Science.gov

Sample records for 1a1 gene regulation

  1. Regulation of CYP1A1 gene expression by the antioxidant tert-butylhydroquinone.

    PubMed

    Schreiber, Thomas D; Köhle, Christoph; Buckler, Felicitas; Schmohl, Stefan; Braeuning, Albert; Schmiechen, Alexander; Schwarz, Michael; Münzel, Peter A

    2006-07-01

    CYP1A1, a major phase I enzyme, plays an important role in the metabolism of polycyclic aromatic hydrocarbons and in the chemical activation of xenobiotics to carcinogenic derivatives. The phenolic antioxidant tert-butylhydroquinone (tBHQ), often used as a food preservative, is generally considered to act only as a mono-functional inducer of phase II enzymes, thereby exerting chemo-protection. However, we recently observed that tBHQ elevated the activity of an aryl hydrocarbon receptor (AhR) response element (DRE)-driven luciferase reporter in human colon carcinoma cells (Caco-2). Therefore, we studied the effects of tBHQ on the activity of a DRE-driven reporter, CYP1A1 mRNA expression, and CYP1A enzyme activity in Caco-2 cells and human HepG2 hepatoma cells. We found tBHQ caused induction of reporter activity and CYP1A1 expression and activity in Caco-2 and HepG2 cells. Moreover, tBHQ combined with 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) increased reporter activity and mRNA expression in Caco-2 cells in an additive manner. By contrast, tBHQ decreased TCDD-mediated induction of reporter activity and CYP1A1 mRNA expression in HepG2 cells. Resveratrol, an AhR antagonist, repressed the induction of CYP1A1 by tBHQ. Cotransfection of HepG2 cells with a dominant negative AhR nuclear translocator mutant abolished the tBHQ-induced CYP1A1 reporter activity. These findings indicate that CYP1A1 may be induced by the antioxidant tBHQ via an AhR-dependent mechanism.

  2. Endocrine Disruption in Human Placenta: Expression of the Dioxin-Inducible Enzyme, Cyp1a1, Is Correlated With That of Thyroid Hormone-Regulated Genes

    PubMed Central

    Geromini, Katherine; McKinley Brewer, Judy; Bansal, Ruby; Abdelouahab, Nadia; Langlois, Marie-France; Takser, Larissa

    2014-01-01

    Context: Thyroid hormone (TH) is essential for normal development; therefore, disruption of TH action by a number of industrial chemicals is critical to identify. Several chemicals including polychlorinated biphenyls are metabolized by the dioxin-inducible enzyme CYP1A1; some of their metabolites can interact with the TH receptor. In animals, this mechanism is reflected by a strong correlation between the expression of CYP1A1 mRNA and TH-regulated mRNAs. If this mechanism occurs in humans, we expect that CYP1A1 expression will be positively correlated with the expression of genes regulated by TH. Objective: The objective of the study was to test the hypothesis that CYP1A1 mRNA expression is correlated with TH-regulated mRNAs in human placenta. Methods: One hundred sixty-four placental samples from pregnancies with no thyroid disease were obtained from the GESTE study (Sherbrooke, Québec, Canada). Maternal and cord blood TH levels were measured at birth. The mRNA levels of CYP1A1 and placental TH receptor targets [placental lactogen (PL) and GH-V] were quantitated by quantitative PCR. Results: CYP1A1 mRNA abundance varied 5-fold across 132 placental samples that had detectable CYP1A1 mRNA. CYP1A1 mRNA was positively correlated with PL (r = 0.64; P < .0001) and GH-V (P < .0001, r = 0.62) mRNA. PL and GH-V mRNA were correlated with each other (r = 0.95; P < .0001), suggesting a common activator. The mRNAs not regulated by TH were not correlated with CYP1A1 expression. Conclusions: CYP1A1 mRNA expression is strongly associated with the expression of TH-regulated target gene mRNAs in human placenta, consistent with the endocrine-disrupting action of metabolites produced by CYP1A1. PMID:25299844

  3. Association between uridin diphosphate glucuronosylotransferase 1A1 (UGT1A1) gene polymorphism and neonatal hyperbilirubinemia.

    PubMed

    Mazur-Kominek, Katarzyna; Romanowski, Tomasz; Bielawski, Krzysztof; Kiełbratowska, Bogumiła; Preis, Krzysztof; Domżalska-Popadiuk, Iwona; Słomińska-Frączek, Magdalena; Sznurkowska, Katarzyna; Renke, Joanna; Plata-Nazar, Katarzyna; Śledzińska, Karolina; Sikorska-Wiśniewska, Grażyna; Góra-Gębka, Magdalena; Liberek, Anna

    2017-01-01

    To assess the prevalence of UGT1A1*28 and UGT1A1*60 polymorphisms of UGT1A1 gene and their association with hyperbilirubinemia. The study was performed at a single centre - at the Department of Obstetrics of the Medical University of Gdansk in Poland. DNA was isolated from Guthrie cards of 171 infants. Only full term newborns (gestational age 38-42 weeks) were included in the study. Fluorescent molecular probes were used for UGT1A1 promoter variation analysis. The presence of UGT1A1*28 polymorphism was detected with a dual-probe system, and UGT1A1*60 with a SimpleProbe™. Homozygous UGT1A1*28 and UGT1A1*60 genotypes were detected in 14.6% and 20.5% of the newborns, respectively. Homozygous (G/G) genotypes of UGT1A1*60 polymorphism were found in all of the UGT1A1*28 (i.e. (TA)7/(TA)7) homozygotes. More than 80% (55/66) of the children with "wild" type UGT1A1*28 genotype (where no polymorphism was detected) (i.e. (TA)6/(TA)6) carried the "wild" (T/T) genotype of UGT1A1*60 as well. The UGT1A1*28 polymorphism was detected more often among neonates with elevated bilirubin. Hyperbilirubinemia was diagnosed more frequently in boys. Polymorphisms of the UGT1A1 gene frequently co-exist in neonates. The presence of UGT1A1*28 polymorphism and male gender seem to predispose to neonatal hyperbilirubinemia.

  4. Passive smoking, Cyp1A1 gene polymorphism and dysmenorrhea

    PubMed Central

    Liu, Hong; Yang, Fan; Li, Zhiping; Chen, Changzhong; Fang, Zhian; Wang, Lihua; Hu, Yonghua; Chen, Dafang

    2007-01-01

    Objective This study investigated whether the association between passive smoking exposure and dysmenorrhea is modified by two susceptibility genes, CYP1A1MspI and CYP1A1HincII. Methods This report includes 1645 (1124 no dysmenorrhea, 521 dysmenorrhea) nonsmoking and nondrinking newly wed female workers at Anqing, China between June 1997 and June 2000. Multiple logistic regression models were used to estimate the associations of passive smoking exposure and genetic susceptibility with dysmenorrhea, adjusting for perceived stress. Results When stratified by women genotype, the adjusted OR of dysmenorrhea was 1.6 (95%CI=1.3-2.1) for passive smoking group with Ile/Ile462 genotype, and 1.5 (95%CI=1.1-2.1) with C/C6235 genotype, compared to non passive smoking group, respectively. The data further showed that there was a significant combined effect between passive smoking and the CYP1A1 Msp1 C/C6235 and HincII Ile/Ile462 genotype (OR=2.6, 95%CI=1.3-5.2). Conclusion CYP1A1 MspI and HincII genotypes modified the association between passive smoking and dysmenorrhea. PMID:17566695

  5. Controlling fibrous capsule formation through long-term down-regulation of collagen type I (COL1A1) expression by nanofiber-mediated siRNA gene silencing

    PubMed Central

    Rujitanaroj, Pim-on; Jao, Brian; Yang, Junghoon; Wang, Feng; Anderson, James M.; Wang, Jun; Chew, Sing Yian

    2012-01-01

    The foreign body reaction often interferes with the long-term functionality and performance of implanted biomedical devices through fibrous capsule formation. While many implant modification techniques have been adopted in attempts to control fibrous encapsulation, the outcomes remained sub-optimal. Nanofiber scaffold-mediated RNA interference may serve as an alternative approach through the localized and sustained delivery of siRNA at implant sites. In this study, we investigated the efficacy of siRNA-PCLEEP (poly(caprolactone-co-ethylethylene phosphate) nanofibers in controlling fibrous capsule formation through the down-regulation of Collagen type I (COL1A1) in vitro and in vivo. By encapsulating complexes of COL1A1 siRNA with a transfection reagent (Transit TKO) or cell penetrating peptides (CPPs), CADY or MPG, within the nanofibers (550–650 nm in diameter), a sustained release of siRNA was obtained for at least 28 days (loading efficiency ~ 60–67%). Scaffold-mediated transfection significantly enhanced cellular uptake of oligonucleotides and prolonged in vitro gene silencing duration by at least 2–3 times as compared to conventional bolus delivery of siRNA (14 days vs 5–7 days by bolus delivery). In vivo subcutaneous implantation of siRNA scaffolds revealed a significant decrease in fibrous capsule thickness at weeks 2 and 4 as compared to plain nanofibers (p < 0.05). Taken together, the results demonstrated the efficacy of scaffold-mediated siRNA gene-silencing in providing effective long-term control of fibrous capsule formation. PMID:23036951

  6. Wound healing genes and susceptibility to cutaneous leishmaniasis in Brazil: Role of COL1A1

    PubMed Central

    Almeida, Lucas; Oliveira, Joyce; Guimarães, Luiz Henrique; Carvalho, Edgar M; Blackwell, Jenefer M

    2015-01-01

    Previous studies have demonstrated a role for wound healing genes in resolution of cutaneous lesions caused by Leishmania spp. in both mice and humans, including the gene FLI1 encoding Friend leukaemia virus integration 1. Reduction of Fli1 expression in mice has been shown to result in up-regulation of collagen type I alpha 1 (Col1a1) and alpha 2 (Col1a2) genes and, conversely, in down-regulation of the matrix metalloproteinase 1 (Mmp1) gene, suggesting that Fli1 suppression is involved in activation of the profibrotic gene program. Here we examined single nucleotide polymorphisms (SNPs) in these genes as risk factors for cutaneous (CL) and mucosal leishmaniasis (ML), and leishmaniasis per se, caused by L. braziliensis in humans. SNPs were genotyped in 168 nuclear families (250 CL; 87 ML cases) and replicated in 157 families (402 CL; 39 ML cases). Family-based association tests (FBAT) showed the strongest association between SNPs rs1061237 (combined P=0.002) and rs2586488 (combined P=0.027) at COL1A1 and CL disease. This contributes to our further understanding of the role of wound healing in the resolution of CL disease, providing potential for therapies modulating COL1A1 via drugs acting on FLI1. PMID:25562121

  7. Methamphetamine regulation of sulfotransferase 1A1 and 2A1 expression in rat brain sections.

    PubMed

    Zhou, Tianyan; Huang, Chaoqun; Chen, Yue; Xu, Jiaojiao; Shanbhag, Preeti Devaraya; Chen, Guangping

    2013-01-01

    Sulfotransferase catalyzed sulfation regulates the biological activities of various neurotransmitters/hormones and detoxifies xenobiotics. Rat sulfotransferase rSULT1A1 catalyzes the sulfation of neurotransmitters and xenobiotic phenolic compounds. rSULT2A1 catalyzes the sulfation of hydroxysteroids and xenobiotic alcoholic compounds. In this work, Western blot and real-time RT-PCR were used to investigate the effect of methamphetamine on rSULT1A1 and rSULT2A1 protein and mRNA expression in rat cerebellum, frontal cortex, hippocampus, and striatum. After 1-day treatment, significant induction of rSULT1A1 was observed only in the cerebellum; rSULT2A1 was induced significantly in the cerebellum, frontal cortex, and hippocampus. After 7 days of exposure, rSULT1A1 was induced in the cerebellum, frontal cortex, and hippocampus, while rSULT2A1 was induced significantly in all four regions. Western blot results agreed with the real-time RT-PCR results, suggesting that the induction occurred at the gene transcriptional level. Results indicate that rSULT1A1 and rSULT2A1 are expressed in rat frontal cortex, cerebellum, striatum, and hippocampus. rSULT1A1 and rSULT2A1are inducible by methamphetamine in rat brain sections in a time dependable manner. rSULT2A1 is more inducible than rSULT1A1 by methamphetamine in rat brain sections. Induction activity of methamphetamine is in the order of cerebellum>frontal cortex, hippocampus>striatum. These results suggest that the physiological functions of rSULT1A1 and rSULT2A1 in different brain regions can be affected by methamphetamine.

  8. Camel Milk Modulates the Expression of Aryl Hydrocarbon Receptor-Regulated Genes, Cyp1a1, Nqo1, and Gsta1, in Murine hepatoma Hepa 1c1c7 Cells

    PubMed Central

    Korashy, Hesham M.; El Gendy, Mohamed A. M.; Alhaider, Abdulqader A.; El-Kadi, Ayman O.

    2012-01-01

    There is a traditional belief in the Middle East that camel milk may aid in prevention and treatment of numerous cases of cancer yet, the exact mechanism was not investigated. Therefore, we examined the ability of camel milk to modulate the expression of a well-known cancer-activating gene, Cytochrome P450 1a1 (Cyp1a1), and cancer-protective genes, NAD(P)H:quinone oxidoreductase 1 (Nqo1) and glutathione S-transferase a1 (Gsta1), in murine hepatoma Hepa 1c1c7 cell line. Our results showed that camel milk significantly inhibited the induction of Cyp1a1 gene expression by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), the most potent Cyp1a1 inducer and known carcinogenic chemical, at mRNA, protein, and activity levels in a concentration-dependent manner. In addition, camel milk significantly decreased the xenobiotic responsive element (XRE)-dependent luciferase activity, suggesting a transcriptional mechanism is involved. Furthermore, this inhibitory effect of camel milk was associated with a proportional increase in heme oxygenase 1. On the other hand, camel milk significantly induced Nqo1 and Gsta1 mRNA expression level in a concentration-dependent fashion. The RNA synthesis inhibitor, actinomycin D, completely blocked the induction of Nqo1 mRNA by camel milk suggesting the requirement of de novo RNA synthesis through a transcriptional mechanism. In conclusion, camel milk modulates the expression of Cyp1a1, Nqo1, and Gsta1 at the transcriptional and posttranscriptional levels. PMID:22570534

  9. Camel milk modulates the expression of aryl hydrocarbon receptor-regulated genes, Cyp1a1, Nqo1, and Gsta1, in murine hepatoma Hepa 1c1c7 cells.

    PubMed

    Korashy, Hesham M; El Gendy, Mohamed A M; Alhaider, Abdulqader A; El-Kadi, Ayman O

    2012-01-01

    There is a traditional belief in the Middle East that camel milk may aid in prevention and treatment of numerous cases of cancer yet, the exact mechanism was not investigated. Therefore, we examined the ability of camel milk to modulate the expression of a well-known cancer-activating gene, Cytochrome P450 1a1 (Cyp1a1), and cancer-protective genes, NAD(P)H:quinone oxidoreductase 1 (Nqo1) and glutathione S-transferase a1 (Gsta1), in murine hepatoma Hepa 1c1c7 cell line. Our results showed that camel milk significantly inhibited the induction of Cyp1a1 gene expression by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), the most potent Cyp1a1 inducer and known carcinogenic chemical, at mRNA, protein, and activity levels in a concentration-dependent manner. In addition, camel milk significantly decreased the xenobiotic responsive element (XRE)-dependent luciferase activity, suggesting a transcriptional mechanism is involved. Furthermore, this inhibitory effect of camel milk was associated with a proportional increase in heme oxygenase 1. On the other hand, camel milk significantly induced Nqo1 and Gsta1 mRNA expression level in a concentration-dependent fashion. The RNA synthesis inhibitor, actinomycin D, completely blocked the induction of Nqo1 mRNA by camel milk suggesting the requirement of de novo RNA synthesis through a transcriptional mechanism. In conclusion, camel milk modulates the expression of Cyp1a1, Nqo1, and Gsta1 at the transcriptional and posttranscriptional levels.

  10. Phylogenetic relationships among Perissodactyla: secretoglobin 1A1 gene duplication and triplication in the Equidae family.

    PubMed

    Côté, Olivier; Viel, Laurent; Bienzle, Dorothee

    2013-12-01

    Secretoglobin family 1A member 1 (SCGB 1A1) is a small anti-inflammatory and immunomodulatory protein that is abundantly secreted in airway surface fluids. We recently reported the existence of three distinct SCGB1A1 genes in the domestic horse genome as opposed to the single gene copy consensus present in other mammals. The origin of SCGB1A1 gene triplication and the evolutionary relationship of the three genes amongst Equidae family members are unknown. For this study, SCGB1A1 genomic data were collected from various Equus individuals including E. caballus, E. przewalskii, E. asinus, E. grevyi, and E. quagga. Three SCGB1A1 genes in E. przewalskii, two SCGB1A1 genes in E. asinus, and a single SCGB1A1 gene in E. grevyi and E. quagga were identified. Sequence analysis revealed that the non-synonymous nucleotide substitutions between the different equid genes coded for 17 amino acid changes. Most of these changes localized to the SCGB 1A1 central cavity that binds hydrophobic ligands, suggesting that this area of SCGB 1A1 evolved to accommodate diverse molecular interactions. Three-dimensional modeling of the proteins revealed that the size of the SCGB 1A1 central cavity is larger than that of SCGB 1A1A. Altogether, these findings suggest that evolution of the SCGB1A1 gene may parallel the separation of caballine and non-caballine species amongst Equidae, and may indicate an expansion of function for SCGB1A1 gene products.

  11. Aldehyde dehydrogenase 1 a1 regulates energy metabolism in adipocytes from different species.

    PubMed

    Yang, Kefeng; Adin, Christopher; Shen, Qiwen; Lee, Ly James; Yu, Lianbo; Fadda, Paolo; Samogyi, Arpad; Ham, Kathleen; Xu, Lu; Gilor, Chen; Ziouzenkova, Ouliana

    2017-09-01

    Survival and longevity of xenotransplants depend on immune function and ability to integrate energy metabolism between cells from different species. However, mechanisms for interspecies cross talk in energy metabolism are not well understood. White adipose tissue stores energy and is capable of mobilization and dissipation of energy as heat (thermogenesis) by adipocytes expressing uncoupling protein 1 (Ucp1). Both pathways are under the control of vitamin A metabolizing enzymes. Deficient retinoic acid production in aldehyde dehydrogenase 1 A1 (Aldh1a1) knockout adipocytes (KO) inhibits adipogenesis and increases thermogenesis. Here we test the role Aldh1a1 in regulation of lipid metabolism in xenocultures. Murine wide-type (WT) and KO pre-adipocytes were encapsulated into a poly-L-lysine polymer that allows exchange of humoral factors <32kD via nanopores. Encapsulated murine adipocytes were co-incubated with primary differentiated canine adipocytes. Then, expression of adipogenic and thermogenic genes in differentiated canine adipocytes was detected by real-time polymerase chain reaction (PCR). The regulatory factors in WT and KO cells were identified by comparison of secretome using proteomics and in transcriptome by gene microarray. Co-culture of encapsulated mouse KO vs WT adipocytes increased expression of peroxisome proliferator-activated receptor gamma (Pparg), but reduced expression of its target genes fatty acid binding protein 4 (Fabp4), and adipose triglyceride lipase (Atgl) in canine adipocytes, suggesting inhibition of PPARγ activation. Co-culture with KO adipocytes also induced expression of Ucp1 in canine adipocytes compared to expression in WT adipocytes. Cumulatively, murine KO compared to WT adipocytes decreased lipid accumulation in canine adipocytes. Comparative proteomics revealed significantly higher levels of vitamin A carriers, retinol binding protein 4 (RBP4), and lipokalin 2 (LCN2) in KO vs WT adipocytes. Our data demonstrate the

  12. Regulation of CYP1A1 by heavy metals and consequences for drug metabolism.

    PubMed

    Anwar-Mohamed, Anwar; Elbekai, Reem H; El-Kadi, Ayman Os

    2009-05-01

    Cytochrome P450 1A1 (CYP1A1) is a hepatic and extrahepatic enzyme that is regulated by the aryl hydrocarbon receptor signaling pathway. With the growing human exposure to heavy metals, emerging evidence suggests that heavy metals exposure alter CYP1A1 enzyme activity. Heavy metals regulate CYP1A1 at different levels of its aryl hydrocarbon receptor signaling pathway in a metal- and species-dependent manner. The importance of CYP1A1 emerges from the fact that it has been always associated with the metabolism of pro-carcinogenic compounds to highly carcinogenic metabolites. However, recently CYP1A1 has gained status along with other cytochrome P450 enzymes in the metabolism of drugs and mediating drug-drug interactions. In addition, CYP1A1 has become a therapeutic tool for the bioactivation of prodrugs, particularly cytotoxic agents. In this review, we shed light on the effect of seven heavy metals, namely arsenic, mercury, lead, cadmium, chromium, copper and vanadium, on CYP1A1 and the consequences on drug metabolism.

  13. Cytochrome P450 1A1 Regulates Breast Cancer Cell Proliferation and Survival

    PubMed Central

    Rodriguez, Mariangellys; Potter, David A.

    2013-01-01

    Cytochrome P450 1A1 (CYP1A1) is an extrahepatic phase I metabolizing enzyme whose expression is suppressed under physiologic conditions, but can be induced by substrates via the aryl hydrocarbon receptor (AhR). Nonetheless, recent studies show that the majority of breast tumors constitutively express CYP1A1. These findings led us to test the hypothesis that CYP1A1 promotes breast cancer progression by evaluating the effects of CYP1A1 knock down on the proliferation and survival of the MCF7 and MDA-MB-231 lines. Independently of estrogen receptor status, CYP1A1 knock down decreases cell proliferation, decreases colony formation, blocks the cell cycle at G0/G1 associated with reduction of cyclin D1, and increases apoptosis associated with reduction of survivin. CYP1A1 knock down markedly increases phosphorylation of AMP-activated protein kinase (AMPK) and decreases phosphorylation of AKT, extracellular signal-regulated kinases 1 and 2 (ERK1/2), and 70kDa ribosomal protein S6 kinase (P70S6K). AMPK inhibition by compound C partially abrogates the pro-apoptotic effects of CYP1A1siRNA, suggesting that CYP1A1siRNA effects are mediated, in part, through AMPK signaling. Consistent with CYP1A1 knock down results, pharmacologic reduction of CYP1A1 levels by the phytopolyphenol carnosol also correlates with impaired proliferation and induced AMPK phosphorylation. These results indicate that reduction of basal CYP1A1 expression is critical for inhibition of proliferation, which is not affected by alpha-naphthoflavone-mediated inhibition of CYP1A1 activity nor modulated by AhR silencing. This study supports that CYP1A1 may promote breast cancer proliferation and survival, at least in part, through AMPK signaling and that reduction of CYP1A1 levels is a potential strategy for breast cancer therapeutics. PMID:23576571

  14. Gilbert and Crigler Najjar syndromes: an update of the UDP-glucuronosyltransferase 1A1 (UGT1A1) gene mutation database.

    PubMed

    Canu, Giulia; Minucci, Angelo; Zuppi, Cecilia; Capoluongo, Ettore

    2013-04-01

    UGT1A1 enzyme defects are responsible of both Gilbert syndrome (GS) and Crigler-Najjar syndrome (CNS). GS depends on a variant TATAA element (which contains two extra TA nucleotides as compared to the wild type genotype) in the UGT1A1 gene promoter resulting in a reduced gene expression. On the contrary, CNS forms are classified in two types depending on serum total bilirubin concentrations (STBC): the more severe (CNS-I) is characterized by high levels of STBC (342-684μmol/L), due to total deficiency of the UGT1A1 enzyme, while the milder one, namely CNS-II, is characterized by partial UGT1A1 deficiency with STBC ranging from 103 to 342μmol/L. GS and CNS are caused by genetic lesions involving a complex locus encoding the UGT1A1 gene. The present report provides an update of all reported UGT1A1 gene mutations associated to GS and CNS. Copyright © 2013 Elsevier Inc. All rights reserved.

  15. A novel osteoporosis model with ascorbic acid deficiency in Akr1A1 gene knockout mice

    PubMed Central

    Tu, Min-Yu; Lin, Wei-Yu; Röhrig, Theresa; Yang, Shang-Hsun; Lan, Ying-Wei; Chong, Kowit-Yu; Chen, Chuan-Mu

    2017-01-01

    The AKR1A1 protein is a member of the aldo-keto reductase superfamily that is responsible for the conversion of D-glucuronate to L-gulonate in the ascorbic acid (vitamin C) synthesis pathway. In a pCAG-eGFP transgenic mouse line that was produced by pronuclear microinjection, the integration of the transgene resulted in a 30-kb genomic DNA deletion, including the Akr1A1 gene, and thus caused the knockout (KO) of the Akr1A1 gene and targeting of the eGFP gene. The Akr1A1 KO mice (Akr1A1eGFP/eGFP) exhibited insufficient serum ascorbic acid levels, abnormal bone development and osteoporosis. Using micro-CT analysis, the results showed that the microarchitecture of the 12-week-old Akr1A1eGFP/eGFP mouse femur was shorter in length and exhibited less cortical bone thickness, enlargement of the bone marrow cavity and a complete loss of the trabecular bone in the distal femur. The femoral head and neck of the proximal femur also showed a severe loss of bone mass. Based on the decreased levels of serum osteocalcin and osteoblast activity in the Akr1A1eGFP/eGFP mice, the osteoporosis might be caused by impaired bone formation. In addition, administration of ascorbic acid to the Akr1A1eGFP/eGFP mice significantly prevented the condition of osteoporotic femurs and increased bone formation. Therefore, through ascorbic acid administration, the Akr1A1 KO mice exhibited controllable osteoporosis and may serve as a novel model for osteoporotic research. PMID:28060768

  16. Association of CYP1A1 gene polymorphism with chronic kidney disease: a case control study.

    PubMed

    Siddarth, Manushi; Datta, Sudip K; Ahmed, Rafat S; Banerjee, Basu D; Kalra, Om P; Tripathi, Ashok K

    2013-07-01

    CYP1A1 is an important xenobiotic metabolizing enzyme, present in liver and kidney. Expression of CYP1A1 enzyme increases manifold when kidney cells are exposed to nephrotoxins/chemicals leading to oxidative stress-induced cell damage. To study the association of CYP1A1 gene polymorphism in patients of chronic kidney disease with unknown etiology (CKDU), we recruited 334 CKDU patients and 334 age and sex matched healthy controls. CYP1A1*2A and *2C polymorphisms were studied by PCR-RFLP and allele specific-PCR respectively. Subjects carrying at least one mutant allele of CYP1A1*2A (TC, CC) and *2C (AG, GG) were shown to be associated with 1.4-2-fold increased risk of CKDU. Also, genotypic combinations of hetero-/homozygous mutants of CYP1A1*2A (TC, CC) with hetero-/homozygous mutant genotypes of CYP1A1*2C (AG, GG) i.e. TC/AG (p<0.01), TC/GG (p<0.05), CC/AG (p<0.05) and CC/GG (p<0.01) were associated with CKDU with an odd ratio ranging 1.8-3.3 times approximately. This study demonstrates association of CYP1A1 polymorphisms with CKDU. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. Functional role and tobacco smoking effects on methylation of CYP1A1 gene in prostate cancer

    PubMed Central

    Kato, Taku; Hashimoto, Yutaka; Yamamura, Soichiro; Fukuhara, Shinichiro; Wong, Darryn K.; Shiina, Marisa; Imai-Sumida, Mitsuho; Majid, Shahana; Saini, Sharanjot; Shiina, Hiroaki; Nakajima, Koichi; Deng, Guoren; Dahiya, Rajvir; Tanaka, Yuichiro

    2016-01-01

    Cytochrome P450 (CYP) 1A1 is a phase I enzyme that can activate various compounds into reactive forms and thus, may contribute to carcinogenesis. In this study, we investigated the expression, methylation status, and functional role of CYP1A1 on prostate cancer cells. Increased expression of CYP1A1 was observed in all cancer lines (PC-3, LNCaP, and DU145) compared to BPH-1 (P < 0.05); and was enhanced further by 5-aza-2′-deoxycytidine treatment (P < 0.01). Methylation-specific PCR (MSP) and sequencing of bisulfite-modified DNA of the xenobiotic response element (XRE) enhancer site XRE-1383 indicated promoter methylation as a regulator of CYP1A1 expression. In tissue, microarrays showed higher immunostaining of CYP1A1 in prostate cancer than normal and benign prostatic hyperplasia (BPH; P < 0.001), and methylation analyses in clinical specimens revealed significantly lower methylation levels in cancer compared to BPH at all enhancer sites analyzed (XRE-1383, XRE-983, XRE-895; P < 0.01). Interestingly, smoking affected the XRE-1383 site where the methylation level was much lower in cancer tissues from smokers than non-smokers (P < 0.05). CYP1A1 levels are thus increased in prostate cancer and to determine the functional effect of CYP1A1 on cells, we depleted the gene in LNCaP and DU145 by siRNA. We observe that CYP1A1 knockdown decreased cell proliferation (P < 0.05) and increased apoptosis (P < 0.01) in both cell lines. We analyzed genes affected by CYP1A1 silencing and found that apoptosis-related BCL2 was significantly down-regulated. This study supports an oncogenic role for CYP1A1 in prostate cancer via promoter hypomethylation that is influenced by tobacco smoking, indicating CYP1A1 to be a promising target for prostate cancer treatment. PMID:27203547

  18. Bilirubin UDP-Glucuronosyltransferase 1A1 (UGT1A1) Gene Promoter Polymorphisms and HPRT, Glycophorin A, and Micronuclei Mutant Frequencies in Human Blood

    SciTech Connect

    Grant, D; Hall, I J; Eastmond, D; Jones, I M; Bell, D A

    2004-10-06

    A dinucleotide repeat polymorphism (5-, 6-, 7-, or 8-TA units) has been identified within the promoter region of UDP-glucuronosyltransferase 1A1 gene (UGT1A1). The 7-TA repeat allele has been associated with elevated serum bilirubin levels that cause a mild hyperbilirubinemia (Gilbert's syndrome). Studies suggest that promoter transcriptional activity of UGT1A1 is inversely related to the number of TA repeats and that unconjugated bilirubin concentration increases directly with the number of TA repeat elements. Because bilirubin is a known antioxidant, we hypothesized that UGT1A1 repeats associated with higher bilirubin may be protective against oxidative damage. We examined the effect of UGT1A1 genotype on somatic mutant frequency in the hypoxanthine-guanine phosphoribosyl-transferase (HPRT) gene in human lymphocytes and the glycophorin A (GPA) gene of red blood cells (both N0, NN mutants), and the frequency of lymphocyte micronuclei (both kinetochore (K) positive or micronuclei K negative) in 101 healthy smoking and nonsmoking individuals. As hypothesized, genotypes containing 7-TA and 8-TA displayed marginally lower GPA{_}NN mutant frequency relative to 5/5, 5/6, 6/6 genotypes (p<0.05). In contrast, our analysis showed that lower expressing UGT1A1 alleles (7-TA and 8-TA) were associated with modestly increased HPRT mutation frequency (p<0.05) while the same low expression genotypes were not significantly associated with micronuclei frequencies (K-positive or K-negative) when compared to high expression genotypes (5-TA and 6-TA). We found weak evidence that UGT1A1 genotypes containing 7-TA and 8-TA were associated with increased GPA{_}N0 mutant frequency relative to 5/5, 5/6, 6/6 genotypes (p<0.05). These data suggest that UGT1A1 genotype may modulate somatic mutation of some types, in some cell lineages, by a mechanism not involving bilirubin antioxidant activity. More detailed studies examining UGT1A1 promoter variation, oxidant/antioxidant balance and genetic

  19. Profiling deleterious non-synonymous SNPs of smoker's gene CYP1A1.

    PubMed

    Ramesh, A Sai; Khan, Imran; Farhan, Md; Thiagarajan, Padma

    2013-01-01

    CYP1A1 gene belongs to the cytochrome P450 family and is known better as smokers' gene due to its hyperactivation as a consequence of long term smoking. The expression of CYP1A1 induces polycyclic aromatic hydrocarbon production in the lungs, which when over expressed, is known to cause smoking related diseases, such as cardiovascular pathologies, cancer, and diabetes. Single nucleotide polymorphisms (SNPs) are the simplest form of genetic variations that occur at a higher frequency, and are denoted as synonymous and non-synonymous SNPs on the basis of their effects on the amino acids. This study adopts a systematic in silico approach to predict the deleterious SNPs that are associated with disease conditions. It is inferred that four SNPs are highly deleterious, among which the SNP with rs17861094 is commonly predicted to be harmful by all tools. Hydrophobic (isoleucine) to hydrophilic (serine) amino acid variation was observed in the candidate gene. Hence, this investigation aims to characterize a candidate gene from 159 SNPs of CYP1A1.

  20. [Relationship between CYP1A1 gene polymorphisms and urinary 1-hydroxypyrene levels in coke oven workers].

    PubMed

    Nie, Ji-sheng; Zhang, Hong-mei; Sun, Jian-ya; Zeng, Ping; Zhang, Ling; Niu, Qiao

    2009-05-01

    To study the associations of CYP1A1 gene polymorphisms with levels of urinary 1-hydroxypyrene among coke oven workers. 223 male workers from a coke plant (76, 82 and 65 workers in oven top group, oven-side group and oven-bottom group respectively) and 119 controls without occupational polycyclic aromatic hydrocarbons exposure were selected. The MspI gene polymorphism in CYP1A1 3' flanking region and the genotypes at I462V site in exon 7 of CYP1A1 were detected by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) and allele specific amplification (ASA). The urinary 1-hydroxypyrene of coke oven workers in oven-top, oven-side and oven-bottom (3.77+/-0.64, 3.57+/-0.49, 3.26+/-0.80 micromol/mol Cr) were significantly higher than controls (2.80+/-1.02 micromol/mol Cr) (P<0.01). The urinary 1-hydroxypyrene was not significantly different among MspI genotypes in CYP1A1 3' flanking region (P>0.05). In oven-top group and oven-side group, the subjects with Val/Val genotype in exon 7 of CYP1A1 had significantly higher urinary 1-hydroxypyrene levels than those with Ile/Val or Ile/Ile genotype, and urinary 1-hydroxypyrene of Ile-Val genotype were also significantly higher than Ile/Ile genotype (P<0.01). Multivariate logistic regression analysis showed that the coke oven workers (OR in oven top group, oven-side group and oven-bottom group was 24.926, 4.226 and 6.729 respectively) and subjects with m2/m2 genotype in CYP1A1 3' flanking region (OR=4.031) or with Val/Val or Ile/Val genotype in exon 7 of CYP1A1 (OR were 5.524 and 3.811) had elevated urinary 1-hydroxypyrene (greater than 95 percentile of control group, 3.876 micromol/mol Cr). BAP concentration of work environment contributes to the elevated urinary 1-hydroxypyrene levels, and the exposed BAP levels were regulated by the CYP1A1 MspI and I462V genotypes. Genetic polymorphism of CYP1A1 gene could be a susceptible biomarker in coke oven workers which was involved in the individual susceptibility

  1. Novel missense mutation of the UGT1A1 gene in Thai siblings with Gilbert's syndrome.

    PubMed

    Sutomo, Retno; Laosombat, Vichai; Sadewa, Ahmad Hamim; Yokoyama, Naoki; Nakamura, Hajime; Matsuo, Masafumi; Nishio, Hisahide

    2002-08-01

    Gilbert's syndrome is a common inherited disorder of bilirubin metabolism contributing to the development of neonatal jaundice and causing recurrent jaundice after the neonatal period. In the patients with Gilbert's syndrome, mutations have been reported in the promoter and exons of the uridine diphosphate-glucuronosyl transferase 1 (UGT1A1) gene on chromsome 2q37, which encodes bilirubin uridine diphosphate-glucuronosyltransferase. However, the genetic basis of Gilbert's syndrome, including its inheritance trait, remains to be clarified. Patients 1 and 2 were Thai sisters with Gilbert's syndrome. They had a history of prolonged neonatal jaundice and showed recurrent jaundice after their infancy, while the parents showed no symptoms. To search for the mutation in the patients, all exons of the UGT1A1 gene were amplified by polymerase chain reaction (PCR) and sequenced directly. The frequency of the mutation in controls was studied by PCR-restriction enzyme digestion method. The patients were homozygous for a novel single transition of T to C at nucleotide position 247 (exon 1), which would predict a substitution of leucine for phenylalanine at codon 83 of the enzyme protein. No other mutation was detected in any regions except exon 1. The parents with no symptoms showed heterozygosity for the mutation. Among the 110 Japanese controls, no homozygous individuals and three heterozygous individuals for the mutation were identified, giving a mutated allele frequency of 0.0136. A novel missense mutation in the UGT1A1 gene was identified in two Thai siblings with Gilbert's syndrome. The affected family showed that homozygosity for the mutation may lead to apparent symptoms and that the syndrome was inherited as an autosomal recessive trait. The mutation does not explain a high incidence of neonatal jaundice in Japan, because it is very rare in the Japanese population.

  2. CYP1A1, GCLC, AGT, AGTR1 gene-gene interactions in community-acquired pneumonia pulmonary complications.

    PubMed

    Salnikova, Lyubov E; Smelaya, Tamara V; Golubev, Arkadiy M; Rubanovich, Alexander V; Moroz, Viktor V

    2013-11-01

    This study was conducted to establish the possible contribution of functional gene polymorphisms in detoxification/oxidative stress and vascular remodeling pathways to community-acquired pneumonia (CAP) susceptibility in the case-control study (350 CAP patients, 432 control subjects) and to predisposition to the development of CAP complications in the prospective study. All subjects were genotyped for 16 polymorphic variants in the 14 genes of xenobiotics detoxification CYP1A1, AhR, GSTM1, GSTT1, ABCB1, redox-status SOD2, CAT, GCLC, and vascular homeostasis ACE, AGT, AGTR1, NOS3, MTHFR, VEGFα. Risk of pulmonary complications (PC) in the single locus analysis was associated with CYP1A1, GCLC and AGTR1 genes. Extra PC (toxic shock syndrome and myocarditis) were not associated with these genes. We evaluated gene-gene interactions using multi-factor dimensionality reduction, and cumulative gene risk score approaches. The final model which included >5 risk alleles in the CYP1A1 (rs2606345, rs4646903, rs1048943), GCLC, AGT, and AGTR1 genes was associated with pleuritis, empyema, acute respiratory distress syndrome, all PC and acute respiratory failure (ARF). We considered CYP1A1, GCLC, AGT, AGTR1 gene set using Set Distiller mode implemented in GeneDecks for discovering gene-set relations via the degree of sharing descriptors within a given gene set. N-acetylcysteine and oxygen were defined by Set Distiller as the best descriptors for the gene set associated in the present study with PC and ARF. Results of the study are in line with literature data and suggest that genetically determined oxidative stress exacerbation may contribute to the progression of lung inflammation.

  3. Dioxin-dependent activation of murine Cyp1a-1 gene transcription requires protein kinase C-dependent phosphorylation.

    PubMed Central

    Carrier, F; Owens, R A; Nebert, D W; Puga, A

    1992-01-01

    Transcriptional activation of the murine Cyp1a-1 (cytochrome P(1)450) gene by inducers such as 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) (dioxin) requires the aromatic hydrocarbon (Ah) receptor and the interaction of an inducer-receptor complex with one or more of the Ah-responsive elements (AhREs) located about 1 kb upstream from the transcriptional initiation site. We find that treatment of mouse hepatoma Hepa-1 cells with 2-aminopurine, an inhibitor of protein kinase activity, inhibits CYP1A1 mRNA induction by TCDD as well as the concomitant increase in CYP1A1 enzyme activity. Formation of DNA-protein complexes between the Ah receptor and its AhRE target is also inhibited by 2-aminopurine, as determined by gel mobility shift assays. Phosphorylation is required for the formation of Ah receptor-specific complexes, since in vitro dephosphorylation of nuclear extracts from TCDD-treated Hepa-1 cells abolishes the capacity of the Ah receptor to form specific complexes with its cognate AhRE sequences. To determine whether any one of several known protein kinases was involved in the transcriptional regulation of the Cyp1a-1 gene, we treated Hepa-1 cells with nine other protein kinase inhibitors prior to induction with TCDD; nuclear extracts from these cells were analyzed for their capacity to form specific DNA-protein complexes. Only extracts from cells treated with staurosporine, a protein kinase C inhibitor, were unable to form these complexes. In addition, staurosporine completely inhibited CYP1A1 mRNA induction by TCDD. Depletion of protein kinase C by prolonged treatment with phorbol ester led to the complete suppression of CYP1A1 mRNA induction by TCDD. We conclude that (i) phosphorylation is necessary for the formation of a transcriptional complex and for transcriptional activation of the Cyp1a-1 gene; (ii) the phosphorylation site(s) exists on at least one of the proteins constituting the transcriptional complex, possibly the Ah receptor itself; and (iii) the

  4. EF1A1/HSC70 Cooperatively Suppress Brain Endothelial Cell Apoptosis via Regulating JNK Activity.

    PubMed

    Liu, Ying; Jiang, Shu; Yang, Peng-Yuan; Zhang, Yue-Fan; Li, Tie-Jun; Rui, Yao-Cheng

    2016-10-01

    In our previous study, eEF1A1 was identified to be a new target for protecting brain ischemia injury, but the mechanism remains largely unknown. In this study, we screened the downstream cellular protein molecules interacted with eEF1A1 and found mechanism of eEF1A1 in brain ischemia protection. Through co-immunoprecipitation and mass spectrometry for searching the interaction of proteins with eEF1A1 in bEnd3 cells, HSC70 was identified to be a binding protein of eEF1A1, which was further validated by Western blot and immunofluorescence. eEF1A1 or HSC70 knockdown, respectively, increased OGD-induced apoptosis of brain vascular endothelial cells, which was detected by Annexin V-FITC/PI staining. HSC70 or eEF1A1 knockdown enhances phosphorylated JNK, phosphorylation of c-JUN (Ser63, Ser73), cleaved caspase-9, and cleaved caspase-3 expression, which could be rescued by JNK inhibitor. In summary, our data suggest that the presence of chaperone forms of interaction between eEF1A1 and HSC70 in brain vascular endothelial cells, eEF1A1 and HSC70 can play a protective role in the process of ischemic stroke by inhibiting the JNK signaling pathway activation. © 2016 John Wiley & Sons Ltd.

  5. Interaction of the CYP1A1 gene polymorphism and smoking in non-small cell lung cancer susceptibility.

    PubMed

    Xie, Y Q; Chen, J M; Liu, Y

    2016-01-04

    Many studies have shown that genetic factors, environmental factors, and bad living habits, especially smoking, are risk factors for lung cancer. However, not all smokers develop lung cancer, which may be related to different genetic backgrounds. Currently, most research has investigated the GSTM1, XRCC1, XRCC3, CYP2D6, and C188T genes. Little research has been done on the cytochrome P450 (CYP) 1A1 gene, and results have varied. In addition, no results have been reported on the interactive effects of smoking and the CYP1A1 gene on lung cancer development. We used polymerase chain reaction restriction fragment length polymorphism to detect the CYP1A1 genotype, and investigate the effects of the CYP1A1 gene deletion and smoking alone, and in combination, on non-small cell lung cancer susceptibility. We enrolled 150 non-small cell lung cancer patients and 150 healthy control subjects. Subjects' smoking habits and CYP1A1 gene polymorphism were analyzed to investigate their role in the occurrence of lung cancer. The CYP1A1 gene deletion was found in 73.3% of non-small cell lung cancer patients and 20.0% of healthy subjects. The OR value was 2.28 (P < 0.05). Among smoking subjects, 77.8% exhibited non-small cell lung cancer, significantly higher than the 27.3% in non-smokers (P < 0.05). The OR value for the interaction of smoking and CYP1A1 gene deletion was 5.60, larger than the product of their individual OR values. The CYP1A1 gene deletion is a lung cancer risk factor, and interacts with smoking in non-small cell lung cancer development.

  6. Transcriptional activities of nuclear SREBP-1a, -1c, and -2 to different target promoters of lipogenic and cholesterogenic genes.

    PubMed

    Amemiya-Kudo, Michiyo; Shimano, Hitoshi; Hasty, Alyssa H; Yahagi, Naoya; Yoshikawa, Tomohiro; Matsuzaka, Takashi; Okazaki, Hiroaki; Tamura, Yoshiaki; Iizuka, Yoko; Ohashi, Ken; Osuga, Jun-ichi; Harada, Kenji; Gotoda, Takanari; Sato, Ryuichiro; Kimura, Satoshi; Ishibashi, Shun; Yamada, Nobuhiro

    2002-08-01

    Recent studies on the in vivo roles of the sterol regulatory element binding protein (SREBP) family indicate that SREBP-2 is more specific to cholesterogenic gene expression whereas SREBP-1 targets lipogenic genes. To define the molecular mechanism involved in this differential regulation, luciferase-reporter gene assays were performed in HepG2 cells to compare the transactivities of nuclear SREBP-1a, -1c, and -2 on a battery of SREBP-target promoters containing sterol regulatory element (SRE), SRE-like, or E-box sequences. The results show first that cholesterogenic genes containing classic SREs in their promoters are strongly and efficiently activated by both SREBP-1a and SREBP-2, but not by SREBP-1c. Second, an E-box containing reporter gene is much less efficiently activated by SREBP-1a and -1c, and SREBP-2 was inactive in spite of its ability to bind to the E-box. Third, promoters of lipogenic enzymes containing variations of SRE (SRE-like sequences) are strongly activated by SREBP-1a, and only modestly and equally by both SREBP-1c and -2. Finally, substitution of the unique tyrosine residue within the basic helix-loop-helix (bHLH) portion of nuclear SREBPs with arginine, the conserved residue found in all other bHLH proteins, abolishes the transactivity of all SREBPs for SRE, and conversely results in markedly increased activity of SREBP-1 but not activity of SREBP-2 for E-boxes. These data demonstrate the different specificity and affinity of nuclear SREBP-1 and -2 for different target DNAs, explaining a part of the mechanism behind the differential in vivo regulation of cholesterogenic and lipogenic enzymes by SREBP-1 and -2, respectively.

  7. Metformin suppresses CYP1A1 and CYP1B1 expression in breast cancer cells by down-regulating aryl hydrocarbon receptor expression

    SciTech Connect

    Do, Minh Truong; Kim, Hyung Gyun; Tran, Thi Thu Phuong; Khanal, Tilak; Choi, Jae Ho; Chung, Young Chul; Jeong, Tae Cheon; Jeong, Hye Gwang

    2014-10-01

    Induction of cytochrome P450 (CYP) 1A1 and CYP1B1 by environmental xenobiotic chemicals or endogenous ligands through the activation of the aryl hydrocarbon receptor (AhR) has been implicated in a variety of cellular processes related to cancer, such as transformation and tumorigenesis. Here, we investigated the effects of the anti-diabetes drug metformin on expression of CYP1A1 and CYP1B1 in breast cancer cells under constitutive and inducible conditions. Our results indicated that metformin down-regulated the expression of CYP1A1 and CYP1B1 in breast cancer cells under constitutive and 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)-induced conditions. Down-regulation of AhR expression was required for metformin-mediated decreases in CYP1A1 and CYP1B1 expression, and the metformin-mediated CYP1A1 and CYP1B1 reduction is irrelevant to estrogen receptor α (ERα) signaling. Furthermore, we found that metformin markedly down-regulated Sp1 protein levels in breast cancer cells. The use of genetic and pharmacological tools revealed that metformin-mediated down-regulation of AhR expression was mediated through the reduction of Sp1 protein. Metformin inhibited endogenous AhR ligand-induced CYP1A1 and CYP1B1 expression by suppressing tryptophan-2,3-dioxygenase (TDO) expression in MCF-7 cells. Finally, metformin inhibits TDO expression through a down-regulation of Sp1 and glucocorticoid receptor (GR) protein levels. Our findings demonstrate that metformin reduces CYP1A1 and CYP1B1 expression in breast cancer cells by down-regulating AhR signaling. Metformin would be able to act as a potential chemopreventive agent against CYP1A1 and CYP1B1-mediated carcinogenesis and development of cancer. - Graphical abstract: Schematic of the CYP1A1 and CYP1B1 gene regulation by metformin. - Highlights: • Metformin inhibits CYP1A1 and CYP1B1 expression. • Metformin down-regulates the AhR signaling. • Metformin reduces Sp1 protein expression. • Metformin suppresses TDO expression.

  8. Transcriptional Repression of the Dspp Gene Leads to Dentinogenesis Imperfecta Phenotype in Col1a1-Trps1 Transgenic Mice

    PubMed Central

    Napierala, Dobrawa; Sun, Yao; Maciejewska, Izabela; Bertin, Terry K; Dawson, Brian; D'Souza, Rena; Qin, Chunlin; Lee, Brendan

    2012-01-01

    Dentinogenesis imperfecta (DGI) is a hereditary defect of dentin, a calcified tissue that is the most abundant component of teeth. Most commonly, DGI is manifested as a part of osteogenesis imperfecta (OI) or the phenotype is restricted to dental findings only. In the latter case, DGI is caused by mutations in the DSPP gene, which codes for dentin sialoprotein (DSP) and dentin phosphoprotein (DPP). Although these two proteins together constitute the majority of noncollagenous proteins of the dentin, little is known about their transcriptional regulation. Here we demonstrate that mice overexpressing the Trps1 transcription factor (Col1a1-Trps1 mice) in dentin-producing cells, odontoblasts, present with severe defects of dentin formation that resemble DGI. Combined micro–computed tomography (µCT) and histological analyses revealed tooth fragility due to severe hypomineralization of dentin and a diminished dentin layer with irregular mineralization in Col1a1-Trps1 mice. Biochemical analyses of noncollagenous dentin matrix proteins demonstrated decreased levels of both DSP and DPP proteins in Col1a1-Trps1 mice. On the molecular level, we demonstrated that sustained high levels of Trps1 in odontoblasts lead to dramatic decrease of Dspp expression as a result of direct inhibition of the Dspp promoter by Trps1. During tooth development Trps1 is highly expressed in preodontoblasts, but in mature odontoblasts secreting matrix its expression significantly decreases, which suggests a Trps1 role in odontoblast development. In these studies we identified Trps1 as a potent inhibitor of Dspp expression and the subsequent mineralization of dentin. Thus, we provide novel insights into mechanisms of transcriptional dysregulation that leads to DGI. © 2012 American Society for Bone and Mineral Research. PMID:22508542

  9. Effects of variant UDP-glucuronosyltransferase 1A1 gene, glucose-6-phosphate dehydrogenase deficiency and thalassemia on cholelithiasis

    PubMed Central

    Huang, Yang-Yang; Huang, Ching-Shui; Yang, Sien-Sing; Lin, Min-Shung; Huang, May-Jen; Huang, Ching-Shan

    2005-01-01

    AIM: To test the hypothesis that the variant UDP-glucuronosyltransferase 1A1 (UGT1A1) gene, glucose-6-phosphate dehydrogenase (G6PD) deficiency, and thalassemia influence bilirubin metabolism and play a role in the development of cholelithiasis. METHODS: A total of 372 Taiwan Chinese with cholelithiasis who had undergone cholecystectomy and 293 healthy individuals were divided into case and control groups, respectively. PCR and restriction fragment length polymorphism were used to analyze the promoter area and nucleotides 211, 686, 1 091, and 1 456 of the UGT1A1 gene for all subjects and the gene variants for thalassemia and G6PD deficiency. RESULTS: Variation frequencies for the cholelithiasis patients were 16.1%, 25.8%, 5.4%, and 4.3% for A(TA)6 TAA/A(TA)7TAA (6/7), heterozygosity within the coding region, compound heterozygosity, and homozygosity of the UGT1A1 gene, respectively. Comparing the case and control groups, a statistically significant difference in frequency was demonstrated for the homozygous variation of the UGT1A1 gene (P = 0.012, χ2 test), but not for the other variations. Further, no difference was demonstrated in a between-group comparison of the incidence of G6PD deficiency and thalassemia (2.7% vs 2.4% and 5.1% vs 5.1%, respectively). The bilirubin levels for the cholelithiasis patients with the homozygous variant-UGT1A1 gene were significantly different from the control analog (18.0 ± 6.5 and 12.7 ± 2.9 μmol/L, respectively; P<0.001, Student’s t test). CONCLUSION: Our results show that the homozygous variation in the UGT1A1 gene is a risk factor for the development of cholelithiasis in Taiwan Chinese. PMID:16237771

  10. 211 G to a variation of UDP-glucuronosyl transferase 1A1 gene and neonatal breastfeeding jaundice.

    PubMed

    Chou, Hung-Chieh; Chen, Mei-Huei; Yang, Hwai-I; Su, Yi-Ning; Hsieh, Wu-Shiun; Chen, Chien-Yi; Chen, Huey-Ling; Chang, Mei-Hwei; Tsao, Po-Nien

    2011-02-01

    Breastfeeding jaundice is a common problem in neonates who were exclusively breastfed, but its pathogenesis is still unclear. The uridine diphosphate glucuronosyl transferase 1A1 (UGT1A1) gene polymorphism was shown to contribute to the development of neonatal hyperbilirubinemia. We hypothesize that the variation of UGT1A1 gene may contribute to neonatal breastfeeding jaundice. We prospectively enrolled 688 near-term and term infants who were exclusively breastfed (BF group) or were supplemented by infant formula partially (SF group) before onset of hyperbilirubinemia. Genotyping of the promoter and exon1 of UGT1A1 was performed in all neonates. Neonates in BF group had a significantly higher maximal body weight loss ratio, peak bilirubin level, and a greater incidence of hyperbilirubinemia than those in SF group. Neonates with nucleotide 211 GA or AA variation in UGT1A1 genotypes had higher peak serum bilirubin levels and higher incidence of hyperbilirubinemia than WTs (GG). This phenomenon was only seen in BF group but not in SF group when subset analysis was performed. This suggests that neonates who carry the nucleotide 211 GA or AA variation within coding region in UGT1A1 gene are more susceptible to develop early-onset neonatal breastfeeding jaundice.

  11. Combination effect of cytochrome P450 1A1 gene polymorphisms on uterine leiomyoma: A case-control study

    PubMed Central

    Salimi, Saeedeh; Sajadian, Mojtaba; Khodamian, Maryam; Yazdi, Atefeh; Rezaee, Soodabeh; Mohammadpour-Gharehbagh, Abbas; Mokhtari, Mojgan; Yaghmaie, Minoo

    2016-01-01

    Uterine leiomyoma (UL) is an estrogen-dependent neoplasm of the uterus, and estrogen metabolizing enzymes affect its progression. This study aimed to evaluate the association between two single-nucleotide polymorphisms of cytochrome P450 1A1 (CYP1A1) gene and UL risk. The study consisted of 105 patients with UL and 112 healthy women as controls. Ile462Val (A/G) and Asp449Asp (T/C) polymorphisms of CYP1A1 gene were analyzed by DNA sequencing and polymerase chain reaction-restriction fragment length polymorphism methods, respectively. The findings indicated no association between Ile462Val (A/G) and Asp449Asp (T/C) polymorphisms of CYP1A1 gene and UL (p < 0.05). However, the combination effect of TT/AG genotypes of the Asp449Asp (T/C) and Ile462Val (A/G) polymorphisms was associated with 4.3-fold higher risk of UL. In addition, haplotype analysis revealed that TG haplotype of the Asp449Asp (T/C) and Ile462Val (A/G) polymorphisms could increase the UL risk nearly 4.9-fold. Asp449Asp (T/C) and Ile462Val (A/G) polymorphisms of CYP1A1 gene were not associated with UL susceptibility; however, the combination of the TT/AG genotypes and TG haplotype could increase the UL risk. PMID:27333216

  12. A rapid and efficient newly established method to detect COL1A1-PDGFB gene fusion in dermatofibrosarcoma protuberans

    SciTech Connect

    Yokoyama, Yoko; Shimizu, Akira; Okada, Etsuko; Ishikawa, Osamu; Motegi, Sei-ichiro

    2012-08-24

    Highlights: Black-Right-Pointing-Pointer We developed new method to rapidly identify COL1A1-PDGFB fusion in DFSP. Black-Right-Pointing-Pointer New PCR method using a single primer pair detected COL1A1-PDGFB fusion in DFSP. Black-Right-Pointing-Pointer This is the first report of DFSP with a novel COL1A1 breakpoint in exon 5. -- Abstract: The detection of fusion transcripts of the collagen type 1{alpha}1 (COL1A1) and platelet-derived growth factor-BB (PDGFB) genes by genetic analysis has recognized as a reliable and valuable molecular tool for the diagnosis of dermatofibrosarcoma protuberans (DFSP). To detect the COL1A1-PDGFB fusion, almost previous reports performed reverse transcription polymerase chain reaction (RT-PCR) using multiplex forward primers from COL1A1. However, it has possible technical difficulties with respect to the handling of multiple primers and reagents in the procedure. The objective of this study is to establish a rapid, easy, and efficient one-step method of PCR using only a single primer pair to detect the fusion transcripts of the COL1A1 and PDGFB in DFSP. To validate new method, we compared the results of RT-PCR in five patients of DFSP between the previous method using multiplex primers and our established one-step RT-PCR using a single primer pair. In all cases of DFSP, the COL1A1-PDGFB fusion was detected by both previous method and newly established one-step PCR. Importantly, we detected a novel COL1A1 breakpoint in exon 5. The newly developed method is valuable to rapidly identify COL1A1-PDGFB fusion transcripts in DFSP.

  13. Aldehyde dehydrogenase 1A1 up-regulates stem cell markers in benzo[a]pyrene-induced malignant transformation of BEAS-2B cells.

    PubMed

    Liu, Yonghong; Lu, Ruitao; Gu, Junlian; Chen, Yanxuan; Zhang, Xueyan; Zhang, Lan; Wu, Hao; Hua, Wenfeng; Zeng, Jun

    2016-07-01

    Recently, Aldehyde dehydrogenase 1A1 (ALDH1A1) has been proposed to be a common marker of cancer stem cells and can be induced by benzo[a]pyrene (B[a]P) exposure. However, the underlying mechanism of how ALDH1A1 contributes to B[a]P-induced carcinogenesis in human bronchial epithelial cells remains unclear. Here, we found that B[a]P up-regulated expression levels of stem cell markers (ABCG2, SOX2, c-Myc and Klf4), epithelial-mesenchymal transition (EMT) associated genes (SNAIL1, ZEB1, TWIST and β-CATENIN) and cancer-related long non-coding RNAs (lncRNAs; HOTAIR and MALAT-1) in malignant B[a]P-transformed human bronchial epithelial cells (BEAS-2B-T cells), and these up-regulations were dependent on increased expression of ALDH1A1. The inhibition of endogenous ALDH1A1 expression down-regulated expression levels of stem cell markers and reversed the malignant phenotype as well as reduced the chemoresistance of BEAS-2B-T cells. In contrast, the overexpression of ALDH1A1 in BEAS-2B cells increased the expression of stem cell markers, facilitated cell transformation, promoted migratory ability and enhanced the drug resistance of BEAS-2B cells. Overall, our data indicates that ALDH1A1 promotes a stemness phenotype and plays a critical role in the BEAS-2B cell malignant transformation induced by B[a]P.

  14. Correlative study of peripheral ATP1A1 gene expression level to anxiety severity score on major depressive disorder patients.

    PubMed

    Zhao, Jingjie; Guo, Xu; Du, Yi; Han, Yu; Wang, Yongzhi; Li, Li; Qian, Jialin; Li, Mingzhen; Wu, Huijuan; Golden, Teresa; Wu, Ning

    2016-11-01

    Major depressive disorder (MDD) frequently co-occurs with other psychiatric problems. Our previous study showed that ATP1A1 gene expression level was significantly decreased in MDD patients. This research explores the potential correlations between the ATP1A1 expression level reduction and MDD patients' clinical manifestation. All participant patients were diagnosed by Diagnostic and Statistical Manual of Mental Disorders - 4th edition (DSM-IV). Hamilton rating scale for depression (HAM-D) and anxiety (HAM-A) were applied to group patients into different categories. ATP1A1 expression level was measured by reverse transcript real-time polymerase chain reaction. ATP1A1 expression levels of all MDD subgroups showed significant reduction compared to the control group (p<0.01). Further, the trend of ATP1A1 expression level reduction is significantly related to MDD patients' HAM-A scores (p<0.01). However, there was no significance between ATP1A1 level and HAM-D scores (p>0.05). ATP1A1 expression level reduction is related to MDD anxiety score, which may be an explanation for the clinical manifestations and the underlining physiological mechanisms.

  15. Regulation of Human Cytochrome P4501A1 (hCYP1A1): A Plausible Target for Chemoprevention?

    PubMed Central

    Santes-Palacios, Rebeca; Ornelas-Ayala, Diego; Cabañas, Noel; Marroquín-Pérez, Ana; Hernández-Magaña, Alexis; del Rosario Olguín-Reyes, Sitlali

    2016-01-01

    Human cytochrome P450 1A1 (hCYP1A1) has been an object of study due to its role in precarcinogen metabolism; for this reason it is relevant to know more in depth the mechanisms that rule out its expression and activity, which make this enzyme a target for the development of novel chemiopreventive agents. The aim of this work is to review the origin, regulation, and structural and functional characteristics of CYP1A1 letting us understand its role in the bioactivation of precarcinogen and the consequences of its modulation in other physiological processes, as well as guide us in the study of this important protein. PMID:28105425

  16. Coplanar polychlorinated biphenyl-induced CYP1A1 is regulated through caveolae signaling in vascular endothelial cells

    PubMed Central

    Lim, Eun Jin; Májková, Zuzana; Xu, Shifen; Bachas, Leonidas; Arzuaga, Xabier; Smart, Eric; Tseng, Michael T.; Toborek, Michal; Hennig, Bernhard

    2008-01-01

    Polychlorinated biphenyls (PCBs) are persistent environmental contaminants that can induce inflammatory processes in the vascular endothelium. We hypothesize that the plasma membrane microdomains called caveolae are critical in endothelial activation and toxicity induced by PCBs. Caveolae are particularly abundant in endothelial cells and play a major role in endothelial trafficking and the regulation of signaling pathways associated with the pathology of vascular diseases. We focused on the role of caveolae and their major protein component, caveolin-1 (Cav-1), on aryl hydrocarbon receptor (AhR)-mediated induction of cytochrome P450 1A1 (CYP1A1) by coplanar PCBs. Endothelial cell exposure to PCB77 increased both caveolin-1 and CYP1A1 levels in a time-dependent manner in total cell lysates, with a maximum increase at 6 h. Furthermore, PCB77 accumulated mainly in the caveolae-rich fraction, as determined by gas chromatograph-mass spectrometry. Immunoprecipitation analysis revealed that PCB77 increased AhR binding to caveolin-1. Silencing of caveolin-1 significantly attenuated PCB77-mediated induction of CYP1A1 and oxidative stress. Similar effects were observed in caveolin-1 null mice treated with PCB77. These data suggest that caveolae may play a role in regulating vascular toxicity induced by persistent environmental pollutants such as coplanar PCBs. This may have implications in understanding mechanisms of inflammatory diseases induced by environmental pollutants. PMID:18786521

  17. Actin microfilaments participate in the regulation of the COL1A1 promoter activity in ROS17/2.8 cells under simulated microgravity

    NASA Astrophysics Data System (ADS)

    Dai, Zhongquan; Li, Yinghui; Ding, Bai; Zhang, Xiaoyou; Tan, Yingjun; Wan, Yumin

    2006-01-01

    IntroductionMicrogravity is thought to decrease osteoblastic activity and induce osteoporosis during spaceflight, but the mechanisms, particularly the attendant changes in gene expression, are not well understood. It is suspected that the cytoskeletal system is involved in the manifold changes of cell shape, function, and signaling under microgravity conditions. MethodsWe constructed cell lines stably transfected with pJI36EGFP and pJI23EGFP, which contained a 3.6 and a 2.3 kb fragment, respectively, of the α1(I) collagen gene (COL1A1) promoter fused with the enhanced green fluorescence protein (EGFP) reporter gene. We then developed a semi-quantitative analysis of EGFP fluorescence intensity to evaluate the effects of clinorotation and/or cytochalasin B on the activity of the COL1A1 promoter. Simultaneously, we assessed the collagen type I protein content versus total protein content in clinorotated or control osteoblasts, using immunocytochemistry and the Bradford method, respectively. ResultsThe fluorescence intensity analysis revealed that the expression of COL1A1-EGFP increased in GFP-ROS cells clinorotated for 24 or 48 h, as compared with stationary control cultures. We observed a similar trend in collagen type I content, as assessed by immunocytochemistry. We found that the osteoblast microfilaments tended to disassemble and show a reduction in stress fibers under space flight and clinorotation. Treatment with cytochalasin B in normal gravity resulted in a dose-dependent increase of EGFP fluorescence intensity, indicating that disruption of the actin system was associated with increased activity of the COL1A1 promoter. ConclusionOur study demonstrates that disrupting the actin cytoskeleton by treatment with cytochalasin B and real or simulated microgravity conditions led to altered COL1A1 promoter activity. Together, these results suggest that actin may participate in the regulation of the COL1A1 promoter activity under microgravity conditions.

  18. OCD candidate gene SLC1A1/EAAT3 impacts basal ganglia-mediated activity and stereotypic behavior.

    PubMed

    Zike, Isaac D; Chohan, Muhammad O; Kopelman, Jared M; Krasnow, Emily N; Flicker, Daniel; Nautiyal, Katherine M; Bubser, Michael; Kellendonk, Christoph; Jones, Carrie K; Stanwood, Gregg; Tanaka, Kenji Fransis; Moore, Holly; Ahmari, Susanne E; Veenstra-VanderWeele, Jeremy

    2017-05-30

    Obsessive-compulsive disorder (OCD) is a chronic, disabling condition with inadequate treatment options that leave most patients with substantial residual symptoms. Structural, neurochemical, and behavioral findings point to a significant role for basal ganglia circuits and for the glutamate system in OCD. Genetic linkage and association studies in OCD point to SLC1A1, which encodes the neuronal glutamate/aspartate/cysteine transporter excitatory amino acid transporter 3 (EAAT3)/excitatory amino acid transporter 1 (EAAC1). However, no previous studies have investigated EAAT3 in basal ganglia circuits or in relation to OCD-related behavior. Here, we report a model of Slc1a1 loss based on an excisable STOP cassette that yields successful ablation of EAAT3 expression and function. Using amphetamine as a probe, we found that EAAT3 loss prevents expected increases in (i) locomotor activity, (ii) stereotypy, and (iii) immediate early gene induction in the dorsal striatum following amphetamine administration. Further, Slc1a1-STOP mice showed diminished grooming in an SKF-38393 challenge experiment, a pharmacologic model of OCD-like grooming behavior. This reduced grooming is accompanied by reduced dopamine D1 receptor binding in the dorsal striatum of Slc1a1-STOP mice. Slc1a1-STOP mice also exhibit reduced extracellular dopamine concentrations in the dorsal striatum both at baseline and following amphetamine challenge. Viral-mediated restoration of Slc1a1/EAAT3 expression in the midbrain but not in the striatum results in partial rescue of amphetamine-induced locomotion and stereotypy in Slc1a1-STOP mice, consistent with an impact of EAAT3 loss on presynaptic dopaminergic function. Collectively, these findings indicate that the most consistently associated OCD candidate gene impacts basal ganglia-dependent repetitive behaviors.

  19. TAZ induces lung cancer stem cell properties and tumorigenesis by up-regulating ALDH1A1.

    PubMed

    Yu, Jihang; Alharbi, Adel; Shan, Hongchao; Hao, Yawei; Snetsinger, Brooke; Rauh, Michael J; Yang, Xiaolong

    2017-06-13

    Recent studies suggest that lung cancer stem cells (CSCs) may play major roles in lung cancer. Therefore, identification of lung CSC drivers may provide promising targets for lung cancer. TAZ is a transcriptional co-activator and key downstream effector of the Hippo pathway, which plays critical roles in various biological processes. TAZ has been shown to be overexpressed in lung cancer and involved in tumorigenicity of lung epithelial cells. However, whether TAZ is a driver for lung CSCs and tumor formation in vivo is unknown. In addition, the molecular mechanism underlying TAZ-induced lung tumorigenesis remains to be determined. In this study, we provided evidence that constitutively active TAZ (TAZ-S89A) is a driver for lung tumorigenesis in vivo in mice and formation of lung CSC. Further RNA-seq and qRT-PCR analysis identified Aldh1a1, a well-established CSC marker, as critical TAZ downstream target and showed that TAZ induces Aldh1a1 transcription by activating its promoter activity through interaction with the transcription factor TEAD. Most significantly, inhibition of ALDH1A1 with its inhibitor A37 or CRISPR gene knockout in lung cancer cells suppressed lung tumorigenic and CSC phenotypes in vitro, and tumor formation in mice in vivo. In conclusion, this study identified TAZ as a novel inducer of lung CSCs and the first transcriptional activator of the stem cell marker ALDH1A1. Most significantly, we identified ALDH1A1 as a critical meditator of TAZ-induced tumorigenic and CSC phenotypes in lung cancer. Our studies provided preclinical data for targeting of TAZ-TEAD-ALDH1A1 signaling to inhibit CSC-induced lung tumorigenesis in the future.

  20. A novel splicing mutation in COL1A1 gene caused type I osteogenesis imperfecta in a Chinese family.

    PubMed

    Peng, Hao; Zhang, Yuhui; Long, Zhigao; Zhao, Ding; Guo, Zhenxin; Xue, Jinjie; Xie, Zhiguo; Xiong, Zhimin; Xu, Xiaojuan; Su, Wei; Wang, Bing; Xia, Kun; Hu, Zhengmao

    2012-07-10

    Osteogenesis imperfect (OI) is a heritable connective tissue disorder with bone fragility as a cardinal manifestation, accompanied by short stature, dentinogenesis imperfecta, hyperlaxity of ligaments and skin, blue sclerae and hearing loss. Dominant form of OI is caused by mutations in the type I procollagen genes, COL1A1/A2. Here we identified a novel splicing mutation c.3207+1G>A (GenBank ID: JQ236861) in the COL1A1 gene that caused type I OI in a Chinese family. RNA splicing analysis proved that this mutation created a new splicing site at c.3200, and then led to frameshift. This result further enriched the mutation spectrum of type I procollagen genes. Copyright © 2012 Elsevier B.V. All rights reserved.

  1. [Mutation analysis and prenatal diagnosis of COL1A1 gene in a Chinese family with type I osteogenesis imperfecta].

    PubMed

    Zhang, Hui; Wu, Dong; Hou, Qiaofang; Liu, Zhiyou; Qin, Litao; Liao, Shixiu

    2014-12-01

    To detect mutation of COL1A1 gene in a Chinese family affected with type I osteogenesis imperfecta (OI) and to provide prenatal diagnosis for a fetus at 17th gestational week. Polymerase chain reaction, DNA sequencing and restriction endonuclease analysis were used to verify the detected mutation among other members of the family and 100 healthy controls. No mutation has been detected in the COL1A2 gene in all of the subjects. A heterozygous mutation c.104-1G>C was identified in the COL1A1 gene among all patients from this family. The same mutation was not found in other members from the family and the 100 healthy controls. The mutation was not found in the fetus, and was verified to be a new mutation according to the type I collagen mutation database. The c.104-1G>C mutation of the COL1A1 gene probably underlies the type I osteogenesis imperfecta in this family. Under the premise of a clear genetic diagnosis, prenatal diagnosis may be provided to reduce the risk for the disease.

  2. Pyrene-induced CYP1A2 and SULT1A1 may be regulated by CAR and not by AhR.

    PubMed

    Lee, Chul-Ho; Ito, Yuki; Yanagiba, Yukie; Yamanoshita, Osamu; Kim, Heon; Zhang, Shu-Yun; Kamijima, Michihiro; Gonzalez, Frank J; Nakajima, Tamie

    2007-09-05

    Aryl hydrocarbon receptor (AhR) plays important roles in the regulation and induction of xenobiotic-metabolizing enzymes including the cytochromes P450 1 family (CYP1) and UDP-glucuronosyltransferases 1A (UGT1As) by polycyclic aromatic hydrocarbons as well as chlorinated aromatic hydrocarbons. To determine whether pyrene-induced xenobiotic-metabolizing enzymes are regulated by AhR, male AhR (+/+) and (-/-) mice were used. Both genotyped mice were exposed to 0, 205, 300 or 410 mg/(kgday pyrene), once daily, for four consecutive days by gavage. Exposure to pyrene did not influence hepatic CYP1A1-mRNA in mice of both genotypes, whereas it induced hepatic CYP1A2 protein and mRNA expression and associated 7-ethoxyresorufin O-deethylase and pyrene 1-hydroxylation activities in both AhR (+/+) and (-/-) mice. Similar effects were also found with sulfotransferase 1A1 expression and the associated 1-hydroxypyrene sulfation activity. In contrast, pyrene exposure increased expression of the UGT1A1 and 1A6, and glucuronidation activities associated with 1-hydroxypyrene and 1-naphthol in the liver only in AhR (-/-) mice, although pyrene treatment dose-dependently decreased the latter activity. Pyrene exposure did not increase AhR-mRNA expression in AhR (+/+) mice. In contrast, pyrene-induced expression of the hepatic constitutive androstane receptor (CAR) and one of its target genes, CYP2B10, in both AhR (+/+) and (-/-) mice. These results strongly suggest that pyrene-induced CYP1A2 and SULT1A1 are regulated by CAR, not by AhR. However, the mechanisms of UGT1A1 and 1A6 induction by pyrene were not elucidated in this study.

  3. B-Myb acts as a repressor of human COL1A1 collagen gene expression by interacting with Sp1 and CBF factors in scleroderma fibroblasts.

    PubMed Central

    Cicchillitti, Lucia; Jimenez, Sergio A; Sala, Arturo; Saitta, Biagio

    2004-01-01

    We investigated the role of B-Myb, a cell-cycle-regulated transcription factor, in the expression of the alpha1 (I) pro-collagen gene (COL1A1) in scleroderma fibroblasts. Scleroderma or SSc (systemic sclerosis) is a fibrotic disease characterized by excessive production of extracellular matrix components, especially type I collagen. Northern-blot analysis showed an inverse relationship between COL1A1 mRNA expression and that of B-Myb during exponential cell growth and during quiescence in human SSc fibroblasts. Overexpression of B-Myb in SSc fibroblasts was correlated with decreased COL1A1 mRNA expression. Transient transfections localized the down-regulatory effect of B-Myb to a region containing the proximal 174 bp of the COL1A1 promoter that does not contain B-Myb consensus binding sites. Gel-shift analysis, using nuclear extracts from normal and SSc fibroblasts transfected with B-Myb, showed no differences in DNA-protein complex formation when compared with the nuclear extracts from mock-transfected cells. However, we found that B-Myb decreases Sp1 (specificity protein 1) and CBF (CCAAT-binding factor) binding for their specific sites localized in the 174 bp COL1A1 proximal promoter. These results were also confirmed using B-Myb-immunodepleted nuclear extracts. Furthermore, immunoprecipitation assays using SSc nuclear extracts demonstrated a physical interaction of B-Myb with Sp1 and CBF transcription factors, and also an interaction between Sp1 and CBF. In addition, by employing full-length or deleted B-Myb cDNA construct, we found that B-Myb down-regulates the COL1A1 proximal promoter through its C-terminal domain. Thus these results suggest that B-Myb may be an important factor in the pathway(s) regulating collagen production in SSc fibroblasts. PMID:14613485

  4. Se(VI) Reduction and the Precipitation of Se(0) Precipitation by the Facultative Bacterium Enterobacter Cloacae SLD1a-1 is Regulated by FNR

    SciTech Connect

    Yee,N.; Ma, J.; Dalia, A.; Boonfueng, T.; Kobayashi, D.

    2007-01-01

    The fate of selenium in the environment is controlled, in part, by microbial selenium oxyanion reduction and Se(0) precipitation. In this study, we identified a genetic regulator that controls selenate reductase activity in the Se-reducing bacterium Enterobacter cloacae SLD1a-1. Heterologous expression of the global anaerobic regulatory gene fnr (fumarate nitrate reduction regulator) from E. cloacae in the non-Se-reducing strain Escherichia coli S17-1 activated the ability to reduce Se(VI) and precipitate insoluble Se(0) particles. Se(VI) reduction by E. coli S17-1 containing the fnr gene occurred at rates similar to those for E. cloacae, with first-order reaction constants of k = 2.07 x 10{sup -2} h{sup -1} and k = 3.36 x 10{sup -2} h{sup -1}, respectively, and produced elemental selenium particles with identical morphologies and short-range atomic orders. Mutation of the fnr gene in E. cloacae SLD1a-1 resulted in derivative strains that were deficient in selenate reductase activity and unable to precipitate elemental selenium. Complementation by the wild-type fnr sequence restored the ability of mutant strains to reduce Se(VI). Our findings suggest that Se(VI) reduction and the precipitation of Se(0) by facultative anaerobes are regulated by oxygen-sensing transcription factors and occur under suboxic conditions.

  5. Association of the candidate gene SLC1A1 and obsessive-compulsive disorder in Han Chinese population.

    PubMed

    Wu, Haisu; Wang, Xuemei; Yu, Shunying; Wang, Dongxiang; Chen, Jianhua; Jiang, Kaida; Zhu, Liping; Xiao, Zeping; Fralick, Drew

    2013-10-30

    This case-control study enrolled 578 obsessive-compulsive disorder (OCD) patients and 649 controls and genotyped rs10491734, rs2228622, rs301430 and rs301443 to replicate association of the SLC1A1 gene with OCD in ethnic Han Chinese. The G-A-C-G and G-G-T-C haplotypes were found to be significantly associated with OCD in overall samples, male samples and female samples.

  6. Polymorphic variation of CYP1A1 and CYP1B1 genes in a Haryana population.

    PubMed

    Giri, Shiv Kumar; Yadav, Anita; Kumar, Anil; Dev, Kapil; Gulati, Sachin; Gupta, Ranjan; Aggarwal, Neeraj; Gautam, Sanjeev Kumar

    2013-12-01

    Cytochrome P450 (CYP) 1A1 and CYP1B1 are important phase I xenobiotic metabolizing enzymes involved in the metabolism of numbers of toxins, endogenous hormones, and pharmaceutical drugs. Polymorphisms in these phase I genes can alter enzyme activity and are known to be associated with cancer susceptibility related to environmental toxins and hormone exposure. Their genotypes may also display ethnicity-dependent population frequencies. The present study was aimed to determine the frequencies of commonly known functional polymorphisms of CYP1A1 and CYP1B1 genes in a Haryana state population of North India. The allelic frequency of CYP1A1 polymorphism m1 (MspI) was 29.65% and m2 (Ile(462)Val) was 24.85%. The frequency of CYP1B1 polymorphism m1 (Val(432)Leu) was 45.85% and m2 (Asn(453)Ser) was 16.2%. We observed inter- and intra-ethnic variation in the frequency distribution of these polymorphisms. Analysis of polymorphisms in these genes might help in predicting the risk of cancer. Our results emphasize the need for more such studies in high-risk populations.

  7. [Analysis of association of Col1a1 gene alleles with the development of osteoporosis].

    PubMed

    Moskalenko, M V; Aseev, M V; Zazerskaia, I E; Kotova, S M; Ivashchenko, T E; Baranov, V S

    2002-12-01

    Allele frequencies of the G-->T polymorphism at the regulatory region of the Collal gene in the population of the northwestern Russia (control group) and in osteoporotic patients were estimated by the RFLP method based on PCR-mediated site-directed mutagenesis. Three patient groups with radiologically confirmed osteoporosis were examined. Group 1 consisted of 64 patients with severe osteoporosis complicated by fractures (SO); group 2 included 15 children with idiopathic osteoporosis (IO); group 3 consisted of 98 women with postmenopausal osteoporosis developed at the background of estradiol-deficiency state (PMO). The frequency of functionally defective allele s in the control group was 16.7%. It was statistically different from that in the SO patients (48.4%) (P < 0.01) and in the IO children (40%) (P < 0.01). The frequency of allele s in the PMO patients constituted 23.0% and it was similar to that in the control group (P > 0.05). Analysis of the Collal alleles provides early detection of the individuals with hereditary predisposition to osteoporosis and prophylaxis of the disease at the presymptomatic stage.

  8. Eight mutations including 5 novel ones in the COL1A1 gene in Czech patients with osteogenesis imperfecta.

    PubMed

    Hruskova, Lucie; Fijalkowski, Igor; Van Hul, Wim; Marik, Ivo; Mortier, Geert; Martasek, Pavel; Mazura, Ivan

    2016-09-01

    Osteogenesis imperfecta (OI), also called brittle bone disease, is a clinically and genetically heterogeneous disorder characterized by decreased bone density. Autosomal dominant forms result from mutations in either the COL1A1 (collagen type I alpha-1 chain) or COL1A2 (collagen type I alpha-2 chain) genes encoding the type I collagen. The aim of this study was to identify mutations and allelic variants of the COL1A1 gene in patients with osteogenesis imperfecta (OI). Molecular genetic analysis of the COL1A1 gene was performed in a cohort of 34 patients with OI. The DNA samples were analysed by PCR and Sanger sequencing. DNA changes in coding sequences of the gene were compared with Type 1 Collagen Mutation Database. Genetic variants resulting in either quantitatively or structurally defective protein production were found in 6 unrelated patients. Four identified mutations are connected to decreased protein production (Tyr47X, Arg131X, Arg415X, Gln1341X), 2 result in amino acid substitution (Cys61Phe, Pro1186Ala) and the last affects splicing (c.1057-1G>T). Further, one silent mutation (Gly794Gly) was detected. No protein analysis was performed. Of the 8 identified mutations, 5 were novel and have not been reported before. Only one causes substitution of glycine located within the Gly-X-Y triplets in the triple helical domain. Two mutations are located in major ligand binding regions (MLBR) which are important for bone strength and flexibility. Although the genotype-phenotype correlation is still unclear, our findings should contribute to elucidating this relationship in patients diagnosed with OI.

  9. Aryl hydrocarbon receptor protein and Cyp1A1 gene induction by LPS and phenanthrene in Atlantic cod (Gadus morhua) head kidney cells.

    PubMed

    Holen, Elisabeth; Olsvik, Pål Asgeir

    2014-10-01

    The objective of this study was to evaluate interactions between environmental toxicants and cod immune cells during inflammation. Phenanthrene is abundant in plant oils (rapeseed, palm, and soya oil) as compared to fish oils, and consequently constitute an undesirable element in plant replacement diets in aquaculture. Phenanthrene was added to head kidney cell cultures, alone or together with LPS (lipopolysaccharide) or poly I: C (polyinosinic acid: polycytidylic acid), and the responses were evaluated in terms of protein and gene expression. The results showed that LPS, poly I: C or phenanthrene, added to the cultures separately, induced aryl hydrocarbon receptor (AhR) protein expression. Phenanthrene treatment in combination with LPS induced AhR protein expression and Cyp1A1 gene transcription, which not was observed combining poly I: C and phenanthrene. Phenanthrene exposure up regulated the transcription of common stress and detoxification enzymes like catalase, caspase 3 and glutathione S-transferase alfa 3 subunit B (GSTAB3), while LPS exposure alone or combined with phenanthrene down regulated GSTAB3 and catalase in cod leukocytes. It seems clear that immune regulation and phenanthrene induced signaling pathways interact; transcriptional down regulation of detoxification and antioxidant enzymes by LPS could indicate that combating bacterial infections is the number one priority in these cells, and that AhR and Cyp1A1 is somehow involved in this signaling cascade. LPS seems to affect the mitogen activated protein kinases (MAPKs) pathways (P-p38 and ERK1/2) thus modulating the AhR protein and Cyp1A1 gene transcription, while phenanthrene possibly activates AhR by ligand binding.

  10. Dopamine D2-Receptor Antagonists Down-Regulate CYP1A1/2 and CYP1B1 in the Rat Liver

    PubMed Central

    Harkitis, P.; Lang, M. A.; Marselos, M.; Fotopoulos, A.; Albucharali, G.; Konstandi, M.

    2015-01-01

    Dopaminergic systems regulate the release of several hormones including growth hormone (GH), thyroid hormones, insulin, glucocorticoids and prolactin (PRL) that play significant roles in the regulation of various Cytochrome P450 (CYP) enzymes. The present study investigated the role of dopamine D2-receptor-linked pathways in the regulation of CYP1A1, CYP1A2 and CYP1B1 that belong to a battery of genes controlled by the Aryl Hydrocarbon Receptor (AhR) and play a crucial role in the metabolism and toxicity of numerous environmental toxicants. Inhibition of dopamine D2-receptors with sulpiride (SULP) significantly repressed the constitutive and benzo[a]pyrene (B[a]P)-induced CYP1A1, CYP1A2 and CYP1B expression in the rat liver. The expression of AhR, heat shock protein 90 (HSP90) and AhR nuclear translocator (ARNT) was suppressed by SULP in B[a]P-treated livers, whereas the AhRR expression was increased by the drug suggesting that the SULP-mediated repression of the CYP1 inducibility is due to inactivation of the AhR regulatory system. At signal transduction level, the D2-mediated down-regulation of constitutive CYP1A1/2 and CYP1B1 expression appears to be mediated by activation of the insulin/PI3K/AKT pathway. PRL-linked pathways exerting a negative control on various CYPs, and inactivation of the glucocorticoid-linked pathways that positively control the AhR-regulated CYP1 genes, may also participate in the SULP-mediated repression of both, the constitutive and induced CYP1 expression. The present findings indicate that drugs acting as D2-dopamine receptor antagonists can modify several hormone systems that regulate the expression of CYP1A1, CYP1A2 and CYP1B1, and may affect the toxicity and carcinogenicity outcome of numerous toxicants and pre-carcinogenic substances. Therefore, these drugs could be considered as a part of the strategy to reduce the risk of exposure to environmental pollutants and pre-carcinogens. PMID:26466350

  11. Identification of a novel heterozygous mutation in exon 50 of the COL1A1 gene causing osteogenesis imperfecta

    PubMed Central

    Aftab, S A S; Reddy, N; Owen, N L; Pollitt, R; Harte, A; McTernan, P G; Tripathi, G; Barber, T M

    2013-01-01

    Summary A 19-year-old woman was diagnosed with osteogenesis imperfecta (OI). She had sustained numerous low-trauma fractures throughout her childhood, including a recent pelvic fracture (superior and inferior ramus) following a low-impact fall. She had the classical blue sclerae, and dual energy X-ray absorptiometry (DEXA) bone scanning confirmed low bone mass for her age in the lumbar spine (Z-score was −2.6). However, despite these classical clinical features, the diagnosis of OI had not been entertained throughout the whole of her childhood. Sequencing of her genomic DNA revealed that she was heterozygous for the c.3880_3883dup mutation in exon 50 of the COL1A1 gene. This mutation is predicted to result in a frameshift at p.Thr1295, and truncating stop codon 3 amino acids downstream. To our knowledge, this mutation has not previously been reported in OI. Learning points OI is a rare but important genetic metabolic bone and connective tissue disorder that manifests a diverse clinical phenotype that includes recurrent low-impact fractures.Most mutations that underlie OI occur within exon 50 of the COL1A1 gene (coding for protein constituents of type 1 pro-collagen).The diagnosis of OI is easily missed in its mild form. Early diagnosis is important, and there is a need for improved awareness of OI among health care professionals.OI is a diagnosis of exclusion, although the key diagnostic criterion is through genetic testing for mutations within the COL1A1 gene.Effective management of OI should be instituted through a multidisciplinary team approach that includes a bone specialist (usually an endocrinologist or rheumatologist), a geneticist, an audiometrist and a genetic counsellor. Physiotherapy and orthopaedic surgery may also be required. PMID:24616757

  12. CYP1A1 based on metabolism of xenobiotics by cytochrome P450 regulates chicken male germ cell differentiation.

    PubMed

    Li, Dong; Wang, Man; Cheng, Shaoze; Zhang, Chen; Wang, Yilin; Zhang, Wenhui; Zhao, Ruifeng; Sun, Changhua; Zhang, Yani; Li, Bichun

    2017-04-01

    This study aimed to explore the regulatory mechanism of metabolism of xenobiotics by cytochrome P450 during the differentiation process of chicken embryonic stem cells (ESCs) into spermatogonial stem cells (SSCs) and consummate the induction differentiation system of chicken embryonic stem cells (cESCs) into SSCs in vitro. We performed RNA-Seq in highly purified male ESCs, male primordial germ cells (PGCs), and SSCs that are associated with the male germ cell differentiation. Thereinto, the metabolism of xenobiotics by cytochrome P450 was selected and analyzed with Venny among male ESC vs male PGC, male PGC vs SSC, and male ESC vs SSC groups and several candidates differentially expressed genes (DEGs) were excavated. Finally, quantitative real-time PCR (qRT-PCR) detected related DEGs under the condition of retinoic acid (RA) induction in vitro, and the expressions were compared with RNA-Seq. By knocking down CYP1A1, we detected the effect of CYP1A1-mediated metabolism of xenobiotics by cytochrome P450 on male germ cell differentiation by qRT-PCR and immunocytochemistry. Results showed that 17,742 DEGs were found during differentiation of ESCs into SSCs and enriched in 72 differently significant pathways. Thereinto, the metabolism of xenobiotics by cytochrome P450 was involved in the whole differentiation process of ESCs into SSCs and several candidate DEGs: CYP1A1, CYP3A4, CYP2D6, ALDH3B1, and ALDH1A3 were expressed with the same trend with RNA-Seq. Knockdown of CYP1A1 caused male germ cell differentiation under restrictions. Our findings showed that the metabolism of xenobiotics by cytochrome P450 was significantly different during the process of male germ cell differentiation and was persistently activated when we induced cESCs to differentiate into SSCs with RA in vitro, which illustrated that the metabolism of xenobiotics by cytochrome P450 played a crucial role in the differentiation process of ESCs into SSCs.

  13. Ah receptor, CYP1A1, CYP1A2 and CYP1B1 gene polymorphisms are not involved in the risk of recurrent pregnancy loss.

    PubMed

    Saijo, Y; Sata, F; Yamada, H; Suzuki, K; Sasaki, S; Kondo, T; Gong, Y Y; Kato, E H; Shimada, S; Morikawa, M; Minakami, H; Kishi, R

    2004-10-01

    The etiology of recurrent pregnancy loss (RPL) remains unclear, but it may be related to a possible genetic predisposition together with involvement of environmental factors. We examined the relation between RPL and polymorphisms in four genes, human aryl hydrocarbon (Ah) receptor, cytochrome P450 (CYP) 1A1, CYP1A2 and CYP1B1, which are involved in the metabolism of a wide range of environmental toxins and carcinogens. All cases and controls were women resident in Sapporo, Japan and the surrounding area. The Ah receptor, CYP1A1, CYP1A2 and CYP1B1 genotypes were assessed in 113 Japanese women with recurrent pregnancy loss (RPL) and 203 ethnically matched women experiencing at least one live birth and no spontaneous abortion (control). No significant differences in Ah receptor, CYP1A1, CYP1A2 and CYP1B1 genotype frequencies were found between the women with RPL and the controls [Ah receptor: Arg/Arg (reference); Arg/Lys and Lys/Lys, odds ratio (OR)=0.67; 95% confidence interval (CI)=0.40-1.11, CYP1A1: m1m1 (reference); m1m2 and m2m2, OR = 0.86; 95% CI = 0.53-1.40, CYP1A2: C/C and C/A (reference); A/A, OR = 1.16; 95% CI = 0.71-1.88, CYP1B1: Leu/Leu (reference); Leu/Val and Val/Val, OR = 1.18; 95% CI = 0.68-2.02]. The present study suggests that the Ah receptor, CYP1A1, CYP1A2 and CYP1B1 gene polymorphisms are not major genetic regulators in RPL.

  14. Ezetimibe: A biomarker for efficacy of liver directed UGT1A1 gene therapy for inherited hyperbilirubinemia.

    PubMed

    Montenegro-Miranda, Paula S; Sneitz, Nina; de Waart, D Rudi; Ten Bloemendaal, Lysbeth; Duijst, Suzanne; de Knegt, Robert J; Beuers, Ulrich; Finel, Moshe; Bosma, Piter J

    2012-08-01

    As recently demonstrated in patients with factor IX deficiency, adeno-associated virus (AAV)-mediated liver-directed therapy is a viable option for inherited metabolic liver disorders. Our aim is to treat Crigler-Najjar syndrome type I (CN I), an inherited severe unconjugated hyperbilirubinemia, as a rare recessive inherited disorder. Because the number of patients eligible for this approach is small, the efficacy can only be demonstrated by a beneficial effect on the pathophysiology in individual patients. Serum bilirubin levels in potential candidates have been monitored since birth, providing an indication of their pathophysiology. Adjuvant phototherapy to prevent brain damage reduces serum unconjugated bilirubin (UCB) levels in CN I patients to the level seen in the milder form of the disease, CN type II. This therapy increases the excretion of UCB, thereby complicating the use of UCB and conjugated bilirubin levels in serum as biomarkers for the gene therapy we try to develop. Therefore, a suitable biomarker that is not affected by phototherapy is currently needed. To this end, we have investigated whether estradiol, ethinylestradiol or ezetimibe could be used as markers for uridine 5'-di-phospho-glucuronosyltransferase isoform 1A1 (UGT1A1) activity restored by AAV gene therapy in Gunn rats, a relevant animal model for CN I. Of these compounds, ezetimibe appeared most suitable because its glucuronidation rate in untreated control Gunn rats is low. Subsequently, ezetimibe glucuronidation was studied in both untreated and AAV-treated Gunn rats and the results suggest that it may serve as a useful serum marker for restored hepatic UGT1A1 activity.

  15. Ethanol up-regulates phenol sulfotransferase (SULT1A1) and hydroxysteroid sulfotransferase (SULT2A1) in rat liver and intestine.

    PubMed

    Maiti, Smarajit; Chen, Guangping

    2015-05-01

    Ethanol-consumption impairs physiological-efficiency/endurance, expedites senescence. Impaired-regulations of steroids/biomolecules link these processes. Steroids are catabolized by cytosolic-sulfotransferases (SULTs). Ethanol-induction of eukaryotic-SULTs-expression is scanty. Plant (Brassica-napus) steroid-sulfotransferase; BNST3/BNST4 (gene/BNST) is highly ethanol-inducible (protein/mRNA). Resembling mammalian-SULTs catalytic-mechanism BNSTs show broad substrate-specificities (mammalian-steroids; estradiol/dehydroepiandrosterone/pregnanolone). Recently, ethanol-regulation of SULTs-expression is verified in rat liver/intestine/cultured human-hepatocarcinoma (Hep-G2) cells at enzyme-activity/protein-expression (Western-blot) level. Here, two week's ethanol ingestion by male rat significantly increased SULT2A1 in their liver/intestine (p < 0.05-p < 0.001) and phenol-sulfotransferase (SULT1A1) in intestine (p < 0.001) at enzyme-activity/protein levels. In human cells, ethanol significantly (2-fold) increased hSULT1A1/hSULT1E (2-3 fold) protein expressions paralleling their enzymatic-activities (p < 0.05-p < 0.01). The earlier finding of alcohol-association to the physiological impairment may be corroborated by our present findings. Inductions of SULT-expressions by ethanol have significant physiological/pharmacological consequences.

  16. Genetic polymorphisms in CYP1A1, CYP1B1 and COMT genes in Greenlandic Inuit and Europeans

    PubMed Central

    Ghisari, Mandana; Long, Manhai; Bonefeld-Jørgensen, Eva C.

    2013-01-01

    Background The Indigenous Arctic population is of Asian descent, and their genetic background is different from the Caucasian populations. Relatively little is known about the specific genetic polymorphisms in genes involved in the activation and detoxification mechanisms of environmental contaminants in Inuit and its relation to health risk. The Greenlandic Inuit are highly exposed to legacy persistent organic pollutants (POPs) such as polychlorinated biphenyls (PCBs) and organochlorine pesticides (OCPs), and an elucidation of gene–environment interactions in relation to health risks is needed. Objectives The aim of this study was to determine and compare the genotype and allele frequencies of the cytochrome P450 CYP1A1 Ile462Val (rs1048943), CYP1B1 Leu432Val (rs1056836) and catechol-O-methyltransferase COMT Val158Met (rs4680) in Greenlandic Inuit (n=254) and Europeans (n=262) and explore the possible relation between the genotypes and serum levels of POPs. Results The genotype and allele frequency distributions of the three genetic polymorphisms differed significantly between the Inuit and Europeans. For Inuit, the genotype distribution was more similar to those reported for Asian populations. We observed a significant difference in serum polychlorinated biphenyl (CB-153) and the pesticide 1,1-dichloro-2,2-bis(p-chlorophenyl)-ethylene (p,p′-DDE) levels between Inuit and Europeans, and for Inuit also associations between the POP levels and genotypes for CYP1A1, CYP1B1 and COMT. Conclusion Our data provide new information on gene polymorphisms in Greenlandic Inuit that might support evaluation of susceptibility to environmental contaminants and warrant further studies. PMID:23785672

  17. A non-canonical function of eukaryotic elongation factor 1A1: regulation of interleukin-6 expression.

    PubMed

    Schulz, Ingo; Engel, Claudia; Niestroj, André J; Kehlen, Astrid; Rahfeld, Jens-Ulrich; Kleinschmidt, Martin; Lehmann, Karola; Roßner, Steffen; Demuth, Hans-Ulrich

    2014-05-01

    Interleukin-6 is one of the most prominent triggers of inflammatory processes. We have shown recently that heteroarylketones (HAKs) interfere with stimulated interleukin-6 expression in astrocytes by suppression of STAT3 phosphorylation at serine 727. Surprisingly, this effect is not based on the inhibition of STAT3-relevant kinases. Therefore, we here used the structurally modified HAK compound biotin-HAK-3 in a reverse chemical approach to identify the relevant molecular target in UV-mediated cross-linking experiments. Employing streptavidin-specific 2D-immunoblotting followed by mass spectrometry we identified nine proteins putatively interacting with biotin-HAK-3. After co-immunoprecipitation, co-immunofluorescence, surface plasmon resonance analyses and RNAi-mediated knock-down, the eukaryotic elongation factor 1A1 (eEF1A1) was verified as the relevant target of HAK bioactivity. eEF1A1 forms complexes with STAT3 and PKCδ, which are crucial for STAT3(S727) phosphorylation and for NF-κB/STAT3-enhanced interleukin-6 expression. Furthermore, the intracellular HAK accumulation is strongly dependent on eEF1A1 expression. Taken together, the results reveal a novel molecular mechanism for a non-canonical role of eEF1A1 in signal transduction via direct modulation of kinase-dependent phosphorylation events.

  18. The Association of CYP1A1 Gene With Cervical Cancer and Additional SNP-SNP Interaction in Chinese Women.

    PubMed

    Li, Shuhong; Li, Guiqin; Kong, Fanqiang; Liu, Zhifen; Li, Ning; Li, Yan; Guo, Xiaojing

    2016-11-01

    The aim of this study was to investigate the association between CYP1A1 gene polymorphism and cervical cancer risk, and the impact of SNP-SNP interaction on cervical cancer risk in Chinese women. A total of 728 females with a mean age of 60.1 ± 14.5 years old were selected, including 360 cervical cancer patients and 368 normal controls. Logistic regression was performed to investigate association between single-nucleotide polymorphisms (SNP) and cervical cancer risk. Generalized multifactor dimensionality reduction (GMDR) was used to analyze the SNP-SNP interaction. Logistic analysis showed a significant association between rs4646903 and increased cervical cancer risk. The carriers of homozygous mutant of rs4646903 polymorphism revealed increased cervical cancer risk than those with wild-type homozygotes, OR (95%CI) were 1.45 (1.20-1.95). There was a significant two-locus model (P = 0.0107) involving rs4646903 and rs1048943, indicating a potential SNP-SNP interaction between rs4646903 and rs1048943. Overall, the two-locus models had a cross-validation consistency of 10 of 10, and had the testing accuracy of 60.72%. Subjects with TC or CC of rs4646903 and AG or GG of rs1048943 genotype have the highest cervical cancer risk, compared to subjects with TT of rs4646903 and AA of rs1048943 genotype, OR (95%CI) was 2.03 (1.42-2.89). rs4646903 minor alleles and interaction between rs4646903 and rs1048943 were associated with increased cervical cancer risk. © 2016 Wiley Periodicals, Inc.

  19. Constitutive androstane receptor transcriptionally activates human CYP1A1 and CYP1A2 genes through a common regulatory element in the 5'-flanking region.

    PubMed

    Yoshinari, Kouichi; Yoda, Noriaki; Toriyabe, Takayoshi; Yamazoe, Yasushi

    2010-01-15

    Phenobarbital has long been known to increase cellular levels of CYP1A1 and CYP1A2 possibly through a pathway(s) independent of aryl hydrocarbon receptor. We have investigated the role of constitutive androstane receptor (CAR), a xenobiotic-responsive nuclear receptor, in the transactivation of human CYP1A1 and CYP1A2. These genes are located in a head-to-head orientation, sharing a 5'-flanking region. Reporter assays were thus performed with dual-reporter constructs, containing the whole or partially deleted human CYP1A promoter between two different reporter genes. In this system, human CAR (hCAR) enhanced the transcription of both genes through common promoter regions from -461 to -554 and from -18089 to -21975 of CYP1A1. With reporter assays using additional deleted and mutated constructs, electrophoresis mobility shift assays and chromatin immunoprecipitation assays, an ER8 motif (everted repeat separated by eight nucleotides), located at around -520 of CYP1A1, was identified as an hCAR-responsive element and a binding motif of hCAR/human retinoid X receptor alpha heterodimer. hCAR enhanced the transcription of both genes also in the presence of an aryl hydrocarbon receptor ligand. Finally, hCAR activation increased CYP1A1 and CYP1A2 mRNA levels in cultured human hepatocytes. Our results indicate that CAR transactivates human CYP1A1 and CYP1A2 in human hepatocytes through the common cis-element ER8. Interestingly, the ER8 motif is highly conserved in the CYP1A1 proximal promoter sequences of various species, suggesting a fundamental role of CAR in the xenobiotic-induced expression of CYP1A1 and CYP1A2 independent of aryl hydrocarbon receptor.

  20. 3-Methylcholanthrene elicits DNA adduct formation in the CYP1A1 promoter region and attenuates reporter gene expression in rat H4IIE cells

    SciTech Connect

    Moorthy, Bhagavatula . E-mail: bmoorthy@bcm.tmc.edu; Muthiah, Kathirvel; Fazili, Inayat S.; Kondraganti, Sudha R.; Wang Lihua; Couroucli, Xanthi I.; Jiang Weiwu

    2007-03-23

    Cytochrome CYP1A (CYP1A) enzymes catalyze bioactivation of 3-methylcholanthrene (MC) to genotoxic metabolites. Here, we tested the hypothesis that CYP1A2 catalyzes formation of MC-DNA adducts that are preferentially formed in the promoter region of CYP1A1, resulting in modulation of CYP1A1 gene expression. MC bound covalently to plasmid DNA (50 {mu}g) containing human CYP1A1 promoter (pGL3-1A1), when incubated with wild-type (WT) liver microsomes (2 mg) and NAPPH 37 {sup o}C for 2 h, giving rise to 9 adducts, as determined by {sup 32}P-postlabeling. Eighty percent of adducts was located in the promoter region. Transient transfection of the adducted plasmids into rat hepatoma (H4IIE) cells for 16 h, followed by MC (1 {mu}M) treatment for 24 h inhibited reporter (luciferase) gene expression by 75%, compared to unadducted controls. Our results suggest that CYP1A2 plays a key role in sequence-specific MC-DNA adduct formation in the CYP1A1 promoter region, leading to attenuation of CYP1A1 gene expression.

  1. Osterix induces Col1a1 gene expression through binding to Sp1 sites in the bone enhancer and proximal promoter regions.

    PubMed

    Ortuño, Maria José; Susperregui, Antonio R G; Artigas, Natalia; Rosa, José Luis; Ventura, Francesc

    2013-02-01

    Bone-specific transcription factors promote differentiation of mesenchymal precursors toward the osteoblastic cell phenotype. Among them, Runx2 and Osterix have been widely accepted as master osteogenic factors, since neither Runx2 nor Osterix null mice form mature osteoblasts. Recruitment of Osterix to a number of promoters of bone-specific genes has been shown. However, little is known about the functional interactions between Osterix and the Col1a1 promoter. In this study we determined in several mesenchymal and osteoblastic cell types that either BMP-2 or Osterix overexpression increased Col1a1 transcription. We identified consensus Sp1 sequences, located in the proximal promoter and in the bone-enhancer, as Osterix binding regions in the Col1a1 promoter in vitro and in vivo. Furthermore, we show that p38 or Erk MAPK signaling is required for maximal transcriptional effects on Col1a1 expression. Runx2 has been shown to activate Col1a1 expression through binding to sites which are located close to the Sp1 sites where Osterix binds. Our data show that overexpression of Runx2 and Osterix leads to a cooperative effect on the expression of the Col1a1 endogenous gene and its promoter reporter construct. These effects mainly affect the long isoform of Osterix which suggest that the two Osterix isoforms might display some differential effects on the transactivation of bone-specific genes.

  2. Nuclear transcription factor Oct-1 binds to the 5'-upstream region of CYP1A1 and negatively regulates its expression.

    PubMed

    Bhat, R; Weaver, J A; Sterling, K M; Bresnick, E

    1996-02-01

    The cytochrome P450-dependent monooxygenases, which represent an extended superfamily, catalyze the biotransformation of many endogenous and exogenous substances. One of these hemoproteins, cytochrome P4501A1, is most closely associated with the bioactivation of polycyclic aromatic hydrocarbons such as benzo[a]pyrene, which may play a role in environmental carcinogenesis. A negative regulatory element (NRE) has been localized in the 5'-upstream region of the cytochrome P4501A1 gene (CYP1A1) at -843 to -746 base pairs from the site of transcription. The purpose of this research was to define any interactions of trans-acting proteins with this cis element. Rat liver nuclei were used as the source of trans-acting proteins and a biotinylated NRE-bearing fragment (-782 to -843 bp) from a plasmid which contained the CYP1A1 was prepared by the polymerase chain reaction technique. Gel mobility shift assays were used to demonstrate interactions between this NRE fragment and nuclear proteins. The specific binding to an octamer-containing motif in the 5'-upstream region of CYP1A1 was demonstrated; this was used as a step in the partial purification from rat liver of the transcription factor, Oct-1. Conventional chromatographic procedures and DNA recognition site affinity chromatography were also used. HepG2 human hepatoma cells were transfected with both pMCoLUC+ which contains the luciferase gene as a reporter gene driven by the CYP1A1 promoter (including the NRE), and an Oct-1 expression vector. Luciferase activity/mg protein in the doubly-transfected cells was significantly lower than in cells containing only pMCoLUC+. A nuclear transcription factor Oct-1 interacts with a portion of the NRE of the rat CYP1A1, suppressing the expression of this gene. These findings may help to explain the low level of basal expression of CYP1A1 in mammalian systems.

  3. Regulated Gene Therapy.

    PubMed

    Breger, Ludivine; Wettergren, Erika Elgstrand; Quintino, Luis; Lundberg, Cecilia

    2016-01-01

    Gene therapy represents a promising approach for the treatment of monogenic and multifactorial neurological disorders. It can be used to replace a missing gene and mutated gene or downregulate a causal gene. Despite the versatility of gene therapy, one of the main limitations lies in the irreversibility of the process: once delivered to target cells, the gene of interest is constitutively expressed and cannot be removed. Therefore, efficient, safe and long-term gene modification requires a system allowing fine control of transgene expression.Different systems have been developed over the past decades to regulate transgene expression after in vivo delivery, either at transcriptional or post-translational levels. The purpose of this chapter is to give an overview on current regulatory system used in the context of gene therapy for neurological disorders. Systems using external regulation of transgenes using antibiotics are commonly used to control either gene expression using tetracycline-controlled transcription or protein levels using destabilizing domain technology. Alternatively, specific promoters of genes that are regulated by disease mechanisms, increasing expression as the disease progresses or decreasing expression as disease regresses, are also examined. Overall, this chapter discusses advantages and drawbacks of current molecular methods for regulated gene therapy in the central nervous system.

  4. No association between polymorphisms and haplotypes of COL1A1 and COL1A2 genes and osteoporotic fracture in postmenopausal Chinese women

    PubMed Central

    Hu, Wei-wei; He, Jin-wei; Zhang, Hao; Wang, Chun; Gu, Jie-mei; Yue, Hua; Ke, Yao-hua; Hu, Yun-qiu; Fu, Wen-zhen; Li, Miao; Liu, Yu-juan; Zhang, Zhen-lin

    2011-01-01

    Aim: To study whether genetic polymorphisms of COL1A1 and COL1A2 genes affected the onset of fracture in postmenopausal Chinese women. Methods: SNPs in COL1A1 and COL1A2 genes were identified via direct sequencing in 32 unrelated postmenopausal Chinese women. Ten SNPs were genotyped in 1252 postmenopausal Chinese women. The associations were examined using both single-SNP and haplotype tests using logistic regression. Results: Twenty four (4 novel) and 28 (7 novel) SNPs were identified in COL1A1 and COL1A2 gene, respectively. The distribution frequencies of 2 SNPs in COL1A1 (rs2075554 and rs2586494) and 3 SNPs in COL1A2 (rs42517, rs1801182, and rs42524) were significantly different from those documented for the European Caucasian population. No significant difference was observed between fracture and control groups with respect to allele frequency or genotype distribution in 9 selected SNPs and haplotype. No significant association was found between fragility fracture and each SNP or haplotype. The results remained the same after additional corrections for other risk factors such as weight, height, and bone mineral density. Conclusion: Our results show no association between common genetic variations of COL1A1 and COL1A2 genes and fracture, suggesting the complex genetic background of osteoporotic fractures. PMID:21602843

  5. Clinical significance of UGT1A1 gene polymorphisms on irinotecan-based regimens as the treatment in metastatic colorectal cancer

    PubMed Central

    Li, Minmin; Wang, Zhehai; Guo, Jun; Liu, Jie; Li, Changzheng; Liu, Lin; Shi, Huan; Liu, Liyan; Li, Huihui; Xie, Chao; Zhang, Xia; Sun, Wenwen; Fang, Shu; Bi, Xiang

    2014-01-01

    Purpose The primary aim of this research was to investigate the association between uridine diphosphate glucuronosyltransferase (UGT)1A1 gene polymorphisms and the toxicities of irinotecan-based regimens in Chinese patients with metastatic colorectal cancer. Methods The study analyzed the distribution of UGT1A1*28/*6 gene polymorphisms by polymerase chain reaction amplification and pyrosequencing. The adverse reactions and tumor response were evaluated according to National Cancer Institute Common Toxicity Criteria for Adverse Events, Version 3.0, and Response Evaluation Criteria In Solid Tumors, Version 1.0, criteria, respectively. The correlation between UGT1A1 gene polymorphisms and severe delayed diarrhea or neutropenia was analyzed. The influences of UGT1A1*6/*28 polymorphisms on response rate and progression-free survival were also analyzed. Survival analysis was performed by the Kaplan–Meier method, and we used the log-rank test to analyze the effect of genotypes on progression-free survival, the logistic regression model for multivariate analysis, and the Cox regression model for multivariate survival analysis. Results A total of 167 patients with metastatic colorectal cancer who were treated with irinotecan-based regimens and with detected UGT1A1 gene polymorphisms were enrolled in this research. The rate of UGT1A1*28 homozygous wild-type TA6/6, heterozygous mutant-type TA6/7, and homozygous mutant-type TA7/7 was 65.3% (109/167), 32.3% (54/167), and 2.4% (4/167), respectively; the incidence of UGT1A1*6 wild-type G/G was 67.1% (112/167), heterozygous mutant-type G/A accounted for 28.7% (48/167), and seven cases were homozygous mutant-type A/A (4.2%; 7/167). The incidence of grade 3 or 4 delayed diarrhea in patients carrying UGT1A1*6 (G/A and A/A) was higher than that in the wild-type (G/G) (P=0.021). The rate was significantly lower in patients with the UGT1A1*28 TA6/6 wide-type genotype than those with TA6/7 and TA7/7 mutant-type genotypes (P=0

  6. Study of the association between polymorphisms of the COL1A1 gene and HBV-related liver cirrhosis in Chinese patients.

    PubMed

    Zhao, Yun-Peng; Wang, Hao; Fang, Meng; Ji, Qiang; Yang, Zai-Xing; Gao, Chun-Fang

    2009-02-01

    To investigate the association between polymorphisms of the COL1A1 gene and liver cirrhosis. A total of 111 liver cirrhotic patients and 95 matched controls were recruited. Polymorphisms -1997T>G, -1663 ins/del T and -1363C>G of the COL1A1 gene were detected by direct sequencing. The activities of the putative promoters containing these polymorphisms were analyzed by means of the reporter gene system. No polymorphism at -1663 ins/del T was observed in any subject. Linkage disequilibrium was shown between -1997T>G and -1363C>G. The frequency of haplotype -1997T/-1363C was significantly higher in patients than that in controls. The putative promoters containing -1997T/-1363C resulted in higher reporter gene activity in LX-2. Strong transcriptional inhibition by IFN gamma was shown in both cells. The T allele at -1997 of COL1A1 is crucial to the increased transcriptional activity. COL1A1 gene polymorphism might be associated with liver fibrogenesis.

  7. Genetic polymorphisms of CYP1A1, GSTM1 and P53 genes in a unique Siberian population of Tundra Nentsi and its pharmacogenetic importance.

    PubMed

    Duzhak, T G; Osipova, L P; Posukh, O L; Chasovnikova, O B; Ostashevskii, V I; Lyakhovich, V V

    2001-04-01

    Complete data on the polymorphisms of CYP1A1, GSTM1 and p53 genes in Tundra Nentsi population, with known genealogical history are essential for the analysis of the "cancer susceptibility gene markers" distribution among different Oriental populations. The cytochrome P4501A subfamily is known to be responsible for the metabolic activation of aromatic compounds occurring in the products of gas mixture combustion, the main environmental pollutants in the north of western Siberia. Recently a close correlation was reported between development of some types of cancer and polymorphisms of human CYP1A1, GSTM1 and p53 genes. The frequency of the CYP1A1 Vol allele in the healthy part of the Tundra Nentsi population differs from those previously reported for Japanese and is more than 1.5 times higher. It is necessary to underline that homozygote Val genotype was present in 26% of non-healthy Tundra Nentsi, the incidence being 2.7-times higher in comparison with healthy population. GSTM1 gene deletion is present in 40% of Orientals and in 39% of Tundra Nentsi. Moreover, the share of individuals with null genotype among a group with chromosomal abnormalities and cancer was 63%, or 1.5 fold higher. Thus the prevalence of two polymorphic genes CYP1A1 and GSTM1 responsible for the biotransformation of polycyclic aromatic hydrocarbons was too high in the non-healthy group.

  8. Novel COL1A1 gene mutation (R1026X) of type I osteogenesis imperfecta: A first case report.

    PubMed

    Niramitmahapanya, Sathit; Anusornvongchai, Thitinun; Pingsuthiwong, Sarinee; Sarinnapakorn, Veerasak; Deerochanawong, Chaicharn; Sunthornthepvarakul, Thongkum

    2013-03-01

    A 22-year-old Thai man with blue sclera, normal height and absence of deformity sustained an open fracture at the right talus and talo-navicular dislocation while playing in a volleyball match. The patient had a history of several fractures of his elbows, wrists and ankles from minor impacts. Novel COL1A1 nonsense mutation (c. 3202 C-->T), a C to T transition at position 3,203, resulting in arginine to stop codon at codon 1026 (R102 6X) mutation in exon 42 was found, and this is the first case reported in the literature.

  9. Genetic polymorphisms in CYP1A1, GSTM1, GSTP1 and GSTT1 metabolic genes and risk of lung cancer in Asturias

    PubMed Central

    2012-01-01

    Background Metabolic genes have been associated with the function of metabolizing and detoxifying environmental carcinogens. Polymorphisms present in these genes could lead to changes in their metabolizing and detoxifying ability and thus may contribute to individual susceptibility to different types of cancer. We investigated if the individual and/or combined modifying effects of the CYP1A1 MspI T6235C, GSTM1 present/null, GSTT1 present/null and GSTP1 Ile105Val polymorphisms are related to the risk of developing lung cancer in relation to tobacco consumption and occupation in Asturias, Northern Spain. Methods A hospital-based case–control study (CAPUA Study) was designed including 789 lung cancer patients and 789 control subjects matched in ethnicity, age, sex, and hospital. Genotypes were determined by PCR or PCR-RFLP. Individual and combination effects were analysed using an unconditional logistic regression adjusting for age, pack-years, family history of any cancer and occupation. Results No statistically significant main effects were observed for the carcinogen metabolism genes in relation to lung cancer risk. In addition, the analysis did not reveal any significant gene-gene, gene-tobacco smoking or gene-occupational exposure interactions relative to lung cancer susceptibility. Lastly, no significant gene-gene combination effects were observed. Conclusions These results suggest that genetic polymorphisms in the CYP1A1, GSTM1, GSTT1 and GSTP1 metabolic genes were not significantly associated with lung cancer risk in the current study. The results of the analysis of gene-gene interactions of CYP1A1 MspI T6235C, GSTM1 present/null, GSTT1 present/null and GSTP1 Ile105Val polymorphisms in lung cancer risk indicate that these genes do not interact in lung cancer development. PMID:23013535

  10. ALDH1A1 Maintains Ovarian Cancer Stem Cell-Like Properties by Altered Regulation of Cell Cycle Checkpoint and DNA Repair Network Signaling

    PubMed Central

    Meng, Erhong; Mitra, Aparna; Tripathi, Kaushlendra; Finan, Michael A.; Scalici, Jennifer; McClellan, Steve; da Silva, Luciana Madeira; Reed, Eddie; Shevde, Lalita A.; Palle, Komaraiah; Rocconi, Rodney P.

    2014-01-01

    Objective Aldehyde dehydrogenase (ALDH) expressing cells have been characterized as possessing stem cell-like properties. We evaluated ALDH+ ovarian cancer stem cell-like properties and their role in platinum resistance. Methods Isogenic ovarian cancer cell lines for platinum sensitivity (A2780) and platinum resistant (A2780/CP70) as well as ascites from ovarian cancer patients were analyzed for ALDH+ by flow cytometry to determine its association to platinum resistance, recurrence and survival. A stable shRNA knockdown model for ALDH1A1 was utilized to determine its effect on cancer stem cell-like properties, cell cycle checkpoints, and DNA repair mediators. Results ALDH status directly correlated to platinum resistance in primary ovarian cancer samples obtained from ascites. Patients with ALDHHIGH displayed significantly lower progression free survival than the patients with ALDHLOW cells (9 vs. 3 months, respectively p<0.01). ALDH1A1-knockdown significantly attenuated clonogenic potential, PARP-1 protein levels, and reversed inherent platinum resistance. ALDH1A1-knockdown resulted in dramatic decrease of KLF4 and p21 protein levels thereby leading to S and G2 phase accumulation of cells. Increases in S and G2 cells demonstrated increased expression of replication stress associated Fanconi Anemia DNA repair proteins (FANCD2, FANCJ) and replication checkpoint (pS317 Chk1) were affected. ALDH1A1-knockdown induced DNA damage, evidenced by robust induction of γ-H2AX and BAX mediated apoptosis, with significant increases in BRCA1 expression, suggesting ALDH1A1-dependent regulation of cell cycle checkpoints and DNA repair networks in ovarian cancer stem-like cells. Conclusion This data suggests that ovarian cancer cells expressing ALDH1A1 may maintain platinum resistance by altered regulation of cell cycle checkpoint and DNA repair network signaling. PMID:25216266

  11. Total saponins from dioscorea septemloba thunb reduce serum uric acid levels in rats with hyperuricemia through OATP1A1 up-regulation.

    PubMed

    Chen, Yan; Chen, Xiao-lin; Xiang, Ting; Sun, Bao-guo; Luo, Hao-xuan; Liu, Meng-ting; Chen, Ze-xiong; Zhang, Shi-jun; Wang, Chang-Jun

    2016-04-01

    The aim of this study is to evaluate the efficacy of total saponins of Dioscorea (TSD), an extract of the Chinese herbal Bi Xie, on hyperuricemia and to elucidate the underlying mechanisms. The rat hyperuricemia model was established by administration of adenine. Thirty-two rats were randomly allocated into 4 groups: model group, low/high-dose TSD-treated groups, and allopurinol-treated group. Meanwhile, 8 rats were used as normal controls. Serum uric acid (UA), blood urea nitrogen (BUN), serum creatinine (Scr), and organic anion transporting polypeptide 1A1 (OATP1A1) levels were measured. Comparison between the model group and treatment (allopurinol and TSD) groups showed the serum UA levels were significantly decreased in treatment groups. TSD had similar effects to allopurinol. It was found that the OATP1A1 protein expression levels in treatment groups were higher than in model group and normal controls. And different from the allopurinol-treated groups, TSD-treated group had elevated OATP1A1 expression levels in the stomach, liver, small intestine and large intestine tissues. It was suggested that TSD may facilitate the excretion of UA and lower UA levels by up-regulating OATP1A1 expression.

  12. A single nucleotide polymorphism in SLC1A1 gene is associated with age of onset of obsessive-compulsive disorder.

    PubMed

    Dallaspezia, S; Mazza, M; Lorenzi, C; Benedetti, F; Smeraldi, E

    2014-06-01

    Different genetic polymorphisms in the SLC1A1 have been shown to be associated with obsessive-compulsive disorder. Rs301430 is a T/C functional polymorphism affecting the gene expression and extrasynaptic glutamate concentration.We observed that Rs301430 influence age at onset in obsessive-compulsive disorder.

  13. Brief Report: Glutamate Transporter Gene ("SLC1A1") Single Nucleotide Polymorphism (rs301430) and Repetitive Behaviors and Anxiety in Children with Autism Spectrum Disorder

    ERIC Educational Resources Information Center

    Gadow, Kenneth D.; Roohi, Jasmin; DeVincent, Carla J.; Kirsch, Sarah; Hatchwell, Eli

    2010-01-01

    Investigated association of single nucleotide polymorphism (SNP) rs301430 in glutamate transporter gene ("SLC1A1") with severity of repetitive behaviors (obsessive-compulsive behaviors, tics) and anxiety in children with autism spectrum disorder (ASD). Mothers and/or teachers completed a validated DSM-IV-referenced rating scale for 67 children…

  14. Brief Report: Glutamate Transporter Gene ("SLC1A1") Single Nucleotide Polymorphism (rs301430) and Repetitive Behaviors and Anxiety in Children with Autism Spectrum Disorder

    ERIC Educational Resources Information Center

    Gadow, Kenneth D.; Roohi, Jasmin; DeVincent, Carla J.; Kirsch, Sarah; Hatchwell, Eli

    2010-01-01

    Investigated association of single nucleotide polymorphism (SNP) rs301430 in glutamate transporter gene ("SLC1A1") with severity of repetitive behaviors (obsessive-compulsive behaviors, tics) and anxiety in children with autism spectrum disorder (ASD). Mothers and/or teachers completed a validated DSM-IV-referenced rating scale for 67 children…

  15. Mice Deficient in the Gene for Cytochrome P450 (CYP)1A1 Are More Susceptible Than Wild-Type to Hyperoxic Lung Injury: Evidence for Protective Role of CYP1A1 Against Oxidative Stress

    PubMed Central

    Wang, Lihua; Wang, Gangduo; Couroucli, Xanthi I.; Shivanna, Binoy; Welty, Stephen E.; Barrios, Roberto; Khan,  M. Firoze; Nebert, Daniel W.; Roberts, L. Jackson; Moorthy, Bhagavatula

    2014-01-01

    Hyperoxia contributes to acute lung injury in diseases such as acute respiratory distress syndrome in adults and bronchopulmonary dysplasia in premature infants. Cytochrome P450 (CYP)1A1 has been shown to modulate hyperoxic lung injury. The mechanistic role(s) of CYP1A1 in hyperoxic lung injury in vivo is not known. In this investigation, we hypothesized that Cyp1a1(–/–) mice would be more susceptible to hyperoxic lung injury than wild-type (WT) mice, and that the protective role of CYP1A1 is in part due to CYP1A1-mediated decrease in the levels of reactive oxygen species-mediated lipid hydroperoxides, e.g., F2-isoprostanes/isofurans, leading to attenuation of oxidative damage. Eight- to ten-week-old male WT (C57BL/6J) or Cyp1a1(–/–) mice were exposed to hyperoxia (>95% O2) or room air for 24–72 h. The Cyp1a1(–/–) mice were more susceptible to oxygen-mediated lung damage and inflammation than WT mice, as evidenced by increased lung weight/body weight ratio, lung injury, neutrophil infiltration, and augmented expression of IL-6. Hyperoxia for 24–48 h induced CYP1A expression at the mRNA, protein, and enzyme levels in liver and lung of WT mice. Pulmonary F2-isoprostane and isofuran levels were elevated in WT mice after hyperoxia for 24 h. On the other hand, Cyp1a1(–/–) mice showed higher levels after 48–72 h of hyperoxia exposure compared to WT mice. Our results support the hypothesis that CYP1A1 protects against hyperoxic lung injury by decreasing oxidative stress. Future research could lead to the development of novel strategies for prevention and/or treatment of acute lung injury. PMID:24893714

  16. Functional evaluation of novel single nucleotide polymorphisms and haplotypes in the promoter regions of CYP1B1 and CYP1A1 genes.

    PubMed

    Han, Weiguo; Pentecost, Brian T; Spivack, Simon D

    2003-07-01

    Interindividual variation in the expression of the carcinogen- and estrogen-metabolizing enzymes cytochrome P4501B1 and 1A1 (CYP1B1 and CYP1A1) has been detected in human lung. To search for polymorphisms with functional consequences for CYP1B1 and CYP1A1 gene expression, we examined 1.5 kb of the promoter region of each gene. Genomic DNA from 21 Caucasian individuals was amplified by polymerase chain reaction (PCR) for direct cycle sequencing. Eight single nucleotide polymorphisms (SNPs) for CYP1B1 and 13 SNPs for CYP1A1 were found. The majority of polymorphisms occurred as multiSNP combinations for individual subjects. The wild-type sequences were cloned into a luciferase reporter construct. The most frequent polymorphisms were then recreated by iterative site-directed mutagenesis, replicating single polymorphisms and multiSNP combinations. These wild-type and variant constructs were functionally evaluated in transient transfection experiments employing exposures to either the index polycyclic aromatic hydrocarbon (PAH) inducer benzo[a]pyrene (B[a]P), a composite mixture of cigarette smoke extract (CSE), or the repressor chemopreventive agent trans-3,4,5-trihydroxystilbene (reseveratrol). Results indicated that all wild-type and variant constructs responded in qualitatively concordant fashion to the inducers and to the repressor. The CYP1B1 haplotypes and the majority of CYP1A1 haplotypes were shown to have no functional consequence, as compared to those of the wild-type promoter sequences. Two constructs of composite polymorphisms of CYP1A1 appeared to result in a statistically significant increase in basal promoter activity (1.38- and 1.50-fold, respectively), but the degree of functional impact was judged unlikely to be biologically important in vivo. We conclude that the observed promoter region polymorphisms in these genes are common, but are of unclear functional consequence.

  17. The Association between Prolonged Jaundice and UGT1A1 Gene Polymorphism (G71R) in Gilbert’s Syndrome

    PubMed Central

    Alaee, Ehsan; Bazrafshan, Behnaz; Azaminejad, Ali Reza; Fouladinejad, Mahnaz

    2016-01-01

    Introduction Jaundice is a common condition during the neonatal period. Prolonged jaundice occurs in a large number of breastfed infants. Considering the impact of genetic factors on the incidence of jaundice present study was conducted. Aim The aim of this study was to determine the association between prolonged jaundice and G71R polymorphism in Gilbert’s syndrome. Materials and Methods This case-control study was conducted at Taleghani Children’s Hospital of Gorgan, Iran. The study group consisted of 87 icteric patients (aged more than 2 weeks) with an indirect bilirubin level higher than 10mg/dL. The control group consisted of 81 newborns without jaundice. The two groups were matched in terms of age and gender. DNA extraction was performed by “phenol-chloroform” method. Polymerase Chain Reaction with Confronting Two-Pair Primers (PCR-CTPP) was applied to amplify G71R polymorphism. Results Overall, 84% and 64% of subjects in the study and control groups were male, respectively. The distribution of Gilbert genotype was not significantly different between the two groups (p=0.772). There was a correlation between prolonged jaundice in males and UGT1A1 G71R polymorphism (p =0.03). In the study group, 5(5.7%) subjects were homozygous (for A/A), 73 (83.9%) were heterozygous (for A/G), and 9(10.3%) were normal (for G/G). In the control group, 3(3.7%) participants were homozygous (A/A), 68(84%) were heterozygous (A/G) and 10 (12.3%) were normal (G/G). Conclusion There was no association between prolonged jaundice and G71R polymorphism, even though a relationship was revealed between male gender and the mentioned polymorphism. PMID:28050400

  18. Genetic variation in the CYP1A1 gene is related to circulating PCB118 levels in a population-based sample

    SciTech Connect

    Lind, Lars; Penell, Johanna; Syvänen, Anne-Christine; Axelsson, Tomas; Ingelsson, Erik; Morris, Andrew P.; Lindgren, Cecilia; Salihovic, Samira; Bavel, Bert van; Lind, P. Monica

    2014-08-15

    Several of the polychlorinated biphenyls (PCBs), i.e. the dioxin-like PCBs, are known to induce the P450 enzymes CYP1A1, CYP1A2 and CYP1B1 by activating the aryl hydrocarbon receptor (Ah)-receptor. We evaluated if circulating levels of PCBs in a population sample were related to genetic variation in the genes encoding these CYPs. In the population-based Prospective Investigation of the Vasculature in Uppsala Seniors (PIVUS) study (1016 subjects all aged 70), 21 SNPs in the CYP1A1, CYP1A2 and CYP1B1 genes were genotyped. Sixteen PCB congeners were analysed by high-resolution chromatography coupled to high-resolution mass spectrometry (HRGC/ HRMS). Of the investigated relationships between SNPs in the CYP1A1, CYP1A2 and CYP1B1 and six PCBs (congeners 118, 126, 156, 169, 170 and 206) that captures >80% of the variation of all PCBs measured, only the relationship between CYP1A1 rs2470893 was significantly related to PCB118 levels following strict adjustment for multiple testing (p=0.00011). However, there were several additional SNPs in the CYP1A2 and CYP1B1 that showed nominally significant associations with PCB118 levels (p-values in the 0.003–0.05 range). Further, several SNPs in the CYP1B1 gene were related to both PCB156 and PCB206 with p-values in the 0.005–0.05 range. Very few associations with p<0.05 were seen for PCB126, PCB169 or PCB170. Genetic variation in the CYP1A1 was related to circulating PCB118 levels in the general elderly population. Genetic variation in CYP1A2 and CYP1B1 might also be associated with other PCBs. - Highlights: • We studied the relationship between PCBs and the genetic variation in the CYP genes. • Cross sectional data from a cohort of elderly were analysed. • The PCB levels were evaluated versus 21 SNPs in three CYP genes. • PCB 118 was related to variation in the CYP1A1 gene.

  19. Genetic variation in the CYP1A1 gene is related to circulating PCB118 levels in a population-based sample

    PubMed Central

    Lind, Lars; Penell, Johanna; Syvänen, Anne-Christine; Axelsson, Tomas; Ingelsson, Erik; Morris, Andrew P.; Lindgren, Cecilia; Salihovic, Samira; van Bavel, Bert; Lind, P. Monica

    2017-01-01

    Several of the polychlorinated biphenyls (PCBs), i.e. the dioxin-like PCBs, are known to induce the P450 enzymes CYP1A1, CYP1A2 and CYP1B1 by activating the aryl hydrocarbon receptor (Ah)-receptor. We evaluated if circulating levels of PCBs in a population sample were related to genetic variation in the genes encoding these CYPs. In the population-based Prospective Investigation of the Vasculature in Uppsala Seniors (PIVUS) study (1016 subjects all aged 70), 21 SNPs in the CYP1A1, CYP1A2 and CYP1B1 genes were genotyped. Sixteen PCB congeners were analysed by high-resolution chromatography coupled to high-resolution mass spectrometry (HRGC/HRMS). Of the investigated relationships between SNPs in the CYP1A1, CYP1A2 and CYP1B1 and six PCBs (congeners 118, 126, 156, 169, 170 and 206) that captures >80% of the variation of all PCBs measured, only the relationship between CYP1A1 rs2470893 was significantly related to PCB118 levels following strict adjustment for multiple testing (p=0.00011). However, there were several additional SNPs in the CYP1A2 and CYP1B1 that showed nominally significant associations with PCB118 levels (p-values in the 0.003–0.05 range). Further, several SNPs in the CYP1B1 gene were related to both PCB156 and PCB206 with p-values in the 0.005–0.05 range. Very few associations with p<0.05 were seen for PCB126, PCB169 or PCB170. Genetic variation in CYP1A1 was related to circulating PCB118 levels in the general elderly population. Genetic variation in CYP1A2 and CYP1B1 might also be associated with other PCBs. PMID:24926919

  20. A novel RNA-splicing mutation in COL1A1 gene causing osteogenesis imperfecta type I in a Chinese family.

    PubMed

    Xia, Xin-Yi; Cui, Ying-Xia; Huang, Yu-Feng; Pan, Lian-Jun; Yang, Bin; Wang, Hao-Yang; Li, Xiao-Jun; Shi, Yi-Chao; Lu, Hong-Yong; Zhou, Yu-Chun

    2008-12-01

    Osteogenesis imperfecta (OI), also known as brittle bone disease, is a rare heterogeneous group of inherited disorders characterized by low bone mass and increased bone fragility. The four major clinical criteria for diagnosis of OI are osteoporosis with abnormal fragility of the skeleton, blue sclera, dentinogenesis imperfecta, and premature otosclerosis. The presence of two of these abnormalities confirms the diagnosis. More than 90% patients have autosomal dominant mutations in one of the two genes, COL1A1 and COL1A2, that encode the alpha chains of type I collagen. While the diagnosis of OI is still based on clinical and radiological grounds, there is a growing demand for the molecular characterization of causative mutations. Although there have been several studies on the mutational spectra of COL1A1 and/or COL1A2 in Western populations, very few cases have been reported from Asia. The purpose of this study is to report two patients with OI type I in a Chinese family, who had a novel RNA-splicing mutation in COL1A1 gene and describe the molecular, radiological and clinical findings. The proband, (case II-5), a 32-y-old Chinese male, and his 7-y-old daughter were diagnosed as OI type I according to their clinical and radiological features. Genomic DNA was extracted from their blood samples and all promoters, exons and exon/intron boundaries of COL1A1 and COL1A2 genes were sequenced. Polymerase chain reaction sequence-specific primers (PCR-SSP) was used to confirm patients' heterozygous state. Direct DNA sequencing analysis of COL1A1 gene revealed a splicing mutation (c.1875+1G>A, also as IVS 27+1G>A) that converted the 5' end of intron 27 from GT to AT. This mutation was found in both 2 affected individuals but 9 unaffected relatives and the 50 controls were not observed, which was consistent with the clinical diagnosis. This mutation (c.1875+1G>A) appeared to be novel, which is neither reported in literature nor registered in the Database of Collagen Mutations

  1. COL1A1 gene -1997G/T polymorphism and risk of osteoporosis in postmenopausal women: a meta-analysis.

    PubMed

    Yu, K H; Tang, J; Dai, C Q; Yu, Y; Hong, J J

    2015-09-21

    Studies investigating the association between the COL1A1 gene -1997G/T polymorphism and the risk of osteoporosis in postmenopausal women have reported conflicting results. We performed a meta-analysis based on the evidence currently available from the literature to make a more precise estimation of this relationship. We conducted searches of the published literature in the PubMed and Embase databases up to September 2014. We estimated the pooled odds ratios with their 95% confidence intervals to assess the associations using fixed- or random-effect models. Publication bias was investigated by Begg's funnel plot. Meta-analysis was performed using the STATA package version 12.0. No significant association was found between the -1997G/T polymorphism in the COL1A1 gene and osteoporosis risk in the total population analysis (TT vs GG: OR = 1.28, 95%CI = 0.76-2.17; TT vs GT: OR = 1.04, 95%CI = 0.60-1.78; dominant model: OR = 0.84, 95%CI = 0.50-1.40; recessive model: OR = 1.18, 95%CI = 0.84- 1.66). In a subgroup analysis by nationality, the results also showed that no significant associations between the COL1A1 gene -1997G/T polymorphism and osteoporosis risk existed in either Caucasian or Asian populations. No evidence of publication bias was found. In conclusion, the COL1A1 gene -1997G/T polymorphism might not be a risk factor for osteoporosis in postmenopausal women. Further large and well-designed studies are needed to confirm these conclusions.

  2. Polymorphisms in the cytochrome P-450 (CYP) 1A1 and 17 genes are not associated with acne vulgaris in the Polish population

    PubMed Central

    Zabłotna, Monika; Dobosz-Kawałko, Magdalena; Michajłowski, Igor; Mędrzycka-Dąbrowska, Wioletta; Nowicki, Roman; Sokołowska-Wojdyło, Małgorzata

    2015-01-01

    Introduction The pathogenesis of acne is complex, multifactorial and not well understood. The genetic background of this dermatosis is well documented. Aim To assess the frequency of –34 T > C single nucleotide polymorphism in the promoter of the CYP17 gene as well as m1 (+6,235 T > C) and m2 (+4,889 A > G) mutation in the coding region CYP1A1 gene acne patients from the Northern Polish population. Material and methods The study included 115 acne patients and 94 healthy controls (aged over 20) without acne in anamnesis. The CYP1A1 polymorphism was analyzed by polymerase chain reaction (PCR). The restriction fragment length polymorphism (RFLP) was used to analyze m1 mutation and allele-specific PCR in the case of m2 mutation. The CYP17 polymorphism was analyzed by RFLP. The results were evaluated by the Pearson's χ2 test. Results There were no statistically significant associations between allele and genotype frequencies between the acne and the control group. Conclusions We did not confirm the role of the CYP1A1 and CYP17 gene as predictor factors for acne development in the Polish population. PMID:26759538

  3. Antidepressant effects on serotonin 1A/1B receptors in the rat brain using a gene x environment model.

    PubMed

    Shrestha, Stal Saurav; Pine, Daniel S; Luckenbaugh, David A; Varnäs, Katarina; Henter, Ioline D; Innis, Robert B; Mathé, Aleksander A; Svenningsson, Per

    2014-01-24

    A gene-environment (GxE) interaction is implicated in both the pathophysiology and treatment of major depressive disorder (MDD). This study modeled the effects of genetic vulnerability by using the Flinders sensitive line (FSL), a rat model of depression and its control counterpart-the Flinders resistant line (FRL). The effects of environmental vulnerability (e.g., early-life stress) were modeled by using maternal separation. Rats (n=105) were drawn from four groups reflecting experimental crossing of strain (FSL vs. FRL) and early-life stress (high vs. low) to assess the effects of two antidepressants (escitalopram or nortriptyline) compared to vehicle. Quantitative in vitro autoradiography was performed using [(125)I]MPPI (5-HT1A) and [(125)I]CYP (5-HT1B) in prefrontal cortex (PFC) and hippocampus. Stringent, Bonferroni-corrected statistical analyses showed significant strain-by-rearing-by-treatment (three-way) interactions in PFC 5-HT1A and hippocampal 5-HT1B receptors. Either vulnerability reduced serotonergic binding; no additive effects were associated with the two vulnerabilities. Both antidepressants increased hippocampal 5-HT1B receptor binding; however, only nortriptyline selectively increased PFC 5-HT1A receptor binding. Taken together, our findings demonstrate that antidepressant effects on the serotonergic system are shaped by a GxE interaction that depends on antidepressant class and brain region.

  4. Uridine diphosphate glucuronide transferase 1A1FNx0128 gene polymorphism and the toxicity of irinotecan in recurrent and refractory small cell lung cancer.

    PubMed

    Yun, Fan; Lulu, Miao; Zhiyu, Huang; Lei, Gong; Haifeng, Yu; Tao, Lei; Haiyan, Yang; Conghua, Xie

    2014-11-01

    The aim was to investigate the association between uridine diphosphate glucuronide transferase 1A1 (UGT1A1) gene promoter region polymorphism and irinotecan-related adverse effects and efficacy on recurrent and refractory small cell lung cancer (SCLC). A total of 31 patients with recurrent and refractory SCLC were enrolled in this study from June 2012 to August 2013 and received at least two cycles of single-agent irinotecan chemotherapy. The efficacy and adverse effects of irinotecan were evaluated. DNA was extracted from peripheral blood and direct sequencing method was employed to test UGT1A1FNx0128 polymorphism, thus analyzing the correlation between UGT1A1FNx0128 polymorphism and irinotecan-related side-effects and efficacy. A total of 25 cases (80.6%) were UGT1A1FNx0128 wild-type (TA) 6 /(TA) 6 ; 6 cases (19.4%) were heterozygous mutant (TA) 6 /(TA) 7 , no homozygous mutant genotype (TA) 7 /(TA) 7 was found. The incidences of grade 3/4 neutropenia, diarrhea and thrombocytopenia were 35.5%, 25.8% and 22.6% in all the patients, respectively. The incidence of 3/4 adverse effects in patients with genotype (TA) 6 /(TA) 6 and heterozygous (TA) 6 /(TA) 7 had no statistical difference (P > 0.05 for all). The overall response rate (ORR) was 32.3%. Median progression free survival (PFS) and overall survival (OS) were 4 months and 7.5 months in all patients, respectively. There was no statistical difference in ORR, PFS and OS between genotype (TA) 6 /(TA) 6 patients and heterozygous (TA) 6 /(TA) 7 patients. Irinotecan showed efficacy in patients with recurrent and refractory SCLC; UGT1A1 FNx01 28 polymorphism failed to predict the incidence of serious adverse effects and efficacy of irinotecan.

  5. CYP1A1 and CYP1B1 genotypes, haplotypes, and TCDD-induced gene expression in subjects from Seveso, Italy.

    PubMed

    Landi, Maria Teresa; Bergen, Andrew W; Baccarelli, Andrea; Patterson, Donald G; Grassman, Jean; Ter-Minassian, Monica; Mocarelli, Paolo; Caporaso, Neil; Masten, Scott A; Pesatori, Angela C; Pittman, Gary S; Bell, Douglas A

    2005-02-14

    2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) is highly toxic in experimental animals, and is known to induce cytochrome P450 (CYP) gene expression. We investigated the effect of CYP1A1 and CYP1B1 variant genotypes and haplotypes on CYP1A1 and CYP1B1 mRNA expression and ethoxyresorufin-O-deethylase (EROD) activity in lymphocytes from 121 subjects from the Seveso population, Italy, accidentally exposed to TCDD in 1976. The 3'UTR 3801T>C and I462V variants of CYP1A1 were present in 16% and 6% of the subjects, respectively. The frequency of CYP1B1 variants was 85.2% for L432V, 49.6% for R48G and A119S, and 28.7% for N453S. There was complete linkage disequilibrium (LD) among the CYP1B1 variant loci (D'=-1) and high LD among the CYP1A1 loci (D'=0.86). Gene expression measured by RT-PCR did not vary by CYP1B1 genotype in uncultured lymphocytes. However, when lymphocytes were treated in vitro with 10 nM TCDD, CYP1B1 and CYP1A1 mRNA expression was strongly induced and modified by CYP variant alleles. Specifically, the CYP1B1*3 haplotype (L432V) was associated with increased CYP1B1 mRNA expression (P=0.03), following an additive model; the CYP1A1 I462V polymorphism was positively, although not significantly, associated with CYP1A1 expression. The CYP1B1*3 variant may have affected CYP1B1 expression in subjects highly and acutely exposed to dioxin at the time of the accident. Although based on small number of subjects, a slight increase in eczema (P=0.05, n=8) and urticaria (P=0.02, n=2) was observed 20 years after the accident in subjects carrying the CYP1B1*3 allele. Genetic variation in cytochrome P450 induction may identify subjects with variable responsiveness to TCDD and potentially increased risk of disease.

  6. Identification of a novel mutation in UDP-glucuronosyltransferase (UGT1A1) gene in a child with neonatal unconjugated hyperbilirubinemia.

    PubMed

    Minucci, Angelo; Canu, Giulia; Gentile, Leonarda; Cimino, Vincenzo; Giardina, Bruno; Zuppi, Cecilia; Capoluongo, Ettore

    2013-01-01

    Genetic alterations of the UGT1A1 gene result in Crigler-Najjar (CNS) and Gilbert's (GS)-Syndromes, two autosomal recessive conditions characterized by non-hemolytic unconjugated hyperbilirubinemia. While GS is characterized by mild hyperbilirubinemia, CNS is classified as follows: type I (CNS-I), often associated with irreversible neurological damage due to total deficiency of the UGT1A1 enzyme activity, and type II (CNS-II) where a minimal level of UGT1A1 enzyme activity is maintained. In this context, differential diagnosis of CNS forms needs to be supported by clinical molecular laboratory, in order to correlate biochemical findings to specific genetic mutations. Our paper describes in detail the peculiar clinical feature found in a child with severe neonatal unconjugated hyperbilirubinemia, where DNA analysis showed a new compound heterozygosis determined by two mutations, a known (c.508_510delTTC) and a novel mutation (c.1099C>T) giving a genotype compatible with clinical picture of CNS-II. This novel genotype extends the spectrum of known UGT1A1 mutations, which, in our opinion, could be higher than that currently reported in the literature. Finally, genetic analysis may also be helpful for patients' management. Copyright © 2012 The Canadian Society of Clinical Chemists. Published by Elsevier Inc. All rights reserved.

  7. Impact of CYP1A1, GSTP1 and XRCC1 genes polymorphisms on toxicity and response to chemotherapy in childhood acute lymphoblastic leukemia.

    PubMed

    Abo-Bakr, Asmaa; Mossallam, Ghada; El Azhary, Nevin; Hafez, Hanafy; Badawy, Ragia

    2017-09-01

    Acute lymphoblastic leukemia (ALL) is the most common childhood malignancy. The interindividual genetic variations in drug metabolizing enzymes and DNA repair genes influence the efficacy and toxicity of numerous chemotherapeutic drugs affecting the treatment outcome. The aim of the study was to investigate the impact of drug metabolizing CYP1, GSTP1 and DNA repair (XRCC1) genes polymorphisms on the toxicity and response to chemotherapy in childhood ALL. Ninety seven ALL pediatric patients were genotyped for CYP1A1, GSTP1 ILe105Val and XRCC1 Arg194Tryp single nucleotide polymorphisms (SNPs) using PCR-RFLP. No statistically significant differences were observed between the wild and variant (homozygous and heterozygous) genotypes of the polymorphisms studied in CYP1A1, GSTP1 or XRCC1 genes regarding age, total leukocyte count, immunophenotyping, cytogenetic or risk group. The SNPs in CYP1A1, GSTP1 and XRCC1 genes did not show significant association with complete remission (CR) rate, overall survival (OS) or event free survival (EFS). However, XRCC1 Arg194Trp SNP was associated with higher drug toxicity; carriers of variant genotypes (CT and TT) had a significantly higher frequency of myelosuppression compared to those with the wild CC genotype (21/43[48.8%]) compared to (14/54[25.9%]) (p=0.020). The analysis of the combined effect of studied SNPs did not show any significant association with patient outcome. Our study reported a significant association between the DNA repair gene polymorphism and myelosuppression in childhood ALL patients. Adjustment of the dose of chemotherapeutic agents according to XRCC1 Arg194Trp polymorphism may improve outcome in cases with risk of toxicity. Copyright © 2017 National Cancer Institute, Cairo University. Production and hosting by Elsevier B.V. All rights reserved.

  8. Glutamate transporter gene (SLC1A1) single nucleotide polymorphism (rs301430) and repetitive behaviors and anxiety in children with autism spectrum disorder.

    PubMed

    Gadow, Kenneth D; Roohi, Jasmin; DeVincent, Carla J; Kirsch, Sarah; Hatchwell, Eli

    2010-09-01

    Investigated association of single nucleotide polymorphism (SNP) rs301430 in glutamate transporter gene (SLC1A1) with severity of repetitive behaviors (obsessive-compulsive behaviors, tics) and anxiety in children with autism spectrum disorder (ASD). Mothers and/or teachers completed a validated DSM-IV-referenced rating scale for 67 children with autism spectrum disorder. Although analyses were not significant for repetitive behaviors, youths homozygous for the high expressing C allele had more severe anxiety than carriers of the T allele. Allelic variation in SLC1A1 may be a biomarker for or modifier of anxiety symptom severity in children with ASD, but study findings are best conceptualized as tentative pending replication with larger independent samples.

  9. Brief Report: Glutamate Transporter Gene (SLC1A1) Single Nucleotide Polymorphism (rs301430) and Repetitive Behaviors and Anxiety in Children with Autism Spectrum Disorder

    PubMed Central

    Gadow, Kenneth D.; Roohi, Jasmin; DeVincent, Carla J.; Kirsch, Sarah; Hatchwell, Eli

    2015-01-01

    Investigated association of single nucleotide polymorphism (SNP) rs301430 in glutamate transporter gene (SLC1A1) with severity of repetitive behaviors (obsessive–compulsive behaviors, tics) and anxiety in children with autism spectrum disorder (ASD). Mothers and/or teachers completed a validated DSM-IV-referenced rating scale for 67 children with autism spectrum disorder. Although analyses were not significant for repetitive behaviors, youths homozygous for the high expressing C allele had more severe anxiety than carriers of the T allele. Allelic variation in SLC1A1 may be a biomarker for or modifier of anxiety symptom severity in children with ASD, but study findings are best conceptualized as tentative pending replication with larger independent samples. PMID:20155310

  10. Polymorphisms of cytochrome P450 1A1, glutathione s-transferases M1 and T1 genes in Ouangolodougou (Northern Ivory Coast)

    PubMed Central

    2010-01-01

    In this study, the frequencies of CYP1A1, GSTM1, and GSTT1 gene polymorphisms were determined in 133 healthy individuals from Ouangolodougou, a small rural town situated in the north of the Ivory Coast. As appeared in several published studies, ethnic differences in these frequencies have been found to play an important role in the metabolism of a relevant number of human carcinogens. In the studied sample, the frequencies of Ile/Ile (wild type), Ile/Val (heterozygous variant), and Val/Val (homozygous variant) CYP1A1 genotypes were 0.271, 0.692, and 0.037, respectively. Frequencies of GSTM1 and GSTT1 null genotypes were 0.361 and 0.331, respectively. No significant differences were noted between men and women. In contrast to published data for Africans, CYP1A1 *Val Allele frequency (0.383) was significantly high (p < 0.001) in this specific population. For the GSTT1 null genotype, no differences were found between the studied and other African populations, the contrary to what occurred for the GSTM1 null genotype in relation to Gambia and Egypt. PMID:21637409

  11. CYP1A1 genetic polymorphism and polycyclic aromatic hydrocarbons on pulmonary function in the elderly: haplotype-based approach for gene-environment interaction.

    PubMed

    Choi, Yoon-Hyeong; Kim, Jin Hee; Hong, Yun-Chul

    2013-08-29

    Lung function may be impaired by environmental pollutants not only acting alone, but working with genetic factors as well. Few epidemiologic studies have been conducted to explore the interplay of polycyclic aromatic hydrocarbons (PAHs) exposure and genetic polymorphism on lung function in the elderly. For genetic polymorphism, haplotype is considered a more informative unit than single nucleotide polymorphism markers. Therefore, we examined the role of haplotype based-CYP1A1 polymorphism in the effect of PAHs exposure on lung function in 422 participants from a community-based panel of elderly adults in Seoul, Korea. Linear mixed effect models were fit to evaluate the association of PAH exposure markers (urinary 1-hydroxypyrene and 2-naphthol) with FVC, FEV₁, FEV₁/FVC, and FEF₂₅₋₇₅, and then the interaction with CYP1A1 haplotype constructed from three single nucleotide polymorphisms of the gene (rs4646421/rs4646422/rs1048943). Urinary 1-hydroxypyrene levels were inversely associated with FEV₁/FVC (p<0.05), whereas urinary 2-naphthol levels failed to show associations with lung function. Urinary 1-hydroxypyrene was significantly associated with decrease in FEV₁/FVC among participants with rs4646421 variants (CT+TT), rs4646422 wild-type (GG), and rs1048943 wild-type (AA). At least one TGA haplotype predicted a 0.88% (95% confidence interval, 0.31-1.45%) reduction in FEV₁/FVC with an interquartile range increase in 1-hydroxypyrene, whereas no relationship was observed in participants without TGA haplotype (p for interaction=0.045). Similar patterns were also observed in FEF₂₅₋₇₅. We did not find any main effects of CYP1A1 genetic polymorphisms on lung functions. Our findings suggest that PAH exposure producing 1-hydroxypyrene as a metabolite compromises lung function in the elderly, and that haplotype-based CYP1A1 polymorphism modifies the risk.

  12. Association Between Polymorphisms of VDR, COL1A1, and LCT genes and bone mineral density in Belarusian women with severe postmenopausal osteoporosis.

    PubMed

    Marozik, Pavel; Mosse, Irma; Alekna, Vidmantas; Rudenko, Ema; Tamulaitienė, Marija; Ramanau, Heorhi; Strazdienė, Vaidilė; Samokhovec, Volha; Ameliyanovich, Maxim; Byshnev, Nikita; Gonchar, Alexander; Kundas, Liubov; Zhur, Krystsina

    2013-01-01

    BACKGROUND AND OBJECTIVE. Variation of osteoporosis in the population is the result of an interaction between the genotype and the environment, and the genetic causes of osteoporosis are being widely investigated. The aim of this study was to analyze the association between the polymorphisms of the vitamin D receptor (VDR), type I collagen (COL1A1), and lactase (LCT) genes and severe postmenopausal osteoporosis as well as bone mineral density (BMD). MATERIAL AND METHODS. A total of 54 women with severe postmenopausal osteoporosis and 77 controls (mean age, 58.3 years [SD, 6.2] and 56.7 years [SD, 7.42], respectively) were included into the study. The subjects were recruited at the City Center for Osteoporosis Prevention (Minsk, Belarus). Dual-energy x-ray absorptiometry was used to measure bone mineral density at the lumbar spine and the femoral neck. Severe osteoporosis was diagnosed in the women with the clinical diagnosis of postmenopausal osteoporosis and at least 1 fragility fracture. The control group included women without osteoporosis. Polymorphic sites in osteoporosis predisposition genes (ApaI, BsmI, TaqI, and Cdx2 of the VDR gene, G2046T of the COL1A1 gene, and T-13910C of the LCT gene) were determined using the polymerase chain reaction on the deoxyribonucleic acid isolated from dried bloodspots. RESULTS. The data showed that the ApaI and BsmI polymorphisms of the VDR gene and T- 13910C of the LCT gene were associated with severe postmenopausal osteoporosis in the analyzed Belarusian women (P<0.01). A statistically significant positive correlation between the VDR risk genotypes ApaI and TaqI and bone mineral density was found (P<0.05). CONCLUSIONS. The findings of this study suggest that at least the ApaI and BsmI polymorphisms of the VDR gene and T-13910C of the LCT gene are associated with the risk of postmenopausal osteoporosis in our sample of the Belarusian women.

  13. Associations between polymorphisms in the AHR and CYP1A1-CYP1A2 gene regions and habitual caffeine consumption.

    PubMed

    Josse, Andrea R; Da Costa, Laura A; Campos, Hannia; El-Sohemy, Ahmed

    2012-09-01

    Recent genome-wide association studies (GWASs) from populations of European descent identified single nucleotide polymorphisms (SNPs) in aryl-hydrocarbon receptor (AHR) and cytochrome P450 1A1 and 1A2 (CYP1A1-CYP1A2) genes that are associated with habitual caffeine and coffee consumption. We examined whether these SNPs (AHR: rs6968865 and rs4410790; CYP1A1-CYP1A2: rs2472297 and rs2470893) and 6 additional tag SNPs in the AHR gene were associated with habitual caffeine consumption in a Costa Rican population. Subjects were from a case-control study of gene-diet interactions and myocardial infarction. Subjects with hypertension or missing information on smoking, caffeine intake, or genotype were excluded. Subjects were genotyped by using polymerase chain reaction with mass spectrometry-based detection, and caffeine intake was assessed by using a validated food-frequency questionnaire. Compared with subjects who consumed <100 mg caffeine/d, subjects who consumed >400 mg caffeine/d were more likely to be carriers of the T, C, or T allele for rs6968865, rs4410790, and rs2472297, respectively. The corresponding ORs and 95% CIs were 1.41 (1.03, 1.93), 1.41 (1.04, 1.92), and 1.55 (1.01, 2.36). Multivariate-adjusted ORs (95% CIs) for rs6968865 were 1.44 (1.03, 2.00) for all subjects, 1.75 (1.16, 2.65) for nonsmokers, 1.15 (0.58, 2.30) for current smokers, 2.42 (1.45, 4.04) for subjects >57 y old, and 1.00 (0.65, 1.56) for subjects ≤57 y old. A similar effect modification was observed for rs4410790 but not for rs2472297. Our findings show that previous associations between SNPs in AHR and CYP1A1-CYP1A2 and caffeine and coffee consumption from GWASs in European populations are also observed in an ethnically distinct Costa Rican population, but age and smoking are important effect modifiers.

  14. Gene sequences for cytochromes p450 1A1 and 1A2: the need for biomarker development in sea otters (Enhydra lutris).

    PubMed

    Hook, Sharon E; Cobb, Michael E; Oris, James T; Anderson, Jack W

    2008-11-01

    There has been recent public concern regarding the impacts of environmental pollution on populations of otters. Population level impacts have been seen with otter (Lutra lutra) populations in Europe due to polychlorinated biphenyls, and with some segments of the Prince William Sound, AK, sea otter (Enhydra lutris) population following the Exxon Valdez oil spill. Despite public interest in these animals and their ecological significance, there are few tools that allow for the study of otter's response to contaminant exposure. Cytochrome p450 1A (CYP1A) performs the first step in metabolizing many xenobiotics, including many polychlorinated biphenyls and polycyclic aromatic hydrocarbons. CYP1A induction is a frequently used biomarker of exposure to these compounds. Despite the potential importance of this gene in ecological risk assessment, the complete coding sequence has not been published for any otter species. This study's objective was to isolate the gene for CYP1A1 and CYP1A2 in sea otters using a series of PCR-based approaches. The coding sequences from CYP1A1 and CYP1A2 from sea otters were identified and published in GenBank. Both CYP1A sequences are homologous to those obtained from marine mammals and other carnivores. These sequences will be useful as tools for researchers assessing contaminant exposure in mustelid populations.

  15. The Atp1a1 gene from inbred Dahl salt sensitive rats does not contain the A1079T missense transversion.

    PubMed

    Mokry, Michal; Cuppen, Edwin

    2008-04-01

    The existence of the A1079T transversion in the alpha1 isoform of the Na(+), K(+)-ATPase (Atp1a1) gene in Dahl salt-sensitive rat (SS/Jr) strain, discovered by Herrera and Ruiz-Opazo and proposed to underlay hypertension sensitivity, represents one of the most controversial topics in hypertension research. As our research group did not have any previous connection to any party in this dispute nor to hypertension-related research, we were asked (J Hypertens. 2006;24:2312-2313) to definitively adjudge the existence of the A1079T transversion. Hence, different state-of-the art SNP detection technologies that depend on a variety of mechanisms and enzymes to detect the transversion in genomic DNA as well as cDNA derived from different tissues were used. Although it was possible to readily detect other silent polymorphisms between SS and SR strains in the Atp1a1 gene by all methods used, no evidence for the existence of the A1079T transversion in SS/Jr rats was found.

  16. Genetic polymorphisms of CYP2D6, CYP1A1, GSTM1 and p53 genes in a unique Siberian population of Tundra Nentsi.

    PubMed

    Duzhak, T; Mitrofanov, D; Ostashevskii, V; Gutkina, N; Chasovnikova, O; Posukh, O; Osipova, L; Lyakhovich, V V

    2000-08-01

    GSTM1*0/*0 genotypes and a high level of CYP1A1Val alleles. Further investigations of gene polymorphisms in isolated Northern native populations would be valuable in clarifying the origin of Northern natives. All this is important for comparative analyses of pharmacogenetic data in Mongoloid populations.

  17. Association of CYP1A1, CYP1B1 and CYP17 gene polymorphisms and organochlorine pesticides with benign prostatic hyperplasia.

    PubMed

    Kumar, Vivek; Banerjee, Basu Dev; Datta, Sudip Kumar; Yadav, Chandra Shekhar; Singh, Satyender; Ahmed, Rafat Sultana; Gupta, Sanjay

    2014-08-01

    It is well established that steroidal hormones (testosterone and estrogen) increase benign prostatic hyperplasia (BPH) risk. Cytochrome P450 (CYP) enzymes especially CYP1A1, CYP1B1 and CYP17 metabolize these hormones. Apart from that, several endocrine disrupting organochlorine pesticides (OCPs) are reported to mimic the activity of these steroidal hormones. Therefore, functional polymorphisms in these genes and exposure to such pesticides may increase BPH risk further. Our study included 100 newly diagnosed BPH subjects and 100 age-matched healthy male controls. CYP1A1, CYP1B1 and CYP17 polymorphisms were studied using PCR-RFLP and allele-specific PCR method. OCP levels in blood were analyzed by gas chromatography (GC). Levels of p,p'-DDE and endosulfan α were found to be significantly higher amongst BPH subjects as compared to controls (p-values=0.001 and 0.03 respectively) and CYP17 polymorphism was observed to be significantly associated with BPH subjects as compared to controls (p-values=0.03), indicating that these factors may be important risk factors for BPH. However, further studies are required before unequivocal conclusion.

  18. Sequencing and characterization of mixed function monooxygenase genes CYP1A1 and CYP1A2 of Mink (Mustela vison) to facilitate study of dioxin-like compounds

    SciTech Connect

    Zhang Xiaowei; Moore, Jeremy N.; Newsted, John L.; Hecker, Markus Zwiernik, Matthew J.; Jones, Paul D.; Bursian, Steven J.

    2009-02-01

    As part of an ongoing effort to understand aryl hydrocarbon receptor (AhR) mediated toxicity in mink, cDNAs encoding for CYP1A1 and the CYP1A2 mixed function monooxygenases were cloned and characterized. In addition, the effects of selected dibenzofurans on the expression of these genes and the presence of their respective proteins (P4501A) were investigated, and then correlated with the catalytic activities of these proteins as measured by ethoxyresorufin O-deethylase (EROD) and methoxyresorufin O-deethylase (MROD) activities. The predicted protein sequences for CYP1A1 and CYP1A2 comprise 517 and 512 amino acid residues, respectively. The phylogenetic analysis of the mink CYP1As with protein sequences of other mammals revealed high sequence homology with sea otter, seals and the dog, with amino acid identities ranging from 89 to 95% for CYP1A1 and 81 to 93% for CYP1A2. Since exposure to both 2,3,7,8-Tetrachlorodibenzofuran (TCDF) and 2,3,4,7,8-Pentachlorodibenzofuran (PeCDF) resulted in dose-dependent increases of CYP1A1 mRNA, CYP1A2 mRNA and CYP1A protein levels an underlying AhR-mediated mechanism is suggested. The up-regulation of CYP1A mRNA in liver was more consistent to the sum adipose TEQ concentration than to the liver TEQ concentration in minks treated with TCDF or PeCDF. The result suggested that the hepatic-sequestered fraction of PeCDF was biologically inactive to the induction of CYP1A1 and CYP1A2.

  19. Placental mitochondrial DNA and CYP1A1 gene methylation as molecular signatures for tobacco smoke exposure in pregnant women and the relevance for birth weight.

    PubMed

    Janssen, Bram G; Gyselaers, Wilfried; Byun, Hyang-Min; Roels, Harry A; Cuypers, Ann; Baccarelli, Andrea A; Nawrot, Tim S

    2017-01-04

    Maternal smoking during pregnancy results in an increased risk of low birth weight through perturbations in the utero-placental exchange. Epigenetics and mitochondrial function in fetal tissues might be molecular signatures responsive to in utero tobacco smoke exposure. In the framework of the ENVIRONAGE birth cohort, we investigated the effect of self-reported tobacco smoke exposure during pregnancy on birth weight and the relation with placental tissue markers such as, (1) relative mitochondrial DNA (mtDNA) content as determined by real-time quantitative PCR, (2) DNA methylation of specific loci of mtDNA (D-loop and MT-RNR1), and (3) DNA methylation of the biotransformation gene CYP1A1 (the last two determined by bisulfite-pyrosequencing). The total pregnant mother sample included 255 non-smokers, 65 former-smokers who had quit smoking before pregnancy, and 62 smokers who continued smoking during pregnancy. Smokers delivered newborns with a birth weight on average 208 g lower [95% confidence interval (CI) -318 to -99, p = 0.0002] than mothers who did not smoke during pregnancy. In the smoker group, the relative mtDNA content was lower (-21.6%, 95% CI -35.4 to -4.9%, p = 0.01) than in the non-smoker group; whereas, absolute mtDNA methylation levels of MT-RNR1 were higher (+0.62%, 95% CI 0.21 to 1.02%, p = 0.003). Lower CpG-specific methylation of CYP1A1 in placental tissue (-4.57%, 95% CI -7.15 to -1.98%, p < 0.0001) were observed in smokers compared with non-smokers. Nevertheless, no mediation of CYP1A1 methylation nor any other investigated molecular signature was observed for the association between tobacco smoke exposure and birth weight. mtDNA content, methylation of specific loci of mtDNA, and CYP1A1 methylation in placental tissue may serve as molecular signatures for the association between gestational tobacco smoke exposure and low birth weight.

  20. Osteogenesis imperfecta Type I caused by a novel mutation in the start codon of the COL1A1 gene in a Korean family.

    PubMed

    Cho, Sung Yoon; Lee, Ji-Ho; Ki, Chang-Seok; Chang, Mi Sun; Jin, Dong-Kyu; Han, Heon-Seok

    2015-01-01

    Osteogenesis imperfecta (OI) comprises a heterogeneous group of disorders characterized by susceptibility to bone fractures ranging in severity from perinatal death to a subtle increase in fracture frequency. We report the case of a patient who appeared healthy at birth and did not experience any fractures until 12 months of age. We observed blue sclera, frequent fractures without commensurate trauma, nearly normal stature, the absence of dentinogenesis imperfecta, no bony deformity, and no limitation of mobility in the patient--all characteristics suggestive of OI Type I. The patient's mother also had blue sclera and a history of frequent fracture episodes until the age of 15 years. A novel COL1A1 missense mutation (c.2T>G) disrupting the start codon of the gene (ATG to AGG (Met1Arg)) was found in the patient and his mother.

  1. Meta-analysis diagnostic accuracy of SNP-based pathogenicity detection tools: a case of UTG1A1 gene mutations

    PubMed Central

    Galehdari, Hamid; Saki, Najmaldin; Mohammadi-asl, Javad; Rahim, Fakher

    2013-01-01

    Crigler-Najjar syndrome (CNS) type I and type II are usually inherited as autosomal recessive conditions that result from mutations in the UGT1A1 gene. The main objective of the present review is to summarize results of all available evidence on the accuracy of SNP-based pathogenicity detection tools compared to published clinical result for the prediction of in nsSNPs that leads to disease using prediction performance method. A comprehensive search was performed to find all mutations related to CNS. Database searches included dbSNP, SNPdbe, HGMD, Swissvar, ensemble, and OMIM. All the mutation related to CNS was extracted. The pathogenicity prediction was done using SNP-based pathogenicity detection tools include SIFT, PHD-SNP, PolyPhen2, fathmm, Provean, and Mutpred. Overall, 59 different SNPs related to missense mutations in the UGT1A1 gene, were reviewed. Comparing the diagnostic OR, PolyPhen2 and Mutpred have the highest detection 4.983 (95% CI: 1.24 – 20.02) in both, following by SIFT (diagnostic OR: 3.25, 95% CI: 1.07 – 9.83). The highest MCC of SNP-based pathogenicity detection tools, was belong to SIFT (34.19%) followed by Provean, PolyPhen2, and Mutpred (29.99%, 29.89%, and 29.89%, respectively). Hence the highest SNP-based pathogenicity detection tools ACC, was fit to SIFT (62.71%) followed by PolyPhen2, and Mutpred (61.02%, in both). Our results suggest that some of the well-established SNP-based pathogenicity detection tools can appropriately reflect the role of a disease-associated SNP in both local and global structures. PMID:23875061

  2. Up-regulation of hepatic ABCC2, ABCG2, CYP1A1 and GST in multixenobiotic-resistant killifish (Fundulus heteroclitus) from the Sydney Tar Ponds, Nova Scotia, Canada.

    PubMed

    Paetzold, S Christine; Ross, Neil W; Richards, Robert C; Jones, Martha; Hellou, Jocelyne; Bard, Shannon M

    2009-07-01

    Cellular defence against accumulation of toxic xenobiotics includes metabolism by phase I and II enzymes and export of toxicants and their metabolites via ATP-binding cassette (ABC) transporters. Liver gene expression of representatives of these three protein groups was examined in a population of multixenobiotic-resistant killifish (Fundulus heteroclitus) from the Sydney Tar Ponds, Nova Scotia, Canada. The Tar Ponds are heavily polluted with polycyclic aromatic hydrocarbons, polychlorinated biphenyls and heavy metals. The relationship among ABC transporters ABCB1, ABCB11, ABCC2, ABCG2, phase I enzyme cytochrome P4501A1 (CYP1A1) and phase II enzyme glutathione-S-transferase (GST-mu) was investigated by quantifying hepatic transcript abundance. In Tar Pond killifish, hepatic mRNA expression levels of ABCC2, ABCG2, CYP1A1 and GST-mu were elevated compared to reference sites, suggesting that hydrophobic contaminants undergo phase I and II metabolism and are then excreted into the bile of these fish. Hepatic ABCB1 and ABCB11 mRNA were not up-regulated in Tar Pond fish compared to two reference sites, indicating that these two proteins are not involved in conferring multixenobiotic resistance to Tar Pond killifish. The results suggest instead that liver up-regulation of phase I and II enzymes and complementary ABC transporters ABCC2 and ABCG2 may confer contaminant resistance to Tar Pond fish.

  3. The aryl hydrocarbon receptor-interacting protein (AIP) is required for dioxin-induced hepatotoxicity but not for the induction of the Cyp1a1 and Cyp1a2 genes.

    PubMed

    Nukaya, Manabu; Lin, Bernice C; Glover, Edward; Moran, Susan M; Kennedy, Gregory D; Bradfield, Christopher A

    2010-11-12

    The aryl hydrocarbon receptor (AHR) plays an essential role in the toxic response to environmental pollutants such as 2,3,7,8-tetrachlorodibenzo-p-dioxin (dioxin), in the adaptive up-regulation of xenobiotic metabolizing enzymes, and in hepatic vascular development. In our model of AHR signaling, the receptor is found in a cytosolic complex with a number of molecular chaperones, including Hsp90, p23, and the aryl hydrocarbon receptor-interacting protein (AIP), also known as ARA9 and XAP2. To understand the role of AIP in adaptive and toxic aspects of AHR signaling, we generated a conditional mouse model where the Aip locus can be deleted in hepatocytes. Using this model, we demonstrate two important roles for the AIP protein in AHR biology. (i) The expression of AIP in hepatocytes is essential to maintain high levels of functional cytosolic AHR protein in the mammalian liver. (ii) Expression of the AIP protein is essential for dioxin-induced hepatotoxicity. Interestingly, classical AHR-driven genes show differential dependence on AIP expression. The Cyp1b1 and Ahrr genes require AIP expression for normal up-regulation by dioxin, whereas Cyp1a1 and Cyp1a2 do not. This differential dependence on AIP provides evidence that the mammalian genome contains more than one class of AHR-responsive genes and suggests that a search for AIP-dependent, AHR-responsive genes may guide us to the targets of the dioxin-induced hepatotoxicity.

  4. Deletion at the SLC1A1 glutamate transporter gene co-segregates with schizophrenia and bipolar schizoaffective disorder in a 5-generation family.

    PubMed

    Myles-Worsley, Marina; Tiobech, Josepha; Browning, Sharon R; Korn, Jeremy; Goodman, Sarah; Gentile, Karen; Melhem, Nadine; Byerley, William; Faraone, Stephen V; Middleton, Frank A

    2013-03-01

    Growing evidence for genetic overlap between schizophrenia (SCZ) and bipolar disorder (BPD) suggests that causal variants of large effect on disease risk may cross traditional diagnostic boundaries. Extended multigenerational families with both SCZ and BPD cases can be a valuable resource for discovery of shared biological pathways because they can reveal the natural evolution of the underlying genetic disruptions and their phenotypic expression. We investigated a deletion at the SLC1A1 glutamate transporter gene originally identified as a copy number variant exclusively carried by members of a 5-generation Palauan family. Using an expanded sample of 21 family members, quantitative PCR confirmed the deletion in all seven individuals with psychosis, three "obligate-carrier" parents and one unaffected sibling, while four marry-in parents were non-carriers. Linkage analysis under an autosomal dominant model generated a LOD-score of 3.64, confirming co-segregation of the deletion with psychosis. For more precise localization, we determined the approximate deletion end points using alignment of next-generation sequencing data for one affected deletion-carrier and then designed PCR amplicons to span the entire deletion locus. These probes established that the deletion spans 84,298 bp, thus eliminating the entire promoter, the transcription start site, and the first 59 amino acids of the protein, including the first transmembrane Na(2+)/dicarboxylate symporter domain, one of the domains that perform the glutamate transport action. Discovery of this functionally relevant SLC1A1 mutation and its co-segregation with psychosis in an extended multigenerational pedigree provides further support for the important role played by glutamatergic transmission in the pathophysiology of psychotic disorders.

  5. Effects of 4-nonylphenol on hepatic gene expression of peroxisome proliferator-activated receptors and cytochrome P450 isoforms (CYP1A1 and CYP3A4) in juvenile sole (Solea solea).

    PubMed

    Cocci, Paolo; Mosconi, Gilberto; Palermo, Francesco Alessandro

    2013-10-01

    The objective of the present study was to investigate the modulatory effects of the xenoestrogen 4-nonylphenol (4-NP) on hepatic peroxisome proliferator-activated receptor (PPAR) α and β gene expression patterns in relation to the detoxification pathways mediated by cytochrome P450 isoforms (CYP1A1 and CYP3A4). Waterborne 4-NP-induced effects were compared with those of 10(-8)M 17β-estradiol (E2) by using in vivo dose-response experiments carried out with juvenile sole (Solea solea). Compared to the controls, significantly higher levels of PPARα mRNAs were found in fish treated with E2 or 4-NP (10(-6)M) 3 d after exposure; the highest dose of 4-NP also caused up-regulation of retinoid X receptor α (RXRα) transcript levels. On the contrary, PPARβ gene expression was not modulated by E2 or 4-NP. Our data show that 4-NP-induced PPARα mRNA levels coincide with suppression of CYP1A1 and CYP3A4 expression similarly to E2. The results from these in vivo studies suggest the presence of cross-talk between nuclear receptor-mediated signaling pathways and PPARα that may result in modulation of CYP450 isoforms expression following 4-NP treatment in sole liver. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Gene regulation in cancer gene therapy strategies.

    PubMed

    Scanlon, Ian; Lehouritis, Panos; Niculescu-Duvaz, Ion; Marais, Richard; Springer, Caroline J

    2003-10-01

    Regulation of expression in gene therapy is considered to be a very desirable goal, preventing toxic effects and improving biological efficacy. A variety of systems have been reported in an ever widening range of applications, this paper describes these systems with specific reference to cancer gene therapy.

  7. Regression Modeling and Meta-Analysis of Diagnostic Accuracy of SNP-Based Pathogenicity Detection Tools for UGT1A1 Gene Mutation

    PubMed Central

    Rahim, Fakher; Galehdari, Hamid; Mohammadi-asl, Javad; Saki, Najmaldin

    2013-01-01

    Aims. This review summarized all available evidence on the accuracy of SNP-based pathogenicity detection tools and introduced regression model based on functional scores, mutation score, and genomic variation degree. Materials and Methods. A comprehensive search was performed to find all mutations related to Crigler-Najjar syndrome. The pathogenicity prediction was done using SNP-based pathogenicity detection tools including SIFT, PHD-SNP, PolyPhen2, fathmm, Provean, and Mutpred. Overall, 59 different SNPs related to missense mutations in the UGT1A1 gene, were reviewed. Results. Comparing the diagnostic OR, our model showed high detection potential (diagnostic OR: 16.71, 95% CI: 3.38–82.69). The highest MCC and ACC belonged to our suggested model (46.8% and 73.3%), followed by SIFT (34.19% and 62.71%). The AUC analysis showed a significance overall performance of our suggested model compared to the selected SNP-based pathogenicity detection tool (P = 0.046). Conclusion. Our suggested model is comparable to the well-established SNP-based pathogenicity detection tools that can appropriately reflect the role of a disease-associated SNP in both local and global structures. Although the accuracy of our suggested model is not relatively high, the functional impact of the pathogenic mutations is highlighted at the protein level, which improves the understanding of the molecular basis of mutation pathogenesis. PMID:23997956

  8. Synergistic upregulation of NONO and PSPC1 regulates Sertoli cell response to MEHP via modulation of ALDH1A1 signaling.

    PubMed

    Dong, Bing-Wei; Jin, Xiao-Hang; Yan, Chang-You; Yang, Tian; Cai, Guo-Qing; Lu, Jian

    2017-03-01

    Members of the Drosophila behavior/human splicing protein family, including splicing factor proline/glutamine rich (SFPQ), non-POU domain-containing octamer-binding protein (NONO), and paraspeckle protein component 1 (PSPC1), are abundantly expressed in testicular Sertoli cells (SCs), but their roles remain obscure. Here, we show that treatment with mono-(2-ethylhexyl) phthalate (MEHP), a well-known SC toxicant, selectively stimulates the expression levels of NONO and PSPC1. Simultaneous inhibition of NONO and PSPC1 expression in SCs enhances MEHP-induced oxidative stress and potentiates SC death. Mechanistically, NONO and PSPC1 transcriptionally activate aldehyde dehydrogenase 1 (Aldh1a1), by synergistically binding to the distinct CCGGAGTC sequence in the Aldh1a1 promoter. Together, the NONO/PSPC1-ALDH1A1 cascade may serve as an indispensable defense mechanism against MEHP insult in SCs.

  9. Basal and 3,3',4,4',5-pentachlorobiphenyl-induced expression of cytochrome P450 1A, 1B and 1C genes in zebrafish

    SciTech Connect

    Joensson, Maria E. . E-mail: mjonsson@whoi.edu; Orrego, Rodrigo; Woodin, Bruce R.; Goldstone, Jared V.; Stegeman, John J.

    2007-05-15

    The cytochrome P4501C (CYP1C) gene subfamily was recently discovered in fish, and zebrafish (Danio rerio) CYP1C1 transcript has been cloned. Here we cloned the paralogous CYP1C2, showing that the amino acid sequence is 78% identical to CYP1C1, and examined gene structure and expression of CYP1A, CYP1B1, CYP1C1, and CYP1C2. Xenobiotic response elements were observed upstream of the coding regions in all four genes. Zebrafish adults and embryos were exposed (24 h) to 100 nM 3,3',4,4',5-polychlorinated biphenyl (PCB126) or 20 ppm acetone and subsequently held in clean water for 24 h (adults) or 48 h (embryos). All adult organs examined (eye, gill, heart, liver, kidney, brain, gut, and gonads) and embryos showed basal expression of the four genes. CYP1A was most strongly expressed in liver, whereas CYP1B1, CYP1C1, and CYP1C2 were most strongly expressed in heart and eye. CYP1B1 and the CYP1C genes showed an expression pattern similar to one another and to mammalian CYP1B1. In embryos CYP1C1 and CYP1C2 tended to have a higher basal expression than CYP1A and CYP1B1. PCB126 induced CYP1A in all organs, and CYP1B1 and CYP1C1 in all organs except gonads, or gonads and brain, respectively. CYP1C2 induction was significant only in the liver. However, in embryos all four genes were induced strongly by PCB126. The results are consistent with CYP1C1 and CYP1C2, as well as CYP1A and CYP1B1, being regulated by the aryl hydrocarbon receptor. While CYP1A may have a protective role against AHR agonists in liver and gut, CYP1B1, CYP1C1, and CYP1C2 may also play endogenous roles in eye and heart and possibly other organs, as well as during development.

  10. Combinatorial Gene Regulation Using Auto-Regulation

    PubMed Central

    Hermsen, Rutger; Ursem, Bas; ten Wolde, Pieter Rein

    2010-01-01

    As many as 59% of the transcription factors in Escherichia coli regulate the transcription rate of their own genes. This suggests that auto-regulation has one or more important functions. Here, one possible function is studied. Often the transcription rate of an auto-regulator is also controlled by additional transcription factors. In these cases, the way the expression of the auto-regulator responds to changes in the concentrations of the “input” regulators (the response function) is obviously affected by the auto-regulation. We suggest that, conversely, auto-regulation may be used to optimize this response function. To test this hypothesis, we use an evolutionary algorithm and a chemical–physical model of transcription regulation to design model cis-regulatory constructs with predefined response functions. In these simulations, auto-regulation can evolve if this provides a functional benefit. When selecting for a series of elementary response functions—Boolean logic gates and linear responses—the cis-regulatory regions resulting from the simulations indeed often exploit auto-regulation. Surprisingly, the resulting constructs use auto-activation rather than auto-repression. Several design principles show up repeatedly in the simulation results. They demonstrate how auto-activation can be used to generate sharp, switch-like activation and repression circuits and how linearly decreasing response functions can be obtained. Auto-repression, on the other hand, resulted only when a high response speed or a suppression of intrinsic noise was also selected for. The results suggest that, while auto-repression may primarily be valuable to improve the dynamical properties of regulatory circuits, auto-activation is likely to evolve even when selection acts on the shape of response function only. PMID:20548950

  11. Case–control study and meta-analysis of SULT1A1 Arg213His polymorphism for gene, ethnicity and environment interaction for cancer risk

    PubMed Central

    Kotnis, A; Kannan, S; Sarin, R; Mulherkar, R

    2008-01-01

    Cytosolic sulphotransferase SULT1A1 plays a dual role in the activation of some carcinogens and inactivation of others. A functional polymorphism leading to Arg213His substitution (SULT1A1*2) affects its catalytic activity and thermostability. To study the association of SULT1A1*2 polymorphism with tobacco-related cancers (TRCs), a case–control study comprising 132 patients with multiple primary neoplasm (MPN) involving TRC and 198 cancer-free controls was carried out. One hundred and thirteen MPN patients had at least one cancer in upper aerodigestive tract including lung (UADT-MPN). SULT1A1*2 showed significant risk association with UADT-MPN (odds ratio (OR)=5.50, 95% confidence interval (CI): 1.09, 27.7). Meta-analysis was conducted combining the data with 34 published studies that included 11 962 cancer cases and 14 673 controls in diverse cancers. The SULT1A1*2 revealed contrasting risk association for UADT cancers (OR=1.62, 95% CI: 1.12, 2.34) and genitourinary cancers (OR=0.73, 95% CI: 0.58, 0.92). Furthermore, although SULT1A1*2 conferred significant increased risk of breast cancer to Asian women (OR=1.91, 95% CI: 1.08, 3.40), it did not confer increased risk to Caucasian women (OR=0.92, 95% CI: 0.71, 1.18). Thus risk for different cancers in distinct ethnic groups could be modulated by interaction between genetic variants and different endogenous and exogenous carcinogens. PMID:18854828

  12. Serum Total Bilirubin, not Cholelithiasis, is Influenced by UGT1A1 Polymorphism, Alpha Thalassemia and βs Haplotype: First Report on Comparison between Arab-Indian and African βs Genes

    PubMed Central

    Alkindi, Said Y.; Pathare, Anil; Al Zadjali, Shoaib; Panjwani, Vinodhkumar; Wasim, Fauzia; Khan, Hammad; Chopra, Pradeep; Krishnamoorthy, Rajagopal; Alkindi, Salam

    2015-01-01

    Background We explored the potential relationship between steady state serum bilirubin levels and the incidence of cholelithiasis in the context of UGT1A1 gene A(TA)nTAA promoter polymorphism in Omani sickle cell anemia (SCA) patients, homozygotes for African (Benin and Bantu) and Arab-Indian βS haplotypes, but sharing the same microgeographical environment and comparable life style factors. Methods 136 SCA patients were retrospectively studied in whom imaging data including abdominal CT scan, MRI or Ultrasonography were routinely available. Available data on the mean steady state hematological/biochemical parameters (n=136), βs haplotypes(n=136), α globin gene status (n=105) and UGT1A1 genotypes (n=133) were reviewed from the respective medical records. Results The mean serum total bilirubin level was significantly higher in the homozygous UGT1A1(AT)7 group as compared to UGT1A1(AT)6 group. Thus, not cholelithiasis but total serum bilirubin was influenced by UGT1A1 polymorphism in this SCA cohort. Conclusion As observed in other population groups, the UGT1A1 (AT)7 homozygosity was significantly associated with raised serum total bilirubin level, but the prevalence of gallstones in the Omani SCA patients was not associated with α thalassaemia, UGT1A1 polymorphism, or βs haplotypes. PMID:26543529

  13. Regulation of COL1A1 expression in type I collagen producing tissues: identification of a 49 base pair region which is required for transgene expression in bone of transgenic mice

    NASA Technical Reports Server (NTRS)

    Bedalov, A.; Salvatori, R.; Dodig, M.; Kronenberg, M. S.; Kapural, B.; Bogdanovic, Z.; Kream, B. E.; Woody, C. O.; Clark, S. H.; Mack, K.; hide

    1995-01-01

    Previous deletion studies using a series of COL1A1-CAT fusion genes have indicated that the 625 bp region of the COL1A1 upstream promoter between -2295 and -1670 bp is required for high levels of expression in bone, tendon, and skin of transgenic mice. To further define the important sequences within this region, a new series of deletion constructs extending to -1997, -1794, -1763, and -1719 bp has been analyzed in transgenic mice. Transgene activity, determined by measuring CAT activity in tissue extracts of 6- to 8-day-old transgenic mouse calvariae, remains high for all the new deletion constructs and drops to undetectable levels in calvariae containing the -1670 bp construct. These results indicate that the 49 bp region of the COL1A1 promoter between -1719 and -1670 bp is required for high COL1A1 expression in bone. Although deletion of the same region caused a substantial reduction of promoter activity in tail tendon, the construct extending to -1670 bp is still expressed in this tissue. However, further deletion of the promoter to -944 bp abolished activity in tendon. Gel mobility shift studies identified a protein in calvarial nuclear extracts that is not found in tendon nuclear extracts, which binds within this 49 bp region. Our study has delineated sequences in the COL1A1 promoter required for expression of the COL1A1 gene in high type I collagen-producing tissues, and suggests that different cis elements control expression of the COL1A1 gene in bone and tendon.

  14. Regulation of COL1A1 expression in type I collagen producing tissues: identification of a 49 base pair region which is required for transgene expression in bone of transgenic mice

    NASA Technical Reports Server (NTRS)

    Bedalov, A.; Salvatori, R.; Dodig, M.; Kronenberg, M. S.; Kapural, B.; Bogdanovic, Z.; Kream, B. E.; Woody, C. O.; Clark, S. H.; Mack, K.; Rowe, D. W. (Principal Investigator)

    1995-01-01

    Previous deletion studies using a series of COL1A1-CAT fusion genes have indicated that the 625 bp region of the COL1A1 upstream promoter between -2295 and -1670 bp is required for high levels of expression in bone, tendon, and skin of transgenic mice. To further define the important sequences within this region, a new series of deletion constructs extending to -1997, -1794, -1763, and -1719 bp has been analyzed in transgenic mice. Transgene activity, determined by measuring CAT activity in tissue extracts of 6- to 8-day-old transgenic mouse calvariae, remains high for all the new deletion constructs and drops to undetectable levels in calvariae containing the -1670 bp construct. These results indicate that the 49 bp region of the COL1A1 promoter between -1719 and -1670 bp is required for high COL1A1 expression in bone. Although deletion of the same region caused a substantial reduction of promoter activity in tail tendon, the construct extending to -1670 bp is still expressed in this tissue. However, further deletion of the promoter to -944 bp abolished activity in tendon. Gel mobility shift studies identified a protein in calvarial nuclear extracts that is not found in tendon nuclear extracts, which binds within this 49 bp region. Our study has delineated sequences in the COL1A1 promoter required for expression of the COL1A1 gene in high type I collagen-producing tissues, and suggests that different cis elements control expression of the COL1A1 gene in bone and tendon.

  15. RPL13A and EEF1A1 Are Suitable Reference Genes for qPCR during Adipocyte Differentiation of Vascular Stromal Cells from Patients with Different BMI and HOMA-IR

    PubMed Central

    Gentile, Adriana-Mariel; Lhamyani, Said; Coín-Aragüez, Leticia; Oliva-Olivera, Wilfredo; Zayed, Hatem; Vega-Rioja, Antonio; Monteseirin, Javier; Romero-Zerbo, Silvana-Yanina; Tinahones, Francisco-José; Bermúdez-Silva, Francisco-Javier; El Bekay, Rajaa

    2016-01-01

    Real-time or quantitative PCR (qPCR) is a useful technique that requires reliable reference genes for data normalization in gene expression analysis. Adipogenesis is among the biological processes suitable for this technique. The selection of adequate reference genes is essential for qPCR gene expression analysis of human Vascular Stromal Cells (hVSCs) during their differentiation into adipocytes. To the best of our knowledge, there are no studies validating reference genes for the analyses of visceral and subcutaneous adipose tissue hVSCs from subjects with different Body Mass Index (BMI) and Homeostatic Model Assessment of Insulin Resistance (HOMA-IR) index. The present study was undertaken to analyze this question. We first analyzed the stability of expression of five potential reference genes: CYC, GAPDH, RPL13A, EEF1A1, and 18S ribosomal RNA, during in vitro adipogenic differentiation, in samples from these types of patients. The expression of RPL13A and EEF1A1 was not affected by differentiation, thus being these genes the most stable candidates, while CYC, GAPDH, and 18S were not suitable for this sort of analysis. This work highlights that RPL13A and EEF1A1 are good candidates as reference genes for qPCR analysis of hVSCs differentiation into adipocytes from subjects with different BMI and HOMA-IR. PMID:27304673

  16. Association between osteoporosis and polymorphisms of the bone Gla protein, estrogen receptor 1, collagen 1-A1 and calcitonin receptor genes in Turkish postmenopausal women.

    PubMed

    Tural, Sengul; Kara, Nurten; Alayli, Gamze; Tomak, Leman

    2013-02-15

    In this study, we have investigated the association between osteoporosis and osteocalcin (BGLAP) -298 C>T, estrogen receptor 1 (ER1) 397 T>C, collagen type1 alpha 1 (Col1A1) 2046 G>T and calcitonin receptor (CALCR) 1340 T>C polymorphisms. Genomic DNA was obtained from 266 persons (158 osteoporotic and 108 healthy controls). Genomic DNA was extracted from EDTA-preserved peripheral venous blood of patients and controls by a salting-out method and analyzed by PCR-RFLP. As a result, there was no statistically significant difference in the genotype and allele frequencies of patients and controls for BGLAP -298 C>T, Col1A1 2046 G>T, ER1 397 T>C and CALCR 1340 T>C polymorphisms. However, ER1 CC genotype compared with TT+TC genotypes was found to increase the two fold the risk of osteoporosis [p=0.039, OR=2.156, 95% CI (1.083-4.293)] and CALCR CC genotype compared with TT+TC genotypes was found to have protective effect against osteoporosis [p=0.045, OR=0.471, 95% CI (0.237-0.9372)]. In the combined genotype analysis, ER1/CALCR TCCC combined genotype was estimated to have protective effect against osteoporosis [p=0.0125, OR=0.323, 95% CI (0.1383-0.755)] whereas BGLAP/Col1A1 CCTT and ER1/CALCR CCTT combined genotypes were estimated as risk factors for osteoporosis in Turkish population (p=0.027, p=0.009 respectively). Copyright © 2012 Elsevier B.V. All rights reserved.

  17. Osmotic regulation of gene action.

    PubMed Central

    Douzou, P

    1994-01-01

    Most reactions involved in gene translation systems are ionic-dependent and may be explained in electrostatic terms. However, a number of observations of equilibria and rate processes making up the overall reactions clearly indicate that there is still an enormous gap between the rough picture of the mechanism of ionic regulation and the detailed behavior of reactions at the molecular level that hold the key to specific mechanisms. The present paper deals with possible osmotic contributions arising from the gel state of gene systems that are complementary to, and interdependent of, electrostatic contributions. This treatment, although still oversimplified, explains many previous observations by relating them to a general osmotic mechanism and suggests experimental approaches to studying the mechanisms of gene regulation in organelle-free and intact systems. PMID:8127862

  18. Hox genes regulation in vertebrates.

    PubMed

    Soshnikova, Natalia

    2014-01-01

    Hox genes encode transcription factors defining cellular identities along the major and secondary body axes. Their coordinated expression in both space and time is critical for embryonic patterning. Accordingly, Hox genes transcription is tightly controlled at multiple levels, and involves an intricate combination of local and long-range cis-regulatory elements. Recent studies revealed that in addition to transcription factors, dynamic patterns of histone marks and higher-order chromatin structure are important determinants of Hox gene regulation. Furthermore, the emerging picture suggests an involvement of various species of non-coding RNA in targeting activating and repressive complexes to Hox clusters. I review these recent developments and discuss their relevance to the control of Hox gene expression in vivo, as well as to our understanding of transcriptional regulatory mechanisms.

  19. Regulation of ABO gene expression.

    PubMed

    Kominato, Yoshihiko; Hata, Yukiko; Matsui, Kazuhiro; Takizawa, Hisao

    2005-07-01

    The ABO blood group system is important in blood transfusions and in identifying individuals during criminal investigations. Two carbohydrate antigens, the A and B antigens, and their antibodies constitute this system. Although biochemical and molecular genetic studies have demonstrated the molecular basis of the histo-blood group ABO system, some aspects remain to be elucidated. To explain the molecular basis of how the ABO genes are controlled in cell type-specific expression, during normal cell differentiation, and in cancer cells with invasive and metastatic potential that lack A/B antigens, it is essential to understand the regulatory mechanism of ABO gene transcription. We review the transcriptional regulation of the ABO gene, including positive and negative elements in the upstream region of the gene, and draw some inferences that help to explain the phenomena described above.

  20. Cigarette smoking, dietary habits and genetic polymorphisms in GSTT1, GSTM1 and CYP1A1 metabolic genes: A case-control study in oncohematological diseases

    PubMed Central

    Cerliani, María Belén; Pavicic, Walter; Gili, Juan Antonio; Klein, Graciela; Saba, Silvia; Richard, Silvina

    2016-01-01

    AIM To analyze the association between oncohematological diseases and GSTT1/GSTM1/CYP1A1 polymorphisms, dietary habits and smoking, in an argentine hospital-based case-control study. METHODS This hospital-based case-control study involved 125 patients with oncohematological diseases and 310 control subjects. A questionnaire was used to obtain sociodemographic data and information about habits. Blood samples were collected, and DNA was extracted using salting out methods. Deletions in GSTT1 and GSTM1 (null genotypes) were addressed by PCR. CYP1A1 MspI polymorphism was detected by PCR-RFLP. Odds ratio (OR) and 95%CI were calculated to estimate the association between each variable studied and oncohematological disease. RESULTS Women showed lower risk of disease compared to men (OR 0.52, 95%CI: 0.34-0.82, P = 0.003). Higher levels of education (> 12 years) were significantly associated with an increased risk, compared to complete primary school or less (OR 3.68, 95%CI: 1.82-7.40, P < 0.001 adjusted for age and sex). With respect to tobacco, none of the smoking categories showed association with oncohematological diseases. Regarding dietary habits, consumption of grilled/barbecued meat 3 or more times per month showed significant association with an increased risk of disease (OR 1.72, 95%CI: 1.08-2.75, P = 0.02). Daily consumption of coffee also was associated with an increased risk (OR 1.77, 95%CI: 1.03-3.03, P = 0.03). Results for GSTT1, GSTM1 and CYP1A1 polymorphisms showed no significant association with oncohematological diseases. When analyzing the interaction between polymorphisms and tobacco smoking or dietary habits, no statistically significant associations that modify disease risk were found. CONCLUSION We reported an increased risk of oncohematological diseases associated with meat and coffee intake. We did not find significant associations between genetic polymorphisms and blood cancer. PMID:27777882

  1. Analysis of the COL1A1 and COL1A2 genes by PCR amplification and scanning by conformation-sensitive gel electrophoresis identifies only COL1A1 mutations in 15 patients with osteogenesis imperfecta type I: identification of common sequences of null-allele mutations.

    PubMed Central

    Körkkö, J; Ala-Kokko, L; De Paepe, A; Nuytinck, L; Earley, J; Prockop, D J

    1998-01-01

    Although >90% of patients with osteogenesis imperfecta (OI) have been estimated to have mutations in the COL1A1 and COL1A2 genes for type I procollagen, mutations have been difficult to detect in all patients with the mildest forms of the disease (i.e., type I). In this study, we first searched for mutations in type I procollagen by analyses of protein and mRNA in fibroblasts from 10 patients with mild OI; no evidence of a mutation was found in 2 of the patients by the protein analyses, and no evidence of a mutation was found in 5 of the patients by the RNA analyses. We then searched for mutations in the original 10 patients and in 5 additional patients with mild OI, by analysis of genomic DNA. To assay the genomic DNA, we established a consensus sequence for the first 12 kb of the COL1A1 gene and for 30 kb of new sequences of the 38-kb COL1A2 gene. The sequences were then used to develop primers for PCR for the 103 exons and exon boundaries of the two genes. The PCR products were first scanned for heteroduplexes by conformation-sensitive gel electrophoresis, and then products containing heteroduplexes were sequenced. The results detected disease-causing mutations in 13 of the 15 patients and detected two additional probable disease-causing mutations in the remaining 2 patients. Analysis of the data developed in this study and elsewhere revealed common sequences for mutations causing null alleles. PMID:9443882

  2. Stochastic Fluctuations in Gene Regulation

    DTIC Science & Technology

    2005-04-01

    AFRL-IF- RS -TR-2005-126 Final Technical Report April 2005 STOCHASTIC FLUCTUATIONS IN GENE REGULATION Boston University...be releasable to the general public, including foreign nations. AFRL-IF- RS -TR-2005-126 has been reviewed and is approved for publication...AGENCY REPORT NUMBER AFRL-IF- RS -TR-2005-126 11. SUPPLEMENTARY NOTES AFRL Project Engineer: Peter J. Costianes/IFED/(315) 330-4030

  3. Vibrio Fischeri Symbiosis Gene Regulation

    DTIC Science & Technology

    1988-08-12

    bacterium. PROGRESS (Year 1): 1. Regulation of V. fischeri lux gene expression in E . coli . A . Transcriptional control of luxR expression by cAMP-CRP and...comparable to cya and crp mutants of E . coli and Salmonella typhimuriwn, including a pleiotropic carbohydrate negative phenotype and a decreased...availability of appropriate mutants. Conditions for iron restriction of growth of E . coli that result in a stimulation of luminescence and luciferase

  4. Genetic evidence that mutations in the COL1A1, COL1A2, COL3A1, or COL5A2 collagen genes are not responsible for mitral valve prolapse.

    PubMed Central

    Henney, A M; Tsipouras, P; Schwartz, R C; Child, A H; Devereux, R B; Leech, G J

    1989-01-01

    DNA markers were used to assess the segregation of genes encoding the collagen types that predominate in the mitral valve (types I, III, and V) in two family pedigrees that are phenotypically different but showed dominantly inherited mitral valve prolapse. The inheritance of these markers was compared with the segregation of the phenotype for mitral valve prolapse in both families. In one family it was shown that the COL1A1, COL1A2, COL3A1, and COL5A2 genes segregated independently of the phenotype; in the other family the results for COL1A1, COL1A2, and COL5A2 were similar but analysis at the COL3A1 locus was not possible. These data indicate that in these families mitral valve prolapse does not arise from a defect in one of these collagen genes. PMID:2930668

  5. Serotonin 1A, 1B, and 7 receptors of the rat medial nucleus accumbens differentially regulate feeding, water intake, and locomotor activity.

    PubMed

    Clissold, Kara A; Choi, Eugene; Pratt, Wayne E

    2013-11-01

    Serotonin (5-HT) signaling has been widely implicated in the regulation of feeding behaviors in both humans and animal models. Recently, we reported that co-stimulation of 5-HT1&7 receptors of the anterior medial nucleus accumbens with the drug 5-CT caused a dose-dependent decrease in food intake, water intake, and locomotion in rats (Pratt et al., 2009). The current experiments sought to determine which of three serotonin receptor subtypes (5-HT1A, 5-HT1B, or 5-HT7) might be responsible for these consummatory and locomotor effects. Food-deprived rats were given 2-h access to rat chow after stimulation of nucleus accumbens 5-HT1A, 5-HT1B, or 5-HT7 receptors, or blockade of the 5-HT1A or 5-HT1B receptors. Stimulation of 5-HT1A receptors with 8-OH-DPAT (at 0.0, 2.0, 4.0, and 8.0 μg/0.5 μl/side) caused a dose-dependent decrease in food and water intake, and reduced rearing behavior but not ambulation. In contrast, rats that received the 5-HT1B agonist CP 93129 (at 0.0, 1.0, 2.0 and 4.0 μg/0.5 μl/side) showed a significant dose-dependent decrease in water intake only; stimulation of 5-HT7 receptors (AS 19; at 0.0, 1.0, and 5.0 μg/0.5 μl/side) decreased ambulatory activity but did not affect food or water consumption. Blockade of 5-HT1A or 5-HT1B receptors had no lasting effects on measures of food consumption. These data suggest that the food intake, water intake, and locomotor effects seen after medial nucleus accumbens injections of 5-CT are due to actions on separate serotonin receptor subtypes, and contribute to growing evidence for selective roles of individual serotonin receptors within the nucleus accumbens on motivated behavior.

  6. CYP1A1 and CYP1B1 gene expression and DNA adduct formation in normal human mammary epithelial cells exposed to benzo[a]pyrene in the absence or presence of chlorophyllin.

    PubMed

    John, Kaarthik; Divi, Rao L; Keshava, Channa; Orozco, Christine C; Schockley, Marie E; Richardson, Diana L; Poirier, Miriam C; Nath, Joginder; Weston, Ainsley

    2010-06-28

    Benzo[a]pyrene (BP) is a potent pro-carcinogen and ubiquitous environmental pollutant. Here, we examined the induction and modulation of CYP1A1 and CYP1B1 and 10-(deoxyguanosin-N(2)-yl)-7,8,9-trihydroxy-7,8,9,10-tetrahydrobenzo[a]pyrene (BPdG) adduct formation in DNA from 20 primary normal human mammary epithelial cell (NHMEC) strains exposed to BP (4muM) in the absence or presence of chlorophyllin (5muM). Real-time polymerase chain reaction (RT-PCR) analysis revealed strong induction of both CYP1A1 and CYP1B1 by BP, with high levels of inter-individual variability. Variable BPdG formation was found in all strains by r7, t8-dihydroxy-t-9, 10 epoxy-7,8,9,10-tetrahydrobenzo[a]pyrene (BPDE)-DNA chemiluminescence assay (CIA). Chlorophyllin mitigated BP-induced CYP1A1 and CYP1B1 gene expression in all 20 strains when administered with BP. Chlorophyllin, administered prior to BP-exposure, mitigated CYP1A1 expression in 18/20 NHMEC strains (p<0.005) and CYP1B1 expression in 17/20 NHMEC strains (p<0.005). Maximum percent reductions of CYP1A1 and CYP1B1 gene expression and BPdG adduct formation were observed when cells were pre-dosed with chlorophyllin followed by administration of the carcinogen with chlorophyllin (p<0.005 for CYP1A1 and CYP1B1 expression and p<0.0005 for BPdG adducts). Therefore, chlorophyllin is likely to be a good chemoprotective agent for a large proportion of the human population.

  7. Gene regulation by mechanical forces

    NASA Technical Reports Server (NTRS)

    Oluwole, B. O.; Du, W.; Mills, I.; Sumpio, B. E.

    1997-01-01

    Endothelial cells are subjected to various mechanical forces in vivo from the flow of blood across the luminal surface of the blood vessel. The purpose of this review was to examine the data available on how these mechanical forces, in particular cyclic strain, affect the expression and regulation of endothelial cell function. Studies from various investigators using models of cyclic strain in vitro have shown that various vasoactive mediators such as nitric oxide and prostacyclin are induced by the effect of mechanical deformation, and that the expression of these mediators may be regulated at the transcription level by mechanical forces. There also seems to be emerging evidence that endothelial cells may also act as mechanotransducers, whereby the transmission of external forces induces various cytoskeletal changes and second messenger cascades. Furthermore, it seems these forces may act on specific response elements of promoter genes.

  8. Mathematical Models of Gene Regulation

    NASA Astrophysics Data System (ADS)

    Mackey, Michael C.

    2004-03-01

    This talk will focus on examples of mathematical models for the regulation of repressible operons (e.g. the tryptophan operon), inducible operons (e.g. the lactose operon), and the lysis/lysogeny switch in phage λ. These ``simple" gene regulatory elements can display characteristics experimentally of rapid response to perturbations and bistability, and biologically accurate mathematical models capture these aspects of the dynamics. The models, if realistic, are always nonlinear and contain significant time delays due to transcriptional and translational delays that pose substantial problems for the analysis of the possible ranges of dynamics.

  9. QB1 - Stochastic Gene Regulation

    SciTech Connect

    Munsky, Brian

    2012-07-23

    Summaries of this presentation are: (1) Stochastic fluctuations or 'noise' is present in the cell - Random motion and competition between reactants, Low copy, quantization of reactants, Upstream processes; (2) Fluctuations may be very important - Cell-to-cell variability, Cell fate decisions (switches), Signal amplification or damping, stochastic resonances; and (3) Some tools are available to mode these - Kinetic Monte Carlo simulations (SSA and variants), Moment approximation methods, Finite State Projection. We will see how modeling these reactions can tell us more about the underlying processes of gene regulation.

  10. Genetic polymorphisms in the cytochromes P-450 (1A1, 2E1), microsomal epoxide hydrolase and glutathione S-transferase M1, T1, and P1 genes, and their relationship with chronic bronchitis and relapsing pneumonia in children.

    PubMed

    Korytina, G F; Yanbaeva, D G; Babenkova, L I; Etkina, E I; Victorova, T V

    2005-09-01

    The purpose of this study was to investigate the possible roles of the genes functioning in xenobiotic metabolism and antioxidant pathways in the development of severe chronic lung disease in children. Polymorphisms in the genes encoding CYP1A1, CYP2E1, EPHX1, GSTM1, GSTT1, and GSTP1 were investigated in cases of Tatar children with chronic bronchitis (n=129) and relapsing pneumonia (n=50) and in cases of ethnically matched healthy individuals (n=227) living in the city of Ufa, the Republic of Bashkortostan (South Ural region of Russia), by polymerase chain reaction-restriction fragment length polymorphism (PCR-RLFP) method. The frequency of the *2C allele of the CYP1A1 gene was significantly higher in patients than in the healthy control group (chi2=15.02, P=0.0007, Pcor=0.0021). This allele was associated with a higher risk of chronic bronchitis in children (OR 4.14, 95% CI 1.83-9.53; Pcor=0.0024). Similar results were obtained in cases of patients with relapsing pneumonia (OR 3.86, 95% CI 1.34-10.95; Pcor=0.027 for the *2C allele of the CYP1A1 gene). The frequency of the *5B allele of the CYP2E1 gene was higher in the relapsing pneumonia patients (7.0 vs 1.98% in the control group; chi2=5.68, P=0.018, Pcor=0.054; OR 3.72, 95% CI 1.21-11.24). The increase in the GSTT1 gene deletion was significant only in cases of chronic bronchitis (39.53 compared to 21.15% in the control group; chi2=12.96, P=0.001, Pcor=0.003; OR 2.44, 95% CI 1.48-4.04). Our results show that the presence of the GSTM1 gene deletion is unfavorable for the development of chronic lung disease in females (chi2=9.57; P=0.0029, Pcor=0.0116) and was associated with increased risk (OR 2.44, 95% CI 1.36-4.38). The distribution of EPHX1 and GSTP1 gene genotypes was similar in the control and patient groups. Our findings indicate that the polymorphisms of the CYP1A1, CYP2E1, and GSTT1 genes probably play a substantial part in susceptibility to severe airway and lung injury in cases of children with

  11. Reduced adiponectin expression after high-fat diet is associated with selective up-regulation of ALDH1A1 and further retinoic acid receptor signaling in adipose tissue.

    PubMed

    Landrier, Jean-Francois; Kasiri, Elnaz; Karkeni, Esma; Mihály, Johanna; Béke, Gabriella; Weiss, Kathrin; Lucas, Renata; Aydemir, Gamze; Salles, Jérome; Walrand, Stéphane; de Lera, Angel R; Rühl, Ralph

    2017-01-01

    Adiponectin is an adipocyte-derived adipokine with potent antidiabetic, anti-inflammatory, and antiatherogenic activity. Long-term, high-fat diet results in gain of body weight, adiposity, further inflammatory-based cardiovascular diseases, and reduced adiponectin secretion. Vitamin A derivatives/retinoids are involved in several of these processes, which mainly take place in white adipose tissue (WAT). In this study, we examined adiponectin expression as a function of dietary high-fat and high-vitamin A conditions in mice. A decrease of adiponectin expression in addition to an up-regulation of aldehyde dehydrogenase A1 (ALDH1A1), retinoid signaling, and retinoic acid response element signaling was selectively observed in WAT of mice fed a normal-vitamin A, high-fat diet. Reduced adiponectin expression in WAT was also observed in mice fed a high-vitamin A diet. Adipocyte cell culture revealed that endogenous and synthetic retinoic acid receptor (RAR)α- and RARγ-selective agonists, as well as a synthetic retinoid X receptor agonist, efficiently reduced adiponectin expression, whereas ALDH1A1 expression only increased with RAR agonists. We conclude that reduced adiponectin expression under high-fat dietary conditions is dependent on 1) increased ALDH1A1 expression in adipocytes, which does not increase all-trans-retinoic acid levels; 2) further RAR ligand-induced, WAT-selective, increased retinoic acid response element-mediated signaling; and 3) RAR ligand-dependent reduction of adiponectin expression.-Landrier, J.-F., Kasiri, E., Karkeni, E., Mihály, J., Béke, G., Weiss, K., Lucas, R., Aydemir, G., Salles, J., Walrand, S., de Lera, A. R., Rühl, R. Reduced adiponectin expression after high-fat diet is associated with selective up-regulation of ALDH1A1 and further retinoic acid receptor signaling in adipose tissue. © The Author(s).

  12. Reduced adiponectin expression after high-fat diet is associated with selective up-regulation of ALDH1A1 and further retinoic acid receptor signaling in adipose tissue

    PubMed Central

    Landrier, Jean-Francois; Kasiri, Elnaz; Karkeni, Esma; Mihály, Johanna; Béke, Gabriella; Weiss, Kathrin; Lucas, Renata; Aydemir, Gamze; Salles, Jérome; Walrand, Stéphane; de Lera, Angel R.; Rühl, Ralph

    2017-01-01

    Adiponectin is an adipocyte-derived adipokine with potent antidiabetic, anti-inflammatory, and antiatherogenic activity. Long-term, high-fat diet results in gain of body weight, adiposity, further inflammatory-based cardiovascular diseases, and reduced adiponectin secretion. Vitamin A derivatives/retinoids are involved in several of these processes, which mainly take place in white adipose tissue (WAT). In this study, we examined adiponectin expression as a function of dietary high-fat and high–vitamin A conditions in mice. A decrease of adiponectin expression in addition to an up-regulation of aldehyde dehydrogenase A1 (ALDH1A1), retinoid signaling, and retinoic acid response element signaling was selectively observed in WAT of mice fed a normal–vitamin A, high-fat diet. Reduced adiponectin expression in WAT was also observed in mice fed a high–vitamin A diet. Adipocyte cell culture revealed that endogenous and synthetic retinoic acid receptor (RAR)α- and RARγ-selective agonists, as well as a synthetic retinoid X receptor agonist, efficiently reduced adiponectin expression, whereas ALDH1A1 expression only increased with RAR agonists. We conclude that reduced adiponectin expression under high-fat dietary conditions is dependent on 1) increased ALDH1A1 expression in adipocytes, which does not increase all-trans-retinoic acid levels; 2) further RAR ligand–induced, WAT-selective, increased retinoic acid response element–mediated signaling; and 3) RAR ligand–dependent reduction of adiponectin expression.—Landrier, J.-F., Kasiri, E., Karkeni, E., Mihály, J., Béke, G., Weiss, K., Lucas, R., Aydemir, G., Salles, J., Walrand, S., de Lera, A. R., Rühl, R. Reduced adiponectin expression after high-fat diet is associated with selective up-regulation of ALDH1A1 and further retinoic acid receptor signaling in adipose tissue. PMID:27729412

  13. Association between SLC1A1 gene and early-onset OCD in the Han Chinese population: a case-control study.

    PubMed

    Wu, Haisu; Wang, Xuemei; Xiao, Zeping; Yu, Shunying; Zhu, Liping; Wang, Dongxiang; Jiang, Kaida; Wang, Zhen; Zhang, Tianhong; Fralick, Drew

    2013-06-01

    Obsessive-compulsive disorder (OCD) is a common and severe mental illness, and its etiology still remains unknown. The glutamate transporter gene solute carrier family 1, member 1 was previously tested as a promising candidate for OCD by several research groups. However, subsequent studies were not consistent. OCD is a heterogeneous disease. Early-onset OCD is a demographically and clinically distinct subtype of OCD and may be a more homogeneous subtype. Gender-matched 244 early-onset OCD patients, 244 late-onset OCD patients, and 244 healthy controls were genotyped with four SNPs (rs10491734, rs2228622, rs301430, and rs301443) through TaqMan SNP genotyping assays. There were statistical differences in allele and genotype frequencies of rs10491734 in early-onset OCD patients compared to late-onset OCD or control subjects. The haplotype analysis showed that the four-locus haplotype (A-A-C-C and A-G-C-C) were associated with early onset obsessive-compulsive disorder after Bonferroni correction. The present study provided suggestive evidence that the rs10491734 was significantly associated with early-onset OCD in the Han Chinese population. However, these findings need further replication.

  14. Cytogenetic damage in Turkish coke oven workers exposed to polycyclic aromatic hydrocarbons: Association with CYP1A1, CYP1B1, EPHX1, GSTM1, GSTT1, and GSTP1 gene polymorphisms.

    PubMed

    Ada, Ahmet Oguz; Demiroglu, Canan; Yilmazer, Meltem; Suzen, Halit Sinan; Demirbag, Ali Eba; Efe, Sibel; Alemdar, Yilmaz; Iscan, Mumtaz; Burgaz, Sema

    2013-09-01

    The aim of this study was to determine the frequencies of chromosomal aberrations (CA) and cytochalasin-blocked micronuclei (CBMN) in peripheral blood lymphocytes from Turkish coke oven workers and the influence of CYP1A1, CYP1B1, EPHX1, GSTM1, GSTT1, and GSTP1 gene polymorphisms on these biomarkers. Cytogenetic analysis showed that occupational exposure significantly increased the CA and CBMN frequencies. Gene polymorphisms, on the other hand, did not affect CA or CBMN in either exposed or control subjects. However, due to the limited sample size, our findings need to be verified in future studies with a larger sample.

  15. Regulation of UDP glucuronosyltransferase genes.

    PubMed

    Mackenzie, P I; Gregory, P A; Gardner-Stephen, D A; Lewinsky, R H; Jorgensen, B R; Nishiyama, T; Xie, Wen; Radominska-Pandya, A

    2003-06-01

    The UDP glucuronosyltransferase (UGT) content of cells and tissues is a major determinant of our response to those chemicals that are primarily eliminated by conjugation with glucuronic acid. There are marked interindividual differences in the content of UGTs in the liver and other organs. The mechanisms that lead to these differences are unknown but are most likely the result of differential UGT gene expression. Several transcription factors involved in the regulation of UGT genes have been identified. These include factors such as Hepatocyte Nuclear Factor 1, CAAT-Enhancer Binding Protein, Octamer transcription Factor 1 and Pbx2, which appear to control the constitutive levels of UGTs in tissues and organs. In addition, UGT gene expression is also modulated by hormones, drugs and other foreign chemicals through the action of proteins that bind and/or sense the presence of these chemicals. These proteins include the Ah receptor, members of the nuclear receptor superfamily, such as CAR and PXR and transcription factors that respond to stress.

  16. Effect of dioxin and 17β-estradiol on the expression of cytochrome P450 1A1 gene via an estrogen receptor dependent pathway in cellular and xenografted models.

    PubMed

    Go, Ryeo-Eun; Hwang, Kyung-A; Kim, Cho-Won; Byun, Yong-Sub; Nam, Ki-Hoan; Choi, Kyung-Chul

    2017-10-01

    Cytochrome P450 (CYP) 1A1 plays a major role in the metabolic activation of procarcinogens to carcinogens via aryl hydrocarbon receptor (AhR) pathway. Especially, 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) is known as an agonist of AhR. In estrogen responsive cancers, 17β-estradiol (E2) may influence on AhR dependent expression of CYP1 family via the interaction between estrogen receptor (ER) and AhR. In the present study, the effect of E2/ER on the expression of AhR and CYP1A1 genes was investigated for MCF-7 clonal variant (MCF-7 CV) breast cancer cells expressing ER. In reverse transcription-PCR and Western blot analysis, mRNA expression level of AhR was not altered, but its protein expression level was increased by TCDD or E2. The transcriptional and translational levels of CYP1A1 appeared to be increased by TCDD or E2. The increased expression of AhR and CYP1A1 induced by E2 was restored to the control level by the co-treatment of ICI 182,780, indicating that E2 induced the protein expression levels of AhR and CYP1A1 like TCDD via an ER dependent pathway. In an in vivo xenograft mouse model transplanted with MCF-7 CV cells, the protein expression levels of AhR and CYP1A1 of tumor masses were also increased by E2 or TCDD. Taken together, these results indicate that E2 may promote AhR dependent expression of CYP1A1 via ER dependent pathway in MCF-7 CV cells expressing ER in the absence of TCDD, an agonist of AhR. The relevance of E2 and ER in CYP1A1 activation of estrogen responsive cancers may be targeted for developing more effective cancer treatments. © 2017 Wiley Periodicals, Inc.

  17. Rapid detection and identification of Candida albicans and Torulopsis (Candida) glabrata in clinical specimens by species-specific nested PCR amplification of a cytochrome P-450 lanosterol-alpha-demethylase (L1A1) gene fragment.

    PubMed Central

    Burgener-Kairuz, P; Zuber, J P; Jaunin, P; Buchman, T G; Bille, J; Rossier, M

    1994-01-01

    PCR of a Candida albicans cytochrome P-450 lanosterol-alpha-demethylase (P450-L1A1) gene segment is a rapid and sensitive method of detection in clinical specimens. This enzyme is a target for azole antifungal action. In order to directly detect and identify the clinically most important species of Candida, we cloned and sequenced 1.3-kbp fragments of the cytochrome P450-L1A1 genes from Torulopsis (Candida) glabrata and from Candida krusei. These segments were compared with the published sequences from C. albicans and Candida tropicalis. Amplimers for gene sequences highly conserved throughout the fungal kingdom were first used; positive PCR results were obtained for C. albicans, T. glabrata, C. krusei, Candida parapsilosis, C. tropicalis, Cryptococcus neoformans, and Trichosporon beigelii DNA extracts. Primers were then selected for a highly variable region of the gene, allowing the species-specific detection from purified DNA of C. albicans, T. glabrata, C. krusei, and C. tropicalis. The assay sensitivity as tested for C. albicans in seeded clinical specimens such as blood, peritoneal fluid, or urine was 10 to 20 cells per 0.1 ml. Compared with results obtained by culture, the sensitivity, specificity, and efficiency of the species-specific nested PCR tested with 80 clinical specimens were 71, 95, and 83% for C. albicans and 100, 97, and 98% for T. glabrata, respectively. Images PMID:7989540

  18. Effects of β-glucan extracted from Agaricus blazei on the expression of ERCC5, CASP9, and CYP1A1 genes and metabolic profile in HepG2 cells.

    PubMed

    da Silva, A F; Sartori, D; Macedo, F C; Ribeiro, L R; Fungaro, M H P; Mantovani, M S

    2013-06-01

    The polysaccharide β-glucan has biological properties that stimulate the immune system and can prevent chronic pathologies, including cancer. It has been shown to prevent damage to DNA caused by the chemical and physical agents to which humans are exposed. However, the mechanism of β-glucan remains poorly understood. The objective of the present study was to verify the protective effect of β-glucan on the expression of the genes ERCC5 (involved in excision repair of DNA damage), CASP9 (involved in apoptosis), and CYP1A1 (involved in the metabolism of xenobiotics) using real-time polymerase chain reaction and perform metabolic profile measurements on the HepG2 cells. Cells were exposed to only benzo[a]pyrene (B[a]P), β-glucan, or a combination of B[a]P with β-glucan. The results demonstrated that 50 µg/mL β-glucan significantly repressed the expression of the ERCC5 gene when compared with the untreated control cells in these conditions. No change was found in the CASP9 transcript level. However, the CYP1A1 gene expression was also induced by HepG2 cells exposed to B[a]P only or in association with β-glucan, showing its effective protector against damage caused by B[a]P, while HepG2 cells exposed to only β-glucan did not show CYP1A1 modulation. The metabolic profiles showed moderate bioenergetic metabolism with an increase in the metabolites involved in bioenergetic metabolism (alanine, glutamate, creatine and phosphocholine) in cells treated with β-glucan and to a lesser extent treated with B[a]P. Thus, these results demonstrate that the chemopreventive activity of β-glucan may modulate bioenergetic metabolism and gene expression.

  19. Gene regulation by noncoding RNAs

    PubMed Central

    Patil, Veena S.; Zhou, Rui; Rana, Tariq M.

    2015-01-01

    The past two decades have seen an explosion in research on noncoding RNAs and their physiological and pathological functions. Several classes of small (20–30 nucleotides) and long (>200 nucleotides) noncoding RNAs have been firmly established as key regulators of gene expression in myriad processes ranging from embryonic development to innate immunity. In this review, we focus on our current understanding of the molecular mechanisms underlying the biogenesis and function of small interfering RNAs (siRNAs), microRNAs (miRNAs), and Piwi-interacting RNAs (piRNAs). In addition, we briefly review the relevance of small and long noncoding RNAs to human physiology and pathology and their potential to be exploited as therapeutic agents. PMID:24164576

  20. Dynamics of bacterial gene regulation

    NASA Astrophysics Data System (ADS)

    Narang, Atul

    2009-03-01

    The phenomenon of diauxic growth is a classical problem of bacterial gene regulation. The most well studied example of this phenomenon is the glucose-lactose diauxie, which occurs because the expression of the lac operon is strongly repressed in the presence of glucose. This repression is often explained by appealing to molecular mechanisms such as cAMP activation and inducer exclusion. I will begin by analyzing data showing that these molecular mechanisms cannot explain the strong lac repression because they exert a relatively weak effect. I will then present a minimal model accounting only for enzyme induction and dilution, which yields strong repression despite the absence of catabolite repression and inducer exclusion. The model also explains the growth patterns observed in batch and continuous cultures of various bacterial strains and substrate mixtures. The talk will conclude with a discussion of the experimental evidence regarding positive feedback, the key component of the minimal model.

  1. Association of polymorphisms in AhR, CYP1A1, GSTM1, and GSTT1 genes with levels of DNA damage in peripheral blood lymphocytes among coke-oven workers

    SciTech Connect

    Yongwen Chen; Yun Bai; Jing Yuan; Weihong Chen; Jianya Sun; Hong Wang; Huashan Liang; Liang Guo; Xiaobo Yang; Hao Tan; Yougong Su; Qingyi Wei; Tangchun Wu

    2006-09-15

    Accumulating evidence has shown that both DNA damage caused by the metabolites of polycyclic aromatic hydrocarbons (PAH) and genetic polymorphisms in PAH-metabolic genes contribute to individual susceptibility to PAH-induced carcinogenesis. However, the functional relevance of genetic polymorphisms in PAH-metabolic genes in exposed individuals is still unclear. In this study of 240 coke-oven workers (the exposed group) and 123 non-coke-oven workers (the control group), we genotyped for polymorphisms in the AhR, CYP1A1, GSTM1, and GSTT1 genes by PCR methods, and determined the levels of DNA damage in peripheral blood lymphocytes using the alkaline comet assay. It was found that the ln-transformed Olive tail moment (Olive TM) values in the exposed group were significantly higher than those in the control group. Furthermore, in the exposed group, the Olive TM values in subjects with the AhR Lys{sup 554} variant genotype were higher than those with the AhR Arg{sup 554}/Arg{sup 554} genotype. Similarly, the Olive TM values in the non-coke-oven workers with the CYP1A1 MspI CC + CT genotype were lower than the values of those with the CYP1A1 MspI TT genotype. However, these differences were not evident for GSTM1 and GSTT1. These results suggested that the polymorphism of AhR might modulate the effects of PAHs in the exposed group; however, the underlying molecular mechanisms by which this polymorphism may have affected the levels of PAH-induced DNA damage warrant further investigation.

  2. Correlation between plasma concentration ratios of SN-38 glucuronide and SN-38 and neutropenia induction in patients with colorectal cancer and wild-type UGT1A1 gene

    PubMed Central

    HIROSE, KOICHI; KOZU, CHIHIRO; YAMASHITA, KOSHIRO; MARUO, EIJI; KITAMURA, MIZUHO; HASEGAWA, JUNICHI; OMODA, KEI; MURAKAMI, TERUO; MAEDA, YORINOBU

    2011-01-01

    In irinotecan (CPT-11)-based chemotherapy, neutropenia and diarrhea are often induced. In the present study, the clinical significance of the concentration ratios of 7-ethyl-10-hydroxycamptothecin (SN-38) glucuronide (SN-38G) and SN-38 in the plasma in predicting CPT-11-induced neutropenia was examined. A total of 17 patients with colorectal cancer and wild-type UDP-glucuronosyltransferase (UGT)1A1 gene were enrolled and treated with CPT-11 as part of the FOLFIRI regimen [CPT-11 and fluorouracil (5-FU)]. Blood was taken exactly 15 min following a 2-h continuous infusion of CPT-11. Plasma concentrations of SN-38, SN-38G and CPT-11 were determined by a modified high-performance liquid chromatography (HPLC) method. The median, maximum and minimum values of plasma SN-38G/SN-38 ratios were 4.25, 7.09 and 1.03, respectively, indicating that UGT activities are variable among patients with the wild-type UGT1A1 gene. The plasma SN-38G/SN-38 ratios decreased with an increase in the trial numbers of chemotherapy (r=0.741, p=0.000669), suggesting that CPT-11 treatment suppresses UGT activity, and the low plasma SN-38G/SN-38 ratios resulted in the induction of greater neutropenia. However, in this analysis, 2 clearly separated regression lines were observed between plasma SN-38G/SN-38 ratios and neutropenia induction. In conclusion, UGT activity involved in SN-38 metabolism is variable among patients with the wild-type UGT1A1 gene, and each CPT-11 treatment suppresses UGT activity. One-point determination of the plasma SN-38G/SN-38 ratio may provide indications for the prediction of CPT-11-induced neutropenia and adjustment of the optimal dose, although further studies are required. PMID:22740978

  3. Association of polymorphisms in AhR, CYP1A1, GSTM1, and GSTT1 genes with levels of DNA damage in peripheral blood lymphocytes among coke-oven workers.

    PubMed

    Chen, Yongwen; Bai, Yun; Yuan, Jing; Chen, Weihong; Sun, Jianya; Wang, Hong; Liang, Huashan; Guo, Liang; Yang, Xiaobo; Tan, Hao; Su, Yougong; Wei, Qingyi; Wu, Tangchun

    2006-09-01

    Accumulating evidence has shown that both DNA damage caused by the metabolites of polycyclic aromatic hydrocarbons (PAH) and genetic polymorphisms in PAH-metabolic genes contribute to individual susceptibility to PAH-induced carcinogenesis. However, the functional relevance of genetic polymorphisms in PAH-metabolic genes in exposed individuals is still unclear. In this study of 240 coke-oven workers (the exposed group) and 123 non-coke-oven workers (the control group), we genotyped for polymorphisms in the AhR, CYP1A1, GSTM1, and GSTT1 genes by PCR methods, and determined the levels of DNA damage in peripheral blood lymphocytes using the alkaline comet assay. We found that the ln-transformed Olive tail moment (Olive TM) values in the exposed group were significantly higher than those in the control group (P < 0.001). Furthermore, in the exposed group, the Olive TM values in subjects with the AhR Lys(554) variant genotype were higher than those with the AhR Arg(554)/Arg(554) genotype (P = 0.021). Similarly, the Olive TM values in the non-coke-oven workers with the CYP1A1 MspI CC + CT genotype were lower than the values of those with the CYP1A1 MspI TT genotype (P = 0.005). However, these differences were not evident for GSTM1 and GSTT1. These results suggested that the polymorphism of AhR might modulate the effects of PAHs in the exposed group; however, the underlying molecular mechanisms by which this polymorphism may have affected the levels of PAH-induced DNA damage warrant further investigation.

  4. Regulation of the genes involved in nitrification.

    SciTech Connect

    Arp, D.J.; Sayavedra-Soto, L.A.

    2003-08-14

    OAK-B135 This project focuses on the characterization of the regulation of the genes involved in nitrification in the bacterium Nitrosomonas europaea. The key genes in the nitrification pathway, amo and hao, are present in multiple copies in the genome. The promoters for these genes were identified and characterized. It was shown that there were some differences in the transcriptional regulation of the copies of these genes.

  5. Up-regulation of CYP1A1 and phase II enzymes by 5-ring isomeric polycyclic aromatic hydrocarbons in precision-cut rat hepatic slices: Importance of molecular shape.

    PubMed

    Pushparajah, Daphnee; Lewis, Dfv; Ioannides, Costas

    2017-04-01

    The objectives of the present study were two-fold: (a) to evaluate the role of molecular shape on the interaction of polycyclic aromatic hydrocarbons (PAHs) with the Ah receptor and CYP1A1 upregulation, and (b) to evaluate the potential of PAHs to induce epoxide hydrolase and glutathione S-transferase, two major enzymes involved in their metabolism. In order to achieve these objectives, precision-cut rat liver slices were incubated with a range of concentrations of seven 5-ring isomeric PAHs, namely benzo[c]chrysene, benzo[b]chrysene, benzo[g]chrysene, dibenzo[a,j]anthracene, dibenzo[a,c]anthracene, picene and pentacene, for 24h. All compounds, with the exception of pentacene, elevated the O-deethylation of ethoxyresorufin, an activity associated with CYP1A1; induction of this enzyme by the various PAHs correlated with their avidity for the Ah receptor. None of the PAHs studied increased epoxide hydrolase activity, monitored using benzo[a]pyrene 4,5-oxide. Of the seven PAHs, only benzo[g]chrysene elevated glutathione S-transferase activity, measured using 1-chloro-2,4-dinitrobenzene or 7-chloro-4-nitrobenzo-2-oxa-1,3-diazole as substrates. No relationship could be established between length or length/width and interaction with the Ah receptor and CYP1A1 up-regulation indicating that other structural or electronic factors are likely to be more important. Finally, 5-ring PAHs are poor inducers of the epoxide hydrolase and glutathione S-transferase enzyme systems. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. A haplotype derived from the common variants at the -1997G/T and Sp1 binding site of the COL1A1 gene influences risk of postmenopausal osteoporosis in India.

    PubMed

    Singh, Monica; Singh, Puneetpal; Singh, Surinder; Juneja, Pawan Kumar; Kaur, Taranpal

    2013-02-01

    The aim of the present study was to investigate the association between Collagen 1 alpha 1 (COL1A1) polymorphism and osteoporosis in DEXA verified 349 (145 osteoporotic, 87 osteopenic and 117 normal) postmenopausal women of India, who were not taking hormone replacement therapy. Two single-nucleotide polymorphisms (SNPs), that is, -1997G/T (rs1107946) and +1245G/T (rs1800012, Sp1) of the COL1A1 gene, were analyzed. Minor allele frequencies of rs1107946 and rs1800012 were 0.15 and 0.20 in osteoporotic women, 0.18 and 0.18 in osteopenic and 0.20 and 0.17 in women having normal bone mass. An allele dose effect with BMD of lumbar spine has been exhibited by major allele G of rs1107946 (GG: 0.86 g/cm(2), GT: 0.91 g/cm(2) and TT: 0.93 g/cm(2)) and minor allele T of rs1800012 (GG: 0.91 g/cm(2), GT: 0.87 g/cm(2) and TT: 0.81 g/cm(2)). Disease association analysis revealed a haplotype GT that confers approximately threefold higher risk of osteoporosis in the carriers (OR 3.12, 95% CI 1.24-8.88, P = 0.008) after adjusting the confounding effect of age, BMI and years since menopause. These results suggest that GT haplotype of COL1A1 gene is associated with a higher risk of postmenopausal osteoporosis in Northwest Indian women.

  7. Effect of polyunsaturated fatty acids ω-3 on the induction of activity and expression of CYP1A1 and CYP1A2 genes in the liver of rats under the influence of indole-3-carbinol.

    PubMed

    Kravchenko, L V; Tutel'yan, V A; Trusov, N V; Guseva, G V; Aksenov, I V

    2014-01-01

    Supplementation of the ration with eicosapentaenoic and docosahexaenoic ω-3 polyunsaturated fatty acids (PUFA) in doses of 0.3 and 1 g/kg body weight for 4 weeks had no effect on ethoxyresorufin O-dealkylase (EROD) activity and expression of the CYP1A1 gene in male Wistar rats, but caused a dose-dependent increase in methoxyresorufin O-dealkylase (MROD) activity of CYP1A2 (by 28 and 73%, respectively) without significant changes in CYP1A2 mRNA expression. ω-3 PUFA had no effect on the indole-3-carbinol-induced (20 mg/kg body weight over the last 7 days of the experiment) EROD activity and expression of CYP1A1 mRNA. The indole-3-carbinol-induced MROD activity was shown to increase by 6.2 times in rats not receiving ω-3 PUFA and only by 3.9 and 2.7 times in animals receiving ω-3 PUFA. The indole-3-carbinol-induced expression of CYP1A2 mRNA slightly increased in animals receiving ω-3 PUFA. Our results suggest that the effect of ω-3 PUFA on the induced and basal activity of CYP1A2 is not related to modulation of CYP1A2 gene expression.

  8. Breast Cancer Risk, Fungicide Exposure and CYP1A1*2A Gene-Environment Interactions in a Province-Wide Case Control Study in Prince Edward Island, Canada

    PubMed Central

    Ashley-Martin, Jillian; VanLeeuwen, John; Cribb, Alastair; Andreou, Pantelis; Guernsey, Judith Read

    2012-01-01

    Scientific certainty regarding environmental toxin-related etiologies of breast cancer, particularly among women with genetic polymorphisms in estrogen metabolizing enzymes, is lacking. Fungicides have been recognized for their carcinogenic potential, yet there is a paucity of epidemiological studies examining the health risks of these agents. The association between agricultural fungicide exposure and breast cancer risk was examined in a secondary analysis of a province-wide breast cancer case-control study in Prince Edward Island (PEI) Canada. Specific objectives were: (1) to derive and examine the level of association between estimated fungicide exposures, and breast cancer risk among women in PEI; and (2) to assess the potential for gene-environment interactions between fungicide exposure and a CYP1A1 polymorphism in cases versus controls. After 1:3 matching of 207 cases to 621 controls by age, family history of breast cancer and menopausal status, fungicide exposure was not significantly associated with an increased risk of breast cancer (OR = 0.74; 95% CI: 0.46–1.17). Moreover, no statistically significant interactions between fungicide exposure and CYP1A1*2A were observed. Gene-environment interactions were identified. Though interpretations of findings are challenged by uncertainty of exposure assignment and small sample sizes, this study does provide grounds for further research. PMID:22754477

  9. Low expression of aldehyde deyhdrogenase 1A1 (ALDH1A1) is a prognostic marker for poor survival in pancreatic cancer

    PubMed Central

    2011-01-01

    Background Aldehyde deyhdrogenase 1 (ALDH1) has been characterised as a cancer stem cell marker in different types of tumours. Additionally, it plays a pivotal role in gene regulation and endows tumour cells with augmented chemoresistance. Recently, ALDH1A1 has been described as a prognostic marker in a pancreatic cancer tissue microarray. The aim of this study was to reevaluate the expression of ALDH1A1 as a prognostic marker on whole-mount tissue sections. Methods Real-time-quantitative-PCR (qRT-PCR) and Western blotting were used to evaluate the expression profile of ALDH1A1 in seven pancreatic cancer cell lines and one non-malignant pancreatic cell line. Immunostaining against ALDH1A1 and Ki-67 was performed on paraffin-embedded samples from 97 patients with pancreatic cancer. The immunohistochemical results were correlated to histopathological and clinical data. Results qRT-PCR and Western blotting revealed a different expression pattern of ALDH1A1 in different malignant and non-malignant pancreatic cell lines. Immunohistochemical analysis demonstrated that ALDH1A1 was confined to the cellular cytoplasm and occurred in 72 cases (74%), whereas it was negative in 25 cases (26%). High expression of ALDH1A1 was significantly correlated to an increased proliferation rate (Spearman correlation, p = 0.01). Univariate and multivariate analyses showed that decreased expression of ALDH1A1 is an independent adverse prognostic factor for overall survival. Conclusions Immunonhistochemical analysis on whole-mount tissue slides revealed that ALDH1A1 is more abundantly expressed in pancreatic cancer than initially reported by a tissue microarray analysis. Moreover, high expression of ALDH1A1 correlated significantly with the proliferation of tumour cells. Intriguingly, this study is the first which identifies low expression of ALDH1A1 as an independent adverse prognostic marker for overall survival in pancreatic cancer. PMID:21708005

  10. QTLminer: identifying genes regulating quantitative traits.

    PubMed

    Alberts, Rudi; Schughart, Klaus

    2010-10-15

    Quantitative trait locus (QTL) mapping identifies genomic regions that likely contain genes regulating a quantitative trait. However, QTL regions may encompass tens to hundreds of genes. To find the most promising candidate genes that regulate the trait, the biologist typically collects information from multiple resources about the genes in the QTL interval. This process is very laborious and time consuming. QTLminer is a bioinformatics tool that automatically performs QTL region analysis. It is available in GeneNetwork and it integrates information such as gene annotation, gene expression and sequence polymorphisms for all the genes within a given genomic interval. QTLminer substantially speeds up discovery of the most promising candidate genes within a QTL region.

  11. CSNK1A1 and Gli2 as Novel Targets Identified Through an Integrative Analysis of Gene Expression Data, Protein-Protein Interaction and Pathways Networks in Glioblastoma Tumors: Can These Two Be Antagonistic Proteins?

    PubMed

    Mishra, Seema

    2014-01-01

    Glioblastoma (GBM) is the malignant form of glioma, and the interplay of different pathways working in concert in GBM development and progression needs to be fully understood. Wnt signaling and sonic hedgehog (SHH) signaling pathways, having basic similarities, are among the major pathways aberrantly activated in GBM, and hence, need to be targeted. It becomes imperative, therefore, to explore the functioning of these pathways in context of each other in GBM. An integrative approach may help provide new biological insights, as well as solve the problem of identifying common drug targets for simultaneous targeting of these pathways. The beauty of this approach is that it can recapitulate several known facts, as well as decipher new emerging patterns, identifying those targets that could be missed when relying on one type of data at a time. This approach can be easily extended to other systems to discover key patterns in the functioning of signaling molecules. Studies were designed to assess the relationship between significant differential expression of genes of the Wnt (Wnt/β-catenin canonical and Wnt non-canonical) and SHH signaling pathways and their connectivity patterns in interaction and signaling networks. Further, the aim was to decipher underlying mechanistic patterns that may be involved in a more specific way and to generate a ranked list of genes that can be used as markers or drug targets. These studies predict that Wnt pathway plays a relatively more pro-active role than the SHH pathway in GBM. Further, CTNNB1, CSNK1A1, and Gli2 proteins may act as key drug targets common to these pathways. While CTNNB1 is a widely studied molecule in the context of GBM, the likely roles of CSNK1A1 and Gli2 are found to be relatively novel. It is surmised that Gli2 may be antagonistic to CSNK1A1, preventing the phosphorylation of CTNNB1 and SMO proteins in Wnt and SHH signaling pathway, respectively, by CSNK1A1, and thereby, aberrant activation. New insights into the

  12. CSNK1A1 and Gli2 as Novel Targets Identified Through an Integrative Analysis of Gene Expression Data, Protein-Protein Interaction and Pathways Networks in Glioblastoma Tumors: Can These Two Be Antagonistic Proteins?

    PubMed Central

    Mishra, Seema

    2014-01-01

    Glioblastoma (GBM) is the malignant form of glioma, and the interplay of different pathways working in concert in GBM development and progression needs to be fully understood. Wnt signaling and sonic hedgehog (SHH) signaling pathways, having basic similarities, are among the major pathways aberrantly activated in GBM, and hence, need to be targeted. It becomes imperative, therefore, to explore the functioning of these pathways in context of each other in GBM. An integrative approach may help provide new biological insights, as well as solve the problem of identifying common drug targets for simultaneous targeting of these pathways. The beauty of this approach is that it can recapitulate several known facts, as well as decipher new emerging patterns, identifying those targets that could be missed when relying on one type of data at a time. This approach can be easily extended to other systems to discover key patterns in the functioning of signaling molecules. Studies were designed to assess the relationship between significant differential expression of genes of the Wnt (Wnt/β-catenin canonical and Wnt non-canonical) and SHH signaling pathways and their connectivity patterns in interaction and signaling networks. Further, the aim was to decipher underlying mechanistic patterns that may be involved in a more specific way and to generate a ranked list of genes that can be used as markers or drug targets. These studies predict that Wnt pathway plays a relatively more pro-active role than the SHH pathway in GBM. Further, CTNNB1, CSNK1A1, and Gli2 proteins may act as key drug targets common to these pathways. While CTNNB1 is a widely studied molecule in the context of GBM, the likely roles of CSNK1A1 and Gli2 are found to be relatively novel. It is surmised that Gli2 may be antagonistic to CSNK1A1, preventing the phosphorylation of CTNNB1 and SMO proteins in Wnt and SHH signaling pathway, respectively, by CSNK1A1, and thereby, aberrant activation. New insights into the

  13. Relationship between single nucleotide polymorphisms in CYP1A1 and CYP1B1 genes and the bone mineral density and serum lipid profiles in postmenopausal Japanese women taking hormone therapy.

    PubMed

    Quan, Jinhua; Yahata, Tetsuro; Tamura, Nozomi; Nagata, Hiroshi; Tanaka, Kenichi

    2009-01-01

    The genetic variations of the genes encoding cytochrome P-450 enzymes are considered to play an important role in the metabolism of estradiol. The objective of this study was to evaluate the relationships among single nucleotide polymorphisms (SNPs) of cytochrome P-450 genes, lumbar bone mineral density (BMD), and serum lipids and to determine the effects of hormone therapy (HT). The participants were 124 Japanese women who had been diagnosed with osteopenia or osteoporosis and were taking HT for 12 months. Seven single nucleotide polymorphisms in the CYP1A1 and CYP1B1 genes were characterized. Lumbar BMD and the levels of serum lipids were measured before and after HT. A single nucleotide polymorphism in exon 3 of CYP1B1 was found to be significantly associated with the effect of HT on BMD and low-density lipoprotein cholesterol both in univariate and multivariate analyses. In the women with the GG genotype of L432V, the responses to HT of BMD and low-density lipoprotein cholesterol markedly decreased. The serum follicle-stimulating hormone level after HT was significantly higher in the women with the GG genotype of L432V. These results suggest that the L432V polymorphism in the CYP1B1 gene could therefore be used to predict the effect of HT on lumbar BMD and low-density lipoprotein cholesterol in Japanese women.

  14. Differential inducing effect of benzo[a]pyrene on gene expression and enzyme activity of cytochromes P450 1A1 and 1A2 in Sprague-Dawley and Wistar rats.

    PubMed

    Floreani, Maura; Gabbia, Daniela; Barbierato, Massimo; DE Martin, Sara; Palatini, Pietro

    2012-01-01

    The objective of this study was to compare RT-PCR, Western blot and determination of enzyme activity in the assessment of the induction of cytochromes P450 (CYPs) 1A1 and 1A2 by benzo[a]pyrene (BaP) in Sprague-Dawley and Wistar rats. Inhibition studies and kinetic analyses confirmed literature data indicating that methoxyresorufin is a specific CYP1A2 substrate in both uninduced and BaP-treated rats, whereas ethoxyresorufin is a specific CYP1A1 substrate only in BaP-treated rats. BaP treatment increased mRNA and protein expressions of both CYP1A enzymes to a greater extent in Wistar than Sprague-Dawley rats. It consistently caused a higher increase in mRNA and protein expression of the aryl hydrocarbon receptor in the former rats. By contrast, CYP1A2 enzyme activity was much more markedly increased in Sprague-Dawley than Wistar rats and CYP1A1 activity was induced to similar levels. A BaP-induced increase in the turnover number of CYP1A enzymes in Sprague-Dawley rats, relative to Wistar rats, may provide a plausible explanation for the differential effect of BaP on gene expression and enzyme activity. These results have methodological implications, since they show that RT-PCR and Western blot may not provide a quantitative measure of induction of CYP1A activity, which is the actual measure of the change in CYP1A-mediated metabolism.

  15. The p65 Subunit of NF-κB Inhibits COL1A1 Gene Transcription in Human Dermal and Scleroderma Fibroblasts through Its Recruitment on Promoter by Protein Interaction with Transcriptional Activators (c-Krox, Sp1, and Sp3)*

    PubMed Central

    Beauchef, Gallic; Bigot, Nicolas; Kypriotou, Magdalini; Renard, Emmanuelle; Porée, Benoît; Widom, Russell; Dompmartin-Blanchere, Anne; Oddos, Thierry; Maquart, François-Xavier; Demoor, Magali; Boumediene, Karim; Galera, Philippe

    2012-01-01

    Transcriptional mechanisms regulating type I collagen genes expression in physiopathological situations are not completely known. In this study, we have investigated the role of nuclear factor-κB (NF-κB) transcription factor on type I collagen expression in adult normal human (ANF) and scleroderma (SF) fibroblasts. We demonstrated that NF-κB, a master transcription factor playing a major role in immune response/apoptosis, down-regulates COL1A1 expression by a transcriptional control involving the −112/−61 bp sequence. This 51-bp region mediates the action of two zinc fingers, Sp1 (specific protein-1) and Sp3, acting as trans-activators of type I collagen expression in ANF and SF. Knockdown of each one of these trans factors by siRNA confirmed the trans-activating effect of Sp1/Sp3 and the p65 subunit of NF-κB trans-inhibiting effect on COL1A1 expression. Despite no existing κB consensus sequence in the COL1A1 promoter, we found that Sp1/Sp3/c-Krox and NF-κB bind and/or are recruited on the proximal promoter in chromatin immunoprecipitation (ChIP) assays. Attempts to elucidate whether interactions between Sp1/Sp3/c-Krox and p65 are necessary to mediate the NF-κB inhibitory effect on COL1A1 in ANF and SF were carried out; in this regard, immunoprecipitation assays revealed that they interact, and this was validated by re-ChIP. Finally, the knockdown of Sp1/Sp3/c-Krox prevents the p65 inhibitory effect on COL1A1 transcription in ANF, whereas only the siRNAs targeting Sp3 and c-Krox provoked the same effect in SF, suggesting that particular interactions are characteristic of the scleroderma phenotype. In conclusion, our findings highlight a new mechanism for COL1A1 transcriptional regulation by NF-κB, and these data could allow the development of new antifibrotic strategies. PMID:22139845

  16. [The role of mutation of gene cyp1A1 and benzapilene in cytogenetic changes of urinary tract epitheliocytes in oil industry workers employed in the oil fields of the North of West Siberia].

    PubMed

    Il'inskikh, N N; Il'inskikh, E N; Il'inskikh, I N; Iamkovaia, E V

    2011-01-01

    The examination of 477 oil industry workers and office personnel (control) employed in the oil fields of the North of Tomsk and Tyumen regions has detected increased number of epithelyocytes with micronuclei and an elevated urine level ofbenzapilene in workers employed in oil production. Especially pronounced changes of the above parameters were observed in men with mutant alleles Val of CYP1A1 gene. An enhanced mutation process in oil production workers may be due to a resultant action of different factors on human genome. Involved may be both mutagens and factors of comutagenic nature. The results obtained in this study suggest a conclusion about urgent need of introduction of new scientifically validated criteria of selection of personnel for oil production in the North of the West Siberia. Health examination of the applicants must include genotyping.

  17. Aryl hydrocarbon-induced interactions at multiple DNA elements of diverse sequence--a multicomponent mechanism for activation of cytochrome P4501A1 (CYP1A1) gene transcription.

    PubMed Central

    Robertson, R W; Zhang, L; Pasco, D S; Fagan, J B

    1994-01-01

    In vivo footprinting experiments, augmented with gel shift and transfection analyses suggest that activation of the CYP1A1 gene by aryl hydrocarbons may be a multicomponent process. During the first 30 minutes of exposure to aryl hydrocarbon carcinogens and environmental contaminants, in vivo footprints appear at nine distinct sites within a 281 bp region centered 950 bp upstream of the CYP1A1 transcription start site. Six of these sites are unrelated in sequence to the three xenobiotic response elements (XREs) within this region, at which the aryl hydrocarbon (AH) receptor is known to bind. These six display a variety of footprint patterns, are diverse in sequence and range in G-C content from 60 to 75%. This diversity suggests that multiple nuclear factors may be responsible for these six in vivo footprints. These observations are consistent with competition gel shift experiments showing that the nuclear factors binding at two of these sites are different from each other, as well as from the AH receptor. Gel shifts also indicate that the sequence-specific factors binding at these sites are expressed constitutively. This is consistent with a model in which in vivo footprints are induced at these six sites, not through direct activation or de novo synthesis of DNA-binding factors, but through a two phase mechanism in which binding of the nuclear AH receptor complex to XREs facilitates the binding of constitutive factors at these sites. This facilitation could be mediated either through specific protein-protein interactions or through alterations in chromatin structure that make these sites accessible to constitutive nuclear factors. A function for the sequences at which aryl hydrocarbons induce in vivo footprints is suggested by transfection experiments showing that one of these sequences cooperates with a weak XRE to confer on a reporter gene responsiveness to aryl hydrocarbons. Images PMID:8202380

  18. Interaction between ALDH2*1*1 and DRD2/ANKK1 TaqI A1A1 genes may be associated with antisocial personality disorder not co-morbid with alcoholism.

    PubMed

    Lu, Ru-Band; Lee, Jia-Fu; Huang, San-Yuan; Lee, Sheng-Yu; Chang, Yun-Hsuan; Kuo, Po-Hsiu; Chen, Shiou-Lan; Chen, Shih-Heng; Chu, Chun-Hsien; Lin, Wei-Wen; Wu, Pei-Lin; Ko, Huei-Chen

    2012-09-01

    Previous studies on acetaldehyde dehydrogenase 2 (ALDH2) focused on drinking behavior or alcoholism because the ALDH2*2 allele protects against the risk of developing alcoholism. The mechanism provides that the ALDH2 gene's protective effect is also involved in dopamine metabolism. The interaction of the ALDH2 gene with neurotransmitters, such as dopamine, is suggested to be related to alcoholism. Because alcoholism is often co-morbid with antisocial personality disorder (ASPD), previous association studies on antisocial alcoholism cannot differentiate whether those genes relate to ASPD with alcoholism or ASPD only. This study examined the influence of the interaction effect of the ALDH2*1*1, *1*2 or *2*2 polymorphisms with the dopamine 2 receptor (DRD2) Taq I polymorphism on ASPD. Our 541 Han Chinese male participants were classified into three groups: antisocial alcoholism (ASPD co-morbid with alcohol dependence, antisocial ALC; n = 133), ASPD without alcoholism (ASPD not co-morbid with alcohol dependence, antisocial non-ALC; n = 164) and community controls (healthy volunteers from the community; n = 244). Compared with healthy controls, individuals with the DRD2 A1/A1 and the ALDH2*1/*1 genotypes were at a 5.39 times greater risk for antisocial non-ALC than were those with other genotypes. Our results suggest that the DRD2/ANKK1 and ALDH2 genes interacted in the antisocial non-ALC group; a connection neglected in previous studies caused by not separating antisocial ALC from ASPD. Our study made this distinction and showed that these two genes may be associated ASPD without co-morbid alcoholism.

  19. INTERFEROME: the database of interferon regulated genes

    PubMed Central

    Samarajiwa, Shamith A.; Forster, Sam; Auchettl, Katie; Hertzog, Paul J.

    2009-01-01

    INTERFEROME is an open access database of types I, II and III Interferon regulated genes (http://www.interferome.org) collected from analysing expression data sets of cells treated with IFNs. This database of interferon regulated genes integrates information from high-throughput experiments with annotation, ontology, orthologue sequences from 37 species, tissue expression patterns and gene regulatory information to enable a detailed investigation of the molecular mechanisms underlying IFN biology. INTERFEROME fulfils a need in infection, immunity, development and cancer research by providing computational tools to assist in identifying interferon signatures in gene lists generated by high-throughput expression technologies, and their potential molecular and biological consequences. PMID:18996892

  20. INTERFEROME: the database of interferon regulated genes.

    PubMed

    Samarajiwa, Shamith A; Forster, Sam; Auchettl, Katie; Hertzog, Paul J

    2009-01-01

    INTERFEROME is an open access database of types I, II and III Interferon regulated genes (http://www.interferome.org) collected from analysing expression data sets of cells treated with IFNs. This database of interferon regulated genes integrates information from high-throughput experiments with annotation, ontology, orthologue sequences from 37 species, tissue expression patterns and gene regulatory information to enable a detailed investigation of the molecular mechanisms underlying IFN biology. INTERFEROME fulfils a need in infection, immunity, development and cancer research by providing computational tools to assist in identifying interferon signatures in gene lists generated by high-throughput expression technologies, and their potential molecular and biological consequences.

  1. Gene Regulation Networks for Modeling Drosophila Development

    NASA Technical Reports Server (NTRS)

    Mjolsness, E.

    1999-01-01

    This chapter will very briefly introduce and review some computational experiments in using trainable gene regulation network models to simulate and understand selected episodes in the development of the fruit fly, Drosophila Melanogaster.

  2. Comparative aspects of kisspeptin gene regulation.

    PubMed

    Kitahashi, Takashi; Parhar, Ishwar S

    2013-01-15

    Kisspeptin plays an important role in the onset of puberty through stimulation of gonadotropin-releasing hormone (GnRH), a master molecule of reproduction. Furthermore, the existence of multiple kisspeptins is evident in most vertebrate species. Therefore, elucidating the regulatory mechanisms of the kisspeptin genes is important to understand the functions of multiple kisspeptin forms in the brain. This review focuses on the comparative aspects of kisspeptin gene regulation with an emphasis on the role of environmental signals including gonadal steroids, photoperiods and metabolic signals. These environmental signals differently regulate the kisspeptin genes distinctively in each species. In addition, photoperiodic regulation of the kisspeptin genes alters during sexual maturational, suggesting interactions between the gonadal hormone pathway and the photoperiod pathway. Further studies of the regulatory mechanisms of kisspeptin genes especially in teleosts which possess multiple kisspeptin/kisspeptin receptor systems will help to understand the precise role of multiple kisspeptin forms in different species. Copyright © 2012 Elsevier Inc. All rights reserved.

  3. Cell cycle regulated gene expression in yeasts.

    PubMed

    McInerny, Christopher J

    2011-01-01

    The regulation of gene expression through the mitotic cell cycle, so that genes are transcribed at particular cell cycle times, is widespread among eukaryotes. In some cases, it appears to be important for control mechanisms, as deregulated expression results in uncontrolled cell divisions, which can cause cell death, disease, and malignancy. In this review, I describe the current understanding of such regulated gene expression in two established simple eukaryotic model organisms, the budding yeast Saccharomyces cerevisiae and the fission yeast Schizosaccharomyces pombe. In these two yeasts, the global pattern of cell cycle gene expression has been well described, and most of the transcription factors that control the various waves of gene expression, and how they are in turn themselves regulated, have been characterized. As related mechanisms occur in all other eukaryotes, including humans, yeasts offer an excellent paradigm to understand this important molecular process. Copyright © 2011 Elsevier Inc. All rights reserved.

  4. How Europe regulates its genes

    SciTech Connect

    Balter, M.

    1991-06-07

    As Europe moves toward unification in 1992, more than two dozen regulations and directives that will affect biotech are working their way through the complex European legislative system. The result could mean tough scrutiny for genetically engineered products. One reason is that the European Community (EC) has chosen to examine genetically engineered products as a special category - an approach the FDA has rejected. Another is that the EC is considering enacting regulations that would mandate consideration of the socioeconomic effects of biotech products in addition to their safety. In addition, some - particularly in industry - fear a nightmare of overlapping and contradictory regulations. It's too soon to tell how well the European system will work, or how stifling the regulations might be. In all likelihood the regulations emerging in Europe won't be demonstrably superior - or inferior - to the American ones, just different, with different strengths and weaknesses. But since many US biotech companies are looking to the huge market that a unified Europe represents, the specifics of those strengths and weaknesses will ultimately be of more than passing interest.

  5. Fur-regulated genes in Coxiella burnetii.

    PubMed

    Briggs, Heather L; Wilson, Mary J; Seshadri, Rekha; Samuel, James E

    2005-12-01

    In this paper, we describe the identification of an iron-acquisition gene homologue, ferrous iron transporter (feoB) in C. burnetii. The results of a genomic screen for putative Fur-regulated genes and Fur boxes and the development of a two-plasmid system to analyze these Fur boxes will also be illustrated.

  6. Regulation of Flagellar Gene Expression in Bacteria.

    PubMed

    Osterman, I A; Dikhtyar, Yu Yu; Bogdanov, A A; Dontsova, O A; Sergiev, P V

    2015-11-01

    The flagellum of a bacterium is a supramolecular structure of extreme complexity comprising simultaneously both a unique system of protein transport and a molecular machine that enables the bacterial cell movement. The cascade of expression of genes encoding flagellar components is closely coordinated with the steps of molecular machine assembly, constituting an amazing regulatory system. Data on structure, assembly, and regulation of flagellar gene expression are summarized in this review. The regulatory mechanisms and correlation of the process of regulation of gene expression and flagellum assembly known from the literature are described.

  7. Tonicity-regulated gene expression.

    PubMed

    Ferraris, Joan D; Burg, Maurice B

    2007-01-01

    Hypertonicity activates several different transcription factors, including TonEBP/OREBP, that in turn increase transcription of numerous genes. Hypertonicity elevates TonEBP/OREBP transcriptional activity by moving it into the nucleus, where it binds to its cognate DNA element (ORE), and by increasing its transactivational activity. This chapter presents protocols for measuring the transcriptional activity of TonEBP/OREBP and determining its subcellular localization, its binding to OREs, and activity of its transactivation domain.

  8. Gene Regulation by Cytokinin in Arabidopsis

    PubMed Central

    Brenner, Wolfram G.; Ramireddy, Eswar; Heyl, Alexander; Schmülling, Thomas

    2011-01-01

    The plant hormone cytokinin realizes at least part of its signaling output through the regulation of gene expression. A great part of the early transcriptional regulation is mediated by type-B response regulators, which are transcription factors of the MYB family. Other transcription factors, such as the cytokinin response factors of the AP2/ERF family, have also been shown to be involved in this process. Additional transcription factors mediate distinct parts of the cytokinin response through tissue- and cell-specific downstream transcriptional cascades. In Arabidopsis, only a single cytokinin response element, to which type-B response regulators bind, has been clearly proven so far, which has 5′-GAT(T/C)-3′ as a core sequence. This motif has served to construct a synthetic cytokinin-sensitive two-component system response element, which is useful for monitoring the cellular cytokinin status. Insight into the extent of transcriptional regulation has been gained by genome-wide gene expression analyses following cytokinin treatment and from plants having an altered cytokinin content or signaling. This review presents a meta analysis of such microarray data resulting in a core list of cytokinin response genes. Genes encoding type-A response regulators displayed the most stable response to cytokinin, but a number of cytokinin metabolism genes (CKX4, CKX5, CYP735A2, UGT76C2) also belong to them, indicating homeostatic mechanisms operating at the transcriptional level. The cytokinin core response genes are also the target of other hormones as well as biotic and abiotic stresses, documenting crosstalk of the cytokinin system with other hormonal and environmental signaling pathways. The multiple links of cytokinin to diverse functions, ranging from control of meristem activity, hormonal crosstalk, nutrient acquisition, and various stress responses, are also corroborated by a compilation of genes that have been repeatedly found by independent gene expression profiling

  9. Regulation of gene expression by Goodwin's loop with many genes

    NASA Astrophysics Data System (ADS)

    Sielewiesiuk, Jan; Łopaciuk, Agata

    2012-01-01

    The paper presents a simple analysis of a long Goodwin's loop containing many genes. The genes form a closed series. The rate of transcription of any gene is up or down regulated by theprotein product of the preceding gene. We describe the loop with a system of ordinary differential equations of order s. Oscillatory solutions of the system are possible at the odd number of repressions and any number of inductions if the product of all Hill's coefficients, related to both repressions and inductions, is larger than:

  10. Identification of novel TCDD-regulated genes by microarray analysis

    SciTech Connect

    Hanlon, Paul R.; Zheng, Wenchao; Ko, Alex Y.; Jefcoate, Colin R. . E-mail: jefcoate@facstaff.wisc.edu

    2005-02-01

    TCDD exposure of multipotential C3H10T1/2 fibroblasts for 72 h altered the expression of over 1000 genes, including coordinated changes across large functionally similar gene clusters. TCDD coordinately induced 23 cell cycle-related genes similar to epidermal growth factor (EGF)-induced levels but without any affect on the major mitogenic signaling pathway (extracellular signal-regulated kinase, ERK). TCDD treatment also decreased glycolytic and ribosomal clusters. Most of these TCDD-induced changes were attenuated by the presence of EGF or an adipogenic stimulus, each added during the final 24 h. TCDD prevented 10% of EGF-induced gene responses and 40% of adipogenic responses. Over 100 other genes responded to TCDD during adipogenesis. This group of responses included complete suppression of three proliferins and stimulations of several cytokine receptors. Despite these varied secondary effects of TCDD, direct AhR activation measured by integrated AhR-responsive luciferase reporters was similar under quiescent, EGF-stimulated or adipogenic conditions. Only 23 genes were similarly induced by TCDD regardless of conditions and 10 were suppressed. These 23 genes include: 4 genes previously recognized to contain AhR response elements (cytochrome P450 (CYP) 1B1, CYP1A1, NAD(P)H quinone reductase 1 (NQO1), and aldehyde dehydrogenase 3A1); two novel oxidative genes (alcohol dehydrogenase 3 and superoxide dismutase 3); and glypican 1, a plasma membrane proteoglycan that affects cell signaling. Further experiments demonstrated that TCDD maximally induced NQO1, glypican 1 and alcohol dehydrogenase 3 by 6 h. Glypican 1 activates the actions of many growth factors and therefore may contribute to secondary effects on gene expression.

  11. A New Synthetic Allotetraploid (A1A1G2G2) between Gossypium herbaceum and G. australe: Bridging for Simultaneously Transferring Favorable Genes from These Two Diploid Species into Upland Cotton

    PubMed Central

    Chen, Yu; Wang, Yingying; Chen, Jinjin; Zhang, Tianzhen; Zhou, Baoliang

    2015-01-01

    Gossypium herbaceum, a cultivated diploid cotton species (2n = 2x = 26, A1A1), has favorable traits such as excellent drought tolerance and resistance to sucking insects and leaf curl virus. G. australe, a wild diploid cotton species (2n = 2x = 26, G2G2), possesses numerous economically valuable characteristics such as delayed pigment gland morphogenesis (which is conducive to the production of seeds with very low levels of gossypol as a potential food source for humans and animals) and resistance to insects, wilt diseases and abiotic stress. Creating synthetic allotetraploid cotton from these two species would lay the foundation for simultaneously transferring favorable genes into cultivated tetraploid cotton. Here, we crossed G. herbaceum (as the maternal parent) with G. australe to produce an F1 interspecific hybrid and doubled its chromosome complement with colchicine, successfully generating a synthetic tetraploid. The obtained tetraploid was confirmed by morphology, cytology and molecular markers and then self-pollinated. The S1 seedlings derived from this tetraploid gradually became flavescent after emergence of the fifth true leaf, but they were rescued by grafting and produced S2 seeds. The rescued S1 plants were partially fertile due to the existence of univalents at Metaphase I of meiosis, leading to the formation of unbalanced, nonviable gametes lacking complete sets of chromosomes. The S2 plants grew well and no flavescence was observed, implying that interspecific incompatibility, to some extent, had been alleviated in the S2 generation. The synthetic allotetraploid will be quite useful for polyploidy evolutionary studies and as a bridge for transferring favorable genes from these two diploid species into Upland cotton through hybridization. PMID:25879660

  12. A new synthetic allotetraploid (A1A1G2G2) between Gossypium herbaceum and G. australe: bridging for simultaneously transferring favorable genes from these two diploid species into upland cotton.

    PubMed

    Liu, Quan; Chen, Yu; Chen, Yu; Wang, Yingying; Chen, Jinjin; Zhang, Tianzhen; Zhou, Baoliang

    2015-01-01

    Gossypium herbaceum, a cultivated diploid cotton species (2n = 2x = 26, A1A1), has favorable traits such as excellent drought tolerance and resistance to sucking insects and leaf curl virus. G. australe, a wild diploid cotton species (2n = 2x = 26, G2G2), possesses numerous economically valuable characteristics such as delayed pigment gland morphogenesis (which is conducive to the production of seeds with very low levels of gossypol as a potential food source for humans and animals) and resistance to insects, wilt diseases and abiotic stress. Creating synthetic allotetraploid cotton from these two species would lay the foundation for simultaneously transferring favorable genes into cultivated tetraploid cotton. Here, we crossed G. herbaceum (as the maternal parent) with G. australe to produce an F1 interspecific hybrid and doubled its chromosome complement with colchicine, successfully generating a synthetic tetraploid. The obtained tetraploid was confirmed by morphology, cytology and molecular markers and then self-pollinated. The S1 seedlings derived from this tetraploid gradually became flavescent after emergence of the fifth true leaf, but they were rescued by grafting and produced S2 seeds. The rescued S1 plants were partially fertile due to the existence of univalents at Metaphase I of meiosis, leading to the formation of unbalanced, nonviable gametes lacking complete sets of chromosomes. The S2 plants grew well and no flavescence was observed, implying that interspecific incompatibility, to some extent, had been alleviated in the S2 generation. The synthetic allotetraploid will be quite useful for polyploidy evolutionary studies and as a bridge for transferring favorable genes from these two diploid species into Upland cotton through hybridization.

  13. Amino acid regulation of gene expression.

    PubMed Central

    Fafournoux, P; Bruhat, A; Jousse, C

    2000-01-01

    The impact of nutrients on gene expression in mammals has become an important area of research. Nevertheless, the current understanding of the amino acid-dependent control of gene expression is limited. Because amino acids have multiple and important functions, their homoeostasis has to be finely maintained. However, amino-acidaemia can be affected by certain nutritional conditions or various forms of stress. It follows that mammals have to adjust several of their physiological functions involved in the adaptation to amino acid availability by regulating the expression of numerous genes. The aim of the present review is to examine the role of amino acids in regulating mammalian gene expression and protein turnover. It has been reported that some genes involved in the control of growth or amino acid metabolism are regulated by amino acid availability. For instance, limitation of several amino acids greatly increases the expression of the genes encoding insulin-like growth factor binding protein-1, CHOP (C/EBP homologous protein, where C/EBP is CCAAT/enhancer binding protein) and asparagine synthetase. Elevated mRNA levels result from both an increase in the rate of transcription and an increase in mRNA stability. Several observations suggest that the amino acid regulation of gene expression observed in mammalian cells and the general control process described in yeast share common features. Moreover, amino acid response elements have been characterized in the promoters of the CHOP and asparagine synthetase genes. Taken together, the results discussed in the present review demonstrate that amino acids, by themselves, can, in concert with hormones, play an important role in the control of gene expression. PMID:10998343

  14. Developmental regulation of embryonic genes in plants

    SciTech Connect

    Borkird, C.; Choi, Jung, H.; Jin, Zhenghua; Franz, G.; Hatzopoulos, P.; Chorneaus, R.; Bonas, U.; Pelegri, F.; Sung, Z.R.

    1988-09-01

    Somatic embryogenesis from cultured carrot cells progresses through successive morphogenetic stages termed globular, heart, and torpedo. To understand the molecular mechanisms underlying plant embryogenesis, the authors isolated two genes differentially expressed during embryo development. The expression of these two genes is associated with heart-stage embryogenesis. By altering the culture conditions and examining their expressions in a developmental variant cell line, they found that these genes were controlled by the developmental program of embryogenesis and were not directly regulated by 2,4-dichlorophenoxyacetic acid, the growth regulator that promotes unorganized growth of cultured cells and suppresses embryo morphogenesis. These genes are also expressed in carrot zygotic embryos but not in seedlings or mature plants.

  15. Multifactorial Regulation of a Hox Target Gene

    PubMed Central

    Stöbe, Petra; Stein, Sokrates M. A.; Habring-Müller, Anette; Bezdan, Daniela; Fuchs, Aurelia L.; Hueber, Stefanie D.; Wu, Haijia; Lohmann, Ingrid

    2009-01-01

    Hox proteins play fundamental roles in controlling morphogenetic diversity along the anterior–posterior body axis of animals by regulating distinct sets of target genes. Within their rather broad expression domains, individual Hox proteins control cell diversification and pattern formation and consequently target gene expression in a highly localized manner, sometimes even only in a single cell. To achieve this high-regulatory specificity, it has been postulated that Hox proteins co-operate with other transcription factors to activate or repress their target genes in a highly context-specific manner in vivo. However, only a few of these factors have been identified. Here, we analyze the regulation of the cell death gene reaper (rpr) by the Hox protein Deformed (Dfd) and suggest that local activation of rpr expression in the anterior part of the maxillary segment is achieved through a combinatorial interaction of Dfd with at least eight functionally diverse transcriptional regulators on a minimal enhancer. It follows that context-dependent combinations of Hox proteins and other transcription factors on small, modular Hox response elements (HREs) could be responsible for the proper spatio-temporal expression of Hox targets. Thus, a large number of transcription factors are likely to be directly involved in Hox target gene regulation in vivo. PMID:19282966

  16. Posttranscriptional Regulation of the Neurofibromatosis 2 Gene

    DTIC Science & Technology

    2006-07-01

    Wu, and D.B. Welling. 2003. Transcriptional Regulation of the Human Neurofibromatosis 2 (NF2) Gene. Pediatric Academic Societies’ Meeting, Seattle... Pediatric Academic Societies’ Meeting, Seattle, WA. (3) Welling, D.B., J.M. Lasak, E.M. Akhmametyeva, B.A. Neff, and L.-S. Chang. 2003. Analysis of...Expression of the Neurofibromatosis 2 Gene during Early Development. Pediatric Academic Societies’ Meeting, San Francisco, CA. (7) Welling, D.B., BA

  17. Harman induces CYP1A1 enzyme through an aryl hydrocarbon receptor mechanism

    SciTech Connect

    El Gendy, Mohamed A.M.; El-Kadi, Ayman O.S.

    2010-11-15

    Harman is a common compound in several foods, plants and beverages. Numerous studies have demonstrated its mutagenic, co-mutagenic and carcinogenic effects; however, the exact mechanism has not been fully identified. Aryl hydrocarbon receptor (AhR) is a transcription factor regulating the expression of the carcinogen-activating enzyme; cytochrome P450 1A1 (CYP1A1). In the present study, we examined the ability of harman to induce AhR-mediated signal transduction in human and rat hepatoma cells; HepG2 and H4IIE cells. Our results showed that harman significantly induced CYP1A1 mRNA in a time- and concentration-dependent manner. Similarly, harman significantly induced CYP1A1 at protein and activity levels in a concentration-dependent manner. Moreover, the AhR antagonist, resveratrol, inhibited the increase in CYP1A1 activity by harman. The RNA polymerase inhibitor, actinomycin D, completely abolished the CYP1A1 mRNA induction by harman, indicating a transcriptional activation. The role of AhR in CYP1A1 induction by harman was confirmed by using siRNA specific for human AhR. The ability of harman to induce CYP1A1 was strongly correlated with its ability to stimulate AhR-dependent luciferase activity and electrophoretic mobility shift assay. At post-transcriptional and post-translational levels, harman did not affect the stability of CYP1A1 at the mRNA and the protein levels, excluding other mechanisms participating in the obtained effects. We concluded that harman can directly induce CYP1A1 gene expression in an AhR-dependent manner and may represent a novel mechanism by which harman promotes mutagenicity, co-mutagenicity and carcinogenicity.

  18. Epigenetic regulation of gene responsiveness in Arabidopsis

    PubMed Central

    To, Taiko K.; Kim, Jong Myong

    2014-01-01

    The regulation of chromatin structure is inevitable for proper transcriptional response in eukaryotes. Recent reports in Arabidopsis have suggested that gene responsiveness is modulated by particular chromatin status. One such feature is H2A.Z, a histone variant conserved among eukaryotes. In Arabidopsis, H2A.Z is enriched within gene bodies of transcriptionally variable genes, which is in contrast to genic DNA methylation found within constitutive genes. In the absence of H2A.Z, the genes normally harboring H2A.Z within gene bodies are transcriptionally misregulated, while DNA methylation is unaffected. Therefore, H2A.Z may promote variability of gene expression without affecting genic DNA methylation. Another epigenetic information that could be important for gene responsiveness is trimethylation of histone H3 lysine 4 (H3K4me3). The level of H3K4me3 increases when stress responsive genes are transcriptionally activated, and it decreases after recovery from the stress. Even after the recovery, however, H3K4me3 is kept at some atypical levels, suggesting possible role of H3K4me3 for a stress memory. In this review, we summarize and discuss the growing evidences connecting chromatin features and gene responsiveness. PMID:24432027

  19. The TRANSFAC system on gene expression regulation.

    PubMed

    Wingender, E; Chen, X; Fricke, E; Geffers, R; Hehl, R; Liebich, I; Krull, M; Matys, V; Michael, H; Ohnhäuser, R; Prüss, M; Schacherer, F; Thiele, S; Urbach, S

    2001-01-01

    The TRANSFAC database on transcription factors and their DNA-binding sites and profiles (http://www.gene-regulation.de/) has been quantitatively extended and supplemented by a number of modules. These modules give information about pathologically relevant mutations in regulatory regions and transcription factor genes (PathoDB), scaffold/matrix attached regions (S/MARt DB), signal transduction (TRANSPATH) and gene expression sources (CYTOMER). Altogether, these distinct database modules constitute the TRANSFAC system. They are accompanied by a number of program routines for identifying potential transcription factor binding sites or for localizing individual components in the regulatory network of a cell.

  20. Analysis of genomic DNA of DcACS1, a 1-aminocyclopropane-1-carboxylate synthase gene, expressed in senescing petals of carnation (Dianthus caryophyllus) and its orthologous genes in D. superbus var. longicalycinus.

    PubMed

    Harada, Taro; Murakoshi, Yuino; Torii, Yuka; Tanase, Koji; Onozaki, Takashi; Morita, Shigeto; Masumura, Takehiro; Satoh, Shigeru

    2011-04-01

    Carnation (Dianthus caryophyllus) flowers exhibit climacteric ethylene production followed by petal wilting, a senescence symptom. DcACS1, which encodes 1-aminocyclopropane-1-carboxylate synthase (ACS), is a gene involved in this phenomenon. We determined the genomic DNA structure of DcACS1 by genomic PCR. In the genome of 'Light Pink Barbara', we found two distinct nucleotide sequences: one corresponding to the gene previously shown as DcACS1, designated here as DcACS1a, and the other novel one designated as DcACS1b. It was revealed that both DcACS1a and DcACS1b have five exons and four introns. These two genes had almost identical nucleotide sequences in exons, but not in some introns and 3'-UTR. Analysis of transcript accumulation revealed that DcACS1b is expressed in senescing petals as well as DcACS1a. Genomic PCR analysis of 32 carnation cultivars showed that most cultivars have only DcACS1a and some have both DcACS1a and DcACS1b. Moreover, we found two DcACS1 orthologous genes with different nucleotide sequences from D. superbus var. longicalycinus, and designated them as DsuACS1a and DsuACS1b. Petals of D. superbus var. longicalycinus produced ethylene in response to exogenous ethylene, accompanying accumulation of DsuACS1 transcripts. These data suggest that climacteric ethylene production in flowers was genetically established before the cultivation of carnation.

  1. Lifespan-regulating genes in C. elegans

    PubMed Central

    Uno, Masaharu; Nishida, Eisuke

    2016-01-01

    The molecular mechanisms underlying the aging process have garnered much attention in recent decades because aging is the most significant risk factor for many chronic diseases such as type 2 diabetes and cancer. Until recently, the aging process was not considered to be an actively regulated process; therefore, discovering that the insulin/insulin-like growth factor-1 signaling pathway is a lifespan-regulating genetic pathway in Caenorhabditis elegans was a major breakthrough that changed our understanding of the aging process. Currently, it is thought that animal lifespans are influenced by genetic and environmental factors. The genes involved in lifespan regulation are often associated with major signaling pathways that link the rate of aging to environmental factors. Although many of the major mechanisms governing the aging process have been identified from studies in short-lived model organisms such as yeasts, worms and flies, the same mechanisms are frequently observed in mammals, indicating that the genes and signaling pathways that regulate lifespan are highly conserved among different species. This review summarizes the lifespan-regulating genes, with a specific focus on studies in C. elegans. PMID:28721266

  2. Suppressive effects of caraway (Carum carvi) extracts on 2, 3, 7, 8-tetrachloro-dibenzo-p-dioxin-dependent gene expression of cytochrome P450 1A1 in the rat H4IIE cells.

    PubMed

    Naderi-Kalali, B; Allameh, A; Rasaee, M J; Bach, H-J; Behechti, A; Doods, K; Kettrup, A; Schramm, K-W

    2005-04-01

    Cytochrome P450 1A1 (CYP1A1) is among the cytochrome P450 classes known to convert xenobiotics and endogenous compounds to toxic and/or carcinogenic metabolites. Suppression of CYP1A1 over expression by certain compounds is implicated in prevention of cancer caused by chemical carcinogens. Chemopreventive agents containing high levels of flavonoids and steroids-like compounds are known to suppress CYP1A1. This study was carried out for assessment of the genomic and proteomic effects of caraway (Carum carvi) extracts containing high levels of both flavonoids and steroid-like substances on ethoxy resorufin dealkylation (EROD) activity and CYP1A1 at mRNA levels. Rat hepatoma cells co-treated with a CYP1A1 inducer i.e. TCDD (2, 3, 7, 8-tetrachlorodibenzo-p-dioxin) and different preparations of caraway extracts at concentrations of 0, 0.13, 1.3, and 13 microM in culture medium. After incubation (37 degrees C and 7% CO2 for 20 h), changes in EROD specific activity recorded and compared in cells under different treatments. The results show that caraway seed extract prepared in three different organic solvents suppressed the enzyme activity in hepatoma cells in a dose-dependent manner. The extracts added above 0.13 microM could significantly inhibit EROD activity and higher levels of each extract (1.3 and 13 microM) caused approximately 10-fold suppression in the enzyme activity. Accordingly, data obtained from the RT-PCR (TaqMan) clearly showed the suppressive effects of plant extract on CYP1A1-related mRNA expression. These data clearly show that substances in caraway seeds extractable in organic solvents can potentially reverse the TCDD-dependent induction in cytochrome P450 1A1.

  3. GENE REGULATION BY MAPK SUBSTRATE COMPETITION

    PubMed Central

    Kim, Yoosik; Andreu, María José; Lim, Bomyi; Chung, Kwanghun; Terayama, Mark; Jiménez, Gerardo; Berg, Celeste A.; Lu, Hang; Shvartsman, Stanislav Y.

    2011-01-01

    SUMMARY Developing tissues are patterned by coordinated activities of signaling systems, which can be integrated by a regulatory region of a gene that binds multiple transcription factors or by a transcription factor that is modified by multiple enzymes. Based on a combination of genetic and imaging experiments in the early Drosophila embryo, we describe a signal integration mechanism that cannot be reduced to a single gene regulatory element or a single transcription factor. This mechanism relies on an enzymatic network formed by Mitogen Activated Protein Kinase (MAPK) and its substrates. Specifically, anteriorly localized MAPK substrates, such as Bicoid, antagonize MAPK-dependent downregulation of Capicua, a repressor which is involved in gene regulation along the dorsoventral axis of the embryo. MAPK substrate competition provides a basis for ternary interaction of the anterior, dorsoventral, and terminal patterning systems. A mathematical model of this interaction can explain gene expression patterns with both anteroposterior and dorsoventral polarities. PMID:21664584

  4. Chemically regulated gene expression in plants.

    PubMed

    Padidam, Malla

    2003-04-01

    Chemically inducible systems that activate or inactivate gene expression have many potential applications in the determination of gene function and in plant biotechnology. The precise timing and control of gene expression are important aspects of chemically inducible systems. Several systems have been developed and used to analyze gene function, marker-free plant transformation, site-specific DNA excision, activation tagging, conditional genetic complementation, and restoration of male fertility. Chemicals that are used to regulate transgene expression include the antibiotic tetracycline, the steroids dexamethasone and estradiol, copper, ethanol, the inducer of pathogen-related proteins benzothiadiazol, herbicide safeners, and the insecticide methoxyfenozide. Systems that are suitable for field application are particularly useful for experimental systems and have potential applications in biotechnology.

  5. Regulation of Gene Expression in Protozoa Parasites

    PubMed Central

    Gomez, Consuelo; Esther Ramirez, M.; Calixto-Galvez, Mercedes; Medel, Olivia; Rodríguez, Mario A.

    2010-01-01

    Infections with protozoa parasites are associated with high burdens of morbidity and mortality across the developing world. Despite extensive efforts to control the transmission of these parasites, the spread of populations resistant to drugs and the lack of effective vaccines against them contribute to their persistence as major public health problems. Parasites should perform a strict control on the expression of genes involved in their pathogenicity, differentiation, immune evasion, or drug resistance, and the comprehension of the mechanisms implicated in that control could help to develop novel therapeutic strategies. However, until now these mechanisms are poorly understood in protozoa. Recent investigations into gene expression in protozoa parasites suggest that they possess many of the canonical machineries employed by higher eukaryotes for the control of gene expression at transcriptional, posttranscriptional, and epigenetic levels, but they also contain exclusive mechanisms. Here, we review the current understanding about the regulation of gene expression in Plasmodium sp., Trypanosomatids, Entamoeba histolytica and Trichomonas vaginalis. PMID:20204171

  6. Transposable element origins of epigenetic gene regulation.

    PubMed

    Lisch, Damon; Bennetzen, Jeffrey L

    2011-04-01

    Transposable elements (TEs) are massively abundant and unstable in all plant genomes, but are mostly silent because of epigenetic suppression. Because all known epigenetic pathways act on all TEs, it is likely that the specialized epigenetic regulation of regular host genes (RHGs) was co-opted from this ubiquitous need for the silencing of TEs and viruses. With their internally repetitive and rearranging structures, and the acquisition of fragments of RHGs, the expression of TEs commonly makes antisense RNAs for both TE genes and RHGs. These antisense RNAs, particularly from heterochromatic reservoirs of 'zombie' TEs that are rearranged to form variously internally repetitive structures, may be advantageous because their induction will help rapidly suppress active TEs of the same family. RHG fragments within rapidly rearranging TEs may also provide the raw material for the ongoing generation of miRNA genes. TE gene expression is regulated by both environmental and developmental signals, and insertions can place nearby RHGs under the regulation (both standard and epigenetic) of the TE. The ubiquity of TEs, their frequent preferential association with RHGs, and their ability to be programmed by epigenetic signals all indicate that RGHs have nearly unlimited access to novel regulatory cassettes to assist plant adaptation.

  7. Gene expression regulation in roots under drought.

    PubMed

    Janiak, Agnieszka; Kwaśniewski, Mirosław; Szarejko, Iwona

    2016-02-01

    Stress signalling and regulatory networks controlling expression of target genes are the basis of plant response to drought. Roots are the first organs exposed to water deficiency in the soil and are the place of drought sensing. Signalling cascades transfer chemical signals toward the shoot and initiate molecular responses that lead to the biochemical and morphological changes that allow plants to be protected against water loss and to tolerate stress conditions. Here, we present an overview of signalling network and gene expression regulation pathways that are actively induced in roots under drought stress. In particular, the role of several transcription factor (TF) families, including DREB, AP2/ERF, NAC, bZIP, MYC, CAMTA, Alfin-like and Q-type ZFP, in the regulation of root response to drought are highlighted. The information provided includes available data on mutual interactions between these TFs together with their regulation by plant hormones and other signalling molecules. The most significant downstream target genes and molecular processes that are controlled by the regulatory factors are given. These data are also coupled with information about the influence of the described regulatory networks on root traits and root development which may translate to enhanced drought tolerance. This is the first literature survey demonstrating the gene expression regulatory machinery that is induced by drought stress, presented from the perspective of roots.

  8. Regulation of Airway Mucin Gene Expression

    PubMed Central

    Thai, Philip; Loukoianov, Artem; Wachi, Shinichiro; Wu, Reen

    2015-01-01

    Mucins are important components that exert a variety of functions in cell-cell interaction, epidermal growth factor receptor signaling, and airways protection. In the conducting airways of the lungs, mucins are the major contributor to the viscoelastic property of mucous secretion, which is the major barrier to trapping inhaled microbial organism, particulates, and oxidative pollutants. The homeostasis of mucin production is an important feature in conducting airways for the maintenance of mucociliary function. Aberrant mucin secretion and accumulation in airway lumen are clinical hallmarks associated with various lung diseases, such as asthma, chronic obstructive pulmonary disease, cystic fibrosis, emphysema, and lung cancer. Among 20 known mucin genes identified, 11 of them have been verified at either the mRNA and/or protein level in airways. The regulation of mucin genes is complicated, as are the mediators and signaling pathways. This review summarizes the current view on the mediators, the signaling pathways, and the transcriptional units that are involved in the regulation of airway mucin gene expression. In addition, we also point out essential features of epigenetic mechanisms for the regulation of these genes. PMID:17961085

  9. IBD Candidate Genes and Intestinal Barrier Regulation

    PubMed Central

    McCole, Declan F.

    2015-01-01

    Technological advances in the large scale analysis of human genetics have generated profound insights into possible genetic contributions to chronic diseases including the inflammatory bowel diseases (IBDs), Crohn’s disease and ulcerative colitis. To date, 163 distinct genetic risk loci have been associated with either Crohn’s disease or ulcerative colitis, with a substantial degree of genetic overlap between these 2 conditions. Although many risk variants show a reproducible correlation with disease, individual gene associations only affect a subset of patients, and the functional contribution(s) of these risk variants to the onset of IBD is largely undetermined. Although studies in twins have demonstrated that the development of IBD is not mediated solely by genetic risk, it is nevertheless important to elucidate the functional consequences of risk variants for gene function in relevant cell types known to regulate key physiological processes that are compromised in IBD. This article will discuss IBD candidate genes that are known to be, or are suspected of being, involved in regulating the intestinal epithelial barrier and several of the physiological processes presided over by this dynamic and versatile layer of cells. This will include assembly and regulation of tight junctions, cell adhesion and polarity, mucus and glycoprotein regulation, bacterial sensing, membrane transport, epithelial differentiation, and restitution. PMID:25215613

  10. Linker histones in hormonal gene regulation.

    PubMed

    Vicent, G P; Wright, R H G; Beato, M

    2016-03-01

    In the present review, we summarize advances in our knowledge on the role of the histone H1 family of proteins in breast cancer cells, focusing on their response to progestins. Histone H1 plays a dual role in gene regulation by hormones, both as a structural component of chromatin and as a dynamic modulator of transcription. It contributes to hormonal regulation of the MMTV promoter by stabilizing a homogeneous nucleosome positioning, which reduces basal transcription whereas at the same time promoting progesterone receptor binding and nucleosome remodeling. These combined effects enhance hormone dependent gene transcription, which eventually requires H1 phosphorylation and displacement. Various isoforms of histone H1 have specific functions in differentiated breast cancer cells and compact nucleosomal arrays to different extents in vitro. Genome-wide studies show that histone H1 has a key role in chromatin dynamics of hormone regulated genes. A complex sequence of enzymatic events, including phosphorylation by CDK2, PARylation by PARP1 and the ATP-dependent activity of NURF, are required for H1 displacement and gene de-repression, as a prerequisite for further nucleosome remodeling. Similarly, during hormone-dependent gene repression a dedicated enzymatic mechanism controls H1 deposition at promoters by a complex containing HP1γ, LSD1 and BRG1, the ATPase of the BAF complex. Thus, a broader vision of the histone code should include histone H1, as the linker histone variants actively participate in the regulation of the chromatin structure. How modifications of the core histones tails affect H1 modifications and vice versa is one of the many questions that remains to be addressed to provide a more comprehensive view of the histone cross-talk mechanisms.

  11. Gene regulation and speciation in house mice

    PubMed Central

    Mack, Katya L.; Campbell, Polly; Nachman, Michael W.

    2016-01-01

    One approach to understanding the process of speciation is to characterize the genetic architecture of post-zygotic isolation. As gene regulation requires interactions between loci, negative epistatic interactions between divergent regulatory elements might underlie hybrid incompatibilities and contribute to reproductive isolation. Here, we take advantage of a cross between house mouse subspecies, where hybrid dysfunction is largely unidirectional, to test several key predictions about regulatory divergence and reproductive isolation. Regulatory divergence between Mus musculus musculus and M. m. domesticus was characterized by studying allele-specific expression in fertile hybrid males using mRNA-sequencing of whole testes. We found extensive regulatory divergence between M. m. musculus and M. m. domesticus, largely attributable to cis-regulatory changes. When both cis and trans changes occurred, they were observed in opposition much more often than expected under a neutral model, providing strong evidence of widespread compensatory evolution. We also found evidence for lineage-specific positive selection on a subset of genes related to transcriptional regulation. Comparisons of fertile and sterile hybrid males identified a set of genes that were uniquely misexpressed in sterile individuals. Lastly, we discovered a nonrandom association between these genes and genes showing evidence of compensatory evolution, consistent with the idea that regulatory interactions might contribute to Dobzhansky-Muller incompatibilities and be important in speciation. PMID:26833790

  12. Metabolic regulation and gene expression during aestivation.

    PubMed

    Storey, Kenneth B; Storey, Janet M

    2010-01-01

    The biochemical regulation of aestivation, a state of aerobic hypometabolism, achieves actions including strong overall suppression of metabolic rate, reprioritization of energy use by diverse cell functions, and enhancement of defenses such as protein chaperones and antioxidants that aid long-term life extension. This is accomplished by mechanisms that include differential action of intracellular signaling cascades, reversible protein phosphorylation to alter the activity states of multiple enzymes and functional proteins, global suppression of transcription and translation, and selective gene upregulation. Recent advances in understanding the regulation of aestivation are discussed with a particular emphasis on land snail and anuran models.

  13. Gene Expression in Leishmania Is Regulated Predominantly by Gene Dosage.

    PubMed

    Iantorno, Stefano A; Durrant, Caroline; Khan, Asis; Sanders, Mandy J; Beverley, Stephen M; Warren, Wesley C; Berriman, Matthew; Sacks, David L; Cotton, James A; Grigg, Michael E

    2017-09-12

    Leishmania tropica, a unicellular eukaryotic parasite present in North and East Africa, the Middle East, and the Indian subcontinent, has been linked to large outbreaks of cutaneous leishmaniasis in displaced populations in Iraq, Jordan, and Syria. Here, we report the genome sequence of this pathogen and 7,863 identified protein-coding genes, and we show that the majority of clinical isolates possess high levels of allelic diversity, genetic admixture, heterozygosity, and extensive aneuploidy. By utilizing paired genome-wide high-throughput DNA sequencing (DNA-seq) with RNA-seq, we found that gene dosage, at the level of individual genes or chromosomal "somy" (a general term covering disomy, trisomy, tetrasomy, etc.), accounted for greater than 85% of total gene expression variation in genes with a 2-fold or greater change in expression. High gene copy number variation (CNV) among membrane-bound transporters, a class of proteins previously implicated in drug resistance, was found for the most highly differentially expressed genes. Our results suggest that gene dosage is an adaptive trait that confers phenotypic plasticity among natural Leishmania populations by rapid down- or upregulation of transporter proteins to limit the effects of environmental stresses, such as drug selection.IMPORTANCELeishmania is a genus of unicellular eukaryotic parasites that is responsible for a spectrum of human diseases that range from cutaneous leishmaniasis (CL) and mucocutaneous leishmaniasis (MCL) to life-threatening visceral leishmaniasis (VL). Developmental and strain-specific gene expression is largely thought to be due to mRNA message stability or posttranscriptional regulatory networks for this species, whose genome is organized into polycistronic gene clusters in the absence of promoter-mediated regulation of transcription initiation of nuclear genes. Genetic hybridization has been demonstrated to yield dramatic structural genomic variation, but whether such changes in gene

  14. Regulation of methane genes and genome expression

    SciTech Connect

    John N. Reeve

    2009-09-09

    At the start of this project, it was known that methanogens were Archaeabacteria (now Archaea) and were therefore predicted to have gene expression and regulatory systems different from Bacteria, but few of the molecular biology details were established. The goals were then to establish the structures and organizations of genes in methanogens, and to develop the genetic technologies needed to investigate and dissect methanogen gene expression and regulation in vivo. By cloning and sequencing, we established the gene and operon structures of all of the “methane” genes that encode the enzymes that catalyze methane biosynthesis from carbon dioxide and hydrogen. This work identified unique sequences in the methane gene that we designated mcrA, that encodes the largest subunit of methyl-coenzyme M reductase, that could be used to identify methanogen DNA and establish methanogen phylogenetic relationships. McrA sequences are now the accepted standard and used extensively as hybridization probes to identify and quantify methanogens in environmental research. With the methane genes in hand, we used northern blot and then later whole-genome microarray hybridization analyses to establish how growth phase and substrate availability regulated methane gene expression in Methanobacterium thermautotrophicus ΔH (now Methanothermobacter thermautotrophicus). Isoenzymes or pairs of functionally equivalent enzymes catalyze several steps in the hydrogen-dependent reduction of carbon dioxide to methane. We established that hydrogen availability determine which of these pairs of methane genes is expressed and therefore which of the alternative enzymes is employed to catalyze methane biosynthesis under different environmental conditions. As were unable to establish a reliable genetic system for M. thermautotrophicus, we developed in vitro transcription as an alternative system to investigate methanogen gene expression and regulation. This led to the discovery that an archaeal protein

  15. The population genetics of cooperative gene regulation

    PubMed Central

    2012-01-01

    Background Changes in gene regulatory networks drive the evolution of phenotypic diversity both within and between species. Rewiring of transcriptional networks is achieved either by changes to transcription factor binding sites or by changes to the physical interactions among transcription factor proteins. It has been suggested that the evolution of cooperative binding among factors can facilitate the adaptive rewiring of a regulatory network. Results We use a population-genetic model to explore when cooperative binding of transcription factors is favored by evolution, and what effects cooperativity then has on the adaptive re-writing of regulatory networks. We consider a pair of transcription factors that regulate multiple targets and overlap in the sets of target genes they regulate. We show that, under stabilising selection, cooperative binding between the transcription factors is favoured provided the amount of overlap between their target genes exceeds a threshold. The value of this threshold depends on several population-genetic factors: strength of selection on binding sites, cost of pleiotropy associated with protein-protein interactions, rates of mutation and population size. Once it is established, we find that cooperative binding of transcription factors significantly accelerates the adaptive rewiring of transcriptional networks under positive selection. We compare our qualitative predictions to systematic data on Saccharomyces cerevisiae transcription factors, their binding sites, and their protein-protein interactions. Conclusions Our study reveals a rich set of evolutionary dynamics driven by a tradeoff between the beneficial effects of cooperative binding at targets shared by a pair of factors, and the detrimental effects of cooperative binding for non-shared targets. We find that cooperative regulation will evolve when transcription factors share a sufficient proportion of their target genes. These findings help to explain empirical pattens in

  16. Gene regulation by phosphate in enteric bacteria.

    PubMed

    Wanner, B L

    1993-01-01

    The Escherichia coli phosphate (PHO) regulon includes 31 (or more) genes arranged in eight separate operons. All are coregulated by environmental (extra-cellular) phosphate and are probably involved in phosphorus assimilation. Pi control of these genes requires the sensor PhoR, the response regulator PhoB, the binding protein-dependent Pi-specific transporter Pst, and the accessory protein PhoU. During Pi limitation, PhoR turns on genes of the PHO regulon by phosphorylating PhoB that in turn activates transcription by binding to promoters that share an 18-base consensus PHO Box. When Pi is in excess, PhoR, Pst, and PhoU together turn off the PHO regulon, presumably by dephosphorylating PhoB. In addition, two Pi-independent controls that may be forms of cross regulation turn on the PHO regulon in the absence of PhoR. The sensor CreC, formerly called PhoM, phosphorylates PhoB in response to some (unknown) catabolite, while acetyl phosphate may directly phosphorylate PhoB. Cross regulation of the PHO regulon by CreC and acetyl phosphate may be examples of underlying control mechanisms important for the general (global) control of cell growth and metabolism.

  17. Regulation of gene expression in human tendinopathy

    PubMed Central

    2011-01-01

    Background Chronic tendon injuries, also known as tendinopathies, are common among professional and recreational athletes. These injuries result in a significant amount of morbidity and health care expenditure, yet little is known about the molecular mechanisms leading to tendinopathy. Methods We have used histological evaluation and molecular profiling to determine gene expression changes in 23 human patients undergoing surgical procedures for the treatment of chronic tendinopathy. Results Diseased tendons exhibit altered extracellular matrix, fiber disorientation, increased cellular content and vasculature, and the absence of inflammatory cells. Global gene expression profiling identified 983 transcripts with significantly different expression patterns in the diseased tendons. Global pathway analysis further suggested altered expression of extracellular matrix proteins and the lack of an appreciable inflammatory response. Conclusions Identification of the pathways and genes that are differentially regulated in tendinopathy samples will contribute to our understanding of the disease and the development of novel therapeutics. PMID:21539748

  18. Gene therapy on demand: site specific regulation of gene therapy.

    PubMed

    Jazwa, Agnieszka; Florczyk, Urszula; Jozkowicz, Alicja; Dulak, Jozef

    2013-08-10

    Since 1990 when the first clinical gene therapy trial was conducted, much attention and considerable promise have been given to this form of treatment. Gene therapy has been used with success in patients suffering from severe combined immunodeficiency syndromes (X-SCID and ADA-deficiency), Leber's congenital amaurosis, hemophilia, β-thalassemia and adrenoleukodystrophy. Last year, the first therapeutic vector (Glybera) for treatment of lipoprotein lipase deficiency has been registered in the European Union. Nevertheless, there are still several numerous issues that need to be improved to make this technique more safe, effective and easily accessible for patients. Introduction of the therapeutic gene to the given cells should provide the level of expression which will restore the production of therapeutic protein to normal values or will provide therapeutic efficacy despite not fully physiological expression. However, in numerous diseases the expression of therapeutic genes has to be kept at certain level for some time, and then might be required to be switched off to be activated again when worsening of the symptoms may aggravate the risk of disease relapse. In such cases the promoters which are regulated by local conditions may be more required. In this article the special emphasis is to discuss the strategies of regulation of gene expression by endogenous stimuli. Particularly, the hypoxia- or miRNA-regulated vectors offer the possibilities of tight but, at the same time, condition-dependent and cell-specific expression. Such means have been already tested in certain pathophysiological conditions. This creates the chance for the translational approaches required for development of effective treatments of so far incurable diseases.

  19. Gene regulation in parthenocarpic tomato fruit

    PubMed Central

    Martinelli, Federico; Uratsu, Sandra L.; Reagan, Russell L.; Chen, Ying; Tricoli, David; Fiehn, Oliver; Rocke, David M.; Gasser, Charles S.; Dandekar, Abhaya M.

    2009-01-01

    Parthenocarpy is potentially a desirable trait for many commercially grown fruits if undesirable changes to structure, flavour, or nutrition can be avoided. Parthenocarpic transgenic tomato plants (cv MicroTom) were obtained by the regulation of genes for auxin synthesis (iaaM) or responsiveness (rolB) driven by DefH9 or the INNER NO OUTER (INO) promoter from Arabidopsis thaliana. Fruits at a breaker stage were analysed at a transcriptomic and metabolomic level using microarrays, real-time reverse transcription-polymerase chain reaction (RT-PCR) and a Pegasus III TOF (time of flight) mass spectrometer. Although differences were observed in the shape of fully ripe fruits, no clear correlation could be made between the number of seeds, transgene, and fruit size. Expression of auxin synthesis or responsiveness genes by both of these promoters produced seedless parthenocarpic fruits. Eighty-three percent of the genes measured showed no significant differences in expression due to parthenocarpy. The remaining 17% with significant variation (P <0.05) (1748 genes) were studied by assigning a predicted function (when known) based on BLAST to the TAIR database. Among them several genes belong to cell wall, hormone metabolism and response (auxin in particular), and metabolism of sugars and lipids. Up-regulation of lipid transfer proteins and differential expression of several indole-3-acetic acid (IAA)- and ethylene-associated genes were observed in transgenic parthenocarpic fruits. Despite differences in several fatty acids, amino acids, and other metabolites, the fundamental metabolic profile remains unchanged. This work showed that parthenocarpy with ovule-specific alteration of auxin synthesis or response driven by the INO promoter could be effectively applied where such changes are commercially desirable. PMID:19700496

  20. Aldehyde dehydrogenase 1A1 in stem cells and cancer

    PubMed Central

    Tomita, Hiroyuki; Tanaka, Kaori; Tanaka, Takuji; Hara, Akira

    2016-01-01

    The human genome contains 19 putatively functional aldehyde dehydrogenase (ALDH) genes, which encode enzymes critical for detoxification of endogenous and exogenous aldehyde substrates through NAD(P)+-dependent oxidation. ALDH1 has three main isotypes, ALDH1A1, ALDH1A2, and ALDH1A3, and is a marker of normal tissue stem cells (SC) and cancer stem cells (CSC), where it is involved in self-renewal, differentiation and self-protection. Experiments with murine and human cells indicate that ALDH1 activity, predominantly attributed to isotype ALDH1A1, is tissue- and cancer-specific. High ALDH1 activity and ALDH1A1 overexpression are associated with poor cancer prognosis, though high ALDH1 and ALDH1A1 levels do not always correlate with highly malignant phenotypes and poor clinical outcome. In cancer therapy, ALDH1A1 provides a useful therapeutic CSC target in tissue types that normally do not express high levels of ALDH1A1, including breast, lung, esophagus, colon and stomach. Here we review the functions and mechanisms of ALDH1A1, the key ALDH isozyme linked to SC populations and an important contributor to CSC function in cancers, and we outline its potential in future anticancer strategies. PMID:26783961

  1. Structure and regulation of the envoplakin gene.

    PubMed

    Määttä, A; Ruhrberg, C; Watt, F M

    2000-06-30

    Envoplakin, a member of the plakin family of proteins, is a component of desmosomes and the epidermal cornified envelope. To understand how envoplakin expression is regulated, we have analyzed the structure of the mouse envoplakin gene and characterized the promoters of both the human and mouse genes. The mouse gene consists of 22 exons and maps to chromosome 11E1, syntenic to the location of the human gene on 17q25. The exon-intron structure of the mouse envoplakin gene is common to all members of the plakin family: the N-terminal protein domain is encoded by 21 small exons, and the central rod domain and the C-terminal globular domain are coded by a single large exon. The C terminus shows the highest sequence conservation between mouse and human envoplakins and between envoplakin and the other family members. The N terminus is also conserved, with sequence homology extending to Drosophila Kakapo. A region between nucleotides -101 and 288 was necessary for promoter activity in transiently transfected primary keratinocytes. This region is highly conserved between the human and mouse genes and contains at least two different positively acting elements identified by site-directed mutagenesis and electrophoretic mobility shift assays. Mutation of a GC box binding Sp1 and Sp3 proteins or a combined E box and Krüppel-like element interacting with unidentified nuclear proteins virtually abolished promoter activity. 600 base pairs of the mouse upstream sequence was sufficient to drive expression of a beta-galactosidase reporter gene in the suprabasal layers of epidermis, esophagus, and forestomach of transgenic mice. Thus, we have identified a regulatory region in the envoplakin gene that can account for the expression pattern of the endogenous protein in stratified squamous epithelia.

  2. Comparative Analysis of Gene Regulation by the Transcription Factor PPARα between Mouse and Human

    PubMed Central

    Rakhshandehroo, Maryam; Hooiveld, Guido; Müller, Michael; Kersten, Sander

    2009-01-01

    Background Studies in mice have shown that PPARα is an important regulator of hepatic lipid metabolism and the acute phase response. However, little information is available on the role of PPARα in human liver. Here we set out to compare the function of PPARα in mouse and human hepatocytes via analysis of target gene regulation. Methodology/Principal Findings Primary hepatocytes from 6 human and 6 mouse donors were treated with PPARα agonist Wy14643 and gene expression profiling was performed using Affymetrix GeneChips followed by a systems biology analysis. Baseline PPARα expression was similar in human and mouse hepatocytes. Depending on species and time of exposure, Wy14643 significantly induced the expression of 362–672 genes. Surprisingly minor overlap was observed between the Wy14643-regulated genes from mouse and human, although more substantial overlap was observed at the pathway level. Xenobiotics metabolism and apolipoprotein synthesis were specifically regulated by PPARα in human hepatocytes, whereas glycolysis-gluconeogenesis was regulated specifically in mouse hepatocytes. Most of the genes commonly regulated in mouse and human were involved in lipid metabolism and many represented known PPARα targets, including CPT1A, HMGCS2, FABP1, ACSL1, and ADFP. Several genes were identified that were specifically induced by PPARα in human (MBL2, ALAS1, CYP1A1, TSKU) or mouse (Fbp2, lgals4, Cd36, Ucp2, Pxmp4). Furthermore, several putative novel PPARα targets were identified that were commonly regulated in both species, including CREB3L3, KLF10, KLF11 and MAP3K8. Conclusions/Significance Our results suggest that PPARα activation has a major impact on gene regulation in human hepatocytes. Importantly, the role of PPARα as master regulator of hepatic lipid metabolism is generally well-conserved between mouse and human. Overall, however, PPARα regulates a mostly divergent set of genes in mouse and human hepatocytes. PMID:19710929

  3. Gene and genon concept: coding versus regulation

    PubMed Central

    2007-01-01

    We analyse here the definition of the gene in order to distinguish, on the basis of modern insight in molecular biology, what the gene is coding for, namely a specific polypeptide, and how its expression is realized and controlled. Before the coding role of the DNA was discovered, a gene was identified with a specific phenotypic trait, from Mendel through Morgan up to Benzer. Subsequently, however, molecular biologists ventured to define a gene at the level of the DNA sequence in terms of coding. As is becoming ever more evident, the relations between information stored at DNA level and functional products are very intricate, and the regulatory aspects are as important and essential as the information coding for products. This approach led, thus, to a conceptual hybrid that confused coding, regulation and functional aspects. In this essay, we develop a definition of the gene that once again starts from the functional aspect. A cellular function can be represented by a polypeptide or an RNA. In the case of the polypeptide, its biochemical identity is determined by the mRNA prior to translation, and that is where we locate the gene. The steps from specific, but possibly separated sequence fragments at DNA level to that final mRNA then can be analysed in terms of regulation. For that purpose, we coin the new term “genon”. In that manner, we can clearly separate product and regulative information while keeping the fundamental relation between coding and function without the need to introduce a conceptual hybrid. In mRNA, the program regulating the expression of a gene is superimposed onto and added to the coding sequence in cis - we call it the genon. The complementary external control of a given mRNA by trans-acting factors is incorporated in its transgenon. A consequence of this definition is that, in eukaryotes, the gene is, in most cases, not yet present at DNA level. Rather, it is assembled by RNA processing, including differential splicing, from various

  4. Relative effect potency estimates of dioxin-like activity for dioxins, furans, and dioxin-like PCBs in adults based on cytochrome P450 1A1 and 1B1 gene expression in blood.

    PubMed

    Wimmerová, Soňa; van den Berg, Martin; Chovancová, Jana; Patayová, Henrieta; Jusko, Todd A; van Duursen, Majorie B M; Palkovičová Murínová, Ľubica; Canton, Rocio F; van Ede, Karin I; Trnovec, Tomáš

    2016-11-01

    In the risk assessment of PCDDs, PCDFs, and dioxin-like (DL) PCBs, regulatory authorities support the use of the toxic equivalency factor (TEF)-scheme derived from a heterogeneous data set of the relative effect potency (REPs) estimates. We sought to determine REPs for dioxin-like compounds (DLCs) using expression of cytochrome P450 (CYP) 1A1 and 1B1 mRNA in human peripheral blood mononuclear cells representing two different pathways. We used a sex and age adjusted regression-based approach comparing the strength of association between each DLC and the cytochrome P450 (CYP) 1A1 and 1B1 mRNA expression in 320 adults residing in an organochlorine-polluted area of eastern Slovakia. We calculated REPs based on CYP1A1 expression for 4 PCDDs, 8 PCDFs, and 1 PCB congener, and based on CYP1B1 expression for 5 PCDFs and 11 PCB congeners. REPs from CYP1A1 correlated with REPs previously derived from thyroid volume (ρ=0.85; p<0.001) and serum FT4 (ρ=0.77; p=0.009). The 13 log REPs from CYP1A1 correlated with log WHO-TEFs (r=0.63; p=0.015) and 11 log PCB REPs with PCB consensus toxicity factors (CTFs) for compounds with WHO-TEFs (r=0.80; p=0.003). The complete set of derived 56 log REPs correlated with the log CTFs (r=0.77; p=0.001) and log WHO-TEFs (r=0.81; p<0.001). REPs calculated from thyroid and cytochrome P450 endpoints realistically reflect human exposure scenarios because they are based on human chronic and low-dose exposures. While the CYP 1A1 seems more suitable for toxicity evaluation of PCDD/Fs, the CYP 1B1 is more apt for PCDFs and PCBs and reflects different pathways. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Tetracycline-inducible gene regulation in mycobacteria

    PubMed Central

    Blokpoel, Marian C. J.; Murphy, Helen N.; O'Toole, Ronan; Wiles, Siouxsie; Runn, Ellen S. C.; Stewart, Graham R.; Young, Douglas B.; Robertson, Brian D.

    2005-01-01

    A system for the tetracycline-inducible regulation of gene expression in mycobacteria has been developed. We have sub-cloned the tetRO region from the Corynebacterium glutamicum TetZ locus into a mycobacterial shuttle plasmid, making expression of genes cloned downstream of tetRO responsive to tetracycline. Using the luxAB-encoded luciferase from Vibrio harveyi as a reporter (pMind-Lx), we observed a 40-fold increase in light output from Mycobacterium smegmatis cultures 2 h after adding 20 ng ml−1 of tetracycline. Similarly, exposure to the drug resulted in up to 20-fold increase in relative light units from M.bovis BCG carrying the reporter construct, and a 10-fold increase for M.tuberculosis. Tetracycline induction was demonstrated in log and stationary phase cultures. To evaluate whether this system is amenable to use in vivo, J774 macrophages were infected with M.bovis BCG[pMind-Lx], treated with amikacin to kill extracellular bacteria, and then incubated with tetracycline. A 10-fold increase in light output was measured after 24 h, indicating that intracellular bacteria are accessible and responsive to exogenously added tetracycline. To test the use of the tetracycline-inducible system for conditional gene silencing, mycobacteria were transformed with a pMind construct with tetRO driving expression of antisense RNA for the ftsZ gene. Bacterial cells containing the antisense construct formed filaments after 24 h exposure to tetracycline. These results demonstrate the potential of this tetracycline-regulated system for the manipulation of mycobacterial gene expression inside and outside cells. PMID:15687380

  6. Following the Footsteps of Chlamydial Gene Regulation

    PubMed Central

    Domman, D.; Horn, M.

    2015-01-01

    Regulation of gene expression ensures an organism responds to stimuli and undergoes proper development. Although the regulatory networks in bacteria have been investigated in model microorganisms, nearly nothing is known about the evolution and plasticity of these networks in obligate, intracellular bacteria. The phylum Chlamydiae contains a vast array of host-associated microbes, including several human pathogens. The Chlamydiae are unique among obligate, intracellular bacteria as they undergo a complex biphasic developmental cycle in which large swaths of genes are temporally regulated. Coupled with the low number of transcription factors, these organisms offer a model to study the evolution of regulatory networks in intracellular organisms. We provide the first comprehensive analysis exploring the diversity and evolution of regulatory networks across the phylum. We utilized a comparative genomics approach to construct predicted coregulatory networks, which unveiled genus- and family-specific regulatory motifs and architectures, most notably those of virulence-associated genes. Surprisingly, our analysis suggests that few regulatory components are conserved across the phylum, and those that are conserved are involved in the exploitation of the intracellular niche. Our study thus lends insight into a component of chlamydial evolution that has otherwise remained largely unexplored. PMID:26424812

  7. Retrotransposons as regulators of gene expression.

    PubMed

    Elbarbary, Reyad A; Lucas, Bronwyn A; Maquat, Lynne E

    2016-02-12

    Transposable elements (TEs) are both a boon and a bane to eukaryotic organisms, depending on where they integrate into the genome and how their sequences function once integrated. We focus on two types of TEs: long interspersed elements (LINEs) and short interspersed elements (SINEs). LINEs and SINEs are retrotransposons; that is, they transpose via an RNA intermediate. We discuss how LINEs and SINEs have expanded in eukaryotic genomes and contribute to genome evolution. An emerging body of evidence indicates that LINEs and SINEs function to regulate gene expression by affecting chromatin structure, gene transcription, pre-mRNA processing, or aspects of mRNA metabolism. We also describe how adenosine-to-inosine editing influences SINE function and how ongoing retrotransposition is countered by the body's defense mechanisms. Copyright © 2016, American Association for the Advancement of Science.

  8. Retrotransposons as regulators of gene expression

    PubMed Central

    Elbarbary, Reyad A.; Lucas, Bronwyn A.; Maquat, Lynne E.

    2016-01-01

    Transposable elements (TEs) are both a boon and a bane to eukaryotic organisms, depending on where they integrate into the genome and how their sequences function once integrated. We focus on two types of TEs: long interspersed elements (LINEs) and short interspersed elements (SINEs). LINEs and SINEs are retrotransposons; that is, they transpose via an RNA intermediate. We discuss how LINEs and SINEs have expanded in eukaryotic genomes and contribute to genome evolution. An emerging body of evidence indicates that LINEs and SINEs function to regulate gene expression by affecting chromatin structure, gene transcription, pre-mRNA processing, or aspects of mRNA metabolism. We also describe how adenosine-to-inosine editing influences SINE function and how ongoing retrotransposition is countered by the body’s defense mechanisms. PMID:26912865

  9. Limb development: a paradigm of gene regulation.

    PubMed

    Petit, Florence; Sears, Karen E; Ahituv, Nadav

    2017-04-01

    The limb is a commonly used model system for developmental biology. Given the need for precise control of complex signalling pathways to achieve proper patterning, the limb is also becoming a model system for gene regulation studies. Recent developments in genomic technologies have enabled the genome-wide identification of regulatory elements that control limb development, yielding insights into the determination of limb morphology and forelimb versus hindlimb identity. The modulation of regulatory interactions - for example, through the modification of regulatory sequences or chromatin architecture - can lead to morphological evolution, acquired regeneration capacity or limb malformations in diverse species, including humans.

  10. Dietary Methanol Regulates Human Gene Activity

    PubMed Central

    Komarova, Tatiana V.; Sheshukova, Ekaterina V.; Kosorukov, Vyacheslav S.; Kiryanov, Gleb I.; Dorokhov, Yuri L.

    2014-01-01

    Methanol (MeOH) is considered to be a poison in humans because of the alcohol dehydrogenase (ADH)-mediated conversion of MeOH to formaldehyde (FA), which is toxic. Our recent genome-wide analysis of the mouse brain demonstrated that an increase in endogenous MeOH after ADH inhibition led to a significant increase in the plasma MeOH concentration and a modification of mRNA synthesis. These findings suggest endogenous MeOH involvement in homeostasis regulation by controlling mRNA levels. Here, we demonstrate directly that study volunteers displayed increasing concentrations of MeOH and FA in their blood plasma when consuming citrus pectin, ethanol and red wine. A microarray analysis of white blood cells (WBC) from volunteers after pectin intake showed various responses for 30 significantly differentially regulated mRNAs, most of which were somehow involved in the pathogenesis of Alzheimer's disease (AD). There was also a decreased synthesis of hemoglobin mRNA, HBA and HBB, the presence of which in WBC RNA was not a result of red blood cells contamination because erythrocyte-specific marker genes were not significantly expressed. A qRT-PCR analysis of volunteer WBCs after pectin and red wine intake confirmed the complicated relationship between the plasma MeOH content and the mRNA accumulation of both genes that were previously identified, namely, GAPDH and SNX27, and genes revealed in this study, including MME, SORL1, DDIT4, HBA and HBB. We hypothesized that human plasma MeOH has an impact on the WBC mRNA levels of genes involved in cell signaling. PMID:25033451

  11. Social regulation of cortisol receptor gene expression

    PubMed Central

    Korzan, Wayne J.; Grone, Brian P.; Fernald, Russell D.

    2014-01-01

    In many social species, individuals influence the reproductive capacity of conspecifics. In a well-studied African cichlid fish species, Astatotilapia burtoni, males are either dominant (D) and reproductively competent or non-dominant (ND) and reproductively suppressed as evidenced by reduced gonadotropin releasing hormone (GnRH1) release, regressed gonads, lower levels of androgens and elevated levels of cortisol. Here, we asked whether androgen and cortisol levels might regulate this reproductive suppression. Astatotilapia burtoni has four glucocorticoid receptors (GR1a, GR1b, GR2 and MR), encoded by three genes, and two androgen receptors (ARα and ARβ), encoded by two genes. We previously showed that ARα and ARβ are expressed in GnRH1 neurons in the preoptic area (POA), which regulates reproduction, and that the mRNA levels of these receptors are regulated by social status. Here, we show that GR1, GR2 and MR mRNAs are also expressed in GnRH1 neurons in the POA, revealing potential mechanisms for both androgens and cortisol to influence reproductive capacity. We measured AR, MR and GR mRNA expression levels in a microdissected region of the POA containing GnRH1 neurons, comparing D and ND males. Using quantitative PCR (qPCR), we found D males had higher mRNA levels of ARα, MR, total GR1a and GR2 in the POA compared with ND males. In contrast, ND males had significantly higher levels of GR1b mRNA, a receptor subtype with a reduced transcriptional response to cortisol. Through this novel regulation of receptor type, neurons in the POA of an ND male will be less affected by the higher levels of cortisol typical of low status, suggesting GR receptor type change as a potential adaptive mechanism to mediate high cortisol levels during social suppression. PMID:25013108

  12. Evaluating Posttranscriptional Regulation of Cytokine Genes

    PubMed Central

    Rattenbacher, Bernd; Bohjanen, Paul R.

    2014-01-01

    A wide variety of cytokines are necessary for cell–cell communication in multicellular organisms, and cytokine dysregulation has detrimental effects, leading to disease states. Thus, it is a necessity that the expression of cytokines is tightly controlled. Regulation of cytokine gene expression takes place at different levels, including transcriptional and posttranscriptional levels. Ultimately, the steady-state levels of cytokine transcripts are determined by the equilibrium of transcription and degradation of this mRNA. Degradation rates of cytokine mRNAs can be measured in cells by blocking transcription with actinomycin D, harvesting RNA after different time points, and evaluating mRNA levels over time by northern blot. Cis-acting elements that mediate the rapid decay of numerous cytokine transcripts, including AU-rich elements (AREs), are found in the 3′ untranslated region (UTR) of these transcripts. Putative regulatory cis-elements can be cloned into the 3′ UTR of a reporter transcript in order to assess their function in regulating mRNA decay. Cis-elements, such as AREs, regulate cytokine mRNA decay by binding to trans-acting proteins, such as tristetraprolin or HuR. These RNA-binding proteins can be visualized using electromobility shift assays or UV crosslinking assays based on their binding to radioactively labeled RNA sequences. RNA-binding proteins that regulate cytokine mRNA decay can be purified using an RNA affinity method, using their target RNA sequence as the bait. In this chapter, we review the methods for measuring cytokine mRNA decay and methods for characterizing the cis-acting elements and trans-acting factors that regulate cytokine mRNA decay. PMID:22131026

  13. Endogenous Methanol Regulates Mammalian Gene Activity

    PubMed Central

    Komarova, Tatiana V.; Petrunia, Igor V.; Shindyapina, Anastasia V.; Silachev, Denis N.; Sheshukova, Ekaterina V.; Kiryanov, Gleb I.; Dorokhov, Yuri L.

    2014-01-01

    We recently showed that methanol emitted by wounded plants might function as a signaling molecule for plant-to-plant and plant-to-animal communications. In mammals, methanol is considered a poison because the enzyme alcohol dehydrogenase (ADH) converts methanol into toxic formaldehyde. However, the detection of methanol in the blood and exhaled air of healthy volunteers suggests that methanol may be a chemical with specific functions rather than a metabolic waste product. Using a genome-wide analysis of the mouse brain, we demonstrated that an increase in blood methanol concentration led to a change in the accumulation of mRNAs from genes primarily involved in detoxification processes and regulation of the alcohol/aldehyde dehydrogenases gene cluster. To test the role of ADH in the maintenance of low methanol concentration in the plasma, we used the specific ADH inhibitor 4-methylpyrazole (4-MP) and showed that intraperitoneal administration of 4-MP resulted in a significant increase in the plasma methanol, ethanol and formaldehyde concentrations. Removal of the intestine significantly decreased the rate of methanol addition to the plasma and suggested that the gut flora may be involved in the endogenous production of methanol. ADH in the liver was identified as the main enzyme for metabolizing methanol because an increase in the methanol and ethanol contents in the liver homogenate was observed after 4-MP administration into the portal vein. Liver mRNA quantification showed changes in the accumulation of mRNAs from genes involved in cell signalling and detoxification processes. We hypothesized that endogenous methanol acts as a regulator of homeostasis by controlling the mRNA synthesis. PMID:24587296

  14. Nitrogen regulation of lignin peroxidase gene transcription.

    PubMed Central

    Li, D; Alic, M; Gold, M H

    1994-01-01

    Western blot (immunoblot) analysis with a polyclonal antibody to lignin peroxidase (LiP) isozyme H8 from the white rot basidiomycete Phanerochaete chrysosporium demonstrates that LiP protein is detectable in the extracellular media of 5- and 6-day-old nitrogen-limited, but not nitrogen-sufficient, cultures. Northern (RNA) blot analysis demonstrates that lip mRNA is detectable from 5- and 6-day old cells grown in nitrogen-limited, but not nitrogen-sufficient, cultures. These results indicate that LiP expression is regulated at the level of gene transcription by nutrient nitrogen. Since lignin degradation by P. chrysosporium is derepressed by nitrogen starvation, it appears that lignin degradation and LiP expression are coordinately regulated in this organism. These results contradict a recent report which concluded that LiP protein expression is not regulated by nutrient nitrogen (C. G. Johnston and S. D. Aust, Biochem. Biophys. Res. Commun. 200:108-112, 1994). Images PMID:7944376

  15. Rare SLC1A1 variants in hot water epilepsy.

    PubMed

    Karan, Kalpita Rashimi; Satishchandra, P; Sinha, Sanjib; Anand, Anuranjan

    2017-03-21

    Hot water epilepsy is sensory epilepsy, wherein seizures are triggered by an unusual stimulus: contact with hot water. Although genetic factors contribute to the etiology of hot water epilepsy, molecular underpinnings of the disorder remain largely unknown. We aimed to identify the molecular genetic basis of the disorder by studying families with two or more of their members affected with hot water epilepsy. Using a combination of genome-wide linkage mapping and whole exome sequencing, a missense variant was identified in SLC1A1 in a three-generation family. Further, we examined SLC1A1in probands of 98 apparently unrelated HWE families with positive histories of seizures provoked by contact with hot water. In doing so, we found three rare variants, p.Asp174Asn, p.Val251Ile and p.Ile304Met in the gene. SLC1A1 is a neuronal glutamate transporter which limits excitotoxicity and its loss-of-function leads to age-dependent neurodegeneration. We examined functional attributes of the variants in cultured mammalian cells. All three non-synonymous variants affected glutamate uptake, exhibited altered glutamate kinetics and anion conductance properties of SLC1A1. These observations provide insights into the molecular basis of hot water epilepsy and show the role of SLC1A1 variants in this intriguing neurobehavioral disorder.

  16. MicroRNA changes associated with atypical CYP1A1 inducer BMS-764459.

    PubMed

    Simic, Damir; Euler, Cathy; Haines, Emily; He, Aiqing; Peden, W Mike; Bunch, R Todd; Sanderson, Thomas; Van Vleet, Terry

    2013-09-15

    The corticotrophin releasing factor (CRF) receptor I antagonist, BMS-764459 (evaluated as a potential treatment of affective disorders), was orally dosed to female Sprague-Dawley rats once daily for 2 weeks (vehicle control or 175mg/kg/day). To investigate the mechanism of BMS-764459-related liver weight increases, total liver RNA was isolated and evaluated for mRNA gene expression by microarray analysis (assessing the expression of approximately 24,000 genes) from snap-frozen tissue. Subsequently, mRNA and miRNA (microRNA) were also analyzed 5 years later from FFPE (Formalin Fixed Paraffin Embedded) samples via RT-PCR (about 800 miRNA evaluated). Genomic analyses showed that BMS-764459 induces AhR target genes with additional inductions of CYP2B, CYP3A, and Abcc3 consistent with the gene expression pattern of atypical CYP1A1 inducers. Analysis of miRNA expression identified a number of significantly affected miRNAs. To further evaluate their role in atypical CYP1A1 induction, an in silico evaluation of differentially expressed miRNA was performed and their putative mRNA 3'-UTR (untranslated region) binding sequences were evaluated. MiR-680 and miR-29a were identified as potential regulators and biomarkers of atypical CYP1A1 induction by regulating Abcc3, CYP3A and CYP2B as well as a number of AhR targeted genes. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  17. Conditional gene vectors regulated in cis.

    PubMed

    Pich, Dagmar; Humme, Sibille; Spindler, Mark-Peter; Schepers, Aloys; Hammerschmidt, Wolfgang

    2008-08-01

    Non-integrating gene vectors, which are stably and extrachromosomally maintained in transduced cells would be perfect tools to support long-term expression of therapeutic genes but preserve the genomic integrity of the cellular host. Small extrachromosomal plasmids share some of these ideal characteristics but are primarily based on virus blueprints. These plasmids are dependent on viral trans-acting factors but they can replicate their DNA molecules in synchrony with the chromosome of the cellular host and segregate to daughter cells in an autonomous fashion. On the basis of the concept of the latent origin of DNA replication of Epstein-Barr virus, oriP, we devised novel derivatives, which exclusively rely on an artificial replication factor for both nuclear retention and replication of plasmid DNA. In addition, an allosteric switch regulates the fate of the plasmid molecules, which are rapidly lost upon addition of doxycycline. Conditional maintenance of these novel plasmid vectors allows the reversible transfer of genetic information into target cells for the first time.

  18. Bacterial nitrate assimilation: gene distribution and regulation.

    PubMed

    Luque-Almagro, Víctor M; Gates, Andrew J; Moreno-Vivián, Conrado; Ferguson, Stuart J; Richardson, David J; Roldán, M Dolores

    2011-12-01

    In the context of the global nitrogen cycle, the importance of inorganic nitrate for the nutrition and growth of marine and freshwater autotrophic phytoplankton has long been recognized. In contrast, the utilization of nitrate by heterotrophic bacteria has historically received less attention because the primary role of these organisms has classically been considered to be the decomposition and mineralization of dissolved and particulate organic nitrogen. In the pre-genome sequence era, it was known that some, but not all, heterotrophic bacteria were capable of growth on nitrate as a sole nitrogen source. However, examination of currently available prokaryotic genome sequences suggests that assimilatory nitrate reductase (Nas) systems are widespread phylogenetically in bacterial and archaeal heterotrophs. Until now, regulation of nitrate assimilation has been mainly studied in cyanobacteria. In contrast, in heterotrophic bacterial strains, the study of nitrate assimilation regulation has been limited to Rhodobacter capsulatus, Klebsiella oxytoca, Azotobacter vinelandii and Bacillus subtilis. In Gram-negative bacteria, the nas genes are subjected to dual control: ammonia repression by the general nitrogen regulatory (Ntr) system and specific nitrate or nitrite induction. The Ntr system is widely distributed in bacteria, whereas the nitrate/nitrite-specific control is variable depending on the organism.

  19. In utero tobacco exposure epigenetically modifies placental CYP1A1 expression.

    PubMed

    Suter, Melissa; Abramovici, Adi; Showalter, Lori; Hu, Min; Shope, Cynthia Do; Varner, Michael; Aagaard-Tillery, Kjersti

    2010-10-01

    The metabolic pathways used by higher-eukaryotic organisms to deal with potentially carcinogenic xenobiotic compounds from tobacco smoke have been well characterized. Carcinogenic compounds such as polycyclic aromatic hydrocarbons are metabolized sequentially in 2 phases: in phase I, CYP1A1 catalyzes conversion into harmful hydrophilic DNA adducts, whereas in phase II, GSTT1 enables excretion via conjugation into polar electrophiles. In an effort to understand susceptibility to in utero tobacco exposure, we previously characterized known metabolic functional polymorphisms and demonstrated that although deletion of fetal GSTT1 significantly modified birth weight in smokers, no polymorphism fully accounted for fetal growth restriction. Because smoking up-regulates CYP1A1 expression, we hypothesized that nonallelic (epigenetic) dysregulation of placental CYP1A1 expression via alterations in DNA methylation (meCpG) may further modify fetal growth. In the present article, we compared placental expression of multiple CYP family members among gravidae and observed significantly increased CYP1A1 expression among smokers relative to controls (4.4-fold, P < .05). To fully characterize CYP1A1 meCpG status, bisulfite modification and sequencing of the entire proximal 1-kilobase promoter (containing 59 CpG sites) were performed. CpG sites immediately proximal to the 5′-xenobiotic response element transcription factor binding element were significantly hypomethylated among smokers (55.6% vs 45.9% meCpG, P = .027), a finding that uniquely correlated with placental gene expression (r = 0.737, P = .007). Thus, in utero tobacco exposure significantly increases placental CYP1A1 expression in association with differential methylation at a critical xenobiotic response element.

  20. Polyamine analogues targeting epigenetic gene regulation.

    PubMed

    Huang, Yi; Marton, Laurence J; Woster, Patrick M; Casero, Robert A

    2009-11-04

    Over the past three decades the metabolism and functions of the polyamines have been actively pursued as targets for antineoplastic therapy. Interactions between cationic polyamines and negatively charged nucleic acids play a pivotal role in DNA stabilization and RNA processing that may affect gene expression, translation and protein activity. Our growing understanding of the unique roles that the polyamines play in chromatin regulation, and the discovery of novel proteins homologous with specific regulatory enzymes in polyamine metabolism, have led to our interest in exploring chromatin remodelling enzymes as potential therapeutic targets for specific polyamine analogues. One of our initial efforts focused on utilizing the strong affinity that the polyamines have for chromatin to create a backbone structure, which could be combined with active-site-directed inhibitor moieties of HDACs (histone deacetylases). Specific PAHAs (polyaminohydroxamic acids) and PABAs (polyaminobenzamides) polyamine analogues have demonstrated potent inhibition of the HDACs, re-expression of p21 and significant inhibition of tumour growth. A second means of targeting the chromatin-remodelling enzymes with polyamine analogues was facilitated by the recent identification of flavin-dependent LSD1 (lysine-specific demethylase 1). The existence of this enzyme demonstrated that histone lysine methylation is a dynamic process similar to other histone post-translational modifications. LSD1 specifically catalyses demethylation of mono- and di-methyl Lys4 of histone 3, key positive chromatin marks associated with transcriptional activation. Structural and catalytic similarities between LSD1 and polyamine oxidases facilitated the identification of biguanide, bisguanidine and oligoamine polyamine analogues that are potent inhibitors of LSD1. Cellular inhibition of LSD1 by these unique compounds led to the re-activation of multiple epigenetically silenced genes important in tumorigenesis. The use of

  1. Pluralistic and stochastic gene regulation: examples, models and consistent theory

    PubMed Central

    Salas, Elisa N.; Shu, Jiang; Cserhati, Matyas F.; Weeks, Donald P.; Ladunga, Istvan

    2016-01-01

    We present a theory of pluralistic and stochastic gene regulation. To bridge the gap between empirical studies and mathematical models, we integrate pre-existing observations with our meta-analyses of the ENCODE ChIP-Seq experiments. Earlier evidence includes fluctuations in levels, location, activity, and binding of transcription factors, variable DNA motifs, and bursts in gene expression. Stochastic regulation is also indicated by frequently subdued effects of knockout mutants of regulators, their evolutionary losses/gains and massive rewiring of regulatory sites. We report wide-spread pluralistic regulation in ≈800 000 tightly co-expressed pairs of diverse human genes. Typically, half of ≈50 observed regulators bind to both genes reproducibly, twice more than in independently expressed gene pairs. We also examine the largest set of co-expressed genes, which code for cytoplasmic ribosomal proteins. Numerous regulatory complexes are highly significant enriched in ribosomal genes compared to highly expressed non-ribosomal genes. We could not find any DNA-associated, strict sense master regulator. Despite major fluctuations in transcription factor binding, our machine learning model accurately predicted transcript levels using binding sites of 20+ regulators. Our pluralistic and stochastic theory is consistent with partially random binding patterns, redundancy, stochastic regulator binding, burst-like expression, degeneracy of binding motifs and massive regulatory rewiring during evolution. PMID:26823500

  2. Gene-specific regulation by general translation factors.

    PubMed

    Dever, Thomas E

    2002-02-22

    Protein synthesis is the ultimate step of gene expression and a key control point for regulation. In particular, it enables cells to rapidly manipulate protein production without new mRNA synthesis, processing, or export. Recent studies have enhanced our understanding of the translation initiation process and helped elucidate how modifications of the general translational machinery regulate gene-specific protein production.

  3. Expression profiles of Fsh-regulated ovarian genes during oogenesis in coho salmon.

    PubMed

    Guzmán, José M; Luckenbach, J Adam; Yamamoto, Yoji; Swanson, Penny

    2014-01-01

    The function of follicle-stimulating hormone (Fsh) during oogenesis in fishes is poorly understood. Using coho salmon as a fish model, we recently identified a suite of genes regulated by Fsh in vitro and involved in ovarian processes mostly unexplored in fishes, like cell proliferation, differentiation, survival or extracellular matrix (ECM) remodeling. To better understand the role of these Fsh-regulated genes during oocyte growth in fishes, we characterized their mRNA levels at discrete stages of the ovarian development in coho salmon. While most of the transcripts were expressed at low levels during primary growth (perinucleolus stage), high expression of genes associated with cell proliferation (pim1, pcna, and mcm4) and survival (ddit4l) was found in follicles at this stage. The transition to secondary oocyte growth (cortical alveolus and lipid droplet stage ovarian follicles) was characterized by a marked increase in the expression of genes related to cell survival (clu1, clu2 and ivns1abpa). Expression of genes associated with cell differentiation and growth (wt2l and adh8l), growth factor signaling (inha), steroidogenesis (cyp19a1a) and the ECM (col1a1, col1a2 and dcn) peaked in vitellogenic follicles, showing a strong and positive correlation with transcripts for fshr. Other genes regulated by Fsh and associated with ECM function (ctgf, wapl and fn1) and growth factor signaling (bmp16 and smad5l) peaked in maturing follicles, along with increases in steroidogenesis-related gene transcripts. In conclusion, ovarian genes regulated by Fsh showed marked differences in their expression patterns during oogenesis in coho salmon. Our results suggest that Fsh regulates different ovarian processes at specific stages of development, likely through interaction with other intra- or extra-ovarian factors.

  4. Gene regulation: ancient microRNA target sequences in plants.

    PubMed

    Floyd, Sandra K; Bowman, John L

    2004-04-01

    MicroRNAs are an abundant class of small RNAs that are thought to regulate the expression of protein-coding genes in plants and animals. Here we show that the target sequence of two microRNAs, known to regulate genes in the class-III homeodomain-leucine zipper (HD-Zip) gene family of the flowering plant Arabidopsis, is conserved in homologous sequences from all lineages of land plants, including bryophytes, lycopods, ferns and seed plants. We also find that the messenger RNAs from these genes are cleaved within the same microRNA-binding site in representatives of each land-plant group, as they are in Arabidopsis. Our results indicate not only that microRNAs mediate gene regulation in non-flowering as well as flowering plants, but also that the regulation of this class of plant genes dates back more than 400 million years.

  5. Trainable Gene Regulation Networks with Applications to Drosophila Pattern Formation

    NASA Technical Reports Server (NTRS)

    Mjolsness, Eric

    2000-01-01

    This chapter will very briefly introduce and review some computational experiments in using trainable gene regulation network models to simulate and understand selected episodes in the development of the fruit fly, Drosophila melanogaster. For details the reader is referred to the papers introduced below. It will then introduce a new gene regulation network model which can describe promoter-level substructure in gene regulation. As described in chapter 2, gene regulation may be thought of as a combination of cis-acting regulation by the extended promoter of a gene (including all regulatory sequences) by way of the transcription complex, and of trans-acting regulation by the transcription factor products of other genes. If we simplify the cis-action by using a phenomenological model which can be tuned to data, such as a unit or other small portion of an artificial neural network, then the full transacting interaction between multiple genes during development can be modelled as a larger network which can again be tuned or trained to data. The larger network will in general need to have recurrent (feedback) connections since at least some real gene regulation networks do. This is the basic modeling approach taken, which describes how a set of recurrent neural networks can be used as a modeling language for multiple developmental processes including gene regulation within a single cell, cell-cell communication, and cell division. Such network models have been called "gene circuits", "gene regulation networks", or "genetic regulatory networks", sometimes without distinguishing the models from the actual modeled systems.

  6. Expression noise facilitates the evolution of gene regulation

    PubMed Central

    Wolf, Luise; Silander, Olin K; van Nimwegen, Erik

    2015-01-01

    Although it is often tacitly assumed that gene regulatory interactions are finely tuned, how accurate gene regulation could evolve from a state without regulation is unclear. Moreover, gene expression noise would seem to impede the evolution of accurate gene regulation, and previous investigations have provided circumstantial evidence that natural selection has acted to lower noise levels. By evolving synthetic Escherichia coli promoters de novo, we here show that, contrary to expectations, promoters exhibit low noise by default. Instead, selection must have acted to increase the noise levels of highly regulated E. coli promoters. We present a general theory of the interplay between gene expression noise and gene regulation that explains these observations. The theory shows that propagation of expression noise from regulators to their targets is not an unwanted side-effect of regulation, but rather acts as a rudimentary form of regulation that facilitates the evolution of more accurate regulation. DOI: http://dx.doi.org/10.7554/eLife.05856.001 PMID:26080931

  7. [Gene networks that regulate secondary metabolism in actinomycetes: pleiotropic regulators].

    PubMed

    Rabyk, M V; Ostash, B O; Fedorenko, V O

    2014-01-01

    Current advances in the research and practical applications of pleiotropic regulatory genes for antibiotic production in actinomycetes are reviewed. The basic regulatory mechanisms found in these bacteria are outlined. Examples described in the review show the importance of the manipulation of regulatory systems that affect the synthesis of antibiotics for the metabolic engineering of the actinomycetes. Also, the study of these genes is the basis for the development of genetic engineering approaches towards the induction of "cryptic" part of the actinomycetes secondary metabolome, which capacity for production of biologically active compounds is much bigger than the diversity of antibiotics underpinned by traditional microbiological screening. Besides the practical problems, the study of regulatory genes for antibiotic biosynthesis will provide insights into the process of evolution of complex regulatory systems that coordinate the expression of gene operons, clusters and regulons, involved in the control of secondary metabolism and morphogenesis of actinomycetes.

  8. Regulation of male fertility by X-linked genes.

    PubMed

    Zheng, Ke; Yang, Fang; Wang, Peijing Jeremy

    2010-01-01

    Infertility is a worldwide reproductive health problem, affecting men and women about equally. Mouse genetic studies demonstrate that more than 200 genes specifically or predominantly regulate fertility. However, few genetic causes of infertility in humans have been identified. Here, we focus on the regulation of male fertility by X-linked, germ cell-specific genes. Previous genomic studies reveal that the mammalian X chromosome is enriched for genes expressed in early spermatogenesis. Recent genetic studies in mice show that X-linked, germ cell-specific genes, such as A-kinase anchor protein 4 (Akap4), nuclear RNA export factor 2 (Nxf2), TBP-associated factor 7l (Taf7l), and testis-expressed gene 11 (Tex11), indeed play important roles in the regulation of male fertility. Moreover, we find that the Taf7l Tex11 double-mutant males exhibit much more severe defects in meiosis than either single mutant, suggesting that these 2 X-linked genes regulate male meiosis synergistically. The X-linked, germ cell-specific genes are particularly attractive in the study of male infertility in humans. Because males are hemizygous for X-linked genes, loss-of-function mutations in the single-copy X-linked genes, unlike in autosomal genes, would not be masked by a normal allele. The genetic studies of X-linked, germ cell-specific genes in mice have laid a foundation for mutational analysis of their human orthologues in infertile men.

  9. Regulation of Drug Disposition Gene Expression in Pregnant Mice with Car Receptor Activation

    PubMed Central

    Bright, Amanda S.; Herrera-Garcia, Guadalupe; Moscovitz, Jamie E.; You, Dahea; Guo, Grace L.; Aleksunes, Lauren M.

    2016-01-01

    More than half of pregnant women use prescription medications in order to maintain both maternal and fetal health. The constitutive androstane receptor (Car) critically affects the disposition of chemicals by regulating the transcription of genes encoding metabolic enzymes and transporters. However, the effects of Car activation on chemical disposition during pregnancy are unclear. This study aims to determine the degree to which pregnancy alters the expression of drug metabolizing enzymes and transporters in response to the pharmacological activation of Car. To test this, pregnant C57BL/6 mice were administered IP doses of vehicle, or a potent Car agonist, TCPOBOP, on gestation days 14, 15 and 16. Hepatic mRNA and protein expression of Car target genes (phase I, II and transporters) were quantified on gestation day 17. Pregnancy-related changes, such as induction of Cyp2b10, Ugt1a1 and Sult1a1 and repression of Ugt1a6, Gsta1, Gsta2 and Mrp6, were observed. Interestingly, the induction of Cyp2b10, Gsta1, Gsta2 and Mrp2-4 mRNAs by TCPOBOP was attenuated in maternal livers suggesting that Car activation is impeded by the biochemical and/or physiological changes that occur during gestation. Taken together, these findings suggest that pregnancy and pharmacological activation of Car can differentially regulate the expression of drug metabolism and transport genes. PMID:27818994

  10. Regulation of prokaryotic gene expression by eukaryotic-like enzymes

    PubMed Central

    Burnside, Kellie; Rajagopal, Lakshmi

    2011-01-01

    Summary A growing body of evidence indicates that serine/threonine kinases (STK) and phosphatases (STP) regulate gene expression in prokaryotic organisms. As prokaryotic STKs and STPs are not DNA binding proteins, regulation of gene expression is accomplished through post-translational modification of their targets. These include two-component response regulators, DNA binding proteins and proteins that mediate transcription and translation. This review summarizes our current understanding of how STKs and STPs mediate gene expression in prokaryotes. Further studies to identify environmental signals that trigger the signaling cascade and elucidation of mechanisms that regulate cross-talk between eukaryotic-like signaling enzymes, two-component systems, and components of the transcriptional and translational machinery will facilitate a greater understanding of prokaryotic gene regulation. PMID:22221896

  11. Akt1 as a putative regulator of Hox genes.

    PubMed

    Kong, Kyoung-Ah; Yoon, Heejei; Kim, Myoung Hee

    2013-01-25

    In mammals, precise spatiotemporal expressions of Hox genes control the main body axis during embryogenesis. However, the mechanism by which Hox genes are regulated is poorly understood. To discover the putative regulator of Hox genes, in silico analyses were performed using GEO profiles, and Akt1 emerged as a candidate regulator of Hox genes in E13.5 MEFs. The results of the RT-PCR showed that 5' Hoxc genes, including ncRNA were upregulated in Akt1 null MEF. Combined bisulfite restriction analysis (COBRA) and bisulfite sequencing showed that the CpG island of a 5' Hoxc gene was hypomethylated in Akt1 null cells. These results indicate that Hox expression could be controlled by the function of Akt1 through epigenetic modification such as DNA methylation.

  12. Improvement of enzymatic saccharification yield in Arabidopsis thaliana by ectopic expression of the rice SUB1A-1 transcription factor

    PubMed Central

    Núñez-López, Lizeth; Aguirre-Cruz, Andrés

    2015-01-01

    Saccharification of polysaccharides releases monosaccharides that can be used by ethanol-producing microorganisms in biofuel production. To improve plant biomass as a raw material for saccharification, factors controlling the accumulation and structure of carbohydrates must be identified. Rice SUB1A-1 is a transcription factor that represses the turnover of starch and postpones energy-consuming growth processes under submergence stress. Arabidopsis was employed to test if heterologous expression of SUB1A-1 or SUB1C-1 (a related gene) can be used to improve saccharification. Cellulolytic and amylolytic enzymatic treatments confirmed that SUB1A-1 transgenics had better saccharification yield than wild-type (Col-0), mainly from accumulated starch. This improved saccharification yield was developmentally controlled; when compared to Col-0, young transgenic vegetative plants yielded 200–300% more glucose, adult vegetative plants yielded 40–90% more glucose and plants in reproductive stage had no difference in yield. We measured photosynthetic parameters, starch granule microstructure, and transcript abundance of genes involved in starch degradation (SEX4, GWD1), juvenile transition (SPL3-5) and meristematic identity (FUL, SOC1) but found no differences to Col-0, indicating that starch accumulation may be controlled by down-regulation of CONSTANS and FLOWERING LOCUS T by SUB1A-1 as previously reported. SUB1A-1 transgenics also offered less resistance to deformation than wild-type concomitant to up-regulation of AtEXP2 expansin and BGL2 glucan-1,3,-beta-glucosidase. We conclude that heterologous SUB1A-1 expression can improve saccharification yield and softness, two traits needed in bioethanol production. PMID:25780769

  13. Identification of cell cycle-regulated genes in fission yeast.

    PubMed

    Peng, Xu; Karuturi, R Krishna Murthy; Miller, Lance D; Lin, Kui; Jia, Yonghui; Kondu, Pinar; Wang, Long; Wong, Lim-Soon; Liu, Edison T; Balasubramanian, Mohan K; Liu, Jianhua

    2005-03-01

    Cell cycle progression is both regulated and accompanied by periodic changes in the expression levels of a large number of genes. To investigate cell cycle-regulated transcriptional programs in the fission yeast Schizosaccharomyces pombe, we developed a whole-genome oligonucleotide-based DNA microarray. Microarray analysis of both wild-type and cdc25 mutant cell cultures was performed to identify transcripts whose levels oscillated during the cell cycle. Using an unsupervised algorithm, we identified 747 genes that met the criteria for cell cycle-regulated expression. Peaks of gene expression were found to be distributed throughout the entire cell cycle. Furthermore, we found that four promoter motifs exhibited strong association with cell cycle phase-specific expression. Examination of the regulation of MCB motif-containing genes through the perturbation of DNA synthesis control/MCB-binding factor (DSC/MBF)-mediated transcription in arrested synchronous cdc10 mutant cell cultures revealed a subset of functional targets of the DSC/MBF transcription factor complex, as well as certain gene promoter requirements. Finally, we compared our data with those for the budding yeast Saccharomyces cerevisiae and found approximately 140 genes that are cell cycle regulated in both yeasts, suggesting that these genes may play an evolutionarily conserved role in regulation of cell cycle-specific processes. Our complete data sets are available at http://giscompute.gis.a-star.edu.sg/~gisljh/CDC.

  14. Gene Expression in Leishmania Is Regulated Predominantly by Gene Dosage

    PubMed Central

    Iantorno, Stefano A.; Durrant, Caroline; Khan, Asis; Sanders, Mandy J.; Warren, Wesley C.; Berriman, Matthew; Sacks, David L.

    2017-01-01

    ABSTRACT Leishmania tropica, a unicellular eukaryotic parasite present in North and East Africa, the Middle East, and the Indian subcontinent, has been linked to large outbreaks of cutaneous leishmaniasis in displaced populations in Iraq, Jordan, and Syria. Here, we report the genome sequence of this pathogen and 7,863 identified protein-coding genes, and we show that the majority of clinical isolates possess high levels of allelic diversity, genetic admixture, heterozygosity, and extensive aneuploidy. By utilizing paired genome-wide high-throughput DNA sequencing (DNA-seq) with RNA-seq, we found that gene dosage, at the level of individual genes or chromosomal “somy” (a general term covering disomy, trisomy, tetrasomy, etc.), accounted for greater than 85% of total gene expression variation in genes with a 2-fold or greater change in expression. High gene copy number variation (CNV) among membrane-bound transporters, a class of proteins previously implicated in drug resistance, was found for the most highly differentially expressed genes. Our results suggest that gene dosage is an adaptive trait that confers phenotypic plasticity among natural Leishmania populations by rapid down- or upregulation of transporter proteins to limit the effects of environmental stresses, such as drug selection. PMID:28900023

  15. Prediction of epigenetically regulated genes in breast cancer cell lines

    SciTech Connect

    Loss, Leandro A; Sadanandam, Anguraj; Durinck, Steffen; Nautiyal, Shivani; Flaucher, Diane; Carlton, Victoria EH; Moorhead, Martin; Lu, Yontao; Gray, Joe W; Faham, Malek; Spellman, Paul; Parvin, Bahram

    2010-05-04

    Methylation of CpG islands within the DNA promoter regions is one mechanism that leads to aberrant gene expression in cancer. In particular, the abnormal methylation of CpG islands may silence associated genes. Therefore, using high-throughput microarrays to measure CpG island methylation will lead to better understanding of tumor pathobiology and progression, while revealing potentially new biomarkers. We have examined a recently developed high-throughput technology for measuring genome-wide methylation patterns called mTACL. Here, we propose a computational pipeline for integrating gene expression and CpG island methylation profles to identify epigenetically regulated genes for a panel of 45 breast cancer cell lines, which is widely used in the Integrative Cancer Biology Program (ICBP). The pipeline (i) reduces the dimensionality of the methylation data, (ii) associates the reduced methylation data with gene expression data, and (iii) ranks methylation-expression associations according to their epigenetic regulation. Dimensionality reduction is performed in two steps: (i) methylation sites are grouped across the genome to identify regions of interest, and (ii) methylation profles are clustered within each region. Associations between the clustered methylation and the gene expression data sets generate candidate matches within a fxed neighborhood around each gene. Finally, the methylation-expression associations are ranked through a logistic regression, and their significance is quantified through permutation analysis. Our two-step dimensionality reduction compressed 90% of the original data, reducing 137,688 methylation sites to 14,505 clusters. Methylation-expression associations produced 18,312 correspondences, which were used to further analyze epigenetic regulation. Logistic regression was used to identify 58 genes from these correspondences that showed a statistically signifcant negative correlation between methylation profles and gene expression in the

  16. Mechanisms of specificity in neuronal activity-regulated gene transcription

    PubMed Central

    Lyons, Michelle R.; West, Anne E.

    2011-01-01

    The brain is a highly adaptable organ that is capable of converting sensory information into changes in neuronal function. This plasticity allows behavior to be accommodated to the environment, providing an important evolutionary advantage. Neurons convert environmental stimuli into long-lasting changes in their physiology in part through the synaptic activity-regulated transcription of new gene products. Since the neurotransmitter-dependent regulation of Fos transcription was first discovered nearly 25 years ago, a wealth of studies have enriched our understanding of the molecular pathways that mediate activity-regulated changes in gene transcription. These findings show that a broad range of signaling pathways and transcriptional regulators can be engaged by neuronal activity to sculpt complex programs of stimulus-regulated gene transcription. However, the shear scope of the transcriptional pathways engaged by neuronal activity raises the question of how specificity in the nature of the transcriptional response is achieved in order to encode physiologically relevant responses to divergent stimuli. Here we summarize the general paradigms by which neuronal activity regulates transcription while focusing on the molecular mechanisms that confer differential stimulus-, cell-type-, and developmental-specificity upon activity-regulated programs of neuronal gene transcription. In addition, we preview some of the new technologies that will advance our future understanding of the mechanisms and consequences of activity-regulated gene transcription in the brain. PMID:21620929

  17. Predicting Cell Cycle Regulated Genes by Causal Interactions

    PubMed Central

    Emmert-Streib, Frank; Dehmer, Matthias

    2009-01-01

    The fundamental difference between classic and modern biology is that technological innovations allow to generate high-throughput data to get insights into molecular interactions on a genomic scale. These high-throughput data can be used to infer gene networks, e.g., the transcriptional regulatory or signaling network, representing a blue print of the current dynamical state of the cellular system. However, gene networks do not provide direct answers to biological questions, instead, they need to be analyzed to reveal functional information of molecular working mechanisms. In this paper we propose a new approach to analyze the transcriptional regulatory network of yeast to predict cell cycle regulated genes. The novelty of our approach is that, in contrast to all other approaches aiming to predict cell cycle regulated genes, we do not use time series data but base our analysis on the prior information of causal interactions among genes. The major purpose of the present paper is to predict cell cycle regulated genes in S. cerevisiae. Our analysis is based on the transcriptional regulatory network, representing causal interactions between genes, and a list of known periodic genes. No further data are used. Our approach utilizes the causal membership of genes and the hierarchical organization of the transcriptional regulatory network leading to two groups of periodic genes with a well defined direction of information flow. We predict genes as periodic if they appear on unique shortest paths connecting two periodic genes from different hierarchy levels. Our results demonstrate that a classical problem as the prediction of cell cycle regulated genes can be seen in a new light if the concept of a causal membership of a gene is applied consequently. This also shows that there is a wealth of information buried in the transcriptional regulatory network whose unraveling may require more elaborate concepts than it might seem at first. PMID:19688096

  18. A Discovery Lab for Studying Gene Regulation.

    ERIC Educational Resources Information Center

    Moss, Robert

    1997-01-01

    Presents a laboratory in which students are provided with cultures of three bacterial strains. Using the results, students will determine which of the strains corresponds to a mutant lacking a particular functional gene. (DDR)

  19. Epigenetic Determinants of CYP1A1 Induction by the Aryl Hydrocarbon Receptor Agonist 3,3',4,4',5-Pentachlorobiphenyl (PCB 126)

    PubMed Central

    Vorrink, Sabine U.; Hudachek, Danielle R.; Domann, Frederick E.

    2014-01-01

    Many enzymes involved in xenobiotic metabolism, including cytochrome P450 (CYP) 1A1, are regulated by the aryl hydrocarbon receptor (AhR). 3,3',4,4',5-Pentachlorobiphenyl (PCB 126) is a potent ligand for AhR and can thus induce the expression of CYP1A1. Interestingly, we observed that human carcinoma cell lines derived from different types of epithelial cells displayed divergent degrees of CYP1A1 induction after exposure to PCB 126. Since epigenetic mechanisms are known to be involved in cell type-specific gene expression, we sought to assess the epigenetic determinants of CYP1A1 induction in these carcinoma cell lines. In contrast to HepG2 hepatocarcinoma cells, HeLa cervical carcinoma cells showed significantly lower levels of CYP1A1 mRNA expression following PCB 126 exposure. Our results show that the two cell lines maintained differences in the chromatin architecture along the CYP1A1 promoter region. Furthermore, treatment with the epigenetic modifiers, trichostatin A (TSA) and 5-aza-2'-deoxycytidine (5-Aza-dC), significantly increased the expression of CYP1A1 after PCB 126 treatment in HeLa cells. However, we did not observe apparent differences in methylation levels or specific location of CpG DNA methylation between the two cell lines in the analyzed CYP1A1 promoter region. Taken together, our findings suggest that the differences in CYP1A1 expression between HepG2 and HeLa cells are due to differences in the chromatin architecture of the CYP1A1 promoter and thus establish a role of epigenetic regulation in cell-specific CYP1A1 expression. PMID:25116688

  20. Transcriptional regulation of human small nuclear RNA genes

    PubMed Central

    Jawdekar, Gauri W.; Henry, R. William

    2009-01-01

    The products of human snRNA genes have been frequently described as performing housekeeping functions and their synthesis refractory to regulation. However, recent studies have emphasized that snRNA and other related non-coding RNA molecules control multiple facets of the central dogma, and their regulated expression is critical to cellular homeostasis during normal growth and in response to stress. Human snRNA genes contain compact and yet powerful promoters that are recognized by increasingly well-characterized transcription factors, thus providing a premier model system to study gene regulation. This review summarizes many recent advances deciphering the mechanism by which the transcription of human snRNA and related genes are regulated. PMID:18442490

  1. Tbx16 regulates hox gene activation in mesodermal progenitor cells

    PubMed Central

    Payumo, Alexander Y.; McQuade, Lindsey E.; Walker, Whitney J.; Yamazoe, Sayumi; Chen, James K.

    2016-01-01

    The transcription factor T-box 16 (Tbx16/Spadetail) is an essential regulator of paraxial mesoderm development in zebrafish (Danio rerio). Mesodermal progenitor cells (MPCs) fail to differentiate into trunk somites in tbx16 mutants and instead accumulate within the tailbud in an immature state. The mechanisms by which Tbx16 controls mesoderm patterning have remained enigmatic, and we describe here the application of photoactivatable morpholino oligonucleotides to determine the Tbx16 transcriptome in MPCs. We identify 124 Tbx16-regulated genes that are expressed in zebrafish gastrulae, including several developmental signaling proteins and regulators of gastrulation, myogenesis, and somitogenesis. Unexpectedly, we observe that loss of Tbx16 function precociously activates posterior hox genes in MPCs, and overexpression of a single posterior hox gene is sufficient to disrupt MPC migration. Our studies support a model in which Tbx16 regulates the timing of collinear hox gene activation to coordinate the anterior-posterior fates and positions of paraxial MPCs. PMID:27376691

  2. Regulation of gene expression in the nervous system

    SciTech Connect

    Stella, A.M.G. ); de Vellis, J. ); Perez-Polo, J.R. 62230.

    1990-01-01

    This book covers subjects under the following topics: Plenary Lecture; Growth factors; Regulation of gene expression in neurons; Cell adhesion molecules and development; Nervous tissue reaction to injury-aging; and Poster presentation.

  3. Transcriptional regulation of the uncoupling protein-1 gene.

    PubMed

    Villarroya, Francesc; Peyrou, Marion; Giralt, Marta

    2017-03-01

    Regulated transcription of the uncoupling protein-1 (UCP1) gene, and subsequent UCP1 protein synthesis, is a hallmark of the acquisition of the differentiated, thermogenically competent status of brown and beige/brite adipocytes, as well as of the responsiveness of brown and beige/brite adipocytes to adaptive regulation of thermogenic activity. The 5' non-coding region of the UCP1 gene contains regulatory elements that confer tissue specificity, differentiation dependence, and neuro-hormonal regulation to UCP1 gene transcription. Two main regions-a distal enhancer and a proximal promoter region-mediate transcriptional regulation through interactions with a plethora of transcription factors, including nuclear hormone receptors and cAMP-responsive transcription factors. Co-regulators, such as PGC-1α, play a pivotal role in the concerted regulation of UCP1 gene transcription. Multiple interactions of transcription factors and co-regulators at the promoter region of the UCP1 gene result in local chromatin remodeling, leading to activation and increased accessibility of RNA polymerase II and subsequent gene transcription. Moreover, a commonly occurring A-to-G polymorphism in close proximity to the UCP1 gene enhancer influences the extent of UCP1 gene transcription. Notably, it has been reported that specific aspects of obesity and associated metabolic diseases are associated with human population variability at this site. On another front, the unique properties of the UCP1 promoter region have been exploited to develop brown adipose tissue-specific gene delivery tools for experimental purposes. Copyright © 2016 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.

  4. Regulation of Calreticulin Gene Expression by Calcium

    PubMed Central

    Waser, Mathilde; Mesaeli, Nasrin; Spencer, Charlotte; Michalak, Marek

    1997-01-01

    We have isolated and characterized a 12-kb mouse genomic DNA fragment containing the entire calreticulin gene and 2.14 kb of the promoter region. The mouse calreticulin gene consists of nine exons and eight introns, and it spans 4.2 kb of genomic DNA. A 1.8-kb fragment of the calreticulin promoter was subcloned into a reporter gene plasmid containing chloramphenicol acetyltransferase. This construct was then used in transient and stable transfection of NIH/ 3T3 cells. Treatment of transfected cells either with the Ca2+ ionophore A23187, or with the ER Ca2+-ATPase inhibitor thapsigargin, resulted in a five- to sevenfold increase of the expression of chloramphenicol acetyltransferase protein. Transactivation of the calreticulin promoter was also increased by fourfold in NIH/3T3 cells treated with bradykinin, a hormone that induces Ca2+ release from the intracellular Ca2+ stores. Analysis of the promoter deletion constructs revealed that A23187- and thapsigargin-responsive regions are confined to two regions (−115 to −260 and −685 to −1,763) in the calreticulin promoter that contain the CCAAT nucleotide sequences. Northern blot analysis of cells treated with A23187, or with thapsigargin, revealed a fivefold increase in calreticulin mRNA levels. Thapsigargin also induced a fourfold increase in calreticulun protein levels. Importantly, we show by nuclear run-on transcription analysis that calreticulin gene transcription is increased in NIH/3T3 cells treated with A23187 and thapsigargin in vivo. This increase in gene expression required over 4 h of continuous incubation with the drugs and was also sensitive to treatment with cycloheximide, suggesting that it is dependent on protein synthesis. Changes in the concentration of extracellular and cytoplasmic Ca2+ did not affect the increased expression of the calreticulin gene. These studies suggest that stress response to the depletion of intracellular Ca2+ stores induces expression of the calreticulin gene in vitro

  5. Polymorphisms of UGT1A1*6, UGT1A1*27 & UGT1A1*28 in three major ethnic groups from Malaysia.

    PubMed

    Teh, L K; Hashim, H; Zakaria, Z A; Salleh, M Z

    2012-08-01

    Genetic polymorphisms of uridine diphosphate glucuronyltransferase 1A1 (UGT1A1) have been associated with a wide variation of responses among patients prescribed with irinotecan. Lack of this enzyme is known to be associated with a high incidence of severe toxicity. The objective of this study was to investigate the prevalence of three different variants of UGT1A1 (UGT1A1*6, UGT1A1*27 and UGT1A1*28), which are associated with reduced enzyme activity and increased irinotecan toxicity, in the three main ethnic groups in Malaysia (Malays, Chinese and Indians). A total of 306 healthy unrelated volunteers were screened for UGT1A1*28, UGT1A1*6 and UGT1A1*27. Blood samples (5 ml) were obtained from each subject and DNA was extracted. PCR based methods were designed and validated for detection of UGT1A1*, UUGT1A1*27 and UUGT1A1*28. Direct DNA sequencing was performed to validate the results of randomly selected samples. Malays and Indian have two-fold higher frequency of homozygous of UGT1A1*28 (7TA/7TA) which was 8 and 8.8 per cent, respectively compared to the Chinese (4.9%). However, the distribution of UGT1A1*6 and UGT1A1*27 showed no significant differences among them. UGT1A1*27 which has not been detected in Caucasian and African American population, was found in the Malaysian Malays (3.33%) and Malaysian Chinese (2.0%). There was interethnic variability in the frequency of UGT1A1*28 in the Malaysian population. Our results suggest that genotyping of UUGT1A1*6, UGT1A1*28 and UGT1A1*27 need to be performed before patients are prescribed with irinotecan due to their high prevalence of allelic variant which could lead to adverse drug reaction.

  6. Polymorphisms of UGT1A1*6, UGT1A1*27 & UGT1A1*28 in three major ethnic groups from Malaysia

    PubMed Central

    Teh, L. K.; Hashim, H.; Zakaria, Z. A.; Salleh, M. Z.

    2012-01-01

    Background & objectives: Genetic polymorphisms of uridine diphosphate glucuronyltransferase 1A1 (UGT1A1) have been associated with a wide variation of responses among patients prescribed with irinotecan. Lack of this enzyme is known to be associated with a high incidence of severe toxicity. The objective of this study was to investigate the prevalence of three different variants of UGT1A1 (UGT1A1*6, UGT1A1*27 and UGT1A1*28), which are associated with reduced enzyme activity and increased irinotecan toxicity, in the three main ethnic groups in Malaysia (Malays, Chinese and Indians). Methods: A total of 306 healthy unrelated volunteers were screened for UGT1A1*28, UGT1A1*6 and UGT1A1*27. Blood samples (5 ml) were obtained from each subject and DNA was extracted. PCR based methods were designed and validated for detection of UGT1A1*6, UGT1A1*27 and UGT1A1*28. Direct DNA sequencing was performed to validate the results of randomly selected samples. Results: Malays and Indian have two-fold higher frequency of homozygous of UGT1A1*28 (7TA/7TA) which was 8 and 8.8 per cent, respectively compared to the Chinese (4.9%). However, the distribution of UGT1A1*6 and UGT1A1*27 showed no significant differences among them. UGT1A1*27 which has not been detected in Caucasian and African American population, was found in the Malaysian Malays (3.33%) and Malaysian Chinese (2.0%). Interpretation & conclusions: There was interethnic variability in the frequency of UGT1A1*28 in the Malaysian population. Our results suggest that genotyping of UGT1A1*6, UGT1A1*28 and UGT1A1*27 need to be performed before patients are prescribed with irinotecan due to their high prevalence of allelic variant which could lead to adverse drug reaction. PMID:22960892

  7. UGT1A1 polymorphisms in cancer: impact on irinotecan treatment

    PubMed Central

    Takano, Masashi; Sugiyama, Toru

    2017-01-01

    Mutations in the UGT1A1 gene have been implicated in Gilbert syndrome, which shows mild hyperbilirubinemia, and a more aggressive childhood subtype, Crigler–Najjar syndrome. To date, more than 100 variants have been found in the UGT1A1 gene. Among them, UGT1A1*28 and UGT1A1*6 have been reported to be associated with severe toxicities in patients treated with irinotecan-based chemotherapy by increasing the dose of SN-38 (7-ethyl-10-hydroxycamptothecin), an active form of irinotecan. Many association studies and meta-analyses have demonstrated the contribution of UGT1A1*28 and UGT1A1*6 polymorphisms to the toxicities caused by irinotecan-based therapy. The aim of this review was to evaluate the impact of these variants upon the toxicities and the efficacy of irinotecan-based chemotherapy. PMID:28280378

  8. Stochastic models of gene expression and post-transcriptional regulation

    NASA Astrophysics Data System (ADS)

    Pendar, Hodjat; Kulkarni, Rahul; Jia, Tao

    2011-10-01

    The intrinsic stochasticity of gene expression can give rise to phenotypic heterogeneity in a population of genetically identical cells. Correspondingly, there is considerable interest in understanding how different molecular mechanisms impact the 'noise' in gene expression. Of particular interest are post-transcriptional regulatory mechanisms involving genes called small RNAs, which control important processes such as development and cancer. We propose and analyze general stochastic models of gene expression and derive exact analytical expressions quantifying the noise in protein distributions [1]. Focusing on specific regulatory mechanisms, we analyze a general model for post-transcriptional regulation of stochastic gene expression [2]. The results obtained provide new insights into the role of post-transcriptional regulation in controlling the noise in gene expression. [4pt] [1] T. Jia and R. V. Kulkarni, Phys. Rev. Lett.,106, 058102 (2011) [0pt] [2] T. Jia and R. V. Kulkarni, Phys. Rev. Lett., 105, 018101 (2010)

  9. Docosahexaenoic acid regulates gene expression in HUVEC cells treated with polycyclic aromatic hydrocarbons.

    PubMed

    Gdula-Argasińska, Joanna; Czepiel, Jacek; Totoń-Żurańska, Justyna; Jurczyszyn, Artur; Perucki, William; Wołkow, Paweł

    2015-07-16

    The molecular mechanism of inflammation and carcinogenesis induced by exposure of polycyclic aromatic hydrocarbons (PAHs) is not clearly understood. Our study was undertaken due to the strong pro-carcinogenic potential and reactivity of PAH-metabolites, as well as the susceptibility of polyunsaturated fatty acids to oxidation. The aim of this study was to evaluate the pro- or anti-inflammatory impact of n-3 docosahexaenoic acid on human primary umbilical vein endothelial cells (HUVEC) exposed to polycyclic aromatic hydrocarbons. We analysed the influence of docosahexaenoic acid (DHA) and/or PAHs supplementation on the fatty acid profile of cell membranes, on cyclooxygenase-2 (COX-2), aryl hydrocarbon receptor (AHR), and glutathione S transferase Mu1 (GSTM1) protein expression as well as on the prostaglandin synthase 2 (PTGS2), AHR, GSTM1, PLA2G4A, and cytochrome P450 CYP1A1 gene expression. We observed that COX-2 and AHR protein expression was increased while GSTM1 expression was decreased in cells exposed to DHA and PAHs. Docosahexaenoic acid down-regulated CYP1A1 and up-regulated the AHR and PTGS2 genes. Our findings suggested that DHA contributes significantly to alleviate the harmful effects caused by PAHs in endothelial cells. Moreover, these results suggest that a diet rich in n-3 fatty acids is helpful to reduce the harmful effects of PAHs exposure on human living in heavily polluted areas.

  10. Gene regulation: hacking the network on a sugar high.

    PubMed

    Ellis, Tom; Wang, Xiao; Collins, James J

    2008-04-11

    In a recent issue of Molecular Cell, Kaplan et al. (2008) determine the input functions for 19 E. coli sugar-utilization genes by using a two-dimensional high-throughput approach. The resulting input-function map reveals that gene network regulation follows non-Boolean, and often nonmonotonic, logic.

  11. Biotic Stress Globally Down-Regulates Photosynthesis Genes

    USDA-ARS?s Scientific Manuscript database

    Upon herbivore and pathogen attacks, plants switch from processes supporting growth and reproduction to defense by inducing a set of defense genes and down-regulating most of the nuclear encoded photosynthetic genes. To determine if this transcriptional response is universal we used transcriptome da...

  12. IGF-Regulated Genes in Prostate Cancer

    DTIC Science & Technology

    2006-02-01

    Burgess, A.W., and Ward, C.W. (2002) Cell 110(6), 763-773 53. Sambrook, J., Maniatis , T., and Fritsch, E.F. (1989) Molecular cloning : a laboratory...triplicate arrays that each contain >12,000 sequence-verified, non-redundant human cDNA clones . Data were analyzed by accepted means of normalization...this award. Review of the field-published in Genes, Chromosomes, and Cancer 36: 113-120 (2003) The IGFI Receptor Gene: A Molecular Target for

  13. Regulation of Clock Genes by Adrenergic Receptor Signaling in Osteoblasts.

    PubMed

    Hirai, Takao

    2017-07-27

    The clock system has been identified as one of the major mechanisms controlling cellular functions. Circadian clock gene oscillations also actively participate in the functions of various cell types including bone-related cells. Previous studies demonstrated that clock genes were expressed in bone tissue and also that their expression exhibited circadian rhythmicity. Recent findings have shown that sympathetic tone plays a central role in biological oscillations in bone. Adrenergic receptor (AR) signaling regulates the expression of clock genes in cancellous bone. Furthermore, α1-AR signaling in osteoblasts is known to negatively regulate the expression of bone morphogenetic protein-4 (Bmp4) by up-regulating nuclear factor IL-3 (Nfil3)/e4 promoter-binding protein 4 (E4BP4). The ablation of α1B-AR signaling also increases the expression of the Bmp4 gene in bone. The findings of transient overexpression and siRNA experiments have supported the involvement of the transcription factor CCAAT/enhancer-binding protein delta (C/EBPδ, Cebpd) in Nfil3 and Bmp4 expression in MC3T3-E1 cells. These findings suggest that the effects of Cebpd are due to the circadian regulation of Bmp4 expression, at least in part, by the up-regulated expression of the clock gene Nfil3 in response to α1B-AR signaling in osteoblasts. Therefore, AR signaling appears to modulate cellular functionality through the expression of clock genes that are circadian rhythm regulators in osteoblasts. The expression of clock genes regulated by the sympathetic nervous system and clock-controlled genes that affect bone metabolism are described herein.

  14. Stochastic model of transcription factor-regulated gene expression

    NASA Astrophysics Data System (ADS)

    Karmakar, Rajesh; Bose, Indrani

    2006-09-01

    We consider a stochastic model of transcription factor (TF)-regulated gene expression. The model describes two genes, gene A and gene B, which synthesize the TFs and the target gene proteins, respectively. We show through analytic calculations that the TF fluctuations have a significant effect on the distribution of the target gene protein levels when the mean TF level falls in the highest sensitive region of the dose-response curve. We further study the effect of reducing the copy number of gene A from two to one. The enhanced TF fluctuations yield results different from those in the deterministic case. The probability that the target gene protein level exceeds a threshold value is calculated with the knowledge of the probability density functions associated with the TF and target gene protein levels. Numerical simulation results for a more detailed stochastic model are shown to be in agreement with those obtained through analytic calculations. The relevance of these results in the context of the genetic disorder haploinsufficiency is pointed out. Some experimental observations on the haploinsufficiency of the tumour suppressor gene, Nkx 3.1, are explained with the help of the stochastic model of TF-regulated gene expression.

  15. Plant defense genes are regulated by ethylene

    SciTech Connect

    Ecker, J.R.; Davis, R.W.

    1987-08-01

    One of the earliest detectable events during plant-pathogen interaction is a rapid increase in ethylene biosynthesis. This gaseous plant stress hormone may be a signal for plants to activate defense mechanisms against invading pathogens such as bacteria, fungi, and viruses. The effect of ethylene on four plant genes involved in three separate plant defense response pathways was examined; these included (i and ii) genes that encode L-phenylalanine ammonia-lyase (EC 4.3.1.5) and 4-coumarate:CoA ligase (4-coumarate:CoA ligase (AMP-forming), EC 6.2.1.12), enzymes of the phenylpropanoid pathway, (iii) the gene encoding chalcone synthase, an enzyme of the flavonoid glycoside pathway, and (iv) the genes encoding hydroxyproline-rich glycoprotein, a major protein component(s) of plant cell walls. Blot hybridization analysis of mRNA from ethylene-treated carrot roots reveals marked increases in the levels of phenylalanine ammonia-lyase mRNA, 4-coumarate CoA ligase mRNA, chalcone synthase mRNA, and certain hydroxyproline-rich glycoprotein transcripts. The effect of ethylene on hydroxyproline-rich glycoprotein mRNA accumulation was different from that of wounding. Ethylene induces two hydroxyproline-rich glycoprotein mRNAs (1.8 and 4.0 kilobases), whereas wounding of carrot root leads to accumulation of an additional hydroxyproline-rich mRNA (1.5 kilobases). These results indicate that at least two distinct signals, ethylene and a wound signal, can affect the expression of plant defense-response genes.

  16. Tight junctions and the regulation of gene expression.

    PubMed

    González-Mariscal, Lorenza; Domínguez-Calderón, Alaide; Raya-Sandino, Arturo; Ortega-Olvera, José Mario; Vargas-Sierra, Orlando; Martínez-Revollar, Gabriela

    2014-12-01

    Tight junctions (TJ) regulate the paracellular passage of ions and molecules through the paracellular pathway and maintain plasma membrane polarity in epithelial and endothelial cells. Apart from these canonical functions, several proteins of the TJ have been found in recent years to regulate gene expression. This function is found in proteins that shuttle between the nucleus and TJs, and in integral TJ proteins. In this review, we will describe these proteins and their known mechanisms of gene regulation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Nuclear pore complexes and regulation of gene expression.

    PubMed

    Raices, Marcela; D'Angelo, Maximiliano A

    2017-01-11

    Nuclear pore complexes (NPCs), are large multiprotein channels that penetrate the nuclear envelope connecting the nucleus to the cytoplasm. Accumulating evidence shows that besides their main role in regulating the exchange of molecules between these two compartments, NPCs and their components also play important transport-independent roles, including gene expression regulation, chromatin organization, DNA repair, RNA processing and quality control, and cell cycle control. Here, we will describe the recent findings about the role of these structures in the regulation of gene expression.

  18. Glucose Regulates the Expression of the Apolipoprotein A5 Gene

    SciTech Connect

    Fruchart, Jamila; Nowak, Maxime; Helleboid-Chapman, Audrey; Jakel, Heidelinde; Moitrot, Emmanuelle; Rommens, Corinne; Pennacchio, Len A.; Fruchart-Najib, Jamila; Fruchart, Jean-Charles

    2008-04-07

    The apolipoprotein A5 gene (APOA5) is a key player in determining triglyceride concentrations in humans and mice. Since diabetes is often associated with hypertriglyceridemia, this study explores whether APOA5 gene expression is regulated by alteration in glucose homeostasis and the related pathways. D-glucose activates APOA5 gene expression in a time- and dose-dependent manner in hepatocytes, and the glycolytic pathway involved was determined using D-glucose analogs and metabolites. Together, transient transfections, electrophoretic mobility shift assays and chromatin immunoprecipitation assays show that this regulation occurs at the transcriptional level through an increase of USF1/2 binding to an E-box in the APOA5 promoter. We show that this phenomenon is not due to an increase of mRNA or protein expression levels of USF. Using protein phosphatases 1 and 2A inhibitor, we demonstrate that D-glucose regulates APOA5 gene via a dephosphorylation mechanism, thereby resulting in an enhanced USF1/2-promoter binding. Last, subsequent suppressions of USF1/2 and phosphatases mRNA through siRNA gene silencing abolished the regulation. We demonstrate that APOA5 gene is up regulated by D-glucose and USF through phosphatase activation. These findings may provide a new cross talk between glucose and lipid metabolism.

  19. Thyroid hormone regulated genes in cerebral cortex development.

    PubMed

    Bernal, Juan

    2017-02-01

    The physiological and developmental effects of thyroid hormones are mainly due to the control of gene expression after interaction of T3 with the nuclear receptors. To understand the role of thyroid hormones on cerebral cortex development, knowledge of the genes regulated by T3 during specific stages of development is required. In our laboratory, we previously identified genes regulated by T3 in primary cerebrocortical cells in culture. By comparing these data with transcriptomics of purified cell types from the developing cortex, the cellular targets of T3 can be identified. In addition, many of the genes regulated transcriptionally by T3 have defined roles in cortex development, from which the role of T3 can be derived. This review analyzes the specific roles of T3-regulated genes in the different stages of cortex development within the physiological frame of the developmental changes of thyroid hormones and receptor concentrations in the human cerebral cortex during fetal development. These data indicate an increase in the sensitivity to T3 during the second trimester of fetal development. The main cellular targets of T3 appear to be the Cajal-Retzius and the subplate neurons. On the other hand, T3 regulates transcriptionally genes encoding extracellular matrix proteins, involved in cell migration and the control of diverse signaling pathways.

  20. Cost benefit theory and optimal design of gene regulation functions

    NASA Astrophysics Data System (ADS)

    Kalisky, Tomer; Dekel, Erez; Alon, Uri

    2007-12-01

    Cells respond to the environment by regulating the expression of genes according to environmental signals. The relation between the input signal level and the expression of the gene is called the gene regulation function. It is of interest to understand the shape of a gene regulation function in terms of the environment in which it has evolved and the basic constraints of biological systems. Here we address this by presenting a cost-benefit theory for gene regulation functions that takes into account temporally varying inputs in the environment and stochastic noise in the biological components. We apply this theory to the well-studied lac operon of E. coli. The present theory explains the shape of this regulation function in terms of temporal variation of the input signals, and of minimizing the deleterious effect of cell-cell variability in regulatory protein levels. We also apply the theory to understand the evolutionary tradeoffs in setting the number of regulatory proteins and for selection of feed-forward loops in genetic circuits. The present cost-benefit theory can be used to understand the shape of other gene regulatory functions in terms of environment and noise constraints.

  1. Antidepressant actions of the exercise-regulated gene VGF.

    PubMed

    Hunsberger, Joshua G; Newton, Samuel S; Bennett, Alicia H; Duman, Catharine H; Russell, David S; Salton, Stephen R; Duman, Ronald S

    2007-12-01

    Exercise has many health benefits, including antidepressant actions in depressed human subjects, but the mechanisms underlying these effects have not been elucidated. We used a custom microarray to identify a previously undescribed profile of exercise-regulated genes in the mouse hippocampus, a brain region implicated in mood and antidepressant response. Pathway analysis of the regulated genes shows that exercise upregulates a neurotrophic factor signaling cascade that has been implicated in the actions of antidepressants. One of the most highly regulated target genes of exercise and of the growth factor pathway is the gene encoding the VGF nerve growth factor, a peptide precursor previously shown to influence synaptic plasticity and metabolism. We show that administration of a synthetic VGF-derived peptide produces a robust antidepressant response in mice and, conversely, that mutation of VGF in mice produces the opposite effects. The results suggest a new role for VGF and identify VGF signaling as a potential therapeutic target for antidepressant drug development.

  2. A genomics approach identifies senescence-specific gene expression regulation.

    PubMed

    Lackner, Daniel H; Hayashi, Makoto T; Cesare, Anthony J; Karlseder, Jan

    2014-10-01

    Replicative senescence is a fundamental tumor-suppressive mechanism triggered by telomere erosion that results in a permanent cell cycle arrest. To understand the impact of telomere shortening on gene expression, we analyzed the transcriptome of diploid human fibroblasts as they progressed toward and entered into senescence. We distinguished novel transcription regulation due to replicative senescence by comparing senescence-specific expression profiles to profiles from cells arrested by DNA damage or serum starvation. Only a small specific subset of genes was identified that was truly senescence-regulated and changes in gene expression were exacerbated from presenescent to senescent cells. The majority of gene expression regulation in replicative senescence was shown to occur due to telomere shortening, as exogenous telomerase activity reverted most of these changes.

  3. Intrinsic limits to gene regulation by global crosstalk

    PubMed Central

    Friedlander, Tamar; Prizak, Roshan; Guet, Călin C.; Barton, Nicholas H.; Tkačik, Gašper

    2016-01-01

    Gene regulation relies on the specificity of transcription factor (TF)–DNA interactions. Limited specificity may lead to crosstalk: a regulatory state in which a gene is either incorrectly activated due to noncognate TF–DNA interactions or remains erroneously inactive. As each TF can have numerous interactions with noncognate cis-regulatory elements, crosstalk is inherently a global problem, yet has previously not been studied as such. We construct a theoretical framework to analyse the effects of global crosstalk on gene regulation. We find that crosstalk presents a significant challenge for organisms with low-specificity TFs, such as metazoans. Crosstalk is not easily mitigated by known regulatory schemes acting at equilibrium, including variants of cooperativity and combinatorial regulation. Our results suggest that crosstalk imposes a previously unexplored global constraint on the functioning and evolution of regulatory networks, which is qualitatively distinct from the known constraints that act at the level of individual gene regulatory elements. PMID:27489144

  4. A genomics approach identifies senescence-specific gene expression regulation

    PubMed Central

    Lackner, Daniel H; Hayashi, Makoto T; Cesare, Anthony J; Karlseder, Jan

    2014-01-01

    Replicative senescence is a fundamental tumor-suppressive mechanism triggered by telomere erosion that results in a permanent cell cycle arrest. To understand the impact of telomere shortening on gene expression, we analyzed the transcriptome of diploid human fibroblasts as they progressed toward and entered into senescence. We distinguished novel transcription regulation due to replicative senescence by comparing senescence-specific expression profiles to profiles from cells arrested by DNA damage or serum starvation. Only a small specific subset of genes was identified that was truly senescence-regulated and changes in gene expression were exacerbated from presenescent to senescent cells. The majority of gene expression regulation in replicative senescence was shown to occur due to telomere shortening, as exogenous telomerase activity reverted most of these changes. PMID:24863242

  5. Sulfotransferase 1A1 Substrate Selectivity: A Molecular Clamp Mechanism.

    PubMed

    Cook, Ian; Wang, Ting; Leyh, Thomas S

    2015-10-06

    The human cytosolic sulfotransferases (SULTs) regulate hundreds, perhaps thousands, of small molecule metabolites and xenobiotics via transfer of a sulfuryl moiety (-SO3) from PAPS (3'-phosphoadenosine 5'-phosphosulfate) to the hydroxyls and primary amines of the recipients. In liver, where it is abundant, SULT1A1 engages in modifying metabolites and neutralizing toxins. The specificity of 1A1 is the broadest of any SULT, and understanding its selectivity is fundamental to understanding its biology. Here, for the first time, we show that SULT1A1 substrates separate naturally into two classes: those whose affinities are either enhanced ∼20-fold (positive synergy) or unaffected (neutral synergy) by the presence of a saturating nucleotide. kcat for the positive-synergy substrates is shown to be ∼100-fold greater than that of neutral-synergy compounds; consequently, the catalytic efficiency (kcat/Km) is approximately 3 orders of magnitude greater for the positive-synergy species. All-atom dynamics modeling suggests a molecular mechanism for these observations in which the binding of only positive-synergy compounds causes two phenylalanine residues (F81 and 84) to reposition and "sandwich" the phenolic moiety of the substrates, thus enhancing substrate affinity and positioning the nucleophilic oxygen for attack. Molecular dynamics movies reveal that the neutral-synergy compounds "wander" about the active site, infrequently achieving a reactive position. In-depth analysis of select point mutants strongly supports the model and provides an intimate view of the interdependent catalytic functions of subsections of the active site.

  6. Regulation of clustered protocadherin genes in individual neurons.

    PubMed

    Hirayama, Teruyoshi; Yagi, Takeshi

    2017-09-01

    Individual neurons are basic functional units in the complex system of the brain. One aspect of neuronal individuality is generated by stochastic and combinatorial expression of diverse clustered protocadherins (Pcdhs), encoded by the Pcdha, Pcdhb, and Pcdhg gene clusters, that are critical for several aspects of neural circuit formation. Each clustered Pcdh gene has its own promoter containing conserved sequences and is transcribed by a promoter choice mechanism involving interaction between the promoter and enhancers. A CTCF/Cohesin complex induces this interaction by configuration of DNA-looping in the chromatin structure. At the same time, the semi-stochastic expression of clustered Pcdh genes is regulated in individual neurons by DNA methylation: the methyltransferase Dnmt3b regulates methylation state of individual clustered Pcdh genes during early embryonic stages prior to the establishment of neural stem cells. Several other factors, including Smchd1, also contribute to the regulation of clustered Pcdh gene expression. In addition, psychiatric diseases and early life experiences of individuals can influence expression of clustered Pcdh genes in the brain, through epigenetic alterations. Clustered Pcdh gene expression is thus a significant and highly regulated step in establishing neuronal individuality and generating functional neural circuits in the brain. Copyright © 2017. Published by Elsevier Ltd.

  7. Transcription dynamics of inducible genes modulated by negative regulations.

    PubMed

    Li, Yanyan; Tang, Moxun; Yu, Jianshe

    2015-06-01

    Gene transcription is a stochastic process in single cells, in which genes transit randomly between active and inactive states. Transcription of many inducible genes is also tightly regulated: It is often stimulated by extracellular signals, activated through signal transduction pathways and later repressed by negative regulations. In this work, we study the nonlinear dynamics of the mean transcription level of inducible genes modulated by the interplay of the intrinsic transcriptional randomness and the repression by negative regulations. In our model, we integrate negative regulations into gene activation process, and make the conventional assumption on the production and degradation of transcripts. We show that, whether or not the basal transcription is temporarily terminated when cells are stimulated, the mean transcription level grows in the typical up and down pattern commonly observed in immune response genes. With the help of numerical simulations, we clarify the delicate impact of the system parameters on the transcription dynamics, and demonstrate how our model generates the distinct temporal gene-induction patterns in mouse fibroblasts discerned in recent experiments.

  8. Sperm is epigenetically programmed to regulate gene transcription in embryos

    PubMed Central

    Teperek, Marta; Simeone, Angela; Gaggioli, Vincent; Miyamoto, Kei; Allen, George E.; Erkek, Serap; Kwon, Taejoon; Marcotte, Edward M.; Zegerman, Philip; Bradshaw, Charles R.; Peters, Antoine H.F.M.; Gurdon, John B.; Jullien, Jerome

    2016-01-01

    For a long time, it has been assumed that the only role of sperm at fertilization is to introduce the male genome into the egg. Recently, ideas have emerged that the epigenetic state of the sperm nucleus could influence transcription in the embryo. However, conflicting reports have challenged the existence of epigenetic marks on sperm genes, and there are no functional tests supporting the role of sperm epigenetic marking on embryonic gene expression. Here, we show that sperm is epigenetically programmed to regulate embryonic gene expression. By comparing the development of sperm- and spermatid-derived frog embryos, we show that the programming of sperm for successful development relates to its ability to regulate transcription of a set of developmentally important genes. During spermatid maturation into sperm, these genes lose H3K4me2/3 and retain H3K27me3 marks. Experimental removal of these epigenetic marks at fertilization de-regulates gene expression in the resulting embryos in a paternal chromatin-dependent manner. This demonstrates that epigenetic instructions delivered by the sperm at fertilization are required for correct regulation of gene expression in the future embryos. The epigenetic mechanisms of developmental programming revealed here are likely to relate to the mechanisms involved in transgenerational transmission of acquired traits. Understanding how parental experience can influence development of the progeny has broad potential for improving human health. PMID:27034506

  9. DNA Methylation is Developmentally Regulated for Genes Essential for Cardiogenesis

    PubMed Central

    Chamberlain, Alyssa A.; Lin, Mingyan; Lister, Rolanda L.; Maslov, Alex A.; Wang, Yidong; Suzuki, Masako; Wu, Bingruo; Greally, John M.; Zheng, Deyou; Zhou, Bin

    2014-01-01

    Background DNA methylation is a major epigenetic mechanism altering gene expression in development and disease. However, its role in the regulation of gene expression during heart development is incompletely understood. The aim of this study is to reveal DNA methylation in mouse embryonic hearts and its role in regulating gene expression during heart development. Methods and Results We performed the genome‐wide DNA methylation profiling of mouse embryonic hearts using methyl‐sensitive, tiny fragment enrichment/massively parallel sequencing to determine methylation levels at ACGT sites. The results showed that while global methylation of 1.64 million ACGT sites in developing hearts remains stable between embryonic day (E) 11.5 and E14.5, a small fraction (2901) of them exhibit differential methylation. Gene Ontology analysis revealed that these sites are enriched at genes involved in heart development. Quantitative real‐time PCR analysis of 350 genes with differential DNA methylation showed that the expression of 181 genes is developmentally regulated, and 79 genes have correlative changes between methylation and expression, including hyaluronan synthase 2 (Has2). Required for heart valve formation, Has2 expression in the developing heart valves is downregulated at E14.5, accompanied with increased DNA methylation in its enhancer. Genetic knockout further showed that the downregulation of Has2 expression is dependent on DNA methyltransferase 3b, which is co‐expressed with Has2 in the forming heart valve region, indicating that the DNA methylation change may contribute to the Has2 enhancer's regulating function. Conclusions DNA methylation is developmentally regulated for genes essential to heart development, and abnormal DNA methylation may contribute to congenital heart disease. PMID:24947998

  10. Inducible and reversible regulation of endogenous gene in mouse

    PubMed Central

    Sun, Ruilin; Zhao, Kai; Shen, Ruling; Cai, Lei; Yang, Xingyu; Kuang, Ying; Mao, Jifang; Huang, Fang; Wang, Zhugang; Fei, Jian

    2012-01-01

    Methods for generating loss-of-function mutations, such as conventional or conditional gene knockout, are widely used in deciphering gene function in vivo. By contrast, inducible and reversible regulation of endogenous gene expression has not been well established. Using a mouse model, we demonstrate that a chimeric transcriptional repressor molecule (tTS) can reversibly inhibit the expression of an endogenous gene, Nmyc. In this system, a tetracycline response element (TRE) artificially inserted near the target gene’s promoter region turns the gene on and off in a tetracycline-inducible manner. NmycTRE mice were generated by inserting a TRE into the first intron of Nmyc by the knockin technique. NmycTRE mice were crossed to tTS transgenic mice to produce NmycTRE/TRE: tTS embryos. In these embryos, tTS blocked Nmyc expression, and embryonic lethality was observed at E11.5d. When the dam was exposed to drinking water containing doxycycline (dox), normal endogenous Nmyc expression was rescued, and the embryo survived to birth. This novel genetic modification strategy based on the tTS–dox system for inducible and reversible regulation of endogenous mouse genes will be a powerful tool to investigate target genes that cause embryonic lethality or other defects where reversible regulation or temporary shutdown of the target gene is needed. PMID:22879379

  11. Regulation of imprinted gene expression in Arabidopsis endosperm

    PubMed Central

    Hsieh, Tzung-Fu; Shin, Juhyun; Uzawa, Rie; Silva, Pedro; Cohen, Stephanie; Bauer, Matthew J.; Hashimoto, Meryl; Kirkbride, Ryan C.; Harada, John J.; Zilberman, Daniel; Fischer, Robert L.

    2011-01-01

    Imprinted genes are expressed primarily or exclusively from either the maternal or paternal allele, a phenomenon that occurs in flowering plants and mammals. Flowering plant imprinted gene expression has been described primarily in endosperm, a terminal nutritive tissue consumed by the embryo during seed development or after germination. Imprinted expression in Arabidopsis thaliana endosperm is orchestrated by differences in cytosine DNA methylation between the paternal and maternal genomes as well as by Polycomb group proteins. Currently, only 11 imprinted A. thaliana genes are known. Here, we use extensive sequencing of cDNA libraries to identify 9 paternally expressed and 34 maternally expressed imprinted genes in A. thaliana endosperm that are regulated by the DNA-demethylating glycosylase DEMETER, the DNA methyltransferase MET1, and/or the core Polycomb group protein FIE. These genes encode transcription factors, proteins involved in hormone signaling, components of the ubiquitin protein degradation pathway, regulators of histone and DNA methylation, and small RNA pathway proteins. We also identify maternally expressed genes that may be regulated by unknown mechanisms or deposited from maternal tissues. We did not detect any imprinted genes in the embryo. Our results show that imprinted gene expression is an extensive mechanistically complex phenomenon that likely affects multiple aspects of seed development. PMID:21257907

  12. Evolution of Brain Active Gene Promoters in Human Lineage Towards the Increased Plasticity of Gene Regulation.

    PubMed

    Gunbin, Konstantin V; Ponomarenko, Mikhail P; Suslov, Valentin V; Gusev, Fedor; Fedonin, Gennady G; Rogaev, Evgeny I

    2017-02-24

    Adaptability to a variety of environmental conditions is a prominent feature of Homo sapiens. We hypothesize that this feature can be explained by evolutionary changes in gene promoters active in the brain prefrontal cortex leading to a more flexible gene regulation network. The genotype-dependent range of gene expression can be broader in humans than in other higher primates. Thus, we searched for specific signatures of evolutionary changes in promoter architectures of multiple hominid genes, including the genes active in human cortical neurons that may indicate an increase of variability of gene expression rather than just changes in the level of expression, such as downregulation or upregulation of the genes. We performed a whole-genome search for genetic-based alterations that may impact gene regulation "flexibility" in a process of hominids evolution, such as (i) CpG dinucleotide content, (ii) predicted nucleosome-DNA dissociation constant, and (iii) predicted affinities for TATA-binding protein (TBP) in gene promoters. We tested all putative promoter regions across the human genome and especially gene promoters in active chromatin state in neurons of prefrontal cortex, the brain region critical for abstract thinking and social and behavioral adaptation. Our data imply that the origin of modern man has been associated with an increase of flexibility of promoter-driven gene regulation in brain. In contrast, after splitting from the ancestral lineages of H. sapiens, the evolution of ape species is characterized by reduced flexibility of gene promoter functioning, underlying reduced variability of the gene expression.

  13. Identification of human HK genes and gene expression regulation study in cancer from transcriptomics data analysis.

    PubMed

    Chen, Meili; Xiao, Jingfa; Zhang, Zhang; Liu, Jingxing; Wu, Jiayan; Yu, Jun

    2013-01-01

    The regulation of gene expression is essential for eukaryotes, as it drives the processes of cellular differentiation and morphogenesis, leading to the creation of different cell types in multicellular organisms. RNA-Sequencing (RNA-Seq) provides researchers with a powerful toolbox for characterization and quantification of transcriptome. Many different human tissue/cell transcriptome datasets coming from RNA-Seq technology are available on public data resource. The fundamental issue here is how to develop an effective analysis method to estimate expression pattern similarities between different tumor tissues and their corresponding normal tissues. We define the gene expression pattern from three directions: 1) expression breadth, which reflects gene expression on/off status, and mainly concerns ubiquitously expressed genes; 2) low/high or constant/variable expression genes, based on gene expression level and variation; and 3) the regulation of gene expression at the gene structure level. The cluster analysis indicates that gene expression pattern is higher related to physiological condition rather than tissue spatial distance. Two sets of human housekeeping (HK) genes are defined according to cell/tissue types, respectively. To characterize the gene expression pattern in gene expression level and variation, we firstly apply improved K-means algorithm and a gene expression variance model. We find that cancer-associated HK genes (a HK gene is specific in cancer group, while not in normal group) are expressed higher and more variable in cancer condition than in normal condition. Cancer-associated HK genes prefer to AT-rich genes, and they are enriched in cell cycle regulation related functions and constitute some cancer signatures. The expression of large genes is also avoided in cancer group. These studies will help us understand which cell type-specific patterns of gene expression differ among different cell types, and particularly for cancer.

  14. Identification of Human HK Genes and Gene Expression Regulation Study in Cancer from Transcriptomics Data Analysis

    PubMed Central

    Zhang, Zhang; Liu, Jingxing; Wu, Jiayan; Yu, Jun

    2013-01-01

    The regulation of gene expression is essential for eukaryotes, as it drives the processes of cellular differentiation and morphogenesis, leading to the creation of different cell types in multicellular organisms. RNA-Sequencing (RNA-Seq) provides researchers with a powerful toolbox for characterization and quantification of transcriptome. Many different human tissue/cell transcriptome datasets coming from RNA-Seq technology are available on public data resource. The fundamental issue here is how to develop an effective analysis method to estimate expression pattern similarities between different tumor tissues and their corresponding normal tissues. We define the gene expression pattern from three directions: 1) expression breadth, which reflects gene expression on/off status, and mainly concerns ubiquitously expressed genes; 2) low/high or constant/variable expression genes, based on gene expression level and variation; and 3) the regulation of gene expression at the gene structure level. The cluster analysis indicates that gene expression pattern is higher related to physiological condition rather than tissue spatial distance. Two sets of human housekeeping (HK) genes are defined according to cell/tissue types, respectively. To characterize the gene expression pattern in gene expression level and variation, we firstly apply improved K-means algorithm and a gene expression variance model. We find that cancer-associated HK genes (a HK gene is specific in cancer group, while not in normal group) are expressed higher and more variable in cancer condition than in normal condition. Cancer-associated HK genes prefer to AT-rich genes, and they are enriched in cell cycle regulation related functions and constitute some cancer signatures. The expression of large genes is also avoided in cancer group. These studies will help us understand which cell type-specific patterns of gene expression differ among different cell types, and particularly for cancer. PMID:23382867

  15. The NSL Complex Regulates Housekeeping Genes in Drosophila

    PubMed Central

    Raja, Sunil Jayaramaiah; Holz, Herbert; Luscombe, Nicholas M.; Manke, Thomas; Akhtar, Asifa

    2012-01-01

    MOF is the major histone H4 lysine 16-specific (H4K16) acetyltransferase in mammals and Drosophila. In flies, it is involved in the regulation of X-chromosomal and autosomal genes as part of the MSL and the NSL complexes, respectively. While the function of the MSL complex as a dosage compensation regulator is fairly well understood, the role of the NSL complex in gene regulation is still poorly characterized. Here we report a comprehensive ChIP–seq analysis of four NSL complex members (NSL1, NSL3, MBD-R2, and MCRS2) throughout the Drosophila melanogaster genome. Strikingly, the majority (85.5%) of NSL-bound genes are constitutively expressed across different cell types. We find that an increased abundance of the histone modifications H4K16ac, H3K4me2, H3K4me3, and H3K9ac in gene promoter regions is characteristic of NSL-targeted genes. Furthermore, we show that these genes have a well-defined nucleosome free region and broad transcription initiation patterns. Finally, by performing ChIP–seq analyses of RNA polymerase II (Pol II) in NSL1- and NSL3-depleted cells, we demonstrate that both NSL proteins are required for efficient recruitment of Pol II to NSL target gene promoters. The observed Pol II reduction coincides with compromised binding of TBP and TFIIB to target promoters, indicating that the NSL complex is required for optimal recruitment of the pre-initiation complex on target genes. Moreover, genes that undergo the most dramatic loss of Pol II upon NSL knockdowns tend to be enriched in DNA Replication–related Element (DRE). Taken together, our findings show that the MOF-containing NSL complex acts as a major regulator of housekeeping genes in flies by modulating initiation of Pol II transcription. PMID:22723752

  16. Linking gene regulation to mRNA production and export.

    PubMed

    Rodríguez-Navarro, Susana; Hurt, Ed

    2011-06-01

    Regulation of gene expression can occur at many different levels. One important step in the gene expression process is the transport of mRNA from the nucleus to the cytoplasm. In recent years, studies have described how nuclear mRNA export depends on the steps preceding and following transport through nuclear pore complexes. These include gene activation, transcription, mRNA processing and mRNP assembly and disassembly. In this review, we summarise recent insights into the links between these steps in the gene expression cascade.

  17. Pancreatic regeneration: basic research and gene regulation.

    PubMed

    Okita, Kenji; Mizuguchi, Toru; Shigenori, Ota; Ishii, Masayuki; Nishidate, Toshihiko; Ueki, Tomomi; Meguro, Makoto; Kimura, Yasutoshi; Tanimizu, Naoki; Ichinohe, Norihisa; Torigoe, Toshihiko; Kojima, Takashi; Mitaka, Toshihiro; Sato, Noriyuki; Sawada, Norimasa; Hirata, Koichi

    2016-06-01

    Pancreatic regeneration (PR) is an interesting phenomenon that could provide clues as to how the control of diabetes mellitus might be achieved. Due to the different regenerative abilities of the pancreas and liver, the molecular mechanism responsible for PR is largely unknown. In this review, we describe five representative murine models of PR and thirteen humoral mitogens that stimulate β-cell proliferation. We also describe pancreatic ontogenesis, including the molecular transcriptional differences between α-cells and β-cells. Furthermore, we review 14 murine models which carry defects in genes related to key transcription factors for pancreatic ontogenesis to gain further insight into pancreatic development.

  18. Posttranscriptional and posttranslational regulation of clock genes.

    PubMed

    Harms, Emily; Kivimäe, Saul; Young, Michael W; Saez, Lino

    2004-10-01

    Circadian rhythms have been observed in diverse organisms, including plants, animals, bacteria, and fungi. In such organisms, the circadian clock is primarily composed of a cell-autonomous transcriptional feedback loop. In addition to transcriptional regulation, the modification of core clock transcripts and proteins can dramatically affect the circadian clock. In this review, the authors discuss some of the posttranscriptional and posttranslational modifications and their effects on the circadian clock. The combined outcome of these modifications is to adjust the timing of the clock to produce a circadian oscillator that takes approximately 24 h.

  19. Ezrin Inhibition Up-regulates Stress Response Gene Expression*

    PubMed Central

    Çelik, Haydar; Bulut, Gülay; Han, Jenny; Graham, Garrett T.; Minas, Tsion Z.; Conn, Erin J.; Hong, Sung-Hyeok; Pauly, Gary T.; Hayran, Mutlu; Li, Xin; Özdemirli, Metin; Ayhan, Ayşe; Rudek, Michelle A.; Toretsky, Jeffrey A.; Üren, Aykut

    2016-01-01

    Ezrin is a member of the ERM (ezrin/radixin/moesin) family of proteins that links cortical cytoskeleton to the plasma membrane. High expression of ezrin correlates with poor prognosis and metastasis in osteosarcoma. In this study, to uncover specific cellular responses evoked by ezrin inhibition that can be used as a specific pharmacodynamic marker(s), we profiled global gene expression in osteosarcoma cells after treatment with small molecule ezrin inhibitors, NSC305787 and NSC668394. We identified and validated several up-regulated integrated stress response genes including PTGS2, ATF3, DDIT3, DDIT4, TRIB3, and ATF4 as novel ezrin-regulated transcripts. Analysis of transcriptional response in skin and peripheral blood mononuclear cells from NSC305787-treated mice compared with a control group revealed that, among those genes, the stress gene DDIT4/REDD1 may be used as a surrogate pharmacodynamic marker of ezrin inhibitor compound activity. In addition, we validated the anti-metastatic effects of NSC305787 in reducing the incidence of lung metastasis in a genetically engineered mouse model of osteosarcoma and evaluated the pharmacokinetics of NSC305787 and NSC668394 in mice. In conclusion, our findings suggest that cytoplasmic ezrin, previously considered a dormant and inactive protein, has important functions in regulating gene expression that may result in down-regulation of stress response genes. PMID:27137931

  20. Functional Interactions between NURF and Ctcf Regulate Gene Expression

    PubMed Central

    Qiu, Zhijun; Song, Carolyn; Malakouti, Navid; Murray, Daniel; Hariz, Aymen; Zimmerman, Mark; Gygax, Derek; Alhazmi, Aiman

    2014-01-01

    Gene expression frequently requires chromatin-remodeling complexes, and it is assumed that these complexes have common gene targets across cell types. Contrary to this belief, we show by genome-wide expression profiling that Bptf, an essential and unique subunit of the nucleosome-remodeling factor (NURF), predominantly regulates the expression of a unique set of genes between diverse cell types. Coincident with its functions in gene expression, we observed that Bptf is also important for regulating nucleosome occupancy at nucleosome-free regions (NFRs), many of which are located at sites occupied by the multivalent factors Ctcf and cohesin. NURF function at Ctcf binding sites could be direct, because Bptf occupies Ctcf binding sites in vivo and has physical interactions with CTCF and the cohesin subunit SA2. Assays of several Ctcf binding sites using reporter assays showed that their regulatory activity requires Bptf in two different cell types. Focused studies at H2-K1 showed that Bptf regulates the ability of Klf4 to bind near an upstream Ctcf site, possibly influencing gene expression. In combination, these studies demonstrate that gene expression as regulated by NURF occurs partly through physical and functional interactions with the ubiquitous and multivalent factors Ctcf and cohesin. PMID:25348714

  1. Differential methylation during maize leaf growth targets developmentally regulated genes.

    PubMed

    Candaele, Jasper; Demuynck, Kirin; Mosoti, Douglas; Beemster, Gerrit T S; Inzé, Dirk; Nelissen, Hilde

    2014-03-01

    DNA methylation is an important and widespread epigenetic modification in plant genomes, mediated by DNA methyltransferases (DMTs). DNA methylation is known to play a role in genome protection, regulation of gene expression, and splicing and was previously associated with major developmental reprogramming in plants, such as vernalization and transition to flowering. Here, we show that DNA methylation also controls the growth processes of cell division and cell expansion within a growing organ. The maize (Zea mays) leaf offers a great tool to study growth processes, as the cells progressively move through the spatial gradient encompassing the division zone, transition zone, elongation zone, and mature zone. Opposite to de novo DMTs, the maintenance DMTs were transcriptionally regulated throughout the growth zone of the maize leaf, concomitant with differential CCGG methylation levels in the four zones. Surprisingly, the majority of differentially methylated sequences mapped on or close to gene bodies and not to repeat-rich loci. Moreover, especially the 5' and 3' regions of genes, which show overall low methylation levels, underwent differential methylation in a developmental context. Genes involved in processes such as chromatin remodeling, cell cycle progression, and growth regulation, were differentially methylated. The presence of differential methylation located upstream of the gene anticorrelated with transcript expression, while gene body differential methylation was unrelated to the expression level. These data indicate that DNA methylation is correlated with the decision to exit mitotic cell division and to enter cell expansion, which adds a new epigenetic level to the regulation of growth processes.

  2. Ezrin Inhibition Up-regulates Stress Response Gene Expression.

    PubMed

    Çelik, Haydar; Bulut, Gülay; Han, Jenny; Graham, Garrett T; Minas, Tsion Z; Conn, Erin J; Hong, Sung-Hyeok; Pauly, Gary T; Hayran, Mutlu; Li, Xin; Özdemirli, Metin; Ayhan, Ayşe; Rudek, Michelle A; Toretsky, Jeffrey A; Üren, Aykut

    2016-06-17

    Ezrin is a member of the ERM (ezrin/radixin/moesin) family of proteins that links cortical cytoskeleton to the plasma membrane. High expression of ezrin correlates with poor prognosis and metastasis in osteosarcoma. In this study, to uncover specific cellular responses evoked by ezrin inhibition that can be used as a specific pharmacodynamic marker(s), we profiled global gene expression in osteosarcoma cells after treatment with small molecule ezrin inhibitors, NSC305787 and NSC668394. We identified and validated several up-regulated integrated stress response genes including PTGS2, ATF3, DDIT3, DDIT4, TRIB3, and ATF4 as novel ezrin-regulated transcripts. Analysis of transcriptional response in skin and peripheral blood mononuclear cells from NSC305787-treated mice compared with a control group revealed that, among those genes, the stress gene DDIT4/REDD1 may be used as a surrogate pharmacodynamic marker of ezrin inhibitor compound activity. In addition, we validated the anti-metastatic effects of NSC305787 in reducing the incidence of lung metastasis in a genetically engineered mouse model of osteosarcoma and evaluated the pharmacokinetics of NSC305787 and NSC668394 in mice. In conclusion, our findings suggest that cytoplasmic ezrin, previously considered a dormant and inactive protein, has important functions in regulating gene expression that may result in down-regulation of stress response genes.

  3. DAG1, no gene for RNA regulation?

    PubMed

    Brancaccio, Andrea

    2012-04-10

    DAG1 encodes for a precursor protein that liberates the two subunits featured by the dystroglycan (DG) adhesion complex that are involved in an increasing number of cellular functions in a wide variety of cells and tissues. Aside from the proteolytic events producing the α and β subunits, especially the former undergoes extensive "post-production" modifications taking place within the ER/Golgi where its core protein is both N- and O-decorated with sugars. These post-translational events, that are mainly orchestrated by a plethora of certified, or putative, glycosyltransferases, prelude to the excocytosis-mediated trafficking and targeting of the DG complex to the plasma membrane. Extensive genetic and biochemical evidences have been accumulated so far on α-DG glycosylation, while little is know on possible regulatory events underlying the chromatine activation, transcription or post-transcription (splicing and escape from the nucleus) of DAG1 or of its mRNA. A scenario is envisaged in which cells would use a sort of preferential, and scarcely regulated, route for DAG1 activation, that would imply fast mRNA transcription, maturation and export to the cytosol, and would prelude to the multiple time-consuming enzymatic post-translational activities needed for its glycosylation. Such a provocative view might be helpful to trigger future work aiming at disclosing the complete molecular mechanisms underlying DAG1 activation and at improving our knowledge of any pre-translational step that is involved in dystroglycan regulation.

  4. All-optical regulation of gene expression in targeted cells

    NASA Astrophysics Data System (ADS)

    Wang, Yisen; He, Hao; Li, Shiyang; Liu, Dayong; Lan, Bei; Hu, Minglie; Cao, Youjia; Wang, Chingyue

    2014-06-01

    Controllable gene expression is always a challenge and of great significance to biomedical research and clinical applications. Recently, various approaches based on extra-engineered light-sensitive proteins have been developed to provide optogenetic actuators for gene expression. Complicated biomedical techniques including exogenous genes engineering, transfection, and material delivery are needed. Here we present an all-optical method to regulate gene expression in targeted cells. Intrinsic or exogenous genes can be activated by a Ca2+-sensitive transcription factor nuclear factor of activated T cells (NFAT) driven by a short flash of femtosecond-laser irradiation. When applied to mesenchymal stem cells, expression of a differentiation regulator Osterix can be activated by this method to potentially induce differentiation of them. A laser-induced ``Ca2+-comb'' (LiCCo) by multi-time laser exposure is further developed to enhance gene expression efficiency. This noninvasive method hence provides an encouraging advance of gene expression regulation, with promising potential of applying in cell biology and stem-cell science.

  5. Gene expression and regulation in adrenocortical tumorigenesis.

    PubMed

    Fonseca, Annabelle L; Healy, James; Kunstman, John W; Korah, Reju; Carling, Tobias

    2012-12-27

    Adrenocortical tumors are frequently found in the general population, and may be benign adrenocortical adenomas or malignant adrenocortical carcinomas. Unfortunately the clinical, biochemical and histopathological distinction between benign and malignant adrenocortical tumors may be difficult in the absence of widely invasive or metastatic disease, and hence attention has turned towards a search for molecular markers. The study of rare genetic diseases that are associated with the development of adrenocortical carcinomas has contributed to our understanding of adrenocortical tumorigenesis. In addition, comprehensive genomic hybridization, methylation profiling, and genome wide mRNA and miRNA profiling have led to improvements in our understanding, as well as demonstrated several genes and pathways that may serve as diagnostic or prognostic markers.

  6. Social Regulation of Gene Expression in Threespine Sticklebacks

    PubMed Central

    Greenwood, Anna K.; Peichel, Catherine L.

    2015-01-01

    Identifying genes that are differentially expressed in response to social interactions is informative for understanding the molecular basis of social behavior. To address this question, we described changes in gene expression as a result of differences in the extent of social interactions. We housed threespine stickleback (Gasterosteus aculeatus) females in either group conditions or individually for one week, then measured levels of gene expression in three brain regions using RNA-sequencing. We found that numerous genes in the hindbrain/cerebellum had altered expression in response to group or individual housing. However, relatively few genes were differentially expressed in either the diencephalon or telencephalon. The list of genes upregulated in fish from social groups included many genes related to neural development and cell adhesion as well as genes with functions in sensory signaling, stress, and social and reproductive behavior. The list of genes expressed at higher levels in individually-housed fish included several genes previously identified as regulated by social interactions in other animals. The identified genes are interesting targets for future research on the molecular mechanisms of normal social interactions. PMID:26367311

  7. Toehold Switches: De-Novo-Designed Regulators of Gene Expression

    PubMed Central

    Green, Alexander A.; Silver, Pamela A.; Collins, James J.; Yin, Peng

    2014-01-01

    SUMMARY Efforts to construct synthetic networks in living cells have been hindered by the limited number of regulatory components that provide wide dynamic range and low crosstalk. Here, we report a new class of de-novo-designed prokaryotic riboregulators called toehold switches that activate gene expression in response to cognate RNAs with arbitrary sequences. Toehold switches provide a high level of orthogonality and can be forward-engineered to provide average dynamic range above 400. We show that switches can be integrated into the genome to regulate endogenous genes and use them as sensors that respond to endogenous RNAs. We exploit the orthogonality of toehold switches to regulate 12 genes independently and to construct a genetic circuit that evaluates 4-input AND logic. Toehold switches, with their wide dynamic range, orthogonality, and programmability, represent a versatile and powerful platform for regulation of translation, offering diverse applications in molecular biology, synthetic biology, and biotechnology. PMID:25417166

  8. Transcriptional regulation of mammalian miRNA genes

    PubMed Central

    Schanen, Brian C.; Li, Xiaoman

    2010-01-01

    MicroRNAs (miRNAs) are members of a growing family of non-coding transcripts, 21-23 nucleotides long, which regulate a diverse collection of biological processes and various diseases by RNA-mediated gene-silencing mechanisms. While currently many studies focus on defining the regulatory functions of miRNAs, few are directed towards how miRNA genes are themselves transcriptionally regulated. Recent studies of miRNA transcription have elucidated RNA polymerase II as the major polymerase of miRNAs, however, little is known of the structural features of miRNA promoters, especially those of mammalian miRNAs. Here, we review the current literature regarding features conserved among miRNA promoters useful for their detection and the current novel methodologies available to enable researchers to advance our understanding of the transcriptional regulation of miRNA genes. PMID:20977933

  9. Different Polycomb group complexes regulate common target genes in Arabidopsis.

    PubMed

    Makarevich, Grigory; Leroy, Olivier; Akinci, Umut; Schubert, Daniel; Clarenz, Oliver; Goodrich, Justin; Grossniklaus, Ueli; Köhler, Claudia

    2006-09-01

    Polycomb group (PcG) proteins convey epigenetic inheritance of repressed transcriptional states. Although the mechanism of the action of PcG is not completely understood, methylation of histone H3 lysine 27 (H3K27) is important in establishing PcG-mediated transcriptional repression. We show that the plant PcG target gene PHERES1 is regulated by histone trimethylation on H3K27 residues mediated by at least two different PcG complexes in plants, containing the SET domain proteins MEDEA or CURLY LEAF/SWINGER. Furthermore, we identify FUSCA3 as a potential PcG target gene and show that FUSCA3 is regulated by MEDEA and CURLY LEAF/SWINGER. We propose that different PcG complexes regulate a common set of target genes during the different stages of plant development.

  10. Information Integration and Energy Expenditure in Gene Regulation.

    PubMed

    Estrada, Javier; Wong, Felix; DePace, Angela; Gunawardena, Jeremy

    2016-06-30

    The quantitative concepts used to reason about gene regulation largely derive from bacterial studies. We show that this bacterial paradigm cannot explain the sharp expression of a canonical developmental gene in response to a regulating transcription factor (TF). In the absence of energy expenditure, with regulatory DNA at thermodynamic equilibrium, information integration across multiple TF binding sites can generate the required sharpness, but with strong constraints on the resultant "higher-order cooperativities." Even with such integration, there is a "Hopfield barrier" to sharpness; for n TF binding sites, this barrier is represented by the Hill function with the Hill coefficient n. If, however, energy is expended to maintain regulatory DNA away from thermodynamic equilibrium, as in kinetic proofreading, this barrier can be breached and greater sharpness achieved. Our approach is grounded in fundamental physics, leads to testable experimental predictions, and suggests how a quantitative paradigm for eukaryotic gene regulation can be formulated.

  11. Transcriptional Regulation of Gene Expression in C. elegans

    PubMed Central

    Reinke, Valerie; Krause, Michael; Okkema, Peter

    2013-01-01

    Protein coding gene sequences are converted to mRNA by the highly regulated process of transcription. The precise temporal and spatial control of transcription for many genes is an essential part of development in metazoans. Thus, understanding the molecular mechanisms underlying transcriptional control is essential to understanding cell fate determination during embryogenesis, post-embryonic development, many environmental interactions, and disease-related processes. Studies of transcriptional regulation in C. elegans exploit its genomic simplicity and physical characteristics to define regulatory events with single cell and minute time scale resolution. When combined with the genetics of the system, C. elegans offers a unique and powerful vantage point from which to study how chromatin-associated protein and their modifications interact with transcription factors and their binding sites to yield precise control of gene expression through transcriptional regulation. PMID:23801596

  12. Absence of canonical active chromatin marks in developmentally regulated genes

    PubMed Central

    Ruiz-Romero, Marina; Corominas, Montserrat; Guigó, Roderic

    2015-01-01

    The interplay of active and repressive histone modifications is assumed to play a key role in the regulation of gene expression. In contrast to this generally accepted view, we show that transcription of genes temporally regulated during fly and worm development occurs in the absence of canonically active histone modifications. Conversely, strong chromatin marking is related to transcriptional and post-transcriptional stability, an association that we also observe in mammals. Our results support a model in which chromatin marking is associated to stable production of RNA, while unmarked chromatin would permit rapid gene activation and de-activation during development. In this case, regulation by transcription factors would play a comparatively more important regulatory role. PMID:26280901

  13. Let there be light: Regulation of gene expression in plants

    PubMed Central

    Petrillo, Ezequiel; Godoy Herz, Micaela A; Barta, Andrea; Kalyna, Maria; Kornblihtt, Alberto R

    2014-01-01

    Gene expression regulation relies on a variety of molecular mechanisms affecting different steps of a messenger RNA (mRNA) life: transcription, processing, splicing, alternative splicing, transport, translation, storage and decay. Light induces massive reprogramming of gene expression in plants. Differences in alternative splicing patterns in response to environmental stimuli suggest that alternative splicing plays an important role in plant adaptation to changing life conditions. In a recent publication, our laboratories showed that light regulates alternative splicing of a subset of Arabidopsis genes encoding proteins involved in RNA processing by chloroplast retrograde signals. The light effect on alternative splicing is also observed in roots when the communication with the photosynthetic tissues is not interrupted, suggesting that a signaling molecule travels through the plant. These results point at alternative splicing regulation by retrograde signals as an important mechanism for plant adaptation to their environment. PMID:25590224

  14. Regulation of erythroid cell-specific gene expression during erythropoiesis.

    PubMed Central

    Harrison, P. R.; Plumb, M.; Frampton, J.; Llewellyn, D.; Chester, J.; Chambers, I.; MacLeod, K.; Fleming, J.; O'Prey, J.; Walker, M.

    1988-01-01

    The aim of our group's work over the past few years has been to investigate the molecular mechanisms regulating erythroid cell-specific gene expression during erythroid cell differentiation. In addition to the alpha-globin gene, we have focussed on two non-globin genes of interest encoding the rabbit red cell-specific lipoxygenase (LOX) and the mouse glutathione peroxidase (GSHPX), an important seleno-enzyme responsible for protection against peroxide-damage. Characterisation of the GSHPX gene showed that the seleno-cysteine residue in the active site of the enzyme is encoded by UGA, which usually functions as a translation-termination codon. This novel finding has important implications regarding mRNA sequence context effects affecting codon recognition. The regulation of the GSHPX and red cell LOX genes has been investigated by functional transfection experiments. The 700 bp upstream of the GSHPX promoter seems to function equally well when linked to the bacterial chloramphenicol acetyl transferase (CAT) gene and transfected into mouse erythroid or fibroblast cell lines. However, the presence of tissue-specific DNase I hypersensitive sites (DHSS) in the 3' flanking region of the GSHPX gene suggests that such sites may be important in its regulation in the various cell types in which it is highly expressed, i.e., erythroid cells, liver and kidney. The transcription unit of the RBC LOX gene has also been defined and 5' and 3' flanking regions are being investigated for erythroid-specific regulatory elements: a region upstream of the LOX gene gives increased expression of a linked CAT gene when transfected into mouse erythroid cell lines compared to non-erythroid cell lines.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:3151147

  15. The dynamic landscape of gene regulation during Bombyx mori oogenesis.

    PubMed

    Zhang, Qiang; Sun, Wei; Sun, Bang-Yong; Xiao, Yang; Zhang, Ze

    2017-09-11

    Oogenesis in the domestic silkworm (Bombyx mori) is a complex process involving previtellogenesis, vitellogenesis and choriogenesis. During this process, follicles show drastic morphological and physiological changes. However, the genome-wide regulatory profiles of gene expression during oogenesis remain to be determined. In this study, we obtained time-series transcriptome data and used these data to reveal the dynamic landscape of gene regulation during oogenesis. A total of 1932 genes were identified to be differentially expressed among different stages, most of which occurred during the transition from late vitellogenesis to early choriogenesis. Using weighted gene co-expression network analysis, we identified six stage-specific gene modules that correspond to multiple regulatory pathways. Strikingly, the biosynthesis pathway of the molting hormone 20-hydroxyecdysone (20E) was enriched in one of the modules. Further analysis showed that the ecdysteroid 20-hydroxylase gene (CYP314A1) of steroidgenesis genes was mainly expressed in previtellogenesis and early vitellogenesis. However, the 20E-inactivated genes, particularly the ecdysteroid 26-hydroxylase encoding gene (Cyp18a1), were highly expressed in late vitellogenesis. These distinct expression patterns between 20E synthesis and catabolism-related genes might ensure the rapid decline of the hormone titer at the transition point from vitellogenesis to choriogenesis. In addition, we compared landscapes of gene regulation between silkworm (Lepidoptera) and fruit fly (Diptera) oogeneses. Our results show that there is some consensus in the modules of gene co-expression during oogenesis in these insects. The data presented in this study provide new insights into the regulatory mechanisms underlying oogenesis in insects with polytrophic meroistic ovaries. The results also provide clues for further investigating the roles of epigenetic reconfiguration and circadian rhythm in insect oogenesis.

  16. Chromatin remodeling inactivates activity genes and regulates neural coding.

    PubMed

    Yang, Yue; Yamada, Tomoko; Hill, Kelly K; Hemberg, Martin; Reddy, Naveen C; Cho, Ha Y; Guthrie, Arden N; Oldenborg, Anna; Heiney, Shane A; Ohmae, Shogo; Medina, Javier F; Holy, Timothy E; Bonni, Azad

    2016-07-15

    Activity-dependent transcription influences neuronal connectivity, but the roles and mechanisms of inactivation of activity-dependent genes have remained poorly understood. Genome-wide analyses in the mouse cerebellum revealed that the nucleosome remodeling and deacetylase (NuRD) complex deposits the histone variant H2A.z at promoters of activity-dependent genes, thereby triggering their inactivation. Purification of translating messenger RNAs from synchronously developing granule neurons (Sync-TRAP) showed that conditional knockout of the core NuRD subunit Chd4 impairs inactivation of activity-dependent genes when neurons undergo dendrite pruning. Chd4 knockout or expression of NuRD-regulated activity genes impairs dendrite pruning. Imaging of behaving mice revealed hyperresponsivity of granule neurons to sensorimotor stimuli upon Chd4 knockout. Our findings define an epigenetic mechanism that inactivates activity-dependent transcription and regulates dendrite patterning and sensorimotor encoding in the brain. Copyright © 2016, American Association for the Advancement of Science.

  17. Epigenetic Regulation of BDNF Gene during Development and Diseases

    PubMed Central

    Chen, Kuan-Wei; Chen, Linyi

    2017-01-01

    Brain-derived neurotrophic factor (BDNF) is required for the development of the nervous system, proper cognitive function and memory formation. While aberrant expression of BDNF has been implicated in neurological disorders, the transcriptional regulation of BDNF remains to be elucidated. In response to different stimuli, BDNF expression can be initiated from different promoters. Several studies have suggested that the expression of BDNF is regulated by promoter methylation. An emerging theme points to the possibility that histone modifications at the BDNF promoters may link to the neurological pathology. Thus, understanding the epigenetic regulation at the BDNF promoters will shed light on future therapies for neurological disorders. The present review summarizes the current knowledge of histone modifications of the BDNF gene in neuronal diseases, as well as the developmental regulation of the BDNF gene based on data from the Encyclopedia of DNA Elements (ENCODE). PMID:28272318

  18. Coordinate regulation of HOX genes in human hematopoietic cells

    SciTech Connect

    Magli, M.C.; Barba, P.; Celetti, A.; De Vita, G.; Cillo, C.; Boncinelli, E. )

    1991-07-15

    Hematopoiesis is a continuous process in which precursor cells proliferate and differentiate throughout life. However, the molecular mechanisms that govern this process are not clearly defined. Homeobox-containing genes, encoding DNA-binding homeodomains. are a network of genes highly conserved throughout evolution. They are organized in clusters expressed in the developing embryo with a positional hierarchy. The authors have analyzed expression of the four human HOX loci in erythroleukemic, promyelocytic, and monocytic cell lines to investigate whether the physical organization of human HOX genes reflects a regulatory hierarchy involved in the differentiation process of hematopoietic cells. The results demonstrate that cells representing various stages of hematopoietic differentiation display differential patterns of HOX gene expression and that HOX genes are coordinately switched on or off in blocks that may include entire loci. The entire HOX4 locus is silent in all lines analyzed and almost all the HOX2 genes are active in erythroleukemic cells and turned off in myeloid-restricted cells. The observations provide information about the regulation of HOX genes and suggest that the coordinate regulation of these genes may play an important role in lineage determination during early steps of hematopoiesis.

  19. Regulation of mitochondrial gene expression, the epigenetic enigma.

    PubMed

    Mposhi, Archibold; Van der Wijst, Monique Gp; Faber, Klaas Nico; Rots, Marianne G

    2017-03-01

    Epigenetics provides an important layer of information on top of the DNA sequence and is essential for establishing gene expression profiles. Extensive studies have shown that nuclear DNA methylation and histone modifications influence nuclear gene expression. However, it remains unclear whether mitochondrial DNA (mtDNA) undergoes similar epigenetic changes to regulate mitochondrial gene expression. Recently, it has been shown that mtDNA is differentially methylated in various diseases such as diabetes and colorectal cancer. Interestingly, this differential methylation was often associated with altered mitochondrial gene expression. However, the direct role of mtDNA methylation on gene expression remains elusive. Alternatively, the activity of the mitochondrial transcription factor A (TFAM), a protein involved in mtDNA packaging, might also influence gene expression. This review discusses the role of mtDNA methylation and potential epigenetic-like modifications of TFAM with respect to mtDNA transcription and replication. We suggest three mechanisms: (1) methylation within the non-coding D-loop, (2) methylation at gene start sites (GSS) and (3) post-translational modifications (PTMs) of TFAM. Unraveling mitochondrial gene expression regulation could open new therapeutic avenues for mitochondrial diseases.

  20. Regulating gene-expression by mechanical force

    NASA Astrophysics Data System (ADS)

    Visscher, Koen

    2008-10-01

    Initiation of transcription is an attractive target for controlling gene expression. Initiation typically involves binding of RNA polymerase to the DNA, followed by a rapid transition into a ``closed'' complex, and a subsequent transition into the ``open'' complex in which the DNA is locally melted. Nature makes good use of this target, for example in the form of repressor proteins that bind DNA and inhibit transcription. Here we will show that initiation of transcription is also dependent upon DNA tension and thus may be controlled by force alone, without the need for any accessory proteins. Using a three-bead assay in conjunction with optical tweezers we have shown that transient interactions of T7 RNA polymerase with the DNA promoter site shorten significantly, by up to a factor of ˜20, when DNA tension is increased. Experiments in the presence and absence of nucleotides have allowed us to conclude that force is likely to affect the rate constants into and/or out of the open complex, rather than the off-rate from the closed complex.

  1. Regulation of cytochrome P450 (CYP) genes by nuclear receptors.

    PubMed Central

    Honkakoski, P; Negishi, M

    2000-01-01

    Members of the nuclear-receptor superfamily mediate crucial physiological functions by regulating the synthesis of their target genes. Nuclear receptors are usually activated by ligand binding. Cytochrome P450 (CYP) isoforms often catalyse both formation and degradation of these ligands. CYPs also metabolize many exogenous compounds, some of which may act as activators of nuclear receptors and disruptors of endocrine and cellular homoeostasis. This review summarizes recent findings that indicate that major classes of CYP genes are selectively regulated by certain ligand-activated nuclear receptors, thus creating tightly controlled networks. PMID:10749660

  2. Molecular nutrition: Interaction of nutrients, gene regulations and performances.

    PubMed

    Sato, Kan

    2016-07-01

    Nutrition deals with ingestion of foods, digestion, absorption, transport of nutrients, intermediary metabolism, underlying anabolism and catabolism, and excretion of unabsorbed nutrients and metabolites. In addition, nutrition interacts with gene expressions, which are involved in the regulation of animal performances. Our laboratory is concerned with the improvement of animal productions, such as milks, meats and eggs, with molecular nutritional aspects. The present review shows overviews on the nutritional regulation of metabolism, physiological functions and gene expressions to improve animal production in chickens and dairy cows. © 2016 The Authors. Animal Science Journal published by John Wiley & Sons Australia, Ltd on behalf of Japanese Society of Animal Science.

  3. Every which way – nanos gene regulation in echinoderms

    PubMed Central

    Oulhen, Nathalie; Wessel, Gary M.

    2014-01-01

    Nanos is an essential factor of germ line success in all animals tested. This gene encodes a Zn-finger RNA-binding protein that in complex with its partner pumilio, binds to and changes the fate of several known transcripts. We summarize here the documented functions of nanos in several key organisms, and then emphasize echinoderms as a working model for how nanos expression is regulated. Nanos presence outside of the target cells is often detrimental to the animal, and in sea urchins, nanos expression appears to be regulated at every step of transcription, and post-transcriptional activity, making this gene product exciting, every which way. PMID:24376110

  4. Every which way--nanos gene regulation in echinoderms.

    PubMed

    Oulhen, Nathalie; Wessel, Gary M

    2014-03-01

    Nanos is an essential factor of germ line success in all animals tested. This gene encodes a Zn-finger RNA-binding protein that in complex with its partner pumilio binds to and changes the fate of several known transcripts. We summarize here the documented functions of Nanos in several key organisms, and then emphasize echinoderms as a working model for how nanos expression is regulated. Nanos presence outside of the target cells is often detrimental to the animal, and in sea urchins, nanos expression appears to be regulated at every step of transcription, and post-transcriptional activity, making this gene product exciting, every which way.

  5. Regulation of Gene Expression Patterns in Mosquito Reproduction

    PubMed Central

    Johnson, Lisa; Zhao, Bo; Ha, Jisu; White, Kevin P.; Girke, Thomas; Zou, Zhen; Raikhel, Alexander S.

    2015-01-01

    In multicellular organisms, development, growth and reproduction require coordinated expression of numerous functional and regulatory genes. Insects, in addition to being the most speciose animal group with enormous biological and economical significance, represent outstanding model organisms for studying regulation of synchronized gene expression due to their rapid development and reproduction. Disease-transmitting female mosquitoes have adapted uniquely for ingestion and utilization of the huge blood meal required for swift reproductive events to complete egg development within a 72-h period. We investigated the network of regulatory factors mediating sequential gene expression in the fat body, a multifunctional organ analogous to the vertebrate liver and adipose tissue, of the female Aedes aegypti mosquito. Transcriptomic and bioinformatics analyses revealed that ~7500 transcripts are differentially expressed in four sequential waves during the 72-h reproductive period. A combination of RNA-interference gene-silencing and in-vitro organ culture identified the major regulators for each of these waves. Amino acids (AAs) regulate the first wave of gene activation between 3 h and 12 h post-blood meal (PBM). During the second wave, between 12 h and 36 h, most genes are highly upregulated by a synergistic action of AAs, 20-hydroxyecdysone (20E) and the Ecdysone-Receptor (EcR). Between 36 h and 48 h, the third wave of gene activation—regulated mainly by HR3—occurs. Juvenile Hormone (JH) and its receptor Methoprene-Tolerant (Met) are major regulators for the final wave between 48 h and 72 h. Each of these key regulators also has repressive effects on one or more gene sets. Our study provides a better understanding of the complexity of the regulatory mechanisms related to temporal coordination of gene expression during reproduction. We have detected the novel function of 20E/EcR responsible for transcriptional repression. This study also reveals the previously

  6. Regulation of Gene Expression Patterns in Mosquito Reproduction.

    PubMed

    Roy, Sourav; Saha, Tusar T; Johnson, Lisa; Zhao, Bo; Ha, Jisu; White, Kevin P; Girke, Thomas; Zou, Zhen; Raikhel, Alexander S

    2015-08-01

    In multicellular organisms, development, growth and reproduction require coordinated expression of numerous functional and regulatory genes. Insects, in addition to being the most speciose animal group with enormous biological and economical significance, represent outstanding model organisms for studying regulation of synchronized gene expression due to their rapid development and reproduction. Disease-transmitting female mosquitoes have adapted uniquely for ingestion and utilization of the huge blood meal required for swift reproductive events to complete egg development within a 72-h period. We investigated the network of regulatory factors mediating sequential gene expression in the fat body, a multifunctional organ analogous to the vertebrate liver and adipose tissue, of the female Aedes aegypti mosquito. Transcriptomic and bioinformatics analyses revealed that ~7500 transcripts are differentially expressed in four sequential waves during the 72-h reproductive period. A combination of RNA-interference gene-silencing and in-vitro organ culture identified the major regulators for each of these waves. Amino acids (AAs) regulate the first wave of gene activation between 3 h and 12 h post-blood meal (PBM). During the second wave, between 12 h and 36 h, most genes are highly upregulated by a synergistic action of AAs, 20-hydroxyecdysone (20E) and the Ecdysone-Receptor (EcR). Between 36 h and 48 h, the third wave of gene activation-regulated mainly by HR3-occurs. Juvenile Hormone (JH) and its receptor Methoprene-Tolerant (Met) are major regulators for the final wave between 48 h and 72 h. Each of these key regulators also has repressive effects on one or more gene sets. Our study provides a better understanding of the complexity of the regulatory mechanisms related to temporal coordination of gene expression during reproduction. We have detected the novel function of 20E/EcR responsible for transcriptional repression. This study also reveals the previously

  7. Dynamic RNA Modifications in Gene Expression Regulation.

    PubMed

    Roundtree, Ian A; Evans, Molly E; Pan, Tao; He, Chuan

    2017-06-15

    Over 100 types of chemical modifications have been identified in cellular RNAs. While the 5' cap modification and the poly(A) tail of eukaryotic mRNA play key roles in regulation, internal modifications are gaining attention for their roles in mRNA metabolism. The most abundant internal mRNA modification is N(6)-methyladenosine (m(6)A), and identification of proteins that install, recognize, and remove this and other marks have revealed roles for mRNA modification in nearly every aspect of the mRNA life cycle, as well as in various cellular, developmental, and disease processes. Abundant noncoding RNAs such as tRNAs, rRNAs, and spliceosomal RNAs are also heavily modified and depend on the modifications for their biogenesis and function. Our understanding of the biological contributions of these different chemical modifications is beginning to take shape, but it's clear that in both coding and noncoding RNAs, dynamic modifications represent a new layer of control of genetic information. Published by Elsevier Inc.

  8. Down-regulated genes in mouse dental papillae and pulp.

    PubMed

    Sasaki, H; Muramatsu, T; Kwon, H-J; Yamamoto, H; Hashimoto, S; Jung, H-S; Shimono, M

    2010-07-01

    Important factors involved in odontogenesis in mouse dental papillae disappear between the pre- and post-natal stages of development. Therefore, we hypothesized that certain genes involved in odontogenesis in dental papillae were subject to pre-/post-natal down-regulation. Our goal was to identify, by microarray analysis, which genes were down-regulated. Dental papillae were isolated from embryonic 16-day-, 18-day- (E16, E18), and post-natal 3-day-old (P3) murine first mandibular molar germs and analyzed by microarray. The number of down-regulated genes was 2269 between E16 and E18, and 3130 between E18 and P3. Drastic down-regulation (fold change > 10.0) of Adamts4, Aldha1a2, and Lef1 was observed at both E16 and E18, and quantitative RT-PCR revealed a post-natal reduction in their expression (Adamts4, 1/3; Aldh1a2, 1/13; and Lef1, 1/37). These results suggest that down-regulation of these three genes is an important factor in normal odontogenesis in dental papillae.

  9. Identification of Fur-regulated genes in Actinobacillus actinomycetemcomitans.

    PubMed

    Haraszthy, Violet I; Jordan, Shawn F; Zambon, Joseph J

    2006-03-01

    Actinobacillus actinomycetemcomitans is an oral pathogen that causes aggressive periodontitis as well as sometimes life-threatening, extra-oral infections. Iron regulation is thought to be important in the pathogenesis of A. actinomycetemcomitans infections and, consistent with this hypothesis, the fur gene has recently been identified and characterized in A. actinomycetemcomitans. In this study, 14 putatively Fur-regulated genes were identified by Fur titration assay (Furta) in A. actinomycetemcomitans, including afuA, dgt, eno, hemA, tbpA, recO and yfe - some of which are known to be Fur regulated in other species. A fur mutant A. actinomycetemcomitans strain was created by selecting for manganese resistance in order to study the Fur regulon. Comparisons between the fur gene sequences revealed that nucleotide 66 changed from C in the wild-type to T in the mutant strain, changing leucine to isoleucine. The fur mutant strain expressed a nonfunctional Fur protein as determined by Escherichia coli-based ferric uptake assays and Western blotting. It was also more sensitive to acid stress and expressed higher levels of minC than the wild-type strain. minC, which inhibits cell division in other bacterial species and whose regulation by iron has not been previously described, was found to be Fur regulated in A. actinomycetemcomitans by Furta, by gel shift assays, and by RT-qPCR assays for gene expression.

  10. Methylation of microRNA genes regulates gene expression in bisexual flower development in andromonoecious poplar.

    PubMed

    Song, Yuepeng; Tian, Min; Ci, Dong; Zhang, Deqiang

    2015-04-01

    Previous studies showed sex-specific DNA methylation and expression of candidate genes in bisexual flowers of andromonoecious poplar, but the regulatory relationship between methylation and microRNAs (miRNAs) remains unclear. To investigate whether the methylation of miRNA genes regulates gene expression in bisexual flower development, the methylome, microRNA, and transcriptome were examined in female and male flowers of andromonoecious poplar. 27 636 methylated coding genes and 113 methylated miRNA genes were identified. In the coding genes, 64.5% of the methylated reads mapped to the gene body region; by contrast, 60.7% of methylated reads in miRNA genes mainly mapped in the 5' and 3' flanking regions. CHH methylation showed the highest methylation levels and CHG showed the lowest methylation levels. Correlation analysis showed a significant, negative, strand-specific correlation of methylation and miRNA gene expression (r=0.79, P <0.05). The methylated miRNA genes included eight long miRNAs (lmiRNAs) of 24 nucleotides and 11 miRNAs related to flower development. miRNA172b might play an important role in the regulation of bisexual flower development-related gene expression in andromonoecious poplar, via modification of methylation. Gynomonoecious, female, and male poplars were used to validate the methylation patterns of the miRNA172b gene, implying that hyper-methylation in andromonoecious and gynomonoecious poplar might function as an important regulator in bisexual flower development. Our data provide a useful resource for the study of flower development in poplar and improve our understanding of the effect of epigenetic regulation on genes other than protein-coding genes. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  11. URC Fuzzy Modeling and Simulation of Gene Regulation

    DTIC Science & Technology

    2007-11-02

    URC FUZZY MODELING AND SIMULATION OF GENE REGULATION B. A. Sokhansanj1,2 and J. P. Fitch1 1Biology and Biotechnology Research Program, Lawrence...engineering, pharmaceuticals , gene therapy). Diverse modeling approaches have been proposed, in two general categories: modeling a biological pathway as (a) a...systems, we propose that fuzzy logic is a natural language for modeling biology. The Union Rule Configuration (URC) avoids combinatorial explosion in the

  12. Transcriptional regulation of human thromboxane synthase gene expression

    SciTech Connect

    Lee, K.D.; Baek, S.J.; Fleischer, T

    1994-09-01

    The human thromboxane synthase (TS) gene encodes a microsomal enzyme catalyzing the conversion of prostaglandin endoperoxide into thromboxane A{sub 2}(TxA{sub 2}), a potent inducer of vasoconstriction and platelet aggregation. A deficiency in platelet TS activity results in bleeding disorders, but the underlying molecular mechanism remains to be elucidated. Increased TxA{sub 2} has been associated with many pathophysiological conditions such as cardiovascular disease, pulmonary hypertension, pre-eclampsia, and thrombosis in sickle cell patients. Since the formation of TxA{sub 2} is dependent upon TS, the regulation of TS gene expression may presumably play a crucial role in vivo. Abrogation of the regulatory mechanism in TS gene expression might contribute, in part, to the above clinical manifestations. To gain insight into TS gene regulation, a 1.7 kb promoter of the human TS gene was cloned and sequenced. RNase protection assay and 5{prime} RACE protocols were used to map the transcription initiation site to nucleotide A, 30 bp downstream from a canonical TATA box. Several transcription factor binding sites, including AP-1, PU.1, and PEA3, were identified within this sequence. Transient expression studies in HL-60 cells transfected with constructs containing various lengths (0.2 to 5.5 kb) of the TS promoter/luciferase fusion gene indicated the presence of multiple repressor elements within the 5.5 kb TS promoter. However, a lineage-specific up-regulation of TS gene expression was observed in HL-60 cells induced by TPA to differentiate along the macrophage lineage. The increase in TS transcription was not detectable until 36 hr after addition of the inducer. These results suggest that expression of the human TS gene may be regulated by a mechanism involving repression and derepression of the TS promoter.

  13. Aldehyde Dehydrogenase 1A1: Friend or Foe to Female Metabolism?

    PubMed Central

    Petrosino, Jennifer M.; DiSilvestro, David; Ziouzenkova, Ouliana

    2014-01-01

    In this review, we summarize recent advances in understanding vitamin A-dependent regulation of sex-specific differences in metabolic diseases, inflammation, and certain cancers. We focus on the characterization of the aldehyde dehydrogenase-1 family of enzymes (ALDH1A1, ALDH1A2, ALDH1A3) that catalyze conversion of retinaldehyde to retinoic acid. Additionally, we propose a “horizontal transfer of signaling” from estrogen to retinoids through the action of ALDH1A1. Although estrogen does not directly influence expression of Aldh1a1, it has the ability to suppress Aldh1a2 and Aldh1a3, thereby establishing a female-specific mechanism for retinoic acid generation in target tissues. ALDH1A1 regulates adipogenesis, abdominal fat formation, glucose tolerance, and suppression of thermogenesis in adipocytes; in B cells, ALDH1A1 plays a protective role by inducing oncogene suppressors Rara and Pparg. Considering the conflicting responses of Aldh1a1 in a multitude of physiological processes, only tissue-specific regulation of Aldh1a1 can result in therapeutic effects. We have shown through successful implantation of tissue-specific Aldh1a1−/− preadipocytes that thermogenesis can be induced in wild-type adipose tissues to resolve diet-induced visceral obesity in females. We will briefly discuss the emerging role of ALDH1A1 in multiple myeloma, the regulation of reproduction, and immune responses, and conclude by discussing the role of ALDH1A1 in future therapeutic applications. PMID:24594504

  14. ULTRAPETALA trxG genes interact with KANADI transcription factor genes to regulate Aradopsis Gynoecium patterning

    USDA-ARS?s Scientific Manuscript database

    Organ formation relies upon precise patterns of gene expression that are under tight spatial and temporal regulation. Transcription patterns are specified by several cellular processes during development, including chromatin remodeling, but little is known about how chromatin remodeling factors cont...

  15. GLK gene pairs regulate chloroplast development in diverse plant species.

    PubMed

    Fitter, David W; Martin, David J; Copley, Martin J; Scotland, Robert W; Langdale, Jane A

    2002-09-01

    Chloroplast biogenesis is a complex process that requires close co-ordination between two genomes. Many of the proteins that accumulate in the chloroplast are encoded by the nuclear genome, and the developmental transition from proplastid to chloroplast is regulated by nuclear genes. Here we show that a pair of Golden 2-like (GLK) genes regulates chloroplast development in Arabidopsis. The GLK proteins are members of the GARP superfamily of transcription factors, and phylogenetic analysis demonstrates that the maize, rice and Arabidopsis GLK gene pairs comprise a distinct group within the GARP superfamily. Further phylogenetic analysis suggests that the gene pairs arose through separate duplication events in the monocot and dicot lineages. As in rice, AtGLK1 and AtGLK2 are expressed in partially overlapping domains in photosynthetic tissue. Insertion mutants demonstrate that this expression pattern reflects a degree of functional redundancy as single mutants display normal phenotypes in most photosynthetic tissues. However, double mutants are pale green in all photosynthetic tissues and chloroplasts exhibit a reduction in granal thylakoids. Products of several genes involved in light harvesting also accumulate at reduced levels in double mutant chloroplasts. GLK genes therefore regulate chloroplast development in diverse plant species.

  16. Sphingolipids and expression regulation of genes in cancer

    PubMed Central

    Patwardhan, Gauri A.; Liu, Yong-Yu

    2010-01-01

    Sphingolipids including glycosphingolipids have myriad effects on cell functions and affect cancer in aspects of tumorigenesis, metastasis and tumor response to treatments. Bioactive ones like ceramide, sphingosine 1-phosphate and globotriaosylceramide initiate and process cellular signaling to alter cell behaviors immediately responding to oncogenic stress or treatment challenges. Recent studies pinpoint that sphingolipid-mediated gene expression has long and profound impacts on cancer cells, and these play crucial roles in tumor progression and treatment outcome. More than ten sphingolipids and glycosphingolipids selectively mediate expressions of approximate fifty genes including c-myc, p21, c-fos, telomerase reverse transcriptase, caspase-9, Bcl-x, cyclooxygenase-2, matrix metalloproteinases, integrins, Oct-4, glucosylceramide synthase and multidrug-resistant gene 1. By diverse functions of these genes, sphingolipids enduringly affect cellular processes of mitosis, apoptosis, migration, stemness of cancer stem cells and cellular resistance to therapies. Mechanistic studies indicate that sphingolipids regulate particular gene expression by modulating phosphorylation and acetylation of proteins that serve as transcription factors (β-catenin, Sp1), repressor of transcription (histone H3), and regulators (SRp30a) in RNA splicing. Disclosing molecular mechanisms by which sphingolipids selectively regulate particular gene expression, instead of other relevant ones, requires understanding of the exact roles of individual lipid instead of a group, the signaling pathways that are implicated in and interaction with proteins or other lipids in details. These studies not only expand our knowledge of sphingolipids, but can also suggest novel targets for cancer treatments. PMID:20970453

  17. Regulators of gene expression as biomarkers for prostate cancer

    PubMed Central

    Willard, Stacey S; Koochekpour, Shahriar

    2012-01-01

    Recent technological advancements in gene expression analysis have led to the discovery of a promising new group of prostate cancer (PCa) biomarkers that have the potential to influence diagnosis and the prediction of disease severity. The accumulation of deleterious changes in gene expression is a fundamental mechanism of prostate carcinogenesis. Aberrant gene expression can arise from changes in epigenetic regulation or mutation in the genome affecting either key regulatory elements or gene sequences themselves. At the epigenetic level, a myriad of abnormal histone modifications and changes in DNA methylation are found in PCa patients. In addition, many mutations in the genome have been associated with higher PCa risk. Finally, over- or underexpression of key genes involved in cell cycle regulation, apoptosis, cell adhesion and regulation of transcription has been observed. An interesting group of biomarkers are emerging from these studies which may prove more predictive than the standard prostate specific antigen (PSA) serum test. In this review, we discuss recent results in the field of gene expression analysis in PCa including the most promising biomarkers in the areas of epigenetics, genomics and the transcriptome, some of which are currently under investigation as clinical tests for early detection and better prognostic prediction of PCa. PMID:23226612

  18. Computational Genomics: From Genome Sequence To Global Gene Regulation

    NASA Astrophysics Data System (ADS)

    Li, Hao

    2000-03-01

    As various genome projects are shifting to the post-sequencing phase, it becomes a big challenge to analyze the sequence data and extract biological information using computational tools. In the past, computational genomics has mainly focused on finding new genes and mapping out their biological functions. With the rapid accumulation of experimental data on genome-wide gene activities, it is now possible to understand how genes are regulated on a genomic scale. A major mechanism for gene regulation is to control the level of transcription, which is achieved by regulatory proteins that bind to short DNA sequences - the regulatory elements. We have developed a new approach to identifying regulatory elements in genomes. The approach formalizes how one would proceed to decipher a ``text'' consisting of a long string of letters written in an unknown language that did not delineate words. The algorithm is based on a statistical mechanics model in which the sequence is segmented probabilistically into ``words'' and a ``dictionary'' of ``words'' is built concurrently. For the control regions in the yeast genome, we built a ``dictionary'' of about one thousand words which includes many known as well as putative regulatory elements. I will discuss how we can use this dictionary to search for genes that are likely to be regulated in a similar fashion and to analyze gene expression data generated from DNA micro-array experiments.

  19. Gene regulation and the origin of cancer: a new model.

    PubMed

    Shah, A

    1995-10-01

    The genome is a dynamical system in which regulation is achieved by the algebraic logic of Boolean functions. A model of a webbed genetic network is presented. In this, all genes lie on interconnected loops, within which each can influence the others, forming the basis of a regulatory network. The normal proto-oncogenes and tumor suppressor genes serve as gateways or switch points in the genetic circuitry, controlling the transition between different cell states. The model explains why multiple genes must be perturbed for the formation of a cancer.

  20. Visual experience regulates gene expression in the developing striate cortex.

    PubMed

    Neve, R L; Bear, M F

    1989-06-01

    We have examined the regulation of expression of the genes for the neuronal growth-associated protein GAP43, the type II calcium/calmodulin-dependent protein kinase, and glutamic acid decarboxylase in the kitten visual cortex during normal postnatal development and after a period of visual deprivation. We find that the mRNA transcripts of these genes display very different patterns of normal development but are all increased in the visual cortex of animals reared in the dark. Upon exposure to light, the transcript of the GAP43 gene drops to near-normal levels within 12 hr.

  1. Global identification of target genes regulated by APETALA3 and PISTILLATA floral homeotic gene action.

    PubMed

    Zik, Moriyah; Irish, Vivian F

    2003-01-01

    Identifying the genes regulated by the floral homeotic genes APETALA3 (AP3) and PISTILLATA (PI) is crucial for understanding the molecular mechanisms that lead to petal and stamen formation. We have used microarray analysis to conduct a broad survey of genes whose expression is affected by AP3 and PI activity. DNA microarrays consisting of 9216 Arabidopsis ESTs were screened with probes corresponding to mRNAs from different mutant and transgenic lines that misexpress AP3 and/or PI. The microarray results were further confirmed by RNA gel blot analyses. Our results suggest that AP3 and PI regulate a relatively small number of genes, implying that many genes used in petal and stamen development are not tissue specific and likely have roles in other processes as well. We recovered genes similar to previously identified petal- and stamen-expressed genes as well as genes that were not implicated previously in petal and stamen development. A very low percentage of the genes recovered encoded transcription factors. This finding suggests that AP3 and PI act relatively directly to regulate the genes required for the basic cellular processes responsible for petal and stamen morphogenesis.

  2. Epigenetic regulation of cardiac myofibril gene expression during heart development.

    PubMed

    Zhao, Weian; Liu, Lingjuan; Pan, Bo; Xu, Yang; Zhu, Jing; Nan, Changlong; Huang, Xupei; Tian, Jie

    2015-07-01

    Cardiac gene expression regulation is controlled not only by genetic factors but also by environmental, i.e., epigenetic factors. Several environmental toxic effects such as oxidative stress and ischemia can result in abnormal myofibril gene expression during heart development. Troponin, one of the regulatory myofibril proteins in the heart, is a well-known model in study of cardiac gene regulation during the development. In our previous studies, we have demonstrated that fetal form troponin I (ssTnI) expression in the heart is partially regulated by hormones, such as thyroid hormone. In the present study, we have explored the epigenetic role of histone modification in the regulation of ssTnI expression. Mouse hearts were collected at different time of heart development, i.e., embryonic day 15.5, postnatal day 1, day 7, day 14 and day 21. Levels of histone H3 acetylation (acH3) and histone H3 lysine 9 trimethylation (H3K9me(3)) were detected using chromatin immunoprecipitation assays in slow upstream regulatory element (SURE) domain (TnI slow upstream regulatory element), 300-bp proximal upstream domain and the first intron of ssTnI gene, which are recognized as critical regions for ssTnI regulation. We found that the levels of acH3 on the SURE region were gradually decreased, corresponding to a similar decrease of ssTnI expression in the heart, whereas the levels of H3K9me(3) in the first intron of ssTnI gene were gradually increased. Our results indicate that both histone acetylation and methylation are involved in the epigenetic regulation of ssTnI expression in the heart during the development, which are the targets for environmental factors.

  3. Signaling, Gene Regulation and Cancer | Center for Cancer Research

    Cancer.gov

    Although there have been tremendous progress in cancer research and treatment, the mortality caused by this disease is still very high. Cancer is the leading cause of death worldwide and second leading cause of death in the United States of America. Signaling, Gene Regulation and Cancer covers topics including the role of various signaling pathways in development, regulation of cell fate, tumor angiogenesis, duodenal neoplasias, breast, colorectal and prostate cancer, cancer development and progression, microRNA in cancer and epigenetic regulation of cancer.

  4. TRANSFAC and its module TRANSCompel: transcriptional gene regulation in eukaryotes.

    PubMed

    Matys, V; Kel-Margoulis, O V; Fricke, E; Liebich, I; Land, S; Barre-Dirrie, A; Reuter, I; Chekmenev, D; Krull, M; Hornischer, K; Voss, N; Stegmaier, P; Lewicki-Potapov, B; Saxel, H; Kel, A E; Wingender, E

    2006-01-01

    The TRANSFAC database on transcription factors, their binding sites, nucleotide distribution matrices and regulated genes as well as the complementing database TRANSCompel on composite elements have been further enhanced on various levels. A new web interface with different search options and integrated versions of Match and Patch provides increased functionality for TRANSFAC. The list of databases which are linked to the common GENE table of TRANSFAC and TRANSCompel has been extended by: Ensembl, UniGene, EntrezGene, HumanPSD and TRANSPRO. Standard gene names from HGNC, MGI and RGD, are included for human, mouse and rat genes, respectively. With the help of InterProScan, Pfam, SMART and PROSITE domains are assigned automatically to the protein sequences of the transcription factors. TRANSCompel contains now, in addition to the COMPEL table, a separate table for detailed information on the experimental EVIDENCE on which the composite elements are based. Finally, for TRANSFAC, in respect of data growth, in particular the gain of Drosophila transcription factor binding sites (by courtesy of the Drosophila DNase I footprint database) and of Arabidopsis factors (by courtesy of DATF, Database of Arabidopsis Transcription Factors) has to be stressed. The here described public releases, TRANSFAC 7.0 and TRANSCompel 7.0, are accessible under http://www.gene-regulation.com/pub/databases.html.

  5. The fur transcription regulator and fur-regulated genes in Clostridium botulinum A ATCC 3502.

    PubMed

    Zhang, Weibin; Ma, Junhua; Zang, Chengyuan; Song, Yingying; Liu, Peipei

    2011-01-01

    Clostridium botulinum is a spore-forming bacterium that can produce a very powerful neurotoxin that causes botulism. In this study, we have investigated the Fur transcription regulators in Clostridium botulinum and Fur-regulated genes in Clostridium botulinum A ATCC 3502. We found that gene loss may be the main cause leading to the different numbers of Fur transcription regulators in different Clostridium botulinum strains. Meanwhile, 46 operons were found to be regulated by the Fur transcription regulator in Clostridium botulinum A ATCC 3502, involved in several functional classifications, including iron acquisition, iron utilization, iron transport, and transcription regulator. Under an iron-restricted medium, we experimentally found that a Fur transcription regulator (CBO1372) and two operons (DedA, CBO2610-CBO2614 and ABC transporter, CBO0845-CBO0847) are shown to be differentially expressed in Clostridium botulinum A ATCC 3502. This study has provided-us novel insights into the diversity of Fur transcription regulators in different Clostridium botulinum strains and diversity of Fur-targeted genes, as well as a better understanding of the dynamic changes in iron restriction occurring in response to this stress.

  6. Gravity-regulated gene expression in Arabidopsis thaliana

    NASA Astrophysics Data System (ADS)

    Sederoff, Heike; Brown, Christopher S.; Heber, Steffen; Kajla, Jyoti D.; Kumar, Sandeep; Lomax, Terri L.; Wheeler, Benjamin; Yalamanchili, Roopa

    Plant growth and development is regulated by changes in environmental signals. Plants sense environmental changes and respond to them by modifying gene expression programs to ad-just cell growth, differentiation, and metabolism. Functional expression of genes comprises many different processes including transcription, translation, post-transcriptional and post-translational modifications, as well as the degradation of RNA and proteins. Recently, it was discovered that small RNAs (sRNA, 18-24 nucleotides long), which are heritable and systemic, are key elements in regulating gene expression in response to biotic and abiotic changes. Sev-eral different classes of sRNAs have been identified that are part of a non-cell autonomous and phloem-mobile network of regulators affecting transcript stability, translational kinetics, and DNA methylation patterns responsible for heritable transcriptional silencing (epigenetics). Our research has focused on gene expression changes in response to gravistimulation of Arabidopsis roots. Using high-throughput technologies including microarrays and 454 sequencing, we iden-tified rapid changes in transcript abundance of genes as well as differential expression of small RNA in Arabidopsis root apices after minutes of reorientation. Some of the differentially regu-lated transcripts are encoded by genes that are important for the bending response. Functional mutants of those genes respond faster to reorientation than the respective wild type plants, indicating that these proteins are repressors of differential cell elongation. We compared the gravity responsive sRNAs to the changes in transcript abundances of their putative targets and identified several potential miRNA: target pairs. Currently, we are using mutant and transgenic Arabidopsis plants to characterize the function of those miRNAs and their putative targets in gravitropic and phototropic responses in Arabidopsis.

  7. Epigenetic regulation of inducible gene expression in the immune system.

    PubMed

    Lim, Pek Siew; Li, Jasmine; Holloway, Adele F; Rao, Sudha

    2013-07-01

    T cells are exquisitely poised to respond rapidly to pathogens and have proved an instructive model for exploring the regulation of inducible genes. Individual genes respond to antigenic stimulation in different ways, and it has become clear that the interplay between transcription factors and the chromatin platform of individual genes governs these responses. Our understanding of the complexity of the chromatin platform and the epigenetic mechanisms that contribute to transcriptional control has expanded dramatically in recent years. These mechanisms include the presence/absence of histone modification marks, which form an epigenetic signature to mark active or inactive genes. These signatures are dynamically added or removed by epigenetic enzymes, comprising an array of histone-modifying enzymes, including the more recently recognized chromatin-associated signalling kinases. In addition, chromatin-remodelling complexes physically alter the chromatin structure to regulate chromatin accessibility to transcriptional regulatory factors. The advent of genome-wide technologies has enabled characterization of the chromatin landscape of T cells in terms of histone occupancy, histone modification patterns and transcription factor association with specific genomic regulatory regions, generating a picture of the T-cell epigenome. Here, we discuss the multi-layered regulation of inducible gene expression in the immune system, focusing on the interplay between transcription factors, and the T-cell epigenome, including the role played by chromatin remodellers and epigenetic enzymes. We will also use IL2, a key inducible cytokine gene in T cells, as an example of how the different layers of epigenetic mechanisms regulate immune responsive genes during T-cell activation.

  8. Regulation of antigen-receptor gene assembly in hagfish.

    PubMed

    Kishishita, Natsuko; Matsuno, Tatsuya; Takahashi, Yoshimasa; Takaba, Hiroyuki; Nishizumi, Hirofumi; Nagawa, Fumikiyo

    2010-02-01

    Variable lymphocyte receptors (VLRs) are antigen receptors in the jawless vertebrates lamprey and hagfish. VLR genes are classified into VLRA and VLRB, and lymphocytes expressing VLRA are T-cell-like, whereas those expressing VLRB are B-cell-like in the sea lamprey. Diverse VLR genes are assembled somatically in lymphocytes; however, how the assembly is regulated is still largely unknown. Here, we analyse VLR gene assembly at the single-cell level in the inshore hagfish (Eptatretus burgeri). Each lymphocyte assembles and transcribes only one type of VLR gene, either VLRA or VLRB. In general, monoallelic assembly of VLR was observed, but diallelic assembly was found in some cases--in many of which, one allele was functional and the other was defective. In fact, all VLR-assembled lymphocytes contained at least one functional VLR gene. Together, these results indicate a feedback inhibition of VLR assembly and selection of VLR-positive lymphocytes.

  9. Regulation of antigen-receptor gene assembly in hagfish

    PubMed Central

    Kishishita, Natsuko; Matsuno, Tatsuya; Takahashi, Yoshimasa; Takaba, Hiroyuki; Nishizumi, Hirofumi; Nagawa, Fumikiyo

    2010-01-01

    Variable lymphocyte receptors (VLRs) are antigen receptors in the jawless vertebrates lamprey and hagfish. VLR genes are classified into VLRA and VLRB, and lymphocytes expressing VLRA are T-cell-like, whereas those expressing VLRB are B-cell-like in the sea lamprey. Diverse VLR genes are assembled somatically in lymphocytes; however, how the assembly is regulated is still largely unknown. Here, we analyse VLR gene assembly at the single-cell level in the inshore hagfish (Eptatretus burgeri). Each lymphocyte assembles and transcribes only one type of VLR gene, either VLRA or VLRB. In general, monoallelic assembly of VLR was observed, but diallelic assembly was found in some cases—in many of which, one allele was functional and the other was defective. In fact, all VLR-assembled lymphocytes contained at least one functional VLR gene. Together, these results indicate a feedback inhibition of VLR assembly and selection of VLR-positive lymphocytes. PMID:20075989

  10. Graded Dorsal and Differential Gene Regulation in the Drosophila Embryo

    PubMed Central

    Reeves, Gregory T.; Stathopoulos, Angelike

    2009-01-01

    A gradient of Dorsal activity patterns the dorsoventral (DV) axis of the early Drosophila melanogaster embryo by controlling the expression of genes that delineate presumptive mesoderm, neuroectoderm, and dorsal ectoderm. The availability of the Drosophila melanogaster genome sequence has accelerated the study of embryonic DV patterning, enabling the use of systems-level approaches. As a result, our understanding of Dorsal-dependent gene regulation has expanded to encompass a collection of more than 50 genes and 30 cis-regulatory sequences. This information, which has been integrated into a spatiotemporal atlas of gene regulatory interactions, comprises one of the best-understood networks controlling any developmental process to date. In this article, we focus on how Dorsal controls differential gene expression and how recent studies have expanded our understanding of Drosophila embryonic development from the cis-regulatory level to that controlling morphogenesis of the embryo. PMID:20066095

  11. Predictive screening for regulators of conserved functional gene modules (gene batteries) in mammals

    PubMed Central

    Nelander, Sven; Larsson, Erik; Kristiansson, Erik; Månsson, Robert; Nerman, Olle; Sigvardsson, Mikael; Mostad, Petter; Lindahl, Per

    2005-01-01

    Background The expression of gene batteries, genomic units of functionally linked genes which are activated by similar sets of cis- and trans-acting regulators, has been proposed as a major determinant of cell specialization in metazoans. We developed a predictive procedure to screen the mouse and human genomes and transcriptomes for cases of gene-battery-like regulation. Results In a screen that covered ~40 per cent of all annotated protein-coding genes, we identified 21 co-expressed gene clusters with statistically supported sharing of cis-regulatory sequence elements. 66 predicted cases of over-represented transcription factor binding motifs were validated against the literature and fell into three categories: (i) previously described cases of gene battery-like regulation, (ii) previously unreported cases of gene battery-like regulation with some support in a limited number of genes, and (iii) predicted cases that currently lack experimental support. The novel predictions include for example Sox 17 and RFX transcription factor binding sites that were detected in ~10% of all testis specific genes, and HNF-1 and 4 binding sites that were detected in ~30% of all kidney specific genes respectively. The results are publicly available at . Conclusion 21 co-expressed gene clusters were enriched for a total of 66 shared cis-regulatory sequence elements. A majority of these predictions represent novel cases of potential co-regulation of functionally coupled proteins. Critical technical parameters were evaluated, and the results and the methods provide a valuable resource for future experimental design. PMID:15882449

  12. Regulation of human autoimmune regulator (AIRE) gene translation by miR-220b.

    PubMed

    Matsuo, Tomohito; Noguchi, Yukiko; Shindo, Mieko; Morita, Yoshifumi; Oda, Yoshie; Yoshida, Eiko; Hamada, Hiroko; Harada, Mine; Shiokawa, Yuichi; Nishida, Takahiro; Tominaga, Ryuji; Kikushige, Yoshikane; Akashi, Koichi; Kudoh, Jun; Shimizu, Nobuyoshi; Tanaka, Yuka; Umemura, Tsukuru; Taniguchi, Taketoshi; Yoshimura, Akihiko; Kobayashi, Takashi; Mitsuyama, Masao; Kurisaki, Hironori; Katsuta, Hitoshi; Nagafuchi, Seiho

    2013-11-01

    Although mutations of autoimmune regulator (AIRE) gene are responsible for autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy (APECED), presenting a wide spectrum of many characteristic and non-characteristic clinical features, some patients lack AIRE gene mutations. Therefore, something other than a mutation, such as dysregulation of AIRE gene, may be a causal factor for APECED or its related diseases. However, regulatory mechanisms for AIRE gene expression and/or translation have still remained elusive. We found that IL-2-stimulated CD4(+) T (IL-2T) cells showed a high expression of AIRE gene, but very low AIRE protein production, while Epstein-Barr virus-transformed B (EBV-B) cells express both AIRE gene and AIRE protein. By using microarray analysis, we could identify miR-220b as a possible regulatory mechanism for AIRE gene translation in IL-2T cells. Here we report that miR-220b significantly reduced the expression of AIRE protein in AIRE gene with 3'UTR region transfected 293T cells, whereas no alteration of AIRE protein production was observed in the open reading frame of AIRE gene alone transfected cells. In addition, anti-miR-220b reversed the inhibitory function of miR-220b for the expression of AIRE protein in AIRE gene with 3'UTR region transfected cells. Moreover, when AIRE gene transfected cells with mutated 3'UTR were transfected with miR-220b, no reduction of AIRE protein production was observed. Taken together, it was concluded that miR-220b inhibited the AIRE gene translation through the 3'UTR region of AIRE gene, indicating that miR-220b could serve as a regulator for human AIRE gene translation. © 2013.

  13. Querying Co-regulated Genes on Diverse Gene Expression Datasets Via Biclustering.

    PubMed

    Deveci, Mehmet; Küçüktunç, Onur; Eren, Kemal; Bozdağ, Doruk; Kaya, Kamer; Çatalyürek, Ümit V

    2016-01-01

    Rapid development and increasing popularity of gene expression microarrays have resulted in a number of studies on the discovery of co-regulated genes. One important way of discovering such co-regulations is the query-based search since gene co-expressions may indicate a shared role in a biological process. Although there exist promising query-driven search methods adapting clustering, they fail to capture many genes that function in the same biological pathway because microarray datasets are fraught with spurious samples or samples of diverse origin, or the pathways might be regulated under only a subset of samples. On the other hand, a class of clustering algorithms known as biclustering algorithms which simultaneously cluster both the items and their features are useful while analyzing gene expression data, or any data in which items are related in only a subset of their samples. This means that genes need not be related in all samples to be clustered together. Because many genes only interact under specific circumstances, biclustering may recover the relationships that traditional clustering algorithms can easily miss. In this chapter, we briefly summarize the literature using biclustering for querying co-regulated genes. Then we present a novel biclustering approach and evaluate its performance by a thorough experimental analysis.

  14. Aryl hydrocarbon receptor regulates distinct dioxin-dependent and dioxin-independent gene batteries.

    PubMed

    Tijet, Nathalie; Boutros, Paul C; Moffat, Ivy D; Okey, Allan B; Tuomisto, Jouko; Pohjanvirta, Raimo

    2006-01-01

    Conventional biochemical and molecular techniques identified previously several genes whose expression is regulated by the aryl hydrocarbon receptor (AHR). We sought to map the complete spectrum of AHR-dependent genes in male adult liver using expression arrays to contrast mRNA profiles in Ahr-null mice (Ahr(-/-)) with those in mice with wild-type AHR (Ahr(+)(/)(+)). Transcript profiles were determined both in untreated mice and in mice treated 19 h earlier with 1000 microg/kg 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). Expression of 456 ProbeSets was significantly altered by TCDD in an AHR-dependent manner, including members of the classic AHRE-I gene battery, such as Cyp1a1, Cyp1a2, Cyp1b1, and Nqo1. In the absence of exogenous ligand, AHR status alone affected expression of 392 ProbeSets, suggesting that the AHR has multiple functions in normal physiology. In Ahr(-/-) mice, only 32 ProbeSets exhibited responses to TCDD, indicating that the AHR is required for virtually all transcriptional responses to dioxin exposure in liver. The flavin-containing monooxygenases, Fmo2 and Fmo3, considered previously to be uninducible, were highly induced by TCDD in an AHR-dependent manner. The estrogen receptor alpha as well as two estrogen-receptor-related genes (alpha and gamma) exhibit AHR-dependent expression, thereby extending cross-talk opportunities between the intensively studied AHR and estrogen receptor pathways. p53 binding sites are over-represented in genes down-regulated by TCDD, suggesting that TCDD inhibits p53 transcriptional activity. Overall, our study identifies a wide range of genes that depend on the AHR, either for constitutive expression or for response to TCDD.

  15. Mode of regulation and the insulation of bacterial gene expression.

    PubMed

    Sasson, Vered; Shachrai, Irit; Bren, Anat; Dekel, Erez; Alon, Uri

    2012-05-25

    A gene can be said to be insulated from environmental variations if its expression level depends only on its cognate inducers, and not on variations in conditions. We tested the insulation of the lac promoter of E. coli and of synthetic constructs in which the transcription factor CRP acts as either an activator or a repressor, by measuring their input function-their expression as a function of inducers-in different growth conditions. We find that the promoter activities show sizable variation across conditions of 10%-100% (SD/mean). When the promoter is bound to its cognate regulator(s), variation across conditions is smaller than when it is unbound. Thus, mode of regulation affects insulation: activators seem to show better insulation at high expression levels, and repressors at low expression levels. This may explain the Savageau demand rule, in which E. coli genes needed often in the natural environment tend to be regulated by activators, and rarely needed genes by repressors. The present approach can be used to study insulation in other genes and organisms. Copyright © 2012 Elsevier Inc. All rights reserved.

  16. NOTCH-induced aldehyde dehydrogenase 1A1 deacetylation promotes breast cancer stem cells.

    PubMed

    Zhao, Di; Mo, Yan; Li, Meng-Tian; Zou, Shao-Wu; Cheng, Zhou-Li; Sun, Yi-Ping; Xiong, Yue; Guan, Kun-Liang; Lei, Qun-Ying

    2014-12-01

    High aldehyde dehydrogenase (ALDH) activity is a marker commonly used to isolate stem cells, particularly breast cancer stem cells (CSCs). Here, we determined that ALDH1A1 activity is inhibited by acetylation of lysine 353 (K353) and that acetyltransferase P300/CBP-associated factor (PCAF) and deacetylase sirtuin 2 (SIRT2) are responsible for regulating the acetylation state of ALDH1A1 K353. Evaluation of breast carcinoma tissues from patients revealed that cells with high ALDH1 activity have low ALDH1A1 acetylation and are capable of self-renewal. Acetylation of ALDH1A1 inhibited both the stem cell population and self-renewal properties in breast cancer. Moreover, NOTCH signaling activated ALDH1A1 through the induction of SIRT2, leading to ALDH1A1 deacetylation and enzymatic activation to promote breast CSCs. In breast cancer xenograft models, replacement of endogenous ALDH1A1 with an acetylation mimetic mutant inhibited tumorigenesis and tumor growth. Together, the results from our study reveal a function and mechanism of ALDH1A1 acetylation in regulating breast CSCs.

  17. Synapsins are late activity-induced genes regulated by birdsong

    PubMed Central

    Velho, Tarciso A. F.; Mello, Claudio V.

    2008-01-01

    The consolidation of long-lasting sensory memories requires the activation of gene expression programs in the brain. In spite of considerable knowledge about the early components of this response, little is known about late components (i.e. genes regulated 2-6 hr after stimulation) and the relationship between early and late genes. Birdsong represents one of the best natural behaviors to study sensory-induced gene expression in awake, freely behaving animals. Here we show that the expression of several isoforms of synapsins, a group of phosphoproteins thought to regulate the dynamics of synaptic vesicle storage and release, is induced by auditory stimulation with birdsong in the caudomedial nidopallium (NCM) of the zebra finch (Taeniopygia guttata) brain. This induction occurs mainly in excitatory (non-GABAergic) neurons and is modulated (suppressed) by early song-inducible proteins. We also show that ZENK, an early song-inducible transcription factor, interacts with the syn3 promoter in vivo, consistent with a direct regulatory effect and an emerging novel view of ZENK action. These results demonstrate that synapsins are a late component of the genomic response to neuronal activation and that their expression depends on a complex set of regulatory interactions between early and late regulated genes. PMID:19005052

  18. Delay-induced stochastic oscillations in gene regulation

    PubMed Central

    Bratsun, Dmitri; Volfson, Dmitri; Tsimring, Lev S.; Hasty, Jeff

    2005-01-01

    The small number of reactant molecules involved in gene regulation can lead to significant fluctuations in intracellular mRNA and protein concentrations, and there have been numerous recent studies devoted to the consequences of such noise at the regulatory level. Theoretical and computational work on stochastic gene expression has tended to focus on instantaneous transcriptional and translational events, whereas the role of realistic delay times in these stochastic processes has received little attention. Here, we explore the combined effects of time delay and intrinsic noise on gene regulation. Beginning with a set of biochemical reactions, some of which are delayed, we deduce a truncated master equation for the reactive system and derive an analytical expression for the correlation function and power spectrum. We develop a generalized Gillespie algorithm that accounts for the non-Markovian properties of random biochemical events with delay and compare our analytical findings with simulations. We show how time delay in gene expression can cause a system to be oscillatory even when its deterministic counterpart exhibits no oscillations. We demonstrate how such delay-induced instabilities can compromise the ability of a negative feedback loop to reduce the deleterious effects of noise. Given the prevalence of negative feedback in gene regulation, our findings may lead to new insights related to expression variability at the whole-genome scale. PMID:16199522

  19. Differential expression of oxygen-regulated genes in bovine blastocysts.

    PubMed

    Harvey, A J; Navarrete Santos, A; Kirstein, M; Kind, K L; Fischer, B; Thompson, J G

    2007-03-01

    Low oxygen conditions (2%) during post-compaction culture of bovine blastocysts improve embryo quality, which is associated with a small yet significant increase in the expression of glucose transporter 1 (GLUT-1), suggesting a role of oxygen in embryo development mediated through oxygen-sensitive gene expression. However, bovine embryos to at least the blastocyst stage lack a key regulator of oxygen-sensitive gene expression, hypoxia-inducible factor 1alpha (HIF1alpha). A second, less well-characterized protein (HIF2alpha) is, however, detectable from the 8-cell stage of development. Here we use differential display to determine additional gene targets in bovine embryos in response to low oxygen conditions. While development to the blastocyst stage was unaffected by the oxygen concentration used during post-compaction culture, differential display identified oxygen-regulation of myotrophin and anaphase promoting complex 1 expression, with significantly lower levels observed following culture under 20% oxygen than 2% oxygen. These results further support the hypothesis that the level of gene expression of specific transcripts by bovine embryos alters in response to changes in the oxygen environment post-compaction. Specifically, we have identified two oxygen-sensitive genes that are potentially regulated by HIF2 in the bovine blastocyst.

  20. RNA editing regulates transposon-mediated heterochromatic gene silencing.

    PubMed

    Savva, Yiannis A; Jepson, James E C; Chang, Yao-Jen; Whitaker, Rachel; Jones, Brian C; St Laurent, Georges; Tackett, Michael R; Kapranov, Philipp; Jiang, Nan; Du, Guyu; Helfand, Stephen L; Reenan, Robert A

    2013-01-01

    Heterochromatin formation drives epigenetic mechanisms associated with silenced gene expression. Repressive heterochromatin is established through the RNA interference pathway, triggered by double-stranded RNAs (dsRNAs) that can be modified via RNA editing. However, the biological consequences of such modifications remain enigmatic. Here we show that RNA editing regulates heterochromatic gene silencing in Drosophila. We utilize the binding activity of an RNA-editing enzyme to visualize the in vivo production of a long dsRNA trigger mediated by Hoppel transposable elements. Using homologous recombination, we delete this trigger, dramatically altering heterochromatic gene silencing and chromatin architecture. Furthermore, we show that the trigger RNA is edited and that dADAR serves as a key regulator of chromatin state. Additionally, dADAR auto-editing generates a natural suppressor of gene silencing. Lastly, systemic differences in RNA editing activity generates interindividual variation in silencing state within a population. Our data reveal a global role for RNA editing in regulating gene expression.

  1. Core promoter factor TAF9B regulates neuronal gene expression

    PubMed Central

    Herrera, Francisco J; Yamaguchi, Teppei; Roelink, Henk; Tjian, Robert

    2014-01-01

    Emerging evidence points to an unexpected diversification of core promoter recognition complexes that serve as important regulators of cell-type specific gene transcription. Here, we report that the orphan TBP-associated factor TAF9B is selectively up-regulated upon in vitro motor neuron differentiation, and is required for the transcriptional induction of specific neuronal genes, while dispensable for global gene expression in murine ES cells. TAF9B binds to both promoters and distal enhancers of neuronal genes, partially co-localizing at binding sites of OLIG2, a key activator of motor neuron differentiation. Surprisingly, in this neuronal context TAF9B becomes preferentially associated with PCAF rather than the canonical TFIID complex. Analysis of dissected spinal column from Taf9b KO mice confirmed that TAF9B also regulates neuronal gene transcription in vivo. Our findings suggest that alternative core promoter complexes may provide a key mechanism to lock in and maintain specific transcriptional programs in terminally differentiated cell types. DOI: http://dx.doi.org/10.7554/eLife.02559.001 PMID:25006164

  2. Regulation of SET Gene Expression by NFkB.

    PubMed

    Feng, Yi; Li, Xiaoyong; Zhou, Weitao; Lou, Dandan; Huang, Daochao; Li, Yanhua; Kang, Yu; Xiang, Yan; Li, Tingyu; Zhou, Weihui; Song, Weihong

    2017-08-01

    SET is elevated and mislocalized in the neuronal cytoplasm in brains of Alzheimer's disease (AD) and Down syndrome (DS) patients. Cytoplasm SET leads to inhibition of protein phosphatase 2A and is involved in the tau pathology. However, the regulation of SET gene expression remains elusive. In the present study, we cloned a 1399-bp segment of the 5' flanking region of the human SET gene and identified that the transcription start site (TSS) of SET transcript 1 is located at 123 bp upstream of the translation start site ATG in exon 1. Sequence analysis reveals several putative regulatory elements including NFkB, Sp1, and HSE. Luciferase assay and electrophoretic mobility shift assay (EMSA) identified a functional cis-acting NFkB-responsive element in the SET gene promoter. Overexpression and activation of NFkB upregulate transcription of SET isoform 1 but not isoform 2, indicating that the expression of these two isoforms is differentially regulated. The results demonstrate that NFkB plays an important role in regulation of the human SET gene expression. Our findings suggest that oxidative stress and inflammatory responses could result in abnormal SET gene expression, contributing to the tauopathy in AD pathogenesis.

  3. The dynamic mechanism of noisy signal decoding in gene regulation

    PubMed Central

    Liu, Peijiang; Wang, Haohua; Huang, Lifang; Zhou, Tianshou

    2017-01-01

    Experimental evidence supports that signaling pathways can induce different dynamics of transcription factor (TF) activation, but how an input signal is encoded by such a dynamic, noisy TF and further decoded by downstream genes remains largely unclear. Here, using a system of stochastic transcription with signal regulation, we show that (1) keeping the intensity of the signal noise invariant but prolonging the signal duration can both enhance the mutual information (MI) and reduce the energetic cost (EC); (2) if the signal duration is fixed, the larger MI needs the larger EC, but if the signal period is fixed, there is an optimal time that the signal spends at one lower branch, such that MI reaches the maximum; (3) if both the period and the duration are simultaneously fixed, increasing the input noise can always enhance MI in the case of transcription regulation rather than in the case of degradation regulation. In addition, we find that the input noise can induce stochastic focusing in a regulation-dependent manner. These results reveal not only the dynamic mechanism of noisy signal decoding in gene regulation but also the essential role of external noise in controlling gene expression levels. PMID:28176840

  4. The dynamic mechanism of noisy signal decoding in gene regulation.

    PubMed

    Liu, Peijiang; Wang, Haohua; Huang, Lifang; Zhou, Tianshou

    2017-02-08

    Experimental evidence supports that signaling pathways can induce different dynamics of transcription factor (TF) activation, but how an input signal is encoded by such a dynamic, noisy TF and further decoded by downstream genes remains largely unclear. Here, using a system of stochastic transcription with signal regulation, we show that (1) keeping the intensity of the signal noise invariant but prolonging the signal duration can both enhance the mutual information (MI) and reduce the energetic cost (EC); (2) if the signal duration is fixed, the larger MI needs the larger EC, but if the signal period is fixed, there is an optimal time that the signal spends at one lower branch, such that MI reaches the maximum; (3) if both the period and the duration are simultaneously fixed, increasing the input noise can always enhance MI in the case of transcription regulation rather than in the case of degradation regulation. In addition, we find that the input noise can induce stochastic focusing in a regulation-dependent manner. These results reveal not only the dynamic mechanism of noisy signal decoding in gene regulation but also the essential role of external noise in controlling gene expression levels.

  5. Dissecting the regulation of yeast genes by the osmotin receptor

    PubMed Central

    Kupchak, Brian R.; Villa, Nancy Y.; Kulemina, Lidia; Lyons, Thomas J.

    2008-01-01

    The Izh2p protein from Saccharomyces cerevisiae is a receptor for the plant antifungal protein, osmotin. Since Izh2p is conserved in fungi, understanding its biochemical function could inspire novel strategies for the prevention of fungal growth. However, it has been difficult to determine the exact role of Izh2p because it has pleiotropic effects on cellular biochemistry. Herein, we demonstrate that Izh2p negatively regulates functionally divergent genes through a CCCTC promoter motif. Moreover, we show that Izh2p-dependent promoters containing this motif are regulated by the Nrg1p/Nrg2p and Msn2p/Msn4p transcription factors. The fact that Izh2p can regulate gene expression through this widely dispersed element presents a reasonable explanation of its pleiotropy. The involvement of Nrg1p/Nrgp2 in Izh2p-dependent gene regulation also suggests a role for this receptor in regulating fungal differentiation in response to stimuli produced by plants. PMID:18625204

  6. REST regulation of gene networks in adult neural stem cells.

    PubMed

    Mukherjee, Shradha; Brulet, Rebecca; Zhang, Ling; Hsieh, Jenny

    2016-11-07

    Adult hippocampal neural stem cells generate newborn neurons throughout life due to their ability to self-renew and exist as quiescent neural progenitors (QNPs) before differentiating into transit-amplifying progenitors (TAPs) and newborn neurons. The mechanisms that control adult neural stem cell self-renewal are still largely unknown. Conditional knockout of REST (repressor element 1-silencing transcription factor) results in precocious activation of QNPs and reduced neurogenesis over time. To gain insight into the molecular mechanisms by which REST regulates adult neural stem cells, we perform chromatin immunoprecipitation sequencing and RNA-sequencing to identify direct REST target genes. We find REST regulates both QNPs and TAPs, and importantly, ribosome biogenesis, cell cycle and neuronal genes in the process. Furthermore, overexpression of individual REST target ribosome biogenesis or cell cycle genes is sufficient to induce activation of QNPs. Our data define novel REST targets to maintain the quiescent neural stem cell state.

  7. Regulation of Cell and Gene Therapy Medicinal Products in Taiwan.

    PubMed

    Lin, Yi-Chu; Wang, Po-Yu; Tsai, Shih-Chih; Lin, Chien-Liang; Tai, Hsuen-Yung; Lo, Chi-Fang; Wu, Shiow-Ing; Chiang, Yu-Mei; Liu, Li-Ling

    2015-01-01

    Owing to the rapid and mature development of emerging biotechnology in the fields of cell culture, cell preservation, and recombinant DNA technology, more and more cell or gene medicinal therapy products have been approved for marketing, to treat serious diseases which have been challenging to treat with current medical practice or medicine. This chapter will briefly introduce the Taiwan Food and Drug Administration (TFDA) and elaborate regulation of cell and gene therapy medicinal products in Taiwan, including regulatory history evolution, current regulatory framework, application and review procedures, and relevant jurisdictional issues. Under the promise of quality, safety, and efficacy of medicinal products, it is expected the regulation and environment will be more flexible, streamlining the process of the marketing approval of new emerging cell or gene therapy medicinal products and providing diverse treatment options for physicians and patients.

  8. REST regulation of gene networks in adult neural stem cells

    PubMed Central

    Mukherjee, Shradha; Brulet, Rebecca; Zhang, Ling; Hsieh, Jenny

    2016-01-01

    Adult hippocampal neural stem cells generate newborn neurons throughout life due to their ability to self-renew and exist as quiescent neural progenitors (QNPs) before differentiating into transit-amplifying progenitors (TAPs) and newborn neurons. The mechanisms that control adult neural stem cell self-renewal are still largely unknown. Conditional knockout of REST (repressor element 1-silencing transcription factor) results in precocious activation of QNPs and reduced neurogenesis over time. To gain insight into the molecular mechanisms by which REST regulates adult neural stem cells, we perform chromatin immunoprecipitation sequencing and RNA-sequencing to identify direct REST target genes. We find REST regulates both QNPs and TAPs, and importantly, ribosome biogenesis, cell cycle and neuronal genes in the process. Furthermore, overexpression of individual REST target ribosome biogenesis or cell cycle genes is sufficient to induce activation of QNPs. Our data define novel REST targets to maintain the quiescent neural stem cell state. PMID:27819263

  9. Transcription factor clusters regulate genes in eukaryotic cells

    PubMed Central

    Hedlund, Erik G; Friemann, Rosmarie; Hohmann, Stefan

    2017-01-01

    Transcription is regulated through binding factors to gene promoters to activate or repress expression, however, the mechanisms by which factors find targets remain unclear. Using single-molecule fluorescence microscopy, we determined in vivo stoichiometry and spatiotemporal dynamics of a GFP tagged repressor, Mig1, from a paradigm signaling pathway of Saccharomyces cerevisiae. We find the repressor operates in clusters, which upon extracellular signal detection, translocate from the cytoplasm, bind to nuclear targets and turnover. Simulations of Mig1 configuration within a 3D yeast genome model combined with a promoter-specific, fluorescent translation reporter confirmed clusters are the functional unit of gene regulation. In vitro and structural analysis on reconstituted Mig1 suggests that clusters are stabilized by depletion forces between intrinsically disordered sequences. We observed similar clusters of a co-regulatory activator from a different pathway, supporting a generalized cluster model for transcription factors that reduces promoter search times through intersegment transfer while stabilizing gene expression. PMID:28841133

  10. Regulation of methanol utilisation pathway genes in yeasts

    PubMed Central

    Hartner, Franz S; Glieder, Anton

    2006-01-01

    Methylotrophic yeasts such as Candida boidinii, Hansenula polymorpha, Pichia methanolica and Pichia pastoris are an emerging group of eukaryotic hosts for recombinant protein production with an ever increasing number of applications during the last 30 years. Their applications are linked to the use of strong methanol-inducible promoters derived from genes of the methanol utilisation pathway. These promoters are tightly regulated, highly repressed in presence of non-limiting concentrations of glucose in the medium and strongly induced if methanol is used as carbon source. Several factors involved in this tight control and their regulatory effects have been described so far. This review summarises available data about the regulation of promoters from methanol utilisation pathway genes. Furthermore, the role of cis and trans acting factors (e.g. transcription factors, glucose processing enzymes) in the expression of methanol utilisation pathway genes is reviewed both in the context of the native cell environment as well as in heterologous hosts. PMID:17169150

  11. Light-Inducible Gene Regulation with Engineered Zinc Finger Proteins

    PubMed Central

    Polstein, Lauren R.; Gersbach, Charles A.

    2014-01-01

    The coupling of light-inducible protein-protein interactions with gene regulation systems has enabled the control of gene expression with light. In particular, heterodimer protein pairs from plants can be used to engineer a gene regulation system in mammalian cells that is reversible, repeatable, tunable, controllable in a spatiotemporal manner, and targetable to any DNA sequence. This system, Light-Inducible Transcription using Engineered Zinc finger proteins (LITEZ), is based on the blue light-induced interaction of GIGANTEA and the LOV domain of FKF1 that drives the localization of a transcriptional activator to the DNA-binding site of a highly customizable engineered zinc finger protein. This chapter provides methods for modifying LITEZ to target new DNA sequences, engineering a programmable LED array to illuminate cell cultures, and using the modified LITEZ system to achieve spatiotemporal control of transgene expression in mammalian cells. PMID:24718797

  12. Regulation of mammalian horizontal gene transfer by apoptotic DNA fragmentation

    PubMed Central

    Yan, B; Wang, H; Li, F; Li, C-Y

    2006-01-01

    Previously it was shown that horizontal DNA transfer between mammalian cells can occur through the uptake of apoptotic bodies, where genes from the apoptotic cells were transferred to neighbouring cells phagocytosing the apoptotic bodies. The regulation of this process is poorly understood. It was shown that the ability of cells as recipient of horizontally transferred DNA was enhanced by deficiency of p53 or p21. However, little is known with regard to the regulation of DNA from donor apoptotic cells. Here we report that the DNA fragmentation factor/caspase-activated DNase (DFF/CAD), which is the endonuclease responsible for DNA fragmentation during apoptosis, plays a significant role in regulation of horizontal DNA transfer. Cells with inhibited DFF/CAD function are poor donors for horizontal gene transfer (HGT) while their ability of being recipients of HGT is not affected. PMID:17146478

  13. Early development of Moniliophthora perniciosa basidiomata and developmentally regulated genes

    PubMed Central

    2009-01-01

    Background The hemibiotrophic fungus Moniliophthora perniciosa is the causal agent of Witches' broom, a disease of Theobroma cacao. The pathogen life cycle ends with the production of basidiocarps in dead tissues of the infected host. This structure generates millions of basidiospores that reinfect young tissues of the same or other plants. A deeper understanding of the mechanisms underlying the sexual phase of this fungus may help develop chemical, biological or genetic strategies to control the disease. Results Mycelium was morphologically analyzed prior to emergence of basidiomata by stereomicroscopy, light microscopy and scanning electron microscopy. The morphological changes in the mycelium before fructification show a pattern similar to other members of the order Agaricales. Changes and appearance of hyphae forming a surface layer by fusion were correlated with primordia emergence. The stages of hyphal nodules, aggregation, initial primordium and differentiated primordium were detected. The morphological analysis also allowed conclusions on morphogenetic aspects. To analyze the genes involved in basidiomata development, the expression of some selected EST genes from a non-normalized cDNA library, representative of the fruiting stage of M. perniciosa, was evaluated. A macroarray analysis was performed with 192 selected clones and hybridized with two distinct RNA pools extracted from mycelium in different phases of basidiomata formation. This analysis showed two groups of up and down-regulated genes in primordial phases of mycelia. Hydrophobin coding, glucose transporter, Rho-GEF, Rheb, extensin precursor and cytochrome p450 monooxygenase genes were grouped among the up-regulated. In the down-regulated group relevant genes clustered coding calmodulin, lanosterol 14 alpha demethylase and PIM1. In addition, 12 genes with more detailed expression profiles were analyzed by RT-qPCR. One aegerolysin gene had a peak of expression in mycelium with primordia and a

  14. Pathway-specific regulation revisited: cross-regulation of multiple disparate gene clusters by PAS-LuxR transcriptional regulators.

    PubMed

    Vicente, Cláudia M; Payero, Tamara D; Santos-Aberturas, Javier; Barreales, Eva G; de Pedro, Antonio; Aparicio, Jesús F

    2015-06-01

    PAS-LuxR regulators are highly conserved proteins devoted to the control of antifungal production by binding to operators located in given promoters of polyene biosynthetic genes. The canonical operator of PimM, archetype of this class of regulators, has been used here to search for putative targets of orthologous protein PteF in the genome of Streptomyces avermitilis, finding 97 putative operators outside the pentaene filipin gene cluster (pte). The processes putatively affected included genetic information processing; energy, carbohydrate, and lipid metabolism; DNA replication and repair; morphological differentiation; secondary metabolite biosynthesis; and transcriptional regulation, among others. Seventeen of these operators were selected, and their binding to PimM DNA-binding domain was assessed by electrophoretic mobility shift assays. Strikingly, the protein bound all predicted operators suggesting a direct control over targeted processes. As a proof of concept, we studied the biosynthesis of the ATP-synthase inhibitor oligomycin whose gene cluster included two operators. Regulator mutants showed a severe loss of oligomycin production, whereas gene complementation of the mutant restored phenotype, and gene duplication in the wild-type strain boosted oligomycin production. Comparative gene expression analyses in parental and mutant strains by reverse transcription-quantitative polymerase chain reaction of selected olm genes corroborated production results. These results demonstrate that PteF is able to cross-regulate the biosynthesis of two related secondary metabolites, filipin and oligomycin, but might be extended to all the processes indicated above. This study highlights the complexity of the network of interactions in which PAS-LuxR regulators are involved and opens new possibilities for the manipulation of metabolite production in Streptomycetes.

  15. Cold stress initiates the Nrf2/UGT1A1/L-FABP signaling pathway in chickens.

    PubMed

    Chen, X Y; Li, R; Geng, Z Y

    2015-11-01

    Cold stress triggers an anti-oxidative response in animals regulated by Nrf2 (nuclear factor 2-like, NFE2L2) binding to deoxyribonucleic acid-regulatory sequences near stress-responsive genes. To identify chicken Nrf2-regulated genes, 3 genetically related experimental groups (EG) with 40 Huainan partridge chickens in each group were chosen. The chickens were maintained at 20°C environmental temperature from 5 wk of age. At 6 wk of age, 10 chickens from each EG were still maintained at 20°C as control, and the other 30 chickens from each EG were exposed to 6 ± 2°C. Liver samples were collected from the control and from chickens exposed to 6 ± 2°C for 12, 24, and 72 h for co-immuno-precipitation (CoIP) analysis. Chromatin immunoprecipitation (ChIP)-sequencing experiment in liver cells treated with Dimethyl fumarate (DMF) were carried out. A de novo motif was discovered which closely matched the core Nrf2 consensus binding motif. Genes involved in de novo motif discovery were further analyzed for their enrichment in the anti-oxidative response pathway and the lipid anabolism pathway. There were 14 genes found which are related to oxidative stress. To examine the downstream factors of the 14 responsive genes, one of them, UGT1A1 (UDP glucuronosyltransferase), was further analyzed by CoIP experiment and nano LC-ESI-MS/MS analysis. It was detected that fatty acid-binding protein (L-FABP, 127 AA) might be the potential UGT1A1 downstream interaction proteins. In conclusion, it is proposed that chickens under cold stress generate anti-oxidative stress and thus trigger the Nrf2/ARE signaling pathway, which further up-regulates the expression of L-FABP to inactivate lipid peroxidation of the cell membrane and promote fatty acid storage against the cold environment.

  16. Regulation of core clock genes in human islets.

    PubMed

    Stamenkovic, Jelena A; Olsson, Anders H; Nagorny, Cecilia L; Malmgren, Siri; Dekker-Nitert, Marloes; Ling, Charlotte; Mulder, Hindrik

    2012-07-01

    Nearly all mammalian cells express a set of genes known as clock genes. These regulate the circadian rhythm of cellular processes by means of negative and positive autoregulatory feedback loops of transcription and translation. Recent genomewide association studies have demonstrated an association between a polymorphism near the circadian clock gene CRY2 and elevated fasting glucose. To determine whether clock genes could play a pathogenetic role in the disease, we examined messenger RNA (mRNA) expression of core clock genes in human islets from donors with or without type 2 diabetes mellitus. Microarray and quantitative real-time polymerase chain reaction analyses were used to assess expression of the core clock genes CLOCK, BMAL-1, PER1 to 3, and CRY1 and 2 in human islets. Insulin secretion and insulin content in human islets were measured by radioimmunoassay. The mRNA levels of PER2, PER3, and CRY2 were significantly lower in islets from donors with type 2 diabetes mellitus. To investigate the functional relevance of these clock genes, we correlated their expression to insulin content and glycated hemoglobin levels: mRNA levels of PER2 (ρ = 0.33, P = .012), PER3 (ρ = 0.30, P = .023), and CRY2 (ρ = 0.37, P = .0047) correlated positively with insulin content. Of these genes, expression of PER3 and CRY2 correlated negatively with glycated hemoglobin levels (ρ = -0.44, P = .0012; ρ = -0.28, P = .042). Furthermore, in an in vitro model mimicking pathogenetic conditions, the PER3 mRNA level was reduced in human islets exposed to 16.7 mmol/L glucose per 1 mmol/L palmitate for 48 hours (P = .003). Core clock genes are regulated in human islets. The data suggest that perturbations of circadian clock components may contribute to islet pathophysiology in human type 2 diabetes mellitus. Copyright © 2012 Elsevier Inc. All rights reserved.

  17. Gene regulation in the immediate-early response process.

    PubMed

    Bahrami, Shahram; Drabløs, Finn

    2016-09-01

    Immediate-early genes (IEGs) can be activated and transcribed within minutes after stimulation, without the need for de novo protein synthesis, and they are stimulated in response to both cell-extrinsic and cell-intrinsic signals. Extracellular signals are transduced from the cell surface, through receptors activating a chain of proteins in the cell, in particular extracellular-signal-regulated kinases (ERKs), mitogen-activated protein kinases (MAPKs) and members of the RhoA-actin pathway. These communicate through a signaling cascade by adding phosphate groups to neighboring proteins, and this will eventually activate and translocate TFs to the nucleus and thereby induce gene expression. The gene activation also involves proximal and distal enhancers that interact with promoters to simulate gene expression. The immediate-early genes have essential biological roles, in particular in stress response, like the immune system, and in differentiation. Therefore they also have important roles in various diseases, including cancer development. In this paper we summarize some recent advances on key aspects of the activation and regulation of immediate-early genes. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  18. Inference of gene regulation functions from dynamic transcriptome data

    PubMed Central

    Hillenbrand, Patrick; Maier, Kerstin C; Cramer, Patrick; Gerland, Ulrich

    2016-01-01

    To quantify gene regulation, a function is required that relates transcription factor binding to DNA (input) to the rate of mRNA synthesis from a target gene (output). Such a ‘gene regulation function’ (GRF) generally cannot be measured because the experimental titration of inputs and simultaneous readout of outputs is difficult. Here we show that GRFs may instead be inferred from natural changes in cellular gene expression, as exemplified for the cell cycle in the yeast S. cerevisiae. We develop this inference approach based on a time series of mRNA synthesis rates from a synchronized population of cells observed over three cell cycles. We first estimate the functional form of how input transcription factors determine mRNA output and then derive GRFs for target genes in the CLB2 gene cluster that are expressed during G2/M phase. Systematic analysis of additional GRFs suggests a network architecture that rationalizes transcriptional cell cycle oscillations. We find that a transcription factor network alone can produce oscillations in mRNA expression, but that additional input from cyclin oscillations is required to arrive at the native behaviour of the cell cycle oscillator. DOI: http://dx.doi.org/10.7554/eLife.12188.001 PMID:27652904

  19. Canalization of gene expression in the Drosophila blastoderm by gap gene cross regulation.

    PubMed

    Manu; Surkova, Svetlana; Spirov, Alexander V; Gursky, Vitaly V; Janssens, Hilde; Kim, Ah-Ram; Radulescu, Ovidiu; Vanario-Alonso, Carlos E; Sharp, David H; Samsonova, Maria; Reinitz, John

    2009-03-01

    Developing embryos exhibit a robust capability to reduce phenotypic variations that occur naturally or as a result of experimental manipulation. This reduction in variation occurs by an epigenetic mechanism called canalization, a phenomenon which has resisted understanding because of a lack of necessary molecular data and of appropriate gene regulation models. In recent years, quantitative gene expression data have become available for the segment determination process in the Drosophila blastoderm, revealing a specific instance of canalization. These data show that the variation of the zygotic segmentation gene expression patterns is markedly reduced compared to earlier levels by the time gastrulation begins, and this variation is significantly lower than the variation of the maternal protein gradient Bicoid. We used a predictive dynamical model of gene regulation to study the effect of Bicoid variation on the downstream gap genes. The model correctly predicts the reduced variation of the gap gene expression patterns and allows the characterization of the canalizing mechanism. We show that the canalization is the result of specific regulatory interactions among the zygotic gap genes. We demonstrate the validity of this explanation by showing that variation is increased in embryos mutant for two gap genes, Krüppel and knirps, disproving competing proposals that canalization is due to an undiscovered morphogen, or that it does not take place at all. In an accompanying article in PLoS Computational Biology (doi:10.1371/journal.pcbi.1000303), we show that cross regulation between the gap genes causes their expression to approach dynamical attractors, reducing initial variation and providing a robust output. These results demonstrate that the Bicoid gradient is not sufficient to produce gap gene borders having the low variance observed, and instead this low variance is generated by gap gene cross regulation. More generally, we show that the complex multigenic

  20. Conditioned taste aversion dependent regulation of amygdala gene expression.

    PubMed

    Panguluri, Siva K; Kuwabara, Nobuyuki; Kang, Yi; Cooper, Nigel; Lundy, Robert F

    2012-02-28

    The present experiments investigated gene expression in the amygdala following contingent taste/LiCl treatment that supports development of conditioned taste aversion (CTA). The use of whole genome chips and stringent data set filtering led to the identification of 168 genes regulated by CTA compared to non-contingent LiCl treatment that does not support CTA learning. Seventy-six of these genes were eligible for network analysis. Such analysis identified "behavior" as the top biological function, which was represented by 15 of the 76 genes. These genes included several neuropeptides, G protein-coupled receptors, ion channels, kinases, and phosphatases. Subsequent qRT-PCR analyses confirmed changes in mRNA expression for 5 of 7 selected genes. We were able to demonstrate directionally consistent changes in protein level for 3 of these genes; insulin 1, oxytocin, and major histocompatibility complex class I-C. Behavioral analyses demonstrated that blockade of central insulin receptors produced a weaker CTA that was less resistant to extinction. Together, these results support the notion that we have identified downstream genes in the amygdala that contribute to CTA learning.

  1. The regulation of gene expression in hair cells

    PubMed Central

    Ryan, Allen F.; Ikeda, Ryoukichi; Masuda, Masatsugu

    2015-01-01

    No genes have been discovered for which expression is limited only to inner ear hair cells. This is hardly surprising, since the number of mammalian genes is estimated to be 20–25,000, and each gene typically performs many tasks in various locations. Many genes are expressed in inner ear sensory cells and not in other cells of the labyrinth. However, these genes are also expressed in other locations, often in other sensory or neuronal cell types. How gene transcription is directed specifically to hair cells is unclear. Key transcription factors that act during development can specify cell phenotypes, and the hair cell is no exception. The transcription factor ATOH1 is well known for its ability to transform nonsensory cells of the developing inner ear into hair cells. And yet, ATOH1 also specifies different sensory cells at other locations, neuronal phenotypes in the brain, and epithelial cells in the gut. How it specifies hair cells in the inner ear, but alternate cell types in other locations, is not known. Studies of regulatory DNA and transcription factors are revealing mechanisms that direct gene expression to hair cells, and that determine the hair cell identity. The purpose of this review is to summarize what is known about such gene regulation in this key auditory and vestibular cell type. PMID:25616095

  2. Aspergillus nidulans mutants defective in stc gene cluster regulation.

    PubMed Central

    Butchko, R A; Adams, T H; Keller, N P

    1999-01-01

    The genes involved in the biosynthesis of sterigmatocystin (ST), a toxic secondary metabolite produced by Aspergillus nidulans and an aflatoxin (AF) precursor in other Aspergillus spp., are clustered on chromosome IV of A. nidulans. The sterigmatocystin gene cluster (stc gene cluster) is regulated by the pathway-specific transcription factor aflR. The function of aflR appears to be conserved between ST- and AF-producing aspergilli, as are most of the other genes in the cluster. We describe a novel screen for detecting mutants defective in stc gene cluster activity by use of a genetic block early in the ST biosynthetic pathway that results in the accumulation of the first stable intermediate, norsolorinic acid (NOR), an orange-colored compound visible with the unaided eye. We have mutagenized this NOR-accumulating strain and have isolated 176 Nor(-) mutants, 83 of which appear to be wild type in growth and development. Sixty of these 83 mutations are linked to the stc gene cluster and are likely defects in aflR or known stc biosynthetic genes. Of the 23 mutations not linked to the stc gene cluster, 3 prevent accumulation of NOR due to the loss of aflR expression. PMID:10511551

  3. Quantitative characterization of gene regulation by Rho dependent transcription termination.

    PubMed

    Hussein, Razika; Lee, Tiffany Y; Lim, Han N

    2015-08-01

    Rho factor dependent transcription termination (RTT) is common within the coding sequences of bacterial genes and it acts to couple transcription and translation levels. Despite the importance of RTT for gene regulation, its effects on mRNA and protein concentrations have not been quantitatively characterized. Here we demonstrate that the exogenous cfp gene encoding the cyan fluorescent protein can serve as a model for gene regulation by RTT. This was confirmed by showing that Psu and bicyclomycin decrease RTT and increase full length cfp mRNAs (but remarkably they have little effect on protein production). We then use cfp to characterize the relationship between its protein and full length mRNA concentrations when the translation initiation rate is varied by sequence modifications of the translation initiation region (TIR). These experiments reveal that the fold change in protein concentration (RP) and the fold change in full length mRNA concentration (Rm) have the relationship RP≈Rm(b), where b is a constant. The average value of b was determined from three separate data sets to be ~3.6. We demonstrate that the above power law function can predict how altering the translation initiation rate of a gene in an operon will affect the mRNA concentrations of downstream genes and specify a lower bound for the associated changes in protein concentrations. In summary, this study defines a simple phenomenological model to help program expression from single genes and operons that are regulated by RTT, and to guide molecular models of RTT.

  4. Glucocorticoids modulate NF-kappaB-dependent gene expression by up-regulating FKBP51 expression in Newcastle disease virus-infected chickens.

    PubMed

    Park, Jiyoung; Kim, Mijin; Na, Giyoun; Jeon, Iksoo; Kwon, Yong-kuk; Kim, Jae-hong; Youn, Hyesook; Koo, Yongbum

    2007-11-15

    FK506-binding protein 51(FKBP51, coded by FKBP5) is a co-chaperone molecule that interacts with the chaperone HSP90 and the glucocorticoid receptor (GR) in an inactive GR complex. It is a negative regulator of glucocorticoid action and is replaced by the positive regulator, FK506-binding protein 52 (FKBP52, coded by FKBP4) when hormone binds to GR, which renders the GR complex active. In this study, we found that the expression of FKBP51 mRNA in 12 organs of Newcastle disease virus (NDV)-infected chickens was robustly induced. The level of corticosterone in NDV-infected chickens was also elevated, approximately 2- to 6.5-fold in the organs compared to non-infected control chickens. The induction of FKBP51 mRNA expression was reproduced by dexamethasone treatment, indicating a role for glucocorticoids in the systemic induction of FKBP51 mRNA expression. In chicken UMNSAH/DF-1 cells, nuclear factor kappaB (NF-kappaB) was activated in an FKBP51-dependent manner. Regulation of the three NF-kappaB-dependent, anti-apoptotic genes, bcl-2, bcl-x and bfl-1/A1 was investigated in UMNSAH/DF-1 cells. Dexamethasone treatment of UMNSAH/DF-1 cells resulted in up-regulation of bcl-2, and down-regulation of bcl-x and bfl-1/A1. Expression of FKBP51 also resulted in down-regulation of bfl-1/A1, but had no effect on bcl-2 and bcl-x, suggesting the involvement of glucocorticoid-FKBP51-NF-kappaB signaling in the regulation of expression of bfl-1/A1 in UMNSAH/DF-1 cells. We observed organ-specific up- or down-regulation of expression of, bcl-2, bcl-x and bfl-1/A1 in NDV-infected and dexamethasone-treated chickens. Differential regulation of bfl-1/A1, bcl-2 and bcl-x upon NDV-infection and dexamethasone treatment suggests that additional factors are involved in the regulation of these genes. These results suggest that systemic elevation of FKBP51 in NDV-infected chickens activates NF-kappaB, which cooperates with other factors to regulate the expression of NF-kappaB-dependent genes.

  5. Regulation of photoreceptor gene transcription via a highly conserved transcriptional regulatory element by vsx gene products

    PubMed Central

    Pan, Yi; Comiskey, Daniel F.; Kelly, Lisa E.; Chandler, Dawn S.

    2016-01-01

    Purpose The photoreceptor conserved element-1 (PCE-1) sequence is found in the transcriptional regulatory regions of many genes expressed in photoreceptors. The retinal homeobox (Rx or Rax) gene product functions by binding to PCE-1 sites. However, other transcriptional regulators have also been reported to bind to PCE-1. One of these, vsx2, is expressed in retinal progenitor and bipolar cells. The purpose of this study is to identify Xenopus laevis vsx gene products and characterize vsx gene product expression and function with respect to the PCE-1 site. Methods X. laevis vsx gene products were amplified with PCR. Expression patterns were determined with in situ hybridization using whole or sectioned X. laevis embryos and digoxigenin- or fluorescein-labeled antisense riboprobes. DNA binding characteristics of the vsx gene products were analyzed with electrophoretic mobility shift assays (EMSAs) using in vitro translated proteins and radiolabeled oligonucleotide probes. Gene transactivation assays were performed using luciferase-based reporters and in vitro transcribed effector gene products, injected into X. laevis embryos. Results We identified one vsx1 and two vsx2 gene products. The two vsx2 gene products are generated by alternate mRNA splicing. We verified that these gene products are expressed in the developing retina and that expression resolves into distinct cell types in the mature retina. Finally, we found that vsx gene products can bind the PCE-1 site in vitro and that the two vsx2 isoforms have different gene transactivation activities. Conclusions vsx gene products are expressed in the developing and mature neural retina. vsx gene products can bind the PCE-1 site in vitro and influence the expression of a rhodopsin promoter-luciferase reporter gene. The two isoforms of vsx have different gene transactivation activities in this reporter gene system. PMID:28003732

  6. Functional Enhancers As Master Regulators of Tissue-Specific Gene Regulation and Cancer Development

    PubMed Central

    Ko, Je Yeong; Oh, Sumin; Yoo, Kyung Hyun

    2017-01-01

    Tissue-specific transcription is critical for normal development, and abnormalities causing undesirable gene expression may lead to diseases such as cancer. Such highly organized transcription is controlled by enhancers with specific DNA sequences recognized by transcription factors. Enhancers are associated with chromatin modifications that are distinct epigenetic features in a tissue-specific manner. Recently, super-enhancers comprising enhancer clusters co-occupied by lineage-specific factors have been identified in diverse cell types such as adipocytes, hair follicle stem cells, and mammary epithelial cells. In addition, noncoding RNAs, named eRNAs, are synthesized at super-enhancer regions before their target genes are transcribed. Many functional studies revealed that super-enhancers and eRNAs are essential for the regulation of tissue-specific gene expression. In this review, we summarize recent findings concerning enhancer function in tissue-specific gene regulation and cancer development. PMID:28359147

  7. Complex roles of Stat1 in regulating gene expression.

    PubMed

    Ramana, C V; Chatterjee-Kishore, M; Nguyen, H; Stark, G R

    2000-05-15

    Stat1 is a fascinating and complex protein with multiple, yet contrasting transcriptional functions. Upon activation, it drives the expression of many genes but also suppresses the transcription of others. These opposing characteristics also apply to its role in facilitating crosstalk between signal transduction pathways, as it participates in both synergistic activation and inhibition of gene expression. Stat1 is a functional transcription factor even in the absence of inducer-mediated activation, participating in the constitutive expression of some genes. This review summarizes the well studied involvement of Stat1 in IFN-dependent and growth factor-dependent signaling and then describes the roles of Stat1 in positive, negative and constitutive regulation of gene expression as well as its participation in crosstalk between signal transduction pathways. Oncogene (2000).

  8. Achieving HIV-1 Control through RNA-Directed Gene Regulation

    PubMed Central

    Klemm, Vera; Mitchell, Jye; Cortez-Jugo, Christina; Cavalieri, Francesca; Symonds, Geoff; Caruso, Frank; Kelleher, Anthony Dominic; Ahlenstiel, Chantelle

    2016-01-01

    HIV-1 infection has been transformed by combined anti-retroviral therapy (ART), changing a universally fatal infection into a controllable infection. However, major obstacles for an HIV-1 cure exist. The HIV latent reservoir, which exists in resting CD4+ T cells, is not impacted by ART, and can reactivate when ART is interrupted or ceased. Additionally, multi-drug resistance can arise. One alternate approach to conventional HIV-1 drug treatment that is being explored involves gene therapies utilizing RNA-directed gene regulation. Commonly known as RNA interference (RNAi), short interfering RNA (siRNA) induce gene silencing in conserved biological pathways, which require a high degree of sequence specificity. This review will provide an overview of the silencing pathways, the current RNAi technologies being developed for HIV-1 gene therapy, current clinical trials, and the challenges faced in progressing these treatments into clinical trials. PMID:27941595

  9. RNA-based gene circuits for cell regulation

    PubMed Central

    KARAGIANNIS, Peter; FUJITA, Yoshihiko; SAITO, Hirohide

    2016-01-01

    A major goal of synthetic biology is to control cell behavior. RNA-mediated genetic switches (RNA switches) are devices that serve this purpose, as they can control gene expressions in response to input signals. In general, RNA switches consist of two domains: an aptamer domain, which binds to an input molecule, and an actuator domain, which controls the gene expression. An input binding to the aptamer can cause the actuator to alter the RNA structure, thus changing access to translation machinery. The assembly of multiple RNA switches has led to complex gene circuits for cell therapies, including the selective killing of pathological cells and purification of cell populations. The inclusion of RNA binding proteins, such as L7Ae, increases the repertoire and precision of the circuit. In this short review, we discuss synthetic RNA switches for gene regulation and their potential therapeutic applications. PMID:27840389

  10. Carbon dioxide as a regulator of gene expression in microorganisms.

    PubMed

    Stretton, S; Goodman, A E

    1998-01-01

    CO2 regulates gene expression across a diverse group of microorganisms including fungi, and both photosynthetic and non photosynthetic bacteria. The processes that CO2 regulates are diverse. Several CO2-responsive random promoter lacZ fusions of unknown function have been isolated from a marine Synechococcus and a Pseudoalteromonas sp., highlighting the wide effect of CO2 control in these organisms. Regulatory proteins have been described that mediate the CO2 response at transcription level in Bacillus anthracis, the group A streptococci and two Rhodobacter spp. These regulatory proteins include: AcpA and AtxA that are involved in CO2 control of B. anthracis capsule and toxin production; Mga that regulates surface associated virulence factors in the group A streptococci; and RegB/A, a two component signal transduction system that responds to environmental stimuli including CO2, to regulate photosynthetic apparatus and CO2 fixation enzyme synthesis in Rhodobacter spp.

  11. Intron retention-dependent gene regulation in Cryptococcus neoformans

    PubMed Central

    Gonzalez-Hilarion, Sara; Paulet, Damien; Lee, Kyung-Tae; Hon, Chung-Chau; Lechat, Pierre; Mogensen, Estelle; Moyrand, Frédérique; Proux, Caroline; Barboux, Rony; Bussotti, Giovanni; Hwang, Jungwook; Coppée, Jean-Yves; Bahn, Yong-Sun; Janbon, Guilhem

    2016-01-01

    The biological impact of alternative splicing is poorly understood in fungi, although recent studies have shown that these microorganisms are usually intron-rich. In this study, we re-annotated the genome of C. neoformans var. neoformans using RNA-Seq data. Comparison with C. neoformans var. grubii revealed that more than 99% of ORF-introns are in the same exact position in the two varieties whereas UTR-introns are much less evolutionary conserved. We also confirmed that alternative splicing is very common in C. neoformans, affecting nearly all expressed genes. We also observed specific regulation of alternative splicing by environmental cues in this yeast. However, alternative splicing does not appear to be an efficient method to diversify the C. neoformans proteome. Instead, our data suggest the existence of an intron retention-dependent mechanism of gene expression regulation that is not dependent on NMD. This regulatory process represents an additional layer of gene expression regulation in fungi and provides a mechanism to tune gene expression levels in response to any environmental modification. PMID:27577684

  12. Combinatorial gene regulation by modulation of relative pulse timing

    PubMed Central

    Lin, Yihan; Sohn, Chang Ho; Dalal, Chiraj K.; Cai, Long; Elowitz, Michael B.

    2015-01-01

    Studies of individual living cells have revealed that many transcription factors activate in dynamic, and often stochastic, pulses within the same cell. However, it has remained unclear whether cells might modulate the relative timing of these pulses to control gene expression. Here, using quantitative single-cell time-lapse imaging of Saccharomyces cerevisiae, we show that the pulsatile transcription factors Msn2 and Mig1 combinatorially regulate their target genes through modulation of their relative pulse timing. The activator Msn2 and repressor Mig1 pulsed in either a temporally overlapping or non-overlapping manner during their transient response to different inputs, with only the non-overlapping dynamics efficiently activating target gene expression. Similarly, under constant environmental conditions, where Msn2 and Mig1 exhibit sporadic pulsing, glucose concentration modulated the temporal overlap between pulses of the two factors. Together, these results reveal a time-based mode of combinatorial gene regulation. Regulation through relative signal timing is common in engineering and neurobiology, and these results suggest that it could also function broadly within the signaling and regulatory systems of the cell. PMID:26466562

  13. Signal Transduction Pathways that Regulate CAB Gene Expression

    SciTech Connect

    Chory, Joanne

    2006-01-16

    The process of chloroplast differentiation, involves the coordinate regulation of many nuclear and chloroplast genes. The cues for the initiation of this developmental program are both extrinsic (e.g., light) and intrinsic (cell-type and plastid signals). During this project period, we utilized a molecular genetic approach to select for Arabidopsis mutants that did not respond properly to environmental light conditions, as well as mutants that were unable to perceive plastid damage. These latter mutants, called gun mutants, define two retrograde signaling pathways that regulate nuclear gene expression in response to chloroplasts. A major finding was to identify a signal from chloroplasts that regulates nuclear gene transcription. This signal is the build-up of Mg-Protoporphyrin IX, a key intermediate of the chlorophyll biosynthetic pathway. The signaling pathways downstream of this signal are currently being studied. Completion of this project has provided an increased understanding of the input signals and retrograde signaling pathways that control nuclear gene expression in response to the functional state of chloroplasts. These studies should ultimately influence our abilities to manipulate plant growth and development, and will aid in the understanding of the developmental control of photosynthesis.

  14. Signal Transduction Pathways that Regulate CAB Gene Expression

    SciTech Connect

    Chory, Joanne

    2004-12-31

    The process of chloroplast differentiation, involves the coordinate regulation of many nuclear and chloroplast genes. The cues for the initiation of this developmental program are both extrinsic (e.g., light) and intrinsic (cell-type and plastid signals). During this project period, we utilized a molecular genetic approach to select for Arabidopsis mutants that did not respond properly to environmental light conditions, as well as mutants that were unable to perceive plastid damage. These latter mutants, called gun mutants, define two retrograde signaling pathways that regulate nuclear gene expression in response to chloroplasts. A major finding was to identify a signal from chloroplasts that regulates nuclear gene transcription. This signal is the build-up of Mg-Protoporphyrin IX, a key intermediate of the chlorophyll biosynthetic pathway. The signaling pathways downstream of this signal are currently being studied. Completion of this project has provided an increased understanding of the input signals and retrograde signaling pathways that control nuclear gene expression in response to the functional state of chloroplasts. These studies should ultimately influence our abilities to manipulate plant growth and development, and will aid in the understanding of the developmental control of photosynthesis.

  15. Transcriptional and posttranscriptional regulation of the CTNS gene.

    PubMed

    Corallini, Serena; Taranta, Anna; Bellomo, Francesco; Palma, Alessia; Pastore, Anna; Emma, Francesco

    2011-08-01

    Cell cysteine (Cys) levels and/or the [Cys/CySS] redox potential have been shown to regulate mRNA levels of the CTNS gene, which encodes for a lysosomal cystine (CySS) carrier that is defective in cystinosis. To investigate the mechanisms involved CTNS mRNA regulation, different portions of the CTNS promotor were cloned into a luciferase vector and transfected in HK2 cells. A 1.5-2.4-fold increase in luciferase activity was observed when cells were incubated in culture medium containing low CySS concentrations. Conversely, CTNS mRNA levels decreased by 47-56% in the presence of N-acetyl-L-cysteine (NAC). Chase experiments with actinomycin D (ActD) demonstrated a 3-fold stabilization of the CTNS mRNA when cells were cultured in low CySS medium for 48 h. Treatment of control cells with cyclohexamide (CHX) increased CTNS mRNA levels, suggesting that CHX blocked the synthesis of proteins involved in mRNA degradation or in repression of the CTNS gene. Finally, in vitro binding assays showed increased binding (30-110%) of the Sp-1 transcription factor to two regions of the CTNS promotor when cells were incubated in low CySS medium. These results indicate that the CTNS gene is actively regulated at the transcriptional and posttranscriptional levels and suggest that CTNS plays a pivotal role in regulating cell thiol concentrations.

  16. The Gene Balance Hypothesis: implications for gene regulation, quantitative traits and evolution

    PubMed Central

    Birchler, James A.; Veitia, Reiner A.

    2009-01-01

    Summary The Gene Balance Hypothesis states that the stoichoimetry of members of multi-subunit complexes affects the function of the whole due to the kinetics and mode of assembly. Gene regulatory mechanisms would be governed by these principles. Here, we review the impact of this concept with regard to the effects on the genetics of quantitative traits, the fate of duplication of genes following polyploidization events or segmental duplication, the basis of aneuploid syndromes, the constraints on cis and trans variation in gene regulation and the potential involvement in hybrid incompatibilities. PMID:19925558

  17. BRCA1 transcriptionally regulates genes involved in breast tumorigenesis

    PubMed Central

    Welcsh, Piri L.; Lee, Ming K.; Gonzalez-Hernandez, Rachel M.; Black, Daniel J.; Mahadevappa, Mamatha; Swisher, Elizabeth M.; Warrington, Janet A.; King, Mary-Claire

    2002-01-01

    Loss of function of BRCA1 caused by inherited mutation and tissue-specific somatic mutation leads to breast and ovarian cancer. Nearly all BRCA1 germ-line mutations involve truncation or loss of the C-terminal BRCT transcriptional activation domain, suggesting that transcriptional regulation is a critical function of the wild-type gene. The purpose of this project was to determine whether there is a link between the role of BRCA1 in transcriptional regulation and its role in tumor suppression. We developed a cell line (in which BRCA1 can be induced) and used microarray analysis to compare transcription profiles of epithelial cells with low endogenous levels of BRCA1 vs. transcription profiles of cells with 2–4-fold higher induced levels of expression of BRCA1. At these levels of expression, BRCA1 did not induce apoptosis. Undirected cluster analysis of six paired experiments revealed 373 genes, the expression of which was altered significantly and consistently by BRCA1 induction. Expression of 62 genes was altered more than 2-fold. BRCA1-regulated genes associated with breast tumorigenesis included the estrogen-responsive genes MYC and cyclin D1, which are overexpressed in many breast tumors; STAT1 and JAK1, key components of the cytokine signal transduction pathway; the extracellular matrix protein laminin 3A; ID4, an inhibitor of DNA-binding transcriptional activators, which in turn negatively regulates BRCA1 expression; and the prohormone stanniocalcin, expression of which is lost in breast tumor cells. Coordinated expression of BRCA1 with ID4 and with stanniocalcin was confirmed in primary breast and ovarian tumors. PMID:12032322

  18. Epigenetic regulation of latent HSV-1 gene expression

    PubMed Central

    Bloom, David C.; Giordani, Nicole V.; Kwiatkowski, Dacia L.

    2010-01-01

    Like other alpha-herpesviruses, Herpes Simplex Virus Type 1 (HSV-1) possesses the ability to establish latency in sensory ganglia as a non-integrated, nucleosome-associated episome in the host cell nucleus. Transcription of the genome is limited to the Latency-Associated Transcript (LAT), while the lytic genes are maintained in a transcriptionally-repressed state. This partitioning of the genome into areas of active and inactive transcription suggests epigenetic control of HSV-1 latent gene expression. During latency viral transcription is not regulated by DNA methylation but likely by post-translational histone modifications. The LAT region is the only region of the genome enriched in marks indicative of transcriptional permissiveness, specifically dimethyl H3 K4 and acetyl H3 K9, K14, while the lytic genes appear under-enriched in those same marks. In addition, facultative heterochromatin marks, specifically trimethyl H3 K27 and the histone variant macroH2A, are enriched on lytic genes during latency. The distinct epigenetic domains of the LAT and the lytic genes appear to be separated by chromatin insulators. Binding of CTCF, a protein that binds to all known vertebrate insulators, to sites within the HSV-1 genome likely prevents heterochromatic spreading and blocks enhancer activity. When the latent viral genome undergoes stress-induced reactivation, it is possible that CTCF binding and insulator function are abrogated, enabling lytic gene transcription to ensue. In this review we summarize our current understanding of latent HSV-1 epigenetic regulation as it pertains to infections in both the rabbit and mouse models. CTCF insulator function and regulation of histone tail modifications will be discussed. We will also present a current model of how the latent genome is carefully controlled at the epigenetic level and how stress-induced changes to it may trigger reactivation. PMID:20045093

  19. Angiotensin II-regulated transcription regulatory genes in adrenal steroidogenesis.

    PubMed

    Romero, Damian G; Gomez-Sanchez, Elise P; Gomez-Sanchez, Celso E

    2010-11-29

    Transcription regulatory genes are crucial modulators of cell physiology and metabolism whose intracellular levels are tightly controlled in response to extracellular stimuli. We previously reported a set of 29 transcription regulatory genes modulated by angiotensin II in H295R human adrenocortical cells and their roles in regulating the expression of the last and unique enzymes of the glucocorticoid and mineralocorticoid biosynthetic pathways, 11β-hydroxylase and aldosterone synthase, respectively, using gene expression reporter assays. To study the effect of this set of transcription regulatory genes on adrenal steroidogenesis, H295R cells were transfected by high-efficiency nucleofection and aldosterone and cortisol were measured in cell culture supernatants under basal and angiotensin II-stimulated conditions. BCL11B, BHLHB2, CITED2, ELL2, HMGA1, MAFF, NFIL3, PER1, SERTAD1, and VDR significantly stimulated aldosterone secretion, while EGR1, FOSB, and ZFP295 decreased aldosterone secretion. BTG2, HMGA1, MITF, NR4A1, and ZFP295 significantly increased cortisol secretion, while BCL11B, NFIL3, PER1, and SIX2 decreased cortisol secretion. We also report the effect of some of these regulators on the expression of endogenous aldosterone synthase and 11β-hydroxylase under basal and angiotensin II-stimulated conditions. In summary, this study reports for the first time the effects of a set of angiotensin II-modulated transcription regulatory genes on aldosterone and cortisol secretion and the expression levels of the last and unique enzymes of the mineralocorticoid and glucocorticoid biosynthetic pathways. Abnormal regulation of mineralocorticoid or glucocorticoid secretion is involved in several pathophysiological conditions. These transcription regulatory genes may be involved in adrenal steroidogenesis pathologies; thus they merit additional study as potential candidates for therapeutic intervention.

  20. Molecular genetic analysis of cold-regulated gene transcription.

    PubMed

    Viswanathan, C; Zhu, Jian-Kang

    2002-07-29

    Chilling and freezing temperatures adversely affect the productivity and quality of crops. Hence improving the cold hardiness of crop plants is an important goal in agriculture, which demands a clear understanding of cold stress signal perception and transduction. Pharmacological and biochemical evidence shows that membrane rigidification followed by cytoskeleton rearrangement, Ca(2+) influx and Ca(2+)-dependent phosphorylation are involved in cold stress signal transduction. Cold-responsive genes are regulated through C-repeat/dehydration-responsive elements (CRT/DRE) and abscisic acid (ABA)-responsive element cis elements by transacting factors C-repeat binding factors/dehydration-responsive element binding proteins (CBFs/DREBs) and basic leucine zippers (bZIPs) (SGBF1), respectively. We have carried out a forward genetic analysis using chemically mutagenized Arabidopsis plants expressing cold-responsive RD29A promoter-driven luciferase to dissect cold signal transduction. We have isolated the fiery1 (fry1) mutant and cloned the FRY1 gene, which encodes an inositol polyphosphate 1-phosphatase. The fry1 plants showed enhanced induction of stress genes in response to cold, ABA, salt and dehydration due to higher accumulation of the second messenger, inositol (1,4,5)- triphosphate (IP(3)). Thus our study provides genetic evidence suggesting that cold signal is transduced through changes in IP(3) levels. We have also identified the hos1 mutation, which showed super induction of cold-responsive genes and their transcriptional activators. Molecular cloning and characterization revealed that HOS1 encodes a ring finger protein, which has been implicated as an E3 ubiquitin conjugating enzyme. HOS1 is present in the cytoplasm at normal growth temperatures but accumulates in the nucleus upon cold stress. HOS1 appears to regulate temperature sensing by the cell as cold-responsive gene expression occurs in the hos1 mutant at relatively warm temperatures. Thus HOS1 is a

  1. Chromatin-mediated regulation of cytomegalovirus gene expression.

    PubMed

    Reeves, Matthew B

    2011-05-01

    Following primary infection, whether Human cytomegalovirus (HCMV) enters either the latent or lytic lifecycle is dependent on the phenotype of the cell type infected. Multiple cell types are permissive for lytic infection with HCMV whereas, in contrast, well characterized sites of latency are restricted to a very specific population of CD34+ cells resident in the bone marrow and the immature myeloid cells they give rise to. It is becoming increasingly clear that one of the mechanisms that promote HCMV latency involves the recruitment of histone proteins to the major immediate early promoter (MIEP) which are subject to post-translational modifications that promote a transcriptionally inactive state. Integral to this, is the role of cellular transcriptional repressors that interact with histone modifying enzymes that promote and maintain this repressed state during latency. Crucially, the chromatin associated with the MIEP is dynamically regulated-myeloid cell differentiation triggers the acetylation of histones bound to the MIEP which is concomitant with the reactivation of IE gene expression and re-entry into lytic infection. Interestingly, this dynamic regulation of the MIEP by chromatin structure in latency extends not only into lytic infection but also for the regulation of multiple viral promoters in all phases of infection. HCMV lytic infection is characterised by a timely and co-ordinated pattern of gene expression that now has been shown to correlate with active post-translational modification of the histones associated with early and late promoters. These effects are mediated by the major IE products (IE72 and IE86) which physically and functionally interact with histone modifying enzymes resulting in the efficient activation of viral gene expression. Thus chromatin appears to play an important role in gene regulation in all phases of infection. Furthermore, these studies are highly suggestive that an intrinsic cellular anti-viral response to incoming viral

  2. Stochastic and delayed stochastic models of gene expression and regulation.

    PubMed

    Ribeiro, Andre S

    2010-01-01

    Gene expression and gene regulatory networks dynamics are stochastic. The noise in the temporal amounts of proteins and RNA molecules in cells arises from the stochasticity of transcription initiation and elongation (e.g., due to RNA polymerase pausing), translation, and post-transcriptional regulation mechanisms, such as reversible phosphorylation and splicing. This is further enhanced by the fact that most RNA molecules and proteins exist in cells in very small amounts. Recently, the time needed for transcription and translation to be completed once initiated were shown to affect the stochasticity in gene networks. This observation stressed the need of either introducing explicit delays in models of transcription and translation or to model processes such as elongation at the single nucleotide level. Here we review stochastic and delayed stochastic models of gene expression and gene regulatory networks. We first present stochastic non-delayed and delayed models of transcription, followed by models at the single nucleotide level. Next, we present models of gene regulatory networks, describe the dynamics of specific stochastic gene networks and available simulators to implement these models. Copyright 2009 Elsevier Inc. All rights reserved.

  3. Gene regulation of mammalian long non-coding RNA.

    PubMed

    Bunch, Heeyoun

    2017-09-11

    RNA polymerase II (Pol II) transcribes two classes of RNAs, protein-coding and non-protein-coding (ncRNA) genes. ncRNAs are also synthesized by RNA polymerases I and III (Pol I and III). In humans, the number of ncRNA genes exceeds more than twice that of protein-coding genes. However, the history of studying Pol II-synthesized ncRNA is relatively short. Since early 2000s, important biological and pathological functions of these ncRNA genes have begun to be discovered and intensively studied. And transcription mechanisms of long non-coding RNA (lncRNA) have been recently reported. Transcription of lncRNAs utilizes some transcription factors and mechanisms shared in that of protein-coding genes. In addition, tissue specificity in lncRNA gene expression has been shown. LncRNAs play essential roles in regulating the expression of neighboring or distal genes through different mechanisms. This leads to the implication of lncRNAs in a wide variety of biological pathways and pathological development. In this review, the newly discovered transcription mechanisms, characteristics, and functions of lncRNA are discussed.

  4. Gene bionetworks that regulate ovarian primordial follicle assembly.

    PubMed

    Nilsson, Eric; Zhang, Bin; Skinner, Michael K

    2013-07-23

    Primordial follicle assembly is the process by which ovarian primordial follicles are formed. During follicle assembly oocyte nests break down and a layer of pre-granulosa cells surrounds individual oocytes to form primordial follicles. The pool of primordial follicles formed is the source of oocytes for ovulation during a female's reproductive life. The current study utilized a systems approach to detect all genes that are differentially expressed in response to seven different growth factor and hormone treatments known to influence (increase or decrease) primordial follicle assembly in a neonatal rat ovary culture system. One novel factor, basic fibroblast growth factor (FGF2), was experimentally determined to inhibit follicle assembly. The different growth factor and hormone treatments were all found to affect similar physiological pathways, but each treatment affected a unique set of differentially expressed genes (signature gene set). A gene bionetwork analysis identified gene modules of coordinately expressed interconnected genes and it was found that different gene modules appear to accomplish distinct tasks during primordial follicle assembly. Predictions of physiological pathways important to follicle assembly were validated using ovary culture experiments in which ERK1/2 (MAPK1) activity was increased. A number of the highly interconnected genes in these gene networks have previously been linked to primary ovarian insufficiency (POI) and polycystic ovarian disease syndrome (PCOS). Observations have identified novel factors and gene networks that regulate primordial follicle assembly. This systems biology approach has helped elucidate the molecular control of primordial follicle assembly and provided potential therapeutic targets for the treatment of ovarian disease.

  5. Gene bionetworks that regulate ovarian primordial follicle assembly

    PubMed Central

    2013-01-01

    Background Primordial follicle assembly is the process by which ovarian primordial follicles are formed. During follicle assembly oocyte nests break down and a layer of pre-granulosa cells surrounds individual oocytes to form primordial follicles. The pool of primordial follicles formed is the source of oocytes for ovulation during a female’s reproductive life. Results The current study utilized a systems approach to detect all genes that are differentially expressed in response to seven different growth factor and hormone treatments known to influence (increase or decrease) primordial follicle assembly in a neonatal rat ovary culture system. One novel factor, basic fibroblast growth factor (FGF2), was experimentally determined to inhibit follicle assembly. The different growth factor and hormone treatments were all found to affect similar physiological pathways, but each treatment affected a unique set of differentially expressed genes (signature gene set). A gene bionetwork analysis identified gene modules of coordinately expressed interconnected genes and it was found that different gene modules appear to accomplish distinct tasks during primordial follicle assembly. Predictions of physiological pathways important to follicle assembly were validated using ovary culture experiments in which ERK1/2 (MAPK1) activity was increased. Conclusions A number of the highly interconnected genes in these gene networks have previously been linked to primary ovarian insufficiency (POI) and polycystic ovarian disease syndrome (PCOS). Observations have identified novel factors and gene networks that regulate primordial follicle assembly. This systems biology approach has helped elucidate the molecular control of primordial follicle assembly and provided potential therapeutic targets for the treatment of ovarian disease. PMID:23875758

  6. Information theory, gene expression, and combinatorial regulation: a quantitative analysis.

    PubMed

    Jost, Jürgen; Scherrer, Klaus

    2014-03-01

    According to a functional definition of the term "gene", a protein-coding gene corresponds to a polypeptide and, hence, a coding sequence. It is therefore as such not yet present at the DNA level, but assembled from possibly heterogeneous pieces in the course of RNA processing. Assembly and regulation of genes require, thus, information about when and in which quantity specific polypeptides are to be produced. To assess this, we draw upon precise biochemical data. On the basis of our conceptual framework, we also develop formal models for the coordinated expression of specific sets of genes through the interaction of transcripts and mRNAs and with proteins via a precise putative regulatory code. Thus, the nucleotides in transcripts and mRNA are not only arranged into amino acid-coding triplets, but at the same time may participate in regulatory oligomotifs that provide binding sites for specific proteins. We can then quantify and compare product and regulatory information involved in gene expression and regulation.

  7. Key-genes regulating the liposecretion process of mature adipocytes.

    PubMed

    Maurizi, Giulia; Petäistö, Tiina; Maurizi, Angela; Guardia, Lucio Della

    2017-09-19

    White mature adipocytes (MAs) are plastic cells able to reversibly transdifferentiate toward fibroblast-like cells maintaining stem cell gene signatures. The main morphologic aspect of this transdifferentiation process, called liposecretion, is the secretion of large lipid droplets and the development of organelles necessary for exocrine secretion. There is a considerable interest in the adipocyte plastic properties involving liposecretion process, but the molecular details are incompletely explored. This review analyzes the gene expression of MAs isolated from human subcutaneous fat tissue with respect to bone marrow (BM)-derived mesenchymal stem cells (MSC) focusing on gene regulatory pathways involved into cellular morphology changes, cellular proliferation and transports of molecules through the membrane, suggesting potential ways to guide liposecretion. In particular, Wnt, MAPK/ERK and AKT pathways were accurately described, studying up- and down-stream molecules involved. Moreover, adipogenic extra- and intra-cellular interactions were analyzed studying the role of CDH2, CDH11, ITGA5, E-Syt1, PAI-1, IGF1 and INHBB genes. Additionally, PLIN1 and PLIN2 could be key-genes of liposecretion process regulating molecules transport through the membrane. All together data demonstrated that liposecretion is regulated through a complex molecular networks that are able to respond to microenvironment signals, cytokines and growth factors. Autocrine as well as external signaling molecules might activate liposecretion affecting adipocytes physiology. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  8. Enrichment of cells exhibiting tetracycline regulated gene expression.

    PubMed

    Nahreini, Piruz; Hanson, Amy J; Prasad, Kedar N

    2003-05-01

    Tetracycline controlled gene expression varies significantly among cells within a cell line. Chromosomal integration sites of the tetracycline transactivator (tTA) gene and/or the test gene presumably account for the variable efficacy of this system. We hypothesized that the efficacy of tetracycline regulated gene expression is more dependent on the level of tTA inside cells and less dependent on the integration sites of the tetracycline transcription units. To test this hypothesis, we established a TetOff regulatied expression of a short-lived enhanced GFP (d2EGFP) via retroviral vectors in a neuroblastoma cell line (NBP2). We then enriched for two populations of NBP2 cells; one expressing high levels of d2EGFP (HG) and the other expressing low levels of d2EGFP (LG) in the absence of doxycycline. We show that the tTA is more abundant in HG cells than in LG cells; the cAMP-mediated transactivation of tTA's promoter further increases the efficacy of the tetracycline system; and the efficient doxycycline regulated expression of a test gene (i.e., VP16CREB) is achieved in HG cells. Therefore, we have developed a simple method to enrich for a population of tetracycline-responsive cells with no need for screening for tetracycline-responsive clonal cell lines.

  9. The novel C. elegans gene sop-3 modulates Wnt signaling to regulate Hox gene expression.

    PubMed

    Zhang, H; Emmons, S W

    2001-03-01

    We describe the properties of a new gene, sop-3, that is required for the regulated expression of a C. elegans Hox gene, egl-5, in a postembryonic neuroectodermal cell lineage. Regulated expression of egl-5 in this cell lineage is necessary for development of the sensory rays of the male tail. sop-3 encodes a predicted novel protein of 1475 amino acids without clear homologs in other organisms. However, the sequence contains motifs consisting of homopolymeric runs of amino acids found in several other transcriptional regulators, some of which also act in Hox gene regulatory pathways. The genetic properties of sop-3 are very similar to those of sop-1, which encodes a component of the transcriptional Mediator complex, and mutations in the two genes are synthetic lethal. This suggests that SOP-3 may act at the level of the Mediator complex in regulating transcription initiation. In a sop-3 loss-of-function background, egl-5 is expressed ectopically in lineage branches that normally do not express this gene. Such expression is dependent on the Hox gene mab-5, as it is in branches where egl-5 is normally expressed. Ectopic egl-5 expression is also dependent on the Wnt pathway. Thus, sop-3 contributes to the combinatorial control of egl-5 by blocking egl-5 activation by MAB-5 and the Wnt pathway in inappropriate lineage branches.

  10. COL1A1 and miR-29b show lower expression levels during osteoblast differentiation of bone marrow stromal cells from Osteogenesis Imperfecta patients

    PubMed Central

    2014-01-01

    Background The majority of Osteogenesis Imperfecta (OI) cases are caused by mutations in one of the two genes, COL1A1 and COL1A2 encoding for the two chains that trimerize to form the procollagen 1 molecule. However, alterations in gene expression and microRNAs (miRNAs) are responsible for the regulation of cell fate determination and may be evolved in OI phenotype. Methods In this work, we analyzed the coding region and intron/exon boundaries of COL1A1 and COL1A2 genes by sequence analysis using an ABI PRISM 3130 automated sequencer and Big Dye Terminator Sequencing protocol. COL1A1 and miR-29b expression were also evaluated during the osteoblastic differentiation of mesenchymal stem cell (MSC) by qRT-PCR using an ABI7500 Sequence Detection System. Results We have identified eight novel mutations, where of four may be responsible for OI phenotype. COL1A1 and miR-29b showed lower expression values in OI type I and type III samples. Interestingly, one type III OI sample from a patient with Bruck Syndrome showed COL1A1 and miR-29b expressions alike those from normal samples. Conclusions Results suggest that the miR-29b mechanism directed to regulate collagen protein accumulation during mineralization is dependent upon the amount of COL1A1 mRNA. Taken together, results indicate that the lower levels observed in OI samples were not sufficient for the induction of miR-29b. PMID:24767406

  11. COL1A1 transgene expression in stably transfected osteoblastic cells. Relative contributions of first intron, 3'-flanking sequences, and sequences derived from the body of the human COL1A1 minigene

    NASA Technical Reports Server (NTRS)

    Breault, D. T.; Lichtler, A. C.; Rowe, D. W.

    1997-01-01

    Collagen reporter gene constructs have be used to identify cell-specific sequences needed for transcriptional activation. The elements required for endogenous levels of COL1A1 expression, however, have not been elucidated. The human COL1A1 minigene is expressed at high levels and likely harbors sequence elements required for endogenous levels of activity. Using stably transfected osteoblastic Py1a cells, we studied a series of constructs (pOBColCAT) designed to characterize further the elements required for high level of expression. pOBColCAT, which contains the COL1A1 first intron, was expressed at 50-100-fold higher levels than ColCAT 3.6, which lacks the first intron. This difference is best explained by improved mRNA processing rather than a transcriptional effect. Furthermore, variation in activity observed with the intron deletion constructs is best explained by altered mRNA splicing. Two major regions of the human COL1A1 minigene, the 3'-flanking sequences and the minigene body, were introduced into pOBColCAT to assess both transcriptional enhancing activity and the effect on mRNA stability. Analysis of the minigene body, which includes the first five exons and introns fused with the terminal six introns and exons, revealed an orientation-independent 5-fold increase in CAT activity. In contrast the 3'-flanking sequences gave rise to a modest 61% increase in CAT activity. Neither region increased the mRNA half-life of the parent construct, suggesting that CAT-specific mRNA instability elements may serve as dominant negative regulators of stability. This study suggests that other sites within the body of the COL1A1 minigene are important for high expression, e.g. during periods of rapid extracellular matrix production.

  12. COL1A1 transgene expression in stably transfected osteoblastic cells. Relative contributions of first intron, 3'-flanking sequences, and sequences derived from the body of the human COL1A1 minigene

    NASA Technical Reports Server (NTRS)

    Breault, D. T.; Lichtler, A. C.; Rowe, D. W.

    1997-01-01

    Collagen reporter gene constructs have be used to identify cell-specific sequences needed for transcriptional activation. The elements required for endogenous levels of COL1A1 expression, however, have not been elucidated. The human COL1A1 minigene is expressed at high levels and likely harbors sequence elements required for endogenous levels of activity. Using stably transfected osteoblastic Py1a cells, we studied a series of constructs (pOBColCAT) designed to characterize further the elements required for high level of expression. pOBColCAT, which contains the COL1A1 first intron, was expressed at 50-100-fold higher levels than ColCAT 3.6, which lacks the first intron. This difference is best explained by improved mRNA processing rather than a transcriptional effect. Furthermore, variation in activity observed with the intron deletion constructs is best explained by altered mRNA splicing. Two major regions of the human COL1A1 minigene, the 3'-flanking sequences and the minigene body, were introduced into pOBColCAT to assess both transcriptional enhancing activity and the effect on mRNA stability. Analysis of the minigene body, which includes the first five exons and introns fused with the terminal six introns and exons, revealed an orientation-independent 5-fold increase in CAT activity. In contrast the 3'-flanking sequences gave rise to a modest 61% increase in CAT activity. Neither region increased the mRNA half-life of the parent construct, suggesting that CAT-specific mRNA instability elements may serve as dominant negative regulators of stability. This study suggests that other sites within the body of the COL1A1 minigene are important for high expression, e.g. during periods of rapid extracellular matrix production.

  13. Sulfotransferase 1A1 Arg(213)His polymorphism and prostate cancer risk.

    PubMed

    Arslan, Serdal; Silig, Yavuz; Pinarbasi, Hatice

    2011-11-01

    Sulfotransferase 1A1 (SULT1A1) is a member of the sulfotransferase family that plays an important role in the biotransformation of numerous carcinogenic and mutagenic compounds through sulfation. A transition, G to A at position 638, in the SULT1A1 gene, results in the Arg(213)His change. This single nucleotide polymorphism reduces the activity and thermostability of the SULT1A1 enzyme. In the present study, the relationship between the SULT1A1 Arg(213)His polymorphism and prostate cancer was investigated using PCR-RFLP. No significant difference in genotype and allele distribution was noted between the prostate cancer and control populations (P=0.072; P=0.099, respectively). The risk of prostate cancer in individuals carrying the SULT1A1(*)2 allele (His(213) allele) was determined by combining the SULT1A1(*)1/SULT1A1(*)2 (Arg/His(213)) and SULT1A1(*)2/SULT1A1(*)2 (His/His(213)) genotypes. No association was observed between SULT1A1 Arg(213)His polymorphism and prostate cancer incidence (P=0.24; OR, 1.36; 95% CI, 0.84-2.25). However, the His(213) allele was found to increase the risk of prostate cancer by 1.36-fold. In smoker and non-smoker populations, no significant relationship was determined between the prostate cancer and control population (P=0.45; P=0.34, respectively).

  14. Computational identification of transcriptionally co-regulated genes, validation with the four ANT isoform genes

    PubMed Central

    2012-01-01

    Background The analysis of gene promoters is essential to understand the mechanisms of transcriptional regulation required under the effects of physiological processes, nutritional intake or pathologies. In higher eukaryotes, transcriptional regulation implies the recruitment of a set of regulatory proteins that bind on combinations of nucleotide motifs. We developed a computational analysis of promoter nucleotide sequences, to identify co-regulated genes by combining several programs that allowed us to build regulatory models and perform a crossed analysis on several databases. This strategy was tested on a set of four human genes encoding isoforms 1 to 4 of the mitochondrial ADP/ATP carrier ANT. Each isoform has a specific tissue expression profile linked to its role in cellular bioenergetics. Results From their promoter sequence and from the phylogenetic evolution of these ANT genes in mammals, we constructed combinations of specific regulatory elements. These models were screened using the full human genome and databases of promoter sequences from human and several other mammalian species. For each of transcriptionally regulated ANT1, 2 and 4 genes, a set of co-regulated genes was identified and their over-expression was verified in microarray databases. Conclusions Most of the identified genes encode proteins with a cellular function and specificity in agreement with those of the corresponding ANT isoform. Our in silico study shows that the tissue specific gene expression is mainly driven by promoter regulatory sequences located up to about a thousand base pairs upstream the transcription start site. Moreover, this computational strategy on the study of regulatory pathways should provide, along with transcriptomics and metabolomics, data to construct cellular metabolic networks. PMID:22978616

  15. Reversible histone methylation regulates brain gene expression and behavior

    PubMed Central

    Xu, Jun; Andreassi, Megan

    2011-01-01

    Epigenetic chromatin remodeling, including reversible histone methylation, regulates gene transcription in brain development and synaptic plasticity. Aberrant chromatin modifications due to mutant chromatin enzymes or chemical exposures have been associated with neurological or psychiatric disorders such as mental retardation, schizophrenia, depression, and drug addiction. Some chromatin enzymes, such as histone demethylases JARID1C and UTX, are coded by X-linked genes which are not X-inactivated in females. The higher expression of JARID1C and UTX in females could contribute to sex differences in brain development and behavior. PMID:20816965

  16. New ideas in epilepsy genetics: novel epilepsy genes, copy number alterations, and gene regulation.

    PubMed

    Gurnett, Christina A; Hedera, Peter

    2007-03-01

    The majority of genes associated with epilepsy syndromes to date are ion channel genes. Selection bias may have allowed us to establish their role in epilepsy based on a priori knowledge of the significance of these proteins in regulating neuronal excitability. There are, however, more than 3000 genes expressed at the synapse, as well as many other genes expressed nearby in supporting cells and glia that can likewise regulate excitability. Identification of new genes involved in epilepsy may arise from studying the targets of anticonvulsant medications, ascertainment of an epileptic phenotype in mice, or as a result of positional cloning efforts. There are several loci for idiopathic focal and generalized epilepsies that lie in chromosomal regions that are devoid of known ion channels; therefore, the number of novel genes involved in epilepsy is likely to increase. Establishing the role of these novel genes in the pathogenesis of epilepsy has not been an easy task compared with the relative ease with which ion channel mutations can be studied. This review will describe several novel epilepsy genes and will then discuss other genetic causes of epilepsy, including alterations of chromosomal copy number and gene regulatory elements.

  17. Induction of cytochromes P450 1A1 and 1A2 by tanshinones in human HepG2 hepatoma cell line

    SciTech Connect

    Zhang Rong; Sun Jianguo; Ma Liping; Wu Xiaolan; Pan Guoyu; Hao Haiping; Zhou Fang; Jiye, A; Liu Changhui; Ai Hua; Shang Lili; Gao Haiyan; Peng Ying; Wan Ping; Wu Hui; Wang Guangji

    2011-04-01

    Diterpenoid tanshinones including tanshinone IIA (TIIA), cryptotanshinone (CTS), tanshinone I (TI) and dihydrotanshinone I (DHTI) are the major bioactive components from Danshen. The major aim of our present study was to investigate the induction potential of these four main components of tanshinones (TIIA, CTS, TI, and DHTI) on the expression of CYP1A1 and CYP1A2 in HepG2 cells. Our results showed that all of these four tanshinones caused a significant time- and concentration-dependent increase in the amount of CYP1A1/2 expression in HepG2 cells. These induction effects were further characterized through transcriptional regulation: the induction of CYP1A1/2 mRNA level by tanshinones was completely blocked by the transcription inhibitor actinomycin D; the expression of CYP1A1/2 heterogeneous nuclear RNA was induced by tanshinone treatment; and CYP1A1 mRNA stability was not influenced by these tanshinones. Interestingly, tanshinones plus B[a]P produced additive/synergistic effect on CYP1A1/2 induction. In addition, the tanshinone-induced CYP1A1/2 expression was abolished by the aryl hydrocarbon receptor (AhR) antagonist resveratrol, suggesting an AhR dependent transcription mechanism. In the reporter gene assay, while TI and DHTI significantly induced AhR-dependent luciferase activity, TIIA and CTS failed to induce this activity. Collectively, the tanshinones could induce CYP1A1 and CYP1A2 expression through transcriptional activation mechanism and exert differential effects on activating AhR in HepG2 cells. Our findings suggest that rational administration of tanshinones should be considered with respect to their effect on AhR and CYP1A1/2 expression.

  18. Mitochondrial activity and oxidative stress functions are influenced by the activation of AhR-induced CYP1A1 overexpression in cardiomyocytes.

    PubMed

    Zhou, Bing; Wang, Xi; Li, Feng; Wang, Yingting; Yang, Lei; Zhen, Xiaolong; Tan, Wuhong

    2017-07-01

    There is an endemic cardiomyopathy currently occurring in China, termed, Keshan disease (KD). The authors previously compared mitochondrial‑associated gene expression profiles of peripheral blood mononuclear cells (PBMCs) derived from KD patients and normal controls, using mitochondria‑focused cDNA microarray technology. The results detected an upregulation of the enzyme‑associated CYP1A1 gene, (ratios ≥2.0). The aryl hydrocarbon receptor (AhR) regulates the expression of numerous cytochrome P450 (CYP) genes including members of the CYP1 family; CYP1A1 and CYP1A2. Several previous studies have suggested roles for the aryl hydrocarbon receptor (AhR) and the genes that it regulates. An example involves cytochrome P4501A1 (CYP1A1), in the pathogenesis of heart failure, cardiac hypertrophy and other cardiomyopathies. Mitochondria comprise ~30% of the intracellular volume in mammalian cardiomyocytes, and subtle alterations in mitochondria can markedly influence cardiomyopathies. The present study investigated alterations in the activity and functions of mitochondria following AhR‑induced overexpression of CYP1A1. AC16 cells were treated with the CYP1A1 inducer 2,3,7,8‑tetrachlorodibenzo‑p‑dioxin (TCDD), and cytotoxicity was then evaluated in MTT assays. Reverse transcription‑quantitative polymerase chain reactions, western blot analysis and 7‑ethoxyresorufin O‑deacylase assays were performed to analyze the mRNA and protein levels, and the enzymatic activity of CYP1A1. Mitochondrial activity and mass were analyzed using an inverted fluorescence microscope and a fluorescence microplate reader. Reactive oxygen species (ROS) activity was analyzed using flow cytometry. The results of the current study demonstrated that TCDD gradually increased mRNA and protein levels of AhR and CYP1A1, in addition to the enzymatic activity. Mitochondrial activity and the quality of mitochondrial membranes were also significantly attenuated, and mitochondrial ROS

  19. Global analysis of gene transcription regulation in prokaryotes.

    PubMed

    Zhou, D; Yang, R

    2006-10-01

    Prokaryotes have complex mechanisms to regulate their gene transcription, through the action of transcription factors (TFs). This review deals with current strategies, approaches and challenges in the understanding of i) how to map the repertoires of TF and operon on a genome, ii) how to identify the specific cis-acting DNA elements and their DNA-binding TFs that are required for expression of a given gene, iii) how to define the regulon members of a given TF, iv) how a given TF interacts with its target promoters, v) how these TF-promoter DNA interactions constitute regulatory networks, and vi) how transcriptional regulatory networks can be reconstructed by the reverse-engineering methods. Our goal is to depict the power of newly developed genomic techniques and computational tools, alone or in combination, to dissect the genetic circuitry of transcription regulation, and how this has the tremendous potential to model the regulatory networks in the prokaryotic cells.

  20. Expression of foreign genes in lamprey embryos: an approach to study evolutionary changes in gene regulation.

    PubMed

    Kusakabe, Rie; Tochinai, Shin; Kuratani, Shigeru

    2003-04-15

    Evolution in development can be viewed as a sequence of changes in gene regulation. To investigate the cross-species compatibility of 5' upstream regulatory regions, we introduced exogenous gene constructs derived from a gnathostome genome into fertilized eggs of the Japanese lamprey, Lampetra japonica, a sister group of the gnathostomes. Eggs were injected with gene constructs in which a sequence encoding the green fluorescent protein (GFP) had been located downstream of either a virus promoter or 5' regulatory regions of medaka actin genes. Reporter gene expression was recorded for more than a month starting two days after injection. Although the expression patterns were highly mosaic and differed among individuals, GFP was expressed predominantly in the striated muscles of lamprey embryos when driven by the 5' upstream regions of the medaka muscle actin genes. This implies that a pan-vertebrate muscle-specific gene regulatory mechanism may have evolved before the agnathan/gnathostome divergence. This gene-transfer technique potentially facilitates the visualization of cells in various differentiating tissues throughout development. The introduction of developmental genes of the lamprey or other animals into lamprey embryos is another potentially important application, one that could provide us with information on the evolutionary changes in functions of genes or gene cascades.

  1. Oxygen regulated gene expression in facultatively anaerobic bacteria.

    PubMed

    Unden, G; Becker, S; Bongaerts, J; Schirawski, J; Six, S

    1994-01-01

    In facultatively anaerobic bacteria such as Escherichia coli, oxygen and other electron acceptors fundamentally influence catabolic and anabolic pathways. E. coli is able to grow aerobically by respiration and in the absence of O2 by anaerobic respiration with nitrate, nitrite, fumarate, dimethylsulfoxide and trimethylamine N-oxide as acceptors or by fermentation. The expression of the various catabolic pathways occurs according to a hierarchy with 3 or 4 levels. Aerobic respiration at the highest level is followed by nitrate respiration (level 2), anaerobic respiration with the other acceptors (level 3) and fermentation. In other bacteria, different regulatory cascades with other underlying principles can be observed. Regulation of anabolism in response to O2 availability is important, too. It is caused by different requirements of cofactors or coenzymes in aerobic and anaerobic metabolism and by the requirement for different O2-independent biosynthetic routes under anoxia. The regulation mainly occurs at the transcriptional level. In E. coli, 4 global regulatory systems are known to be essential for the aerobic/anaerobic switch and the described hierarchy. A two-component sensor/regulator system comprising ArcB (sensor) and ArcA (transcriptional regulator) is responsible for regulation of aerobic metabolism. The FNR protein is a transcriptional sensor-regulator protein which regulates anaerobic respiratory genes in response to O2 availability. The gene activator FhlA regulates fermentative formate and hydrogen metabolism with formate as the inductor. ArcA/B and FNR directly respond to O2, FhlA indirectly by decreased levels of formate in the presence of O2. Regulation of nitrate/nitrite catabolism is effected by two 2-component sensor/regulator systems NarX(Q)/NarL(P) in response to nitrate/nitrite. Co-operation of the different regulatory systems at the target promoters which are in part under dual (or manifold) transcriptional control causes the expression

  2. Regulation of cry Gene Expression in Bacillus thuringiensis

    PubMed Central

    Deng, Chao; Peng, Qi; Song, Fuping; Lereclus, Didier

    2014-01-01

    Bacillus thuringiensis differs from the closely related Bacillus cereus group species by its ability to produce crystalline inclusions. The production of these crystals mainly results from the expression of the cry genes, from the stability of their transcripts and from the synthesis, accumulation and crystallization of large amounts of insecticidal Cry proteins. This process normally coincides with sporulation and is regulated by various factors operating at the transcriptional, post-transcriptional, metabolic and post-translational levels. PMID:25055802

  3. From biophysics to evolutionary genetics: statistical aspects of gene regulation

    PubMed Central

    Lässig, Michael

    2007-01-01

    This is an introductory review on how genes interact to produce biological functions. Transcriptional interactions involve the binding of proteins to regulatory DNA. Specific binding sites can be identified by genomic analysis, and these undergo a stochastic evolution process governed by selection, mutations, and genetic drift. We focus on the links between the biophysical function and the evolution of regulatory elements. In particular, we infer fitness landscapes of binding sites from genomic data, leading to a quantitative evolutionary picture of regulation. PMID:17903288

  4. Cognitive analysis of schizophrenia risk genes that function as epigenetic regulators of gene expression.

    PubMed

    Whitton, Laura; Cosgrove, Donna; Clarkson, Christopher; Harold, Denise; Kendall, Kimberley; Richards, Alex; Mantripragada, Kiran; Owen, Michael J; O'Donovan, Michael C; Walters, James; Hartmann, Annette; Konte, Betina; Rujescu, Dan; Gill, Michael; Corvin, Aiden; Rea, Stephen; Donohoe, Gary; Morris, Derek W

    2016-12-01

    Epigenetic mechanisms are an important heritable and dynamic means of regulating various genomic functions, including gene expression, to orchestrate brain development, adult neurogenesis, and synaptic plasticity. These processes when perturbed are thought to contribute to schizophrenia pathophysiology. A core feature of schizophrenia is cognitive dysfunction. For genetic disorders where cognitive impairment is more severe such as intellectual disability, there are a disproportionally high number of genes involved in the epigenetic regulation of gene transcription. Evidence now supports some shared genetic aetiology between schizophrenia and intellectual disability. GWAS have identified 108 chromosomal regions associated with schizophrenia risk that span 350 genes. This study identified genes mapping to those loci that have epigenetic functions, and tested the risk alleles defining those loci for association with cognitive deficits. We developed a list of 350 genes with epigenetic functions and cross-referenced this with the GWAS loci. This identified eight candidate genes: BCL11B, CHD7, EP300, EPC2, GATAD2A, KDM3B, RERE, SATB2. Using a dataset of Irish psychosis cases and controls (n = 1235), the schizophrenia risk SNPs at these loci were tested for effects on IQ, working memory, episodic memory, and attention. Strongest associations were for rs6984242 with both measures of IQ (P = 0.001) and episodic memory (P = 0.007). We link rs6984242 to CHD7 via a long range eQTL. These associations were not replicated in independent samples. Our study highlights that a number of genes mapping to risk loci for schizophrenia may function as epigenetic regulators of gene expression but further studies are required to establish a role for these genes in cognition. © 2016 Wiley Periodicals, Inc.

  5. Estrogen Regulation of Gene Expression in GnRH Neurons

    PubMed Central

    Ng, Yewade; Wolfe, Andrew; Novaira, Horacio J.; Radovick, Sally

    2009-01-01

    Estrogen plays an essential role in the regulation of the female reproductive hormone axis and specifically is a major regulator of GnRH neuronal function in the female brain. GnRH neuronal cell lines were used to explore the direct effects of estradiol on gene expression in GnRH neurons. The presence of estrogen receptor (ER) binding sites was established by a receptor binding assay and estrogen receptor α and β mRNA were identified in GN11 cells and ERβ in GT1-7 cells using RT-PCR analysis of mRNA. ERα was more abundantly expressed in GN11 cells than ERβ as assessed by real time PCR. Additionally, GN11 cells expressed significantly more of both ERα and β than GT1-7 cells. Functional studies in GN11 and GT1-7 demonstrated estrogen down regulation of endogenous mouse GnRH mRNA levels using quantitative real-time PCR (qRT-PCR). Correspondingly, estradiol also reduced secretion of GnRH from both the GN11 and GT1-7 cell lines. Since estradiol has been shown to regulate progesterone receptor (PR) expression; similar studies were performed demonstrating an estradiol mediated increase in PR in both cell lines. Estradiol regulation of ER expression was also explored and these studies indicated that estradiol decreased ERα and ERβ mRNA levels in a dose-dependent manner in GN11 and GT1-7 cells. These effects were blocked by the addition of the estrogen receptor antagonist ICI 182,780. Both PPT, a specific ERα agonist, and DPN, a specific ERβ agonist, inhibited GnRH gene expression in GN11 cells, but only DPN inhibited GnRH gene expression in GT1-7 cells, consistent with their undetectable levels of ERα expression. These studies characterize a direct inhibitory effect of estradiol on GnRH in GnRH neurons, and a direct stimulatory effect of estradiol on PR gene expression. In addition, the agonist studies indicate there is a functional overlap of ERα and ERβ regulation in GnRH neurons. These studies may give insight into the molecular regulation of estrogen

  6. Sodium deficiency regulates rat adrenal zona glomerulosa gene expression.

    PubMed

    Nishimoto, Koshiro; Harris, Ruth B S; Rainey, William E; Seki, Tsugio

    2014-04-01

    Aldosterone is the primary adrenocortical hormone regulating sodium retention, and its production is under the control of the renin-angiotensin-aldosterone system (RAAS). In vitro, angiotensin II can induce aldosterone production in adrenocortical cells without causing cell proliferation. In vivo, a low-sodium diet activates the RAAS and aldosterone production, at least in part, through an expansion of the adrenal zona glomerulosa (zG) layer. Although these mechanisms have been investigated, RAAS effects on zG gene expression have not been fully elucidated. In this study, we took an unbiased approach to define the complete list of zG transcripts involved in RAAS activation. Adrenal glands were collected from 11-week old Sprague-Dawley rats fed either sodium-deficient (SDef), normal sodium (NS), or high-sodium (HS) diet for 72 hours, and laser-captured zG RNA was analyzed on microarrays containing 27 342 probe sets. When the SDef transcriptome was compared with NS transcriptome (SDef/NS comparison), only 79 and 10 probe sets were found to be up- and down-regulated more than two-fold in SDef, respectively. In SDef/HS comparison, 201 and 68 probe sets were up- and down-regulated in SDef, respectively. Upon gene ontology (GO) analysis of these gene sets, we identified three groups of functionally related GO terms: cell proliferation-associated (group 1), response to stimulus-associated (group 2), and cholesterol/steroid metabolism-associated (group 3) GO terms. Although genes in group 1 may play a critical role in zG layer expansion, those in groups 2 and 3 may have important functions in aldosterone production, and further investigations on these genes are warranted.

  7. Pheromone-regulated genes required for yeast mating differentiation.

    PubMed

    Erdman, S; Lin, L; Malczynski, M; Snyder, M

    1998-02-09

    Yeast cells mate by an inducible pathway that involves agglutination, mating projection formation, cell fusion, and nuclear fusion. To obtain insight into the mating differentiation of Saccharomyces cerevisiae, we carried out a large-scale transposon tagging screen to identify genes whose expression is regulated by mating pheromone. 91,200 transformants containing random lacZ insertions were screened for beta-galactosidase (beta-gal) expression in the presence and absence of alpha factor, and 189 strains containing pheromone-regulated lacZ insertions were identified. Transposon insertion alleles corresponding to 20 genes that are novel or had not previously been known to be pheromone regulated were examined for effects on the mating process. Mutations in four novel genes, FIG1, FIG2, KAR5/ FIG3, and FIG4 were found to cause mating defects. Three of the proteins encoded by these genes, Fig1p, Fig2p, and Fig4p, are dispensible for cell polarization in uniform concentrations of mating pheromone, but are required for normal cell polarization in mating mixtures, conditions that involve cell-cell communication. Fig1p and Fig2p are also important for cell fusion and conjugation bridge shape, respectively. The fourth protein, Kar5p/Fig3p, is required for nuclear fusion. Fig1p and Fig2p are likely to act at the cell surface as Fig1:: beta-gal and Fig2::beta-gal fusion proteins localize to the periphery of mating cells. Fig4p is a member of a family of eukaryotic proteins that contain a domain homologous to the yeast Sac1p. Our results indicate that a variety of novel genes are expressed specifically during mating differentiation to mediate proper cell morphogenesis, cell fusion, and other steps of the mating process.

  8. Sodium Deficiency Regulates Rat Adrenal Zona Glomerulosa Gene Expression

    PubMed Central

    Nishimoto, Koshiro; Harris, Ruth B. S.; Rainey, William E.

    2014-01-01

    Aldosterone is the primary adrenocortical hormone regulating sodium retention, and its production is under the control of the renin-angiotensin-aldosterone system (RAAS). In vitro, angiotensin II can induce aldosterone production in adrenocortical cells without causing cell proliferation. In vivo, a low-sodium diet activates the RAAS and aldosterone production, at least in part, through an expansion of the adrenal zona glomerulosa (zG) layer. Although these mechanisms have been investigated, RAAS effects on zG gene expression have not been fully elucidated. In this study, we took an unbiased approach to define the complete list of zG transcripts involved in RAAS activation. Adrenal glands were collected from 11-week old Sprague-Dawley rats fed either sodium-deficient (SDef), normal sodium (NS), or high-sodium (HS) diet for 72 hours, and laser-captured zG RNA was analyzed on microarrays containing 27 342 probe sets. When the SDef transcriptome was compared with NS transcriptome (SDef/NS comparison), only 79 and 10 probe sets were found to be up- and down-regulated more than two-fold in SDef, respectively. In SDef/HS comparison, 201 and 68 probe sets were up- and down-regulated in SDef, respectively. Upon gene ontology (GO) analysis of these gene sets, we identified three groups of functionally related GO terms: cell proliferation-associated (group 1), response to stimulus-associated (group 2), and cholesterol/steroid metabolism-associated (group 3) GO terms. Although genes in group 1 may play a critical role in zG layer expansion, those in groups 2 and 3 may have important functions in aldosterone production, and further investigations on these genes are warranted. PMID:24422541

  9. REGULATION OF MULTIPLE RENIN-ANGIOTENSIN SYSTEM GENES BY SRY

    PubMed Central

    Milsted, Amy; Underwood, Adam C.; Dunmire, Jeff; DelPuerto, Helen L.; Martins, Almir S.; Ely, Daniel L.; Turner, Monte E.

    2010-01-01

    We demonstrated that the Sry gene complex on the SHR Y chromosome is a candidate locus for hypertension that accounts for the SHR Y chromosome blood pressure effect. All rat strains examined to date share 6 Sry loci, and a seventh Sry locus (Sry3) appears to be unique to SHR males. Previously, we showed that Sry1 increased activity of the tyrosine hydroxylase promoter in transfected PC12 cells, and Sry1 delivered to adrenal gland of WKY rats increased blood pressure and sympathetic nervous system activity. The objective of this study was to determine whether renin-angiotensin system genes participate in Sry-mediated effects. Sry expression vectors were co-transfected into CHO cells with luciferase reporter constructs containing promoters of angiotensinogen (Agt −1430/+22), renin (Ren −1050/−1), ACE (ACE −1677/+21) and ACE2 (ACE2 −1091/+83). Sry1, Sry2 and Sry3 differentially up-regulated activity of the promoters of angiotensinogen, renin and ACE genes, and down-regulated ACE2 promoter activity. The largest effect was seen with Sry3, which increased activity of angiotensinogen promoter by 1.7 fold, renin promoter by 1.3 fold, ACE promoter by 2.6 fold, and decreased activity of ACE2 promoter by 0.5 fold. The effect of Sry1 on promoter activity was significantly less than Sry3. Sry2 activated promoters at a significantly lower level than Sry1. The result of either an additive effect of Sry regulation of multiple genes in the renin-angiotensin system or alterations in expression of a single gene could favor increased levels of Ang II and decreased levels of Ang-(1-7). These actions of Sry could result in increased blood pressure in males and contribute to gender differences in blood pressure. PMID:19809364

  10. Mel-18, a mammalian Polycomb gene, regulates angiogenic gene expression of endothelial cells.

    PubMed

    Jung, Ji-Hye; Choi, Hyun-Jung; Maeng, Yong-Sun; Choi, Jung-Yeon; Kim, Minhyung; Kwon, Ja-Young; Park, Yong-Won; Kim, Young-Myeong; Hwang, Daehee; Kwon, Young-Guen

    2010-10-01

    Mel-18 is a mammalian homolog of Polycomb group (PcG) genes. Microarray analysis revealed that Mel-18 expression was induced during endothelial progenitor cell (EPC) differentiation and correlates with the expression of EC-specific protein markers. Overexpression of Mel-18 promoted EPC differentiation and angiogenic activity of ECs. Accordingly, silencing Mel-18 inhibited EC migration and tube formation in vitro. Gene expression profiling showed that Mel-18 regulates angiogenic genes including kinase insert domain receptor (KDR), claudin 5, and angiopoietin-like 2. Our findings demonstrate, for the first time, that Mel-18 plays a significant role in the angiogenic function of ECs by regulating endothelial gene expression. Copyright © 2010 Elsevier Inc. All rights reserved.

  11. Cyclophilin-D: a resident regulator of mitochondrial gene expression.

    PubMed

    Radhakrishnan, Jeejabai; Bazarek, Stanley; Chandran, Bala; Gazmuri, Raúl J

    2015-07-01

    Cyclophilin-D (Cyp-D) is a mitochondrial matrix peptidyl-prolyl isomerase. Because cyclophilins can regulate nuclear gene expression, we examined whether Cyp-D could regulate mitochondrial gene expression. We demonstrated in HEK 293T cells that transfected Cyp-D interacts with mitochondrial transcription factors B1 and B2 (TFB2M) but not with mitochondrial transcription factor A. We also demonstrated that Cyp-D interacts in vivo with TFB2M. Genetic silencing of Cyp-D and pharmacologic inhibition of Cyp-D markedly reduced mitochondrial transcription to 18 ± 5% (P < 0.05) and 24 ± 3% (P < 0.05) of respective controls. The level of interaction between Cyp-D and TFB2M correlated with the level of nascent mitochondrial RNA intensity (r = 0.896; P = 0.0156). Cyp-D silencing down-regulated mitochondrial transcripts initiated from the heavy strand promoter 2 [i.e., NADH dehydrogenase 1 (ND1) by 11-fold, P < 0.005; cytochrome oxidase 1 (COX1) by 4-fold, P < 0.001; and ATP synthase subunit 6 (ATP6) by 6.5-fold, P < 0.005); but not NADH dehydrogenase 6 (ND6)], which is initiated from the light strand promoter. Cyp-D silencing reduced mitochondrial membrane potential and cellular oxygen consumption (from 59 ± 5 to 34 ± 1 µmol oxygen/min/10(6) cells, P < 0.001); the latter without a statistically significant reversal after uncoupling electron transport from ATP synthesis, consistent with down-regulation of electron transport complexes. Accordingly, these studies provide novel evidence that Cyp-D could play a key role in regulating mitochondrial gene expression. © FASEB.

  12. Bradyoxetin, a unique chemical signal involved in symbiotic gene regulation

    PubMed Central

    Loh, John; Carlson, Russell W.; York, William S.; Stacey, Gary

    2002-01-01

    Bradyrhizobium japonicum is a symbiotic bacterium that nodulates soybean. Critical for the infection and establishment of this symbiosis are the bacterial nodulation genes (nod, nol, noe), which are induced in the presence of plant produced isoflavones. Transcription of the nodulation genes is also controlled in a population density-dependent fashion. Expression of the nod genes is maximal at low population densities, and decreases significantly at higher culture densities. Population density control of the nodulation genes involves NolA and NodD2, both of which function in tandem to repress nod gene expression. An extracellular secreted factor (CDF) is known to mediate this repression. Here, we report that CDF is a novel signaling molecule, designated bradyoxetin, different from other Gram-negative quorum signals. The proposed structure of bradyoxetin is 2-{4-[[4-(3-aminooxetan-2-yl)phenyl](imino)methyl]phenyl}oxetan-3-ylamine. Interestingly, expression of bradyoxetin is iron-regulated, and is maximally produced under iron-starved conditions. Consistent with this, expression of the nodulation genes occurred in an iron-dependent fashion. Addition of iron to B. japonicum cultures at high optical densities resulted in decreased bradyoxetin production, and a concomitant reduction in nolA expression. A corresponding increase in nodY–lacZ expression was observed with iron treatment. PMID:12393811

  13. Genes regulating touch cell development in Caenorhabditis elegans.

    PubMed Central

    Du, H; Chalfie, M

    2001-01-01

    To identify genes regulating the development of the six touch receptor neurons, we screened the F(2) progeny of mutated animals expressing an integrated mec-2::gfp transgene that is expressed mainly in these touch cells. From 2638 mutated haploid genomes, we obtained 11 mutations representing 11 genes that affected the production, migration, or outgrowth of the touch cells. Eight of these mutations were in known genes, and 2 defined new genes (mig-21 and vab-15). The mig-21 mutation is the first known to affect the asymmetry of the migrations of Q neuroblasts, the cells that give rise to two of the six touch cells. vab-15 is a msh-like homeobox gene that appears to be needed for the proper production of touch cell precursors, since vab-15 animals lacked the four more posterior touch cells. The remaining touch cells (the ALM cells) were present but mispositioned. A similar touch cell phenotype is produced by mutations in lin-32. A more severe phenotype; i.e., animals often lacked ALM cells, was seen in lin-32 vab-15 double mutants, suggesting that these genes acted redundantly in ALM differentiation. In addition to the touch cell abnormalities, vab-15 animals variably exhibit embryonic or larval lethality, cell degenerations, malformation of the posterior body, uncoordinated movement, and defective egg laying. PMID:11333230

  14. Neighboring gene regulation by antisense long non-coding RNAs.

    PubMed

    Villegas, Victoria E; Zaphiropoulos, Peter G

    2015-02-03

    Antisense transcription, considered until recently as transcriptional noise, is a very common phenomenon in human and eukaryotic transcriptomes, operating in two ways based on whether the antisense RNA acts in cis or in trans. This process can generate long non-coding RNAs (lncRNAs), one of the most diverse classes of cellular transcripts, which have demonstrated multifunctional roles in fundamental biological processes, including embryonic pluripotency, differentiation and development. Antisense lncRNAs have been shown to control nearly every level of gene regulation--pretranscriptional, transcriptional and posttranscriptional--through DNA-RNA, RNA-RNA or protein-RNA interactions. This review is centered on functional studies of antisense lncRNA-mediated regulation of neighboring gene expression. Specifically, it addresses how these transcripts interact with other biological molecules, nucleic acids and proteins, to regulate gene expression through chromatin remodeling at the pretranscriptional level and modulation of transcriptional and post-transcriptional processes by altering the sense mRNA structure or the cellular compartmental distribution, either in the nucleus or the cytoplasm.

  15. Tet1 controls meiosis by regulating meiotic gene expression.

    PubMed

    Yamaguchi, Shinpei; Hong, Kwonho; Liu, Rui; Shen, Li; Inoue, Azusa; Diep, Dinh; Zhang, Kun; Zhang, Yi

    2012-12-20

    Meiosis is a germ-cell-specific cell division process through which haploid gametes are produced for sexual reproduction. Before the initiation of meiosis, mouse primordial germ cells undergo a series of epigenetic reprogramming steps, including the global erasure of DNA methylation at the 5-position of cytosine (5mC) in CpG-rich DNA. Although several epigenetic regulators, such as Dnmt3l and the histone methyltransferases G9a and Prdm9, have been reported to be crucial for meiosis, little is known about how the expression of meiotic genes is regulated and how their expression contributes to normal meiosis. Using a loss-of-function approach in mice, here we show that the 5mC-specific dioxygenase Tet1 has an important role in regulating meiosis in mouse oocytes. Tet1 deficiency significantly reduces female germ-cell numbers and fertility. Univalent chromosomes and unresolved DNA double-strand breaks are also observed in Tet1-deficient oocytes. Tet1 deficiency does not greatly affect the genome-wide demethylation that takes place in primordial germ cells, but leads to defective DNA demethylation and decreased expression of a subset of meiotic genes. Our study thus establishes a function for Tet1 in meiosis and meiotic gene activation in female germ cells.

  16. Tet1 controls meiosis by regulating meiotic gene expression

    PubMed Central

    Yamaguchi, Shinpei; Hong, Kwonho; Liu, Rui; Shen, Li; Inoue, Azusa; Diep, Dinh; Zhang, Kun; Zhang, Yi

    2012-01-01

    Meiosis is a germ cell-specific cell division process through which haploid gametes are produced for sexual reproduction1. Prior to initiation of meiosis, mouse primordial germ cells (PGCs) undergo a series of epigenetic reprogramming steps2,3, including global erasure of DNA methylation on the 5-position of cytosine (5mC) at CpG4,5. Although several epigenetic regulators, such as Dnmt3l, histone methyltransferases G9a and Prdm9, have been reported to be critical for meiosis6, little is known about how the expression of meiotic genes is regulated and how their expression contributes to normal meiosis. Using a loss of function approach, here we demonstrate that the 5mC-specific dioxygenase Tet1 plays an important role in regulating meiosis in mouse oocytes. Tet1 deficiency significantly reduces female germ cell numbers and fertility. Univalent chromosomes and unresolved DNA double strand breaks are also observed in Tet1-deficient oocytes. Tet1 deficiency does not greatly affect the genome-wide demethylation that takes place in PGCs but leads to defective DNA demethylation and decreased expression of a subset of meiotic genes. Our study thus establishes a function for Tet1 in meiosis and meiotic gene activation in female germ cells. PMID:23151479

  17. Post-transcriptional gene regulation by long noncoding RNA

    PubMed Central

    Yoon, Je-Hyun; Abdelmohsen, Kotb; Gorospe, Myriam

    2012-01-01

    Eukaryotic cells transcribe a vast number of noncoding RNA species. Among them, long noncoding RNAs (lncRNAs) have been widely implicated in the regulation of gene transcription. However, examples of post-transcriptional gene regulation by lncRNAs are emerging. For example, through extended base-pairing, lncRNAs can stabilize or promote the translation of target mRNAs, while partial base-pairing facilitates mRNA decay or inhibits target mRNA translation. In the absence of complementarity, lncRNAs can suppress pre-mRNA splicing and translation by acting as decoys of RNA-binding proteins or microRNAs, and can compete for microRNA-mediated inhibition leading to increased expression of the mRNA. Through these regulatory mechanisms, lncRNAs can elicit differentiation, proliferation, and cytoprotective programs, underscoring the rising recognition of lncRNA roles in human disease. In this review, we summarize the mechanism of post-transcriptional gene regulation by lncRNAs. PMID:23178169

  18. Simplified mechanistic models of gene regulation for analysis and design

    PubMed Central

    Hancock, Edward J.; Stan, Guy-Bart; Arpino, James A. J.; Papachristodoulou, Antonis

    2015-01-01

    Simplified mechanistic models of gene regulation are fundamental to systems biology and essential for synthetic biology. However, conventional simplified models typically have outputs that are not directly measurable and are based on assumptions that do not often hold under experimental conditions. To resolve these issues, we propose a ‘model reduction’ methodology and simplified kinetic models of total mRNA and total protein concentration, which link measurements, models and biochemical mechanisms. The proposed approach is based on assumptions that hold generally and include typical cases in systems and synthetic biology where conventional models do not hold. We use novel assumptions regarding the ‘speed of reactions’, which are required for the methodology to be consistent with experimental data. We also apply the methodology to propose simplified models of gene regulation in the presence of multiple protein binding sites, providing both biological insights and an illustration of the generality of the methodology. Lastly, we show that modelling total protein concentration allows us to address key questions on gene regulation, such as efficiency, burden, competition and modularity. PMID:26063825

  19. Global regulation of gene expression in Escherichia coli.

    PubMed Central

    Chuang, S E; Daniels, D L; Blattner, F R

    1993-01-01

    Global transcription responses of Escherichia coli to various stimuli or genetic defects were studied by measuring mRNA levels in about 400 segments of the genome. Measuring mRNA levels was done by analyzing hybridization to DNA dot blots made with overlapping lambda clones spanning the genome of E. coli K-12. Conditions examined included isopropyl-beta-D-thiogalactopyranoside (IPTG) induction, heat shock, osmotic shock, starvation for various nutrients, entrance of cells into the stationary phase of growth, anaerobic growth in a tube, growth in the gnotobiotic mouse gut, and effects of pleiotropic mutations rpoH, himA, topA, and crp. Most mapped genes known to be regulated by a particular situation were successfully detected. In addition, many chromosomal regions containing no previously known regulated genes were discovered that responded to various stimuli. This new method for studying globally regulated genetic systems in E. coli combines detection, cloning, and physical mapping of a battery of coregulated genes in one step. Images PMID:8458845

  20. Mechanisms of post-transcriptional gene regulation in bacterial biofilms

    PubMed Central

    Martínez, Luary C.; Vadyvaloo, Viveka

    2014-01-01

    Biofilms are characterized by a dense multicellular community of microorganisms that can be formed by the attachment of bacteria to an inert surface and to each other. The development of biofilm involves the initial attachment of planktonic bacteria to a surface, followed by replication, cell-to-cell adhesion to form microcolonies, maturation, and detachment. Mature biofilms are embedded in a self-produced extracellular polymeric matrix composed primarily of bacterial-derived exopolysaccharides, specialized proteins, adhesins, and occasionally DNA. Because the synthesis and assembly of biofilm matrix components is an exceptionally complex process, the transition between its different phases requires the coordinate expression and simultaneous regulation of many genes by complex genetic networks involving all levels of gene regulation. The finely controlled intracellular level of the chemical second messenger molecule, cyclic-di-GMP is central to the post-transcriptional mechanisms governing the switch between the motile planktonic lifestyle and the sessile biofilm forming state in many bacteria. Several other post-transcriptional regulatory mechanisms are known to dictate biofilm development and assembly and these include RNA-binding proteins, small non-coding RNAs, toxin-antitoxin systems, riboswitches, and RNases. Post-transcriptional regulation is therefore a powerful molecular mechanism employed by bacteria to rapidly adjust to the changing environment and to fine tune gene expression to the developmental needs of the cell. In this review, we discuss post-transcriptional mechanisms that influence the biofilm developmental cycle in a variety of pathogenic bacteria. PMID:24724055

  1. The regulation of gene expression required for C4 photosynthesis.

    PubMed

    Hibberd, Julian M; Covshoff, Sarah

    2010-01-01

    C(4) photosynthesis is normally associated with the compartmentation of photosynthesis between mesophyll (M) and bundle sheath (BS) cells. The mechanisms regulating the differential accumulation of photosynthesis proteins in these specialized cells are fundamental to our understanding of how C(4) photosynthesis operates. Ce