided by statistical design of experiments (DOE). The LM-RIF process was originally developed by Antolino and Hayes et al to fabricate mesoscale components. In this dissertation the focus is on advancements in the process and underlying science. The presented advancements to the LM-RIF process include an augmented lithography procedure, the incorporation of engineered aqueous and non-aqueous colloidal suspensions, an assessment of constrained drying forces during LM-RIF processing, mechanical property evaluation, and finally prototype testing and validation. Specifically, the molding procedure within the LM-RIF process is capable of producing molds with thickness upwards of 1mm, as well as multi-layering to create three dimensional structures. Increasing the mold thickness leads to an increase in the smallest feature resolvable; however, the increase in mold thickness and three dimensional capability has expanded the mechanical design space. Tetragonally stabilized zirconia (3Y-TZP) is an ideal material for mesoscale instruments, as it is biocompatible, exhibits high strength, and is chemically stable. In this work, aqueous colloidal suspensions were formulated with two new gel-binder systems, increasing final natural orifice translumenal endoscopic surgery (NOTES) instrument yield from 0% to upwards of 40% in the best case scenario. The effects of the gel-binder system on the rheological behavior of the suspension along with the thermal characteristics of the gel

  18. Fabric circuits and method of manufacturing fabric circuits

    NASA Technical Reports Server (NTRS)

    Chu, Andrew W. (Inventor); Dobbins, Justin A. (Inventor); Scully, Robert C. (Inventor); Trevino, Robert C. (Inventor); Lin, Greg Y. (Inventor); Fink, Patrick W. (Inventor)

    2011-01-01

    A flexible, fabric-based circuit comprises a non-conductive flexible layer of fabric and a conductive flexible layer of fabric adjacent thereto. A non-conductive thread, an adhesive, and/or other means may be used for attaching the conductive layer to the non-conductive layer. In some embodiments, the layers are attached by a computer-driven embroidery machine at pre-determined portions or locations in accordance with a pre-determined attachment layout before automated cutting. In some other embodiments, an automated milling machine or a computer-driven laser using a pre-designed circuit trace as a template cuts the conductive layer so as to separate an undesired portion of the conductive layer from a desired portion of the conductive layer. Additional layers of conductive fabric may be attached in some embodiments to form a multi-layer construct.

  19. Channels of Propaganda.

    ERIC Educational Resources Information Center

    Sproule, J. Michael

    Defining propaganda as "efforts by special interests to win over the public covertly by infiltrating messages into various channels of public expression ordinarily viewed as politically neutral," this book argues that propaganda has become pervasive in American life. Pointing out that the 1990s society is inundated with propaganda from numerous…

  20. Learning in Tactile Channels

    ERIC Educational Resources Information Center

    Gescheider, George A.; Wright, John H.

    2012-01-01

    Vibrotactile intensity-discrimination thresholds for sinusoidal stimuli applied to the thenar eminence of the hand declined as a function of practice. However, improvement was confined to the tactile information-processing channel in which learning had occurred. Specifically, improvements in performance with training within the Pacinian-corpuscle…

  1. SK channels and calmodulin.

    PubMed

    Adelman, John P

    2016-01-01

    Calcium ions are Nature's most widely used signaling mechanism, mediating communication between pathways at virtually every physiological level. Ion channels are no exception, as the activities of a wide range of ion channels are intricately shaped by fluctuations in intracellular Ca(2+) levels. Mirroring the importance and the breadth of Ca(2+) signaling, free Ca(2+) levels are tightly controlled, and a myriad of Ca(2+) binding proteins transduce Ca(2+) signals, each with its own nuance, comprising a constantly changing symphony of metabolic activity. The founding member of Ca(2+) binding proteins is calmodulin (CaM), a small, acidic, modular protein endowed with gymnastic-like flexibility and E-F hand motifs that chelate Ca(2+) ions. In this review, I will trace the history that led to the realization that CaM serves as the Ca(2+)-gating cue for SK channels, the experiments that revealed that CaM is an intrinsic subunit of SK channels, and itself a target of regulation. PMID:25942650

  2. Chemistry in Microfluidic Channels

    ERIC Educational Resources Information Center

    Chia, Matthew C.; Sweeney, Christina M.; Odom, Teri W.

    2011-01-01

    General chemistry introduces principles such as acid-base chemistry, mixing, and precipitation that are usually demonstrated in bulk solutions. In this laboratory experiment, we describe how chemical reactions can be performed in a microfluidic channel to show advanced concepts such as laminar fluid flow and controlled precipitation. Three sets of…

  3. Developments in relativistic channeling

    SciTech Connect

    Carrigan, R.A. Jr.

    1996-10-01

    The possibility of using channeling as a tool for high energy accelerator applications and particle physics has now been extensively investigated. Bent crystals have been used for accelerator extraction and for particle deflection. Applications as accelerating devices have been discussed but have not yet been tried. 61 refs., 1 fig.

  4. Coffee-Ring Defined Short Channels for Inkjet-Printed Metal Oxide Thin-Film Transistors.

    PubMed

    Li, Yuzhi; Lan, Linfeng; Xiao, Peng; Sun, Sheng; Lin, Zhenguo; Song, Wei; Song, Erlong; Gao, Peixiong; Wu, Weijing; Peng, Junbiao

    2016-08-01

    Short-channel electronic devices several micrometers in length are difficult to implement by direct inkjet printing due to the limitation of position accuracy of the common inkjet printer system and the spread of functional ink on substrates. In this report, metal oxide thin-film transistors (TFTs) with channel lengths of 3.5 ± 0.7 μm were successfully fabricated with a common inkjet printer without any photolithography steps. Hydrophobic CYTOP coffee stripes, made by inkjet-printing and plasma-treating processes, were utilized to define the channel area of TFTs with channel lengths as short as ∼3.5 μm by dewetting the inks of the source/drain (S/D) precursors. Furthermore, by introduction of an ultrathin layer of PVA to modify the S/D surfaces, the spreading of precursor ink of the InOx semiconductor layer was well-controlled. The inkjet-printed short-channel TFTs exhibited a maximum mobility of 4.9 cm(2) V(-1) s(-1) and an on/off ratio of larger than 10(9). This approach of fabricating short-channel TFTs by inkjet printing will promote the large-area fabrication of short-channel TFTs in a cost-effective manner. PMID:27420373

  5. Coffee-Ring Defined Short Channels for Inkjet-Printed Metal Oxide Thin-Film Transistors.

    PubMed

    Li, Yuzhi; Lan, Linfeng; Xiao, Peng; Sun, Sheng; Lin, Zhenguo; Song, Wei; Song, Erlong; Gao, Peixiong; Wu, Weijing; Peng, Junbiao

    2016-08-01

    Short-channel electronic devices several micrometers in length are difficult to implement by direct inkjet printing due to the limitation of position accuracy of the common inkjet printer system and the spread of functional ink on substrates. In this report, metal oxide thin-film transistors (TFTs) with channel lengths of 3.5 ± 0.7 μm were successfully fabricated with a common inkjet printer without any photolithography steps. Hydrophobic CYTOP coffee stripes, made by inkjet-printing and plasma-treating processes, were utilized to define the channel area of TFTs with channel lengths as short as ∼3.5 μm by dewetting the inks of the source/drain (S/D) precursors. Furthermore, by introduction of an ultrathin layer of PVA to modify the S/D surfaces, the spreading of precursor ink of the InOx semiconductor layer was well-controlled. The inkjet-printed short-channel TFTs exhibited a maximum mobility of 4.9 cm(2) V(-1) s(-1) and an on/off ratio of larger than 10(9). This approach of fabricating short-channel TFTs by inkjet printing will promote the large-area fabrication of short-channel TFTs in a cost-effective manner.

  6. Quantum Bridge Fabrication Using Photolithography

    SciTech Connect

    Quinones, R.

    2001-04-16

    The need for high-speed performance electronics in computers integrated circuits and sensors, require the fabrication of low energy consumption diodes. Nano fabrication methods require new techniques and equipment. We are currently developing a procedure to fabricate a diode based on quantum-effects. The device will act like a traditional diode, but the nanometer scale will allow it to reach high speeds without over heating. This new diode will be on a nano-bridge so it can be attenuated by an electromagnetic wave. The goal is to obtain similar current vs voltage response as in a silicon diode.

  7. Fabricating Copper Nanotubes by Electrodeposition

    NASA Technical Reports Server (NTRS)

    Yang, E. H.; Ramsey, Christopher; Bae, Youngsam; Choi, Daniel

    2009-01-01

    Copper tubes having diameters between about 100 and about 200 nm have been fabricated by electrodeposition of copper into the pores of alumina nanopore membranes. Copper nanotubes are under consideration as alternatives to copper nanorods and nanowires for applications involving thermal and/or electrical contacts, wherein the greater specific areas of nanotubes could afford lower effective thermal and/or electrical resistivities. Heretofore, copper nanorods and nanowires have been fabricated by a combination of electrodeposition and a conventional expensive lithographic process. The present electrodeposition-based process for fabricating copper nanotubes costs less and enables production of copper nanotubes at greater rate.

  8. Channeling through Bent Crystals

    SciTech Connect

    Mack, Stephanie; /Ottawa U. /SLAC

    2012-09-07

    Bent crystals have demonstrated potential for use in beam collimation. A process called channeling is when accelerated particle beams are trapped by the nuclear potentials in the atomic planes within a crystal lattice. If the crystal is bent then the particles can follow the bending angle of the crystal. There are several different effects that are observed when particles travel through a bent crystal including dechanneling, volume capture, volume reflection and channeling. With a crystal placed at the edge of a particle beam, part of the fringe of the beam can be deflected away towards a detector or beam dump, thus helping collimate the beam. There is currently FORTRAN code by Igor Yazynin that has been used to model the passage of particles through a bent crystal. Using this code, the effects mentioned were explored for beam energy that would be seen at the Facility for Advanced Accelerator Experimental Tests (FACET) at a range of crystal orientations with respect to the incoming beam. After propagating 5 meters in vacuum space past the crystal the channeled particles were observed to separate from most of the beam with some noise due to dechanneled particles. Progressively smaller bending radii, with corresponding shorter crystal lengths, were compared and it was seen that multiple scattering decreases with the length of the crystal therefore allowing for cleaner detection of the channeled particles. The input beam was then modified and only a portion of the beam sent through the crystal. With the majority of the beam not affected by the crystal, most particles were not deflected and after propagation the channeled particles were seen to be deflected approximately 5mm. After a portion of the beam travels through the crystal, the entire beam was then sent through a quadrupole magnet, which increased the separation of the channeled particles from the remainder of the beam to a distance of around 20mm. A different code, which was developed at SLAC, was used to

  9. Microelectrode arrays fabricated using a novel hybrid microfabrication method

    PubMed Central

    Merlo, Mark W.; Snyder, Russell L.; Middlebrooks, John C.; Bachman, Mark

    2011-01-01

    We present novel hybrid microfabrication methods for microelectrode arrays that combine microwire assembly, microelectromechanical systems (MEMS) manufacturing techniques and precision tool-based micromachining. This combination enables hybrid microfabrication to produce complex geometries and structures, increase material selection, and improve integration. A 32-channel shank microelectrode array was fabricated to highlight the hybrid microfabrication techniques. The electrode shank was 130 μm at its narrowest, had a 127 μm thickness and had iridium oxide electrode sites that were 25 μm in diameter with 150 μm spacing. Techniques used to fabricate this electrode include microassembly of insulated gold wires into a micromold, micromolding the microelectrode shank, post molding machining, sacrificial release of the microelectrode and electrodeposition of iridium oxide onto the microelectrode sites. Electrode site position accuracy was shown to have a standard deviation of less than 4 μm. Acute in vivo recordings with the 32-channel shank microelectrode array demonstrated comparable performance to that obtained with commercial microelectrode arrays . This new approach to microelectrode array fabrication will enable new microelectrodes, such as multi-sided arrays, drug eluding electrodes and biodegradable shanks. PMID:21979567

  10. Effects of various oxygen partial pressures on Ti-doped ZnO thin film transistors fabricated on flexible plastic substrate

    NASA Astrophysics Data System (ADS)

    Cui, Guodong; Han, Dedong; Yu, Wen; Shi, Pan; Zhang, Yi; Huang, Lingling; Cong, Yingying; Zhou, Xiaoliang; Zhang, Xiaomi; Zhang, Shengdong; Zhang, Xing; Wang, Yi

    2016-04-01

    By applying a novel active layer of titanium zinc oxide (TiZO), we have successfully fabricated fully transparent thin-film transistors (TFTs) with a bottom gate structure fabricated on a flexible plastic substrate at low temperatures. The effects of various oxygen partial pressures during channel deposition were studied to improve the device performance. We found that the oxygen partial pressure during channel deposition has a significant impact on the performance of TiZO TFTs, and that the TFT developed under 10% oxygen partial pressure exhibits superior performance with a low threshold voltage (V th) of 2.37 V, a high saturation mobility (μsat) of 125.4 cm2 V-1 s-1, a steep subthreshold swing (SS) of 195 mV/decade and a high I on/I off ratio of 3.05 × 108. These results suggest that TiZO thin films are promising for high-performance fully transparent flexible TFTs and displays.

  11. Fully transparent thin film transistors based on zinc oxide channel layer and molybdenum doped indium oxide electrodes

    NASA Astrophysics Data System (ADS)

    MÄ dzik, Mateusz; Elamurugu, Elangovan; Viegas, Jaime

    2016-03-01

    In this work we report the fabrication of thin film transistors (TFT) with zinc oxide channel and molybdenum doped indium oxide (IMO) electrodes, achieved by room temperature sputtering. A set of devices was fabricated, with varying channel width and length from 5μm to 300μm. Output and transfer characteristics were then extracted to study the performance of thin film transistors, namely threshold voltage and saturation current, enabling to determine optimal fabrication process parameters. Optical transmission in the UV-VIS-IR are also reported.

  12. Fabrication of cellular materials

    NASA Astrophysics Data System (ADS)

    Prud'homme, Robert K.; Aksay, Ilhan A.; Garg, Rajeev

    1996-02-01

    Nature uses cellular materials in applications requiring strength while, simultaneously, minimizing raw materials requirements. Minimizing raw materials is efficient both in terms of the energy expended by the organism to synthesize the structure and in terms of the strength- to-weight ratio of the structure. Wood is the most obvious example of cellular bio-materials, and it is the focus of other presentations in this symposium. The lightweight bone structure of birds is another excellent example where weight is a key criterion. The anchoring foot of the common muscle [Mytilus edulis] whereby it attaches itself to objects is a further example of a biological system that uses a foam to fill space and yet conserve on raw materials. In the case of the muscle the foam is water filled and the foot structure distributes stress over a larger area so that the strength of the byssal thread from which it is suspended is matched to the strength of interfacial attachment of the foot to a substrate. In these examples the synthesis and fabrication of the cellular material is directed by intercellular, genetically coded, biochemical reactions. The resulting cell sizes are microns in scale. Cellular materials at the next larger scale are created by organisms at the next higher level of integration. For example an African tree frog lays her eggs in a gas/fluid foam sack she builds on a branch overhanging a pond. The outside of the foam sack hardens in the sun and prevents water evaporation. The foam structure minimizes the amount of fluid that needs to be incorporated into the sack and minimizes its weight. However, as far as the developing eggs are concerned, they are in an aqueous medium, i.e. the continuous fluid phase of the foam. After precisely six days the eggs hatch, and the solidified outer wall re-liquefies and dumps the emerging tadpoles into the pond below. The bee honeycomb is an example of a cellular material with exquisite periodicity at millimeter length scales. The

  13. Film Fabrication Technologies at NREL

    NASA Technical Reports Server (NTRS)

    Mcconnell, Robert D.

    1993-01-01

    The National Renewable Energy Laboratory (NREL) has extensive capabilities for fabricating a variety of high-technology films. Much of the in-house work in NREL's large photovoltaics (PV) program involves the fabrication of multiple thin-film semiconducting layers constituting a thin-film PV device. NREL's smaller program in superconductivity focuses on the fabrication of superconducting films on long, flexible tape substrates. This paper focuses on four of NREL's in-house research groups and their film fabrication techniques, developed for a variety of elements, alloys, and compounds to be deposited on a variety of substrates. As is the case for many national laboratories, NREL's technology transfer efforts are focusing on Cooperative Research and Development Agreements (CRADA's) between NREL researchers and private industry researchers.

  14. The structure of airplane fabrics

    NASA Technical Reports Server (NTRS)

    Walen, E Dean

    1920-01-01

    This report prepared by the Bureau of Standards for the National Advisory Committee for Aeronautics supplies the necessary information regarding the apparatus and methods of testing and inspecting airplane fabrics.

  15. Mechanics of a Knitted Fabric

    NASA Astrophysics Data System (ADS)

    Poincloux, Samuel; Lechenault, Frederic; Adda-Bedia, Mokhtar

    A simple knitted fabric can be seen as a topologically constrained slender rod following a periodic path. The non-linear properties of the fabric, such as large reversible deformation and characteristic shape under stress, arise from topological features known as stitches and are distinct from the constitutive yarn properties. Through experiments we studied a model stockinette fabric made of a single elastic thread, where the mechanical properties and local stitch displacements were measured. Then, we derived a model based on the yarn bending energy at the stitch level resulting in an evaluation of the displacement fields of the repetitive units which describe the fabric shape. The comparison between the predicted and the measured shape gives very good agreement and the right order of magnitude for the mechanical response is captured. This work aims at providing a fundamental framework for the understanding of knitted systems, paving the way to thread based smart materials. Contract ANR-14-CE07-0031-01 METAMAT.

  16. Parallel fabrication of nanogap electrodes.

    PubMed

    Johnston, Danvers E; Strachan, Douglas R; Johnson, A T Charlie

    2007-09-01

    We have developed a technique for simultaneously fabricating large numbers of nanogaps in a single processing step using feedback-controlled electromigration. Parallel nanogap formation is achieved by a balanced simultaneous process that uses a novel arrangement of nanoscale shorts between narrow constrictions where the nanogaps form. Because of this balancing, the fabrication of multiple nanoelectrodes is similar to that of a single nanogap junction. The technique should be useful for constructing complex circuits of molecular-scale electronic devices.

  17. Silicone nanocomposite coatings for fabrics

    NASA Technical Reports Server (NTRS)

    Eberts, Kenneth (Inventor); Lee, Stein S. (Inventor); Singhal, Amit (Inventor); Ou, Runqing (Inventor)

    2011-01-01

    A silicone based coating for fabrics utilizing dual nanocomposite fillers providing enhanced mechanical and thermal properties to the silicone base. The first filler includes nanoclusters of polydimethylsiloxane (PDMS) and a metal oxide and a second filler of exfoliated clay nanoparticles. The coating is particularly suitable for inflatable fabrics used in several space, military, and consumer applications, including airbags, parachutes, rafts, boat sails, and inflatable shelters.

  18. Benchtop fabrication of microfluidic systems based on curable polymers with improved solvent compatibility.

    PubMed

    Hashimoto, Michinao; Langer, Robert; Kohane, Daniel S

    2013-01-21

    This paper describes a general scheme to fabricate microchannels from curable polymers on a laboratory benchtop. Using the scheme described here, benchtop fabrication of SU-8 microfluidic systems was demonstrated for the first time, and their compatibility with organic solvents was demonstrated. The fabrication process has three major stages: 1) transferring patterns of microchannels to polymer films by molding, 2) releasing the patterned film and creating inlets and outlets for fluids, and 3) sealing two films together to create a closed channel system. Addition of a PDMS slab supporting the polymer film provided structural integrity during and after fabrication, allowing manipulation of the polymer films without fracturing or deformation. SU-8 channels fabricated according to this scheme exhibited solvent compatibility against continuous exposure to acetone and ethylacetate, which are incompatible with native PDMS. Using the SU-8 channels, continuous generation of droplets of ethylacetate, and templated synthesis of poly (lactic-co-glycolic acid) (PLGA) microparticles, both with stable size, were demonstrated continuously over 24 h, and at intervals over 75 days. PMID:23192674

  19. Velocity Vector Field Visualization of Flow in Liquid Acquisition Device Channel

    NASA Technical Reports Server (NTRS)

    McQuillen, John B.; Chao, David F.; Hall, Nancy R.; Zhang, Nengli

    2012-01-01

    A capillary flow liquid acquisition device (LAD) for cryogenic propellants has been developed and tested in NASA Glenn Research Center to meet the requirements of transferring cryogenic liquid propellants from storage tanks to an engine in reduced gravity environments. The prototypical mesh screen channel LAD was fabricated with a mesh screen, covering a rectangular flow channel with a cylindrical outlet tube, and was tested with liquid oxygen (LOX). In order to better understand the performance in various gravity environments and orientations at different liquid submersion depths of the screen channel LAD, a series of computational fluid dynamics (CFD) simulations of LOX flow through the LAD screen channel was undertaken. The resulting velocity vector field visualization for the flow in the channel has been used to reveal the gravity effects on the flow in the screen channel.

  20. Learning Channels and Verbal Behavior

    ERIC Educational Resources Information Center

    Lin, Fan-Yu; Kubina, Richard M., Jr.

    2004-01-01

    This article reviews the basics of learning channels and how specification of stimuli can help enhance verbal behavior. This article will define learning channels and the role of the ability matrix in training verbal behavior.

  1. Serial DNA immobilization in micro- and extended nanospace channels.

    PubMed

    Renberg, Björn; Sato, Kae; Mawatari, Kazuma; Idota, Naokazu; Tsukahara, Takehiko; Kitamori, Takehiko

    2009-06-01

    That focused arrays, even with a small set of ligands, provide more data than single point experiments is well established in the DNA microarray research field, but microarray technology has yet to be transferred to fused silica microchips. Fused silica microchips have several attractive features such as stability to pressure, solvents, acids and bases, and can be fabricated with minute dimensions, making them good candidates for nanofluidic research. However, due to harsh bonding conditions, DNA ligands must be immobilized after fabrication, thus preventing standard microarray spotting techniques from being used. In this paper, we provide tools for serial DNA immobilization in fused silica microchips using UV. We report the synthesis of a new UV-linker which was used to covalently couple functional DNA oligos to the inside of channels in fused silica microchips. With some simple modifications to our mask aligner, we were able to transfer OHP mask patterns, which allows the creation of basically any pattern in the channels. The functionality of the oligos was measured through the binding of fluorophore-labeled complementary target oligos. We examined parameters influencing DNA immobilization, and carry-over between spots after consecutive immobilizations inside the same channel. We also report the first successful multiple immobilizations of functional DNA oligos inside single channels of extended nanospace depth (460 nm). PMID:19458857

  2. Non-spherical particle generation from 4D optofluidic fabrication.

    PubMed

    Paulsen, Kevin S; Chung, Aram J

    2016-08-01

    Particles with non-spherical shapes can exhibit properties which are not available from spherical shaped particles. Complex shaped particles can provide unique benefits for areas such as drug delivery, tissue engineering, structural materials, and self-assembly building blocks. Current methods of creating complex shaped particles such as 3D printing, photolithography, and imprint lithography are limited by either slow speeds, shape limitations, or expensive processes. Previously, we presented a novel microfluidic flow lithography fabrication scheme combined with fluid inertia called optofluidic fabrication for the creation of complex shaped three-dimensional (3D) particles. This process was able to address the aforementioned limits and overcome two-dimensional shape limitations faced by traditional flow lithography methods; however, all of the created 3D particle shapes displayed top-down symmetry. Here, by introducing the time dimension into our existing optofluidic fabrication process, we break this top-down symmetry, generating fully asymmetric 3D particles where we termed the process: four-dimensional (4D) optofluidic fabrication. This 4D optofluidic fabrication is comprised of three sequential procedures. First, density mismatched precursor fluids flow past pillars within fluidic channels to manipulate the flow cross sections via fluid inertia. Next, the time dimension is incorporated by stopping the flow and allowing the denser fluids to settle by gravity to create asymmetric flow cross sections. Finally, the fluids are exposed to patterned ultraviolet (UV) light in order to polymerize fully asymmetric 3D-shaped particles. By varying inertial flow shaping, gravity-induced flow shaping, and UV light patterns, 4D optofluidic fabrication can create an infinite set of complex shaped asymmetric particles. PMID:27092661

  3. Non-spherical particle generation from 4D optofluidic fabrication.

    PubMed

    Paulsen, Kevin S; Chung, Aram J

    2016-08-01

    Particles with non-spherical shapes can exhibit properties which are not available from spherical shaped particles. Complex shaped particles can provide unique benefits for areas such as drug delivery, tissue engineering, structural materials, and self-assembly building blocks. Current methods of creating complex shaped particles such as 3D printing, photolithography, and imprint lithography are limited by either slow speeds, shape limitations, or expensive processes. Previously, we presented a novel microfluidic flow lithography fabrication scheme combined with fluid inertia called optofluidic fabrication for the creation of complex shaped three-dimensional (3D) particles. This process was able to address the aforementioned limits and overcome two-dimensional shape limitations faced by traditional flow lithography methods; however, all of the created 3D particle shapes displayed top-down symmetry. Here, by introducing the time dimension into our existing optofluidic fabrication process, we break this top-down symmetry, generating fully asymmetric 3D particles where we termed the process: four-dimensional (4D) optofluidic fabrication. This 4D optofluidic fabrication is comprised of three sequential procedures. First, density mismatched precursor fluids flow past pillars within fluidic channels to manipulate the flow cross sections via fluid inertia. Next, the time dimension is incorporated by stopping the flow and allowing the denser fluids to settle by gravity to create asymmetric flow cross sections. Finally, the fluids are exposed to patterned ultraviolet (UV) light in order to polymerize fully asymmetric 3D-shaped particles. By varying inertial flow shaping, gravity-induced flow shaping, and UV light patterns, 4D optofluidic fabrication can create an infinite set of complex shaped asymmetric particles.

  4. Fluid channeling system

    NASA Technical Reports Server (NTRS)

    Davis, Donald Y. (Inventor); Hitch, Bradley D. (Inventor)

    1994-01-01

    A fluid channeling system includes a fluid ejector, a heat exchanger, and a fluid pump disposed in series flow communication The ejector includes a primary inlet for receiving a primary fluid, and a secondary inlet for receiving a secondary fluid which is mixed with the primary fluid and discharged therefrom as ejector discharge. Heat is removed from the ejector discharge in the heat exchanger, and the heat exchanger discharge is compressed in the fluid pump and channeled to the ejector secondary inlet as the secondary fluid In an exemplary embodiment, the temperature of the primary fluid is greater than the maximum operating temperature of a fluid motor powering the fluid pump using a portion of the ejector discharge, with the secondary fluid being mixed with the primary fluid so that the ejector discharge temperature is equal to about the maximum operating temperature of the fluid motor.

  5. Geysering in boiling channels

    SciTech Connect

    Aritomi, Masanori; Takemoto, Takatoshi; Chiang, Jing-Hsien

    1995-09-01

    A concept of natural circulation BWRs such as the SBWR has been proposed and seems to be promising in that the primary cooling system can be simplified. The authors have been investigating thermo-hydraulic instabilities which may appear during the start-up in natural circulation BWRs. In our previous works, geysering was investigated in parallel boiling channels for both natural and forced circulations, and its driving mechanism and the effect of system pressure on geysering occurrence were made clear. In this paper, geysering is investigated in a vertical column and a U-shaped vertical column heated in the lower parts. It is clarified from the results that the occurrence mechanism of geysering and the dependence of system pressure on geysering occurrence coincide between parallel boiling channels in circulation systems and vertical columns in non-circulation systems.

  6. Evaluation of microfluidic channels with optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Czajkowski, J.; Prykäri, T.; Alarousu, E.; Lauri, J.; Myllylä, R.

    2010-11-01

    Application of time domain, ultra high resolution optical coherence tomography (UHR-OCT) in evaluation of microfluidic channels is demonstrated. Presented study was done using experimental UHR-OCT device based on a Kerr-lens mode locked Ti:sapphire femtosecond laser, a photonic crystal fibre and modified, free-space Michelson interferometer. To show potential of the technique, microfluidic chip fabricated by VTT Center for Printed Intelligence (Oulu, Finland) was measured. Ability for full volumetric reconstruction in non-contact manner enabled complete characterization of closed entity of a microfluidic channel without contamination and harm for the sample. Measurement, occurring problems, and methods of postprocessing for raw data are described. Results present completely resolved physical structure of the channel, its spatial dimensions, draft angles and evaluation of lamination quality.

  7. Side-gated ultrathin-channel nanopore FET sensors

    NASA Astrophysics Data System (ADS)

    Yanagi, Itaru; Oura, Takeshi; Haga, Takanobu; Ando, Masahiko; Yamamoto, Jiro; Mine, Toshiyuki; Ishida, Takeshi; Hatano, Toshiyuki; Akahori, Rena; Yokoi, Takahide; Anazawa, Takashi

    2016-03-01

    A side-gated, ultrathin-channel nanopore FET (SGNAFET) is proposed for fast and label-free DNA sequencing. The concept of the SGNAFET comprises the detection of changes in the channel current during DNA translocation through a nanopore and identifying the four types of nucleotides as a result of these changes. To achieve this goal, both p- and n-type SGNAFETs with a channel thicknesses of 2 or 4 nm were fabricated, and the stable transistor operation of both SGNAFETs in air, water, and a KCl buffer solution were confirmed. In addition, synchronized current changes were observed between the ionic current through the nanopore and the SGNAFET’s drain current during DNA translocation through the nanopore.

  8. Side-gated ultrathin-channel nanopore FET sensors.

    PubMed

    Yanagi, Itaru; Oura, Takeshi; Haga, Takanobu; Ando, Masahiko; Yamamoto, Jiro; Mine, Toshiyuki; Ishida, Takeshi; Hatano, Toshiyuki; Akahori, Rena; Yokoi, Takahide; Anazawa, Takashi

    2016-03-18

    A side-gated, ultrathin-channel nanopore FET (SGNAFET) is proposed for fast and label-free DNA sequencing. The concept of the SGNAFET comprises the detection of changes in the channel current during DNA translocation through a nanopore and identifying the four types of nucleotides as a result of these changes. To achieve this goal, both p- and n-type SGNAFETs with a channel thicknesses of 2 or 4 nm were fabricated, and the stable transistor operation of both SGNAFETs in air, water, and a KCl buffer solution were confirmed. In addition, synchronized current changes were observed between the ionic current through the nanopore and the SGNAFET's drain current during DNA translocation through the nanopore. PMID:26876025

  9. Side-gated ultrathin-channel nanopore FET sensors.

    PubMed

    Yanagi, Itaru; Oura, Takeshi; Haga, Takanobu; Ando, Masahiko; Yamamoto, Jiro; Mine, Toshiyuki; Ishida, Takeshi; Hatano, Toshiyuki; Akahori, Rena; Yokoi, Takahide; Anazawa, Takashi

    2016-03-18

    A side-gated, ultrathin-channel nanopore FET (SGNAFET) is proposed for fast and label-free DNA sequencing. The concept of the SGNAFET comprises the detection of changes in the channel current during DNA translocation through a nanopore and identifying the four types of nucleotides as a result of these changes. To achieve this goal, both p- and n-type SGNAFETs with a channel thicknesses of 2 or 4 nm were fabricated, and the stable transistor operation of both SGNAFETs in air, water, and a KCl buffer solution were confirmed. In addition, synchronized current changes were observed between the ionic current through the nanopore and the SGNAFET's drain current during DNA translocation through the nanopore.

  10. Substrate channelling as an approach to cascade reactions.

    PubMed

    Wheeldon, Ian; Minteer, Shelley D; Banta, Scott; Barton, Scott Calabrese; Atanassov, Plamen; Sigman, Matthew

    2016-04-01

    Millions of years of evolution have produced biological systems capable of efficient one-pot multi-step catalysis. The underlying mechanisms that facilitate these reaction processes are increasingly providing inspiration in synthetic chemistry. Substrate channelling, where intermediates between enzymatic steps are not in equilibrium with the bulk solution, enables increased efficiencies and yields in reaction and diffusion processes. Here, we review different mechanisms of substrate channelling found in nature and provide an overview of the analytical methods used to quantify these effects. The incorporation of substrate channelling into synthetic cascades is a rapidly developing concept, and recent examples of the fabrication of cascades with controlled diffusion and flux of intermediates are presented. PMID:27001725

  11. Hole Transconductance of [100] Long-Channel Si Nanowire Transistor

    NASA Astrophysics Data System (ADS)

    Yuk, Hyung-Sang; Trivedi, Krutarth; Oh, Jin-Heon; Lim, Kee-Joe

    2016-11-01

    We examined the hole transport characteristics of Si nanowire (NW) p-channel metal-oxide semiconductor with [100] channel orientation [4.8 nm × 4.7 nm (thickness × width)] having different lengths (2 μm, 5 μm, 10 μm, and 20 μm). The NW devices fabricated by the top-down method using ultra-thin Si on insulator exhibit electrical transport properties appropriate for future high-end applications. Interestingly, various oscillation behaviors were observed in the transconductance characteristics of the device. A comparison with two-dimensional-like nano devices provides useful information for further understanding one-dimensional (1D) transport properties and such oscillation behaviors. Thus, a practical hole transport model for 1D long-channel devices is presented.

  12. Quantum dot conjugates in a sub-micrometer fluidic channel

    DOEpatents

    Stavis, Samuel M.; Edel, Joshua B.; Samiee, Kevan T.; Craighead, Harold G.

    2008-07-29

    A nanofluidic channel fabricated in fused silica with an approximately 500 nm square cross section was used to isolate, detect and identify individual quantum dot conjugates. The channel enables the rapid detection of every fluorescent entity in solution. A laser of selected wavelength was used to excite multiple species of quantum dots and organic molecules, and the emission spectra were resolved without significant signal rejection. Quantum dots were then conjugated with organic molecules and detected to demonstrate efficient multicolor detection. PCH was used to analyze coincident detection and to characterize the degree of binding. The use of a small fluidic channel to detect quantum dots as fluorescent labels was shown to be an efficient technique for multiplexed single molecule studies. Detection of single molecule binding events has a variety of applications including high throughput immunoassays.

  13. Quantum dot conjugates in a sub-micrometer fluidic channel

    DOEpatents

    Stavis, Samuel M.; Edel, Joshua B.; Samiee, Kevan T.; Craighead, Harold G.

    2010-04-13

    A nanofluidic channel fabricated in fused silica with an approximately 500 nm square cross section was used to isolate, detect and identify individual quantum dot conjugates. The channel enables the rapid detection of every fluorescent entity in solution. A laser of selected wavelength was used to excite multiple species of quantum dots and organic molecules, and the emission spectra were resolved without significant signal rejection. Quantum dots were then conjugated with organic molecules and detected to demonstrate efficient multicolor detection. PCH was used to analyze coincident detection and to characterize the degree of binding. The use of a small fluidic channel to detect quantum dots as fluorescent labels was shown to be an efficient technique for multiplexed single molecule studies. Detection of single molecule binding events has a variety of applications including high throughput immunoassays.

  14. Sub-micrometer fluidic channel for measuring photon emitting entities

    DOEpatents

    Stavis, Samuel M; Edel, Joshua B; Samiee, Kevan T; Craighead, Harold G

    2014-11-18

    A nanofluidic channel fabricated in fused silica with an approximately 500 nm square cross section was used to isolate, detect and identify individual quantum dot conjugates. The channel enables the rapid detection of every fluorescent entity in solution. A laser of selected wavelength was used to excite multiple species of quantum dots and organic molecules, and the emission spectra were resolved without significant signal rejection. Quantum dots were then conjugated with organic molecules and detected to demonstrate efficient multicolor detection. PCH was used to analyze coincident detection and to characterize the degree of binding. The use of a small fluidic channel to detect quantum dots as fluorescent labels was shown to be an efficient technique for multiplexed single molecule studies. Detection of single molecule binding events has a variety of applications including high throughput immunoassays.

  15. Athermal channeled spectropolarimeter

    SciTech Connect

    Jones, Julia Craven

    2015-12-08

    A temperature insensitive (athermal) channeled spectropolarimeter (CSP) is described. The athermal CSP includes a crystal retarder formed of a biaxial crystal. The crystal retarder has three crystal axes, wherein each axis has its own distinct index of refraction. The axes are oriented in a particular manner, causing an amplitude modulating carrier frequency induced by the crystal retarder to be thermally invariant. Accordingly, a calibration beam technique can be used over a relatively wide range of ambient temperatures, with a common calibration data set.

  16. Aquaglyceroporins: generalized metalloid channels

    PubMed Central

    Mukhopadhyay, Rita; Bhattacharjee, Hiranmoy; Rosen, Barry P.

    2014-01-01

    Background: Aquaporins (AQPs), members of a superfamily of transmembrane channel proteins, are ubiquitous in all domains of life. They fall into a number of branches that can be functionally categorized into two major sub-groups: i) orthodox aquaporins, which are water-specific channels, and ii) aquaglyceroporins, which allow the transport of water, non-polar solutes, such as urea or glycerol, the reactive oxygen species hydrogen peroxide, and gases such as ammonia, carbon dioxide and nitric oxide and, as described in this review, metalloids. Scope of Review: This review summarizes the key findings that AQP channels conduct bidirectional movement of metalloids into and out of cells. Major Conclusions: As(OH)3 and Sb(OH)3 behave as inorganic molecular mimics of glycerol, a property that allows their passage through AQP channels. Plant AQPs also allow the passage of boron and silicon as their hydroxyacids, boric acid (B(OH)3) and orthosilicic acid (Si(OH)4), respectively. Genetic analysis suggests that germanic acid (GeO2) is also a substrate. While As(III), Sb(III) and Ge(IV) are toxic metalloids, borate (B(III)) and silicate (Si(IV)) are essential elements in higher plants. General Significance: The uptake of environmental metalloids by aquaporins provides an understanding of (i) how toxic elements such as arsenic enter the food chain; (ii) the delivery of arsenic and antimony containing drugs in the treatment of certain forms of leukemia and chemotherapy of diseases caused by pathogenic protozoa; and (iii) the possibility that food plants such as rice could be made safer by genetically modifying them to exclude arsenic while still accumulating boron and silicon. PMID:24291688

  17. Radar channel balancing with commutation

    SciTech Connect

    Doerry, Armin Walter

    2014-02-01

    When multiple channels are employed in a pulse-Doppler radar, achieving and maintaining balance between the channels is problematic. In some circumstances the channels may be commutated to achieve adequate balance. Commutation is the switching, trading, toggling, or multiplexing of the channels between signal paths. Commutation allows modulating the imbalance energy away from the balanced energy in Doppler, where it can be mitigated with filtering.

  18. Ion channeling revisited

    SciTech Connect

    Doyle, Barney Lee; Corona, Aldo; Nguyen, Anh

    2014-09-01

    A MS Excel program has been written that calculates accidental, or unintentional, ion channeling in cubic bcc, fcc and diamond lattice crystals or polycrystalline materials. This becomes an important issue when simulating the creation by energetic neutrons of point displacement damage and extended defects using beams of ions. All of the tables and graphs in the three Ion Beam Analysis Handbooks that previously had to be manually looked up and read from were programed into Excel in handy lookup tables, or parameterized, for the case of the graphs, using rather simple exponential functions with different powers of the argument. The program then offers an extremely convenient way to calculate axial and planar half-angles and minimum yield or dechanneling probabilities, effects on half-angles of amorphous overlayers, accidental channeling probabilities for randomly oriented crystals or crystallites, and finally a way to automatically generate stereographic projections of axial and planar channeling half-angles. The program can generate these projections and calculate these probabilities for axes and [hkl] planes up to (555).

  19. The alpha channeling effect

    SciTech Connect

    Fisch, N. J.

    2015-12-10

    Alpha particles born through fusion reactions in a tokamak reactor tend to slow down on electrons, but that could take up to hundreds of milliseconds. Before that happens, the energy in these alpha particles can destabilize on collisionless timescales toroidal Alfven modes and other waves, in a way deleterious to energy confinement. However, it has been speculated that this energy might be instead be channeled into useful energy, so as to heat fuel ions or to drive current. Such a channeling needs to be catalyzed by waves Waves can produce diffusion in energy of the alpha particles in a way that is strictly coupled to diffusion in space. If these diffusion paths in energy-position space point from high energy in the center to low energy on the periphery, then alpha particles will be cooled while forced to the periphery. The energy from the alpha particles is absorbed by the wave. The amplified wave can then heat ions or drive current. This process or paradigm for extracting alpha particle energy collisionlessly has been called alpha channeling. While the effect is speculative, the upside potential for economical fusion is immense. The paradigm also operates more generally in other contexts of magnetically confined plasma.

  20. Roll-to-plate fabrication of microfluidic devices with rheology-modified thiol-ene resins

    NASA Astrophysics Data System (ADS)

    Senkbeil, Silja; Aho, Johanna; Yde, Leif; Lindvold, Lars R.; Stensborg, Jan F.; Rantanen, Jukka; Lafleur, Josiane P.; Kutter, Jörg P.

    2016-07-01

    In this paper, the replication possibilities of microfluidic channels by UV-roll-to-plate fabrication were investigated and a study of rheology-modified thiol-ene for the application in such a UV-roll-to-plate setup was conducted. The system allows the manufacture of channels with aspect ratios of 2:1 and a maximal channel depth of 90 μm as well as the sealing of the finished devices with patterning and sealing speeds of up to 19 m min‑1. By adding fumed silica nanoparticles to the uncured resins, it was possible to alter the rheological behavior of the resin system to fabricate shallow microfluidic channels with 40  ×  95 μm cross-sectional dimensions. Moreover, deeper (90 μm) channels can be fabricated with highly viscous resins based on thiol-terminated oligomers. As a demonstration, capillary electrophoresis chips were prepared and tested for a simple separation of two fluorescent dyes.

  1. Roll-to-plate fabrication of microfluidic devices with rheology-modified thiol-ene resins

    NASA Astrophysics Data System (ADS)

    Senkbeil, Silja; Aho, Johanna; Yde, Leif; Lindvold, Lars R.; Stensborg, Jan F.; Rantanen, Jukka; Lafleur, Josiane P.; Kutter, Jörg P.

    2016-07-01

    In this paper, the replication possibilities of microfluidic channels by UV-roll-to-plate fabrication were investigated and a study of rheology-modified thiol-ene for the application in such a UV-roll-to-plate setup was conducted. The system allows the manufacture of channels with aspect ratios of 2:1 and a maximal channel depth of 90 μm as well as the sealing of the finished devices with patterning and sealing speeds of up to 19 m min-1. By adding fumed silica nanoparticles to the uncured resins, it was possible to alter the rheological behavior of the resin system to fabricate shallow microfluidic channels with 40  ×  95 μm cross-sectional dimensions. Moreover, deeper (90 μm) channels can be fabricated with highly viscous resins based on thiol-terminated oligomers. As a demonstration, capillary electrophoresis chips were prepared and tested for a simple separation of two fluorescent dyes.

  2. Fabrication and optimization of a whiskerless Schottky barrier diode for submillimeter wave applications

    NASA Technical Reports Server (NTRS)

    Bishop, W.; Mattauch, R. J.

    1990-01-01

    The following accomplishments were made towards the goal of an optimized whiskerless diode chip for submillimeter wavelength applications. (1) Surface channel whiskerless diode structure was developed which offers excellent DC and RF characteristics, reduced shunt capacitance and simplified fabrication compared to mesa and proton isolated structures. (2) Reliable fabrication technology was developed for the surface channel structure. The new anode plating technology is a major improvement. (3) DC and RF characterization of the surface channel diode was compared with whisker contacted diodes. This data indicates electrical performance as good as the best reported for similar whisker contacted devices. (4) Additional batches of surface channel diodes were fabricated with excellent I-V and reduced shunt capacitance. (5) Large scale capacitance modelinng was done for the planar diode structure. This work revealed the importance of removing the substrate gallium arsenide for absolute minimum pad capacitance. (6) A surface channel diode was developed on quartz substrate and this substrate was completely removed after diode mounting for minimum parasitic capacitance. This work continues with the goal of producing excellent quality submillimeter wavelength planar diodes which satisfy the requirements of easy handling and robustness. These devices will allow the routine implementation of Schottky receivers into space-based applications at frequencies as high as 1 THz, and, in the future, beyond.

  3. Investigation of electroforming techniques. [fabrication of regeneratively cooled thrust chambers

    NASA Technical Reports Server (NTRS)

    Malone, G. A.

    1975-01-01

    Copper and nickel electroforming was examined for the purpose of establishing the necessary processes and procedures for repeatable, successful fabrication of the outer structures of regeneratively cooled thrust chambers. The selection of electrolytes for copper and nickel deposition is described. The development studies performed to refine and complete the processes necessary for successful chamber shell fabrication and the testing employed to verify the applicability of the processes and procedures to small scale hardware are described. Specifications were developed to afford a guideline for the electroforming of high quality outer shells on regeneratively cooled thrust chamber liners. Test results indicated repeatable mechanical properties could be produced in copper deposits from the copper sulfate electrolyte with periodic current reversal and in nickel deposits from the sulfamate solution. Use of inert, removable channel fillers and the conductivizing of such is described. Techniques (verified by test) which produce high integrity bonds to copper and copper alloy liners are discussed.

  4. Model NbTi Helical Solenoid Fabrication and Test Results

    SciTech Connect

    Andreev, N.; Barzi, E.; Chlachidze, G.; Evbota, D.; Kashikhin, V.S.; Kashikhin, V.V.; Lamm, M.J.; Makarov, A.; Novitski, I.; Orris, D.F.; Tartaglia, M.A.; /Fermilab

    2011-09-01

    A program to develop model magnets for a helical cooling channel is under way at Fermilab. In the first steps of a planned sequence of magnets, two four-coil helical solenoid models with 300 mm aperture have been fabricated and tested. These two models, HSM01 and HSM02, used insulated NbTi Rutherford cable wound onto stainless steel rings with spliceless transitions between coils. Strip heaters were included for quench protection of each coil, and the coils were epoxy-impregnated after winding inside the support structures. Based on the results of the first model the second model was made using a cable with optimized cross-section, improved winding and epoxy-impregnation procedures, enhanced ground insulation, and included heat exchange tubing for a test of conduction cooling. We report on the results and lessons learned from fabrication and tests of these two models.

  5. Silicon nanowire circuits fabricated by AFM oxidation nanolithography.

    PubMed

    Martínez, Ramses V; Martínez, Javier; Garcia, Ricardo

    2010-06-18

    We report a top-down process for the fabrication of single-crystalline silicon nanowire circuits and devices. Local oxidation nanolithography is applied to define very narrow oxide masks on top of a silicon-on-insulator substrate. In a plasma etching, the nano-oxide mask generates a nanowire with a rectangular section. The nanowire width coincides with the lateral size of the mask. In this way, uniform and well-defined transistors with channel widths in the 10-20 nm range have been fabricated. The nanowires can be positioned with sub-100 nm lateral accuracy. The transistors exhibit an on/off current ratio of 10(5). The atomic force microscope nanolithography offers full control of the nanowire's shape from straight to circular or a combination of them. It also enables the integration of several nanowires within the same circuit. The nanowire transistors have been applied to detect immunological processes.

  6. Optofluidic fabrication for 3D-shaped particles

    NASA Astrophysics Data System (ADS)

    Paulsen, Kevin S.; di Carlo, Dino; Chung, Aram J.

    2015-04-01

    Complex three-dimensional (3D)-shaped particles could play unique roles in biotechnology, structural mechanics and self-assembly. Current methods of fabricating 3D-shaped particles such as 3D printing, injection moulding or photolithography are limited because of low-resolution, low-throughput or complicated/expensive procedures. Here, we present a novel method called optofluidic fabrication for the generation of complex 3D-shaped polymer particles based on two coupled processes: inertial flow shaping and ultraviolet (UV) light polymerization. Pillars within fluidic platforms are used to deterministically deform photosensitive precursor fluid streams. The channels are then illuminated with patterned UV light to polymerize the photosensitive fluid, creating particles with multi-scale 3D geometries. The fundamental advantages of optofluidic fabrication include high-resolution, multi-scalability, dynamic tunability, simple operation and great potential for bulk fabrication with full automation. Through different combinations of pillar configurations, flow rates and UV light patterns, an infinite set of 3D-shaped particles is available, and a variety are demonstrated.

  7. Optofluidic fabrication for 3D-shaped particles

    PubMed Central

    Paulsen, Kevin S.; Di Carlo, Dino; Chung, Aram J.

    2015-01-01

    Complex three-dimensional (3D)-shaped particles could play unique roles in biotechnology, structural mechanics and self-assembly. Current methods of fabricating 3D-shaped particles such as 3D printing, injection moulding or photolithography are limited because of low-resolution, low-throughput or complicated/expensive procedures. Here, we present a novel method called optofluidic fabrication for the generation of complex 3D-shaped polymer particles based on two coupled processes: inertial flow shaping and ultraviolet (UV) light polymerization. Pillars within fluidic platforms are used to deterministically deform photosensitive precursor fluid streams. The channels are then illuminated with patterned UV light to polymerize the photosensitive fluid, creating particles with multi-scale 3D geometries. The fundamental advantages of optofluidic fabrication include high-resolution, multi-scalability, dynamic tunability, simple operation and great potential for bulk fabrication with full automation. Through different combinations of pillar configurations, flow rates and UV light patterns, an infinite set of 3D-shaped particles is available, and a variety are demonstrated. PMID:25904062

  8. Micro-channel plate detector

    SciTech Connect

    Elam, Jeffrey W.; Lee, Seon W.; Wang, Hsien -Hau; Pellin, Michael J.; Byrum, Karen; Frisch, Henry J.

    2015-09-22

    A method and system for providing a micro-channel plate detector. An anodized aluminum oxide membrane is provided and includes a plurality of nanopores which have an Al coating and a thin layer of an emissive oxide material responsive to incident radiation, thereby providing a plurality of radiation sensitive channels for the micro-channel plate detector.

  9. Cascading blockages in channel bundles.

    PubMed

    Barré, C; Talbot, J

    2015-11-01

    Flow in channel networks may involve a redistribution of flux following the blockage or failure of an individual link. Here we consider a simplified model consisting of N(c) parallel channels conveying a particulate flux. Particles enter these channels according to a homogeneous Poisson process and an individual channel blocks if more than N particles are simultaneously present. The behavior of the composite system depends strongly on how the flux of entering particles is redistributed following a blockage. We consider two cases. In the first, the intensity on each open channel remains constant while in the second the total intensity is evenly redistributed over the open channels. We obtain exact results for arbitrary N(c) and N for a system of independent channels and for arbitrary N(c) and N=1 for coupled channels. For N>1 we present approximate analytical as well as numerical results. Independent channels block at a decreasing rate due to a simple combinatorial effect, while for coupled channels the interval between successive blockages remains constant for N=1 but decreases for N>1. This accelerating cascade is due to the nonlinear dependence of the mean blocking time of a single channel on the entering particle flux that more than compensates for the decrease in the number of active channels.

  10. Proton or helium ion beam written channel waveguides in Nd:YAG ceramics

    NASA Astrophysics Data System (ADS)

    Yao, Yicun; Zhang, Chao; Vanga, Sudheer Kumar; Bettiol, A. A.; Chen, Feng

    2013-10-01

    We report on the fabrication of channel waveguides in Nd:YAG ceramics, using either focused proton beam writing (PBW) or He beam writing (HeBW) techniques. Energies of ions used in the writing process were at 1 MeV and 2 MeV, respectively, with different writing fluence. High quality channel waveguides were produced in both H+ and He+ implanted regions. Characteristics of the waveguides were explored, and refractive index distribution of the waveguide was reconstructed.

  11. Test results of a 90 MHZ integrated circuit sixteen channel analog pipeline for SSC detector calorimetry

    SciTech Connect

    Kleinfelder, S.A.; Levi, M.; Milgrome, O.

    1990-10-01

    A sixteen channel analog transient recorder with 128 cells per channel has been fabricated as an integrated circuit and tested at speeds of up to 90 MHz. The circuit uses a switched capacitor array technology to achieve a simultaneous read and write capability and twelve bit dynamic range. The high performance of this part should satisfy the demanding electronics requirements of calorimeter detectors at the SSC. The circuit parameters and test results are presented. 2 refs., 3 figs., 1 tab.

  12. Integratible Process for Fabrication of Fluidic Microduct Networks on a Single Wafer

    SciTech Connect

    Matzke, C.M.; Ashby, C.I.; Bridges, M.M.; Griego, L.; Wong, C.C.

    1999-09-07

    We present a microelectronics fabrication compatible process that comprises photolithography and a key room temperature SiON thin film plasma deposition to define and seal a fluidic microduct network. Our single wafer process is independent of thermo-mechanical material properties, particulate cleaning, global flatness, assembly alignment, and glue medium application, which are crucial for wafer fusion bonding or sealing techniques using a glue medium. From our preliminary experiments, we have identified a processing window to fabricate channels on silicon, glass and quartz substrates. Channels with a radius of curvature between 8 and 50 {micro}m, are uniform along channel lengths of several inches and repeatable across the wafer surfaces. To further develop this technology, we have begun characterizing the SiON film properties such as elastic modulus using nanoindentation, and chemical bonding compatibility with other microelectronic materials.

  13. Silicon micro-mold and method for fabrication

    DOEpatents

    Morales, Alfredo M.

    2005-01-11

    The present invention describes a method for rapidly fabricating a robust 3-dimensional silicon micro-mold for use in preparing complex metal micro-components. The process begins by depositing a conductive metal layer onto one surface of a silicon wafer. A thin photoresist and a standard lithographic mask are then used to transfer a trace image pattern onto the opposite surface of the wafer by exposing and developing the resist. The exposed portion of the silicon substrate is anisotropically etched through the wafer thickness down to conductive metal layer to provide an etched pattern consisting of a series of rectilinear channels and recesses in the silicon which serve as the silicon micro-mold. Microcomponents are prepared with this mold by first filling the mold channels and recesses with a metal deposit, typically by electroplating, and then removing the silicon micro-mold by chemical etching.

  14. Microchannel crossflow fluid heat exchanger and method for its fabrication

    DOEpatents

    Swift, G.W.; Migliori, A.; Wheatley, J.C.

    1982-08-31

    A microchannel crossflow fluid heat exchanger and a method for its fabrication are disclosed. The heat exchanger is formed from a stack of thin metal sheets which are bonded together. The stack consists of alternating slotted and unslotted sheets. Each of the slotted sheets includes multiple parallel slots which form fluid flow channels when sandwiched between the unslotted sheets. Successive slotted sheets in the stack are rotated ninety degrees with respect to one another so as to form two sets of orthogonally extending fluid flow channels which are arranged in a crossflow configuration. The heat exchanger has a high surface to volume ratio, a small dead volume, a high heat transfer coefficient, and is suitable for use with fluids under high pressures. The heat exchanger has particular application in a Stirling engine that utilizes a liquid as the working substance.

  15. Microchannel crossflow fluid heat exchanger and method for its fabrication

    DOEpatents

    Swift, Gregory W.; Migliori, Albert; Wheatley, John C.

    1985-01-01

    A microchannel crossflow fluid heat exchanger and a method for its fabrication are disclosed. The heat exchanger is formed from a stack of thin metal sheets which are bonded together. The stack consists of alternating slotted and unslotted sheets. Each of the slotted sheets includes multiple parallel slots which form fluid flow channels when sandwiched between the unslotted sheets. Successive slotted sheets in the stack are rotated ninety degrees with respect to one another so as to form two sets of orthogonally extending fluid flow channels which are arranged in a crossflow configuration. The heat exchanger has a high surface to volume ratio, a small dead volume, a high heat transfer coefficient, and is suitable for use with fluids under high pressures. The heat exchanger has particular application in a Stirling engine that utilizes a liquid as the working substance.

  16. Microchannel crossflow fluid heat exchanger and method for its fabrication

    DOEpatents

    Swift, G.W.; Migliori, A.; Wheatley, J.C.

    1985-05-14

    A microchannel crossflow fluid heat exchanger and a method for its fabrication are disclosed. The heat exchanger is formed from a stack of thin metal sheets which are bonded together. The stack consists of alternating slotted and unslotted sheets. Each of the slotted sheets includes multiple parallel slots which form fluid flow channels when sandwiched between the unslotted sheets. Successive slotted sheets in the stack are rotated ninety degrees with respect to one another so as to form two sets of orthogonally extending fluid flow channels which are arranged in a crossflow configuration. The heat exchanger has a high surface to volume ratio, a small dead volume, a high heat transfer coefficient, and is suitable for use with fluids under high pressures. The heat exchanger has particular application in a Stirling engine that utilizes a liquid as the working substance. 9 figs.

  17. Fabrication of microchannel structures in fluorinated ethylene propylene.

    PubMed

    Sahlin, Eskil; Beisler, Amy T; Woltman, Steven J; Weber, Stephen G

    2002-09-01

    A new technique for fabrication of channel structures with diameters down to 13 microm in fluorinated ethylene propylene (also known as poly(tetrafluoroethylene-co-hexafluoropropylene), FEP) is described. The technique is based on the unique property of a dual-layer fluoropolymer tubing consisting of an outer layer of poly(tetrafluoroethylene) (PTFE) and an inner layer of FEP. When heated (>350 degrees C), the outer PTFE layer shrinks while the inner FEP layer melts, resulting in filling of all empty space inside the tubing with FEP. The channel structures are formed using tungsten wires as templates that are pulled out after completion of the shrinking and melting process. While several analytical devices have been reproducibly prepared and shown to function, this report describes a single example. A microreactor coupled to an electrochemical flow cell detects the biuret complex of the natively electroinactive peptide des-Tyr-Leu-enkephalin.

  18. A novel method of fabricating integrated FETs for MEMS applications.

    SciTech Connect

    Okandan, Murat; Bennett, Reid Stuart; Draper, Bruce Leroy; Mani, Seethambal S.

    2003-07-01

    This paper demonstrates a simple technique for building n-channel MOSFETs and complex micromechanical systems simultaneously instead of serially, allowing a more straightforward integration of complete systems. The fabrication sequence uses few additional process steps and only one additional masking layer compared to a MEMS-only technology. The process flow forms the MOSFET gate electrode using the first level of mechanical polycrystalline silicon, while the MOSFET source and drain regions are formed by dopant diffusions into the substrate from subsequent levels of heavily doped poly that is used for mechanical elements. The process yields devices with good, repeatable electrical characteristics suitable for a wide range of digital and analog applications.

  19. Fabrication process for the PEP II RF cavities

    SciTech Connect

    Franks, R.M.; Rimmer, R.A.; Schwarz, H.

    1997-06-05

    This paper presents the major steps used in the fabrication of the 26 RF Cavities required for the PEP-II B-factory. Several unique applications of conventional processes have been developed and successfully implemented: electron beam welding (EBW), with minimal porosity, of .75 inch (19 mm) copper cross-sections; extensive 5-axis milling of water channels; electroplating of .37 inch (10 mm) thick OFE copper; tuning of the cavity by profiling beam noses prior to final joining with the cavity body; and machining of the cavity interior, are described here.

  20. Fabrication of multilayered nanofluidic membranes through silicon templates

    NASA Astrophysics Data System (ADS)

    Varricchio, Stefano S. G.; Cyrille, Hibert; Arnaud, Bertsch; Philippe, Renaud

    2015-12-01

    We present a new fabrication method for solid-state nanoporous membranes based on sacrificial template structures made of silicon. The process consists of creating membranes by evaporating thin-films on sacrificial templates which, after their selective removal, opens the nanopores and releases the free-standing membranes. This way it is possible to define the geometry of the pore by design and to build the membrane by stacking thin-films of various materials through evaporation. Such a membrane with controlled porosity, pore geometry, thickness and nano-channel composition provides new opportunities for selective chemical functionalization, gating, electrical sensing or electrical stimulation inside the nanopore.

  1. Encapsulate-and-peel: fabricating carbon nanotube CMOS integrated circuits in a flexible ultra-thin plastic film

    NASA Astrophysics Data System (ADS)

    Gao, Pingqi; Zhang, Qing

    2014-02-01

    Fabrication of single-walled carbon nanotube thin film (SWNT-TF) based integrated circuits (ICs) on soft substrates has been challenging due to several processing-related obstacles, such as printed/transferred SWNT-TF pattern and electrode alignment, electrical pad/channel material/dielectric layer flatness, adherence of the circuits onto the soft substrates etc. Here, we report a new approach that circumvents these challenges by encapsulating pre-formed SWNT-TF-ICs on hard substrates into polyimide (PI) and peeling them off to form flexible ICs on a large scale. The flexible SWNT-TF-ICs show promising performance comparable to those circuits formed on hard substrates. The flexible p- and n-type SWNT-TF transistors have an average mobility of around 60 cm2 V-1 s-1, a subthreshold slope as low as 150 mV dec-1, operating gate voltages less than 2 V, on/off ratios larger than 104 and a switching speed of several kilohertz. The post-transfer technique described here is not only a simple and cost-effective pathway to realize scalable flexible ICs, but also a feasible method to fabricate flexible displays, sensors and solar cells etc.

  2. 7-Octenyltrichrolosilane/trimethyaluminum hybrid dielectrics fabricated by molecular-atomic layer deposition on ZnO thin film transistors

    NASA Astrophysics Data System (ADS)

    Huang, Jie; Lee, Mingun; Lucero, Antonio T.; Cheng, Lanxia; Ha, Min-Woo; Kim, Jiyoung

    2016-06-01

    We demonstrate the fabrication of 7-octenytrichlorosilane (7-OTS)/trimethylaluminum (TMA) organic-inorganic hybrid films using molecular-atomic layer deposition (MALD). The properties of 7-OTS/TMA hybrid films are extensively investigated using transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), atomic force microscopy (AFM), and electrical measurements. Our results suggest that uniform and smooth amorphous hybrid thin films with excellent insulating properties are obtained using the MALD process. Films have a relatively high dielectric constant of approximately 5.0 and low leakage current density. We fabricate zinc oxide (ZnO) based thin film transistors (TFTs) using 7-OTS/TMA hybrid material as a back gate dielectric with the top ZnO channel layer deposited in-situ via MALD. The ZnO TFTs exhibit a field effect mobility of approximately 0.43 cm2 V-1 s-1, a threshold voltage of approximately 1 V, and an on/off ratio of approximately 103 under low voltage operation (from -3 to 9 V). This work demonstrates an organic-inorganic hybrid gate dielectric material potentially useful in flexible electronics application.

  3. Sacrificial bridges for MEMS fabrication

    NASA Astrophysics Data System (ADS)

    Chang, Chao-Min; Chen, Yang-Che; Fong, Chien-Fu; Guu, Yunn-Horng; Chen, Rongshun; Yeh, J. Andrew; Hou, Max T.

    2011-09-01

    This study discusses sacrificial bridges that are used to release MEMS devices. Before being released, sacrificial bridges connect all the component structures into an integral structure. Solder bump bonding is used to mount the MEMS chip on another chip or a printed circuit board (PCB) and to maintain the alignment among all component structures after removal of the sacrificial bridges. Two types of sacrificial bridges were designed, analyzed and fabricated. The fabrication process—which used low resistivity single crystal silicon (SCS) wafers as the device material—was developed to implement the sacrificial bridges. Novel SCS through silicon vias (TSVs), which interconnect stacked chips, was made using the same process. An electrostatic comb drive actuator was fabricated and mounted onto a PCB. The fabricated actuator was tested to demonstrate the feasibility of the fabrication process, sacrificial bridges and SCS TSVs. The results show that the actuator worked well. Its maximum displacement and resonant frequency were 69.9 µm and 406 Hz, respectively. This method is promising for the delivery of a novel 3D system in package for MEMS devices.

  4. 14 CFR 29.605 - Fabrication methods.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Fabrication methods. 29.605 Section 29.605... STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Design and Construction General § 29.605 Fabrication methods. (a) The methods of fabrication used must produce consistently sound structures. If a fabrication...

  5. 14 CFR 27.605 - Fabrication methods.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Fabrication methods. 27.605 Section 27.605... STANDARDS: NORMAL CATEGORY ROTORCRAFT Design and Construction General § 27.605 Fabrication methods. (a) The methods of fabrication used must produce consistently sound structures. If a fabrication process (such...

  6. 14 CFR 23.605 - Fabrication methods.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Fabrication methods. 23.605 Section 23.605... Fabrication methods. (a) The methods of fabrication used must produce consistently sound structures. If a... fabrication method must be substantiated by a test program....

  7. 14 CFR 25.605 - Fabrication methods.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Fabrication methods. 25.605 Section 25.605... STANDARDS: TRANSPORT CATEGORY AIRPLANES Design and Construction General § 25.605 Fabrication methods. (a) The methods of fabrication used must produce a consistently sound structure. If a fabrication...

  8. Compare Fabric Materials. Grades 3-5.

    ERIC Educational Resources Information Center

    Rushton, Erik; Ryan, Emily; Swift, Charles

    In this activity, students look at different types of fabric and their respective individual properties. Using a magnifying glass and sandpaper, students test the weave and wear quality of sample fabrics. By comparing the qualities of different fabrics, they are able to better understand why there are so many different types of fabric and…

  9. Fabrication of a Kevlar liner assembly

    SciTech Connect

    Schloman, A.H.

    1980-07-01

    Several liner assemblies were fabricated with Kevlar 49 and epoxy using various wet layup and prepreg processes. A production process, using prepreg material, was developed for fabricating the liner and a wet layup molding process was used to fabricate the Kevlar hat-shaped tunnels. Fabrication of the tunnels using Kevlar prepreg with an autoclave curving process was evaluated.

  10. 14 CFR 29.605 - Fabrication methods.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Fabrication methods. 29.605 Section 29.605... STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Design and Construction General § 29.605 Fabrication methods. (a) The methods of fabrication used must produce consistently sound structures. If a fabrication...

  11. 14 CFR 23.605 - Fabrication methods.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Fabrication methods. 23.605 Section 23.605... Fabrication methods. (a) The methods of fabrication used must produce consistently sound structures. If a... fabrication method must be substantiated by a test program....

  12. 14 CFR 25.605 - Fabrication methods.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Fabrication methods. 25.605 Section 25.605... STANDARDS: TRANSPORT CATEGORY AIRPLANES Design and Construction General § 25.605 Fabrication methods. (a) The methods of fabrication used must produce a consistently sound structure. If a fabrication...

  13. 14 CFR 27.605 - Fabrication methods.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Fabrication methods. 27.605 Section 27.605... STANDARDS: NORMAL CATEGORY ROTORCRAFT Design and Construction General § 27.605 Fabrication methods. (a) The methods of fabrication used must produce consistently sound structures. If a fabrication process (such...

  14. Fabrication, Testing and Modeling of the MICE Superconducting Spectrometer Solenoids

    SciTech Connect

    Virostek, S.P.; Green, M.A.; Trillaud, F.; Zisman, M.S.

    2010-05-16

    The Muon Ionization Cooling Experiment (MICE), an international collaboration sited at Rutherford Appleton Laboratory in the UK, will demonstrate ionization cooling in a section of realistic cooling channel using a muon beam. A five-coil superconducting spectrometer solenoid magnet will provide a 4 tesla uniform field region at each end of the cooling channel. Scintillating fiber trackers within the 400 mm diameter magnet bore tubes measure the emittance of the beam as it enters and exits the cooling channel. Each of the identical 3-meter long magnets incorporates a three-coil spectrometer magnet section and a two-coil section to match the solenoid uniform field into the other magnets of the MICE cooling channel. The cold mass, radiation shield and leads are currently kept cold by means of three two-stage cryocoolers and one single-stage cryocooler. Liquid helium within the cold mass is maintained by means of a re-condensation technique. After incorporating several design changes to improve the magnet cooling and reliability, the fabrication and acceptance testing of the spectrometer solenoids have proceeded. The key features of the spectrometer solenoid magnets, the development of a thermal model, the results of the recently completed tests, and the current status of the project are presented.

  15. Structure and yarn sensor for fabric

    DOEpatents

    Mee, David K.; Allgood, Glenn O.; Mooney, Larry R.; Duncan, Michael G.; Turner, John C.; Treece, Dale A.

    1998-01-01

    A structure and yarn sensor for fabric directly determines pick density in a fabric thereby allowing fabric length and velocity to be calculated from a count of the picks made by the sensor over known time intervals. The structure and yarn sensor is also capable of detecting full length woven defects and fabric. As a result, an inexpensive on-line pick (or course) density measurement can be performed which allows a loom or knitting machine to be adjusted by either manual or automatic means to maintain closer fiber density tolerances. Such a sensor apparatus dramatically reduces fabric production costs and significantly improves fabric consistency and quality for woven or knitted fabric.

  16. Fabrication of micro-optical devices

    NASA Technical Reports Server (NTRS)

    Anderson, W. W.; Marley, J.; Gal, George; Purdy, Don

    1993-01-01

    We have fabricated a variety of micro-optic components including Fresnel and non-Frensel lenses, off-axis and dispersive lenses with binary stepped contours, and analog contours. Process details for all lens designs fabricated are given including multistep photolithography for binary fabrication and grayscale mask photolithography for analog fabrication. Reactive ion etching and ion beam milling are described for the binary fabrication process, while ion beam milling was used for the analog fabrication process. Examples of micro-optic components fabricated in both Si and CdTe substrates are given.

  17. Direct fabrication of thin layer MoS{sub 2} field-effect nanoscale transistors by oxidation scanning probe lithography

    SciTech Connect

    Espinosa, Francisco M.; Ryu, Yu K.; Garcia, Ricardo; Marinov, Kolyo; Dumcenco, Dumitru; Kis, Andras

    2015-03-09

    Thin layer MoS{sub 2}-based field effect transistors (FET) are emerging candidates to fabricate very fast and sensitive devices. Here, we demonstrate a method to fabricate very narrow transistor channel widths on a single layer MoS{sub 2} flake connected to gold electrodes. Oxidation scanning probe lithography is applied to pattern insulating barriers on the flake. The process narrows the electron path to about 200 nm. The output and transfer characteristics of the fabricated FET show a behavior that is consistent with the minimum channel width of the device. The method relies on the direct and local chemical modification of MoS{sub 2}. The straightforward character and the lack of specific requirements envisage the controlled patterning of sub-100 nm electron channels in MoS{sub 2} FETs.

  18. Roughness characteristics of natural channels

    USGS Publications Warehouse

    Barnes, Harry Hawthorne

    1967-01-01

    Color photographs and descriptive data are presented for 50 stream channels for which roughness coefficients have been determined. All hydraulic computations involving flow in open channels require an evaluation of the roughness characteristics of the channel. In the absence of a satisfactory quantitative procedure this evaluation remains chiefly an art. The ability to evaluate roughness coefficients must be developed through experience. One means of gaining this experience is by examining and becoming acquainted with the appearance of some typical channels whose roughness coefficients are known. The photographs and data contained in this report represent a wide range of channel conditions. Familiarity with the appearance, geometry, and roughness characteristics of these channels will improve the engineer's ability to select roughness coefficients for other channels .

  19. Chloride channels as drug targets

    PubMed Central

    Verkman, Alan S.; Galietta, Luis J. V.

    2013-01-01

    Chloride channels represent a relatively under-explored target class for drug discovery as elucidation of their identity and physiological roles has lagged behind that of many other drug targets. Chloride channels are involved in a wide range of biological functions, including epithelial fluid secretion, cell-volume regulation, neuroexcitation, smooth-muscle contraction and acidification of intracellular organelles. Mutations in several chloride channels cause human diseases, including cystic fibrosis, macular degeneration, myotonia, kidney stones, renal salt wasting and hyperekplexia. Chloride-channel modulators have potential applications in the treatment of some of these disorders, as well as in secretory diarrhoeas, polycystic kidney disease, osteoporosis and hypertension. Modulators of GABAA (γ-aminobutyric acid A) receptor chloride channels are in clinical use and several small-molecule chloride-channel modulators are in preclinical development and clinical trials. Here, we discuss the broad opportunities that remain in chloride-channel-based drug discovery. PMID:19153558

  20. Flexible MEMS: A novel technology to fabricate flexible sensors and electronics

    NASA Astrophysics Data System (ADS)

    Tu, Hongen

    This dissertation presents the design and fabrication techniques used to fabricate flexible MEMS (Micro Electro Mechanical Systems) devices. MEMS devices and CMOS(Complementary Metal-Oxide-Semiconductor) circuits are traditionally fabricated on rigid substrates with inorganic semiconductor materials such as Silicon. However, it is highly desirable that functional elements like sensors, actuators or micro fluidic components to be fabricated on flexible substrates for a wide variety of applications. Due to the fact that flexible substrate is temperature sensitive, typically only low temperature materials, such as polymers, metals, and organic semiconductor materials, can be directly fabricated on flexible substrates. A novel technology based on XeF2(xenon difluoride) isotropic silicon etching and parylene conformal coating, which is able to monolithically incorporate high temperature materials and fluidic channels, was developed at Wayne State University. The technology was first implemented in the development of out-of-plane parylene microneedle arrays that can be individually addressed by integrated flexible micro-channels. These devices enable the delivery of chemicals with controlled temporal and spatial patterns and allow us to study neurotransmitter-based retinal prosthesis. The technology was further explored by adopting the conventional SOI-CMOS processes. High performance and high density CMOS circuits can be first fabricated on SOI wafers, and then be integrated into flexible substrates. Flexible p-channel MOSFETs (Metal-Oxide-Semiconductor Field-Effect-Transistors) were successfully integrated and tested. Integration of pressure sensors and flow sensors based on single crystal silicon has also been demonstrated. A novel smart yarn technology that enables the invisible integration of sensors and electronics into fabrics has been developed. The most significant advantage of this technology is its post-MEMS and post-CMOS compatibility. Various high